WorldWideScience

Sample records for base metal casting

  1. High pressure die casting of Fe-based metallic glass

    Science.gov (United States)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  2. High pressure die casting of Fe-based metallic glass.

    Science.gov (United States)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-11

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  3. Clean Metal Casting

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  4. Influence of S. mutans on base-metal dental casting alloy toxicity.

    Science.gov (United States)

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p dental casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  5. Systems and Methods for Fabricating Structures Including Metallic Glass-Based Materials Using Low Pressure Casting

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Kennett, Andrew (Inventor)

    2018-01-01

    Systems and methods to fabricate objects including metallic glass-based materials using low-pressure casting techniques are described. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: introducing molten alloy into a mold cavity defined by a mold using a low enough pressure such that the molten alloy does not conform to features of the mold cavity that are smaller than 100 microns; and cooling the molten alloy such that it solidifies, the solid including a metallic glass-based material.

  6. Fabricating Zr-Based Bulk Metallic Glass Microcomponent by Suction Casting Using Silicon Micromold

    Directory of Open Access Journals (Sweden)

    Zhijing Zhu

    2014-08-01

    Full Text Available A suction casting process for fabricating Zr55Cu30Al10Ni5 bulk metallic glass microcomponent using silicon micromold has been studied. A complicated BMG microgear with 50 μm in module has been cast successfully. Observed by scanning electron microscopy and laser scanning confocal microscopy, we find that the cast microgear duplicates the silicon micromold including the microstructure on the surface. The amorphous state of the microgear is confirmed by transmission election microscopy. The nanoindentation hardness and elasticity modulus of the microgear reach 6.5 GPa and 94.5 GPa. The simulation and experimental results prove that the suction casting process with the silicon micromold is a promising one-step method to fabricate bulk metallic glass microcomponents with high performance for applications in microelectromechanical system.

  7. Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain.

    Science.gov (United States)

    Akova, Tolga; Ucar, Yurdanur; Tukay, Alper; Balkaya, Mehmet Cudi; Brantley, William A

    2008-10-01

    The purpose of this study was to compare shear bond strengths of cast Ni-Cr and Co-Cr alloys and the laser-sintered Co-Cr alloy to dental porcelain. Dental porcelain was applied on two cast and one laser-sintered base metal alloy. Ten specimens were prepared for each group for bond strength comparison. ANOVA followed by Tukey HSD multiple comparison test (alpha=0.05) was used for statistical analysis. Fractured specimens were observed with a stereomicroscope to classify the type of failure after shear bond testing. While the mean shear bond strength was highest for the cast Ni-Cr metal-ceramic specimens (81.6+/-14.6 MPa), the bond strength was not significantly different (P>0.05) from that for the cast Co-Cr metal-ceramic specimens (72.9+/-14.3 MPa) and the laser-sintered Co-Cr metal-ceramic specimens (67.0+/-14.9 MPa). All metal-ceramic specimens prepared from cast Ni-Cr and Co-Cr alloys exhibit a mixed mode of cohesive and adhesive failure, whereas five of the metal-ceramic specimens prepared from the laser-sintered Co-Cr alloy exhibited the mixed failure mode and five specimens exhibited adhesive failure in the porcelain. The new laser-sintering technique for Co-Cr alloy appears promising for dental applications, but additional studies of properties of the laser-sintered alloy and fit of castings prepared by this new technique are needed before its acceptance into dental laboratory practice. Laser sintering of Co-Cr alloy seems to be an alternative technique to conventional casting of dental alloys for porcelain fused to metal restorations.

  8. Surface Crystallization in Mg-Based Bulk Metallic Glass during Copper Mold Casting

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2014-01-01

    Full Text Available The localized crystallization of Mg54Cu28Ag7Y11 bulk metallic glass (BMG in the injection casting process using a copper mold was investigated. It has been found that several crystalline phases were formed close to the as-cast surface but did not exist in the internal part of the BMG plate. It is abnormal that the as-cast surface is partially crystallized with higher cooling rate than that of inside. Overheating of the melt and nucleation induced by the surface of copper mold play key roles in the abnormal crystallization. It is suggested that the function of copper mold to trigger heterogeneous nucleation cannot be totally ignored, although it provides the high cooling rate for the glass formation during casting.

  9. PLC and SCADA based automation of injection casting process for casting of uranium-zirconium blanket fuel slugs for metallic fuel fabrication

    International Nuclear Information System (INIS)

    Yathish Kumar, G.; Jagadeeschandran, J.; Avvaru, Prafulla Kumar; Yadaw, Abhishek Kumar; Lavakumar, R.; Prabhu, T.V.; Muralidharan, P.; Anthonysamy, S.

    2016-01-01

    Fabrication of metallic (U-6wt.%Zr) slugs involves melting of binary alloy under vacuum and injection casting into quartz moulds at high pressure. Injection casting system housed inside glove box comprises of high vacuum, induction melting, high pressure control, motion control, mould preheating, chamber cooling, crucible handling and glove box pressure control systems. The technology development for process automation of injection casting system and process optimisation for fabrication of metallic (U-6%Zr) slugs is outlined in this paper. (author)

  10. Metal Casting--Industry of the Future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-01-23

    This 8-page brochure describes the Office of Industrial Technologies Metal Casting Industry of The Future; a partnership between the Department of Energy and the metal casting industry established to increase industrial energy and cost efficiency.

  11. Effect of recasting on element release from base metal dental casting alloys in artificial saliva and saline solution

    Science.gov (United States)

    Jayaprakash, K.; Kumar Shetty, K. Harish; Shetty, A. Nityananda; Nandish, Bantarahalli Thopegowda

    2017-01-01

    Aim: The aim of this study was to quantitatively estimate the concentration of ion release from recasted base metal alloys in various pH conditions using atomic absorption spectroscopy (AAS). Materials and Methods: Specimens of commercially available dental casting alloys (cobalt [Co]-chromium [Cr] and nickel [Ni]- chromium [Cr]) were prepared using lost-wax casting techniques and were stored in the test solution for 1 week and 4 weeks, and ions released during chemical corrosion were detected using AAS. Results: An increase in the quantity of ion release was observed with recasting. These changes were higher after twice recasting in Ni-Cr alloy. PMID:29279626

  12. Casting metal microstructures from a flexible and reusable mold

    Science.gov (United States)

    Cannon, Andrew H.; King, William P.

    2009-09-01

    This paper describes casting-based microfabrication of metal microstructures and nanostructures. The metal was cast into flexible silicone molds which were themselves cast from microfabricated silicon templates. Microcasting is demonstrated in two metal alloys of melting temperature 70 °C or 138 °C. Many structures were successfully cast into the metal with excellent replication fidelity, including ridges with periodicity 400 nm and holes or pillars with diameter in the range 10-100 µm and aspect ratio up to 2:1. The flexibility of the silicone mold permits casting of curved surfaces, which we demonstrate by fabricating a cylindrical metal roller of diameter 8 mm covered with microstructures. The metal microstructures can be in turn used as a reusable molding tool.

  13. Simulation of the injection casting of metallic fuels

    International Nuclear Information System (INIS)

    Nakagawa, Tomokazu; Ogata, Takanari; Tokiwai, Moriyasu.

    1989-01-01

    For the fabrication of metallic fuel pins, injection casting is a preferable process because the simplicity of the process is suitable for remote operation. In this process, the molten metal in the crucible is injected into evacuated molds (suspended above the crucible) by pressurizing the casting furnace. Argonne National Laboratory has already adopted this process in the Integral Fast Reactor program. To obtain fuel pins with good quality, the casting parameters, such as the molten metal temperature, the magnitude of the pressure applied, the pressurizing rate, the cooling time, etc., must be optimized. Otherwise, bad-quality castings (short castings, rough surfaces, shrinkage cavities, mold fracture) may result. Therefore, it is very important in designing the casting equipment and optimizing the operation conditions to be able to predict the fluid and thermal behavior of the castings. This paper describes methods to simulate the heat and mass transfer in the molds and molten metallic fuel during injection casting. The results obtained by simulation are compared with experimental ones. Also, appropriate casting conditions for the uranium-plutonium-zirconium alloy are discussed based on the simulated results

  14. Study of carbon and silicon loss through oxidation in cast iron base metal using rotary furnace for melting

    Directory of Open Access Journals (Sweden)

    Sylvester Olanrewaju OMOLE

    2015-05-01

    Full Text Available The projection of loss of carbon and silicon through oxidation is uncertain phenomenon depending on the furnace used for melting, which affect the carbon equivalent value (CEV of cast iron produced. CEV enhances the fluidity of molten metal as well as having great effects on the mechanical properties of cast products. Study on the way elemental loss takes place during melting with rotary furnace will give idea of approach to minimize the loss. Therefore, the aim of this work is to study the magnitude of the elemental loss with rotary furnace and means to minimize the loss. 60kg of grey cast iron scrap was charged into rotary furnace of 100kg capacity after preheating the furnace for 40 minutes. Graphite and ferrosilicon was added to the charge in order to obtain a theoretical composition of not less than 4.0% carbon and 2.0% silicon. Charges in the furnace were heated to obtain molten metal which was tapped at 1400°C. Tapping was done for casting at three different times. The castings solidified in sand mould and allowed to cool to room temperature in the mould. Castings were denoted as sample 1, 2 and 3. Final compositions of each casting were analyzed with optical light emission spectrometer. Sample 1 has 2.95% carbon and 1.82% silicon. Sample 2 has 2.88% carbon and 1.70% silicon and sample 3 has 2.75% carbon and 1.63% silicon.

  15. A comparative study on microgap of premade abutments and abutments cast in base metal alloys.

    Science.gov (United States)

    Lalithamma, Jaini Jaini; Mallan, Sreekanth Anantha; Murukan, Pazhani Appan; Zarina, Rita

    2014-06-01

    The study compared the marginal accuracy of premade and cast abutments. Premade titanium, stainless steel, and gold abutments formed the control groups. Plastic abutments were cast in nickel-chromium, cobalt-chromium and grade IV titanium. The abutment/implant interface was analyzed. Analysis of variance and Duncan's multiple range test revealed no significant difference in mean marginal microgap between premade gold and titanium abutments and between premade stainless steel and cast titanium abutments. Statistically significant differences (P < .001) were found among all other groups.

  16. Low Loss Advanced Metallic Fuel Casting Evaluation

    International Nuclear Information System (INIS)

    Kim, Kihwan; Ko, Youngmo; Kim, Jonghwan; Song, Hoon; Lee Chanbock

    2014-01-01

    The fabrication process for SFR fuel is composed of fuel slug casting, loading and fabrication of the fuel rods, and the fabrication of the final fuel assemblies. Fuel slug casting is the dominant source of fuel losses and recycles streams in the fabrication process. Recycle streams include fuel slug reworks, returned scraps, and fuel casting heels, which are a special concern in the counter gravity injection casting process because of the large masses involved. Large recycle and waste streams result in lowering the productivity and the economic efficiency of fuel production. To increase efficiency the fuel losses in the furnace chamber, crucible, and the mold, after casting a considerable amount of fuel alloy in the casting furnace, will be quantitatively evaluated. After evaluation the losses will be identified and minimized. It is expected that this study will contribute to the minimization of fuel losses and the wastes streams in the fabrication process of the fuel slugs. Also through this study the technical readiness level of the metallic fuel fabrication process will be further enhanced. In this study, U-Zr alloy system fuel slugs were fabricated by a gravity casting method. Metallic fuel slugs were successfully fabricated with 19 slugs/batch with diameter of 5mm and length of 300mm. Fuel losses was quantitatively evaluated in casting process for the fuel slugs. Fuel losses of the fuel slugs were so low, 0.1∼1.0%. Injection casting experiments have been performed to reduce the fuel loss and improve the casting method. U-Zr fuel slug having φ5.4-L250mm was soundly fabricated with 0.1% in fuel loss. The fuel losses could be minimized to 0.1%, which showed that casting technology of fuel slugs can be a feasible approach to reach the goal of the fuel losses of 0.1% or less in commercial scale

  17. Horizontal electromagnetic casting of thin metal sheets

    Science.gov (United States)

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  18. Horizontal electromagnetic casting of thin metal sheets

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  19. Energy use in selected metal casting facilities - 2003

    Energy Technology Data Exchange (ETDEWEB)

    Eppich, Robert E. [Eppich Technologies, Syracuse, IN (United States)

    2004-05-01

    This report represents an energy benchmark for various metal casting processes. It describes process flows and energy use by fuel type and processes for selected casting operations. It also provides recommendations for improving energy efficiency in casting.

  20. Effect of electric arc, gas oxygen torch and induction melting techniques on the marginal accuracy of cast base-metal and noble metal-ceramic crowns.

    Science.gov (United States)

    Gómez-Cogolludo, Pablo; Castillo-Oyagüe, Raquel; Lynch, Christopher D; Suárez-García, María-Jesús

    2013-09-01

    The aim of this study was to identify the most appropriate alloy composition and melting technique by evaluating the marginal accuracy of cast metal-ceramic crowns. Seventy standardised stainless-steel abutments were prepared to receive metal-ceramic crowns and were randomly divided into four alloy groups: Group 1: palladium-gold (Pd-Au), Group 2: nickel-chromium-titanium (Ni-Cr-Ti), Group 3: nickel-chromium (Ni-Cr) and Group 4: titanium (Ti). Groups 1, 2 and 3 were in turn subdivided to be melted and cast using: (a) gas oxygen torch and centrifugal casting machine (TC) or (b) induction and centrifugal casting machine (IC). Group 4 was melted and cast using electric arc and vacuum/pressure machine (EV). All of the metal-ceramic crowns were luted with glass-ionomer cement. The marginal fit was measured under an optical microscope before and after cementation using image analysis software. All data was subjected to two-way analysis of variance (ANOVA). Duncan's multiple range test was run for post-hoc comparisons. The Student's t-test was used to investigate the influence of cementation (α=0.05). Uncemented Pd-Au/TC samples achieved the best marginal adaptation, while the worst fit corresponded to the luted Ti/EV crowns. Pd-Au/TC, Ni-Cr and Ti restorations demonstrated significantly increased misfit after cementation. The Ni-Cr-Ti alloy was the most predictable in terms of differences in misfit when either torch or induction was applied before or after cementation. Cemented titanium crowns exceeded the clinically acceptable limit of 120μm. The combination of alloy composition, melting technique, casting method and luting process influences the vertical seal of cast metal-ceramic crowns. An accurate use of the gas oxygen torch may overcome the results attained with the induction system concerning the marginal adaptation of fixed dental prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Casting Development of Metallic Fuel for SFR

    International Nuclear Information System (INIS)

    Song, H.; Kim, J.H.; Ko, Y.M.; Woo, Y.M.; Kim, K.H.; Lee, C.B.

    2015-01-01

    U-Zr metal fuel for SFR is now being developed by KAERI as a national R and D programme of Korea. In order to recycle transuranic elements (TRU) retained in spent nuclear fuel, the generation of long-lived radioactive wastes and a loss of volatile species should be minimised during the recycled fuel fabrication step. In this study, fuel slug fabrication method has been introduced to develop an innovative fabrication process of metal fuel of SFR for preventing the evaporation of volatile elements such as Am. Metal fuel slugs were fabricated with an improved injection casting method in KAERI. Volatile species can be retained through the use of a cover gas with over pressure and covered crucibles. Experimental results show that the Mn was not volatilized and conserved in inert gas conditions compared to the vacuum condition. The volatility of Mn can be controlled by changing the casting process, and minimal Mn (and Am) loss is possible. An improved casting method under an inert atmosphere is more effective in the prevention of vaporisation than casting under a vacuum and reduced atmosphere. In addition, improved casting under a reduced atmosphere shows a considerable effect in the prevention of vaporisation. (authors)

  2. Direct metal laser sintering: a digitised metal casting technology.

    Science.gov (United States)

    Venkatesh, K Vijay; Nandini, V Vidyashree

    2013-12-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  3. Non-Gold Base Dental Casting Alloys. Volume 2. Porcelain-Fused-to-Metal Alloys.

    Science.gov (United States)

    1986-08-01

    nature of nickel release in human saliva at pH levels of 2 through 6 for 5, 10, 20, and 30 days, the specimens were immersed for 120 days. The results...poor thermal con- ductors--a property which can be beneficial to pulpal tissues. COPING - A designation for the metal substructure of a single unit

  4. Pipe Rolling from Continuous Cast Metal

    International Nuclear Information System (INIS)

    Zhordania, I.; Chkhartishvili, I.; Lordkipanidze, J.; Melashvili, Z.; Papava, K.; Khundadze, K.

    2007-01-01

    The approach to manufacturing of high quality pipes as a result of solid and hollow billet rolling from continuous cast metal is shown. Optimal parameters of piercing, temperature of piercing and piercing rolling mill rollers speed have been experimentally established. (author)

  5. Reinforcement of Aluminum Castings with Dissimilar Metals

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q

    2004-01-07

    The project ''Reinforcement of Aluminum Casting with Dissimilar Metal'' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Cummins Inc. This project, technologies have been developed to reinforce aluminum castings with steel insert. Defect-free bond between the steel insert and the aluminum casting has been consistently obtained. The push-out experiment indicated that the bond strength is higher than that of the Al-Fin method. Two patents have been granted to the project team that is comprised of Cummins Inc. and ORNL. This report contains four sections: the coating of the steel pins, the cast-in method, microstructure characterization, and the bond strength. The section of the coating of the steel pins contains coating material selection, electro-plating technique for plating Cu and Ni on steel, and diffusion bonding of the coatings to the steel. The section of cast-in method deals with factors that affecting the quality of the metallurgical bond between the coated steel and the aluminum castings. The results of microstructure characteristics of the bonding are presented in the microstructure characterization section. A push-out experiment and the results obtained using this method is described in the section of bond strength/mechanical property.

  6. Characterization of metal powder based rapid prototyping components under aluminium high pressure die casting process conditions

    CSIR Research Space (South Africa)

    Pereira, MFVT

    2009-11-01

    Full Text Available This paper is based on tests performed on die component specimens grown on an EOS RP technology platform, as well as manufactured specimens machined out of preferred standard hot work steel DIN 1.2344. These specimens resemble typical components...

  7. Biocompatibility effects of indirect exposure of base-metal dental casting alloys to a human-derived three-dimensional oral mucosal model.

    Science.gov (United States)

    McGinley, Emma Louise; Moran, Gary P; Fleming, Garry J P

    2013-11-01

    The study employed a three-dimensional (3D) human-derived oral mucosal model to assess the biocompatibility of base-metal dental casting alloys ubiquitous in fixed prosthodontic and orthodontic dentistry. Oral mucosal models were generated using primary human oral keratinocyte and gingival fibroblast cells seeded onto human de-epidermidised dermal scaffolds. Nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) base-metal alloy immersion solutions were exposed to oral mucosal models for increasing time periods (2-72h). Analysis methodologies (histology, viable cell counts, oxidative stress, cytokine expression and toxicity) were performed following exposure. Ni-based alloy immersion solutions elicited significantly decreased cell viability (Palloy immersion solutions did not elicit adverse oxidative stress (P>0.4755) or cellular toxicity (Pmetal alloy immersion solutions elicited significantly detrimental effects to the oral mucosal models, it was possible to distinguish between Ni-Cr alloys using the approach employed. The study employed a 3D human-derived full-thickness differentiated oral mucosal model suitable for biocompatibility assessment of base-metal dental casting alloys through discriminatory experimental parameters. Increasing incidences of Ni hypersensitivity in the general population warrants serious consideration from dental practitioners and patients alike where fixed prosthodontic/orthodontic dental treatments are the treatment modality involved. The novel and analytical oral mucosal model has the potential to significantly contribute to the advancement of reproducible dental medical device and dental material appraisals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States); Wilkening, D. [Columbia Falls Aluminum Co., Columbia Falls, MT (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., Anaconda, MT (United States)

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  9. Marginal Accuracy of Castings Fabricated with Ringless Casting Investment System and Metal Ring Casting Investment System: A Comparative Study.

    Science.gov (United States)

    Kalavathi, M; Sachin, Bhuvana; Prasanna, B G; Shreeharsha, T V; Praveen, B; Ragher, Mallikarjuna

    2016-02-01

    The thermal expansion of the investment can be restricted by the metal casting ring because the thermal expansion of the ring is less than that of the investment. The ringless casting procedure is in use in clinical dentistry, though there is little scientific data to support its use in fixed partial dentures. In this study, marginal discrepancy of castings produced with the ringless casting technique and the conventional technique using the metal rings were compared. A total of 30 wax patterns were fabricated directly on a metal die. Optical stereomicroscope was used to measure the marginal discrepancy between the metal die and wax patterns. A total of 15 castings were invested using Bellavest T phosphate-bonded investment with the ringless technique and 15 were invested with the same investment with a metal ring; 30 castings were produced using a nickel-chromium ceramo-metal alloy. The internal surface of the castings was not modified and seated with finger pressure. The vertical marginal discrepancy was measured using an optical stereomicroscope at a magnification of 100x. The data obtained were statistically analyzed using students t-test (paired t-test and unpaired t-test). The castings of the ringless technique provided less vertical marginal discrepancy (240.56 ± 45.81 μ) than the castings produced with the conventional metal ring technique (281.98± 53.05 μ). The difference was statistically significant. The ringless casting technique had produced better marginal accuracy compared with conventional casting technique. Ringless casting system can be used routinely for clinical purpose.

  10. Casting of electron field defining apertures: Casting with the metal mold kits

    International Nuclear Information System (INIS)

    Dea, D.; San Luis, E.

    1988-01-01

    Cerrobend alloy casts are made to define the desired electron field shapes. These custom casts are fabricated for the selected electron applicator size that has been chosen for the patient. When the cast is placed into that selected electron applicator, it will block out areas that are not to be treated. When an all metal mold assembly was used for the fabrication of these casts, the lip region of the cast which is used to accurately align the cast in the actual treatment applicator, had an irregular edge that prevented an accurate alignment of the cast. To eliminate the irregular edges on the lip region of the cast, the metal mold assembly was heated to approximately 80-85 degrees C before the molten cerrobend alloy was poured into it. The heating of the metal mold assembly helps eliminate the irregular edges on the lip region of the cast. Unfortunately it also created new flaws such as holes, dents, cracks and/or crystallization of the cast as it solidified. These flaws were controlled by cooling the metal mold assembly and the cast immediately after the pouring of the molten cerrobend alloy, evenly with water

  11. Report on results of current and future metal casting

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Cetin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carlson, Neil N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-28

    New modeling capabilities needed to simulate the casting of metallic fuels are added to Truchas code. In this report we summarize improvements we made in FY2015 in three areas; (1) Analysis of new casting experiments conducted with BCS and EFL designs, (2) the simulation of INL’s U-Zr casting experiments with Flow3D computer program, (3) the implementation of surface tension model into Truchas for unstructured mesh required to run U-Zr casting.

  12. Research on plant of metal fuel fabrication using casting process

    International Nuclear Information System (INIS)

    Senda, Yasuhide; Mori, Yukihide

    2003-12-01

    This document presents the plant concept of metal fuel fabrication system (38tHM/y) using casting process in electrolytic recycle, which based on recent studies of its equipment design and quality control system. And we estimate the cost of its construction and operation, including costs of maintenance, consumed hardware and management of waste. The content of this work is as follows. (1) Designing of fuel fabrication equipment: We make material flow diagrams of the fuel fabrication plant and rough designs of the injection casting furnace, demolder and inspection equipment. (2) Designing of resolution system of liquid waste, which comes from analytical process facility. Increased analytical items, we rearrange analytical process facility, estimate its chemicals and amount of waste. (3) Arrangement of equipments: We made a arrangement diagram of the metal fuel fabrication equipments in cells. (4) Estimation of cost data: We estimated cost to construct the facility and to operate it. (author)

  13. Casting of metallic fuel containing minor actinide additions

    International Nuclear Information System (INIS)

    Trybus, C.L.; Henslee, S.P.; Sanecki, J.E.

    1992-01-01

    A significant attribute of the Integral Fast Reactor (IFR) concept is the transmutation of long-lived minor actinide fission products. These isotopes require isolation for thousands of years, and if they could be removed from the waste, disposal problems would be reduced. The IFR utilizes pyroprocessing of metallic fuel to separate auranium, plutonium, and the minor actinides from nonfissionable constituents. These materials are reintroduced into the fuel and reirradiated. Spent IFR fuel is expected to contain low levels of americium, neptunium, and curium because the hard neutron spectrum should transmute these isotopes as they are produced. This opens the possibility of using an IFR to trnasmute minor actinide waste from conventional light water reactors (LWRs). A standard IFR fuel is based on the alloy U-20% Pu-10% Zr (in weight percent). A metallic fuel system eases the requirements for reprocessing methods and enables the minor actinide metals to be incorporated into the fuel with simple modifications to the basic fuel casting process. In this paper, the authors report the initial casting experience with minor actinide element addition to an IFR U-Pu-Zr metallic fuel

  14. Emulsion based cast booster - a priming system

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.N.; Mishra, A.K. [National Institute of Rock Mechanics, KGF (India)

    2005-07-01

    This paper explores the potential of emulsion based cast booster to be used as primer to initiate bulk delivered emulsion explosives used in mines. An attempt has been made for comparative study between conventional cast booster and emulsion based cast booster in terms of the initiation process developed and their capability to develop and maintain the stable detonation process in the column explosives. The study has been conducted using a continuous velocity of detonation (VOD) measuring instrument. During this study three blasts have been monitored. In each blast two holes have been selected for study, the first hole being initiated with conventional cast booster while the other one with emulsion based cast booster. The findings of the study advocates that emulsion based cast booster is capable of efficient priming of bulk delivered column explosive with stable detonation process in the column. Further, the booster had advantages over the conventional PETN/TNT based cast booster. 5 refs., 2 figs., 1 tab., 1 photo.

  15. Microstructured metal molds fabricated via investment casting

    International Nuclear Information System (INIS)

    Cannon, Andrew H; King, William P

    2010-01-01

    This paper describes an investment casting process to produce aluminum molds having integrated microstructures. Unlike conventional micromolding tools, the aluminum mold was large and had complex curved surfaces. The aluminum was cast from curved microstructured ceramic molds which were themselves cast from curved microstructured rubber. The aluminum microstructures had an aspect ratio of 1:1 and sizes ranging from 25 to 50 µm. Many structures were successfully cast into the aluminum with excellent replication fidelity, including circular, square and triangular holes. We demonstrate molding of large, curved surfaces having surface microstructures using the aluminum mold.

  16. Cast Metal Coalition Research and Development Closeout Report

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.

    2000-08-01

    The Cast Metal Coalition, composed of more than 22 research providers and universities and 149 industrial partners, has completed a four-year research and development partnership with the Department of Energy. This report provides brief summaries of the 29 projects performed by the Coalition. These projects generated valuable information in such aspects of the metals industry as process prediction technologies, quality control, improved alloys, product machinability, and casting process improvements.

  17. Study of Thermal Properties of Cast Metal- Ceramic Composite Foams

    OpenAIRE

    Gawdzińska K.; Chybowski L.; Przetakiewicz W.

    2017-01-01

    Owing to its properties, metallic foams can be used as insulation material. Thermal properties of cast metal-ceramic composite foams have applications in transport vehicles and can act as fire resistant and acoustic insulators of bulkheads. This paper presents basic thermal properties of cast and foamed aluminum, the values of thermal conductivity coefficient of selected gases used in foaming composites and thermal capabilities of composite foams (AlSi11/SiC). A certificate of non-combustibil...

  18. Base-metal dental casting alloy biocompatibility assessment using a human-derived three-dimensional oral mucosal model.

    LENUS (Irish Health Repository)

    McGinley, E L

    2012-01-01

    Nickel-chromium (Ni-Cr) alloys used in fixed prosthodontics have been associated with type IV Ni-induced hypersensitivity. We hypothesised that the full-thickness human-derived oral mucosa model employed for biocompatibility testing of base-metal dental alloys would provide insights into the mechanisms of Ni-induced toxicity. Primary oral keratinocytes and gingival fibroblasts were seeded onto Alloderm™ and maintained until full thickness was achieved prior to Ni-Cr and cobalt-chromium (Co-Cr) alloy disc exposure (2-72 h). Biocompatibility assessment involved histological analyses with cell viability measurements, oxidative stress responses, inflammatory cytokine expression and cellular toxicity analyses. Inductively coupled plasma mass spectrometry analysis determined elemental ion release levels. We detected adverse morphology with significant reductions in cell viability, significant increases in oxidative stress, inflammatory cytokine expression and cellular toxicity for the Ni-Cr alloy-treated oral mucosal models compared with untreated oral mucosal models, and adverse effects were increased for the Ni-Cr alloy that leached the most Ni. Co-Cr demonstrated significantly enhanced biocompatibility compared with Ni-Cr alloy-treated oral mucosal models. The human-derived full-thickness oral mucosal model discriminated between dental alloys and provided insights into the mechanisms of Ni-induced toxicity, highlighting potential clinical relevance.

  19. Metallic Fuel Casting Development and Parameter Optimization Simulations

    International Nuclear Information System (INIS)

    Fielding, Randall S.; Kennedy, J.R.; Crapps, J.; Unal, C.

    2013-01-01

    Conclusions: • Gravity casting is a feasible process for casting of metallic fuels: – May not be as robust as CGIC, more parameter dependent to find right “sweet spot” for high quality castings; – Fluid flow is very important and is affected by mold design, vent size, super heat, etc.; – Pressure differential assist was found to be detrimental. • Simulation found that vent location was important to allow adequate filling of mold; • Surface tension plays an important role in determining casting quality; • Casting and simulations high light the need for better characterized fluid physical and thermal properties; • Results from simulations will be incorporated in GACS design such as vent location and physical property characterization

  20. National Metal Casting Research Institute final report. Volume 2, Die casting research

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, D. [University of Northern Iowa, Cedar Falls, IA (United States). Dept. of Industrial Technology] [comp.

    1994-06-01

    Four subprojects were completed: development and evaluation of die coatings, accelerated die life characterization of die materials, evaluation of fluid flow and solidification modeling programs, selection and characterization of Al-based die casting alloys, and influence of die materials and coatings on die casting quality.

  1. Casting of Motorcycle Piston from Aluminium Piston Scrap using Metallic Mould

    Directory of Open Access Journals (Sweden)

    Francis Uchenna OZIOKO

    2012-11-01

    Full Text Available The casting of motorcycle piston was carried out using metallic mould. The prepared piston sand core was positioned in the mould to provide casting with contours and cavities. The molten metal of required composition was poured into the metallic mould, allowed to solidify and take the desired shape of the cavity. Aluminium silicon piston scraps were used as the casting material. Melting of the aluminium piston scraps was achieved using local crucible furnace and finally pouring the molten metal into the metallic mould having the prepared piston sand core in place to obtain the piston. After fettling and cleaning, the casting was found to be good. The composition test revealed that the scrap piston was made from LM29 aluminium alloy. The cast piston was machined and subjected to performance rating test in a Jincheng AX100 motorcycle engine. The rating used was based on a scale from 1 to 10. The higher the rating, the better the evaluation of the piston in the specific area rated. Deposits are evaluated by appearance, ranging from 10 (clean - absence of deposits to 0.0 (maximum deposits. In spite of various production constraints the result of the performance test was good. The rating showed that the locally cast piston compared favourably with imported piston.

  2. Feasibility of producing cast-refractory metal-fiber superalloy composites

    Science.gov (United States)

    Mcintyre, R. D.

    1973-01-01

    A study was conducted to evaluate the feasibility of direct casting as a practical method for producing cast superalloy tungsten or columbium alloy fiber composites while retaining a high percentage of fiber strength. Fourteen nickel base, four cobalt, and three iron based matrices were surveyed for their degree of reaction with the metal fibers. Some stress-rupture results were obtained at temperatures of 760, 816, 871, and 1093 C for a few composite systems. The feasibility of producing acceptable composites of some cast nickel, cobalt, and iron matrix alloys with tungsten or columbium alloy fibers was demonstrated.

  3. Effect of Stone Cast Type on Complete Denture Base Adaptation

    Directory of Open Access Journals (Sweden)

    Salman Hamdan

    2016-06-01

    Full Text Available Introduction: Few researches have been conducted researches on the influence of the type of dental stone used for fabrication of casts on the adaptation of denture bases. The purpose of this study was to compare the effect of two types of stone casts on the accuracy of fit in complete denture bases. Methods: Using sixty fully replicated master casts obtained by duplicating a metal die representing an edentulous maxillary arch, 30 casts were poured in type III dental stone and 30 made from type V dental stone. All dentures were completely waxed using a same thickness of base plate wax and teeth were made for the purpose of accuracy. Following polymerization in the same working conditions, dentures were trimmed. After silicone injection between each denture and metal die was performed, weighing the elastomeric silicone layer was performed to study adaptation of dentures. Metal die was used both before copying the casts and   after storing them in water for two months. Results: The values ​​for silicone layer weight (in grams in the group with dental stone type III were greater than the values in type V  regardless of the studied period (both after polymerization and after water immersion for a period of two months in the sample (p

  4. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Light Metals Permanent Mold Casting

    Energy Technology Data Exchange (ETDEWEB)

    Fasoyinu, Yemi [CanmetMATERIALS

    2014-03-31

    Current vehicles use mostly ferrous components for structural applications. It is possible to reduce the weight of the vehicle by substituting these parts with those made from light metals such as aluminum and magnesium. Many alloys and manufacturing processes can be used to produce these light metal components and casting is known to be most economical. One of the high integrity casting processes is permanent mold casting which is the focus of this research report. Many aluminum alloy castings used in automotive applications are produced by the sand casting process. Also, aluminum-silicon (Al-Si) alloys are the most widely used alloy systems for automotive applications. It is possible that by using high strength aluminum alloys based on an aluminum-copper (Al-Cu) system and permanent mold casting, the performance of these components can be enhanced significantly. This will also help to further reduce the weight. However, many technological obstacles need to be overcome before using these alloys in automotive applications in an economical way. There is very limited information in the open literature on gravity and low-pressure permanent mold casting of high strength aluminum alloys. This report summarizes the results and issues encountered during the casting trials of high strength aluminum alloy 206.0 (Al-Cu alloy) and moderate strength alloy 535.0 (Al-Mg alloy). Five engineering components were cast by gravity tilt-pour or low pressure permanent mold casting processes at CanmetMATERIALS (CMAT) and two production foundries. The results of the casting trials show that high integrity engineering components can be produced successfully from both alloys if specific processing parameters are used. It was shown that a combination of melt processing and mold temperature is necessary for the elimination of hot tears in both alloys.

  5. Implementation of Metal Casting Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    Eppich, Robert [Eppich Technologies, Syracuse, IN (United States); Naranjo, Robert D. [BCS, Inc., Laurel, MD (United States)

    2007-01-01

    The project examined cases where metal casters had implemented ITP research results and the benefits they received due to that implementation. In cases where casters had not implemented those results, the project examined the factors responsible for that lack of implementation. The project also informed metal casters of the free tools and service offered by the ITP Technology Delivery subprogram.

  6. Development of an expert system for the simulation model for casting metal substructure of a metal-ceramic crown design.

    Science.gov (United States)

    Matin, Ivan; Hadzistevic, Miodrag; Vukelic, Djordje; Potran, Michal; Brajlih, Tomaz

    2017-07-01

    Nowadays, the integrated CAD/CAE systems are favored solutions for the design of simulation models for casting metal substructures of metal-ceramic crowns. The worldwide authors have used different approaches to solve the problems using an expert system. Despite substantial research progress in the design of experts systems for the simulation model design and manufacturing have insufficiently considered the specifics of casting in dentistry, especially the need for further CAD, RE, CAE for the estimation of casting parameters and the control of the casting machine. The novel expert system performs the following: CAD modeling of the simulation model for casting, fast modeling of gate design, CAD eligibility and cast ability check of the model, estimation and running of the program code for the casting machine, as well as manufacturing time reduction of the metal substructure. The authors propose an integration method using common data model approach, blackboard architecture, rule-based reasoning and iterative redesign method. Arithmetic mean roughness values was determinated with constant Gauss low-pass filter (cut-off length of 2.5mm) according to ISO 4287 using Mahr MARSURF PS1. Dimensional deviation between the designed model and manufactured cast was determined using the coordinate measuring machine Zeiss Contura G2 and GOM Inspect software. The ES allows for obtaining the castings derived roughness grade number N7. The dimensional deviation between the simulation model of the metal substructure and the manufactured cast is 0.018mm. The arithmetic mean roughness values measured on the casting substructure are from 1.935µm to 2.778µm. The realized developed expert system with the integrated database is fully applicable for the observed hardware and software. Values of the arithmetic mean roughness and dimensional deviation indicate that casting substructures are surface quality, which is more than enough and useful for direct porcelain veneering. The

  7. Manufacturing of Cast Metal Foams with Irregular Cell Structure

    Directory of Open Access Journals (Sweden)

    Kroupová I.

    2015-06-01

    Full Text Available Metallic foams are materials of which the research is still on-going, with the broad applicability in many different areas (e.g. automotive industry, building industry, medicine, etc.. These metallic materials have specific properties, such as large rigidity at low density, high thermal conductivity, capability to absorb energy, etc. The work is focused on the preparation of these materials using conventional casting technology (infiltration method, which ensures rapid and economically feasible method for production of shaped components. In the experimental part we studied conditions of casting of metallic foams with open pores and irregular cell structure made of ferrous and nonferrous alloys by use of various types of filler material (precursors.

  8. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, Michael L.; Sikka, Vinod K.

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  9. Electromagnetic augmentation for casting of thin metal sheets

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1989-01-01

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a mold within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. The magnetic fields associated with the currents in the aforementioned coils levitate the molten metal sheet while the mold provides for its lateral and vertical confinement. A leader sheet having electromagnetic characteristics similar to those of the molten metal sheet is used to start the casing process and precedes the molten metal sheet through the yoke/coil arrangement and mold and forms a continuous sheet therewith. The yoke/coil arrangement may be either U-shaped with a single racetrack coil or may be rectangular with a pair of spaced, facing bedstead coils.

  10. Casting technology for manufacturing metal rods from simulated metallic spent fuels

    Science.gov (United States)

    Leeand, Y. S.; Lee, D. B.; Kim, C. K.; Shin, Y. J.; Lee, J. H.

    2000-09-01

    A uranium metal rod 13.5 mm in diameter and 1,150 mm long was produced from simulated metallic spent fuels with advanced casting equipment using the directional-solidification method. A vacuum casting furnace equipped with a four-zone heater to prevent surface oxidation and the formation of surface shrinkage holes was designed. By controlling the axial temperature gradient of the casting furnace, deformation by the surface shrinkage phenomena was diminished, and a sound rod was manufactured. The cooling behavior of the molten uranium was analyzed using the computer software package MAGMAsoft.

  11. Study of Thermal Properties of Cast Metal- Ceramic Composite Foams

    Directory of Open Access Journals (Sweden)

    Gawdzińska K.

    2017-12-01

    Full Text Available Owing to its properties, metallic foams can be used as insulation material. Thermal properties of cast metal-ceramic composite foams have applications in transport vehicles and can act as fire resistant and acoustic insulators of bulkheads. This paper presents basic thermal properties of cast and foamed aluminum, the values of thermal conductivity coefficient of selected gases used in foaming composites and thermal capabilities of composite foams (AlSi11/SiC. A certificate of non-combustibility test of cast aluminum-ceramic foam for marine applications was included inside the paper. The composite foam was prepared by the gas injection method, consisting in direct injection of gas into liquid metal. Foams with closed and open cells were examined. The foams were foaming with foaming gas consisting of nitrogen or air. This work is one of elements of researches connected with description of properties of composite foams. In author's other works acoustic properties of these materials will be presented.

  12. The Effect of Nodular Cast Iron Metal Matrix on the Wear Resistance

    OpenAIRE

    G. Gumienny

    2012-01-01

    The paper presents results of studies on the effect of the nodular cast iron metal matrix composition on the abrasive and adhesive wear resistance. Nodular cast iron with different metal matrix obtained in the rough state and ADI were tested. To research of abrasive and adhesive wear the pearlitic and bainitic cast iron with carbides and without this component were chosen. The influence of the carbides amount for cast iron wear resistance was examined. It was found, that the highest abrasive ...

  13. Passive Time Coincidence Measurements with HEU and DU Metal Castings

    International Nuclear Information System (INIS)

    McConchie, Seth M.; Hausladen, Paul; Mihalczo, John T.; Wright, Michael C.; Archer, Daniel E.

    2008-01-01

    A Department of Energy sponsored Oak Ridge National Laboratory/Y-12 National Security Complex program of passive time coincidence measurements has been initiated at Y-12 to evaluate the ability to determine the presence of high enriched uranium (HEU) and distinguish it from depleted uranium (DU). This program uses the Nuclear Materials Identification System (NMIS) without an active interrogation source. Previous passive NMIS measurements with Pu metal and Pu oxide have been successful in determining the Pu mass, assuming a known 240Pu content. The spontaneous fission of uranium metal is considerably lower than Pu and measurements of this type have been performed at Lawrence Livermore National Laboratory. This work presents results of measurements of HEU and DU metal castings using moderated 3He detectors.

  14. Review of Grain Refinement of Cast Metals Through Inoculation: Theories and Developments

    Science.gov (United States)

    Liu, Zhilin

    2017-10-01

    The inoculation method of grain refinement is widely used in research and industry. Because of its commercial and engineering importance, extensive research on the mechanisms/theories of grain refinement and development of effective grain refiners for diverse cast metals/alloys has been conducted. In 1999, Easton and St. John reviewed the mechanisms of grain refinement of cast Al alloys. Since then, grain refinement in alloys of Al, Mg, Fe, Ti, Cu, and Zn has evolved a lot. However, there is still no full consensus on the mechanisms/theories of grain refinement. Moreover, some new grain refiners developed based on the theories do not ensure efficient grain refinement. Thus, the factors that contribute to grain refinement are still not fully understood. Clarification of the prerequisite issues that occur in grain refinement is required using recent theories. This review covers multiple metals/alloys and developments in grain refinement from the last twenty years. The characteristics of effective grain refiners are considered from four perspectives: effective particle/matrix wetting configuration, sufficiently powerful segregating elements, preferential crystallographic matching, and geometrical features of effective nucleants. Then, recent mechanisms/theories on the grain refinement of cast metals/alloys are reviewed, including the peritectic-related, hypernucleation, inert nucleant, and constitutional supercooling-driven theories. Further, developments of deterministic and probabilistic modeling and nucleation crystallography in the grain refinement of cast metals are reviewed. Finally, the latest progress in the grain refinement of cast Zn and its alloys is described, and future work on grain refinement is summarized.

  15. Consumable electrode arc casting of copper-refactory metal composites

    International Nuclear Information System (INIS)

    Jones, L.L.; Schmidt, F.A.; Verhoeven, J.D.

    1991-01-01

    This paper reports on consumable electrode arc casting that has been developed as a preparation method for producing high strength/high electrical and thermal conductivity metal-metal matrix composites. Electrode configuration and melting parameters have been studied to improve ingot homogeneity. Alloy ingot impurities have been reduced by a combination of mold material and melting practice. Alloys containing 15 to 20 vol % Cr, Mo, Nb, Ta and V have been prepared with strengths of 150-300 ksi produced in deformation processed Cu-Nb sheet and wire respectively. Significant differences in strengthening behavior are attributed to filament morphology which is related to the deformation mode. Cold axisymmetric deformations of 99.999% reduction in area have been achieved with axisymmetric deformation providing the highest strengthening

  16. Consumable electrode arc casting of copper-refractory metal composites

    International Nuclear Information System (INIS)

    Jones, L.L.; Schmidt, F.A.; Verhoeven, J.D.

    1990-01-01

    This paper reports on consumable electrode arc casting that has been developed as a preparation method for producing high strength/high electrical and thermal conductivity metal-metal matrix composites. Electrode configuration and melting parameters have been studied to improve ingot homogeneity. Alloy ingot impurities have been reduced by a combination of mold material and melting practice. Alloys containing 15 to 20 vol. % Cr, Mo, Nb, Ta and V have been prepared with strengths of 150-300 ksi produced in deformation processed Cu-Nb sheet and wire respectively. Significant differences in strengthening behavior are attributed to filament morphology which is related to the deformation mode. Cold axisymmentric deformations of 99.999% reduction in area have been achieved with axisymmetric deformation providing the highest strengthening

  17. Improvement of corrosion resistance in NaOH solution and glass forming ability of as-cast Mg-based bulk metallic glasses by microalloying

    Directory of Open Access Journals (Sweden)

    Peng Hao

    2011-02-01

    Full Text Available The influences of the addition of Ag on the glass forming ability (GFA and corrosion behavior were investigated in the Mg-Ni-based alloy system by X-ray diffraction (XRD and electrochemical polarization in 0.1 mol/L NaOH solution. Results shows that the GFA of the Mg-Ni-based BMGs can be improved dramatically by the addition of an appropriate amount of Ag; and the addition element Ag can improve the corrosion resistance of Mg-Ni-based bulk metallic glass. The large difference in atomic size and large negative mixing enthalpy in alloy system can contribute to the high GFA. The addition element Ag improves the forming speed and the stability of the passive film, which is helpful to decrease the passivation current density and to improve the corrosion resistance of Mg-Ni-based bulk metallic glass.

  18. Quantitative analysis of leaching of different metals in human saliva from dental casting alloys: An in vivo study

    Directory of Open Access Journals (Sweden)

    Ramashanker Siddharth

    2015-01-01

    Conclusion: Metal-based dentures show maximum leaching immediately after wearing of the prosthesis which decreased significantly over the period of 3 days. Cr and Mn were the metal ions mainly found in saliva of cast partial denture wearer. No concentration of cobalt, molybdenum (Mo and iron (Fe was found in saliva of metal base denture wearer. There was a significant change in concentration of elutes in saliva in first 72 h/3 days making time an effective variable was observed.

  19. Application of metal oxide refractories for melting and casting reactive metals

    International Nuclear Information System (INIS)

    Jessen, N.C. Jr.; Holcombe, C.E. Jr.; Townsend, A.B.

    1979-01-01

    Extensive investigations have been conducted to develop metal oxide refractories for containment of molten uranium and uranium alloys. Since uranium and uranium alloys are readily susceptable to the formation of complex oxides, carbides, nitrides, intermetallic compounds, and suboxide reactions, severe problems exist for the production of quality castings. These contamination reactions are dependent on temperature, pressure, and molten metal interfacial reactions. The need for high purity metals to meet specification repeatedly has resulted in the development of improved metal oxide refractories and sophisticated furnace controls. Applications of Y 2 O 3 for use as a crucible and mold coating, precision molds and cores, and high temperature castable ceramics are discussed. Experimental results on melt impurity levels, thermal controls during melting, surface interactions and casting quality are presented

  20. The influence of the pure metal components of four different casting alloys on the electrochemical properties of the alloys.

    Science.gov (United States)

    Tuna, Süleyman H; Pekmez, Nuran Ozçiçek; Keyf, Filiz; Canli, Fulya

    2009-09-01

    The aim of this study was to investigate the influence of the pure metal components of the four different casting alloys on the corrosion behaviors of these alloys tested. Potentiodynamic polarization tests were carried out on four different types of casting alloys and their pure metals at 37 degrees C in an artificial saliva solution. The ions released from the alloys into the solutions during the polarization test were also determined quantitatively using inductively coupled plasma-mass spectrometry (ICP-MS). Ni-Cr (M1) and Co-Cr (M2) alloys had a more homogenous structure than palladium based (M3) and gold based (M4) alloys in terms of the pitting potentials of the casting alloys and those of the pure metals composing the alloys. The total ion concentration released from M3 and M4 was less than from M1 and M2. This may be because M3 and M4 alloys contained noble metals. It was also found that the noble metals in the M3 and M4 samples decreased the current density in the anodic branch of the potentiodynamic polarization curves. In other words, noble metals contributed positively to dental materials. Corrosion resistance of the casting alloys can be affected by the pure metals they are composed of. Au and Pd based noble alloys dissolved less than Ni-Cr and Co-Cr based alloys.

  1. Computer Simulation of the Formation of Non-Metallic Precipitates During a Continuous Casting of Steel

    Directory of Open Access Journals (Sweden)

    Kalisz D.

    2016-03-01

    Full Text Available The authors own computer software, based on the Ueshima mathematical model with taking into account the back diffusion, determined from the Wołczyński equation, was developed for simulation calculations. The applied calculation procedure allowed to determine the chemical composition of the non-metallic phase in steel deoxidised by means of Mn, Si and Al, at the given cooling rate. The calculation results were confirmed by the analysis of samples taken from the determined areas of the cast ingot. This indicates that the developed computer software can be applied for designing the steel casting process of the strictly determined chemical composition and for obtaining the required non-metallic precipitates.

  2. Cast Metals Coalition Technology Transfer and Program Management Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people

  3. Metal Casting--Industry of the Future; Industrial Partnerships: Advancing Energy and Environmental Goals

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A.

    2001-02-05

    This tri-fold brochure describe the partnering activities of the Office of Industrial Technologies' (OIT) Industries of the Future (IOF) for Metal Casting. Information on what works for the Metal Casting industry, examples of successful partnerships, and benefits of partnering with OIT are included.

  4. A randomized controlled trial comparing interim acrylic prostheses with and without cast metal base for immediate loading of dental implants in the edentulous mandible.

    Science.gov (United States)

    Thomé, Eloana; Lee, Hyung Joo; Sartori, Ivete Aparecida de Mattias; Trevisan, Roseli Latenek; Luiz, Jaques; Tiossi, Rodrigo

    2015-12-01

    This randomized controlled trial used resonance frequency analysis (RFA) to assess the effects of the presence or absence of a cast rigid bar splinting multiple implants in the stability of immediately loaded implants. Twenty-nine edentulous patients were randomly divided into two groups: G1 with full-arch implant-fixed prostheses and G2 with multiple implant splinting via acrylic resin denture bases. All implants were immediately loaded. RFA measurements assessed implant stability at three different times (T0--at baseline, T1--4 months, and T2--8 months. Wilcoxon and Friedman tests and a multivariate model with repeated measures for longitudinal data were used for statistical comparison (α = 0.05). Twenty-nine patients were assessed (G1 = 15 and G2 = 14). Implant and prostheses survival rates were 100% for both groups after the 8-month observation period and no significant differences in the mean ISQ values were found at the different implant stability assessment times (P > 0.05). The different splinting protocols did not appear to affect implant stability during the 8-month observation period. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Characteristics comparison of weld metal zones welded to cast and forged steels for piston crown material

    Science.gov (United States)

    Moon, Kyung-Man; Kim, Yun-Hae; Lee, Myeong-Hoon; Baek, Tae-Sil

    2015-03-01

    An optimum repair welding for the piston crown which is one of the engine parts exposed to the combustion chamber is considered to be very important to prolong the engine lifetime from an economical point of view. In this study, two types of filler metals such as 1.25Cr-0.5Mo, 0.5Mo were welded with SMAW method and the other two types of filler metals such as Inconel 625 and 718 were welded with GTAW method, respectively, and the used base metals were the cast and forged steels of the piston crown material. The weld metal zones welded with Inconel 625 and 718 filler metals exhibited higher corrosion resistance compared to 1.25Cr-0.5Mo and 0.5Mo filler metals. In particular, the weld metal zone welded with Inconel 718 and 0.5Mo, filler metals indicated the best and worst corrosion resistance, respectively. Consequently, it is suggested that the corrosion resistance of the weld metal zone surely depends on the chemical components of each filler metal and welding method irrespective of the types of piston crown material.

  6. Study on interfacial heat transfer coefficient at metal/die interface during high pressure die casting process of AZ91D alloy

    Directory of Open Access Journals (Sweden)

    GUO Zhi-peng

    2007-02-01

    Full Text Available The high pressure die casting (HPDC process is one of the fastest growing and most efficient methods for the production of complex shape castings of magnesium and aluminum alloys in today’s manufacturing industry.In this study, a high pressure die casting experiment using AZ91D magnesium alloy was conducted, and the temperature profiles inside the die were Measured. By using a computer program based on solving the inverse heat problem, the metal/die interfacial heat transfer coefficient (IHTC was calculated and studied. The results show that the IHTC between the metal and die increases right after the liquid metal is brought into the cavity by the plunger,and decreases as the solidification process of the liquid metal proceeds until the liquid metal is completely solidified,when the IHTC tends to be stable. The interfacial heat transfer coefficient shows different characteristics under different casting wall thicknesses and varies with the change of solidification behavior.

  7. Effect of Intraoral Mechanical Cleaning Techniques on Bond Strength of Cast Crowns to Metal Cores.

    Science.gov (United States)

    AlZain, Sahar; Kattadiyil, Mathew T; AlHelal, Abdulaziz; Alqahtani, Ali

    2017-11-30

    To evaluate the effect of cleaning of metal cores from provisional cement, using an intraoral airborne-particle abrasion method, on the bond strength of permanent resin cement with cast crowns to cores. Thirty stainless steel models of a standard complete crown tooth preparation were fabricated. Thirty Type III gold crowns were fabricated. Each cast crown corresponded to one stainless steel crown preparation model. All crowns were cemented with noneugenol zinc oxide cement and stored for 7 days at 37°C. All crowns were debonded, and the cement was cleaned with airborne-particle abrasion using 50 μm aluminum oxide at 4.1 bar (0.41 MPa) followed by ultrasonic cleaning. Based on the mechanical cleaning technique of the remaining provisional cement on surfaces of cast cores, specimens were equally divided into 3 groups: hand cleaning (HC) with a dental excavator, hand cleaning followed by polishing using a brush and pumice (BP), and hand cleaning followed by intraoral airborne-particle abrasion (APA). All crowns were then cemented to their corresponding cores using universal resin cement. All crowns were stored for 7 days at 37°C. An Instron universal testing machine was used to record the bond strength of crowns. Airborne-particle abrasion method for intraoral mechanical cleaning revealed a statistically significantly higher bond strength compared to the other two methods. When comparing the three methods of provisional cement cleaning from metal cores, airborne-particle abrasion resulted in the highest bond strength for cast crowns. © 2017 by the American College of Prosthodontists.

  8. Metal redistribution by surface casting of four earthworm species in sandy and loamy clay soils.

    NARCIS (Netherlands)

    Zorn, M.I.; van Gestel, C.A.M.; Eijsackers, H.J.P.

    2008-01-01

    Bioturbation of metal contaminated soils contributes considerably to redistribution and surfacing of contaminated soil from deeper layers. To experimentally measure the contribution of Allolobophora chlorotica, Aporrectodea caliginosa, Lumbricus rubellus and L. terrestris to soil surface casting, a

  9. [Cervical adaptation of complete cast crowns of various metal alloys, with and without die spacers].

    Science.gov (United States)

    Stephano, C B; Roselino, R F; Roselino, R B; Campos, G M

    1989-01-01

    A metallic replica from a dental preparation for crown was used to make 8 class-IV stone dies. The wax patterns for the casting of the crowns were obtained in two conditions: a) from the stone die with no spacer; and b) from the stone die with an acrylic spacer. Thus, 64 metallic crowns were casted, using 4 different alloys: DURACAST (Cu-Al), NICROCAST (Ni-Cr) and DURABOND (Ni-Cr), and gold. The casted crowns were fitted in the metallic replica and measured as to the cervical discrepance of fitting. The results showed that the use of die spacers decreases the clinical discrepancies of fitting of the casted crowns (in a statistically significant level), no matter the metallic alloy employed.

  10. Grain Refinement of Permanent Mold Cast Copper Base Alloys

    Energy Technology Data Exchange (ETDEWEB)

    M.Sadayappan; J.P.Thomson; M.Elboujdaini; G.Ping Gu; M. Sahoo

    2005-04-01

    Grain refinement is a well established process for many cast and wrought alloys. The mechanical properties of various alloys could be enhanced by reducing the grain size. Refinement is also known to improve casting characteristics such as fluidity and hot tearing. Grain refinement of copper-base alloys is not widely used, especially in sand casting process. However, in permanent mold casting of copper alloys it is now common to use grain refinement to counteract the problem of severe hot tearing which also improves the pressure tightness of plumbing components. The mechanism of grain refinement in copper-base alloys is not well understood. The issues to be studied include the effect of minor alloy additions on the microstructure, their interaction with the grain refiner, effect of cooling rate, and loss of grain refinement (fading). In this investigation, efforts were made to explore and understand grain refinement of copper alloys, especially in permanent mold casting conditions.

  11. Development of Cloud Based Casting Defects Categorization System (CDCS

    Directory of Open Access Journals (Sweden)

    Sata Amit V.

    2017-03-01

    Full Text Available Defects affect the properties and behavior of the casting during its service life. Since the defects can occur due to different reasons, they must be correctly identified and categorized, to enable applying the appropriate remedial measures. several different approaches for categorizing casting defects have been proposed in technical literature. They mainly rely on physical description, location, and formation of defects. There is a need for a systematic approach for classifying investment casting defects, considering appropriate attributes such as their size, location, identification stage, inspection method, consistency, appearance of defects. A systematic approach for categorization of investment casting defects considering multiple attributes: detection stage, size, shape, appearance, location, consistency and severity of occurrence. Information about the relevant attributes of major defects encountered in investment casting process has been collected from an industrial foundry. This has been implemented in a cloud-based system to make the system freely and widely accessible.

  12. Weld microstructure in cast AlSi9/SiC(p metal matrix composites

    Directory of Open Access Journals (Sweden)

    J. Wysocki

    2009-04-01

    Full Text Available Welded joint in cast AlSi9/SiC/20(p metal matrix composite by manual TIG arc welding using AlMg5 filler metal has been described inhis paper. Cooling curves have been stated, and the influence in distribution of reinforced particles on crystallization and weldmicrostructure. Welded joint mechanical properties have been determined: hardness and tensile.

  13. Classification of Structure Defects of Metal Matrix Castings with Saturated Reinforcement

    Directory of Open Access Journals (Sweden)

    Gawdzińska K.

    2012-09-01

    Full Text Available Definition of a composite [1] describes an ideal composite material with perfect structure. In real composite materials, structure is usually imperfect - composites contain various types of defects [2, 3-5], especially as the casted composites are of concern. The reason for this is a specific structure of castings, related to course of the manufacturing process. In case of metal matrix composite castings, especially regarding these manufactured by saturation, there is no classification of these defects [2, 4]. Classification of defects in castings of classic materials (cast iron, cast steel, non-ferrous alloys is insufficient and requires completion of specific defects of mentioned materials. This problem (noted during manufacturing metal matrix composite castings with saturated reinforcement in Institute of Basic Technical Sciences of Maritime University Szczecin has become a reason of starting work aimed at creating such classification. As a result, this paper was prepared. It can contribute to improvement of quality of studied materials and, as a consequence, improve the environment protection level.

  14. Classification of Structure Defects of Metal Matrix Castings with Saturated Reinforcement

    Directory of Open Access Journals (Sweden)

    K. Gawdzińska

    2012-09-01

    Full Text Available Definition of a composite [1] describes an ideal composite material with perfect structure. In real composite materials, structure isusually imperfect – composites contain various types of defects [2, 3–5], especially as the casted composites are of concern. The reason for this is a specific structure of castings, related to course of the manufacturing process. In case of metal matrix composite castings, especially regarding these manufactured by saturation, there is no classification of these defects [2, 4]. Classification of defects in castings of classic materials (cast iron, cast steel, non-ferrous alloys is insufficient and requires completion of specific defects of mentioned materials. This problem (noted during manufacturing metal matrix composite castings with saturated reinforcement in Institute of Basic Technical Sciences of Maritime University Szczecin has become a reason of starting work aimed at creating such classification. As a result, this paper was prepared. It can contribute to improvement of quality of studied materials and, as a consequence, improve the environment protection level.

  15. Casting of particle-based hollow shapes

    Science.gov (United States)

    Menchhofer, Paul

    1995-01-01

    A method for the production of hollow articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is coated onto a prewarmed continuous surface in a relatively thin layer so that the slurry is substantially uniformly coated on the surface. The heat of the prewarmed surface conducts to the slurry to initiate a reaction which causes the slurry to set or harden in a shape conforming to the surface. The hardened configurations may then be sintered to consolidate the particles and provide a high density product.

  16. Does the casting mode influence microstructure, fracture and properties of different metal ceramic alloys?

    Science.gov (United States)

    Bauer, José Roberto de Oliveira; Grande, Rosa Helena Miranda; Rodrigues-Filho, Leonardo Eloy; Pinto, Marcelo Mendes; Loguercio, Alessandro Dourado

    2012-01-01

    The aim of the present study was to evaluate the tensile strength, elongation, microhardness, microstructure and fracture pattern of various metal ceramic alloys cast under different casting conditions. Two Ni-Cr alloys, Co-Cr and Pd-Ag were used. The casting conditions were as follows: electromagnetic induction under argon atmosphere, vacuum, using blowtorch without atmosphere control. For each condition, 16 specimens, each measuring 25 mm long and 2.5 mm in diameter, were obtained. Ultimate tensile strength (UTS) and elongation (EL) tests were performed using a Kratos machine. Vickers Microhardness (VM), fracture mode and microstructure were analyzed by SEM. UTS, EL and VM data were statistically analyzed using ANOVA. For UTS, alloy composition had a direct influence on casting condition of alloys (Wiron 99 and Remanium CD), with higher values shown when cast with Flame/Air (p alloy" and 'casting condition" influenced the EL and VM results, generally presenting opposite results, i.e., alloy with high elongation value had lower hardness (Wiron 99), and casting condition with the lowest EL values had the highest VM values (blowtorch). Both factors had significant influence on the properties evaluated, and prosthetic laboratories should select the appropriate casting method for each alloy composition to obtain the desired property.

  17. Does the casting mode influence microstructure, fracture and properties of different metal ceramic alloys?

    Directory of Open Access Journals (Sweden)

    José Roberto de Oliveira Bauer

    2012-06-01

    Full Text Available The aim of the present study was to evaluate the tensile strength, elongation, microhardness, microstructure and fracture pattern of various metal ceramic alloys cast under different casting conditions. Two Ni-Cr alloys, Co-Cr and Pd-Ag were used. The casting conditions were as follows: electromagnetic induction under argon atmosphere, vacuum, using blowtorch without atmosphere control. For each condition, 16 specimens, each measuring 25 mm long and 2.5 mm in diameter, were obtained. Ultimate tensile strength (UTS and elongation (EL tests were performed using a Kratos machine. Vickers Microhardness (VM, fracture mode and microstructure were analyzed by SEM. UTS, EL and VM data were statistically analyzed using ANOVA. For UTS, alloy composition had a direct influence on casting condition of alloys (Wiron 99 and Remanium CD, with higher values shown when cast with Flame/Air (p < 0.05. The factors 'alloy" and 'casting condition" influenced the EL and VM results, generally presenting opposite results, i.e., alloy with high elongation value had lower hardness (Wiron 99, and casting condition with the lowest EL values had the highest VM values (blowtorch. Both factors had significant influence on the properties evaluated, and prosthetic laboratories should select the appropriate casting method for each alloy composition to obtain the desired property.

  18. ''Heat Transfer at the Mold-Metal Interface in Permanent Mold Casting of Aluminum Alloys'' Final Project Report; FINAL

    International Nuclear Information System (INIS)

    Pehlke, R. D.; Cookson, John M.; Shouwei Hao; Prasad Krishna; Bilkey, Kevin T.

    2001-01-01

    This project on heat transfer coefficients in metal permanent mold casting has been conducted in three areas. They are the theoretical study at the University of Michigan, the experimental investigation of squeeze casting at CMI-Tech Center (Now Hayes-Lemmerz Technical Center) and the experimental investigation of low pressure permanent mold casting at Amcast Automotive

  19. Awareness programs and change in taste-based caste prejudice.

    Science.gov (United States)

    Banerjee, Ritwik; Datta Gupta, Nabanita

    2015-01-01

    Becker's theory of taste-based discrimination predicts that relative employment of the discriminated social group will improve if there is a decrease in the level of prejudice for the marginally discriminating employer. In this paper we experimentally test this prediction offered by Garry Becker in his seminal work on taste based discrimination, in the context of caste in India, with management students (potential employers in the near future) as subjects. First, we measure caste prejudice and show that awareness through a TV social program reduces implicit prejudice against the lower caste and the reduction is sustained over time. Second, we find that the treatment reduces the prejudice levels of those in the left tail of the prejudice distribution--the group which can potentially affect real outcomes as predicted by the theory. And finally, a larger share of the treatment group subjects exhibit favorable opinion about reservation in jobs for the lower caste.

  20. EXAMPLES OF 3D-TECHNOLOGIES IN FOUNDRY PROCESSES. DECREASE IN METAL CONSUMPTION IN CASTINGS

    Directory of Open Access Journals (Sweden)

    V. S. Doroshenko

    2016-01-01

    Full Text Available The review describes the design of metal castings produced by use of 3D-technologies. Some new ways of 3D-processing of materials connected with additive processes are described, which represents the next step in environmental resource-saving production. Examples of patterns and casting of complex design with an optimal combination of materials, durability and attractive appearance are shown. Described 3D high-tech processes are expanding the existing range of metal products and the ways of its production.

  1. Cast bulk metallic glass alloys: prospects as wear materials

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Dogan, Omer N.; Shiflet, Gary J. (Dept. of Materials Science and Engineering, University of Virginia, Charlottesville, VA)

    2005-01-01

    Bulk metallic glasses are single phase materials with unusual physical and mechanical properties. One intriguing area of possible use is as a wear material. Usually, pure metals and single phase dilute alloys do not perform well in tribological conditions. When the metal or alloy is lightweight, it is usually soft leading to galling in sliding situations. For the harder metals and alloys, their density is usually high, so there is an energy penalty when using these materials in wear situations. However, bulk metallic glasses at the same density are usually harder than corresponding metals and dilute single phase alloys, and so could offer better wear resistance. This work will discuss preliminary wear results for metallic glasses with densities in the range of 4.5 to 7.9 g/cc. The wear behavior of these materials will be compared to similar metals and alloys.

  2. Marginal accuracy of nickel chromium copings fabricated by conventional and accelerated casting procedures, produced with ringless and metal ring investment procedures: A comparative in vitro study

    Directory of Open Access Journals (Sweden)

    Deepa Alex

    2015-01-01

    Conclusion: The Ni-Cr cast copings fabricated with the conventional casting using ringless investment system showed significantly better marginal fit than that of cast copings fabricated from conventional and accelerated casting with metal ring investment and accelerated casting using ringless investment since those copings had shown the least vertical marginal discrepancies among the four methods evaluated in this study.

  3. Fabrication and Tribological Behavior of Stir Cast Mg/B4C Metal Matrix Composites

    Science.gov (United States)

    Singh, Amandeep; Bala, Niraj

    2017-10-01

    Magnesium-based metal matrix composites (MMMCs) have emerged as good alternative material to conventional materials due to their promising advanced properties. In the present work, magnesium-based metal matrix composites (MMMCs) reinforced with B4C particles were successfully fabricated by cost-effective conventional stir casting technique. MMMCs with an average particle size of 63 µm and different weight percent (wt pct) of B4C between 3 and 12 were fabricated. Wear tests were carried out using a pin-on-disk against a steel disk under dry sliding condition at loads that varied between 1 and 5 kg at fixed sliding velocity of 1 m/s. The wear data clearly showed that wear resistance of cast composites is better than that of unreinforced magnesium, which is attributed to dispersion hardening caused by carbide particles. An increase in wt pct of B4C showed the wear resistance and hardness to increase significantly. The wear rate and coefficient of friction increased with an increase in applied load. The SEM and EDS analysis of the worn surfaces delineated the dominant wear mechanisms to be abrasion, adhesion, and oxidation under the different sliding conditions. At lower loads, the wear mechanism transformed from severe abrasive wear in pure magnesium (Mg) to mild abrasion, slight delamination, and oxidation in the Mg/12 wt pct B4C fabricated composite. At higher loads, severe abrasion, adhesion, delamination, and oxidation were found to be the major wear mechanisms in pure Mg, whereas in the Mg/12 wt pct B4C fabricated composites the corresponding mechanisms were mild abrasion, mild adhesion, slight delamination, and oxidation.

  4. Volatile Elements Retention During Injection Casting of Metallic Fuel Slug for a Recycling Fast Reactor

    International Nuclear Information System (INIS)

    Kim, Jong-Hwan; Song, Hoon; Kim, Hyung-Tae; Oh, Seok-Jin; Kuk, Seoung-Woo; Keum, Chang-Woon; Lee, Jung-Won; Kim, Ki-Hwan; Lee, Chan-Bock

    2015-01-01

    The as-cast fuels prepared by injection casting were sound and the internal integrities were found to be satisfactory through gamma-ray radiography. U and Zr were uniform throughout the matrix of the slug, and the impurities, i.e., oxygen, carbon, and nitrogen, satisfied the specification of the total impurities of less than 2000 ppm. The losses of the volatile Mn were effectively controlled using argon over pressures, and dynamic pumping for a period of time before injection showed no detrimental effect on the Mn loss by vaporization. This result suggests that volatile minor actinide-bearing fuels for SFRs can be prepared by improved injection methods. A practical process of metallic fuel fabrication for an SFR needs to be cost efficient, suitable for remote operation, and capable of mass production while reducing the amount of radioactive waste. Injection casting was chosen as the most promising technique, and this technique has been applied to fuel slug fabrication for the Experimental Breeder Reactor-II (EBR-II) driver and the Fast Flux Test Facility (FFTF) fuel pins. Because of the simplistic nature of the process and equipment, compared to other processes examined, this process has been successfully used in a remote operation environment for fueling of the EBR-II reactor. In this study, several injection casting methods were applied in order to prepare metallic fuel for an fast reactor that control the transport of volatile elements during fuel melting and casting. Mn was selected as a surrogate alloy since it possesses a total vapor pressure equivalent to that of a volatile minor actinide-bearing fuel. U.10Zr and U.10Zr.5Mn (wt%) metallic fuels were injection cast under various casting conditions and their soundness was characterized

  5. An alternative treatment of occlusal wear: Cast metal occlusal surface

    OpenAIRE

    Sandeep Kumar; Aman Arora; Reena Yadav

    2012-01-01

    Acrylic resin denture teeth often exhibit rapid occlusal wear, which may lead to decrease in the chewing efficiency, loss of vertical dimension of occlusion, denture instability, temporomandibular joint disturbances, etc. There are various treatment options available like, use of highly cross linked acrylic teeth, amalgam or metal inserts on occlusal surface, use of composite, gold or metal occlusal surface, etc. Several articles have described methods to construct gold and metal occlusal sur...

  6. Pure titanium casting into zirconia-modified magnesia-based investment molds.

    Science.gov (United States)

    Hung, Chun-Cheng; Hou, Guey-Lin; Tsai, Chi-Cheng; Huang, Cheng-Ching

    2004-11-01

    Molten titanium is highly reactive with common mold materials at elevated temperatures. The aim of this investigation was to improve the accuracy of pure titanium casting by adding unreactive zirconia into magnesia-based investment material. An automatic thermal expansion laser-recording machine (TEM-1000/Pantos, Nippon Co.) was used to measure thermal expansion of investment materials. An automatic argon-casting machine (Castmatic-S, Iwatani Co.) was used to cast pure titanium samples. A stereomicroscope was used (Nikon SM-2T, Japan) to measure marginal discrepancy on a metal die. A Vickers microhardness indenter (MXT-50, Matsuzawa Seiki Co.) determined the Vickers hardness (VH) of the titanium samples. Interfacial reactivity of the titanium was evaluated with an X-ray diffractometer (Rigaku D/max VIII, Tokyo, Japan). A dental X-ray machine was used to examine internal porosity of the castings. Data was analysed with paired t-test (p zirconia to a magnesia-based investment material significantly increased its thermal expansion value (p zirconia-added group (p zirconia decreased interfacial reactivity and the VH of titanium. Under appropriately adjusted conditions, the addition of zirconia to magnesia-based mold materials may be used to produce high quality pure titanium castings.

  7. Crucible cast from beryllium oxide and refractory cement is impervious to flux and molten metal

    Science.gov (United States)

    Jastrzebski, Z. D.

    1966-01-01

    Crucible from a mixture of a beryllium oxide aggregate and hydraulic refractory cement, and coated with an impervious refractory oxide will not deteriorate in the presence of fused salt- molten metal mixtures such as uranium- magnesium-zinc-halide salt systems. Vessels cast by this process are used in the flux reduction of oxides of thorium and uranium.

  8. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    Energy Technology Data Exchange (ETDEWEB)

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  9. Melting of Grey Cast Iron Based on Steel Scrap Using Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Stojczew A.

    2014-08-01

    Full Text Available The paper presents the issue of synthetic cast iron production in the electric induction furnace exclusively on the steel scrap base. Silicon carbide and synthetic graphite were used as carburizers. The carburizers were introduced with solid charge or added on the liquid metal surface. The chemical analysis of the produced cast iron, the carburization efficiency and microstructure features were presented in the paper. It was stated that ferrosilicon can be replaced by silicon carbide during the synthetic cast iron melting process. However, due to its chemical composition (30% C and 70% Si which causes significant silicon content in iron increase, the carbon deficit can be partly compensated by the carburizer introduction. Moreover it was shown that the best carbon and silicon assimilation rate is obtained where the silicon carbide is being introduced together with solid charge. When it is thrown onto liquid alloy surface the efficiency of the process is almost two times less and the melting process lasts dozen minutes long. The microstructure of the cast iron produced with the silicon carbide shows more bulky graphite flakes than inside the microstructure of cast iron produced on the pig iron base.

  10. Effect of mold designs on molten metal behaviour in high-pressure die casting

    Science.gov (United States)

    Ibrahim, M. D.; Rahman, M. R. A.; Khan, A. A.; Mohamad, M. R.; Suffian, M. S. Z. M.; Yunos, Y. S.; Wong, L. K.; Mohtar, M. Z.

    2017-04-01

    This paper presents a research study conducted in a local automotive component manufacturer that produces aluminium alloy steering housing local and global markets. This study is to investigate the effect of design modification of mold in die casting as to improve the production rate. Design modification is carried out on the casting shot of the mold. Computer flow simulation was carried out to study the flow of molten metal in the mold with respect to the mold design modification. The design parameters of injection speed, die temperature and clamping force has been included in the study. The result of the simulation showed that modifications of casting shot give significant impact towards the molten flow behaviour in casting process. The capabilities and limitations of die casting process simulation to conduct defect analysis had been optimized. This research will enhance the efficiency of the mass production of the industry of die casting with the understanding of defect analysis, which lies on the modification of the mold design, a way early in its stages of production.

  11. Report of Separate Effects Testing for Modeling of Metallic Fuel Casting Process

    Energy Technology Data Exchange (ETDEWEB)

    Crapps, Justin M. [Los Alamos National Laboratory; Galloway, Jack D. [Los Alamos National Laboratory; Decroix, David S. [Los Alamos National Laboratory; Korzekwa, David A. [Los Alamos National Laboratory; Aikin, Robert M. Jr. [Los Alamos National Laboratory; Unal, Cetin [Los Alamos National Laboratory; Fielding, R. [Idaho National Laboratory; Kennedy, R [Idaho National Laboratory

    2012-06-29

    In order to give guidance regarding the best investment of time and effort in experimental determination of parameters defining the casting process, a Flow-3D model of the casting process was used to investigate the most influential parameters regarding void fraction of the solidified rods and solidification speed for fluid flow parameters, liquid heat transfer parameters, and solid heat transfer parameters. Table 1 summarizes the most significant variables for each of the situations studied. A primary, secondary, and tertiary effect is provided for fluid flow parameters (impacts void fraction) and liquid heat transfer parameters (impacts solidification). In Table 1, the wetting angle represents the angle between the liquid and mold surface as pictured in Figure 1. The viscosity is the dynamic viscosity of the liquid and the surface tension is the property of the surface of a liquid that allows it to resist an external force. When only considering solid heat transfer properties, the variations from case to case were very small. Details on this conclusion are provided in the section considering solid heat transfer properties. The primary recommendation of the study is to measure the fluid flow parameters, specifically the wetting angle, surface tension, and dynamic viscosity, in order of importance, as well as the heat transfer parameters latent heat and specific heat of the liquid alloy. The wetting angle and surface tension can be measured simultaneously using the sessile drop method. It is unclear whether there is a temperature dependency in these properties. Thus measurements for all three parameters are requested at 1340, 1420, and 1500 degrees Celsius, which correspond to the minimum, middle, and maximum temperatures of the liquid alloy during the process. In addition, the heat transfer coefficient between the mold and liquid metal, the latent heat of transformation, and the specific heat of the liquid metal all have strong influences on solidification. These

  12. An alternative treatment of occlusal wear: cast metal occlusal surface.

    Science.gov (United States)

    Kumar, Sandeep; Arora, Aman; Yadav, Reena

    2012-01-01

    Acrylic resin denture teeth often exhibit rapid occlusal wear, which may lead to decrease in the chewing efficiency, loss of vertical dimension of occlusion, denture instability, temporomandibular joint disturbances, etc. There are various treatment options available like, use of highly cross linked acrylic teeth, amalgam or metal inserts on occlusal surface, use of composite, gold or metal occlusal surface, etc. Several articles have described methods to construct gold and metal occlusal surfaces, however, these methods are time-consuming, expensive and requires many cumbersome steps. These methods also requires the patient to be without the prosthesis for the time during which the laboratory procedures are performed. This article presents a quick, simple and relatively inexpensive procedure for construction of metal occlusal surfaces on complete dentures.

  13. An alternative treatment of occlusal wear: Cast metal occlusal surface

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar

    2012-01-01

    Full Text Available Acrylic resin denture teeth often exhibit rapid occlusal wear, which may lead to decrease in the chewing efficiency, loss of vertical dimension of occlusion, denture instability, temporomandibular joint disturbances, etc. There are various treatment options available like, use of highly cross linked acrylic teeth, amalgam or metal inserts on occlusal surface, use of composite, gold or metal occlusal surface, etc. Several articles have described methods to construct gold and metal occlusal surfaces, however, these methods are time-consuming, expensive and requires many cumbersome steps. These methods also requires the patient to be without the prosthesis for the time during which the laboratory procedures are performed. This article presents a quick, simple and relatively inexpensive procedure for construction of metal occlusal surfaces on complete dentures.

  14. Metallic Nanostructures Based on DNA Nanoshapes

    Directory of Open Access Journals (Sweden)

    Boxuan Shen

    2016-08-01

    Full Text Available Metallic nanostructures have inspired extensive research over several decades, particularly within the field of nanoelectronics and increasingly in plasmonics. Due to the limitations of conventional lithography methods, the development of bottom-up fabricated metallic nanostructures has become more and more in demand. The remarkable development of DNA-based nanostructures has provided many successful methods and realizations for these needs, such as chemical DNA metallization via seeding or ionization, as well as DNA-guided lithography and casting of metallic nanoparticles by DNA molds. These methods offer high resolution, versatility and throughput and could enable the fabrication of arbitrarily-shaped structures with a 10-nm feature size, thus bringing novel applications into view. In this review, we cover the evolution of DNA-based metallic nanostructures, starting from the metallized double-stranded DNA for electronics and progress to sophisticated plasmonic structures based on DNA origami objects.

  15. The effect of recasting on bond strength between porcelain and base-metal alloys.

    Science.gov (United States)

    Madani, Azam S; Rokni, Shahin Rezaii; Mohammadi, Abolghasem; Bahrami, Mehran

    2011-04-01

    Long-term success of metal ceramic restorations depends on metal ceramic bond strength. The purpose of this study was to determine whether recasting of base-metal alloys has any effect on metal ceramic bond strength. Super Cast and Verabond base-metal alloys were used to cast 260 wax patterns. The alloy specimens were equally divided into five groups and cast as: group A 0.0%, B 25%, C 50%, D 75%, and E 100% once-cast alloy. Each group was divided into two subgroups: the first group was cast with Super Cast and the second with Verabond. In each subgroup half of the cast alloys were veneered with Vita VMK 68 and the others with Ceramco 3. Recasting decreased bond strength (p alloy. Group E with 100% new Super Cast alloy veneered with Vita VMK 68 porcelain had the highest bond strength (30.75 ± 9.58 MPa), and group B including 25% new and 75% recast Super Cast alloy veneered with the same porcelain had the lowest bond strength (21.72 ± 5.19 MPa). By adding over 50% once-cast alloy in base-metal alloys, metal-ceramic bond strength decreases significantly. © 2011 by The American College of Prosthodontists.

  16. Awareness Programs and Change in Taste-based Caste Prejudice

    DEFF Research Database (Denmark)

    Banerjee, Ritwik; Gupta, Nabanita Datta

    2015-01-01

    Becker's theory of taste-based discrimination predicts that relative employment of the discriminated social group will improve if there is a decrease in the level of prejudice for the marginally discriminating employer. In this paper we experimentally test this prediction offered by Garry Becker...... in his seminal work on taste based discrimination, in the context of caste in India, with management students (potential employers in the near future) as subjects. First, we measure caste prejudice and show that awareness through a TV social program reduces implicit prejudice against the lower caste...... and the reduction is sustained over time. Second, we find that the treatment reduces the prejudice levels of those in the left tail of the prejudice distribution - the group which can potentially affect real outcomes as predicted by the theory. And finally, a larger share of the treatment group subjects exhibit...

  17. A comparative evaluation of the effect of dentin desensitizers on the retention of complete cast metal crowns

    Directory of Open Access Journals (Sweden)

    Saili M Chandavarkar

    2015-01-01

    Full Text Available Context: Desensitizers are used to reduce dentin hypersensitivity. They affect the surface texture of prepared dentin and may alter the retention of fixed restorations. Aims: The aim was to evaluate the effect of dentin desensitizers on the retention of complete cast metal crowns luted with glass ionomer cement. Subjects and Methods: Fifty freshly extracted human premolars were subjected to standardized tooth preparation (20° total convergence, 4 mm axial height with a computer numerically controlled machine. Individual cast metal crowns were fabricated from a base metal alloy. Dentin desensitizers included none (control, a glutaraldehyde (GLU based primer (Gluma desensitizer, casein phosphopeptide (CPP-amorphous calcium phosphate (ACP (GC Mousse, erbium, chromium: YSGG laser (Waterlase MD Turbo, Biolase and Pro-Argin (Colgate Sensitive Pro-Relief desensitizing polishing paste. After desensitization, crowns were luted with glass ionomer cement and kept for 48 h at 37°C in 100% relative humidity. The samples were tested using a universal testing machine by applying a load at a crosshead speed of 0.5 mm/min. Statistical Analysis Used: Statistical analysis included One-way ANOVA, followed by the Scheffe post-hoc test with P < 0.05. Results: All dentin desensitizers showed significantly different values: Pro-Argin (4.10 Megapascals [Mpa] < CPP-ACP (4.01 mpa < GLU based primer (3.87 Mpa < Virgin dentin (3.65 Mpa < LASER (3.37 Mpa. Conclusions : On comparing the effect of prepared virgin dentin, GLU based primer, CPP-ACP, LASER and Pro-Argin on the retention of complete cast metal crowns luted with glass ionomer cement on prepared teeth, it can be concluded that Pro-Argin and CPP-ACP showed the best retention in this in vitro study.

  18. Method for determining molten metal pool level in twin-belt continuous casting machines

    Science.gov (United States)

    Kaiser, Timothy D.; Daniel, Sabah S.; Dykes, Charles D.

    1989-03-21

    A method for determining level of molten metal in the input of a continuous metal casting machine having at least one endless, flexible, revolving casting belt with a surface which engages the molten metal to be cast and a reverse, cooled surface along which is directed high velocity liquid coolant includes the steps of predetermining the desired range of positions of the molten metal pool and positioning at least seven heat-sensing transducers in bearing contact with the moving reverse belt surface and spaced in upstream-downstream relationship relative to belt travel spanning the desired pool levels. A predetermined temperature threshold is set, somewhat above coolant temperature and the output signals of the transducer sensors are scanned regarding their output signals indicative of temperatures of the moving reverse belt surface. Position of the molten pool is determined using temperature interpolation between any successive pair of upstream-downstream spaced sensors, which follows confirmation that two succeeding downstream sensors are at temperature levels exceeding threshold temperature. The method accordingly provides high resolution for determining pool position, and verifies the determined position by utilizing full-strength signals from two succeeding downstream sensors. In addition, dual sensors are used at each position spanning the desired range of molten metal pool levels to provide redundancy, wherein only the higher temperature of each pair of sensors at a station is utilized.

  19. The effect of hydrogen peroxide concentration on metal ion release from dental casting alloys.

    Science.gov (United States)

    Al-Salehi, S K; Hatton, P V; Johnson, A; Cox, A G; McLeod, C

    2008-04-01

    There are concerns that tooth bleaching agents may adversely affect dental materials. The aim of this study was to test the hypothesis that increasing concentrations of hydrogen peroxide (HP) are more effective than water at increasing metal ion release from two typical dental casting alloys during bleaching. Discs (n = 28 for each alloy) were prepared by casting and heat treated to simulate a typical porcelain-firing cycle. Discs (n = 7) of each alloy were immersed in either 0%, 3%, 10% or 30% (w/v) HP solutions for 24 h at 37 degrees C. Samples were taken for metal ion release determination using inductively coupled plasma-mass spectrometry and the data analysed using a two-way anova followed by a one-way anova. The surface roughness of each disc was measured using a Talysurf contact profilometer before and after bleaching and the data analysed using a paired t-test. With the exception of gold, the differences in metal ion concentration after treatment with 0% (control) and each of 3%, 10% and 30% HP (w/v) were statistically significant (P Metal ion release from the two alloys increased with increasing HP concentrations (over 3000% increase in Ni and 1400% increase in Pd ions were recorded when HP concentration increased from 0% to 30%). Surface roughness values of the samples before and after bleaching were not significantly different (P > 0.05) Exposure of the two dental casting alloys to HP solutions increased metal ion release of all the elements except gold.

  20. Development of NZP ceramic based {open_quotes}cast-in-place{close_quotes} diesel engine port liners

    Energy Technology Data Exchange (ETDEWEB)

    Nagaswaran, R.; Limaye, S.Y.

    1996-02-01

    BSX (Ba{sub 1+x}Zr{sub 4}P{sub 6-2x}Si{sub 2x}O{sub 24}) and CSX (Ca{sub l-x}Sr{sub x}Zr{sub 4}P{sub 6}O{sub 24}) type NZP ceramics were fabricated and characterized for: (i) thermal properties viz., thermal conductivity, thermal expansion, thermal stability and thermal shock resistance; (ii) mechanical properties viz., flexure strength and elastic modulus; and (iii) microstructures. Results of these tests and analysis indicated that the BS-25 (x=0.25 in BSX) and CS-50 (x=0.50 in CSX) ceramics had the most desirable properties for casting metal with ceramic in place. Finite element analysis (FEA) of metal casting (with ceramic in place) was conducted to analyze thermomechanical stresses generated and determine material property requirements. Actual metal casting trials were also conducted to verify the results of finite element analysis. In initial trials, the ceramic cracked because of the large thermal expansion mismatch (hoop) stresses (predicted by FEA also). A process for introduction of a compliant layer between the metal and ceramic to alleviate such destructive stresses was developed. The compliant layer was successful in preventing cracking of either the ceramic or the metal. In addition to these achievements, pressure slip casting and gel-casting processes for fabrication of NZP components; and acoustic emission and ultrasonics-based NDE techniques for detection of microcracks and internal flaws, respectively, were successfully developed.

  1. An Investigation on Metallic Ion Release from Four Dental Casting Alloys

    Directory of Open Access Journals (Sweden)

    F. Nejatidanesh

    2005-12-01

    Full Text Available Statement of Problem: Element release from dental casting alloys into the oral environment is of clinical concern and is considered to be a potential health problem to all patients.Purpose: The aim of this study was to investigate the metallic ion release of four base metal alloys.Materials and Methods: Two Ni-Cr (Minalux and Supercast and two Co-Cr alloys (Minalia and Wironit were examined. Nine specimens of each type were prepared in 13×11×1.4 mm dimensions and each of the four alloys (3 specimens per group were conditioned in artificial saliva at 37 c for one, three and seven days.The conditioning media were analyzed for element-release using Inductive CoupledPlasma Atomic Emission Spectrophotometer (ICPAES. Collected data were statistically analyzed using ANOVA and Duncan multiple range test (P< 0.05.Results: The greatest amount of element release was seen after seven days (134.9 ppb Supercast, 159.2 ppb Minalux, 197.2 ppb Minalia, and 230.2 ppb Wironit. There was a significant difference between the released elements from the alloys after the three conditioning times (p<0.001.Conclusion: Element release from the studied alloys is proportional to the conditioning time. The Ni-Cr alloys tested in this investigation were more resistant to corrosion as compared to the Co-Cr alloys in artificial saliva. Supercast had the highest corrosion resistance.

  2. Interfacial reaction in cast WC particulate reinforced titanium metal matrix composites coating produced by laser processing

    Science.gov (United States)

    Liu, Dejian; Hu, Peipei; Min, Guoqing

    2015-06-01

    Laser injection of ceramic particle was conducted to produce particulate reinforced metal matrix composites (MMCs) coating on Ti-6Al-4V alloy. Cast WC particle (WCp) was used as injection reinforcement to avoid excessive release of carbon atoms into the melt pool. The interfaces and boundaries between WC and Ti matrix were investigated by electron microscopy study. Compared with single crystal WCp, cast WCp was an appropriate solution to control the reaction products (TiC) in the matrix and the total amount of reaction products was significantly reduced. Irregular-shape reaction layers were formed around cast WCp. The reaction layers consist of a W2C layer and a mixed layer of W and TiC. Such reaction layers are effective in load transfer under an external load.

  3. Awareness programs and change in taste-based caste prejudice

    DEFF Research Database (Denmark)

    Banerjee, Ritwik; Datta Gupta, Nabanita

    Becker's theory of taste-based discrimination predicts that relative employment of the discriminated social group will improve if there is a decrease in the level of prejudice for the marginally discriminating employer. In this paper we experimentally test this prediction offered by Becker (1971......) in the context of caste in India, with management students (potential employers in the near future) as subjects. First, we measure caste prejudice and show that awareness through a TV social program reduces implicit prejudice against the lower caste and the reduction is sustained over time. Second, we find...... that the treatment reduces the prejudice levels of those in the left tail of the prejudice distribution - the group which can potentially affect real outcomes as predicted by the theory. And finally, a larger share of the treatment group subjects exhibit favorable opinoion about reservation in jobs for the lower...

  4. Metal redistribution by surface casting of four earthworm species in sandy and loamy clay soils.

    Science.gov (United States)

    Zorn, Mathilde I; van Gestel, Cornelis A M; Eijsackers, Herman J P

    2008-12-01

    Bioturbation of metal contaminated soils contributes considerably to redistribution and surfacing of contaminated soil from deeper layers. To experimentally measure the contribution of Allolobophora chlorotica, Aporrectodea caliginosa, Lumbricus rubellus and L. terrestris to soil surface casting, a time-course experiment was performed under laboratory conditions. Earthworms were incubated in perspex columns filled with sandy soil (2% organic matter, 2.9% clay) or loamy clay soil (15% organic matter, 20% clay), and surface casts were collected after up to 80 days. On the sandy soil, A. caliginosa and L. rubellus brought approximately 7.1-16 g dry wt. casts/g fresh wt. earthworm to the surface, which is significantly more than A. chlorotica and L. terrestris (2.5-5.0 g dry wt./g fresh wt.). A. caliginosa was the only species that produced significantly more surface casts in the sandy soil than in the loamy clay soil. In the loamy clay soil, no differences in biomass-corrected casting rates were found among the species. Surface casting rates tended to decrease after 20 days. Considering the densities of the different species in a Dutch floodplain area Afferdensche and Deestsche Waarden, surface cast production is estimated to amount to 2.0 kg dry soil/m2 after 80 days, which could be extrapolated to 2.7-9.1 kg/m2 per year. These amounts correspond to a surface deposition of a layer of approximately 1.9-6.5 mm/year, which is of the same order or even slightly higher than the sedimentation rate and much higher than the amount of soil brought to the soil surface by bioturbating small mammals.

  5. Apparatus for injection casting metallic nuclear energy fuel rods

    Science.gov (United States)

    Seidel, Bobby R.; Tracy, Donald B.; Griffiths, Vernon

    1991-01-01

    Molds for making metallic nuclear fuel rods are provided which present reduced risks to the environment by reducing radioactive waste. In one embodiment, the mold is consumable with the fuel rod, and in another embodiment, part of the mold can be re-used. Several molds can be arranged together in a cascaded manner, if desired, or several long cavities can be integrated in a monolithic multiple cavity re-usable mold.

  6. Gold based bulk metallic glass

    Science.gov (United States)

    Schroers, Jan; Lohwongwatana, Boonrat; Johnson, William L.; Peker, Atakan

    2005-08-01

    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644K, a glass transition temperature of 401K, and a supercooled liquid region of 58K. The Vickers hardness of the alloys in this system is ˜350Hv, twice that of conventional 18-karat crystalline gold alloys. This combination of properties makes the alloys attractive for many applications including electronic, medical, dental, surface coating, and jewelry.

  7. Wettability and Surface Free Energy of Ti(C,N Coatings on Nickel-based Casting Prosthetic Alloys

    Directory of Open Access Journals (Sweden)

    Banaszek K.

    2015-09-01

    Full Text Available The production process of prosthetic restorations runs in two stages. In the first stage, the prosthetic foundation is produced of metal alloys. In the second stage, a facing material is applied on the produced element. In both stages, the wettability is significantly important, as well as the free surface energy relating to it. The quality of the obtained cast depends on the surface phenomena occurring between the metal alloy and the material of which the casting mould is made. The performed examinations also point to a relation between the ceramics joint and the base, depending on the wetting angle.

  8. Application of the Pareto chart and Ishikawa diagram for the identification of major defects in metal composite castings

    Directory of Open Access Journals (Sweden)

    K. Gawdzińska

    2011-04-01

    Full Text Available This author discusses the use of selected quality management tools, i.e. the Pareto chart and Ishikawa fishbone diagram, for the descriptionof composite casting defects. The Pareto chart allows to determine defect priority related with metallic composite castings, while theIshikawa diagram indicates the causes of defect formation and enables calculating defect weights.

  9. Quantitative analysis of leaching of different metals in human saliva from dental casting alloys: An in vivo study.

    Science.gov (United States)

    Siddharth, Ramashanker; Gautam, Roopali; Chand, Pooran; Agrawal, Kaushal Kishor; Singh, Raghuwar Dayal; Singh, Balendra Pratap

    2015-01-01

    The issue of biomaterial-derived ionic release in various sites of the human body has attracted the interest of many investigators because of the possibility that debris or degradation products elicit a foreign body reaction or have a role in the induction of pathological processes. The purpose was to evaluate the saliva of denture wearers after insertion of the prosthesis for leaching of metals from metallic denture. Total 20 subjects of age group of 40-60 years including both males (10) and females (10) were selected for the study. Total subjects were divided into 2 groups each containing 10 subjects, Group I (control group): Subjects having dentition intact up to second molar and free of any dental restoration; Group II (study group): Partially edentulous subjects rehabilitated with cast-metal removable partial denture. Saliva samples were taken at three stages that is, 1 h, 24 h and 72 h after the denture insertion from subjects of study group as well as from the control group. Atomic absorption spectroscopy (AAS) was used to estimate the concentration of elemental ions. Obtained data's were analyzed using SPSS (Statistical Package for Social Sciences) version 15.0 statistical analysis software. The values were represented in a number (%) and mean ± standard deviation. At 1 h, 24 h and 72 h after the denture insertion in study group, chromium (Cr) had statistically significant higher mean concentration as compared to manganese (Mn) (P Metal-based dentures show maximum leaching immediately after wearing of the prosthesis which decreased significantly over the period of 3 days. Cr and Mn were the metal ions mainly found in saliva of cast partial denture wearer. No concentration of cobalt, molybdenum (Mo) and iron (Fe) was found in saliva of metal base denture wearer. There was a significant change in concentration of elutes in saliva in first 72 h/3 days making time an effective variable was observed.

  10. Effects of Rare Earth Metal Addition on Wear Resistance of Chromium-Molybdenum Cast Steel

    Directory of Open Access Journals (Sweden)

    Kasinska J.

    2017-09-01

    Full Text Available This paper discusses changes in the microstructure and abrasive wear resistance of G17CrMo5-5 cast steel modified with rare earth metals (REM. The changes were assessed using scanning microscopy. The wear response was determined in the Miller test to ASTM G75. Abrasion tests were supplemented with the surface profile measurements of non-modified and modified cast steel using a Talysurf CCI optical profilometer. It was demonstrated that the modification substantially affected the microstructure of the alloy, leading to grain size reduction and changed morphology of non-metallic inclusions. The observed changes in the microstructure resulted in a three times higher impact strength (from 33 to 99 kJ/cm2 and more than two times higher resistance to cracking (from 116 to 250 MPa. The following surface parameters were computed: Sa: Arithmetic mean deviation of the surface, Sq: Root-mean-square deviation of the surface, Sp: Maximum height of the peak Sv: Maximum depth of the valley, Sz: Ten Point Average, Ssk: Asymmetry of the surface, Sku: Kurtosis of the surface. The findings also indicated that the addition of rare earth metals had a positive effect on the abrasion behaviour of G17CrMo5-5 cast steel.

  11. Comparison of internal fit between implant abutments and cast metal crowns vs laser-sintered crowns.

    Science.gov (United States)

    Kiliçarslan, Mehmet Ali; Özkan, Pelin; Uludag, Bülent; Mumcu, Emre

    2014-07-01

    A common problem related to cemented single crowns is the internal misfit, which may cause inadequate retention, especially when seated on the implant abutment. The aim of this study was to compare the internal fit of Co-Cr crowns using a traditional lost-wax casting technique from laser-sintered Co-Cr alloy crowns. Twelve metallic crowns per each technique were fabricated. The effect of the thickness of cement, originated internal gap was evaluated. Crowns were cemented on the implant abutments with resin cement, and the internal fit of crowns was measured at five areas with an optical microscope. The data were analyzed, and the means were compared with a t-test (pcrowns obtained through the lost wax method (min. 65.50 ± 9.54 μm and max. 313.46 ± 48.12 μm). The fit of the metal crown likely varies with the fabrication technique. The use of techniques that enable the adjustment of crown parameters, such as the laser sintering technique, maintains the desired fit between casting and implant abutments. This study investigated which technique affects the internal fit of cemented implant-supported crowns, comparing the use of lost wax casting and laser-sintered metal dental alloys. The results of this study indicate that the use of laser-sintered crowns can improve for crown accuracy.

  12. Cast iron-base alloy for cylinder/regenerator housing

    Science.gov (United States)

    Witter, Stewart L.; Simmons, Harold E.; Woulds, Michael J.

    1985-01-01

    NASACC-1 is a castable iron-base alloy designed to replace the costly and strategic cobalt-base X-40 alloy used in the automotive Stirling engine cylinder/generator housing. Over 40 alloy compositions were evaluated using investment cast test bars for stress-rupture testing. Also, hydrogen compatibility and oxygen corrosion resistance tests were used to determine the optimal alloy. NASACC-1 alloy was characterized using elevated and room temperature tensile, creep-rupture, low cycle fatigue, heat capacity, specific heat, and thermal expansion testing. Furthermore, phase analysis was performed on samples with several heat treated conditions. The properties are very encouraging. NASACC-1 alloy shows stress-rupture and low cycle fatigue properties equivalent to X-40. The oxidation resistance surpassed the program goal while maintaining acceptable resistance to hydrogen exposure. The welding, brazing, and casting characteristics are excellent. Finally, the cost of NASACC-1 is significantly lower than that of X-40.

  13. Study on cast Ni3A1-base alloys

    International Nuclear Information System (INIS)

    Yiz'hang, Z.; Tianxiang, Z.; Yingjie, T.; Bingda, Z.; Yaoxiao, Z.; Zhuanggi, H.

    1989-01-01

    This paper presents a study of a series of cast Ni 3 Al-base alloys with the addition of alloying elements, such as Hf, Zr, Ti, Nb etc., in which the total amount of Al and alloying elements substituting for Al was controlled in the range of 18 to 23 at%. It was found the alloying elements change remarkably the morphology, distribution and amount of γ phase as well as the morphology and size of primary γ intermetallic compound. The size of primary γ can be decreased to micron order. The brittle γ - γ boundary (refer to primary γ) can be substituted by touch γ - γ - γ boundary. As a result, the mechanical properties of the cast Ni 3 Al-base alloys, especially high temperature ductility, can be enhanced. In addition, the effect of Cr is discussed when tested in air environment, and considered that chromium addition is not very effective to improve the high temperature embrittlement

  14. The ancient Chinese casting techniques

    OpenAIRE

    Tan Derui; Lian Haiping

    2011-01-01

    In the course of Chinese civilization, which lasted more than 5,000 years, casting production has made a huge contribution. In this paper, some representative metal castings were presented. According to their forming techniques, they can be grouped into stone mould casting, clay mould casting, ablation casting, lost wax casting, stack casting, permanent mould casting, sand casting, etc. According to their materials, they can be categorized into tin bronze, bimetallic bronze, malleable cast ir...

  15. New method for diagnosing cast compactness based on laser ultrasonography

    Directory of Open Access Journals (Sweden)

    P. Swornowski

    2010-01-01

    Full Text Available Technologically advanced materials, such as alloys of aluminum, nickel or titanium are currently used increasingly often in significantly loaded components utilized in the aviation industry, among others in the construction of jet turbine engine blades. The article presents a method for diagnosing the condition of the inside of cast blades with the use of laser ultrasonography. The inspection is based on finding hidden flaws with a size of between 10 and 30μm. Laser ultrasonography offers a number of improvements over the non-destructive methods used so far, e.g. the possibility to diagnose the cast on a selected depth, high signal-to-noise ratio and good sensitivity. The article includes a brief overview of non-destructive inspection methods used in foundry engineering and sample results of inspecting the inner structure of a turbo jet engine blade using the method described in the article.

  16. Heavy Metals in ToxCast: Relevance to Food Safety (SOT) ...

    Science.gov (United States)

    Human exposure to heavy metals occurs through food contamination due to industrial processes, vehicle emissions and farming methods. Specific toxicity endpoints have been associated with metal exposures, e.g. lead and neurotoxicity; however, numerous varieties of heavy metals have not been systematically examined for potential toxicities. We describe results from testing a large set of heavy metal-containing compounds in extensive suites of in vitro assays to suggest possible molecular initiating events in toxicity pathways. A broad definition of heavy metals that includes As, Se and organometallics or inorganic salts containing metals in Group III or higher (MW > 40) was used to identify 75 different compounds tested in the EPA’s ToxCast assays encompassing biochemical, cellular and model organism assays. These 75, plus an additional 100 metal-containing compounds, were tested in Tox21 quantitative high-throughput screening (qHTS) assays covering nuclear receptor and stress pathways. Known activities were confirmed such as activation of stress pathways and nuclear receptors (RXR, PPARg) as well as overt cytotoxicity. Specifically, organotin and organomercury were among the most potent of over 8K chemicals tested. The HTS results support known toxicities, including promiscuous GPCR activity for mercury compounds consistent with the neuropsychiatric effects seen in mercury poisoning (Mad Hatter’s Syndrome). As such, HTS approaches provide an efficient method

  17. Optimal design of feeding system in steel casting by constrained optimization algorithms based on InteCAST

    Directory of Open Access Journals (Sweden)

    Chang-chun Dong

    2016-11-01

    Full Text Available The traditional foundry industry has developed rapidly in recently years due to advancements in computer technology. Modifying and designing the feeding system has become more convenient with the help of the casting software, InteCAST. A common method of designing a feeding system is to first design the initial systems, run simulations with casting software, analyze the feedback, and then redesign. In this work, genetic, fruit fly, and interior point optimizer (IPOPT algorithms were introduced to guide the optimal riser design for the feeding system. The results calculated by the three optimal algorithms indicate that the riser volume has a weak relationship with the modulus constraint; while it has a close relationship with the volume constraint. Based on the convergence rate, the fruit fly algorithm was obviously faster than the genetic algorithm. The optimized riser was also applied during casting, and was simulated using InteCAST. The numerical simulation results reveal that with the same riser volume, the riser optimized by the genetic and fruit fly algorithms has a similar improvement on casting shrinkage. The IPOPT algorithm has the advantage of causing the smallest shrinkage porosities, compared to those of the genetic and fruit fly algorithms, which were almost the same.

  18. The effect of occlusal surface relief of dies on marginal adaptation of metal-ceramic casting copings.

    Science.gov (United States)

    Saber, Fariba Saleh; Abolfazli, Nader; Mahboub, Farhang; Razavi, Fariba Emadian

    2013-06-01

    The purpose of this study was to evaluate the impact of occlusal relief of dies on internal adaptation of metal-ceramic casting copings. Standardized preparations were made on 80 extracted third molar teeth. Impressions were made with poly(vinyl siloxane), and stone dies were prepared. Dies were covered with four layers of die spacer, covering the entire preparation together with the occlusal surface excluding the apical 0.5 mm of the preparation in group 1 (40 specimens), and covering the same area excluding the occlusal surface in group 2 (40 specimens). Copings were cast using nickel-chromium-based metal ceramic alloy and cemented using zinc phosphate cement. The specimens were sectioned along the long axis. Internal discrepancies were recorded with a 0.001-mm resolution stereoscope at 6 points: the middle of the occlusal surface (MO), middle of the lingual wall (ML), middle of the buccal wall (MB), middle of the buccal shoulder finish line (MSH), middle of the lingual chamfer finish line (MCH), and middle of the buccal bevel finish line (MBL). Student's t-test was used for statistical analysis. Significance level was set at p die with no relief. Leaving the occlusal part of the die uncovered with the die spacer improved the crown seating considerably in the occlusal surface as well as shoulder and bevel margins. © 2012 by the American College of Prosthodontists.

  19. Room temperature deformation of in-situ grown quasicrystals embedded in Al-based cast alloy

    Directory of Open Access Journals (Sweden)

    Boštjan Markoli

    2013-12-01

    Full Text Available An Al-based cast alloy containing Mn, Be and Cu has been chosen to investigate the room temperature deformation behavior of QC particles embedded in Al-matrix. Using LOM, SEM (equipped with EDS, conventional TEM with SAED and controlled tensile and compression tests, the deformation response of AlMn2Be2Cu2 cast alloy at room temperature has been examined. Alloy consisted of Al-based matrix, primary particles and eutectic icosahedral quasicrystalline (QC i-phase and traces of Θ-Al2Cu and Al10Mn3. Tensile and compression specimens were used for evaluation of mechanical response and behavior of QC i-phase articles embedded in Al-cast alloy. It has been established that embedded QC i-phase particles undergo plastic deformation along with the Al-based matrix even under severe deformation and have the response resembling that of the metallic materials by formation of typical cup-and-cone feature prior to failure. So, we can conclude that QC i-phase has the ability to undergo plastic deformation along with the Al-matrix to greater extent contrary to e.g. intermetallics such as Θ-Al2Cu for instance.

  20. Evaluation of the pattern dimensions of cast-metal posts in uniradicular teeth

    Directory of Open Access Journals (Sweden)

    Rafael de Assunção Vital

    Full Text Available Introduction Accurate dimensions of cast-metal posts are relevant to the survival of dental prostheses. Objective The aim of this study was to verify if the dimensions of cast-metal posts accord with ideal clinical criteria. Material and method For the evaluation, 285 periapical radiographs, from a total of 80 teeth, were taken from the charts of patients that attended the clinics at the Dental School of the Federal University of Goiás, from March 2008 to October 2012. Only periapical radiographs of single-rooted teeth with post and core were included in the study. The radiographic evaluation was conducted with the assistance of a magnifying glass and a view box, in a room with low luminosity. The dimensions of the post and core were established with the help of a digital caliper, and the following measurements were considered: a LR (Length Remnant; b LP (Length Post; c BS (Bone Support; d DR (Diameter Root; e DP (mesiodistal diameter post. The post and core were classified as acceptable or deficient by reference values with a margin of error of 0.2 mm. For descriptive analysis, the data were cataloged using SPSS software (version 17.0. Result With regard to the length of the post and core, only 26.25% and 43.75% of the post and core were classified as acceptable according to the two-thirds rule and fulcrum dental rule, respectively. With regard to the mesiodistal diameter of the post and core, 55% were classified as acceptable. Conclusion Within the limits of this study, it can be concluded that the cast-metal posts evaluated do not accord with the ideal clinical criteria.

  1. Process research into metallic pipe wear of hot chamber die casting machines and methods ofincreasing wear resistance

    Science.gov (United States)

    Mukhametzyanova, G. F.; Kolesnikov, MS; Mukhametzyanov, I. R.; Astatshenko, V. I.

    2017-09-01

    The kinetics and reasons for metallic pipe wear of hot chamberzinc alloy die casting machines are established.Increasing metallic pipe wear components wear resistance is being achieved by means of die steelДИ - 22 with electroslag remelting modification and electron-beamremelting modification and after the processes of nitriding and boriding besides.

  2. Effect of axial groove and resin luting cements on the retention of complete cast metal crowns

    Directory of Open Access Journals (Sweden)

    K Rajkumar

    2009-01-01

    Full Text Available Background : The design of the tooth preparation and the cementing medium are important consid-erations in the retention of crowns and fixed partial dentures. The purpose of this invitro study was to determine the effect of axial groove on the retention of complete cast metal crowns using two resin luting cements. Methods: Forty freshly extracted intact human molar teeth were prepared in their long axis to receive complete cast metal crowns. The specimens were randomly divided into two groups (one control and one study group. An axial groove of uniform size and shape was made on the prepared teeth under the study group. Axial surface area of prepared teeth specimens was measured. Complete cast metal crowns were fabricated for each specimen. Specimens of each group were divided into subgroups of 10 samples and were cemented with two resin luting cements, RelyX Unicem® and Calibra®, re-spectively. The cemented crowns were loaded in tension using a Universal Instron testing machine. The maximal tensile strength was recorded. Data were compared using the Mann-Whitney U test (α=0.05. Results: No significant differences in the tensile stress values were noted between the control (mean: 5.76±0.392 MPa and study (mean: 5.93±0.751 MPa groups cemented with RelyX Unicem. No sig-nificant differences in the tensile stress values were noted between the control (mean: 4.92±0.641 MPa and study (mean: 5.15 ±0.478 MPa groups cemented with Calibra. However, significant dif-ference in the tensile stress values was found between the two resin cements in the control and study groups. Conclusion: Axial groove placed in tooth preparations for resin bonded complete cast metal crowns had no statistically significant effect on retention. The use of (RelyX Unicem® yielded greater reten-tion values when compared to Calibra®.

  3. A preliminary evaluation into the performance of posterior resin bonded cast metal restorations (adhesive onlays).

    Science.gov (United States)

    Marchan, S M; Eder, A; Marchan, Q M; Coldero, L; Choon, A Tang; Smith, W A

    2013-03-01

    Posterior resin bonded cast metal restorations (adhesive onlays) were used in a variety of clinical scenarios including: management of tooth wear and cracked tooth, as retainers for fixed bridge work, for correction of the occlusal plane and in providing cuspal coverage following endodontic treatment. The mean length in service for the examined onlays was 42 months, with a range of 9-75 months. Two restorations in two patients failed resulting in an overall success of 94%. Patient satisfaction was high at 95%. Such restorations seem to be a viable option for managing a number of clinical scenarios.

  4. Corrosion resistance of cast irons and titanium alloys as reference engineered metal barriers for use in basalt geologic storage: a literature assessment

    International Nuclear Information System (INIS)

    Charlot, L.A.; Westerman, R.E.

    1981-07-01

    A survey and assessment of the literature on the corrosion resistance of cast irons and low-alloy titanium are presented. Selected engineering properties of cast iron and titanium are briefly described; however, the corrosion resistance of cast iron and titanium in aqueous solutions or in soils and their use in a basalt repository are emphasized. In evaluating the potential use of cast iron and titanium as structural barrier materials for long-lived nuclear waste packages, it is assumed that titanium has the general corrosion resistance to be used in relatively thin cross sections whereas the cost and availability of cast iron allows its use even in very thick cross sections. Based on this assumption, the survey showed that: The uniform corrosion of low-alloy titanium in a basalt environment is expected to be extremely low. A linear extrapolation of general corrosion rates with an added corrosion allowance suggests that a 3.2- to 6.4-mm-thick wall may have a life of 1000 yr. Pitting and crevice corrosion are not likely corrosion modes in basalt ground waters. It is also unlikely that stress corrosion cracking (SCC) will occur in the commercially pure (CP) titanium alloy or in palladiumor molybdenum-alloyed titanium materials. Low-alloy cast irons may be used as barrier metals if the environment surrounding the metal keeps the alloy in the passive range. The solubility of the corrosion product and the semipermeable nature of the oxide film allow significant uniform corrosion over long time periods. A linear extrapolation of high-temperature corrosion rates on carbon steels and corrosion rates of cast irons in soils gives an estimated metal penetration of 51 to 64 mm after 1000 yr. A corrosion allowance of 3 to 5 times that suggests that an acceptable cast iron wall may be from 178 to 305 mm thick. Although they cannot be fully assessed, pitting and crevice corrosion should not affect cast iron due to the ground-water chemistry of basalt

  5. The cavitation erosion of ultrasonic sonotrode during large-scale metallic casting: Experiment and simulation.

    Science.gov (United States)

    Tian, Yang; Liu, Zhilin; Li, Xiaoqian; Zhang, Lihua; Li, Ruiqing; Jiang, Ripeng; Dong, Fang

    2018-05-01

    Ultrasonic sonotrodes play an essential role in transmitting power ultrasound into the large-scale metallic casting. However, cavitation erosion considerably impairs the in-service performance of ultrasonic sonotrodes, leading to marginal microstructural refinement. In this work, the cavitation erosion behaviour of ultrasonic sonotrodes in large-scale castings was explored using the industry-level experiments of Al alloy cylindrical ingots (i.e. 630 mm in diameter and 6000 mm in length). When introducing power ultrasound, severe cavitation erosion was found to reproducibly occur at some specific positions on ultrasonic sonotrodes. However, there is no cavitation erosion present on the ultrasonic sonotrodes that were not driven by electric generator. Vibratory examination showed cavitation erosion depended on the vibration state of ultrasonic sonotrodes. Moreover, a finite element (FE) model was developed to simulate the evolution and distribution of acoustic pressure in 3-D solidification volume. FE simulation results confirmed that significant dynamic interaction between sonotrodes and melts only happened at some specific positions corresponding to severe cavitation erosion. This work will allow for developing more advanced ultrasonic sonotrodes with better cavitation erosion-resistance, in particular for large-scale castings, from the perspectives of ultrasonic physics and mechanical design. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting.

    Science.gov (United States)

    Mun, Jiwon; Ju, Jaehyung; Thurman, James

    2016-05-14

    One of the typical methods to manufacture 3D lattice metals is the direct-metal additive manufacturing (AM) process such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In spite of its potential processing capability, the direct AM method has several disadvantages such as high cost, poor surface finish of final products, limitation in material selection, high thermal stress, and anisotropic properties of parts. We propose a cost-effective method to manufacture 3D lattice metals. The objective of this study is to provide a detailed protocol on fabrication of 3D lattice metals having a complex shape and a thin wall thickness; e.g., octet truss made of Al and Cu alloys having a unit cell length of 5 mm and a cell wall thickness of 0.5 mm. An overall experimental procedure is divided into eight sections: (a) 3D printing of sacrificial patterns (b) melt-out of support materials (c) removal of residue of support materials (d) pattern assembly (e) investment (f) burn-out of sacrificial patterns (g) centrifugal casting (h) post-processing for final products. The suggested indirect AM technique provides the potential to manufacture ultra-lightweight lattice metals; e.g., lattice structures with Al alloys. It appears that the process parameters should be properly controlled depending on materials and lattice geometry, observing the final products of octet truss metals by the indirect AM technique.

  7. ''Heat Transfer at the Mold-Metal Interface in Permanent Mold Casting of Aluminum Alloys'' Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Professor R. D. Pehlke, Principal Investigator, Dr. John M. Cookson, Dr. Shouwei Hao, Dr. Prasad Krishna, Kevin T. Bilkey

    2001-12-14

    This project on heat transfer coefficients in metal permanent mold casting has been conducted in three areas. They are the theoretical study at the University of Michigan, the experimental investigation of squeeze casting at CMI-Tech Center (Now Hayes-Lemmerz Technical Center) and the experimental investigation of low pressure permanent mold casting at Amcast Automotive.

  8. Anti-carburizing Coating for Resin Sand Casting of Low Carbon Steel Based on Composite Silicate Powder Containing Zirconium

    Directory of Open Access Journals (Sweden)

    Zhan Chunyi

    2018-01-01

    Full Text Available This paper studied the structure and properties of anticarburizing coating based on composite silicate powder containing zirconium by X-ray diffraction analyzer, thermal expansion tester, digital microscope and other equipment. It is introduced that the application example of the coating in the resin-sand casting of ZG1Cr18Ni9Ti stainless steel impeller. The anti-carburizing effect of the coating on the surface layer of the cast is studied by using direct reading spectrometer and spectrum analyzer. The change of the micro-structure of the coating after casting and cooling is observed by scanning electron microscope. The analysis of anti-carburizing mechanism of the coating is presented. The results indicate that the coating possesses excellent suspension property, brush ability, permeability, levelling property and crackresistance. The coating exhibits high strength and low gas evolution. Most of the coating could be automatically stripped off flakily when the casting was shaken out. The casting possesses excellent surface finish and antimetal penetration effect. The carburizing layer thickness of the stainless steel impeller casting with respect to allowable upper limit of carbon content is about 1mm and maximum carburizing rate is 23.6%. The anticarburizing effect of casting surface is greatly improved than that of zircon powder coating whose maximum carburizing rate is 67.9% and the carburizing layer thickness with respect to allowable upper limit of carbon content is greater than 2mm. The composite silicate powder containing zirconium coating substantially reduces the zircon powder which is expensive and radioactive and mainly dependent on imports. The coating can be used instead of pure zircon powder coating to effectively prevent metal-penetration and carburizing of resin-sand-casting surface of low carbon steel, significantly improve the foundry production environment and reduce the production costs.

  9. Effect of graphite on folded metal occurrence in honed surfaces of grey and compacted cast irons

    Science.gov (United States)

    do Vale, João Luiz; da Silva, Carlos Henrique; Pintaúde, Giuseppe

    2017-09-01

    Grey cast iron (GCI) and compacted graphite iron (CGI) are the most employed materials to manufacture cylinder liners. The use of diamond tools to hone the surfaces resulted in an increase of the so-called folded metal occurrence. This irregularity can reduce the performance of engines and investigations to understand it have been made. In this sense, the current study aims to correlate the variation of graphite and the folded metal occurrence. Different samples of GCI and CGI were extracted directly of engine blocks, resulting in four metallurgical conditions. Topographical analysis was conducted in an optical interferometer and a dedicated routine to count the folded metal was developed using 3D images. Folded metal occurrence can be associated to a specific region of topography and to an increase in the graphite area fraction. Experimental evidences were provided revealing cross-sectional images of grooves using a scanning electron microscope. In addition, the present investigation shows that a larger amount of folded metal was related to the microstructure of thicker walls of compact graphite iron.

  10. Off-loading of hindfoot and midfoot neuropathic ulcers using a fiberglass cast with a metal stirrup.

    Science.gov (United States)

    Tamir, Eran; Daniels, Timothy R; Finestone, Aharon; Nof, Matityahu

    2007-10-01

    This study was designed to assess the effectiveness of a method of off-loading large neuropathic ulcers of the hindfoot and midfoot. The device used is composed of a fiberglass cast with a metal stirrup and a window around the ulcer. A retrospective study of 14 diabetic and nondiabetic patients was performed. All had chronic plantar hindfoot or midfoot neuropathic ulcers that failed to heal with conventional treatment methods. A fiberglass total contact cast with a metal stirrup was applied. A window was made over the ulcer to allow daily ulcer care. The average duration of ulcer before application of the metal stirrup was 26 + 13.2 (range 7 to 52) months. The ulcer completely healed in 12 of the 14 patients treated. The mean time for healing was 10.8 weeks for midfoot ulcers and 12.3 weeks for heel ulcers. Complications developed in four patients: three developed superficial wounds and one developed a full-thickness wound. In three of these four patients, local wound care was initiated, and the stirrup cast was continued to complete healing of the primary ulcer. A fiberglass cast with a metal stirrup is an effective off-loading device for midfoot and hindfoot ulcers. It is not removable and does not depend on patient compliance. The window around the ulcer allows for daily wound care, drainage of the ulcer and the use of vacuum-assisted closure (VAC) treatment. The complication rate is comparable to that of total contact casting.

  11. Marginal accuracy of nickel chromium copings fabricated by conventional and accelerated casting procedures, produced with ringless and metal ring investment procedures: A comparative in vitro study.

    Science.gov (United States)

    Alex, Deepa; Shetty, Y Bharath; Miranda, Glynis Anita; Prabhu, M Bharath; Karkera, Reshma

    2015-01-01

    Conventional investing and casting techniques are time-consuming and usually requires 2-4 h for completion. Accelerated nonstandard, casting techniques have been reported to achieve similar quality results in significantly less time, namely, in 30-40 min. During casting, it is essential to achieve compensation for the shrinkage of solidifying alloy by investment expansion. The metal casting ring restricts the thermal expansion of investment because the thermal expansion of the ring is lesser than that of the investment. The use of casting ring was challenged with the introduction of the ringless technique. A total of 40 test samples of nickel chromium (Ni-Cr) cast copings were obtained from the patterns fabricated using inlay casting wax. The 20 wax patterns were invested using metal ring and 20 wax patterns were invested using the ringless investment system. Of both the groups, 10 samples underwent conventional casting, and the other 10 underwent accelerated casting. The patterns were casted using the induction casting technique. All the test samples of cast copings were evaluated for vertical marginal gaps at four points on the die employing a stereo optical microscope. The vertical marginal discrepancy data obtained were tabulated. Mean and standard deviations were obtained. Vertical discrepancies were analyzed using analysis of variance and Tukey honestly significantly different. The data obtained were found to be very highly significant (P cast copings fabricated with the conventional casting using ringless investment system showed significantly better marginal fit than that of cast copings fabricated from conventional and accelerated casting with metal ring investment and accelerated casting using ringless investment since those copings had shown the least vertical marginal discrepancies among the four methods evaluated in this study.

  12. Decommissioning and dismantling of nuclear facilities: Establishing methods for testing the safe design of ductile cast iron casks with higher content of metallic recycling material (EBER)

    International Nuclear Information System (INIS)

    Zenker, U.; Voelzke, H.; Droste, B.

    2001-01-01

    The safe design of ductile cast iron (DCI) casks with higher content of metallic recycling material is investigated. Based upon the requirements of transport and storage containers for radioactive waste appropriate test scenarios are defined. A representative accident scenario (5 m drop of a cubic DCI container with given material properties onto a hard repository ground simulating concrete target) is analysed numerically by means of the finite element method using three-dimensional models. Dynamic flow curves of ductile cast iron with different scrap metal additions which are necessary for precise elastic-plastic calculations are given. The accuracy and numerical stability of the resulting dynamic stresses and strains are investigated. A comparison between calculation results and measurements from drop tests with DCI containers shows, that known mechanical effects like bending vibrations of the container walls are reflected by the finite element models. The detailed stress analysis and knowledge of the material properties are prerequisites for the safety assessment concept developed for DCI casks with higher content of metallic recycling material. Equations for semi-elliptical surface cracks in the walls of a cubically shaped container which are used in the safety assessment concept are verified under dynamic conditions. This allows the specification of the maximum permissible size of crack-like flaws depending on the material quality. Mainly the fracture mechanical properties of ductile cast iron with higher content of metallic recycling material determine the suitability of such materials for transport and storage containers. (orig.) [de

  13. Study of formation of aluminium billet in casting mold during continuous casting and forging

    International Nuclear Information System (INIS)

    Stulov, V.V.

    1997-01-01

    Aluminium billet formation and solidified skin thickness distribution along casting mold walls at different levels of liquid metal were investigated. The casting mold consisted of two rotating inclined walls in its upper part and two reciprocating vertical walls. The reduction of skin of casting proceeded in the upper part of mold. Based on the experimental results obtained the influence of metal level in a casting mold on billet formation is determined> The reduction degree needed for continuous process of casting and forging is also defined. The change in skin thickness with billet length under various crystallization conditions is established

  14. Caste-, work-, and descent-based discrimination as a determinant of health in social epidemiology.

    Science.gov (United States)

    Patil, Rajan R

    2014-01-01

    Social epidemiology explores health in the context of broad social determinants of health, where the boundary lines between health and politics appear increasingly blurred. Social determinants of health such as caste, discrimination, and social exclusion are inherently political in nature, hence it becomes imperative to look at health through a broader perspective of political philosophy, ideology, and caste that imposes enormous obstacles to a person's full attainment of civil, political, economic, social, and cultural rights. Caste is descent based and hereditary in nature. It is a characteristic determined by one's birth into a particular caste, irrespective of the faith practiced by the individual. Caste denotes a system of rigid social stratification into ranked groups defined by descent and occupation. Under various caste systems throughout the world, caste divisions also dominate in housing, marriage, and general social interaction divisions that are reinforced through the practice and threat of social ostracism, economic boycotts, and even physical violence-all of which undermine health equality.

  15. 3D scanning based mold correction for planar and cylindrical parts in aluminum die casting

    Directory of Open Access Journals (Sweden)

    Takashi Seno

    2015-04-01

    Full Text Available Aluminum die casting is an important manufacturing process for mechanical components. Die casting is known to be more accurate than other types of casting; however, post-machining is usually necessary to achieve the required accuracy. The goal of this investigation is to develop machining- free aluminum die casting. Improvement of the accuracy of planar and cylindrical parts is expected by correcting metal molds. In the proposed method, the shape of cast aluminum made with the initial metal molds is measured by 3D scanning. The 3D scan data includes information about deformations that occur during casting. Therefore, it is possible to estimate the deformation and correction amounts by comparing 3D scan data with product computer-aided design (CAD data. We corrected planar and cylindrical parts of the CAD data for the mold. In addition, we corrected the planar part of the metal mold using the corrected mold data. The effectiveness of the proposed method is demonstrated by evaluating the accuracy improvement of the cast aluminum made with the corrected mold.

  16. Liquid Metal Processing and Casting Experiences at the U.S. Department of Energy's Albany Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, Paul D.; Turner, Paul C.

    2005-09-01

    In this paper we will discuss some of the early pioneering work as well as some of our more recent research. The Albany Research Center (ARC) has been involved with the melting and processing of metals since it was established in 1942. In the early days, hardly anything was known about melting refractory or reactive metals and as such, virtually everything had to be developed in-house. Besides the more common induction heated air-melt furnaces, ARC has built and/or utilized a wide variety of furnaces including vacuum arc remelt ingot and casting furnaces, cold wall induction furnaces, electric arc furnaces, cupola furnaces and reverberatory furnaces. The melt size of these furnaces range from several grams to a ton or more. We have used these furnaces to formulate custom alloys for wrought applications as well as for such casting techniques as spin casting, investment casting and lost foam casting among many. Two early spin-off industrializations were Wah Chang (wrought zirconium alloys for military and commercial nuclear applications) and Oremet (both wrought and cast Ti). Both of these companies are now part of the ATI Allegheny Ludlum Corporation.

  17. Damage evolution in freeze cast metal/ceramic composites exhibiting lamellar microstructures

    Directory of Open Access Journals (Sweden)

    C. Simpson

    2015-07-01

    Full Text Available The damage evolution in a single domain aluminium/alumina freeze-cast composite has been examined using 3D X-ray computed tomography (CT. A single domain was extracted and loaded incrementally at an orientation of 45° to the lamellae, with the damage being assessed after each of eight compressive loading steps. Prior to loading, significant damage was observed at the metal-ceramic interface – this is thought to have formed during machining and can be ascribed to weak interfacial bonding associated with the Cu coating applied to the ceramic preform prior to metal infiltration. Further interfacial damage was seen to initiate after loading to 170MPa and to develop with each subsequent load step. Damage was also observed in the ceramic lamellae, with a series of parallel cracks forming across the alumina, perpendicular to the domain orientation. These sets of parallel, intra-lamellae cracks were closely spaced, but initiated independently, with coalescence only occurring at higher loads. Both the interfacial and intra-lamellae cracking initiated after loading to 170MPa, with the intra-lamellae cracks propagating into the metal matrix after loading to 240MPa. The cracks in the ceramic lamellae were found to form and develop independent of the interfacial cracks, with discrete crack paths and morphologies being observed in each case. Despite this, the underlying driving force was the same for each damage mode, with crack propagation being driven by an elastic-plastic mismatch between the metal matrix and ceramic lamellae.

  18. Wear behaviour of Zr-based in situ bulk metallic glass matrix ...

    Indian Academy of Sciences (India)

    based bulk metallic glass (BMG) and its in situ BMG matrix composites with diameter of 3 mm were fabricated by conventional Cu-mould casting method and ... The composites showed lower friction coefficient and wear rate than the pure BMG.

  19. Development of Low Density CaMg-A1-Based Bulk Metallic Glasses (Preprint)

    National Research Council Canada - National Science Library

    Senkov, O. N; Scott, J. M; Miracle, D. B

    2006-01-01

    Low density Ca-Mg-Al-based bulk metallic glasses containing additionally Cu and Zn, were produced by a copper mold casting method as wedge-shaped samples with thicknesses varying from 0.5 mm to 10 rom...

  20. Fabrication and characterization of graded impedance impactors for gas gun experiments from tape cast metal powders

    International Nuclear Information System (INIS)

    Martin, L. Peter; Orlikowski, Daniel; Nguyen, Jeffrey H.

    2006-01-01

    Fabrication of compositionally graded structures for use as light-gas gun impactors has been demonstrated using a tape casting technique. Mixtures of metal powders in the Mg-Cu system were cast into a series of tapes with uniform compositions ranging from 100% Mg to 100% Cu. The individual compositions were fabricated into monolithic pellets for characterization by laminating multiple layers together, thermally removing the organics, and hot-pressing to near-full density. The pellets were characterized by optical and scanning electron microscopy, X-ray diffraction, and measurement of density and sound wave velocity. The density and acoustic impedance were observed to vary monotonically (and nearly linearly) with composition. Graded structures were fabricated by stacking layers of different compositions in a sequence calculated to yield a desired acoustic impedance profile. The measured physical properties of the graded structures compare favorably with those predicted from the monolithic pellet characteristics. Fabrication of graded impactors by this technique is of significant interest for providing improved control of the pressure profile and impactor planarity in gas gun experiments

  1. Detection of Non-metallic Inclusions in Steel Continuous Casting Billets

    Science.gov (United States)

    Ren, Ying; Wang, Yufeng; Li, Shusen; Zhang, Lifeng; Zuo, Xiangjun; Lekakh, Simon N.; Peaslee, Kent

    2014-08-01

    This work applied automated particle analysis to study non-metallic inclusions in steel. Compared with traditional methods, the approach has the advantage of capturing the morphology, measuring the size, recording the original positions, and identifying the composition of inclusions on a selected area in a short time. The morphology and composition of typical inclusions were analyzed using partial acid extraction and discussed through thermodynamic calculation. Steel samples were collected from the entire cross section of billets cast during times of steady state and ladle change. The spatial distribution of inclusions agreed well with the measurement of the total oxygen. The spatial distribution of inclusions was plotted to represent the entrapment positions of inclusions on the casting strand and their concentration on the cross section of the billet. Also, regarding the different size and type of inclusions, the spatial distribution of classified inclusions was explored such as the distribution of sulfide, oxide, and high sodium and potassium content inclusions. The sufficient information could be used to identify the source of inclusions and guide the steel refining process.

  2. Effect of Sphere Properties on Microstructure and Mechanical Performance of Cast Composite Metal Foams

    Directory of Open Access Journals (Sweden)

    Matias Garcia-Avila

    2015-05-01

    Full Text Available Aluminum-steel composite metal foams (Al-S CMF are manufactured using steel hollow spheres, with a variety of sphere carbon content, surface roughness, and wall porosity, embedded in an Aluminum matrix through gravity casting technique. The microstructural and mechanical properties of the material were studied using scanning electron microscopy, energy dispersive spectroscopy, and quasi-static compressive testing. Higher carbon content and surface roughness in the sphere wall were responsible for an increase in formation of intermetallic phases which had a strengthening effect at lower strain levels, increasing the yield strength of the material by a factor of 2, while higher sphere wall porosity resulted in a decrease on the density of the material and improving its cushioning and ductility maintaining its energy absorption capabilities.

  3. Alternative granular media for the metal casting industry. Final report, September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Guichelaar, P.J.; Ramrattan, S.N.; Tieder, R.E. [Michigan Technological Univ., Houghton, MI (United States)

    1995-09-01

    Silica sand for foundry use is inexpensive to purchase, readily transported and widely available. As a result, it is universally used. However, three factors are becoming increasingly significant as more environmental regulations are promulgated. First, the disposal of waste foundry sand has become an excessively burdensome cost. Second, the phase changes which occur in the silica structure on heating and cooling cause thermal breakdown of the sand into smaller unusable fractions. Third, silica is a relatively weak mineral. Alternatives to silica sand which can withstand the rigors of repetitive reuse must be seriously evaluated as a way to control production costs of the domestic metal casting industry. Chromite sands, olivine sands and carbon sands have each been successfully used to solve operating problems and thus have developed their specific niches in the foundry materials inventory. However, there are several other materials that are candidates for replacing silica sand, such as fused alumina, sintered bauxite and sintered oil well proppants. These media, and others that are generically similar, are manufactured for specific purposes. Compositions and shapes could be readily tailored for used in a metal casting environment of total recycling and materials conservation. This study examines materials that are readily available as alternatives to silica sand from a functionality perspective and a cost perspective. Some of the alternative materials are natural and others are synthetic and thus referring to them as ``sands`` has the potential to cause confusion; the generic term ``granular medium`` is used in this study to mean any material that could functionally substitute for silica sand in the foundry process.

  4. Influence of Rare Earth Metals on Microstructure and Inclusions Morphology G17CrMo5-5 Cast Steel

    Directory of Open Access Journals (Sweden)

    Kasińska J.

    2014-10-01

    Full Text Available This paper presents influence of rare earth metals (REM on the microstructure and morphology of non-metallic inclusions of G17CrMo5-5 cast carbon steel The research has been performed on successive industrial melts. Each time about 2000 kg of liquid metal was modified. The REM was in the form of mishmetal of the composition 49, 8% Ce, 21, 8% La, 17, 1% Nd, 5, 5% Pr and 5, 35% the rest of REM. Therareearth metals were put into the ladle during tapping of heat melt from the furnace.

  5. The influence of surface condition on the metal dusting behavior of cast and wrought chromia forming alloys

    NARCIS (Netherlands)

    Hermse, C.G.M.; Asteman, H.; Ijzerman, R.M.; Jakobi, D.

    2013-01-01

    The current work investigated the impact of surface condition on the metal dusting behavior of chromia forming alloys. Five commercial alloys were included in the study, wrought 800H, 353MA, and cast G4859, G4852 Micro, and ET45 Micro, these alloys have a chromium and nickel content in the range of

  6. Casting and stress-strain simulations of a cast ductile iron component using microstructure based mechanical behavior

    International Nuclear Information System (INIS)

    Olofsson, Jakob; Svensson, Ingvar L

    2012-01-01

    The industrial demand for increased component performance with concurrent reductions in component weight, development times and verifications using physical prototypes drives the need to use the full potential of casting and Finite Element Method (FEM) simulations to correctly predict the mechanical behavior of cast components in service. The mechanical behavior of the component is determined by the casting process, and factors as component geometry and casting process parameters are known to affect solidification and microstructure formation throughout the component and cause local variations in mechanical behavior as well as residual stresses. Though residual stresses are known to be an important factor in the mechanical behavior of the component, the importance of local mechanical behavior is not well established and the material is typically considered homogeneous throughout the component. This paper deals with the influence of solidification and solid state transformation on microstructure formation and the effect of local microstructure variations on the mechanical behavior of the cast component in service. The current work aims to investigate the coupling between simulation of solidification, microstructure and local variations in mechanical behavior and stress-strain simulation. This is done by performing several simulations of a ductile iron component using a recently developed simulation strategy, a closed chain of simulations for cast components, able to predict and describe the local variations in not only elastic but also plastic behavior throughout the component by using microstructural parameters determined by simulations of microstructural evolution in the component during the casting process. In addition the residual stresses are considered. The results show that the FEM simulation results are significantly affected by including microstructure based mechanical behavior. When the applied load is low and the component is subjected to stress levels

  7. An investigation into the microstructure and weldability of a tantalum-containing cast cobalt-based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Montazeri, Mojtaba; Ghaini, Farshid Malek; Farnia, Amirreza [Tarbiat Modares Univ., Tehran (Iran, Islamic Republic of). Dept. of Materials Engineering

    2011-12-15

    The weld metal microstructures and the weldability of a tantalum-containing cast cobalt-based superalloy were investigated using gas tungsten arc welding. It was found that the tantalum carbides in the base metal have remained stable up to the fusion line. The results showed that the formation of Ta-rich carbides (TaC) is very sensitive to time and temperature; so the as-weld microstructure is unstable from a metallurgical aspect. The formation of fine precipitates due to the high cooling rate of the welding process resulted in a weld metal with an undesirable hardness and microstructure after autogenous welding, especially after post weld heat treatment. Further results revealed that using a filler metal containing significantly less carbon and tantalum has solved the mentioned problems and made acceptable welds after post weld heat treatment. (orig.)

  8. THE EFFECT OF PREPARATION CONDITIONS OF RAPIDLY SOLIDIFIED IRON BASED GRANULES ON PROPERTIES OF COMPOSITE MATERIAL FORMED BY CASTING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2017-01-01

    Full Text Available The variety of requirements for friction pairs requires the development of different technologies for the production of tribological materials with reference to the operation modes. Composite materials obtained by the casting technology have been successfully applied for the normalization of the thermomechanical state of the steam turbines. These composites consist of the matrix based on copper alloys reinforced with cast iron granules. Because the structure and properties of cast iron are determined by the conditions of their production studies have been conducted on determination of preparation conditions on grain structure and properties of the synthesized composite material. Using an upgraded unit for production of granules technological regimes were determined providing narrow fractional composition. It has been found that granules formed are characterized with typical microstructure of white cast iron containing perlite and ledeburite. Microhardness of pilot cast iron granules is characterized by high values (from 7450 up to 9450 MPa and depends on the size of the fraction. Composite materials obtained using experimental granules had a microhardness of the reinforcing cast iron granules about 3500 MPa, and a bronze matrix – 1220 MPa, which is higher than the hardness of the composite material obtained by using the annealed DCL-1granules (2250 MPa. Metal base of experimental granules in the composite material has the structure of perlitic ductile iron with inclusions of ferrite not exceeding 10–15% and set around a flocculent graphite. As a result, the increase of physical-mechanical properties of finished products made of composite material is observed. 

  9. Microstructural evolution in WC-Co cermet reinforced - A17075 metal matrix composites by stir casting

    Science.gov (United States)

    Gopal Krishna, U. B.; Ranganatha, P.; Auradi, V.; Mahendra Kumar, S.; Vasudeva, B.

    2016-09-01

    Aluminium metal matrix composites (AMMCs) are preferred because of their enhanced properties like high strength to weight ratio, stiffness and wear resistance. In the present work, an attempt is made to develop cermet (WC-Co) reinforced with Al7075 metal matrix composite by stir casting technique. WC-Co cermet is reduced to an average size of 10μm through ball milling using Alumina as grinding media. Ball milled WC-Co Cermet in an amount of 6 wt. % is used as reinforcement in Al7075 matrix. Microstructural characterization of the prepared composites is carried out using SEM/EDX and XRD studies. X-ray diffraction studies have revealed the peaks corresponding to α-Al, WC, Co and minor Al5W phases. SEM/EDX characterization revealed the uniform distribution of cermet in Al matrix. Further studies also revealed that, addition of WC-Co cermet to Al7075 matrix has resulted in improvement in hardness and Densities of Al7075 matrix.

  10. Yttria coating on quartz mould inner surface for fabrication of metal fuel slug using injection casting process

    International Nuclear Information System (INIS)

    Vinod, A.V.; Hemanth Kumar, S.; Manivannan, A.; Muralidaran, P.; Anthonysamy, S.; Sudha, R.

    2016-01-01

    Quartz moulds are used for casting metal alloy of U-Zr slugs by injection casting process. Ceramic (Y 2 O 3 ) coating on inner surface of the quartz mould is provided to avoid silica contamination in the fuel slugs during casting. Experiments were carried out to standardise the coating process and optimising various parameters such as particle size of Y 2 O 3 , choice of suitable binder, method for application of coating, drying and sintering at high temperature to ensure uniformity and strength of coating. Required Coating thickness of ∼40 μm was achieved on a quartz mould of inner diameter of 4.98±0.01mm. Experimental procedure for coating on inner surface of the quartz tubes using yttrium oxide is described in this work. (author)

  11. Investigate the Possibility of Tekcast Methods Used for Casting Polymeric Resin Materials

    Directory of Open Access Journals (Sweden)

    Mäsiar H.

    2014-06-01

    Full Text Available Contribution gives an overview of knowledge about the method of centrifugal casting with orientate on Tekcast system. Company Tekcast Industries has developed a device for centrifugal casting, extending the area of production of castings or prototyping of metal or plastic. Materials suitable for the centrifugal casting with flexible operating parameters may include non-ferrous metal alloy based on zinc or aluminum or non-metallic materials such as polyester resins, polyurethane resins, epoxy resins, waxes and the like. The casting process is particularly suitable for a wide range of commercial castings and decorative objects.

  12. In vitro corrosion of dental Au-based casting alloys in polyvinylpyrrolidone-iodine solution.

    Science.gov (United States)

    Takasusuki, Norio; Ida, Yusuke; Hirose, Yukito; Ochi, Morio; Endo, Kazuhiko

    2013-01-01

    The corrosion and tarnish behaviors of two Au-based casting alloys (ISO type 1 and type 4 Au alloys) and their constituent pure metals, Au, Ag, Cu, Pt, and Pd in a polyvinylpyrrolidone-iodine solution were examined. The two Au alloys actively corroded, and the main anodic reaction for both was dissolution of Au as AuI₂(-). The amount of Au released from the ISO type 1 Au alloy was significantly larger than that from the ISO type 4 Au alloy (Palloy exhibited higher susceptibility to tarnishing than the type 4 alloy. The corrosion forms of the two Au alloys were found to be completely different, i.e., the type 1 alloy exhibited the corrosion attack over the entire exposed surface with a little irregularity whereas the type 4 alloy exhibited typical intergranular corrosion, which was caused by local cells produced by segregation of Pd and Pt.

  13. Investigation of Heat Transfer at the Mold/Metal Interface in Permanent Mold Casting of Light Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Robert D. Pehlke; John T. Berry

    2005-12-16

    Accurate modeling of the metal casting process prior to creating a mold design demands reliable knowledge of the interfacial heat transfer coefficient at the mold metal interface as a function of both time and location. The phenomena concerned with the gap forming between the mold and the solidifying metal are complex but need to be understood before any modeling is attempted. The presence of mold coatings further complicates the situation. A commercial casting was chosen and studied in a gravity permanent mold casting process. The metal/mold interfacial heat transfer coefficient (IHTC) was the focus of the research. A simple, direct method has been used to evaluate the IHTC. Both the simulation and experiments have shown that a reasonably good estimate of the heat transfer coefficient could be made in the case studied. It has been found that there is a good agreement between experiments and simulations in the temperature profiles during the solidification process, given that the primary mechanism of heat transfer across the gap in permanent mold casting of light alloys is by conduction across the gap. The procedure utilized to determine the interfacial heat transfer coefficient can be applied to other casting processes. A recently completed project involving The University of Michigan and Mississippi State University, together with several industrial partners, which was supported by the USDOE through the Cast Metals Coalition, examined a number of cases of thermal contact. In an investigation which gave special consideration to the techniques of measurement, several mold coatings were employed and results presented as a function of time. Realistic conditions of coating thickness and type together with an appropriate combination of mold preheat and metal pouring temperature were strictly maintained throughout the investigation. Temperature sensors, in particular thermocouples, play an important part in validating the predictions of solidification models. Cooling

  14. Contribute to quantitative identification of casting defects based on computer analysis of X-ray images

    Directory of Open Access Journals (Sweden)

    Z. Ignaszak

    2007-12-01

    Full Text Available The forecast of structure and properties of casting is based on results of computer simulation of physical processes which are carried out during the casting processes. For the effective using of simulation system it is necessary to validate mathematica-physical models describing process of casting formation and the creation of local discontinues, witch determinate the casting properties.In the paper the proposition for quantitative validation of VP system using solidification casting defects by information sources of II group (methods of NDT was introduced. It was named the VP/RT validation (virtual prototyping/radiographic testing validation. Nowadays identification of casting defects noticeable on X-ray images bases on comparison of X-ray image of casting with relates to the ASTM. The results of this comparison are often not conclusive because based on operator’s subjective assessment. In the paper the system of quantitative identification of iron casting defects on X-ray images and classification this defects to ASTM class is presented. The methods of pattern recognition and machine learning were applied.

  15. Comparative Evaluation of Metal-ceramic Bond Strengths of Nickel Chromium and Cobalt Chromium Alloys on Repeated Castings: An In vitro Study.

    Science.gov (United States)

    Atluri, Kaleswara Rao; Vallabhaneni, Tapan Teja; Tadi, Durga Prasad; Vadapalli, Sriharsha Babu; Tripuraneni, Sunil Chandra; Averneni, Premalatha

    2014-09-01

    Recasting the base metal alloys is done as a routine procedure in the dental laboratories whenever there is casting failure or to decrease the unit cost of a fixed partial denture. However, this procedure may affect the metal ceramic bond. Furthermore, it is unclear, as to which test closely predicts the bond strength of metal-ceramic interface. The aim was to compare the bond strength of nickel chromium (Ni-Cr) and cobalt chromium (Co-Cr) alloys with dental ceramic on repeated castings using shear bond test with a custom made apparatus. Sixty metal ceramic samples were prepared using Wiron 99 and Wirobond C, respectively. Three subgroups were prepared for each of the groups. The first subgroup was prepared by casting 100% fresh alloy. The second and third subgroups were prepared by adding 50% of fresh alloy and the remnants of the previous cast alloy. The bond load (N) between alloy and dental porcelain was evaluated using universal testing machine using a crosshead speed of 1 mm/min, which had a 2500-kgf load cell. Mean values were compared using oneway analysis of variance with post-hoc Tukey's test and Student's t-test. The mean shear bond load of A0 (842.10N) was significantly higher than the load of A1 (645.50N) and A2 (506.28N). The mean shear bond load of B0 (645.57N) was significantly higher than the load of B1 (457.35N) and B2 (389.30N). Significant reduction in the bond strength was observed with the addition of the first recast alloy (A1 and B1) compared with the addition of second recast alloy (A2 and B2). Ni-Cr alloys (664.63N) showed higher bond strengths compared to that of Co-Cr alloys (497.41N). The addition of previously used base metal dental alloy for fabricating metal ceramic restorations is not recommended.

  16. Development of environmentally friendly cast alloys and composites. High zinc Al-base cast alloys

    Directory of Open Access Journals (Sweden)

    W.K. Krajewski

    2010-01-01

    Full Text Available This work is devoted to grain refinement of the foundry Al-20 wt% Zn (AlZn20 alloy, aiming at improving ductility of the sand-cast alloy The melted alloy was inoculated using traditional AlTi5B1 (TiBAl and AlTi3C0.15 (TiCAl master alloys and newly introduced (Zn,Al-Ti3 one. The performed structural examinations showed out significant increasing of the grain population of the inoculated alloy and plas-ticity increase represented by elongation. The high damping properties of the initial alloy, measured using an ultrasonic Olympus Epoch XT device, are basicly preserved after inoculation. Also tensile strength preserves its good values, while elongation shows an increase – which are beneficials of the employed grain-refining process.

  17. Grain refinement of permanent mold cast copper base alloys. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sadayappan, M.; Thomson, J. P.; Elboujdaini, M.; Gu, G. Ping; Sahoo, M.

    2004-04-29

    Grain refinement behavior of copper alloys cast in permanent molds was investigated. This is one of the least studied subjects in copper alloy castings. Grain refinement is not widely practiced for leaded copper alloys cast in sand molds. Aluminum bronzes and high strength yellow brasses, cast in sand and permanent molds, were usually fine grained due to the presence of more than 2% iron. Grain refinement of the most common permanent mold casting alloys, leaded yellow brass and its lead-free replacement EnviroBrass III, is not universally accepted due to the perceived problem of hard spots in finished castings and for the same reason these alloys contain very low amounts of iron. The yellow brasses and Cu-Si alloys are gaining popularity in North America due to their low lead content and amenability for permanent mold casting. These alloys are prone to hot tearing in permanent mold casting. Grain refinement is one of the solutions for reducing this problem. However, to use this technique it is necessary to understand the mechanism of grain refinement and other issues involved in the process. The following issues were studied during this three year project funded by the US Department of Energy and the copper casting industry: (1) Effect of alloying additions on the grain size of Cu-Zn alloys and their interaction with grain refiners; (2) Effect of two grain refining elements, boron and zirconium, on the grain size of four copper alloys, yellow brass, EnviroBrass II, silicon brass and silicon bronze and the duration of their effect (fading); (3) Prediction of grain refinement using cooling curve analysis and use of this method as an on-line quality control tool; (4) Hard spot formation in yellow brass and EnviroBrass due to grain refinement; (5) Corrosion resistance of the grain refined alloys; (6) Transfer the technology to permanent mold casting foundries; It was found that alloying elements such as tin and zinc do not change the grain size of Cu-Zn alloys

  18. Gating system optimization of low pressure casting A356 aluminum alloy intake manifold based on numerical simulation

    Directory of Open Access Journals (Sweden)

    Jiang Wenming

    2014-03-01

    Full Text Available To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on filling and solidification processes of the casting was carried out using the ProCAST software. The gating system of the casting is optimized according to the simulation results. Results show that when the gating system consists of only one sprue, the filling of the molten metal is not stable; and the casting does not follow the sequence solidification, and many shrinkage porosities are observed through the casting. After the gating system is improved by adding one runner and two in-gates, the filling time is prolonged from 4.0 s to 4.5 s, the filling of molten metal becomes stable, but this casting does not follow the sequence solidification either. Some shrinkage porosity is also observed in the hot spots of the casting. When the gating system was further improved by adding risers and chill to the hot spots of the casting, the shrinkage porosity defects were eliminated completely. Finally, by using the optimized gating system the A356 aluminum alloy intake manifold casting with integrated shape and smooth surface as well as dense microstructure was successfully produced.

  19. Refractory metal based superalloys

    International Nuclear Information System (INIS)

    Alonso, Paula R.; Vicente, Eduardo E.; Rubiolo, Gerardo H.

    1999-01-01

    Refractory metals are looked as promising materials for primary circuits in fission reactors and even as fusion reactor components. Indeed, superalloys could be developed which take advantage of their high temperature properties together with the benefits of a two- phase (intermetallic compound-refractory metal matrix) coherent structure. In 1993, researchers of the Office National d'Etudes et de Recherches Aerospatiales of France reported the observation of such a coherent structure in the Ta-Ti-Zr-Al-Nb-Mo system although the exact composition is not reported. The intermetallic compound would be Ti 2 AlMo based. However, the formation of this compound and its possible coexistence with a disordered bcc phase in the ternary system Ti-Al-Mo is a controversial subject in the related literature. In this work we develop a technique to obtain homogeneous alloys samples with 50 Ti-25 Al-25 Mo composition. The resulting specimens were characterized by optical and electronic metallography (SEM), microprobe composition measurements (EPMA) and X-ray diffraction (XRD) analyses. The results show the evidence for a bcc (A2→B2) ordering reaction in the Ti-Al-Mo system in the 50 Ti-25 Al-25 Mo composition. (author)

  20. Material Properties of Various Light Metals Produced by Heated Mold Continuous Casting

    Directory of Open Access Journals (Sweden)

    Yuta Miyamoto

    2017-03-01

    Full Text Available In the present work, an attempt was made to develop high quality cast aluminum alloys via a new casting technology, e.g., the heated mold continuous casting (HMC with ultrasonic vibration (UV process. With the UV process in the continuous casting process, fine and spherical grains were obtained, where the lattice structure is formed similarly before the UV process while dislocation density increases. The mechanical properties of the UV-HMC Al alloys are higher than those for the related cast Al alloys without UV although still high material ductility is obtained. The lattice and dislocation characteristics of the continuous cast samples made with and without the UV processes were analyzed systematically by the EBSD observations to interrupt clearly their mechanical properties.

  1. Exploitation of rare earth metals in cast steel production for power engineering

    Directory of Open Access Journals (Sweden)

    J. Kasińska

    2008-12-01

    Full Text Available The paper presents results of experiments carried out on industrial melts. There has been tested the REM influence on carbon properties (0.20%C as well as austenitic cast steel Cr-Ni 18/8+Ti type.It was found that REM cause an essential improvement of cast steels impact strength and in case of austenitic cast steel – also the corrosion resistance improvement in boiling 65%HNO3 (Huey test.

  2. Electrochemical Study of Polymer and Ceramic-Based Nanocomposite Coatings for Corrosion Protection of Cast Iron Pipeline

    Directory of Open Access Journals (Sweden)

    Ameen Uddin Ammar

    2018-02-01

    Full Text Available Coating is one of the most effective measures to protect metallic materials from corrosion. Various types of coatings such as metallic, ceramic and polymer coatings have been investigated in a quest to find durable coatings to resist electrochemical decay of metals in industrial applications. Many polymeric composite coatings have proved to be resistant against aggressive environments. Two major applications of ferrous materials are in marine environments and in the oil and gas industry. Knowing the corroding behavior of ferrous-based materials during exposure to these aggressive applications, an effort has been made to protect the material by using polymeric and ceramic-based coatings reinforced with nano materials. Uncoated and coated cast iron pipeline material was investigated during corrosion resistance by employing EIS (electrochemical impedance spectroscopy and electrochemical DC corrosion testing using the “three electrode system”. Cast iron pipeline samples were coated with Polyvinyl Alcohol/Polyaniline/FLG (Few Layers Graphene and TiO2/GO (graphene oxide nanocomposite by dip-coating. The EIS data indicated better capacitance and higher impedance values for coated samples compared with the bare metal, depicting enhanced corrosion resistance against seawater and “produce water” of a crude oil sample from a local oil rig; Tafel scans confirmed a significant decrease in corrosion rate of coated samples.

  3. Electrochemical Study of Polymer and Ceramic-Based Nanocomposite Coatings for Corrosion Protection of Cast Iron Pipeline

    Science.gov (United States)

    Ammar, Ameen Uddin; Shahid, Muhammad; Ahmed, Muhammad Khitab; Khan, Munawar; Khalid, Amir

    2018-01-01

    Coating is one of the most effective measures to protect metallic materials from corrosion. Various types of coatings such as metallic, ceramic and polymer coatings have been investigated in a quest to find durable coatings to resist electrochemical decay of metals in industrial applications. Many polymeric composite coatings have proved to be resistant against aggressive environments. Two major applications of ferrous materials are in marine environments and in the oil and gas industry. Knowing the corroding behavior of ferrous-based materials during exposure to these aggressive applications, an effort has been made to protect the material by using polymeric and ceramic-based coatings reinforced with nano materials. Uncoated and coated cast iron pipeline material was investigated during corrosion resistance by employing EIS (electrochemical impedance spectroscopy) and electrochemical DC corrosion testing using the “three electrode system”. Cast iron pipeline samples were coated with Polyvinyl Alcohol/Polyaniline/FLG (Few Layers Graphene) and TiO2/GO (graphene oxide) nanocomposite by dip-coating. The EIS data indicated better capacitance and higher impedance values for coated samples compared with the bare metal, depicting enhanced corrosion resistance against seawater and “produce water” of a crude oil sample from a local oil rig; Tafel scans confirmed a significant decrease in corrosion rate of coated samples. PMID:29495339

  4. Electrochemical Study of Polymer and Ceramic-Based Nanocomposite Coatings for Corrosion Protection of Cast Iron Pipeline.

    Science.gov (United States)

    Ammar, Ameen Uddin; Shahid, Muhammad; Ahmed, Muhammad Khitab; Khan, Munawar; Khalid, Amir; Khan, Zulfiqar Ahmad

    2018-02-25

    Coating is one of the most effective measures to protect metallic materials from corrosion. Various types of coatings such as metallic, ceramic and polymer coatings have been investigated in a quest to find durable coatings to resist electrochemical decay of metals in industrial applications. Many polymeric composite coatings have proved to be resistant against aggressive environments. Two major applications of ferrous materials are in marine environments and in the oil and gas industry. Knowing the corroding behavior of ferrous-based materials during exposure to these aggressive applications, an effort has been made to protect the material by using polymeric and ceramic-based coatings reinforced with nano materials. Uncoated and coated cast iron pipeline material was investigated during corrosion resistance by employing EIS (electrochemical impedance spectroscopy) and electrochemical DC corrosion testing using the "three electrode system". Cast iron pipeline samples were coated with Polyvinyl Alcohol/Polyaniline/FLG (Few Layers Graphene) and TiO₂/GO (graphene oxide) nanocomposite by dip-coating. The EIS data indicated better capacitance and higher impedance values for coated samples compared with the bare metal, depicting enhanced corrosion resistance against seawater and "produce water" of a crude oil sample from a local oil rig; Tafel scans confirmed a significant decrease in corrosion rate of coated samples.

  5. [Developing a plan of treatment with a cast metal frame removable partial denture].

    Science.gov (United States)

    Witter, D J; Barèl, J C; Keltjens, H M A M; de Baat, C; Creugers, N H J

    2011-02-01

    When considering prosthetic replacement of absent teeth, a treatment plan is necessary. In evaluating whether replacement of teeth is sensible, the causes and consequences of tooth loss must be considered. This concerns information about problems having to do with the patient, potential complications, purely prosthodontic problems, and specific problems. The patient-related problems require collecting data through patient history as well as a clinical and radiologic examination. Complications are risk-factors which negatively influence the prognosis of general health or of a treatment. Potential complications should be eliminated as much as possible through a preliminary treatment. Purely prosthodontic problems are conditions in the area of absence of several teeth or parts of them, and in the area of occlusal and mandibular stability and articulation. Specific problems may be related to inadequate interocclusal space and the quality of the abutment teeth. A cast metal frame removable partial denture may be a relatively inexpensive and minimally treatment alternative for an expensive and complicated treatment with 1 or more fixed partial dentures.

  6. Chemoelectronic circuits based on metal nanoparticles

    Science.gov (United States)

    Yan, Yong; Warren, Scott C.; Fuller, Patrick; Grzybowski, Bartosz A.

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the ‘jammed’ nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems ‘chemoelectronic’. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also ‘green’, in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions.

  7. Comparative aspects about the studying methods of cast irons machinability, based on the tool wear

    Science.gov (United States)

    Carausu, C.; Pruteanu, O.

    2016-08-01

    The paper presents some considerations of the authors, regarding the studying methods of the cast irons machinability, based on the tools wear on drilling operations. Are described the conditions in which the experimental researches were conducted, intended to offer an overview on drilling machinability of some cast irons categories. It is presented a comparison between long-term methods and short-term methods, for determining the optimal speed chipping of a grey cast iron with lamellar graphite, with average values of tensile strength. Are described: the research methodology, obtained results and conclusions drawn after the results analysis.

  8. Scientific paper zircon-based coating for the applications in Lost Foam casting process

    Directory of Open Access Journals (Sweden)

    Prstić Aurel

    2012-01-01

    Full Text Available In this work, a possibility to develop a new zircon-based refractory coating for casting applications was investigated. Optimization of the coating composition with controlled rheological properties was attained by application of different coating components, particularly by application of a new suspension agent and by alteration of coating production procedure. Zircon powder with particle size of 25x10-6 m was used as filler. The zircon sample was investigated by means of the following methods: X-ray diffraction analysis, diffraction thermal analysis and polarized microscope. The shape and grain size were analyzed by means of the PC program package OZARIA 2.5. It was shown that application of this type of water-alcohol-based coating had a positive influence on surface quality, structural and mechanical properties of the castings of cast iron obtained by pouring into sand molds by means of the expandable patterns method (Lost Foam casting process.

  9. Derivative thermo analysis of the Al-Si cast alloy with addition of rare earths metals

    Directory of Open Access Journals (Sweden)

    M. Krupiński

    2010-01-01

    Full Text Available In this paper the dependence between chemical composition, structure and cooling rate of Al–Si aluminium cast alloy was investigated. For studying of the structure changes the thermo-analysis was carried out, using the UMSA (Universal Metallurgical Simulator and Analyzer device. For structure investigation optical and electron scanning microscopy was used, phase and chemical composition of the Al cast alloy also using qualitative point-wise EDS microanalysis.

  10. The simulation of magnesium wheel low pressure die casting based on PAM-CASTTM

    International Nuclear Information System (INIS)

    Peng Yinghong; Wang Yingchun; Li Dayong; Zeng Xiaoqin

    2004-01-01

    Magnesium is the lightest metal commonly used in engineering, with various excellent characteristics such as high strength and electromagnetic interference shielding capability. Particularly, the usage of magnesium in automotive industry can meet better the need to reduce fuel consumption and CO2 emissions. Nowadays, most current magnesium components in automobiles are made by die casting. In this paper, commercial software for die casting, PAM-CAST TM , was utilized to simulate the low pressure die casting process of magnesium wheel. Through calculating temperature field and velocity field during filling and solidification stages, the evolution of temperature distribution and liquid fraction was analyzed. Then, the potential defects including the gas entrapments in the middle of the spokes, shrinkages between the rim and the spokes were forecasted. The analytical results revealed that the mold geometry and die casting parameters should be improved in order to get the sound magnesium wheel. The reasons leading to these defects were also analyzed and the solutions to eliminate them were put forward. Furthermore, through reducing the pouring velocity, the air gas entrapments and partial shrinkages were eliminated effectively

  11. Bulk glass formation and crystallization in zirconium based bulk metallic glass forming alloys

    International Nuclear Information System (INIS)

    Savalia, R.T.; Neogy, S.; Dey, G.K.; Banerjee, S.

    2002-01-01

    The microstructures of Zr based metallic glasses produced in bulk form have been described in the as-cast condition and after crystallization. Various microscopic techniques have been used to characterize the microstructures. The microstructure in the as-cast condition was found to contain isolated crystals and crystalline aggregates embedded in the amorphous matrix. Quenched-in nuclei of crystalline phases were found to be present in fully amorphous regions. These glasses after crystallization gave rise to nanocrystalline solids. (author)

  12. The effect of veneering on the marginal fit of CAD/CAM-generated, copy-milled, and cast metal copings.

    Science.gov (United States)

    Ates, Sabit Melih; Yesil Duymus, Zeynep; Caglar, Ipek; Hologlu, Bilal

    2017-11-01

    This in vitro study investigated the marginal fit of metal and zirconia copings before and after veneering on dies with shoulder/chamfer (s/c) finish lines. Using CAD/CAM, ten (n = 10) each s/c zirconia (NZ) copings and ten (n = 10) each s/c metal (MM) copings were generated. As controls, ten (n = 10) each s/c zirconia copings were copy-milled (ZZ) and ten (n = 10) each s/c metal copings were cast (CC). The vertical marginal discrepancy of the copings was measured at 20 predefined spots of the circular shoulder and chamfer finish lines in microns (μm) before and after a first and a second veneering firing using a stereomicroscope at ×40 magnification. Data were statistically analyzed, and the comparisons of CAD/CAM-milled (NZ, MM), copy-milled (ZZ), and cast (CC) copings before and after veneering were made at a significance level of p veneering firing (40 ± 8/42 ± 7). MM copings showed gap values similar to NZ. Second firings did not significantly increase gaps in all groups except ZZ2 of chamfer finish line. Veneering increased the marginal gap width of copings. Within the limits of this in vitro study, aesthetic ceramic veneering of CAD/CAM-generated copings caused a statistically significant but tolerable loss of marginal fit precision.

  13. Development of casting investment preventing blackening of noble metal alloys. Part 4: effect of Mg(OH)2 and Ca(OH)2 as additives.

    Science.gov (United States)

    Nakai, Akira; Ogura, Hideo

    2007-11-01

    The objective of this study was to develop a casting investment that prevents the blackening of the cast surface of noble metal alloys. Experimental investments were prepared using a gypsum-bonded investment in which a hydroxide, namely Mg(OH)2 or Ca(OH)2, was added. An Ag-Pd-Cu-Au alloy was cast into the mold made of the prepared investment. The addition of both hydroxides showed a significant effect on the color of as-cast surfaces, which was improved with increase in additive content. When Mg(OH)2 or Ca(OH)2 was added at more than 4.0 mass% to the investment, it was useful in preventing the blackening of the as-cast surfaces of an Ag-Pd-Cu-Au alloy. As for differences in the effects between Mg(OH)2 and Ca(OH)2, they were not found.

  14. Influence of liquid surface segregation on the pitting corrosion behavior of semi-solid metal high pressure die cast alloy F357

    CSIR Research Space (South Africa)

    Moller, H

    2009-01-01

    Full Text Available Semi-solid metal processing results in liquid segregation at the surface of the components. The pitting behaviour of this surface layer of semi-solid metal processed alloy F357 was compared with the centre (or bulk) of cast plates in 3.5% Na...

  15. Streaming Model Based Volume Ray Casting Implementation for Cell Broadband Engine

    Directory of Open Access Journals (Sweden)

    Jusub Kim

    2009-01-01

    Full Text Available Interactive high quality volume rendering is becoming increasingly more important as the amount of more complex volumetric data steadily grows. While a number of volumetric rendering techniques have been widely used, ray casting has been recognized as an effective approach for generating high quality visualization. However, for most users, the use of ray casting has been limited to datasets that are very small because of its high demands on computational power and memory bandwidth. However the recent introduction of the Cell Broadband Engine (Cell B.E. processor, which consists of 9 heterogeneous cores designed to handle extremely demanding computations with large streams of data, provides an opportunity to put the ray casting into practical use. In this paper, we introduce an efficient parallel implementation of volume ray casting on the Cell B.E. The implementation is designed to take full advantage of the computational power and memory bandwidth of the Cell B.E. using an intricate orchestration of the ray casting computation on the available heterogeneous resources. Specifically, we introduce streaming model based schemes and techniques to efficiently implement acceleration techniques for ray casting on Cell B.E. In addition to ensuring effective SIMD utilization, our method provides two key benefits: there is no cost for empty space skipping and there is no memory bottleneck on moving volumetric data for processing. Our experimental results show that we can interactively render practical datasets on a single Cell B.E. processor.

  16. Wear and Friction Behavior of Stir Cast Al-TiB2 Metal Matrix Composites with Various Lubricants

    Directory of Open Access Journals (Sweden)

    S. Poria

    2016-12-01

    Full Text Available Al- TiB2 metal matrix composites are fabricated using stir cast method and its tribological characterization is done using three different lubricants. Tribological studies are performed in a multi-tribotester using block-on-roller configuration under 25-75 N loads and 400-600 rpm rotational speeds. Four different weight percentages of TiB2 are considered in this study. Comparison between dry condition and lubricated conditions is gleaned to differentiate wear and friction characteristics and SEM images are taken to fortify them. Lubricated conditions yield large reduction in wear and friction compared to dry condition.

  17. Mechanism-Based Modeling for Low Cycle Fatigue of Cast Austenitic Steel

    Science.gov (United States)

    Wu, Xijia; Quan, Guangchun; Sloss, Clayton

    2017-09-01

    A mechanism-based approach—the integrated creep-fatigue theory (ICFT)—is used to model low cycle fatigue behavior of 1.4848 cast austenitic steel over the temperature range from room temperature (RT) to 1173 K (900 °C) and the strain rate range from of 2 × 10-4 to 2 × 10-2 s-1. The ICFT formulates the material's constitutive equation based on the physical strain decomposition into mechanism strains, and the associated damage accumulation consisting of crack nucleation and propagation in coalescence with internally distributed damage. At room temperature, the material behavior is controlled by plasticity, resulting in a rate-independent and cyclically stable behavior. The material exhibits significant cyclic hardening at intermediate temperatures, 673 K to 873 K (400 °C to 600 °C), with negative strain rate sensitivity, due to dynamic strain aging. At high temperatures >1073 K (800 °C), time-dependent deformation is manifested with positive rate sensitivity as commonly seen in metallic materials at high temperature. The ICFT quantitatively delineates the contribution of each mechanism in damage accumulation, and predicts the fatigue life as a result of synergistic interaction of the above identified mechanisms. The model descriptions agree well with the experimental and fractographic observations.

  18. Prediction of recrystallisation in single crystal nickel-based superalloys during investment casting

    Directory of Open Access Journals (Sweden)

    Panwisawas Chinnapat

    2014-01-01

    Full Text Available Production of gas turbines for jet propulsion and power generation requires the manufacture of turbine blades from single crystal nickel-based superalloys, most typically using investment casting. During the necessary subsequent solution heat treatment, the formation of recrystallised grains can occur. The introduction of grain boundaries into a single crystal component is potentially detrimental to performance, and therefore manufacturing processes and/or component geometries should be designed to prevent their occurrence. If the boundaries have very low strength, they can degrade the creep and fatigue properties. The root cause for recrystallisation is microscale plasticity caused by differential thermal contraction of metal, mould and core; when the plastic deformation is sufficiently large, recrystallisation takes place. In this work, numerical and thermo-mechanical modelling is carried out, with the aim of establishing computational methods by which recrystallisation during the heat treatment of single crystal nickel-based superalloys can be predicted and prevented prior to their occurrence. Elasto-plastic law is used to predict the plastic strain necessary for recrystallisation. The modelling result shows that recrystallisation is most likely to occur following 1.5–2.5% plastic strain applied at temperatures between 1000 ∘C and 1300 ∘C; this is validated with tensile tests at these elevated temperatures. This emphasises that high temperature deformation is more damaging than low temperature deformation.

  19. Determination of the heat transfer coefficient at the metal-die interface for high pressure die cast AlSi9Cu3Fe

    International Nuclear Information System (INIS)

    Long, Alastair; Thornhill, David; Armstrong, Cecil; Watson, David

    2011-01-01

    When simulating the High Pressure Die Casting 'HPDC' process, the heat transfer coefficient 'HTC' between the casting and the die is critical to accurately predict the quality of the casting. To determine the HTC at the metal-die interface a production die for an automotive engine bearing beam, Die 1, was instrumented with type K thermocouples. A Magmasoft simulation model was generated with virtual thermocouple points placed in the same location as the production die. The temperature traces from the simulation model were compared to the instrumentation results. Using the default simulation HTC for the metal-die interface, a poor correlation was seen, with the temperature response being much less for the simulation model. Because of this, the HTC at the metal-die interface was modified in order to get a better fit. After many simulation iterations, a good fit was established using a peak HTC of 42,000 W/m 2 K, this modified HTC was further validated by a second instrumented production die, proving that the modified HTC gives good correlation to the instrumentation trials. The updated HTC properties for the simulation model will improve the predictive capabilities of the casting simulation software and better predict casting defects. - Highlights: → The HTC between the casting and die is critical to predict casting quality. → A Magmasoft simulation model was used to simulate the casting die. → A good fit to the simulation model was established using a peak HTC of 42 kW/m 2 K. → The improved simulation model will improve the accuracy to predict casting defects.

  20. The influence of environment on corrosion of cast iron and carbon steel representing samples of outdoor metal technical heritage

    Science.gov (United States)

    Strzelec, M.; Marczak, J.; Skrzeczanowski, W.; Zatorska, A.; Sarzynski, A.; Czyz, K.; Zasada, D.

    2015-06-01

    This paper presents the results of annual measurements of the corrosion progress at test samples of cast iron and carbon steel placed in different natural environments. Comparative tests were performed in two outdoor stations, one at the Railway Museum in central Warsaw and one at the location of a Railway Museum in the small town of Sochaczew, 50 km west of Warsaw. The influence of surface roughness on the development of corrosion was determined by two kinds of treatment of all sample surfaces - metal brush or grinding. Stratigraphy and composition of corrosion products in quarterly periods were analyzed with laser-induced breakdown spectroscopy (LIBS) and Raman laser spectroscopy. Comparative tests were performed using a scanning electron microscopy (SEM) system equipped with energy dispersive spectrometer (EDS) and micro-chemical analytical methods. The corrosion layers on carbon steel have proven to be thicker on average than on cast iron, and thicker on the brushed parts of both materials. Furthermore, a thicker corrosion layer was found on the cast iron test samples exposed in Sochaczew than in Warsaw. Different iron oxides, namely lepidocrocite, goethite, hematite and magnetite were identified in the surface Raman spectra of corrosion layers, the last compound only in the sample from Sochaczew. SEM EDS measurements of surface elemental concentrations showed a higher concentration of sulfur in all samples from Sochaczew. Registered LIBS spectra have been additionally analyzed with statistical approach, using Factorial Analysis (FA). Results generally confirmed conclusions drawn from SEM/Raman/LIBS results.

  1. Heavy Metals in ToxCast: Relevance to Food Safety (SOT)

    Science.gov (United States)

    Human exposure to heavy metals occurs through food contamination due to industrial processes, vehicle emissions and farming methods. Specific toxicity endpoints have been associated with metal exposures, e.g. lead and neurotoxicity; however, numerous varieties of heavy metals hav...

  2. Internal fit of single crowns produced by CAD-CAM and lost-wax metal casting technique assessed by the triple-scan protocol.

    Science.gov (United States)

    Dahl, Bjørn Einar; Rønold, Hans Jacob; Dahl, Jon E

    2017-03-01

    Whether single crowns produced by computer-aided design and computer-aided manufacturing (CAD-CAM) have an internal fit comparable to crowns made by lost-wax metal casting technique is unknown. The purpose of this in vitro study was to compare the internal fit of single crowns produced with the lost-wax and metal casting technique with that of single crowns produced with the CAD-CAM technique. The internal fit of 5 groups of single crowns produced with the CAD-CAM technique was compared with that of single crowns produced in cobalt-chromium with the conventional lost-wax and metal casting technique. Comparison was performed using the triple-scan protocol; scans of the master model, the crown on the master model, and the intaglio of the crown were superimposed and analyzed with computer software. The 5 groups were milled presintered zirconia, milled hot isostatic pressed zirconia, milled lithium disilicate, milled cobalt-chromium, and laser-sintered cobalt-chromium. The cement space in both the mesiodistal and buccopalatal directions was statistically smaller (Pcrowns made by the conventional lost-wax and metal casting technique compared with that of crowns produced by the CAD-CAM technique. Single crowns made using the conventional lost-wax and metal casting technique have better internal fit than crowns produced using the CAD-CAM technique. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Processing and Characterization of Functionally Graded Aluminum (A319)—SiCp Metallic Composites by Centrifugal Casting Technique

    Science.gov (United States)

    Jayakumar, E.; Jacob, Jibin C.; Rajan, T. P. D.; Joseph, M. A.; Pai, B. C.

    2016-08-01

    Functionally graded materials (FGM) are successfully adopted for the design and fabrication of engineering components with location-specific properties. The present study describes the processing and characterization of A319 Aluminum functionally graded metal matrix composites (FGMMC) with 10 and 15 wt pct SiCp reinforcements. The liquid stir casting method is used for composite melt preparation followed by FGMMC formation by vertical centrifugal casting method. The process parameters used are the mold preheating temperature of 523 K (250 °C), melt pouring temperature of 1013 K (740 °C), and mold rotation speed of 1300 rpm. The study analyzes the distribution and concentration of reinforcement particles in the radial direction of the FGMMC disk along with the effects of gradation on density, hardness, mechanical strength, the variation in coefficient of thermal expansion and the wear resistance properties at different zones. Microstructures of FGMMC reveal an outward radial gradient distribution of reinforcements forming different zones. Namely, matrix-rich inner, transition, particles-rich outer, and chill zone of a few millimeters thick at the outer most periphery of the casting are formed. From 10-FGM, a radial shift in the position of SiCp maxima is observed in 15-FGM casting. The mechanical characterization depicts enhanced properties for the particle-rich zone. The hardness shows a graded nature in correlation with particle concentration and a maximum of 94.4 HRB has been obtained at the particle-rich region of 15-FGM. In the particle-rich zone, the lowest CTE value of 20.1 µm/mK is also observed with a compressive strength of 650 MPa and an ultimate tensile strength of 279 MPa. The wear resistance is higher at the particle-rich zone of the FGMMC.

  4. Production of Decorative Cast Metal Matrix Composites with a Complex Relief and Nonmetal Reinforcement Phase

    Directory of Open Access Journals (Sweden)

    Daniela Spasova

    2016-02-01

    Full Text Available The present paper is relevant to the research of possibilities for the production of decorative complex relief metal matrix composites (MMCs of the “invitro” type, with unformed and unchanging reinforcement (strengthening phase in the process of creating a composite. The research on the methods of metal matrix composites development in this paper has been brought to the application of different space vacuum schemes for composite synthesisof vacuuming the space for composites synthesis by using the notion of the “capillary forming”. In this method the metal matrix (copper alloy melt was infiltrated in the space between the pellets of reinforcement phase (quartz particles – SiO2, whereas the classical method adopted for the obtaining MMCs “in vitro”, uses a mechanism of forced insertion of the reinforcement phase into the ready for use melt, followed by homogenization of the composite structure. In the particular case, because the obtained composite will have a complex relief three-dimensional surface, the conditions for compacting the building phases in the three directions x, y, z should be virtually equalized. In order to accomplish the task set, a laboratory system is developed. The experiments were conducted with laboratory equipment elaborated on the base of another equipment for "capillary forming" with extra vacuum. The structures of the obtained MMCs were tested by metallographic analysis.

  5. Development of casting investment preventing blackening of noble metal alloys part 1. Application of developed investment for Ag-Pd-Cu-Au alloy.

    Science.gov (United States)

    Kakuta, Kiyoshi; Nakai, Akira; Goto, Shin-ichi; Wakamatsu, Yasushi; Yara, Atushi; Miyagawa, Yukio; Ogura, Hideo

    2003-03-01

    The objective of this study is to develop a casting investment that prevents the blackening of the cast surface of noble metal alloys. The experimental investments were prepared using a gypsum-bonded investment in which the metallic powders such as boron (B), silicon (Si), aluminum (Al) and titanium (Ti) were added as oxidizing agents. An Ag-Pd-Cu-Au alloy was cast into the mold made of the prepared investment. The effect of the addition of each metal powder was evaluated from the color difference between the as-cast surface and the polished surface of the cast specimen. The color of the as-cast surface approached that of the polished surface with increasing B and Al content. A lower mean value in the color difference was obtained at 0.25-1.00 mass% B content. B and Al are useful as an additive in a gypsum-bonded investment to prevent the blackening of an Ag-Pd-Cu-Au alloy. The effects of Si and Ti powder addition could not be found.

  6. Project Based Learning on Casting of Aluminium Tensile Test Specimen for Mechanical Engineering Students, State Polytechnic of Malang on Odd Semester of Academic Year 2016/2017

    Directory of Open Access Journals (Sweden)

    S. Hadi

    2017-02-01

    Full Text Available The problem faced by students is the difficulty of understanding on metal casting topic in the lesson of Materials Technology which is conducted by lectures only. The research objective is to find out the improvement of score on metal casting topic for 1G students from Mechanical Engineering Department, State Polytechnic of Malang (Polinema in odd Semester, Academic Year 2016/2017. Research method were facilitation of applied metal casting through pretest of metal casting, added a description of the design and modification of metal mould for Aluminium, visit to a home industry of Aluminium casting, students practice of Aluminium casting in a home industry, student groups presentation and discussion in the subtopics of (1 design and mould manufacture, (2 Aluminium casting practice, and (3 tensile testing with cast Aluminium specimen, as well as posttest on metal casting. The research result is an increasing in average score from 46.56 to 53.6 (22% that means by adding the practice to the theory involved is increase a significant impact on understanding of Aluminium casting for students.

  7. Social exclusion, caste & health: a review based on the social determinants framework.

    Science.gov (United States)

    Nayar, K R

    2007-10-01

    Poverty and social exclusion are important socio-economic variables which are often taken for granted while considering ill-health effects. Social exclusion mainly refers to the inability of our society to keep all groups and individuals within reach of what we expect as society to realize their full potential. Marginalization of certain groups or classes occurs in most societies including developed countries and perhaps it is more pronounced in underdeveloped countries. In the Indian context, caste may be considered broadly as a proxy for socio-economic status and poverty. In the identification of the poor, scheduled caste and scheduled tribes and in some cases the other backward castes are considered as socially disadvantaged groups and such groups have a higher probability of living under adverse conditions and poverty. The health status and utilization patterns of such groups give an indication of their social exclusion as well as an idea of the linkages between poverty and health. In this review, we examined broad linkages between caste and some select health/health utilization indicators. We examined data on prevalence of anaemia, treatment of diarrhoea, infant mortality rate, utilization of maternal health care and childhood vaccinations among different caste groups in India. The data based on the National Family Health Survey II (NFHS II) highlight considerable caste differentials in health. The linkages between caste and some health indicators show that poverty is a complex issue which needs to be addressed with a multi-dimensional paradigm. Minimizing the suffering from poverty and ill-health necessitates recognizing the complexity and adopting a perspective such as holistic epidemiology which can challenge pure technocentric approaches to achieve health status.

  8. Single underwater image enhancement based on color cast removal and visibility restoration

    Science.gov (United States)

    Li, Chongyi; Guo, Jichang; Wang, Bo; Cong, Runmin; Zhang, Yan; Wang, Jian

    2016-05-01

    Images taken under underwater condition usually have color cast and serious loss of contrast and visibility. Degraded underwater images are inconvenient for observation and analysis. In order to address these problems, an underwater image-enhancement method is proposed. A simple yet effective underwater image color cast removal algorithm is first presented based on the optimization theory. Then, based on the minimum information loss principle and inherent relationship of medium transmission maps of three color channels in an underwater image, an effective visibility restoration algorithm is proposed to recover visibility, contrast, and natural appearance of degraded underwater images. To evaluate the performance of the proposed method, qualitative comparison, quantitative comparison, and color accuracy test are conducted. Experimental results demonstrate that the proposed method can effectively remove color cast, improve contrast and visibility, and recover natural appearance of degraded underwater images. Additionally, the proposed method is comparable to and even better than several state-of-the-art methods.

  9. Rare earth metals influence on mechanical properties and crack resistance of GP240GH and G17CrMo5-5 cast steels

    Directory of Open Access Journals (Sweden)

    M. Gajewski

    2009-10-01

    Full Text Available This paper presents results of research on modification influence of REM on mechanical properties and crack resistance of GP240GH cast carbon steel and G17CrMo5-5 high-temperature cast steel. The tests have been performed on successive industrial melts. The rare earth metals were put into the ladle during tapping of heat melt from the furnace. Each time ca 2000 kg of liquid metals were modified. Because of this the amount of sulphur in the cast steel was decreased and the non-metallic inclusion morphology was significantly changed. There were tested mechanical properties (Re,Rm, plastic properties (A5,Z and impact strength (KV, and on the basis of the three-point bend test the KJC stress intensity factor was evaluated. It was noticed that the REM modification brings essential increase of impact strength as well as fracture toughness determined by KJC factor.

  10. The Effect of Shell Thickness, Insulation and Casting Temperature on Defects Formation During Investment Casting of Ni-base Turbine Blades

    Directory of Open Access Journals (Sweden)

    Raza M.

    2015-12-01

    Full Text Available Turbine blades have complex geometries with free form surface. Blades have different thickness at the trailing and leading edges as well as sharp bends at the chord-tip shroud junction and sharp fins at the tip shroud. In investment casting of blades, shrinkage at the tip-shroud and cord junction is a common casting problem. Because of high temperature applications, grain structure is also critical in these castings in order to avoid creep. The aim of this work is to evaluate the effect of different process parameters, such as, shell thickness, insulation and casting temperature on shrinkage porosity and grain size. The test geometry used in this study was a thin-walled air-foil structure which is representative of a typical hot-gas-path rotating turbine component. It was observed that, in thin sections, increased shell thickness helps to increase the feeding distance and thus avoid interdendritic shrinkage. It was also observed that grain size is not significantly affected by shell thickness in thin sections. Slower cooling rate due to the added insulation and steeper thermal gradient at metal mold interface induced by the thicker shell not only helps to avoid shrinkage porosity but also increases fill-ability in thinner sections.

  11. Exposure vs toxicity levels of airborne quartz, metal and carbon particles in cast iron foundries.

    Science.gov (United States)

    Moroni, Beatrice; Viti, Cecilia; Cappelletti, David

    2014-01-01

    Aerosol dust samples and quartz raw materials from different working stations in foundry plants were characterized in order to assess the health risk in this working environment. Samples were analysed by scanning and transmission electron microscopy coupled with image analysis and microanalysis, and by cathodoluminescence spectroscopy. In addition, the concentration and the solubility degree of Fe and other metals of potential health effect (Mn, Zn and Pb) in the bulk samples were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Overall, the results indicate substantial changes in quartz crystal structure and texture when passing from the raw material to the airborne dust, which include lattice defects, non-bridging oxygen hole centres and contamination of quartz grains by metal and/or graphite particles. All these aspects point towards the relevance of surface properties on reactivity. Exposure doses have been estimated based on surface area, and compared with threshold levels resulting from toxicology. The possible synergistic effects of concomitant exposure to inhalable magnetite, quartz and/or graphite particles in the same working environment have been properly remarked.

  12. Arrays of hollow out-of-plane microneedles made by metal electrodeposition onto solvent cast conductive polymer structures

    International Nuclear Information System (INIS)

    Mansoor, I; Liu, Y; Stoeber, B; Häfeli, U O

    2013-01-01

    Transdermal drug delivery using microneedles is a technique to potentially replace hypodermic needles for injection of many vaccines and drugs. Fabrication of hollow metallic microneedles so far has been associated with time-consuming steps that restrict batch production of these devices. Here, we are presenting a novel method for making metallic microneedles with any desired height, spacing, and lumen size. In our process, we use solvent casting to coat a mold, which contains an array of pillars, with a conductive polymer composite layer. The conductive layer is then used as a seed layer in a metal electrodeposition process. To characterize the process, the conductivity of the polymer composite with respect to different filler concentrations was investigated. In addition, plasma etching of the polymer was characterized. The electroplating process was also studied further to control the thickness of the microneedle array plate. The strength of the microneedle devices was evaluated through a series of compression tests, while their performance for transdermal drug delivery was tested by injection of 2.28 µm fluorescent microspheres into animal skin. The fabricated metallic microneedles seem appropriate for subcutaneous delivery of drugs and microspheres. (paper)

  13. Prediction of Secondary Dendrite Arm Spacing in Squeeze Casting Using Fuzzy Logic Based Approaches

    Directory of Open Access Journals (Sweden)

    Patel M.G.C.

    2015-03-01

    Full Text Available The quality of the squeeze castings is significantly affected by secondary dendrite arm spacing, which is influenced by squeeze cast input parameters. The relationships of secondary dendrite arm spacing with the input parameters, namely time delay, pressure duration, squeeze pressure, pouring and die temperatures are complex in nature. The present research work focuses on the development of input-output relationships using fuzzy logic approach. In fuzzy logic approach, squeeze cast process variables are expressed as a function of input parameters and secondary dendrite arm spacing is expressed as an output parameter. It is important to note that two fuzzy logic based approaches have been developed for the said problem. The first approach deals with the manually constructed mamdani based fuzzy system and the second approach deals with automatic evolution of the Takagi and Sugeno’s fuzzy system. It is important to note that the performance of the developed models is tested for both linear and non-linear type membership functions. In addition the developed models were compared with the ten test cases which are different from those of training data. The developed fuzzy systems eliminates the need of a number of trials in selection of most influential squeeze cast process parameters. This will reduce time and cost of trial experimentations. The results showed that, all the developed models can be effectively used for making prediction. Further, the present research work will help foundrymen to select parameters in squeeze casting to obtain the desired quality casting without much of time and resource consuming.

  14. Salvaging of service exposed cast alloy 625 cracker tubes of ammonia based Heavy Water Plants

    International Nuclear Information System (INIS)

    Kumar, Niraj; Misra, B.; Mahajan, M.P.; Mittra, J.; Sundararaman, M.; Chakravartty, J.K.

    2006-01-01

    In ammonia based heavy water plants, cracking of ammonia vapour, enriched in deuterium is carried out inside a cracker tube, packed with catalyst. These cracker tubes are made of alloy 625 (either wrought or cast) having dimensions of about 12.5 metres long, 88 mm outer diameter and 7.9 mm wall thickness. Seventy such tubes are housed in a typical ammonia cracker unit. The anticipated design life of such tube is 1,00,000 hrs. when operated at 720 degC based on creep as main degradation mechanism. Presently, these tubes are being operated at 680 degC skin temperature. Alloy 625 tubes are costly and normally not manufactured in India and are being imported. The cast alloy 625 cracker tubes have outlived their design life of 100,000 hrs. Therefore it has been decided to salvage the cast cracker tubes and extend the life further as it had already been done for wrought tubes. Similar to the earlier attempt of resolutionising of wrought alloy 625 tubes, efforts are in progress to salvage these cast tubes. In this study, cast tubes samples were subjected to solution-annealing treatment at two different temperatures, 1100degC and 1160degC respectively for two hrs. Mechanical properties along with the microstructure of the samples, which were resolutionized at 1160degC were comparable with that of virgin material. The 12.5 metres long cast alloy 625 cracker tubes will also be shortly solution-annealed in a specially designed resistance heating furnace after completing some more tests. (author)

  15. Engineering design of centrifugal casting machine

    Science.gov (United States)

    Kusnowo, Roni; Gunara, Sophiadi

    2017-06-01

    Centrifugal casting is a metal casting process in which metal liquid is poured into a rotating mold at a specific temperature. Given round will generate a centrifugal force that will affect the outcome of the casting. Casting method is suitable in the manufacture of the casting cylinder to obtain better results. This research was performed to design a prototype machine by using the concept of centrifugal casting. The design method was a step-by-step systematic approach in the process of thinking to achieve the desired goal of realizing the idea and build bridges between idea and the product. Design process was commenced by the conceptual design phase and followed by the embodiment design stage and detailed design stage. With an engineering design process based on the method developed by G. E. Dieter, draft prototype of centrifugal casting machine with dimension of 550×450×400 mm, ¼ HP motor power, pulley and belt mechanism, diameter of 120-150mm, simultaneously with the characteristics of simple casting product, easy manufacture and maintenance, and relatively inexpensive, was generated.

  16. U.S. Geological Survey's ShakeCast: A cloud-based future

    Science.gov (United States)

    Wald, David J.; Lin, Kuo-Wan; Turner, Loren; Bekiri, Nebi

    2014-01-01

    When an earthquake occurs, the U. S. Geological Survey (USGS) ShakeMap portrays the extent of potentially damaging shaking. In turn, the ShakeCast system, a freely-available, post-earthquake situational awareness application, automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users’ facilities, sends notifications of potential damage to responsible parties, and generates facility damage assessment maps and other web-based products for emergency managers and responders. ShakeCast is particularly suitable for earthquake planning and response purposes by Departments of Transportation (DOTs), critical facility and lifeline utilities, large businesses, engineering and financial services, and loss and risk modelers. Recent important developments to the ShakeCast system and its user base are described. The newly-released Version 3 of the ShakeCast system encompasses advancements in seismology, earthquake engineering, and information technology applicable to the legacy ShakeCast installation (Version 2). In particular, this upgrade includes a full statistical fragility analysis framework for general assessment of structures as part of the near real-time system, direct access to additional earthquake-specific USGS products besides ShakeMap (PAGER, DYFI?, tectonic summary, etc.), significant improvements in the graphical user interface, including a console view for operations centers, and custom, user-defined hazard and loss modules. The release also introduces a new adaption option to port ShakeCast to the "cloud". Employing Amazon Web Services (AWS), users now have a low-cost alternative to local hosting, by fully offloading hardware, software, and communication obligations to the cloud. Other advantages of the "ShakeCast Cloud" strategy include (1) Reliability and robustness of offsite operations, (2) Scalability naturally accommodated, (3), Serviceability, problems reduced due to software and hardware uniformity, (4

  17. Modelling the Cast Component Weight in Hot Chamber Die Casting using Combined Taguchi and Buckingham's π Approach

    Science.gov (United States)

    Singh, Rupinder

    2018-02-01

    Hot chamber (HC) die casting process is one of the most widely used commercial processes for the casting of low temperature metals and alloys. This process gives near-net shape product with high dimensional accuracy. However in actual field environment the best settings of input parameters is often conflicting as the shape and size of the casting changes and one have to trade off among various output parameters like hardness, dimensional accuracy, casting defects, microstructure etc. So for online inspection of the cast components properties (without affecting the production line) the weight measurement has been established as one of the cost effective method (as the difference in weight of sound and unsound casting reflects the possible casting defects) in field environment. In the present work at first stage the effect of three input process parameters (namely: pressure at 2nd phase in HC die casting; metal pouring temperature and die opening time) has been studied for optimizing the cast component weight `W' as output parameter in form of macro model based upon Taguchi L9 OA. After this Buckingham's π approach has been applied on Taguchi based macro model for the development of micro model. This study highlights the Taguchi-Buckingham based combined approach as a case study (for conversion of macro model into micro model) by identification of optimum levels of input parameters (based on Taguchi approach) and development of mathematical model (based on Buckingham's π approach). Finally developed mathematical model can be used for predicting W in HC die casting process with more flexibility. The results of study highlights second degree polynomial equation for predicting cast component weight in HC die casting and suggest that pressure at 2nd stage is one of the most contributing factors for controlling the casting defect/weight of casting.

  18. The ancient Chinese casting techniques

    Directory of Open Access Journals (Sweden)

    Tan Derui

    2011-02-01

    Full Text Available In the course of Chinese civilization, which lasted more than 5,000 years, casting production has made a huge contribution. In this paper, some representative metal castings were presented. According to their forming techniques, they can be grouped into stone mould casting, clay mould casting, ablation casting, lost wax casting, stack casting, permanent mould casting, sand casting, etc. According to their materials, they can be categorized into tin bronze, bimetallic bronze, malleable cast iron, ductile cast iron, brass, cupronickel alloy (Packtong, etc. According to their surface decorative techniques they can be devided into gem inlay, gilding, gold and silver inlay, copper inlay, engraved decoration, surface tin-enrichment, mother-of-pearl inlay, burnished works with gold or silver inlay, surface coloring and cloisonné enamel, etc.

  19. National Metal Casting Research Institute final report. Development of an automated ultrasonic inspection cell for detecting subsurface discontinuities in cast gray iron. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Burningham, J.S. [University of Northern Iowa, Cedar Falls, IA (United States). Dept. of Industrial Technology

    1995-08-01

    This inspection cell consisted of an ultrasonic flaw detector, transducer, robot, immersion tank, computer, and software. Normal beam pulse-echo ultrasonic nondestructive testing, using the developed automated cell, was performed on 17 bosses on each rough casting. Ultrasonic transducer selection, initial inspection criteria, and ultrasonic flow detector (UFD) setup parameters were developed for the gray iron castings used in this study. The software were developed for control of the robot and UFD in real time. The software performed two main tasks: emulating the manual operation of the UFD, and evaluating the ultrasonic signatures for detecting subsurface discontinuities. A random lot of 105 castings were tested; the 100 castings that passed were returned to the manufacturer for machining into finished parts and then inspection. The other 5 castings had one boss each with ultrasonic signatures consistent with subsurface discontinuities. The cell was successful in quantifying the ultrasonic echo signatures for the existence of signature characteristics consistent with Go/NoGo criteria developed from simulated defects. Manual inspection showed that no defects in the areas inspected by the automated cell avoided detection in the 100 castings machined into finished parts. Of the 5 bosses found to have subsurface discontinuities, two were verified by manual inspection. The cell correctly classified 1782 of the 1785 bosses (99.832%) inspected.

  20. Wear behaviour of Zr-based in situ bulk metallic glass matrix ...

    Indian Academy of Sciences (India)

    Zr-based bulk metallic glass (BMG) and its in situ BMG matrix composites with diameter of 3 mm were fabricated by conventional .... with no evidence of any crystalline Bragg peaks, indicating that the as-cast sample is fully ..... Acknowledgements. Funding by education fund item of Liaoning Province under grant no.

  1. The present status of dental titanium casting

    Science.gov (United States)

    Okabe, Toru; Ohkubo, Chikahiro; Watanabe, Ikuya; Okuno, Osamu; Takada, Yukyo

    1998-09-01

    Experimentation in all aspects of titanium casting at universities and industries throughout the world for the last 20 years has made titanium and titanium-alloy casting nearly feasible for fabricating sound cast dental prostheses, including crowns, inlays, and partial and complete dentures. Titanium casting in dentistry has now almost reached the stage where it can seriously be considered as a new method to compete with dental casting using conventional noble and base-metal alloys. More than anything else, the strength of titanium’s appeal lies in its excellent biocompatibility, coupled with its comparatively low price and abundant supply. Research efforts to overcome some problems associated with this method, including studies on the development of new titanium alloys suitable for dental use, will continue at many research sites internationally.

  2. Microstructure, hardness, corrosion resistance and porcelain shear bond strength comparison between cast and hot pressed CoCrMo alloy for metal-ceramic dental restorations.

    Science.gov (United States)

    Henriques, B; Soares, D; Silva, F S

    2012-08-01

    The purpose of this study was to compare the microstructure, hardness, corrosion resistance and metal-porcelain bond strength of a CoCrMo dental alloy obtained by two routes, cast and hot pressing. CoCrMo alloy substrates were obtained by casting and hot pressing. Substrates' microstructure was examined by the means of Optical Microscopy (OM) and by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). Hardness tests were performed in a microhardness indenter. The electrochemical behavior of substrates was investigated through potentiodynamic tests in a saline solution (8g NaCl/L). Substrates were bonded to dental porcelain and metal-porcelain bond strength was assessed by the means of a shear test performed in a universal test machine (crosshead speed: 0.5 mm/min) until fracture. Fractured surfaces as well as undestroyed interface specimens were examined with Stereomicroscopy and SEM-EDS. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The t-test (pmicrostructures whereas hot pressed specimens exhibited a typical globular microstructure with a second phase spread through the matrix. The hardness registered for hot pressed substrates was greater than that of cast specimens, 438±24HV/1 and 324±8HV/1, respectively. Hot pressed substrates showed better corrosion properties than cast ones, i.e. higher OCP; higher corrosion potential (E(corr)) and lower current densities (i(corr)). No significant difference was found (p<0.05) in metal-ceramic bond strength between cast (116.5±6.9 MPa) and hot pressed (114.2±11.9 MPa) substrates. The failure type analysis revealed an adhesive failure for all specimens. Hot pressed products arise as an alternative to cast products in dental prosthetics, as they impart enhanced mechanical and electrochemical properties to prostheses without compromising the metal-ceramic bond strength. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Numerical Simulation of Directional Solidification Process of Single Crystal Ni- Based Superalloy Casting

    Directory of Open Access Journals (Sweden)

    Szeliga D.

    2017-06-01

    Full Text Available The analysis of influence of mould withdrawal rate on the solidification process of CMSX-4 single crystal castings produced by Bridgman method was presented in this paper. The predicted values of temperature gradient, solidification and cooling rate, were determined at the longitudinal section of casting blade withdrawn at rate from 1 to 6mm/min using ProCAST software. It was found that the increase of withdrawal rate of ceramic mould results in the decrease of temperature gradient and the growth of cooling rate, along blade height. Based on results of solidification parameter G/R (temperature gradient/solidification rate, maximum withdrawal rate of ceramic mould (3.5 mm/min, which ensures lower susceptibility to formation process of new grain defects in single crystal, was established. It was proved that these defects can be formed in the bottom part of casting at withdrawal rate of 4 mm/min. The increase of withdrawal rate to 5 and 6 mm/min results in additional growth of susceptibility of defects formation along the whole height of airfoil.

  4. Research on plant of metal fuel fabrication using casting process (2)

    International Nuclear Information System (INIS)

    Senda, Yasuhide; Yamada, Seiya

    2005-02-01

    In this research work for the metal fuel fabrication system (38 tHM/y), the studies of the concept of the main process equipments were performed based on the previous studies on the process design and the quality control system design. In this study the handling equipment of the products were also designed, according to these designs the handling periods were evaluated. Consequently the numbers of the equipments were assessed taking into account for the method of the blending the fuel composition. (1) Structural concept design of the major equipments, the fuel handling machine and the gravimetries in the main fabrication process. The structural concept were designed for the fuel composition blending equipment, the fuel pin assembling equipment, the sodium bonding equipment, the handling equipment for fuel slug palettes, the handling equipment for fuel pins and the gravimetries. (2) Re-assessment of the numbers of the equipments taking account of the handling periods. Based on the results of item (1) the periods were evaluated for the fuel slug and pin handling. Processing time of demolder is short, then the number of it is increased to two. Three vehicles are also added to transfer the slugs and a heel smoothly. (3) Design of the buffer storages. The buffer storages among the equipments were designed through the comparison of the process speed between the equipments taking into account for the handling periods. The required amount of the structural parts (for example cladding materials) was assessed for the buffer in the same manner and the amount of the buffer facilities were optimized. (author)

  5. Based on database and asp.net technologies, a web platform of scientific data in the casting forces on the mold-fi lling behavior of titanium melts in vertically rotating molds

    Directory of Open Access Journals (Sweden)

    Xu Daming

    2008-11-01

    Full Text Available The vertical centrifugal-casting technique is widely used in the manufacture of various irregularlyshaped castings of advanced structural alloys with thin walls, complex shapes and/or large sizes. These castings are used in the increasing applications in aero-space/aviation industries, human teeth/bone repairs with nearnet shaped components, etc. In a vertically rotating casting system, the mold-filling processes of alloy melts, coupled with solidifi cation-heat transfer, may be much more complicated, because they are driven simultaneously by gravity, centrifugal and Coriolis forces. In the present work, an N-S/VOF-equations-based model, solved using a SOLA-VOF algorithm, under a rotating coordinate system was applied to numerically investigate the impacts of centrifugal and Coriolis forces on metallic melt mold-fi lling processes in different vertical centrifugal-casting configurations with different mold-rotation rates using an authors’ computer-codes system. The computational results show that the Coriolis force may cause remarkable variations in the fl ow patterns in the casting-part-cavities of a large horizontal-section area and directly connected to the sprue via a short ingate in a vertical centrifugalcasting process. A “turn-back” mold-filling technique, which only takes advantage of the centrifugal force in a transient rotating melt system, has been confi rmed to be a rational centrifugal-casting process in order to achieve smooth and layer-by-layer casting-cavities-fi lling control. The simulated mold-fi lling processes of Ti-6Al-4V alloy melt, in a vertical centrifugal-casting system with horizontally-connected plate-casting cavities, show reasonable agreement with experimental results from the literature.

  6. Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2005-11-01

    The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

  7. Cast Metal Occlusals: A Vital Tool for Single Complete Denture: A Case Report

    Directory of Open Access Journals (Sweden)

    Dipti S Shah

    2013-01-01

    Full Text Available Background: Occlusal surface of the acrylic teeth of a single complete denture in opposition to natural dentition wears out with its use for a longer period of time, which may lead to decrease in the chewing efficiency, loss of vertical dimension of occlusion, change in centric occlusion, denture instability, temporomandibular joint disturbances etc. Re-fabrication of new denture set over a period of time, inclusion of highly cross linked acrylic teeth, amalgam or metal inserts on occlusal surface, use of composite, gold or metal occlusal surface, etc. are some of the treatment options available to counteract that problem. Several articles have described methods to construct gold and metal occlusal surfaces, some of which are time-consuming, expensive and require many cumbersome steps. This clinical case describes the sequence of steps for construction of metal occlusal surfaces on single complete denture using the lost wax technique.

  8. Factors affecting the bond strength of denture base and reline acrylic resins to base metal materials

    Directory of Open Access Journals (Sweden)

    Naomi Tanoue

    2013-07-01

    Full Text Available OBJECTIVE: The shear bond strengths of two hard chairside reline resin materials and an auto-polymerizing denture base resin material to cast Ti and a Co-Cr alloy treated using four conditioning methods were investigated. MATERIAL AND METHODS: Disk specimens (diameter 10 mm and thickness 2.5 mm were cast from pure Ti and Co-Cr alloy. The specimens were wet-ground to a final surface finish of 600 grit, air-dried, and treated with the following bonding systems: 1 air-abraded with 50-70-µm grain alumina (CON; 2 1 + conditioned with a primer, including an acidic phosphonoacetate monomer (MHPA; 3 1 + conditioned with a primer including a diphosphate monomer (MDP; 4 treated with a tribochemical system. Three resin materials were applied to each metal specimen. Shear bond strengths were determined before and after 10,000 thermocycles. RESULTS: The strengths decreased after thermocycling for all combinations. Among the resin materials assessed, the denture base material showed significantly (p<0.05 greater shear bond strengths than the two reline materials, except for the CON condition. After 10,000 thermocycles, the bond strengths of two reline materials decreased to less than 10 MPa for both metals. The bond strengths of the denture base material with MDP were sufficient: 34.56 MPa for cast Ti and 38.30 for Co-Cr alloy. CONCLUSION: Bonding of reline resin materials to metals assessed was clinically insufficient, regardless of metal type, surface treatment, and resin composition. For the relining of metal denture frameworks, a denture base material should be used.

  9. Comparison of Fracture Strength of Endodontically Treated Teeth Restored with Two Different Cast Metallic Post Systems

    Directory of Open Access Journals (Sweden)

    Borhan Haghighi Z

    2014-12-01

    Full Text Available Statement of Problem: Endodontically treated teeth are more prone to fracture. The post and core are often used to provide the necessary retention for prosthetic rehabilitation. Objectives: The purpose of this study was to: 1 compare the fracture strength of endodontically treated teeth restored either with Nickel-Chromium (Ni- Cr post or Non- Precious Gold-color alloy (NPG post compared to the control group and 2 evaluate the fracture site in each group. Materials and Methods: In this experimental study, endodontic treatment was carried out for 45 extracted maxillary premolars. The specimens were divided into 3 groups (n=15. Group1: restored with NPG post and core, group2: restored with Ni-Cr post and core, and group 3, no post and core were used after endodontic treatment and the access cavity was filled with amalgam. Failure force was recorded in Newton when root or remaining coronal structure fracture was occurred. Data were analyzed using one-way analysis of variance (ANOVA, Student t-test and Tukey HSD test to compare the three groups. Results: There was a statistically significant difference among all groups (P<0.05. Fracture resistance of the teeth restored by NPG posts was significantly higher than those restored by Ni- Cr (P<0.001. Results showed that the fracture mainly occurred in the root of the teeth restored with Ni- Cr and NPG post while fractures occurred in the core portion of the teeth restored with amalgam. Conclusions: The findings of the present study indicated that the fracture strength of the teeth without using cast post and core was significantly lower than the teeth restored with cast post and core. Also the teeth restored by NPG post had a significantly higher fracture resistance than Ni-Cr posts.

  10. A National Assistance Extension Program for Metal Casting: A foundation industry. Final report for the period February 16, 1994 through May 15, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.H.

    1997-09-01

    The TRP award was proposed as an umbrella project to build infrastructure and extract lessons about providing extension enabling services to the metal casting industry through the national network of Manufacturing Technology Center`s (MTC`s). It targeted four discrete task areas required for the MCC to service the contemplated needs of industry, and in which the MCC had secured substantial involvement of partner organizations. Task areas identified included Counter-Gravitational Casting, Synchronous Manufacturing, Technology Deployment, and Facility and Laboratory Improvements. This volume provides project reports, case studies, and publicity information.

  11. A National Assistance Extension Program for Metal Casting: a foundation industry. Final report for the period February 16, 1994 through May 15, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The TRP award was proposed as an umbrella project to build infrastructure and extract lessons about providing extension-enabling services to the metal casting industry through the national network of Manufacturing Technology Center`s (MTC`s). It targeted four discrete task areas required for the MCC to service the contemplated needs of industry, and in which the MCC had secured substantial involvement of partner organizations. Task areas identified included Counter-Gravitational Casting, Synchronous Manufacturing, Technology Deployment, and Facility and Laboratory Improvements. Each of the task areas includes specific subtasks which are described.

  12. Microstructure, mechanical performance and corrosion properties of base metal solder joints

    Directory of Open Access Journals (Sweden)

    Sujesh Machha

    2011-01-01

    Full Text Available Context: Alloys have been considered to be of paramount importance in the field of prosthodontics. Long span prosthesis may often require joining of one or more individual castings to obtain better fit, occlusal harmony and esthetics in comparison to one-piece casting. Aim: This study was undertaken to evaluate the mechanical properties of base metal alloys joined by two different techniques, namely, gas oxygen torch soldering and laser fusion, compared to a one-piece casting. Mechanical properties evaluated were tensile strength, percentage of elongation and hardness of the solder joint. In addition, corrosion properties and scanning electron microscopic appearance of the joints were also evaluated. Materials and Methods: The samples were prepared according to American Society for Testing Materials specifications (ASTM, E8. Specimens were made with self-cure acrylic and then invested in phosphate-bonded investment material. Casting was done in induction casting machine. Thirty specimens were thus prepared for each group and compared with 30 specimens of the one-piece casting group. Statistical Analysis Used: SPSS software (version 10.0, Chicago, IL, USA was used for statistical analysis. ANOVA and Benferroni post hoc tests were done for multiple comparisons between the groups and within the groups for mean difference and standard error. Results: Results showed that tensile strength of the one-piece casting was higher than laser fused and gas oxygen torch soldered joints. Laser fused joints exhibited higher hardness values compared to that of gas oxygen torch soldered joints. Scanning electron microscopic examination revealed greater porosity in the gas oxygen torch soldered joints. This contributed to the reduction in the strength of the joint. Gas oxygen torch soldered joints showed less corrosion resistance when compared to laser fused joints and one-piece casting. Conclusion: Laser fusion, which is a recent introduction to the field of

  13. Hot-tearing of multicomponent Al-Cu alloys based on casting load measurements in a constrained permanent mold

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL; Mirmiran, Seyed [Fiat Chrysler Automobiles North America; Glaspie, Christopher [Fiat Chrysler Automobiles North America; Li, Shimin [Worcester Polytechnic Institute (WPI), MA; Apelian, Diran [Worcester Polytechnic Institute (WPI), MA; Shyam, Amit [ORNL; Haynes, James A [ORNL; Rodriguez, Andres [Nemak, Garza Garcia, N.L., Mexico

    2017-01-01

    Hot-tearing is a major casting defect that is often difficult to characterize, especially for multicomponent Al alloys used for cylinder head castings. The susceptibility of multicomponent Al-Cu alloys to hot-tearing during permanent mold casting was investigated using a constrained permanent mold in which the load and displacement was measured. The experimental results for hot tearing susceptibility are compared with those obtained from a hot-tearing criterion based temperature range evaluated at fraction solids of 0.87 and 0.94. The Cu composition was varied from approximately 5 to 8 pct. (weight). Casting experiments were conducted without grain refining. The measured load during casting can be used to indicate the severity of hot tearing. However, when small hot-tears are present, the load variation cannot be used to detect and assess hot-tearing susceptibility.

  14. Model castings with composite surface layer - application

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2008-10-01

    Full Text Available The paper presents a method of usable properties of surface layers improvement of cast carbon steel 200–450, by put directly in foundingprocess a composite surface layer on the basis of Fe-Cr-C alloy. Technology of composite surface layer guarantee mainly increase inhardness and aberasive wear resistance of cast steel castings on machine elements. This technology can be competition for generallyapplied welding technology (surfacing by welding and thermal spraying. In range of studies was made cast steel test castings withcomposite surface layer, which usability for industrial applications was estimated by criterion of hardness and aberasive wear resistance of type metal-mineral and quality of joint cast steel – (Fe-Cr-C. Based on conducted studies a thesis, that composite surface layer arise from liquid state, was formulated. Moreover, possible is control of composite layer thickness and its hardness by suitable selection of parameters i.e. thickness of insert, pouring temperature and solidification modulus of casting. Possibility of technology application of composite surface layer in manufacture of cast steel slide bush for combined cutter loader is presented.

  15. Amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-04-01

    Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.

  16. Evaluation of marginal and internal gaps of metal ceramic crowns obtained from conventional impressions and casting techniques with those obtained from digital techniques

    Directory of Open Access Journals (Sweden)

    Rathika Rai

    2017-01-01

    Full Text Available Background: Accuracy in fit of cast metal restoration has always remained as one of the primary factors in determining the success of the restoration. A well-fitting restoration needs to be accurate both along its margin and with regard to its internal surface. Aim: The aim of the study is to evaluate the marginal fit of metal ceramic crowns obtained by conventional inlay casting wax pattern using conventional impression with the metal ceramic crowns obtained by computer-aided design and computer-aided manufacturing (CAD/CAM technique using direct and indirect optical scanning. Materials and Methods: This in vitro study on preformed custom-made stainless steel models with former assembly that resembles prepared tooth surfaces of standardized dimensions comprised three groups: the first group included ten samples of metal ceramic crowns fabricated with conventional technique, the second group included CAD/CAM-milled direct metal laser sintering (DMLS crowns using indirect scanning, and the third group included DMLS crowns fabricated by direct scanning of the stainless steel model. The vertical marginal gap and the internal gap were evaluated with the stereomicroscope (Zoomstar 4; post hoc Turkey's test was used for statistical analysis. One-way analysis of variance method was used to compare the mean values. Results and Conclusion: Metal ceramic crowns obtained from direct optical scanning showed the least marginal and internal gap when compared to the castings obtained from inlay casting wax and indirect optical scanning. Indirect and direct optical scanning had yielded results within clinically acceptable range.

  17. Simplified model of metal solidification in the thin plane cavity of the casting mould

    Directory of Open Access Journals (Sweden)

    L. Sowa

    2008-03-01

    Full Text Available In thc papcr, a innthcmatical inodcl of thc solidification of a thin-wallcd casting, which takcs into account thc proccss or filling thc mouldcavity wilh moltcn tnetal. has hccn proposed. Prcssurc and vcloci~yf iclds wcrc obtaincd by solving thc ino~ncntl~mctl iiations and rhccontinuity cquation. whilc [he thcrtnal hclds were ubtaincd by solving thc hcat conduction equation containing rhc convcciion tcrm.Making assumptions rcla~ingt o both thc rnatcrial and Ihc gcornctry e l t he rcgion. thc gcncral equations for continuity and rnomcntiun havcbccn rcduccd to single cquation for prcssurc. This approach Icads as to furlhcr si~npliryo f ~licf luid flow cnlculations, I11 thc tnodcl onctakes into account intcrdcpcndcncc Ihc hcat Iransfcr and fluid flow phcnomcna. Coupling of zhc thcrmnl and fluid flow plicnomcna hasbccn takcn into consideration by the changcs of thc fluidity fitnction and thcnnophysical paramctcrs of alloy with rcspcct lo thcrcrnperaLure. Thc problem has bccn solvcd by ihc finilc clcmcnt mcrhod.

  18. A facile and simple high-performance polydimethylsiloxane casting based on self-polymerization dopamine

    International Nuclear Information System (INIS)

    Chen, Xing; Zhang, Lu-lu; Sun, Jian-hai; Li, Hui; Cui, Da-fu

    2014-01-01

    We present a new and facile method for polydimethylsiloxane (PDMS) casting by dip-coating the master molds in an aqueous solution of dopamine. A poly(dopamine) film formed by self-polymerization of dopamine is used as the surface anti-adhesion coating for PDMS de-molding. Different master molds, such as metal, silicon and PDMS replica, were used to verify the feasibility of this proposed PDMS casting method. The poly(dopamine) coatings at various fabrication conditions were studied by using surface plasmon resonance technology. We found that it is very easy to form repeated poly(dopamine) coatings with similar thicknesses and density at fairly flexible conditions of self-polymerization. The water contact angles of the PDMS master molds and the positive PDMS replicas were studied after the PDMS master molds were immersed in the dopamine coating solution for different times. The de-molding process was then measured by surface plasmon resonance technology. The surface morphology of the master molds and the PDMS replicas were characterized by using scanning electron microscopy and atomic force microscopy. Results demonstrate that the poly(dopamine) coating exhibits a strong release property in the PDMS de-molding process and has good stickiness after PDMS de-molding a dozen times. The package performances of the PDMS replicas were detected and compared by bonding experiments. PDMS replicas after a second round of de-molding present a little higher package performance than that of the PDMS replicas with an anti-sticking agent of silane. The biochemical properties of PDMS replicas were studied through fluorescence immunoassay experiments. The PDMS replicas present similar biochemical properties to the bare PDMS. This biomimetic surface modification method of dopamine for PDMS casting has a great potential for preparing microdevices for various biological and clinical applications. (paper)

  19. Influence of Boron Carbide Reinforcement on Mechanical Properties of Aluminum Base Composite Prepared by Stir and Squeeze Casting

    Directory of Open Access Journals (Sweden)

    Zahraa Fadhil

    2017-08-01

    Full Text Available Aluminum metal matrix composites reinforced by ceramic particles have a wide acceptance in engineering applications due to their mechanical and physical properties. The present work aims at investigating the effect of B4C particles ons ome mechanical and physical properties of Al –base matrix. All samples were prepared by two-step stir casting method with squeezing the melt during its solidification. Aluminum metal matrix samples of 2wt%Mg with (0,2,4,and 6wt% ofB4C particles were prepared. The effect of such additions of these particles on hardness, tensile properties were investigated, also the microstructures were analyzed using optical microscopic and (SEM-EDS analysis. The results showed a maximum increase of (53% in Brinel's hardness by adding 6% of boron carbide, while the yield stress, tensile strength and the modulus of elasticity were increased by 11%, 51% , and 51% respectively due to add 4% of boron carbide. The SEM-EDS analyses confirm the presence of B4C particles within the Al-base matrix. The microscopic tests indicated the homogenous dispersion of the addition of 4wt% B4C.

  20. Casting technology for ODS steels - dispersion of nanoparticles in liquid metals

    Science.gov (United States)

    Sarma, M.; Grants, I.; Kaldre, I.; Bojarevics, A.; Gerbeth, G.

    2017-07-01

    Dispersion of particles to produce metal matrix nanocomposites (MMNC) can be achieved by means of ultrasonic vibration of the melt using ultrasound transducers. However, a direct transfer of this method to produce steel composites is not feasible because of the much higher working temperature. Therefore, an inductive technology for contactless treatment by acoustic cavitation was developed. This report describes the samples produced to assess the feasibility of the proposed method for nano-particle separation in steel. Stainless steel samples with inclusions of TiB2, TiO2, Y2O3, CeO2, Al2O3 and TiN have been created and analyzed. Additional experiments have been performed using light metals with an increased value of the steady magnetic field using a superconducting magnet with a field strength of up to 5 T.

  1. Metal-Based PSMA Radioligands

    Directory of Open Access Journals (Sweden)

    Eleni Gourni

    2017-03-01

    Full Text Available Prostate cancer is one of the most common malignancies for which great progress has been made in identifying appropriate molecular targets that would enable efficient in vivo targeting for imaging and therapy. The type II integral membrane protein, prostate specific membrane antigen (PSMA is overexpressed on prostate cancer cells in proportion to the stage and grade of the tumor progression, especially in androgen-independent, advanced and metastatic disease, rendering it a promising diagnostic and/or therapeutic target. From the perspective of nuclear medicine, PSMA-based radioligands may significantly impact the management of patients who suffer from prostate cancer. For that purpose, chelating-based PSMA-specific ligands have been labeled with various diagnostic and/or therapeutic radiometals for single-photon-emission tomography (SPECT, positron-emission-tomography (PET, radionuclide targeted therapy as well as intraoperative applications. This review focuses on the development and further applications of metal-based PSMA radioligands.

  2. Machine Casting of Ferrous Alloys

    Science.gov (United States)

    1974-10-01

    Figure 55 Die casting machine. Shot sleeve at S, melt furnace at M, ladle preheat at L. Figure 56 Aluminum die casting top surface. Risers removed... ladle and transferred to the shot sleeve. Upon pouring the metal, the ram is actuated and the casting made. To test the mechanical operation of...mnui i .MI iiiiiuH ’ -84- Figure 55. Die casting machine. Shot sleeve at S, melt furnace at M, ladle preheat at L. ■ ■ wmmm*mm

  3. Ultrasonically nebulised electrolysed oxidising water: a promising new infection control programme for impressions, metals and gypsum casts used in dental hospitals.

    Science.gov (United States)

    Wu, G; Yu, X; Gu, Z

    2008-04-01

    Controlling the transmission of infectious diseases by impressions, metals and dental casts in dental hospitals remains a challenge. Current disinfection methods have various drawbacks. This study introduced and provided a preliminary evaluation of the feasibility of using ultrasonically nebulised, electrolysed oxidising water (UNEOW) as a new infection control programme. UNEOW was produced from freshly generated electrolysed oxidising water (EOW). Samples of impressions, titanium and gypsum were subjected to the following treatments: (1) immersion in 1% sodium hypochlorite for 10min; (2) immersion in EOW for 10min; (3) exposure to UNEOW for 15, 30 and 45min; (4) no disinfection (control). Bactericidal efficacy was examined using Staphylococcus aureus and Bacillus subtilis var. niger spores as indicators. Dimensional accuracy, surface quality, and effect of corrosion were also evaluated for the different samples. Results showed that except for B. subtilis var. niger spores on gypsum casts, the bacterial reduction log(10) values after 30-45min treatment with UNEOW were all above 4. The impression dimensional changes showed no difference between control and UNEOW groups, but both were significantly lower than the EOW and sodium hypochlorite groups (Pimpressions and gypsum casts. No assessable corrosion was found on the titanium surface after a 45min treatment with UNEOW. The findings indicated that use of UNEOW is a feasible and promising approach for controlling the transmission of infectious diseases by impressions, gypsum casts and denture metals in dental facilities.

  4. Optimization of neutron tomography for rapid hydrogen concentration inspection of metal castings

    CERN Document Server

    Gibbons, M R; Shields, K

    1999-01-01

    Hydrogen embrittlement describes a group of phenomena leading to the degradation of metal alloy properties. The hydrogen concentration in the alloy can be used as an indicator for the onset of embrittlement. A neutron tomography system has been optimized to perform nondestructive detection of hydrogen concentration in titanium aircraft engine compressor blades. Preprocessing of backprojection images and postprocessing of tomographic reconstructions are used to achieve hydrogen concentration sensitivity below 200 ppm weight. This paper emphasizes the postprocessing techniques which allow automated reporting of hydrogen concentration.

  5. Evaluating the Upset Protrusion Joining (UPJ) Method to Join Magnesium Castings to Dissimilar Metals

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Stephen [FCA US LLC, Auburn Hills, MI (United States)

    2016-02-24

    This presentation discusses advantages and best practices for incorporating magnesium in automotive component applications to achieve substantial mass reduction, as well as some of the key challenges with respect to joining, coating, and galvanic corrosion, before providing an introduction and status update of the U.S. Department of Energy and Department of Defense jointly sponsored Upset Protrusion Joining (UPJ) process development and evaluation project. This update includes sharing performance results of a benchmark evaluation of the self-pierce riveting (SPR) process for joining dissimilar magnesium (Mg) to aluminum (Al) materials in four unique coating configurations before introducing the UPJ concept and comparing performance results of the joints made with the UPJ process to those made with the SPR process. Key results presented include: The benchmark SPR process can produce good joints in the MgAM60B-Al 6013 joint configuration with minimal cracking in the Mg coupons if the rivet is inserted from the Mg side into the Al side; Numerous bare Mg to bare Al joints made with the SPR process separated after only 6-wks of accelerated corrosion testing due to fracture of the rivet as a result of hydrogen embrittlement; For the same joint configurations, UPJ demonstrated substantially higher pre-corrosion joint strengths and post-corrosion joint strengths, primarily because of the larger diameter protrusion compared to smaller SPR rivet diameter and reduced degradation due to accelerated corrosion exposure; As with the SPR process, numerous bare Mg to bare Al joints made with the UPJ process also separated after 6-wks of accelerated corrosion testing, but unlike the SPR experience, the UPJ joints experienced degradation of the boss and head because of galvanic corrosion of the Mg casting, not hydrogen embrittlement of the steel rivet; In the configuration where both the Mg and Al were pretreated with Alodine 5200 prior to joining and the complete assembly was powder

  6. Spray cast Al-Si base alloys for stiffness and fatigue strength requirements

    International Nuclear Information System (INIS)

    Courbiere, M.; Mocellin, A.

    1993-01-01

    Hypereutectic AlSiFe spray-cast alloys exhibit properties similar to those of metal-matrix composite (MMC's) : high Young's modulus and a low coefficient of thermal expansion. These physical properties can be adjusted by changing the Si content of the alloy. The refinement of the microstructure is produced by formation of a large amount of nuclei in the spray. Consolidation done by extrusion (bars, tubes or profiles) and/or forging leads to high mechanical properties, especially very good dynamic properties. High fatigue properties coupled with high modulus, good high temperature behaviour and low thermal expansion, allow their use for applications in the automotive industry. In opposition to MMC's, these materials present the advantage of easy recycling and easy machinability as it is the case for the conventional AlSi alloys. The low oxygen content allows quality joining with conventional arc welding techniques. (orig.)

  7. Application of statistical methods for analyzing the relationship between casting distortion, mold filling, and interfacial heat transfer in sand molds

    Energy Technology Data Exchange (ETDEWEB)

    Y. A. Owusu

    1999-03-31

    This report presents a statistical method of evaluating geometric tolerances of casting products using point cloud data generated by coordinate measuring machine (CMM) process. The focus of this report is to present a statistical-based approach to evaluate the differences in dimensional and form variations or tolerances of casting products as affected by casting gating system, molding material, casting thickness, and casting orientation at the mold-metal interface. Form parameters such as flatness, parallelism, and other geometric profiles such as angularity, casting length, and height of casting products were obtained and analyzed from CMM point cloud data. In order to relate the dimensional and form errors to the factors under consideration such as flatness and parallelism, a factorial analysis of variance and statistical test means methods were performed to identify the factors that contributed to the casting distortion at the mold-metal interface.

  8. Cast Aluminum Structures Technology (CAST) Phase VI. Technology Transfer.

    Science.gov (United States)

    1980-04-01

    o Metal preparation o Ladle fill o Pouring 0 Mold shakeout o Casting cleanup o Inspection o Weld correction o Heat treatment and straightening o...presents a summary of foundry data for the 10 Hitchcock cast - ings. Included are the ladle chemistry and the pouring date, temperature, and time for each...properties, and full range stress- strain curves to failure for each specimen d. Chemistry of molten metal in ladle for each casting 3.4.3.2 The foundry

  9. Modelling of solidification processing and continuous strip casting for copper-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudi, Jafar [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Materials Processing

    2000-04-01

    An experimental and numerical study was carried out to investigate the solidification process in a copper continuous strip casting process. Heat flow and solidification process has been experimentally studied. Cooling curves during solidification were registered using a thermocouple of type K connected to a data acquisition system. Temperature measurements in the mould and cooling water were also performed. The numerical model considers a generalized set of mass, momentum and heat equations that is valid for the solid, liquid and solidification interval in the cast. A k-{epsilon} turbulence model, produced with the commercial program CFX, is used to analyse the solidification process of pure copper in the mould region of the caster. The fluid flow, temperature and heat flux distributions in the mould region of the caster were computed. The shape and location of the solidification front were also determined. The effects of the parameters such as heat transfer coefficient, casting speed, casting temperature, heat of fusion and specific heat on the shape and location of the solidification front and the heat transport at the mould-cast interface were investigated. The predicted temperature and heat flux distributions were compared with experimental measurements, and reasonable agreement was obtained. The solidification behaviour of pure copper and different copper base alloys has been studied. A series of solidification experiments using DTA furnace, mirror furnace and levitation technique were performed on different copper-base alloys. The undercooling, cooling rates of the liquid and the solid states, solidification times and temperatures were evaluated from the curves. The cooling curves for different samples were simulated using a FEM solidification program. It was found that the calculated values of the heat of fusion were much lower than the tabulated ones. The fraction of solid formed before quenching, in the DTA experiments, has been observed to be much higher

  10. Speciation in Metal Toxicity and Metal-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Douglas M. Templeton

    2015-04-01

    Full Text Available Metallic elements, ions and compounds produce varying degrees of toxicity in organisms with which they come into contact. Metal speciation is critical to understanding these adverse effects; the adjectives “heavy” and “toxic” are not helpful in describing the biological properties of individual elements, but detailed chemical structures are. As a broad generalization, the metallic form of an element is inert, and the ionic salts are the species that show more significant bioavailability. Yet the salts and other chelates of a metal ion can give rise to quite different toxicities, as exemplified by a range of carcinogenic potential for various nickel species. Another important distinction comes when a metallic element is organified, increasing its lipophilicity and hence its ability to penetrate the blood brain barrier, as is seen, for example, with organic mercury and tin species. Some metallic elements, such as gold and platinum, are themselves useful therapeutic agents in some forms, while other species of the same element can be toxic, thus focusing attention on species interconversions in evaluating metal-based drugs. The therapeutic use of metal-chelating agents introduces new species of the target metal in vivo, and this can affect not only its desired detoxification, but also introduce a potential for further mechanisms of toxicity. Examples of therapeutic iron chelator species are discussed in this context, as well as the more recent aspects of development of chelation therapy for uranium exposure.

  11. Development of metal based thermal barrier coatings

    Science.gov (United States)

    Shin, Dong-Il

    In this work, metal-based thermal barrier coatings (MBTBCs) have been produced, using high frequency induction plasma spraying (IPS) of iron-based nanostructured alloy powders. Important advances have been made over recent years to the development of ceramic-based thermal barrier coatings (TBCs) for internal combustion engines application, but they are not yet applied in mass production situations. Besides the important economic considerations, the reliability of ceramic: TBCs is also an issue, being associated with the difficulty of predicting their "in-service" lifetime. Through engineering of the nano/amorphous structure of MBTBCs, their thermal conductivity can be made as low as those of ceramic-based TBCs, with reduced mean free paths of the electrons/phonons scattering. In this work, nano/amorphous structured coatings were deposited by IPS using the following spray parameters: spraying distance (210 ˜ 270 mm), plasma gas composition (Ar/N2), IPS torch power (24kW), and powder feed-rate (16g/min.). The structure and properties of the deposited layers were characterized through SEM (Scanning Electron Microscopy) observations. The thermal diffusivity (alpha) properties of the MBTBCs were measured using a laser flash method. Density (rho) and specific heat (Cp) of the MBTBCs were also measured, and their thermal conductivity (k) calculated (k =alpharhoCp). The thermal conductivity of MBTBCs was found to be as low as 1.99 W/m/K. The heat treatment study showed that crystal structure changes, and grain size growth from a few nanometers to tenth of nanometers occurred at 550°C under static exposure conditions. Thermal expansion coefficient (TEC) of MBTBCs was 13E-6/K, which is close to the TEC of cast iron and thus, closer to the TEC values of aluminium alloys than are conventional TBCs. Fracture toughness of MBTBCs has also been assessed by use of Vickers hardness tests, with a 500 g load for 15 s, and the results show that there are no measurable crack

  12. Impact Characteristics of Diffusion Bonds of Ferritic Spheroidal Graphite Cast Iron

    OpenAIRE

    Shizuo, MUKAE; Kazumasa, NISHIO; Mitsuaki, KATOH; Norikazu, NAKAMURA; Kyushu Institute of Technology; Kyushu Institute of Technology; Kyushu Institute of Technology; Fukuoka Industrial Technology Center

    1990-01-01

    Impact characteristics of diffusion bonded joints of ferritic spheroidal graphite cast irons and cast iron to mild steel have been investigated using an instrumented Charpy impact test machine. The tests were performed at 0℃ after ferritizing the joints. Main results obtained are as follows : (1) Absorbed energy of the cast iron joints banded without an insert metal was about 5 J, which was much lower than that of the base metal. (2) Absorbed energy of the cast iron joints bonded with Ni foil...

  13. Development of a CCD-based pyrometer for surface temperature measurement of casting billets

    Science.gov (United States)

    Zhang, Yuzhong; Lang, Xianli; Hu, Zhenwei; Shu, Shuangbao

    2017-06-01

    In order to achieve high accuracy and good stability of temperature measurement results, an online vision-based temperature field measurement system for continuous casting billets is developed instead of the conventional single-point radiation pyrometer in this paper. This system is a hybrid temperature measurement system which consists of a monochrome array CCD camera with high resolution and a single spot colorimetric thermometer simultaneously. In this system, a narrow-band spectrum radiation temperature measurement model is established for the optical CCD-based pyrometer system, and the non-uniformity of the temperature field measurement due to the inter-element sensitivity deviations of the CCD-array detector and photometric distortion caused by the vignetting in the optical system is analyzed in detail and compensated. Furthermore, in order to eliminate the temperature fluctuation caused by the stripped iron oxide scale on billets, a temperature field reconstruction approach, which took full advantage of the high resolution characteristic of CCD and the distribution character of the surface temperature field of billets, is introduced in this system. Meanwhile, based on the narrow band spectral thermometry theory, the spot temperature measured by the colorimetric thermometer is used to correct the temperature field measured by the CCD camera on-line so as to reduce the temperature measurement error caused by the inconclusive absolute emissivity of different grades of steel and the interference of industrial dust. Currently, the system has been successfully applied and verified in some continuous casting production lines. Industrial trials indicate that the system could effectively eliminate false temperature variation caused by striped iron oxide scale and provide information about changes of processing parameters in the continuous casting production line in real time.

  14. Low cycle fatigue life of two nickel-base casting alloys in a hydrogen environment

    International Nuclear Information System (INIS)

    Cooper, R.A.

    1976-01-01

    Results of low cycle fatigue tests on alloy Mar-M-246 and Inconel 713 are presented. Based on the limited data, it was concluded that the Mar-M-246 material had a cyclic life in hydrogen that averaged three times higher than the alloy 713LC material for similar strain ranges. The hydrogen environment reduced life for both materials. The life reduction was more than an order of magnitude for the 713LC material. Porosity content of the cast specimens was as expected and was an important factor governing low cycle fatigue life

  15. An approach for the fatigue estimation of porous cast iron based on non-destructive testing results

    Directory of Open Access Journals (Sweden)

    Heinrietz André

    2014-06-01

    Full Text Available Big cast iron components made of spheroidal cast iron allow constructing big structures such as stone mills, engine blocks or wind mills with acceptable expenses. Thus, in economically optimized cast processes pores cannot be always prevented in thick walled cast iron components and these components are often rejected because of safety reasons. On the one hand the fatigue performance of high loadable spheroidal cast iron components is reduced significantly by the presence of local porosities which has been pointed out in the past. On the other hand concepts for the fatigue estimation based on fracture mechanics which take the size and localization of the defect into account can lead to erroneous estimations because the defect is modelled as a crack. The challenge of an estimation method is to derive a fatigue life without the necessity to perform component tests. In the contribution an estimation method is presented which is able to determine the fatigue strength of a material volume taking the pores into account. The method can be applied based on data from computer tomographic X-ray (CT or Sampling Phased Array (SPA ultrasonic analyses. The method is presented for three spheroidal cast iron types: ferritic GJS-400-18, ferritic GJS-450-15 with high silicon content and perlitic GJS-700-3.

  16. Multi-layers castings

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2010-01-01

    Full Text Available In paper is presented the possibility of making of multi-layers cast steel castings in result of connection of casting and welding coating technologies. First layer was composite surface layer on the basis of Fe-Cr-C alloy, which was put directly in founding process of cast carbon steel 200–450 with use of preparation of mould cavity method. Second layer were padding welds, which were put with use of TIG – Tungsten Inert Gas surfacing by welding technology with filler on Ni matrix, Ni and Co matrix with wolfram carbides WC and on the basis on Fe-Cr-C alloy, which has the same chemical composition with alloy, which was used for making of composite surface layer. Usability for industrial applications of surface layers of castings were estimated by criterion of hardness and abrasive wear resistance of type metal-mineral.

  17. FEATURES OF SPHEROIDIZING MODIFICATION OF HIGH-STRENGTH CAST IRON WITH MASTER ALLOYS BASED ON COPPER

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available The increase of efficiency of modification process for ductile iron is topically, thereby increasing its mechanical and operational properties. For these purposes, in practice, various magnesium containing alloys are used, including «heavy» ones on the basis of Copper and Nickel. The analysis has shown that the application of bulk inoculating alloys based on copper basis were not effectively due to long dissolution period. From this point of view, the interest is high-speed casting, allowing the production of inoculating alloys in the form of strips – chips that are characterized by a low dissolution time and low piroeffekt. The aim of this work is to study the features of structure formation in nodular cast iron using different spheroidizing alloys based on copper. Studies have shown that the transition from the use of briquetted form alloys based on copper and magnesium to the «chips-inoculating alloys» allowed increasing the efficiency of the spheroidizing process. Further improvement in the quality of ductile iron can be achieved by the use in «chip-inoculating alloys» additives of nanosized yttrium oxide powder. 

  18. The recommendation system knowledge representation and reasoning procedures under uncertainty for metal casting

    Directory of Open Access Journals (Sweden)

    S. Kluska-Nawarecka

    2015-01-01

    Full Text Available The paper presents an information system dedicated to requirements recommendation and knowledge sharing. It presents methodology of constructing domain knowledge base and application procedure on the example of production technology of Austempered Ductile Iron (ADI. For knowledge representation and reasoning Logic of Plausible Reasoning (LPR is used. Both equally applicable LPR for formalization the knowledge of foundry technology, as well as the described system solution have the unique character.

  19. Fuzzy rule based classification and quantification of graphite inclusions from microstructure images of cast iron.

    Science.gov (United States)

    Prakash, Pattan; Mytri, V D; Hiremath, P S

    2011-12-01

    The quantification of three classes of graphite inclusions in cast iron, namely, nodular, flake, and irregular, is the most important process in the foundry industry. This classification is based on the ISO 945 proposed morphology of graphite inclusions. This work presents a novel solution for automatic quantitative analysis of graphite inclusions into the three mentioned classes. The proposed work comprises three stages, namely, preprocessing of micrographs, classification of graphite inclusions, and then quantification of inclusions in each class. An effort has been made in this work to propose a minimum set of features to represent graphite inclusion morphology. The method employs just two geometric shape descriptors: the diameter ratio and the area ratio. A fuzzy rule based classifier is built using known feature values that are efficient in the classification of the three classes of graphite inclusions. The proposed method is automatic, fast, and provides the basis for determining many more morphological parameters that can be determined with the least effort. The results obtained by the proposed method are compared with the manual method. It is observed that the results obtained from the proposed method are useful in the optimization of cast iron manufacturing in the foundry industry.

  20. Technical cost modelling for a novel semi-solid metal (SSM) casting processes for automotive component manufacturing

    CSIR Research Space (South Africa)

    Tlale, NS

    2008-09-01

    Full Text Available modelling and was compared with the cost of two competing technologies, forging and die casting. The cost model was developed in a spreadsheet using engineering models, data from literature and information provided by process experts. Estimated engineering...

  1. Method of improving fatigue life of cast nickel based superalloys and composition

    Science.gov (United States)

    Denzine, Allen F.; Kolakowski, Thomas A.; Wallace, John F.

    1978-03-14

    The invention consists of a method of producing a fine equiaxed grain structure (ASTM 2-4) in cast nickel-base superalloys which increases low cycle fatigue lives without detrimental effects on stress rupture properties to temperatures as high as 1800.degree. F. These superalloys are variations of the basic nickel-chromium matrix, hardened by gamma prime [Ni.sub.3 (Al, Ti)] but with optional additions of cobalt, tungsten, molybdenum, vanadium, columbium, tantalum, boron, zirconium, carbon and hafnium. The invention grain refines these alloys to ASTM 2 to 4 increasing low cycle fatigue life by a factor of 2 to 5 (i.e. life of 700 hours would be increased to 1400 to 3500 hours for a given stress) as a result of the addition of 0.01% to 0.2% of a member of the group consisting of boron, zirconium and mixtures thereof to aid heterogeneous nucleation. The alloy is vacuum melted and heated to 250.degree.-400.degree. F. above the melting temperature, cooled to partial solidification, thus resulting in said heterogeneous nucleation and fine grains, then reheated and cast at about 50.degree.-100.degree. F. of superheat. Additions of 0.1% boron and 0.1% zirconium (optional) are the preferred nucleating agents.

  2. Characterization of zirconia-based slurries with different binders for titanium investment casting

    Directory of Open Access Journals (Sweden)

    Zhao Ertuan

    2012-05-01

    Full Text Available The materials and physical properties of primary slurry are crucial to the surface quality of the finished castings, especially for high reactivity titanium alloys. The aim of this study is to investigate the influence of different binders on the physical properties of primary slurry for titanium alloy investment casting. The zirconia-based slurries with different binders were evaluated by comparing the parameters: viscosity, bulk density, plate weight, suspensibility, gel velocity and strength. The results indicate that a higher viscosity of binder leads to a higher viscosity and suspensibility of slurry with the same powder/binder ratio. The retention rate and thickness of primary layer increase with an increase in the viscosity of the slurry, and a higher retention rate is associated with a thicker primary layer. The gel velocity of the slurry is correlated with the gel velocity of the binder. The green strength and the baked strength of the primary layer are determined by the properties of the binder after gel and by the production of the binder after fired, respectively.

  3. Intelligent Machine Vision Based Modeling and Positioning System in Sand Casting Process

    Directory of Open Access Journals (Sweden)

    Shahid Ikramullah Butt

    2017-01-01

    Full Text Available Advanced vision solutions enable manufacturers in the technology sector to reconcile both competitive and regulatory concerns and address the need for immaculate fault detection and quality assurance. The modern manufacturing has completely shifted from the manual inspections to the machine assisted vision inspection methodology. Furthermore, the research outcomes in industrial automation have revolutionized the whole product development strategy. The purpose of this research paper is to introduce a new scheme of automation in the sand casting process by means of machine vision based technology for mold positioning. Automation has been achieved by developing a novel system in which casting molds of different sizes, having different pouring cup location and radius, position themselves in front of the induction furnace such that the center of pouring cup comes directly beneath the pouring point of furnace. The coordinates of the center of pouring cup are found by using computer vision algorithms. The output is then transferred to a microcontroller which controls the alignment mechanism on which the mold is placed at the optimum location.

  4. Forward and Reverse Process Models for the Squeeze Casting Process Using Neural Network Based Approaches

    Directory of Open Access Journals (Sweden)

    Manjunath Patel Gowdru Chandrashekarappa

    2014-01-01

    Full Text Available The present research work is focussed to develop an intelligent system to establish the input-output relationship utilizing forward and reverse mappings of artificial neural networks. Forward mapping aims at predicting the density and secondary dendrite arm spacing (SDAS from the known set of squeeze cast process parameters such as time delay, pressure duration, squeezes pressure, pouring temperature, and die temperature. An attempt is also made to meet the industrial requirements of developing the reverse model to predict the recommended squeeze cast parameters for the desired density and SDAS. Two different neural network based approaches have been proposed to carry out the said task, namely, back propagation neural network (BPNN and genetic algorithm neural network (GA-NN. The batch mode of training is employed for both supervised learning networks and requires huge training data. The requirement of huge training data is generated artificially at random using regression equation derived through real experiments carried out earlier by the same authors. The performances of BPNN and GA-NN models are compared among themselves with those of regression for ten test cases. The results show that both models are capable of making better predictions and the models can be effectively used in shop floor in selection of most influential parameters for the desired outputs.

  5. Operation of an InGrid based X-ray detector at the CAST experiment

    Science.gov (United States)

    Krieger, Christoph; Desch, Klaus; Kaminski, Jochen; Lupberger, Michael

    2018-02-01

    The CERN Axion Solar Telescope (CAST) is searching for axions and other particles which could be candidates for DarkMatter and even Dark Energy. These particles could be produced in the Sun and detected by a conversion into soft X-ray photons inside a strong magnetic field. In order to increase the sensitivity for physics beyond the Standard Model, detectors with a threshold below 1 keV as well as efficient background rejection methods are required to compensate for low energies and weak couplings resulting in very low detection rates. Those criteria are fulfilled by a detector utilizing the combination of a pixelized readout chip with an integrated Micromegas stage. These InGrid (Integrated Grid) devices can be build by photolithographic postprocessing techniques, resulting in a close to perfect match of grid and pixels facilitating the detection of single electrons on the chip surface. The high spatial resolution allows for energy determination by simple electron counting as well as for an event-shape based analysis as background rejection method. Tests at an X-ray generator revealed the energy threshold of an InGrid based X-ray detector to be well below the carbon Kα line at 277 eV. After the successful demonstration of the detectors key features, the detector was mounted at one of CAST's four detector stations behind an X-ray telescope in 2014. After several months of successful operation without any detector related interruptions, the InGrid based X-ray detector continues data taking at CAST in 2015. During operation at the experiment, background rates in the order of 10-5 keV-1 cm-2 s-1 have been achieved by application of a likelihood based method discriminating the non-photon background originating mostly from cosmic rays. For continued operation in 2016, an upgraded InGrid based detector is to be installed among other improvements including decoupling and sampling of the signal induced on the grid as well as a veto scintillator to further lower the

  6. Metal detector technology data base

    Energy Technology Data Exchange (ETDEWEB)

    Porter, L.K.; Gallo, L.R.; Murray, D.W.

    1990-08-01

    The tests described in this report were conducted to obtain information on the effects target characteristics have on portal type metal detector response. A second purpose of the tests was to determine the effect of detector type and settings on the detection of the targets. Although in some cases comparison performance of different types and makes of metal detectors is found herein, that is not the primary purpose of the report. Further, because of the many variables that affect metal detector performance, the information presented can be used only in a general way. The results of these tests can show general trends in metal detection, but do little for making accurate predictions as to metal detector response to a target with a complex shape such as a handgun. The shape of an object and its specific metal content (both type and treatment) can have a significant influence on detection. Thus it should not be surprising that levels of detection for a small 100g stainless steel handgun are considerably different than for detection of the 100g stainless steel right circular cylinder that was used in these tests. 7 figs., 1 tab.

  7. Research based teaching as a model for developing complex pre-cast concrete structures

    DEFF Research Database (Denmark)

    Egholm Pedersen, Ole

    2012-01-01

    This paper describes the potentials of utilising research-based teaching as a method for developing advanced concrete structures in an architectural context. A novel technique for casting concrete elements in PETG plastic is described as a body of research that formed the basis of a case in which...... master students assisted in the development and realisation of an amorphous, catenary grid-shell. Development in many areas simultaneously was essential for the success of the case studies, which made them suitable for a research-based teaching setup, where didactic considerations on a general...... and specific level were important: On a general level, three didactic tools were used: the first being the presentation of knowledge generation as something that happens between researcher and student. The second involved presenting students with a narrow focus before presenting a wide one, and the third...

  8. Improved Safety and Cost Savings from Reductions in Cast-Saw Burns After Simulation-Based Education for Orthopaedic Surgery Residents.

    Science.gov (United States)

    Bae, Donald S; Lynch, Hayley; Jamieson, Katherine; Yu-Moe, C Winnie; Roussin, Christopher

    2017-09-06

    The purpose of this investigation was to characterize the clinical efficacy and cost-effectiveness of simulation training aimed at reducing cast-saw injuries. Third-year orthopaedic residents underwent simulation-based instruction on distal radial fracture reduction, casting, and cast removal using an oscillating saw. The analysis compared incidences of cast-saw injuries and associated costs before and after the implementation of the simulation curriculum. Actual and potential costs associated with cast-saw injuries included wound care, extra clinical visits, and potential total payment (indemnity and expense payments). Curriculum costs were calculated through time-derived, activity-based accounting methods. The researchers compared the costs of cast-saw injuries and the simulation curriculum to determine overall savings and return on investment. In the 2.5 years prior to simulation, cast-saw injuries occurred in approximately 4.3 per 100 casts cut by orthopaedic residents. For the 2.5-year period post-simulation, the injury rate decreased significantly to approximately 0.7 per 100 casts cut (p = 0.002). The total cost to implement the casting simulation was $2,465.31 per 6-month resident rotation. On the basis of historical data related to cast-saw burns (n = 6), total payments ranged from $2,995 to $25,000 per claim. The anticipated savings from averted cast-saw injuries and associated medicolegal payments in the 2.5 years post-simulation was $27,131, representing an 11-to-1 return on investment. Simulation-based training for orthopaedic surgical residents was effective in reducing cast-saw injuries and had a high theoretical return on investment. These results support further investment in simulation-based training as cost-effective means of improving patient safety and clinical outcomes. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.

  9. Thermal cooling effects in the microstructure and properties of cast cobalt-base biomedical alloys

    Science.gov (United States)

    Vega Valer, Vladimir

    Joint replacement prosthesis is widely used in the biomedical field to provide a solution for dysfunctional human body joints. The demand for orthopedic knee and hip implants motivate scientists and manufacturers to develop novel materials or to increase the life of service and efficiency of current materials. Cobalt-base alloys have been investigated by various researchers for biomedical implantations. When these alloys contain Chromium, Molybdenum, and Carbon, they exhibit good tribological and mechanical properties, as well as excellent biocompatibility and corrosion resistance. In this study, the microstructure of cast Co-Cr-Mo-C alloy is purposely modified by inducing rapid solidification through fusion welding processes and solution annealing heat treatment (quenched in water at room temperature. In particular the effect of high cooling rates on the athermal phase transformation FCC(gamma)↔HCP(epsilon) on the alloy hardness and corrosion resistance is investigated. The Co-alloy microstructures were characterized using metallography and microscopy techniques. It was found that the as cast sample typically dendritic with dendritic grain sizes of approximately 150 microm and containing Cr-rich coarse carbide precipitates along the interdendritic boundaries. Solution annealing gives rise to a refined microstructure with grain size of 30 microm, common among Co-Cr-Mo alloys after heat treating. Alternatively, an ultrafine grain structure (between 2 and 10 microm) was developed in the fusion zone for specimens melted using Laser and TIG welding methods. When laser surface modification treatments were implemented, the developed solidification microstructure shifted from dendritic to a fine cellular morphology, with possible nanoscale carbide precipitates along the cellular boundaries. In turn, the solidified regions exhibited high hardness values (461.5HV), which exceeds by almost 110 points from the alloy in the as-cast condition. The amount of developed athermal

  10. Physico-chemical characteristic of aluminum alloy castings manufactured with cores containing fly ash as a base material

    Directory of Open Access Journals (Sweden)

    A. Baliński

    2008-07-01

    Full Text Available Castings were poured from PA9 aluminum alloy. Cores in the form of standard cylindrical specimens were made from the core mixture based on fly ash of the identified chemical and granular composition. The binder for the fly ash-based core mixture was chemically modified, hydrated sodium silicate. From the ready test castings, specimens were cut out for metallographic examinations and evaluation of morphology in the examined microregions. The structure was examined under a NEOPHOT 32 metallographic microscope using metallographic polished sections etched and unetched. For the specimen surface morphology evaluation a STEREOSCAN 420 scanning electron microscope and SE1 detector were used. The X-ray microanalysis was made on an EDS LINK ISIS 300 microanalyser. The fly ash was observed to have no major effect on the structure and chemical composition of castings.

  11. Caste, social stigma and identity processes

    OpenAIRE

    Jaspal, Rusi

    2011-01-01

    Caste persists as an important socio-psychological phenomenon in many spheres of Indian social life and particularly within village contexts. It is argued that socio-psychological insights into caste identity and caste- based stigma may complement ongoing sociological and anthropological research into caste. Drawing upon identity process theory, this article explores the possible functions performed by caste-based stigma both for the higher caste groups (HCGs) and the ‘Scheduled Caste’ (SC) g...

  12. Fabrication of a zirconia MEMS-based microthruster by gel casting on PDMS soft molds

    International Nuclear Information System (INIS)

    Cheah, K H; Khiew, P S; Chin, J K

    2012-01-01

    A zirconia microelectromechanical-system-based microthruster was fabricated through a newly developed fabrication route. Gel casting of homogenously dispersed zirconia suspension on polydimethylsiloxane soft mold was utilized to replicate the geometries of microthruster design onto a ceramic layer of about 1.2 mm thick. Lamination of the patterned ceramic layer to another flat ceramic layer and subsequent sintering produced the microthruster. Characterizations on the fabricated prototype showed good shape retention on the replicated geometries and good quality of lamination. Shrinkage of about 10–15% was noted after sintering. The current fabrication route is particularly promising for the development of high-performance micropropulsion systems which require their structural material to survive in an extreme environment which is corrosive, of high temperature and highly oxidative. (paper)

  13. Phase-field modelling of as-cast microstructure evolution in nickel-based superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Warnken, N., E-mail: n.warnken@bham.ac.uk [University of Birmingham, Department of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom); Ma, D. [Foundry Institute of the RWTH-Aachen, Intzestr. 5, 52072 Aachen (Germany); Drevermann, A. [ACCESS e.V., Intzestr. 5, 52072 Aachen (Germany); Reed, R.C. [University of Birmingham, Department of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom); Fries, S.G. [SGF Consultancy, 52064 Aachen (Germany)] [ICAMS, Ruhr University Bochum, Stiepeler Strasse 129, D-44780 Bochum (Germany); Steinbach, I. [ICAMS, Ruhr University Bochum, Stiepeler Strasse 129, D-44780 Bochum (Germany)

    2009-11-15

    A modelling approach is presented for the prediction of microstructure evolution during directional solidification of nickel-based superalloys. A phase-field model is coupled to CALPHAD thermodynamic and kinetic (diffusion) databases, so that a multicomponent alloy representative of those used in industrial practice can be handled. Dendritic growth and the formation of interdendritic phases in an isothermal (2-D) cross-section are simulated for a range of solidification parameters. The sensitivity of the model to changes in the solidification input parameters is investigated. It is demonstrated that the predicted patterns of microsegregation obtained from the simulations compare well to the experimental ones; moreover, an experimentally observed change in the solidification sequence is correctly predicted. The extension of the model to 3-D simulations is demonstrated. Simulations of the homogenization of the as-cast structure during heat treatment are presented.

  14. Phase-field modelling of as-cast microstructure evolution in nickel-based superalloys

    International Nuclear Information System (INIS)

    Warnken, N.; Ma, D.; Drevermann, A.; Reed, R.C.; Fries, S.G.; Steinbach, I.

    2009-01-01

    A modelling approach is presented for the prediction of microstructure evolution during directional solidification of nickel-based superalloys. A phase-field model is coupled to CALPHAD thermodynamic and kinetic (diffusion) databases, so that a multicomponent alloy representative of those used in industrial practice can be handled. Dendritic growth and the formation of interdendritic phases in an isothermal (2-D) cross-section are simulated for a range of solidification parameters. The sensitivity of the model to changes in the solidification input parameters is investigated. It is demonstrated that the predicted patterns of microsegregation obtained from the simulations compare well to the experimental ones; moreover, an experimentally observed change in the solidification sequence is correctly predicted. The extension of the model to 3-D simulations is demonstrated. Simulations of the homogenization of the as-cast structure during heat treatment are presented.

  15. Higher Education's Caste System

    Science.gov (United States)

    Iannone, Ron

    2004-01-01

    In this article, the author discusses the history of the present caste system in higher education. He shows how the public's perception of this caste system is based on image and not usually on the quality of teaching and curriculum in colleges and universities. Finally, he discusses a model for accessibility to higher education and how higher…

  16. Quality improvement of steel cast-welded constructions

    Directory of Open Access Journals (Sweden)

    Аркадій Васильович Лоза

    2017-06-01

    Full Text Available Among the various types of metallurgical equipment there are structures which are welded compounds of a cast base and additional elements produced by casting or any other means. Such structures are called cast-welded constructions. Besides new working properties such constructions appear to be more efficient and provide better durability as compared to the similar structures produced by other industrial means. Meanwhile the advantages of the technology are not used in full. One reason is low quality of the compound products caused by lack of proper preparation of the elements to be welded and poor quality of the welds themselves. In the article the methods of quality production and the maintenance of steel cast-welded constructions have been considered. A ladle of a blast-furnace slag car is used as the subject of investigation and further testing of the mentioned above technologies. The ladle is a cast product. Under operating conditions, the ladle undergoes mechanical and thermal load, which results in deformation of its sides that deflect inside. To prevent the deflection stiffening ribs are welded onto the outer surface of the ladle. However, there may be casting defects in the base metal that could reduce the durability of the welds. It has been proved that welds on the unprepared cast base of the steel product cannot guarantee the combination’s durability and reliability. To prevent the influence of the casting defects it has been recommended to cover the base metal with one more metal layer before welding the elements on. Two-layer surfacing provides best result as the first layer serves for the weld penetration of the casting defects since this layer has a significant share of base metal therefore it is less malleable; the second layer is necessary for making the layer viscous enough. The viscous layer ensures the absence of sharp transition from the deposited metal to the base metal and increases the crack resistance of the weld. In

  17. Model Based Metal Transfer Control

    DEFF Research Database (Denmark)

    Thomsen, Jesper Sandberg

    2006-01-01

    In pulsed gas metal arc welding (pulsed GMAW) current pulses are used for detaching drops at the tip of the electrode. To obtain a high weld quality one drop should be detached for every pulse, and moreover, the amount of energy used for detachment should be kept at a minimum. Thus, each pulse mu...

  18. Casting Simulation of an Austrian Bronze Age Sword Hilt

    Science.gov (United States)

    Pola, Annalisa; Mödlinger, Marianne; Piccardo, Paolo; Montesano, Lorenzo

    2015-07-01

    Bronze Age swords with a metal hilt can be considered the peak of Bronze Age casting technologies. To reconstruct the casting techniques used more than 3000 years ago, a metal hilted sword of the Schalenknauf type from Lower Austria was studied with the aid of macroscopic analyses and simulation of mold filling and casting solidification. A three-dimensional model of the hilt was created based on optical scanner measurements performed on a hilt recently discovered during archaeological excavations. Three different configurations of the gating system were considered, two on the pommel disk and one on the knob, and the effect of its location on the formation of casting defects was investigated. Three-dimensional computed tomography was used to detect internal defects, such as gas and shrinkage porosity, which were then compared with those calculated by simulation. The best match between actual and predicted hilt quality demonstrated the location of the gating system, which turned out to be on the pommel disk.

  19. Development and application of inverse heat transfer model between liquid metal and shot sleeve in high pressure die casting process under non-shooting condition

    Directory of Open Access Journals (Sweden)

    Wen-bo Yu

    2016-07-01

    Full Text Available To predict the heat transfer behavior of A380 alloy in a shot sleeve, a numerical approach (inverse method is used and validated by high pressure die casting (HPDC experiment under non-shooting condition. The maximum difference between the measured and calculated temperature profiles is smaller than 3 ℃, which suggests that the inverse method can be used to predict the heat transfer behavior of alloys in a shot sleeve. Furthermore, the results indicate an increase in maximum interfacial heat flux density (qmax and heat transfer coefficient (hmax with an increase in sleeve filling ratio, especially at the pouring zone (S2 zone. In addition, the values of initial temperature (TIDS and maximum shot sleeve surface temperature (Tsimax at the two end zones (S2 and S10 are higher than those at the middle zone (S5. Moreover, in comparison with fluctuations in heat transfer coefficient (h with time at the two end zones (S2 and S10, 2.4-6.5 kW·m-2·K-1, 3.5-12.5 kW·m-2·K-1, respectively, more fluctuations are found at S5 zone, 2.1-14.7 kW·m-2·K-1. These differences could theoretically explain the formation of the three zones: smooth pouring zone, un-smooth middle zone and smooth zone, with different morphologies in the metal log under the non-shot casting condition. Finally, our calculations also reveal that the values of qmax and hmax cast at 680 ℃ are smaller than those cast at 660 ℃ and at 700 ℃.

  20. Machinability of cast commercial titanium alloys.

    Science.gov (United States)

    Watanabe, I; Kiyosue, S; Ohkubo, C; Aoki, T; Okabe, T

    2002-01-01

    This study investigated the machinability of cast orthopedic titanium (metastable beta) alloys for possible application to dentistry and compared the results with those of cast CP Ti, Ti-6Al-4V, and Ti-6Al-7Nb, which are currently used in dentistry. Machinability was determined as the amount of metal removed with the use of an electric handpiece and a SiC abrasive wheel turning at four different rotational wheel speeds. The ratios of the amount of metal removed and the wheel volume loss (machining ratio) were also evaluated. Based on these two criteria, the two alpha + beta alloys tested generally exhibited better results for most of the wheel speeds compared to all the other metals tested. The machinability of the three beta alloys employed was similar or worse, depending on the speed of the wheel, compared to CP Ti. Copyright 2002 Wiley Periodicals, Inc.

  1. Thick Co-based coating on cast iron by side laser cladding : Analysis of processing conditions and coating properties

    NARCIS (Netherlands)

    Ocelik, V.; de Oliveira, U.; de Boer, M.; de Hosson, J. Th. M.

    2007-01-01

    The objective of this work was to create Co-based coatings (compositionally close to Stellite 6) on compacted graphite and gray cast iron,substrates with a high power laser (2 kW continuous Nd:YAG) cladding process. The relationships between the relevant laser cladding parameters (i.e. laser beam

  2. Physics-Based Stress Corrosion Cracking Component Reliability Model cast in an R7-Compatible Cumulative Damage Framework

    International Nuclear Information System (INIS)

    Unwin, Stephen D.; Lowry, Peter P.; Layton, Robert F.; Toloczko, Mychailo B.; Johnson, Kenneth I.; Sanborn, Scott E.

    2011-01-01

    This is a working report drafted under the Risk-Informed Safety Margin Characterization pathway of the Light Water Reactor Sustainability Program, describing statistical models of passives component reliabilities. The Risk-Informed Safety Margin Characterization (RISMC) pathway is a set of activities defined under the U.S. Department of Energy Light Water Reactor Sustainability Program. The overarching objective of RISMC is to support plant life-extension decision-making by providing a state-of-knowledge characterization of safety margins in key systems, structures, and components (SSCs). The methodology emerging from the RISMC pathway is not a conventional probabilistic risk assessment (PRA)-based one; rather, it relies on a reactor systems simulation framework in which physical conditions of normal reactor operations, as well as accident environments, are explicitly modeled subject to uncertainty characterization. RELAP 7 (R7) is the platform being developed at Idaho National Laboratory to model these physical conditions. Adverse effects of aging systems could be particularly significant in those SSCs for which management options are limited; that is, components for which replacement, refurbishment, or other means of rejuvenation are least practical. These include various passive SSCs, such as piping components. Pacific Northwest National Laboratory is developing passive component reliability models intended to be compatible with the R7 framework. In the R7 paradigm, component reliability must be characterized in the context of the physical environments that R7 predicts. So, while conventional reliability models are parametric, relying on the statistical analysis of service data, RISMC reliability models must be physics-based and driven by the physical boundary conditions that R7 provides, thus allowing full integration of passives into the R7 multi-physics environment. The model must also be cast in a form compatible with the cumulative damage framework that R7

  3. Charge transport in metal oxide nanocrystal-based materials

    Science.gov (United States)

    Runnerstrom, Evan Lars

    structure. Charge transport can obviously be taken to mean the conduction of electrons, but it also refers to the motion of ions, such as lithium ions and protons. In many cases, the transport of ions is married to the motion of electrons as well, either through an external electrical circuit, or within the same material in the case of mixed ionic electronic conductors. The collective motion of electrons over short length scales, that is, within single nanocrystals, is also a subject of study as it pertains to plasmonic nanocrystals. Finally, charge transport can also be coupled to or result from the formation of defects in metal oxides. All of these modes of charge transport in metal oxides gain further complexity when considered in nanocrystalline systems, where the introduction of numerous surfaces can change the character of charge transport relative to bulk systems, providing opportunities to exploit new physical phenomena. Part I of this dissertation explores the combination of electronic and ionic transport in electrochromic devices based on nanocrystals. Colloidal chemistry and solution processing are used to fabricate nanocomposites based on electrochromic tin-doped indium oxide (ITO) nanocrystals. The nanocomposites, which are completely synthesized using solution processing, consist of ITO nanocrystals and lithium bis(trifluoromethylsulfonyl)amide (LiTFSI) salt dispersed in a lithium ion-conducting polymer matrix of either poly(ethylene oxide) (PEO) or poly(methyl methacrylate) (PMMA). ITO nanocrystals are prepared by colloidal synthetic methods and the nanocrystal surface chemistry is modified to achieve favorable nanocrystal-polymer interactions. Homogeneous solutions containing polymer, ITO nanocrystals, and lithium salt are thus prepared and deposited by spin casting. Characterization by DC electronic measurements, microscopy, and x-ray scattering techniques show that the ITO nanocrystals form a complete, connected electrode within a polymer electrolyte

  4. Genetic profile based upon 15 microsatellites of four caste groups of the eastern Indian state, Bihar.

    Science.gov (United States)

    Ashma, R; Kashyap, V K

    2003-01-01

    The formation of caste groups among the Hindu community and the practice of endogamy exert a great impact on the genetic structure and diversity of the Indian population. Allele frequency data of 15 microsatellite loci clearly portray the genetic diversity and relatedness among four socio-culturally advanced caste groups: Brahmin, Bhumihar, Rajput and Kayasth of Caucasoid ethnicity of Bihar. The study seeks to understand the impact of the man-made caste system on the genetic profile of the four major caste groups of Bihar. Computation of average heterozygosity, most frequent allele, allele diversity and coefficient of gene differentiation (Gst), along with genetic distance (DA)and principal coordinate analysis were performed to assess intra-population and inter-population diversity. The average Gst value for all the loci was 0.012 +/- 0.0033, and the level of average heterozygosity was approximately 75.5%, indicating genetic similarity and intra-population diversity. Genetic distance (DA) values and the phylogenetic tree along with other higher caste groups of India indicate the relative distance between them. The present study clearly depicts the genetic profile of these caste groups, their inherent closeness in the past, and the impact of the imposed caste system that later restricted the gene flow. The study highlights the status of Bhumihar and Kayasth in the Hindu caste system. The former was found clustering with the Brahmin group (as expected, since Bhumihar is known to be a subclass of Brahmin), whereas the distance between the Brahmin and Kayasth caste groups was found to be large. North-eastern Indian Mongoloids form a separate cluster.

  5. Thermodynamic data-base for metal fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hyung; Lee, Byung Gik; Kang, Young Ho and others

    2001-05-01

    This study is aimed at collecting useful data of thermodynamic properties of various metal fluorides. Many thermodynamic data for metal fluorides are needed for the effective development, but no report of data-base was published. Accordingly, the objective of this report is to rearrange systematically the existing thermodynamic data based on metal fluorides and is to use it as basic data for the development of pyrochemical process. The physicochemical properties of various metal fluorides and metals were collected from literature and such existing data base as HSC code, TAPP code, FACT code, JANAF table, NEA data-base, CRC handbook. As major contents of the thermodynamic data-base, the physicochemical properties such as formation energy, viscosity, density, vapor pressure, etc. were collected. Especially, some phase diagrams of eutectic molten fluorides are plotted and thermodynamic data of liquid metals are also compiled. In the future, the technical report is to be used as basic data for the development of the pyrochemical process which is being carried out as a long-term nuclear R and D project.

  6. Thermodynamic data-base for metal fluorides

    International Nuclear Information System (INIS)

    Yoo, Jae Hyung; Lee, Byung Gik; Kang, Young Ho and others

    2001-05-01

    This study is aimed at collecting useful data of thermodynamic properties of various metal fluorides. Many thermodynamic data for metal fluorides are needed for the effective development, but no report of data-base was published. Accordingly, the objective of this report is to rearrange systematically the existing thermodynamic data based on metal fluorides and is to use it as basic data for the development of pyrochemical process. The physicochemical properties of various metal fluorides and metals were collected from literature and such existing data base as HSC code, TAPP code, FACT code, JANAF table, NEA data-base, CRC handbook. As major contents of the thermodynamic data-base, the physicochemical properties such as formation energy, viscosity, density, vapor pressure, etc. were collected. Especially, some phase diagrams of eutectic molten fluorides are plotted and thermodynamic data of liquid metals are also compiled. In the future, the technical report is to be used as basic data for the development of the pyrochemical process which is being carried out as a long-term nuclear R and D project

  7. Application of 3-D numerical simulation software SRIFCAST to produce ductile iron castings

    Directory of Open Access Journals (Sweden)

    Junqing WANG

    2005-08-01

    Full Text Available Based on a method using numerical simulation equations and their solution schemes for liquid metal flows and heat transfer during mold filling and the solidification process of casting, 3-D numerical simulation software SRIFCAST was created. This includes enmeshment of casting; velocity and temperature fields calculation; displaying iso-temperature lines; velocity vectors and 3-D temperature fields on a Windows 9x operating system. SRIFCAST was applied to produce sound castings of automobile and diesel engines, and also to connect with microstructure simulation for ductile iron castings.

  8. Evaluation of thiouracil-based adhesive systems for bonding cast silver-palladium-copper-gold alloy.

    Science.gov (United States)

    Yamashita, Miyuki; Koizumi, Hiroyasu; Ishii, Takaya; Furuchi, Mika; Matsumura, Hideo

    2010-09-01

    This study aimed to evaluate the effect of adhesive systems based on a thiouracil monomer on bonding to silver-palladium-copper-gold (Ag-Pd-Cu-Au) alloy (Castwell M.C.12). Disk specimens were cast from the alloy and then air-abraded with alumina. The disks were bonded using six bonding systems selected from four primers and three luting materials. Shear bond strengths were determined both before and after thermocycling. Bond strength varied from 2.7 MPa to 32.0 MPa. Three systems based on a thiouracil monomer (MTU-6) showed durable bonding to the alloy, with post-thermocycling bond strengths of 22.4 MPa for the Metaltite (MTU-6) primer and Super-Bond, a tri-n-butylborane (TBB) initiated resin, 9.0 MPa for the Multi-Bond II resin, and 8.1 MPa for the Metaltite and Bistite II system. It can be concluded that a combination of thiouracil-based primer and TBB initiated resin is effective for bonding Ag-Pd-Cu-Au alloy.

  9. Evaluation of different finish line designs in base metal alloys

    Directory of Open Access Journals (Sweden)

    Aghandeh R

    1999-06-01

    Full Text Available This investigation was performed according to the widespread application of base metal alloys"nand few articles published about the marginal integrity of restorations fabricated by these metals."nThree standard dies of a maxillary first premolar were prepared with a flat shoulder finish line in buccal"naspect and chamfer in palatal. One of them left with no change. On the buccal aspect of the second and"nthird dies 135?and 1607 bevel were added respectively"nUsing dual wax technique, nine wax patterns were formed on each die and casting procedure of selected"nnon precious alloy was performed by centrifugal method. Marginal gaps of each copping seated on dies"nwere measured by scanning electron microscope (SEM with X500 magnification. Measurements were"ndone on three areas of marked dies on buccal aspect. Measurement son palatal aspect was done on"nmarked midpalatal point as control."nResults and statistical analysis showed no significant difference among marginal gaps in lingual aspect."nBut on the buccal aspect there were statistically significant differences among the groups (P<0.001. Flat"nshoulder had the best marginal integrity (mean 4 micron. Shoulder with 160' bevel had the most marginal"ngap (mean 26.5 micron and shoulder with 1357 bevel was between two other groups (mean 15.7 micron.

  10. Pressure distribution in centrifugal dental casting.

    Science.gov (United States)

    Nielsen, J P

    1978-02-01

    Equations are developed for liquid metal pressure in centrifugal dental casting, given the instantaneous rotational velocity, density, and certain dimensions of the casting machine and casting pattern. A "reference parabola" is introduced making the fluid pressure concept more understandable. A specially designed specimen demonstrates experimentally the reference parabola at freezing.

  11. Rapid precision casting for complex thin-walled aluminum alloy parts

    Directory of Open Access Journals (Sweden)

    Xuanpu DONG

    2004-11-01

    Full Text Available Based on Vacuum Differential Pressure Casting (VDPC precision forming technology and the Selective Laser Sintering (SLS Rapid Prototyping (RP technology, a rapid manufacturing method called Rapid Precision Casting (RPC process from computer three-dimensional solid models to metallic parts was investigated. The experimental results showed that the main advantage of RPC was not only its ability to cast higher internal quality and more accurate complex thin-walled aluminum alloy parts, but also the greatly-reduced lead time cycle from Selective Laser Sintering(SLS plastic prototyping to metallic parts. The key forming technology of RPC for complex thin-walled metallic parts has been developed for new casting production and Rapid Tooling (RT, and it is possible to rapidly manufacture high-quality and accurate metallic parts by means of RP in foundry industry.

  12. Constraint-aware interior layout exploration for pre-cast concrete-based buildings

    KAUST Repository

    Liu, Han

    2013-05-03

    Creating desirable layouts of building interiors is a complex task as designers have to manually adhere to various local and global considerations arising from competing practical and design considerations. In this work, we present an interactive design tool to create desirable floorplans by computationally conforming to such design constraints. Specifically, we support three types of constraints: (i) functional constraints such as number of rooms, connectivity among the rooms, target room areas, etc.; (ii) design considerations such as user modifications and preferences, and (iii) fabrication constraints such as cost and convenience of manufacturing. Based on user specifications, our system automatically generates multiple floor layouts with associated 3D geometry that all satisfy the design specifications and constraints, thus exposing only the desirable family of interior layouts to the user. In this work, we focus on pre-cast concrete-based constructions, which lead to interesting discrete and continuous optimization possibilities. We test our framework on a range of complex real-world specifications and demonstrate the control and expressiveness of the exposed design space relieving the users of the task of manually adhering to non-local functional and fabrication constraints. © 2013 Springer-Verlag Berlin Heidelberg.

  13. Casting evaluation of U-Zr alloy system fuel slug for SFR prepared by injection casting method

    International Nuclear Information System (INIS)

    Song, Hoon; Kim, Jong-Hwan; Kim, Ki-Hwan; Lee, Chan-Bock

    2013-01-01

    Metal fuel slugs of U-Pu-Zr alloys for Sodium-cooled Fast Reactor (SFR) have conventionally been fabricated by a vacuum injection casting method. Recently, management of minor actinides (MA) became an important issue because direct disposal of the long-lived MA can be a long-term burden for a tentative repository up to several hundreds of thousand years. In order to recycle transuranic elements (TRU) retained in spent nuclear fuel, remote fabrication capability in a shielded hot cell should be prepared. Moreover, generation of long-lived radioactive wastes and loss of volatile species should be minimized during the recycled fuel fabrication step. In order to prevent the evaporation of volatile elements such as Am, alternative fabrication methods of metal fuel slugs have been studied applying gravity casting, and improved injection casting in KAERI, including melting under inert atmosphere. And then, metal fuel slugs were examined with casting soundness, density, chemical analysis, particle size distribution and microstructural characteristics. Based on these results there is a high level of confidence that Am losses will also be effectively controlled by application of a modest amount of overpressure. A surrogate fuel slug was generally soundly cast by improved injection casting method, melted fuel material under inert atmosphere

  14. Acquisition of a Modified Suction Casting Instrument for the Fabrication of Radiation Tolerant Bulk nNanostructured Metallic Materials

    Science.gov (United States)

    2015-01-13

    may be used to turn samples in situ, without opening the chamber as shown in Fig. 2.2. Fig. 2.3 illustrates the operation principles of...without opening the chamber. Fig. 2.3. Schematics of the key component of the suction casting technique and its operation principle . Final progress...35, 8630, (1987). [24] L. F. Kiss , G. Huhn, T. Kemeny, J. Balogh, D. Kaptas, “Magnetic properties of Fe-Zr metastable phases”, J. Magn. Magn. Mater

  15. Base Metal Co-Fired Multilayer Piezoelectrics

    Directory of Open Access Journals (Sweden)

    Lisheng Gao

    2016-03-01

    Full Text Available Piezoelectrics have been widely used in different kinds of applications, from the automobile industry to consumer electronics. The novel multilayer piezoelectrics, which are inspired by multilayer ceramic capacitors, not only minimize the size of the functional parts, but also maximize energy efficiency. Development of multilayer piezoelectric devices is at a significant crossroads on the way to achieving low costs, high efficiency, and excellent reliability. Concerning the costs of manufacturing multilayer piezoelectrics, the trend is to replace the costly noble metal internal electrodes with base metal materials. This paper discusses the materials development of metal co-firing and the progress of integrating current base metal chemistries. There are some significant considerations in metal co-firing multilayer piezoelectrics: retaining stoichiometry with volatile Pb and alkaline elements in ceramics, the selection of appropriate sintering agents to lower the sintering temperature with minimum impact on piezoelectric performance, and designing effective binder formulation for low pO2 burnout to prevent oxidation of Ni and Cu base metal.

  16. Heat transfer at the mold-metal interface in permanent mold casting of aluminum alloys project. Quarterly project status report, October 1--December 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Pehlke, R.D.; Hao, S.W.

    1998-12-31

    The first series of experiments at the CMI-Tech Center was successfully conducted on October 14 and 15 with the participation of the University of Michigan team. The preliminary experimental results indicate that the die surface temperatures (or near the surface) have a close correlation with the metal pressure profiles. Considering the difference in timing of the peak die temperatures, the high melt temperature and hotter die temperature for Inter 54 might cause a longer solidification time, and the pressure would decrease more slowly than for Inter 12. The slopes of the metal pressure profiles at the low pressure setting are almost linear. This may mean that the low metal pressure couldn`t effectively keep a pressure channel opened. In other words, as temperature decreased, the solid fraction increased and the solidified shell strengthened, and the pressure, which couldn`t overcome the resistance, would drop linearly. However, at the high pressure, there are inflection points in the pressure profiles. The inflection points are at about 8,500 psi for both the low and the high melt temperature settings. This suggests that the metal pressure was sufficient enough to overcome the resistance of the solidified shell before the inflection point was reached. A preliminary microstructure analysis shows that the dendrite arms at the location near the gate are much coarser than that at the top of the casting. The influence of intensification pressure on microstructure needs further verification and study.

  17. Evaluation of the marginal fit of metal copings fabricated on three different marginal designs using conventional and accelerated casting techniques: An in vitro study

    Directory of Open Access Journals (Sweden)

    Sharad Vaidya

    2014-01-01

    Conclusion: Among the three marginal designs studied, shoulder with bevel showed the best marginal fit with conventional as well as accelerated casting techniques. Accelerated casting technique could be a vital alternative to the time-consuming conventional casting technique. The marginal fit between the two casting techniques showed no statistical difference.

  18. Caste System

    OpenAIRE

    Hoff, Karla

    2016-01-01

    In standard economics, individuals are rational actors and economic forces undermine institutions that impose large inefficiencies. The persistence of the caste system is evidence of the need for psychologically more realistic models of decision-making in economics. The caste system divides South Asian society into hereditary groups whose lowest ranks are represented as innately polluted. ...

  19. Colloidal processing of Fe-based metal ceramic composites with high content of ceramic reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Escribano, J. A.; Ferrari, B.; Alvaredo, P.; Gordo, E.; Sanchez-Herencia, A. J.

    2013-07-01

    Major difficulties of processing metal-matrix composites by means of conventional powder metallurgy techniques are the lack of dispersion of the phases within the final microstructure. In this work, processing through colloidal techniques of the Fe-based metal-matrix composites, with a high content of a ceramic reinforcement (Ti(C,N) ), is presented for the first time in the literature. The colloidal approach allows a higher control of the powders packing and a better homogenization of phases since powders are mixed in a liquid medium. The chemical stability of Fe in aqueous medium determines the dispersion conditions of the mixture. The Fe slurries were formulated by optimising their zeta potential and their rheology, in order to shape bulk pieces by slip-casting. Preliminary results demonstrate the viability of this procedure, also opening new paths to the microstructural design of fully sintered Fe-based hard metal, with 50 vol. % of Ti(C,N) in its composition. (Author)

  20. Developing technological process of obtaining giality casts

    Directory of Open Access Journals (Sweden)

    A. Issagulov

    2014-10-01

    Full Text Available The article considers the process of manufacturing castings using sand-resin forms and alloying furnace. Were the optimal technological parameters of manufacturing shell molds for the manufacture of castings of heating equipment. Using the same upon receipt of castings by casting in shell molds furnace alloying and deoxidation of the metal will provide consumers with quality products and have a positive impact on the economy in general engineering.

  1. Real-Time, Model-Based Spray-Cooling Control System for Steel Continuous Casting

    Science.gov (United States)

    Petrus, Bryan; Zheng, Kai; Zhou, X.; Thomas, Brian G.; Bentsman, Joseph

    2011-02-01

    This article presents a new system to control secondary cooling water sprays in continuous casting of thin steel slabs (CONONLINE). It uses real-time numerical simulation of heat transfer and solidification within the strand as a software sensor in place of unreliable temperature measurements. The one-dimensional finite-difference model, CON1D, is adapted to create the real-time predictor of the slab temperature and solidification state. During operation, the model is updated with data collected by the caster automation systems. A decentralized controller configuration based on a bank of proportional-integral controllers with antiwindup is developed to maintain the shell surface-temperature profile at a desired set point. A new method of set-point generation is proposed to account for measured mold heat flux variations. A user-friendly monitor visualizes the results and accepts set-point changes from the caster operator. Example simulations demonstrate how a significantly better shell surface-temperature control is achieved.

  2. Tundish Cover Flux Thickness Measurement Method and Instrumentation Based on Computer Vision in Continuous Casting Tundish

    Directory of Open Access Journals (Sweden)

    Meng Lu

    2013-01-01

    Full Text Available Thickness of tundish cover flux (TCF plays an important role in continuous casting (CC steelmaking process. Traditional measurement method of TCF thickness is single/double wire methods, which have several problems such as personal security, easily affected by operators, and poor repeatability. To solve all these problems, in this paper, we specifically designed and built an instrumentation and presented a novel method to measure the TCF thickness. The instrumentation was composed of a measurement bar, a mechanical device, a high-definition industrial camera, a Siemens S7-200 programmable logic controller (PLC, and a computer. Our measurement method was based on the computer vision algorithms, including image denoising method, monocular range measurement method, scale invariant feature transform (SIFT, and image gray gradient detection method. Using the present instrumentation and method, images in the CC tundish can be collected by camera and transferred to computer to do imaging processing. Experiments showed that our instrumentation and method worked well at scene of steel plants, can accurately measure the thickness of TCF, and overcome the disadvantages of traditional measurement methods, or even replace the traditional ones.

  3. Optimization of steel casting feeding system based on BP neural network and genetic algorithm

    Directory of Open Access Journals (Sweden)

    Xue-dan Gong

    2016-05-01

    Full Text Available The trial-and-error method is widely used for the current optimization of the steel casting feeding system, which is highly random, subjective and thus inefficient. In the present work, both the theoretical and the experimental research on the modeling and optimization methods of the process are studied. An approximate alternative model is established based on the Back Propagation (BP neural network and experimental design. The process parameters of the feeding system are taken as the input, the volumes of shrinkage cavities and porosities calculated by simulation are simultaneously taken as the output. Thus, a mathematical model is established by the BP neural network to combine the input variables with the output response. Then, this model is optimized by the nonlinear optimization function of the genetic algorithm. Finally, a feeding system optimization of a steel traveling wheel is conducted. No shrinkage cavities and porosities are induced through the optimization. Compared to the initial design scheme, the process yield is increased by 4.1% and the volume of the riser is decreased by 5.48×106 mm3.

  4. Evaluation of Surface Roughness and Tensile Strength of Base Metal Alloys Used for Crown and Bridge on Recasting (Recycling).

    Science.gov (United States)

    Agrawal, Amit; Hashmi, Syed W; Rao, Yogesh; Garg, Akanksha

    2015-07-01

    Dental casting alloys play a prominent role in the restoration of the partial dentition. Casting alloys have to survive long term in the mouth and also have the combination of structure, molecules, wear resistance and biologic compatibility. According to ADA system casting alloys were divided into three groups (wt%); high noble, Noble and predominantly base metal alloys. To evaluate the mechanical properties such as tensile strength and surface roughness of the new and recast base metal (nickel-chromium) alloys. Recasting of the base metal alloys derived from sprue and button, to make it reusable has been done. A total of 200 test specimens were fabricated using specially fabricated jig of metal and divided into two groups- 100 specimens of new alloy and 100 specimens of recast alloys, which were tested for tensile strength on universal testing machine and surface roughness on surface roughness tester. Tensile strength of new alloy showed no statistically significant difference (p-value>0.05) from recast alloy whereas new alloy had statistically significant surface roughness (Maximum and Average surface roughness) difference (p-valuetensile strength will not be affected by recasting of nickel-chromium alloy whereas surface roughness increases markedly.

  5. Mechanical and corrosion behaviors of developed copper-based metal matrix composites

    Science.gov (United States)

    Singh, Manvandra Kumar; Gautam, Rakesh Kumar; Prakash, Rajiv; Ji, Gopal

    2018-03-01

    This work investigates mechanical properties and corrosion resistances of cast copper-tungsten carbide (WC) metal matrix composites (MMCs). Copper matrix composites have been developed by stir casting technique. Different sizes of micro and nano particles of WC particles are utilized as reinforcement to prepare two copper-based composites, however, nano size of WC particles are prepared by high-energy ball milling. XRD (X-rays diffraction) characterize the materials for involvement of different phases. The mechanical behavior of composites has been studied by Vickers hardness test and compression test; while the corrosion behavior of developed composites is investigated by electrochemical impedance spectroscopy in 0.5 M H2SO4 solutions. The results show that hardness, compressive strength and corrosion resistance of copper matrix composites are very high in comparison to that of copper matrix, which attributed to the microstructural changes occurred during composite formation. SEM (Scanning electron microscopy) reveals the morphology of the corroded surfaces.

  6. 21 CFR 872.3710 - Base metal alloy.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that is...

  7. Science of Casting and Solidification: ASM Handbook Contributions — Honoring Professor Doru Michael Stefanescu

    Science.gov (United States)

    Lupulescu, Afina; Henry, Scott; Marken, Karen; Lampman, Steven

    Many of the metal casting processes are still empirical in nature. Many others are deeply rooted in mathematics and therefore, suitable for modeling. Science of casting and solidification is a major technical asset for foundry operations and of extreme importance in understanding different length scales microstructural changes and evolution as well as developing new processes and materials. In his attempt to describe combinations of solidification theory, research results and industrial practice, Professor Doru Michael Stefanescu (ASM Fellow, 1997) has made tremendous contributions to the field. Many of his views on casting and solidification are valued as important impacts within professional environments such as TMS and ASM International. He has written many articles for the ASM Handbook series on subjects including basic metallurgy of cast iron, compacted graphite irons, solidification, thermodynamic properties of iron-base alloys, and computational modeling. He was also Volume Chair for Volume 15: Casting, of the 9th Edition Metals Handbook.

  8. Investigation of Elastic Deformation Mechanism in As-Cast and Annealed Eutectic and Hypoeutectic Zr–Cu–Al Metallic Glasses by Multiscale Strain Analysis

    Directory of Open Access Journals (Sweden)

    Hiroshi Suzuki

    2016-01-01

    Full Text Available Elastic deformation behaviors of as-cast and annealed eutectic and hypoeutectic Zr–Cu–Al bulk metallic glasses (BMG were investigated on a basis of different strain-scales, determined by X-ray scattering and the strain gauge. The microscopic strains determined by Direct-space method and Reciprocal-space method were compared with the macroscopic strain measured by the strain gauge, and the difference in the deformation mechanism between eutectic and hypoeutectic Zr–Cu–Al BMGs was investigated by their correlation. The eutectic Zr50Cu40Al10 BMG obtains more homogeneous microstructure by free-volume annihilation after annealing, improving a resistance to deformation but degrading ductility because of a decrease in the volume fraction of weakly-bonded regions with relatively high mobility. On the other hand, the as-cast hypoeutectic Zr60Cu30Al10 BMG originally has homogeneous microstructure but loses its structural and elastic homogeneities because of nanocluster formation after annealing. Such structural changes by annealing might develop unique mechanical properties showing no degradations of ductility and toughness for the structural-relaxed hypoeutectic Zr60Cu30Al10 BMGs.

  9. Triple Plate Mold Final Report: Optimization of the Mold Design and Casting Parameters for a Thin U-10mo Fuel Casting

    Energy Technology Data Exchange (ETDEWEB)

    Aikin, Jr., Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-04

    This work describes the experiments and modeling that have been performed to improve and try to optimize the simultaneous casting of three plates of U-10wt%Mo in a single coil vacuum induction melting (VIM) furnace. The plates of interest are 280 mm wide by 203 mm tall by 5 mm thick (11" x 8" x 0.2"). The initial mold design and processing parameters were supplied by Y-12. The mold and casting cavity were instrumented with a number of thermocouples, and the casting performed to determine the thermal history of the mold and casting. The resulting cast plates were radiographed and numerous defects identified. Metallography was performed to help identify the nature of the radiographically observed defects. This information was then used to validate a mold filling and solidification model of that casting. Based on the initial casting, good casting design practice, and process simulation of several design alternatives, a revised design was developed with the goal of minimizing casting defects such as porosity. The redesigned mold had a larger hot-top and had its long axis along the horizontal direction. These changes were to try to develop a strong thermal gradient conducive to good feeding and minimization of micro- and macroporosity in the cast plates. An instrumented casting was then performed with the revised mold design and a linear distributor. This design yielded cast plates with significantly less radiographically identified defects. Unfortunately, there was significant variation in plate weight and metal content in their hot-tops. Fluid flow simulations were then performed on this mold/distributor design. This helped identify the issue with this linear distributor design. Additional simulations were then performed on candidate distributor redesigns and a preferred distributor annular design was identified. This improved annular design was used to produce a third instrumented casting with favorable results. These refined designs and their radiographic

  10. Contact Pressure and Sliding Velocity Maps of the Friction, Wear and Emission from a Low-Metallic/Cast-Iron Disc Brake Contact Pair

    Directory of Open Access Journals (Sweden)

    J. Wahlström

    2017-12-01

    Full Text Available Particulate matter with an aerodynamic diameter less than 10 µm (PM10 from car disc brakes contribute up to 50% of the total non-exhaust emissions from road transport in the EU. These emissions come from the wear of the pad and rotor contact surfaces. Yet few studies have reported contact pressures and offered sliding speed maps of the friction, wear, and particle emission performance of disc brake materials at a material level. Such maps are crucial to understanding material behaviour at different loads and can be used as input data to numerical simulations. A low-metallic pad and grey cast-iron rotor contact pair commonly used today in passenger car disc brakes was studied using a pin-on-disc tribometer at twelve contact pressure and sliding speed combinations. Maps of the coefficient of friction, specific wear rate, particle number, and mass rate are presented and discussed.

  11. Probabilistic thermal-mechanical fatigue criterion for lost foam casting aluminium alloys based on 2D/3D porosities distribution

    Directory of Open Access Journals (Sweden)

    Szmytka F.

    2014-06-01

    Full Text Available A thermal-mechanical fatigue criterion is proposed to assess the lifetime of aluminium alloys produced by a lost foam casting process. It is based on the observed size distribution of pores sizes which are considered as critical zones for cracks initiation and gives reliable results when both pores sizes are identified from X-ray tomography and mean stresses are taken into account. Lifetime probabilities are finally successfully compared with experimental results.

  12. Ta-based amorphous metal thin films

    Energy Technology Data Exchange (ETDEWEB)

    McGlone, John M., E-mail: mcglone@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-5501 (United States); Olsen, Kristopher R. [Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003 (United States); Stickle, William F.; Abbott, James E.; Pugliese, Roberto A.; Long, Greg S. [Hewlett-Packard Company, Corvallis, OR, 97333 (United States); Keszler, Douglas A. [Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003 (United States); Wager, John F. [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-5501 (United States)

    2015-11-25

    With their lack of grains and grain boundaries, amorphous metals are known to possess advantageous mechanical properties and enhanced chemical stability relative to crystalline metals. Commonly, however, they exhibit poor high-temperature stability because of their metastable nature. Here, we describe two new Ta-based ternary metal thin films that retain thermal stability to 600 °C and above. The new thin-film compositions, Ta{sub 2}Ni{sub 2}Si{sub 1} and Ta{sub 2}Mo{sub 2}Si{sub 1}, are amorphous, exhibiting ultra-smooth surfaces (<0.4 nm) and resistivities typical of amorphous metals (224 and 177 μΩ cm, respectively). - Highlights: • New Ta-based amorphous metals were sputter deposited from individual targets. • As-deposited amorphous structure was confirmed through diffraction techniques. • Electrical and surface properties were characterized and possess smooth surfaces. • No evidence of crystallization up to 600 °C (TaNiSi) and 800 °C (TaMoSi). • Ultra-smooth surfaces remained unchanged up to crystallization temperature.

  13. Development Program for Natural Aging Aluminum Casting Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Geoffrey K. Sigworth

    2004-05-14

    A number of 7xx aluminum casting alloys are based on the ternary Al-Zn-Mg system. These alloys age naturally to high strength at room temperature. A high temperature solution and aging treatment is not required. Consequently, these alloys have the potential to deliver properties nearly equivalent to conventional A356-T6 (Al-Si-Mg) castings, with a significant cost saving. An energy savings is also possible. In spite of these advantages, the 7xx casting alloys are seldom used, primarily because of their reputation for poor castibility. This paper describes the results obtained in a DOE-funded research study of these alloys, which is part of the DOE-OIT ''Cast Metals Industries of the Future'' Program. Suggestions for possible commercial use are also given.

  14. Hair casts

    OpenAIRE

    Sweta S Parmar; Kirti S Parmar; Bela J Shah

    2014-01-01

    Hair casts or pseudonits are circumferential concretions, which cover the hair shaft in such a way that, it could be easily removed. They are thin, cylindrical, and elongated in length. We present an unusual case of an 8-year-old girl presenting with hair casts. Occurrence of these is unusual, and they may have varied associations. This patient was suffering from developmental delay. It is commonly misdiagnosed as and very important to differentiate from pediculosis capitis.

  15. MicroCast: Additive Manufacturing of Metal Plus Insulator Structures with Sub-mm Features, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel method for fabricating electronics containing both metals and polymers can be adapted to quickly and effectively produce micro-well sensors. The process...

  16. GPU-based multi-volume ray casting within VTK for medical applications.

    Science.gov (United States)

    Bozorgi, Mohammadmehdi; Lindseth, Frank

    2015-03-01

    Multi-volume visualization is important for displaying relevant information in multimodal or multitemporal medical imaging studies. The main objective with the current study was to develop an efficient GPU-based multi-volume ray caster (MVRC) and validate the proposed visualization system in the context of image-guided surgical navigation. Ray casting can produce high-quality 2D images from 3D volume data but the method is computationally demanding, especially when multiple volumes are involved, so a parallel GPU version has been implemented. In the proposed MVRC, imaginary rays are sent through the volumes (one ray for each pixel in the view), and at equal and short intervals along the rays, samples are collected from each volume. Samples from all the volumes are composited using front to back α-blending. Since all the rays can be processed simultaneously, the MVRC was implemented in parallel on the GPU to achieve acceptable interactive frame rates. The method is fully integrated within the visualization toolkit (VTK) pipeline with the ability to apply different operations (e.g., transformations, clipping, and cropping) on each volume separately. The implemented method is cross-platform (Windows, Linux and Mac OSX) and runs on different graphics card (NVidia and AMD). The speed of the MVRC was tested with one to five volumes of varying sizes: 128(3), 256(3), and 512(3). A Tesla C2070 GPU was used, and the output image size was 600 × 600 pixels. The original VTK single-volume ray caster and the MVRC were compared when rendering only one volume. The multi-volume rendering system achieved an interactive frame rate (> 15 fps) when rendering five small volumes (128 (3) voxels), four medium-sized volumes (256(3) voxels), and two large volumes (512(3) voxels). When rendering single volumes, the frame rate of the MVRC was comparable to the original VTK ray caster for small and medium-sized datasets but was approximately 3 frames per second slower for large datasets. The

  17. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Lost Foam Thin Wall - Feasibility of Producing Lost Foam Castings in Aluminum and Magnesium Based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fasoyinu, Yemi [CanmetMATERIALS; Griffin, John A. [University of Alabama - Birmingham

    2014-03-31

    With the increased emphasis on vehicle weight reduction, production of near-net shape components by lost foam casting will make significant inroad into the next-generation of engineering component designs. The lost foam casting process is a cost effective method for producing complex castings using an expandable polystyrene pattern and un-bonded sand. The use of un-bonded molding media in the lost foam process will impose less constraint on the solidifying casting, making hot tearing less prevalent. This is especially true in Al-Mg and Al-Cu alloy systems that are prone to hot tearing when poured in rigid molds partially due to their long freezing range. Some of the unique advantages of using the lost foam casting process are closer dimensional tolerance, higher casting yield, and the elimination of sand cores and binders. Most of the aluminum alloys poured using the lost foam process are based on the Al-Si system. Very limited research work has been performed with Al-Mg and Al-Cu type alloys. With the increased emphasis on vehicle weight reduction, and given the high-strength-to-weight-ratio of magnesium, significant weight savings can be achieved by casting thin-wall (≤ 3 mm) engineering components from both aluminum- and magnesium-base alloys.

  18. Cast iron - a predictable material

    Directory of Open Access Journals (Sweden)

    Jorg C. Sturm

    2011-02-01

    Full Text Available High strength compacted graphite iron (CGI or alloyed cast iron components are substituting previously used non-ferrous castings in automotive power train applications. The mechanical engineering industry has recognized the value in substituting forged or welded structures with stiff and light-weight cast iron castings. New products such as wind turbines have opened new markets for an entire suite of highly reliable ductile iron cast components. During the last 20 years, casting process simulation has developed from predicting hot spots and solidification to an integral assessment tool for foundries for the entire manufacturing route of castings. The support of the feeding related layout of the casting is still one of the most important duties for casting process simulation. Depending on the alloy poured, different feeding behaviors and self-feeding capabilities need to be considered to provide a defect free casting. Therefore, it is not enough to base the prediction of shrinkage defects solely on hot spots derived from temperature fields. To be able to quantitatively predict these defects, solidification simulation had to be combined with density and mass transport calculations, in order to evaluate the impact of the solidification morphology on the feeding behavior as well as to consider alloy dependent feeding ranges. For cast iron foundries, the use of casting process simulation has become an important instrument to predict the robustness and reliability of their processes, especially since the influence of alloying elements, melting practice and metallurgy need to be considered to quantify the special shrinkage and solidification behavior of cast iron. This allows the prediction of local structures, phases and ultimately the local mechanical properties of cast irons, to asses casting quality in the foundry but also to make use of this quantitative information during design of the casting. Casting quality issues related to thermally driven

  19. Making Artificial Heart Components – Selected Aspects Of Casting Technology

    Directory of Open Access Journals (Sweden)

    Sobczak J.J.

    2015-09-01

    Full Text Available This study shown possibilities of Rapid Prototyping techniques (RP and metal casting simulation software (MCSS, including non inertial reference systems. RP and MCSS have been used in order to design and produce essential elements for artificial heart. Additionally it has been shown possibilities of Fused Deposition Modeling (FDM technique and DodJet technology using prototyped elements of rotodynamic pump. MAGMASOFT® software allowed to verify the cast kit heart valves model. Optical scanner Atos III enabled size verification of experimental elements supplied by rapid prototyping together with metal casting elements. Due to the selection of ceramic materials and assessment of molten metal – ceramic reactivity at high temperatures together with pattern materials selection model it was possible to design, manufacture a ceramic mould for titanium based alloys. The casting structure modification has been carried out by means of high isostatic pressure technique (HIP. The quality assessment of the casting materials has been performed using X-ray fluorescence (XRF, ARL 4460 Optical Emission Spectrometer, metallographic techniques and X-ray computed tomography.

  20. Solidification and casting

    CERN Document Server

    Cantor, Brian

    2002-01-01

    INDUSTRIAL PERSPECTIVEDirect chillcasting of aluminium alloysContinuous casting of aluminium alloysContinuous casting of steelsCastings in the automotive industryCast aluminium-silicon piston alloysMODELLING AND SIMULATIONModelling direct chill castingMold filling simulation of die castingThe ten casting rulesGrain selection in single crystal superalloy castingsDefects in aluminium shape castingPattern formation during solidificationPeritectic solidificationSTRUCTURE AND DEFECTSHetergeneous nucleation in aluminium alloysCo

  1. Machinability and Tribological Properties of Stir Cast LM6/SiC/GR Hybrid Metal Matrix Composite

    Directory of Open Access Journals (Sweden)

    Tahat Montasser S.

    2016-01-01

    Full Text Available Analysis on machining characteristics in turning of LM6/SiC/Gr hybrid metal matrix composites is made of (Al-11.8%Si/SiC/Gr hybrid metal matrix composites. The process performances such as porosity, wear rate of the composites, tool wear, tool life, specific modulus, surface roughness and material removal rate with equal weight fraction of SiC and Gr particulates of 3%, 7%, 10% and 13% reinforcement are investigated. This experimental analysis and test results on the machinability of Al/SiCMMC will provide essential guidelines to the manufacturers. Hybird metal matrix composites reinforced with graphite particles posses better machinability and tribological properties.

  2. Vacuum brazing of TiAl48Cr2Nb2 casting alloys based on TiAl (γ intermetallic compound

    Directory of Open Access Journals (Sweden)

    Z. Mirski

    2010-01-01

    Full Text Available A growing interest in modern engineering materials characterised by increasingly better operational parameters combined with a necessity to obtain joints of such materials representing good operation properties create important research and technological problems of today. These issues include also titanium joints or joints of titanium alloys based on intermetallic compounds. Brazing is one of the basic and sometimes even the only available welding method used for joining the aforesaid materials in production of various systems, heat exchangers and, in case of titanium alloys based on intermetallic compounds, turbine elements and space shuttle plating etc. This article presents the basic physical and chemical properties as well as the brazability of alloys based on intermetallic compounds. The work also describes the principle and mechanisms of diffusion-brazed joint formation as well as reveals the results of metallographic and strength tests involving diffusion-welded joints of TiAl48Cr3Nb2 casting alloy based on TiAl (γ phase with the use of sandwich-type layers of silver-based parent metal (grade B- Ag72Cu-780 (AG 401 and copper (grade CF032A. Structural examination was performed by means of light microscopy, scanning electron microscope (SEM and energy dispersion spectrometer (EDS. Furthermore, the article reveals the results of shear strength tests involving the aforementioned joints.

  3. Lead Acetate Based Hybrid Perovskite Through Hot Casting for Planar Heterojunction Solar Cells

    Science.gov (United States)

    Shin, Gwang Su; Choi, Won-Gyu; Na, Sungjae; Gökdemir, Fatma Pinar; Moon, Taeho

    2018-03-01

    Flawless coverage of a perovskite layer is essential in order to achieve realistic high-performance planar heterojunction solar cells. We present that high-quality perovskite layers can be efficiently formed by a novel hot casting route combined with MAI (CH3NH3I) and non-halide lead acetate (PbAc2) precursors under ambient atmosphere. Casting temperature is controlled to produce various perovskite microstructures and the resulted crystalline layers are found to be comprised of closely packed islands with a smooth surface structure. Lead acetate employed perovskite solar cells are fabricated using PEDOT:PSS and PCBM charge transporting layers, in p-i-n type planar architecture. Especially, the outstanding open-circuit voltage demonstrates the high crystallinity and dense coverage of the produced perovskite layers by this facile route.

  4. Repair welding of cast iron coated electrodes

    Science.gov (United States)

    Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.

    2017-08-01

    Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.

  5. Roles of Co element in Fe-based bulk metallic glasses utilizing industrial FeB alloy as raw material

    Directory of Open Access Journals (Sweden)

    Shouyuan Wang

    2017-08-01

    Full Text Available A series of Fe-based bulk metallic glasses were fabricated by a conventional copper mold casting method using a kind of Fe-B industrial raw alloy. It is found that Fe-B-Y-Nb bulk metallic glass with 3 at% of Co addition possesses the best glass forming ability, thermal stability, hardness, magnetic property and anti-corrosion property. The hardness test result indicates a synchronically trend with glass-forming ability parameters. The excellent glass-forming ability and a combination of good mechanical and functional properties suggest that the alloys in this work might be good candidates for commercial use.

  6. Effect of Some Parameters on the Cast Component Properties in Hot Chamber Die Casting

    Science.gov (United States)

    Singh, Rupinder; Singh, Harvir

    2016-04-01

    Hot chamber die casting process is designed to achieve high dimensional accuracy for small products by forcing molten metal under high pressure into reusable moulds, called dies. The present research work is aimed at study of some parameters (as a case study of spring adjuster) on cast component properties in hot chamber die casting process. Three controllable factors of the hot chamber die casting process (namely: pressure at second phase, metal pouring temperature and die opening time) were studied at three levels each by Taguchi's parametric approach and single-response optimization was conducted to identify the main factors controlling surface hardness, dimensional accuracy and weight of the casting. Castings were produced using aluminium alloy, at recommended parameters through hot chamber die casting process. Analysis shows that in hot chamber die casting process the percentage contribution of second phase pressure, die opening time, metal pouring temperature for surface hardness is 82.48, 9.24 and 6.78 % respectively. While in the case of weight of cast component the contribution of second phase pressure is 94.03 %, followed by metal pouring temperature and die opening time (4.58 and 0.35 % respectively). Further for dimensional accuracy contribution of die opening time is 76.97 %, metal pouring temperature is 20.05 % and second phase pressure is 1.56 %. Confirmation experiments were conducted at an optimal condition showed that the surface hardness, dimensional accuracy and weight of the castings were improved significantly.

  7. Heat transfer at the mold-metal interface in permanent mold casting of aluminum alloys project. Annual project status report for the period October 1, 1997 to September 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Pehlke, R.D.; Hao, S.W.

    1998-09-30

    In the first year of this three-year project, substantial progress has been achieved. This project on heat transfer coefficients in metal permanent mold casting is being conducted in three areas. They are the theoretical study at the University of Michigan, the experimental investigations of squeeze casting and semi-solid casting at CMI-Tech Center, and the experimental investigation of low pressure permanent mold casting at Amcast Automotive. U-M did an initial geometry which was defined for ProCAST to solve, and then a geometry half the size was defined and solved using the same boundary conditions. A conceptual mold geometry was examined and is represented as an axisymmetric element.Furthermore, the influences of the localized heat transfer coefficients on the casting process were carefully studied. The HTC Evaluator has been proposed and initially developed by the U-M team. The Reference and the Database Modules of the HTC Evaluator have been developed, and extensively tested. A series of technical barriers have been cited and potential solutions have been surveyed. At the CMI-Tech Center, the Kistler direct cavity pressure measurement system has been purchased and tested. The calibrations has been evaluated. The probe is capable of sensing a light finger pressure. The experimental mold has been designed and modified. The experimental mold has been designed and modified. The first experiment is scheduled for October 14, 1998. The geometry of the experimental hockey-puck casting has been given to the U-M team for numerical analysis.

  8. Analysis of four dental alloys following torch/centrifugal and induction/ vacuum-pressure casting procedures.

    Science.gov (United States)

    Thompson, Geoffrey A; Luo, Qing; Hefti, Arthur

    2013-12-01

    Previous studies have shown casting methodology to influence the as-cast properties of dental casting alloys. It is important to consider clinically important mechanical properties so that the influence of casting can be clarified. The purpose of this study was to evaluate how torch/centrifugal and inductively cast and vacuum-pressure casting machines may affect the castability, microhardness, chemical composition, and microstructure of 2 high noble, 1 noble, and 1 base metal dental casting alloys. Two commonly used methods for casting were selected for comparison: torch/centrifugal casting and inductively heated/ vacuum-pressure casting. One hundred and twenty castability patterns were fabricated and divided into 8 groups. Four groups were torch/centrifugally cast in Olympia (O), Jelenko O (JO), Genesis II (G), and Liberty (L) alloys. Similarly, 4 groups were cast in O, JO, G, and L by an inductively induction/vacuum-pressure casting machine. Each specimen was evaluated for casting completeness to determine a castability value, while porosity was determined by standard x-ray techniques. Each group was metallographically prepared for further evaluation that included chemical composition, Vickers microhardness, and grain analysis of microstructure. Two-way ANOVA was used to determine significant differences among the main effects. Statistically significant effects were examined further with the Tukey HSD procedure for multiple comparisons. Data obtained from the castability experiments were non-normal and the variances were unequal. They were analyzed statistically with the Kruskal-Wallis rank sum test. Significant results were further investigated statistically with the Steel-Dwass method for multiple comparisons (α=.05). The alloy type had a significant effect on surface microhardness (P<.001). In contrast, the technique used for casting did not affect the microhardness of the test specimen (P=.465). Similarly, the interaction between the alloy and casting

  9. Computational chemistry and metal-based radiopharmaceuticals

    International Nuclear Information System (INIS)

    Neves, M.; Fausto, R.

    1998-01-01

    Computer-assisted techniques have found extensive use in the design of organic pharmaceuticals but have not been widely applied on metal complexes, particularly on radiopharmaceuticals. Some examples of computer generated structures of complexes of In, Ga and Tc with N, S, O and P donor ligands are referred. Besides parameters directly related with molecular geometries, molecular properties of the predicted structures, as ionic charges or dipole moments, are considered to be related with biodistribution studies. The structure of a series of oxo neutral Tc-biguanide complexes are predicted by molecular mechanics calculations, and their interactions with water molecules or peptide chains correlated with experimental data of partition coefficients and percentage of human protein binding. The results stress the interest of using molecular modelling to predict molecular properties of metal-based radiopharmaceuticals, which can be successfully correlated with results of in vitro studies. (author)

  10. Evaluation of mechanical properties of recasted dental base metal alloys for considering their reusability in dentistry and engineering field

    Directory of Open Access Journals (Sweden)

    Nandish Bantarahalli Thopegowda

    2014-01-01

    Full Text Available Background: Base metal casting alloys are extensively used in dentistry to fabricate many oral appliances and a huge amount is wasted in the form of sprues and buttons during the casting procedure. Recycling and reusing these alloys by clean technologies may save our natural resources from being depleted and as well reduce the cost of the treatment of the patients. Objectives: To study the mechanical properties of recasted dental base metal alloys, and explore possible ways to recycle and reuse in dentistry and other fields of science and technology. Materials and Methods: Two beryllium-free Cobalt-Chromium (Co-Cr dental casting alloys, Wironit and Wirobond-C, were used for this study. Six groups of specimen (melted once, twice, five, ten, fifteen and twenty times per each alloy were casted. The tensile strength and hardness of these samples were measured by using universal testing machine and Vickers hardness number (VHN tester. Results: Tensile strength decreased from 850 MPa to 777 MPa after 5 th recasting and to 674 MPa at the end of 20 th recasting procedure for the Wironit samples. For Wirobond-C samples, tensile strength decreased from 720 MPa to 678 MPa after 5 th recasting and further reduced to 534 MPa at the end of 20 th recasting procedure. Hardness decreased from 380VHN to 335VHN at the end of 20 th recasting for Wironit samples and 328VHN to 247VHN for Wirobond-C samples after 20 th recasting procedure. The slight decrease in their mechanical properties will not have any impact on the clinical performance for dental applications. Conclusion: There is no major degradation in the mechanical properties after recycling, and hence, the left over alloys after casting procedures can be reused in dentistry with a condition to satisfy cytotoxicity tests.

  11. The evaluation of working casts prepared from digital impressions.

    Science.gov (United States)

    Hwang, Y C; Park, Y S; Kim, H K; Hong, Y S; Ahn, J S; Ryu, J J

    2013-01-01

    The aim of this study is to evaluate the reproducibility of working casts of a digital impression system by comparing them with the original, virtual, and rapid prototyping casts. A total of 54 cast sets in clinically stable occlusion were used. They were scanned by an iTero intraoral scanner and converted into STL format virtual casts. Rapid prototyping casts and polyurethane casts were fabricated from the iTero milling system based on the virtual casts. Several horizontal and vertical measurements were performed from the four types of casts, that is, original stone casts, virtual casts, rapid prototyping casts, and polyurethane casts of iTero. Measurement error, intraclass correlation coefficient (ICC), and differences among the casts were calculated and compared. Casts from iTero milling machines exhibited greater dimensional differences and lower ICC values than did other casts. In addition, many of the measurements of the iTero working casts showed statistically significant differences in comparison to the three other types of casts. In contrast, there were no statistically significant differences between the virtual and original casts. Virtual casts made by the iTero intraoral scanner exhibited excellent reproducibility. However, the casts from the iTero milling machine showed greater dimensional differences and lower reproducibility compared to other types of casts.

  12. [Effect of the change in sulphate and dissolved oxygen mass concentration on metal release in old cast iron distribution pipes].

    Science.gov (United States)

    Wu, Yong-li; Shi, Bao-you; Sun, Hui-fang; Zhang, Zhi-huan; Gu, Jun-nong; Wang, Dong-sheng

    2013-09-01

    To understand the processes of corrosion by-product release and the consequent "red water" problems caused by the variation of water chemical composition in drinking water distribution system, the effect of sulphate and dissolved oxygen (DO) concentration on total iron release in corroded old iron pipe sections historically transporting groundwater was investigated in laboratory using small-scale pipe section reactors. The release behaviors of some low-level metals, such as Mn, As, Cr, Cu, Zn and Ni, in the process of iron release were also monitored. The results showed that the total iron and Mn release increased significantly with the increase of sulphate concentration, and apparent red water occurred when sulphate concentration was above 400 mg x L(-1). With the increase of sulfate concentration, the effluent concentrations of As, Cr, Cu, Zn and Ni also increased obviously, however, the effluent concentrations of these metals were lower than the influent concentrations under most circumstances, which indicated that adsorption of these metals by pipe corrosion scales occurred. Increasing DO within a certain range could significantly inhibit the iron release.

  13. THE WEAR RESISTANCE INCREASE OF CHROMIUM CAST IRON

    Directory of Open Access Journals (Sweden)

    V. M. Ilyushenko

    2016-01-01

    Full Text Available The article presents the results of the tests on the wear resistance of chromium cast irons of different compositions obtained in sand forms. It has been shown that increase of the wear resistance and mechanical properties of the cast iron is possible to obtain using the casting in metal molds. A further increase in wear resistance of parts produced in metal molds is possible by changing the technological parameters of casting and alloying by titanium.

  14. Colour Metallography of Cast Iron - White Cast Iron (Ⅱ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2011-11-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  15. Effect of Repeated Firings of Porcelain on Bond Strength of Two Base Metal Alloys

    Directory of Open Access Journals (Sweden)

    Gerami Panah F

    2001-05-01

    Full Text Available The formation of oxides on the surface of the metal are proven to contribute to the formation of strong bonding. However, The base metal alloys are expected to exhibit more oxidation than high gold alloys, increase in oxide layer thickness due to repeated firing in them can reduce the bond strength. The aim of this study was to compare the effect of repeated porcelain firing on the bond strength of two base metal alloys (Minalux and Verabond II. Sixteen metal plates (20x5x0.5 from each alloy were cast and prepared according to the manufacturers' instruction. Porcelain with uniform thickness (Imm was applied on the middle one third of metal plates. After this stage, each alloy group divided to three subgroups. Group I was fired for the second time to form the final glaze, group II and III were fired two and four more times respectively. Specimens were subjected to 3-point flexural test in a digital tritest machine. Results showed no significant differences between bond strength of two alloys. Also results showed repeated firing had no significant effect on bond strength. Due to these findings, this study support similarity of two alloys (Minalux and Verabond II in their bond strength with porcelain.

  16. Melt Cast High Explosives

    Directory of Open Access Journals (Sweden)

    Stanisław Cudziło

    2014-12-01

    Full Text Available [b]Abstract[/b]. This paper reviews the current state and future developments of melt-cast high explosives. First the compositions, properties and methods of preparation of trinitrotoluene based (TNT conventional mixtures with aluminum, hexogen (RDX or octogen (HMX are described. In the newer, less sensitive explosive formulations, TNT is replaced with dinitroanisole (DNANDNANDNAN and nitrotriazolone (NTONTONTO, nitroguanidine (NG or ammonium perchlorate (AP are the replacement for RDRDX and HMX. Plasticized wax or polymer-based binder systems for melt castable explosives are also included. Hydroxyl terminated polybutadiene (HPTB is the binder of choice, but polyethylene glycol, and polycaprolactone with energetic plasticizers are also used. The most advanced melt-cast explosives are compositions containing energetic thermoplastic elastomers and novel highly energetic compounds (including nitrogen rich molecules in whose particles are nanosized and practically defect-less.[b]Keywords[/b]: melt-cast explosives, detonation parameters

  17. Colour Metallography of Cast Iron

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2009-05-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron.Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron , uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditionalmaterials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  18. Manufacturing of aluminum composite material using stir casting process

    International Nuclear Information System (INIS)

    Jokhio, M.H.; Panhwar, M.I.; Unar, M.A.

    2011-01-01

    Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7 xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of 'AI/sub 2/O/sub 3/' particles in 7 xxx aluminum matrix. The 7 xxx series aluminum matrix usually contains Cu-Zn-Mg; Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha 'AI/sub 2/O/sub 3/' particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% 'AI/sub 2/O/sub 3/' particles reinforced in aluminum matrix. (author)

  19. Assessment of heavy metal content and DNA damage in Hypsiboas faber (anuran amphibian) in coal open-casting mine.

    Science.gov (United States)

    Zocche, Jairo José; Damiani, Adriani Paganini; Hainzenreder, Giana; Mendonça, Rodrigo Ávila; Peres, Poliana Bernardo; Santos, Carla Eliete Iochims Dos; Debastiani, Rafaela; Dias, Johnny Ferraz; Andrade, Vanessa Moraes de

    2013-07-01

    The aims of the study were to determine the heavy metal content in the tissues of Hypsiboas faber from a coal mining area and to compare the DNA damage in the blood cells of these animals with that of animals living in an unpolluted area. The heavy metal content was detected according to the technique of Particle-Induced X-ray Emission (PIXE) and the DNA damage was assessed by the Comet assay. Our results reveal that the specimens of H. faber collected from the coal mining area exhibited elements of order Fe>Cu>Al>Zn>Rb>Mn>Br, independently of the organ. The values of Comet assay parameters (DNA damage index and DNA damage frequency) were significantly higher in specimens collected from the coal mining area than in the reference animals. Our study concludes that the coal mining residues are genotoxic to amphibians and may have adverse effects on soil, water, vegetation and wild animals. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Three-dimensional finite element analysis of glass fiber and cast metal posts with different alloys for reconstruction of teeth without ferrule.

    Science.gov (United States)

    Verri, Fellippo Ramos; Okumura, Marlice Hayumi Theles; Lemos, Cleidiel Aparecido Araujo; Almeida, Daniel Augusto de Faria; de Souza Batista, Victor Eduardo; Cruz, Ronaldo Silva; Oliveira, Hiskell Francine Fernandes; Pellizzer, Eduardo Piza

    2017-11-01

    The aim of this study was to evaluate different materials for restoration of teeth without ferrule by three-dimensional (3D) finite element analysis (FEA). Five models simulating the maxillary central incisor and surrounding bone were simulated according to the type of post: glass fibre post (GFP) or cast metal post (CMP) with different alloys such as gold (Au), silver-palladium (AgPd), copper-aluminum (CuAl) and nickel-chromium (NiCr). Models were designed using Invesalius and Rhinoceros. FEAs were made using FEMAP and NeiNastran, with an applied axial force of 100 N and oblique occlusal load at 45°. Stress distribution among groups was analysed by two-way analysis of variance (ANOVA), followed by post-hoc Tukey's test. The GFP showed the best stress distribution in the post, followed by CMP with Au, AgPd, CuAl and NiCr alloys, respectively (p  .05). Under oblique load, the GFP generated the highest values of tension among the models, followed by the CMP with NiCr alloy than other models (p < .001). The use of GFP resulted in a lower stress concentration in the post, but increased stress in the tooth without ferrule. The CMP with NiCr alloy exhibited the highest stress distribution among other CMP. To avoid higher stress in teeth, alloys of Au, AgPd and CuAl, respectively, are recommended.

  1. Effects of metallic Ti particles on the aging behavior and the influenced mechanical properties of squeeze-cast (SiCp+Ti)/7075Al hybrid composites

    International Nuclear Information System (INIS)

    Liu, Yixiong; Chen, Weiping; Yang, Chao; Zhu, Dezhi; Li, Yuanyuan

    2015-01-01

    The effects of metallic Ti particles on the aging behavior of squeeze-cast (SiC p +Ti)/7075Al hybrid composites and the mechanical properties of the aging treated composites were investigated. Results shown that the precipitation hardening of the hybrid composites during aging processes was delayed due to the segregation of solute Mg atoms in the vicinity of the Ti particles even though the activation energy of the η′ precipitates in the hybrid composites was reduced when compared with the Ti particle-free composites. The segregation of the solute Mg atoms was facilitated as a result of the high diffusivity paths formed by the generated dislocations in the matrix induced by the thermal misfit between the SiC particle and the matrix. The smaller activation energy for the hybrid composite may attribute to a significant reduction in the nucleation rate of the dislocation nucleated η′ precipitates compared with the Ti particle-free composite. After aging treated under the optimum aging conditions, the tensile strength of both composites was improved because of the precipitation hardening of the matrix alloy. In contrast with the reduced ductility of the traditional Ti particle-free composites after aging treatment, the ductility of the Ti particle-containing composites was improved as a result of the strengthened interfaces between the Ti particles and the matrix alloy

  2. A Novel Melt Cast Composite Booster Formulation Based on DNTF/TNT/GAP-ETPE/Nano-HMX

    Directory of Open Access Journals (Sweden)

    Shuo Yu

    2016-01-01

    Full Text Available To obtain the melt cast booster explosive formulation with high energy and low critical detonation diameter, melt cast explosives were designed by 3,4-bis(3-nitrofurazan-4-ylfuroxan (DNTF/2,4,6-trinitrotoluene (TNT/glycidyl azide polymer-energetic thermoplastic elastomer (GAP-ETPE/nano-1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX/Aristowax. Furthermore, the impact sensitivity, small scale gap test, rheological properties, propagation reliability, and detonation velocity were measured and analyzed. The results show that when the mass ratio of DNTF/TNT/GAP-ETPE/nano-HMX/Aristowax is 34.2/22.8/2/40/1, not only does it indicate excellent rheological property but it has a brilliant safety performance as well. Moreover, it can propagate the detonation waves successfully in the groove at 0.7 mm × 0.7 mm. When the charge density in the groove is 1.70 g·cm−3, its detonation velocity can reach 7890 m·s−1.

  3. Upgrade of the InGrid based X-ray detector for the CAST experiment

    Energy Technology Data Exchange (ETDEWEB)

    Desch, Klaus; Kaminski, Jochen; Krieger, Christoph; Schmidt, Sebastian [Physikalisches Institut, Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany)

    2016-07-01

    The CERN Axion Solar Telescope (CAST) is a magnetic helioscope searching for solar axions and chameleons using the inverse Primakoff effect. The produced photons are in the low X-ray regime. Chameleon search demands high sensitivity to photons with less than 1 keV and a very low background rate. Several improvements to the detector design used in 2014/15 are envisaged for 2016. The readout system is to be improved by including a flash ADC to read out the analog signal induced on the grid. The pulse shape contains information about the longitudinal shape of the event in addition to the transverse shape given by the pixel read out. Tracks passing through the chip orthogonally resemble photons in transverse shape. A scintillator behind the detector will also allow cross referencing chip and and scintillator signals to further reduce background rates. Finally, a new X-ray window separating detector and X-ray telescope volume from one another will be installed. Due to the low expected signal rate, a window with very low X-ray opacity is needed. Due to a pressure difference of ∝1 bar between detector and the vacuum of CAST this is demanding. The usage of silicon nitride windows is being explored. The current progress of the detector upgrade will be presented.

  4. Base metal dehydrogenation of amine-boranes

    Science.gov (United States)

    Blacquiere, Johanna Marie [Ottawa, CA; Keaton, Richard Jeffrey [Pearland, TX; Baker, Ralph Thomas [Los Alamos, NM

    2009-06-09

    A method of dehydrogenating an amine-borane having the formula R.sup.1H.sub.2N--BH.sub.2R.sup.2 using base metal catalyst. The method generates hydrogen and produces at least one of a [R.sup.1HN--BHR.sup.2].sub.m oligomer and a [R.sup.1N--BR.sup.2].sub.n oligomer. The method of dehydrogenating amine-boranes may be used to generate H.sub.2 for portable power sources, such as, but not limited to, fuel cells.

  5. Education and Caste in India

    Science.gov (United States)

    Chauhan, Chandra Pal Singh

    2008-01-01

    This paper analyses the policy of reservation for lower castes in India. This policy is similar to that of affirmative action in the United States. The paper provides a brief overview of the caste system and discusses the types of groups that are eligible for reservation, based on data from government reports. The stance of this paper is that…

  6. Coupling effects of tungsten and molybdenum on microstructure and stress-rupture properties of a nickel-base cast superalloy

    Directory of Open Access Journals (Sweden)

    Tongjin Zhou

    2018-02-01

    Full Text Available In order to comprehensively understand the forming mechanism of abnormal phases solidified in a nickel-base cast superalloy with additives of tungsten and molybdenum, the coupling effects of W and Mo on the microstructure and stress-rupture properties were investigated in this paper. The results indicated that the precipitation of primary α-(W, Mo phase depended tremendously on the amount of W and Mo addition. When the total amount of W and Mo was greater than 5.79 at%, α-(W, Mo phase became easily precipitated in the alloy. With increasing of Mo/W ratio, the dendrite-like α-(W, Mo phases were apt to convert into small bars or blocky-like phases at the vicinities of γ′/γ eutectic. The morphological changes of α-(W, Mo phase can be interpreted as the non-equilibrium solidification of W and Mo in the alloy. Since the large sized α-(W, Mo phase has detrimental effects on stress-rupture properties in as-cast conditions, secondary cracks may mainly initiate at and then propagate along the interfaces of brittle phases and soft matrix. During exposing at 1100 ℃ for 1000 h, the α-(W, Mo phases transformed gradually into bigger and harder M6C carbide, which results in decreasing of stress-rupture properties of the alloy. Finally, the alloy with an addition of 14W-1Mo(wt% maintained the longest stress lives at high temperatures and therefore it revealed the best microstructure stability after 1100 ℃/1000 h thermal exposure. Keywords: Superalloy, Tungsten and molybdenum, Cast, Microstructure, Stress-rupture properties

  7. Formulation, Casting, and Evaluation of Paraffin-Based Solid Fuels Containing Energetic and Novel Additives for Hybrid Rockets

    Science.gov (United States)

    Larson, Daniel B.; Desain, John D.; Boyer, Eric; Wachs, Trevor; Kuo, Kenneth K.; Borduin, Russell; Koo, Joseph H.; Brady, Brian B.; Curtiss, Thomas J.; Story, George

    2012-01-01

    This investigation studied the inclusion of various additives to paraffin wax for use in a hybrid rocket motor. Some of the paraffin-based fuels were doped with various percentages of LiAlH4 (up to 10%). Addition of LiAlH4 at 10% was found to increase regression rates between 7 - 10% over baseline paraffin through tests in a gaseous oxygen hybrid rocket motor. Mass burn rates for paraffin grains with 10% LiAlH4 were also higher than those of the baseline paraffin. RDX was also cast into a paraffin sample via a novel casting process which involved dissolving RDX into dimethylformamide (DMF) solvent and then drawing a vacuum on the mixture of paraffin and RDX/DMF in order to evaporate out the DMF. It was found that although all DMF was removed, the process was not conducive to generating small RDX particles. The slow boiling generated an inhomogeneous mixture of paraffin and RDX. It is likely that superheating the DMF to cause rapid boiling would likely reduce RDX particle sizes. In addition to paraffin/LiAlH4 grains, multi-walled carbon nanotubes (MWNT) were cast in paraffin for testing in a hybrid rocket motor, and assorted samples containing a range of MWNT percentages in paraffin were imaged using SEM. The fuel samples showed good distribution of MWNT in the paraffin matrix, but the MWNT were often agglomerated, indicating that a change to the sonication and mixing processes were required to achieve better uniformity and debundled MWNT. Fuel grains with MWNT fuel grains had slightly lower regression rate, likely due to the increased thermal conductivity to the fuel subsurface, reducing the burning surface temperature.

  8. Effect of base metal alloys recasting on marginal integrity of castable crowns.

    Science.gov (United States)

    Bajoghli, Farshad; Nosouhian, Saeid; Badrian, Hamid; Goroohi, Hossein; Saberian, Amir; Gadesi, Leyla

    2013-03-01

    Base metals have a wide use in casting methods. Sometimes they are reused in laboratories which may have an adverse effect on the restoration marginal integrity. This study aimed to investigate the effect of recasting of alloys on marginal integrity of restorations. Models with two types of finishing lines shoulder bevel 45° and shoulder 135° were produced and 15 wax copings were formed on each one of them. Each group containing 15 copings was divided into three subgroups A, B and C. Group A was casted with 100% new alloy, group B with 50% new and 50% recasted alloy and group C with 100% recasted alloy. Obtained metal copings were placed on dies and marginal gap size between restoration margin and the dies finishing line was measured using metric microscope and Moticam camera in four points, buccal, lingual, mesial and distal. A significant difference in mean marginal gap size exists among three types of alloys used (p-value = 0.036). A significant difference is observed between mean marginal gap size of two types of finishing lines for different alloys (p-value = 0.001). Using 100% recasted alloy is not recommended for any of the two types of finishing lines.

  9. Influence of tooth dimension on the initial mobility based on plaster casts and X-ray images : A numerical study.

    Science.gov (United States)

    Hartmann, Martin; Dirk, Cornelius; Reimann, Susanne; Keilig, Ludger; Konermann, Anna; Jäger, Andreas; Bourauel, Christoph

    2017-07-01

    The goal was to determine the influence of different geometric parameters of the tooth on the initial tooth mobility and the position of the center of resistance employing numerical models based on scaled X-ray images and plaster casts. The dimensions of tooth 21 were measured in 21 patients, using radiographs and dental casts. Length and mesiodistal width of the tooth were obtained from the X-ray image and the orovestibular diameter from the plaster cast. Finite element models were generated. Cortical and cancellous bone and the periodontal ligament were simulated to create realistic models. Root length (11-17 mm), mesiodistal width (6-10 mm) and orovestibular thickness (7-9 mm) were varied in 1-mm steps to generate 105 models. In the simulation, each model was loaded with a force of 10 N in vestibulopalatinal direction and with a torque of 10 Nmm to determine tooth displacements and center of resistance. Initial tooth displacement and thus mobility increased with decreasing total root surface. The shortest, slimmest and thinnest tooth showed a total deflection of 0.14 mm at the incisal edge, while the longest, widest and thickest tooth showed a total deflection of 0.10 mm. Changes in mesiodistal width had the greatest influence on initial tooth mobility and changes in orovestibular thickness the least. The teeth's center of resistance was positioned between 37 and 43% of the root length measured from the cervical margin of the alveolar bone. The center of resistance of the longest dental root investigated was located around 6% more cervically compared to the one of the shortest dental root. The influence of root width and thickness on the position of the center of resistance was significantly lower than root length. Geometric parameters significantly impact initial tooth mobility and position of the center of resistance. Thus, tooth dimensions should be considered in orthodontic treatment planning. Dental radiographs represent a sufficient validation tool

  10. Infiltração marginal de agentes cimentantes em coroas metálicas fundidas Marginal microleakage of cast metal crowns luting agents

    Directory of Open Access Journals (Sweden)

    Tomie Nakakuki de CAMPOS

    1999-12-01

    Full Text Available Um dos principais objetivos do cimento, que fixa a restauração protética ao dente, é o selamento da fenda existente entre os mesmos. Para avaliar a infiltração marginal, foram feitos preparos cavitários padronizados, em 20 dentes naturais extraídos. As coroas totais foram fundidas em NiCr, sendo 10 cimentadas com cimento de fosfato de zinco e 10 com cimento resinoso Panavia 21. As amostras foram submetidas à ciclagem térmica e em seguida foram colocadas em solução de azul de metileno a 0,5%. Após o seccionamento vestíbulo-lingual, os corpos-de-prova foram examinados com lupa de aumento. Houve diferença significante entre os dois cimentos testados, sendo que 100% das amostras cimentadas com cimento de fosfato de zinco apresentaram infiltração atingindo dentina e polpa e 100% das amostras cimentadas com Panavia 21 não sofreram qualquer tipo de infiltração. Conclui-se que: o cimento resinoso Panavia 21 apresentou melhores resultados, quanto ao grau de infiltração, quando comparado com o cimento de fosfato de zinco, na cimentação de coroas metálicas fundidas em NiCr.One of the main goals of the luting agent, which bonds the cast restoration to the prepared tooth, is to seal the gap between them. Standardized preparations were made on 20 extracted teeth in order to evaluate microleakage. The crowns were made in NiCr, and in one group of 10 crowns zinc phosphate was used as the luting agent; in the other 10, Panavia 21 was used. The samples were thermocycled and then put into methylene blue solution (0.5%. After buccolingual sectioning of the cemented crowns, the samples were examined with a magnifier. There was a significant difference between the two groups: 100% of the zinc phosphate cemented crowns presented microleakage reaching the dentin and the pulp and 100% of the samples with Panavia 21 did not suffer any microleakage. So, as to the marginal microleakage with cast metal crowns in NiCr, the Panavia 21 luting agent

  11. Influence of heat treatments for laser welded semi solid metal cast A356 alloy on the fracture mode of tensile specimens

    CSIR Research Space (South Africa)

    Kunene, G

    2008-09-01

    Full Text Available The CSIR rheo-process was used to prepare the aluminium A356 SSM slurries and thereafter plates (4x80x100 mm3) were cast using a 50 Ton Edgewick HPDC machine. Plates in the as cast, T4 and T6 heat treatment conditions which had passed radiography...

  12. A fluorescent imaging assay of cast in renal disease based on graphene quantum dots and Fe3O4 nanoparticles.

    Science.gov (United States)

    Jiang, Dongneng; Ni, Danni; Liu, Fei; Zhang, Liqun; Liu, Linlin; Pu, Xiaoyun

    2016-02-15

    Renal disease has become a global public health problem. Cast is a useful disease marker of kidney injury and renal failure. Hence, a cast-targeted fluorescent imaging assay is developed for the laboratory diagnosis of renal disease. Firstly, graphene quantum dots (GQDs) were stripped from graphene oxide sheets and amine-modified. Then, anti-human IgG antibody was conjugated with Fe3O4 nanoparticles to identify the cast in urine. Furthermore, the modified GQDs were linked onto the surface of Fe3O4/anti-IgG nanocomposites. Lastly, this Fe3O4/GQD fluorescent probe was added into the sample to detect the cast through fluorescent imaging. Preliminary application of this probe in clinical detection showed that the common types of casts in urine (including RBC, WBC, fatty and granular casts) could be detected by this fluorescent imaging assay. The method has the advantages of fast speed, high sensitivity (lowest detection limit to 2 casts/ml), good selectivity, and wide linear range (2-2000 casts/ml). Regression analysis also showed that there was a good linear relationship (y=0.9495×+10.974, R(2)=0.9879) between the fluorescent counts and the casts in urine. This cast-targeted fluorescent imaging assay may be a potential method for the laboratory diagnosis of renal disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Search for chameleons with an InGrid based X-ray detector at the CAST experiment

    Energy Technology Data Exchange (ETDEWEB)

    Desch, Klaus; Kaminski, Jochen; Krieger, Christoph; Schmidt, Sebastian [Physikalisches Institut, Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany)

    2016-07-01

    The CERN Axion Solar Telescope (CAST) searches for axions and also other exotic particles emerging from the Sun. Chameleons, for example, are part of Dark Energy theories. Like Axions they can be converted into soft X-ray photons in a high magnetic field and should result in an X-ray spectrum peaking below 1 keV. Because of their low energy and weak coupling, detectors with low energy threshold and low background rates are mandatory. Both requirements are met by an X-ray detector based on the combination of a Micromegas gas amplification stage with a highly integrated pixel chip which allows to make full use of the Micromegas structure's granularity. It has been demonstrated that these devices can detect even single electrons. Thus, allowing for a topological background suppression as well as for detection of low energy X-ray photons creating only very few primary electrons. After the detection threshold had been evaluated to be low enough to allow for the detection of the carbon K{sub α} line at 277 eV, the detector was mounted at one of CAST's X-ray telescopes and installed along with its infrastructure in 2014. During data taking until end of 2015 background rates of less than 10{sup -4} keV/(cm{sup 2}.s) have been achieved below 2 keV. First preliminary results of the ongoing chameleon analysis and possibly an improved limit for solar chameleons are presented.

  14. Microstructure and phase morphology during thermochemical processing of {alpha}{sub 2}-based titanium aluminide castings

    Energy Technology Data Exchange (ETDEWEB)

    Saqib, M. [Wright State Univ., Dayton, OH (United States). Dept. of Mechanical and Materials Engineering; Apgar, L.S. [Dayton Univ., OH (United States). Graduate Materials Engineering; Eylon, D. [Dayton Univ., OH (United States). Graduate Materials Engineering; Weiss, I. [Wright State Univ., Dayton, OH (United States). Dept. of Mechanical and Materials Engineering

    1995-12-31

    Changes in the microstructure, volume fraction and distribution of phases during different stages of thermochemical processing of Ti-25Al-10Nb-3V-1Mo (at.%) castings were investigated. Up to 14.5 at.% (0.35 wt.%) of hydrogen was introduced into the material by gas charging at temperatures between 650 and 980 C for times up to 20 h. The material was subsequently dehydrogenated by vacuum annealing at 650 C for 48 h. Investment cast Ti-25Al-10Nb-3V-1Mo alloy, hot isostatically pressed (HIP) at 1175 C at 260 MPa for 6 h, was used as the starting material. The microstructure of the as-HIP material consists of {alpha}{sub 2}, B2 and orthorhombic phases. The {alpha}{sub 2} phase exists in equiaxed, Widmanstaeten and cellular morphologies. The B2 phase is observed mainly along {alpha}{sub 2}/{alpha}{sub 2} boundaries. Some {alpha}{sub 2} Widmanstaeten also contain very fine orthorhombic phase in a plate-like morphology. Hydrogenation of the material modified the microstructure; however, the morphology of the {alpha}{sub 2} and B2 phases did not change. Furthermore, hydride precipitation and a higher volume fraction of the orthorhombic phase were observed compared with the as-HIP material. Following dehydrogenation, the hydrogen level in the material was found to be less than 0.1 at.% (0.0025wt.%). Transmission electron microscopy of the dehydrogenated material did not reveal the presence of hydride precipitates; however, the high volume fraction of the orthorhombic phase was found to persist following dehydrogenation. (orig.)

  15. A Study of Deposition Coatings Formed by Electroformed Metallic Materials

    OpenAIRE

    Hayashi, Shoji; Sugiyama, Shuta; Shimura, Kojiro; Tobayama, Go; Togashi, Toshio

    2016-01-01

    Major joining methods of dental casting metal include brazing and laser welding. However, brazing cannot be applied for electroformed metals since heat treatment could affect the fit, and, therefore, laser welding is used for such metals. New methods of joining metals that do not impair the characteristics of electroformed metals should be developed. When new coating is performed on the surface of the base metal, surface treatment is usually performed before re-coating. The effect of surface ...

  16. Architectural optimization of an epoxy-based hybrid sol–gel coating for the corrosion protection of a cast Elektron21 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Murillo-Gutiérrez, N.V., E-mail: murillo@chimie.ups-tlse.fr [Université de Toulouse UPS-INP-CNRS, Institut Carnot CIRIMAT, Toulouse (France); Ansart, F.; Bonino, J-P. [Université de Toulouse UPS-INP-CNRS, Institut Carnot CIRIMAT, Toulouse (France); Kunst, S.R.; Malfatti, C.F. [Universidade Federal do Rio grande do Sul, Laboratory of Corrosion Research (LAPEC), Porto Alegre (Brazil)

    2014-08-01

    An epoxy-based hybrid sol–gel coating was prepared in various architectural configurations has been studied for the corrosion protection of a cast Elektron21 magnesium alloy. The creation of a single layer of this coating presents defects consisting of macro-pores and protuberances, which opens access for corrosive species to reach the metallic substrate. These defects are suspected to result from the high reactivity of the substrate, as well as to the irregular topography of the substrate disrupted by the microstructure of the own magnesium alloy. Hence, a sol–gel coating in bilayer architecture is proposed, where the first layer would “inert” the surface of the magnesium substrate, and the second layer would cover the defects of the first layer and also thickening the coating. The morphological characteristics of the sol–gel coatings were analyzed by scanning electron microscopy (SEM), and their corrosion behavior was evaluated by OCP (open circuit potential) monitoring and electrochemical impedance spectroscopy (EIS) in chloride media. It is shown that both the architectural arrangement and the individual thickness of the first and second layers have an important influence on the anticorrosion performances of the protective system, just as much as its global thickness.

  17. Architectural optimization of an epoxy-based hybrid sol–gel coating for the corrosion protection of a cast Elektron21 magnesium alloy

    International Nuclear Information System (INIS)

    Murillo-Gutiérrez, N.V.; Ansart, F.; Bonino, J-P.; Kunst, S.R.; Malfatti, C.F.

    2014-01-01

    An epoxy-based hybrid sol–gel coating was prepared in various architectural configurations has been studied for the corrosion protection of a cast Elektron21 magnesium alloy. The creation of a single layer of this coating presents defects consisting of macro-pores and protuberances, which opens access for corrosive species to reach the metallic substrate. These defects are suspected to result from the high reactivity of the substrate, as well as to the irregular topography of the substrate disrupted by the microstructure of the own magnesium alloy. Hence, a sol–gel coating in bilayer architecture is proposed, where the first layer would “inert” the surface of the magnesium substrate, and the second layer would cover the defects of the first layer and also thickening the coating. The morphological characteristics of the sol–gel coatings were analyzed by scanning electron microscopy (SEM), and their corrosion behavior was evaluated by OCP (open circuit potential) monitoring and electrochemical impedance spectroscopy (EIS) in chloride media. It is shown that both the architectural arrangement and the individual thickness of the first and second layers have an important influence on the anticorrosion performances of the protective system, just as much as its global thickness.

  18. Pressure rig for repetitive casting

    Science.gov (United States)

    Vasquez, Peter; Hutto, William R.; Philips, Albert R.

    1989-09-01

    The invention is a pressure rig for repetitive casting of metal. The pressure rig performs like a piston for feeding molten metal into a mold. Pressure is applied to an expandable rubber diaphragm which expands like a balloon to force the metal into the mold. A ceramic cavity which holds molten metal is lined with blanket-type insulating material, necessitating only a relining for subsequent use and eliminating the lengthy cavity preparation inherent in previous rigs. In addition, the expandable rubber diaphragm is protected by the insulating material thereby decreasing its vulnerability to heat damage. As a result of the improved design the life expectancy of the pressure rig contemplated by the present invention is more than doubled. Moreover, the improved heat protection has allowed the casting of brass and other alloys with higher melting temperatures than possible in the conventional pressure rigs.

  19. Automatic inspection of surface defects in die castings after machining

    Directory of Open Access Journals (Sweden)

    S. J. Świłło

    2011-07-01

    Full Text Available A new camera based machine vision system for the automatic inspection of surface defects in aluminum die casting was developed by the authors. The problem of surface defects in aluminum die casting is widespread throughout the foundry industry and their detection is of paramount importance in maintaining product quality. The casting surfaces are the most highly loaded regions of materials and components. Mechanical and thermal loads as well as corrosion or irradiation attacks are directed primarily at the surface of the castings. Depending on part design and processing techniques, castings may develop surface discontinuities such as cracks or tears, inclusions due to chemical reactions or foreign material in the molten metal, and pores that greatly influence the material ability to withstand these loads. Surface defects may act as a stress concentrator initiating a fracture point. If a pressure is applied in this area, the casting can fracture. The human visual system is well adapted to perform in areas of variety and change; the visual inspection processes, on the other hand, require observing the same type of image repeatedly to detect anomalies. Slow, expensive, erratic inspection usually is the result. Computer based visual inspection provides a viable alternative to human inspectors. Developed by authors machine vision system uses an image processing algorithm based on modified Laplacian of Gaussian edge detection method to detect defects with different sizes and shapes. The defect inspection algorithm consists of three parameters. One is a parameter of defects sensitivity, the second parameter is a threshold level and the third parameter is to identify the detected defects size and shape. The machine vision system has been successfully tested for the different types of defects on the surface of castings.

  20. Evaluation of marginal gap of Ni-Cr copings made with conventional and accelerated casting techniques

    Directory of Open Access Journals (Sweden)

    Pavan Kumar Tannamala

    2013-01-01

    Full Text Available Context: Conventional casting techniques following the manufacturers′ recommendations are time consuming. Accelerated casting techniques have been reported, but their accuracy with base metal alloys has not been adequately studied. Aim: We measured the vertical marginal gap of nickel-chromium copings made by conventional and accelerated casting techniques and determined the clinical acceptability of the cast copings in this study. Settings and Design: Experimental design, in vitro study, lab settings. Materials and Methods: Ten copings each were cast by conventional and accelerated casting techniques. All copings were identical, only their mold preparation schedules differed. Microscopic measurements were recorded at ×80 magnification on the perpendicular to the axial wall at four predetermined sites. The marginal gap values were evaluated by paired t test. Results: The mean marginal gap by conventional technique (34.02 μm is approximately 10 μm lesser than that of accelerated casting technique (44.62 μm. As the P value is less than 0.0001, there is highly significant difference between the two techniques with regard to vertical marginal gap. Conclusion: The accelerated casting technique is time saving and the marginal gap measured was within the clinically acceptable limits and could be an alternative to time-consuming conventional techniques.

  1. Casting materials

    Science.gov (United States)

    Chaudhry, Anil R [Xenia, OH; Dzugan, Robert [Cincinnati, OH; Harrington, Richard M [Cincinnati, OH; Neece, Faurice D [Lyndurst, OH; Singh, Nipendra P [Pepper Pike, OH

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  2. Microstructural evolution of directionally solidified DZ125 superalloy castings with different solidification methods

    Directory of Open Access Journals (Sweden)

    Ge Bingming

    2013-01-01

    Full Text Available The properties of Ni-base superalloy castings are closely related to the uniformity of their as-cast microstructure, and different solidification methods have serious effect on microstructural uniformity. In this paper, the influences of high rate solidification (HRS process (with or without superheating and liquid metal cooling (LMC process on the microstructure of DZ125 superalloy were investigated. Blade-shape castings were solidified at rates of 40 μm·s-1 to 110 μm·s-1 using HRS process and a comparative experiment was carried out at a rate of 70 μm·s-1 by LMC process. The optical microscope (OM, scanning electron microscope (SEM were used to observe the microstructure and the grain size was analyzed using electron back scattered diffraction (EBSD technique. Results show that for the castings by either HRS or LMC process, the primary dendrite arm spacing and size of γ' precipitates decrease with increasing the withdrawal rate; the dendrites and γ' precipitates at the upper section of the blade are coarser than those in the middle, especially for the HRS castings without high superheating technique. When the withdrawal rate is 70 μm·s-1, the castings by HRS with high superheating technique have the smallest PDAS with fine γ' precipitates; while the size distribution of γ' precipitates is more homogenous in LMC castings, and the number of larger grains in LMC castings is smaller than that in the HRS castings. Moreover, high superheating technique yields smaller grains in the castings. Both the LMC method and HRS with high superheating technique can be used to prepare castings with reduced maximum grain size.

  3. Technological features of metal-ceramic prosthesis frameworks manufactured from domestic alloys of precious and base metals.

    Science.gov (United States)

    Parunov, V A; Yurkovetz, P V; Lebedenko, I Yu

    2016-01-01

    The aim of the study was to examine changes in physical and mechanical properties of dental alloys depending of the initial composition at re-casting. Russianc precious alloys: Plagodent (AuPtPd) and Palladent (PdAu) and base alloys: Vitiriy-N (NiCrMo) and Vitiriy-C (CoCrMo) were used as study samples, which were divided in three groups: a primary casting from the granules; 50% of re-casting; 100% of re-casting. We investigated the yield strength in bending, coefficient of thermal expansion and hardness. Changing in the composition of the alloys has led to changes of all physical and mechanical properties.

  4. Influences of processing parameters on microstructure during investment casting of nickel-base single crystal superalloy DD3

    Directory of Open Access Journals (Sweden)

    Gao Sifeng

    2012-05-01

    Full Text Available The effects of solidification variables on the as-cast microstructures of nickel-base single crystal superalloy DD3 have been investigated by using the modified Bridgman apparatus. The experiments were performed under a thermal gradient of approximately 45 K·cm-1 and at withdrawal rates ranging from 30 to 200 m·s-1. The experimental results show that the primary and secondary dendritic arm spacings (PDAS and SDAS decrease when the withdrawal rate is increased. Compared with the theoretical models of PDAS, the results are in good agreement with Trivedi’s model. The relationships of PDAS and SDAS with withdrawal rates can be described as l1 = 649.7V -0.24±0.02 and l2 = 281V -0.32±0.03, respectively. In addition, the size of the γ′ phase significantly decreases with increasing withdrawal rate.

  5. Venous Thrombosis Risk after Cast Immobilization of the Lower Extremity: Derivation and Validation of a Clinical Prediction Score, L-TRiP(cast), in Three Population-Based Case-Control Studies.

    Science.gov (United States)

    Nemeth, Banne; van Adrichem, Raymond A; van Hylckama Vlieg, Astrid; Bucciarelli, Paolo; Martinelli, Ida; Baglin, Trevor; Rosendaal, Frits R; le Cessie, Saskia; Cannegieter, Suzanne C

    2015-11-01

    Guidelines and clinical practice vary considerably with respect to thrombosis prophylaxis during plaster cast immobilization of the lower extremity. Identifying patients at high risk for the development of venous thromboembolism (VTE) would provide a basis for considering individual thromboprophylaxis use and planning treatment studies. The aims of this study were (1) to investigate the predictive value of genetic and environmental risk factors, levels of coagulation factors, and other biomarkers for the occurrence of VTE after cast immobilization of the lower extremity and (2) to develop a clinical prediction tool for the prediction of VTE in plaster cast patients. We used data from a large population-based case-control study (MEGA study, 4,446 cases with VTE, 6,118 controls without) designed to identify risk factors for a first VTE. Cases were recruited from six anticoagulation clinics in the Netherlands between 1999 and 2004; controls were their partners or individuals identified via random digit dialing. Identification of predictor variables to be included in the model was based on reported associations in the literature or on a relative risk (odds ratio) > 1.2 and p ≤ 0.25 in the univariate analysis of all participants. Using multivariate logistic regression, a full prediction model was created. In addition to the full model (all variables), a restricted model (minimum number of predictors with a maximum predictive value) and a clinical model (environmental risk factors only, no blood draw or assays required) were created. To determine the discriminatory power in patients with cast immobilization (n = 230), the area under the curve (AUC) was calculated by means of a receiver operating characteristic. Validation was performed in two other case-control studies of the etiology of VTE: (1) the THE-VTE study, a two-center, population-based case-control study (conducted in Leiden, the Netherlands, and Cambridge, United Kingdom) with 784 cases and 523 controls

  6. Comparative study on the tensile bond strength and marginal fit of complete veneer cast metal crowns using various luting agents: An in vitro study

    Directory of Open Access Journals (Sweden)

    B Devi Parameswari

    2016-01-01

    Full Text Available Introduction: Several commercially available luting agents are used to cement the dental restorations such as intra-coronal, extra-coronal, and fixed partial dentures. Tensile bond strength (TBS and accurate marginal fit are the essential factors to determine the good clinical results in fixed prosthesis. The retentivity of the luting cements is assessed by their adhesive capacity over the tooth surface and metal surface. Generally, the adhesive ability has been evaluated with in vitro testing, with tensile bond tests. The failure of fixed prosthesis may be happened as a result of incomplete seating during cementation. Most research on cementation of crowns relates seating failure to the thickness of the cement film. Materials and Methods: The study is divided into four groups with 10 samples for each of the luting cement taken up for testing TBS and four groups with 5 samples for each luting agent chosen for assessing marginal fit. The results were tabulated and statistically analyzed. Results: In this in vitro study, the TBS of luting cements, and marginal fit in relation to luting cements were tested by using appropriate testing devices. The TBS of cement is measured using universal testing machine, and the results are tabulated. The marginal gap that exists between the margin of the cast metal crown, and the finish line is measured using travelling microscope before and after cementation. The difference between these two values gives the discrepancy that is due to the film thickness of cement used for luting the restoration. Summary and Conclusion: The TBS value of zinc phosphate cement and glass ionomer cement were found to be almost same. The chemical adhesiveness of the glass ionomer with calcium ions of enamel and dentin may be the attributed reason (ionic bonding. In this study, the polycarboxylate is the one that showed low TBS, and it may be attributed to the weakness of the cement due to reduced film thickness, though this cement has

  7. Comparative study on the tensile bond strength and marginal fit of complete veneer cast metal crowns using various luting agents: An in vitro study

    Science.gov (United States)

    Parameswari, B. Devi; Rajakumar, M.; Lambodaran, G.; Sundar, Shyam

    2016-01-01

    Introduction: Several commercially available luting agents are used to cement the dental restorations such as intra-coronal, extra-coronal, and fixed partial dentures. Tensile bond strength (TBS) and accurate marginal fit are the essential factors to determine the good clinical results in fixed prosthesis. The retentivity of the luting cements is assessed by their adhesive capacity over the tooth surface and metal surface. Generally, the adhesive ability has been evaluated with in vitro testing, with tensile bond tests. The failure of fixed prosthesis may be happened as a result of incomplete seating during cementation. Most research on cementation of crowns relates seating failure to the thickness of the cement film. Materials and Methods: The study is divided into four groups with 10 samples for each of the luting cement taken up for testing TBS and four groups with 5 samples for each luting agent chosen for assessing marginal fit. The results were tabulated and statistically analyzed. Results: In this in vitro study, the TBS of luting cements, and marginal fit in relation to luting cements were tested by using appropriate testing devices. The TBS of cement is measured using universal testing machine, and the results are tabulated. The marginal gap that exists between the margin of the cast metal crown, and the finish line is measured using travelling microscope before and after cementation. The difference between these two values gives the discrepancy that is due to the film thickness of cement used for luting the restoration. Summary and Conclusion: The TBS value of zinc phosphate cement and glass ionomer cement were found to be almost same. The chemical adhesiveness of the glass ionomer with calcium ions of enamel and dentin may be the attributed reason (ionic bonding). In this study, the polycarboxylate is the one that showed low TBS, and it may be attributed to the weakness of the cement due to reduced film thickness, though this cement has a chemical

  8. Current research progress in grain refinement of cast magnesium alloys: A review article

    International Nuclear Information System (INIS)

    Ali, Yahia; Qiu, Dong; Jiang, Bin; Pan, Fusheng; Zhang, Ming-Xing

    2015-01-01

    Grain refinement of cast magnesium alloys, particularly in magnesium–aluminium (Mg–Al) based alloys, has been an active research topic in the past two decades, because it has been considered as one of the most effective approaches to simultaneously increase the strength, ductility and formability. The development of new grain refiners was normally based on the theories/models that were established through comprehensive and considerable studies of grain refinement in cast Al alloys. Generally, grain refinement in cast Al can be achieved through either inoculation treatment, which is a process of adding, or in situ forming, foreign particles to promote heterogeneous nucleation rate, or restricting grain growth by controlling the constitutional supercooling or both. But, the concrete and tangible grain refinement mechanism in cast metals is still not fully understood and there are a number of controversies. Therefore, most of the new developed grain refiners for Mg–Al based alloys are not as efficient as the commercially available ones, such as zirconium in non-Al containing Mg alloys. To facilitate the research in grain refinement of cast magnesium alloys, this review starts with highlighting the theoretical aspects of grain refinement in cast metals, followed by reviewing the latest research progress in grain refinement of magnesium alloys in terms of the solute effect and potent nucleants

  9. PERSPECTIVES OF USING OF HIGH-SPEED STEELS FOR PRODUCTION OF CAST METAL-CUTTING INSTRUMENT. THE WAYS OF THE STRUCTURE AND CHARACTERISTICS IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    A. S. Chaus

    2004-01-01

    Full Text Available In the article there are examined the peculiarities of the structure and characteristics of cast and deformed high-speed steels R6M5 and R6M5K5. It is established, that there is practically no difference in hardness and heat stability, at the same time cast steels because of the structure specificity are inferior to the deformed ones in impact elasticity, considerably exceeding them in endurance. On the basis of industrial tests it is shown that at correct nomenclature choice for embedding there are being created the backgrounds for secure work of cast instrument, resistance of which can be even higher as compared to the traditional instrument due to higher endurance of cast-steel

  10. Casting traceability with direct part marking using reconfigurable pin-type tooling based on paraffin–graphite actuators

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard; Lenau, Torben Anker

    2012-01-01

    Green sand moulding machines for cast iron foundries are presently unable to uniquely identify individual castings. An insert tool concept is developed and tested via incremental mock-up development. The tool is part of the pattern plate and changes shape between each moulding, thus giving each...

  11. Effect of Metal Collar on Marginal Distortion of Base Metal Crowns

    Directory of Open Access Journals (Sweden)

    Grami Panah F

    2000-06-01

    Full Text Available It has been shown that noble alloys require metal collar to resist distortion when subjected to"nrepeat firing cycle of porcelain. Metal collar is undesirable due to esthetic concerns. Since base metal"nalloys have superior physical properties, it seems that metal collar would not be necessary for obtaining"nbetter marginal adaptation of base metal crowns. The Purpose of this study was to evaluate the effect of"nmetal collar on marginal distortion of base metal- ceramic crowns, Twenty base metal copings were"nconstructed and divided into two groups with and without collars. After surface preparation, porcelain"nwas applied onto the surface of specimens. Marginal gap was measured by scanning electron microscope"nduring three stages of crown fabrication: before degassing, after degassing and after glazing. The mean"nmeasurements in collarless group were; 21.4±13.4, 2I.4±14.9 and 21.9±11.9 u_m, respectively, and in-"ngroup with collar; 24.7±11.4, 24.0±! 1.5 and 26.6±11.7 urn, respectively. Two- way ANOVA revealed"nno significant difference in the mean values between two groups and among different stages of crown"nfabrication. The results of this study showed that base metal alloys did not distort during crown"nfabrication and metal collar had no effect on the amount of marginal opening (gap.

  12. Application of Fe-based metallic glasses in wastewater treatment

    International Nuclear Information System (INIS)

    Lin Bao; Bian Xiufang; Wang Pan; Luo Guanping

    2012-01-01

    Highlights: ► We found the Fe-based metallic glasses have potential application in wastewater treatment. ► The corrosion on the surface of Fe-based metallic glasses is related to the application. ► We set a new theory to explain the process of degredation organic metters with Fe-based metallic glasses. - Abstract: This work pioneered the use of the Fe 78 Si 9 B 13 metallic glass ribbons in wastewater treatment. Fe 78 Si 9 B 13 metallic glass was employed to remediate wastewater contaminated with a mixture of organic dyes. The removal rate of chemical oxygen demand (COD) with Fe 78 Si 9 B 13 metallic glass and metallic Fe 0 was up to 23 ± 0.93% in 30 min and 21 ± 0.67% with in 45 min, respectively. The dosage of Fe-based metallic glass was only 1/25 of that of metallic Fe 0 to obtain equivalent effects. The mechanism of wastewater treatment through Fe-based metallic glasses is discussed.

  13. Misfit and microleakage of implant-supported crown copings obtained by laser sintering and casting techniques, luted with glass-ionomer, resin cements and acrylic/urethane-based agents.

    Science.gov (United States)

    Castillo-Oyagüe, Raquel; Lynch, Christopher D; Turrión, Andrés S; López-Lozano, José F; Torres-Lagares, Daniel; Suárez-García, María-Jesús

    2013-01-01

    This study evaluated the marginal misfit and microleakage of cement-retained implant-supported crown copings. Single crown structures were constructed with: (1) laser-sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC) and (3) vacuum-cast Ni-Cr-Ti (CN). Samples of each alloy group were randomly luted in standard fashion onto machined titanium abutments using: (1) GC Fuji PLUS (FP); (2) Clearfil Esthetic Cement (CEC); (3) RelyX Unicem 2 Automix (RXU) and (4) DentoTemp (DT) (n=15 each). After 60 days of water ageing, vertical discrepancy was SEM-measured and cement microleakage was scored using a digital microscope. Misfit data were subjected to two-way ANOVA and Student-Newman-Keuls multiple comparisons tests. Kruskal-Wallis and Dunn's tests were run for microleakage analysis (α=0.05). Regardless of the cement type, LS samples exhibited the best fit, whilst CC and CN performed equally well. Despite the framework alloy and manufacturing technique, FP and DT provide comparably better fit and greater microleakage scores than did CEC and RXU, which showed no differences. DMLS of Co-Cr may be a reliable alternative to the casting of base metal alloys to obtain well-fitted implant-supported crowns, although all the groups tested were within the clinically acceptable range of vertical discrepancy. No strong correlations were found between misfit and microleakage. Notwithstanding the framework alloy, definitive resin-modified glass-ionomer (FP) and temporary acrylic/urethane-based (DT) cements demonstrated comparably better marginal fit and greater microleakage scores than did 10-methacryloxydecyl-dihydrogen phosphate-based (CEC) and self-adhesive (RXU) dual-cure resin agents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. An optimization of injecting system in die casting

    Directory of Open Access Journals (Sweden)

    Wei WU

    2005-05-01

    Full Text Available After many years of development, die casting technology of metallic materials has been matured. In this paper,the lower-support and its injecting system were created with commercial software. And then the simulation software FLOW3D was applied to study the flow behavior of the melt during injection filling process. Both temperature field and defect distribution were simulated. Based on these results, the better injecting system with two additional overflows wasadopted.

  15. Predicting dermal penetration for ToxCast chemicals using in silico estimates for diffusion in combination with physiologically based pharmacokinetic (PBPK) modeling.

    Science.gov (United States)

    Predicting dermal penetration for ToxCast chemicals using in silico estimates for diffusion in combination with physiologically based pharmacokinetic (PBPK) modeling.Evans, M.V., Sawyer, M.E., Isaacs, K.K, and Wambaugh, J.With the development of efficient high-throughput (HT) in ...

  16. Cast irons

    CERN Document Server

    1996-01-01

    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  17. Polymer-melt interactions during casting formation in the lost foam process

    Energy Technology Data Exchange (ETDEWEB)

    Shivkumar, S.; Yao, X.; Makhlouf, M. [Worcester Polytechnic Inst., MA (United States). Dept. of Mechanical Engineering

    1995-07-01

    The lost foam casting process utilizes injection modeled polymeric foam patterns for the production of metallic components. Foamed polymer patterns of the desired shape are coated with a water-based refractory slurry, dried and embedded in unbonded sand. Molten metal is poured directly on the coated polymer. The polymer undergoes thermal degradation and is gradually replaced by the liquid metal to yield the casting after solidification. Expanded polystyrene (EPS) is the most common pattern material used in commercial practice. The use of EPS patterns with ferrous castings may result in the formation of carbonaceous defects in the casting. Consequently, polymethylmethacrylate (PMMA) and copolymers of EPS and PMMA have been developed for ferrous castings. The thermal degradation of the foamed pattern results in the formation of gaseous degradation products and of a partially depolymerized viscous residue. The fraction of viscous residue increased with temperature and is essentially constant above about 650 C. During the filling of EPS patterns, nearly 60% of the polymer is converted to the viscous residue and 40% is transformed to gaseous products. In the case of PMM, almost 60% of the polymer undergoing degradation at the metal front is transformed to gaseous products. The melt flow velocity during the filling of the mold generally increases with temperature.

  18. RESOURCES-ECONOMY TECHNOLOGY OF CASTINGS PRODUCTION OF NICKEL-CONTAINING CAST-IRONS

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2008-01-01

    Full Text Available The technological process of the cast-iron IChH28H2 alloying by means of insertion into burden composition of briquettes of dead nickel-chromic catalysts is developed. This technology allows to carry out recycling of expensive metals such as nickel, and in that way to decrease the cost price of castings

  19. Optimization of Gating System Design for Die Casting of Thin Magnesium Alloy-Based Multi-Cavity LCD Housings

    Science.gov (United States)

    Lee, B. D.; Baek, U. H.; Han, J. W.

    2012-09-01

    High-pressure die casting is the preferred process for manufacturing Mg-alloy components used for numerous applications. High-pressure die casting is suitable for mass production and has the advantage of also being suitable for accurately fashioning objects of complicated shapes. One disadvantage of high-speed die casting is the occurrence of defects such as shrinkage or air entrainment. Gating system design must be very effective in actual manufacturing facilities to avoid the occurrence of such defects. The objective of this study is to present a methodology for obtaining optimal designs of 4-cavity thin electronic component housings. The fluid behavior and amount of air entrainment caused by the overflows and air vent designs were analyzed using a computer fluid dynamics (CFD) simulator. The effectiveness of the proposed system was demonstrated through CFD simulations and experiments using an actual manufacturing process. Also, the effect of vacuum systems on the porosity and mechanical properties of the castings was studied. The volume of porosity in the casting was found to be significantly reduced using vacuum assistance during die casting. As a result, the tensile strength and the elongation of the die casting products are improved.

  20. Carbon-supported base metal nanoparticles : Cellulose at work

    NARCIS (Netherlands)

    Hoekstra, Jacco; Versluijs-Helder, Marjan; Vlietstra, Edward J.; Geus, John W.; Jenneskens, Leonardus W.

    2015-01-01

    Pyrolysis of base metal salt loaded microcrystalline cellulose spheres gives a facile access to carbon-supported base metal nanoparticles, which have been characterized with temperature-dependent XRD, SEM, TEM, ICP-MS and elemental analysis. The role of cellulose is multifaceted: 1) it facilitates a

  1. Fe-based bulk metallic glasses used for magnetic shielding

    Science.gov (United States)

    Şerban, Va; Codrean, C.; Uţu, D.; Ercuţa, A.

    2009-01-01

    The casting in complex shapes (tubullar) and the main magnetic properties of bulk metallic glasses (BMG) alloys from the ferromagnetic Fe-Cr-Ni-Ga-P-Si-C system, with a small adittion of Ni (3%) were studied. Samples as rods and sockets having the thickness up to 1 mm were obtained from master alloys by melt injection by low cooling rates into a Cu mold and annealed in order to ensure adequate magnetic requirements. The structure was examined by X-ray diffraction (XRD) and the basic magnetic properties (coercivity, magnetic remanence, initial susceptibility, etc.) were determined by conventional low frequency induction method. The experimental investigations on producing of BMG ferromagnetic alloys with 3% Ni show the possibility to obtain magnetic shields of complex shape with satisfactory magnetic properties. The presence of Ni does not affect the glass forming ability, but reduce the shielding capacity.

  2. Fe-based bulk metallic glasses used for magnetic shielding

    Energy Technology Data Exchange (ETDEWEB)

    Serban, Va; Codrean, C; UTu, D [Politehnica University of Timisoara, Depart for Materials Science and Welding, 1, M. Viteazu Bvd., 300222, Timisoara (Romania); ErcuTa, A, E-mail: serban@mec.upt.r [West University of Timisoara, Faculty of Physics, 4, Vasile Parvan Bdv., Timisoara 300223 (Romania)

    2009-01-01

    The casting in complex shapes (tubular) and the main magnetic properties of bulk metallic glasses (BMG) alloys from the ferromagnetic Fe-Cr-Ni-Ga-P-Si-C system, with a small addition of Ni (3%) were studied. Samples as rods and sockets having the thickness up to 1 mm were obtained from master alloys by melt injection by low cooling rates into a Cu mold and annealed in order to ensure adequate magnetic requirements. The structure was examined by X-ray diffraction (XRD) and the basic magnetic properties (coercivity, magnetic remanence, initial susceptibility, etc.) were determined by conventional low frequency induction method. The experimental investigations on producing of BMG ferromagnetic alloys with 3% Ni show the possibility to obtain magnetic shields of complex shape with satisfactory magnetic properties. The presence of Ni does not affect the glass forming ability, but reduce the shielding capacity.

  3. Reconstructed image of human heart for total artificial heart implantation, based on MR image and cast silicone model of heart

    International Nuclear Information System (INIS)

    Komoda, Takashi; Maeta, Hajime; Uyama, Chikao.

    1991-01-01

    Based on transverse (TRN) and LV long axis (LAX) MR images of two cadaver hearts, three-dimensional (3-D) computer models of the connecting interface between remaining heart and total artificial heart, i.e., mitral and tricuspid valvular annuli (MVA and TVA), ascending aorta (Ao) and pulmonary artery (PA), were reconstructed to compare the shape and the size of MVA and those of TVA, the distance between the center of MVA and TVA (D G ), the angle between the plane of MVA and that of TVA (R T ), and the angles of Ao and PA, respectively, to the plane of MVA (R A , R P ), with those obtained in cast silicone models. It was found that based on LAX rather than TRN MR image, MVA and TVA might be more precisely reconstructed. The data obtained in 3-D images of MVA, TVA, Ao and PA based on silicone models of 32 hearts were as follows: D G (cm): 4.17±0.43, R T (degrees): 22.1±11.3, R A (degrees): 54.9±15.3, R P (degrees): 30.8±17.1. (author)

  4. Development of casting investment preventing blackening of noble metal alloys Part 2. Application of developed investment for type 4 gold alloy.

    Science.gov (United States)

    Nakai, Akira; Kakuta, Kiyoshi; Goto, Shin-ichi; Kato, Katuma; Yara, Atushi; Ogura, Hideo

    2003-09-01

    The objective of this study was to evaluate the efficacy of the developed investment for the prevention of blackening of a cast Type 4 gold and to analyze the oxides on its surface in relation to the blackening of the alloy. The experimental investments were prepared using a gypsum-bonded investment in which boron (B) or aluminum (Al) was added as a reducing agent. A Type 4 gold alloy was cast into the mold made of the prepared investment. The effect of the additives was evaluated from the color difference (deltaE*) between the as-cast surface and the polished surface of the cast specimen. B and Al were effective to prevent the blackening of a Type 4 gold alloy and the color of the as-cast surface approached that of the polished surface with increasing B and Al content. The prevention of the blackening of the gold alloy can be achieved by restraining the formation of CuO.

  5. Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia E.; Kulkova, Irina V.; Malureanu, Radu

    2012-01-01

    We investigate plasmonic modulators with a gain material to be implemented as ultra-compact and ultra-fast active nanodevices in photonic integrated circuits. We analyze metal-semiconductor-metal (MSM) waveguides with InGaAsP-based active material layers as ultra-compact plasmonic modulators. The...

  6. Optimization design of a gating system for sand casting aluminium A356 using a Taguchi method and multi-objective culture-based QPSO algorithm

    Directory of Open Access Journals (Sweden)

    Wen-Jong Chen

    2016-04-01

    Full Text Available This article combined Taguchi method and analysis of variance with the culture-based quantum-behaved particle swarm optimization to determine the optimal models of gating system for aluminium (Al A356 sand casting part. First, the Taguchi method and analysis of variance were, respectively, applied to establish an L27(38 orthogonal array and determine significant process parameters, including riser diameter, pouring temperature, pouring speed, riser position and gating diameter. Subsequently, a response surface methodology was used to construct a second-order regression model, including filling time, solidification time and oxide ratio. Finally, the culture-based quantum-behaved particle swarm optimization was used to determine the multi-objective Pareto optimal solutions and identify corresponding process conditions. The results showed that the proposed method, compared with initial casting model, enabled reducing the filling time, solidification time and oxide ratio by 68.14%, 50.56% and 20.20%, respectively. A confirmation experiment was verified to be able to effectively reduce the defect of casting and improve the casting quality.

  7. Advanced lost foam casting quarterly report, October 1, 1995--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Objective is to advance the state of the art in lost foam casting technology, in order to improve the competitiveness of the US metals casting industries. The following tasks are reported on pyrolysis defects and sand distortion, bronze casting technology, steel casting technology, sand filling and compaction, coating technology, precision pattern production, and computational modeling.

  8. Clean ferrous casting technology research. Final technical report, September 29, 1993--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Piwonka, T.S. [ed.

    1996-01-01

    This report details results of a 30-month program to develop methods of making clean ferrous castings, i.e., castings free of inclusions and surface defects. The program was divided into 3 tasks: techniques for producing clean steel castings, electromagnetic removal of inclusions from ferrous melts, and study of causes of metal penetration in sand molds in cast iron.

  9. CAD/CAM DESIGN AND GENETIC OPTIMIZATION OF FEEDERS FOR SAND CASTING PROCESS

    Directory of Open Access Journals (Sweden)

    Nedeljko Dučić

    2016-08-01

    Full Text Available The paper proposes methodology of feeder design and optimization for sand casting process. Casting part is a part of excavator buckets, i.e. holder of the cutting tooth. Process of design and optimization is based on the application of the rules, which are the result of many years of work researchers in the field of metal casting. Computer Aided Design (CAD is used as a methodology in the design of feeders. Genetic Algorithm (GA as an artificial intelligence technique is used in the optimization process of the feeder geometry. Computer Aided Manufacturing (CAM is used as methodology that involves numerical simulation of the casting process. Numerical simulation is used to verify the validity of the optimized geometry of the feeding system.

  10. design, construction and performance evaluation of multiple casting

    African Journals Online (AJOL)

    eobe

    Therefore, it is necessary to manage time required to transport the molten metal. The complex ... Logistic performance evaluation of squeeze casting technique has been used to analyze simulation of squeeze casting equipment [4]. It was identified that the utilization ... operations, molten metal delivery, preheating, no.

  11. Special thermite cast irons

    OpenAIRE

    Yu. Zhiguts; I. Kurytnik

    2008-01-01

    The given paper deals with the problems of the synthesis of cast iron by metallothermy synthesis. On the basis of investigated method of calculations structures of charges have been arranged and cast iron has been synthesized further. Peculiarities metallothermic smelting were found, mechanical properties and structure of received cast iron were investigated and different technologies for cast iron receiving were worked out.

  12. Aircast walking boot and below-knee walking cast for avulsion fractures of the base of the fifth metatarsal: a comparative cohort study.

    Science.gov (United States)

    Shahid, Mohammad Kamran; Punwar, Shahid; Boulind, Caroline; Bannister, Gordon

    2013-01-01

    Acute avulsion fractures of the base of the fifth metatarsal are common and are treated in a variety of ways. The aims of this study were to compare pain, functional outcome, and time taken off work after treatment with a walking boot or a short-leg cast. Of 39 patients with acute avulsion fractures of the base of the fifth metatarsal, 23 were treated with a short-leg cast and 16 with a walking boot, according to the preference of the consultant present at outpatient clinic. Functional outcome was assessed by the Visual Analogue Scale Foot and Ankle Questionnaire (VAS FA), pain, and other complaints on presentation and at 3, 6, 9, and 12 weeks after injury. The VAS FA scores were compared between the 2 groups by a paired Student t test. The mean time to return to the level of pain and function before injury was approximately 9 weeks after treatment in the walking boot group and 12 weeks with a short-leg cast. Patients with walking boots reported less pain between 3 and 12 weeks than did those with short-leg casts after 6 (P = .06), 9 (P = .020), and 12 weeks (P = .33). Function was significantly better with Aircast walking boots after 3 (P = .006), 6 (P = .002), and 9 weeks (P = .002) but not after 12 weeks (P = .09). Patients returned to their preinjury level of driving after 6 weeks with walking boots and 12 weeks with short-leg casts (P = .006). Employed patients took a mean of 35.8 days off work (range, 28-42 days), fewer with boots (31.5 days) than with short-leg casts (39.2 days). The walking boot was better treatment than a short-leg cast for avulsion fractures of the base of the fifth metatarsal. Patients had an improved combined level of pain and function 3 weeks earlier, at 9 weeks post injury, when managed in a walking boot. Level II, prospective comparative series.

  13. Prediction of Part Distortion in Die Casting

    Energy Technology Data Exchange (ETDEWEB)

    R. Allen Miller

    2005-03-30

    The die casting process is one of the net shape manufacturing techniques and is widely used to produce high production castings with tight tolerances for many industries. An understanding of the stress distribution and the deformation pattern of parts produced by die casting will result in less deviation from the part design specification, a better die design and eventually more productivity and cost savings. This report presents methods that can be used to simulate the die casting process in order to predict the deformation and stresses in the produced part and assesses the degree to which distortion modeling is practical for die casting at the current time. A coupled thermal-mechanical finite elements model was used to simulate the die casting process. The simulation models the effect of thermal and mechanical interaction between the casting and the die. It also includes the temperature dependant material properties of the casting. Based on a designed experiment, a sensitivity analysis was conducted on the model to investigate the effect of key factors. These factors include the casting material model, material properties and thermal interaction between casting and dies. To verify the casting distortion predictions, it was compared against the measured dimensions of produced parts. The comparison included dimensions along and across the parting plane and the flatness of one surface.

  14. The Multifaceted Role of Plaster Casts in Contemporary Museums

    OpenAIRE

    Moyeda, Alissa Ann

    2017-01-01

    Plaster casts typically based on well known artworks were displayed in European and American museums and galleries prior to the twentieth century. Though popular, these plaster casts were never seen to be equivalent in value to the original, authentic pieces. In recent years there has been a resurgence of interest in plaster casts and many museums collections have been pulling casts out of storage to put on display. Current usage of casts in European and American museums is overwhelmingly for...

  15. Surface/structure functionalization of copper-based catalysts by metal-support and/or metal-metal interactions

    Science.gov (United States)

    Konsolakis, Michalis; Ioakeimidis, Zisis

    2014-11-01

    Cu-based catalysts have recently attracted great attention both in catalysis and electro-catalysis fields due to their excellent catalytic performance and low cost. Given that their performance is determined, to a great extent, by Cu sites local environment, considerable efforts have been devoted on the strategic modifications of the electronic and structural properties of Cu sites. In this regard, the feasibility of tuning the local structure of Cu entities by means of metal-support or metal-metal interactions is investigated. More specifically, the physicochemical properties of Cu entities are modified by employing: (i) different oxides (CeO2, La2O3, Sm2O3), or (ii) ceria-based mixed oxides (Ce1-xSmxOδ) as supporting carriers, and (iii) a second metal (Cobalt) adjacent to Cu (bimetallic Cu-Co/CeO2). A characterization study, involving BET, XRD, TPR, and XPS, reveal that significant modifications on structural, redox and electronic properties of Cu sites can be induced by adopting either different oxide carriers or bimetallic complexes. Fundamental insights into the tuning of Cu local environment by metal-support or metal-metal interactions are provided, paving the way for real-life industrial applications.

  16. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific Design Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, G.; Sikka, V.K.; Pankiw, R.I.

    2006-04-15

    The goal of this program was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and upper use temperature by 86 to 140 F (30 to 60 C). Meeting this goal is expected to result in energy savings of 38 trillion Btu/year by 2020 and energy cost savings of $185 million/year. The higher strength H-Series of cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat-treating industry. The project was led by Duraloy Technologies, Inc. with research participation by the Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies. Energy Industries of Ohio (EIO) was also a partner in this project. Each team partner had well-defined roles. Duraloy Technologies led the team by identifying the base alloys that were to be improved from this research. Duraloy Technologies also provided an extensive creep data base on current alloys, provided creep-tested specimens of certain commercial alloys, and carried out centrifugal casting and component fabrication of newly designed alloys. Nucor Steel was the first partner company that installed the radiant burner tube assembly in their heat-treating furnace. Other steel companies participated in project review meetings and are currently working with Duraloy Technologies to obtain components of the new alloys. EIO is promoting the enhanced performance of the newly designed alloys to Ohio-based companies. The Timken Company is one of the Ohio companies being promoted by EIO. The project management and coordination plan is shown in Fig. 1.1. A related project at University of Texas-Arlington (UT-A) is described in Development of Semi-Stochastic Algorithm for Optimizing Alloy Composition of High-Temperature Austenitic Stainless Steels (H-Series) for Desired

  17. Saccharide-based Approach to Green Metallic Nanostructure Synthesis

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Sørensen, Karsten Holm; Jensen, Palle Skovhus

    A green approach to solution synthesis of metallic nanoparticles has been developed using harmless and bioapplicable chemicals as well as moderate temperatures. Metal precursors are reduced by glucose/buffers and sterically stabilized by starch. The saccharide based procedure is highly diverse...

  18. Liquid metal actuation-based reversible frequency tunable monopole antenna

    Science.gov (United States)

    Kim, Daeyoung; Pierce, Richard G.; Henderson, Rashaunda; Doo, Seok Joo; Yoo, Koangki; Lee, Jeong-Bong

    2014-12-01

    We report the fabrication and characterization of a reversible resonant frequency tunable antenna based on liquid metal actuation. The antenna is composed of a coplanar waveguide fed monopole stub printed on a copper-clad substrate, and a tunnel-shaped microfluidic channel linked to the printed metal. The gallium-based liquid metal can be injected and withdrawn from the channel in response to an applied air pressure. The gallium-based liquid metal is treated with hydrochloric acid to eliminate the oxide layer, and associated wetting/sticking problems, that arise from exposure to an ambient air environment. Elimination of the oxide layer allows for reliable actuation and repeatable and reversible tuning. By controlling the liquid metal slug on-demand with air pressure, the liquid metal can be readily controllable to connect/disconnect to the monopole antenna so that the physical length of the antenna reversibly tunes. The corresponding reversible resonant frequency changes from 4.9 GHz to 1.1 GHz. The antenna properties based on the liquid metal actuation were characterized by measuring the reflection coefficient and agreed well with simulation results. Additionally, the corresponding time-lapse images of controlling liquid metal in the channel were studied.

  19. SILANE-BASED CONVERSION COATING FOR METALS

    Science.gov (United States)

    For the past three years, a project to develop new pretreatment rinses for metals was carried out by the U.S. Environmental Protection Agency and the University of Cincinnati. The project involved optimization of laboratory rinses with dilute aqueous solutions organofunctional s...

  20. Plume Tracer: Interactive Mapping of Atmospheric Plumes via GPU-based Volumetric Ray Casting

    Data.gov (United States)

    National Aeronautics and Space Administration — Real-time quantification of volcanic gaseous and particulate releases from analysis of satellite-based Thermal Infrared (TIR) spectral imagery data Real-time...

  1. Microstructures and performance of CaO-based ceramic cores with different particle size distributions for investment casting

    Science.gov (United States)

    Zhou, P. P.; Wu, G. Q.; Tao, Y.; Cheng, X.; Zhao, J. Q.; Nan, H.

    2018-02-01

    A series of calcium-based ceramic cores for casting titanium alloy were prepared by mixing different amounts of coarse and fine powders through injection molding. The effects of particle size on the microstructures and properties of the ceramic cores were investigated using quantitative and statistical analysis methods. It is found that the shrinkage and room-temperature strength of the ceramic cores were enhanced as increasing the contents of fine particles. Moreover, the creep resistance of the ceramic cores increased initially and then decreased. The increase in the fine particle content of the cores reduced the number and mean diameter of pores after sintering. The grain boundary density decreased firstly and then increased. The flexural strength of the ceramic cores at room temperature decreased with increasing porosity of ceramic cores, whereas the creep resistance increased with decreasing grain boundary density. A core exhibiting the optimal property was obtained when mixing 65 wt% of coarse powders (75-150 μm) and 35 wt% of fine powders (25-48 μm).

  2. Wear and Corrosion Resistance of Fe Based Coatings by HVOF Sprayed on Gray Cast-Iron for Automotive Application

    Directory of Open Access Journals (Sweden)

    M.S. Priyan

    2014-12-01

    Full Text Available In this study, commercially available FeSiNiCr and FeBCr alloy powders were designed with suitable compositions, gas atomized and then coated on gray cast-iron substrate. The microstructures of the feed stock Fe based alloy powders and the coatings were investigated by means of optical microscopy (OM, X-Ray diffraction (XRD, Thermogravimetric analysis (TGA and Scanning Electron Microscopy (SEM. In the present study, both the coating materials experienced two-body wear mechanisms. The results showed that for loads of 0.05 N, 0.1 N and 0.2 N, the wear resistance of FeBCr coating was less than FeSiNiCr by 44 %, 40 % and 31 %, respectively. The results indicated that the coated substrates exhibited lower corrosion current densities and lower corrosion rates, when placed in 20 wt.% H2SO4 solutions. In addition, the use of optimal spraying parameters/conditions gave improvements to the corrosion resistance of the substrates that had been treated with the crystalline coating.

  3. Discrepancy measurements of copings prepared by three casting methods and two different alloys, on ITI implants

    Directory of Open Access Journals (Sweden)

    Siadat H.

    2008-04-01

    Full Text Available Background and Aim: An important criterion for success assessment of implant-supported prostheses is marginal fit. Vertical and horizontal discrepancy can result in loosening of the prosthetic screw, crestal bone resorption, peri-implantitis and loss of osseointegration. Despite careful attention to waxing, investing, and casting, marginal discrepancies are inevitable. The aim of this study was to evaluate the marginal gap and overhang in three casting methods with two different alloys in ITI implants.Materials and Methods: In this experimental in vitro study 48 analog abutments were randomly divided into six groups as follows: 1 burn out cap + BegoStar, 2 impression cap + BegoStar, 3 conventional wax up + BegoStar, 4 burn out cap + Verabond2, 5 impression cap + Verabond2, 6 conventional wax up + Verabond2. Waxing was done in 0.7 mm thickness verified by a digital gauge and a putty index was made for all groups. Reamer was used for correction of the finish line after casting in all groups. Castings were seated on analog abutments and embedded in acrylic resin. Specimens were sectioned by isomet instrument and polished and cleaned by ultrasonic cleaner for 10 min. The marginal gap and overextended margins of castings were examined under a  Scanning Electron Microscope (SEM (X200. The mean gap and margin overextension were calculated for each group. Data were analyzed by multivariate analysis and Bonferroni post-hoc test with p<0.05 as the level of significance.Results: No significant difference in gap size was observed among the three casting methods with two alloys (P=0.056. The marginal gap was not different in the studied casting methods (P=0.092. Gold alloy crowns showed lower marginal gaps compared to base metal alloy crowns (P<0.001. No significant difference in overhang size was observed among casting methods with two alloys (P=0.093. Base metal alloy crowns showed less overhang compared to gold alloy crowns (P<0.001. There was a

  4. A Gallium-Based Magnetocaloric Liquid Metal Ferrofluid.

    Science.gov (United States)

    A de Castro, Isabela; Chrimes, Adam F; Zavabeti, Ali; Berean, Kyle J; Carey, Benjamin J; Zhuang, Jincheng; Du, Yi; Dou, Shi X; Suzuki, Kiyonori; Shanks, Robert A; Nixon-Luke, Reece; Bryant, Gary; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh; Daeneke, Torben

    2017-12-13

    We demonstrate a magnetocaloric ferrofluid based on a gadolinium saturated liquid metal matrix, using a gallium-based liquid metal alloy as the solvent and suspension medium. The material is liquid at room temperature, while exhibiting spontaneous magnetization and a large magnetocaloric effect. The magnetic properties were attributed to the formation of gadolinium nanoparticles suspended within the liquid gallium alloy, which acts as a reaction solvent during the nanoparticle synthesis. High nanoparticle weight fractions exceeding 2% could be suspended within the liquid metal matrix. The liquid metal ferrofluid shows promise for magnetocaloric cooling due to its high thermal conductivity and its liquid nature. Magnetic and thermoanalytic characterizations reveal that the developed material remains liquid within the temperature window required for domestic refrigeration purposes, which enables future fluidic magnetocaloric devices. Additionally, the observed formation of nanometer-sized metallic particles within the supersaturated liquid metal solution has general implications for chemical synthesis and provides a new synthetic pathway toward metallic nanoparticles based on highly reactive rare earth metals.

  5. Operation of an InGrid based X-ray detector at the CAST experiment

    Directory of Open Access Journals (Sweden)

    Krieger Christoph

    2018-01-01

    During operation at the experiment, background rates in the order of 10−5 keV−1 cm−2 s−1 have been achieved by application of a likelihood based method discriminating the non-photon background originating mostly from cosmic rays. For continued operation in 2016, an upgraded InGrid based detector is to be installed among other improvements including decoupling and sampling of the signal induced on the grid as well as a veto scintillator to further lower the observed background rates and improving sensitivity.

  6. High-Throughput Study of Diffusion and Phase Transformation Kinetics of Magnesium-Based Systems for Automotive Cast Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Alan A [The Ohio State Univ., Columbus, OH (United States); Zhao, Ji-Cheng [The Ohio State Univ., Columbus, OH (United States); Riggi, Adrienne [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Joost, William [US Dept. of Energy, Washington, DC (United States)

    2017-10-02

    The objective of the proposed study is to establish a scientific foundation on kinetic modeling of diffusion, phase precipitation, and casting/solidification, in order to accelerate the design and optimization of cast magnesium (Mg) alloys for weight reduction of U.S. automotive fleet. The team has performed the following tasks: 1) study diffusion kinetics of various Mg-containing binary systems using high-throughput diffusion multiples to establish reliable diffusivity and mobility databases for the Mg-aluminum (Al)-zinc (Zn)-tin (Sn)-calcium (Ca)-strontium (Sr)-manganese (Mn) systems; 2) study the precipitation kinetics (nucleation, growth and coarsening) using both innovative dual-anneal diffusion multiples and cast model alloys to provide large amounts of kinetic data (including interfacial energy) and microstructure atlases to enable implementation of the Kampmann-Wagner numerical model to simulate phase transformation kinetics of non-spherical/non-cuboidal precipitates in Mg alloys; 3) implement a micromodel to take into account back diffusion in the solid phase in order to predict microstructure and microsegregation in multicomponent Mg alloys during dendritic solidification especially under high pressure die-casting (HPDC) conditions; and, 4) widely disseminate the data, knowledge and information using the Materials Genome Initiative infrastructure (http://www.mgidata.org) as well as publications and digital data sharing to enable researchers to identify new pathways/routes to better cast Mg alloys.

  7. Dual-energy-based metal segmentation for metal artifact reduction in dental computed tomography.

    Science.gov (United States)

    Hegazy, Mohamed A A; Eldib, Mohamed Elsayed; Hernandez, Daniel; Cho, Myung Hye; Cho, Min Hyoung; Lee, Soo Yeol

    2018-02-01

    In a dental CT scan, the presence of dental fillings or dental implants generates severe metal artifacts that often compromise readability of the CT images. Many metal artifact reduction (MAR) techniques have been introduced, but dental CT scans still suffer from severe metal artifacts particularly when multiple dental fillings or implants exist around the region of interest. The high attenuation coefficient of teeth often causes erroneous metal segmentation, compromising the MAR performance. We propose a metal segmentation method for a dental CT that is based on dual-energy imaging with a narrow energy gap. Unlike a conventional dual-energy CT, we acquire two projection data sets at two close tube voltages (80 and 90 kV p ), and then, we compute the difference image between the two projection images with an optimized weighting factor so as to maximize the contrast of the metal regions. We reconstruct CT images from the weighted difference image to identify the metal region with global thresholding. We forward project the identified metal region to designate metal trace on the projection image. We substitute the pixel values on the metal trace with the ones computed by the region filling method. The region filling in the metal trace removes high-intensity data made by the metallic objects from the projection image. We reconstruct final CT images from the region-filled projection image with the fusion-based approach. We have done imaging experiments on a dental phantom and a human skull phantom using a lab-built micro-CT and a commercial dental CT system. We have corrected the projection images of a dental phantom and a human skull phantom using the single-energy and dual-energy-based metal segmentation methods. The single-energy-based method often failed in correcting the metal artifacts on the slices on which tooth enamel exists. The dual-energy-based method showed better MAR performances in all cases regardless of the presence of tooth enamel on the slice of

  8. Influence of the casting processing route on the corrosion behavior of dental alloys.

    Science.gov (United States)

    Galo, Rodrigo; Rocha, Luis Augusto; Faria, Adriana Claudia; Silveira, Renata Rodrigues; Ribeiro, Ricardo Faria; de Mattos, Maria da Gloria Chiarello

    2014-12-01

    Casting in the presence of oxygen may result in an improvement of the corrosion performance of most alloys. However, the effect of corrosion on the casting without oxygen for dental materials remains unknown. The aim of this study was to investigate the influence of the casting technique and atmosphere (argon or oxygen) on the corrosion behavior response of six different dental casting alloys. The corrosion behavior was evaluated by electrochemical measurements performed in artificial saliva for the different alloys cast in two different conditions: arc melting in argon and oxygen-gas flame centrifugal casting. A slight decrease in open-circuit potential for most alloys was observed during immersion, meaning that the corrosion tendency of the materials increases due to the contact with the solution. Exceptions were the Co-based alloys prepared by plasma, and the Co-Cr-Mo and Ni-Cr-4Ti alloys processed by oxidized flame, in which an increase in potential was observed. The amount of metallic ions released into the artificial saliva solution during immersion was similar for all specimens. Considering the pitting potential, a parameter of high importance when considering the fluctuating conditions of the oral environment, Co-based alloys show the best performance in comparison with the Ni-based alloys, independent of the processing route. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A survey on the effects of three surface treatment methods on bond strength between base-metal alloys and Ceromer material (Targis

    Directory of Open Access Journals (Sweden)

    Rokni. Sh.

    2004-08-01

    Full Text Available Statement of Problem: Ceramics and resins belong to the earliest tooth restorative materials. Nowadays new generations of these materials have provided a revolution in cosmetic dentistry. Ceramic Optimized polymer (Ceromer is a newly made product that the bond between this material and base metal alloys, which are used widely today, is paid too much attention. Purpose: The aim of this study was to evaluate the bond strength of targis (Ceromer to three types of base metal alloys through three different surface treatment methods. Materials and Methods: In this experimental study, ninety plates of Rexillium III, Silver cast and super cast alloys (3050.4 were prepared and surface treated through three different methods (air oxidation, vaccum oxidation and sandblast. All samples were then veneered with 1.mm thickness of Targis. After thermocycling, three-point bending test was performed by universal testing machine (Instron to evaluate the amount of forces at crack or fracture times in Targis. The type of failure (cohesive or adhesive was also evaluated microscopically. Statistical analyses were made using 2-factor ANOVA and Duncan tests. Results: The type of surface treatment method caused a statistically significant difference in force rate required for crack and fracture in Targis. Sandblasting was found as the best method. The type of alloys, in all three methods, had a significant effect just on crack creation attributing the largest amount of force to Rexillium III. Adhesive type of failure occurred mostly in super-cast alloys through air-oxidation method, and cohesive type was more among silver cast alloys and sandblast method. Conclusion: According to the results of this study, bond strength between Ceromer materials and base metal alloys is significantly great and Rexillium III alloy associated with sandblast technique the best combination.

  10. CARBON-CONTAINING COMPOSITES BASED ON METALS

    Directory of Open Access Journals (Sweden)

    VAGANOV V. E.

    2015-10-01

    Full Text Available Problem statement Among the developed technologies metal-composites production,a special place takes powder metallurgy, having fundamental differences from conventionally used foundry technologies. The main advantages of this technology are: the possibility of sensitive control, the structure and phase composition of the starting components, and ultimately the possibility of obtaining of bulk material in nanostructured state with a minimum of processing steps. The potential reinforcers metals include micro and nano-sized oxides, carbides, nitrides, whiskers. The special position is occupied with carbon nanostructures (CNS: С60 fullerenes, single-layer and multi-layer nanotubes, onions (spherical "bulbs", nano-diamonds and graphite,their properties are being intensively studied in recent years. These objects have a high thermal and electrical conductivity values, superelasticity, and have a strength approximate to the theoretical value, which can provide an obtaining composite nanomaterial with a unique set of physical and mechanical properties. In creation of a metal matrix composite nanomaterials (CM, reinforced by various CNS, a special attention should be given to mechanical activation processes (MA already at the stage of preparation of the starting components affecting the structure, phase composition and properties of aluminum-matrix composites. Purpose. To investigate the influence of mechanical activation on the structure and phase composition of aluminum-matrix composites. Conclusion. The results of the study of the structure and phase composition of the initial and mechanically activated powders and bulk-modified metal-composites are shown, depending on the type and concentration of modifying varieties CNS, regimes of MA and parameters of compaction. The study is conducted of tribological properties of Al-CNS OF nanostructured materials.

  11. Carcass and physical meat characteristics of thin tail sheep (TTS based on calpastatin gene (CAST (Locus intron 5 – exon 6 genotypes variation

    Directory of Open Access Journals (Sweden)

    Muhammad Ihsan Andi Dagong

    2012-03-01

    Full Text Available The quality of sheep carcass is mostly determined by the total lean meat production, meat distribution on the carcass and the quality of meat. Calpastatin gene (CAST is known to have an association with carcass and meat quality traits. The objective of this research was to identify the association between CAST polymorphisms and carcass characteristics in Thin Tail Sheep (TTS. Thirty three heads of sheep representing three genotypes of CAST (CAST-11, CAST-12 and CAST-22 were identified for carcass and meat characterisation. There was no significant difference between CAST polymorphisms with meat tenderness, pH, water holding capacity and cooking loss, neither with carcass weight and dressing percentage among genotypes. Shoulder proportion of CAST-11 genotype was larger than that of CAST-12 or CAST-22, but the lean meat proportion of CAST-22 genotype in shoulder, rack and loin were higher than those of CAST-11 but not different from CAST-12. The fat percentage of CAST-11 was the highest among the genotypes. CAST-22 genotype has higher lean meat percentage than the CAST-11. Variation in CAST gene could be used as marker assisted selection in sheep for higher lean meat proportion.

  12. [Exposure to vegetal esters based metal cutting fluids: health effects].

    Science.gov (United States)

    Riva, M M; Bellini, M; Leghissa, P; Gambini, D; Mosconi, G

    2012-01-01

    The aim of our research is to study respiratory and dermatologic diseases (irritative and allergic) in a cohort of workers exposed to vegetal esters based metal cutting fluids of the latest generation. A cohort of 81 workers (mean age 34.5 years, seniority 17.4 years), with mean exposure to vegetal esters based metal cutting fluids of 2.8 years, has been subjected to clinical evaluations. The investigation did not reveal any disease or disorder of the respiratory system, any folluculitis or any allergic contact dermatitis caused by sensitization to vegetal esters based metal cutting fluids. On the contrary we documented 5 cases of irritant contact dermatitis, even if favored by an improper use of protection devices. According to early results, the introduction of vegetal esters based metal cutting fluids seems to reduce the risk to the worker's health. A longitudinal surveillance is still needed to confirm that even in the medium and long-term sensitizations will not occur.

  13. Preliminary Results on the Surface of a New Fe-Based Metallic Material after “In Vivo” Maintaining

    Science.gov (United States)

    Săndulache, F.; Stanciu, S.; Cimpoeşu, N.; Stanciu, T.; Cimpoeșu, R.; Enache, A.; Baciu, R.

    2017-06-01

    Abstract A new Fe-based alloy was obtained using UltraCast melting equipment. The alloy, after mechanical processing, was implanted in five rabbit specimens (with respect for the “in-bone” procedure). After 30 days of implantation the samples were recovered and analyzed by weight and surface state meanings. Scanning electron microscopy technique was used to determine the new compounds morphology from the metallic surface and X-ray dispersive energy spectroscopy for chemical analyze results. A bond between the metallic material and biological material of the bone was observed through increasing of sample weight and by SEM images. After the first set of tests, as the samples were extracted and biologically cleaned, the samples were ultrasonically cleaned and re-analyzed in order to establish the stability of the chemical compounds.

  14. Clean cast steel technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bates, C.E.; Griffin, J.A.

    1998-06-01

    This report documents the results obtained from the Clean Cast Steel Technology Program financially supported by the DOE Metal Casting Competitiveness Research Program and industry. The primary objective of this program is to develop technology for delivering steel free of oxide macroinclusions to mold cavities. The overall objective is to improve the quality of cast steel by developing and demonstrating the technology for substantially reducing surface and sub-surface oxide inclusions. Two approaches are discussed here. A total of 23 castings were produced by submerge pouring along with sixty conventionally poured castings. The submerged poured castings contained, on average, 96% fewer observable surface inclusions (11.9 vs 0.4) compared to the conventionally poured cast parts. The variation in the population of surface inclusions also decreased by 88% from 5.5 to 0.7. The machinability of the casting was also improved by submerged pouring. The submerge poured castings required fewer cutting tool changes and less operator intervention during machining. Subsequent to these trials, the foundry has decided to purchase more shrouds for continued experimentation on other problem castings where submerge pouring is possible. An examination of melting and pouring practices in four foundries has been carried out. Three of the four foundries showed significant improvement in casting quality by manipulating the melting practice. These melting practice variables can be grouped into two separate categories. The first category is the pouring and filling practice. The second category concerns the concentration of oxidizable elements contained in the steel. Silicon, manganese, and aluminum concentrations were important factors in all four foundries. Clean heats can consistently be produced through improved melting practice and reducing exposure of the steel to atmospheric oxygen during pouring and filling.

  15. Exploration of the catalytic use of alkali metal bases

    OpenAIRE

    Bao, Wei

    2017-01-01

    This PhD thesis project was concerned with the use of alkali metal amide Brønsted bases and alkali metal alkoxide Lewis bases in (asymmetric) catalysis. The first chapter deals with formal allylic C(sp3)–H bond activation of aromatic and functionalized alkenes for subsequent C–C and C–H bond formations. The second chapter is focused on C(sp3)–Si bond activation of fluorinated pro-nucleophiles in view of C–C bond formations. In the first chapter, a screening of various metal amides...

  16. High Voltage Resistive Divider Based on Cast Microwire in Glass Insulation on 6–24 kV Alternating Current of Commercial Frequency.

    Directory of Open Access Journals (Sweden)

    Juravleov A.

    2008-12-01

    Full Text Available It is presented the analysis and description of the construction of the high voltage resistive divider on the base of cast microwire in glass insulation on 6–24 kV alternating current of commercial frequency. It is presented the procedure of compensation of frequency error during the process of fabrication of divides and results of tests of the sample model of the divider as well.

  17. Influence of cooling rate on y'morphology in cast Ni – base superalloy

    Directory of Open Access Journals (Sweden)

    J. Belan

    2009-04-01

    Full Text Available The Ni – base superalloys, which are combined an unique physical and mechanical properties, are used in aircraft industry for productionof aero engine most stressed parts, as are turbine blades. From this reason a dendrite arm spacing, carbides size and distribution, morphology,number and value of y'- phase are very important structural characteristics for blade lifetime prediction as well as aero engine its self. In this article are used methods of quantitative metallography (software LUCIA for carbides evaluation, measuring of secondary dendrite arm spacing and coherent testing grid for y' - phase evaluation for evaluation of structural characteristics mentioned above on experimental material – Ni base superalloy ŽS6K. The high temperature effect represented here by heat treatment at 800°C followed with holding time about 10 hours, and cooling rate, here represented by three various cooling mediums as water, air, and oil, on structural characteristics and application of quantitative methods evaluation are presented in this paper.

  18. Fabrication of Chitosan Silk-based Tracheal Scaffold Using Freeze-Casting Method

    Science.gov (United States)

    Nematollahi, Zeinab; Tafazzoli-Shadpour, Mohammad; Zamanian, Ali; Seyedsalehi, Amir; Mohammad-Behgam, Shadmehr; Ghorbani, Fariba; Mirahmadi, Fereshte

    2017-01-01

    Background: Since the treatments of long tracheal lesions are associated with some limitations, tissue engineered trachea is considered as an alternative option. This study aimed at preparing a composite scaffold, based on natural and synthetic materials for tracheal tissue engineering. Methods: Nine chitosan silk-based scaffolds were fabricated using three freezing rates (0.5, 1, and 2°C/min) and glutaraldehyde (GA) concentrations (0, 0.4, and 0.8 wt%). Samples were characterized, and scaffolds having mechanical properties compatible with those of human trachea and proper biodegradability were selected for chondrocyte cell seeding and subsequent biological assessments. Results: The pore sizes were highly influenced by the freezing rate and varied from 135.3×372.1 to 37.8×83.4 µm. Swelling and biodegradability behaviors were more affected by GA rather than freezing rate. Tensile strength raised from 120 kPa to 350 kPa by an increment of freezing rate and GA concentration. In addition, marked stiffening was demonstrated by increasing elastic modulus from 1.5 MPa to 12.2 MPa. Samples having 1 and 2°C/min of freezing rate and 0.8 wt% GA concentration made a non-toxic, porous structure with tensile strength and elastic modulus in the range of human trachea, facilitating the chondrocyte proliferation. The results of 21-day cell culture indicated that glycosaminoglycans content was significantly higher for the rate of 2°C/min (12.04 µg/min) rather than the other (9.6 µg/min). Conclusion: A homogenous porous structure was created by freeze drying. This allows the fabrication of a chitosan silk scaffold cross-linked by GA for cartilage tissue regeneration with application in tracheal regeneration. PMID:28131109

  19. Shear Bond Strength of Porcelain to a Base-Metal Compared to Zirconia Core

    Directory of Open Access Journals (Sweden)

    Abrisham SM

    2017-03-01

    Full Text Available Statement of Problem: Recent clinical results for Zirconia all-ceramic restorations have revealed that the fracture rate 6-15% of the Zirconia framework is so low and the core of Zirconia has high stability. However, chipping-off fractures of porcelain are the most common reason for failures of Zirconia in the fixed partial dentures. Objectives: The purpose of this study was to compare the shear bond strength (SBS of porcelain in the porcelain fused to metal and all-ceramic crowns with Zirconia core. Materials and Methods: Two groups were selected: porcelain fused to metal (PFM and porcelain fused to Zirconia (PFZ (n = 30.In the PFM group, a wax model (10 × 10 × 10mmwas used to cast metal base (Ni_Cr alloy. In the PFZ group, an acrylic cubic model (10 × 10 × 10mm was made as Zirconia model for scanning.15 cubic Zirconia samples were milled by CAD-CAM. The procedure of porcelain veneering was conducted by the conventional layering technique up to 2 mm thickness (2.5 × 2.5 × 2 mm. All specimens were stored in water for 48 hrs. Thermal cycling was conducted for 20000 cycles between 55°C and 5ºC alternatively for 30s.All samples were mounted in acrylic resin and the SBS test was performed, using a universal testing machine. The analysis of data was performed at a significance level of 0.05 using Kolmogorov-Smirnov and Mann-Whitney U-test. Results: Mean of SBS in PFM and PFZ was 24.57 and 20.88, respectively. The results of Mann-Whitney test showed that there was no statistically significant difference between the two groups of porcelain fused to metal and Zirconia in item shear bond strength (p = 0.455. Conclusions: There was no significant difference between the two groups of PFM and PFZ in the item SBS.

  20. Shear Bond Strength of Porcelain to a Base-Metal Compared to Zirconia Core.

    Science.gov (United States)

    Abrisham, S M; Fallah Tafti, A; Kheirkhah, S; Tavakkoli, M A

    2017-03-01

    Recent clinical results for Zirconia all-ceramic restorations have revealed that the fracture rate 6-15% of the Zirconia framework is so low and the core of Zirconia has high stability. However, chipping-off fractures of porcelain are the most common reason for failures of Zirconia in the fixed partial dentures. The purpose of this study was to compare the shear bond strength (SBS) of porcelain in the porcelain fused to metal and all-ceramic crowns with Zirconia core. Two groups were selected: porcelain fused to metal (PFM) and porcelain fused to Zirconia (PFZ) (n = 30).In the PFM group, a wax model (10 × 10 × 10mm)was used to cast metal base (Ni_Cr alloy). In the PFZ group, an acrylic cubic model (10 × 10 × 10mm) was made as Zirconia model for scanning.15 cubic Zirconia samples were milled by CAD-CAM. The procedure of porcelain veneering was conducted by the conventional layering technique up to 2 mm thickness (2.5 × 2.5 × 2 mm). All specimens were stored in water for 48 hrs. Thermal cycling was conducted for 20000 cycles between 55°C and 5ºC alternatively for 30s.All samples were mounted in acrylic resin and the SBS test was performed, using a universal testing machine. The analysis of data was performed at a significance level of 0.05 using Kolmogorov-Smirnov and Mann-Whitney U-test. Mean of SBS in PFM and PFZ was 24.57 and 20.88, respectively. The results of Mann-Whitney test showed that there was no statistically significant difference between the two groups of porcelain fused to metal and Zirconia in item shear bond strength ( p = 0.455). There was no significant difference between the two groups of PFM and PFZ in the item SBS.

  1. A new kind of metal detector based on chaotic oscillator

    Science.gov (United States)

    Hu, Wenjing

    2017-12-01

    The sensitivity of a metal detector greatly depends on the identification ability to weak signals from the probe. In order to improve the sensitivity of metal detectors, this paper applies the Duffing chaotic oscillator to metal detectors based on its characteristic which is very sensitive to weak periodic signals. To make a suitable Duffing system for detectors, this paper computes two Lyapunov characteristics exponents of the Duffing oscillator, which help to obtain the threshold of the Duffing system in the critical state accurately and give quantitative criteria for chaos. Meanwhile, a corresponding simulation model of the chaotic oscillator is made by the Simulink tool box of Matlab. Simulation results shows that Duffing oscillator is very sensitive to sinusoidal signals in high frequency cases. And experimental results show that the measurable diameter of metal particles is about 1.5mm. It indicates that this new method can feasibly and effectively improve the metal detector sensitivity.

  2. TiB2 reinforced aluminum based in situ composites fabricated by stir casting

    International Nuclear Information System (INIS)

    Chen, Fei; Chen, Zongning; Mao, Feng; Wang, Tongmin; Cao, Zhiqiang

    2015-01-01

    In this study, a new technique involving mechanical stirring at the salts/aluminum interface was developed to fabricate TiB 2 particulate reinforced aluminum based in situ composites with improved particle distribution. Processing parameters in terms of stirring intensity, stirring duration and stirring start time were optimized according to the microstructure and mechanical properties evaluation. The results show that, the first and last 15 min of the entire 60 min holding are of prime importance to the particle distribution of the final composites. When applying 180 rpm (revolutions per minute) stirring at the salts/aluminum interface in these two intervals, a more uniform microstructure can be achieved and the Al-4 wt% TiB 2 composite thus produced exhibits superior mechanical performance. Synchrotron radiation X-ray computed tomography (SR-CT) was used to give a full-scale imaging of the particle distribution. From the SR-CT results, the in situ Al–xTiB 2 composites (x=1, 4 and 7, all in wt%) fabricated by the present technique are characterized by fine and clean TiB 2 particles distributed uniformly throughout the Al matrix. These composites not only have higher yield strength (σ 0.2 ) and ultimate tensile strength (UTS), but also exhibit superior ductility, with respect to the Al–TiB 2 composites fabricated by the conventional process. The σ 0.2 and UTS of the Al–7TiB 2 composite in the present work, are 260% and 180% higher than those of the matrix. A combined mechanism was also presented to interpret the improvements in yield strength of the composites as influenced by their microstructures and processing history. The predicted values are in good agreement with the experimental results, strongly supporting the strengthening mechanism we proposed. Fractography reveals that the composites thus fabricated, follow ductile fracture mechanism in spite of the presence of stiff reinforcements

  3. Homogenity of Die Casting and Returning Material

    Directory of Open Access Journals (Sweden)

    J. Malik

    2012-04-01

    Full Text Available Homogeneity of die castings is influenced by wide range of technological parameters as piston velocity in filling chamber of die casting machine, filling time of mould cavity, temperature of cast alloy, temperature of the mould, temperature of filling chamber, surface pressure on alloy during mould filling, final pressure and others. Based on stated parameters it is clear, that main parameters of die casting are filling time of die mould cavity and velocity of the melt in the ingates. Filling time must ensure the complete filling of the mould cavity before solidification process can negatively influence it. Among technological parameters also belong the returning material, which ratio in charge must be constrained according to requirement on final homogeneity of die castings. With the ratio of returning material influenced are the mechanical properties of castings, inner homogeneity and chemical composition.

  4. Metallic ion release from biocompatible cobalt-based alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana D.

    2014-01-01

    Full Text Available Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5. After a certain immersion period (1, 3 and 6 weeks the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS. The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  5. Plastic casting resin poisoning

    Science.gov (United States)

    Epoxy poisoning; Resin poisoning ... Epoxy and resin can be poisonous if they are swallowed or their fumes are breathed in. ... Plastic casting resins are found in various plastic casting resin products.

  6. The Up-to-14-Year Survival and Complication Burden of 256 TiUnite Implants Supporting One-Piece Cast Abutment/Metal-Ceramic Implant-Supported Single Crowns.

    Science.gov (United States)

    Walton, Terry R

    To assess the estimated cumulative survival (ECS) and explore the technical and biologic complications of 256 TiUnite implants (Nobel Biocare) supporting one-piece cast abutment/metal-ceramic implant-supported single crowns (ISCs) in situ for up to 14 years. A prospective sequentially recruited cohort of 207 patients received 256 metal-ceramic ISCs on TiUnite implants between 2001 and 2014. All but 24 patients with 27 crowns were clinically evaluated between January 2014 and April 2015 in conjunction with or in addition to their tailored maintenance program. Radiographs were obtained, and any previously recorded treatments associated with the crowns were tabulated. The ECS and standard errors were calculated with the life table actuarial method and Greenwood's formula, respectively. The log rank test was applied to assess differences between anterior and posterior crowns. Complication incidence, severity, and economic burden, measured in time/cost accounting units (TAUs), were tallied and compared descriptively. Independent groups were compared with the Mann-Whitney U test and related groups with the Wilcoxon Signed Rank Test. The mean clinical service time of the crowns was 5.61 years (44 ≥ 10 years). The 14-year ECS was 95.95% ± 3.20% with no significant difference between anterior and posterior prostheses. Only seven implants lost marginal bone ≥ one thread from the time of crown insertion. There were 30 nonterminal complications (16 biologic, 14 mechanical). The associated economic burden was low (n = 35 TAUs). High gold-alloy one-piece cast abutment/metal-ceramic ISCs on TiUnite implants exhibited excellent longevity and few complications over 14 years.

  7. Microstructural characteristics of new type γ-γ` Co-9Al-9W cobalt-based superalloys in as-cast state

    Directory of Open Access Journals (Sweden)

    A. Tomaszewska

    2018-01-01

    Full Text Available The paper presented deals primary with the structure characteristics of a new type of cobalt-based superalloys Co-9Al-9W type, casted via induction melting process with partially dosing of Common problems described in literature are focused on difficulties in obtaining uniform distribution of tungsten, particularly in interdendritic areas. That was the reason for the modified casting process to be applied. The method of tungsten dosing into liquid melts of Co and Al allows to obtain microstructure characterized by considerably decreased microsegregation. The material obtained was analyzed by standard methods such as light and scanning microscopy with analysis of chemical composition in micro-areas. Additionally, the detailed analysis of the sub-grain level was made by S/TEM on thin foils collected from equiaxed grains zone of the ingot.

  8. Hot Embossing of Zr-Based Bulk Metallic Glass Micropart Using Stacked Silicon Dies

    Directory of Open Access Journals (Sweden)

    Zhijing Zhu

    2015-01-01

    Full Text Available We demonstrated hot embossing of Zr65Cu17.5Ni10Al7.5 bulk metallic glass micropart using stacked silicon dies. Finite element simulation was carried out, suggesting that it could reduce the stress below 400 MPa in the silicon dies and enhance the durability of the brittle silicon dies when using varying load mode (100 N for 60 s and then 400 N for 60 s compared with using constant load mode (200 N for 120 s. A micropart with good appearance was fabricated under the varying load, and no silicon die failure was observed, in agreement with the simulation. The amorphous state of the micropart was confirmed by differential scanning calorimeter and X-ray diffraction, and the nanohardness and Young’s modulus were validated close to those of the as-cast BMG rods by nanoindentation tests. The results proved that it was feasible to adopt the varying load mode to fabricate three-dimensional Zr-based bulk metallic glass microparts by hot embossing process.

  9. The quality of the joint between alloy steel and unalloyed cast steel in bimetallic layered castings

    Directory of Open Access Journals (Sweden)

    T. Wróbel

    2012-01-01

    Full Text Available In paper is presented technology of bimetallic layered castings based on founding method of layer coating directly in cast process so-called method of mould cavity preparation. Prepared castings consist two fundamental parts i.e. bearing part and working part (layer. The bearing part of bimetallic layered casting is typical foundry material i.e. ferritic-pearlitic unalloyed cast steel, whereas working part (layer is plate of austenitic alloy steel sort X2CrNi 18-9. The ratio of thickness between bearing and working part is 8:1. The aim of paper was assessed the quality of the joint between bearing and working part in dependence of pouring temperature and carbon concentration in cast steel. The quality of the joint in bimetallic layered castings was evaluated on the basis of ultrasonic non-destructive testing, structure and microhardness researches.

  10. Chemical-Gene Interactions from ToxCast Bioactivity Data Expands Universe of Literature Network-Based Associations (SOT)

    Science.gov (United States)

    Characterizing the effects of chemicals in biological systems is often summarized by chemical-gene interactions, which have sparse coverage in the literature. The ToxCast chemical screening program has produced bioactivity data for nearly 2000 chemicals and over 450 gene targets....

  11. Study of pinholes genesis in iron castings

    Directory of Open Access Journals (Sweden)

    T. Elbel

    2011-01-01

    Full Text Available Purpose: The study concerns the formation of pinholes in castings formed by reaction between a green foundry mould and lamellargraphite cast iron. Great numbers of works have been aimed at clarifying the causes of pinholes formation in iron castings. In spite of thisthere exists no united opinion on the pinholes formation (genesis and the authors of this contribution having studied this phenomenon incompacted graphite and spheroidal graphite iron castings were also aimed at lamellar graphite cast iron and they applied for it theirknowledge gained in study of reoxidation processes during casting of ferrous alloys.Methodology: Experiments were done on castings of stepped bars moulded in green bentonite mixtures with s graduated moisture and withuse of two types of carbonaceous matters. Metal was melted in a 100 kg induction furnace from the same charge. Inoculation was done ina ladle after pouring out from the furnace. Aluminium was dosed in the ladle in some cases and the inoculator kind was changed too.Results: Pinholes were present on castings as small flat pits; on horizontal surfaces sooner singly, on casting edges in clusters. Theformation of pinholes wasn’t caused by high moisture of moulds but the defect was sensitive to aluminium content in metal. In castingswith high aluminium content > 0.01 % the pinholes were present in great numbers, and namely both under low, and also high moi stures ofmoulding mixtures. In melts with low content of Al < 0.01 % the pinholes occurred less extensively only.Practical implications: Conclusions from literature about influence of Al on pinholes occurrence were confirmed in such a way. Study ofthe defect morphology has shown that the question is a oxidation reaction type of pinholes caused by oxidation of the residual meltbetween dendrites with formation of CO.

  12. Heavy Metal Uptake by Novel Miscanthus Seed-Based Hybrids Cultivated in Heavy Metal Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Krzyżak Jacek

    2017-09-01

    Full Text Available When heavy metal contaminated soils are excluded from food production, biomass crops offer an alternative commercial opportunity. Perennial crops have potential for phytoremediation. Whilst the conditions at heavy metal contaminated sites are challenging, successful phytoremediation would bring significant economic and social benefits. Seed-based Miscanthus hybrids were tested alongside the commercial clone Miscanthus × giganteus on arable land, contaminated with Pb, Cd and Zn near Katowice. Before the randomized experimental plots were established (25m2 plots with plant density 2/m2 ‘time-zero’ soil samples were taken to determine initial levels of total (aqua regia and bioavailable (CaCl2 extraction concentration of Pb, Cd and Zn. After the growing season plant material was sampled during autumn (October, green harvest and winter (March, brown harvest to determine differences in heavy metal uptake. Results after the first growing season are presented, including the plot establishment success, biomass yield and heavy metal uptake.

  13. Tunable, omnidirectional structural color on reflection based on metal-SiOx-metal structure

    Science.gov (United States)

    Yang, Chenying; Mao, Kening; Shen, Weidong; Fang, Bo; Fang, Xu; Zhang, Xing; Zhang, Yueguang; Liu, Xu

    2016-12-01

    An omnidirectional structural color based on the metal-SiOx-metal stack structure is proposed, which can present the same perceived color for a broad range of incidence angles. The tunable structural color can be obtained with adjustable intermediate dielectric layer by simply adjusting the deposition condition, especially the oxygen flow rate during the deposition processes. The resonance condition can be satisfied across the whole visible light region with this special dielectric. The strong absorption caused by the resonance within the metal-SiOx-metal structure accounts for the efficient spectral filtering feature, and the constant phase shift within the dielectric layer leads to angle insensitivity of this color filter. This simple color tuning method for omnidirectional structural colors can have a great potential in various applications such as displaying, imaging, colorful decoration, anti-counterfeiting and so forth.

  14. Structure and properties of transition metal-metalloid glasses based on refractory metals

    International Nuclear Information System (INIS)

    Johnson, W.L.; Williams, A.R.

    1979-01-01

    The structure and properties of several new transition metal-metalloid (TM/sub 1-x/M/sub x/) metallic glasses based on refractory transition metals (e.g. Mo, W, Ru etc.) have been systemically investigated as a function of composition. The structure of the alloys has been investigated by x-ray diffraction methods and measurements of superconducting properties, electrical resistivity, density, hardness, and mechanical behavior were made. These data are used in developing a novel description of the structure of TM/sub 1-x/M/sub x/ glasses. The experimental evidence suggests that an ideal amorphous phase forms at a specific composition x/sub c/ and that this phase has a well defined atomic short range order. For metallic glasses having x x/sub c/. This novel picture can explain the variation of many properties of these glasses with metalloid concentration

  15. Heavy Metal Uptake by Novel Miscanthus Seed-Based Hybrids Cultivated in Heavy Metal Contaminated Soil

    Science.gov (United States)

    Krzyżak, Jacek; Pogrzeba, Marta; Rusinowski, Szymon; Clifton-Brown, John; McCalmont, Jon Paul; Kiesel, Andreas; Mangold, Anja; Mos, Michal

    2017-09-01

    When heavy metal contaminated soils are excluded from food production, biomass crops offer an alternative commercial opportunity. Perennial crops have potential for phytoremediation. Whilst the conditions at heavy metal contaminated sites are challenging, successful phytoremediation would bring significant economic and social benefits. Seed-based Miscanthus hybrids were tested alongside the commercial clone Miscanthus × giganteus on arable land, contaminated with Pb, Cd and Zn near Katowice. Before the randomized experimental plots were established (25m2 plots with plant density 2/m2) `time-zero' soil samples were taken to determine initial levels of total (aqua regia) and bioavailable (CaCl2 extraction) concentration of Pb, Cd and Zn. After the growing season plant material was sampled during autumn (October, green harvest) and winter (March, brown harvest) to determine differences in heavy metal uptake. Results after the first growing season are presented, including the plot establishment success, biomass yield and heavy metal uptake.

  16. Chitosan-based Schiff base-metal complexes (Mn, Cu, Co) as ...

    Indian Academy of Sciences (India)

    based Schiff base-metal complexes (Mn, Cu, Co) as heterogeneous, new catalysts for the -isophorone oxidation. C S Thatte ... A new chitosan-based Schiff base was prepared and complexed with manganese, cobalt and copper. These Schiff ...

  17. Metal-carbon nanocomposites based on activated IR pyrolized polyacrylonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Efimov, Mikhail N.; Zhilyaeva, Natalya A.; Vasilyev, Andrey A.; Muratov, Dmitriy G.; Zemtsov, Lev M.; Karpacheva, Galina P. [A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninskiy Prospekt 29, 119991 Moscow Russia (Russian Federation)

    2016-05-18

    In this paper we report about new approach to preparation of metal-carbon nanocomposites based on activated carbon. Polyacrylonitrile is suggested as a precursor for Co, Pd and Ru nanoparticles carbon support which is prepared under IR pyrolysis conditions of a precursor. The first part of the paper is devoted to study activated carbon structural characteristics dependence on activation conditions. In the second part the effect of type of metal introduced in precursor on metal-carbon nanocomposite structural characteristics is shown. Prepared AC and nanocomposite samples are characterized by BET, TEM, SEM and X-ray diffraction.

  18. Metal-carbon nanocomposites based on activated IR pyrolized polyacrylonitrile

    International Nuclear Information System (INIS)

    Efimov, Mikhail N.; Zhilyaeva, Natalya A.; Vasilyev, Andrey A.; Muratov, Dmitriy G.; Zemtsov, Lev M.; Karpacheva, Galina P.

    2016-01-01

    In this paper we report about new approach to preparation of metal-carbon nanocomposites based on activated carbon. Polyacrylonitrile is suggested as a precursor for Co, Pd and Ru nanoparticles carbon support which is prepared under IR pyrolysis conditions of a precursor. The first part of the paper is devoted to study activated carbon structural characteristics dependence on activation conditions. In the second part the effect of type of metal introduced in precursor on metal-carbon nanocomposite structural characteristics is shown. Prepared AC and nanocomposite samples are characterized by BET, TEM, SEM and X-ray diffraction.

  19. Casting and Splinting

    Science.gov (United States)

    2017-08-21

    article /80165-technigue Self Evaluation Is injured extremity in desired position? »- Empty can position »- Wrist extension 20° );;>- MCP Oexion...periodically throughout the day If cast feels tight despite elevation seek medical assistance Do not scratch under cast; do not get cast wet Get

  20. Polyamorphism in Yb-based metallic glass induced by pressure

    Science.gov (United States)

    Li, Liangliang; Luo, Qiang; Li, Renfeng; Zhao, Haiyan; Chapman, Karena W.; Chupas, Peter J.; Wang, Luhong; Liu, Haozhe

    2017-04-01

    The Yb62.5Zn15Mg17.5Cu5 metallic glass is investigated using synchrotron x-ray total scattering method up to 38.4 GPa. The polyamorphic transformation from low density to high density with a transition region between 14.1 and 25.2 GPa is observed, accompanying with a volume collapse reflected by a discontinuousness of isothermal bulk modulus. This collapse is caused by that distortional icosahedron short range order precedes to perfect icosahedron, which might link to Yb 4f electron delocalization upon compression, and match the result of in situ electrical resistance measurement under high pressure conditions. This discovery in Yb-based metallic glass, combined with the previous reports on other metallic glass systems, demonstrates that pressure induced polyamorphism is the general behavior for typical lanthanide based metallic glasses.

  1. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Clean Steel Casting Production

    Energy Technology Data Exchange (ETDEWEB)

    Kuyucak, Selcuk [CanmetMATERIALS; Li, Delin [CanmetMATERIALS

    2013-12-31

    Inclusions in steel castings can cause rework, scrap, poor machining, and reduced casting performance, which can obviously result in excess energy consumption. Significant progress in understanding inclusion source, formation and control has been made. Inclusions can be defined as non-metallic materials such as refractory, sand, slag, or coatings, embedded in a metallic matrix. This research project has focused on the mold filling aspects to examine the effects of pouring methods and gating designs on the steel casting cleanliness through water modeling, computer modeling, and melting/casting experiments. Early in the research project, comprehensive studies of bottom-pouring water modeling and low-alloy steel casting experiments were completed. The extent of air entrainment in bottom-poured large castings was demonstrated by water modeling. Current gating systems are designed to prevent air aspiration. However, air entrainment is equally harmful and no prevention measures are in current practice. In this study, new basin designs included a basin dam, submerged nozzle, and nozzle extension. The entrained air and inclusions from the gating system were significantly reduced using the new basin method. Near the end of the project, there has been close collaboration with Wescast Industries Inc., a company manufacturing automotive exhaust components. Both computer modeling using Magma software and melting/casting experiments on thin wall turbo-housing stainless steel castings were completed in this short period of time. Six gating designs were created, including the current gating on the pattern, non-pressurized, partially pressurized, naturally pressurized, naturally pressurized without filter, and radial choke gating without filter, for Magma modeling. The melt filling velocity and temperature were determined from the modeling. Based on the simulation results, three gating designs were chosen for further melting and casting experiments on the same casting pattern using

  2. PECULIARITIES OF PROCESSES OF CARBIDE FORMATION AND DISTRIBUTION OF Cr, Mn AND Ni IN WHITE CAST IRONS

    Directory of Open Access Journals (Sweden)

    V. V. Netrebko

    2015-01-01

    Full Text Available During crystallization of castings from white cast iron, carbides Me3С, Me7С3, Me23С6 were formed depending on chromium and carbon content. Impeded chromium diffusion caused formation of thermodynamically unstable and non-uniform phases (carbides. During heat treatment process stable equilibrium phases were formed as a result of rearrangement of the carbides’ crystal lattice, replacement of iron, manganese, nickel and silicon atoms by chromium atoms. The allocated atoms concentrated, forming inclusions of austenite inside the carbides. Holding during 9 hours at 720 °С and annealing decreased the non-uniformity of chromium distribution in the metallic base of cast iron containing 11,5 % Cr, and increased it in the cast iron containing 21,5 % Cr. Holding during 4.5 hours at 1050 °С and normalization decreased the non-uniformity of chromium distribution in the metallic base of cast iron containing 21,5 % Cr, and increased it in cast iron containing 11,5 % Cr.

  3. Untouchable castes of Uttar Pradesh

    Directory of Open Access Journals (Sweden)

    Kharinin Artem Igorevich

    2015-04-01

    Full Text Available The Untouchable Castes of Uttar Pradesh are examined in this article. This region is one of the most populated in India. Also it is one of the most social mixed-composed in whole State. That’s why main conclusions which were made on this material can be extrapolated to all social space of country. The authors choose four ethno-caste groups, which represent the majority in untouchables and the three smallest in jaties. Their positions in regional hierarchy and economic specialization are analyzed in detail. There are a lot of information about their number, social structure, literacy rating, endogamy, day-to-day practices, customs and other features. Special accents were pointed on mind orientation of their elites toward integration in modern society or, conversely, toward the conservation of traditional forms of existence. The issues of origin and social evolution of untouchable castes of Uttar Pradesh are examined. There is assessment of castes’ sanskritization or other forms of social selfdevelopment. The quality of “scheduled” castes social environment is analyzed. As a marks of its positiveness the data about discrimination untouchables from other social groups and degree of political representativeness of “scheduled” castes, accessibility of education and labour were chosen. The conclusions were made about development degree of some castes. The factors that play role in positive changes in contemporary conditions were determined. The authors put forward their own hypothesis of future development of untouchable castes in Uttar Pradesh. Empiric base of this article was established on sources that have Indian origin and historical and social research of outstanding western indologies.

  4. Rayleigh Number Criterion for Formation of A-Segregates in Steel Castings and Ingots

    DEFF Research Database (Denmark)

    Rad, M. Torabi; Kotas, Petr; Beckermann, C.

    2013-01-01

    A Rayleigh number-based criterion is developed for predicting the formation of A-segregates in steel castings and ingots. The criterion is calibrated using available experimental data for ingots involving 27 different steel compositions. The critical Rayleigh number above which A-segregates can b......, the primary reason for this over-prediction is persumed to be the presence of a central zone of equiaxed grains in the casting sections. A-segregates do not form when the grain structure is equiaxed. © The Minerals, Metals & Materials Society and ASM International 2013...

  5. Gating System Design for Casting thin Aluminium Alloy (Al-Si Plates

    Directory of Open Access Journals (Sweden)

    Victor ANJO

    2013-11-01

    Full Text Available The main problems caused by improper gating are entrained aluminium oxide films, cuts and washes, low casting yield and entrapped gas. This study describes the design of a gating system to produce thin Aluminium cast alloy plates of different sizes and thicknesses of 4mm, 6mm, 8mm, and 10mm using the non-pressurized gating with ratio of 1:4:4 and green sand moulding technique. The gating design was based on the laws of fluid mechanics and empirical rules of gating for non ferrous metals. The equipments used for this experiment includes; a coal fired crucible furnace and an X-Ray machine. Materials used include; silica sand, clay, wood, glue and Aluminium alloy scraps. The experimental procedure involved: the gating design calculations, construction of wooden pattern and gating; using the wooden pattern and gating to produce the mould cavities and gating; melting, melt treatment and pouring of melt in the sand mould to produce the casting. The plate castings after removal from mould were visually examined for surface defects and after fettling and cleaning X-Ray radiography was used to find the internal soundness of the castings. From the results obtained in the experiment, it was found that there were no internal defects and quality castings were produced.

  6. Comparing Compositions of Modern Cast Bronze Sculptures: Optical Emission Spectroscopy Versus x-Ray Fluorescence Spectroscopy

    Science.gov (United States)

    Young, M. L.; Dunand, D. C.

    2015-07-01

    Bulk elemental compositions of 74 modern cast bronze sculptures from the collection at the Art Institute of Chicago, the Philadelphia Museum of Art, and the Rodin Museum (Philadelphia, PA) were determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and a handheld x-ray fluorescence (XRF) spectrometer. The elemental compositions of the cast sculptures as measured previously by ICP-OES and presently by XRF are compared: A good match is found between the two methods for the base metal (Cu) and the two majority alloying elements (Zn and Sn). For both ICP-OES and XRF data, when the Zn composition is plotted versus the Sn composition, three discernable clusters are found that are related to the artist, foundry, casting date, and casting method; they consist of (A) high-zinc brass, (B) low-zinc, low-tin brass, and (C) low-zinc, tin bronze. Thus, our study confirms that the relatively fast, nondestructive XRF spectrometry can be used effectively over slower and invasive, but more accurate, ICP-OES to help determine a sculpture's artist, foundry, date of creation, date of casting, and casting method.

  7. Effect of casting solvents and filler quantity on the preparation and physiochemical properties of PVC-bentonite based composite polymeric membranes

    International Nuclear Information System (INIS)

    Hamid, A.; Mukhtar, A.; Ghauri, M. S.; Ali, A.

    2013-01-01

    Two series of Composite Polymeric Membranes (CPMs) based on Poly (Vinyl Chloride) (PVC) and inorganic filler were prepared by solvent casting method, using Tetrahydrofuran (THF) and a mixture of THF and Dimethylsulfoxide (DMSO). The different percentages (5-35 %) of Bentonite clay (79-89 mesh, ASTM) filler were used. The physicochemical parameters of the CPMs i.e. degree of perpendicular swelling, liquid uptake (water, methanol and ethanol), density, ion adsorption capacity (IAC), porosities, electrical resistivity and conductivities were evaluated. The Type-B CPMs cast with THF and DMSO mixture have greater values of the above parameters except density than the Type-A CPMs cast with THF only. The CPMs having more filler show more liquid uptake. The uptake of Water, ethyl alcohol (EtOH), 5M methanol and methanol (MeOH) in Type-B CPMs was found 8-11, 10.12-12.83, 3.40-10.88 and 11.37-15.25 times more than Type-A CPMs. Proton ion adsorption capacity of Type-B CPMs was calculated 2.83 to 8.4 times more than Type-A CPMs. The porosity range of Type-A CPMs was observed 0.0377 to 0.093, 0.0227 to 0.0909, 0.02 to 0.0408 and 0.0476 to 0.1112; whereas porosity range in Type-B CPMs were noted 0.1955 to 0.4919, 0.1477 to 0.4835, 0.115 to 0.2554 and 0.1177 to 0.4447 in deionized water, EtOH, 5M MeOH and MeOH respectively. The conductivity of Type-B CPMs was 150-333 times greater than Type-A CPMs. These all characteristics were compared with pure Poly (Vinyl Chloride) membrane (prepared and studied by same method) cast with DMSO and without DMSO. (author)

  8. Numerical Modelling of Metal/Flux Interface in a Continuous Casting Mould / Modelowanie Numeryczne Powierzchni Międzyfazowej Metal/Ciekły Żużel W Krystalizatorze Do Ciągłego Odlewania Stali

    Directory of Open Access Journals (Sweden)

    Jowsa J.

    2015-12-01

    Full Text Available The behaviour of liquid slag in the mould is one of the key research areas of the continuous steel casting process. Numerical simulations of steel casting in the mould equipped with submerged entry nozzle, intended for slab casting, have been carried out within the study. For modelling the behaviour of the interfaces of the liquid steel - liquid slag - air system, the VOF method was employed. In the conducted simulations, seven different procedures for the discretization of the interface of individual phases were tested. The computation results have revealed that the “entrapment” of fine slag portions into liquid steel occurs in the system under investigation; the cause of this phenomenon is explicated by the Kelvin-Helmholtz theory.

  9. Effect of denture cleansers on metal ion release and surface roughness of denture base materials.

    Science.gov (United States)

    Davi, Letícia Resende; Felipucci, Daniela Nair Borges; de Souza, Raphael Freitas; Bezzon, Osvaldo Luiz; Lovato-Silva, Cláudia Helena; Pagnano, Valéria Oliveira; Paranhos, Helena de Freitas Oliveira

    2012-01-01

    Chemical disinfectants are usually associated with mechanical methods to remove stains and reduce biofilm formation. This study evaluated the effect of disinfectants on release of metal ions and surface roughness of commercially pure titanium, metal alloys, and heat-polymerized acrylic resin, simulating 180 immersion trials. Disk-shaped specimens were fabricated with commercially pure titanium (Tritan), nickel-chromium-molybdenum-titanium (Vi-Star), nickel-chromium (Fit Cast-SB Plus), and nickel-chromium-beryllium (Fit Cast-V) alloys. Each cast disk was invested in the flasks, incorporating the metal disk to the heat-polymerized acrylic resin. The specimens (n=5) were immersed in these solutions: sodium hypochlorite 0.05%, Periogard, Cepacol, Corega Tabs, Medical Interporous, and Polident. Deionized water was used as a control. The quantitative analysis of metal ion release was performed using inductively coupled plasma mass spectrometry (ELAN DRC II). A surface analyzer (Surftest SJ-201P) was used to measure the surface roughness (µm). Data were recorded before and after the immersions and evaluated by two-way ANOVA and Tukey's test (α=0.05). The nickel release proved most significant with the Vi-Star and Fit Cast-V alloys after immersion in Medical Interporous. There was a significant difference in surface roughness of the resin (p=0.011) after immersion. Cepacol caused significantly higher resin roughness. The immersion products had no influence on metal roughness (p=0.388). It could be concluded that the tested alloys can be considered safe for removable denture fabrication, but disinfectant solutions as Cepacol and Medical Interporous tablet for daily denture immersion should be used with caution because it caused greater resin surface roughness and greater ion release, respectively.

  10. State of Spent Molding Sands in the Mold Large-Size Cast

    Directory of Open Access Journals (Sweden)

    Łucarz M.

    2016-12-01

    Full Text Available The results of investigations of spent moulding sands taken from the mould at various distances from the surface of the produced casting, are presented in the paper. The casting mould was made with an application of the cooling system of the metal core in order to increase the cooling rate of the ladle casting. As temperature measurements in the mould indicated the heat flow from the metal did not create conditions for the complete burning of a moulding sand. The analysis was performed to find out changes of spent moulding sands caused by degradation and destruction processes of organic binders. Conditions occurring in the casting mould were discussed on the bases of testing: ignition losses, dusts contents, pH reactions and the surface morphology of the moulding sand samples. Factors limiting the effective mould degassing were pointed out. Operations, possible for realization, which can limit the reasons of a periodical occurrence of increased amounts of casting defects due to changing gas evolution rates being the result of the technological process, were also indicated.

  11. [Application of analytical pyrolysis in air pollution control for green sand casting industry].

    Science.gov (United States)

    Wang, Yu-jue; Zhao, Qi; Chen, Ying; Wang, Cheng-wen

    2010-02-01

    Analytic pyrolysis was conducted to simulate the heating conditions that the raw materials of green sand would experience during metal casting process. The volatile organic compound (VOC) and hazardous air pollutant (HAP) emissions from analytical pyrolysis were analyzed by gas chromatograph-flame ionization detector/mass spectrometry (GC-FID/MS). The emissions from analytical pyrolysis exhibited some similarity in the compositions and distributions with those from actual casting processes. The major compositions of the emissions included benzene, toluene and phenol. The relative changes of emission levels that were observed in analytical pyrolysis of the various raw materials also showed similar trends with those observed in actual metal casting processes. The emission testing results of both analytic pyrolysis and pre-production foundry have shown that compared to the conventional phenolic urethane binder, the new non-naphthalene phenolic urethane binder diminished more than 50% of polycyclic aromatic hydrocarbon emissions, and the protein-based binder diminished more than 90% of HAP emissions. The similar trends in the two sets of tests offered promise that analytical pyrolysis techniques could be a fast and accurate way to establish the emission inventories, and to evaluate the relative emission levels of various raw materials of casting industry. The results of analytical pyrolysis could provide useful guides for the foundries to select and develop proper clean raw materials for the casting production.

  12. Oxidation feature and diffusion mechanism of Zr-based metallic glasses near the glass transition point

    Science.gov (United States)

    Hu, Zheng; Lei, Xianqi; Wang, Yang; Zhang, Kun

    2018-03-01

    The oxidation behaviors of as-cast, pre-deformed, and crystallized Zr47.9Ti0.3Ni3.1Cu39.3Al9.4 metallic glasses (MGs) were studied near the glass transition point. The oxidation kinetics of the crystallized MGs followed a parabolic-rate law, and the as-cast and pre-deformed MGs exerted a typical two-stage behavior above the glass transition temperature (T g). Most interesting, pre-deformed treatment can significantly improve the oxidation rate of MGs, as the initial oxidation appeared earlier than for the as-cast MGs, and was accompanied by much thicker oxide scale. The EDS and XPS results showed that the metal Al acted as the preferred scavenger that absorbed intrinsic oxygen in the near-surface region of as-cast MGs. However, a homogeneous mixed layer without Al was observed in the pre-deformed MGs. We speculated the accelerated diffusion of other elements in the MGs was due to the local increase in the free volume and significant shear-induced dilation of the local structure. The results from this study demonstrate that MGs exhibit controllable atomic diffusion during the oxidation process, which can facilitate use in super-cooled liquid region applications.

  13. Mathematical modeling for surface hardness in investment casting applications

    International Nuclear Information System (INIS)

    Singh, Rupinder

    2012-01-01

    Investment casting (IC) has many potential engineering applications. Not much work hitherto has been reported for modeling the surface hardness (SH) in IC of industrial components. In the present study, outcome of Taguchi based macro model has been used for developing a mathematical model for SH; using Buckingham's π theorem. Three input parameters namely volume/surface area (V/A) ratio of cast components, slurry layer's combination (LC) and molten metal pouring temperature were selected to give output in form of SH. This study will provide main effects of these variables on SH and will shed light on the SH mechanism in IC. The comparison with experimental results will also serve as further validation of model

  14. New Approaches to Aluminum Integral Foam Production with Casting Methods

    Directory of Open Access Journals (Sweden)

    Ahmet Güner

    2015-08-01

    Full Text Available Integral foam has been used in the production of polymer materials for a long time. Metal integral foam casting systems are obtained by transferring and adapting polymer injection technology. Metal integral foam produced by casting has a solid skin at the surface and a foam core. Producing near-net shape reduces production expenses. Insurance companies nowadays want the automotive industry to use metallic foam parts because of their higher impact energy absorption properties. In this paper, manufacturing processes of aluminum integral foam with casting methods will be discussed.

  15. A new Mannich base and its transition metal (II) complexes ...

    Indian Academy of Sciences (India)

    Unknown

    some metal complexes of this type of Mannich base and investigate its bonding characteristics. We herein report a new Mannich base, N-(1-morpholinoben- zyl) semicarbazide formed by the three-component condensation, containing active hydrogen on nitro- gen (morpholine), benzaldehyde and semicarbazide.

  16. Indicator minerals as guides to base metal sulphide mineralisation ...

    Indian Academy of Sciences (India)

    and metamorphosed volcanogenic base metal sul- phide mineralisation, and based on compositional considerations, zincian spinel has been proposed as an indicator mineral and a potential exploration guide in the search of ores of this type (Sandhaus and Craig 1986; Sheridan and Raymond 1984; Spry and Scott 1986a ...

  17. Metal hydride-based thermal energy storage systems

    Science.gov (United States)

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  18. Slip Casting of {alpha}-Sialon/AlN/BN Powder Carbothermally Prepared by Boron-rich Slag-based Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Wu Junbin; Xue Xiangxin; Jiang Tao; Zhang Qing [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China)

    2011-10-29

    With boron-rich slag, silica fume, bauxite chalmette and carbon black as starting materials, {alpha}-Sialon/AlN/BN powder was prepared by carbothermal reduction-nitridation. The powder was attrition milled to submicron size and suspended in water. The effects of yttrium oxide as a sintering aid, pH, and addition of deflocculant on the suspensions were study. Optimum slip casting properties, i.e. lowest viscosity values, the highest absolute zeta potential values, the smallest floc size and sediment volume were found at pH 10 for the powder. The suspensions were used to slip cast discs which were sintered in a nitrogen atmosphere at 1700 deg. C for 2h. The strength was about 230MPa, the toughness 3.6 MPa{center_dot}m{sup 1/2} and the hardness about 13.8GPa.

  19. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific and Design Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Pankiw, Roman I; Muralidharan, G. (Murali); Sikka, Vinod K.

    2006-06-30

    The goal of this project was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and the upper use temperature by 86 to 140 degrees fahrenheit (30 to 60 degrees celsius). Meeting this goal is expected to result in energy savings of 35 trillion Btu/year by 2020 and energy cost savings of approximately $230 million/year. The higher-strength H-Series cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat treating industry, including radiant burner tubes. The project was led by Duraloy Technologies, Inc., with research participation by Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies.

  20. Marginal Accuracy of Castings Produced with Different Investment Systems.

    Science.gov (United States)

    Yadav, R K

    2009-04-01

    The use of casting ring to produce accurate castings has been challenged with the introduction of a ringless casting technique. This study compared the marginal accuracy of all - metal complete coverage crowns fabricated with ringless, split plastic ring and metal ring investment systems. A total of 40 all- metal complete coverage crowns were fabricated on a metal die. The crowns were divided in 4 groups (Group A, B, C and D) of 10 patterns each. A ringless system of investing and casting was used for group A whereas a split plastic ring system was used for group B. Groups C and D utilized metal ring with single and double layers of asbestos free cellulose acetate liner respectively for investing and casting procedures. The restorations were seated on the metal die and the vertical marginal discrepancy was evaluated by measuring the gap between the finish line on the die and the margins of the crown on four specific sites with an optical microscope. Statistical analysis was carried out using ANOVA and multiple comparison "t" test. The mean vertical marginal discrepancy for groups A, B, C and D was 95μm, 136μm, 128μm and 104μm respectively. Vertical marginal discrepancy on each surface was compared among the four groups. Difference of vertical marginal discrepancy on buccal surface (p0.05). Accurate castings with better marginal fit can be produced with ringless casting technique.

  1. U-based metallic glasses with superior glass forming ability

    Science.gov (United States)

    Xu, Hongyang; Ke, Haibo; Huang, Huogen; Zhang, Pengguo; Pu, Zhen; Zhang, Pei; Liu, Tianwei

    2018-02-01

    By using Al as the third and B as the fourth but minor alloying elements for the U66.7Co33.3 basic metallic glass, a series of U-Co-Al(-B) alloys were designed. The quaternary U-Co-Al-B alloys exhibit significantly improved glass-forming ability (GFA) than previously reported U-based metallic glasses. Low fragility (∼24) is found for these new U-based metallic glasses. The improvement in GFA would result from denser atomic packing in the undercooled liquids due to the presence of small B atoms. Some U-Co-Al(-B) glasses showed corrosion resistance comparable to that of U64Co34Al2 glass, known for premium anti-corrosive performance among the unveiled U-based glasses.

  2. Base metal alloys used for dental restorations and implants.

    Science.gov (United States)

    Roach, Michael

    2007-07-01

    One of the primary reasons for the development of base metal alloys for dental applications has been the escalating cost of gold throughout the 20th century. In addition to providing lower cost alternatives, these nonprecious alloys were also found to provide better mechanical properties and aesthetics for some oral applications. Additionally, certain base metal alloy systems are preferred because of their superior mechanical properties, lower density, and in some cases, their capability to osseo-integrate. The base metal alloy systems most commonly used in dentistry today include stainless steels, nickel-chromium, cobalt-chromium, titanium, and nickel-titanium alloys. Combined, these alloy systems provide a wide range of available properties to choose the correct material for both temporary and long-term restoration and implant applications.

  3. Neutron diffraction measurements of residual stress distribution in large zirconia based refractory bricks produced by electro-fusion and casting

    OpenAIRE

    ÖRS , Taylan; Gouraud , Fanny; Guinebretière , René; HUGER , Marc; Michel , Vincent; Castelnau , Olivier

    2017-01-01

    International audience; Electro-fusion and casting is used to produce large refractory bricks (∼250 kg) containing a high amount of ZrO2. These bricks are used in glass-making furnaces where good mechanical performance is required at very high temperatures (>1500 °C). During the manufacturing procedure, they develop large residual stresses as a result of the cooling conditions and structural phase transformations they underwent. This leads to stress concentration and crack formation at differ...

  4. Neutron diffraction measurements of residual stress distribution in large zirconia based refractory bricks produced by electro-fusion and casting

    OpenAIRE

    ÖRS, Taylan; GOURAUD, Fanny; GUINEBRETIÈRE, René; HUGER, Marc; MICHEL, Vincent; CASTELNAU, Olivier

    2017-01-01

    Electro-fusion and casting is used to produce large refractory bricks (∼250 kg) containing a high amount of ZrO2. These bricks are used in glass-making furnaces where good mechanical performance is required at very high temperatures (>1500 °C). During the manufacturing procedure, they develop large residual stresses as a result of the cooling conditions and structural phase transformations they underwent. This leads to stress concentration and crack formation at different length scales. In or...

  5. Development of casting investment preventing blackening of noble metal alloys part 3. Effect of reducing agent addition on the strength and expansion of the investments.

    Science.gov (United States)

    Meng, Yukun; Nakai, Akira; Ogura, Hideo

    2004-06-01

    Different reducing agents (B, Al, Si and Ti) were individually added to two gypsum-bonded investments to prepare investments preventing surface blackening of some noble cast alloys. The effect of different additive contents on green-body and burnout compressive strength, setting and thermal expansion of the investments were evaluated. The strength and expansion of the investments were changed by the additives. The compressive strength of Al-, Si- and Ti-added investments decreased with the increase of additive contents. The burnout strength of B-added investments significantly increased while green-body strength remained unchanged. The setting expansion of the B-added investments increased while those of the Al-, Si- and Ti-added investments decreased with the increase of additive contents. The thermal expansion of the Si- and Ti-added investments decreased, and that of the Al- and B-added investments remained unchanged. Further study is necessary to evaluate the effects of these additives on the accuracy of dental castings.

  6. Glass forming ability and magnetic properties of Co{sub (40.2−x)}Fe{sub (20.1+x)}Ni{sub 6.7}B{sub 22.7}Si{sub 5.3}Nb{sub 5} (x=0–10) bulk metallic glasses produced by suction casting

    Energy Technology Data Exchange (ETDEWEB)

    Sarlar, Kagan [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey); Physics Department, Kamil Ozdag Faculty of Sciences, Karamanoglu Mehmetbey University, YunusEmre Campus, 70100 Karaman (Turkey); Kucuk, Ilker, E-mail: ikucuk@uludag.edu.tr [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey)

    2015-01-15

    The effect of Fe concentration on the glass forming ability (GFA) and magnetic properties in Co{sub (40.2−x)}Fe{sub (20.1+x)}Ni{sub 6.7}B{sub 22.7}Si{sub 5.3}Nb{sub 5} (x=0–10) bulk metallic glasses were investigated. By suction casting method, the bulk metallic glasses with diameters up to 2 mm were produced. We try to find out which Fe concentration makes an influence on Co based system's magnetic properties and glass forming ability. The curves of thermal analysis, obtained using differential scanning calorimetry (DSC), show that the Co{sub (40.2−x)}Fe{sub (20.1+x)}Ni{sub 6.7}B{sub 22.7}Si{sub 5.3}Nb{sub 5} (x=0–10) have a supercooled liquid region (∆T{sub x}) of about 44 K. The saturation magnetizations (J{sub s}) for as-cast BMG alloys were in the range of 0.62 T−0.81 T. - Highlights: • The effect of Fe concentration on the glass forming ability. • The substitution of an appropriate amount of Fe can enhance the GFA. • The substitution of Fe for Co also improves soft magnetic properties of the BMGs. • The high of J{sub s} 0.62−0.81 T with a low H{sub c} of 2−289 A/m of the alloys.

  7. Biomaterial based novel polyurethane adhesives for wood to wood and metal to metal bonding

    Directory of Open Access Journals (Sweden)

    Mitesh Ramanlal Patel

    2009-01-01

    Full Text Available Polyurethane adhesives made from synthetic chemicals are non-biodegradable, costly and difficult to find raw materials from local market. To avoid solid pollution problem, cost effectiveness and easy availability of raw materials, biomaterials based polyurethane adhesives are used in current industrial interest. Direct use of castor oil in polyurethane adhesive gives limited hardness. Modification on active sites of castor oil to utilize double bond of unsaturated fatty acid and carboxyl group yields new modified or activated polyols, which can be utilized for polyurethane adhesive formulation. In view of this, we have synthesized polyurethane adhesives from polyester polyols, castor oil based polyols and epoxy based polyols with Isocyanate adducts based on castor oil and trimethylolpropane. To study the effects of polyurethane adhesive strength (i.e. lap shear strength on wood-to-wood and metal-to-metal bonding through various types of polyols, cross-linking density, isocyanate adducts and also to compare adhesive strength between wood to wood and metal to metal surface. These polyols and polyurethanes were characterized through GPC, NMR and IR-spectroscopy, gel and surface drying time. Thermal stability of PU adhesives was determined under the effect of cross-linking density (NCO/OH ratio. The NCO/OH ratio (1.5 was optimized for adhesives as the higher NCO/OH ratio (2.0 increasing cross-linking density and decreases adhesion. Lower NCO/OH ratio (1.0 provideslow cross-linking density and low strength of adhesives.

  8. Plasmonic modulator based on thin metal-semiconductor-metal waveguide with gain core

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Malureanu, Radu; Lavrinenko, Andrei

    2013-01-01

    We focus on plasmonic modulators with a gain core to be implemented as active nanodevices in photonic integrated circuits. In particular, we analyze metal–semiconductor–metal (MSM) waveguides with InGaAsP-based active material layers. A MSM waveguide enables high field localization and therefore...

  9. Metal speciation in Dutch soils: Field-based partition coefficients for heavy metals at background levels

    NARCIS (Netherlands)

    Hoop MAGT van den; LAC

    1995-01-01

    For 13 Dutch soil samples, total concentrations in the solid phase and in the soil solution were determined for the heavy metals Cd, Cu, Ni, Pb and Zn. The soils were characterized in terms of organic carbon content, pH, clay content and cation exchange capacity. Average field-based

  10. Colour Metallography of Cast Iron - Chapter 4: Vermicular Graphite Cast Iron (Ⅱ)

    OpenAIRE

    Zhou Jiyang

    2011-01-01

    Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application ...

  11. Antimicrobial resistance challenged with metal-based antimicrobial macromolecules.

    Science.gov (United States)

    Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola

    2017-02-01

    Antimicrobial resistance threatens the achievements of science and medicine, as it deactivates conventional antimicrobial therapeutics. Scientists respond to the threat by developing new antimicrobial platforms to prevent and treat infections from these resistant strains. Metal-based antimicrobial macromolecules are emerging as an alternative to conventional platforms because they combine multiple mechanisms of action into one platform due to the distinctive properties of metals. For example, metals interact with intracellular proteins and enzymes, and catalyse various intracellular processes. The macromolecular architecture offers a means to enhance antimicrobial activity since several antimicrobial moieties can be conjugated to the scaffold. Further, these macromolecules can be fabricated into antimicrobial materials for contact-killing medical implants, fabrics, and devices. As volatilization or leaching out of the antimicrobial moieties from the macromolecular scaffold is reduced, these medical implants, fabrics, and devices can retain their antimicrobial activity over an extended period. Recent advances demonstrate the potential of metal-based antimicrobial macromolecules as effective platforms that prevent and treat infections from resistant strains. In this review these advances are thoroughly discussed within the context of examples of metal-based antimicrobial macromolecules, their mechanisms of action and biocompatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide

    International Nuclear Information System (INIS)

    Yun Binfeng; Hu Guohua; Cui Yiping

    2010-01-01

    A compact and nanometric surface plasmon polariton (SPP) band-pass filter based on a rectangular ring resonator composed of metal-insulator-metal waveguides is proposed. Using the finite difference time domain method, the effects of the structure parameters on the transmission characteristics of this SPP band-pass filter are analysed in detail. The results show that the proposed SPP filter has narrow transmission peaks and the corresponding resonance wavelengths can be linearly tuned by altering the resonator's cavity length. Moreover, the transmission ratios of the pass bands can be tuned by changing the coupling gaps between the input/output MIM waveguides and the resonator. Also the metal loss and dispersion effects on the filter responses are included. The simple band-pass SPP filter is very promising for high-density SPP waveguide integrations.

  13. Spatial Bimetallic Castings Manufactured from Iron Alloys

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2007-07-01

    Full Text Available In this paper a conception for manufacturing method of skeleton castings with composite features was shown. Main application of such castings are the working organs of machines subjected to intensive abrasive and erosive wear. Skeleton geometry was based on three-dimensional cubic net consisting of circular connectors and nodes joining 6 connectors according to Cartesian co-ordinate system. Dimension of an elementary cell was equal to 10 mm and diameter of single connector was equal to 5 mm. For bimetallic castings preparation two Fe based alloys were used: L25SHMN cast steel for skeleton substrate and ZlCr15NiMo cast iron for working part of the casting. In presented work obtained structure was analyzed with indication of characteristic regions. Authors described phenomena occurring at the alloys interface and phases in transition zone. A thesis was formulated concerning localization of transition zone at the cast iron matrix – cast steel reinforcement interface. Direction of further studies were indicated.

  14. DFT study on metal-mediated uracil base pair complexes

    Directory of Open Access Journals (Sweden)

    Ayhan Üngördü

    2017-11-01

    Full Text Available The most stable of metal-mediated uracil base pair complexes were determined. Method was used density functional theory, B3LYP. The calculations of systems containing C, H, N, O were described by 6-311++G(d,p and cc-PVTZ basis sets and LANL2DZ and SDD basis sets was used for transition metals. Then Egap values of complexes were calculated and the electrical conductivity of the complexes for single nanowires was studied by band theory. Metal-mediated uracil base pair complexes which will be used as conductive wires in nanotechnology were predicted. In nanoworld, this study is expected to show a way for practical applications.

  15. Method for determining the formation of shrinkage defects in the castings

    Directory of Open Access Journals (Sweden)

    R. Dyja

    2011-10-01

    Full Text Available Simple simulations of solidification of metals and alloys generally provide results for determining the temperature distribut ion in a given time or solidification time for the specific locations of the casting. These data allow to unambiguously determine the position of thermal centers. However, knowledge about the location of thermal centers is not synonymous with the information about the location of any shrinkage defects in the casting, because the physical behaviour of molten metal should be still considered. This paper presents authors’ own method of predicting the formation of shrinkage defects in the castings, basing on solidification simulation results, taking into account the basic rulesof behaviour of the molten metal. The effectiveness of the method has been tested on the basis of example simulations performed for the flat shape of the casting inlet systems. The advantage of the method is that it requires little additional computational effort. The article is summarized by conclusions reached on the basis of simulations, as well as the program for further work containing possible improvements of the algorithm.

  16. Formation of centimeter Fe-based bulk metallic glasses in low vacuum environment

    Energy Technology Data Exchange (ETDEWEB)

    Pan Jie; Chen Qi; Li Ning [State Key Lab of Materials Processing and Mould Technology, Department of Materials Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan (China); Liu Lin [State Key Lab of Materials Processing and Mould Technology, Department of Materials Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan (China)], E-mail: lliu2000@public.wh.hb.cn

    2008-09-08

    The formation of a Fe{sub 43.7}Co{sub 7.3}Cr{sub 14.7}Mo{sub 12.6}C{sub 15.5}B{sub 4.3}Y{sub 1.9} bulk metallic glass (BMG) was attempted in low vacuum environment and in air using commercial raw materials. The glass forming ability of the Fe-based alloys was studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and differential thermal analyzer (DTA). It was found that cylindric rods with diameters ranging from 10 mm to 5 mm could be successfully fabricated by copper-mold casting in the pressures from 1.5 Pa to 10{sup 5} Pa (10{sup 5} Pa = 1 atm). All BMGs exhibit a distinct glass transition and wide supercooled liquid region. The preparation condition seems not significantly affected by the thermodynamic parameters of BMG, such as supercooled liquid region, glass transition temperature and melting process. The oxygen content of the alloys prepared in different vacuum conditions was measured by a LECO oxygen analyzer, which revealed that the oxygen content was less than 100 ppm for all BMGs prepared, even in air. The good glass forming ability and excellent oxidation resistance for the present Fe-based alloy are discussed.

  17. Wear Resistance of TiC Reinforced Cast Steel Matrix Composite

    Directory of Open Access Journals (Sweden)

    Sobula S.

    2017-03-01

    Full Text Available Wear resistance of TiC-cast steel metal matrix composite has been investigated. Composites were obtained with SHSB method known as SHS synthesis during casting. It has been shown the differences in wear between composite and base cast steel. The Miller slurry machine test were used to determine wear loss of the specimens. The slurry was composed of SiC and water. The worn surface of specimens after test, were studied by SEM. Experimental observation has shown that surface of composite zone is not homogenous and consist the matrix lakes. Microscopic observations revealed the long grooves with SiC particles indented in the base alloy area, and spalling pits in the composite area. Due to the presence of TiC carbides on composite layer, specimens with TiC reinforced cast steel exhibited higher abrasion resistance. The wear of TiC reinforced cast steel mechanism was initially by wearing of soft matrix and in second stage by polishing and spalling of TiC. Summary weight loss after 16hr test was 0,14÷0,23 g for composite specimens and 0,90 g for base steel.

  18. A transparent electrode based on a metal nanotrough network.

    Science.gov (United States)

    Wu, Hui; Kong, Desheng; Ruan, Zhichao; Hsu, Po-Chun; Wang, Shuang; Yu, Zongfu; Carney, Thomas J; Hu, Liangbing; Fan, Shanhui; Cui, Yi

    2013-06-01

    Transparent conducting electrodes are essential components for numerous flexible optoelectronic devices, including touch screens and interactive electronics. Thin films of indium tin oxide-the prototypical transparent electrode material-demonstrate excellent electronic performances, but film brittleness, low infrared transmittance and low abundance limit suitability for certain industrial applications. Alternatives to indium tin oxide have recently been reported and include conducting polymers, carbon nanotubes and graphene. However, although flexibility is greatly improved, the optoelectronic performance of these carbon-based materials is limited by low conductivity. Other examples include metal nanowire-based electrodes, which can achieve sheet resistances of less than 10Ω □(-1) at 90% transmission because of the high conductivity of the metals. To achieve these performances, however, metal nanowires must be defect-free, have conductivities close to their values in bulk, be as long as possible to minimize the number of wire-to-wire junctions, and exhibit small junction resistance. Here, we present a facile fabrication process that allows us to satisfy all these requirements and fabricate a new kind of transparent conducting electrode that exhibits both superior optoelectronic performances (sheet resistance of ~2Ω □(-1) at 90% transmission) and remarkable mechanical flexibility under both stretching and bending stresses. The electrode is composed of a free-standing metallic nanotrough network and is produced with a process involving electrospinning and metal deposition. We demonstrate the practical suitability of our transparent conducting electrode by fabricating a flexible touch-screen device and a transparent conducting tape.

  19. Expandable pattern casting research

    Science.gov (United States)

    1993-09-01

    The Expandable Pattern Casting (EPC) Process is a developing foundry technology that allows designers the opportunity to consolidate parts, reduce machining, and minimize assembly operations. An air gauging system was developed for measuring foam patterns; exact shrinkage depended on type and density of the foam. Compaction studies showed that maximum sand densities in cavities and under overhangs are achieved with vibrational amplitudes 0.001-0.004 in., and that sand moved most freely within a few inches of the top free surface. Key to complete mold filling while minimizing casting defects lies in removing the foam decomposition products. The most precise iron castings were made by EPC in four commercial EPC foundries, with attention paid to molding and compaction. EP cast 60-45-12 ductile iron had yield strengths, ultimate strengths, and elastic modulus similar to conventionally cast ductile iron cast from the same ladle.

  20. Synthesis and heavy metal immobilization behaviors of slag based geopolymer.

    Science.gov (United States)

    Yunsheng, Zhang; Wei, Sun; Qianli, Chen; Lin, Chen

    2007-05-08

    In this paper, two aspects of studies are carried out: (1) synthesis of geopolymer by using slag and metakaolin; (2) immobilization behaviors of slag based geopolymer in a presence of Pb and Cu ions. As for the synthesis of slag based geopolymer, four different slag content (10%, 30%, 50%, 70%) and three types of curing regimes (standard curing, steam curing and autoclave curing) are investigated to obtain the optimum synthesis condition based on the compressive and flexural strength. The testing results showed that geopolymer mortar containing 50% slag that is synthesized at steam curing (80 degrees C for 8h), exhibits higher mechanical strengths. The compressive and flexural strengths of slag based geopolymer mortar are 75.2 MPa and 10.1 MPa, respectively. Additionally, Infrared (IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques are used to characterize the microstructure of the slag based geopolymer paste. IR spectra show that the absorptive band at 1086 cm(-1) shifts to lower wave number around 1007 cm(-1), and some six-coordinated Als transforms into four-coordination during the synthesis of slag based geopolymer paste. The resulting slag based geopolymeric products are X-ray amorphous materials. SEM observation shows that it is possible to have geopolymeric gel and calcium silicate hydrate (C-S-H) gel forming simultaneously within slag based geopolymer paste. As for immobilization of heavy metals, the leaching tests are employed to investigate the immobilization behaviors of the slag based geopolymer mortar synthesized under the above optimum condition. The leaching tests show that slag based geopolymer mortar can effectively immobilize Cu and Pb heavy metal ions, and the immobilization efficiency reach 98.5% greater when heavy metals are incorporated in the slag geopolymeric matrix in the range of 0.1-0.3%. The Pb exhibits better immobilization efficiency than the Cu in the case of large dosages of heavy metals.

  1. Schiff base transition metal complexes for Suzuki–Miyaura cross ...

    Indian Academy of Sciences (India)

    RASHEEDA M ANSARI

    2017-08-19

    Aug 19, 2017 ... Abstract. Schiff base ligand and its complex with iron (Fe), cobalt (Co), nickel (Ni) and copper (Cu) ions were synthesized using 4-aminoacetophenone and salicylaldehyde and characterized. FTIR spectrum shows that bidentate coordination of metal ions with ligand where O, N are electron donating sites of ...

  2. Shear Zone-Hosted Base Metal Mineralization near Abraha ...

    African Journals Online (AJOL)

    Low-grade basement rocks of Neoproterozoic age with well developed shear zones and posttectonic granitic intrusives from Hawzien area of northern Ethiopia were studied for field characteristics, mineralogy, textures, alteration assemblages and geochemistry to explore their potential for base metal mineralization.

  3. Synthesis, spectral characterization of Schiff base transition metal ...

    Indian Academy of Sciences (India)

    TECS

    Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies. N RAMAN,* J DHAVEETHU RAJA and A SAKTHIVEL. Department of Chemistry, VHNSN College, Virudhunagar 626 001 e-mail: drn_ raman@yahoo.co.in. MS received 1 May 2007; revised 7 July ...

  4. Schiff base transition metal complexes for Suzuki–Miyaura cross ...

    Indian Academy of Sciences (India)

    Schiff base ligand and its complex with iron (Fe), cobalt (Co), nickel (Ni) and copper (Cu) ions were synthesized using 4-aminoacetophenone and salicylaldehyde and characterized. FTIR spectrum shows that bidentate coordination of metal ions with ligand where O, N are electron donating sites of azomethine group.

  5. Phenalenyl-based ligand for transition metal chemistry: Application ...

    Indian Academy of Sciences (India)

    mandal@iiserkol.ac.in. Abstract. We report the synthesis and characterization of the first transition metal complex of a phenalenyl- based ligand. The reaction of Cu(OAc)2.H2O with 9-N-methylamino-1-N -methylimino-phenalene (LH) in 1:1.

  6. Tridentate Schiff base (ONO) transition metal complexes: Synthesis ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 7. Tridentate Schiff base (ONO) transition metal complexes: Synthesis, crystal structure, spectroscopic and larvicidal studies. SUNDARAMURTHY SANTHA LAKSHMI KANNAPPAN GEETHA P MAHADEVI. Regular Article Volume 128 Issue 7 July 2016 pp ...

  7. Schiff base transition metal complexes for Suzuki–Miyaura cross

    Indian Academy of Sciences (India)

    Schiff base ligand and its complex with iron (Fe), cobalt (Co), nickel (Ni) and copper (Cu) ions were synthesized using 4-aminoacetophenone and salicylaldehyde and characterized. FTIR spectrum shows that bidentate coordination of metal ions with ligand where O, N are electron donating sites of azomethine group.

  8. Indicator minerals as guides to base metal sulphide mineralisation ...

    Indian Academy of Sciences (India)

    Zn-bearing minerals that act as indicator minerals for base metal sulphide mineralization from the Proterozoic Betul Belt,central India with special emphasis on their genetic significance have been discussed.Sulphide mineralisation is hosted by the felsic volcanic rocks and has similarities with volcanic-hosted massive ...

  9. Caste and power

    DEFF Research Database (Denmark)

    Roy, Dayabati

    2011-01-01

    This paper explores the institution of caste and its operation in a micro-level village setting of West Bengal, an Indian state, where state politics at grass roots level is vibrant with functioning local self-government and entrenched political parties. This ethnographic study reveals that caste......–ideological field, the concept of caste-hierarchy seems to continue as an influencing factor, even in the operation of leftist politics....

  10. Modelling of Filling, Microstructure Formation, Local Mechanical Properties and Stress – Strain Development in High-Pressure Die Cast Aluminium Castings

    DEFF Research Database (Denmark)

    Kotas, Petr; Hattel, Jesper Henri; Thorborg, Jesper

    2009-01-01

    .e. whether the casting is based on cast iron- or aluminium-alloys. The distribution of local properties in a casting might vary substantially which makes it complex to optimize the casting with good accuracy. Often, mechanical simulations of the load situation are based on the assumption that the cast...... in an aluminium alloy is considered including simulation of the entire casting process with emphasis on microstructure formation related to mechanical properties such as elastic modulus, yield stress, ultimate strength and elongation as well as residual stresses. Subsequently, the casting is subjected to service...

  11. Is Casting for Non-Displaced Simple Scaphoid Waist Fracture Effective? A CT Based Assessment of Union.

    Science.gov (United States)

    Grewal, Ruby; Suh, Nina; MacDermid, Joy C

    2016-01-01

    The purpose of this study is to report the union rate and time to union for acute non-displaced scaphoid waist fractures treated with a short arm thumb spica cast. A database was searched (2006-2013) to identify acute undisplaced scaphoid waist fractures. Cases that were not given a trial of casting were excluded (n=33). X-rays, CT scans and health records for each patient were reviewed to extract data. 172 patients met inclusion criteria. There were 138 males, 34 females, the mean age was 30 ± 16 years. The union rate was 99.4% (1 nonunion/172 subjects). The mean time to union was approximately 7.5 weeks (53 ± 37 days). Energy of injury, age or gender did not affect union rates or time to union. Cysts did not affect the union rate (p=0.73) but patients with cystic resorption along the fracture line required approximately 10 weeks for union (69 ± 60 days) compared to 7 weeks (51 ± 34 days) for those without cysts (p=0.05). Diabetes did not affect the union rate (p=0.81) but was found to increase the risk of delayed union (p=0.05). There was a weak, but statistically significant correlation between the number of days before the fracture was casted and the length of time needed to achieve union (r=0.27, p=0.001). Non-displaced scaphoid waist fractures have a high healing rate with appropriate identification and immobilization. Follow-up CT scans to assess healing can identify union within a shorter time frame (~7 weeks) than previously reported in the literature.

  12. Hydrometallurgical Approach for Leaching of Metals from Copper Rich Side Stream Originating from Base Metal Production

    Directory of Open Access Journals (Sweden)

    Udit Surya Mohanty

    2018-01-01

    Full Text Available Pyrometallurgical metal production results in side streams, such as dusts and slags, which are carriers of metals, though commonly containing lower metal concentrations compared to the main process stream. In order to improve the circular economy of metals, selective leaching of copper from an intermediate raw material originating from primary base metal production plant was investigated. The raw material investigated was rich in Cu (12.5%, Ni (2.6%, Zn (1.6%, and Fe (23.6% with the particle size D80 of 124 µm. The main compounds present were nickel ferrite (NiFe2O4, fayalite (Fe2SiO4, cuprite (Cu2O, and metallic copper. Leaching was studied in 16 different solutions. The results revealed that copper phases could be dissolved with high yield (>90% and selectivity towards nickel (Cu/Ni > 7 already at room temperature with the following solutions: 0.5 M HCl, 1.5 M HCl, 4 M NaOH, and 2 M HNO3. A concentration of 4 M NaOH provided a superior selectivity between Cu/Ni (340 and Cu/Zn (51. In addition, 1–2 M HNO3 and 0.5 M HCl solutions were shown to result in high Pb dissolution (>98%. Consequently, 0.5 M HCl leaching is suggested to provide a low temperature, low chemical consumption method for selective copper removal from the investigated side stream, resulting in PLS (pregnant leach solution which is a rich in Cu and lead free residue, also rich in Ni and Fe.

  13. Numerical simulation on semi-solid die-casting of magnesium matrix composite based on orthogonal experiment

    Science.gov (United States)

    Liu, Huihui; He, Xiongwei; Guo, Peng

    2017-04-01

    Three factors (pouring temperature, injection speed and mold temperature) were selected to do three levels L9 (33)orthogonal experiment, then simulate processing of semi-solid die-casting of magnesium matrix composite by Flow-3D software. The stress distribution, temperature field and defect distribution of filling process were analyzed to find the optimized processing parameter with the help of orthogonal experiment. The results showed that semi-solid has some advantages of well-proportioned stress and temperature field, less defect concentrated in the surface. The results of simulation were the same as the experimental results.

  14. Evolution of halictine castes

    Science.gov (United States)

    Knerer, Gerd

    1980-03-01

    Social halictine bees have female castes that range from species with no size differences to those with a discrete bimodality. Female caste differences are inversely correlated with the number of males produced in the first brood. It is proposed that the sexual dimorphism of solitary forms is being usurped by the female caste system of species in the process of turning social. Thus, caste differences and summer male suppression are greatest in the social species originating from solitary precursors with distinct sexual dimorphism, and are least in species evolving from solitary ancestors with a continuous sexual polymorphism.

  15. Metallic component with a chromium carbide base protective coating

    International Nuclear Information System (INIS)

    Wolfla, T.A.; Tucker, R.C. Jr.

    1976-01-01

    The invention concerns a coating system to protect metal components in sodium and helium cooled nuclear reactors. It includes a nickel or iron based alloy metal substrate, a first coat formed on the substrate and comprising chromium carbides and a binder selected among the chromium-nickel, chromium-cobalt, chromium-iron alloys and the super-alloys, the first coating being between 25 and 380 microns thick, and a surface coating comprising pure chromium carbides and being between 12.5 and 125 microns thick [fr

  16. Chemical sensors based on molecularly modified metallic nanoparticles

    International Nuclear Information System (INIS)

    Haick, Hossam

    2007-01-01

    This paper presents a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to the use of molecularly modified metal nanoparticles in or as chemical sensors. This paper attempts to pull together different views and terminologies used in sensors based on molecularly modified metal nanoparticles, including those established upon electrochemical, optical, surface Plasmon resonance, piezoelectric and electrical transduction approaches. Finally, this paper discusses briefly the main advantages and disadvantages of each of the presented class of sensors. (review article)

  17. Energy reversible switching from amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-08-01

    We report observation of energy reversible switching from amorphous metal based nanoelectromechanical (NEM) switch. For ultra-low power electronics, NEM switches can be used as a complementary switching element in many nanoelectronic system applications. Its inherent zero power consumption because of mechanical detachment is an attractive feature. However, its operating voltage needs to be in the realm of 1 volt or lower. Appropriate design and lower Young\\'s modulus can contribute achieving lower operating voltage. Therefore, we have developed amorphous metal with low Young\\'s modulus and in this paper reporting the energy reversible switching from a laterally actuated double electrode NEM switch. © 2013 IEEE.

  18. Caste in Itself, Caste and Class, or Caste in Class

    OpenAIRE

    Ramkrishna Mukherjee

    2015-01-01

    After the British conquered Bengal and eventually the whole of India,they set out to administer the colony. In this context they encountered two phenomena with which they were not familiar: (1) the relation of people to land for production (and not for revenue receiving, household living, etc.), and (2) the caste system of India, viz. the jati strati?cation of society.

  19. 46 CFR 56.60-10 - Cast iron and malleable iron.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Cast iron and malleable iron. 56.60-10 Section 56.60-10... APPURTENANCES Materials § 56.60-10 Cast iron and malleable iron. (a) The low ductility of cast iron and malleable iron should be recognized and the use of these metals where shock loading may occur should be...

  20. Microstructure of high-pressure die-casting AM50 magnesium alloy

    OpenAIRE

    R. Dabrowski; K.N. Braszczynska -Malik; J. Braszczynski

    2009-01-01

    Microstructure analyses of high-pressure die-casting AM50 magnesium alloy are presented. Investigated pressure casting wasproduced on a cold chamber die-casting machine with locking force at 1100 tones in “FINNVEDEN Metal Structures”. Light microscopyand X-ray phase analysis techniques were used to characterize the obtained material. In microstructure, an

  1. Quantum-based Atomistic Simulation of Transition Metals

    International Nuclear Information System (INIS)

    Moriarty, J A; Benedict, L X; Glosli, J N; Hood, R Q; Orlikowski, D A; Patel, M V; Soderlind, P; Streitz, F H; Tang, M; Yang, L H

    2005-01-01

    First-principles generalized pseudopotential theory (GPT) provides a fundamental basis for transferable multi-ion interatomic potentials in d-electron transition metals within density-functional quantum mechanics. In mid-period bcc metals, where multi-ion angular forces are important to structural properties, simplified model GPT or MGPT potentials have been developed based on canonical d bands to allow analytic forms and large-scale atomistic simulations. Robust, advanced-generation MGPT potentials have now been obtained for Ta and Mo and successfully applied to a wide range of structural, thermodynamic, defect and mechanical properties at both ambient and extreme conditions of pressure and temperature. Recent algorithm improvements have also led to a more general matrix representation of MGPT beyond canonical bands allowing increased accuracy and extension to f-electron actinide metals, an order of magnitude increase in computational speed, and the current development of temperature-dependent potentials

  2. Simulation of stray grain formation at the platform during Ni-base single crystal superalloy DD403 casting

    Directory of Open Access Journals (Sweden)

    Si-feng Gao

    2015-03-01

    Full Text Available The mechanism of stray grain formation at the platform of turbine blade simulator and the effect of withdrawal rate (V on the stray grain phenomenon have been investigated using a macro-scale ProCAST coupled with a 3D Cellular Automaton Finite Element (CAFE model. The results indicate that the stray grains nucleate at the edges of platform at V =150 μm·s-1 and 200 μm·s-1. Using ProCAST computer simulation software, it was proven that the stray grain formation is significantly dependent on the undercooling and the temperature field distribution in the platform. The macroscopic curvature of the liquidus isotherm becomes markedly concave with an increase in the withdrawal rate. The probability of stray grain formation at the edges of platform can be increased by increasing the withdrawal rate in the range of 70 μm·s-1 to 200 μm·s-1.

  3. Structure and properties of transition metal-metalloid glasses based on refractory metals

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W.L.; Williams, A.R.

    1979-01-01

    The structure and properties of several new transition metal-metalloid (TM/sub 1-x/M/sub x/) metallic glasses based on refractory transition metals (e.g. Mo, W, Ru etc.) have been systemically investigated as a function of composition. The structure of the alloys has been investigated by x-ray diffraction methods and measurements of superconducting properties, electrical resistivity, density, hardness, and mechanical behavior were made. These data are used in developing a novel description of the structure of TM/sub 1-x/M/sub x/ glasses. The experimental evidence suggests that an ideal amorphous phase forms at a specific composition x/sub c/ and that this phase has a well defined atomic short range order. For metallic glasses having x < x/sub c/ (metalloid poor glasses) vacancy-like defects form, which are characterized by the excess volume which they contribute to the glass. Another, as yet unspecified defect appears to form in glasses with x > x/sub c/. This novel picture can explain the variation of many properties of these glasses with metalloid concentration.

  4. Status quo and development trend of lost foam casting technology

    Directory of Open Access Journals (Sweden)

    Fan Zitian

    2014-07-01

    Full Text Available Lost foam casting (LFC technology has been widely applied to cast iron and cast steel. However, the development of LFC for Al and Mg alloys was relatively slower than that for cast iron and cast steel. The application of LFC to Al and Mg alloys needs more effort, especially in China. In this paper, the development history of LFC is reviewed, and the application situations of LFC to Al and Mg alloys are mainly discussed. Meanwhile, the key problems of LFC for Al and Mg alloys are also pointed out. Finally, the prospects for LFC technology are discussed, and some special new LFC technologies are introduced for casting Al and Mg alloys. In future, the development trends of green LFC technology mainly focus on the special new LFC methods, metal material, coating, heat treatment, new foam materials as well as purification technology of tail gas, etc.

  5. Ultrasonic Inspection Techniques Possibilities for Centrifugal Cast Copper Alloy

    Directory of Open Access Journals (Sweden)

    Konar R.

    2017-06-01

    Full Text Available The article deals with ultrasonic testing possibilities of the copper alloy centrifugal casts. It focused on the problems that arise when testing of castings is made of non-ferrous materials. Most common types of casting defects is dedicated in theoretical introduction of article. Ultrasonic testing technique by conventional ultrasound system is described in the theoretical part too. Practical ultrasonic testing of centrifugal copper alloy cast - brass is in experimental part. The experimental sample was part of centrifugally cast brass ring with dimensions of Ø1200x34 mm. The influence of microstructure on ultrasonic attenuation and limitations in testing due to attenuation is describes in experimental part. Conventional direct single element contact ultrasound probe with frequencies of 5 MHz, 3.5 MHz and 2 MHz were used for all experimental measurements. The results of experimental part of article are recommendations for selecting equipment and accessories for casting testing made of non-ferrous metals.

  6. Comparison of Heavy-Duty Scuffing Behavior between Chromium-Based Ceramic Composite and Nickel-Chromium-Molybdenum-Coated Ring Sliding against Cast Iron Liner under Starvation.

    Science.gov (United States)

    Shen, Yan; Yu, Baihong; Lv, Yutao; Li, Bin

    2017-10-14

    A running-in and starved lubrication experiment is designed to investigate the heavy-duty scuffing behavior of piston ring coatings against cast iron (Fe) cylinder liner using the piston ring reciprocating liner test rig. The scuffing resistance of the piston ring with the chromium-based ceramic composite coating (CKS), and that with the thermally sprayed nickel-chromium-molybdenum coating (NCM) is compared at different nominal pressures (40~100 MPa) and temperatures (180~250 °C). With the failure time as a criterion, the rank order is as follows: NCM/Fe > CKS/Fe. Before the scoring occurs at the interface of the piston ring and cylinder liner (PRCL), the cast iron liner enters into a "polish wear" stage, and iron-based adhesive materials begin to form on the piston ring surface. With the macroscopic adhesion formation, the plastic shearing cycle causes surface damages mainly due to abrasive effects for the CKS/Fe pairs and adhesive effects for the NCM/Fe pairs.

  7. Comparison of Heavy-Duty Scuffing Behavior between Chromium-Based Ceramic Composite and Nickel-Chromium-Molybdenum-Coated Ring Sliding against Cast Iron Liner under Starvation

    Directory of Open Access Journals (Sweden)

    Yan Shen

    2017-10-01

    Full Text Available A running-in and starved lubrication experiment is designed to investigate the heavy-duty scuffing behavior of piston ring coatings against cast iron (Fe cylinder liner using the piston ring reciprocating liner test rig. The scuffing resistance of the piston ring with the chromium-based ceramic composite coating (CKS, and that with the thermally sprayed nickel-chromium-molybdenum coating (NCM is compared at different nominal pressures (40~100 MPa and temperatures (180~250 °C. With the failure time as a criterion, the rank order is as follows: NCM/Fe > CKS/Fe. Before the scoring occurs at the interface of the piston ring and cylinder liner (PRCL, the cast iron liner enters into a “polish wear” stage, and iron-based adhesive materials begin to form on the piston ring surface. With the macroscopic adhesion formation, the plastic shearing cycle causes surface damages mainly due to abrasive effects for the CKS/Fe pairs and adhesive effects for the NCM/Fe pairs.

  8. Microstructure and High Temperature Plastic Deformation Behavior of Al-12Si Based Alloy Fabricated by an Electromagnetic Casting and Stirring Process

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Kyung-Soo; Roh, Heung-Ryeol; Kim, Mok-Soon [Inha University, Incheon (Korea, Republic of); Kim, Jong-Ho; Park, Joon-Pyo [Research Institute of Industrial Science and Technology, Pohang (Korea, Republic of)

    2017-06-15

    An as-received EMC/S (electromagnetic casting and stirring)-processed Al-12Si based alloy billet was homogenized to examine its microstructure and high temperature plastic deformation behavior, using compressive tests over the temperature range from 623 to 743 K and a strain rate range from 1.0×10{sup -3} to 1.0×10{sup 0}s{sup -1}. The results were compared with samples processed by the direct chill casting (DC) method. The fraction of equiaxed structure for the as-received EMC/S billet(41%) was much higher than that of the as-received DC billet(6 %). All true stress – true strain curves acquired from the compressive tests exhibited a peak stress at the initial stage of plastic deformation. Flow stress showed a steady state region after the appearance of peak stress with increasing strain. The peak stress decreased with increasing temperature at a given strain rate and a decreasing strain rate at a given temperature. A constitutive equation was made for each alloy, which could be used to predict the peak stress. A recrystallized grain structure was observed in all the deformed specimens, indicating that dynamic recrystallization is the predominant mechanism during high temperature plastic deformation of both the homogenized EMC/S and DC-processed Al-12Si based alloys.

  9. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅲ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2010-08-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  10. Colour Metallography of Cast Iron - Chapter 5: White Cast Iron (Ⅰ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2011-08-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  11. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅱ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2010-05-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  12. Colour Metallography of Cast Iron - Chapter 4: Vermicular Graphite Cast Iron (Ⅰ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2011-02-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  13. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅳ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2010-11-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  14. Colour Metallography of Cast Iron - Chapter 4: Vermicular Graphite Cast Iron (Ⅱ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2011-05-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  15. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅰ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2010-02-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  16. Casting Footprints for Eternity

    Science.gov (United States)

    1999-01-01

    Apollo 11 Astronaut Buzz Aldrin has his footprints casted during the dedication ceremony of the rocket fountain at Building 4200 at Marshall Space Flight Center. The casts of Aldrin's footprints will be placed in the newly constructed Von Braun courtyard representing the accomplishments of the Apollo 11 lunar landing.

  17. Cool Cast Facts

    Science.gov (United States)

    ... sleeve to protect it in the bath or shower. A splint does the same thing as a cast: It keeps the broken or injured bone from moving so it can heal. It also usually has a soft layer of cotton inside. A splint can be made from the same materials as a cast or may be a pre- ...

  18. Modified Injection Casting for Preventing the Evaporation of Volatile Elements

    International Nuclear Information System (INIS)

    Song, Hoon; Kim, Jong Hwan; Ko, Young Mo; Kim, Ki Hwan; Lee, Chan Bock

    2013-01-01

    Am addition to the metal fuel hampers conventional fuel fabrication processes because of the high vapor pressure of Am at melting temperature of uranium alloys. An advanced fuel casting system to control transport of volatile elements during melting of a fuel alloy with minor actinides (MA) has been developed. It is necessary to minimize the vaporization of Am and volume of radioactive wastes. In this study, advanced fuel slug fabrication methods have been introduced to develop an innovative fabrication process of metal fuel of SFR for preventing the evaporation of volatile elements such as Am. Metal fuel slugs were fabricated by improved injection casting method in KAERI. Fuel slugs for SFR were characterized to evaluate the feasibility of the alternative fabrication method. In order to prevent the evaporation of volatile elements such as Am, alternative fabrication method of metal fuel slugs has been applied and evaluated by improved injection casting method, melted fuel material under inert atmosphere, instead of vacuum injection casting method in KAERI. Surrogate fuel slugs were generally soundly cast with the adjustment of casting process parameters by the modified injection casting method

  19. New Ti-based Ti–Cu–Zr–Fe–Sn–Si–Ag bulk metallic glass for biomedical applications

    International Nuclear Information System (INIS)

    Pang, Shujie; Liu, Ying; Li, Haifei; Sun, Lulu; Li, Yan; Zhang, Tao

    2015-01-01

    Highlights: • Novel Ti 47 Cu 38 Zr 7.5 Fe 2.5 Sn 2 Si 1 Ag 2 (at.%) bulk metallic glass (BMG) with a critical diameter of 7 mm was discovered. • The present BMG is the largest Ni- and Be-free Ti-based BMG containing low content of noble metal reported to date. • The glassy alloy possesses high specific strength, low Young’s modulus, and good corrosion resistance and bio-compatibility. • Combination of high glass-forming ability and good mechano- and bio-compatibility for the Ti-based BMG demonstrates the potential for use in biomedical applications. - Abstract: A novel Ni-free Ti 47 Cu 38 Zr 7.5 Fe 2.5 Sn 2 Si 1 Ag 2 (at.%) bulk metallic glass (BMG) with superior glass-forming ability, good mechanical properties and excellent biocompatibility was discovered. The Ti-based BMG with a diameter of 7 mm can be prepared by copper mold casting and the supercooled liquid region was 52 K. Compressive strength, specific strength, Young’s modulus and microhardness of the Ti-based BMG were about 2.08 GPa, 3.2 × 10 5 N m/kg, 100 GPa and 588 Hv, respectively. Electrochemical measurements indicated that the Ti-based glassy alloy possesses higher corrosion resistance than Ti–6Al–4V alloy in a simulated body fluid environment. Attachment, spreading out and proliferation of MC3T3-E1 cells on the Ti-based BMG surface demonstrated the excellent biocompatibility. Mechanisms of the formation and properties for the Ti-based glassy alloy are also discussed. The combination of high glass-forming ability, excellent mechanical properties, high corrosion resistance and good biocompatibility demonstrates the potential of the Ni-free Ti-based BMG for use in biomedical applications

  20. A comparison on the marginal gap of two base metal alloys (Minalux, VeraBond2 during firing cycles of porcelain

    Directory of Open Access Journals (Sweden)

    Monzavi A.

    2004-06-01

    Full Text Available Statement of Problem: Nowadays economical issues on high gold alloys have changed the practice of metal-ceramic restorations toward base-metal alloys. Minalux is one of the base-metal alloys produced in Iran. Marginal fitness is of high importance to be evaluated in dental alloys."nPurpose: The aim of the present study was to compare the marginal adaptation of two base-metal alloys, Minalux (Mavadkaran Co. Iran and VeraBond2 (Aibadent Co. USA during firing cycles of porcelain. Materials and Methods: In an experimental study 24 standard brass dies, with 135° chamfer finishing line were fabricated by Computer Numeric Controlled (CNC milling machine. The samples were randomly divided in two groups, A and B, 12 in each. Following wax-up, the samples were equally cast with two mentioned alloys. In each group, there were 4 controlled samples, which proceeded to firing cycle without veneering porcelain. Scanning electron microscope (SEM measurements of marginal gap from buccal and lingual aspects were performed after 4 stages of casting, degassing, porcelain application and glazing. The data were analyzed using Four-way ANOVA and multiple comparative test based on Tukey criteria. Results: The findings of this study revealed that there was no significant difference in the marginal gap of Minalux (31.10±7.8u.m and VeraBond2 (30.27±6.96u.m with confidence level at 0.95 (P=0.43. For both alloys the greatest gap was observed after degassing stage (P<0.05. Porcelain and porcelain veneering proximity caused significant changes in the marginal gap of Minalux castings (P<0.05, however, such changes did not occur in VeraBond2 (PO.05."nConclusion: Based on the findings of this study, the marginal gaps of two base metal alloys, Minalux and VeraBond2, were proved to be identical and that of the Minalux alloy existed in the range of acceptable clinical application. It was also concluded that Minalux dental alloys could provide proper marginal adaptation.