WorldWideScience

Sample records for base ligands synthesis

  1. Synthesis and study of new oxazoline-based ligands

    OpenAIRE

    Tilliet, Mélanie

    2008-01-01

    This thesis deals with the study of oxazoline-based ligands in metal-catalyzed asymmetric reactions. The first part describes the synthesis of six new bifunctinal pyridine-bis(oxazoline) ligands and their applications in asymmetric metal-catalysis. These ligands, in addition to a Lewis acid coordination site, are equipped with a Lewis basic part in the 4-position of the oxazoline rings. Dual activation by means of this system was probed in cyanide addition to aldehydes. The second part is con...

  2. Synthesis, structures, and dearomatization by deprotonation of iron complexes featuring bipyridine-based PNN pincer ligands.

    Science.gov (United States)

    Zell, Thomas; Langer, Robert; Iron, Mark A; Konstantinovski, Leonid; Shimon, Linda J W; Diskin-Posner, Yael; Leitus, Gregory; Balaraman, Ekambaram; Ben-David, Yehoshoa; Milstein, David

    2013-08-19

    The synthesis and characterization of new iron pincer complexes bearing bipyridine-based PNN ligands is reported. Three phosphine-substituted pincer ligands, namely, the known (t)Bu-PNN (6-((di-tert-butylphosphino)methyl)-2,2'-bipyridine) and the two new (i)Pr-PNN (6-((di-iso-propylphosphino)methyl)-2,2'-bipyridine) and Ph-PNN (6-((diphenylphosphino)methyl)-2,2'-bipyridine) ligands were synthesized and studied in ligation reactions with iron(II) chloride and bromide. These reactions lead to the formation of two types of complexes: mono-chelated neutral complexes of the type [(R-PNN)Fe(X)2] and bis-chelated dicationic complexes of the type [(R-PNN)2Fe](2+). The complexes [(R-PNN)Fe(X)2] (1: R = (t)Bu, X = Cl, 2: R = (t)Bu, X = Br, 3: R = (i)Pr, X = Cl, and 4: R = (i)Pr, X = Br) are readily prepared from reactions of FeX2 with the free R-PNN ligand in a 1:1 ratio. Magnetic susceptibility measurements show that these complexes have a high-spin ground state (S = 2) at room temperature. Employing a 2-fold or higher excess of (i)Pr-PNN, diamagnetic hexacoordinated dicationic complexes of the type [((i)Pr-PNN)2Fe](X)2 (5: X = Cl, and 6: X = Br) are formed. The reactions of Ph-PNN with FeX2 in a 1:1 ratio lead to similar complexes of the type [(Ph-PNN)2Fe](FeX4) (7: X = Cl, and 8: X = Br). Single crystal X-ray studies of 1, 2, 4, 6, and 8 do not indicate electron transfer from the Fe(II) centers to the neutral bipyridine unit based on the determined bond lengths. Density functional theory (DFT) calculations were performed to compare the relative energies of the mono- and bis-chelated complexes. The doubly deprotonated complexes [(R-PNN*)2Fe] (9: R = (i)Pr, and 10: R = Ph) were synthesized by reactions of the dicationic complexes 6 and 8 with KO(t)Bu. The dearomatized nature of the central pyridine of the pincer ligand was established by X-ray diffraction analysis of single crystals of 10. Reactivity studies show that 9 and 10 have a slightly different behavior in

  3. Synthesis and Crystal Structures of Ni(II)/(III) and Zn(II) Complexes with Schiff Base Ligands

    International Nuclear Information System (INIS)

    Koo, Bon Kweon

    2013-01-01

    Coordination polymers are of great interest due to their intriguing structural motifs and potential applications in optical, electronic, magnetic, and porous materials. The most commonly used strategy for designing such materials relies on the utilization of multidentate N- or Odonor ligands which have the capacity to bridge between metal centers to form polymeric structures. The Schiff bases with N,O,S donor atoms are an useful source as they are readily available and easily form stable complexes with most transition metal ions. Schiff bases are also important intermediates in synthesis of some bioactive compounds and are potent anti-bacterial, anti-fungal, anticancer and antiviral compounds. In this work, the Schiff bases, Hapb and Hbpb, derived from 2-acetylpyridene or 2-benzoylpyridine and benzhydrazide were taken as trifunctional (N,N,O) monobasic ligand (Scheme 1). This ligand is of important because the π-delocalization of charge and the configurational flexibility of their molecular chain can give rise to a great variety of coordination modes. Although many metal.Schiff base complexes have been reported, the 1D, 2D, and 3D networks of coordination polymers linked through the bridging of ligands such as dicyanamide, N(CN) 2 - as coligand have been little published. In the process of working to extend the dimensionality of the metal-Schiff base complexes using benzilic acid as a bridging ligand, we obtained three simple metal (II)/(III) complexes of acetylpyridine/2-benzoyl pyridine based benzhydrazide ligand. Therefore, we report here the synthesis and crystal structures of the complexes

  4. Synthesis and characterization of complexes of early actinides with tridentate Schiff base ligands

    International Nuclear Information System (INIS)

    Mansingh, P.S.; Dash, K.C.

    1995-01-01

    A series of thorium(IV) and dioxouranium(VI) complexes have been synthesised with tridentate Schiff base ligands (N 2 O donor set) obtained by in-situ condensation of N, N-dimethylethylenediamine with o-hydroxy aromatic aldehydes such as salicylaldehyde (HL) or o-hydroxy naphthaldehyde (HL'). While with dioxouranium(VI), the ligands are coordinated in a neutral manner and act as tridentate donors forming complexes of the type UO 2 (HL)X 2 or UO 2 (HL')X 2 (X=Cl,I,NCS,NO 3 ,CH 3 COO) with thorium(IV) they are coordinated as deprotonated tridentate ligands yielding complexes of the type Th(L') 2 X 2 (X=I,NCS,NO 3 ). The IR spectra show that the thiocyanate group is actually N-bonded unidentate isothiocyanate and both the nitrate and the acetate groups are bonded in bidentate manner while the ligands are bonded in tridentate manner in these complexes. The PMR spectra confirm the mode of bonding of the ligands either as neutral or as deprotonated species. The thermogravimetric analyses indicate the stability of the complexes. (author). 22 refs., 1 tab

  5. Synthesis of metalloporphyrin-based conjugated microporous polymer spheres directed by bipyridine-type ligands.

    Science.gov (United States)

    Ji, Guipeng; Yang, Zhenzhen; Zhao, Yanfei; Zhang, Hongye; Yu, Bo; Xu, Jilei; Xu, Huanjun; Liu, Zhimin

    2015-04-30

    Zinc porphyrin (TP-Zn)-based conjugated microporous polymer (Zn-CMP) spheres were obtained via Sonagashira-Hagihara cross coupling reactions between 5,10,15,20-tetrakis(4-ethynylphenyl)porphyrin-Zn(II) and brominated monomers directed by bidentate bipyridine (BP)-type ligands for the first time, and the sphere diameters could be adjusted from 320 to 740 nm. The coordination between BP and TP-Zn was proved to be the key to forming spheres.

  6. Synthesis and thermal decomposition kinetics of Th(IV) complex with unsymmetrical Schiff base ligand

    International Nuclear Information System (INIS)

    Fan Yuhua; Bi Caifeng; Liu Siquan; Yang Lirong; Liu Feng; Ai Xiaokang

    2006-01-01

    A new unsymmetrical Schiff base ligand (H 2 LLi) was synthesized using L-lysine, o-vanillin and salicylaladyde. Thorium(IV) complex of this ligand [Th(H 2 L)(NO 3 )](NO 3 ) 2 x 3H 2 O have been prepared and characterized by elemental analyses, IR, UV and molar conductance. The thermal decomposition kinetics of the complex for the second stage was studied under non-isothermal condition by TG and DTG methods. The kinetic equation may be expressed as: dα/dt = A x e -E/RT x 1/2 (1-α) x [-ln(1-α)] -1 . The kinetic parameters (E, A), activation entropy ΔS ≠ and activation free-energy ΔG ≠ were also calculated. (author)

  7. Schiff base ligand

    Indian Academy of Sciences (India)

    Unknown

    Low-temperature stoichiometric Schiff base reaction in air in 3 : 1 mole ratio between benz- aldehyde and triethylenetetramine (trien) in methanol yields a novel tetraaza µ-bis(bidentate) acyclic ligand L. It was .... electrochemical work was performed as reported in ..... change in ligand shape through change in oxidation.

  8. Synthesis, spectral, thermal and biological studies of mixed ligand complexes with newly prepared Schiff base and 1,10-phenanthroline ligands

    Science.gov (United States)

    Abd El-Halim, Hanan F.; Mohamed, Gehad G.; Khalil, Eman A. M.

    2017-10-01

    A series of mixed ligand complexes were prepared from the Schiff base (L1) as a primary ligand, prepared by condensation of oxamide and furan-2-carbaldehyde, and 1,10-phenanthroline (1,10-phen) as a secondary ligand. The Schiff base ligand and its mixed ligand chelates were characterized based on elemental analysis, IR, 1H NMR, thermal analysis, UV-Visible, mass, molar conductance, magnetic moment. X-ray diffraction, solid reflectance and ESR also have been studied. The mixed ligand complexes were found to have the formulae of [M(L1) (1,10-phen)]Clm.nH2O (M = Cr(III) and Fe(III) (m = 3) (n = 0); M = Mn(II), Cu(II) and Cd(II) (m = 2) (n = 0); and M = Co(II) (m = 2) (n = 1), Ni(II) (m = 2) (n = 2) and Zn(II) (m = 2) (n = 3)) and that the geometrical structure of the complexes were octahedral. The parameters of thermodynamic using Coats-Redfern and Horowitz-Metzger equations were calculated. The synthesized Schiff base ligand, 1,10-phenanthroline ligand and Their mixed ligand complexes were also investigated for their antibacterial and antifungal activity against bacterial species (Gram-Ve bacteria: Pseudomonas aeruginosa and Escherichia coli) and (Gram + Ve bacteria: Bacillus subtilis and Streptococcus pneumonia) and fungi (Aspergillus fumigates and Candida albicans). The anticancer activity of the new compounds had been tested against breast (MFC7) and colon (HCT-116) cell lines. The results showed high activity for the synthesized compounds.

  9. Synthesis and electrophosphorescence of iridium complexes containing benzothiazole-based ligands.

    Science.gov (United States)

    Liu, Di; Ren, Huicai; Deng, Lijun; Zhang, Ting

    2013-06-12

    Four heteroleptic bis-cyclometalated iridium(III) complexes containing 2-aryl-benzothiazole ligands, in which the aryl is dibenzofuran-2-yl [Ir(O-bt)2(acac)], dibenzothiophene-2-yl [Ir(S-bt)2(acac)], dibenzothiophene-S,S-dioxide-2-yl [Ir(SO2-bt)2(acac)] and 4-(diphenylphosphoryl)phenyl [Ir(PO-bt)2(acac)], have been synthesized and characterized for use in organic light-emitting diodes (OLEDs). These complexes emit bright yellow (551 nm) to orange-red (598 nm) phosphorescence at room temperature, the peak wavelengths of which can be finely tuned depending upon the electronic properties of the aryl group in the 2-position of benzothiazole. The strong electron-withdrawing aryls such as dibenzothiophene-S,S-dioxide2-yl and 4-(diphenylphosphoryl)phenyl caused bathochromatic shift of the iridium complex phosphorescence. These iridium complexes were used as doped emitters to fabricate yellow to orange-red OLEDs and good performance was obtained. In particular, a maximum luminance efficiency of 58.4 cd A(-1) (corresponding to 30.6 lm W(-1) and 19%) with CIE coordinates of (0.45, 0.52) was achieved for Ir(O-bt)2(acac)-based yellow device. Furthermore, the yellow emitting Ir(S-bt)2(acac) was used to fabricate two-element white OLED that exhibited a high efficiency of 32.4 cd A(-1) with CIE coordinates of (0.28, 0.44).

  10. Synthesis and evaluation of peptide and nucleic acid based Toll-like receptor ligands

    NARCIS (Netherlands)

    Weterings, Josephus Johannes

    2008-01-01

    Toll-like receptors (TLRs) are receptors that continuously scour their direct surroundings for pathogen associated molecular patterns (PAMPs) of bacterial, viral or fungal origin. TLRs can be found at cells that play a role in the immune system. Binding of the TLR with its corresponding ligand

  11. Direct synthesis of aqueous quantum dots through 4,4'-bipyridine-based twin ligand strategy.

    Science.gov (United States)

    Kalita, Mausam; Cingarapu, Sreeram; Roy, Santanu; Park, Seok Chan; Higgins, Daniel; Jankowiak, Ryszard; Chikan, Viktor; Klabunde, Kenneth J; Bossmann, Stefan H

    2012-04-16

    We report a new class of derivatized 4,4'-bipyridinium ligands for use in synthesizing highly fluorescent, extremely stable, water-soluble CdSe and CdTe quantum dots (QDs) for bioconjugation. We employed an evaporation-condensation technique, also known as solvated metal atom dispersion (SMAD), followed by a digestive ripening procedure. This method has been used to synthesize both metal nanoparticles and semiconductors in the gram scale with several stabilizing ligands in various solvents. The SMAD technique comprised evaporation condensation and stabilization of CdSe or CdTe in tetrahydrofuran. The as-prepared product was then digestively ripened in both water and dimethyl formamide, leading to narrowing of the particle size distributions. The ligands were synthesized by nucleophilic substitution (S(N)2) reactions using 4,4'-bipyridine as a nucleophile. Confocal microscopy images revealed the orange color of the nanocrystalline QDs with diameters of ~5 nm. The size has been confirmed by using transmission electron microscopy. As a part of our strategy, 85% of the 4,4'-bipyridinium salt was synthesized as propionic acid derivative and used to both stabilize the QDs in water and label basic amino acids and different biomarkers utilizing the carboxylic acid functional group. Fifteen percent of the 4,4'-bipyridinium salt was synthesized as N-propyl maleimide and used as a second ligand to label any protein containing the amino acid cysteine by means of a 1,4-Michael addition. © 2012 American Chemical Society

  12. New metal-organic complexes based on bis(tetrazole) ligands: Synthesis, structures and properties

    Science.gov (United States)

    Du, Ceng-Ceng; Fan, Jian-Zhong; Wang, Xin-Fang; Zhou, Sheng-Bin; Wang, Duo-Zhi

    2017-04-01

    In this paper, a series of new complexes, [Zn2(HL1)2(H2O)4]·H2O (1), [Co2(HL1)2]·TEA (2), [Co3(HL1)2(H2L1)2(H2O)4]n (3), [Cu(HL1)(H2O)2]n (4), {[Cu5(HL2)2(OH)4(ClO4)2]·4H2O}n (5) and [Cu2(L3)]n (6) were successfully prepared by utilizing three bis(tetrazole) ligands [bis-(1H-tetrazol-5-ylmethyl)-amine (H3L1), bis-(1H-tetrazol-5-ylethyl)-amine (H3L2) and 1,5-bis(5-tetrazolo)-3-thiapentane (H2L3)], all of which have been characterized by elemental analyses, FT-IR spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analyses as well as single-crystal X-ray diffraction analyses showing different dimensionalities (0D, 1D and 3D). Complexes 1 and 2 are 0D structures, 1 shows a dinuclear structure, 2 displays two crystallographically different mononuclear structures, 1 and 2 are further assembled to form 3D supramolecular framework and 2D supramolecular network by hydrogen-bonding interactions, respectively. Complexes 3, 4 and 5 are 1D structures, 3 features a mononuclear unit and a 1D chain, which are arranged into 3D supramolecular architecture by hydrogen-bonding interactions, 4 presents a zigzag chain, 5 shows an infinite chain structure constructed from pentanuclear Cu(II) subunits and ClO4- anions. Complex 6 exhibits a 3D coordination framework based on cyclic [Cu4(L3)2] dimmer subunits as nodes possessing an 8-connected network topology with the point symbol {424·64}. Further, semiconductor behaviors, the solid-state luminescent properties of the complexes 1-3 and 6 were measured and studied seriously at room temperature.

  13. Synthesis, structural, DFT studies, docking and antibacterial activity of a xanthene based hydrazone ligand

    Science.gov (United States)

    Naseem, Saira; Khalid, Muhammad; Tahir, Muhammad Nawaz; Halim, Mohammad A.; Braga, Ataualpa A. C.; Naseer, Muhammad Moazzam; Shafiq, Zahid

    2017-09-01

    Herein, we present the synthesis of novel xanthene-based hydrazone (1). The chemical structure of 1 was resolved using spectroscopic techniques such as NMR, FT-IR, UV-VIS and X-ray crystallographic approaches. X-ray diffraction analysis shows that the compound (1) crystallizes in triclinic crystal lattice with the Pbar1 space group and diffused to form multi-layered structure due to non-covalent interactions such as intramolecular hydrogen bonding (H.B). In addition to experimental investigation, density functional theory (DFT) calculation with M06-2X/6-31G(d,p) and B3LYP/6-31G(d,p) level of theories was performed on compound (1) to obtain optimized geometry, spectroscopic and electronic properties. DFT optimized geometry shows good agreement with the experimental XRD structure. The hyper conjugative interactions and hydrogen bonding network are responsible for the stability of compound (1) as revealed by natural bond orbital (NBO) calculation. Moreover, hydrogen bonding network in the dimer is confirmed by FT-IR and thermodynamic studies showing excellent agreement with XRD and NBO findings. TD-DFT/UV-VIS analysis provides insight that maximum excitation is found in 1 which shows good agreement with experimental UV-VIS result. The global reactivity parameters are calculated using the energies of frontier molecular orbitals also disclosed that the compound is more stable might be due to hydrogen bonding network. Experimental and molecular docking studies indicated that this compound has anti-bacterial and anti-diabetic properties. The binding affinity of this compound against the multidrug efflux pump subunit AcrB OS=Escherichia coli (strain K12) and Human Pancreatic Alpha-Amylase is -9.2 and -10.00 kcal/mol which are higher than the control drugs. Pi-Pi, Pi-anaion, amide-pi and pi-alkyl bonds play key role in drug-protein complexes.

  14. Structure-based design, synthesis and crystallization of 2-arylquinazolines as lipid pocket ligands of p38α MAPK.

    Directory of Open Access Journals (Sweden)

    Mike Bührmann

    Full Text Available In protein kinase research, identifying and addressing small molecule binding sites other than the highly conserved ATP-pocket are of intense interest because this line of investigation extends our understanding of kinase function beyond the catalytic phosphotransfer. Such alternative binding sites may be involved in altering the activation state through subtle conformational changes, control cellular enzyme localization, or in mediating and disrupting protein-protein interactions. Small organic molecules that target these less conserved regions might serve as tools for chemical biology research and to probe alternative strategies in targeting protein kinases in disease settings. Here, we present the structure-based design and synthesis of a focused library of 2-arylquinazoline derivatives to target the lipophilic C-terminal binding pocket in p38α MAPK, for which a clear biological function has yet to be identified. The interactions of the ligands with p38α MAPK was analyzed by SPR measurements and validated by protein X-ray crystallography.

  15. Synthesis, Characterization, DNA Interaction, and Antitumor Activities of La (III) Complex with Schiff Base Ligand Derived from Kaempferol and Diethylenetriamine.

    Science.gov (United States)

    Wang, Qin; Huang, Yu; Zhang, Jin-Sheng; Yang, Xin-Bin

    2014-01-01

    A novel La (III) complex, [LaL(H2O)3]NO3 ·3H2O, with Schiff base ligand L derived from kaempferol and diethylenetriamine, has been synthesized and characterized by elemental analysis, IR, UV-visible, (1)H NMR, thermogravimetric analysis, and molar conductance measurements. The fluorescence spectra, circular dichroism spectra, and viscosity measurements and gel electrophoresis experiments indicated that the ligand L and La (III) complex could bind to CT-DNA presumably via intercalative mode and the La (III) complex showed a stronger ability to bind and cleave DNA than the ligand L alone. The binding constants (K b ) were evaluated from fluorescence data and the values ranged from 0.454 to 0.659 × 10(5) L mol(-1) and 1.71 to 17.3 × 10(5) L mol(-1) for the ligand L and La (III) complex, respectively, in the temperature range of 298-310 K. It was also found that the fluorescence quenching mechanism of EB-DNA by ligand L and La (III) complex was a static quenching process. In comparison to free ligand L, La (III) complex exhibited enhanced cytotoxic activities against tested tumor cell lines HL-60 and HepG-2, which may correlate with the enhanced DNA binding and cleaving abilities of the La (III) complex.

  16. N-aryl pyrrolo-tetrathiafulvalene based ligands: synthesis and metal coordination.

    Science.gov (United States)

    Balandier, Jean-Yves; Chas, Marcos; Dron, Paul I; Goeb, Sébastien; Canevet, David; Belyasmine, Ahmed; Allain, Magali; Sallé, Marc

    2010-03-05

    A straightforward general synthetic access to N-aryl-1,3-dithiolo[4,5-c]pyrrole-2-thione derivatives 6 from acetylenedicarbaldehyde monoacetal is depicted. In addition to their potentiality as precursors to dithioalkyl-pyrrole derivatives, thiones 6 are key building blocks to N-aryl monopyrrolo-tetrathiafulvalene (MPTTF) derivatives 10. X-ray structures of four of these thiones intermediates, reminiscent of the corresponding MPTTF derivatives, are provided. When the aryl group is a binding pyridyl unit, the MPTTF derivative 10a can coordinate M(II) salts (M = Pt, Pd). The first examples of metal-directed orthogonal MPTTF-based dimers 11-14, obtained through coordination of 10a to cis-blocked square planar Pt or Pd complexes are described. Studies on the parameters influencing the dimer construction are presented, as well as first recognition properties of the resulting electron-rich clip for C(60).

  17. Synthesis, characterization and thermal study of some transition metal complexes of an asymmetrical tetradentate Schiff base ligand

    Directory of Open Access Journals (Sweden)

    ACHUT S. MUNDE

    2010-03-01

    Full Text Available Complexes of Cu(II, Ni(II, Co(II, Mn(II and Fe(III with an asymmetric tetradentate Schiff base ligand derived from dehydroacetic acid, 4-methyl-o-phenylenediamine and salicylic aldehyde were synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV–Vis, IR, 1H-NMR spectroscopy, X-ray diffraction analysis of powdered samples and thermal analysis, and screened for antimicrobial activity. The IR spectral data suggested that the ligand behaves as a dibasic tetadentate ligand towards the central metal ion with an ONNO donor atoms sequence. From the microanalytical data, the stoichiometry of the complexes 1:1 (metal:ligand was found. The physico-chemical data suggested square planar geometry for the Cu(II and Ni(II complexes and octahedral geometry for the Co(II, Mn(II and Fe(III complexes. The thermal behaviour (TGA/DTA of the complexes was studied and kinetic parameters were determined by Horowitz–Metzger and Coats–Redfern methods. The powder X-ray diffraction data suggested a monoclinic crystal system for the Co(II, Mn(II and Fe(III complexes. The ligand and their metal complexes were screened for antibacterial activity against Staphylococcus aureus and Escherichia coli and fungicidal activity against Aspergillus niger and Trichoderma viride.

  18. Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: spectral, thermal, XRD and antimicrobial studies.

    Science.gov (United States)

    Sundararajan, M L; Jeyakumar, T; Anandakumaran, J; Karpanai Selvan, B

    2014-10-15

    Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, (1)H NMR, (13)C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Synthesis of a [sup 11]C-labeled novel, quinuclidine based ligand for the 5-HT[sub 3] receptor

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, S; Diksic, M [Montreal Neurological Inst., PQ (Canada); Francis, B; Burns, H D [Merck Research Labs., West Point, PA (United States). Dept. of Radiopharmacology; Swain, C J [Merck Sharp and Dohme Research Labs., Harlow (United Kingdom). Neuroscience Research Centre

    1992-11-01

    L-683,877, a high affinity, 5-HT[sub 3] selective receptor ligand has been labeled with [sup 11]C for use in PET studies to measure regional brain kinetics of L-683,877 and to determine if [[sup 11]C]L-683,877 can be used for serotonin 5-HT[sub 3] receptor imaging. [[sup 11]C]L-683,877 was prepared by reacting [[sup 11]C]methyl iodide with the desmethyl, borane-protected precursor, L-686,472, in DMF in the presence of tetrabutyl ammonium hydroxide. The average specific activity of [[sup 11]C]L-683,877 was 2700 Ci/mmol and the average radiochemical yield (decay corrected)was 20% at the end of synthesis. (Author).

  20. Screening of ligands for the Ullmann synthesis of electron-rich diaryl ethers.

    Science.gov (United States)

    Otto, Nicola; Opatz, Till

    2012-01-01

    In the search for new ligands for the Ullmann diaryl ether synthesis, permitting the coupling of electron-rich aryl bromides at relatively low temperatures, 56 structurally diverse multidentate ligands were screened in a model system that uses copper iodide in acetonitrile with potassium phosphate as the base. The ligands differed largely in their performance, but no privileged structural class could be identified.

  1. Synthesis and photoluminescence properties of novel Schiff base type polymer-rare earth complexes containing furfural-based bidentate Schiff base ligands

    Science.gov (United States)

    Gao, Baojiao; Zhang, Dandan; Li, Yanbin

    2018-03-01

    Luminescent polymer-rare earth complexes are an important class of photoluminescence and electroluminescence materials. Via molecular design, two furfural-based bidentate Schiff base ligands, furfural-aniline (FA) type ligand and furfural-cyclohexylamine (FC) type ligand, were bonded on the side chains of polysulfone (PSF), respectively, forming two functionalized macromolecules, PSF-FA and PSF-FC. And then through respective coordination reactions of the two functionalized macromolecules with Eu(Ⅲ) ion and Tb(Ⅲ) ion, novel luminescent binary and ternary (with 1,10-phenanthroline as the second ligand) polymer-rare earth complexes were synthesized. For these complexes, on basis of the characterization of their chemical structures, they photoluminescence properties were main researched, and the relationship between their luminescent properties and structures was explored. The experimental results show that the complexes coming from PSF-FA and Eu(Ⅲ) ion including binary and ternary complexes emit strong red luminescence, indicating that the bonded bidentate Schiff base ligand FA can sensitize the fluorescence emission of Eu(III) ion. While the complexes coming from PSF-FC and Tb(Ⅲ) ion produce green luminescence, displaying that the bonded bidentate Schiff base ligand FC can sensitize the fluorescence emission of Tb(Ⅲ) ion. The fluorescence emission intensities of the ternary complexes were stronger than that of binary complexes, reflecting the important effect of the second ligand. The fluorescence emission of the solid film of complexes is much stronger than that of the solutions of complexes. Besides, by comparison, it is found that the furfural (as a heteroaromatic compound)-based Schiff base type polymer-rare earth complexes have stronger fluorescence emission and higher energy transfer efficiency than salicylaldehyde (as a common aromatic compound)-based Schiff base type polymer-rare earth complexes.

  2. Synthesis and receptor binding studies of novel 4,4-disubstituted arylalkyl/arylalkylsulfonyl piperazine and piperidine-based derivatives as a new class of σ1 ligands.

    Science.gov (United States)

    Sadeghzadeh, Masoud; Sheibani, Shahab; Ghandi, Mehdi; Daha, Fariba Johari; Amanlou, Massoud; Arjmand, Mohammad; Hasani Bozcheloie, Abolfazl

    2013-06-01

    This study presents the synthesis and biological evaluation of a new series of arylalkyl/arylalkylsulfonyl piperazine and piperidine-based derivatives as sigma receptor ligands. It was found that a number of halogen substituted sulfonamides display relatively high and low affinities to σ1 and σ2 receptors, respectively. The σ1 affinities and subtype selectivities of four piperidine derivatives were also found to be generally comparable to those of piperazine analogues. Compared to σ1-Rs compounds with n = 0 and 2, those with n = 1 proved to have optimal length of carbon chain by exhibiting higher affinities. Within this series, the 4-benzyl-1-(3-iodobenzylsulfonyl)piperidine sigma ligand was identified with 96-fold σ1/σ2 selectivity ratio (Kiσ1 = 0.96 ± 0.05 nM and Kiσ2 = 91.8 ± 8.1 nM). Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. Synthesis in aqueous medium and organic praseodymium complexes with ligands derived from Schiff base quinolinic. Characterization and physicochemical study

    International Nuclear Information System (INIS)

    Garcia G, A.

    2015-01-01

    It was investigated the coordination ability of the quinolinic Schiff base organic tetradentate quinolinic ligand (Q Schiff-(OH) 2 ) towards the trivalent praseodymium by UV/Vis spectrophotometric titration (St). By St, was studied the formed species between the Q Schiff-(OH) 2 ligand and the praseodymium nitrate salt in equimolar concentrations (5.86 x 10 -4 M: 5.22 x 10 -4 M) in methanol. The statistical analysis of the experimental results suggested three complexed species with 1Pr:3L, 1Pr:2L y 1Pr:1L stoichiometries. The predominant stoichiometries were the second and the latter. Based on these results and data from the scientific literature, the methodology for the syntheses of the complexes Q Schiff-(OH) 2 -Pr in aqueous-organic and organic media was established and a molar ratio M:L= 1:2 of praseodymium nitrate and the ligand was used. The new complexes were characterized by UV/Vis, Infrared, X-ray Photoelectron Spectroscopy (XP S), Diffuse Reflectance (Dr) and Thermogravimetric Analysis/Differential Scanning Calorimetry (TGA/DSC). Elemental analysis of C, N, O and Pr by XP S suggested 1Pr:2L:1Na (PrC 32 H 20 N 4 O 4 Na) stoichiometry of the complex synthesized by the aqueous-organic medium while for the complex synthesized by the organic medium it was 1Pr:3L (PrC 48 H 33 N 6 O 6 ). In the first case, the praseodymium ion charge was neutralized by the anionic ligands whose remaining charge was compensated by the sodium ion. In the second case, the ion charge was neutralized by the ligands. The minimum formula was Pr(Q Schiff) 2 Na for the pure coordination compound from the aqueous-organic medium and the minimum formula Pr(Q Schiff) 3 for that from the organic medium. XP S also indicated that the oxidation state of praseodymium ion was maintained. Both complexes were stable in methanol, ethanol and acetonitrile at least for 5 days. The photophysical properties of the studied complexes were evaluated by emission and excitation luminescence (fluorescence and

  4. Ligand-based design and synthesis of novel sodium channel blockers from a combined phenytoin–lidocaine pharmacophore

    OpenAIRE

    Wang, Yuesheng; Jones, Paulianda J.; Batts, Timothy W.; Landry, Victoria; Patel, Manoj K.; Brown, Milton L.

    2008-01-01

    The voltage-gated sodium channel remains a rich area for the development of novel blockers. In this study we used comparative molecular field analysis (CoMFA), a ligand-based design strategy, to generate a 3D model based upon local anesthetics, hydantoins, and α-hydroxyphenylamides to elucidate a SAR for their binding site in the neuronal sodium channel. Correlation by partial least squares (PLS) analysis of in vitro sodium channel binding activity (expressed as pIC50) and the CoMFA descripto...

  5. Synthesis of New Chiral Ligands Based on Thiophene Derivatives for Use in Catalytic Asymmetric Oxidation of Sulfides

    International Nuclear Information System (INIS)

    Jeong, Yong Chul; Ahn, Dae Jun; Lee, Woo Sun; Lee, Seung Han; Ahn, Kwang Hyun

    2011-01-01

    We discovered that the vanadium complexes of new Schiff base ligands and prepared from thiophene derivatives efficiently catalyze the asymmetric oxidation of sulfides by hydrogen peroxide to provide sulfoxides with enantioselectivities up to 79% ee and in yields up to 89%. Notably, Schiff base showed better or similar enantioselectivity than the well-studied Schiff base. These results suggest possible applications of Schiff bases derived from and in other catalytic asymmetric reactions. Chiral sulfoxides are important functional groups for various applications. For example, the biological activities of sulfoxide containing drugs such as omeprazole are strongly related to the chirality of the sulfoxide group; for this reason, esomeprazole, the enantiomerically pure form of omeprazole, was later developed. There are several chiral sulfoxide based drugs that have been introduced by the pharmaceutical industry including armodafinil, aprikalim, oxisurane, and ustiloxin. Chiral sulfoxides have also been utilized as chiral auxiliaries in asymmetric syntheses of chiral intermediates

  6. Synthesis, structure and catalytic activities of nickel(II) complexes bearing N4 tetradentate Schiff base ligand

    Science.gov (United States)

    Sarkar, Saikat; Nag, Sanat Kumar; Chattopadhyay, Asoke Prasun; Dey, Kamalendu; Islam, Sk. Manirul; Sarkar, Avijit; Sarkar, Sougata

    2018-05-01

    Two new nickel(II) complexes [Ni(L)Cl2] (1) and [Ni(L)(NCS)2] (2) of a neutral tetradentate mono-condensed Schiff base ligand, 3-(2-(2-aminoethylamino)ethylimino)butan-2-one oxime (L) have been synthesized and characterized using different physicochemical techniques e.g. elemental analyses, spectroscopic (IR, Electronic, NMR) methods, conductivity and molecular measurements. The crystal structure of complex (2) has been determined by using single crystal X-ray diffraction method and it suggests a distorted octahedral geometry around nickel(II) having a NiN6 coordinating atmosphere. The non-coordinated Osbnd H group on the ligand L remain engaged in H-bonding interactions with the S end of the coordinated thiocyanate moiety. These H-bonding interactions lead to Osbnd S separations of 3.132 Å and play prominent role in crystal packing. It is observed that the mononuclear units are glued together with such Osbnd H…S interactions and finally results in an 1D supramolecular sheet-like arrangement. DFT/TDDFT based theoretical calculations were also performed on the ligand and the complexes aiming at the accomplishment of idea regarding their optimized geometry, electronic transitions and the molecular energy levels. Finally the catalytic behavior of the complexes for oxidation of styrene has also been carried out. A variety of reaction conditions like the effect of solvent, effect of temperature and time as well as the effect of ratio of substrate to oxidant were thoroughly studied to judge the catalytic efficiency of the Ni(II) coordination entity.

  7. Nickel(II) and palladium(II) triphenylphosphine complexes incorporating tridentate Schiff base ligands: Synthesis, characterization and biocidal activities

    Science.gov (United States)

    Shabbir, Muhammad; Akhter, Zareen; Ashraf, Ahmad Raza; Ismail, Hammad; Habib, Anum; Mirza, Bushra

    2017-12-01

    Nickel(II) and palladium(II) triphenylphosphine complexes incorporating tridentate Schiff bases have been prepared and characterized by elemental analysis as well as by spectroscopic techniques (FTIR & NMR). The synthesized compounds were assessed to check their potential biocidal activity by using different biological assays (brine shrimp cytotoxicity, antimicrobial, antioxidant, antitumor and drug-DNA interaction). Results of brine shrimp cytotoxicity assay showed that ligand molecules are more bioactive than metal complexes with LD50 as low as 12.4 μg/mL. The prominent antitumor activity was shown by nickel complexes while the palladium complexes exhibited moderate activity. The synthesized compounds have shown high propensity for DNA binding either through intercalation or groove binding which represents the mechanism of antitumor effect of these compounds. Additionally, ligand molecules and nickel metal complexes showed significant antioxidant activity with IC50 values as low as 3.1 μg/mL and 18.9 μg/mL respectively while palladium complexes exhibited moderate activity. Moreover, in antimicrobial assays H2L1, Ni(L1)PPh3 and H2L3 showed dual inhibition against bacterial and fungal strains while for the rest of the compounds varying degree of activity was recorded against different strains. Overall comparison of results suggests that the synthesized compounds can be promising candidate for drug formulation and development.

  8. Copper(II) and palladium(II) complexes with tridentate NSO donor Schiff base ligand: Synthesis, characterization and structures

    Science.gov (United States)

    Kumar, Sujit Baran; Solanki, Ankita; Kundu, Suman

    2017-09-01

    Mononuclear copper(II) complex [CuL2] and palladium(II) complexes [Pd(X)L] where X = benzoate(bz) or salicylate(sal) and HL = 2-(methylthio)phenylimino)methyl)phenol, a Schiff base ligand with NSO coordination sites have been synthesized and characterized by microanalyses, IR, UV-Visible spectra, conductivity measurement and magnetic studies. Crystal structures of all the complexes have been solved by single crystal X-ray diffraction studies and showed that there are two molecules in a unit cell in the [CuL2] complex - one molecule has square planar geometry whereas second molecule has distorted square pyramidal geometry and palladium(II) complexes have distorted square planar geometry.

  9. Synthesis, characterization, density functional study and antimicrobial evaluation of a series of bischelated complexes with a dithiocarbazate Schiff base ligand

    Directory of Open Access Journals (Sweden)

    E. Zangrando

    2017-02-01

    Full Text Available A nitrogen-sulfur Schiff base HL (1 derived from S-hexyldithiocarbazate and 4-methylbenzaldehyde has been reacted with different divalent metal ions in 2:1 molar ratio, producing neutral complexes (2–7 of general formula MIIL2 (where M = Ni, Cu, Zn, Cd, Pd and Pb. All compounds were characterized using established physico-chemical and spectroscopic methods. The single crystal structures of CuII and ZnII complexes are compared and discussed with those of NiII and PdII already reported by us, underlining the geometrical variations occurring in the HL ligand upon coordination. The metal complexes, as revealed by the X-ray diffraction analyses, show a square planar or tetrahedral coordination geometry, and in the former case either a cisoid or transoid configuration of chelating ligands. Density functional theory (DFT and time-dependent density functional theory (TD-DFT calculations have been performed on the isolated cis/trans complexes of Ni and Pd complexes in order to evaluate the stability of the isomer isolated in solid state. The thermodynamic parameters for trans to cis isomerization of NiL2 complex [ΔH = −29.12 kJ/mol and ΔG = −43.97 kJ/mol] indicated that the trans isomer (observed in solid state is more stable than the cis one. On the other hand, relative enthalpy [ΔH = −4.37 kJ/mol] and Gibbs free energy [ΔG = −5.50 kJ/mol] of PdL2 complex disclosed a small difference between the energies of the two isomers. Experimental UV–vis and TD-DFT calculation confirmed that these complexes have distinctive LMCT bands with a broad shoulder at 400–550 nm. With the purpose of providing insight into the properties and behavior of the complexes in solution, photoluminescence and electrochemical experiments have been also performed. Finally, the anti-bacterial activity of these compounds was evaluated against three pathogenic Gram-negative organisms such as Escherichia coli, Salmonella typhi and Shigella flexneri, but

  10. Synthesis, crystal structure, antimicrobial activity and electrochemistry study of chromium(III) and copper(II) complexes based on semicarbazone Schiff base and azide ligands

    Czech Academy of Sciences Publication Activity Database

    Shaabani, B.; Khandar, A.A.; Dušek, Michal; Pojarová, Michaela; Mahmoudi, F.

    2013-01-01

    Roč. 394, JAN (2013), s. 563-568 ISSN 0020-1693 Grant - others:AV ČR(CZ) AP0701 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378271 Keywords : antimicrobial activity * azide ligand * metal complex * Schiff base ligand * X-ray structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.041, year: 2013

  11. Synthesis and complexation of acyclic dithiolate ligands

    International Nuclear Information System (INIS)

    Ashford, L.

    1999-11-01

    -[N,N'-bis(p-nitro-o-mereaptobenzyliden)propylenediaminate, Copper- [N,N'-bis(p-nitro-o-mercaptobenzyliden)propylenediaminate and Nickel-[N,N'-bis(o-mercaptobenzyliden)propylenediaminate] are analysed. Comparison of the data of the Ni(II) species show the major effects of the para-nitro group arise from electron withdrawal from the thiolate donors. The synthesis and complexation of the (2-mercaptomethyl)thiophenolato series of ligands, via the corresponding (2-hydroxymethyl)thiophenolato compounds, is detailed. Removal of β-elimination pathways by use of an o-xylyl linker allows the synthesis of α,α'-di[(2-mercaptomethyl)thiophenolato]-o-xylene. Reaction of α,α'-di[(2-mercaptomethyl)thiophenolato]-o-xylene with Group 10 metal ions Ni(II) and Pd(ll) monomers and a Pt(ll) trinuclear complex. Potential causes of the broad and featureless resonances in the 1 H NMR spectra of the complexes are investigated. The Ni(II) and Pd(ll) monomers are reacted with Pt(ll) salts to give trinuclear species. (author)

  12. Self-assembly of novel manganese (II) compounds based on bifunctional-group ligands: Synthesis, structures, and magnetic properties

    Science.gov (United States)

    Yan, Juan-zhi; Lu, Li-ping; Zhu, Miao-li; Feng, Si-si

    2018-06-01

    Four manganese (II) compounds are obtained by the reaction of manganese salts, triazole-derivatives and auxiliary reagents in aqueous solution or mix-solvents by routine or hydrothermal reactions. X-ray crystal structure analyses reveal that a neutral 0D compound [Mn(Hmctrz)2(H2O)2] (1) (H2mctrz = 1H-1,2,4-triazole-3-carboxylic acid) displays a centro-symmetric mononuclear octahedral entity with two Hmctrz- anions and two water molecules; two neutral 2D clusters [Mn(Hdctrz)(H2O)2]n (2) (H3dctrz = 1H-1,2,4-triazole-3,5-dicarboxylic acid) and [Mn2(pbtrz)(btca)]n·4nH2O (3) (pbtrz = 1,3-bis(1,2,4-triazol-1-yl)-propane&H4btca = benzene-1,2,4,5-tetracarboxylic acid) possess layer structures with Hdctrz2- linkers (2) and Mn(II)-pbtrz-Mn(II) building blocks periodically extended by μ-btca4- connectors (3); [Mn(pbtrz)]n·nOAc·nOH (4) shows a 3D diamond-shaped cationic framework with the anion void volume of 49.2%. Nitrogenous bases are used as the auxiliary ligand in compound 3 and the temple ligand in compounds 1, 2, and 4. Compounds 1-4 show antiferromagnetic coupling that has been fitted by different models with the molecular field approximate with D = - 0.129(1) cm-1 for 1, J = - 0.354(4) cm-1 for 2 and J = - 0.696(6) cm-1 for 3, respectively. The magnetic differences can be related to different superexchange interactions transmitted by the crystal lattice and/or the zero field splitting (ZFS) of the 6A1g single-ion states of 1 and the syn-anti-COO- of 2 as well as the mixed magnetic bridges of μ1-O and μ-pbtrz-μ-COO- of 3.

  13. Ruthenium-bipyridine complexes bearing fullerene or carbon nanotubes: synthesis and impact of different carbon-based ligands on the resulting products.

    Science.gov (United States)

    Wu, Zhen-yi; Huang, Rong-bin; Xie, Su-yuan; Zheng, Lan-sun

    2011-09-07

    This paper discusses the synthesis of two carbon-based pyridine ligands of fullerene pyrrolidine pyridine (C(60)-py) and multi-walled carbon nanotube pyrrolidine pyridine (MWCNT-py) via 1,3-dipolar cycloaddition. The two complexes, C(60)-Ru and MWCNT-Ru, were synthesized by ligand substitution in the presence of NH(4)PF(6), and Ru(II)(bpy)(2)Cl(2) was used as a reaction precursor. Both complexes were characterized by mass spectroscopy (MS), elemental analysis, nuclear magnetic resonance (NMR) spectroscopy, infrared spectroscopy (IR), ultraviolet/visible spectroscopy (UV-VIS) spectrometry, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and cyclic voltammetry (CV). The results showed that the substitution way of C(60)-py is different from that of MWCNT-py. The C(60)-py and a NH(3) replaced a Cl(-) and a bipyridine in Ru(II)(bpy)(2)Cl(2) to produce a five-coordinate complex of [Ru(bpy)(NH(3))(C(60)-py)Cl]PF(6), whereas MWCNT-py replaced a Cl(-) to generate a six-coordinate complex of [Ru(bpy)(2)(MWCNT-py)Cl]PF(6). The cyclic voltammetry study showed that the electron-withdrawing ability was different for C(60) and MWCNT. The C(60) showed a relatively stronger electron-withdrawing effect with respect to MWCNT. This journal is © The Royal Society of Chemistry 2011

  14. Entangled zinc-ditetrazolate frameworks involving in situ ligand synthesis and topological modulation by various secondary N-donor ligands

    International Nuclear Information System (INIS)

    Li Yunwu; Chen Weilin; Wang Yonghui; Li Yangguang; Wang Enbo

    2009-01-01

    The introduction of various secondary N-donor ligands into an in situ ditetrazolate-ligand synthesis system of terephthalonitrile, NaN 3 and ZnCl 2 led to the formation of three new entangled frameworks Zn(pdtz)(4,4'-bipy).3H 2 O (1), [Zn(pdtz)(bpp)] 2 .3H 2 O (2) and Zn(pdtz) 0.5 (N 3 )(2,2'-bipy) (3) (4,4'-bipy=4,4'-bipyridine; bpp=1,3-bis(4-pyridyl)propane; 2,2'-bipy=2,2'-bipyridine; H 2 pdtz=5,5'-1,4-phenylene-ditetrazole). The formation of pdtz 2- ligand involves the Sharpless [2+3] cycloaddition reaction between terephthalonitrile and NaN 3 in the presence of Zn 2+ ion as a Lewis-acid catalyst under hydrothermal conditions. Compound 1 exhibits a fivefold interpenetrating 3D framework based on the diamondoid topology. Compound 2 displays a twofold parallel interpenetrating framework based on the wavelike individual network. Compound 3 possesses a 2D puckered network. These new Zn-ditetrazolate frameworks are highly dependent on the modulation of different secondary N-donor ligands. Their luminescent properties were investigated. - Graphical abstract: Three new entangled frameworks were prepared by an in situ ditetrazolate-ligand synthesis system assisted with various auxiliary N-donor ligands. The entangled structures can be modulated by different secondary ligands.

  15. Screening of ligands for the Ullmann synthesis of electron-rich diaryl ethers

    Directory of Open Access Journals (Sweden)

    Nicola Otto

    2012-07-01

    Full Text Available In the search for new ligands for the Ullmann diaryl ether synthesis, permitting the coupling of electron-rich aryl bromides at relatively low temperatures, 56 structurally diverse multidentate ligands were screened in a model system that uses copper iodide in acetonitrile with potassium phosphate as the base. The ligands differed largely in their performance, but no privileged structural class could be identified.

  16. Direct synthesis of ligand-based radicals by the addition of bipyridine to chromium(II) compounds.

    Science.gov (United States)

    Zhou, Wen; Desnoyer, Addison N; Bailey, James A; Patrick, Brian O; Smith, Kevin M

    2013-03-04

    The reaction of 2,2'-bipyridine (bpy) with monomeric chromium(II) precursors was used to prepare the S = 1 complexes Cr(tBu-acac)2(bpy) (1) and (η(5)-Cp)(η(1)-Cp)Cr(bpy) (3), as well as the S = 2 compound Cr[N(SiMe3)2]2(bpy) (4). The crystallographically determined bond lengths indicate that the bpy ligands in 1 and 3 are best regarded as radical anions, while 4 shows no structural evidence for electron transfer from Cr(II) to the neutral bpy ligand.

  17. Synthesis of meta-substituted monodentate phosphinite ligands and ...

    Indian Academy of Sciences (India)

    SATEJ S DESHMUKH

    from organic synthesis, phosphinite ligands find appli- cations in a variety of ... thesis of meta-substituted phosphinite ligands is rarely reported.18 This is most ... 1.9 μm; mobile phase used, 90% methanol + 10% water +. 0.1% formic acid) ...

  18. Synthesis, Spectroscopy, Theoretical, and Electrochemical Studies of Zn(II, Cd(II, and Hg(II Azide and Thiocyanate Complexes of a New Symmetric Schiff-Base Ligand

    Directory of Open Access Journals (Sweden)

    Morteza Montazerozohori

    2013-01-01

    Full Text Available Synthesis of zinc(II/cadmium(II/mercury(II thiocyanate and azide complexes of a new bidentate Schiff-base ligand (L with general formula of MLX2 (M = Zn(II, Cd(II, and Hg(II in ethanol solution at room temperature is reported. The ligand and metal complexes were characterized by using ultraviolet-visible (UV-visible, Fourier transform infrared (FT-IR, 1H- and 13C-NMR spectroscopy and physical characterization, CHN analysis, and molar conductivity. 1H- and 13C-NMR spectra have been studied in DMSO-d6. The reasonable shifts of FT-IR and NMR spectral signals of the complexes with respect to the free ligand confirm well coordination of Schiff-base ligand and anions in an inner sphere coordination space. The conductivity measurements as well as spectral data indicated that the complexes are nonelectrolyte. Theoretical optimization on the structure of ligand and its complexes was performed at the Becke’s three-parameter hybrid functional (B3 with the nonlocal correlation of Lee-Yang-Parr (LYP level of theory with double-zeta valence (LANL2DZ basis set using GAUSSIAN 03 suite of program, and then some theoretical structural parameters such as bond lengths, bond angles, and torsion angles were obtained. Finally, electrochemical behavior of ligand and its complexes was investigated. Cyclic voltammograms of metal complexes showed considerable changes with respect to free ligand.

  19. Synthesis, crystal structure, fluorescence and electrochemical studies of a new tridentate Schiff base ligand and its nickel(II) and palladium(II) complexes

    Science.gov (United States)

    Shafaatian, Bita; Soleymanpour, Ahmad; Kholghi Oskouei, Nasim; Notash, Behrouz; Rezvani, Seyyed Ahmad

    2014-07-01

    A new unsymmetrical tridentate Schiff base ligand was derived from the 1:1 M condensation of ortho-vanillin with 2-mercaptoethylamine. Nickel and palladium complexes were obtained by the reaction of the tridentate Schiff base ligand with nickel(II) acetate tetrahydrate and palladium(II) acetate in 2:1 M ratio. In nickel and palladium complexes the ligand was coordinated to metals via the imine N and enolic O atoms. The S groups of Schiff bases were not coordinated to the metals and S-S coupling was occured. The complexes have been found to possess 1:2 Metal:Ligand stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The complexes exhibited octahedral coordination geometry. The emission spectra of the ligand and its complexes were studied in methanol. Electrochemical properties of the ligand and its metal complexes were investigated in the CH3CN solvent at the 100 mV s-1 scan rate. The ligand and metal complexes showed both reversible and quasi-reversible processes at this scan rate. The Schiff base and its complexes have been characterized by IR, 1H NMR, UV/Vis, elemental analyses and conductometry. The crystal structure of nickel complex has been determined by single crystal X-ray diffraction.

  20. Sonochemical synthesis and characterization of a novel hetro-binuclear metal organic nano polymer based on picolinic acid ligand

    Science.gov (United States)

    Hayati, Payam; Souri, Bagher; Rezvani, Ali Reza; Morsali, Ali; Gutierrez, Angel

    2017-12-01

    Nanoparticles of one new lead and K coordination polymer (CP), {[Pb6(pyc)6(N3)7K].½H2O}n (1) Hpyc = picolinic acid ligand, has been synthesized by use of a sonochemical process and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) spectroscopy and elemental analyses. The single crystal X-ray data of compound 1 imply that the Pb ion is seven coordinated. The thermal stability of compound 1 has been studied by thermogravimetric (TG) and differential scanning calorimetry (DSC). The role of temperature, reaction time and ultrasound irradiation power on the size and morphfology of the nano-structured compound obtained from 1, have been investigated. Results indicate that an increase of temperature and sonication power and a decrease in time reaction led to a decrease of particle size.

  1. Interaction of amatoxins with plant cells and RNA polymerases II: selection of amanitin-resistant cell lines and synthesis of amanitin-based affinity ligands

    International Nuclear Information System (INIS)

    Little, M.C.

    1984-01-01

    A series of experiments directed toward deriving basic information regarding plant RNA polymerase II is presented. The experiments described relate to the potential of isolating RNA polymerase II mutants in plants, using carrot cell cultures as models. Additionally, the synthesis of amanitin-based affinity ligands to immobilize isolated plant RNA polymerase II and associated transcriptional complexes is described. RNA polymerase II activities have been isolated from suspension cultures of carrot and compared to other plant RNA polymerases II with respect to subunit analysis and inhibition with α-amanitin. RNA polymerase II purified by polymin P absorption, DE52, phosphocellulose, and RNA-agarose chromatography is shown to copurify with proteins of 175 (and 200), 135, 70, 43, 28, 22, and 17 kdaltons apparent molecular weights. Conditions for accurate determination of amanitin inhibition of the enzyme are established using 3 H-amanitin and are presented for the first time for plant RNA polymerase II; RNA polymerase II from these cultures is shown to be inhibited by 50% at 3-5 nM by α-amanitin, a value 10-50 times lower than previously reported

  2. Synthesis and characterization β-ketoamine ligands

    Science.gov (United States)

    Zaid, Nurzati Amani Mohamed; Hassan, Nur Hasyareeda; Karim, Nurul Huda Abd

    2018-04-01

    β-ketoamine ligands are important members of heterodonor ligand because of their ease of preparation and modification of both steric and/or electronic effects. Complexes with β-ketoamine has received much less attention and there has been no study about this complex with β-ketoamine in ionic liquid reported. Two type of β-ketoamine ligands which are 4-amino-3-pentene-2-onato (A) and 3-amino-2-butenoic acid methyl ester (B) have been synthesized in this work. The resulting compound formed was characterized using standard spectroscopic and structural techniques which includes 1H and 13C, NMR spectroscopy and FTIR spectroscopy. The 1H and 13C NMR spectrum displayed all the expected signals with correct integration and multiplicity. And it is proved that there are some differences between two ligands as observed in NMR and FTIR spectrum.

  3. Synthesis, Crystal Structures, and Photoluminescent Properties of Two Supramolecular Architectures Based on Difunctional Ligands Containing Imidazolyl and Carboxyl Groups

    Directory of Open Access Journals (Sweden)

    Mei-An Zhu

    2017-07-01

    Full Text Available Two new supramolecular architectures, namely, [Cd(L12(H2O]n (1 and [Ni(L22(H2O]n (2, were synthesized by the reaction of corresponding metal salts of CdCl2·2.5H2O and NiCl2·6H2O with 2-(1H-imidazol-4-ylbenzoic acid (HL1 and 3-(1H-imidazol-4-ylbenzoic acid (HL2 respectively, and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analysis and powder X-ray diffraction (PXRD. Both HL1 and HL2 ligands are deprotonated to be L1- and L2- anions that coordinate with Cd(II and Ni(II atoms to form two-dimensional (2D layer structure. Topologically, complex 1 is a 2D network with (4, 4 sql topology, while 2 is a typical 63-hcb topology net. Complex 1 exhibits intense light blue emission in the solid state at room temperature.

  4. Synthesis, characterization, spectroscopic and theoretical studies of new zinc(II), copper(II) and nickel(II) complexes based on imine ligand containing 2-aminothiophenol moiety

    Science.gov (United States)

    Shafaatian, Bita; Mousavi, S. Sedighe; Afshari, Sadegh

    2016-11-01

    New dimer complexes of zinc(II), copper(II) and nickel(II) were synthesized using the Schiff base ligand which was formed by the condensation of 2-aminothiophenol and 2-hydroxy-5-methyl benzaldehyde. This tridentate Schiff base ligand was coordinated to the metal ions through the NSO donor atoms. In order to prevent the oxidation of the thiole group during the formation of Schiff base and its complexes, all of the reactions were carried out under an inert atmosphere of argon. The X-ray structure of the Schiff base ligand showed that in the crystalline form the SH groups were oxidized to produce a disulfide Schiff base as a new double Schiff base ligand. The molar conductivity values of the complexes in dichloromethane implied the presence of non-electrolyte species. The fluorescence properties of the Schiff base ligand and its complexes were also studied in dichloromethane. The products were characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis, and conductometry. The crystal structure of the double Schiff base was determined by single crystal X-ray diffraction. Furthermore, the density functional theory (DFT) calculations were performed at the B3LYP/6-31G(d,p) level of theory for the determination of the optimized structures of Schiff base complexes.

  5. Synthesis, characterization, single crystal X-ray determination, fluorescence and electrochemical studies of new dinuclear nickel(II) and oxovanadium(IV) complexes containing double Schiff base ligands

    Science.gov (United States)

    Shafaatian, Bita; Ozbakzaei, Zahra; Notash, Behrouz; Rezvani, S. Ahmad

    2015-04-01

    A series of new bimetallic complexes of nickel(II) and vanadium(IV) have been synthesized by the reaction of the new double bidentate Schiff base ligands with nickel acetate and vanadyl acetylacetonate in 1:1 M ratio. In nickel and also vanadyl complexes the ligands were coordinated to the metals via the imine N and enolic O atoms. The complexes have been found to possess 1:1 metals to ligands stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The nickel and vanadyl complexes exhibited distorted square planar and square pyramidal coordination geometries, respectively. The emission spectra of the ligands and their complexes were studied in methanol. Electrochemical properties of the ligands and their metal complexes were also investigated in DMSO solvent at 150 mV s-1 scan rate. The ligands and metal complexes showed both quasi-reversible and irreversible processes at this scan rate. The Schiff bases and their complexes have been characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis and conductometry. The crystal structure of the nickel complex has been determined by single crystal X-ray diffraction.

  6. Synthesis, structural characterization and antitumor activity of a Ca(II) coordination polymer based on 4-formyl-1,3-benzenedisulfonate-2-furoic acid hydrazide ligands

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Xi-Shi, E-mail: taixs@wfu.edu.cn [Weifang University, College of Chemistry and Chemical Engineering (China); Wang, Xin [Qinghai Normal University, Department of Chemistry (China)

    2017-03-15

    A new Ca(II) coordination polymer, ([CaL(H{sub 2}O){sub 4}] · (H{sub 2}O){sub 4}){sub n} (L = 4-formyl-1,3-benzenedisulfonate-2-furoic acid hydrazide) has been prepared by one-pot synthesis method. And it was characterized by elemental analysis, IR and thermal analysis. The result of X-ray single-crystal diffraction analysis shows that the Ca(II) complex molecules form one-dimensional chain structure by the bridging oxygen atoms. The anti-tumor activity of L ligand and the Ca(II) coordination polymer has also been studied.

  7. Synthesis of symmetrical and non-symmetrical bivalent neurotransmitter ligands

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Andersen, Jacob; Thygesen, Mikkel Boas

    2016-01-01

    A novel procedure for synthesis of bivalent neurotransmitter ligands was developed by reacting O-benzyl protected N-nosylated dopamine and serotonin with alkyl- or PEG-linked diols under Fukuyama-Mitsunobu conditions in the presence of DIAD/PPh3 generating three different bivalent neurotransmitte...

  8. Synthesis and evaluation of potential ligands for nuclear waste processing

    NARCIS (Netherlands)

    Iqbal, M.

    2012-01-01

    The research presented in this thesis deals with the synthesis and evaluation of new potential ligands for the complexation of actinide and lanthanide ions either for their extraction from bulk radioactive waste or their stripping from an extracted organic phase for final processing of the waste. In

  9. Amidinate Ligands in Zinc coordination sphere: Synthesis and ...

    Indian Academy of Sciences (India)

    Amidinate Ligands in Zinc coordination sphere: Synthesis and structural diversity. SRINIVAS ANGA, INDRANI BANERJEE and TARUN K PANDA. ∗. Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502 285,. Sangareddy, Telangana, India e-mail: tpanda@iith.ac.in. MS received 25 February 2016; ...

  10. Ligand-protected gold clusters: the structure, synthesis and applications

    International Nuclear Information System (INIS)

    Pichugina, D A; Kuz'menko, N E; Shestakov, A F

    2015-01-01

    Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Au n with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au 15 and Au 25 ) and on anchorage to a support surface (Au 25 /SiO 2 , Au 20 /C, Au 10 /FeO x ) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR) n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters M x Au n L m (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR) x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active

  11. Ligand-protected gold clusters: the structure, synthesis and applications

    Science.gov (United States)

    Pichugina, D. A.; Kuz'menko, N. E.; Shestakov, A. F.

    2015-11-01

    Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Aun with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au15 and Au25) and on anchorage to a support surface (Au25/SiO2, Au20/C, Au10/FeOx) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR)n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters MxAunLm (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR)x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active sites. The bibliography includes 345 references.

  12. Synthesis of heterocycles: Indolo (2,1-a) isoquinolines, renewables, and aptamer ligands for cellular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, Jonathan [Ames Laboratory (AMES), Ames, IA (United States)

    2013-01-01

    In this thesis, we explore both total syntheses and methodologies of several aromatic heterocyclic molecules. Extensions of the Kraus indole synthesis toward 2-substituted and 2,3-disubstituted indoles, as well as biologically attractive indolo[2,1-a]isoquinolines are described. Recent renewable efforts directed to commodity maleic acid and the first reported furan-based ionic liquids are described. Our total synthesis of mRNA aptamer ligand PDC-Gly, and its dye coupled forms, plus aminoglycoside dye coupled ligands used in molecular imaging, are described.

  13. Versatile phosphite ligands based on silsesquioxane backbones

    NARCIS (Netherlands)

    van der Vlugt, JI; Ackerstaff, J; Dijkstra, TW; Mills, AM; Kooijman, H; Spek, AL; Meetsma, A; Abbenhuis, HCL; Vogt, D

    Silsesquioxanes are employed as ligand backbones for the synthesis of novel phosphite compounds with 3,3'-5,5'-tetrakis(tert-butyl)-2,2'-di-oxa-1,1'-biphenyl substituents. Both mono- and bidentate phosphites are prepared in good yields. Two types of silsesquioxanes are employed as starting

  14. Synthesis, spectroscopic characterization, solid state d.c. electrical conductivity and biological studies of some lanthanide(III chloride complexes with a heterocyclic Schiff base ligand

    Directory of Open Access Journals (Sweden)

    K. Mohanan

    2016-07-01

    Full Text Available Condensation of 2-hydroxy-1-naphthaldehyde with 2-amino-3-carboxyethyl-4,5-dimethylthiophene in 1:1 molar ratio, yielded a potentially tridentate Schiff base viz. 2-[N-(2′-hydroxy-1-naphthylideneamino]-3-carboxyethyl-4,5-dimethylthiophene (HNAT. This ligand formed complexes with lanthanum(III, cerium(III, praseodymium(III, neodymium(III, samarium(III, europium(III and gadolinium(III chloride under well defined conditions. These complexes were characterized through elemental analysis, molar conductance, magnetic moment measurements, IR, UV–Vis, FAB mass and 1H NMR spectral studies. Analytical data showed that all the metal complexes exhibited 1:1 metal–ligand ratio. Molar conductance values adequately confirmed the non-electrolytic nature of the metal complexes. The proton NMR spectral observations supplement the IR spectral assignments. The spectral data revealed that the ligand acted as neutral tridentate, coordinating to the metal ion through azomethine nitrogen, ester carbonyl and naphtholate oxygen without deprotonation. The ligand and its lanthanum(III chloride complex were subjected to XRD studies. The lanthanum(III chloride complex has undergone a facile transesterification reaction. The solid state d.c. electrical conductivity of some selected complexes were measured as a function of temperature, indicating the semiconducting nature of the metal complexes. The antimicrobial activities were examined by disk diffusion method against some pathogenic bacterial and fungal species.

  15. Surfactant-ligand co-assisted solvothermal technique for the synthesis of different-shaped CdS nanorod-based materials

    International Nuclear Information System (INIS)

    Bao Chunyan; Jin Ming; Lu Ran; Xue Pengchong; Zhang Qinglin; Wang Dejun; Zhao Yingying

    2003-01-01

    1-D nanorods, twinrods, golfclubs, and tripods of CdS were prepared via a surfactant-ligand co-assisted solvothermal method at 160 deg. C. The surfactant of S-dodecylisothiounium bromide (C 12 ) used in the process was favorable for synthesis of different-shaped CdS nanorod with high aspect ratio. X-ray diffraction (XRD) and TEM images showed that the 1-D nanorods had wurtzite phase and others had a zinc blende core and wurtzite arms. The morphologies of CdS prepared under different conditions suggested the 'template-assistance' of the surfactant and that the nonaqueous organic media are important for the self-assembling of inorganic components at atomic level

  16. Synthesis, characterization, crystal structure and HSA binding of two new N,O,O-donor Schiff-base ligands derived from dihydroxybenzaldehyde and tert-butylamine

    Science.gov (United States)

    Khosravi, Iman; Hosseini, Farnaz; Khorshidifard, Mahsa; Sahihi, Mehdi; Rudbari, Hadi Amiri

    2016-09-01

    Two new o-hydroxy Schiff-bases compounds, L1 and L2, were derived from the 1:1 M condensation of 2,3-dihydroxybenzaldehyde and 2,4-dihydroxybenzaldehyde with tert-butylamine and were characterized by elemental analysis, FT-IR, 1H and 13C NMR spectroscopies. The crystal structure of L2 was also determined by single crystal X-ray analysis. The crystal structure of L2 showed that the compound exists as a zwitterionic form in the solid state, with the H atom of the phenol group being transferred to the imine N atom. It adopts an E configuration about the central Cdbnd N double bond. Furthermore, binding of these Schiff base ligands to Human Serum Albumin (HSA) was investigated by fluorescence quenching, absorption spectroscopy, molecular docking and molecular dynamics (MD) simulation methods. The fluorescence emission of HSA was quenched by ligands. Also, suitable models were used to analyze the UV-vis absorption spectroscopy data for titration of HSA solution by various amounts of Schiff bases. The spectroscopic studies revealed that these Schiff bases formed 1:1 complex with HSA. Energy transfer mechanism of quenching was discussed and the values of 3.35 and 1.57 nm as the mean distances between the bound ligands and the HSA were calculated for L1 and L2, respectively. Molecular docking results indicated that the main active binding site for these Schiff bases ligands is in subdomain IB. Moreover, MD simulation results suggested that this Schiff base complex can interact with HSA, with a slight modification of its tertiary structure.

  17. A two-dimensional zinc(II) coordination polymer based on mixed dimethyl succinate and bipyridine ligands: synthesis, structure, thermostability and luminescence properties.

    Science.gov (United States)

    Liu, Yang; Feng, Yong Lan; Fu, Wei Wei

    2016-04-01

    From the viewpoint of crystal engineering, the construction of crystalline polymeric materials requires a rational choice of organic bridging ligands for the self-assembly process. Multicarboxylate ligands are of particular interest due to their strong coordination activity towards metal ions, as well as their various coordination modes and versatile conformations. The structural chemistry of dicarboxylate-based coordination polymers of transition metals has been developed through the grafting of N-containing organic linkers into carboxylate-bridged transition metal networks. A new luminescent two-dimensional zinc(II) coordination polymer containing bridging 2,2-dimethylsuccinate and 4,4'-bipyridine ligands, namely poly[[aqua(μ2-4,4'-bipyridine-κ(2)N:N')bis(μ3-2,2-dimethylbutanedioato)-κ(4)O(1),O(1'):O(4):O(4');κ(5)O(1):O(1),O(4):O(4),O(4')-dizinc(II)] dihydrate], {[Zn2(C6H8O4)2(C10H8N2)(H2O)]·2H2O}n, has been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction and elemental, IR and thermogravimetric analyses. In the structure, the 2,2-dimethylsuccinate ligands link linear tetranuclear Zn(II) subunits into one-dimensional chains along the c axis. 4,4'-Bipyridine acts as a tethering ligand expanding these one-dimensional chains into a two-dimensional layered structure. Hydrogen-bonding interactions between the water molecules (both coordinated and free) and carboxylate O atoms strengthen the packing of the layers. Furthermore, the luminescence properties of the complex were investigated. The compound exhibits a blue photoluminescence in the solid state at room temperature and may be a good candidate for potential hybrid inorganic-organic photoactive materials.

  18. Synthesis, characterization, antimicrobial and cytotoxic evaluation of a bidentate schiff base ligand: (5-chloro-2-((4-nitrobenzylidene)amino)phenyl)(phenyl)methanone and its transition metal complexes

    International Nuclear Information System (INIS)

    Anis, I.; Noreen, Z.

    2013-01-01

    A Schiff base ligand (SBL): ((5-chloro-2-)(4-nitrobenzylidene) amino) phenyl)(phenyl) methanone,, was synthesized from the reaction of 4-nitrobenzaldehyde and 2-amino-5-chlorobeznzophenone followed by complexation with transition metal (II) ions (1-5). Their structures were elucidated on the basis of infrared, 1H-NMR, FAB-MS spectral, elemental analyses and molar conductance data. The octahedral geometry for complexes (1-4) and square planar geometry for complex (5) was proposed on the basis of electronic and magnetic moment data. The non-electrolytic nature of the complexes (1-5) was suggested from the conductivity data. The complexes (1-5) showed higher in vitro antimicrobial activity and in vivo lethality to shrimp larvae than the parent Schiff base ligand. (author)

  19. Synthesis and Crystal Structure Determination of a Nickel(II Complex of an Acyclic Pentadentate (N5 Mono Schiff Base Ligand

    Directory of Open Access Journals (Sweden)

    R. V. Parish

    2001-10-01

    Full Text Available The asymmetrical tripodal tetraamine ligand N[(CH23NH2]2[(CH22NH2] (ppe was condensed with 2-acetylpyridine in the presence of nickel(II ion. In ethanolwater solution the reaction stops after the first stage of condensation, and a new nickel(II complex of an acyclic pentadentate (N5 mono Schiff base ligand was obtained. X-ray structure analysis of the resulting complex, [Ni(ppe-py(H2O](ClO42, indicates that condensation with 2-acetylpyridine is at the propylene chain of ppe. The geometry around the nickel ion is distorted octahedral in which the sixth co-ordination group is a solvent molecule.

  20. Complexation of nitrogen and sulphur donor Schiff's base ligand to Cr(III) and Ni(II) metal ions: Synthesis, spectroscopic and antipathogenic studies

    Science.gov (United States)

    Sharma, Amit Kumar; Chandra, Sulekh

    2011-01-01

    2,6-Diacetyl pyridine based ligand was synthesized by the reaction of 2,6-diacetyl pyridine with thiocarbohydrazide in presence of acetic acid. The coordination compounds with Cr(III) and Ni(II) metal ions having [Cr(L)X]X 2 and [Ni(L)X]X compositions (where L = ligand and X = NO 3-, Cl - and CH 3COO -) were synthesized and characterized by physicochemical and spectral studies. The studies like elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV-Vis, NMR, mass and EPR reveal that the complexes are octahedral. The compounds were examined against the pathogenic fungal and bacterial strains like Alternaria brassicae, Aspergillus niger, Fusarium oxysporum, Xanthomonas compestris and Pseudomonas aeruginosa. A. niger causes the diseases Apergillosis and Otomycosis in humans.

  1. Synthesis, structure and stability of a chiral imine-based Schiff-based ligand derived from L-glutamic acid and its [Cu4] complex

    Science.gov (United States)

    Muche, Simon; Levacheva, Irina; Samsonova, Olga; Biernasiuk, Anna; Malm, Anna; Lonsdale, Richard; Popiołek, Łukasz; Bakowsky, Udo; Hołyńska, Małgorzata

    2017-01-01

    Studies of the stability of a ligand derived from L-glutamic acid and ortho-vanillin and its new [Cu4] complex are presented. The [Cu4] complex contains a heterocubane [CuII4O4] core and pendant carboxylic groups increasing its solubility in water, also under basic conditions. The stability of the complex in different solvents is confirmed with ESI-MS studies and such experiments as successful recrystallization. The complex is stable also under physiological conditions whereas the ligand is partly decomposed to L-glutamic acid and ortho-vanillin.

  2. Synthesis and binding studies of Alzheimer ligands on solid support.

    Science.gov (United States)

    Rzepecki, Petra; Geib, Nina; Peifer, Manuel; Biesemeier, Frank; Schrader, Thomas

    2007-05-11

    Aminopyrazole derivatives constitute the first class of nonpeptidic rationally designed beta-sheet ligands. Here we describe a double solid-phase protocol for both synthesis and affinity testing. The presented solid-phase synthesis of four types of hybrid compounds relies on the Fmoc strategy and circumvents subsequent HPLC purification by precipitating the final product from organic solution in pure form. Hexa- and octapeptide pendants with internal di- and tetrapeptide bridges are now amenable in high yields to combinatorial synthesis of compound libraries for high-throughput screening purposes. Solid-phase peptide synthesis (SPPS) on an acid-resistant PAM allows us, after PMB deprotection, to subject the free aminopyrazole binding sites in an immobilized state to on-bead assays with fluorescence-labeled peptides. From the fluorescence emission intensity decrease, individual binding constants can be calculated via reference curves by simple application of the law of mass action. Gratifyingly, host/guest complexation can be monitored quantitatively even for those ligands, which are almost insoluble in water.

  3. Synthesis and evaluation of hydroxamamide-based tetradentate ligands as a new class of thiol-free chelating molecules for 99mTc radiopharmaceuticals.

    Science.gov (United States)

    Xu, L C; Nakayama, M; Harada, K; Nakayama, H; Tomiguchi, S; Kojima, A; Takahashi, M; Arano, Y

    1998-04-01

    Both N,N'-ethylene bis(benzohydroxamamide) [(C2(BHam)2)] and N,N'-propylene bis(benzohydroxamamide) [(C3(BHam)2)] were designed as new thiol-free chelating molecules for 99mTc radiopharmaceuticals. Synthetic procedures using oxadiazoline intermediates were developed for C2(BHam)2 and C3(BHam)2. Both C2(BHam)2 and C3(BHam)2 formed 99mTc complexes with high yields over a wide pH range (pH 3-12) at room temperature. Complexation yields of over 95% were achieved at ligand concentrations as low as 2.5 x 10(-6) M. Reversed-phase HPLC analyses indicated that both C2(BHam)2 and C3(BHam)2 formed 99mTc complexes as single species with stabilities much higher than those of 99mTc-BHam. Selective complex formation of 99mTc with the two ligands was observed in the presence of human IgG. No decomposition with low protein binding were demonstrated when the two 99mTc complexes were incubated in murine plasma. Although further structural studies are required, these findings implied that the Ham-based tetradentate ligands would serve as new chelating molecules for 99mTc radiopharmaceuticals.

  4. Synthesis and evaluation of hydroxamamide-based tetradentate ligands as a new class of thiol-free chelating molecules for 99mTc radiopharmaceuticals

    International Nuclear Information System (INIS)

    Xu Lecun; Nakayama, Morio; Harada, Kumiko; Nakayama, Hitoshi; Tomiguchi, Seiji; Kojima, Akihiro; Takahashi, Mutsumasa; Arano, Yasushi

    1998-01-01

    Both N,N'-ethylene bis(benzohydroxamamide) [(C 2 (BHam) 2 )] and N,N'-propylene bis(benzohydroxamamide) [(C 3 (BHam) 2 )] were designed as new thiol-free chelating molecules for 99m Tc radiopharmaceuticals. Synthetic procedures using oxadiazoline intermediates were developed for C 2 (BHam) 2 and C 3 (BHam) 2 . Both C 2 (BHam) 2 and C 3 (BHam) 2 formed 99m Tc complexes with high yields over a wide pH range (pH 3-12) at room temperature. Complexation yields of over 95% were achieved at ligand concentrations as low as 2.5 x 10 -6 M. Reversed-phase HPLC analyses indicated that both C 2 (BHam) 2 and C 3 (BHam) 2 formed 99m Tc complexes as single species with stabilities much higher than those of 99m Tc-BHam. Selective complex formation of 99m Tc with the two ligands was observed in the presence of human IgG. No decomposition with low protein binding were demonstrated when the two 99m Tc complexes were incubated in murine plasma. Although further structural studies are required, these findings implied that the Ham-based tetradentate ligands would serve as new chelating molecules for 99m Tc radiopharmaceuticals

  5. Interaction between metals and nucleic acids. Part 3. Synthesis and structural studies of copper(II) complexes with Schiff base ligands derived from barbituric acid

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, I.; Gaudemer, A.; Chiaroni, A.; Riche, C.

    1986-02-17

    Schiff bases have been prepared from 5-formylbarbituric acid and 5-formyl-1,3-dimethyl-barbituric acid and various di- or tri-amines. The structure of the corresponding copper(II) complexes have been established by elemental analysis and spectroscopic methods. The molecular structure of one of the complexes, Cu(DiMeBardpt), was determined by X-ray diffraction. Electrochemical study shows that these complexes are reduced at slightly more negative potentials than the corresponding complexes obtained from uracil, which suggests that these new ligands are better electron-donors.

  6. Cr(III), Fe(III) and Co(III) complexes of tetradentate (ONNO) Schiff base ligands: Synthesis, characterization, properties and biological activity

    Science.gov (United States)

    Keskioğlu, Eren; Gündüzalp, Ayla Balaban; Çete, Servet; Hamurcu, Fatma; Erk, Birgül

    2008-08-01

    A series of metal complexes were synthesized from equimolar amounts of Schiff bases: 1,4-bis[3-(2-hydroxy-1-naphthaldimine)propyl]piperazine (bappnaf) and 1,8-bis[3-(2-hydroxy-1-naphthaldimine)- p-menthane (damnaf) with metal chlorides. All of synthesized compounds were characterized by elemental analyses, spectral (UV-vis, IR, 1H- 13C NMR, LC-MS) and thermal (TGA-DTA) methods, magnetic and conductance measurements. Schiff base complexes supposed in tetragonal geometry have the general formula [M(bappnaf or damnaf)]Cl· nH 2O, where M = Cr(III), Co(III) and n = 2, 3. But also Fe(III) complexes have octahedral geometry by the coordination of two water molecules and the formula is [Fe(bappnaf or damnaf)(H 2O) 2]Cl. The changes in the selected vibration bands in FT-IR indicate that Schiff bases behave as (ONNO) tetradentate ligands and coordinate to metal ions from two phenolic oxygen atoms and two azomethine nitrogen atoms. Conductance measurements suggest 1:1 electrolytic nature of the metal complexes. The synthesized compounds except bappnaf ligand have the antimicrobial activity against the bacteria: Escherichia coli (ATCC 11230), Yersinia enterocolitica (ATCC 1501), Bacillus magaterium (RSKK 5117), Bacillus subtilis (RSKK 244), Bacillus cereus (RSKK 863) and the fungi: Candida albicans (ATCC 10239). These results have been considerably interest in piperazine derivatives due to their significant applications in antimicrobial studies.

  7. Synthesis of Copper Nanoparticles Coated with Nitrogen Ligands

    Directory of Open Access Journals (Sweden)

    Rubén Sierra-Ávila

    2014-01-01

    Full Text Available The synthesis of copper nanoparticles was studied by wet chemical methods using copper sulfate pentahydrate (CuSO4·5H2O and nitrogen ligands allylamine (AAm and polyallylamine (PAAm as stabilizers. The results suggest that the use of these ligands leads to the exclusive formation of metallic copper nanoparticles (Cu-NPs. The use of partially crosslinked polyallylamine (PAAmc leads to nanoparticles (NPs with low yields and high coating content, while linear PAAm leads to NPs with high yields and low coating content. The chemical composition of the particles was determined by XRD and average particle diameters were determined by the Debye-Scherrer equation. TGA analysis provided evidence of the content and thermal stability of the coating on the nanoparticles and PAAm. The morphology, particle size distribution, and presence of PAAm coating were observed through TEM. The use of AAm in the synthesis of NPs could be a good alternative to reduce costs. By using TGA, TEM, and DSC techniques, it was determined that synthesized NPs with AAm presented a coating with similar characteristics to NPs with PAAm, suggesting that AAm underwent polymerization during the synthesis.

  8. Synthesis of Two Potentially Heptadentate (N4O3 Schiff-base Ligands Derived from Condensation of Tris(3-aminopropyl-amine and Salicylaldehyde or 4-Hydroxysalicylaldehyde. Nickel(II and Copper(II Complexes of the Former Ligand

    Directory of Open Access Journals (Sweden)

    R. V. Parish

    2002-02-01

    Full Text Available Two potentially heptadentate (N4O3 tripodal Schiff-base ligands: tris(3-(salicylideneiminopropylamine (H3L1 and tris(3-(4’-hydroxysalicylideneimino-propylamine (H3L2 have been prepared and characterized by various spectroscopic methods (IR, FAB-MS, NMR. They are derived from the condensation reactions of tris(3-aminopropylamine (tpt, with 3 equivalents of either salicylaldehyde or the ringsubstituted salicylaldehyde, 4-hydroxysalicylaldehyde. The nickel(II and copper(II complexes of H3L1 were obtained from the its reactions Ni(II and Cu(II salts in absolute methanol. These complexes were studied by IR and FAB-Mass spectrometry.

  9. Platinum(II Complexes with Tetradentate Schiff Bases as Ligands: Synthesis, Characterization and Detection of DNA Interaction by Differential Pulse Voltammetry

    Directory of Open Access Journals (Sweden)

    Lijun Li

    2012-01-01

    Full Text Available Five sterically hindered platinum(II complexes with tetradentate schiff bases as ligands, [Pt(L] (L= N,N′-bisalicylidene-1,2-ethylenediamine (L1, N,N′-bisalicylidene-1,2-cyclohexanediamine (L2, N,N′-bis(5-hydroxyl-salicylidene-1,2-cyclohexanediamine (L3, N,N′-bisalicylidene-1,2-diphenyl-ethylenediamine (L4 and N,N′-bis(3-tert-butyl-5-methyl-salicylidene-1,2-diphenylethylenediamine (L5 have been synthesized and characterized by IR spectroscopy and elemental analysis. The sterical hindrance of antitumor drug candidates potentially makes them less susceptible to deactivation by sulphur containing proteins and helping to overcome resistance mechanisms. The interaction of these metal complexes with fish sperm single-stranded DNA (ssDNA was studied electrochemically based on the oxidation signals of guanine and adenine. Differential pulse voltammetry was employed to monitor the DNA interaction in solution by using renewable pencil graphite electrode. The results indicate that ligands with different groups can strongly affect the interaction between [Pt(L] complexes and ssDNA due to sterical hindrances and complex [Pt(L1] has the best interaction with DNA among the five complexes.

  10. Synthesis of an S T = 7 [Mn 3 ] Mixed-Valence Complex Based on 1,3-Propanediol Ligand Derivatives and Its One-Dimensional Assemblies

    KAUST Repository

    Huang, Jian

    2013-10-07

    Controlled organization of high-spin complexes and single-molecule magnets is a great challenge in molecular magnetism in order to study the effect of the intercomplex magnetic interactions on the intrinsic properties of a given magnetic object. In this work, a new ST = 7 trinuclear mixed-valence Mn complex, [MnIIIMnII 2(LA) 2(Br)4(CH3OH)6] ·Br· (CH3OH)1.5·(H2O)0.5 (1), is reported using a pyridinium-functionalized 1,3-propanediol ligand (H 2LABr = 1-(3-bromo-2,2-bis(hydroxymethyl)propyl)pyridinium bromide). Using azido anions as bridging ligands and different pyridinium-functionalized 1,3-propanediol ligands (H2LBBr = 1-(3-bromo-2,2-bis(hydroxymethyl)propyl)-4-picolinium bromide; H 2LCBr = 1-(3-bromo-2,2-bis(hydroxymethyl)propyl)-3,5- lutidinium bromide), the linear [MnIIIMnII 2L2X4]+ building block has been assembled into one-dimensional coordination networks: [MnIIIMn II 2(LA)2(Br)4(CH 3OH)4(N3)]·((C2H 5)2O)1.25 (2∞), [MnIIIMn II 2(LB)2(Br)4(C 2H5OH)(CH3OH)(H2O) 2(N3)]·(H2O)0.25 (3∞), and [MnIIIMnII 2(LC) 2(Cl)3.8(Br)0.2(C2H 5OH)3(CH3OH)(N3)] (4∞). The syntheses, characterization, crystal structures, and magnetic properties of these new [Mn3]-based materials are reported. © 2013 American Chemical Society.

  11. Synthesis of a new ONNO donor tetradentate schiff base ligand and binuclear Cu(II) complex: Quantum chemical, spectroscopic and photoluminescence investigations

    International Nuclear Information System (INIS)

    Sarıoğlu, Ahmet Oral; Ceylan, Ümit; Yalçın, Şerife Pınar; Sönmez, Mehmet; Ceyhan, Gökhan; Aygün, Muhittin

    2016-01-01

    The Schiff base compound 3,3′-(1,4-phenylimino)-bis-[1,3-bis-(4-methoxyphenyl) propan-1-one)], formulated as C 40 H 36 N 2 O 6, and its Cu(II) complex were synthesized and characterized by analytical analysis, various spectral techniques such as FT-IR, NMR, UV–vis, magnetic measurements and molar conductivity. Thermo gravimetric analysis (TGA and DTA) carried out to obtain information about its thermal stability. The molecular structure and spectroscopic properties of the ligand were obtained with FT-IR, 1 H and 13 C NMR, UV–vis investigations as experimentally and compared with theoretical results obtained from DFT/B3LYP/6-311++G(d,p) basis set. In addition to molecular calculations of the title compound, molecular electrostatic potential (MEP), dipole moments, atomic charges, HOMO–LUMO, NLO and NBO analysis were computed. The calculated results show that the optimized geometry can well reproduce the crystal structure parameters, and the theoretical vibrational frequencies, 1 H and 13 C NMR chemical shifts show good agreement with experimental values. Photoluminescence properties of the ligand and its Cu(II) complex were examined. - Highlights: • FT-IR and 1 H– 13 C NMR spectra were recorded and compared with the theoretical results. • The photoluminescence properties were studied. • NLO, NBO analysis of the molecule were studied. • HOMO and LUMO energies, MEP distribution of the molecule were calculated.

  12. Synthesis, Spectroscopy, Thermal Analysis, Magnetic Properties and Biological Activity Studies of Cu(II and Co(II Complexes with Schiff Base Dye Ligands

    Directory of Open Access Journals (Sweden)

    Saeid Amani

    2012-05-01

    Full Text Available Three azo group-containing Schiff base ligands, namely 1-{3-[(3-hydroxy-propyliminomethyl]-4-hydroxyphenylazo}-4-nitrobenzene (2a, 1-{3-[(3-hydroxypropyl-iminomethyl]-4-hydroxyphenylazo}-2-chloro-4-nitrobenzene (2b and 1-{3-[(3-hydroxy-propyliminomethyl]-4-hydroxyphenylazo}-4-chloro-3-nitrobenzene (2c were prepared. The ligands were characterized by elemental analysis, FTIR spectroscopy, UV-Vis spectroscopy, 13C- and 1H-NMR spectroscopy and thermogravimetric analysis. Next the corresponding copper(II and cobalt(II metal complexes were synthesized and characterized by the physicochemical and spectroscopic methods of elemental analysis, FTIR spectroscopy, UV-Vis spectroscopy, magnetic moment measurements, and thermogravimetric analysis (TGA and (DSC. The room temperature effective magnetic moments of complexes are 1.45, 1.56, 1.62, 2.16, 2.26 and 2.80 B.M. for complexes 3a, 3b, 3c, 4a 4b, and 4c, respectively, indicating that the complexes are paramagnetic with considerable electronic communication between the two metal centers.

  13. Synthesis, density functional theory calculations and luminescence of lanthanide complexes with 2,6-bis[(3-methoxybenzylidene)hydrazinocarbonyl] pyridine Schiff base ligand.

    Science.gov (United States)

    Taha, Ziyad A; Ababneh, Taher S; Hijazi, Ahmed K; Abu-Salem, Qutaiba; Ajlouni, Abdulaziz M; Ebwany, Shroq

    2018-02-01

    A pyridine-diacylhydrazone Schiff base ligand, L = 2,6-bis[(3-methoxy benzylidene)hydrazinocarbonyl]pyridine was prepared and characterized by single crystal X-ray diffraction. Lanthanide complexes, Ln-L, {[LnL(NO 3 ) 2 ]NO 3 .xH 2 O (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy and Er)} were prepared and characterized by elemental analysis, molar conductance, thermal analysis (TGA/DTGA), mass spectrometry (MS), Fourier transform infra-red (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy. Ln-L complexes are isostructural with four binding sites provided by two nitro groups along with four coordination sites for L. Density functional theory (DFT) calculations on L and its cationic [LnL(NO 3 ) 2 ] + complexes were carried out at the B3LYP/6-31G(d) level of theory. The FT-IR vibrational wavenumbers were computed and compared with the experimentally values. The luminescence investigations of L and Ln-L indicated that Tb-L and Eu-L complexes showed the characteristic luminescence of Tb(III) and Eu(III) ions. Ln-L complexes show higher antioxidant activity than the parent L ligand. Copyright © 2017 John Wiley & Sons, Ltd.

  14. New pyrimidine based ligand capped gold and platinum nano particles: Synthesis, characterization, antimicrobial, antioxidant, DNA interaction and in vitro anticancer activities.

    Science.gov (United States)

    Sankarganesh, M; Adwin Jose, P; Dhaveethu Raja, J; Kesavan, M P; Vadivel, M; Rajesh, J; Jeyamurugan, R; Senthil Kumar, R; Karthikeyan, S

    2017-11-01

    In this research work, we have synthesized new pyrimidine based Schiff base ligand, 2-((4,6-dimethoxypyrimidine-2-yl)methyleneenamino)-6-methoxyphenol (DPMM) capped gold (Au) and platinum (Pt) nanoparticles (NPs) by modified Brust-Schiffrin method. The characteristics of DPMM-Au NPs and DPMM-Pt NPs have been examined by UV-Visible, FTIR, SEM, TEM and powder XRD analysis. SEM analysis result shows that surface morphology of the DPMM-Au NPs and DPMM-Pt NPs are in granular and spherical shape, correspondingly. The size of the DPMM-Au NPs and DPMM-Pt NPs are approximately 38.14±4.5 and 58.64±3.0nm respectively, which confirmed by TEM analysis. The DPMM-Au NPs and DPMM-Pt NPs have potent antimicrobial against Escherichia coli, Klebsiella pneumonia, Pseudomonas fluorescens, Shigella sonnei, Staphylococcus aureus and Aspergillus niger, Candida albicans, Candida tropicalis, Mucor indicus, Rhizopus strains. The DPMM-Au NPs and DPMM-Pt NPs have good antioxidant activities than the free ligand (DPMM). The spectroscopic and viscometric measurement confirms the hydrophobic DNA binding abilities of the newly prepared DPMM capped metal NPs. Moreover, the in vitro anticancer activity of DPMM, DPMM-Au NPs and DPMM-Pt NPs against cancer (MCF-7, HeLa & HEp2) and normal (NHDF) cell lines have performed using MTT assay. These results reveals that, DPMM-Au NPs and DPMM-Pt NPs having significant cytotoxic activity against the cancer cell lines and least toxic effect on normal cell line as compared to standard drug cisplatin. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Oxahelicene NHC ligands in the asymmetric synthesis of nonracemic helicenes

    Czech Academy of Sciences Publication Activity Database

    Gay Sánchez, Isabel; Šámal, Michal; Nejedlý, Jindřich; Karras, Manfred; Klívar, Jiří; Rybáček, Jiří; Buděšínský, Miloš; Bednárová, Lucie; Seidlerová, Beata; Stará, Irena G.; Starý, Ivo

    2017-01-01

    Roč. 53, č. 31 (2017), s. 4370-4373 ISSN 1359-7345 R&D Projects: GA ČR(CZ) GA14-29667S Institutional support: RVO:61388963 Keywords : helicene-based NHC ligands * enantioselective [2+2+2] cycloisomerisation Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 6.319, year: 2016

  16. synthesis and spectra characterization of mixed- ligand complexes

    African Journals Online (AJOL)

    BARTH EKWUEME

    The Schiff base ligand, N-Propylidene-2-methylpyridylamine was obtained from the condensation of 2- aminomethypyridine and propanal.Also, its complexes with Cu(II),Ni(II),Zn(II),Co(II) .... determined with Thomas–Hoover capillary melting apparatus. RESULTS AND DISCUSSION. N-propylidene-2-methylpyridylamine ...

  17. Designer Ligands. Part 13. Synthesis and Catalytic Activity of ...

    African Journals Online (AJOL)

    Copper(I), copper(II), cobalt(II) and zinc(II) complexes of a macrocyclic, multidentate Schiff-base ligand have been prepared and, with the exception of the zinc(II) complex, have been shown to exhibit biomimetic catecholase activity. Keywords: Copper(II);Cobalt(II); Zinc(II); Biomimetic complexes; Catecholase activity

  18. Room-temperature sol–gel synthesis of organic ligand-capped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zobel, Mirijam, E-mail: mirijam.zobel@fau.de; Chatterjee, Haimantee [Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Physics, Lehrstuhl für Kristallographie und Strukturphysik (Germany); Matveeva, Galina; Kolb, Ute [Johannes Gutenberg-Universität, Institut für Physikalische Chemie (Germany); Neder, Reinhard B., E-mail: reinhard.neder@fau.de [Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Physics, Lehrstuhl für Kristallographie und Strukturphysik (Germany)

    2015-05-15

    Powders of zinc oxide nanoparticles with individual particle sizes below 10 nm in diameter are readily produced in base-induced sol–gel processes from ethanolic solutions of zinc acetate dihydrate. These particles are covered with acetate molecules and without further stabilization, they grow when stored as a powder. Here, we present three organic ligands, which reproducibly stabilize individual particle sizes <5 nm within the agglomerated powders for extended periods of time, up to months. Citric acid and 1,5-diphenyl-1,3,5-pentanetrione result in average diameters of 3 nm, whereas dimethyl-L-tartrate stabilizes 2.1 nm. X-ray diffraction and pair distribution function analysis were used to investigate the structural properties of the particles. TEM data confirm the individual particle size and crystallinity and show that the particles are agglomerated without structural coherence. Besides the introduction of these novel ligands for ZnO nanoparticles, we investigated, in particular, the influence of each synthesis step onto the final nanoparticle size in the powder. Previous studies often reported the employed synthesis parameters, but did not motivate the reasoning for their choice based on detailed experimental observations. Herein, we regard separately the steps of (i) the synthesis of the colloids, (ii) their precipitation, and (iii) the drying of the resulting gel to understand the role of the ligands therein. ZnO particles only covered with acetate grow to 5 nm during the drying process, whereas particles with any of the additional ligands retain their colloidal size of 2–3 nm. This clearly shows the efficient binding and effect of the presented ligands.

  19. Synthesis and biological evaluation of bivalent cannabinoid receptor ligands based on hCB₂R selective benzimidazoles reveal unexpected intrinsic properties.

    Science.gov (United States)

    Nimczick, Martin; Pemp, Daniela; Darras, Fouad H; Chen, Xinyu; Heilmann, Jörg; Decker, Michael

    2014-08-01

    The design of bivalent ligands targeting G protein-coupled receptors (GPCRs) often leads to the development of new, highly selective and potent compounds. To date, no bivalent ligands for the human cannabinoid receptor type 2 (hCB₂R) of the endocannabinoid system (ECS) are described. Therefore, two sets of homobivalent ligands containing as parent structure the hCB2R selective agonist 13a and coupled at different attachment positions were synthesized. Changes of the parent structure at these positions have a crucial effect on the potency and efficacy of the ligands. However, we discovered that bivalency has an influence on the effect at both cannabinoid receptors. Moreover, we found out that the spacer length and the attachment position altered the efficacy of the bivalent ligands at the receptors by turning agonists into antagonists and inverse agonists. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Synthesis and characterization ligand tris-(2-thiosalicylamidoethyl)amine and its iron complexes and indium

    International Nuclear Information System (INIS)

    Guerra-Garcia, Pedro Pablo; Valle Bourrouet, Grettel

    2006-01-01

    The synthesis of coordination chemistry ligand tris-(2-tiosalicilamidoetil)amine is presented within the framework of study of tripod ligands, the corresponding complexes of iron and indium. Also, its spectroscopic characterization by proton magnetic resonance is showed; so the influence of ligand on a redox active metal and an inactive is compared. Electrochemical methods have been used. The presence of sulfur atoms modifies the redox and magnetic behavior of iron ion (III), as has been found in other similar ligands [es

  1. Synthesis, photoluminescence and forensic applications of blue light emitting azomethine-zinc (II complexes of bis(salicylidenecyclohexyl-1,2-diamino based organic ligands

    Directory of Open Access Journals (Sweden)

    M. Srinivas

    2017-06-01

    Full Text Available Various azomethine-zinc(II complexes (3a-c of bis(salicylidenecyclohexyl-1,2-diamino organic ligands were synthesized by one pot reaction of salicylaldehydes/2-hydroxy-1-naphthaldehyde (2 eq, cyclohexyl-1,2-diamine (1 eq and zinc acetate (1 eq in methanol solvent at reflux temperature. The synthesized complexes were characterized by FTIR, 1H NMR, and SEM. Their photophysical properties such as Photoluminescence (PL and Diffused Reflectance Spectra (DRS were studied. PL studies revealed that the emission peaks of the complexes in both solution and solid states appeared to occur at 395–600 nm and emitted blue light. The band gap energies determined from DRS were 2.98 eV (3a, 2.91 eV (3b, and 2.73 eV (3c. Based on these results, we ascertain that these Zn(II complexes can serve as a suitable non-dopant blue light emitting compound for flat panel display applications. Latent fingerprint detection study indicated that the powder compounds show good adhesion and finger ridge details without background staining. The demonstrated method can be applied to detect fingerprints on all types of smooth surfaces.

  2. Synthesis of mononuclear copper(II) complexes of N3O2 and N4O2 donors containing Schiff base ligands: Theoretical and biological observations

    Science.gov (United States)

    Mancha Madha, K.; Gurumoorthy, P.; Arul Antony, S.; Ramalakshmi, N.

    2017-09-01

    A new series of six mononuclear copper(II) complexes were synthesized from N3O2 and N4O2 donors containing Schiff base ligands, and characterized by various spectral methods. The geometry of the complexes was determined using UV-Vis, EPR and DFT calculations. The complexes of N3O2 donors (1-3) adopted square pyramidal geometry and the remaining complexes of N4O2 donors (4-6) show distorted octahedral geometry around copper(II) nuclei. Redox properties of the complexes show a one-electron irreversible reduction process in the cathodic potential (Epc) region from -0.74 to -0.98 V. The complexes show potent antioxidant activity against DPPH radicals. Molecular docking studies of complexes showed σ-π interaction, hydrogen bonding, electrostatic and van der Waals interactions with VEGFR2 kinase receptor. In vitro cytotoxicity of the complexes was tested against human breast cancer (MDA-MB-231) cell lines and one normal human dermal fibroblasts (NHDF) cell line through MTT assay. The morphological assessment data obtained by Hoechst 33258 and AO/EB staining revealed that the complexes induce apoptosis pathway of cell death.

  3. A new oxidovanadium(IV) Schiff base complex containing asymmetric tetradentate ONN′O′ Schiff base ligand: synthesis, characterization, crystal structure determination, thermal study and catalytic activity

    Czech Academy of Sciences Publication Activity Database

    Grivani, G.; Ghavami, A.; Eigner, Václav; Dušek, Michal; Khalaji, A.D.

    2015-01-01

    Roč. 26, č. 6 (2015), s. 779-784 ISSN 1001-8417 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : oxidovanadium(IV) * Schiff base * crystal structure * nanoparticle * epoxidation Subject RIV: CC - Organic Chemistry Impact factor: 1.947, year: 2015

  4. Synthesis and Luminescence Properties of New Metal-Organic Frameworks Based on Zinc(II Ions and 2,5-Thiophendicarboxylate Ligands

    Directory of Open Access Journals (Sweden)

    Anna Lysova

    2017-12-01

    Full Text Available Six new metal-organic frameworks based on 2,5-thiophendicarboxylate (tdc2– and zinc(II ions were prepared in different reaction conditions, and their crystal structures were determined by XRD analysis. The compound [Zn(tdc(dabco(H2O]∙DMF (1 is based on mononuclear Zn(II ions connected by tdc2– and dabco linkers into square-grid layered nets. The compound [Zn3(tdc3(dabco2] (2 is a rare example of monocoordinated dabco ligands in the metal-organic framework chemistry. Its crystal structure contains trinuclear linear carboxylate building units, connected into a distorted primitive cubic net. Similar trinuclear units were also found in [Zn5(tdc4(Htdc2(dabco2]∙4DMF∙14H2O (3, although as a part of more complicated pentanuclear motives. The compound [Na2Zn(tdc2(DMF2] (4, quantitatively isolated by the addition of NaOH to the mixture of Zn(NO32 and H2tdc, is based on 1D chain motives, interconnected by tdc2– linkers into a three-dimensional framework. The compounds [Zn3(tdc3(DMF2]∙0.8DMF∙1.1H2O (5 and [Zn3(tdc3(DMF3]∙0.8DMF∙1.3H2O (6 were prepared in very similar reaction conditions, but with different times of heating, indirectly indicating higher thermodynamic stability of the three-dimensional metal-organic framework 6, compared to the two-dimensional metal-organic framework 5. The crystal structures of both 5 and 6 are based on the same trinuclear linear units as in 2. Luminescence properties of the compounds 4–6 were studied and compared with those for Na2tdc salt. In particular, the luminescence spectra of 4 practically coincide with those for the reference Na2tdc, while 5 and 6 exhibit coherent shifts of peaks to higher energies. Such hypsochromic shifts are likely associated with a different effective charge on the tdc2– anions in Na2tdc and sodium-containing 4, compared to zinc-based 5 and 6.

  5. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.

    2016-06-22

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  6. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.; Ustbas, Burcin; Harkness, Kellen M.; Coskun, Hikmet; Joshi, Chakra Prasad; Besong, Tabot M.D.; Stellacci, Francesco; Bakr, Osman; Akbulut, Ozge

    2016-01-01

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  7. Synthesis, characterization, DNA interaction and antimicrobial screening of isatin-based polypyridyl mixed-ligand Cu(II and Zn(II complexes

    Directory of Open Access Journals (Sweden)

    NATARAJAN RAMAN

    2010-06-01

    Full Text Available Several mixed ligand Cu(II/Zn(II complexes using 3-(phenyl-imino-1,3-dihydro-2H-indol-2-one (obtained by the condensation of isatin and aniline as the primary ligand and 1,10-phenanthroline (phen/2,2’-bipyridine (bpy as an additional ligand were synthesized and characterized analytically and spectroscopically by elemental analyses, magnetic susceptibility and molar conductance measurements, as well as by UV–Vis, IR, NMR and FAB mass spectroscopy. The interaction of the complexes with calf thymus (CT DNA was studied using absorption spectra, cyclic voltammetric and viscosity measurements. They exhibit absorption hypochromicity, and the specific viscosity increased during the binding of the complexes to calf thymus DNA. The shifts in the oxidation–reduction potential and changes in peak current on addition of DNA were shown by CV measurements. The Cu(II/Zn(II complexes were found to promote cleavage of pUC19 DNA from the supercoiled form I to the open circular form II and linear form III. The complexes show enhanced antifungal and antibacterial activities compared with the free ligand.

  8. The synthesis, structures and characterisation of new mixed-ligand manganese and iron complexes with tripodal, tetradentate ligands

    NARCIS (Netherlands)

    van Gorkum, R.; Berding, J.; Mills, A.M.; Kooijman, H.; Tooke, D.M.; Spek, A.L.; Mutikainen, I.; Turpeinen, U.; Reedijk, J.; Bouwman, E.

    2008-01-01

    The preparation of new manganese and iron complexes with the general formula [M(tripod)(anion)] is described, where M = FeIII or MnIII, “tripod” is a dianionic tetradentate tripodal ligand and the anion is a chelating β-diketonate, 8-oxyquinoline or acetate. The synthesis of this type of complexes

  9. Synthesis and photoluminescence properties of silver(I) complexes based on N-benzoyl-L-glutamic acid and N-donor ligands with different flexibility

    Science.gov (United States)

    Yan, Ming-Jie; Feng, Qi; Song, Hui-Hua

    2016-05-01

    By changing the N-donor ancillary ligand, three novel silver (I) complexes {[Ag(HbzgluO) (4,4‧-bipy)]·H2O}n (1), {[Ag2(HbzgluO)2 (bpe)2]·2H2O}n (2) and {[Ag(HbzgluO)(bpp)]·2H2O}n (3) (H2bzgluO = N-benzoyl-L-glutamic acid, 4,4‧-bipy = 4,4ˊ-bipyridine, bpe = 1,2-di(4-pyridyl)ethane, bpp = 1,3-di(4-pyridyl)propane) were synthesized. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric analyses (TGA). In this study, the N-donor ligands are changed from rigidity (4,4‧-bipy), quasi-flexibility (bpe) to flexibility (bpp), the structures of complexes also change. Complex 1 features a 1D chain structure which is further linked together to construct a 2D supramolecular structure through hydrogen bonds. Complex 2 is a 1D double-chains configuration which eventually forms a 3D supramolecular network via hydrogen bonding interactions. Whereas, complex 3 exhibits a 2D pleated grid structure which is linked by hydrogen bonding interactions into a 3D supramolecular network. The present observations demonstrate that the modulation of coordination polymers with different structures can accomplish by changing the spacer length of N-donor ligands. In addition, the solid-state circular dichroism (CD) spectra indicated that compound 2 exhibited negative cotton effect which originated from the chiral ligands H2bzgluO and the solid-state fluorescence spectra of the three complexes demonstrated the auxiliary ligands have influence on the photoluminescence properties of the complexes.

  10. Sterically demanding diphosphonite ligands - synthesis and application in nickel-catalyzed isomerization of 2-methyl-3-butenenitrile

    NARCIS (Netherlands)

    Vlugt, van der J.I.; Hewat, A.C.; Neto, S.; Sablong, R.J.; Mills, A.M.; Lutz, M.; Spek, A.L.; Müller, C.; Vogt, D.

    2004-01-01

    The synthesis of a novel class of sterically demanding diphosphonites 1-8, based on rigid backbones, is described. The starting materials are all commercially available and the methodology allows for a modular approach. All ligands have been fully characterized, including an X-ray crystal structure

  11. Synthesis of an S T = 7 [Mn 3 ] Mixed-Valence Complex Based on 1,3-Propanediol Ligand Derivatives and Its One-Dimensional Assemblies

    KAUST Repository

    Huang, Jian; Wu, Gang; Bai, Jiaquan; Jiang, Yuan; Li, Guanghua; Qiu, Shilun; Clé rac, Rodolphe

    2013-01-01

    . In this work, a new ST = 7 trinuclear mixed-valence Mn complex, [MnIIIMnII 2(LA) 2(Br)4(CH3OH)6] ·Br· (CH3OH)1.5·(H2O)0.5 (1), is reported using a pyridinium-functionalized 1,3-propanediol ligand (H 2LABr = 1-(3-bromo-2,2-bis

  12. Hydrothermal Synthesis of Disulfide-Containing Uranyl Compounds. In Situ Ligand Synthesis versus Direct Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, Clare E. [George Washington Univ., Washington, DC (United States); Belai, Nebebech [George Washington Univ., Washington, DC (United States); Knope, Karah E. [George Washington Univ., Washington, DC (United States); Cahill, Christopher L. [George Washington Univ., Washington, DC (United States)

    2010-01-29

    Three disulfide-containing uranyl compounds, [UO2(C7H4O2S)3]·H2O (1), [UO2(C7H4O2S)2(C7H5O2S)] (2), and [UO2(C7H4O2S)4] (3) have been hydrothermally synthesized. Both in situ disulfide bond formation from 3- and 4-mercaptobenzoic acid (C7H5O2S, MBA) to yield 3,3'- and 4,4'-dithiobisbenzoic acid (C14H8O4S2, DTBA) and direct assembly with the presynthesized dimeric ligands have been explored. While the starting materials 4-MBA and 4,4'-DTBA both yield 2 via in situ ligand synthesis and direct assembly, respectively, we observe the formation of 1 from the starting material 3-MBA via in situ ligand synthesis and of 3 from the direct assembly of the uranyl cation with 3,3'-DTBA. Concurrently with the synthesis of 1 and 2, we have observed the in situ formation of the crystalline dimeric organic species, 3,3'-DTBA, [(C7H5O2S)2] (4) and 4,4'-DTBA, [(C7H5O2S)2] (5). Herein we report the synthesis and crystallographic characterization of 1-5, as well as observations regarding the utility of product formation via direct assembly and in situ ligand synthesis.

  13. Synthesis and Doping of Ligand-Protected Atomically-Precise Metal Nanoclusters

    KAUST Repository

    Aljuhani, Maha A.

    2016-01-01

    by controlling their size, shape, and composition. Among the most thriving areas of research about nanoparticle is the synthesis and doping of the ligand-protected atomically-precise metal nanoclusters. In this thesis, we developed three different novel metal

  14. A modular approach to neutral P,N-ligands: synthesis and coordination chemistry

    Directory of Open Access Journals (Sweden)

    Vladislav Vasilenko

    2016-04-01

    Full Text Available We report the modular synthesis of three different types of neutral κ2-P,N-ligands comprising an imine and a phosphine binding site. These ligands were reacted with rhodium, iridium and palladium metal precursors and the structures of the resulting complexes were elucidated by means of X-ray crystallography. We observed that subtle changes of the ligand backbone have a significant influence on the binding geometry und coordination properties of these bidentate P,N-donors.

  15. Synthesis and radiofluorination of putative NMDA receptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, U

    2011-01-15

    In the course of this work on the synthesis of radioligands for the NMDA receptor the authentic standards and labeling precursors of four compounds with an amidine structure was performed. Synthesis of the precursors followed reaction conditions given in the literature and was successful. The imidoesters used for the synthesis were obtained from their nitriles in a Pinner synthesis, while 2-hydroxybenzylamine was synthesized in a reduction of 2-hydroxybenzonitrile using borane as a reducing agent. After a coupling reaction of the amine and the imidoester in DMF using triethylamine as base the precursors were obtained in good yields and purified by crystallization from methanol. The cyclic standard compound was synthesized directly from 2-(bromomethyl)- benzonitrile and 2-hydroxybenzylamine in a ring closing reaction. Similar to the other precursors, crystallization from methanol produced a pure compound. The authentic standards were synthesized starting from salicylaldehyde. In a four step synthesis the desired ortho-fluoroethoxybenzylamine was obtained in good yield. Coupling of the amine with the respective imidoester or in the case of the cyclic compound 2-(bromomethyl)-benzonitrile gave the desired product which was then purified by column chromatography or by crystallization from ethanol and water. For the labeling procedure 1-bromo-2-[{sub 18}F]fluoroethane was synthesized following a previously published pathway starting from 1,2-dibromoethane. An alternative route of radiosynthesis for this prosthetic group was tested using ethyleneglycole- 1,2-ditosylate. The labeling reaction was performed on one of the precursors testing both DMF and DMSO as solvents and using NaOH as base. Yields of N-(2-fluoroethoxybenzyl)- cinnamamidine were about 78 % at 80 C after 30 minutes in DMSO. The desired product can now be synthesized in sufficient yields for in vitro and in vivo evaluation studies. Labeling on the cyclic precursor was attempted utilizing DMSO as solvent

  16. Synthesis and radiofluorination of putative NMDA receptor ligands

    International Nuclear Information System (INIS)

    Kronenberg, U.

    2011-01-01

    In the course of this work on the synthesis of radioligands for the NMDA receptor the authentic standards and labeling precursors of four compounds with an amidine structure was performed. Synthesis of the precursors followed reaction conditions given in the literature and was successful. The imidoesters used for the synthesis were obtained from their nitriles in a Pinner synthesis, while 2-hydroxybenzylamine was synthesized in a reduction of 2-hydroxybenzonitrile using borane as a reducing agent. After a coupling reaction of the amine and the imidoester in DMF using triethylamine as base the precursors were obtained in good yields and purified by crystallization from methanol. The cyclic standard compound was synthesized directly from 2-(bromomethyl)- benzonitrile and 2-hydroxybenzylamine in a ring closing reaction. Similar to the other precursors, crystallization from methanol produced a pure compound. The authentic standards were synthesized starting from salicylaldehyde. In a four step synthesis the desired ortho-fluoroethoxybenzylamine was obtained in good yield. Coupling of the amine with the respective imidoester or in the case of the cyclic compound 2-(bromomethyl)-benzonitrile gave the desired product which was then purified by column chromatography or by crystallization from ethanol and water. For the labeling procedure 1-bromo-2-[ 18 F]fluoroethane was synthesized following a previously published pathway starting from 1,2-dibromoethane. An alternative route of radiosynthesis for this prosthetic group was tested using ethyleneglycole- 1,2-ditosylate. The labeling reaction was performed on one of the precursors testing both DMF and DMSO as solvents and using NaOH as base. Yields of N-(2-fluoroethoxybenzyl)- cinnamamidine were about 78 % at 80 C after 30 minutes in DMSO. The desired product can now be synthesized in sufficient yields for in vitro and in vivo evaluation studies. Labeling on the cyclic precursor was attempted utilizing DMSO as solvent, but no

  17. Dynamic ligand-based pharmacophore modeling and virtual ...

    Indian Academy of Sciences (India)

    Five ligand-based pharmacophore models were generated from 40 different .... the Phase module of the Schrodinger program.35 Each model consisted of six types of ... ligand preparation included the OPLS_2005 force field and to retain the ...

  18. Transition metal complexes with thiosemicarbazide-based ligands. Part 45. Synthesis, crystal and molecular structure of [2,6-diacetylpyridine bis(S-methylisothiosemicarbazonato]diazide-iron(III

    Directory of Open Access Journals (Sweden)

    REFIK FAZLIC

    2003-05-01

    Full Text Available The template reaction of a warm methanolic solution of FeCl3.6H2O, S-methylisothiosemicarbazidehydroiodide and 2,6-diacetylpyridine in the presence of LiOAc and NaN3 yielded the high-spin complex [Fe(HL(N32], were HL is the monoanion of the ligand 2,6-diacetylpyridine bis(S-methylisothiosemicarbazone. X-Ray analysis of the complex showed its pentagonal-bipyramidal configuration, with pentadenate (N5 HL in the equatorial plane and two monodentate azide groups in the axial positions. Crystal data are: monoclinic, P21/c, a = 1.0263(2, b = 1.2525(2, c = 1.6660(3 nm, b = 98.94°, V = 2.1154 nm3, Z = 4, rx = 1.499 g cm-3, r0 = 1.48 g cm-3, F(000 = 984, m = 9.40 cm-3.

  19. Rational design and synthesis of altered peptide ligands based on human myelin oligodendrocyte glycoprotein 35-55 epitope: inhibition of chronic experimental autoimmune encephalomyelitis in mice.

    Science.gov (United States)

    Tselios, Theodore; Aggelidakis, Mihalis; Tapeinou, Anthi; Tseveleki, Vivian; Kanistras, Ioannis; Gatos, Dimitrios; Matsoukas, John

    2014-11-04

    Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease of the central nervous system and is an animal model of multiple sclerosis (MS). Although the etiology of MS remains unclear, there is evidence T-cell recognition of immunodominant epitopes of myelin proteins, such as the 35-55 epitope of myelin oligodendrocyte glycoprotein (MOG), plays a pathogenic role in the induction of chronic EAE. Cyclization of peptides is of great interest since the limited stability of linear peptides restricts their potential use as therapeutic agents. Herein, we have designed and synthesized a number of linear and cyclic peptides by mutating crucial T cell receptor (TCR) contact residues of the human MOG35-55 epitope. In particular, we have designed and synthesized cyclic altered peptide ligands (APLs) by mutating Arg41 with Ala or Arg41 and Arg46 with Ala. The peptides were synthesized in solid phase on 2-chlorotrityl chloride resin (CLTR-Cl) using the Fmoc/t-Bu methodology. The purity of final products was verified by RP-HPLC and their identification was achieved by ESI-MS. It was found that the substitutions of Arg at positions 41 and 46 with Ala results in peptide analogues that reduce the severity of MOG-induced EAE clinical symptoms in C57BL/6 mice when co-administered with mouse MOG35-55 peptide at the time of immunization.

  20. Microchemical synthesis of the serotonin receptor ligand, 125I-LSD

    International Nuclear Information System (INIS)

    Hartig, P.R.; Krohn, A.M.; Hirschman, S.A.

    1985-01-01

    The synthesis and properties of 2-[ 125 I]-lysergic acid diethylamide, the first 125 I-labeled serotonin receptor ligand, are described. A novel microsynthesis apparatus was developed for this synthesis. The apparatus employs a micromanipulator and glass micro tools to handle microliter to nanoliter volumes on a microscope stage. This apparatus should be generally useful for the synthesis of radioligands and other compounds when limited amounts of material must be handled in small volumes

  1. Cd(II)-coordination polymers based on tetracarboxylic acid and diverse bis(imidazole) ligands: Synthesis, structural diversity and photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Arıcı, Mürsel, E-mail: marici@ogu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Yeşilel, Okan Zafer [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Taş, Murat [Department of Science Education, Education Faculty, Ondokuz Mayıs University, 55139 Samsun (Turkey)

    2017-01-15

    Three new Cd(II)-coordination polymers, namely, ([Cd{sub 2}(μ{sub 6}-ao{sub 2}btc)(μ-1,5-bipe){sub 2}]·2H{sub 2}O){sub n} (1), ([Cd{sub 2}(μ{sub 6}-ao{sub 2}btc)(μ-1,4-bix){sub 2}]{sub n}·2DMF) (2) and ([Cd{sub 2}(μ{sub 8}-abtc)(μ-1,4-betix)]·DMF·H{sub 2}O){sub n} (3) (ao{sub 2}btc=di-oxygenated form of 3,3′,5,5′-azobenzenetetracarboxylate, 1,5-bipe: 1,5-bis(imidazol-1yl)pentane, 1,4-bix=1,4-bis(imidazol-1ylmethyl)benzene, 1,4-betix=1,4-bis(2-ethylimidazol-1ylmethyl)benzene) were synthesized with 3,3′,5,5′-azobenzenetetracarboxylic acid and flexible, semi-flexible and semi-flexible substituted bis(imidazole) linkers. They were characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction, powder X-ray diffractions (PXRD) and thermal analyses (TG/DTA). Complexes 1–3 exhibited structural diversities depending on flexible, semi-flexible and semi-flexible substituted bis(imidazole) ligands. Complex 1 was 2D structure with 3,6L18 topology. Complex 2 had a 3D pillar-layered framework with the rare sqc27 topology. When semi-flexible substituted bis(imidazole) linker was used, 3D framework of complex 3 was obtained with the paddlewheel Cd{sub 2}(CO{sub 2}){sub 4}-type binuclear SBU. Moreover, thermal and photoluminescence properties of the complexes were determined in detailed. - Graphical abstract: In this study, three novel Cd(II)-coordination polymers were synthesized with 3,3′,5,5′-azobenzenetetracarboxylic acid and flexible, semi-flexible and semi-flexible substituted bis(imidazole) linkers. They were characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction, powder X-ray diffractions (PXRD) and thermal analyses (TG/DTA). Complexes 1–3 exhibited structural diversities depending on flexible, semi-flexible and semi-flexible substituted bis(imidazole) ligands. Complex 1 was 2D structure with 3,6L18 topology. Complex 2 had a 3D pillar-layered framework with the rare sqc27 topology. When semi

  2. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    International Nuclear Information System (INIS)

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz

    2015-01-01

    Three new coordination polymers [Mn(hip)(phen) (H_2O)]_n (1), [Co(hip)(phen) (H_2O)]_n (2), and [Cd(hip) (phen) (H_2O)]_n (3) (H_2hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H_2O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π–π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π–π stacking provide thermal stability to polymers. Compounds 1 and 2 are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift. - Graphical abstract: 1D helical chains of coordination polymers were synthesized by solvo-hydrothermal reaction of 5-hydroxyisopthalic acid and 1,10-phenanthroline with MnCl_2·4H_2O / CoCl_2·6H_2O / Cd(NO_3)_2·6H_2O. - Highlights: • Solvent induced synthesis of three coordination polymers with 1D zig-zag structure. • Crystal structures of coordination polymers are reported and discussed. • 1,10-Phenanthroline influences magnetic and luminescent properties of polymers. • Coordination polymer of Cd is luminescent exhibiting large Stokes shift.

  3. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    Energy Technology Data Exchange (ETDEWEB)

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz, E-mail: hnsheikh@rediffmail.com

    2015-11-15

    Three new coordination polymers [Mn(hip)(phen) (H{sub 2}O)]{sub n} (1), [Co(hip)(phen) (H{sub 2}O)]{sub n} (2), and [Cd(hip) (phen) (H{sub 2}O)]{sub n} (3) (H{sub 2}hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H{sub 2}O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π–π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π–π stacking provide thermal stability to polymers. Compounds 1 and 2 are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift. - Graphical abstract: 1D helical chains of coordination polymers were synthesized by solvo-hydrothermal reaction of 5-hydroxyisopthalic acid and 1,10-phenanthroline with MnCl{sub 2}·4H{sub 2}O / CoCl{sub 2}·6H{sub 2}O / Cd(NO{sub 3}){sub 2}·6H{sub 2}O. - Highlights: • Solvent induced synthesis of three coordination polymers with 1D zig-zag structure. • Crystal structures of coordination polymers are reported and discussed. • 1,10-Phenanthroline influences magnetic and luminescent properties of polymers. • Coordination polymer of Cd is luminescent exhibiting large Stokes shift.

  4. Nd(III) and Dy(III) coordination compounds based on 1H-tetrazolate-5-acetic acid ligands: Synthesis, crystal structures and catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Li Qiaoyun; Chen Dianyu; He Minghua [Jiangsu Laboratory of Advanced Functional Materials, Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu (China); Yang Gaowen, E-mail: ygwsx@126.com [Jiangsu Laboratory of Advanced Functional Materials, Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu (China); Shen Lei; Zhai Chun; Shen Wei; Gu Kun; Zhao Jingjing [Jiangsu Laboratory of Advanced Functional Materials, Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu (China)

    2012-06-15

    Reactions of 1H-tetrazolate-5-acetic acid(H{sub 2}tza) with Nd(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O or Dy(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O with the presence of KOH under solvothermal conditions, produced two new coordination compounds, [M{sub 2}(tza){sub 3}(H{sub 2}O){sub 6}]{center_dot}2H{sub 2}O [M=Nd(1), Dy(2)]. Both compounds were structurally characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. Compounds 1 and 2 reveal 1D structures via bridging tza as linker. Furthermore, the compounds 1 and 2 showed a specific and good catalytic behavior for the polymerization of styrene, and the polymerization showed controlled characteristics. - Graphical Abstract: Two new coordination compounds, [M{sub 2}(tza){sub 3}(H{sub 2}O){sub 6}]{center_dot}2H{sub 2}O [M=Nd(1), Dy(2)] have been synthesis. 1 and 2 reveal 1D structures via bridging tza as linker, and showed a specific and good catalytic behavior for the polymerization of styrene. Highlights: Black-Right-Pointing-Pointer we have reported two novel compounds formed by H{sub 2}tza and Nd(III) or Dy(III). Black-Right-Pointing-Pointer Compounds 1 and 2 were found to have catalysis property for the photo-polymerization of styrene. Black-Right-Pointing-Pointer The high molecular weight polymers with narrow molecular weight distributions were obtained.

  5. Synthesis of novel '4+1' Tc(III)/Re(III) mixed-ligand complexes with dendritically modified ligands

    International Nuclear Information System (INIS)

    Gniazdowska, E.; Kuenstler, J.U.; Stephan, H.; Pietzsch, H.J.

    2006-01-01

    Coordination chemistry of technetium and rhenium attracts a considerable interest due to the nuclear medicine applications of their radionuclides. Inert, so-called '3+1' or '4+1' technetium/rhenium mixed-ligand complexes open a new way to application of 99 mTc/ 188 Re labeled compounds in tumor diagnosis and therapy. In the presented paper, authors describe the synthesis and study of novel 99 mTc/ 188 Re complexes with dendritically functionalized tetradentate (tripodal chelator 2,2',2''-nitrilotris(ethanethiol), NS 3 and carboxyl group-bearing ligand, NS 3 (COOH) 3 ) and monodentate (dendritically modified isocyanide, CN-R(COOMe) 3 and isocyanide-modified peptide, CN-GGY) ligands. To verify the identity of the prepared n.c.a. complexes, non-radioactive analogous '4+1' Re compounds were synthesized. The experimental data show that a dendritic modification of the tetradentate/monodentate ligands changes the complex lipophilicity and does not influence its stability

  6. Synthesis of Phthalimide Derivatives as Potential PPAR-γ Ligands

    Directory of Open Access Journals (Sweden)

    So Hyeon Eom

    2016-06-01

    Full Text Available Paecilocin A, a phthalide derivative isolated from the jellyfish-derived fungus Paecilomyces variotii, activates PPAR-γ (Peroxisome proliferator-activated receptor gamma in rat liver Ac2F cells. Based on a SAR (Structure-activity relationships study and in silico analysis of paecilocin A-mimetic derivatives, additional N-substituted phthalimide derivatives were synthesized and evaluated for PPAR-γ agonistic activity in both murine liver Ac2F cells and in human liver HepG2 cells by luciferase assay, and for adipogenic activity in 3T3-L1 cells. Docking simulation indicated PD6 was likely to bind most strongly to the ligand binding domain of PPAR-γ by establishing crucial H-bonds with key amino acid residues. However, in in vitro assays, PD1 and PD2 consistently displayed significant PPAR-γ activation in Ac2F and HepG2 cells, and adipogenic activity in 3T3-L1 preadipocytes.

  7. New μ-OAC bridged dinuclear copper(II) complex with tridentate Schiff base ligand: synthesis, characterization, crystal structure, and CuO nano-particles formation

    Czech Academy of Sciences Publication Activity Database

    Grivani, G.; Eigner, Václav; Dušek, Michal; Sadeghi, B.; Khalaji, A.D.

    2015-01-01

    Roč. 41, č. 7 (2015), s. 456-461 ISSN 1070-3284 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : Schiff base * complex structure * x-ray crystallography * Jana2006 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.516, year: 2015

  8. Synthesis, characterization, spectroscopic and catalytic oxidation studies of Fe(III), Ni(II), Co(III), V(IV) and U(VI) Schiff base complexes with N, O donor ligands derived from 2,3-diaminopyridine

    Energy Technology Data Exchange (ETDEWEB)

    Zabardasti, Abedien; Shangaie, Sayed Asad [Lorestan Univ., Khorramabad (Iran, Islamic Republic of). Dept. of Chemistry

    2016-10-15

    Fifteen new complexes of transition metals were designed using three Schiff base ligands and aldol condensation of 2,3-diaminopyridine with 5-R-2-hydroxybenzaldehyde (R = F, Cl, Br) in the 1:2 molar ratio. The tetradentate ligands N,N{sup '}-bis(5-R-2-hydroxybenzaldehyde) pyridine were acquired with the common formula H{sub 2}[(5-R-sal){sub 2}py] and characterized by IR, UV-Vis spectra, {sup 1}H-NMR and elemental analysis. These ligands produce 1:1 complexes M[(5-R-sal){sub 2}py] with Fe(III), Ni(II), Co(III), V(IV) and U(VI) metal ions. The electronic property and nature of complexes were identified by IR, UV-Vis spectra, elemental analysis, X-ray crystallography and cyclic voltammetric methods. The catalytic activity of complexes for epoxidation of styrene with UHP as primary oxidant at minimal temperature (10 C) has been planned. The spectral data of the ligands and their complexes are deliberate in connection with the structural changes which happen due to complex preparation. The electrochemical outcome has good conformability with what suggested for electronic interaction among metal center and ligand by the UV-Vis and IR measurements.

  9. Selective kainate receptor (GluK1) ligands structurally based upon1H-Cyclopentapyrimidin-2,4(1H,3H)-dione: synthesis, molecular modeling, and pharmacological and biostructural characterization

    DEFF Research Database (Denmark)

    Venskutonyte, Raminta; Butini, Stefania; Coccone, Salvatore Sanna

    2011-01-01

    The physiological function of kainate receptors (GluK1- GluK5) in the central nervous system is not fully understood yet. With the aim of developing potent and selective GluK1 ligands, we have synthesized a series of new thiophene-based GluK1 agonists (6a-c) and antagonists (7a-d). Pharmacologica...

  10. Lanthanide(III) complexes with tridentate Schiff base ligand ...

    African Journals Online (AJOL)

    The X-ray study reveals isotopic Nd/Sm binuclear structures were each metal ion is nine-coordinated in the same fashion. Both metal centers have distorted tricapped trigonal prism geometry, with the Schiff base acting as tridentate ligand. The DPPH· radical scavenging effects of the Schiff base ligand and its Ln(III) ...

  11. Ligand based pharmacophore modelling of anticancer histone ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... The study was carried out using the software Ligand Scout (version .... Computer Science, for his great help and support. We are also grateful to Faculty of Engineering and applied. Sciences, Mohammad .... Aided Mol. Design ...

  12. Design and synthesis of multidentate ligands via metal promoted C ...

    Indian Academy of Sciences (India)

    Unknown

    and can be controlled by the proper selection of the mediator complex. The two ... are important as these provide facile synthesis of many novel molecules that are ..... and the Council of Scientific and Industrial Research, New Delhi is gratefully.

  13. A multistep continuous-flow system for rapid on-demand synthesis of receptor ligands

    DEFF Research Database (Denmark)

    Petersen, Trine P; Ritzén, Andreas; Ulven, Trond

    2009-01-01

    A multistep continuous-flow system for synthesis of receptor ligands by assembly of three variable building blocks in a single unbroken flow is described. The sequence consists of three reactions and two scavenger steps, where a Cbz-protected diamine is reacted with an isocyanate, deprotected, an......, and reacted further with an alkylating agent....

  14. Synthesis of ligand-free CZTS nanoparticles via a facile hot injection route

    DEFF Research Database (Denmark)

    Mirbagheri, Naghmehalsadat; Engberg, Sara Lena Josefin; Crovetto, Andrea

    2016-01-01

    and toxic solvents that otherwise could hinder grain growth and limit the deposition techniques. In addition the synthesis route presented here results in nanoparticles of a large size compared to other ligand-free CZTS nanoparticles, due to the high boiling point of the solvents selected. Large particle...

  15. Novel mixed ligand complexes of bioactive Schiff base (E)-4-(phenyl (phenylimino) methyl) benzene-1,3-diol and 2-aminophenol/2-aminobenzoic acid: Synthesis, spectral characterization, antimicrobial and nuclease studies

    Science.gov (United States)

    Subbaraj, P.; Ramu, A.; Raman, N.; Dharmaraja, J.

    2014-01-01

    A novel bidentate Schiff base ligand has been synthesized using 2,4-dihydroxybenzophenone and aniline. Its mixed ligand complexes of MAB type [M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HA = Schiff base and B = 2-aminophenol/2-aminobenzoic acid] have been synthesized and characterized on the basis of spectral data UV-Vis, IR, 1H NMR, FAB-Mass, EPR, SEM and magnetic studies. All the complexes were soluble in DMF and DMSO. Elemental analysis and molar conductance values indicate that the complexes are non-electrolytes. HA binds with M(II) ions through azomethine and deprotonated phenolic group and B binds through the primary amine group and deprotonated phenolic/carboxylic groups. Using FAB-Mass the cleavage pattern of the ligand (HA) has been established. All the complexes adopt octahedral geometry around the metal ions. It has been confirmed with the help of UV-Vis, IR, 1H NMR and FAB-Mass spectral data. DNA binding activities of the complexes 1d and 2d are studied by UV-Vis spectroscopy and cleavage studies of Schiff base ligand and its complexes 1d and 2d have been by agarose gel electrophoresis method. In vitro biological activities of the free ligand (HA) and their metal complexes (1a-1e and 2a-2e) were screened against few bacteria, Escherichia coli, Staphylococcus saphyphiticus, Staphylococcus aureus, Pseudomonas aeruginosa and fungi Aspergillus niger, Enterobacter species, Candida albicans by well diffusion technique.

  16. Ternary complexes of Zn(II) and Cu(II) with 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide in the presence of heterocyclic bases as auxiliary ligands: Synthesis, spectroscopic and structural characterization and antibacterial activity

    Science.gov (United States)

    Azarkish, Mohammad; Akbari, Alireza; Sedaghat, Tahereh; Simpson, Jim

    2018-03-01

    The new ternary complexes, ZnLL‧ [L = 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide and L‧ = imidazole (1), 2, 2‧-bipyridine (2) and 2-methyimidazole (3)], Zn2L2L‧ [L‧ = 4, 4‧-bipy (4)] and CuLL‧ [L‧ = 2, 2‧-bipy (5)] have been synthesized by the reaction of a metal(II) acetate salt with the thiosemicarbazone and in presence of heterocyclic bases as auxiliary ligands. The synthesized compounds were investigated by elemental analysis and IR, 1H NMR, and 13C NMR spectroscopy and complex 5 was structurally characterized by X-ray crystallography. The results indicate the thiosemicarbazone doubly deprotonated and coordinates to metal through the thiolate sulfur, imine nitrogen and phenolic oxygen atoms. The nitrogen atom(s) of the auxiliary ligand complete the coordination sphere. Complex 4 is binuclear with 4, 4‧-bipy acting as a bridging ligand. The structure of 5 is a distorted square pyramid with one of the bipyridine nitrogen atoms in the apical position. This compound creates an inversion dimer in solid state by intermolecular hydrogen bonds of Nsbnd H⋯S type. The in vitro antibacterial activity of the synthesized compounds were evaluated against Gram-positive (B. subtilis and S. aureus) and Gram-negative (P. aeruginosa) bacteria and is compared to that of standard antibacterial drugs. All complexes exhibit good inhibitory effects and are significantly more effective than the parent ligand.

  17. Novel types of tripodal CMPO ligands: synthesis and extraction

    Energy Technology Data Exchange (ETDEWEB)

    Janczewski, D. [Twente Univ., Enschede (Netherlands). Lab. of Supramolecular Chemistry and Technology; Inst. of Materials Research and Engineering, Research Link (Singapore); Rawdanowicz, M.; Reinhoudt, D.N.; Verboom, W. [Twente Univ., Enschede (Netherlands). Lab. of Supramolecular Chemistry and Technology; Hill, C.; Martinez, I. [Commissariat a l' Energie Atomique, CEA-Valrho, DRCP/SCPS/LCSE, Bagnols-sur-Ceze (France)

    2008-07-01

    Novel tripodal CMPO ligands having either aryl groups at the N-atom or alkyl groups at the CMPO methylene bridge were prepared in good yields. In the latter case one alkyl group per CMPO moiety was selectively introduced. Extraction studies with Am{sup 3+} and Eu{sup 3+} show that there is an influence of the electronic character of the aryl groups on the extraction. Alkylation of the CMPO methylene group gives rise to a considerable decrease of the D-values (about 100-1000 times), dependent on the bulkiness of the alkyl substituent. (orig.)

  18. Synthesis and binding properties of new selective ligands for the nucleobase opposite the AP site.

    Science.gov (United States)

    Abe, Yukiko; Nakagawa, Osamu; Yamaguchi, Rie; Sasaki, Shigeki

    2012-06-01

    DNA is continuously damaged by endogenous and exogenous factors such as oxidative stress or DNA alkylating agents. These damaged nucleobases are removed by DNA N-glycosylase and form apurinic/apyrimidinic sites (AP sites) as intermediates in the base excision repair (BER) pathway. AP sites are also representative DNA damages formed by spontaneous hydrolysis. The AP sites block DNA polymerase and a mismatch nucleobase is inserted opposite the AP sites by polymerization to cause acute toxicities and mutations. Thus, AP site specific compounds have attracted much attention for therapeutic and diagnostic purposes. In this study, we have developed nucleobase-polyamine conjugates as the AP site binding ligand by expecting that the nucleobase part would play a role in the specific recognition of the nucleobase opposite the AP site by the Watson-Crick base pair formation and that the polyamine part should contribute to the access of the ligand to the AP site by a non-specific interaction to the DNA phosphate backbone. The nucleobase conjugated with 3,3'-diaminodipropylamine (A-ligand, G-ligand, C-ligand, T-ligand and U-ligand) showed a specific stabilization of the duplex containing the AP site depending on the complementary combination with the nucleobase opposite the AP site; that is A-ligand to T, G-ligand to C, C-ligand to G, T- and U-ligand to A. The thermodynamic binding parameters clearly indicated that the specific stabilization is due to specific binding of the ligands to the complementary AP site. These results have suggested that the complementary base pairs of the Watson-Crick type are formed at the AP site. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Synthesis, characterization and biological evaluation of [{sup 188}Re(N)(cys{approx})(PNP)]{sup +/0} mixed-ligand complexes as prototypes for the development of {sup 188}Re(N)-based target-specific radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Stefan [Institute of Radiopharmacy, Forschungszentrum Dresden Rossendorf, P.O. Box 510 119, 01314 Dresden (Germany); Agostini, Stefania [Department of Pharmaceutical Sciences, University of Padua, Via Marzolo 5, 35131 Padova (Italy); Bergmann, Ralf; Pietzsch, Jens; Pietzsch, Hans-Juergen [Institute of Radiopharmacy, Forschungszentrum Dresden Rossendorf, P.O. Box 510 119, 01314 Dresden (Germany); Carta, Davide; Salvarese, Nicola [Department of Pharmaceutical Sciences, University of Padua, Via Marzolo 5, 35131 Padova (Italy); Refosco, Fiorenzo [ICIS-CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Bolzati, Cristina, E-mail: bolzati@icis.cnr.i [Department of Pharmaceutical Sciences, University of Padua, Via Marzolo 5, 35131 Padova (Italy); ICIS-CNR, Corso Stati Uniti 4, 35127 Padova (Italy)

    2011-04-15

    We report on an efficient procedure for the preparation of [{sup 188}Re(N)(PNP)]-based complexes (where PNP is diphosphinoamine) useful in the development of target-specific radiopharmaceuticals. The radiochemical yield of the compounds was optimized considering such reaction parameters as nature of the nitrido nitrogen donor, reaction times and pH level. The chemical identity of the {sup 188}Re agents was determined by high-performance liquid chromatography comparison with the corresponding well-characterized cold Re compounds. {sup 188}Re(N) mixed compounds have been evaluated with regard to stability toward transchelation with GSH and degradation by serum enzymes. The clearance of selected radiocompounds from normal tissues and their in vivo stability were evaluated in rats by biodistribution and imaging studies. [{sup 188}Re(N)(cys{approx})(PNP)]{sup +/0} mixed-ligand compounds were efficiently prepared in aqueous solution from perrhenate using a multistep procedure based on the preliminary formation of the labile {sup 188}Re{sup III}-EDTA species, which easily undergo oxidation/ligand exchange reaction to afford the [{sup 188}Re{sup V{identical_to}}N]{sup 2+} core in the presence of dithiocarbazate. The final mixed-ligand compounds were obtained, at 100{sup o}C, by adding the two bidentate ligands to the buffered [{sup 188}Re{sup V{identical_to}}N]{sup 2+} solution (pH 3.2-3.6). However, a relatively high amount of cys{approx} ligand was required to obtain a quantitative radiochemical yield. The complexes were stable toward reoxidation to perrhenate and ligand exchange reactions. In vivo studies showed rapid distribution and elimination of the complexes from the body. No specific uptakes in sensitive tissues/organs were detected. A positive correlation of the distribution of the complexes estimated with biodistribution studies (%ID) and with micro-SPECT semiquantification imaging analysis (standard uptake values) was observed. These results support the

  20. Pharmaceutical research at the AAEC Part I: Ligand synthesis and biological studies

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J G [Australian Atomic Energy Commission Research Establishment, Lucas Heights

    1982-09-01

    Work on the synthesis of ligands capable of forming chelate complexes with technetium-99m as part of a search for tumour-localising radiopharmaceuticals is described. An account of the biological evaluation of a range of these compounds, in particular, benzimidazoles, sulphanilamides and acridines, and of the investigation of certain biochemical and biological properties affecting the clinical application of both ligands and radiopharmaceuticals is given. Interactions between therapeutic drugs and diagnostic radiopharmaceuticals are considered. The toxicological evaluation of a prospective hepatobiliary imaging agent, dimethyl-BIMIDA, is described.

  1. Iminobisphosphines to (non-)symmetrical diphosphinoamine ligands : Metal-induced synthesis of diphosphorus nickel complexes and application in ethylene oligomerisation reactions

    NARCIS (Netherlands)

    Boulens, Pierre; Lutz, Martin|info:eu-repo/dai/nl/304828971; Jeanneau, Erwann; Olivier-Bourbigou, Hélène; Reek, Joost N H; Breuil, Pierre Alain R

    2014-01-01

    We describe the synthesis of a range of novel iminobisphosphine ligands based on a sulfonamido moiety [R1SO2N=P(R 2)2-P(R3)2]. These molecules rearrange in the presence of nickel by metal-induced breakage of the P-P bond to yield symmetrical and nonsymmetrical diphosphinoamine nickel complexes of

  2. Synthesis and characterization of ligands and bifunctional chelating agents by modification of cysteine for complexation studies with 99mTc

    International Nuclear Information System (INIS)

    Pillai, M.R.A.; Kothari, K.; Banerjee, S.; Samuel, G.; Suresh, M.; Sarma, H.D.

    1998-01-01

    The synthesis of four novel ligands using the amino-acid cysteine and its ethyl carboxylate derivative is described. The synthetic method involves a two-step procedure, wherein the intermediate Schiff base formed by the condensation of the amino group of the cysteine substrate and salicylaldehyde is reduced to give the target ligands. The intermediates and the final products are characterised by high resolution NMR spectroscopy. Complexation studies of the ligands with 99m Tc are standardised using stannous tartrate as the reducing agent at varying reaction conditions. The complexes are characterised using standard quality control techniques such as TLC, paper electrophoresis and PC. Lipophilicities of the complexes are estimated by solvent extraction into chloroform. Substantial changes in net charge and lipophilicity in the 99m Tc complexes are observed on substituting the carboxylic acid residue in ligand I and II with the ethyl carboxylate groups (ligands III and IV). All the ligands formed complexes in high yield. While the complexes of ligand I and II are observed to be hydrophilic in nature and are not extractable into CHCl 3 , ligands III and IV gave neutral and lipophilic complexes. Though the distribution ratios of the complexes of ligands III and IV in CHCl 3 /saline system are observed to be very high, considerable differences in lipophilicities are also observed as evidenced by the difference in their respective extractabilities in chloroform. On storage, the complex of ligand III exhibit a tendency to get converted to a hydrophilic and non-extractable species. The bio-distribution of the complexes of ligands I and II showed that they have predominantly renal clearances whereas the complexes of ligands III and IV exhibited a significant hepatobiliary uptake and did not show much uptake in brain in spite of its favourable properties such as neutrality, lipophilicity and conversion into a hydrophilic species. (author)

  3. Synthesis, physico-chemical properties and complexing abilities of new amphiphilic ligands from D-galacturonic acid.

    Science.gov (United States)

    Allam, Anas; Behr, Jean-Bernard; Dupont, Laurent; Nardello-Rataj, Véronique; Plantier-Royon, Richard

    2010-04-19

    This paper describes a convenient and efficient synthesis of new complexing surfactants from d-galacturonic acid and n-octanol as renewable raw materials in a two-step sequence. In the first step, simultaneous O-glycosidation-esterification under Fischer conditions was achieved. The anomeric ratio of the products was studied based on the main experimental parameters and the activation mode (thermal or microwave). In the second step, aminolysis of the n-octyl ester was achieved with various functionalized primary amines under standard thermal or microwave activation. The physico-chemical properties of these new amphiphilic ligands were measured and these compounds were found to exhibit interesting surface properties. Complexing abilities of one uronamide ligand functionalized with a pyridine moiety toward Cu(II) ions was investigated in solution by EPR titrations. A solid compound was also synthesized and characterized, its relative structure was deduced from spectroscopic data. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Combining on-chip synthesis of a focused combinatorial library with computational target prediction reveals imidazopyridine GPCR ligands.

    Science.gov (United States)

    Reutlinger, Michael; Rodrigues, Tiago; Schneider, Petra; Schneider, Gisbert

    2014-01-07

    Using the example of the Ugi three-component reaction we report a fast and efficient microfluidic-assisted entry into the imidazopyridine scaffold, where building block prioritization was coupled to a new computational method for predicting ligand-target associations. We identified an innovative GPCR-modulating combinatorial chemotype featuring ligand-efficient adenosine A1/2B and adrenergic α1A/B receptor antagonists. Our results suggest the tight integration of microfluidics-assisted synthesis with computer-based target prediction as a viable approach to rapidly generate bioactivity-focused combinatorial compound libraries with high success rates. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis, spectroscopic and DNA binding ability of Co{sup II}, Ni{sup II}, Cu{sup II} and Zn{sup II} complexes of Schiff base ligand (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol. X-ray crystal structure determination of cobalt (II) complex

    Energy Technology Data Exchange (ETDEWEB)

    Yarkandi, Naeema H. [Chemistry Department, Faculty of Applied Science, Umm Al–Qura University, Makkah (Saudi Arabia); El-Ghamry, Hoda A., E-mail: helghamrymo@yahoo.com [Chemistry Department, Faculty of Applied Science, Umm Al–Qura University, Makkah (Saudi Arabia); Chemistry Department, Faculty of Science, Tanta University, Tanta (Egypt); Gaber, Mohamed [Chemistry Department, Faculty of Science, Tanta University, Tanta (Egypt)

    2017-06-01

    A novel Schiff base ligand, (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol (HL), has been designed and synthesized in addition to its metal chelates [Co(L){sub 2}]·l2H{sub 2}O, [Ni(L)Cl·(H{sub 2}O){sub 2}].5H{sub 2}O, [Cu(L)Cl] and [Zn(L)(CH{sub 3}COO)]. The structures of the isolated compounds have been confirmed and identified by means of different spectral and physicochemical techniques including CHN analysis, {sup 1}H &{sup 13}C NMR, mass spectral analysis, molar conductivity measurement, UV–Vis, infrared, magnetic moment in addition to TGA technique. The infrared spectral results ascertained that the ligand acts as monobasic tridentate binding to the metal centers via deprotonated hydroxyl oxygen, azomethine and imidazole nitrogen atoms. The UV–Vis, magnetic susceptibility and molar conductivity data implied octahedral geometry for Co(II) & Ni(II) complexes, tetrahedral for Zn(II) complex and square planar for Cu(II) complex. X-ray structural analysis of Co(II) complex 1 has been reported and discussed. Moreover, the type of interaction between the ligand & its complexes towards salmon sperm DNA (SS-DNA) has been examined by the measurement of absorption spectra and viscosity which confirmed that the ligand and its complexes interact with DNA via intercalation interaction as concluded from the values of binding constants (K{sub b}). - Highlights: • Synthesis of Co{sup II}, Ni{sup II}, Cu{sup II} and Zn{sup II} complexes of the Schiff base ligand based on 2-(aminomethyl)benzimidazole moiety. • The constitutions and structures of the ligand and complexes were elucidated. • Molecular structure of Co{sup II} complex was confirmed by single crystal X-ray diffraction method. • The ligand and its complexes interact with SS-DNA via intercalation mods.

  6. Synthesis and Optical Characterization of Mixed Ligands Beryllium Complexes for Display Device Applications

    Directory of Open Access Journals (Sweden)

    Vandna Nishal

    2015-01-01

    Full Text Available Synthesis and photoluminescent behaviour of mixed ligand based beryllium complexes with 2-(2-hydroxyphenylbenzoxazole (HPB and 5-chloro-8-hydroxyquinoline (Clq or 5,7-dichloro-8-hydroxyquinoline (Cl2q or 2-methyl-8-hydroxyquinoline (Meq or 8-hydroxyquinoline (q are reported in this work. These complexes, that is, [BeHPB(Clq], [BeHPB(Cl2q], [BeHPB(Meq], and [BeHPB(q], were prepared and their structures were confirmed by elemental analysis, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and thermal analysis. The beryllium complexes exhibited good thermal stability up to ~300°C temperature. The photophysical properties of beryllium complexes were studied using ultraviolet-visible absorption and photoluminescence emission spectroscopy. The complexes showed absorption peaks due to π-π∗ and n-π∗ electronic transitions. The complexes emitted greenish blue light with peak wavelength at 496 nm, 510 nm, 490 nm, and 505 nm, respectively, consisting of high intensity. Color tuning was observed with changing the substituents in quinoline ring ligand in metal complexes. The emitted light had Commission Internationale d’Eclairage color coordinates values at x=0.15 and y=0.43 for [BeHPB(Clq], x=0.21 and y=0.56 for [BeHPB(Cl2q], x=0.14 and y=0.38 for [BeHPB(Meq], x=0.17 and y=0.41 for [BeHPB(q]. Theoretical calculations using DFT/B3LYP/6-31G(d,p method were performed to reveal the three-dimensional geometries and the frontier molecular orbital energy levels of these synthesized metal complexes.

  7. A 12-Fold ThSi2 Interpenetrated Network Utilizing a Glycine-Based Pseudopeptidic Ligand

    Directory of Open Access Journals (Sweden)

    Edward Loukopoulos

    2018-01-01

    Full Text Available We report the synthesis and characterization of a 3D Cu(II coordination polymer, [Cu3(L12(H2O8]·8H2O (1, with the use of a glycine-based tripodal pseudopeptidic ligand (H3L1 = N,N′,N″-tris(carboxymethyl-1,3,5-benzenetricarboxamide or trimesoyl-tris-glycine. This compound presents the first example of a 12-fold interpenetrated ThSi2 (ths net. We attempt to justify the unique topology of 1 through a systematic comparison of the synthetic parameters in all reported structures with H3L1 and similar tripodal pseudopeptidic ligands. We additionally explore the catalytic potential of 1 in the A3 coupling reaction for the synthesis of propargylamines. The compound acts as a very good heterogeneous catalyst with yields up to 99% and loadings as low as 3 mol %.

  8. Zinc acetylacetonate hydrate adducted with nitrogen donor ligands: Synthesis, spectroscopic characterization, and thermal analysis

    Science.gov (United States)

    Brahma, Sanjaya; Shivashankar, S. A.

    2015-12-01

    We report synthesis, spectroscopic characterization, and thermal analysis of zinc acetylacetonate complex adducted by nitrogen donor ligands, such as pyridine, bipyridine, and phenanthroline. The pyridine adducted complex crystallizes to monoclinic crystal structure, whereas other two adducted complexes have orthorhombic structure. Addition of nitrogen donor ligands enhances the thermal property of these complexes as that with parent metal-organic complex. Zinc acetylacetonate adducted with pyridine shows much higher volatility (106 °C), decomposition temperature (202 °C) as that with zinc acetylacetonate (136 °C, 220 °C), and other adducted complexes. All the adducted complexes are thermally stable, highly volatile and are considered to be suitable precursors for metal organic chemical vapor deposition. The formation of these complexes is confirmed by powder X-ray diffraction, Fourier transform infrared spectroscopy, mass spectroscopy, and elemental analysis. The complexes are widely used as starting precursor materials for the synthesis of ZnO nanostructures by microwave irradiation assisted coating process.

  9. Synthesis, spectral characterization, theoretical, antimicrobial, DNA interaction and in vitro anticancer studies of Cu(II and Zn(II complexes with pyrimidine-morpholine based Schiff base ligand

    Directory of Open Access Journals (Sweden)

    M. Sankarganesh

    2018-05-01

    Full Text Available Novel Cu(II (1 and Zn(II (2 complexes with 4-(1-(4-morpholinophenylethylideneaminopyrimidine-5-carbonitrile (L have been synthesized and characterized by various spectroscopic and analytical techniques. DFT (density functional theory studies result confirms that, LMCT mechanism have been done between L and M(II ions. The antimicrobial studies indicate that the ligand L and complexes 1 & 2 exhibit higher activity against the E. coli bacteria and C. albicans fungi. The groove binding mode of ligand L and complexes 1 & 2 with CT-DNA have been confirmed by electronic absorption, competitive binding, viscometric and cyclic voltammetric studies. The electronic absorption titration of ligand L and complexes 1 & 2 with DNA have been carried out in different buffer solutions (pH 4.0, 7.0 & 10.0. The Kb values of ligand L and complexes 1 & 2 are higher in acidic buffer at pH 4.0 (Kb = 2.42 × 105, L; 2.8 × 105, 1; 2.65 × 105, 2 and the results revealed that, the interaction of synthesized compounds with DNA were higher in the acidic medium than basic and neutral medium. Furthermore, CT-DNA cleavage studies of ligand L and complexes 1 & 2 have been studied. The in vitro anticancer activities results show that complexes 1 & 2 have moderate cytotoxicity against cancer cell lines and low toxicity on normal cell line than ligand L. Keywords: Pyrimidine, Morpholine, DFT, Antimicrobial, DNA binding, Anticancer studies

  10. Electrochemical synthesis of transition element complexes with carboxyl- and carbonyl-containing ligands

    International Nuclear Information System (INIS)

    Frolov, V.Yu.; Bolotin, S.N.; Panyushkin, V.T.

    2005-01-01

    Complexes of d- and f-elements (E = Cu, Ni, Zn, Nd, Tb, Pr, Gd, Er) with carboxyl- and carbonyl-containing ligands were synthesized by the electrochemical method. The products were characterized by elemental analysis, thermal gravimetric analysis and IR spectra. The influence exerted by a number of factors on the process course was studied. The dependence of the electro synthesis parameters on the composition of the forming compounds was established. A new method for anodic synthesis of these compounds was developed [ru

  11. Ligand cluster-based protein network and ePlatton, a multi-target ligand finder.

    Science.gov (United States)

    Du, Yu; Shi, Tieliu

    2016-01-01

    Small molecules are information carriers that make cells aware of external changes and couple internal metabolic and signalling pathway systems with each other. In some specific physiological status, natural or artificial molecules are used to interact with selective biological targets to activate or inhibit their functions to achieve expected biological and physiological output. Millions of years of evolution have optimized biological processes and pathways and now the endocrine and immune system cannot work properly without some key small molecules. In the past thousands of years, the human race has managed to find many medicines against diseases by trail-and-error experience. In the recent decades, with the deepening understanding of life and the progress of molecular biology, researchers spare no effort to design molecules targeting one or two key enzymes and receptors related to corresponding diseases. But recent studies in pharmacogenomics have shown that polypharmacology may be necessary for the effects of drugs, which challenge the paradigm, 'one drug, one target, one disease'. Nowadays, cheminformatics and structural biology can help us reasonably take advantage of the polypharmacology to design next-generation promiscuous drugs and drug combination therapies. 234,591 protein-ligand interactions were extracted from ChEMBL. By the 2D structure similarity, 13,769 ligand emerged from 156,151 distinct ligands which were recognized by 1477 proteins. Ligand cluster- and sequence-based protein networks (LCBN, SBN) were constructed, compared and analysed. For assisting compound designing, exploring polypharmacology and finding possible drug combination, we integrated the pathway, disease, drug adverse reaction and the relationship of targets and ligand clusters into the web platform, ePlatton, which is available at http://www.megabionet.org/eplatton. Although there were some disagreements between the LCBN and SBN, communities in both networks were largely the same

  12. The Effects of Magnesium Ions on the Enzymatic Synthesis of Ligand-Bearing Artificial DNA by Template-Independent Polymerase

    Directory of Open Access Journals (Sweden)

    Yusuke Takezawa

    2016-06-01

    Full Text Available A metal-mediated base pair, composed of two ligand-bearing nucleotides and a bridging metal ion, is one of the most promising components for developing DNA-based functional molecules. We have recently reported an enzymatic method to synthesize hydroxypyridone (H-type ligand-bearing artificial DNA strands. Terminal deoxynucleotidyl transferase (TdT, a template-independent DNA polymerase, was found to oligomerize H nucleotides to afford ligand-bearing DNAs, which were subsequently hybridized through copper-mediated base pairing (H–CuII–H. In this study, we investigated the effects of a metal cofactor, MgII ion, on the TdT-catalyzed polymerization of H nucleotides. At a high MgII concentration (10 mM, the reaction was halted after several H nucleotides were appended. In contrast, at lower MgII concentrations, H nucleotides were further appended to the H-tailed product to afford longer ligand-bearing DNA strands. An electrophoresis mobility shift assay revealed that the binding affinity of TdT to the H-tailed DNAs depends on the MgII concentration. In the presence of excess MgII ions, TdT did not bind to the H-tailed strands; thus, further elongation was impeded. This is possibly because the interaction with MgII ions caused folding of the H-tailed strands into unfavorable secondary structures. This finding provides an insight into the enzymatic synthesis of longer ligand-bearing DNA strands.

  13. Solvothermal synthesis of tetravalent uranium with isophthalate or pyromellitate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Falaise, Clement; Delille, Jason; Volkringer, Christophe; Loiseau, Thierry [Contribution from Unite de Catalyse et Chimie du Solide (UCCS) - UMR CNRS 8181, Universite de Lille, USTL-ENSCL, Villeneuve d' Ascq (France)

    2015-06-15

    Three new coordination polymers bearing tetravalent uranium have been isolated with the O-donor ligands such as isophthalate (1,3-bdc) or pyromellitate (btec). The compounds 1 and 3 have been solvothermally synthesized in N,N-dimethylformamide (DMF). The crystal structure of U(1,3-bdc){sub 2}(DMF) (1) is built up from discrete tricapped trigonal-primastic UO{sub 9} units, for which one carbonyl oxygen atom from DMF is bound to uranium. The connection of the UO{sub 9} units with the isophthalate linkers occurs in a chelating and bidentate fashion and gives rise to the formation of a 3D framework, delimiting narrow channels running along the [101] direction. Upon heating, the DMF molecules are removed, generating the second phase U(1,3-bdc){sub 2} (2) compound, closely related to 1. Indeed, the coordination environment of uranium is reduced to eight with a distorted square-antiprismatic geometry. This transition induces the relative shrinkage of the network (ΔV = 23 %). The structure of the compound U(btec)(DMF){sub 2} (3) also exhibits a 3D framework composed of an isolated bicapped square-antiprismatic UO{sub 10} unit, for which two carbonyl oxygen atoms from DMF are bonded to uranium. Pyromellitate ensures the connection of the UO{sub 10} units through the carboxylate arms in a chelating mode. This results in the formation of a network with diamond-shaped channels, developed along the c axis and encapsulating the DMF molecules. In contrast to 1, no stable phase is observed upon removing the DMF species by heating. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Construction of Six Coordination Polymers Based on a 5,5′-(1,2-Ethynyl)bis-1,3-benzenedicarboxylic Ligand: Synthesis, Structure, Gas Sorption, and Magnetic Properties

    KAUST Repository

    Zheng, Bing; Luo, Jiahuan; Wang, Fang; Peng, Yu; Li, Guanghua; Huo, Qisheng; Liu, Yunling

    2013-01-01

    Six novel coordination polymers based on a multifunctional ligand, 5,5'-(1,2-ethynyl)bis-1,3-benzenedicarboxylic (H4EBDC), namely, |(C3H7NO)2(H2O)7(C 2H5OH)3| [Zn2(C18H 6O8)(C10H8N2) 2] (1), |(C3H7NO)3(H2O)30- (CH3CN)2|[Zn 6(C18H6O8)3(C 6H12N2O2)2

  15. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands

    KAUST Repository

    Wappel, Julia

    2016-01-28

    A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP) reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene) (pDCPD). Bearing either the common phosphine leaving ligand in the first and second Grubbs olefin metathesis catalysts, or the Ru–O bond cleavage for the next Hoveyda-type catalysts, this work is a step forward towards the control of polymer functionalization and living or switchable polymerizations.

  16. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands

    KAUST Repository

    Wappel, Julia; Fischer, Roland C; Cavallo, Luigi; Slugovc, Christian; Poater, Albert

    2016-01-01

    A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP) reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene) (pDCPD). Bearing either the common phosphine leaving ligand in the first and second Grubbs olefin metathesis catalysts, or the Ru–O bond cleavage for the next Hoveyda-type catalysts, this work is a step forward towards the control of polymer functionalization and living or switchable polymerizations.

  17. Construction of Six Coordination Polymers Based on a 5,5′-(1,2-Ethynyl)bis-1,3-benzenedicarboxylic Ligand: Synthesis, Structure, Gas Sorption, and Magnetic Properties

    KAUST Repository

    Zheng, Bing

    2013-03-06

    Six novel coordination polymers based on a multifunctional ligand, 5,5\\'-(1,2-ethynyl)bis-1,3-benzenedicarboxylic (H4EBDC), namely, |(C3H7NO)2(H2O)7(C 2H5OH)3| [Zn2(C18H 6O8)(C10H8N2) 2] (1), |(C3H7NO)3(H2O)30- (CH3CN)2|[Zn 6(C18H6O8)3(C 6H12N2O2)2] (2), |(C 3H7NO)2- (H2O)2(H 3O)2|[Cd3(C18H6O 8)2] (3), |(C3H7NO)|[Mn- (C 18H8O8)(C3H7NO) 2] (4), |(C3H7NO)2(H2O)(C 2H7N)3| [Mn6(C18H 7O8)4(H2O)8] (5), and [Mn2(C18H6O8)(C3H 7NO)2] (6), have been constructed under solvothermal conditions and structurally characterized by single-crystal X-ray diffraction. In these compounds, the ligand, H4EBDC, exhibits different coordination modes and conformations, constructing various architectures by bridging a variety of metal ions or polynuclear clusters. Compound 1 forms a three-dimensional (3D) FSC network constructed from two-dimensional (2D) layer motifs joined by EBDC4- and 4,4\\'-bipyridine bridges. Compound 2 possesses an NbO topology by linking Zn2(CO2)4 units with the ligand, coordinated amine molecules fill the pores, while compound 3 exhibits a 3D FLU network with Cd2+ as the cation and features an infinite framework built from tricadmium clusters. Compound 4 is based on PtS net, constructed of 4-connected rectangular H4EBDC units with tetrahedral monometallic Mn(CO2)4 nodes. Compound 5 is composed of 2D layers with (3,6)-connected KGD topology, and compound 6 consists of a 3D PtS-X network, built by bridging a metal chain with the ligand. The structures of these compounds have been discussed together with their corresponding properties, such as gas storage, separation, and magnetic properties. © 2013 American Chemical Society.

  18. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-Affinity γ-Hydroxybutyrate (GHB) Binding Sites

    DEFF Research Database (Denmark)

    Vogensen, Stine B.; Marek, Ales; Bay, Tina

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screen...

  19. Ligand mediated synthesis of AgInSe2 nanoparticles with tetragonal/orthorhombic crystal phases

    International Nuclear Information System (INIS)

    Abazović, Nadica D.; Čomor, Mirjana I.; Mitrić, Miodrag N.; Piscopiello, Emanuela; Radetić, Tamara; Janković, Ivana A.; Nedeljković, Jovan M.

    2012-01-01

    Nanosized AgInSe 2 particles (d ∼ 7–25 nm) were synthesized using colloidal chemistry method at 270 °C. As solvents/surface ligands 1-octadecene, trioctylphosphine, and oleylamine were used. It was shown that choice of ligand has crucial impact not only on final crystal phase of nanoparticles, but also at mechanism of crystal growth. X-ray diffraction and TEM/HRTEM techniques were used to identify obtained crystal phases and to measure average size and shape of nanoparticles. UV/Vis data were used to estimate band-gap energies of obtained samples. It was shown that presented routes can provide synthesis of nanoparticles with desired crystal phase (tetragonal and/or orthorhombic), with band-gap energies in the range from 1.25 to 1.53 eV.

  20. Synthesis and Doping of Ligand-Protected Atomically-Precise Metal Nanoclusters

    KAUST Repository

    Aljuhani, Maha A.

    2016-05-01

    Rapidly expanding research in nanotechnology has led to exciting progress in a versatile array of applications from medical diagnostics to catalysis. This success resulted from the manipulation of the desired properties of nanomaterials by controlling their size, shape, and composition. Among the most thriving areas of research about nanoparticle is the synthesis and doping of the ligand-protected atomically-precise metal nanoclusters. In this thesis, we developed three different novel metal nanoclusters, such as doped Ag29 with five gold (Au) atoms leading to enhance its quantum yield with remarkable stability. We also developed half-doped (alloyed) cluster of Ni6 nanocluster with molybdenum (Mo). This enabled enhanced stability and better catalytic activity. The third metal nanocluster that we synthesized was Au28 nanocluster by using di-thiolate as the ligand stabilizer instead of mono-thiolate. The new metal clusters obtained have been characterized by spectroscopic, electrochemical and crystallographic methods.

  1. Ligand based pharmacophore modelling of anticancer histone ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... are useful in predicting the biological activity of the compound or compound library by screening it ... with high affinity of binding toward a given protein ..... High- throughput structure-based pharmacophore modelling as a basis for successful parallel virtual screening. J. Comp. Aided Mol. Design, 20:.

  2. The Effect of Precursor Ligands and Oxidation State in the Synthesis of Bimetallic Nano-Alloys

    KAUST Repository

    LaGrow, Alec P.

    2015-05-12

    The characteristics of bimetallic nanomaterials are dictated by their size, shape and elemental distribution. Solution synthesis is widely utilized to form nanomaterials, such as nanoparticles, with controlled size and shape. However, the effects of variables on the characteristics of bimetallic nanomaterials are not completely understood. In this study, we used a continuous-flow synthetic strategy to explore the effects of the ligands and the oxidation state of a metal precursor in a shape-controlled synthesis on the final shape of the nanomaterials and the elemental distribution within the alloy. We demonstrate that this strategy can tune the size of monodisperse PtM (M=Ni or Cu) alloy nanocrystals ranging from 3 to 16 nm with an octahedral shape using acetylacetonate or halide precursors of Pt(II), Pt(IV) and Ni or Cu (II). The nanoparticles formed from halide precursors showed an enrichment of platinum on their surfaces, and the bromides could oxidatively etch the nanoparticles during synthesis with the O2/Br- pair. The two nanocrystal precursors can be uti-lized independently and can control the size with a trend of Pt(acac)2ligand shell of a precursor during the synthesis of alloy nanoparticles as well as to control, in a scalable manner, the nanomaterial size and surface chemistry.

  3. Synthesis and Characterization of a Triphos Ligand Derivative and the Corresponding Pd II Complexes: Triphos Ligand Derivative and Corresponding Pd II Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Deanna L.; Boro, Brian J.; Grubel, Katarzyna; Helm, Monte L.; Appel, Aaron M.

    2015-11-16

    The synthesis of the new bis(2-(diphenylphosphino)ethyl)methylhydroxyphosphine tridentate phosphine ligand, LCH2OH/Ph, is reported. The ligand reacts with [Pd(Cl)2(PhCN)2 to form [Pd(LCH2OH/Ph)Cl]Cl. Exchange of the chloride ions for triflate (OTf–) using AgOTf yielded pure [Pd(LCH2OH/Ph)OTf]OTf. In addition to spectral characterization the free ligand, LCH2OH/Ph, and Pd(II) complex, [Pd(LCH2OH/Ph)OTf]OTf, are structurally characterized. This research was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated by Battelle for DOE.

  4. Vanadyl complexes with dansyl-labelled di-picolinic acid ligands: synthesis, phosphatase inhibition activity and cellular uptake studies.

    Science.gov (United States)

    Collins, Juliet; Cilibrizzi, Agostino; Fedorova, Marina; Whyte, Gillian; Mak, Lok Hang; Guterman, Inna; Leatherbarrow, Robin; Woscholski, Rudiger; Vilar, Ramon

    2016-04-28

    Vanadium complexes have been previously utilised as potent inhibitors of cysteine based phosphatases (CBPs). Herein, we present the synthesis and characterisation of two new fluorescently labelled vanadyl complexes (14 and 15) with bridged di-picolinic acid ligands. These compounds differ significantly from previous vanadyl complexes with phosphatase inhibition properties in that the metal-chelating part is a single tetradentate unit, which should afford greater stability and scope for synthetic elaboration than the earlier complexes. These new complexes inhibit a selection of cysteine based phosphatases (CBPs) in the nM range with some selectivity. Fluorescence spectroscopic studies (including fluorescence anisotropy) were carried out to demonstrate that the complexes are not simply acting as vanadyl delivery vehicles but they interact with the proteins. Finally, we present preliminary fluorescence microscopy studies to demonstrate that the complexes are cell permeable and localise throughout the cytoplasm of NIH3T3 cells.

  5. Synthesis and Crystal Structures of Two Metal Complexes Incorporating Malonate and Organodiamine Ligands

    International Nuclear Information System (INIS)

    Zhang, Quan Zheng; Yang, Wen Bin; Chen, Shu Mei; Lu, Can Zhong

    2005-01-01

    In the present work we report the synthesis and X-ray crystal structures of two new malonato complexes incorporating organodiamine ligands: [Ni(phen)(mal)(H_2O)_2]·3H_2O (H_2mal = malonic acid, phen = 1,10-phenanthroline) and [Zn(bpy)(H_2O)]_2[Zn(bpy)(mal)(H_2O)_2]_2(NO_3)_4·4H_2O (bpy = 2,2'-bipyridine). Investigation on novel organic-inorganic hybrid framework assemblies represents one of the most active areas of material science and chemical research. Major advances have been made in these materials due to their interesting properties and potential in various applications, e. g., electrical conductivity, magnetism, host-guest chemistry, ion exchange, catalysis, nonlinear optics, etc. Moreover, discovery and design of such new materials with specific networks remain of a particularly important and active subject in the field of supramolecuar chemistry and crystal engineering. A variety of complexes with interesting compositions and topologies have been prepared through taking certain factors into account, such as the coordination nature of the metal ion and the shape, functionality, flexibility, and symmetry of organic ligand. Recently, some dicarboxylate ligands, such as oxalate, malonate, and terephthalate, have been widely used in the construction of these interesting structures

  6. Synthesis, electrochemistry, and spectroscopic properties of six-coordinate monooxomolybdenum(VI) complexes containing tridentate Schiff base and bidentate catecholate ligands. Crystal and molecular structure of (N-salicylidene-2-aminophenolato)(naphthalene-2,3-diolato)oxomolybdenum(VI)

    International Nuclear Information System (INIS)

    Mondal, J.U.; Schultz, F.A.; Brennan, T.D.; Scheidt, W.R.

    1988-01-01

    Six-coordinate monooxomolybdenum(VI) complexes, MoO(cat)(Sap), where Sap 2- = the Schiff base dianion N-salicylidene-2-aminophenolate and cat 2- = catecholate Cat 2- , naphthalene-2,3-diolate (Naphcat 2- ), or 3,5-di-tert-butylcatecholate (DTBcat 2- ), are prepared by reacting the Mo(VI) dimer. [MoO 2 (Sap)] 2 , with the appropriate catechol. The products are characterized by cyclic voltammetry, mass spectrometry, and uv/vis, ir, and 95 Mo NMR spectroscopy. The MoO(cat)(Sap) complexes represent the first examples of a mononuclear MoO 4+ center with a coordination number of six. The crystal structure of the MoO-(Naphcat)(Sap) derivative is reported, confirming the six-coordinate, distorted octahedrla environment about Mo(VI). Bond angles in the coordination group deviate from the ideal value of 90/degrees/ as a consequence of the ligand bite constraints and because all four O-Mo-O angles involving the terminal oxo ligand are larger than the ideal 90/degrees/ value. MoO(cat)(Sap) complexes undergo reversible one-electronic reduction at -0.5 to -0.7 V versus Fc /sup +/0/ followed by irreversible one-electron reduction at -1.6 to -1.9 V. Reversible MoO 4+ /MoO 3+ electrochemistry is attributed to the fact that the Mo d/sub xy/orbital of MoO(cat)(Sap) can be singly occupied upon reduction to Mo(V) without unfavorable interaction with the four bonds in its equatorial plane. This contrasts with the irreversible electrochemical behavior of seven-coordinate MoO 4+ complexes, which contain five such bonds. The 95 Mo NMR chemical shift of MoO(Naphcat)(Sap) is +385 ppM versus external molybdate; this value is highly deshielded with respect to seven-coordinate MoO 4+ and six-coordinate MoO 2 2+ complexes with O and N donors. 35 references, 4 figures, 5 tables

  7. Ligand-Controlled Synthesis of Azoles via Ir-Catalyzed Reactions of Sulfoxonium Ylides with 2-Amino Heterocycles.

    Science.gov (United States)

    Phelps, Alicia M; Chan, Vincent S; Napolitano, José G; Krabbe, Scott W; Schomaker, Jennifer M; Shekhar, Shashank

    2016-05-20

    An iridium-catalyzed method was developed for the synthesis of imidazo-fused pyrrolopyrazines. The presence or absence of a nitrogenated ligand controlled the outcome of the reaction, leading to simple β-keto amine products in the absence of added ligand and the cyclized 7- and 8-substituted-imidazo[1,2-a]pyrrolo[2,3-e]pyrazine products in the presence of ligand. This catalyst control was conserved across a variety of ylide and amine coupling partners. The substrate was shown to act as a ligand for the iridium catalyst in the absence of other ligands via NMR spectroscopy. Kinetic studies indicated that formation of the Ir-carbene was reversible and the slow step of the reaction. These mechanistic investigations suggest that the β-keto amine products form via an intramolecular carbene N-H insertion, and the imidazopyrrolopyrazines form via an intermolecular carbene N-H insertion.

  8. Re-evolution of the 2-phenylquinolines: ligand-based design, synthesis, and biological evaluation of a potent new class of Staphylococcus aureus NorA efflux pump inhibitors to combat antimicrobial resistance.

    Science.gov (United States)

    Sabatini, Stefano; Gosetto, Francesca; Iraci, Nunzio; Barreca, Maria Letizia; Massari, Serena; Sancineto, Luca; Manfroni, Giuseppe; Tabarrini, Oriana; Dimovska, Mirjana; Kaatz, Glenn W; Cecchetti, Violetta

    2013-06-27

    Overexpression of efflux pumps is an important mechanism by which bacteria evade the effects of antimicrobial agents that are substrates. NorA is a Staphylococcus aureus efflux pump that confers reduced susceptibility to many structurally unrelated agents, including fluoroquinolones, biocides, and dyes, resulting in a multidrug resistant (MDR) phenotype. In this work, a series of 2-phenylquinoline derivatives was designed by means of ligand-based pharmacophore modeling in an attempt to identify improved S. aureus NorA efflux pump inhibitors (EPIs). Most of the 2-phenylquinoline derivatives displayed potent EPI activity against the norA overexpressing strain SA-1199B. The antibacterial activity of ciprofloxacin, when used in combination with some of the synthesized compounds, was completely restored in SA-1199B and SA-K2378, a strain overexpressing norA from a multicopy plasmid. Compounds 3m and 3q also showed potent synergistic activity with the ethidium bromide dye in a strain overexpressing the MepA MDR efflux pump.

  9. Synthesis, Characterization and Biological Evaluation of Transition Metal Complexes Derived from N, S Bidentate Ligands

    Directory of Open Access Journals (Sweden)

    Enis Nadia Md Yusof

    2015-05-01

    Full Text Available Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC with 2-methoxybenzaldehyde (2MB and 3-methoxybenzaldehyde (3MB. The ligands were reacted separately with acetates of Cu(II, Ni(II and Zn(II yielding 1:2 (metal:ligand complexes. The metal complexes formed were expected to have a general formula of [M(NS2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1 and S2M3MBH (2 were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7 and estrogen receptor-negative (MDA-MB-231 breast cancer cell lines. Only the Cu(II complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II complexes have a strong DNA binding affinity.

  10. Synthesis, Crystal Structure and Luminescent Property of A Novel Cd(II) Coordination Polymer with Bis-imidazole Ligand

    International Nuclear Information System (INIS)

    Zhou, Yong Hong

    2013-01-01

    The key to the successful design of metal-organic coordination polymers is the judicious selection of organic ligand. Recently, polydentate aromatic nitrogen heterocyclic ligands with five-membered rings have been well-studied in the construction of supramolecular structure for their N-coordinated sites apt to coordinating to transition metals. Similar to six-membered N-heterocyclic ligands, the azole-based five-membered N-heterocyclic ligands, such as imidazoles, triazoles and tetrazoles have been extensively employed in the construction of various coordination polymers with diverse topologies and interesting properties. The bis(azole) ligands in which N-donor azole rings (imidazole, triazole, or tetrazole) are separated by alkyl, (CH 2 ) n , spacers are good choices for flexible bridging ligands. The conformational flexibility of the spacers makes the ligands adaptable to various coordination networks with one-, two-, and three dimensional structures

  11. Synthesis, characterization and biological activity of symmetric dinuclear complexes derived from a novel macrocyclic compartmental ligand

    Energy Technology Data Exchange (ETDEWEB)

    Mruthyunjayaswamy, B.H.M.; Ijare, Omkar B.; Jadegoud, Y. [Gulbarga University (India). Dept. of Chemistry]. E-mail: bhmmswamy53@rediffmail.com

    2005-07-15

    A phenol based novel macrocyclic binucleating compartmental ligand N,N-bis(2,6-diiminomethyl-4-methyl-1-hydroxyphenyl)malonoyldicarboxamide was prepared. The complexes were prepared by template method by reacting 2,6-diformyl-4-methylphenol, malonoyl dihydrazide and the metal chlorides of Cu(II), Ni(II), Co(II), Cd(II), Zn(II) and Hg(II) in methanol to get a series of dinuclear complexes. The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility data, IR, UV-Vis, ESR, NMR and FAB mass spectral data. The dinuclear nature of the complexes was confirmed on the basis of elemental analyses, magnetic susceptibility, ESR and FAB mass spectral data. The ligand as well as Cu(II), Ni(II), Co(II) and Zn(II) complexes were tested for their antibacterial and antifungal properties against Escherichia coli, Staphyloccocus aureus, Aspergillus niger and Fusarium oxysporum. Magnetic susceptibility measurements of Cu(II), Ni(II) and Co(II) complexes reveal that these complexes exhibit antiferromagnetic coupling behavior due to the presence of two metal ions in close proximity. FAB mass spectrum of the Cu(II) complex gave a clear evidence for the dinuclear nature. The ligand and the complexes were found to be less active against the tested bacteria, but the ligand alone was found active against the fungus Fusarium oxysporum. (author)

  12. Synthesis, characterization and biological activity of symmetric dinuclear complexes derived from a novel macrocyclic compartmental ligand

    International Nuclear Information System (INIS)

    Mruthyunjayaswamy, B.H.M.; Ijare, Omkar B.; Jadegoud, Y.

    2005-01-01

    A phenol based novel macrocyclic binucleating compartmental ligand N,N-bis(2,6-diiminomethyl-4-methyl-1-hydroxyphenyl)malonoyldicarboxamide was prepared. The complexes were prepared by template method by reacting 2,6-diformyl-4-methylphenol, malonoyl dihydrazide and the metal chlorides of Cu(II), Ni(II), Co(II), Cd(II), Zn(II) and Hg(II) in methanol to get a series of dinuclear complexes. The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility data, IR, UV-Vis, ESR, NMR and FAB mass spectral data. The dinuclear nature of the complexes was confirmed on the basis of elemental analyses, magnetic susceptibility, ESR and FAB mass spectral data. The ligand as well as Cu(II), Ni(II), Co(II) and Zn(II) complexes were tested for their antibacterial and antifungal properties against Escherichia coli, Staphyloccocus aureus, Aspergillus niger and Fusarium oxysporum. Magnetic susceptibility measurements of Cu(II), Ni(II) and Co(II) complexes reveal that these complexes exhibit antiferromagnetic coupling behavior due to the presence of two metal ions in close proximity. FAB mass spectrum of the Cu(II) complex gave a clear evidence for the dinuclear nature. The ligand and the complexes were found to be less active against the tested bacteria, but the ligand alone was found active against the fungus Fusarium oxysporum. (author)

  13. A new copper(II) Schiff base complex containing asymmetrical tetradentate N.sub.2./sub.O.sub.2./sub. Schiff base ligand: Synthesis, characterization, crystal structure and DFT study

    Czech Academy of Sciences Publication Activity Database

    Grivani, G.; Baghan, S.H.; Vakili, M.; Khalaji, A.D.; Tahmasebi, V.; Eigner, Václav; Dušek, Michal

    2015-01-01

    Roč. 1082, Feb (2015), 91-96 ISSN 0022-2860 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : Schiff-base * copper (II) * complex * single-crystal * thermal decomposition * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.780, year: 2015

  14. Synthesis and antileishmanial activity of antimony (V) complexes of hydroxypyranone and hydroxypyridinone ligands.

    Science.gov (United States)

    Sheikhmoradi, Vafa; Saberi, Sedigheh; Saghaei, Lotfollah; Pestehchian, Nader; Fassihi, Afshin

    2018-04-01

    A novel series of antimony (V) complexes with the hydroxypyranone and hydroxypyridinone ligands were synthesized and characterized by 1 HNMR, FT-IR and electron spin ionization mass spectroscopic (ESI-MS) techniques. The synthesis process involved protection of hydroxyl group followed by the reaction of the intermediate with primary amines and finally deprotection. All compounds were evaluated for in vitro activities against the amastigote and promastigote forms of Leishmania major . Most of the synthesized compounds exhibited good antileishmanial activity against both forms of L. major . IC 50 values of the most active compounds; 9d , 9d and 9e , after 24, 48 and 72 h against amastigote model were 15, 12.5 and 5.5 μg/mL, respectively. 9e , 11 and 9e inhibited the promastigote form of parasite after 24, 48 and 72 h with IC 50 values of 10, 2 and 1 μg/mL, respectively.

  15. Synthesis of the sup 11 C-labelled. beta. -adrenergic receptor ligands atenolol, metoprolol and propanolol

    Energy Technology Data Exchange (ETDEWEB)

    Antoni, G.; Ulin, J.; Laangstroem, B. (Uppsala Univ. (Sweden). Dept. of Organic Chemistry)

    1989-01-01

    The {sup 11}C-labelled {beta}-adrenergic receptor ligands atenolol 1, metoprolol 2 and propranolol 3 have been synthesized by an N-alkylation reaction using (2-{sup 11}C)isopropyl iodide. The labelled isopropyl iodide was prepared in a one-pot reactor system from ({sup 11}C)carbon dioxide and obtained in 40% radiochemical yield within 14 min reaction time. The total reaction times for compounds 1-3, counted from the start of the isopropyl iodide synthesis and including purification were 45-55 min. The products were obtained in 5-15% radiochemical yields and with radiochemical purities higher than 98%. The specific activity ranged from 0.4 to 4 GBq/{mu}mol. In a typical experiment starting with 4 GBq around 75 MBq of product was obtained. (author).

  16. Synthesis and spectroscopic behavior of highly luminescent trinuclear europium complexes with tris-β-diketone ligand

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dunjia, E-mail: dunjiawang@163.com; Pi, Yan; Liu, Hua; Wei, Xianhong; Hu, Yanjun; Zheng, Jing

    2014-11-15

    Highlights: • Synthesis of the tris-β-diketone ligand and its trinuclear europium complexes. • Photoluminescence behavior of trinuclear europium complexes. • Analysis of the Judd–Ofelt intensity parameters (Ω{sub t}), lifetime (τ) and quantum yield (η). - Abstract: A new tris-β-diketone ligand, 2-[4,6-bis-(1-benzoyl-2-oxo-2-phenyl-ethyl)-[1,3,5]triazin-2-yl] -1,3-diphenyl-propane-1,3-dione (H{sub 3}L), and its trinuclear europium complexes, Eu{sub 3}(DBM){sub 6}L (C1), Eu{sub 3}(DBM){sub 6}(Bipy){sub 3}L (C2) and Eu{sub 3}(DBM){sub 6}(Phen){sub 3}L (C3) were synthesized and their spectroscopic behaviors were studied by FT-IR, {sup 1}H NMR, UV–vis and photoluminescence spectroscopic techniques. These europium complexes exhibited the characteristic emission bands that arise from the {sup 5}D{sub 0} → {sup 7}F{sub J} (J = 0–4) transitions of the europium ion in solid state. The Ω{sub 2} and Ω{sub 4} intensity parameters, lifetime (τ) and luminescence quantum yield (η) were calculated according to the emission spectra and luminescence decay curves in solid state. The results indicated that these trinuclear europium complexes displayed a longer lifetime (τ) and higher luminescence quantum efficiency (η), especially complexes C2 (τ = 0.820 ms, η = 46.5%) and C3 (τ = 0.804 ms, η = 47.4%), which due to the effect of two additional europium ion lumophors and the introduction of the third ligands, Bipy or Phen in trinuclear complexes. Their Ω{sub 2} values demonstrated that the europium ion in these complexes is in a highly polarizable chemical environment.

  17. A Ferrocene-Based Catecholamide Ligand: the Consequences of Ligand Swivel for Directed Supramolecular Self-Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Mugridge, Jeffrey; Fiedler, Dorothea; Raymond, Kenneth

    2010-02-04

    A ferrocene-based biscatecholamide ligand was prepared and investigated for the formation of metal-ligand supramolecular assemblies with different metals. Reaction with Ge(IV) resulted in the formation of a variety of Ge{sub n}L{sub m} coordination complexes, including [Ge{sub 2}L{sub 3}]{sup 4-} and [Ge{sub 2}L{sub 2}({mu}-OMe){sub 2}]{sup 2-}. The ligand's ability to swivel about the ferrocenyl linker and adopt different conformations accounts for formation of many different Ge{sub n}L{sub m} species. This study demonstrates why conformational ligand rigidity is essential in the rational design and directed self-assembly of supramolecular complexes.

  18. Synthesis, spectral, thermal, potentiometric and antimicrobial studies of transition metal complexes of tridentate ligand

    Directory of Open Access Journals (Sweden)

    Sarika M. Jadhav

    2014-01-01

    Full Text Available A series of metal complexes of Cu(II, Ni(II, Co(II, Fe(III and Mn(II have been synthesized with newly synthesized biologically active tridentate ligand. The ligand was synthesized by condensation of dehydroacetic acid (3-acetyl-6-methyl-(2H pyran-2,4(3H-dione or DHA, o-phenylene diamine and fluoro benzaldehyde and characterized by elemental analysis, molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, 1H-NMR, UV–Vis spectroscopy and mass spectra. From the analytical data, the stoichiometry of the complexes was found to be 1:2 (metal:ligand with octahedral geometry. The molar conductance values suggest the non-electrolyte nature of metal complexes. The IR spectral data suggest that the ligand behaves as a dibasic tridentate ligand with ONN donor atoms sequence towards central metal ion. Thermal behaviour (TG/DTA and kinetic parameters calculated by the Coats–Redfern and Horowitz–Metzger method suggest more ordered activated state in complex formation. To investigate the relationship between stability constants of metal complexes and antimicrobial activity, the dissociation constants of Schiff bases and stability constants of their binary metal complexes have been determined potentiometrically in THF–water (60:40% solution at 25 ± 1 °C and at 0.1 M NaClO4 ionic strength. The potentiometric study suggests 1:1 and 1:2 complexation. Antibacterial and antifungal activities in vitro were performed against Staphylococcus aureus, Escherichia coli and Aspergillus niger, Trichoderma, respectively. The stability constants of the metal complexes were calculated by the Irving–Rosotti method. A relation between the stability constant and antimicrobial activity of complexes has been discussed. It is observed that the activity enhances upon complexation and the order of antifungal activity is in accordance with stability order of metal ions.

  19. Synthesis of novel ligands for neuro-inflammation imaging using Positron Emission Tomography

    International Nuclear Information System (INIS)

    Cacheux, Fanny

    2016-01-01

    Neuro-inflammation plays an important role in many neuro-degenerative diseases (Alzheimer, Parkinson, Multiple sclerosis..) and recent developments in molecular imaging provide today new insights into the diagnostic and the treatment management of these diseases. Among the existing imaging techniques, the highly sensitive and quantitative nuclear modalities SPECT (single photon emission computed tomography) but especially PET (positron emission tomography) play key roles. My PhD program is devoted to the design and synthesis of novel radioligands, all dedicated to the imaging of specific targets and processes linked to neuro-inflammation. For this, PET and the short-lived positron-emitter fluorine-18 (T 1/2 : 109.8 min) remain the main focuses. The project has been divided into two sections, the first one concentrates on the development of novel ligands targeting the Translocator Protein 18 kDa (TSPO). Indeed, this target is today recognized as an early bio-marker of neuro-inflammatory processes and PK11195, an isoquinoline carboxamide labelled with carbon-11, was, in the late 80's, the first reported PET-radioligand. More recently, new compounds, all belonging to different chemical classes, have emerged and notably the pyrazolopyrimidine acetamide [ 11 C]DPA-713 and the pyridazinoindole acetamide [ 11 C]SSR180575. Within the first section of my PhD, novel derivatives of both DPA-713 and SSR180575 have been synthesized and in vitro characterized. Dedicated precursors for labelling were also developed for the most promising candidates, and radiolabelling has been performed. Some results have been presented at the 21. International Symposium on Radiopharmaceutical Sciences (Columbia, MO, USA - May 26-31, 2015).The second part of my PhD, deals with the development of ligands for alternative targets to the TSPO, like the type-2 cannabinoid receptor (CB2R) and the purinergic P2Y14/P2Y12 receptors, the latter emerging today as a hot topic for imaging opportunities

  20. Synthesis and electroluminescence properties of europium (III) complexes with new second ligands

    International Nuclear Information System (INIS)

    Liu Ze; Wen Fushan; Li Wenlian

    2005-01-01

    Two novel second ligands, 9,9-Di-(4-methoxyphenyl)-9-H-4,5-' (OMe-Spiro-DF) and 9,9-Di-(2-(4-(4-butyloxy)phenyl)-5-phenyl-1,3,4-oxadiazolyl)-phenyl-9-H-4, 5-Diazafluorene (OXD-Spiro-DF), were successfully prepared. Europium complexes, Eu(DBM) 3 (OMe-Spiro-DF) and Eu(DBM) 3 (OXD-Spiro-DF) (DBM=dibenzolylmethane) based on the two ligands were designed and synthesized. For a double-layer device with configuration of indium tin oxide (ITO)/N, N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD)/Eu(DBM) 3 (OXD-Spiro-DF) or Eu(DBM) 3 (OMe-Spiro-DF)/Mg/Ag, compared with the device based on complex Eu(DBM) 3 (OMe-Spiro-DF), the brightness and electroluminescent (EL) efficiency of device based on complex Eu(DBM) 3 (OXD-Spiro-DF) with oxadiazole-functionalized ligand OXD-Spiro-DF are significantly improved due to the improvement of electron-transporting ability. A maximum brightness of 154 cd/m 2 was obtained at 17 V in the complex Eu(DBM) 3 (OXD-Spiro-DF), about four times brighter than the corresponding complex Eu(DBM) 3 (OMe-Spiro-DF)

  1. Synthesis and reactivity of TADDOL-based chiral Fe(II) PNP pincer complexes-solution equilibria between κ(2)P,N- and κ(3)P,N,P-bound PNP pincer ligands.

    Science.gov (United States)

    Holzhacker, Christian; Stöger, Berthold; Carvalho, Maria Deus; Ferreira, Liliana P; Pittenauer, Ernst; Allmaier, Günter; Veiros, Luis F; Realista, Sara; Gil, Adrià; Calhorda, Maria José; Müller, Danny; Kirchner, Karl

    2015-08-07

    Treatment of anhydrous FeX2 (X = Cl, Br) with 1 equiv. of the asymmetric chiral PNP pincer ligands PNP-R,TAD (R = iPr, tBu) with an R,R-TADDOL (TAD) moiety afforded complexes of the general formula [Fe(PNP)X2]. In the solid state these complexes adopt a tetrahedral geometry with the PNP ligand coordinated in κ(2)P,N-fashion, as shown by X-ray crystallography and Mössbauer spectroscopy. Magnetization studies led to a magnetic moment very close to 4.9μB reflecting the expected four unpaired d-electrons (quintet ground state). In solution there are equilibria between [Fe(κ(3)P,N,P-PNP-R,TAD)X2] and [Fe(κ(2)P,N-PNP-R,TAD)X2] complexes, i.e., the PNP-R,TAD ligand is hemilabile. At -50 °C these equilibria are slow and signals of the non-coordinated P-TAD arm of the κ(2)P,N-PNP-R,TAD ligand can be detected by (31)P{(1)H} NMR spectroscopy. Addition of BH3 to a solution of [Fe(PNP-iPr,TAD)Cl2] leads to selective boronation of the pendant P-TAD arm shifting the equilibrium towards the four-coordinate complex [Fe(κ(2)P,N-PNP-iPr,TAD(BH3))Cl2]. DFT calculations corroborate the existence of equilibria between four- and five-coordinated complexes. Addition of CO to [Fe(PNP-iPr,TAD)X2] in solution yields the diamagnetic octahedral complexes trans-[Fe(κ(3)P,N,P-PNP-iPr,TAD)(CO)X2], which react further with Ag(+) salts in the presence of CO to give the cationic complexes trans-[Fe(κ(3)P,N,P-PNP-iPr,TAD)(CO)2X](+). CO addition most likely takes place at the five coordinate complex [Fe(κ(3)P,N,P-PNP-iPr,TAD)X2]. The mechanism for the CO addition was also investigated by DFT and the most favorable path obtained corresponds to the rearrangement of the pincer ligand first from a κ(2)P,N- to a κ(3)P,N,P-coordination mode followed by CO coordination to [Fe(κ(3)P,N,P-PNP-iPr,TAD)X2]. Complexes bearing tBu substituents do not react with CO. Moreover, in the solid state none of the tetrahedral complexes are able to bind CO.

  2. Ligand modeling and design

    Energy Technology Data Exchange (ETDEWEB)

    Hay, B.P. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used in the cost-effective removal of specific radionuclides from nuclear waste streams. Organic ligands with metal ion specificity are critical components in the development of solvent extraction and ion exchange processes that are highly selective for targeted radionuclides. The traditional approach to the development of such ligands involves lengthy programs of organic synthesis and testing, which in the absence of reliable methods for screening compounds before synthesis, results in wasted research effort. The author`s approach breaks down and simplifies this costly process with the aid of computer-based molecular modeling techniques. Commercial software for organic molecular modeling is being configured to examine the interactions between organic ligands and metal ions, yielding an inexpensive, commercially or readily available computational tool that can be used to predict the structures and energies of ligand-metal complexes. Users will be able to correlate the large body of existing experimental data on structure, solution binding affinity, and metal ion selectivity to develop structural design criteria. These criteria will provide a basis for selecting ligands that can be implemented in separations technologies through collaboration with other DOE national laboratories and private industry. The initial focus will be to select ether-based ligands that can be applied to the recovery and concentration of the alkali and alkaline earth metal ions including cesium, strontium, and radium.

  3. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    International Nuclear Information System (INIS)

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni; Xu, Xiao-Wei; Feng, Yun-Long

    2014-01-01

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL 2 (H 2 O) 2 ] n ·2nH 2 O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H 2 adbc), terephthalic acid (H 2 tpa), thiophene-2,5-dicarboxylic acid (H 2 tdc) and 1,4-benzenedithioacetic acid (H 2 bdtc), four 3D structures [Co 2 L 2 (adbc)] n ·nH 2 O (2), [Co 2 L 2 (tpa)] n (3), [Co 2 L 2 (tdc)] n (4), [Co 2 L 2 (bdtc)(H 2 O)] n (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions

  4. Oxovanadium(IV) complexes with tridentate dibasic schiff base ligands and 2-(2'-pyridyl) benzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, R N; Chakravortty, V; Dash, K C [Utkal Univ., Bhubaneswar (India). Dept. of Chemistry

    1991-05-01

    The present work deals with the monomeric, six-coordinated mixed-ligand complexes of oxovanadium(IV) with dibasic tridentate schiff base ligands(ONO donor set) and the bidentate chelating ligand 2-(2'-pyridyl)benzimidazole (PBH) containing N{sub 2} donor set. (author). 1 tab., 22 refs.

  5. Synthesis, crystal structure, antibacterial activity and theoretical studies on a novel mononuclear cobalt(II) complex based on 2,4,6-tris(2-pyridyl)-1,3,5-triazine ligand

    Science.gov (United States)

    Maghami, Mahboobeh; Farzaneh, Faezeh; Simpson, Jim; Ghiasi, Mina; Azarkish, Mohammad

    2015-08-01

    A cobalt complex was prepared from CoCl2·6H2O and 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) in methanol and designated as [Co(tptz)(CH3OH)Cl2]·CH3OH·0.5H2O (1). It was characterized by several techniques including TGA analysis and FT-IR, UV-Vis and 1H NMR spectral studies. The crystal structure of 1 was determined by single-crystal X-ray diffraction. The Co(II) metal center in 1 is six coordinated with a distorted octahedral geometry. The tptz ligand is tridentate and coordinates to the cobalt through coplanar nitrogen atoms from the triazine and two pyridyl rings. Two chloride anions and a methanol molecule complete the inner coordination sphere of the metal ion. The optimized geometrical parameters obtained by DFT calculation are in good agreement with single XRD data. The in vitro antibacterial activity of various tptz complexes of Co(II), Ni(II), Cu(II), Mn(II) and Rh(III) were evaluated against Gram-positive (Bacillus subtilis, Staphylococcus aureus and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. Whereas all complexes exhibited good activity in comparison to standard antibacterial drugs, the inhibitory effects of complexes were found to be more than that of the parent ligand. Overall, the obtained results strongly suggest that the cobalt(II) complex is a suitable candidate for counteracting antibiotic resistant microorganisms.

  6. Synthesis, Characterization and in Vitro Antibacterial Activities of CdO Nanoparticle and Nano-sheet Mixed-ligand of Cadmium(ІІ Complex

    Directory of Open Access Journals (Sweden)

    Zohreh Rashidi Ranjbar

    2016-07-01

    Full Text Available Here, we report the synthesis of a Schiff-base mixed-ligand complex of cadmium(ІІ in bulk and nano-scales via the precipitation and sonochemical methods, respectively. The complex formula is [Cd(3-bpdh(3-bpdbCl2]n (1, where the ligands are 3-bpdh = 2,5-bis(3-pyridyl-3,4-diaza-2,4-hexadiene and 3-bpdb = 1,4-bis(3-pyridyl-2,3-diaza-1,3-butadiene. The structure of mixed-ligand complex (1 was characterized by IR, 1H NMR and elemental analyses. Cadmium(ІІ oxide nanoparticles were prepared by direct thermolysis from nanosheet of complex (1. The cadmium(ІІ oxide structure was characterized by X-ray Diffraction (XRD and Energy Dispersive X-ray  analyses (EDAX. Size, morphology and structural dispersion of all obtained nanostructures were characterized by Scanning Electron Microscopy (SEM. The Schiff-base ligands, bulk and nano-scales of complex (1 and cadmium(ІІ oxide nanoparticles were analyzed for antibacterial activities against Bacillus alvei (bacteria causing the honey bee European foulbrood disease. The Minimum Inhibitory Concentrations (MIC has been shown moderate antibacterial activities compared with some other standard drugs. Known antibiotics like penicillin and SXT (Trimethoprim/sulfamethoxazole were used as positive control.

  7. Synthesis and spectroscopic behavior of highly luminescent Eu 3+-dibenzoylmethanate (DBM) complexes with sulfoxide ligands

    Science.gov (United States)

    Niyama, E.; Brito, H. F.; Cremona, M.; Teotonio, E. E. S.; Reyes, R.; Brito, G. E. S.; Felinto, M. C. F. C.

    2005-09-01

    In this paper the synthesis, characterization and photoluminescent behavior of the [RE(DBM) 3L 2] complexes (RE = Gd and Eu) with a variety of sulfoxide ligands; L = benzyl sulfoxide (DBSO), methyl sulfoxide (DMSO), phenyl sulfoxide (DPSO) and p-tolyl sulfoxide (PTSO) have been investigated in solid state. The emission spectra of the Eu 3+-β-diketonate complexes show characteristics narrow bands arising from the 5D 0 → 7F J ( J = 0-4) transitions, which are split according to the selection rule for C n, C nv or C s site symmetries. The experimental Judd-Ofelt intensity parameters ( Ω2 and Ω4), radiative ( Arad) and non-radiative ( Anrad) decay rates, and R02 for the europium complexes have been determined and compared. The highest value of Ω2 (61.9 × 10 -20 cm 2) was obtained to the complex with PTSO ligand, indicating that Eu 3+ ion is in the highly polarizable chemical environment. The higher values of the experimental quantum yield ( q) and emission quantum efficiency of the emitter 5D 0 level ( η) for the Eu-complexes with DMSO, DBSO and PTSO sulfoxides suggest that these complexes are promising Light Conversion Molecular Devices (LCMDs). The lower value of quantum yield ( q = 1%), for the hydrated complex [Eu(DBM) 3(H 2O)], indicates that the luminescence quenching occurs via multiphonon relaxation by coupling with the OH-oscillators from water molecule coordinated to rare earth ion. The pure red emission of the Eu-complexes has been confirmed by ( x, y) color coordinates.

  8. 1.2.4. Synthesis, crystal structure and thermal stability property of Ni(aze(4,4′ –bipy(H2O based on longer-spanning azelaic acid and 4,4′ -bipyridine ligands

    Directory of Open Access Journals (Sweden)

    Ge Song, Feng Ying Bai*, Yan Xie, Yong Heng Xing.

    2014-04-01

    Full Text Available Abstract: One new three-dimensional (3D supramolecular longer-spanning azelaic acid (H2aze complex: Ni(aze(4,4′– bipy(H2O (4,4′-bipy = 4,4′-bipyridine has been synthesized using hydrothermal conditions and characterized by elemental analysis, IR spectroscopy, UV spectrum, powder X-ray diffraction, TG analysis and single crystal X–ray diffraction. Structural analysis reveals that the title complex is six-coordinate and connected by the azelaic acid and 4,4′-bipy ligands to generate a 2D planar structure, further linked through the interaction of hydrogen bond of C–H···O to form a 3D supramolecular structure . Supporting information: FT-IR, UV-Vis, X-Ray, Cif file

  9. Nanoparticle-Based Receptors Mimic Protein-Ligand Recognition.

    Science.gov (United States)

    Riccardi, Laura; Gabrielli, Luca; Sun, Xiaohuan; De Biasi, Federico; Rastrelli, Federico; Mancin, Fabrizio; De Vivo, Marco

    2017-07-13

    The self-assembly of a monolayer of ligands on the surface of noble-metal nanoparticles dictates the fundamental nanoparticle's behavior and its functionality. In this combined computational-experimental study, we analyze the structure, organization, and dynamics of functionalized coating thiols in monolayer-protected gold nanoparticles (AuNPs). We explain how functionalized coating thiols self-organize through a delicate and somehow counterintuitive balance of interactions within the monolayer itself and with the solvent. We further describe how the nature and plasticity of these interactions modulate nanoparticle-based chemosensing. Importantly, we found that self-organization of coating thiols can induce the formation of binding pockets in AuNPs. These transient cavities can accommodate small molecules, mimicking protein-ligand recognition, which could explain the selectivity and sensitivity observed for different organic analytes in NMR chemosensing experiments. Thus, our findings advocate for the rational design of tailored coating groups to form specific recognition binding sites on monolayer-protected AuNPs.

  10. Copper(II Complexes with Ligands Derived from 4-Amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one: Synthesis and Biological Activity

    Directory of Open Access Journals (Sweden)

    Raluca Cernat

    2006-11-01

    Full Text Available The synthesis of Cu(II complexes derived from Schiff base ligands obtainedby the condensation of 2-hydroxybenzaldehyde or terephtalic aldehyde with 4-amino-antipyrine (4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one is presented. The newlyprepared compounds were characterized by 1H-NMR, UV-VIS, IR and ESRspectroscopy. The determination of the antimicrobial activity of the ligands and of thecomplexes was carried out on samples of Escherichia coli, Klebsiella pneumoniae,Acinetobacter boumanii, Pseudomonas aeruginosa, Staphylococcus aureus and Candidasp. The qualitative and quantitative antimicrobial activity test results proved that all theprepared complexes are very active, especially against samples of Ps. aeruginosa, A.Boumanii, E. coli and S. aureus.

  11. LASSO-ligand activity by surface similarity order: a new tool for ligand based virtual screening.

    Science.gov (United States)

    Reid, Darryl; Sadjad, Bashir S; Zsoldos, Zsolt; Simon, Aniko

    2008-01-01

    Virtual Ligand Screening (VLS) has become an integral part of the drug discovery process for many pharmaceutical companies. Ligand similarity searches provide a very powerful method of screening large databases of ligands to identify possible hits. If these hits belong to new chemotypes the method is deemed even more successful. eHiTS LASSO uses a new interacting surface point types (ISPT) molecular descriptor that is generated from the 3D structure of the ligand, but unlike most 3D descriptors it is conformation independent. Combined with a neural network machine learning technique, LASSO screens molecular databases at an ultra fast speed of 1 million structures in under 1 min on a standard PC. The results obtained from eHiTS LASSO trained on relatively small training sets of just 2, 4 or 8 actives are presented using the diverse directory of useful decoys (DUD) dataset. It is shown that over a wide range of receptor families, eHiTS LASSO is consistently able to enrich screened databases and provides scaffold hopping ability.

  12. LASSO—ligand activity by surface similarity order: a new tool for ligand based virtual screening

    Science.gov (United States)

    Reid, Darryl; Sadjad, Bashir S.; Zsoldos, Zsolt; Simon, Aniko

    2008-06-01

    Virtual Ligand Screening (VLS) has become an integral part of the drug discovery process for many pharmaceutical companies. Ligand similarity searches provide a very powerful method of screening large databases of ligands to identify possible hits. If these hits belong to new chemotypes the method is deemed even more successful. eHiTS LASSO uses a new interacting surface point types (ISPT) molecular descriptor that is generated from the 3D structure of the ligand, but unlike most 3D descriptors it is conformation independent. Combined with a neural network machine learning technique, LASSO screens molecular databases at an ultra fast speed of 1 million structures in under 1 min on a standard PC. The results obtained from eHiTS LASSO trained on relatively small training sets of just 2, 4 or 8 actives are presented using the diverse directory of useful decoys (DUD) dataset. It is shown that over a wide range of receptor families, eHiTS LASSO is consistently able to enrich screened databases and provides scaffold hopping ability.

  13. Bridging ligands in organometallic chemistry. II. Synthesis and reactivity of the green dimer of molybdenocene containing a bridging fulvalene ligand

    Energy Technology Data Exchange (ETDEWEB)

    Smart, J.C.; Curtis, C.J.

    1978-11-01

    Synthesis, precipitation, and isolation of dicyclopentadienyl(fulvalene)dihydridomolybdenum are described. The compound was used in reaction studies involving the addition of carbon monoxide and deprotonation with n-butyllithium. Data for elemental analysis, ir spectral and NMR(in toluene-d) spectral analysis are reported for the title compound and its reaction products.

  14. Multistep continuous-flow synthesis in medicinal chemistry: discovery and preliminary structure-activity relationships of CCR8 ligands.

    Science.gov (United States)

    Petersen, Trine P; Mirsharghi, Sahar; Rummel, Pia C; Thiele, Stefanie; Rosenkilde, Mette M; Ritzén, Andreas; Ulven, Trond

    2013-07-08

    A three-step continuous-flow synthesis system and its application to the assembly of a new series of chemokine receptor ligands directly from commercial building blocks is reported. No scavenger columns or solvent switches are necessary to recover the desired test compounds, which were obtained in overall yields of 49-94%. The system is modular and flexible, and the individual steps of the sequence can be interchanged with similar outcome, extending the scope of the chemistry. Biological evaluation confirmed activity on the chemokine CCR8 receptor and provided initial structure-activity-relationship (SAR) information for this new ligand series, with the most potent member displaying full agonist activity with single-digit nanomolar potency. To the best of our knowledge, this represents the first published example of efficient use of multistep flow synthesis combined with biological testing and SAR studies in medicinal chemistry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-affinity γ-Hydroxybutyrate (GHB) Binding Sites

    Science.gov (United States)

    Vogensen, Stine B.; Marek, Aleš; Bay, Tina; Wellendorph, Petrine; Kehler, Jan; Bundgaard, Christoffer; Frølund, Bente; Pedersen, Martin H.F.; Clausen, Rasmus P.

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screening of 1 against different CNS targets establishes a high selectivity and we demonstrate in vivo brain penetration. In vitro characterization of [3H]-1 binding shows high specificity to the high-affinity GHB binding sites. PMID:24053696

  16. Aziridine- and Azetidine-Pd Catalytic Combinations. Synthesis and Evaluation of the Ligand Ring Size Impact on Suzuki-Miyaura Reaction Issues

    Directory of Open Access Journals (Sweden)

    Hamza Boufroura

    2017-01-01

    Full Text Available The synthesis of new vicinal diamines based on aziridine and azetidine cores as well as the comparison of their catalytic activities as ligand in the Suzuki-Miyaura coupling reaction are described in this communication. The synthesis of three- and four-membered ring heterocycles substituted by a methylamine pendant arm is detailed from the parent nitrile derivatives. Complexation to palladium under various conditions has been examined affording vicinal diamines or amine-imidate complexes. The efficiency of four new catalytic systems is compared in the preparation of variously substituted biaryls. Aziridine- and azetidine-based catalytic systems allowed Suzuki-Miyaura reactions from aryl halides including chlorides with catalytic loadings until 0.001% at temperatures ranging from 100 °C to r.t. The evolution of the Pd-metallacycle ring strain moving from azetidine to aziridine in combination with a methylamine or an imidate pendant arm impacted the Suzuki-Miyaura reaction issue.

  17. Novel methylene bridged ethylenediamine-type ligands: Synthesis and spectral characterization

    Directory of Open Access Journals (Sweden)

    Mihajlović-Lalić Ljiljana E.

    2014-01-01

    Full Text Available Herein we report the synthesis of two new organic compounds, diisobutyl- and diisopentyl N,N′-methylene-(S,S-ethylenediamine-N,N′-di-2-(3-cyclohexylpropanoate. A one-pot procedure was carried out by adding the reducing agent and carbonyl compound into the methanol solution of the parent compounds (iso-butyl and iso-pentyl esters of (S,S-ethylenediamine-N,N′-di-2-(3-cyclohexylpropanoic acid in appropriate stoichiometric ratios. The compounds were fully characterized by infrared, ESI-MS, 1D (1H, 13C and 2D (COSY, HSQC, HMBC NMR spectroscopy and elemental analysis. The spectral data confirm the presence of -CH2- group introduced between nitrogen atoms of the ethylenediamine moiety revealing neutral form of potential bidentate ligand. [Projekat Ministarstva nauke Republike Srbije, br. 172035. The authors also acknowledge the support of the FP7 RegPot project FCUB ERA GA No. 256716. The EC does not share responsibility for the content of the article

  18. Synthesis, Molecular Modelling and Biological Evaluation of Novel Heterodimeric, Multiple Ligands Targeting Cholinesterases and Amyloid Beta

    Directory of Open Access Journals (Sweden)

    Michalina Hebda

    2016-03-01

    Full Text Available Cholinesterases and amyloid beta are one of the major biological targets in the search for a new and efficacious treatment of Alzheimer’s disease. The study describes synthesis and pharmacological evaluation of new compounds designed as dual binding site acetylcholinesterase inhibitors. Among the synthesized compounds, two deserve special attention—compounds 42 and 13. The former is a saccharin derivative and the most potent and selective acetylcholinesterase inhibitor (EeAChE IC50 = 70 nM. Isoindoline-1,3-dione derivative 13 displays balanced inhibitory potency against acetyl- and butyrylcholinesterase (BuChE (EeAChE IC50 = 0.76 μM, EqBuChE IC50 = 0.618 μM, and it inhibits amyloid beta aggregation (35.8% at 10 μM. Kinetic studies show that the developed compounds act as mixed or non-competitive acetylcholinesterase inhibitors. According to molecular modelling studies, they are able to interact with both catalytic and peripheral active sites of the acetylcholinesterase. Their ability to cross the blood-brain barrier (BBB was confirmed in vitro in the parallel artificial membrane permeability BBB assay. These compounds can be used as a solid starting point for further development of novel multifunctional ligands as potential anti-Alzheimer’s agents.

  19. Micro-flow synthesis and structural analysis of sterically crowded diimine ligands with five aryl rings

    Directory of Open Access Journals (Sweden)

    Shinichiro Fuse

    2013-11-01

    Full Text Available Sterically crowded diimine ligands with five aryl rings were prepared in one step in good yields using a micro-flow technique. X-ray crystallographic analysis revealed the detailed structure of the bulky ligands. The nickel complexes prepared from the ligands exerted high polymerization activity in the ethylene homopolymerization and copolymerization of ethylene with polar monomers.

  20. Synthesis, spectral characterization thermal stability, antimicrobial studies and biodegradation of starch–thiourea based biodegradable polymeric ligand and its coordination complexes with [Mn(II, Co(II, Ni(II, Cu(II, and Zn(II] metals

    Directory of Open Access Journals (Sweden)

    Nahid Nishat

    2016-09-01

    Full Text Available A biodegradable polymer was synthesized by the modification reaction of polymeric starch with thiourea which is further modified by transition metals, Mn(II, Co(II, Ni(II, Cu(II and Zn(II. All the polymeric compounds were characterized by (FT-IR spectroscopy, 1H NMR spectroscopy, 13C NMR spectroscopy, UV–visible spectra, magnetic moment measurements, thermogravimetric analysis (TGA and antibacterial activities. Polymer complexes of Mn(II, Co(II and Ni(II show octahedral geometry, while polymer complexes of Cu(II and Zn(II show square planar and tetrahedral geometry, respectively. The TGA revealed that all the polymer metal complexes are more thermally stable than their parental ligand. In addition, biodegradable studies of all the polymeric compounds were also carried out through ASTM-D-5338-93 standards of biodegradable polymers by CO2 evolution method which says that coordination decreases biodegradability. The antibacterial activity was screened with the agar well diffusion method against some selected microorganisms. Among all the complexes, the antibacterial activity of the Cu(II polymer–metal complex showed the highest zone of inhibition because of its higher stability constant.

  1. Synthesis of new oxovanadium (IV) complexes of potential insulinmimetic activity with coumarin-3-carboxylic acid ligands and substituted derivatives

    International Nuclear Information System (INIS)

    Salas Fernandez, Paloma; Alvino de la Sota, Nora; Galli Rigo-Righi, Carla

    2013-01-01

    This work comprises the design and synthesis of four new oxovanadium (IV) complexes, a metal which possesses insulin-mimetic action. Coumarin-3-carboxylic acid and three of its 6 -and 6,8- derivatives were used as ligands. Coumarins are of interest due to their well-known biological properties and pharmacological applications; these include the insulino-sensibilizing effect of certain alcoxy-hydroxy-derivatives which might lead to the eventual existence of a synergetic effect with the active metal center. The synthesis of the vanadyl complexes was preceded by the synthesis of the coumarin-3-carboxylic acid and its 6-bromo- derivative, as well as the syntheses of three derivatives not previously reported: 6-bromo-8-metoxi-, 6-bromo-8-nitro-, and 6-bromo-8-hydroxy-, which were prepared by a Knoevenagel condensation reaction. The complexes, on their part, were prepared by a metathesis reaction between VOSO 4 and the corresponding ligands, on the basis of methods reported for other vanadyl complexes and under strict pH control. The coumarin-3-carboxylic ligands and the derivatives were characterized by 1 H-NMR-, FTIR- and UV-Vis-spectroscopy. In the case of the complexes, their paramagnetic character did not allow for NMR characterization, being thus identified by FT-IR-spectroscopy and by the quantitative determination of their vanadium contents. (author)

  2. Metal–organic coordination architectures of tetrazole heterocycle ligands bearing acetate groups: Synthesis, characterization and magnetic properties

    International Nuclear Information System (INIS)

    Hu, Bo-Wen; Zheng, Xiang-Yu; Ding, Cheng

    2015-01-01

    Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L) 2 ] n (1) and [Co 3 (L) 4 (N 3 ) 2 ·2MeOH] n (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (4 2 .6) 2 (4 4 .6 2 .8 8 .10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co 3 ] units. And the magnetic properties of 1 and 2 have been studied. - Graphical abstract: The synthesis, crystal structure, and magnetic properties of the new coordination complexes with tetrazole heterocycle ligands bearing acetate groups are reported. - Highlights: • Two novel Cobalt(II) complexes with tetrazole acetate ligands were synthesized. • The magnetic properties of two complexes were studied. • Azide as co-ligand resulted in different structures and magnetic properties. • The new coordination mode of tetrazole acetate ligand was obtained.

  3. A catechol-like phenolic ligand-functionalized hydrothermal carbon: One-pot synthesis, characterization and sorption behavior toward uranium

    International Nuclear Information System (INIS)

    Li, Bo; Ma, Lijian; Tian, Yin; Yang, Xiaodan; Li, Juan; Bai, Chiyao; Yang, Xiaoyu; Zhang, Shuang; Li, Shoujian; Jin, Yongdong

    2014-01-01

    Highlights: • A new catechol-like ligand-functionalized hydrothermal carbon sorbent is synthesized. • A combination of bayberry tannin and glyoxal is firstly used as starting materials. • Simple, economically viable and environment-friendly synthesis method. • The sorbent exhibits high sorption capacity and distinct selectivity for uranium. - Abstract: We proposed a new approach for preparing an efficient uranium-selective solid phase extractant (HTC-btg) by choosing bayberry tannin as the main building block and especially glyoxal as crosslinking agent via a simple, economic, and green one-pot hydrothermal synthesis. The results of characterization and analysis show that after addition of glyoxal into only bayberry tannin-based hydrothermal reaction system, the as-synthesized HTC-btg displayed higher thermal stability, larger specific surface area and more than doubled surface phenolic hydroxyl groups. The sorption behavior of the sorbents toward uranium under various conditions was investigated in detail and the results indicated that the process is fast, endothermic, spontaneous, and pseudo-second-order chemisorption. The U(VI) sorption capacity reached up to 307.3 mg g −1 under the current experimental conditions. The selective sorption in a specially designed multi-ion solution containing 12 co-existing cations over the range of pH 1.0–4.5 shown that the amount of uranium sorbed accounts for about 53% of the total sorption amount at pH 4.5 and distinctively about 85%, unreported so far to our knowledge, at pH 2.0. Finally, a possible mechanism involving interaction between uranyl ions and phenolic hydroxyl groups on HTC-btg was proposed

  4. A catechol-like phenolic ligand-functionalized hydrothermal carbon: One-pot synthesis, characterization and sorption behavior toward uranium

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo; Ma, Lijian; Tian, Yin; Yang, Xiaodan; Li, Juan; Bai, Chiyao; Yang, Xiaoyu; Zhang, Shuang; Li, Shoujian, E-mail: sjli000616@scu.edu.cn; Jin, Yongdong, E-mail: jinyongdong@scu.edu.cn

    2014-04-01

    Highlights: • A new catechol-like ligand-functionalized hydrothermal carbon sorbent is synthesized. • A combination of bayberry tannin and glyoxal is firstly used as starting materials. • Simple, economically viable and environment-friendly synthesis method. • The sorbent exhibits high sorption capacity and distinct selectivity for uranium. - Abstract: We proposed a new approach for preparing an efficient uranium-selective solid phase extractant (HTC-btg) by choosing bayberry tannin as the main building block and especially glyoxal as crosslinking agent via a simple, economic, and green one-pot hydrothermal synthesis. The results of characterization and analysis show that after addition of glyoxal into only bayberry tannin-based hydrothermal reaction system, the as-synthesized HTC-btg displayed higher thermal stability, larger specific surface area and more than doubled surface phenolic hydroxyl groups. The sorption behavior of the sorbents toward uranium under various conditions was investigated in detail and the results indicated that the process is fast, endothermic, spontaneous, and pseudo-second-order chemisorption. The U(VI) sorption capacity reached up to 307.3 mg g{sup −1} under the current experimental conditions. The selective sorption in a specially designed multi-ion solution containing 12 co-existing cations over the range of pH 1.0–4.5 shown that the amount of uranium sorbed accounts for about 53% of the total sorption amount at pH 4.5 and distinctively about 85%, unreported so far to our knowledge, at pH 2.0. Finally, a possible mechanism involving interaction between uranyl ions and phenolic hydroxyl groups on HTC-btg was proposed.

  5. Role of Carboxylate ligands in the Synthesis of AuNPs: Size Control, Molecular Interaction and Catalytic Activity

    KAUST Repository

    Aljohani, Hind Abdullah

    2016-05-22

    low temperature. The structure of the citrate layer on the AuNP surface may be a key factor in gaining a more detailed understanding of nanoparticle formation and stabilization. This can be affecting the catalytic activity. These thoughts invited us to systematically examine the role of sodium citrate as a stabilizer of gold nanoparticles, which is the main theme of this thesis. This research is focused on three main objectives, controlling the size of the gold nanoparticles based on citrate (and other carboxylate ligands Trisodium citrate dihydrate, Isocitric Acid, Citric acid, Trimesic acid, Succinic Acid, Phthalic acid, Disodium glutarate, Tartaric Acid, Sodium acetate, Acetic Acid and Formic Acid by varying the concentration of Gold/sodium citrate, investigating the interaction of the citrate layer on the AuNP surface, and testing the activity of the Au/TiO2 catalysts for the oxidation of carbon monoxide. This thesis will be divided into five chapters. In Chapter 1, a general literature study on the various applications and methods of synthesis of Au nanoparticles is described. Then we present the main synthetic pathways of Au nanoparticles we selected. A part of the bibliographic study was given to the use of Au nanoparticles in catalysis. In Chapter 2, we give a brief description of the different experimental procedures and characterization techniques utilized over the course of the present work. The study of the size control and the interaction between gold nanoparticles and the stabilizer (carboxylate groups) was achieved by using various characterization techniques such as UV-visible spectroscopy, Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Nuclear Magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FTIR). In Chapter 3, we discuss the synthesis and size control of Au nanoparticles by following the growth of these nanoparticles by UV-Visible spectroscopy and TEM. We

  6. Schiff base oligopyrrolic macrocycles as ligands for lanthanides and actinides

    International Nuclear Information System (INIS)

    Sessler, Jonathan L.; Melfi, Patricia J.; Tomat, Elisa; Callaway, Wyeth; Huggins, Michael T.; Gordon, Pamela L.; Webster Keogh, D.; Date, Richard W.; Bruce, Duncan W.; Donnio, Bertrand

    2006-01-01

    The coordination of f-block cations with Schiff base oligopyrrolic macrocycles is discussed. Analysis of the mesophase of a uranyl 2,5-diformylpyrrole-derived expanded porphyrin complex through temperature-dependent X-ray diffraction (XRD) methods has provided evidence for liquid-crystalline properties, and for molecular stacking into columns, arranged in a 2D hexagonal lattice. In separate studies, UV-vis spectral analysis has indicated the formation of three new f-block oligopyrrolic complexes. Addition of neptunyl ([NpO 2 ] 2+ ) or plutonyl ([PuO 2 ] 2+ ) chloride salts to the free base of a dipyrromethane-derived Schiff base macrocycle induces an immediate spectral change, namely the growth of a Q-like band at 630 nm. Such changes in the absorption spectra cause a dramatic color change from pale yellow to blue. It is postulated that oxidation of this macrocycle, stimulated by reduction of the metal center, leads to the observed spectral changes. An immediate visible and spectral change is also observed with the reaction of lutetium silylamide (Lu[N(Si(CH 3 ) 3 ) 2 ] 3 ), with a different, tetrapyrrole-containing Schiff base macrocycle. In this case, the formation of a complex with 1:1 metal-to-ligand binding stoichiometry is further supported by MALDI-TOF mass spectrometry

  7. Quantum probability ranking principle for ligand-based virtual screening

    Science.gov (United States)

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  8. Quantum probability ranking principle for ligand-based virtual screening.

    Science.gov (United States)

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  9. Schiff base oligopyrrolic macrocycles as ligands for lanthanides and actinides

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, Jonathan L. [Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, 1 University Station A5300, University of Texas at Austin, Austin, TX 78712-0165 (United States)]. E-mail: sessler@mail.utexas.edu; Melfi, Patricia J. [Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, 1 University Station A5300, University of Texas at Austin, Austin, TX 78712-0165 (United States); Tomat, Elisa [Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, 1 University Station A5300, University of Texas at Austin, Austin, TX 78712-0165 (United States); Callaway, Wyeth [Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, 1 University Station A5300, University of Texas at Austin, Austin, TX 78712-0165 (United States); Huggins, Michael T. [Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, 1 University Station A5300, University of Texas at Austin, Austin, TX 78712-0165 (United States); Gordon, Pamela L. [C-Chemistry and NMT-Nuclear Materials Technology Divisions, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Webster Keogh, D. [C-Chemistry and NMT-Nuclear Materials Technology Divisions, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Date, Richard W. [Department of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD (United Kingdom); Bruce, Duncan W. [Department of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD (United Kingdom); Department of Chemistry, University of York, Heslington, YORK YO10 5DD (United Kingdom); Donnio, Bertrand [Institut de Physique et Chimie des Materiaux de Strasbourg (IPCMS), Groupe des Materiaux Organiques (GMO), CNRS-ULP - UMR 7504, 23 rue du Loess BP 43, F-67034 Strasbourg Cedex 2 (France)

    2006-07-20

    The coordination of f-block cations with Schiff base oligopyrrolic macrocycles is discussed. Analysis of the mesophase of a uranyl 2,5-diformylpyrrole-derived expanded porphyrin complex through temperature-dependent X-ray diffraction (XRD) methods has provided evidence for liquid-crystalline properties, and for molecular stacking into columns, arranged in a 2D hexagonal lattice. In separate studies, UV-vis spectral analysis has indicated the formation of three new f-block oligopyrrolic complexes. Addition of neptunyl ([NpO{sub 2}]{sup 2+}) or plutonyl ([PuO{sub 2}]{sup 2+}) chloride salts to the free base of a dipyrromethane-derived Schiff base macrocycle induces an immediate spectral change, namely the growth of a Q-like band at 630 nm. Such changes in the absorption spectra cause a dramatic color change from pale yellow to blue. It is postulated that oxidation of this macrocycle, stimulated by reduction of the metal center, leads to the observed spectral changes. An immediate visible and spectral change is also observed with the reaction of lutetium silylamide (Lu[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 3}), with a different, tetrapyrrole-containing Schiff base macrocycle. In this case, the formation of a complex with 1:1 metal-to-ligand binding stoichiometry is further supported by MALDI-TOF mass spectrometry.

  10. Chiral ligands derived from monoterpenes: application in the synthesis of optically pure secondary alcohols via asymmetric catalysis.

    Science.gov (United States)

    El Alami, Mohammed Samir Ibn; El Amrani, Mohamed Amin; Agbossou-Niedercorn, Francine; Suisse, Isabelle; Mortreux, André

    2015-01-19

    The preparation of optically pure secondary alcohols in the presence of catalysts based on chiral ligands derived from monoterpenes, such as pinenes, limonenes and carenes, is reviewed. A wide variety of these ligands has been synthesized and used in several catalytic reactions, including hydrogen transfer, C-C bond formation via addition of organozinc compounds to aldehydes, hydrosilylation, and oxazaborolidine reduction, leading to high activities and enantioselectivities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis in aqueous medium and organic praseodymium complexes with ligands derived from Schiff base quinolinic. Characterization and physicochemical study; Sintesis en medio acuoso y organico de complejos de praseodimio con ligantes derivados de base de Schiff quinolicos. Caracterizacion y estudio fisicoquimico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia G, A.

    2015-07-01

    It was investigated the coordination ability of the quinolinic Schiff base organic tetradentate quinolinic ligand (Q Schiff-(OH){sub 2}) towards the trivalent praseodymium by UV/Vis spectrophotometric titration (St). By St, was studied the formed species between the Q Schiff-(OH){sub 2} ligand and the praseodymium nitrate salt in equimolar concentrations (5.86 x 10{sup -4} M: 5.22 x 10{sup -4} M) in methanol. The statistical analysis of the experimental results suggested three complexed species with 1Pr:3L, 1Pr:2L y 1Pr:1L stoichiometries. The predominant stoichiometries were the second and the latter. Based on these results and data from the scientific literature, the methodology for the syntheses of the complexes Q Schiff-(OH){sub 2}-Pr in aqueous-organic and organic media was established and a molar ratio M:L= 1:2 of praseodymium nitrate and the ligand was used. The new complexes were characterized by UV/Vis, Infrared, X-ray Photoelectron Spectroscopy (XP S), Diffuse Reflectance (Dr) and Thermogravimetric Analysis/Differential Scanning Calorimetry (TGA/DSC). Elemental analysis of C, N, O and Pr by XP S suggested 1Pr:2L:1Na (PrC{sub 32}H{sub 20}N{sub 4}O{sub 4}Na) stoichiometry of the complex synthesized by the aqueous-organic medium while for the complex synthesized by the organic medium it was 1Pr:3L (PrC{sub 48}H{sub 33}N{sub 6}O{sub 6}). In the first case, the praseodymium ion charge was neutralized by the anionic ligands whose remaining charge was compensated by the sodium ion. In the second case, the ion charge was neutralized by the ligands. The minimum formula was Pr(Q Schiff){sub 2}Na for the pure coordination compound from the aqueous-organic medium and the minimum formula Pr(Q Schiff){sub 3} for that from the organic medium. XP S also indicated that the oxidation state of praseodymium ion was maintained. Both complexes were stable in methanol, ethanol and acetonitrile at least for 5 days. The photophysical properties of the studied complexes were

  12. Synthesis and Reactivity of Tripodal Complexes Containing Pendant Bases

    Energy Technology Data Exchange (ETDEWEB)

    Blacquiere, Johanna M.; Pegis, Michael L.; Raugei, Simone; Kaminsky, Werner; Forget, Amelie; Cook, Sarah; Taguchi, Taketo; Borovik, Andrew S.; Mayer, James M.

    2014-09-02

    The synthesis of a new tripodal ligand family is reported, with tertiary-amine groups in the second-coordination sphere. The ligands are tris(amido)amine derivatives, with the pendant amines attached via a peptide coupling strategy. They were designed to be used in new catalysts for the oxygen reduction reaction (ORR), in which the pendant acid/base group could improve catalyst performance. Two members of the new ligand family were each metallated with Co(II) and Zn(II) to afford trigonal monopyramidal complexes. Reaction of the cobalt complexes, [Co(L)]-, with dioxygen reversibly generates a small amount of a Co(III)-superoxo species, which was characterized by EPR. Protonation of the zinc complex Zn[N{CH2CH2NC(O)CH2N(CH2Ph)2}3)-– ([Zn(TNBn)]-) with one equivalent of acid occurs with displacement and dissociation of an amide ligand. Addition of excess acid to the any of the complexes [M(L)]- results in complete proteolysis and formation of the ligands H3L. This decomposition limits the use of these complexes as catalysts for the ORR. An alternative ligand with two pyridyl arms was also prepared but could not be metallated. These studies highlight the importance of stability of the primary-coordination sphere of ORR electrocatalysts to both oxidative and acidic conditions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  13. Virtual Ligand Screening Using PL-PatchSurfer2, a Molecular Surface-Based Protein-Ligand Docking Method.

    Science.gov (United States)

    Shin, Woong-Hee; Kihara, Daisuke

    2018-01-01

    Virtual screening is a computational technique for predicting a potent binding compound for a receptor protein from a ligand library. It has been a widely used in the drug discovery field to reduce the efforts of medicinal chemists to find hit compounds by experiments.Here, we introduce our novel structure-based virtual screening program, PL-PatchSurfer, which uses molecular surface representation with the three-dimensional Zernike descriptors, which is an effective mathematical representation for identifying physicochemical complementarities between local surfaces of a target protein and a ligand. The advantage of the surface-patch description is its tolerance on a receptor and compound structure variation. PL-PatchSurfer2 achieves higher accuracy on apo form and computationally modeled receptor structures than conventional structure-based virtual screening programs. Thus, PL-PatchSurfer2 opens up an opportunity for targets that do not have their crystal structures. The program is provided as a stand-alone program at http://kiharalab.org/plps2 . We also provide files for two ligand libraries, ChEMBL and ZINC Drug-like.

  14. A Mixed-Ligand Chiral Rhodium(II) Catalyst Enables the Enantioselective Total Synthesis of Piperarborenine B.

    Science.gov (United States)

    Panish, Robert A; Chintala, Srinivasa R; Fox, Joseph M

    2016-04-11

    A novel, mixed-ligand chiral rhodium(II) catalyst, Rh2(S-NTTL)3(dCPA), has enabled the first enantioselective total synthesis of the natural product piperarborenine B. A crystal structure of Rh2(S-NTTL)3(dCPA) reveals a "chiral crown" conformation with a bulky dicyclohexylphenyl acetate ligand and three N-naphthalimido groups oriented on the same face of the catalyst. The natural product was prepared on large scale using rhodium-catalyzed bicyclobutanation/ copper-catalyzed homoconjugate addition chemistry in the key step. The route proceeds in ten steps with an 8% overall yield and 92% ee. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis of triated N1'-alkyl derivatives of the delta opioid receptor ligand naltrindole

    International Nuclear Information System (INIS)

    Lever, J.R.; Johnson, S.M.

    1997-01-01

    Tritiated N1'-methyl and N1'-ethyl analogues of naltrindole (NTI) have been synthesized for evaluation as radioligands for studies of delta opioid receptors. The two N1'-alkyl-5',7'-dibromoNTI precursors for radiolabeling were prepared by base-promoted alkylation of 2,4-dibromophenylhydrazine with either iodomethane or iodoethane followed by condensation with naltrexone using the Fischer indole synthesis. Catalytic debromotritiation followed by HPLC purification afforded [ 3 H]MeNTI (17.3 Ci/mmol) and [ 3 H]EtNTI (22.5 Ci/mmol) with high chemical and radiochemical purities (≥ 99.8%). (author)

  16. Synthesis, characterization and in vitro biological activities of new water-soluble copper(II), zinc(II), and nickel(II) complexes with sulfonato-substituted Schiff base ligand

    Czech Academy of Sciences Publication Activity Database

    Hosseini-Yazdi, S.A.; Mirzaahmadi, A.; Khandar, A.A.; Eigner, Václav; Dušek, Michal; Lotfipour, F.; Mahdavi, M.; Soltani, S.; Dehghan, G.

    2017-01-01

    Roč. 458, Mar (2017), s. 171-180 ISSN 0020-1693 R&D Projects: GA ČR(CZ) GA15-12653S; GA MŠk(CZ) LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : water-soluble Schiff base * thiosemicarbazone * antimicrobial * antioxidant * cytotoxicity * crystal structure Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 2.002, year: 2016

  17. An efficient synthesis of D-galactose-based multivalent neoglycoconjugates

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, S.F. de; Souza Filho, J.D. de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Quimica; Alves, Ricardo J., E-mail: ricardodylan@farmacia.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Farmacia; Figueiredo, Rute C. [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)

    2012-11-15

    In this work, the synthesis of dimeric, trimeric and tetrameric D-galactose-based neoglycoconjugates is reported. The monosaccharide ligand was prepared in 5 straightforward steps from D-galactose using the Doebner modification of the Knoevenagel reaction for chain elongation. The ligand was coupled to 1,4-butanediamine, tris-(2-ethylamino)amine, pentaerythrityltetramine and PAMAM dendrimers (1,4-butanodiamine core G0 and 1,12-dodecanediamine core G0). The unprotected glycodendrimers were purified by size-exclusion chromatography (SEC). This was the only step in which a chromatographic method was employed throughout the synthetic route. This is a new and efficient strategy for the preparation of neoglycoconjugates. (author)

  18. Template synthesis, characterization and antimicrobial activity of some new complexes with isonicotinoyl hydrazone ligands

    Directory of Open Access Journals (Sweden)

    LIVIU MITU

    2009-09-01

    Full Text Available Complexes of Cu(II, Ni(II, Co(II with the 9-anthraldehyde iso-nicotinoyl hydrazone ligand (HL1 and the 3,5-di-tert-butyl-4-hydroxy-benzaldehyde isonicotinoyl hydrazone ligand (H2L2 were synthesized by the template method. The complexes were characterized by analytical analysis, IR, UV-Vis and ESR spectroscopy, magnetic measurements, conductometry and thermal analysis and the two ligands by 1H-NMR spectroscopy. From the elemental analysis, 1:2 (metal:ligand stoichiometry for the complexes of Cu(II, Ni(II with the ligands HL1 and H2L2 and 1:1 (metal:ligand stoichiometry for the complex of Co(II with the ligand HL1 are proposed. The molar conductance data showed that the complexes are non-electrolytes. The magnetic susceptibility results coupled with the electronic and ESR spectra suggested a distorted octahedral geometry for the complexes Ni(II/HL1, Ni(II/H2L2 and Cu(II/H2L2, a tetrahedral stereochemistry for the complex Cu/HL1 and a square-planar geometry for the complex Co/HL1. The IR spectra demonstrated the bidentate coordination of the ligands HL1 and H2L2 by the O=C amide oxygen and the azomethine nitrogen, as well as monodentate coordination of the ligand HL1 by the azomethine nitrogen in the Cu(IIcomplex. The antibacterial activity of the ligands and their metallic complexes were tested against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae.

  19. Reactions of copper(II), nickel(II), and zinc(II) acetates with a new water-soluble 4-phenylthiosemicarbazone Schiff base ligand: synthesis, characterization, unexpected cyclization, antimicrobial, antioxidant, and anticancer activities

    Czech Academy of Sciences Publication Activity Database

    Hosseini-Yazdi, S.A.; Mirzaahmadi, A.; Khandar, A.A.; Eigner, Václav; Dušek, Michal; Mahdavi, M.; Soltani, S.; Lotfipour, F.; White, J.

    2017-01-01

    Roč. 124, Mar (2017), s. 156-165 ISSN 0277-5387 R&D Projects: GA ČR(CZ) GA15-12653S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : antimicrobial * antioxidant * cytotoxicity * thiosemicarbazone * water-soluble Schiff base Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.926, year: 2016

  20. Synthesis and characterization of two polyoxometalates consisting of different Cu-ligand hydrogen phosphate units

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jinshuang; Zhao, Xiaofang; Huang, Jiao; Gong, Kaining; Han, Zhangang, E-mail: hanzg116@126.com; Zhai, Xueliang, E-mail: xlzhai253@mail.hebtu.edu.cn

    2014-03-15

    Two polyoxometalates [(Cu-mbpy){sub 4}(HPO{sub 4}){sub 2}(H{sub 2}O){sub 2}][PMo{sub 12}O{sub 40}]·H{sub 2}O (1) and [(Cu-mbpy){sub 6}(HPO{sub 4}){sub 4}][PW{sub 12}O{sub 40}]·4H{sub 2}O (2) (mbpy=4,4'-dimethyl-2,2'-dipyridyl in 1; 5,5″-dimethyl-2,2'-dipyridyl in 2) have been synthesized and characterized by IR, X-ray powder diffraction, TG analysis and electrochemical property. The structural features of 1–2 are in their cationic moieties consisting of different linkages of [Cu-mbpy]{sup 2+} and HPO{sub 4}{sup 2−} groups. In 1 four Cu-mbpy bridged by two HPO{sub 4}{sup 2−} ions form a discrete cluster with an interesting octahedron of (Cu{sub 4}P{sub 2}), while in 2 Cu-mbpy fragments are bridged by HPO{sub 4}{sup 2−} ions into 1D structure consisting of trigonal bipyramidal polyhedra of (Cu{sub 3}P{sub 2}). Photocatalytic experiments indicate that compounds 1 and 2 are actively photocatalytic for degradation of methyl orange in the presence of H{sub 2}O{sub 2} under UV light irradiation. -- Graphical abstract: Two polyoxometalate-based supramolecular compounds consisting of different linkages based on Cu-ligand and HPO{sub 4}{sup 2−} groups have been synthesized and characterized. The photocatalytic activity are studied. Highlights: • Two polyoxometalate-based supramolecular compounds consisting of different linkages based on Cu-ligand and HPO{sub 4}{sup 2−} groups have been synthesized. • Hydrogen bonding and π…π interactions play important roles in constructing crystal supramolecular frameworks. • Two compounds represent a high photocatalytic activity in the degradation of methyl orange.

  1. Synthesis, crystal structure and luminescence properties of lanthanide coordination polymers with a new semirigid bridging thenylsalicylamide ligand

    International Nuclear Information System (INIS)

    Song, Xue-Qin; Wang, Li; Zhao, Meng-Meng; Wang, Xiao-Run; Peng, Yun-Qiao; Cheng, Guo-Quan

    2013-01-01

    Two new lanthanide coordination polymers based on a semirigid bridging thenylsalicylamide ligand ([Ln 2 L 3 (NO 3 ) 6 ]·(C 4 H 8 O 2 ) 2 ) ∞ were obtained and characterized by elemental analysis, X-ray diffraction, IR and TGA measurements. The two compounds are isostructure and possess one dimensional trapezoid ladder-like chain built up from the connection of isolated LnO 3 (NO 3 ) 3 polyhedra (distorted monocapped antisquare prism) through the ligand. The photoluminescence analysis suggest that there is an efficient ligand-to-Ln(III) energy transfer in Tb(III) complex and the ligand is an efficient “antenna” for Tb(III). From a more general perspective, the results demonstrated herein provide the possibility of controlling the formation of the desired lanthanide coordination structure to enrich the crystal engineering strategy and enlarge the arsenal for developing excellent luminescent lanthanide coordination polymers. - Graphical abstract: We present herein one dimensional lanthanide coordination polymers of a new semirigid exo-bidentate ligand which not only display interesting structures but also possess strong luminescence properties. Display Omitted - Highlights: • We present lanthanide coordination polymers of a new semirigid exo-bidentate ligand. • The lanthanide coordination polymers exhibit interesting structures. • The luminescent properties of Tb(III) complexes are discussed in detail

  2. Synthesis of a 3D lanthanum(III) MOFs as a multi-chemosensor to Cr(VI)-containing anion and Fe(III) cation based on a flexible ligand

    Science.gov (United States)

    Ma, Yang-Min; Liu, Tong; Huang, Wen-Huan

    2018-02-01

    Based on La(NO3)3·6H2O and 4,4‧-((5-carboxy-1,3-phenylene)bis(oxy))dibenzoic acid (H3cpbda), a 3D porous MOFs, [La(cpbda)(H2O)1.5]n (1), was synthesized by hydrothermal method and further characterized by single-crystal X-ray diffraction, power X-ray diffraction, IR spectroscopy, thermal-gravimetric analysis and fluorescence spectroscopy. Owing to its good stabilities and fluorescence property, the sensing experiments on sixteen cations and eleven anions were implemented. Moreover, the further titration processes show 1 can sensitively detect the Fe(III) cation and Cr(VI)-containing anions by quenching responses.

  3. Reversible, high molecular weight palladium and platinum coordination polymers based on phosphorus ligands

    NARCIS (Netherlands)

    Paulusse, J.M.J.; Huijbers, J.P.J.; Sijbesma, R.P.

    2005-01-01

    A general strategy for the preparation and characterization of high molecular weight coordination polymers based on bifunctional phosphorus ligands and palladium or platinum dichloride is described. Metal-to-ligand stoichiometry is of key importance for the formation of linear coordination polymers

  4. Reversible, High Molecular Weight Palladium and Platinum Coordination Polymers Based on Phosphorus Ligands

    NARCIS (Netherlands)

    Paulusse, Jos Marie Johannes; Huijbers, Jeroen P.J.; Sijbesma, Rint P.

    2005-01-01

    A general strategy for the preparation and characterization of high molecular weight coordination polymers based on bifunctional phosphorus ligands and palladium or platinum dichloride is described. Metal-to-ligand stoichiometry is of key importance for the formation of linear coordination polymers

  5. Synthesis of Poly(hydroxamic Acid-Poly(amidoxime Chelating Ligands for Removal of Metals from Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    M. R. Lutfor

    2011-01-01

    Full Text Available Synthesis of poly(hydroxamic acid-poly(amidoxime chelating ligands were carried out from poly(methyl acrylate-co-acrylonitrile grafted sago starch and hydroxylamine in alkaline medium. The binding property of metal ions was performed and maximum sorption capacity of the copper was 3.20 mmol/ g and the rate of exchange of some metals was faster, i.e. t½ ≈ 7 min (average. Two types of wastewater containing chromium, zinc, nickel, copper and iron, etc. were used and the heavy metal recovery was found to be highly efficient, about 99% of the metals could be removed from the metal plating wastewater.

  6. Synthesis and characterization of substituted Schiff-base ligands and their d(10) metal complexes: structure-induced luminescence tuning behaviors and applications in co-sensitized solar cells.

    Science.gov (United States)

    Dong, Yu-Wei; Fan, Rui-Qing; Wang, Ping; Wei, Li-Guo; Wang, Xin-Ming; Zhang, Hui-Jie; Gao, Song; Yang, Yu-Lin; Wang, Yu-Lei

    2015-03-28

    Nine IIB group complexes, [ZnL1Cl2] (Zn1), [CdL1Cl2]2 (Cd1), [HgL1Cl2] (Hg1), [ZnL2Cl2] (Zn2), [CdL2Cl2] (Cd2), [HgL2Cl2] (Hg2), [ZnL3Cl2] (Zn3), [CdL3Cl2] (Cd3) and [HgL3Cl2] (Hg3), have been synthesized from the corresponding ortho-(6-methoxy-pyridyl)(CH[double bond, length as m-dash]NAr) (where Ar = 2,6-iPr2C6H3, L1; 4-MeC6H4, L2; 2-OMeC6H4, L3) Schiff base and structurally characterized by elemental analysis, FT-IR, (1)H NMR and X-ray single-crystal analysis. Crystallographic studies reveal that the center metal of the complexes adopts a distorted tetrahedron geometry (except for Cd1 and Cd3, which display square pyramidal geometry) and C-HCl hydrogen bonds and ππ stacking interactions contribute to three-dimensional supramolecular structures. The series of complexes exhibit tunable luminescence from blue, through green, to light yellow by varying the temperature (298 K and 77 K), both in solution and in the solid state. Moreover, the quantum yields range from 0.027 to 0.422, and decrease according to the order of the periodic table (Zn > Cd > Hg). These results indicate that the center atom of the complexes leads to the geometry differences and hence to the tunable luminescence properties. Because Zn1-Zn3 exhibited higher molar extinction coefficients and a distinct absorption region, they were employed as co-sensitizers in ruthenium dye N719-sensitized photoanodes to deliver light-electricity efficiency enhancement, being assembled with counter-electrodes and electrolyte to prepare ZnX/N719 (where ZnX = Zn1, Zn2, and Zn3) co-sensitized dye sensitized solar cell (DSSC) devices. The prepared co-absorbent could overcome the deficiency of N719 absorption in the low-wavelength region of the visible spectrum, and offset competitive visible-light absorption of I3(-). Application of these prepared complexes in N719-sensitized solar cells enhanced their performance by 10-36%, which indicated a potential application of these types of complexes in DSSCs.

  7. Pentamethylcyclopentadienyl-rhodium and iridium complexes containing (N^N and N^O) bound chloroquine analogue ligands: synthesis, characterization and antimalarial properties.

    Science.gov (United States)

    Ekengard, Erik; Kumar, Kamlesh; Fogeron, Thibault; de Kock, Carmen; Smith, Peter J; Haukka, Matti; Monari, Magda; Nordlander, Ebbe

    2016-03-07

    The synthesis and characterization of twenty new pentamethylcyclopentadienyl-rhodium and iridium complexes containing N^N and N^O-chelating chloroquine analogue ligands are described. The in vitro antimalarial activity of the new ligands as well as the complexes was evaluated against the chloroquine sensitive (CQS) NF54 and the chloroquine resistant (CQR) Dd2 strains of Plasmodium falciparum. The antimalarial activity was found to be good to moderate; although all complexes are less active than artesunate, some of the ligands and complexes showed better activity than chloroquine (CQ). In particular, rhodium complexes were found to be considerably more active than iridium complexes against the CQS NF54 strain. Salicylaldimine Schiff base ligands having electron-withdrawing groups (F, Cl, Br, I and NO2) in para position of the salicyl moiety and their rhodium complexes showed good antiplasmodial activity against both the CQS-NF54 and the CQR-Dd2 strains. The crystal structures of (η(5)-pentamethylcyclopentadienyl){N(1)-(7-chloroquinolin-4-yl)-N(2)-(pyridin-2-ylmethyl)ethane-1,2-diamine)} chlororhodium(III) chloride and (η(5)-pentamethylcyclopentadienyl){(4-chloro-2-(((2-((7-chloroquinolin-4-yl)amino)ethyl)imino)methyl)phenolate)}chlororhodium(III) chloride are reported. The crystallization of the amino-pyridyl complex (η(5)-pentamethylcyclopentadienyl){(N(1)-(7-chloroquinolin-4-yl)-N(2)-(pyridin-2-ylmethyl)ethane-1,2-diamine)}chloroiridium(III) chloride in acetone resulted in the formation of the imino-pyridyl derivative (η(5)-pentamethylcyclopentadienyl){(N1-(7-chloroquinolin-4-yl)-N2-(pyridin-2-ylmethylene)ethane-1,2-diamine)}chloroiridium(III) chloride, the crystal structure of which is also reported.

  8. Dimeric ligands for GPCRs involved in human reproduction : synthesis and biological evaluation

    NARCIS (Netherlands)

    Bonger, Kimberly Michelle

    2008-01-01

    Dimeric ligands for G-protein coupled receptors that are involved in human reproduction, namely the gonadotropin releasing hormone receptor, the luteinizing hormone receptor and the follicle-stimulating hormone receptor, were synthesized and biologically evaluated.

  9. Synthesis of mixed ligand europium complexes: Verification of predicted luminescence intensification

    International Nuclear Information System (INIS)

    Lima, Nathalia B.D.; Silva, Anderson I.S.; Gonçalves, Simone M.C.; Simas, Alfredo M.

    2016-01-01

    Mixed ligand europium complexes are predicted to be more luminescent than what would be expected from their corresponding repeating ligand compounds according to a conjecture recently advanced by our research group; a conjecture that has already been validated for strongly luminescent europium complexes. In this article, we seek to further verify the validity of this conjecture for complexes which are much more symmetric, and which thus display lower levels of luminescence. Accordingly, we synthesized complexes Eu(DBM) 3 (L) 2 , and all novel mixed ligand combinations Eu(DBM) 3 (L,L') with L and L' equal to DBSO, PTSO, and TPPO. The syntheses were carried out via displacement reactions from the starting complex Eu(DBM) 3 (H 2 O) 2 , passing through the intermediates Eu(DBM) 3 (L) 2 and finally, by displacement of L by L', arriving at Eu(DBM) 3 (L,L'). The ligands L obey the following order of displacement TPPO>PTSO>DBSO>H 2 O, which had been previously described by our group. In the present article, we further show that this displacement order could have been predicted by Sparkle/RM1 thermochemical calculations. Subsequently, we determined the radiative decay rates, A rad , for all six compounds by photophysical measurements. As expected, results show that the measured A rad values for all novel mixed ligand complexes are larger than the average of the A rad values for the corresponding repeating ligand coordination compounds. In conclusion, the present article does broaden the scope of our conjecture, which enunciates that an increase in the diversity of ligands around the europium ion tends to intensify the luminescence. - Highlights: • Mixed ligand europium complexes are predicted to be more luminescent than repeating ligand ones. • Radiative decay rates increase with structural coordination asymmetry. • The non-ionic ligands displacement order in substitution reactions is TPPO>PTSO>DBSO>H 2 O. • Sparkle/RM1 correctly predicts the

  10. Architecture effects on multivalent interactions by polypeptide-based multivalent ligands

    Science.gov (United States)

    Liu, Shuang

    Multivalent interactions are characterized by the simultaneous binding between multiple ligands and multiple binding sites, either in solutions or at interfaces. In biological systems, most multivalent interactions occur between protein receptors and carbohydrate ligands through hydrogen-bonding and hydrophobic interactions. Compared with weak affinity binding between one ligand and one binding site, i.e. monovalent interaction, multivalent interactioins provide greater avidity and specificity, and therefore play unique roles in a broad range of biological activities. Moreover, the studies of multivalent interactions are also essential for producing effective inhibitors and effectors of biological processes that could have important therapeutic applications. Synthetic multivalent ligands have been designed to mimic the biological functions of natural multivalent interactions, and various types of scaffolds have been used to display multiple ligands, including small molecules, linear polymers, dendrimers, nanoparticle surfaces, monolayer surfaces and liposomes. Studies have shown that multivalent interactions can be highly affected by various architectural parameters of these multivalent ligands, including ligand identities, valencies, spacing, ligand densities, nature of linker arms, scaffold length and scaffold conformation. Most of these multivalent ligands are chemically synthesized and have limitations of controlling over sequence and conformation, which is a barrier for mimicking ordered and controlled natural biological systems. Therefore, multivalent ligands with precisely controlled architecture are required for improved structure-function relationship studies. Protein engineering methods with subsequent chemical coupling of ligands provide significant advantages of controlling over backbone conformation and functional group placement, and therefore have been used to synthesize recombinant protein-based materials with desired properties similar to natural

  11. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    International Nuclear Information System (INIS)

    Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    A successive anchoring of Ti(NMe 2 ) 4 , cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, 13 C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands. - Graphical abstract: The ligand-tailored silica supported “single site” titanium complexes were synthesized by SOMC strategy and fully characterized. Their catalytic activity were evaluated by benzaldehyde silylcyanation. - Highlights: • Single-site silica supported Ti active species was prepared by SOMC technique. • O-donor ligand tailored Ti surface species was synthesized. • The surface species was characterized by XPS, 13 C CP-MAS NMR, XANES etc. • Catalytic activity of the Ti active species in silylcyanation reaction was evaluated

  12. Lanthanide(III) Complexes with Tridentate Schiff Base Ligand ...

    African Journals Online (AJOL)

    Lanthanide complexes, hydrazino, antioxidant activity, X-ray structure. 1. Introduction ... measured using a Johnson Matthey scientific magnetic suscepti- bility balance. 2.1. .... of the ligand and that the nitrogen atom supporting this proton is not involved in the ... 4f-electrons are not involved in the coordination. These facts.

  13. A 3D porous zinc MOF constructed from a flexible tripodal ligand: Synthesis, structure, and photoluminescence property

    International Nuclear Information System (INIS)

    Wen Lili; Wang Dong'e; Wang Chenggang; Wang Feng; Li Dongfeng; Deng Kejian

    2009-01-01

    A new metal-organic framework, [Zn 5 (trencba) 2 (OH) 2 Cl 2 .4H 2 O] (1) [H 3 trencba=N,N,N',N',N'',N''-tris[(4-carboxylate-2-yl)methyl]-tris (2-aminoethyl)amine], constructed from a flexible tripodal ligand based on C 3 symmetric tris(2-aminoethyl)amine, has been synthesized hydrothermally and characterized by elemental analysis, IR, TG, XRD and single-crystal X-ray diffraction analysis. Compound 1 contains an unprecedented linear penta-nuclear zinc cluster fragment. Each ligand links four penta-nuclear fragments, and every fragment links eight ligands to generate a three-dimensional non-interpenetrated porous framework. The uncoordinated water molecules were observed trapped in the void pores. Compound 1 represents the first example of (6,8)-connected 3D bi-nodal framework based on a single kind of organic ligand. The photoluminescence measurements showed that complex 1 exhibits relatively stronger blue emissions at room temperature than that of the ligand. - Graphical abstract: The MOF [Zn 5 (trencba) 2 (OH) 2 Cl 2 .4H 2 O] (H 3 trencba=N,N,N',N',N',N'-tris[(4-carboxylate-2-yl)methyl]-tris (2-aminoethyl)amine) reveals a (6,8)-connected bi-nodal three-dimensional porous framework with unprecedented penta-nuclear fragment, which appears to be a good candidate of hybrid inorganic-organic photoactive materials

  14. Tetracarboxylatodirhenium complexes linked by axial cyano bridges to metalpentacarbonyl ligands - synthesis and characterization

    International Nuclear Information System (INIS)

    Kuehn, F.E.; Wachter, W.; Goncalves, I.S.; Aveiro Univ.; Lopes, A.D.; Lopes, J.P.; Romao, C.C.; Mink, J.; Veszprem Univ.; Hajba, L.; Parola, A.J.; Pina, F.; Sotomayor, J.

    1999-01-01

    Reaction of Re 2 {μ-O 2 CC(CH 3 ) 3 } 4 Cl 2 with [(CO) 5 M-CN]Na (M=Cr, Mo, W) leads to tetranuclear complexes of formula Re 2 {μ-O 2 CC(CH 3 ) 3 } 4 [-NC-M(CO) 5 ] 2 (M=Cr, Mo, W). These complexes were characterized by 1 H-, 13 C-, and 95 Mo-NMR, IR and Raman spectroscopy, elemental analysis and examined by cyclic voltammetry. The applied methods show the donor capabilities of the [(CO) 5 M-CN] - ligands which shift electron density towards the Re centers weakening the Re-Re quadruple bond. The Re-Re bond lengths and the ν(Re-Re) force constants are estimated based on the FT-IR and Raman examinations. Photchemical examinations and TG/MS experiments have also been conducted. The latter method shows that the product complexes decompose around 100 C, but first loosing their carbonyl substituents; as do the Cr, Mo, W precursor compounds. The dirhenium tetrapivalate unit decomposes only at higher temperatures in a distinct second step. (orig.)

  15. Template synthesis and characterization of biologically active transition metal complexes comprising 14-membered tetraazamacrocyclic ligand

    Directory of Open Access Journals (Sweden)

    DHARMPAL SINGH

    2010-02-01

    Full Text Available A novel series of complexes of the type [M(C28H24N4X2], whereM = Co(II, Ni(II, Cu(II, Zn(II and Cd(II, X = Cl–, NO3–, CH3COO– and (C28H24N4 corresponds to the tetradentate macrocyclic ligand, were synthe¬sized by template condensation of 1,8-diaminonaphthalene and diacetyl in the presence of divalent metal salts in methanolic medium. The complexes were characterized by elemental analyses, conductance and magnetic measurements, as well as by UV/Vis, NMR, IR and MS spectroscopy. The low values of the molar conductance indicate non-electrolyte type of complexes. Based on these spectral data, a distorted octahedral geometry may be proposed for all of these complexes. All the synthesized macrocyclic complexes were tested for in vitro antibacterial activity against some pathogenic bacterial strains, viz Bacillus cereus, Salmonella typhi, Escherichia coli and Staphylococcus aureus. The MIC values shown by the complexes against these bacterial strains were compared with the MIC shown by the standard antibiotics linezolid and cefaclor.

  16. Physics-based scoring of protein-ligand interactions: explicit polarizability, quantum mechanics and free energies.

    Science.gov (United States)

    Bryce, Richard A

    2011-04-01

    The ability to accurately predict the interaction of a ligand with its receptor is a key limitation in computer-aided drug design approaches such as virtual screening and de novo design. In this article, we examine current strategies for a physics-based approach to scoring of protein-ligand affinity, as well as outlining recent developments in force fields and quantum chemical techniques. We also consider advances in the development and application of simulation-based free energy methods to study protein-ligand interactions. Fuelled by recent advances in computational algorithms and hardware, there is the opportunity for increased integration of physics-based scoring approaches at earlier stages in computationally guided drug discovery. Specifically, we envisage increased use of implicit solvent models and simulation-based scoring methods as tools for computing the affinities of large virtual ligand libraries. Approaches based on end point simulations and reference potentials allow the application of more advanced potential energy functions to prediction of protein-ligand binding affinities. Comprehensive evaluation of polarizable force fields and quantum mechanical (QM)/molecular mechanical and QM methods in scoring of protein-ligand interactions is required, particularly in their ability to address challenging targets such as metalloproteins and other proteins that make highly polar interactions. Finally, we anticipate increasingly quantitative free energy perturbation and thermodynamic integration methods that are practical for optimization of hits obtained from screened ligand libraries.

  17. Luminescent Fluorene-Based Bis-Pyrazolyl Aniline Ligand for Aluminum Detection.

    Science.gov (United States)

    Frazer, Andrew; Morales, Alma R; Woodward, Adam W; Tongwa, Paul; Timofeeva, Tatiana; Belfield, Kevin D

    2013-09-29

    The design, synthesis, and photophysical properties of a new fluorene-based fluorescent chemosensor, 4-((E)-2-(2-(benzo[d]thiazol-2-yl)-9,9-diethyl-9H-fluoren-7-yl)vinyl)-N,N-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)benzenamine (AXF-Al), is described for the detection of Al 3+ . AXF-Al exhibited absorption at 382 nm and strong fluorescence emission at 542 nm (fluorescence quantum yield, Φ F , of 0.80). The capture of Al 3+ by the pyrazolyl aniline receptor resulted in nominal change in the linear absorption (372 nm) but a large hypsochromic shift of 161 nm in the fluorescence spectrum (542 to 433 nm, Φ F  = 0.88), from which Al 3+ was detected both ratiometrically and colorimetrically. The addition of other metal ions, namely Mg 2+ , Ca 2+ , Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ , Cd 2+ , Hg 2+ and Pb 2+ , produced only minimal changes in the optical properties of this probe. The emission band of this probe was also accessed by two-photon excitation in the near-IR, as two-photon absorption (2PA) is important for potential applications in two-photon fluorescence microscopy (2PFM) imaging. The 2PA cross section of the free fluorenyl ligand AXF-Al was 220 GM at 810 nm and 235 GM at 810 nm for the Al-ligand complex, practically useful properties for 2PFM.

  18. Design, Synthesis, and Biological Evaluation of Small, High-Affinity Siglec-7 Ligands: Toward Novel Inhibitors of Cancer Immune Evasion.

    Science.gov (United States)

    Prescher, Horst; Frank, Martin; Gütgemann, Stephan; Kuhfeldt, Elena; Schweizer, Astrid; Nitschke, Lars; Watzl, Carsten; Brossmer, Reinhard

    2017-02-09

    Natural killer cells are able to directly lyse tumor cells, thereby participating in the immune surveillance against cancer. Unfortunately, many cancer cells use immune evasion strategies to avoid their eradication by the immune system. A prominent escape strategy of malignant cells is to camouflage themselves with Siglec-7 ligands, thereby recruiting the inhibitory receptor Siglec-7 expressed on the NK cell surface which subsequently inhibits NK-cell-mediated lysis. Here we describe the synthesis and evaluation of the first, high-affinity low molecular weight Siglec-7 ligands to interfere with cancer cell immune evasion. The compounds are Sialic acid derivatives and bind with low micromolar K d values to Siglec-7. They display up to a 5000-fold enhanced affinity over the unmodified sialic acid scaffold αMe Neu5Ac, the smallest known natural Siglec-7 ligand. Our results provide a novel immuno-oncology strategy employing natural immunity in the fight against cancers, in particular blocking Siglec-7 with low molecular weight compounds.

  19. Quaternary Cu2ZnSnS4 quantum dot-sensitized solar cells: Synthesis, passivation and ligand exchange

    Science.gov (United States)

    Bai, Bing; Kou, Dongxing; Zhou, Wenhui; Zhou, Zhengji; Tian, Qingwen; Meng, Yuena; Wu, Sixin

    2016-06-01

    The quaternary Cu2ZnSnS4 (CZTS) QDs had been successfully introduced into quantum dot-sensitized solar cells (QDSC) via hydrolysis approach in our previous work [Green Chem. 2015, vol. 17, p. 4377], but the obtained cell efficiency was still limited by low open-circuit voltage and fill factor. Herein, we use 1-dodecanethiol (DDT) as capping ligand for fairly small-sized CZTS QDs synthesis to improve their intrinsic properties. Since this strong bonded capping ligand can not be replaced by 3-mercaptopropionic acid (MPA) directly, the nature cation (Cu, Zn or Sn)-DDT units of QDs are first exchanged by the preconjugated Cd-oleate via successive ionic layer adsorption and reaction (SILAR) procedure accompanied with the formation of a core/shell structure. The weak bonded oleic acid (OA) can be finally replaced by MPA and the constructed water soluble CZTS/CdSe QDSC achieves an impressive conversion efficiency of 4.70%. The electron transport and recombination dynamic processes are confirmed by intensity-modulated photocurrent spectroscopy (IMPS)/intensity-modulated photovoltage spectroscopy (IMVS) measurements. It is found that the removal of long alkyl chain is conducive to improve the electron transport process and the type-II core/shell structure is beneficial to accelerate electron transport and retard charge recombination. This effective ligand removal strategy is proved to be more convenient for the applying of quaternary QDs in QDSC and would boost a more powerful efficiency in the future work.

  20. Synthesis and Structure Determination of a New Au20 Nanocluster Protected by Tripodal Tetraphosphine Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing [Brown Univ., Providence, RI (United States); Zhang, Qianfan [Brown Univ., Providence, RI (United States); Williard, Paul G. [Brown Univ., Providence, RI (United States); Wang, Lai-Sheng [Brown Univ., Providence, RI (United States)

    2014-03-31

    We report the synthesis and structure determination of a new Au20 nanocluster coordinated by four tripodal tetraphosphine (PP3) ligands {PP3 = tris[2-(diphenylphosphino)ethyl]phosphine}. Single-crystal Xray crystallography and electrospray ionization mass spectrometry show that the cluster assembly can be formulated as [Au20(PP3)4]Cl4. The Au20 cluster consists of an icosahedral Au13 core and a seven-Au-atom partial outer shell arranged in a local C3 symmetry. One PP3 ligand coordinates to four Au atoms in the outer shell, while the other three PP3 ligands coordinate to one Au atom from the outer shell and three Au atoms from the surface of the Au13 core, giving rise to an overall chiral 16-electron Au cluster core with C3 symmetry.

  1. Are superhalogens without halogen ligand capable of transcending traditional halogen-based superhalogens? Ab initio case study of binuclear anions based on pseudohalogen ligand

    International Nuclear Information System (INIS)

    Li, Jin-Feng; Sun, Yin-Yin; Li, Miao-Miao; Li, Jian-Li; Yin, Bing; Bai, Hongcun

    2015-01-01

    The superhalogen properties of polynuclear structures without halogen ligand are theoretically explored here for several [M 2 (CN) 5 ] −1 (M =  Ca, Be) clusters. At CCSD(T) level, these clusters have been confirmed to be superhalogens due to their high vertical electron detachment energies (VDE). The largest one is 9.70 eV for [Ca 2 (CN) 5 ] −1 which is even higher than those of corresponding traditional structures based on fluorine or chlorine ligands. Therefore the superhalogens stronger than the traditional halogen-based structures could be realized by ligands other than halogen atoms. Compared with CCSD(T), outer valence Green’s function (OVGF) method either overestimates or underestimates the VDEs for different structures while MP2 results are generally consistent in the aspect of relative values. The extra electrons of the highest VDE anions here aggregate on the bridging CN units with non-negligible distribution occurring on other CN units too. These two features lower both the potential and kinetic energies of the extra electron respectively and thus lead to high VDE. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to the detachment of cyanide ligand were also investigated. The sum of these results identifies the potential of polynuclear structures with pseudohalogen ligand as suitable candidates with enhanced superhalogens properties

  2. Are superhalogens without halogen ligand capable of transcending traditional halogen-based superhalogens? Ab initio case study of binuclear anions based on pseudohalogen ligand

    Science.gov (United States)

    Li, Jin-Feng; Sun, Yin-Yin; Bai, Hongcun; Li, Miao-Miao; Li, Jian-Li; Yin, Bing

    2015-06-01

    The superhalogen properties of polynuclear structures without halogen ligand are theoretically explored here for several [M2(CN)5]-1 (M = Ca, Be) clusters. At CCSD(T) level, these clusters have been confirmed to be superhalogens due to their high vertical electron detachment energies (VDE). The largest one is 9.70 eV for [Ca2(CN)5]-1 which is even higher than those of corresponding traditional structures based on fluorine or chlorine ligands. Therefore the superhalogens stronger than the traditional halogen-based structures could be realized by ligands other than halogen atoms. Compared with CCSD(T), outer valence Green's function (OVGF) method either overestimates or underestimates the VDEs for different structures while MP2 results are generally consistent in the aspect of relative values. The extra electrons of the highest VDE anions here aggregate on the bridging CN units with non-negligible distribution occurring on other CN units too. These two features lower both the potential and kinetic energies of the extra electron respectively and thus lead to high VDE. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to the detachment of cyanide ligand were also investigated. The sum of these results identifies the potential of polynuclear structures with pseudohalogen ligand as suitable candidates with enhanced superhalogens properties.

  3. Are superhalogens without halogen ligand capable of transcending traditional halogen-based superhalogens? Ab initio case study of binuclear anions based on pseudohalogen ligand

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jin-Feng; Sun, Yin-Yin; Li, Miao-Miao; Li, Jian-Li; Yin, Bing, E-mail: rayinyin@nwu.edu.cn [MOE Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi’an 710069 (China); Bai, Hongcun [Key Laboratory of Energy Source and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021 (China)

    2015-06-15

    The superhalogen properties of polynuclear structures without halogen ligand are theoretically explored here for several [M{sub 2}(CN){sub 5}]{sup −1} (M =  Ca, Be) clusters. At CCSD(T) level, these clusters have been confirmed to be superhalogens due to their high vertical electron detachment energies (VDE). The largest one is 9.70 eV for [Ca{sub 2}(CN){sub 5}]{sup −1} which is even higher than those of corresponding traditional structures based on fluorine or chlorine ligands. Therefore the superhalogens stronger than the traditional halogen-based structures could be realized by ligands other than halogen atoms. Compared with CCSD(T), outer valence Green’s function (OVGF) method either overestimates or underestimates the VDEs for different structures while MP2 results are generally consistent in the aspect of relative values. The extra electrons of the highest VDE anions here aggregate on the bridging CN units with non-negligible distribution occurring on other CN units too. These two features lower both the potential and kinetic energies of the extra electron respectively and thus lead to high VDE. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to the detachment of cyanide ligand were also investigated. The sum of these results identifies the potential of polynuclear structures with pseudohalogen ligand as suitable candidates with enhanced superhalogens properties.

  4. Synthesis and structure of bivalent ytterbocenes and their coordination chemistry with pi-acceptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Madeleine [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The bivalent lanthanide metallocenes [1,3-(Me3C)2C5H3]2Yb and (Me4C5H)2Yb have been synthesized and their structures have been determined by X-ray crystallography. Comparison with the known structures of (Me5C5)2Yb and [1,3 -(Me3Si)2C5H3]2Yb leads to an understanding of the role of intermolecular contacts in stabilizing these coordinatively unsaturated molecules. The optical spectra of the base-free ytterbocenes and their Lewis-base adducts have been measured; the position of the HOMO - LUMO transition can be correlated with the degree of bending of the complexes in solution according to a molecular orbital model. Electron - electron repulsion, resulting from additional σ-donor ligands, also affects the HOMO - LUMO transition by increasing the energy of the filled f-orbitals. The base-free metallocene (Me5C5)2Yb coordinates carbon monoxide, resulting in a decrease in Vco relative to that of fi-ee carbon monoxide. This behavior is reminiscent of d-transition metallocene chemistry. Other base-free ytterbocenes also coordinate carbon monoxide and the degree of back-donation is related to the substituents on the cyclopentadienide rings. Isocyanides are coordinated in a 1:2 ratio by the ytterbocenes, giving complexes having vcN higher than those of the free isocyanides. An electrostatic bonding model has been used to explain the changes in CN stretching frequencies. The optical spectra of the carbonyl and isocyanide complexes are consistent with the molecular orbital model of the variation in the HOMO - LUMO gap upon bending, and the increase in electron - electron repulsion due to the additional ligands. The complex (Me5C5)2Yb(bipy) exhibits optical, infrared and NMIZ spectroscopy and an X-ray crystal

  5. Synthesis and structure of a 2D Zn complex with mixed ligands stacked in offset ABAB manner

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Ling, E-mail: qinling0924013@163.com; Wang, Yan-Qing; Ni, Gang [Hefei University of Technology, Department of chemical engineering and food processing, Xuancheng Campus (China)

    2016-07-15

    The title complex, ([Zn(ODIB){sub 1/2}(bpdc)]·2DMF){sub n} was prepared under hydrothermal conditions (dimethylformamide and water) based on two ligands, namely, 1,1′-oxy-bis[3,5-diimidazolyl-benzene] (ODIB) and biphenyldicarboxylic acid (H{sub 2}bpdc). ODIB ligands link Zn cations to give layers in crystal. bpdc{sup 2–} anions coordinate to Zn atoms, however, their introduction does not increase the dimension of the structure. Each layer is partially passes through the adjacent layers in the offset ABAB manner.

  6. Synthesis and labelling of Df-DUPA-Pep with gallium-68 and zirconium-89 as new PSMA ligands

    International Nuclear Information System (INIS)

    Benjamin Baur; Ehab Al-Momani; Noeen Malik; Hans-Juergen Machulla; Reske, S.N.; Christoph Solbach; Elena Andreolli; University of Milano-Bicocca, Milan

    2014-01-01

    Prostate-specific membrane antigen (PSMA) is a cell surface protein that is overexpressed in prostate cancer. Due to the specificity of expression of PSMA, numerous urea-based ligands have been synthesized until now. In the current study, we describe the coupling of the chelator desferrioxamine to DUPA-Pep and the subsequent labelling with Ga-68 and Zr-89 as new PSMA ligands. The labelling step is performed at room temperature and pH 7.5. In both radiosyntheses, the RCYs were higher than 95 % within 10 min, making dispensable any further purification and providing the radiotracers directly applicable for further utilization. (author)

  7. Nanoparticle-based receptors mimic protein-ligand recognition

    OpenAIRE

    Riccardi, Laura; Gabrielli, Luca; Sun, Xiaohuan; Biasi, Federico De; Rastrelli, Federico; Mancin, Fabrizio; De Vivo, Marco

    2017-01-01

    Summary The self-assembly of a monolayer of ligands on the surface of noble-metal nanoparticles dictates the fundamental nanoparticle's behavior and its functionality. In this combined computational-experimental study, we analyze the structure, organization, and dynamics of functionalized coating thiols in monolayer-protected gold nanoparticles (AuNPs). We explain how functionalized coating thiols self-organize through a delicate and somehow counterintuitive balance of interactions within the...

  8. Synthesis, spectroscopic and DNA binding ability of CoII, NiII, CuII and ZnII complexes of Schiff base ligand (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol. X-ray crystal structure determination of cobalt (II) complex.

    Science.gov (United States)

    Yarkandi, Naeema H; El-Ghamry, Hoda A; Gaber, Mohamed

    2017-06-01

    A novel Schiff base ligand, (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol (HL), has been designed and synthesized in addition to its metal chelates [Co(L) 2 ]·l2H 2 O, [Ni(L)Cl·(H 2 O) 2 ].5H 2 O, [Cu(L)Cl] and [Zn(L)(CH 3 COO)]. The structures of the isolated compounds have been confirmed and identified by means of different spectral and physicochemical techniques including CHN analysis, 1 H & 13 C NMR, mass spectral analysis, molar conductivity measurement, UV-Vis, infrared, magnetic moment in addition to TGA technique. The infrared spectral results ascertained that the ligand acts as monobasic tridentate binding to the metal centers via deprotonated hydroxyl oxygen, azomethine and imidazole nitrogen atoms. The UV-Vis, magnetic susceptibility and molar conductivity data implied octahedral geometry for Co(II) & Ni(II) complexes, tetrahedral for Zn(II) complex and square planar for Cu(II) complex. X-ray structural analysis of Co(II) complex 1 has been reported and discussed. Moreover, the type of interaction between the ligand & its complexes towards salmon sperm DNA (SS-DNA) has been examined by the measurement of absorption spectra and viscosity which confirmed that the ligand and its complexes interact with DNA via intercalation interaction as concluded from the values of binding constants (K b ). Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Tetrathiafulvalene-based azine ligands for anion and metal cation coordination

    Directory of Open Access Journals (Sweden)

    Awatef Ayadi

    2015-08-01

    Full Text Available The synthesis and full characterization of two tetrathiafulvalene-appended azine ligands, namely 2-([2,2’-bi(1,3-dithiolylidene]-4-yl-6-((2,4-dinitrophenylhydrazonomethylpyridine (L1 and 5-([2,2’-bi(1,3-dithiolylidene]-4-yl-2-((2,4-dinitrophenylhydrazonomethylpyridine (L2 are described. The crystal structure of ligand L1 indicates that the ligand is completely planar with the presence of a strong intramolecular N3–H3···O1 hydrogen bonding. Titration experiments with inorganic anions showed that both ligands are suitable candidates for the sensing of fluoride anions. Ligand L2 was reacted with a Re(I cation to yield the corresponding rhenium tricarbonyl complex 3. In the crystal structure of the newly prepared electroactive rhenium complex the TTF is neutral and the rhenium cation is hexacoordinated. The electrochemical behavior of the three compounds indicates that they are promising for the construction of crystalline radical cation salts.

  10. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands.

    Science.gov (United States)

    Hubin, Timothy J; Amoyaw, Prince N-A; Roewe, Kimberly D; Simpson, Natalie C; Maples, Randall D; Carder Freeman, TaRynn N; Cain, Amy N; Le, Justin G; Archibald, Stephen J; Khan, Shabana I; Tekwani, Babu L; Khan, M O Faruk

    2014-07-01

    Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal complexes of the dibenzyl cross-bridged cyclam ligand exhibited potent antimalarial activity. The Mn(2+) complex of this ligand was the most potent with IC50s of 0.127 and 0.157μM against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) P. falciparum strains, respectively. In general, the dibenzyl hydrophobic ligands showed better anti-malarial activity compared to the activity of monobenzyl ligands, potentially because of their higher lipophilicity and thus better cell penetration ability. The higher antimalarial activity displayed by the manganese complex for the cyclam ligand in comparison to that of the cyclen, correlates with the larger pocket of cyclam compared to that of cyclen which produces a more stable complex with the Mn(2+). Few of the Cu(2+) and Fe(2+) complexes also showed improvement in activity but Ni(2+), Co(2+) and Zn(2+) complexes did not show any improvement in activity upon the metal-free ligands for anti-malarial development. Published by Elsevier Ltd.

  11. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang, E-mail: gfzhang@snnu.edu.cn; Gao, Ziwei, E-mail: zwgao@snnu.edu.cn

    2015-01-15

    A successive anchoring of Ti(NMe{sub 2}){sub 4}, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, {sup 13}C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands. - Graphical abstract: The ligand-tailored silica supported “single site” titanium complexes were synthesized by SOMC strategy and fully characterized. Their catalytic activity were evaluated by benzaldehyde silylcyanation. - Highlights: • Single-site silica supported Ti active species was prepared by SOMC technique. • O-donor ligand tailored Ti surface species was synthesized. • The surface species was characterized by XPS, {sup 13}C CP-MAS NMR, XANES etc. • Catalytic activity of the Ti active species in silylcyanation reaction was evaluated.

  12. Synthesis of freestanding water-soluble indium oxide nanocrystals capped by alanine nitric acid via ligand exchange for thin film transistors and effects of ligands on the electrical properties

    International Nuclear Information System (INIS)

    Choi, Jin-Kyu; Koh, Ye-Seul; Jeong, Hyun-Dam

    2015-01-01

    We demonstrate synthesis of freestanding water-soluble indium oxide nanocrystals (In 2 O 3 NCs) by ligand exchange to β-alanine nitric acid (Ala·HNO 3 ) and its application for active channel layer in thin film transistors (TFTs), with investigation of the effect of curing temperatures on the TFT properties in terms of thermal behaviour of the ligand molecules at 150, 300, and 350 °C. After ligand exchange from long alkyl ligand (myristic acid, MA) to short Ala·HNO 3 , the mobility of NC TFTs cured at 150 °C increased by over 1 order of magnitude, from 1.3 × 10 −4 cm 2 V -1 s −1 to 4.5 × 10 −3 cm 2 V -1 s −1 , due to enhanced tunnelling rate (Γ) between adjective NCs. Higher curing temperatures such as 300 and 350 °C, inducing thermal decomposition of the organic ligands, led to further enhancement of the mobility, particularly up to 2.2 cm 2 V -1 s −1 for the In 2 O 3 NC-Ala·HNO 3 TFT cured at 350 °C. It is also found that the ligand exchange of In 2 O 3 NC in acidic condition (e.g. HNO 3 ) would be simple and effective to reduce the surface defects by surface etching, which may lead to better device performances. - Graphical abstract: Display Omitted - Highlights: • Freestanding water-soluble In 2 O 3 nanocrystals (NCs) were synthesized by ligand exchange. • Thin film transistors (TFTs) of colloidal NCs were fabricated by spin-coating method. • Water-soluble In 2 O 3 NC TFTs showed higher mobilities due to shorter ligand length. • Surface defects of NCs were notably reduced by surface etching during ligand exchange

  13. Nonlinear optical and G-Quadruplex DNA stabilization properties of novel mixed ligand copper(II) complexes and coordination polymers: Synthesis, structural characterization and computational studies

    Science.gov (United States)

    Rajasekhar, Bathula; Bodavarapu, Navya; Sridevi, M.; Thamizhselvi, G.; RizhaNazar, K.; Padmanaban, R.; Swu, Toka

    2018-03-01

    The present study reports the synthesis and evaluation of nonlinear optical property and G-Quadruplex DNA Stabilization of five novel copper(II) mixed ligand complexes. They were synthesized from copper(II) salt, 2,5- and 2,3- pyridinedicarboxylic acid, diethylenetriamine and amide based ligand (AL). The crystal structure of these complexes were determined through X-ray diffraction and supported by ESI-MAS, NMR, UV-Vis and FT-IR spectroscopic methods. Their nonlinear optical property was studied using Gaussian09 computer program. For structural optimization and nonlinear optical property, density functional theory (DFT) based B3LYP method was used with LANL2DZ basis set for metal ion and 6-31G∗ for C,H,N,O and Cl atoms. The present work reveals that pre-polarized Complex-2 showed higher β value (29.59 × 10-30e.s.u) as compared to that of neutral complex-1 (β = 0.276 × 10-30e.s.u.) which may be due to greater advantage of polarizability. Complex-2 is expected to be a potential material for optoelectronic and photonic technologies. Docking studies using AutodockVina revealed that complex-2 has higher binding energy for both G-Quadruplex DNA (-8.7 kcal/mol) and duplex DNA (-10.1 kcal/mol). It was also observed that structure plays an important role in binding efficiency.

  14. The Synthesis, Structures and Chemical Properties of Macrocyclic Ligands Covalently Bonded into Layered Arrays

    International Nuclear Information System (INIS)

    Clearfield, Abraham

    2003-01-01

    OAK-B135 The immobilization of crown ethers tends to limit the leveling effect of solvents making the macrocycles more selective. In addition immobilization has the added advantage of relative ease of recovery of the otherwise soluble crown. We have affixed CH2PO3H2 groups to azacrown ethers. The resultant phosphorylated macrocycles may spontaneously aggregate into crystalline supramolecular linear arrays or contacted with cations produce layered or linear polymers. In the linear polymers the metal and phosphonic acids covalently bond into a central stem with the macrocyclic rings protruding from the stem as leaves on a twig. Two types of layered compounds were obtained with group 4 metals. Monoaza-crown ethers form a bilayer where the M4+ plus phosphonic acid groups build the layer and the rings fill the interlayer space. 1, 10-diazadiphosphonic acids cross-link the metal phosphonate layers forming a three-dimensional array of crown ethers. In order to improve diffusion into these 3-D arrays they are spaced by inclusion of phosphate or phosphate groups. Two series of azamacrocylic crown ethers were prepared containing rings with 20 to 32 atoms. These larger rings can complex two cations per ring. Methylene phosphonic acid groups have been bonded to the aza ring atoms to increase the complexing ability of these ligands. Our approach is to carry out acid-base titrations in the absence and presence of cations to determine the pKa values of the protons, both those bonded to aza groups and those associated with the phosphonic acid groups. From the differences in the titration curves obtained with and without the cations present we obtain the stoichiometry of complex formation and the complex stability constants. Some of the applications we are targeting include phase transfer catalysis, separation of cations and the separation of radioisotopes for diagnostic and cancer therapeutic purposes

  15. Reaction of Non-Symmetric Schiff Base Metallo-Ligand Complexes Possessing an Oxime Function with Ln Ions

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Costes

    2018-03-01

    Full Text Available The preparation of non-symmetric Schiff base ligands possessing one oxime function that is associated to a second function such as pyrrole or phenol function is first described. These ligands, which possess inner N4 or N3O coordination sites, allow formation of cationic or neutral non-symmetric CuII or NiII metallo-ligand complexes under their mono- or di-deprotonated forms. In presence of Lanthanide ions the neutral complexes do not coordinate to the LnIII ions, the oxygen atom of the oxime function being only hydrogen-bonded to a water molecule that is linked to the LnIII ion. This surprising behavior allows for the isolation of LnIII ions by non-interacting metal complexes. Reaction of cationic NiII complexes possessing a protonated oxime function with LnIII ions leads to the formation of original and dianionic (Gd(NO352− entities that are well separated from each other. This work highlights the preparation of well isolated mononuclear LnIII entities into a matrix of diamagnetic metal complexes. These new complexes complete our previous work dealing with the complexing ability of the oxime function toward Lanthanide ions. It could open the way to the synthesis of new entities with interesting properties, such as single-ion magnets for example.

  16. A python-based docking program utilizing a receptor bound ligand shape: PythDock.

    Science.gov (United States)

    Chung, Jae Yoon; Cho, Seung Joo; Hah, Jung-Mi

    2011-09-01

    PythDock is a heuristic docking program that uses Python programming language with a simple scoring function and a population based search engine. The scoring function considers electrostatic and dispersion/repulsion terms. The search engine utilizes a particle swarm optimization algorithm. A grid potential map is generated using the shape information of a bound ligand within the active site. Therefore, the searching area is more relevant to the ligand binding. To evaluate the docking performance of PythDock, two well-known docking programs (AutoDock and DOCK) were also used with the same data. The accuracy of docked results were measured by the difference of the ligand structure between x-ray structure, and docked pose, i.e., average root mean squared deviation values of the bound ligand were compared for fourteen protein-ligand complexes. Since the number of ligands' rotational flexibility is an important factor affecting the accuracy of a docking, the data set was chosen to have various degrees of flexibility. Although PythDock has a scoring function simpler than those of other programs (AutoDock and DOCK), our results showed that PythDock predicted more accurate poses than both AutoDock4.2 and DOCK6.2. This indicates that PythDock could be a useful tool to study ligand-receptor interactions and could also be beneficial in structure based drug design.

  17. Synthesis characterization and biological evaluation of a novel mixed ligand 99mTc complex as potential brain imaging agent

    International Nuclear Information System (INIS)

    Rey, A.; Manta, E.; Leon, A.; Papadopoulos, M.; Pirmettis, Y.; Raptopoulou, C.; Chiotellis, E.; Leon, E.; Mallo, L.

    1998-01-01

    One approach in the design of neutral oxotechnetium complexes is based on the simultaneous substitution of a tridentate dianionic ligand and a monodentate monoanionic coligand on a [Tc(V)O] +3 precursor. Following this ''mixed ligand'' concept, a novel 99m Tc complex with N,N-bis(2-mercaptoethyl)-N'N'-diethylethylenediamine as ligand and 1-octanethiol as coligand is prepared and evaluated as potential brain radiopharmaceutical. Preparation of the complex at tracer level was accomplished by using 99m Tc-glucoheptonate as precursor. The substitution was optimized and a coligand/ligand ratio of 5 was selected. Under this conditions the labeling yield was over 80% and a major product (with radiochemical purity > 80%) was isolated by HPLC methods and used for biological evaluation. Chemical characterization at carrier level was developed using the corresponding rhenium complex as structural model. The Re complex was also prepared by substitution method and isolated as a crystalline product. The crystals were characterized by UV-vis and IR spectra and elemental analysis. Results were consistent with the expected ReOLC structure. X ray crystallographic study demonstrated that the complex adopts a distorted trigonal bipyramidal geometry. The basal plane is defined by the SS atoms of the ligand and the oxo group, while the N of the ligand and the S of the colligand occupy the two apical positions. All sulphur atoms underwent ionization leading to the formation of a neutral compound. 99 Tc complex was also prepared. Although it was not isolated due to the small amount of reagents employed, the HPLC profile was identical to the one observed for the rhenium complex suggesting the same chemical structure. Biodistribution in mice demonstrated early brain uptake, fast blood clearance, excretion through hepatobiliary system and a brain/blood ratio that increased significantly with time. (author)

  18. Synthesis and characterization of thorium(IV) and uranium(IV) complexes with Schiff bases

    Energy Technology Data Exchange (ETDEWEB)

    Radoske, Thomas; Maerz, Juliane; Kaden, Peter; Patzschke, Michael; Ikeda-Ohno, Atsushi [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements

    2017-06-01

    We report herein the synthesis and characterization of several imine complexes of tetravalent thorium (Th(IV)) and uranium (U(IV)). The ligands investigated in this study are a Schiff base type, including the well-known salen ligand (H{sub 2}Le, Fig. 1). The complexation in solution was investigated by NMR measurements indicating paramagnetic effects of unpaired f-electrons of U(IV) on the ligand molecule. We also determined the solid-state molecular structures of the synthesized complexes by single crystal X-ray diffraction. The synthesized complexes show an eight-fold coordination geometry around the actinide center surrounded by two tetradentate ligands with 2N- and 2O-donor atoms.

  19. Dielectric properties of ligand-modified gold nanoparticle/SU-8 photopolymer based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Toor, Anju, E-mail: atoor@berkeley.edu [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); So, Hongyun, E-mail: hyso@berkeley.edu [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Pisano, Albert P. [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093 (United States)

    2017-08-31

    Highlights: • Ligand-modified gold NP/SU-8 nanocomposites were synthesized and demonstrated. • Particle agglomeration and dispersion were characterized with different NPs concentration. • Nanocomposites showed higher average dielectric permittivity compared to SU-8 only. • Relatively lower dielectric loss (average 0.09 at 1 kHz) was achieved with 10 % w/w NPs. - Abstract: This article reports the enhanced dielectric properties of a photodefinable polymer nanocomposite material containing sub–10 nm coated metal nanoparticles (NPs). The surface morphology of the synthesized dodecanethiol-functionalized gold NPs was characterized using the transmission electron microscopy (TEM). We investigated the particle agglomeration and dispersion during the various stages of the nanocomposite synthesis using TEM. Physical properties such as dielectric permittivity and dielectric loss were measured experimentally. The dependence of the dielectric permittivity and loss tangent on the particle concentration, and frequency was studied. Nanocomposite films showed an approximately three times enhancement in average dielectric constant over the polymer base value and an average dielectric loss of 0.09 at 1 kHz, at a filler loading of 10% w/w.

  20. Synthesis of a Bis(thiophenolate)pyridine Ligand and Its Titanium, Zirconium, and Tantalum Complexes

    KAUST Repository

    Lenton, Taylor N.; VanderVelde, David G.; Bercaw, John E.

    2012-01-01

    -membered chelate with longer metal-sulfur and carbon-sulfur bonds. Solid-state structures of tantalum complexes (SNS)Ta(NMe 2) 3 (5) and (SNS)TaCl(NEt 2) 2 (6) also display pronounced C 2 twisting of the SNS ligand. 1D and 2D NMR experiments show that 5

  1. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    Science.gov (United States)

    Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    A successive anchoring of Ti(NMe2)4, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1‧-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, 13C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands.

  2. The Effect of Precursor Ligands and Oxidation State in the Synthesis of Bimetallic Nano-Alloys

    KAUST Repository

    LaGrow, Alec P.; Knudsen, Kristian; AlYami, Noktan; Anjum, Dalaver H.; Bakr, Osman

    2015-01-01

    of variables on the characteristics of bimetallic nanomaterials are not completely understood. In this study, we used a continuous-flow synthetic strategy to explore the effects of the ligands and the oxidation state of a metal precursor in a shape

  3. Synthesis of several tetraaza macrocyclic amine ligands and the biodistribution of their Tc-complexes

    International Nuclear Information System (INIS)

    Ketring, A.R.

    1982-01-01

    Several macrocyclic tetraaza ligands were synthesized and their /sup 99m/Tc-complexes prepared. The biological distribution of these complexes was examined to determine their possible utility as radiodiagnostic agents. The simplest of the macrocyclic tetraaza ligands studied, cyclam, forms a very stable cationic complex with Tc when pertechnetate is reduced with stannous ion in an aqueous solution of the ligand. When injected intravenously into mice Tc-cyclam was excreted predominantly by the urinary system. Derivatives of cyclam which were synthesized contained aromatic or aliphatic substituents and formed more lipophilic complexes with Tc. The complexes were formed in high yield as determined by paper chromatography, thin layer chromatography, electrophoresis and/or high performance liquid chromatography. Relative lipophilicities were determined for the complexes by octanol-to-water extractions. Animal studies using mice indicated there was an inverse relationship between the octanol-to-water extraction ratio and urinary excretion. Two of the complexes having relatively high octanol-to-water extraction ratios were significantly excreted by the hepatobiliary system with localization in the gall bladder. The complex having the highest octanol-to-water ratio was not excreted significantly by the hepatobiliary system, but cleared very slowly from the blood and localized in the liver, lungs, spleen and to some extent the heart. Derivatization of cyclam can be performed without greatly reducing its ability to complex Tc but greatly influencing the biological distribution of its Tc complex. This indicates that there is a potential for preparing radiodiagnostic agents using macrocyclic tetraaza ligands

  4. Synthesis, Structures and Properties of Cobalt Thiocyanate Coordination Compounds with 4-(hydroxymethylpyridine as Co-ligand

    Directory of Open Access Journals (Sweden)

    Stefan Suckert

    2016-04-01

    Full Text Available Reaction of Co(NCS2 with 4-(hydroxymethylpyridine (hmpy leads to the formation of six new coordination compounds with the composition [Co(NCS2(hmpy4] (1, [Co(NCS2(hmpy4] × H2O (1-H2O, [Co(NCS2(hmpy2(EtOH2] (2, [Co(NCS2(hmpy2(H2O2] (3, [Co(NCS2(hmpy2]n∙4 H2O (4 and [Co(NCS2(hmpy2]n (5. They were characterized by single crystal and powder X-ray diffraction experiments, thermal and elemental analysis, IR and magnetic measurements. Compound 1 and 1-H2O form discrete complexes, in which the Co(II cations are octahedrally coordinated by two terminal thiocyanato anions and four 4-(hydroxymethylpyridine ligands. Discrete complexes were also observed for compounds 2 and 3 where two of the hmpy ligands were substituted by solvent, either water (3 or ethanol (2. In contrast, in compounds 4 and 5, the Co(II cations are linked into chains by bridging 4-(hydroxymethylpyridine ligands. The phase purity was checked with X-ray powder diffraction. Thermogravimetric measurements showed that compound 3 transforms into 5 upon heating, whereas the back transformation occurs upon resolvation. Magnetic measurements did not show any magnetic exchange via the hmpy ligand for compound 5.

  5. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction

    KAUST Repository

    Chen, Peng

    2015-12-03

    Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein sequences and that of experimentally solved structures

  6. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction

    KAUST Repository

    Chen, Peng; Hu, ShanShan; Zhang, Jun; Gao, Xin; Li, Jinyan; Xia, Junfeng; Wang, Bing

    2015-01-01

    Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein sequences and that of experimentally solved structures

  7. Coordination Networks Based on Boronate and Benzoxaborolate Ligands

    Directory of Open Access Journals (Sweden)

    Saad Sene

    2016-05-01

    Full Text Available Despite the extensive range of investigations on boronic acids (R-B(OH2, some aspects of their reactivity still need to be explored. This is the case for the coordination chemistry of boronate anions (R-B(OH3−, which has only recently been started to be studied. The purpose of this review is to summarize some of the key features of boronate ligands (and of their cyclic derivatives, benzoxaborolates in materials: (i coordination properties; (ii spectroscopic signatures; and (iii emerging applications.

  8. Dissecting Orthosteric Contacts for a Reverse-Fragment-Based Ligand Design.

    Science.gov (United States)

    Chandramohan, Arun; Tulsian, Nikhil K; Anand, Ganesh S

    2017-08-01

    Orthosteric sites on proteins are formed typically from noncontiguous interacting sites in three-dimensional space where the composite binding interaction of a biological ligand is mediated by multiple synergistic interactions of its constituent functional groups. Through these multiple interactions, ligands stabilize both the ligand binding site and the local secondary structure. However, relative energetic contributions of the individual contacts in these protein-ligand interactions are difficult to resolve. Deconvolution of the contributions of these various functional groups in natural inhibitors/ligand would greatly aid in iterative fragment-based drug discovery (FBDD). In this study, we describe an approach of progressive unfolding of a target protein using a gradient of denaturant urea to reveal the individual energetic contributions of various ligand-functional groups to the affinity of the entire ligand. Through calibrated unfolding of two protein-ligand systems: cAMP-bound regulatory subunit of Protein Kinase A (RIα) and IBMX-bound phosphodiesterase8 (PDE8), monitored by amide hydrogen-deuterium exchange mass spectrometry, we show progressive disruption of individual orthosteric contacts in the ligand binding sites, allowing us to rank the energetic contributions of these individual interactions. In the two cAMP-binding sites of RIα, exocyclic phosphate oxygens of cAMP were identified to mediate stronger interactions than ribose 2'-OH in both the RIα-cAMP binding interfaces. Further, we have also ranked the relative contributions of the different functional groups of IBMX based on their interactions with the orthosteric residues of PDE8. This strategy for deconstruction of individual binding sites and identification of the strongest functional group interaction in enzyme orthosteric sites offers a rational starting point for FBDD.

  9. Synthesis, Radiolabelling and In Vitro Characterization of the Gallium-68-, Yttrium-90- and Lutetium-177-Labelled PSMA Ligand, CHX-A''-DTPA-DUPA-Pep.

    Science.gov (United States)

    Baur, Benjamin; Solbach, Christoph; Andreolli, Elena; Winter, Gordon; Machulla, Hans-Jürgen; Reske, Sven N

    2014-04-29

    Since prostate-specific membrane antigen (PSMA) has been identified as a diagnostic target for prostate cancer, many urea-based small PSMA-targeting molecules were developed. First, the clinical application of these Ga-68 labelled compounds in positron emission tomography (PET) showed their diagnostic potential. Besides, the therapy of prostate cancer is a demanding field, and the use of radiometals with PSMA bearing ligands is a valid approach. In this work, we describe the synthesis of a new PSMA ligand, CHX-A''-DTPA-DUPA-Pep, the subsequent labelling with Ga-68, Lu-177 and Y-90 and the first in vitro characterization. In cell investigations with PSMA-positive LNCaP C4-2 cells, KD values of ≤14.67 ± 1.95 nM were determined, indicating high biological activities towards PSMA. Radiosyntheses with Ga-68, Lu-177 and Y-90 were developed under mild reaction conditions (room temperature, moderate pH of 5.5 and 7.4, respectively) and resulted in nearly quantitative radiochemical yields within 5 min.

  10. Synthesis, Radiolabelling and In Vitro Characterization of the Gallium-68-, Yttrium-90- and Lutetium-177-Labelled PSMA Ligand, CHX-A''-DTPA-DUPA-Pep

    Directory of Open Access Journals (Sweden)

    Benjamin Baur

    2014-04-01

    Full Text Available Since prostate-specific membrane antigen (PSMA has been identified as a diagnostic target for prostate cancer, many urea-based small PSMA-targeting molecules were developed. First, the clinical application of these Ga-68 labelled compounds in positron emission tomography (PET showed their diagnostic potential. Besides, the therapy of prostate cancer is a demanding field, and the use of radiometals with PSMA bearing ligands is a valid approach. In this work, we describe the synthesis of a new PSMA ligand, CHX-A''-DTPA-DUPA-Pep, the subsequent labelling with Ga-68, Lu-177 and Y-90 and the first in vitro characterization. In cell investigations with PSMA-positive LNCaP C4-2 cells, KD values of ≤14.67 ± 1.95 nM were determined, indicating high biological activities towards PSMA. Radiosyntheses with Ga-68, Lu-177 and Y-90 were developed under mild reaction conditions (room temperature, moderate pH of 5.5 and 7.4, respectively and resulted in nearly quantitative radiochemical yields within 5 min.

  11. Ni(II, Pd(II and Pt(II complexes with ligand containing thiosemicarbazone and semicarbazone moiety: synthesis, characterization and biological investigation

    Directory of Open Access Journals (Sweden)

    SULEKH CHANDRA

    2008-07-01

    Full Text Available The synthesis of nickel(II, palladium(II and platinum(II complexes with thiosemicarbazone and semicarbazone of p-tolualdehyde are reported. All the new compounds were characterized by elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, 1H-NMR, IR and electronic spectral studies. Based on the molar conductance measurements in DMSO, the complexes may be formulated as [Ni(L2Cl2] and [M(L2]Cl2 (where M = Pd(II and Pt(II due to their non-electrolytic and 1:2 electrolytic nature, respectively. The spectral data are consistent with an octahedral geometry around Ni(II and a square planar geometry for Pd(II and Pt(II, in which the ligands act as bidentate chelating agents, coordinated through the nitrogen and sulphur/oxygen atoms. The ligands and their metal complexes were screened in vitro against fungal species Alternaria alternata, Aspergillus niger and Fusarium odum, using the food poison technique.

  12. Cell-free H-cluster synthesis and [FeFe] hydrogenase activation: all five CO and CN⁻ ligands derive from tyrosine.

    Directory of Open Access Journals (Sweden)

    Jon M Kuchenreuther

    Full Text Available [FeFe] hydrogenases are promising catalysts for producing hydrogen as a sustainable fuel and chemical feedstock, and they also serve as paradigms for biomimetic hydrogen-evolving compounds. Hydrogen formation is catalyzed by the H-cluster, a unique iron-based cofactor requiring three carbon monoxide (CO and two cyanide (CN⁻ ligands as well as a dithiolate bridge. Three accessory proteins (HydE, HydF, and HydG are presumably responsible for assembling and installing the H-cluster, yet their precise roles and the biosynthetic pathway have yet to be fully defined. In this report, we describe effective cell-free methods for investigating H-cluster synthesis and [FeFe] hydrogenase activation. Combining isotopic labeling with FTIR spectroscopy, we conclusively show that each of the CO and CN⁻ ligands derive respectively from the carboxylate and amino substituents of tyrosine. Such in vitro systems with reconstituted pathways comprise a versatile approach for studying biosynthetic mechanisms, and this work marks a significant step towards an understanding of both the protein-protein interactions and complex reactions required for H-cluster assembly and hydrogenase maturation.

  13. Synthesis and studies on Cu(II), Co(II), Ni(II) complexes of Knoevenagel β-diketone ligands

    Science.gov (United States)

    Sumathi, S.; Tharmaraj, P.; Sheela, C. D.; Anitha, C.

    2012-11-01

    Transition metal complexes of various acetylacetone based ligands of the type ML [where M = Cu(II), Ni(II), Co(II); L = 3-(aryl)-pentane-2,4-dione] have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, 1H NMR, Mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are non-electrolytic in nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry for other metal(II) complexes. The redox behavior of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against the bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as well as the fungus Candida albicans by well diffusion method. The zone of inhibition value indicates that the most of the metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands (L1-L3) was found to be considerable effect than that of urea and KDP (potassium dihydrogen phosphate).

  14. Transition metal complexes with oxygen donor ligands: a synthesis, spectral, thermal and antimicrobial study

    Directory of Open Access Journals (Sweden)

    VAIBHAV N. PATANGE

    2008-10-01

    Full Text Available Transition metal complexes of chalcones derived from the conden¬sation of 3-acetyl-6-methyl-2H-pyran-2,4(3H-dione (dehydroacetic acid and p-methoxybenzaldehyde (HL1 or p-nitrobenzaldehyde (HL2 were synthesized and characterized by elemental analysis, conductometry, thermal analysis, magnetic measurements, IR, 1H-NMR, UV–Vis spectroscopy and a microbial study. From the analytical and thermal data, the stoichiometry of the complexes was found to be 1:2 (metal:ligand. The molar conductance data revealed that all the metal chelates were non-electrolytes. The thermal stability of the complexes was studied by thermogravimetry and the decomposition schemes of the complexes are given. The ligands and their metal complexes were screened for antibacterial activity against Staphylococcus aureus and Escherichia coli, and fungicidal activity against Aspergillus flavus, Curvularia lunata and Penicillium notatum.

  15. Synthesis, physicochemical studies and biological evaluation of unimetallic and heterobimetallic complexes of hexadentate dihydrazone ligands

    Directory of Open Access Journals (Sweden)

    Fathy A. El Saied

    2017-03-01

    Full Text Available A new coordination unimetallic and heterobimetallic complexes of hexadentate N2O4 donor dihydrazone ligands were prepared by the condensation of 4-formyl antipyrine with adipic dihydrazide and succinic dihydrazide. The ligands (1 and (11 and their complexes thoroughly characterized using various analytical, physical and spectroscopic techniques, which indicate a distorted octahedral geometry around the metal ions. The ESR spectra of solid copper(II complexes (2–4 and (12–14 showed axial symmetry with g||>g⊥ > ge, indicating distorted octahedral structure and the presence of the unpaired electron in a d(x2−y2 orbital with significant covalent bond character. The antimicrobial activity results of the metal compounds (2–5, (7, (10, (12–15 and (17 show that, all these complexes exhibit inhibitory moderate to mild effects towards Bacillus subtilis, Escherichia coli and Aspergillus niger.

  16. Synthesis and characterization of Mn(III) chloro complexes with salen-type ligands

    International Nuclear Information System (INIS)

    Byun, Jong Chul; Han, Chung Hun; Lee, Nam Ho; Baik, Jong Seok; Park, Yu Chul

    2002-01-01

    A series of novel salen-type complexes ((Mn(III)(L acn )Cl): n=1∼11) containing Cl - ion were obtained by reactions of the Mn(CH 3 COO) 2 ·4H 2 O with the potentially tetradentate compartmental ligand (H 2 L acn ), prepared by condensation the of one mole of diamine (ethylenediamine, 1,3-propanediamine, o-phenylenediamine, and 2,2-dimethyl-1,3-propanediamine) with two moles of aldehyde (salicylaldehyde, 5-chloro- salicylaldehyde, 3,5-dichlorosalicylal-dehyde, and 3,5-di-tert-butyl-2-hydroxy-benzaldehyde) in a methanol solution . The resulting salen-type ligands and their Mn(III) complexes were identified and characterized by elemental analysis, conductivity, thermogravimetry and UV-VIS, IR, and NMR spectroscopy

  17. Concise and diversity-oriented synthesis of ligand arm-functionalized azoamides.

    Science.gov (United States)

    Urankar, Damijana; Kosmrlj, Janez

    2008-01-01

    Azoamides, previously established as bioactive intracellular GSH-depleting agents, were decorated with a terminal alkyne moiety to 4 and then were transformed, by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), into different ligand-arm functionalized azoamides 6. Azides 5 having ligand-arms amenable for binding to platinum(II) were selected for this study. Because, for the fragile azoamides 4, the typically employed reaction conditions for CuAAC failed, several alternative solvents and copper catalysts were tested. Excellent results were obtained with copper(II) sulfate pentahydrate/metallic copper and especially with heterogeneous catalysts, such as copper-in-charcoal, cupric oxide, and cuprous oxide. The heterogeneous catalysts were employed to obtain the desired products in almost quantitative yields by a simple three-step "stir-filter-evaporate" protocol with no or negligible contamination with copper impurities. This is of particular importance because compounds 6 have been designed for coordination.

  18. Synthesis of optically pure helically chiral 2-amino heterohelicenes as precursors for NHC ligands

    Czech Academy of Sciences Publication Activity Database

    Gay Sánchez, Isabel; Šámal, Michal; Stará, Irena G.; Starý, Ivo

    2016-01-01

    Roč. 14, č. 2 (2016), s. 62-63 ISSN 2336-7202. [Mezioborové setkání mladých biologů, biochemiků a chemiků /16./. 10.05.2016-13.05.2016, Milovy] R&D Projects: GA ČR(CZ) GA14-29667S Institutional support: RVO:61388963 Keywords : NHC ligands * 2-amino heterohelicene * helically chiral amines Subject RIV: CC - Organic Chemistry

  19. Chiral phosphites as ligands in asymmetric metal complex catalysis and synthesis of coordination compounds

    International Nuclear Information System (INIS)

    Gavrilov, Konstantin N; Bondarev, Oleg G; Polosukhin, Aleksei I

    2004-01-01

    The data published during the last five years on the application of chiral derivatives of phosphorous acid in coordination chemistry and enantioselective catalysis are summarised and discussed. The effect of the nature of these ligands on the structure of metal complexes and on the efficiency of catalytic organic syntheses is shown. Hydroformylation, hydrogenation, allylic substitution and conjugate addition catalysed by transition metal complexes with optically active phosphites and hydrophosphoranes are considered. The prospects for the development of this field of research are demonstrated.

  20. Synthesis, characterization and luminescent properties of lanthanide complexes with an unsymmetrical tripodal ligand

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhenzhong [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Tang Yu [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)], E-mail: tangyu@lzu.edu.cn; Liu Weisheng; Tan Minyu [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)

    2008-09-15

    Solid complexes of lanthanide nitrates with a new unsymmetrical tripodal ligand, bis[(2'-benzylaminoformyl)phenoxyl)ethyl](ethyl)amine (L) have been synthesized and characterized by elemental analysis, infrared spectra and molar conductivity measurements. At the same time, the luminescent properties of the Sm(III), Eu(III), Tb(III) and Dy(III) nitrate complexes in solid state were also investigated. Under the excitation of UV light, these complexes exhibited characteristic emission of central metal ions.

  1. Polynuclear Iron-Oxo/Hydroxy Complexes of Ketoacidoximate Ligands: Synthesis, Structures and Conversion to Ferric Oxide

    KAUST Repository

    Davaasuren, Bambar; Khanderi, Jayaprakash; Rothenberger, Alexander

    2017-01-01

    The polynuclear iron-oxo/hydroxy complexes containing ketoacidoximate ligands described in this report are [Fe3(μ3-O){O2C-C(C6H5)=NOCH3}6(py)3] (1) (py=pyridine), [Fe2(μ3-O){O2C-C(CH2-C6H5)=NO}2(H2O)(CH3OH)]2 (2) and [{Fe(μ2-OH)(O2C-C(CH3)=NO

  2. Electrochemistry of oxo-technetium(V) complexes containing Schiff base and 8-quinolinol ligands

    International Nuclear Information System (INIS)

    Refosco, F.; Mazzi, U.; Deutsch, E.; Kirchhoff, J.R.; Heineman, W.R.; Seeber, R.

    1988-01-01

    The electrochemistry of six-coordinate, monooxo technetium(V) complexes containing Schiff base ligands has been studied in acetonitrile and N,N'-dimethylformamide solutions. The complexes have the general formula TcOCl(L B ) 2 or TcO(L T )(L B ), where L B represents a bidentate-N,O Schiff base ligand or a bidentate-N,O 8-quinolinol ligand and L T represents a tridentate-O,N,O Schiff base ligand. Cyclic voltammetry at a platinum-disk electrode, controlled-potential coulometry, and thin-layer spectroelectrochemistry were used to probe both the oxidation and the reduction of these complexes. The results of these studies, and previously reported results on the analogous Re(V) complexes, can be understood within a single general reaction scheme. The salient features of this scheme are (i) one-electron reduction of Tc(V) to Tc(IV), (ii) subsequent loss of a ligand situated cis to the Tc≡O linkage, and (iii) subsequent isomerization of this unstable Tc(IV) product to more stable complex in which the site trans to the Tc≡O linkage is vacant. The Tc(IV) complexes can also be reduced to analogous Tc(III) species, which appear to undergo the same ligand loss and isomerization reactions. The technetium complexes are 400-500 mV easier to reduce than are their rhenium analogues. The 8-quinolinol ligands, and especially the 5-nitro derivative, both thermodynamically and kinetically stabilize the Tc(IV) and Tc(III) oxidation states. These electrogenerated species are unusual in that they constitute the bulk of the known examples of monomeric Tc(IV) and Tc(III) complexes containing only N- and O-donating ligands. 34 refs., 9 figs., 1 tab

  3. PatchSurfers: Two methods for local molecular property-based binding ligand prediction.

    Science.gov (United States)

    Shin, Woong-Hee; Bures, Mark Gregory; Kihara, Daisuke

    2016-01-15

    Protein function prediction is an active area of research in computational biology. Function prediction can help biologists make hypotheses for characterization of genes and help interpret biological assays, and thus is a productive area for collaboration between experimental and computational biologists. Among various function prediction methods, predicting binding ligand molecules for a target protein is an important class because ligand binding events for a protein are usually closely intertwined with the proteins' biological function, and also because predicted binding ligands can often be directly tested by biochemical assays. Binding ligand prediction methods can be classified into two types: those which are based on protein-protein (or pocket-pocket) comparison, and those that compare a target pocket directly to ligands. Recently, our group proposed two computational binding ligand prediction methods, Patch-Surfer, which is a pocket-pocket comparison method, and PL-PatchSurfer, which compares a pocket to ligand molecules. The two programs apply surface patch-based descriptions to calculate similarity or complementarity between molecules. A surface patch is characterized by physicochemical properties such as shape, hydrophobicity, and electrostatic potentials. These properties on the surface are represented using three-dimensional Zernike descriptors (3DZD), which are based on a series expansion of a 3 dimensional function. Utilizing 3DZD for describing the physicochemical properties has two main advantages: (1) rotational invariance and (2) fast comparison. Here, we introduce Patch-Surfer and PL-PatchSurfer with an emphasis on PL-PatchSurfer, which is more recently developed. Illustrative examples of PL-PatchSurfer performance on binding ligand prediction as well as virtual drug screening are also provided. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Synthesis and Crystal Structure of Dinuclear Cadmium(II) Complex with Dipodal Ligand

    International Nuclear Information System (INIS)

    Kang, Young Jin; Moon, Suk Hee; Byun, Jong Chul; Park, Ki Min

    2010-01-01

    the preparation and structural characterization of the discrete dinuclear cadmium(II) complex with the formula [Cd(μ 2 -Cl) 2 Cl 2 ]· 2 (H 2 O)·0.5(CH 3 OH)·0.5(CH 3 CN) obtained from the reaction of CdCl 2 ·2.5H 2 O and podal ligand with quinoline end-groups has been reported. In two cadmium ions are triply bridged by two chloride and one donor atoms of ligand L and adopt distorted pentagonal bipyramidal geometries with seven coordinations. It is notable that example of discrete dinuclear complex which one podal ligand accommodates simultaneously two metal ions is very rare. During the last four decades, the chemistry of macrocyclic and non-cyclic polyethers has attracted an increasing attention because of their selective complexation, cation transport and enzyme chemistry. In the field of coordination chemistry, generally, non-cyclic, crown-type polyether affords the low complexation ability because of its conformational freedom while macrocyclic polyethers such as 18-crown-6 show the excellent complexing ability

  5. Synthesis, characterization and electrochemical investigations of mixed-ligand copper(II)-organic supramolecular frameworks

    Science.gov (United States)

    Singh, Sandeep K.; Srivastava, Ashish Kumar; Srivastava, Krishna; Banerjee, Rahul; Prasad, Jagdish

    2017-11-01

    Two mixed-ligand copper(II)-organic coordination compounds with 5,5‧-dimethyl-2,2‧-bipyridine (5,5‧-Me2bpy) as a primary ligand while aliphatic malonate (Hmal) and aromatic 2-hydroxynicotinate (2-OHNA) as secondary ligands, were synthesized. These complexes are formulated as: [Cu(Hmal)(5,5‧-Me2bpy)(H2O)](ClO4) 1 and [Cu2(2-OHNA)2(5,5‧-Me2bpy)2(NO3)](NO3) 2. These two complexes were structurally characterized by single crystal X-ray diffraction analysis. Characterization was further supported by powder X-ray diffraction analysis, elemental analyses, FT-IR, FAB-MASS and TGA, DSC studies. Cyclic voltammetric and UV-visible spectral studies of these two complexes have also been done. The electrochemical studies of complex 1 in DMSO and DMF have shown that this complex undergoes quasi-reversible diffusion-controlled one-electron transfer reaction without any chemical complication while complex 2 in DMSO undergoes quasi-reversible diffusion-controlled one electron transfer reaction, following EC mechanism. The electrochemical behaviour of complex 2 in DMF is complicated probably due to presence of more than one species in solution phase.

  6. Synthesis, spectroscopic studies and reactivity of triphenylphosphine ruthenium (II) complexes with N-heterocyclic ligands

    International Nuclear Information System (INIS)

    Rivera, A.B.

    1989-01-01

    Reported is the chemistry of triphenylphosphine ruthenium (II) complexes of general formula RuCl 2 (PPh 3 ) 2 L 2 and RuCl 2 (PPh 3 ) 2 A, obtained from the reaction of RuCl 2 (PPh 3 ) 3 with N-heterocyclic ligands L, or A (of ambidentate nature). The electronic spectra exhibit two strong metal-to-ligand charge-transfer bands, ascribed to the b 1 (dxz)->b 1 (pi) and a 2 (dxy)->a 2 (pi) transitions, and a third, weak band ascribed to the b 2 (dyz)->a 2 (pi) transition. The electronic states and the vibrational modes of the complexes were characterized by means of their resonance Raman and infrared absorption spectra. Thermogravimetric and thermodifferential analysis indicated that the melting process is succeeded by an exothermic reaction, and that the weigh loss starts to occur only after this step. The complexes dissociated in CHCl 3 solution, showing preferential labilization of the phosphine ligands, as in the case of the hydrogenation catalyst Ru(PPh 3 ) 3 Cl 2 . In the presence of CO, RuCl 2 (CO) 2 L 2 complexes were gennerated. Several derivatives were isolated and characterized. (author) [pt

  7. Synthesis, structure and luminescence properties of lanthanide complex with a new tetrapodal ligand featuring salicylamide arms

    International Nuclear Information System (INIS)

    Song Xueqin; Wen Xiaoguang; Liu Weisheng; Wang Daqi

    2010-01-01

    A new tetrapodal ligand 1,1,1-tetrakis{[(2'-(2-furfurylaminoformyl))phenoxyl]methyl}methane (L) has been prepared and their coordination chemistry with Ln III ions has been investigated. The structure of {[Ln 4 L 3 (NO 3 ) 12 ].H 2 O} ∞ (Ln=Nd, Eu)] shows the binodal 4,3-connected three-dimensional interpenetration coordination polymers with topology of a (8 6 ) 3 (8 3 ) 4 notation. [DyL(NO 3 ) 3 (H 2 O) 2 ].0.5CH 3 OH and [ErL(NO 3 ) 3 (H 2 O) (CH 3 OH)].CH 3 COCH 3 is a 1:1 mononuclear complex with interesting supramolecular features. The structure of [NdL(H 2 O) 6 ].3ClO 4 .3H 2 O is a 2:1 mononuclear complex which further self-assembled through hydrogen bond to form a three-dimensional supramolecular structures. The result presented here indicates that both subtle variation of the terminal group and counter anions can be applied in the modulation of the overall molecular structures of lanthanide complex of salicylamide derivatives due to the structure specialties of this type of ligand. The luminescence properties of the Eu III complex are also studied in detail. - Grapical Abstract: We present here a series of zero- to three-dimensional lanthanide coordination structures and luminescence properties of Eu(III) complex of a new tetrapodal ligand.

  8. Bio-Inspired Nitrile Hydration by Peptidic Ligands Based on L-Cysteine, L-Methionine or L-Penicillamine and Pyridine-2,6-dicarboxylic Acid

    Directory of Open Access Journals (Sweden)

    Cillian Byrne

    2014-12-01

    Full Text Available Nitrile hydratase (NHase, EC 4.2.1.84 is a metalloenzyme which catalyses the conversion of nitriles to amides. The high efficiency and broad substrate range of NHase have led to the successful application of this enzyme as a biocatalyst in the industrial syntheses of acrylamide and nicotinamide and in the bioremediation of nitrile waste. Crystal structures of both cobalt(III- and iron(III-dependent NHases reveal an unusual metal binding motif made up from six sequential amino acids and comprising two amide nitrogens from the peptide backbone and three cysteine-derived sulfur ligands, each at a different oxidation state (thiolate, sulfenate and sulfinate. Based on the active site geometry revealed by these crystal structures, we have designed a series of small-molecule ligands which integrate essential features of the NHase metal binding motif into a readily accessible peptide environment. We report the synthesis of ligands based on a pyridine-2,6-dicarboxylic acid scaffold and L-cysteine, L-S-methylcysteine, L-methionine or L-penicillamine. These ligands have been combined with cobalt(III and iron(III and tested as catalysts for biomimetic nitrile hydration. The highest levels of activity are observed with the L-penicillamine ligand which, in combination with cobalt(III, converts acetonitrile to acetamide at 1.25 turnovers and benzonitrile to benzamide at 1.20 turnovers.

  9. Synthesis of Ruthenium(III Phthalocyanine with Di-axial Bromo Ligands - A Promising Molecular Conductor with Giant Negative Magnetoresistance

    Directory of Open Access Journals (Sweden)

    Mario A.V. Gamboa

    2015-01-01

    Full Text Available The electron transport of Phthalocyanines (Pc with central metal and di-axial ligands (such as FeIII(PcL2; where L = CN, Cl, Br originates from its intermolecular Pc π-π orbital overlap while its giant negative magnetoresistance (GNMR arises from its intramolecular Pc-π(HOMO and Fe-d (s=1/2 interaction. However, the π-d interaction tends to localize itinerant electrons resulting in the decrease in the conductivity of the FeIII(PcL2 series compared to the non-magnetic CoIII(PcL2 where π-d interaction is absent. More so, the axial ligand field energy of the FeIII(PcL2 system is found to have the ability to proportionally modulate the π-d interaction. In reference thereof, theoretical calculations point that isostructural RuIII(PcBr2 would provide the best balance of π-d orbital energy interplay. That is, RuIII(PcBr2 is expected to be a molecule with high electrical conductivity and GNMR which would make it an ideal magnetic molecular conductor. This paper reports on the synthesis of RuIII(PcBr2.

  10. A Fluid Membrane-Based Soluble Ligand Display System for Live CellAssays

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jwa-Min; Nair, Pradeep N.; Neve, Richard M.; Gray, Joe W.; Groves, Jay T.

    2005-10-14

    Cell communication modulates numerous biological processes including proliferation, apoptosis, motility, invasion and differentiation. Correspondingly, there has been significant interest in the development of surface display strategies for the presentation of signaling molecules to living cells. This effort has primarily focused on naturally surface-bound ligands, such as extracellular matrix components and cell membranes. Soluble ligands (e.g. growth factors and cytokines) play an important role in intercellular communications, and their display in a surface-bound format would be of great utility in the design of array-based live cell assays. Recently, several cell microarray systems that display cDNA, RNAi, or small molecules in a surface array format were proven to be useful in accelerating high-throughput functional genetic studies and screening therapeutic agents. These surface display methods provide a flexible platform for the systematic, combinatorial investigation of genes and small molecules affecting cellular processes and phenotypes of interest. In an analogous sense, it would be an important advance if one could display soluble signaling ligands in a surface assay format that allows for systematic, patterned presentation of soluble ligands to live cells. Such a technique would make it possible to examine cellular phenotypes of interest in a parallel format with soluble signaling ligands as one of the display parameters. Herein we report a ligand-modified fluid supported lipid bilayer (SLB) assay system that can be used to functionally display soluble ligands to cells in situ (Figure 1A). By displaying soluble ligands on a SLB surface, both solution behavior (the ability to become locally enriched by reaction-diffusion processes) and solid behavior (the ability to control the spatial location of the ligands in an open system) could be combined. The method reported herein benefits from the naturally fluid state of the supported membrane, which allows

  11. Balancing focused combinatorial libraries based on multiple GPCR ligands

    Science.gov (United States)

    Soltanshahi, Farhad; Mansley, Tamsin E.; Choi, Sun; Clark, Robert D.

    2006-08-01

    G-Protein coupled receptors (GPCRs) are important targets for drug discovery, and combinatorial chemistry is an important tool for pharmaceutical development. The absence of detailed structural information, however, limits the kinds of combinatorial design techniques that can be applied to GPCR targets. This is particularly problematic given the current emphasis on focused combinatorial libraries. By linking an incremental construction method (OptDesign) to the very fast shape-matching capability of ChemSpace, we have created an efficient method for designing targeted sublibraries that are topomerically similar to known actives. Multi-objective scoring allows consideration of multiple queries (actives) simultaneously. This can lead to a distribution of products skewed towards one particular query structure, however, particularly when the ligands of interest are quite dissimilar to one another. A novel pivoting technique is described which makes it possible to generate promising designs even under those circumstances. The approach is illustrated by application to some serotonergic agonists and chemokine antagonists.

  12. Catalytic hydrogenation using complexes of base metals with tridentate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Susan K.; Zhang, Guoqi; Vasudevan, Kalyan V.

    2017-02-14

    Complexes of cobalt and nickel with tridentate ligand PNHP.sup.R are effective for hydrogenation of unsaturated compounds. Cobalt complex [(PNHP.sup.Cy)Co(CH.sub.2SiMe.sub.3)]BAr.sup.F.sub.4 (PNHP.sup.Cy=bis[2-(dicyclohexylphosphino)ethyl]amine, BAr.sup.F.sub.4=B(3,5-(CF.sub.3).sub.2C.sub.6H.sub.3).sub.4)) was prepared and used with hydrogen for hydrogenation of alkenes, aldehydes, ketones, and imines under mild conditions (25-60.degree. C., 1-4 atm H.sub.2). Nickel complex [(PNHP.sup.Cy)Ni(H)]BPh.sub.4 was used for hydrogenation of styrene and 1-octene under mild conditions. (PNP.sup.Cy)Ni(H) was used for hydrogenating alkenes.

  13. Catalytic hydrogenation using complexes of base metals with tridentate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Kalyan V.; Zhang, Guoqi; Hanson, Susan K.

    2016-09-06

    Complexes of cobalt and nickel with tridentate ligand PNHP.sup.R are effective for hydrogenation of unsaturated compounds. Cobalt complex [(PNHP.sup.Cy)Co(CH.sub.2SiMe.sub.3)]BAr.sup.F.sub.4 (PNHP.sup.Cy=bis[2-(dicyclohexylphosphino)ethyl]amine, BAr.sup.F.sub.4=B(3,5-(CF.sub.3).sub.2C.sub.6H.sub.3).sub.4)) was prepared and used with hydrogen for hydrogenation of alkenes, aldehydes, ketones, and imines under mild conditions (25-60.degree. C., 1-4 atm H.sub.2). Nickel complex [(PNHP.sup.Cy)Ni(H)]BPh.sub.4 was used for hydrogenation of styrene and 1-octene under mild conditions. (PNP.sup.Cy)Ni(H) was used for hydrogenating alkenes.

  14. Ligand effect on the performance of organic light-emitting diodes based on europium complexes

    International Nuclear Information System (INIS)

    Fang Junfeng; You Han; Gao Jia; Lu Wu; Ma Dongge

    2007-01-01

    A series of europium complexes were synthesized and their electroluminescent (EL) characteristics were studied. It was found by comparison that the different substituted groups, such as methyl, chlorine, and nitryl, on ligand 1,10-phenanthroline affect significantly the EL performance of devices based on these complexes. The more methyl-substituted groups on ligand 1,10-phenanthroline led to higher device efficiency. A chlorine-substituted group showed the approximate EL performance as two methyl-substituted groups, whereas a nitryl substituent reduced significantly the EL luminous efficiency. However, β-diketonate ligand TTA and DBM exhibited similar EL performance. The improved EL luminous efficiency by proper substituted groups on the 1,10-phenanthroline was attributed to the reduction of the energy loss caused by light hydrogen atom vibration, as well as concentration quenching caused by intermolecular interaction, and the match of energy level between the ligand and Eu 3+

  15. Synthesis, characterization, and reactivity of ruthenium hydride complexes of N-centered triphosphine ligands.

    Science.gov (United States)

    Phanopoulos, Andreas; Brown, Neil J; White, Andrew J P; Long, Nicholas J; Miller, Philip W

    2014-04-07

    The reactivity of the novel tridentate phosphine ligand N(CH2PCyp2)3 (N-triphos(Cyp), 2; Cyp = cyclopentyl) with various ruthenium complexes was investigated and compared that of to the less sterically bulky and less electron donating phenyl derivative N(CH2PPh2)3 (N-triphos(Ph), 1). One of these complexes was subsequently investigated for reactivity toward levulinic acid, a potentially important biorenewable feedstock. Reaction of ligands 1 and 2 with the precursors [Ru(COD)(methylallyl)2] (COD = 1,5-cycloocatadiene) and [RuH2(PPh3)4] gave the tridentate coordination complexes [Ru(tmm){N(CH2PR2)3-κ(3)P}] (R = Ph (3), Cyp (4); tmm = trimethylenemethane) and [RuH2(PPh3){N(CH2PR2)3-κ(3)P}] (R = Ph (5), Cyp (6)), respectively. Ligands 1 and 2 displayed different reactivities with [Ru3(CO)12]. Ligand 1 gave the tridentate dicarbonyl complex [Ru(CO)2{N(CH2PPh2)3-κ(3)P}] (7), while 2 gave the bidentate, tricarbonyl [Ru(CO)3{N(CH2PCyp2)3-κ(2)P}] (8). This was attributed to the greater electron-donating characteristics of 2, requiring further stabilization on coordination to the electron-rich Ru(0) center by more CO ligands. Complex 7 was activated via oxidation using AgOTf and O2, giving the Ru(II) complexes [Ru(CO)2(OTf){N(CH2PPh2)3-κ(3)P}](OTf) (9) and [Ru(CO3)(CO){N(CH2PPh2)3-κ(3)P}] (11), respectively. Hydrogenation of these complexes under hydrogen pressures of 3-15 bar gave the monohydride and dihydride complexes [RuH(CO)2{N(CH2PPh2)3-κ(3)P}] (10) and [RuH2(CO){N(CH2PPh2)3-κ(3)P}] (12), respectively. Complex 12 was found to be unreactive toward levulinic acid (LA) unless activated by reaction with NH4PF6 in acetonitrile, forming [RuH(CO)(MeCN){N(CH2PPh2)3-κ(3)P}](PF6) (13), which reacted cleanly with LA to form [Ru(CO){N(CH2PPh2)3-κ(3)P}{CH3CO(CH2)2CO2H-κ(2)O}](PF6) (14). Complexes 3, 5, 7, 8, 11, and 12 were characterized by single-crystal X-ray crystallography.

  16. Synthesis, Structure and Reactivity of a Borylene Cation [(NHSi)2B(CO)]+ Stabilized by Three Neutral Ligands.

    Science.gov (United States)

    Wang, Hao; Wu, Linlin; Lin, Zhenyang; Xie, Zuowei

    2017-10-04

    A borylene cation stabilized by bis(silylene) and carbon monoxide was prepared and structurally characterized via the reaction of bis(silylene)-stabilized bromoborylene with W(CO) 6 . This is the first example of a borylene cation coordinated by three neutral ligands, which can be viewed as a cationic form of a long-sought Lewis base-stabilized zerovalent boron compound. This cation can cleave dihydrogen.

  17. Room temperature synthesis of PbSe quantum dots in aqueous solution: Stabilization by interactions with ligands

    Science.gov (United States)

    Primera-Pedrozo, Oliva M.; Arslan, Zikri; Rasulev, Bakhtiyor; Leszczynski, Jerzy

    2011-01-01

    An aqueous route of synthesis is described for rapid synthesis of lead selenide quantum dots (PbSe QDs) at room temperature in an attempt to produce water-soluble and stable nanocrystals. Several thiol-ligands, including thioglycolic acid (TGA), thioglycerol (TGC), 3-mercaptopropionic acid (MPA), 2-mercaptoethyleamine hydrochloride (MEA), 6-mercaptohexanoic acid (MHA), and L-cysteine (L-cys), were used for capping/stabilization of PbSe QDs. The effects of the ligands on the stability of PbSe QDs were evaluated for a period of two months at room temperature under normal light conditions and at 4 °C in dark. The TGA- and MEA-capped QDs exhibited the highest stability prior to purification, almost two months when kept in dark at 4 °C. However, the stability of TGA-capped QDs was reduced substantially after purification to about 5 days under same conditions, while MEA-capped QDs did not show any significant instability. The stabilization energies of Pb-thiolate complexes determined by theoretical DFT simulations supported the experimental results. The PbSe QDs capped with TGA, MPA and MEA were successfully purified and re-dispersed in water, while those stabilized with TGC, MHA and L-cys aggregated during purification attempts. The purified PbSe QDs possess very susceptible surface resulting in poor stability for about 30 – 45 min after re-dispersion in water. In the presence of an excess of free ligand, the stability increased up to 5 days for TGA-capped QDs at pH 7.19, 9 –12 days for MPA-capped QDs at pH 7.3–7.5 and 45–47 days for MEA-capped QDs at pH 7.35. X-Ray Diffraction (XRD) results showed that the QDs possess a cubic rock salt structure with the most intense peaks located at 2θ = 25.3° (200) and 2θ = 29.2° (100). TEM images showed that the size of the QDs ranges between 5 and 10 nm. ICP-MS results revealed that Pb:Se ratio was 1.26, 1.28, 3.85, 1.18, and 1.31 for the QDs capped with TGA, MPA, MEA, L-Cys, and TGC, respectively. The proposed method

  18. PL-PatchSurfer: a novel molecular local surface-based method for exploring protein-ligand interactions.

    Science.gov (United States)

    Hu, Bingjie; Zhu, Xiaolei; Monroe, Lyman; Bures, Mark G; Kihara, Daisuke

    2014-08-27

    Structure-based computational methods have been widely used in exploring protein-ligand interactions, including predicting the binding ligands of a given protein based on their structural complementarity. Compared to other protein and ligand representations, the advantages of a surface representation include reduced sensitivity to subtle changes in the pocket and ligand conformation and fast search speed. Here we developed a novel method named PL-PatchSurfer (Protein-Ligand PatchSurfer). PL-PatchSurfer represents the protein binding pocket and the ligand molecular surface as a combination of segmented surface patches. Each patch is characterized by its geometrical shape and the electrostatic potential, which are represented using the 3D Zernike descriptor (3DZD). We first tested PL-PatchSurfer on binding ligand prediction and found it outperformed the pocket-similarity based ligand prediction program. We then optimized the search algorithm of PL-PatchSurfer using the PDBbind dataset. Finally, we explored the utility of applying PL-PatchSurfer to a larger and more diverse dataset and showed that PL-PatchSurfer was able to provide a high early enrichment for most of the targets. To the best of our knowledge, PL-PatchSurfer is the first surface patch-based method that treats ligand complementarity at protein binding sites. We believe that using a surface patch approach to better understand protein-ligand interactions has the potential to significantly enhance the design of new ligands for a wide array of drug-targets.

  19. Synthesis of 123I-labelled analogues of imidazobenzodiazepine receptor ligands

    International Nuclear Information System (INIS)

    Katsifis, A.G.; Mattner, F.; McPhee, M.E.; Ridley, D.D.

    1999-01-01

    Reaction of bromo- or iodo-substituted isatoic anhydrides with N-methylglycine, L-proline or D-proline afforded bromo- or iodo-substituted 1,4-benzodiazepinediones which on condensation with ethyl or t-butyl isocyanoacetates gave ethyl or t-butyl bromo- or iodo-imidazobenzodiazepine carboxylates. These aryl halides were converted into the corresponding tributylstannanes with bis(tributyltin) in the presence of (triphenylphosphine)palladium(0), and the stannanes were treated with sodium ( 123 I)iodide in the presence of chloramine-T to give the required 123 I-labelled analogues of the imidazobenzodiazepine receptor ligands flumazenil and bretazenil. Copyright (1999) CSIRO Australia

  20. An Efficient ABC_DE_Based Hybrid Algorithm for Protein–Ligand Docking

    Directory of Open Access Journals (Sweden)

    Boxin Guan

    2018-04-01

    Full Text Available Protein–ligand docking is a process of searching for the optimal binding conformation between the receptor and the ligand. Automated docking plays an important role in drug design, and an efficient search algorithm is needed to tackle the docking problem. To tackle the protein–ligand docking problem more efficiently, An ABC_DE_based hybrid algorithm (ADHDOCK, integrating artificial bee colony (ABC algorithm and differential evolution (DE algorithm, is proposed in the article. ADHDOCK applies an adaptive population partition (APP mechanism to reasonably allocate the computational resources of the population in each iteration process, which helps the novel method make better use of the advantages of ABC and DE. The experiment tested fifty protein–ligand docking problems to compare the performance of ADHDOCK, ABC, DE, Lamarckian genetic algorithm (LGA, running history information guided genetic algorithm (HIGA, and swarm optimization for highly flexible protein–ligand docking (SODOCK. The results clearly exhibit the capability of ADHDOCK toward finding the lowest energy and the smallest root-mean-square deviation (RMSD on most of the protein–ligand docking problems with respect to the other five algorithms.

  1. Synthesis of water-soluble mono- and ditopic imidazoliums for carbene ligands

    Energy Technology Data Exchange (ETDEWEB)

    Anstey, Mitchell [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Chemistry Division; Murtagh, Dustin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Chemistry Division; Cordaro, Joseph Gabriel [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Chemistry Division; Stavila, Vitalie [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Chemistry Division; Feng, Patrick L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Chemistry Division; Mengesha, Wondwosen [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Chemistry Division

    2015-09-01

    Synthesis of ditopic imidazoliums was achieved using a modular step-wise procedure. The procedure itself is amenable to a wide array of functional groups that can be incorporated into the imidazolium architecture. The resulting compounds range from ditopic zwitterions to highly-soluble dicationic aromatics

  2. Performance of machine learning methods for ligand-based virtual screening.

    Science.gov (United States)

    Plewczynski, Dariusz; Spieser, Stéphane A H; Koch, Uwe

    2009-05-01

    Computational screening of compound databases has become increasingly popular in pharmaceutical research. This review focuses on the evaluation of ligand-based virtual screening using active compounds as templates in the context of drug discovery. Ligand-based screening techniques are based on comparative molecular similarity analysis of compounds with known and unknown activity. We provide an overview of publications that have evaluated different machine learning methods, such as support vector machines, decision trees, ensemble methods such as boosting, bagging and random forests, clustering methods, neuronal networks, naïve Bayesian, data fusion methods and others.

  3. Polynuclear Iron-Oxo/Hydroxy Complexes of Ketoacidoximate Ligands: Synthesis, Structures and Conversion to Ferric Oxide

    KAUST Repository

    Davaasuren, Bambar

    2017-06-13

    The polynuclear iron-oxo/hydroxy complexes containing ketoacidoximate ligands described in this report are [Fe3(μ3-O){O2C-C(C6H5)=NOCH3}6(py)3] (1) (py=pyridine), [Fe2(μ3-O){O2C-C(CH2-C6H5)=NO}2(H2O)(CH3OH)]2 (2) and [{Fe(μ2-OH)(O2C-C(CH3)=NO)}(dmso)]6 (3) (dmso=dimethyl sulfoxide). 1–3 are isolated from the reaction of Fe(NO3)3⋅9H2O and in situ generated anions of ketoacidoximate ligand [(HO2C-C(R1)=NOR2), where R1=CH3, C6H5 and CH2-C6H5; R2=H or CH3] in H2O, followed by crystallization in donor solvents. 1–3 undergo thermal decomposition above 200 °C and form crystalline α-Fe2O3 at 600 °C.

  4. Synthesis, characterisation and biological properties of gold(III) compounds with modified bipyridine and bipyridylamine ligands.

    Science.gov (United States)

    Casini, Angela; Diawara, Mariam Celine; Scopelliti, Rosario; Zakeeruddin, Shaik Mohammed; Grätzel, Michael; Dyson, Paul J

    2010-03-07

    Square planar gold(III) complexes that contain functionalised bipyridine ligands of general formula [Au(N--N)Cl(2)][PF(6)] [where N--N = 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine, 4,4'-dimethoxy-2,2'-bipyridine and 4,4'-diamino-2,2'-bipyridine] have been prepared and characterised by NMR spectroscopy and mass spectrometry. Two of the complexes have also been characterised in the solid state by X-ray crystallography. In addition, a gold(iii) compound bearing a dipyridin-2-ylamine ligand was also prepared and characterised. The complexes were found to undergo hydrolysis under pseudo-physiological conditions. Moreover, the complexes showed moderate to good cytotoxicity in vitro towards the A2780 human ovarian carcinoma cell line and the cisplatin resistant variant A2780cisR. Reactivity studies with biomolecules, such as reducing agents, plasmid DNA and a model protein (ubiquitin) were also performed to provide tentative insights into the mode of action of the complexes.

  5. Synthesis and study of lipophilic crown ethers and thia-ligands. Application to nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Guyon, Vincent

    1992-01-01

    In the field of metal extraction from the solutions of nuclear fuel reprocessing, new specific complexing agents that are more efficient than tributyl phosphate must possess a high lipophilic character. The use of lipophilic crown ethers and thia-ligands has eliminated the problem related to their loss in the aqueous media. Moreover, it has made their complexes more soluble in organic solvents. The increase of lipophilic character of monocyclic polyethers has been realized with the addition of an alkyl chain and the development of a new process has made possible the separation of cis-syn-cis and cis-anti-cis isomers of dicyclohexano 18 crown 6 on an industrial scale. The creation of a rapid NMR method of analysis has permitted to study the extracting capacity of those crown ethers in relation to monovalent and divalent cations in nitric acid media and also to demonstrate the influence brought by different substituents. Some new lipophilic thia-ligands (macrocycles and podands) have also been prepared and the study of palladium extraction in nitric acid media by these compounds has led to a better understanding of the relation between the structure and the extracting capacity. Of easy access, some podands have an extracting selectivity and an extracting kinetic for this metal which are highly superior than those of dialkyl sulphides actually employed in the industry. This makes their use possible in the nuclear area. (author) [fr

  6. Synthesis, structure and luminescence properties of zinc (II) complexes with terpyridine derivatives as ligands

    International Nuclear Information System (INIS)

    Chen Xuegang; Zhou Quanguo; Cheng Yanxiang; Geng Yanhou; Ma Dongge; Xie Zhiyuan; Wang Lixiang

    2007-01-01

    Five zinc (II) complexes (1-5) with 4'-phenyl-2,2':6',2''-terpyridine (ptpy) derivatives as ligands have been synthesized and fully characterized. The para-position of phenyl in ptpy is substituted by the group (R), i.e. tert-butyl (t-Bu), hexyloxy (OHex), carbazole-9-yl (Cz), naphthalen-1-yl-phenyl-amine-N-yl (NPA) and diphenyl amine-N-yl (DPA), with different electron-donating ability. With increasing donor ability of the R, the emission color of the complexes in film was modulated from violet (392 nm) to reddish orange (604 nm). The photoexcited luminescence exhibits significant solvatochromism because the emission of the complexes involves the intra-ligand charge transfer (ILCT) excited state. The electrochemical investigations show that the complexes with stronger electro-donating substituent have lower oxidation potential and then higher HOMO level. The electroluminescence (EL) properties of these zinc (II) complexes were studied with the device structure of ITO/PEDOT/Zn (II) complex: PBD:PMMA/BCP/AlQ/LiF/Al. Complexes 3, 4 and 5 exhibit EL wavelength at 552, 600 and 609 nm with maximum current efficiency of 5.28, 2.83 and 2.00 cd/A, respectively

  7. Synthesis of two potential NK1-receptor ligands using [1-11C]ethyl iodide and [1-11C]propyl iodide and initial PET-imaging

    Directory of Open Access Journals (Sweden)

    Genchel Tove

    2007-07-01

    Full Text Available Abstract Background The previously validated NK1-receptor ligand [O-methyl-11C]GR205171 binds with a high affinity to the NK1-receptor and displays a slow dissociation from the receptor. Hence, it cannot be used in vivo for detecting concentration changes in substance P, the endogenous ligand for the NK1-receptor. A radioligand used for monitoring these changes has to enable displacement by the endogenous ligand and thus bind reversibly to the receptor. Small changes in the structure of a receptor ligand can lead to changes in binding characteristics and also in the ability to penetrate the blood-brain barrier. The aim of this study was to use carbon-11 labelled ethyl and propyl iodide with high specific radioactivity in the synthesis of two new and potentially reversible NK1-receptor ligands with chemical structures based on [O-methyl-11C]GR205171. Methods [1-11C]Ethyl and [1-11C]propyl iodide with specific radioactivities of 90 GBq/μmol and 270 GBq/μmol, respectively, were used in the synthesis of [O-methyl-11C]GR205171 analogues by alkylation of O-desmethyl GR205171. The brain uptake of the obtained (2S,3S-N-(1-(2- [1-11C]ethoxy-5-(3-(trifluoromethyl-4H-1,2,4-triazol-4-ylphenylethyl-2-phenylpiperidin-3-amine (I and (2S,3S-2-phenyl-N-(1-(2- [1-11C]propoxy-5-(3-(trifluoromethyl-4H-1,2,4-triazol-4-ylphenylethylpiperidin-3-amine (II was studied with PET in guinea pigs and rhesus monkeys and compared to the uptake of [O-methyl-11C]GR205171. Results All ligands had similar uptake distribution in the guinea pig brain. The PET-studies in rhesus monkeys showed that (II had no specific binding in striatum. Ligand (I had moderate specific binding compared to the [O-methyl-11C]GR205171. The ethyl analogue (I displayed reversible binding characteristics contrary to the slow dissociation rate shown by [O-methyl-11C]GR205171. Conclusion The propyl-analogue (II cannot be used for detecting changes in NK1-ligand levels, while further studies should be

  8. Targeting Dengue Virus NS-3 Helicase by Ligand based Pharmacophore Modeling and Structure based Virtual Screening

    Science.gov (United States)

    Halim, Sobia A.; Khan, Shanza; Khan, Ajmal; Wadood, Abdul; Mabood, Fazal; Hussain, Javid; Al-Harrasi, Ahmed

    2017-10-01

    Dengue fever is an emerging public health concern, with several million viral infections occur annually, for which no effective therapy currently exist. Non-structural protein 3 (NS-3) Helicase encoded by the dengue virus (DENV) is considered as a potential drug target to design new and effective drugs against dengue. Helicase is involved in unwinding of dengue RNA. This study was conducted to design new NS-3 Helicase inhibitor by in silico ligand- and structure based approaches. Initially ligand-based pharmacophore model was generated that was used to screen a set of 1201474 compounds collected from ZINC Database. The compounds matched with the pharmacophore model were docked into the active site of NS-3 helicase. Based on docking scores and binding interactions, twenty five compounds are suggested to be potential inhibitors of NS3 Helicase. The pharmacokinetic properties of these hits were predicted. The selected hits revealed acceptable ADMET properties. This study identified potential inhibitors of NS-3 Helicase in silico, and can be helpful in the treatment of Dengue.

  9. Accounting for Intraligand Interactions in Flexible Ligand Docking with a PMF-Based Scoring Function.

    Science.gov (United States)

    Lizunov, A Y; Gonchar, A L; Zaitseva, N I; Zosimov, V V

    2015-10-26

    We analyzed the frequency with which intraligand contacts occurred in a set of 1300 protein-ligand complexes [ Plewczynski et al. J. Comput. Chem. 2011 , 32 , 742 - 755 .]. Our analysis showed that flexible ligands often form intraligand hydrophobic contacts, while intraligand hydrogen bonds are rare. The test set was also thoroughly investigated and classified. We suggest a universal method for enhancement of a scoring function based on a potential of mean force (PMF-based score) by adding a term accounting for intraligand interactions. The method was implemented via in-house developed program, utilizing an Algo_score scoring function [ Ramensky et al. Proteins: Struct., Funct., Genet. 2007 , 69 , 349 - 357 .] based on the Tarasov-Muryshev PMF [ Muryshev et al. J. Comput.-Aided Mol. Des. 2003 , 17 , 597 - 605 .]. The enhancement of the scoring function was shown to significantly improve the docking and scoring quality for flexible ligands in the test set of 1300 protein-ligand complexes [ Plewczynski et al. J. Comput. Chem. 2011 , 32 , 742 - 755 .]. We then investigated the correlation of the docking results with two parameters of intraligand interactions estimation. These parameters are the weight of intraligand interactions and the minimum number of bonds between the ligand atoms required to take their interaction into account.

  10. Synthesis, spectroscopic, DFT calculations and biological activity studies of ruthenium carbonyl complexes with 2-picolinic acid and a secondary ligand

    Science.gov (United States)

    Shohayeb, Shahera M.; Mohamed, Rania G.; Moustafa, H.; El-Medani, Samir M.

    2016-09-01

    Thermal reaction of [Ru3(CO)12] with 2-picolinic acid (Hpic) in the absence and presence of a secondary ligand (pyridine, Py, bipyridine, Bipy, or thiourea, Tu) was investigated. Four complexes with molecular formulae: [Ru(CO)3(Hpic)], 1, [Ru2(CO)5(Hpic)(Py)], 2, [Ru2(CO)5(Hpic)(Tu)], 3 and [Ru2(CO)4(Hpic)(Bipy)], 4, were isolated. All complexes were characterized based on elemental analyses, IR, 1H NMR, magnetic studies, mass spectrometry and thermal analysis. The ligand and its complexes have been screened for antibacterial activities. Density Functional Theory (DFT) calculations at the B3LYP/6-311G (d,p)_ level of theory have been carried out to investigate the equilibrium geometry of the ligands. The optimized geometry parameters of the complexes were evaluated using B3LYP method and LANL2DZ basis set. The extent of natural charge population (core, valence and rydberg), exact electronic configuration, total Lewis and total non-Lewis are estimated and discussed in terms of natural bond orbitals (NBO) analysis.

  11. Synthesis and properties of dioxo Tc(V) cationic complexes with nitrogen containing ligands

    International Nuclear Information System (INIS)

    Gambino, D.; Kremer, C.; Savio, E.; Leon, A.; Kremer, E.

    1990-01-01

    A series of Tc(V) cationic complexes was synthesized by electrochemical reduction of TcO 4 - . The electrolysis was performed in aqueous media containing amines as ligands: ethylenediamine (en), diethylenetriamine (dien), triethylenetetramine (trien) and 1,3-diaminopropane (1,3-dap). The combination of different techniques allows to propose the general formula [TcO 2 (amine) 2 ] + for these compounds. Electrodeposition of TcO 2 was a competitive reaction. The UV spectra were compared with those for other Tc(V) amine complexes. The presence of two peaks could be verified. Preliminary studies showed that kinetic stability decreased in the sequence en, 1,3-dap, trien, dien. The decomposition rate increased when the pH was lowered. (author) 16 refs.; 2 figs.; 3 tabs

  12. Ionotropic excitatory amino acid receptor ligands. Synthesis and pharmacology of a new amino acid AMPA antagonist

    DEFF Research Database (Denmark)

    Madsen, U; Sløk, F A; Stensbøl, T B

    2000-01-01

    We have previously described the potent and selective (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA), and the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4...... excitatory amino acid (EAA) receptors using receptor binding and electrophysiological techniques, and for activity at metabotropic EAA receptors using second messenger assays. Compounds 1 and 4 were essentially inactive. (RS)-2-Amino-3-[3-(2-carboxyethyl)-5-methyl-4-isoxazolyl]propionic acid (ACMP, 2......-isoxazolyl]propionic acid (AMOA). Using these AMPA receptor ligands as leads, a series of compounds have been developed as tools for further elucidation of the structural requirements for activation and blockade of AMPA receptors. The synthesized compounds have been tested for activity at ionotropic...

  13. Synthesis and crystal structure of novel fluorescent 1,3,4-oxadiazole-containing carboxylate ligands

    Science.gov (United States)

    Mikhailov, Igor E.; Popov, Leonid D.; Tkachev, Valery V.; Aldoshin, Sergey M.; Dushenko, Galina A.; Revinskii, Yurii V.; Minkin, Vladimir I.

    2018-04-01

    Novel chelating ligands, 3-(5-aryl-1,3,4-oxadiazol-2-yl)acrylic acids and their zinc complexes were synthesized and their spectral and luminescent properties studied. The compounds intensively (quantum efficiencies φ = 0.18-0.76) luminesce in nonpolar solvents in the blue-green region (λmaxPL = 458-504 nm) of the spectrum. Molecular and crystal structures of 3-[5-(4-dimethylaminophenyl)-1,3,4-oxadiazol-2-yl]acrylic acid were established using X-ray crystallography. In crystal, the infinite chains of the molecules lie in the parallel planes and are arranged by the "head to tail" type to provide for strong π-π stacking interactions between the layers facilitating appearance of high electron transport properties and formation of excimers.

  14. Transition metal complexes of some biologically active ligands; synthesis characterization and bioactivities

    International Nuclear Information System (INIS)

    Rehman, S.; Ali, N.; Nisar, M.

    2009-01-01

    Transition/representative transition metals complexes of biologically active chelating agent 1,2-dipyrolodinoethane were synthesized and characterized through spectral and analytical data. The complexes are of the formula (M(L)X/sub 2/). Where (M = Co (II), Ni (II), Cu (II), Zn (II), Hg (II) and Cd (II) and X = CI, Br, NO/sub 3/). Tetrahedral geometry has been proposed to these-metal complexes with the help of magnetic measurements, elemental analysis, chemical stoichiometry and spectroscopic data Antibacterial activity of the ligand and its metal complexes were screened against Eschereschi coli, Klebsiello pneumonia, Proteus mirabilis, Proteus vulhari, Streptococcus pneumonia, Salmonella Iyphi, Bacilh,s anthrax, Streptococcus fecalis and Staphylococcus aureus. Complexes were found to be active against Eschereschi coli, Klebsiella pneumonia, Proteus mirabilis and Proteus vulharis. (author)

  15. Synthesis and crystal structure of two lead (II) complexes with 1,10-phenanthroline ligand

    International Nuclear Information System (INIS)

    Olivera, Fiorella L.; Santillan, Guillermo A.

    2012-01-01

    Two coordination complexes have been synthesized by the reaction of lead nitrate (II) with 1,10-phenanthroline in methanol/water. The crystals of these complexes were obtained by using the diffusion method and structurally characterized by X-ray single crystal diffraction. Both complexes crystallized in the monoclinic space group P2 1 /c. The analysis by crystal X-ray diffraction reveals that in both complexes the coordination around the lead (II) ion is a distorted octahedral structure where the ion is bonded to the heterocyclic nitrogen atoms of chelating ligand 1,10-phenanthroline, three oxygen atoms of three nitrate groups and one oxygen from the water molecule. The difference between the complexes lies in the way of nitrate ion in presence of carboxylic acid aromatics. In addition, the crystal structure of complexes can be regarded as a 3D coordination polymer through Pb-O weak interactions, hydrogen bonds and π-π stacking interactions. (author).

  16. Four Mixed-Ligand Zn(II Three-Dimensional Metal-Organic Frameworks: Synthesis, Structural Diversity, and Photoluminescent Property

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Wang

    2017-11-01

    Full Text Available Assemblies of four three-dimensional (3D mixed-ligand coordination polymers (CPs having formulas, {[Zn2(bdc2(4-bpdh]·C2H5OH·2H2O}n (1, [Zn(bdc(4-bpdh]n (2, {[Zn2(bdc2(4-bpdh2]·(4-bpdh}n (3, and {[Zn(bdc(4-bpdh]·C2H5OH}n (4 (bdc2− = dianion of 1,4-benzenedicarboxylic acid, 4-bpdh = 2,5-bis(4-pyridyl-3,4-diaza-2,4-hexadiene have been synthesized and structurally characterized by single-crystal X-ray diffraction method. Structural determination reveals that the coordination numbers (geometry of Zn(II ions in 1, 2, 3, and 4 are five (distorted square-pyramidal (SP, six (distorted octahedral (Oh, five (trigonal-bipyramidal (TBP, and four (tetrahedral (Td, respectively, and are bridged by 4-bpdh with bis-monodentate coordination mode and bdc2− ligands with bis-bidentate in 1, chelating/bidentate in 2, bis-monodentate and bis-bidentate in 3, and bis-monodentate in 4, to generate two-fold interpenetrating 3D cube-like metal-organic framework (MOF with pcu topology, non-interpenetrating 3D MOF, two-fold interpenetrating 3D rectangular-box-like MOF with pcu topology and five-fold interpenetrating diamondoid-like MOF with dia topology, respectively. These different intriguing architectures indicate that the coordination numbers and geometries of Zn(II ions, coordination modes of bdc2− ligand, and guest molecules play important roles in the construction of MOFs and the formation of the structural topologies and interpenetrations. Thermal stabilities, and photoluminescence study of 1–4 were also studied in detail. The complexes exhibit ligands based photoluminescence properties at room temperature.

  17. Virtual Lead Identification of Farnesyltransferase Inhibitors Based on Ligand and Structure-Based Pharmacophore Techniques

    Directory of Open Access Journals (Sweden)

    Nizar M. Mhaidat

    2013-05-01

    Full Text Available Farnesyltransferase enzyme (FTase is considered an essential enzyme in the Ras signaling pathway associated with cancer. Thus, designing inhibitors for this enzyme might lead to the discovery of compounds with effective anticancer activity. In an attempt to obtain effective FTase inhibitors, pharmacophore hypotheses were generated using structure-based and ligand-based approaches built in Discovery Studio v3.1. Knowing the presence of the zinc feature is essential for inhibitor’s binding to the active site of FTase enzyme; further customization was applied to include this feature in the generated pharmacophore hypotheses. These pharmacophore hypotheses were thoroughly validated using various procedures such as ROC analysis and ligand pharmacophore mapping. The validated pharmacophore hypotheses were used to screen 3D databases to identify possible hits. Those which were both high ranked and showed sufficient ability to bind the zinc feature in active site, were further refined by applying drug-like criteria such as Lipiniski’s “rule of five” and ADMET filters. Finally, the two candidate compounds (ZINC39323901 and ZINC01034774 were allowed to dock using CDOCKER and GOLD in the active site of FTase enzyme to optimize hit selection.

  18. In situ ligand synthesis with the UO22+ cation under hydrothermal conditions

    Science.gov (United States)

    Frisch, Mark; Cahill, Christopher L.

    2007-09-01

    A novel uranium (VI) coordination polymer, (UO 2) 2(C 2O 4)(C 5H 6NO 3) 2 ( 1), has been prepared under the hydrothermal reaction of uranium nitrate hexahydrate and L-pyroglutamic acid. Compound 1 (monoclinic, C2/ c, a=22.541(6) Å, b=5.7428(15) Å, c=15.815(4) Å, β=119.112(4)°, Z=4, R1=0.0237, w R2=0.0367) consists of uranium pentagonal bipyramids linked via L-pyroglutamate and oxalate anions to form an overall two-dimensional (2D) structure. With the absence of oxalic acid within the starting materials, the oxalate anions are hypothesized to form in situ whereby decarboxylation of L-pyroglutamic acid occurs followed by coupling of CO 2 to form the oxalate linkages as observed in the crystal structure. Addition of copper (II) to this system appears to promote oxalate formation in that synthetic moolooite (Cu(C 2O 4)· nH 2O; 0⩽ n⩽1) and a known uranyl oxalate [(UO 2) 2(C 2O 4)(OH) 2(H 2O) 2·H 2O], co-crystallize in significant quantity. Compound 1 exhibits the characteristic uranyl emission spectrum upon either direct uranyl excitation or ligand excitation, the latter of which shows an increase in relative intensity. This subsequent increase in the intensity indicates an energy transfer from the ligand to the uranyl cations thus illustrating an example of the antenna effect in the solid state.

  19. Synthesis of a Bis(thiophenolate)pyridine Ligand and Its Titanium, Zirconium, and Tantalum Complexes

    KAUST Repository

    Lenton, Taylor N.

    2012-11-12

    A precursor to a new tridentate LX 2 type ligand, bis(thiophenol)pyridine ((SNS)H 2 = (2-C 6H 4SH) 2-2,6-C 5H 3N), was prepared. Bis(thiophenolate)pyridine complexes of Ti, Zr, and Ta having dialkylamido coligands were synthesized and structurally characterized. The zirconium complex (SNS)Zr(NMe 2) 2 (4) displays C 2 symmetry in the solid state, unlike a related bis(phenolate)pyridine compound, C s-symmetric (ONO)Ti(NMe 2) 2. This change is likely the result of strain about the sulfur atom in the six-membered chelate with longer metal-sulfur and carbon-sulfur bonds. Solid-state structures of tantalum complexes (SNS)Ta(NMe 2) 3 (5) and (SNS)TaCl(NEt 2) 2 (6) also display pronounced C 2 twisting of the SNS ligand. 1D and 2D NMR experiments show that 5 is fluxional, with rotation about the Ta-N(amide) bonds occurring on the NMR time scale that interchange the equatorial amide methyl groups (ΔG ‡ 393 = 25.0(3) kcal/mol). The fluxional behavior of 6 in solution was also studied by variable-temperature 1H NMR. Observation of separate signals for the diastereotopic protons of the methylene unit of the diethylamide indicates that the complex remains locked on the NMR time scale in one diastereomeric conformation at temperatures below -50 °C, fast rotation about the equatorial amide Ta-N bonds occurs at higher temperature (ΔG ‡ 393 = 13.4(3) kcal/mol), and exchange of diastereomeric methylene protons occurs via inversion at Ta that interconverts antipodes (ΔG ‡ 393 ≈ 14(1) kcal/mol). © 2012 American Chemical Society.

  20. Expanding the family of uranium(III) alkyls. Synthesis and characterization of mixed-ligand derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Matson, Ellen M.; Kiernicki, John J.; Fanwick, Phillip E.; Bart, Suzanne C. [Department of Chemistry, Purdue University, West Lafayette, IN (United States)

    2016-06-15

    The generation of uranium(III) alkyls supported by hydrotris(pyrazolyl)borate (Tp) and pentamethylcyclopentadienyl (Cp*) ligands is reported. Mixed ancillary ligand frameworks were synthesized by treating TpUI{sub 2}(THF){sub 3} (1) and Cp*UI{sub 2}(THF){sub 3} with potassium hydrotris(pyrazolyl)borate salts. Addition of one equivalent of potassium hydrotris(3,5-dimethylpyrazolyl)borate (Tp*) generated TpTp*UI (2), while treatment of Cp*UI{sub 2}(THF){sub 3} with either KTp or KTp* resulted in the respective formation of Cp*TpUI(THF) (3) or Cp*Tp*UI(THF) (4). Alkylation of 2 with KCH{sub 2}Ph or NaCH{sub 2}SiMe{sub 3} furnished TpTp*UCH{sub 2}Ph (2-CH{sub 2}Ph) or TpTp*UCH{sub 2}SiMe{sub 3} (2-CH{sub 2}SiMe{sub 3}). Similarly, treatment of 3 with NaCH{sub 2}SiMe{sub 3} formed Cp*TpUCH{sub 2}SiMe{sub 3} (3-CH{sub 2}SiMe{sub 3}), whereas treatment of 4 with KCH{sub 2}Ph generated Cp*Tp*UCH{sub 2}Ph (4-CH{sub 2}Ph). All compounds were characterized by multinuclear NMR, IR, and electronic absorption spectroscopy. Compounds 2-CH{sub 2}Ph, 3, and 3-CH{sub 2}SiMe{sub 3} were structurally characterized using X-ray crystallography as well. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe

    International Nuclear Information System (INIS)

    Saio, Tomohide; Ogura, Kenji; Shimizu, Kazumi; Yokochi, Masashi; Burke, Terrence R.; Inagaki, Fuyuhiko

    2011-01-01

    A nuclear magnetic resonance-based ligand screening strategy utilizing a paramagnetic lanthanide probe is presented. By fixing a paramagnetic lanthanide ion to a target protein, a pseudo-contact shift (PCS) and a paramagnetic relaxation enhancement (PRE) can be observed for both the target protein and its bound ligand. Based on PRE and PCS information, the bound ligand is then screened from the compound library and the structure of the ligand–protein complex is determined. PRE is an isotropic paramagnetic effect observed within 30 Å from the lanthanide ion, and is utilized for the ligand screening in the present study. PCS is an anisotropic paramagnetic effect providing long-range (∼40 Å) distance and angular information on the observed nuclei relative to the paramagnetic lanthanide ion, and utilized for the structure determination of the ligand–protein complex. Since a two-point anchored lanthanide-binding peptide tag is utilized for fixing the lanthanide ion to the target protein, this screening method can be generally applied to non-metal-binding proteins. The usefulness of this strategy was demonstrated in the case of the growth factor receptor-bound protein 2 (Grb2) Src homology 2 (SH2) domain and its low- and high-affinity ligands.

  2. Generating "fragment-based virtual library" using pocket similarity search of ligand-receptor complexes.

    Science.gov (United States)

    Khashan, Raed S

    2015-01-01

    As the number of available ligand-receptor complexes is increasing, researchers are becoming more dedicated to mine these complexes to aid in the drug design and development process. We present free software which is developed as a tool for performing similarity search across ligand-receptor complexes for identifying binding pockets which are similar to that of a target receptor. The search is based on 3D-geometric and chemical similarity of the atoms forming the binding pocket. For each match identified, the ligand's fragment(s) corresponding to that binding pocket are extracted, thus forming a virtual library of fragments (FragVLib) that is useful for structure-based drug design. The program provides a very useful tool to explore available databases.

  3. Predicting Nanocrystal Shape through Consideration of Surface-Ligand Interactions

    KAUST Repository

    Bealing, Clive R.

    2012-03-27

    Density functional calculations for the binding energy of oleic acid-based ligands on Pb-rich {100} and {111} facets of PbSe nanocrystals determine the surface energies as a function of ligand coverage. Oleic acid is expected to bind to the nanocrystal surface in the form of lead oleate. The Wulff construction predicts the thermodynamic equilibrium shape of the PbSe nanocrystals. The equilibrium shape is a function of the ligand surface coverage, which can be controlled by changing the concentration of oleic acid during synthesis. The different binding energy of the ligand on the {100} and {111} facets results in different equilibrium ligand coverages on the facets, and a transition in the equilibrium shape from octahedral to cubic is predicted when increasing the ligand concentration during synthesis. © 2012 American Chemical Society.

  4. Synthesis of freestanding water-soluble indium oxide nanocrystals capped by alanine nitric acid via ligand exchange for thin film transistors and effects of ligands on the electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin-Kyu; Koh, Ye-Seul; Jeong, Hyun-Dam, E-mail: hdjeong@chonnam.ac.kr

    2015-07-15

    We demonstrate synthesis of freestanding water-soluble indium oxide nanocrystals (In{sub 2}O{sub 3} NCs) by ligand exchange to β-alanine nitric acid (Ala·HNO{sub 3}) and its application for active channel layer in thin film transistors (TFTs), with investigation of the effect of curing temperatures on the TFT properties in terms of thermal behaviour of the ligand molecules at 150, 300, and 350 °C. After ligand exchange from long alkyl ligand (myristic acid, MA) to short Ala·HNO{sub 3}, the mobility of NC TFTs cured at 150 °C increased by over 1 order of magnitude, from 1.3 × 10{sup −4} cm{sup 2}V{sup -1}s{sup −1} to 4.5 × 10{sup −3} cm{sup 2}V{sup -1}s{sup −1}, due to enhanced tunnelling rate (Γ) between adjective NCs. Higher curing temperatures such as 300 and 350 °C, inducing thermal decomposition of the organic ligands, led to further enhancement of the mobility, particularly up to 2.2 cm{sup 2}V{sup -1}s{sup −1} for the In{sub 2}O{sub 3} NC-Ala·HNO{sub 3} TFT cured at 350 °C. It is also found that the ligand exchange of In{sub 2}O{sub 3} NC in acidic condition (e.g. HNO{sub 3}) would be simple and effective to reduce the surface defects by surface etching, which may lead to better device performances. - Graphical abstract: Display Omitted - Highlights: • Freestanding water-soluble In{sub 2}O{sub 3} nanocrystals (NCs) were synthesized by ligand exchange. • Thin film transistors (TFTs) of colloidal NCs were fabricated by spin-coating method. • Water-soluble In{sub 2}O{sub 3} NC TFTs showed higher mobilities due to shorter ligand length. • Surface defects of NCs were notably reduced by surface etching during ligand exchange.

  5. Synthesis and Characterization of Two New p-tert-Butylcalix[4]-arene Schiff Bases

    Directory of Open Access Journals (Sweden)

    Saeed Taghvaee Ganjali

    2001-03-01

    Full Text Available Synthesis and characterization of two new Schiff bases of p-tertbuthylcalix[4]arene (H2L1 and HL2 is described. The synthesis of H2L1 and HL2 has been achieved by the condensation of salicylaldehyde with the amine group of upper rim monoamine p-tert-butylcalix[4]arene in ethanol. These compounds have been characterized on the basis of elemental analysis and spectral data. Solvatochromicity and fluorescence properties were observed and measured for H2L1 and HL2. Solvatochromicity of these ligands indicates their potential for NLO applications.

  6. NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots.

    Science.gov (United States)

    Ward, Carl C; Kleinman, Jordan I; Nomura, Daniel K

    2017-06-16

    Most of the proteome is considered undruggable, oftentimes hindering translational efforts for drug discovery. Identifying previously unknown druggable hotspots in proteins would enable strategies for pharmacologically interrogating these sites with small molecules. Activity-based protein profiling (ABPP) has arisen as a powerful chemoproteomic strategy that uses reactivity-based chemical probes to map reactive, functional, and ligandable hotspots in complex proteomes, which has enabled inhibitor discovery against various therapeutic protein targets. Here, we report an alkyne-functionalized N-hydroxysuccinimide-ester (NHS-ester) as a versatile reactivity-based probe for mapping the reactivity of a wide range of nucleophilic ligandable hotspots, including lysines, serines, threonines, and tyrosines, encompassing active sites, allosteric sites, post-translational modification sites, protein interaction sites, and previously uncharacterized potential binding sites. Surprisingly, we also show that fragment-based NHS-ester ligands can be made to confer selectivity for specific lysine hotspots on specific targets including Dpyd, Aldh2, and Gstt1. We thus put forth NHS-esters as promising reactivity-based probes and chemical scaffolds for covalent ligand discovery.

  7. In situ ligand synthesis with the UO22+ cation under hydrothermal conditions

    International Nuclear Information System (INIS)

    Frisch, Mark; Cahill, Christopher L.

    2007-01-01

    A novel uranium (VI) coordination polymer, (UO 2 ) 2 (C 2 O 4 )(C 5 H 6 NO 3 ) 2 (1), has been prepared under the hydrothermal reaction of uranium nitrate hexahydrate and L-pyroglutamic acid. Compound 1 (monoclinic, C2/c, a=22.541(6) A, b=5.7428(15) A, c=15.815(4) A, β=119.112(4) o , Z=4, R 1 =0.0237, wR 2 =0.0367) consists of uranium pentagonal bipyramids linked via L-pyroglutamate and oxalate anions to form an overall two-dimensional (2D) structure. With the absence of oxalic acid within the starting materials, the oxalate anions are hypothesized to form in situ whereby decarboxylation of L-pyroglutamic acid occurs followed by coupling of CO 2 to form the oxalate linkages as observed in the crystal structure. Addition of copper (II) to this system appears to promote oxalate formation in that synthetic moolooite (Cu(C 2 O 4 ).nH 2 O; 0≤n≤1) and a known uranyl oxalate [(UO 2 ) 2 (C 2 O 4 )(OH) 2 (H 2 O) 2 .H 2 O], co-crystallize in significant quantity. Compound 1 exhibits the characteristic uranyl emission spectrum upon either direct uranyl excitation or ligand excitation, the latter of which shows an increase in relative intensity. This subsequent increase in the intensity indicates an energy transfer from the ligand to the uranyl cations thus illustrating an example of the antenna effect in the solid state. - Graphical abstract: A novel homometallic coordination polymer (UO 2 ) 2 (C 2 O 4 )(C 5 H 6 NO 3 ) 2 , in the uranium-L-pyroglutamic acid system has been synthesized under hydrothermal conditions. The title compound consists of uranium pentagonal bipyramids bridged through both L-pyroglutamate and oxalate linkages to produce a 3D crystal structure. The oxalate anions are theorized to result from decarboxylation of L-pyroglutamic acid followed by subsequent coupling of CO 2

  8. Synthesis and in vivo evaluation of [11C]SA6298 as a PET sigma1 receptor ligand

    International Nuclear Information System (INIS)

    Kawamura, Kazunori; Ishiwata, Kiichi; Tajima, Hisashi; Ishii, Shin-Ichi; Shimada, Yuhei; Matsuno, Kiyoshi; Homma, Yoshio; Senda, Michio

    1999-01-01

    The potential of a 11 C-labeled selective sigma 1 receptor ligand, 1-(3,4-dimethoxyphenethyl)-4-[3-(3,4-dichlorophenyl)propyl]piperazine ([ 11 C]SA6298), was evaluated as a positron emission tomography (PET) ligand for mapping sigma 1 receptors in the central nervous system and peripheral organs. [ 11 C]SA6298 was synthesized by methylation of the desmethyl SA6298 with [ 11 C]CH 3 I, with the decay-corrected radiochemical yield of 39±5% based on [ 11 C]CH 3 I and with the specific activity of 53±17 TBq/mmol within 20 min from end of bombardment (EOB). In mice, the uptake of [ 11 C]SA6298 was significantly decreased by carrier loading in the brain, liver, spleen, heart, lung, small intestine, and kidney in which sigma receptors are present as well as in the skeletal muscle. Pretreatment with SA6298 also blocked the uptake of [ 11 C]SA6298 by these organs except for the small intestine, but significant displacement of [ 11 C]SA6298 by posttreatment with SA6298 was observed only in the heart, lung, and muscle. In the blocking study with one of the eight sigma receptor ligands, including haloperidol, SA6298, NE-100, (+)-pentazocine, SA4503, (-)-pentazocine, (+)-3-PPP, and (+)-SKF 10,047 (in the order of the affinity for sigma 1 receptor subtype), only SA6298 and an analog SA4503 significantly reduced the brain uptake of [ 11 C]SA6298 to approximately 80% of the control, but the other six ligands did not. Peripherally, the uptake of [ 11 C]SA6298 by the organs described above was decreased predominantly by SA6298 or SA4503, but the blocking effects of the other five ligands except for NE-100 depended on their affinity for sigma 1 receptors. The saturable brain uptake of [ 11 C]SA6298, approximately 20%, was also observed by tissue dissection method in rats and by PET in a cat. Ex vivo autoradiography of the rat brain showed a high uptake in the cortex and thalamus. In the cat brain a relatively high uptake was found in the cortex, thalamus, striatum, and cerebellum

  9. Novel multiple opioid ligands based on 4-aminobenzazepinone (Aba), azepinoindole (Aia) and tetrahydroisoquinoline (Tic) scaffolds

    Science.gov (United States)

    Ballet, Steven; Marczak, Ewa D.; Feytens, Debby; Salvadori, Severo; Sasaki, Yusuke; Abell, Andrew D.; Lazarus, Lawrence H.; Balboni, Gianfranco; Tourwé, Dirk

    2010-01-01

    The dimerization and trimerization of the Dmt-Tic, Dmt-Aia and Dmt-Aba pharmacophores provided multiple ligands which were evaluated in vitro for opioid receptor binding and functional activity. Whereas the Tic- and Aba multimers proved to be dual and balanced δ/μ antagonists, as determined by the functional [S35]GTPγS binding assay, the dimerization of potent Aia-based ‘parent’ ligands unexpectedly resulted in substantial less efficient receptor binding and non-active dimeric compounds. PMID:20137938

  10. Novel chalcone-based fluorescent human histamine H3 receptor ligands as pharmacological tools

    Directory of Open Access Journals (Sweden)

    Holger eStark

    2012-03-01

    Full Text Available Novel fluorescent chalcone-based ligands at human histamine H3 receptors (hH3R have been designed, synthesized and characterized. Compounds described are non-imidazole analogues of ciproxifan with a tetralone motif. Tetralones as chemical precursors and related fluorescent chalcones exhibit affinities at hH3R in the same concentration range like that of the reference antagonist ciproxifan (hH3R pKi value of 7.2. Fluorescence characterization of our novel ligands shows emission maxima about 570 nm for yellow fluorescent chalcones and ≥600 nm for the red fluorescent derivatives. Interferences to cellular autofluorescence could be excluded. All synthesized chalcone compounds could be taken to visualize hH3R proteins in stably transfected HEK-293 cells using confocal laser scanning fluorescence microscopy. These novel fluorescent ligands possess high potential to be used as pharmacological tools for hH3R visualization in different tissues.

  11. Targeting Ligandable Pockets on Plant Homeodomain (PHD) Zinc Finger Domains by a Fragment-Based Approach.

    Science.gov (United States)

    Amato, Anastasia; Lucas, Xavier; Bortoluzzi, Alessio; Wright, David; Ciulli, Alessio

    2018-04-20

    Plant homeodomain (PHD) zinc fingers are histone reader domains that are often associated with human diseases. Despite this, they constitute a poorly targeted class of readers, suggesting low ligandability. Here, we describe a successful fragment-based campaign targeting PHD fingers from the proteins BAZ2A and BAZ2B as model systems. We validated a pool of in silico fragments both biophysically and structurally and solved the first crystal structures of PHD zinc fingers in complex with fragments bound to an anchoring pocket at the histone binding site. The best-validated hits were found to displace a histone H3 tail peptide in competition assays. This work identifies new chemical scaffolds that provide suitable starting points for future ligand optimization using structure-guided approaches. The demonstrated ligandability of the PHD reader domains could pave the way for the development of chemical probes to drug this family of epigenetic readers.

  12. Application of a novel design paradigm to generate general nonpeptide combinatorial templates mimicking beta-turns: synthesis of ligands for melanocortin receptors.

    Science.gov (United States)

    Webb, Thomas R; Jiang, Luyong; Sviridov, Sergey; Venegas, Ruben E; Vlaskina, Anna V; McGrath, Douglas; Tucker, John; Wang, Jian; Deschenes, Alain; Li, Rongshi

    2007-01-01

    We report the further application of a novel approach to template and ligand design by the synthesis of agonists of the melanocortin receptor. This design method uses the conserved structural data from the three-dimensional conformations of beta-turn peptides to design rigid nonpeptide templates that mimic the orientation of the main chain C-alpha atoms in a peptide beta-turn. We report details on a new synthesis of derivatives of template 1 that are useful for the synthesis of exploratory libraries. The utility of this technique is further exemplified by several iterative rounds of high-throughput synthesis and screening, which result in new partially optimized nonpeptide agonists for several melanocortin receptors.

  13. Synthesis, Characterization, Luminescence and Biological Activity of Two Lanthanide Complexes Involving Mixed Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Deyun; Guo, Haifu; Qin, Liang [Zhaoqing Univ., Zhaoqing (China); Xu, Jun [Jinan Univ., Guangzhou (China)

    2013-09-15

    Two new isostructural dinuclear complexes, Ln{sub 2}(4-cpa){sub 6}(bpy){sub 2} (Ln = Eu (1); Tb (2), 4-cpa = 4-chlorophenyl-acetate, bpy = 2,2'-bipyridine), have been hydrothermally synthesized and characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis (TGA), powder X-ray diffraction and single-crystal X-ray diffraction. The lanthanide ions are bridged by two bidentate and two terdentate carboxylate groups to give centrosymmetric dimers with Ln···Ln separations of 3.967(2) and 3.956(3) A, respectively. Each metal atom is nine-coordinate and exhibits a distorted tricapped trigonal prismatic geometry. Three-dimensional fluorescence spectra show that both 1 and 2 emit bright red and green luminescence at room temperature, with long lifetimes of up to 0.369 ms (at 614 nm) and 0.432 ms (at 543 nm), respectively. Moreover, poor luminescence efficiency has been noted for complex 2. The 4-Hcpa ligand and complexes 1-2 have been screened for their phytogrowth-inhibitory activities against Brassica napus L. and Echinochloa crusgalli L., and the results are compared with the activity of quizalofop-P-ethyl.

  14. Synthesis and Characterization of Platinum(II) Complexes with Various Substituted 2,2'-Bipyridine Ligands.

    Science.gov (United States)

    Son, Seokhwan; Lee, Hwan Gyu; Lee, Nopl; Ryu, Minwoo; Kwak, Cheenhun; Lee, Jihoon; Ahn, Hogeun; Chung, Minchu

    2016-02-01

    The reaction of platinum 5,5"-(9,9-dioctyl-9H-fluorene-2,7-diyl)di-2,2'-bipyridine with 2,2'-bipyridine) PtCI2, (1,10-phenanthroline)PtC2 and (2,2'-bipyrimidine)PtC2: (2,2'-bipyridine)Pt[5,5"-(9,9-dioctyl-9H- fluorene-2,7-diyl)di-2,2'-bipyridine] (1) (2,2'-bipyrimi-dine)Pt[5,5"-(9,9-dioctyl-9H-fluorene-2,7-diyl)di- 2,2'-bipyridine] (2) (1,10-Phenantroline)-Pt[5,5"-(9,9-dioctyl-9H-fluorene-2,7-diyl)di-2,2'-bipyridine] (3). In the study, new platinum complex compounds were synthesized utilizing the ligand of a 5,5"-(9,9- dioctyl-9H-fluorene-2,7-diyl)di-2,2'-bipyridine). Each of the three complexes was obtained through the reaction carried out in this study. These complexes were analyzed using 1H(13C)-NMR, PL, and a UV-vis spectrophotometer. The maximum wavelengths of complexes 1, 2, and 3 appear at 519 nm, 375 nm, and 517 nm, respectively. The quantum yields of these complexes are in the range of 0.35-0.67.

  15. Design and synthesis of a tetradentate '3-amine-1-carboxylate' ligand to mimic the metal binding environment at the non-heme iron(II) oxidase active site.

    Science.gov (United States)

    Dungan, Victoria J; Ortin, Yannick; Mueller-Bunz, Helge; Rutledge, Peter J

    2010-04-07

    Non-heme iron(II) oxidases (NHIOs) catalyse a diverse array of oxidative chemistry in Nature. As part of ongoing efforts to realize biomimetic, iron-mediated C-H activation, we report the synthesis of a new 'three-amine-one-carboxylate' ligand designed to complex with iron(II) and mimic the NHIO active site. The tetradentate ligand has been prepared as a single enantiomer in nine synthetic steps from N-Cbz-L-alanine, pyridine-2,6-dimethanol and diphenylamine, using Seebach oxazolidinone chemistry to control the stereochemistry. X-Ray crystal structures are reported for two important intermediates, along with variable temperature NMR experiments to probe the hindered interconversion of conformational isomers of several key intermediates, 2,6-disubstituted pyridine derivatives. The target ligand and an N-Cbz-protected precursor were each then complexed with iron(II) and tested for their ability to promote alkene dihydroxylation, using hydrogen peroxide as the oxidant.

  16. Synthesis of aryl-substituted 5-[18F]fluoroalkylbenzamides: High affinity ligands for dopamine D-2 studies

    International Nuclear Information System (INIS)

    Mathis, C.A.; Bishop, J.E.; Gerdes, J.M.; Faggin, B.; Mailman, R.

    1990-01-01

    Recent studies of the structure-activity relationship of benzamides have shown that the 2,3-dimethoxy substitution pattern of (S)-N-[(1-ethyl-2-pyrrolidinyl)methyl]-2,3-dimethoxy-5-iodobenzamide (PDB) resulted in a potent D-2 antagonist. Based upon these results and the concept that the potency of receptor ligands can be preserved when aromatic halogen substituents are replaced by fluoroalkyl functional groups, the authors synthesized a series of aryl-substituted fluoroalkyl PDBs and salicylamides. Synthetic pathways and an in vivo study in rats are outlined

  17. Light-Emitting Diodes Based on Colloidal Silicon Quantum Dots with Octyl and Phenylpropyl Ligands.

    Science.gov (United States)

    Liu, Xiangkai; Zhao, Shuangyi; Gu, Wei; Zhang, Yuting; Qiao, Xvsheng; Ni, Zhenyi; Pi, Xiaodong; Yang, Deren

    2018-02-14

    Colloidal silicon quantum dots (Si QDs) hold ever-growing promise for the development of novel optoelectronic devices such as light-emitting diodes (LEDs). Although it has been proposed that ligands at the surface of colloidal Si QDs may significantly impact the performance of LEDs based on colloidal Si QDs, little systematic work has been carried out to compare the performance of LEDs that are fabricated using colloidal Si QDs with different ligands. Here, colloidal Si QDs with rather short octyl ligands (Octyl-Si QDs) and phenylpropyl ligands (PhPr-Si QDs) are employed for the fabrication of LEDs. It is found that the optical power density of PhPr-Si QD LEDs is larger than that of Octyl-Si QD LEDs. This is due to the fact that the surface of PhPr-Si QDs is more oxidized and less defective than that of Octyl-Si QDs. Moreover, the benzene rings of phenylpropyl ligands significantly enhance the electron transport of QD LEDs. It is interesting that the external quantum efficiency (EQE) of PhPr-Si QD LEDs is lower than that of Octyl-Si QD LEDs because the benzene rings of phenylpropyl ligands suppress the hole transport of QD LEDs. The unbalance between the electron and hole injection in PhPr-Si QD LEDs is more serious than that in Octyl-Si QD LEDs. The currently obtained highest optical power density of ∼0.64 mW/cm 2 from PhPr-Si QD LEDs and highest EQE of ∼6.2% from Octyl-Si QD LEDs should encourage efforts to further advance the development of high-performance optoelectronic devices based on colloidal Si QDs.

  18. 1,2,4-Triazines in the Synthesis of Bipyridine Bisphenolate ONNO Ligands and Their Highly Luminescent Tetradentate Pt(II) Complexes for Solution-Processable OLEDs.

    Science.gov (United States)

    Pander, Piotr; Bulmer, Rachel; Martinscroft, Ross; Thompson, Stuart; Lewis, Frank W; Penfold, Thomas J; Dias, Fernando B; Kozhevnikov, Valery N

    2018-04-02

    This article describes a convenient method for the synthesis of ONNO-type tetradentate 6,6'-bis(2-phenoxy)-2,2'-bipyridine (bipyridine bisphenolate, BpyBph) ligands and their platinum(II) complexes. The methodology includes the synthesis of 1,2,4-triazine precursors followed by their transformation to functionalized pyridines by the Boger reaction. Two complementary routes employing 3,3'- and 5,5'-bis-triazines allow a modification of the central pyridine rings in different positions, which was exemplified by the introduction of cyclopentene rings. The new ligands were used to prepare highly luminescent ONNO-type Pt(II) complexes. The position of the cyclopentene rings significantly influences the solubility and photophysical properties of these complexes. Derivatives with closely positioned cyclopentene rings are soluble in organic solvents and proved to be the best candidate for solution-processable organic light-emitting devices (OLEDs), showing efficient single-dopant candlelight electroluminescence.

  19. Synthesis of n.c.a. 18F-fluorinated NMDA- and D4-receptor ligands via [18F]fluorobenzenes

    International Nuclear Information System (INIS)

    Ludwig, T.

    2005-11-01

    In this thesis new strategies were developed and evaluated for the no-carrier-added (n.c.a.) 18 F-labelling of receptor ligands as radiodiagnostics for characterization of brain receptors using positron-emission-tomography (PET). Special emphasis was placed on the synthesis of n.c.a. (±)-3-(4-hydroxy-4-(4-[ 18 F]fluorophenyl)-piperidin-l-yl)chroman-4,7-diol, a ligand with high affinity for the NR2B subtype of NMDA receptors and n.c.a. (3-(4-[ 18 F]fluorphenoxy)propyl)-(2-(4-tolylphenoxy)ethyl)amine ([ 18 F]FPTEA) a dopamine D 4 receptor ligand. In order to synthesize n.c.a. (±)-3-(4-hydroxy-4-(4-[ 18 F]fluorophenyl)-piperidin-l-yl)chroman-4,7-diol the 18 F-fluoroarylation method via metallorganic intermediates was modified and improved. The suitability of the organometallic 18 F-fluoroarylation agents was proven with several model compounds. High radiochemical yields of 20-30% were obtained also with piperidinone-derivatives. The preparation of a suitable precursor for the synthesis of the NMDA receptor ligand, however, could not be achieved by synthesis of appropriate 1,3-dioxolane protected piperidinone derivatives. Further, the synthesis of n.c.a. ([ 18 F]fluoroaryloxy)alkylamines via n.c.a. 4-[ 18 F]fluorophenol was developed and evaluated. The synthesis of n.c.a. [ 18 F]fluoroarylethers with corresponding model compounds was optimized and led to a radiochemical yield of 25-60%, depending on the alkylhalide used. The preparation of n.c.a. 1-(3-bromopropoxy)-4-[ 18 F]fluorobenzene proved advantageous in comparison to direct use of 4-[ 18 ]fluorophenol for coupling with a corresponding N-protected precursor for the synthesis of n.c.a. [ 18 F]FPTEA. With regard to the radiochemical yields and the loss of activity during the synthesis and isolation of n.c.a. 4-[ 18 F]fluorophenol and n.c.a. 1-(3-bromopropoxy)-4-[ 18 F]fluorobenzene, [ 18 F]FPTEA was obtained by reaction with 2-(4-tolyloxy)ethylamine in radiochemical yields of about 25-30% in ethanol or 2-butanone

  20. Synthesis of phosphonic acid derivatized bipyridine ligands and their ruthenium complexes.

    Science.gov (United States)

    Norris, Michael R; Concepcion, Javier J; Glasson, Christopher R K; Fang, Zhen; Lapides, Alexander M; Ashford, Dennis L; Templeton, Joseph L; Meyer, Thomas J

    2013-11-04

    Water-stable, surface-bound chromophores, catalysts, and assemblies are an essential element in dye-sensitized photoelectrosynthesis cells for the generation of solar fuels by water splitting and CO2 reduction to CO, other oxygenates, or hydrocarbons. Phosphonic acid derivatives provide a basis for stable chemical binding on metal oxide surfaces. We report here the efficient synthesis of 4,4'-bis(diethylphosphonomethyl)-2,2'-bipyridine and 4,4'-bis(diethylphosphonate)-2,2'-bipyridine, as well as the mono-, bis-, and tris-substituted ruthenium complexes, [Ru(bpy)2(Pbpy)](2+), [Ru(bpy)(Pbpy)2](2+), [Ru(Pbpy)3](2+), [Ru(bpy)2(CPbpy)](2+), [Ru(bpy)(CPbpy)2](2+), and [Ru(CPbpy)3](2+) [bpy = 2,2'-bipyridine; Pbpy = 4,4'-bis(phosphonic acid)-2,2'-bipyridine; CPbpy = 4,4'-bis(methylphosphonic acid)-2,2'-bipyridine].

  1. Microwave-Assisted Synthesis of 3,5-Dibenzyl-4-amino-1,2,4-triazole and its Diazo Ligand, Metal Complexes Along with Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Anjali Jha

    2010-01-01

    Full Text Available Synthesis of 3,5-dibenzyl-4-amino-1,2,4-triazole was accomplished via a conventional method as well as microwave irradiation method, followed by diazotization and coupling with 2,4-pentanedione. The dinucleating ligand was isolated and complexed with Ni(II, Cu(II and Ru(III chlorides. These complexes were screened on Jurkat, Raji & PBMC cell lines for anticancer activity. Ruthenium complexes showed potential anticancer activities.

  2. Integration of a semi-rigid proline ligand and 4,4'-bipyridine in the synthesis of homochiral metal-organic frameworks with helices.

    Science.gov (United States)

    Xu, Zhong-Xuan; Kang, Yao; Han, Min-Le; Li, Dong-Sheng; Zhang, Jian

    2015-06-28

    A pair of 3-D homochiral metal-organic frameworks (HMOFs) based on a mixed semi-rigid 5-(2-carboxypyrrolidine-1-carbonyl)isophthalate (PIA) ligand and rigid 4,4'-bipyridine (bipy), [Co3((R)-PIA)2(bipy)3]·6H2O (1-D) and [Co3((S)-PIA)2(bipy)3]·6H2O (1-L) are synthesized and structurally characterized. They are enantiomers and exhibit three-dimensional open frameworks. In each structure, the PIA ligands link the Co centers into homochiral frameworks with large open channels that are occupied by the bipy ligands. Interesting helical chains built from the connectivity between PIA ligands and Co centers are presented. Antiferromagnetic coupling is observed in 1-D. These results demonstrated that the mixed ligand approach is successful for the construction of HMOFs.

  3. Enzymatic Synthesis of N-Acetyllactosamine (LacNAc Type 1 Oligomers and Characterization as Multivalent Galectin Ligands

    Directory of Open Access Journals (Sweden)

    Thomas Fischöder

    2017-08-01

    Full Text Available Repeats of the disaccharide unit N-acetyllactosamine (LacNAc occur as type 1 (Galβ1, 3GlcNAc and type 2 (Galβ1, 4GlcNAc glycosylation motifs on glycoproteins and glycolipids. The LacNAc motif acts as binding ligand for lectins and is involved in many biological recognition events. To the best of our knowledge, we present, for the first time, the synthesis of LacNAc type 1 oligomers using recombinant β1,3-galactosyltransferase from Escherichia coli and β1,3-N-acetylglucosaminyltranferase from Helicobacter pylori. Tetrasaccharide glycans presenting LacNAc type 1 repeats or LacNAc type 1 at the reducing or non-reducing end, respectively, were conjugated to bovine serum albumin as a protein scaffold by squarate linker chemistry. The resulting multivalent LacNAc type 1 presenting neo-glycoproteins were further studied for specific binding of the tumor-associated human galectin 3 (Gal-3 and its truncated counterpart Gal-3∆ in an enzyme-linked lectin assay (ELLA. We observed a significantly increased affinity of Gal-3∆ towards the multivalent neo-glycoprotein presenting LacNAc type 1 repeating units. This is the first evidence for differences in glycan selectivity of Gal-3∆ and Gal-3 and may be further utilized for tracing Gal-3∆ during tumor progression and therapy.

  4. Synthesis, structure, theoretical studies and luminescent properties of a ternary erbium(III) complex with acetylacetone and bathophenanthroline ligands

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Ramos, Pablo [CEMDRX, Department of Physics, Universidade de Coimbra, Rua Larga, P-3004-516 Coimbra (Portugal); Advanced Materials Laboratory, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain); Silva, Pedro S. Pereira, E-mail: psidonio@pollux.fis.uc.pt [CEMDRX, Department of Physics, Universidade de Coimbra, Rua Larga, P-3004-516 Coimbra (Portugal); Chamorro-Posada, Pedro [Higher Technical School of Telecommunications Engineering, Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén 15, 47011 Valladolid (Spain); Silva, Manuela Ramos [CEMDRX, Department of Physics, Universidade de Coimbra, Rua Larga, P-3004-516 Coimbra (Portugal); Milne, Bruce F. [Centre for Computational Physics, Department of Physics, Universidade de Coimbra, P-3004-516 Coimbra (Portugal); Donostia International Physics Centre, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Nogueira, Fernando [Centre for Computational Physics, Department of Physics, Universidade de Coimbra, P-3004-516 Coimbra (Portugal); Martín-Gil, Jesús [Advanced Materials Laboratory, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain)

    2015-06-15

    A novel erbium(III) complex with acetylacetone (Hacac) and bathophenanthroline (4,7-diphenyl-1,10-phenanthroline, bath) ligands, formulated as [Er(acac){sub 3}(bath)], has been characterized by elemental analysis, X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, absorption and emission spectroscopies. In the theoretical part of this study, semi-empirical quantum chemistry methods using AM1, PM3, PM6 and PM7 models have been employed to predict the structure of the complex, calculate the geometric and crystallographic parameters, and make comparisons with spectroscopic data using INDO/S-CI calculations. Real-time time-dependent density-functional theory (TDDFT) has also been used to calculate the optical absorption spectrum of the complex in the gas phase. - Highlights: • Synthesis and structure of a new erbium(III) β-diketonate complex. • TDDFT used for the first time to calculate the optical absorption spectrum. • Complex show strong near-infrared luminescence at 1.53 µm due to antenna effect.

  5. Synthesis, structure, theoretical studies and luminescent properties of a ternary erbium(III) complex with acetylacetone and bathophenanthroline ligands

    International Nuclear Information System (INIS)

    Martín-Ramos, Pablo; Silva, Pedro S. Pereira; Chamorro-Posada, Pedro; Silva, Manuela Ramos; Milne, Bruce F.; Nogueira, Fernando; Martín-Gil, Jesús

    2015-01-01

    A novel erbium(III) complex with acetylacetone (Hacac) and bathophenanthroline (4,7-diphenyl-1,10-phenanthroline, bath) ligands, formulated as [Er(acac) 3 (bath)], has been characterized by elemental analysis, X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, absorption and emission spectroscopies. In the theoretical part of this study, semi-empirical quantum chemistry methods using AM1, PM3, PM6 and PM7 models have been employed to predict the structure of the complex, calculate the geometric and crystallographic parameters, and make comparisons with spectroscopic data using INDO/S-CI calculations. Real-time time-dependent density-functional theory (TDDFT) has also been used to calculate the optical absorption spectrum of the complex in the gas phase. - Highlights: • Synthesis and structure of a new erbium(III) β-diketonate complex. • TDDFT used for the first time to calculate the optical absorption spectrum. • Complex show strong near-infrared luminescence at 1.53 µm due to antenna effect

  6. Synthesis, structure, DNA binding and anticancer activity of mixed ligand ruthenium(II) complex

    Science.gov (United States)

    Gilewska, Agnieszka; Masternak, Joanna; Kazimierczuk, Katarzyna; Trynda, Justyna; Wietrzyk, Joanna; Barszcz, Barbara

    2018-03-01

    In order to obtain a potential chemotherapeutic which is not affected on the normal BALB/3T3 cell line, a new arene ruthenium(II) complex {[RuCl(L1)(η6-p-cymene)]PF6}2 · H2O has been synthesized by a direct reaction of precursor, [{(η6-p-cymene)Ru(μ-Cl)}2Cl2], with N,N-chelating ligand (L1 - 2,2‧-bis(4,5-dimethylimidazole). The compound has been fully characterized by elemental analysis, X-ray diffraction, IR, UV-Vis and 1H, 13C NMR spectroscopies. X-ray analysis have confirmed that the compound crystallized in the monoclinic group Cc as an inversion twin. The asymmetric unit contains two symmetrically independent cationic complexes [RuCl(L1)(η6-p-cymene)]+ whose charge is balanced by two PF6- counterions. The shape of each cationic coordination polyhedral can be described as a distorted dodecahedron and shows a typical piano-stool geometry. In addition, an analysis of the crystal structure and the Hirshfeld surface analysis were used to detect and visualize important hydrogen bonds and intermolecular interaction. Moreover, the antiproliferative behavior of the obtained complex was assayed against three human cells: MV-4-11, LoVo, MCF-7 and BALB/3T3 - normal mice fibroblast cells. To predict a binding mode, a potential interaction of ruthenium complex with calf thymus DNA (CT-DNA) has been explored using UV absorption and circular dichroism (CD).

  7. Cycloheptatrienyl zirconium sandwich complexes with lewis basic phospholyl ligands (phosphatrozircenes): synthesis, structure, bonding and coordination chemistry.

    Science.gov (United States)

    Glöckner, Andreas; Bannenberg, Thomas; Büschel, Susanne; Daniliuc, Constantin G; Jones, Peter G; Tamm, Matthias

    2011-05-23

    The transmetalation reaction between [(η(7) -C(7) H(7) )ZrCl(tmeda)] (1; tmeda=N,N,N',N'-tetramethylethylenediamine) and various phospholide anions leads to a new class of mixed sandwich complexes: [(η(7)-C(7)H(7))Zr(η(5)-C(4)PMe(4))] (2), [(η(7)-C(7)H(7))Zr(η(5)-C(4)PH(2)Me(2))] (3) and [(η(7)-C(7)H(7))Zr(η(5)-C(4)PPhHMe(2))] (4). The presence of Lewis basic phosphorus atoms and Lewis acidic zirconium atoms allows ambiphilic behaviour to be observed, and X-ray diffraction analysis reveals dimeric arrangements for 2 and 3 with long intermolecular Zr-P bonds, whereas 4 remains monomeric in the solid state. DFT calculations indicate that the metal-phosphorus interaction is weak, and accordingly, complexes 2-4 act as monodentate ligands upon reaction with [W(CO)(5)(thf)]. The resulting complexes [W(CO)(5)(L)] 5-7 (L=2-4) were studied by IR spectroscopy and compared with the [W(CO)(5) ] complex 9, containing the phosphane-functionalised trozircene [(η(7)-C(7)H(7))Zr(η(5)-C(5)H(4)PPh(2))] (8). They all show a close resemblance to simple phosphanes, such as PMe(3) , although molecular orbital analysis of 2 reveals that the free electron pair in the phosphatrozircenes is not the HOMO. Four equivalents of 2 can replace 1,4-cyclooctadiene (COD) in [Ni(cod)(2)] to form the homoleptic, distorted tetrahedral complex [Ni{2}(4)] (10). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Actinide-lanthanide separation by bipyridyl-based ligands. DFT calculations and experimental results

    International Nuclear Information System (INIS)

    Borisova, Nataliya E.; Eroshkina, Elizaveta A.; Korotkov, Leonid A.; Ustynyuk, Yuri A.; Alyapyshev, Mikhail Yu.; Eliseev, Ivan I.; Babain, Vasily A.

    2011-01-01

    In order to gain insights into effect of substituents on selectivity of Am/Eu separation, the synthesis and extractions tests were undertaken on the series of bipyridyl-based ligands (amides of 2,2'-bipyridyl-6,6'-dicarboxylic acid: L Ph - N,N'-diethyl-N,N'-diphenyl amide; L Bu2 - tetrabutyl amide; L Oct2 - tetraoctyl amide; L 3FPh - N,N'-diethyl-N,N'-bis-(3-fluorophenyl) amide; as well as N,N'-diethyl-N,N'-diphenyl amide of 4,4'-dibrom-2,2'-bipyridyl-6,6'-dicarboxylic acid and N,N'-diethyl-N,N'-diphenyl amide of 4,4'-dinitro-2,2'-bipyridyl-6,6'-dicarboxylic acid) as well as structure and stability of their complexes with lanthanides and actinides were studied. The extraction tests were performed for Am, lanthanide series and transition metals in polar diluents in presence of chlorinated cobalt dicarbolide and have shown high distribution coefficients for Am. Also was found that the type of substituents on amidic nitrogen exerts great influence on the extraction of light lanthanides. For understanding of the nature of this effect we made QC-calculations at DFT level, binding constants determination and X-Ray structure determination of the complexes. The UV/VIS titration performed show that the composition of all complexes of the amides with lanthanides in solution is 1:1. In spite of the binding constants are high (lgβ about 6-7 in acetonitrile solution), lanthanide ions have binding constants with the same order of magnitude for dialkyl substituted extractants. The X-Ray structures of the complexes of bipyridyl-based amides show the composition of 1:1 and the coordination number of the ions being 10. The DFT optimized structures of the compounds are in good agreement with that obtained by X-Ray. The gas phase affinity of the amides to lanthanides shows strong correlation with the distribution ratios. We can infer that the bipyridyl-based amides form complexes with metal nitrates which have similar structure in solid and gas phases and in solution, and the DFT

  9. Statistical Estimation of the Protein-Ligand Binding Free Energy Based On Direct Protein-Ligand Interaction Obtained by Molecular Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Haruki Nakamura

    2012-09-01

    Full Text Available We have developed a method for estimating protein-ligand binding free energy (DG based on the direct protein-ligand interaction obtained by a molecular dynamics simulation. Using this method, we estimated the DG value statistically by the average values of the van der Waals and electrostatic interactions between each amino acid of the target protein and the ligand molecule. In addition, we introduced fluctuations in the accessible surface area (ASA and dihedral angles of the protein-ligand complex system as the entropy terms of the DG estimation. The present method included the fluctuation term of structural change of the protein and the effective dielectric constant. We applied this method to 34 protein-ligand complex structures. As a result, the correlation coefficient between the experimental and calculated DG values was 0.81, and the average error of DG was 1.2 kcal/mol with the use of the fixed parameters. These results were obtained from a 2 nsec molecular dynamics simulation.

  10. Synthesis and biodistribution of nitrido technetium-99m radiopharmaceuticals with dithiophosphinate ligands: a class of brain imaging agents

    International Nuclear Information System (INIS)

    Bellande, Emmanuel; Comazzi, Veronique; Laine, Jacques; Lecayon, Michele; Pasqualini, Roberto; Duatti, Adriano; Hoffschir, Didier

    1995-01-01

    The symmetrical complexes [ 99m Tc][TcN(R 2 PS 2 ) 2 ] [R = CH 3 , CH 2 CH 3 , CH 2 CH 2 CH 3 , CH 2 (CH 3 ) 2 ], and the unsymmetrical complex [ 99m Tc][TcN(Me 2 PS 2 )(Et 2 PS 2 )] have been prepared, at tracer level, through a two-step procedure involving the preliminary formation of a prereduced technetium nitrido intermediate followed by substitution reaction onto this species by the appropriate dithiophosphinate ligand [R 2 PS 2 ]Na. The chemical identity of the resulting complexes have been established by comparison with the corresponding 99 Tc-analogs prepared, at macroscopic level, by reacting the complex [ 99 TcNCl 4 ] [n-Bu 4 N] (n-Bu = n-butyl) with an excess of ligand in methanol, and characterized by elemental analyses and spectroscopic techniques. The complexes are neutral and lipophilic, and possess a square pyramidal geometry, with an apical Tc N group and two dithiophosphinate ligands spanning the four positions on the basal plane through the four sulfur atoms of the >PS 2 group. In vitro studies showed that these radiopharmaceuticals are stable in solution and that their chemical identity was not altered after incubation with rat blood. Biodistribution studies have been carried out in rats and primates. The results demonstrate that these compounds are significantly retained into the brain of these animals for a prolonged time. Planar gamma camera images have been obtained in monkeys showing a good visualization of the cerebral region. However, the existence of persistent blood activity yields a brain/blood ratio lower than that observed with other 99m Tc-based brain perfusion imaging agents

  11. Synthesis and biodistribution of nitrido technetium-99m radiopharmaceuticals with dithiophosphinate ligands: a class of brain imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Bellande, Emmanuel; Comazzi, Veronique; Laine, Jacques; Lecayon, Michele; Pasqualini, Roberto; Duatti, Adriano; Hoffschir, Didier

    1995-04-01

    The symmetrical complexes [{sup 99m}Tc][TcN(R{sub 2}PS{sub 2}){sub 2}] [R = CH{sub 3}, CH{sub 2}CH{sub 3}, CH{sub 2}CH{sub 2}CH{sub 3}, CH{sub 2}(CH{sub 3}){sub 2}], and the unsymmetrical complex [{sup 99m}Tc][TcN(Me{sub 2}PS{sub 2})(Et{sub 2}PS{sub 2})] have been prepared, at tracer level, through a two-step procedure involving the preliminary formation of a prereduced technetium nitrido intermediate followed by substitution reaction onto this species by the appropriate dithiophosphinate ligand [R{sub 2}PS{sub 2}]Na. The chemical identity of the resulting complexes have been established by comparison with the corresponding {sup 99}Tc-analogs prepared, at macroscopic level, by reacting the complex [{sup 99}TcNCl{sub 4}] [n-Bu{sub 4}N] (n-Bu = n-butyl) with an excess of ligand in methanol, and characterized by elemental analyses and spectroscopic techniques. The complexes are neutral and lipophilic, and possess a square pyramidal geometry, with an apical Tc N group and two dithiophosphinate ligands spanning the four positions on the basal plane through the four sulfur atoms of the >PS{sub 2} group. In vitro studies showed that these radiopharmaceuticals are stable in solution and that their chemical identity was not altered after incubation with rat blood. Biodistribution studies have been carried out in rats and primates. The results demonstrate that these compounds are significantly retained into the brain of these animals for a prolonged time. Planar gamma camera images have been obtained in monkeys showing a good visualization of the cerebral region. However, the existence of persistent blood activity yields a brain/blood ratio lower than that observed with other {sup 99m}Tc-based brain perfusion imaging agents.

  12. Design and synthesis of macrocyclic ligands and their complexes of lanthanides and actinides

    International Nuclear Information System (INIS)

    Alexander, V.

    1995-01-01

    A review article which covers the various design and synthetic strategies developed to synthesize macrocyclic complexes of lanthanides and actinides, their structural features, quantitative studies on the stabilities of these complexes, their applications, and the structure-reactivity principle would be an asset for those who are actively engaged in this area of research. This review is also purported to give a comprehensive view of the current status of this area of research to the beginners and to highlight the application of this chemical research to emerging nonchemical applications to lure the potential workers. The coordination template effect provides a general strategy for the synthesis of a wide variety of discrete metal complexes. The principal conceptual and experimental development that have established and exploited this strategy are briefly outlined. A brief review of the coordination template effect and subsequent developments in the design of macrocyclic complexes of alkali, alkaline earth, and transition metal ions is presented as an essential basis for the rational design of new macrocyclic complexes of lanthanides and actinides. The exciting aspect of this chemistry is that in the majority of cases the molecules meet the design criteria very well. It is evident that in an increasing number of cases the driving force behind the synthetic effort is the desire to create a molecule which will enable the user to make specific applications. 506 refs

  13. Synthesis and characterization of the mixed ligand coordination polymer CPO-5

    International Nuclear Information System (INIS)

    Kongshaug, K.O.; FjellvAg, Helmer

    2003-01-01

    The synthesis and crystal structures of a novel coordination polymer and its high-temperature variant are described. The as-synthesized material (CPO-5-as), of composition Zn(4,4'-bipyridine)(4,4'-biphenyldicarboxylate)·3H 2 O, crystallizes in the triclinic space group P-1 (No. 2) with a=11.0197(2), b=14.2975(3), c=7.6586(1) A, α=95.9760(9) deg. , β=108.026(1) deg. , γ=91.373(1) deg. and V=1139.16(4) A 3 . CPO-5-as is composed of tetrahedral zinc centers that are connected by the organic linkers to give five independent, interpenetrating diamond networks. In the structure, there is additional space for channels that are filled with three water molecules. These water molecules can be removed, leading to an anhydrous variant at 130 o C. CPO-5-130, of composition Zn(4,4'-bipyridine)(4,4'-biphenyldicarboxylate), crystallizes in the triclinic space group P-1 (No. 2) with a=11.1844(6), b=14.0497(7), c=7.7198(3) A, α=96.917(2) deg. , β=109.527(2) deg. , γ=89.115(3) deg. and V=1134.6(1) A 3 . The structure of the five interpenetrating networks is virtually unchanged after the dehydration resulting in CPO-5-130 being a porous structure with an estimated free volume of 19.8%

  14. Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries.

    Science.gov (United States)

    Ma, Xiao H; Jia, Jia; Zhu, Feng; Xue, Ying; Li, Ze R; Chen, Yu Z

    2009-05-01

    Machine learning methods have been explored as ligand-based virtual screening tools for facilitating drug lead discovery. These methods predict compounds of specific pharmacodynamic, pharmacokinetic or toxicological properties based on their structure-derived structural and physicochemical properties. Increasing attention has been directed at these methods because of their capability in predicting compounds of diverse structures and complex structure-activity relationships without requiring the knowledge of target 3D structure. This article reviews current progresses in using machine learning methods for virtual screening of pharmacodynamically active compounds from large compound libraries, and analyzes and compares the reported performances of machine learning tools with those of structure-based and other ligand-based (such as pharmacophore and clustering) virtual screening methods. The feasibility to improve the performance of machine learning methods in screening large libraries is discussed.

  15. HPPD: ligand- and target-based virtual screening on a herbicide target.

    Science.gov (United States)

    López-Ramos, Miriam; Perruccio, Francesca

    2010-05-24

    Hydroxyphenylpyruvate dioxygenase (HPPD) has proven to be a very successful target for the development of herbicides with bleaching properties, and today HPPD inhibitors are well established in the agrochemical market. Syngenta has a long history of HPPD-inhibitor research, and HPPD was chosen as a case study for the validation of diverse ligand- and target-based virtual screening approaches to identify compounds with inhibitory properties. Two-dimensional extended connectivity fingerprints, three-dimensional shape-based tools (ROCS, EON, and Phase-shape) and a pharmacophore approach (Phase) were used as ligand-based methods; Glide and Gold were used as target-based. Both the virtual screening utility and the scaffold-hopping ability of the screening tools were assessed. Particular emphasis was put on the specific pitfalls to take into account for the design of a virtual screening campaign in an agrochemical context, as compared to a pharmaceutical environment.

  16. Synthesis, crystallographic and spectral studies of homochiral cobalt(II) and nickel(II) complexes of a new terpyridylaminoacid ligand

    Science.gov (United States)

    Wang, Xing; Gao, Chang-Qing; Gao, Zhi-Yang; Wu, Ben-Lai; Niu, Yun-Yin

    2018-04-01

    Based on a chiral terpyridylaminoacid ligand, a series of homochiral Co(II) and Ni(II) complexes, namely, [Co(H2L)(HL)]·Cl·(PF6)2·2H2O (1), [Ni(H2L)(HL)]·Cl·(PF6)2 (2), [Co2(L)2(CH3OH)(H2O)]·(PF6)2·CH3OH (3), [Ni2(L)2(CH3OH)2]·(PF6)2·2CH3OH (4), [Co2(L)2(N3)2]·3H2O (5), and [Ni2(L)2(SCN)2]·4H2O (6) have been successfully synthesized and characterized by elemental analysis, TGA, spectroscopic methods (IR, CD and electronic absorption spectra) and single-crystal X-ray diffraction structural analysis (HL = (S)-2-((4-([2,2':6‧,2″-terpyridin]-4‧-yl)benzyl)amino)-4-methylpentanoic acid). In the acidic reaction conditions, one protonated (H2L)+ and one zwitterionic HL only used their terpyridyl groups to chelate one metal ion Co(II) or Ni(II), forming chiral mononuclear cationic complexes 1 or 2. But in the basic and hydro(solvo)thermal reaction conditions, deprotonated ligands (L)‒ acting as bridges used their terpyridyl and amino acid groups to link with two Co(II) or Ni(II) ions, fabricating chiral dinuclear metallocyclic complexes 3-6. Those chiral mononuclear and dinuclear complexes whose chirality originates in the homochiral ligand HL further self-assemble into higher-dimensional homochiral supramolecular frameworks through intermolecular hydrogen-bonding and π···π interactions. Notably, the coordination mode, hydrogen-bonding site, and existence form of HL ligand can be controlled by the protonation of its amino group, and the architectural diversity of those supramolecular frameworks is adjusted by pH and counter anions. Very interestingly, the 3D porous supramolecular frameworks built up from the huge chiral mononuclear cationic complexes 1 and 2 have novel helical layers only formed through every right-handed helical chain intertwining with two adjacent same helical chains, and the 2D supramolecular helicate 5 consists of two types of left-handed helical chains.

  17. Synthesis and evaluation of radioiodinated ligands for the study of peripheral benzodiazepine receptors using SPECT

    International Nuclear Information System (INIS)

    Katsifis, A.; Mattner, F.; Mardon, K.; Dikic, B.; Papazian, V.; Greguric, I.

    2002-01-01

    Full text: The peripheral benzodiazepine receptor (PBR) is a multimeric protein complex located in the outer mitochondrial membrane and predominantly found in steroid producing organs and glial cells in the brain. The PBR have been implicated in the control of cell proliferation and differentiation and shown to display increased levels in a variety of malignant tumours and neurodegenerative disorders. A series of potent imidazo[1,2-a]pyridines have been prepared for development as radiopharmaceuticals to study these disorders in patients using nuclear medicine imaging techniques. In vitro studies indicate that compounds substituted with an electronegative atom in the 6 position of the pyridine ring, a lipophilic group or halogen in the 4'-position of the 2-phenyl ring, and lower alkyl methyl or ethyl substituents on the amide nitrogens of the side chain, exhibit high affinity and selective binding. ' N'N'-dimethyl- and the N'N'-diethyl 6-chloro-(4'-iodophenyl)imidazo[1,2-a]pyridine-3-acetamide 1 and 2 displayed optimum in vitro properties and were thus selected for radiolabelling with the diagnostic radionuclide iodine-123. Radioiodination was achieved by iododestannylation of the corresponding tributyl stannane precursor in the presence of peracetic acid. Purification by C-18 reverse phase HPLC gave the desired products in 70-80% radiochemical yields and in greater than 98% radiochemical purity. Biodistribution studies in normal rodents indicated high uptake of radioactivity in tissues with known PBR sites. Preliminary imaging studies in rodents bearing mammary adenocarcinomas indicated high uptake in the tumour with retention of activity after 24 h. The synthesis, structure activity studies, radiolabelling and biological studies of these compounds will be presented

  18. Synthesis and structural evaluation of five coordination complexes of benzenepentacarboxylic acid with aza-donor ligands

    Science.gov (United States)

    Shimpi, Manishkumar R.; Biswas, Sharmita Nandy; Sarkar, Sohini; Pedireddi, V. R.

    2016-06-01

    Synthesis and structural features of five new coordination assemblies, [Co(bpyH)(H2O)5](BPCH)·(bpyH2)0.5·(H2O) (1a), [{Cu(H2O)3}·{Cu0.5(bpy)0.5(H2O)0.5}2(μ-BPCH)] (1b), [{Cd0.5(BPCH)}2·{Cd0.5(bpy)(H2O)2}2]·6(H2O) (1c), [Cu(BPCH2)(bpyeaH)]·2(H2O) (1d) and [Cd2 (bpyea)0.5(oxalate)0.5(μ-BPC) (H2O)]·(bpyeaH2)·2(H2O) (1e), have been reported. All the assemblies were prepared by co-crystallization of benzenepentacarboxylic acid (BPCH5) either with 4,4‧-bipyridine (bpy) or 1,2-bis(4-pyridyl)ethane (bpyea) in the presence of a transition metal ion (either Co(II), Cu(II) or Cd(II)) as the case may be. All the five compounds were synthesized by hydrothermal method and structures were determined by single crystal X-ray diffraction. All the obtained compounds, 1a-1e, exhibit distinct 3-D polymeric architectures either in the form of stacked layers or host-guest networks in which water molecules play a pivotal role providing additional stabilization by coordinate bonds as well as hydrogen bonds. Other non-covalent interactions such as C-H … π and π … π stacking also participate in the formation of exotic 3-D structures of these complexes.

  19. Synthesis of new radiotracers based on aniline

    International Nuclear Information System (INIS)

    Ayari, Issra

    2008-01-01

    There are several possible applications of radioactivity, we cite: the study of the functional and neurochirnical aspects related to the brain. This study requires the synthesis of specific radiotracers able to cross their target tissue. The synthesis methods need to be constantly updated to respond to the big demand of this domain. The development of the chemistry of metal complexes helped us to find a stable radiotracer based on aniline and marked with technetium. This stability aI 10wed us to realize a possible biodistribution and to envisage to count the radioactivity and to valid the radiopharmaceutical. (Author)

  20. Mixed-ligand Ru(II) complexes with 2,2'-bipyridine and aryldiazo-beta-diketonato auxillary ligands: synthesis, physico-chemical study and antitumour properties.

    Science.gov (United States)

    Mishra, Lallan; Yadaw, Ajay K; Bhattacharya, Subrato; Dubey, Santosh K

    2005-05-01

    The complexes of Ru(II)-2,2'-bipyridyl with substituted diazopentane-2,4-diones (L1H-L5H) were synthesized and characterized by elemental analyses, conductance, FAB (fast atom bombardment) mass and spectral (IR, UV/Vis (UV/visible), NMR) studies. Molecular geometry optimization of the complexes was also made. None of the complexes luminesce. However, facilitated oxidation of Ru(II) to Ru(III) was evidenced from their lower reduction potential data. The ligands and their complexes were tested for their antitumour activity against a variety of tumour cell lines. Though activity is found to vary with the type of tumour cell lines used, yet complex 5 with naphtyldiazopentane-2,4-dione as co-ligand was found to be a potential compound as it showed in general significant activity against all cell lines studied.

  1. Synthesis, characterization and anticancer activity of gold(I) complexes that contain tri-tert-butylphosphine and dialkyl dithiocarbamate ligands

    KAUST Repository

    Altaf, Muhammad

    2015-03-10

    Two new gold(I) complexes that contain tri-ter-butylphosphine and dialkyl dithiocarbamate ligands were synthesized and characterized by FTIR, NMR spectroscopy, Cyclic voltammetry, elemental analysis and X-ray diffraction. The in vitro cytotoxicity of both complexes was examined against A549 (lung cancer), MCF7 (breast cancer), and HeLa (cervical cancer) human cancer cell lines. Both complexes exhibit very strong in vitro cytotoxic effects against A549, MCF7 and HeLa cell lines. The screening of the cytotoxic activity based on IC50 data against the A549, MCF7, and HeLa lines shows that the synthesized gold(I) complexes are highly effective, particularly against HeLa cancer cell line. Based on IC50 data, the cytotoxic activity of both complexes is better than well-known commercial anticancer drug cisplatin against all the three cancer lines tested.

  2. PL-PatchSurfer: A Novel Molecular Local Surface-Based Method for Exploring Protein-Ligand Interactions

    Directory of Open Access Journals (Sweden)

    Bingjie Hu

    2014-08-01

    Full Text Available Structure-based computational methods have been widely used in exploring protein-ligand interactions, including predicting the binding ligands of a given protein based on their structural complementarity. Compared to other protein and ligand representations, the advantages of a surface representation include reduced sensitivity to subtle changes in the pocket and ligand conformation and fast search speed. Here we developed a novel method named PL-PatchSurfer (Protein-Ligand PatchSurfer. PL-PatchSurfer represents the protein binding pocket and the ligand molecular surface as a combination of segmented surface patches. Each patch is characterized by its geometrical shape and the electrostatic potential, which are represented using the 3D Zernike descriptor (3DZD. We first tested PL-PatchSurfer on binding ligand prediction and found it outperformed the pocket-similarity based ligand prediction program. We then optimized the search algorithm of PL-PatchSurfer using the PDBbind dataset. Finally, we explored the utility of applying PL-PatchSurfer to a larger and more diverse dataset and showed that PL-PatchSurfer was able to provide a high early enrichment for most of the targets. To the best of our knowledge, PL-PatchSurfer is the first surface patch-based method that treats ligand complementarity at protein binding sites. We believe that using a surface patch approach to better understand protein-ligand interactions has the potential to significantly enhance the design of new ligands for a wide array of drug-targets.

  3. A Ligand Structure-Activity Study of DNA-Based Catalytic Asymmetric Hydration and Diels-Alder Reactions

    NARCIS (Netherlands)

    Rosati, F.; Roelfes, J.G.

    A structure-activity relationship study of the first generation ligands for the DNA-based asymmetric hydration of enones and Diels-Alder reaction in water is reported. The design of the ligand was optimized resulting in a maximum ee of 83% in the hydration reaction and 75% in the Diels-Alder

  4. Sulfur Bridged Multidentate Ligands Based on (Bipyridyl-(Bi-1,3,4-Thiadiazolyl Conjugates

    Directory of Open Access Journals (Sweden)

    M. Teresa Clasadonte

    2003-03-01

    Full Text Available The synthesis of a series of mixed (bipyridyl/(bi1,3,4-thiadiazolyl ligands, derived from the condensation of 2-mercapto-5-methylthio-1,3,4-thiadiazole or 5-mercapto-5'-methylthio-2,2'-bi-1,3,4-thiadiazole with 2,6-bis(chloromethylpyridine or 6,6’-bis(chloromethyl-2,2’-bipyridine (compounds L1–L4, and of 2,5-dimercapto-1,3,4-thiadiazole or 5,5'-dimercapto-2,2'-di-1,3,4-thiadiazole with picolyl chloride hydrochloride or 6-chloromethyl-6'-methyl-2,2'-bipyridine (compounds L5–L8 in the presence of triethylamine is described. All new compounds have been characterized by FAB (+ spectrometry and NMR spectroscopy. 13C-NMR spectra are crucial to firmly establish the thiol structure of the title ligands.

  5. Synthesis, Photophysical and Electrochemical Properties of a Mixed Bipyridyl-Phenanthrolyl Ligand Ru(II Heteroleptic Complex Having trans-2-Methyl-2-butenoic Acid Functionalities

    Directory of Open Access Journals (Sweden)

    Adewale O. Adeloye

    2011-09-01

    Full Text Available In this work, two ligands: 4-(trans-2-Methyl-2-butenoic acid-2,2'-bipyridine (L1 and 5-(trans-2-methyl-2-butenoic acid-1,10-phenanthroline (L2, with the corresponding mixed-ligand heteroleptic Ru(II complex were synthesized and characterized by FT-IR, 1H-, 13C-NMR spectroscopy and elemental analysis. The influence of the mixed functionalized polypyridyl ruthenium(II complex on the photophysical and electrochemical properties were investigated and compared to individual single-ligand homoleptic complexes. Interestingly, the mixed-ligand complex formulated as [RuL1L2(NCS2] exhibits broad and intense metal-to-ligand charge transfer (MLCT absorption with a high molar extinction coefficient (λmax = 514 nm, ε = 69,700 M−1 cm−1, better than those of individual single-ligand complexes, [Ru(L12(NCS2] and [Ru(L22(NCS2], and a strong photoluminescence intensity ratio in the red region at λem = 686 nm. The electrochemical properties of the complex indicated that the redox processes are ligand-based.

  6. Novel glycolipid TLR2 ligands of the type Pam2Cys-α-Gal: synthesis and biological properties.

    Science.gov (United States)

    Thomann, Jean-Sébastien; Monneaux, Fanny; Creusat, Gaëlle; Spanedda, Maria Vittoria; Heurtault, Béatrice; Habermacher, Chloé; Schuber, Francis; Bourel-Bonnet, Line; Frisch, Benoît

    2012-05-01

    A more complete understanding of the mechanism of action of TLR agonists has fueled the investigation of new synthetic immunoadjuvants. In this context, we designed and synthesized glycolipids of the type Pam(2)Cys-α-Galactose as novel immunoadjuvants. Their synthesis required modifying a hydrophobic tBoc-[2,3-bispalmitoyloxy-(2R)-propyl]-R-cysteinyl moiety, i.e. the minimal structure required for TLR2 agonist activity, by addition of a hydrophilic head, either an α-Galactosylpyranose or an α-Galactosylfuranose to gain respectively Pam(2)CGalp and Pam(2)CGalf. While preparing a carbohydrate building block, an unexpected stereoselectivity was observed during a halide ion-catalytic process on a protected galactofuranose: the alpha anomer was obtained with surprisingly high selectivity (α/β ratio>9) and with good isolated yield (51%). The TLR2 binding properties of Pam(2)CGalp and Pam(2)CGalf were then fully evaluated. Their efficiency in triggering the proliferation of BALB/c mouse splenocytes was also compared to that of Pam(2)CAG and Pam(3)CAG, two well-established ligands of TLRs. Moreover, the maturation state of murine dendritic cells previously incubated with either Pam(2)CGalp or Pam(2)CGalf was monitored by flow cytometry and compared to that induced by lipopolysaccharide. Pam(2)CGalp and Pam(2)CGalf were found to be equivalent TLR2 agonists, and induced splenocyte proliferation and DC maturation. With very similar activity, Pam(2)CGalp and Pam(2)CGalf were also 10-fold to 100-fold better than Pam(2)CAG and Pam(3)CAG at inducing B cell proliferation. This represents the first time a glucidic head has been added to the tBoc-[2,3-bispalmitoyloxy-(2R)-propyl]-R-cysteinyl moiety whilst maintaining the immunomodulating activity. This should greatly enrich the data available on Pam(2)C structure/activity relationships. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  7. Synthesis and characterization of an iron complex bearing a cyclic tetra-N-heterocyclic carbene ligand: An artifical heme analogue?

    KAUST Repository

    Anneser, Markus R.

    2015-04-20

    An iron(II) complex with a cyclic tetradentate ligand containing four N-heterocyclic carbenes was synthesized and characterized by means of NMR and IR spectroscopies, as well as by single-crystal X-ray structure analysis. The iron center exhibits an octahedral coordination geometry with two acetonitrile ligands in axial positions, showing structural analogies with porphyrine-ligated iron complexes. The acetonitrile ligands can readily be substituted by other ligands, for instance, dimethyl sulfoxide, carbon monoxide, and nitric oxide. Cyclic voltammetry was used to examine the electronic properties of the synthesized compounds. © 2015 American Chemical Society.

  8. Synthesis and characterization of a Schiff base Cobalt (III) complex ...

    African Journals Online (AJOL)

    Schiff base molecule acts as tridentate ligand to form two five-membered chelate rings with the Co(III) ion. In the crystal structure three meridionally arranged nitrogen atoms from three azide ligands complete a distorted octahedral geometry around the metal center. The distortion from an ideal octahedron is evident from the ...

  9. Complexes of technetium, rhenium, and rhodium with sexidentate Schiff-base ligands

    International Nuclear Information System (INIS)

    Hunter, G.; Kilcullen, N.

    1989-01-01

    The monocationic technetium (IV) and rhenium (IV) complexes with the sexidentate Schiff-base ligands tris[2-(2'-hydroxybenzylideneethyl)]amine and its substituted derivatives have been prepared and their electrochemical properties studied. The variable-temperature 90.6 MHz 13 C-{ 1 H} n.m.r. spectrum of the rhodium (III) complex of tris[2-(2-hydroxy-5'-isopropylbenzylideneethyl)-amine] has been observed, indicating fluxionality at temperatures above 218 K. (author)

  10. Identification of Histamine H3 Receptor Ligands Using a New Crystal Structure Fragment-based Method

    DEFF Research Database (Denmark)

    Frandsen, Ida Osborn; Boesgaard, Michael W; Fidom, Kimberley

    2017-01-01

    Virtual screening offers an efficient alternative to high-throughput screening in the identification of pharmacological tools and lead compounds. Virtual screening is typically based on the matching of target structures or ligand pharmacophores to commercial or in-house compound catalogues....... The complete pharmacophore fragment library is freely available through the GPCR database, GPCRdb, allowing the successful application herein to be repeated for most of the 285 class A GPCR targets. The method could also easily be adapted to other protein families....

  11. A ligand predication tool based on modeling and reasoning with imprecise probabilistic knowledge.

    Science.gov (United States)

    Liu, Weiru; Yue, Anbu; Timson, David J

    2010-04-01

    Ligand prediction has been driven by a fundamental desire to understand more about how biomolecules recognize their ligands and by the commercial imperative to develop new drugs. Most of the current available software systems are very complex and time-consuming to use. Therefore, developing simple and efficient tools to perform initial screening of interesting compounds is an appealing idea. In this paper, we introduce our tool for very rapid screening for likely ligands (either substrates or inhibitors) based on reasoning with imprecise probabilistic knowledge elicited from past experiments. Probabilistic knowledge is input to the system via a user-friendly interface showing a base compound structure. A prediction of whether a particular compound is a substrate is queried against the acquired probabilistic knowledge base and a probability is returned as an indication of the prediction. This tool will be particularly useful in situations where a number of similar compounds have been screened experimentally, but information is not available for all possible members of that group of compounds. We use two case studies to demonstrate how to use the tool. 2009 Elsevier Ireland Ltd. All rights reserved.

  12. Synthesis and properties of mixed-ligand ruthenium(II) complexes containing 2-(2-pyridyl)-benzimidazole and related ligands

    Energy Technology Data Exchange (ETDEWEB)

    Haga, M [Mie Univ., Tsu (Japan); Tanaka, T

    1979-07-01

    Mixed-ligand ruthenium(II) complexes of the (Ru(bpy)/sub 2/L)sup(n+) (ClO/sub 4/)sub(n) type, where bpy= 2,2'-bipyridine; L= 2-(2-pyridyl)-benzimidazole (PBImH) when n= 2, and L= 2-(2-pyridyl)-benzimidazolate (PBIm) and 2-(o-hydroxyphenyl)-benzimidazole (OBImH) when n= 1, were prepared. Anodic peak potentials and ruthenium-to-bipyridine charge transfer bands of these complexes are rationalized in terms of the donor ability of L.

  13. Synthesis and properties of mixed-ligand ruthenium(II) complexes containing 2-(2-pyridyl)-benzimidazole and related ligands

    International Nuclear Information System (INIS)

    Haga, Masaaki; Tanaka, Toshio.

    1979-01-01

    Mixed-ligand ruthenium(II) complexes of the [Ru(bpy) 2 L]sup(n+) (ClO 4 )sub(n) type, where bpy= 2,2'-bipyridine; L= 2-(2-pyridyl)-benzimidazole (PBImH) when n= 2, and L= 2-(2-pyridyl)-benzimidazolate (PBIm) and 2-(o-hydroxyphenyl)-benzimidazole (OBImH) when n= 1, were prepared. Anodic peak potentials and ruthenium-to-bipyridine charge transfer bands of these complexes are rationalized in terms of the donor ability of L. (author)

  14. A new class of PN3-pincer ligands for metal–ligand cooperative catalysis

    KAUST Repository

    Li, Huaifeng

    2014-12-01

    Work on a new class of PN3-pincer ligands for metal-ligand cooperative catalysis is reviewed. While the field of the pyridine-based PN3-transition metal pincer complexes is still relatively young, many important applications of these complexes have already emerged. In several cases, the PN3-pincer complexes for metal-ligand cooperative catalysis result in significantly improved or unprecedented activities. The synthesis and coordination chemistry of PN3-pincer ligands are briefly summarized first to cover the synthetic routes for their preparation, followed by a focus review on their applications in catalysis. A specific emphasis is placed on the later section about the role of PN3-pincer ligands\\' dearomatization-rearomatization steps during the catalytic cycles. The mechanistic insights from density functional theory (DFT) calculations are also discussed.

  15. A new class of PN3-pincer ligands for metal–ligand cooperative catalysis

    KAUST Repository

    Li, Huaifeng; Zheng, Bin; Huang, Kuo-Wei

    2014-01-01

    Work on a new class of PN3-pincer ligands for metal-ligand cooperative catalysis is reviewed. While the field of the pyridine-based PN3-transition metal pincer complexes is still relatively young, many important applications of these complexes have already emerged. In several cases, the PN3-pincer complexes for metal-ligand cooperative catalysis result in significantly improved or unprecedented activities. The synthesis and coordination chemistry of PN3-pincer ligands are briefly summarized first to cover the synthetic routes for their preparation, followed by a focus review on their applications in catalysis. A specific emphasis is placed on the later section about the role of PN3-pincer ligands' dearomatization-rearomatization steps during the catalytic cycles. The mechanistic insights from density functional theory (DFT) calculations are also discussed.

  16. Enantioselective synthesis of α-phenyl- and α-(dimethylphenylsilyl)alkylboronic esters by ligand mediated stereoinductive reagent-controlled homologation using configurationally labile carbenoids.

    Science.gov (United States)

    Barsamian, Adam L; Wu, Zhenhua; Blakemore, Paul R

    2015-03-28

    Chain extension of boronic esters by the action of configurationally labile racemic lithium carbenoids in the presence of scalemic bisoxazoline ligands was explored for the enantioselective synthesis of the two title product classes. Enantioenriched 2° carbinols generated by oxidative work-up (NaOOH) of initial α-phenylalkylboronate products were obtained in 35-83% yield and 70-96% ee by reaction of B-alkyl and B-aryl neopentyl glycol boronates with a combination of O-(α-lithiobenzyl)-N,N-diisopropylcarbamate and ligand 3,3-bis[(4S)-4,5-dihydro-4-isopropyloxazol-2-yl] pentane in toluene solvent (-78 °C to rt) with MgBr2·OEt2 additive. Enantioenriched α-(dimethylsilylphenylsilyl)alkylboronates were obtained in 35-69% yield and 9-57% ee by reaction of B-alkyl pinacol boronates with a combination of lithio(dimethylphenylsilyl)methyl 2,4,6-triisopropylbenzoate and ligand 2,2-bis[(4S)-4,5-dihydro-4-isopropyloxazol-2-yl]propane in cumene solvent (-45 °C to -95 °C to rt). The stereochemical outcome of the second type of reaction depended on the temperature history of the organolithium·ligand complex indicating that the stereoinduction mechanism in this case involves some aspect of dynamic thermodynamic resolution.

  17. Molecular-weight-enlarged multiple-pincer ligands: synthesis and application in palladium-catalyzed allylic substitution reactions

    NARCIS (Netherlands)

    Ronde, N.J.; Totev, D.; Müller, Christian; Lutz, M.; Spek, A.L.; Vogt, D.

    2009-01-01

    Three different pincer ligand systems are synthesized via nucleophilic substitution reactions of polyaromatic benzyl bromides as support molecules and phenol derivatives as ligand precursors. Retention tests using a polymeric nanofiltration membrane show moderate to good retention in THF and CH2Cl2.

  18. A new donor atom system [(SNN)(S)] for the synthesis of neutral oxotechnetium(V) mixed ligand complexes

    International Nuclear Information System (INIS)

    Papadopoulos, M.S.; Pirmettis, I.C.; Spyriounis, D.M.

    1996-01-01

    Oxotechnetium complexes ligated in a 3 + 1 inch fashion yielding TcOL1L2 complexes were prepared. The L1 tridentate ligand binds with a SNN donor set of atoms. L2 corresponds to a monodentate thiol ligand. Representative members of this group of compounds were chemically characterized by NMR and X-ray diffraction

  19. Synthesis, characterization, DNA binding and cleavage studies of mixed-ligand copper (II complexes

    Directory of Open Access Journals (Sweden)

    M. Sunita

    2017-05-01

    Full Text Available New two copper complexes of type [Cu(Bzimpy(LH2O]SO4 (where L = 2,2′ bipyridine (bpy, and ethylene diamine (en, Bzimpy = 2,6-bis(benzimidazole-2ylpyridine have been synthesized and characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies. Based on elemental and spectral studies six coordinated geometries were assigned to the two complexes. DNA-binding properties of these metal complexes were investigated using absorption spectroscopy, fluorescence spectroscopy, viscosity measurements and thermal denaturation methods. Experimental studies suggest that the complexes bind to DNA through intercalation. These complexes also promote the cleavage of plasmid pBR322, in the presence of H2O2.

  20. Synthesis, characterization and anticancer activities of two lanthanide(III) complexes with a nicotinohydrazone ligand

    Science.gov (United States)

    Xu, Zhou-Qin; Mao, Xian-Jie; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Cai, Hong-Xin; Bie, Hong-Yan; Chen, Ru-Hua; Ma, Tie-liang

    2015-12-01

    Two isostructural acylhydrazone based complexes, namely [Ce(penh)2(H2O)4](NO3)3·4H2O (1) and [Sm(penh)2(NO3)2](NO3)·C2H5OH (2) (penh = 2-acetylpyridine nicotinohydrazone), have been obtained and characterized by physico-chemical and spectroscopic methods. The ten-coordinated lanthanide metal ion in each complex is surrounded by two independent tridentate neutral acylhydrazones with two ON2 donor sets. The other four coordination oxygen atoms are from four water molecules and two bidentate nitrate anions for complexes 1 and 2, respectively, thus giving distorted bicapped square antiprism geometry. Both complexes have excellent antitumor activity towards human pancreatic cancer (PATU8988), human colorectal cancer (lovo) and human gastric cancer(SGC7901) cell line. Furthermore, the cell apoptosis of complex 1 is detected by AnnexinV/PI flow cytometry.

  1. Prediction of the Iron-Based Polynuclear Magnetic Superhalogens with Pseudohalogen CN as Ligands.

    Science.gov (United States)

    Ding, Li-Ping; Shao, Peng; Lu, Cheng; Zhang, Fang-Hui; Liu, Yun; Mu, Qiang

    2017-07-17

    To explore stable polynuclear magnetic superhalogens, we perform an unbiased structure search for polynuclear iron-based systems based on pseudohalogen ligand CN using the CALYPSO method in conjunction with density functional theory. The superhalogen properties, magnetic properties, and thermodynamic stabilities of neutral and anionic Fe 2 (CN) 5 and Fe 3 (CN) 7 clusters are investigated. The results show that both of the clusters have superhalogen properties due to their electron affinities (EAs) and that vertical detachment energies (VDEs) are significantly larger than those of the chlorine element and their ligand CN. The distribution of the extra electron analysis indicates that the extra electron is aggregated mainly into pseudohalogen ligand CN units in Fe 2 (CN) 5 ¯ and Fe 3 (CN) 7 ¯ cluster. These features contribute significantly to their high EA and VDE. Besides superhalogen properties, these two anionic clusters carry a large magnetic moment just like the Fe 2 F 5 ¯ cluster. Additionally, the thermodynamic stabilities are also discussed by calculating the energy required to fragment the cluster into various smaller stable clusters. It is found that Fe(CN) 2 is the most favorable fragmentation product for anionic Fe 2 (CN) 5 ¯ and Fe 3 (CN) 7 ¯ clusters, and both of the anions are less stable against ejection of Fe atoms than Fe(CN) n-x .

  2. Game-based verification and synthesis

    DEFF Research Database (Denmark)

    Vester, Steen

    and the environment behaves. Synthesis of strategies in games can thus be used for automatic generation of correct-by-construction programs from specifications. We consider verification and synthesis problems for several well-known game-based models. This includes both model-checking problems and satisfiability...... can be extended to solve finitely-branching turn-based games more efficiently. Further, the novel concept of winning cores in parity games is introduced. We use this to develop a new polynomial-time under-approximation algorithm for solving parity games. Experimental results show that this algorithm...... corresponds directly to a program for the corresponding entity of the system. A strategy for a player which ensures that the player wins no matter how the other players behave then corresponds to a program ensuring that the specification of the entity is satisfied no matter how the other entities...

  3. Computational fragment-based screening using RosettaLigand: the SAMPL3 challenge

    Science.gov (United States)

    Kumar, Ashutosh; Zhang, Kam Y. J.

    2012-05-01

    SAMPL3 fragment based virtual screening challenge provides a valuable opportunity for researchers to test their programs, methods and screening protocols in a blind testing environment. We participated in SAMPL3 challenge and evaluated our virtual fragment screening protocol, which involves RosettaLigand as the core component by screening a 500 fragments Maybridge library against bovine pancreatic trypsin. Our study reaffirmed that the real test for any virtual screening approach would be in a blind testing environment. The analyses presented in this paper also showed that virtual screening performance can be improved, if a set of known active compounds is available and parameters and methods that yield better enrichment are selected. Our study also highlighted that to achieve accurate orientation and conformation of ligands within a binding site, selecting an appropriate method to calculate partial charges is important. Another finding is that using multiple receptor ensembles in docking does not always yield better enrichment than individual receptors. On the basis of our results and retrospective analyses from SAMPL3 fragment screening challenge we anticipate that chances of success in a fragment screening process could be increased significantly with careful selection of receptor structures, protein flexibility, sufficient conformational sampling within binding pocket and accurate assignment of ligand and protein partial charges.

  4. Assembly of new polyoxometalate–templated metal–organic frameworks based on flexible ligands

    Energy Technology Data Exchange (ETDEWEB)

    Li, Na; Mu, Bao; Lv, Lei; Huang, Rudan, E-mail: huangrd@bit.edu.cn

    2015-03-15

    Four new polyoxometalate(POM)–templated metal–organic frameworks based on flexible ligands, namely, [Cu{sub 6}(bip){sub 12}(PMo{sup VI}{sub 12}O{sub 40}){sub 2}(PMo{sup V}Mo{sup VI}{sub 11}O{sub 40}O{sub 2})]·8H{sub 2}O(1), [Cu{sup I}{sub 3}Cu{sup II}{sub 3}(bip){sub 12}(PMo{sup VI}{sub 12}O{sub 40}){sub 2}(PMo{sup V}{sub 12}O{sub 34})]·8H{sub 2}O(2), [Ni{sub 6}(bip){sub 12}(PMo{sup VI}{sub 12}O{sub 40})(PMo{sup VI}{sub 11}Mo{sup V}O{sub 40}){sub 2}]Cl·6H{sub 2}O(3), [Co{sup II}{sub 3}Co{sup III}{sub 2}(H{sub 2}bib){sub 2}(Hbib){sub 2}(PW{sub 9}O{sub 34}){sub 2}(H{sub 2}O){sub 6}]·6H{sub 2}O(4) (bip=1,3-bis(imidazolyl)propane, bib=1,4-bis(imidazolyl)butane) have been obtained under hydrothermal condition and characterized by single-crystal X-ray diffraction analyses, elemental analyses, and thermogravimetric (TG) analyses. The studies of single crystal X-ray indicate that compounds 1–3 crystallize in the trigonal space group P-3, and compound 4 crystallizes in the triclinic space group P-1. Compounds 1 and 3 represent 3D frameworks, and POMs as the guest molecules are incorporated into the cages which are composed of the ligands and metals, while compounds 2 and 4 show 3D frameworks by hydrogen bonds. This compounds provide new examples of host–guest compounds based on flexible bis(imidazole) ligands. In addition, the electrochemical property and the catalytic property of compound 1 have also been investigated. - Graphical abstract: Four inorganic–organic hybrid compounds based polyoxometalates (POMs) and flexible ligands, namely, have been obtained under hydrothermal conditions and characterized by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, and thermogravimetric (TG) analyses. Compounds 1–3 are new examples of host–guest compounds based on flexible bis(imidazole) ligands and POMs as the guest molecules are incorporated into the cages which are composed of the ligands and metals. - Highlights: • Polyoxometalate

  5. Substituent effect on redox potential of nitrido technetium complexes with Schiff base ligand. Theoretical calculations

    International Nuclear Information System (INIS)

    Takayama, T.; Sekine, T.; Kudo, H.

    2003-01-01

    Theoretical calculations based on the density functional theory (DFT) were performed to understand the effect of substituents on the molecular and electronic structures of technetium nitrido complexes with salen type Schiff base ligands. Optimized structures of these complexes are square pyramidal. The electron density on a Tc atom of the complex with electron withdrawing substituents is lower than that of the complex with electron donating substituents. The HOMO energy is lower in the complex with electron withdrawing substituents than that in the complex with electron donating substituents. The charge on Tc atoms is a good measure that reflects the redox potential of [TcN(L)] complex. (author)

  6. Solvothermal synthesis of uranium(VI) phases with aromatic carboxylate ligands: A dinuclear complex with 4-hydroxybenzoic acid and a 3D framework with terephthalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingjie, E-mail: yzx@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Karatchevtseva, Inna [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Bhadbhade, Mohan [Mark Wainwright Analytical Centre, University of New South Wales, Kensington, NSW 2052 (Australia); Tran, Toan Trong; Aharonovich, Igor [School of Physics and Advanced Materials, University of Technology Sydney, Ultimo, NSW 2007 (Australia); Fanna, Daniel J.; Shepherd, Nicholas D. [School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 (Australia); Lu, Kim [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Li, Feng [School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 (Australia); Lumpkin, Gregory R. [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2016-02-15

    With the coordination of dimethylformamide (DMF), two new uranium(VI) complexes with either 4-hydroxybenzoic acid (H{sub 2}phb) or terephthalic acid (H{sub 2}tph) have been synthesized under solvothermal conditions and structurally characterized. [(UO{sub 2}){sub 2}(Hphb){sub 2}(phb)(DMF)(H{sub 2}O){sub 3}]·4H{sub 2}O (1) has a dinuclear structure constructed with both pentagonal and hexagonal bipyramidal uranium polyhedra linked through a µ{sub 2}-bridging ligand via both chelating carboxylate arm and alcohol oxygen bonding, first observation of such a coordination mode of 4-hydroxybenzoate for 5 f ions. [(UO{sub 2})(tph)(DMF)] (2) has a three-dimensional (3D) framework built with pentagonal bipyramidal uranium polyhedra linked with µ{sub 4}-terephthalate ligands. The 3D channeled structure is facilitated by the unique carboxylate bonding with nearly linear C–O–U angles and the coordination of DMF molecules. The presence of phb ligands in different coordination modes, uranyl ions in diverse environments and DMF in complex 1, and tph ligand, DMF and uranyl ion in complex 2 has been confirmed by Raman spectroscopy. In addition, their thermal stability and photoluminescence properties have been investigated. - Graphical abstract: With the coordination of dimethylformamide, two new uranyl complexes with either 4-hydroxybenzoate or terephthalate have been synthesized under solvothermal conditions and structurally characterized. - Highlights: • Solvent facilitates the synthesis of two new uranium(VI) complexes. • A dinuclear complex with both penta- and hexagonal bipyramidal uranium polyhedral. • A unique µ{sub 2}-bridging mode of 4-hydroxybenzoate via alcohol oxygen for 5 f ions. • A 3D framework with uranium polyhedra and µ{sub 4}-terephthalate ligands. • Vibration modes and photoluminescence properties are reported.

  7. Synthesis and characterization of titanium and yttrium precursors with unsaturated ligands: application to the doping of low-density micro-molecular materials oxides

    International Nuclear Information System (INIS)

    Gamet-Cauro, L.-C.

    2001-01-01

    The laser-matter interaction experiments for high-power pulsed lasers require doped micro-targets. The ablator is a Low-Density Microcellular Material,foam namely a styrene-divinylbenzene copolymer obtained by a HIPE process (High Internal Polymerisation Emulsion). The spectroscopic tracers selected for doping are titanium, yttrium and aluminium as oxides. For obtaining these hybrid organic-inorganic materials, precursors with polymerizable ligands were introduced during the emulsification step since the unsaturation of the ligands could participate in the copolymerization reaction. We report here in the synthesis and characterization of titanium and yttrium precursors with polymerizable ligands. The structures of [Ti(O i Pr) 3 (AMP)] 2 (HAMP allyl-methylphenol), [Ti(OEt) 3 (AAA)] 2 (HAAA allylacetoacetate), Y 8 O 2 (OH) 4 (OEt) 6 (AAA) 10 were established by X-ray diffraction. Ti 4 O 3 (OR) 8 (AAA) 2 (R Et, i Pr).[TiO(O i Pr)(oleate)] m , Y 4 (OH) 2 (AAA) 5 , Y 4 O(O i Pr) 5 (AAA) 5 , Y 4 (OH) 4 Cl 5 (AAA) 3 (THF) 3 have been prepared as well and characterized by FT-IR, 1 HNMR and elemental analysis. Micro-hydrolysis reactions of titanium derivatives were investigated. The rates of polymerisation and copolymerization with styrene were evaluated for the titanium precursors with polymerizable ligands. The parameters of the HIPE process were adapted to the fabrication of doped foams, only the dopant and initiator change. We discuss incorporation mechanisms of titanium oxide and yttrium oxo-hydroxides: precursor-surfactant interaction, copolymerization of precursors with unsaturated ligands and physical or chemical retention. The foams have been characterized by scanning electron microscopy (morphology), elemental analysis and fluorescence X cartography (amount, distribution of metal oxide), adsorption isotherms (BET, texture), compression tests (mechanical strength). Due to this systematic study, a good control of doping has become possible and allowed us to develop

  8. Synthesis and evaluation of fluorine-18-labeled SA4503 as a selective sigma1 receptor ligand for positron emission tomography

    International Nuclear Information System (INIS)

    Kawamura, Kazunori; Tsukada, Hideo; Shiba, Kazuhiro; Tsuji, Chieko; Harada, Norihiro; Kimura, Yuichi; Ishiwata, Kiichi

    2007-01-01

    The [ 18 F]fluoromethyl analog of the sigma 1 selective ligand 1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)piperazine dihydrochloride (SA4503) ([ 18 F]FM-SA4503) was prepared and its potential evaluated for the in vivo measurement of sigma 1 receptors with positron emission tomography (PET). FM-SA4503 had selective affinity for the sigma 1 receptor ( K i for sigma 1 receptor, 6.4 nM; K i for sigma 2 receptor, 250 nM) that was compatible with the affinity of SA4503 ( K i for sigma 1 receptor, 4.4 nM; K i for sigma 2 receptor, 242 nM). [ 18 F]FM-SA4503 was synthesized by 18 F-fluoromethylation of O-demethyl SA4503 in the radiochemical yield of 2.9-16.6% at the end of bombardment with a specific activity of 37.8-283 TBq/mmol at the end of synthesis. In mice, the uptake of [ 18 F]FM-SA4503 in the brain was gradually increased for 30 min after injection, and then decreased. In the blocking study, brain uptake was significantly decreased by co-injection of haloperidol to 32% of control, and FM-SA4503 to 52% of control. In PET study of the monkey brain, high uptake was found in the cerebral cortex, thalamus and striatum. The radioactivity level of [ 18 F]FM-SA4503 in the brain regions gradually increased over a period of 120 min after injection, followed by a stable plateau phase until 180 min after injection. In pretreatment with haloperidol measurement of the monkey brain, the radioactivity level was 22-32% and 11-25% of the baseline at 60 and 180 min, respectively, after injection, suggesting high receptor-specific binding. [ 18 F]FM-SA4503 showed specific binding to sigma 1 receptors in mice and monkeys; therefore, [ 18 F]FM-SA4503 has the potential for mapping sigma 1 receptors in the brain

  9. Ligand and Metal Based Multielectron Redox Chemistry of Cobalt Supported by Tetradentate Schiff Bases.

    Science.gov (United States)

    Andrez, Julie; Guidal, Valentin; Scopelliti, Rosario; Pécaut, Jacques; Gambarelli, Serge; Mazzanti, Marinella

    2017-06-28

    We have investigated the influence of bound cations on the reduction of cobalt complexes of redox active ligands and explored the reactivity of reduced species with CO 2 . The one electron reduction of [Co II ( R salophen)] with alkali metals (M = Li, Na, K) leads to either ligand-centered or metal-centered reduction depending on the alkali ion. It affords either the [Co I ( R salophen)K] complexes or the [Co II 2 (bis-salophen)M 2 ] (M = Li, Na) dimers that are present in solution in equilibrium with the respective [Co I (salophen)M] complexes. The two electron reduction of [Co II ( OMe salophen)] results in both ligand centered and metal centered reduction affording the Co(I)-Co(II)-Co(I) [Co 3 (tris- OMe salophen)Na 6 (THF) 6 ], 6 complex supported by a bridging deca-anionic tris- OMe salophen 10- ligand where three OMe salophen units are connected by two C-C bonds. Removal of the Na ion from 6 leads to a redistribution of the electrons affording the complex [(Co( OMe salophen)) 2 Na][Na(cryptand)] 3 , 7. The EPR spectrum of 7 suggests the presence of a Co(I) bound to a radical anionic ligand. Dissolution of 7 in pyridine leads to the isolation of [Co I 2 (bis- OMe salophen)Na 2 Py 4 ][Na(cryptand)] 2 , 8. Complex 6 reacts with ambient CO 2 leading to multiple CO 2 reduction products. The product of CO 2 addition to the OMe salophen ligand, [Co( OMe salophen-CO 2 )Na] 2 [Na(cryptand)] 2 , 9, was isolated but CO 3 2- formation in 53% yield was also detected. Thus, the electrons stored in the reversible C-C bonds may be used for the transformation of carbon dioxide.

  10. Python based high-level synthesis compiler

    Science.gov (United States)

    Cieszewski, Radosław; Pozniak, Krzysztof; Romaniuk, Ryszard

    2014-11-01

    This paper presents a python based High-Level synthesis (HLS) compiler. The compiler interprets an algorithmic description of a desired behavior written in Python and map it to VHDL. FPGA combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be reconfigured over the lifetime of the system. FPGAs therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Creating parallel programs implemented in FPGAs is not trivial. This article describes design, implementation and first results of created Python based compiler.

  11. Tripodal (N-alkylated) CMP(O) and malonamide ligands: synthesis, extraction of metal ions, and potentiometric studies

    Energy Technology Data Exchange (ETDEWEB)

    Janczewski, D.; Reinhoudt, D.N.; Verboom, W. [Twente Univ., Lab. of Supramolecular Chemistry and Technology, Mesa Research Institute for Nanotechnology, Enschede (Netherlands); Malinowska, E.; Pietrzak, M. [Warsaw Univ. of Technology, Dept. of Analytical Chemistry, Faculty of Chemistry (Poland); Hill, C.; Allignol, C. [CEA Valrho, 30 - Marcoule (France)

    2007-01-15

    Tripodal ligands build on the C-pivot (9b-e, 13b-d, and 17a-d) and tri-alkyl-benzene platforms (10a,b, 11, 12, 14a,b, and 18a,b) bearing (N-alkylated) carbamoyl-methyl-phosphine oxide (CMPO), carbamoyl-methyl-phosphonate (CMP), and malonamide moieties were synthesized. Extraction studies with Am{sup 3+} and Eu{sup 3+} show that in general there is a positive influence of the N-alkyl substituents in C-pivot CMP(O) ligands on the D(distribution) coefficients. The tri-alkyl-benzene CMPO ligands 10a,b, 11, and 12 have considerably larger D coefficients than the corresponding C-pivot analogues 9a-e, although hardly having any selectivity, while N-alkylation gives rise to smaller D coefficients. Although less effective the extraction behavior of the C-pivot CMP analogues 13b-d shows more or less the same trend as the corresponding CMPO ligands 9b-e upon substitution of the carboxamide N-atom with different alkyl chains. The different malonamide ligands 17a-d and 18a,b are bad extractants, while N-alkylation makes them even worse. Potentiometric studies of CMP(O) and malonamide ligands in polymeric membranes on Pb{sup 2+}, Cu{sup 2+}, Ca{sup 2+}, Mg{sup 2+}, Na{sup +}, and K{sup +} salts revealed that N-alkyl substituents increase the stability constants of ion-ionophore complexes compared to unsubstituted ligands. In polymeric membrane electrodes the ligands induce a selectivity pattern that differs significantly from the so-called Hofmeister series, giving the highest selectivity coefficients for UO{sub 2}{sup 2+} among all examined cations (Pb{sup 2+}, Cu{sup 2+}, Ca{sup 2+}, Mg{sup 2+}, Na{sup +}, K{sup +}). (authors)

  12. Tripodal (N-alkylated) CMP(O) and malonamide ligands: synthesis, extraction of metal ions, and potentiometric studies

    International Nuclear Information System (INIS)

    Janczewski, D.; Reinhoudt, D.N.; Verboom, W.; Malinowska, E.; Pietrzak, M.; Hill, C.; Allignol, C.

    2007-01-01

    Tripodal ligands build on the C-pivot (9b-e, 13b-d, and 17a-d) and tri-alkyl-benzene platforms (10a,b, 11, 12, 14a,b, and 18a,b) bearing (N-alkylated) carbamoyl-methyl-phosphine oxide (CMPO), carbamoyl-methyl-phosphonate (CMP), and malonamide moieties were synthesized. Extraction studies with Am 3+ and Eu 3+ show that in general there is a positive influence of the N-alkyl substituents in C-pivot CMP(O) ligands on the D(distribution) coefficients. The tri-alkyl-benzene CMPO ligands 10a,b, 11, and 12 have considerably larger D coefficients than the corresponding C-pivot analogues 9a-e, although hardly having any selectivity, while N-alkylation gives rise to smaller D coefficients. Although less effective the extraction behavior of the C-pivot CMP analogues 13b-d shows more or less the same trend as the corresponding CMPO ligands 9b-e upon substitution of the carboxamide N-atom with different alkyl chains. The different malonamide ligands 17a-d and 18a,b are bad extractants, while N-alkylation makes them even worse. Potentiometric studies of CMP(O) and malonamide ligands in polymeric membranes on Pb 2+ , Cu 2+ , Ca 2+ , Mg 2+ , Na + , and K + salts revealed that N-alkyl substituents increase the stability constants of ion-ionophore complexes compared to unsubstituted ligands. In polymeric membrane electrodes the ligands induce a selectivity pattern that differs significantly from the so-called Hofmeister series, giving the highest selectivity coefficients for UO 2 2+ among all examined cations (Pb 2+ , Cu 2+ , Ca 2+ , Mg 2+ , Na + , K + ). (authors)

  13. Synthesis, crystal structures and luminescent properties of zinc(II) metal–organic frameworks constructed from terpyridyl derivative ligand

    International Nuclear Information System (INIS)

    Yang, Xiao-Le; Shangguan, Yi-Qing; Hu, Huai-Ming; Xu, Bing; Wang, Bao-Cheng; Xie, Juan; Yuan, Fei; Yang, Meng-Lin; Dong, Fa-Xin; Xue, Gang-Lin

    2014-01-01

    Five zinc(II) metal–organic frameworks, [Zn 3 (344-pytpy) 2 Cl 6 ] n ·n(H 2 O) (1), [Zn(344-pytpy)(ox)] n (2), [Zn 2 (344-pytpy)(bdc) 2 ] n ·1.5n(H 2 O) (3), [Zn 2 (344-pytpy) 2 (sfdb) 2 ] n ·1.5n(H 2 O) (4) and [Zn 3 (344-pytpy) 2 (btc) 2 ] n ·2n(H 2 O) (5), (344-pytpy=4′-(3-pyridyl)-4,2′:6′,4″-terpyridine, H 2 ox=oxalic acid, H 2 bdc=1,4-benzenedi-carboxylic acid, H 2 sfdb=4,4′-sulfonyldibenzoic acid and H 3 btc=1,3,5-benzene-tricarboxylic acid) have been prepared by hydrothermal reactions. Compound 1 is a 1D chain structure, in which 344-pytpy ligand links three Zn II centers through three of terminal N-donors. Compound 2 is a 4-connected 3D framework with the dia topological net and the Schläfli symbol of 6 6 . Compound 3 displays a unusual 3-fold interpenetrating 3D coordination network which exhibits a new intriguing (3,3,4)-connected topological net with the Schläfli symbol of (4.8 2 )(4.8 5 )(8 3 ). Compound 4 features a two-fold interpenetrating 4-connected 2D framework with the sql topological net and the Schläfli symbol of (4 4 .6 2 ). Compound 5 is a new self-interpenetrating (3,3,4,4)-connected topological net with the Schläfli symbol of (6.8 2 ) 2 (6 2 .8 2 .10.12)(6 2 .8 3 .10) 2 (6 2 .8) 2 . The luminescence properties of 1–5 have been investigated by emission spectra and they possess great thermal stabilities which can be stable up to around 400 °C. - Graphical abstract: Five new Zn(II) metal–organic frameworks based on dicarboxylate and terpyridyl derivative ligands have been synthesized by hydrothermal reactions, giving networks from 1D to 3D structures. The thermal stability and luminescent property have been investigated. - Highlights: • Five zinc(II) metal–organic frameworks have been prepared under hydrothermal conditions. • Their crystal and topological structures have been investigated. • The luminescent properties have been investigated. • They possess great thermal stabilities which can be stable up to

  14. A Ligand-observed Mass Spectrometry Approach Integrated into the Fragment Based Lead Discovery Pipeline

    Science.gov (United States)

    Chen, Xin; Qin, Shanshan; Chen, Shuai; Li, Jinlong; Li, Lixin; Wang, Zhongling; Wang, Quan; Lin, Jianping; Yang, Cheng; Shui, Wenqing

    2015-01-01

    In fragment-based lead discovery (FBLD), a cascade combining multiple orthogonal technologies is required for reliable detection and characterization of fragment binding to the target. Given the limitations of the mainstream screening techniques, we presented a ligand-observed mass spectrometry approach to expand the toolkits and increase the flexibility of building a FBLD pipeline especially for tough targets. In this study, this approach was integrated into a FBLD program targeting the HCV RNA polymerase NS5B. Our ligand-observed mass spectrometry analysis resulted in the discovery of 10 hits from a 384-member fragment library through two independent screens of complex cocktails and a follow-up validation assay. Moreover, this MS-based approach enabled quantitative measurement of weak binding affinities of fragments which was in general consistent with SPR analysis. Five out of the ten hits were then successfully translated to X-ray structures of fragment-bound complexes to lay a foundation for structure-based inhibitor design. With distinctive strengths in terms of high capacity and speed, minimal method development, easy sample preparation, low material consumption and quantitative capability, this MS-based assay is anticipated to be a valuable addition to the repertoire of current fragment screening techniques. PMID:25666181

  15. Novel and high affinity fluorescent ligands for the serotonin transporter based on (s)-citalopram

    DEFF Research Database (Denmark)

    Kumar, Vivek; Rahbek-Clemmensen, Troels; Billesbølle, Christian B

    2014-01-01

    Novel rhodamine-labeled ligands, based on (S)-citalopram, were synthesized and evaluated for uptake inhibition at the human serotonin, dopamine, and norepinephrine transporters (hSERT, hDAT, and hNET, respectively) and for binding at SERT, in transiently transfected COS7 cells. Compound 14 demons...... demonstrated high affinity binding and selectivity for SERT (K i = 3 nM). Visualization of SERT, using confocal laser scanning microscopy, validated compound 14 as a novel tool for studying SERT expression and distribution in living cells....

  16. Synthesis of Alkanethiolate-Capped Metal Nanoparticles Using Alkyl Thiosulfate Ligand Precursors: A Method to Generate Promising Reagents for Selective Catalysis

    Directory of Open Access Journals (Sweden)

    Khin Aye San

    2018-05-01

    Full Text Available Evaluation of metal nanoparticle catalysts functionalized with well-defined thiolate ligands can be potentially important because such systems can provide a spatial control in the reactivity and selectivity of catalysts. A synthetic method utilizing Bunte salts (sodium S-alkylthiosulfates allows the formation of metal nanoparticles (Au, Ag, Pd, Pt, and Ir capped with alkanethiolate ligands. The catalysis studies on Pd nanoparticles show a strong correlation between the surface ligand structure/composition and the catalytic activity and selectivity for the hydrogenation/isomerization of alkenes, dienes, trienes, and allylic alcohols. The high selectivity of Pd nanoparticles is driven by the controlled electronic properties of the Pd surface limiting the formation of Pd–alkene adducts (or intermediates necessary for (additional hydrogenation. The synthesis of water soluble Pd nanoparticles using ω-carboxylate-S-alkanethiosulfate salts is successfully achieved and these Pd nanoparticles are examined for the hydrogenation of various unsaturated compounds in both homogeneous and heterogeneous environments. Alkanethiolate-capped Pt nanoparticles are also successfully synthesized and further investigated for the hydrogenation of various alkynes to understand their geometric and electronic surface properties. The high catalytic activity of activated terminal alkynes, but the significantly low activity of internal alkynes and unactivated terminal alkynes, are observed for Pt nanoparticles.

  17. New chiral phosphinephosphinite ligands: Application to stereoselective synthesis of a key intermediate of 1{beta}-methyl carbapenems by Rh(I)-catalyzed asymmetric hydroformylation

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Takao; Yoshida, Akifumi; Matsumura, Kazuhiko [Takasago International Corp., Kanagawa (Japan)] [and others

    1995-12-31

    Transition metal catalyzed asymmetric hydroformylation is an attractive and highly useful homologation process for organic synthesis. Recently, the authors reported that the Rh(I) complexes of phosphinephosphite BINAPHOS are highly efficient catalysts for enantioselective hydroformylation of a variety of olefins. This time, the authors have designed and synthesized new chiral phosphinephosphinite ligands having binaphthyl backbone, (R)-2-diarylphosphino-2{prime}-diarylphosphinoxy-1,1{prime}-binaphthy1 (hereafter abbreviated (R)-BIPNITE). The Rh(I) complexes of these ligands are effective catalysts for the asymmetric hydroformylation of 4-vinylazetidin-2-one to give the corresponding oxo-aldehyde 3{beta} as the major product in very high diastereoselectivities and in good regioselectivities. Interestingly, modifications of the aryl substituents in phosphine and phosphinite moieties afforded higher selectivities. Aldehyde 3{beta} was easily oxidized with NaClO{sub 2} to 4, a key intermediate of 1{beta}-methyl carbapenems. Thus, the present method provides a new practical route to a versatile key intermediate for the synthesis of carbapenem antibiotics.

  18. New L-Serine Derivative Ligands as Cocatalysts for Diels-Alder Reaction

    Science.gov (United States)

    Sousa, Carlos A. D.; Rodríguez-Borges, José E.; Freire, Cristina

    2013-01-01

    New L-serine derivative ligands were prepared and tested as cocatalyst in the Diels-Alder reactions between cyclopentadiene (CPD) and methyl acrylate, in the presence of several Lewis acids. The catalytic potential of the in situ formed complexes was evaluated based on the reaction yield. Bidentate serine ligands showed good ability to coordinate medium strength Lewis acids, thus boosting their catalytic activity. The synthesis of the L-serine ligands proved to be highly efficient and straightforward. PMID:24383009

  19. Flow Cytometry-Based Bead-Binding Assay for Measuring Receptor Ligand Specificity

    NARCIS (Netherlands)

    Sprokholt, Joris K.; Hertoghs, Nina; Geijtenbeek, Teunis B. H.

    2016-01-01

    In this chapter we describe a fluorescent bead-binding assay, which is an efficient and feasible method to measure interaction between ligands and receptors on cells. In principle, any ligand can be coated on fluorescent beads either directly or via antibodies. Binding between ligand-coated beads

  20. C-C coupling of N-heterocycles at the fac-Re(CO)(3) fragment: synthesis of pyridylimidazole and bipyridine ligands.

    Science.gov (United States)

    Viguri, Maialen Espinal; Pérez, Julio; Riera, Lucía

    2014-05-05

    A new family of cationic rhenium tricarbonyl complexes with either two N-alkylimidazole (N-RIm) and one pyridine (Py) ligand, or two pyridine and one N-RIm ligand, [Re(CO)3 (N-RIm)(3-x) (Py)x ](+) , has been prepared. The reaction of these complexes with a strong base, followed by an oxidant, selectively afforded 2,2'-pyridylimidazole complexes as the result of intramolecular dehydrogenative CC coupling reactions. For tris(pyridine) complexes [Re(CO)3 (Py)3 ](+) the reaction pattern upon a deprotonation/oxidation sequence is maintained, which allows the generation of complexes with 2,2'-bipyridine ligands. In the particular combination of two different types of pyridine ligand in the cationic fac-Re(CO)3 complexes only the cross-coupling products with asymmetric 2,2'-bipyridine ligands were obtained; the homocoupling products were not observed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis of new isoxazoline-based acidic amino acids and investigation of their affinity and selectivity profile at ionotropic glutamate receptors

    DEFF Research Database (Denmark)

    Pinto, Andrea; Conti, Paola; Grazioso, Giovanni

    2011-01-01

    The synthesis of four new isoxazoline-based amino acids being analogues of previously described glutamate receptor ligands is reported and their affinity for ionotropic glutamate receptors is analyzed in comparison with that of selected model compounds. Molecular modelling investigations have been...

  2. Synthesis, Structural Characterization and Antimicrobial Activity of Cu(II and Fe(III Complexes Incorporating Azo-Azomethine Ligand

    Directory of Open Access Journals (Sweden)

    Mohammad Azam

    2018-04-01

    Full Text Available We are reporting a novel azo-azomethine ligand, HL and its complexes with Cu(II and Fe(III ions. The ligand and its complexes are characterized by various physico-chemical techniques using C,H,N analyses, FT-IR, 1H-NMR, ESI-MS and UV-Vis studies. TGA analyses reveal complexes are sufficiently stable and undergo two-step degradation processes. The redox behavior of the complexes was evaluated by cyclic voltammetry. Furthermore, the ligand and its complexes were tested for antimicrobial activity against bacterial and fungal strains by determining inhibition zone, minimal inhibitory concentration (MIC and minimal bactericidal concentration (MBC. The complexes showed moderate antimicrobial activity when tested against Gram +ve and Gram −ve bacterial strains. To obtain insights into the structure of ligand, DFT studies are recorded. The results obtained are quite close to the experimental results. In addition, the energy gap, chemical hardness, softness, electronegativity, electrophilic index and chemical potential were calculated using HOMO, LUMO energy value of ligand.

  3. Synthesis and Optical Properties of Thiol Functionalized CdSe/ZnS (Core/Shell Quantum Dots by Ligand Exchange

    Directory of Open Access Journals (Sweden)

    Huaping Zhu

    2014-01-01

    Full Text Available The colloidal photoluminescent quantum dots (QDs of CdSe (core and CdSe/ZnS (core/shell were synthesized at different temperatures with different growth periods. Optical properties (i.e., UV/Vis spectra and photoluminescent emission spectra of the resulting QDs were investigated. The shell-protected CdSe/ZnS QDs exhibited higher photoluminescent (PL efficiency and stability than their corresponding CdSe core QDs. Ligand exchange with various thiol molecules was performed to replace the initial surface passivation ligands, that is, trioctylphosphine oxide (TOPO and trioctylphosphine (TOP, and the optical properties of the surface-modified QDs were studied. The thiol ligand molecules in this study included 1,4-benzenedimethanethiol, 1,16-hexadecanedithiol, 1,11-undecanedithiol, biphenyl-4,4′-dithiol, 11-mercapto-1-undecanol, and 1,8-octanedithiol. After the thiol functionalization, the CdSe/ZnS QDs exhibited significantly enhanced PL efficiency and storage stability. Besides surface passivation effect, such enhanced performance of thiol-functionalized QDs could be due to cross-linked assembly formation of dimer/trimer clusters, in which QDs are linked by dithiol molecules. Furthermore, effects of ligand concentration, type of ligand, and heating on the thiol stabilization of QDs were also discussed.

  4. Synthesis and characterization of a uranium(III) complex containing a redox-active 2,2'-bipyridine ligand.

    Science.gov (United States)

    Kraft, Steven J; Fanwick, Phillip E; Bart, Suzanne C

    2010-02-01

    Hydrotris(3,5-dimethylpyrazolyl)borate uranium(III) diiodide derivatives have been prepared as an entry into low-valent uranium chemistry with these ligands. The bis(tetrahydrofuran) adduct, Tp*UI(2)(THF)(2) (1) (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate), was synthesized by addition of sodium hydrotris(3,5-dimethylpyrazolyl)borate (NaTp*) to an equivalent of UI(3)(THF)(4). Addition of 2,2'-bipyridine (2,2'-bpy) to 1 displaced the THF molecules producing Tp*UI(2)(2,2'-bpy) (2). Both derivatives were characterized by (1)H NMR and IR spectroscopies, magnetic measurements, and X-ray crystallography. Reduction of both species was attempted with two equivalents of potassium graphite. The reduction of 1 did not result in a clean product, but rather decomposition and ligand redistribution. However, compound 2 was reduced to form Tp*(2)U(2,2'-bpy), 3, which is composed of a uranium(III) ion with a radical monoanionic bipyridine ligand. This was confirmed by X-ray crystallography, which revealed distortions in the bond lengths of the bipyridine consistent with reduction. Further support was obtained by (1)H NMR spectroscopy, which showed resonances shifted far upfield, consistent with radical character on the 2,2'-bipyridine ligand. Future studies will explore the reactivity of this compound as well as the consequences for redox-activity in the bipyridine ligand.

  5. Synthesis, characterization and biodistribution of new [sup 99m]Tc Oxo and nitrido complexes of unsaturated tetradentate (N[sub 2]S[sub 2]) ligands

    Energy Technology Data Exchange (ETDEWEB)

    Coulais, Y.; Gantet, P.; Tafani, J.A.M.; Vende, D.; Guiraud, R. (Faculte de Medecine Toulouse-Purpan, Toulouse (France). Lab. de Biophysique et de Medecine Nucleaire); Cros, G.; Darbieu, M.H. (Centre National de la Recherche Scientifique (CNRS), Toulouse (France). Lab. de Chimie de Coordination); Pasqualini, R. (Cis-Bio International, Gif-sur-Yvette (France))

    1993-04-01

    Three unsaturated Schiff base tetradentate (N[sub 2]S[sub 2] or N[sub 2]SO) ligands were synthesized and characterized. Oxo and nitrido 99m-technetium complexes were obtained with these ligands. The nitrido complexes were formed using a new easy method available as a kit. When injected into rats and mice, these lipophilic complexes were able to cross blood-brain barrier but brain perfusion imaging could not be performed due to the insufficient uptake and retention time. (author).

  6. In Silico target fishing: addressing a "Big Data" problem by ligand-based similarity rankings with data fusion.

    Science.gov (United States)

    Liu, Xian; Xu, Yuan; Li, Shanshan; Wang, Yulan; Peng, Jianlong; Luo, Cheng; Luo, Xiaomin; Zheng, Mingyue; Chen, Kaixian; Jiang, Hualiang

    2014-01-01

    Ligand-based in silico target fishing can be used to identify the potential interacting target of bioactive ligands, which is useful for understanding the polypharmacology and safety profile of existing drugs. The underlying principle of the approach is that known bioactive ligands can be used as reference to predict the targets for a new compound. We tested a pipeline enabling large-scale target fishing and drug repositioning, based on simple fingerprint similarity rankings with data fusion. A large library containing 533 drug relevant targets with 179,807 active ligands was compiled, where each target was defined by its ligand set. For a given query molecule, its target profile is generated by similarity searching against the ligand sets assigned to each target, for which individual searches utilizing multiple reference structures are then fused into a single ranking list representing the potential target interaction profile of the query compound. The proposed approach was validated by 10-fold cross validation and two external tests using data from DrugBank and Therapeutic Target Database (TTD). The use of the approach was further demonstrated with some examples concerning the drug repositioning and drug side-effects prediction. The promising results suggest that the proposed method is useful for not only finding promiscuous drugs for their new usages, but also predicting some important toxic liabilities. With the rapid increasing volume and diversity of data concerning drug related targets and their ligands, the simple ligand-based target fishing approach would play an important role in assisting future drug design and discovery.

  7. Sensitivity to Flg22 Is Modulated by Ligand-Induced Degradation and de Novo Synthesis of the Endogenous Flagellin-Receptor FLAGELLIN-SENSING2[W][OPEN

    Science.gov (United States)

    Smith, John M.; Salamango, Daniel J.; Leslie, Michelle E.; Collins, Carina A.; Heese, Antje

    2014-01-01

    FLAGELLIN-SENSING2 (FLS2) is the plant cell surface receptor that perceives bacterial flagellin or flg22 peptide, initiates flg22-signaling responses, and contributes to bacterial growth restriction. Flg22 elicitation also leads to ligand-induced endocytosis and degradation of FLS2 within 1 h. Why plant cells remove this receptor precisely at the time during which its function is required remains mainly unknown. Here, we assessed in planta flg22-signaling competency in the context of ligand-induced degradation of endogenous FLS2 and chemical interference known to impede flg22-dependent internalization of FLS2 into endocytic vesicles. Within 1 h after an initial flg22 treatment, Arabidopsis (Arabidopsis thaliana) leaf tissue was unable to reelicit flg22 signaling in a ligand-, time-, and dose-dependent manner. These results indicate that flg22-induced degradation of endogenous FLS2 may serve to desensitize cells to the same stimulus (homologous desensitization), likely to prevent continuous signal output upon repetitive flg22 stimulation. In addition to impeding ligand-induced FLS2 degradation, pretreatment with the vesicular trafficking inhibitors Wortmannin or Tyrphostin A23 impaired flg22-elicited reactive oxygen species production that was partially independent of BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1. Interestingly, these inhibitors did not affect flg22-induced mitogen-activated protein kinase phosphorylation, indicating the ability to utilize vesicular trafficking inhibitors to target different flg22-signaling responses. For Tyrphostin A23, reduced flg22-induced reactive oxygen species could be separated from the defect in FLS2 degradation. At later times (>2 h) after the initial flg22 elicitation, recovery of FLS2 protein levels positively correlated with resensitization to flg22, indicating that flg22-induced new synthesis of FLS2 may prepare cells for a new round of monitoring the environment for flg22. PMID:24220680

  8. Fingerprint-Based Machine Learning Approach to Identify Potent and Selective 5-HT2BR Ligands

    Directory of Open Access Journals (Sweden)

    Krzysztof Rataj

    2018-05-01

    Full Text Available The identification of subtype-selective GPCR (G-protein coupled receptor ligands is a challenging task. In this study, we developed a computational protocol to find compounds with 5-HT2BR versus 5-HT1BR selectivity. Our approach employs the hierarchical combination of machine learning methods, docking, and multiple scoring methods. First, we applied machine learning tools to filter a large database of druglike compounds by the new Neighbouring Substructures Fingerprint (NSFP. This two-dimensional fingerprint contains information on the connectivity of the substructural features of a compound. Preselected subsets of the database were then subjected to docking calculations. The main indicators of compounds’ selectivity were their different interactions with the secondary binding pockets of both target proteins, while binding modes within the orthosteric binding pocket were preserved. The combined methodology of ligand-based and structure-based methods was validated prospectively, resulting in the identification of hits with nanomolar affinity and ten-fold to ten thousand-fold selectivities.

  9. Designing a New Class of Bases for Nucleic Acid Quadruplexes and Quadruplex-Active Ligands.

    Science.gov (United States)

    Bazzi, Sophia; Novotný, Jan; Yurenko, Yevgen P; Marek, Radek

    2015-06-22

    A new class of quadruplex nucleobases, derived from 3-deazaguanine, has been designed for various applications as smart quadruplex ligands as well as quadruplex-based aptamers, receptors, and sensors. An efficient strategy for modifying the guanine quadruplex core has been developed and tested by using quantum chemistry methods. Several potential guanine derivatives modified at the 3- or 8-position or both are analyzed, and the results compared to reference systems containing natural guanine. Analysis of the formation energies (BLYP-D3(BJ)/def2-TZVPP level of theory, in combination with the COSMO model for water) in model systems consisting of two and three stacked tetrads with Na(+) /K(+) ion(s) inside the internal channel indicates that the formation of structures with 3-halo-3-deazaguanine bases leads to a substantial gain in energy, as compared to the corresponding reference guanine complexes. The results cast light on changes in the noncovalent interactions (hydrogen bonding, stacking, and ion coordination) in a quadruplex stem upon modification of the guanine core. In particular, the enhanced stability of the modified quadruplexes was shown to originate mainly from increased π-π stacking. Our study suggests the 3-halo-3-deazaguanine skeleton as a potential building unit for quadruplex systems and smart G-quadruplex ligands. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Structural Diversity of Metallosupramolecular Assemblies Based on the Bent Bridging Ligand 4,4′-Dithiodipyridine

    Directory of Open Access Journals (Sweden)

    Rüdiger W. Seidel

    2013-05-01

    Full Text Available 4,4′-Dithiodipyridine (dtdp, also termed 4,4′-dipyridyldisulfide, is a bridging ligand of the 4,4′-bipyridine type. The introduction of the disulfide moiety inevitably leads to a relatively rigid angular structure, which exhibits axial chirality. More than 90 metal complexes containing the dtdp ligand have been crystallographically characterised until now. This review focuses on the preparation and structural diversity of discrete and polymeric metallosupramolecular assemblies constructed from dtdp as bridging ligands. These encompass metallamacrocycles with M2L2 topology and coordination polymers with periodicity in one or two dimensions. One-dimensional coordination polymers represent the vast majority of the metallosupramolecular structures obtained from dtdp. These include repeated rhomboids, zigzag, helical and arched chains among other types. In this contribution, we make an attempt to provide a comprehensive account of the structural data that are currently available for metallosupramolecular assemblies based on the bent bridging ligand dtdp.

  11. Synthesis and characterization of divalent metal complexes with ligand derived from the reaction of 3-aminopyridine and biacetyl

    Directory of Open Access Journals (Sweden)

    RAMESH KUMAR

    2006-09-01

    Full Text Available Divalent cobalt, nickel and copper salts reacted in situ with 3-aminopyridine and biacetyl to form complexes of the type: [M(Ap2biac2X2], where Ap2biac is the ligand and X=Cl, Br, NO3 or NCS. The complexes were analysed and characterized as distorted octahedral by conductance, molecular weight, magnetic, electronic and IR spectral studies. The electronic spectra were interpreted and tentative aassignments made. The infrared spectral studies revealed that two molecules of 3-aminopyridine were joined by molecules of biacetyl through a two carbon atom bridge and that the ligand coordinated through azomethine nitrogen atoms, whereas the pyridine nitrogen does not participate in the coordination. In the far infrared spectra, various metal–ligand vibrations were observed and are discussed.

  12. Synthesis and characterization of a pentadentate Schiff base N3O2 ligand and its neutral technetium(V) complex. X-ray structure of (N,N'-3-azapentane-1,5-diylbis(3-(1-iminoethyl)-6-methyl-2H-pyran-2,4(3H)-dionato)(3-)-O,O',N,N',N double-prime)oxotechnetium(V)

    International Nuclear Information System (INIS)

    Shuang Liu; Rettig, S.J.; Orvig, C.

    1991-01-01

    Preparations of a potentially pentadentate ligand, N,N'-3-azapentane-1,5-diylbis(3-(1-iminoethyl)-6-methyl-2H-pyran-2,4-(3H)-dione) (H 3 apa), and its neutral technetium(V) complex, [TcO(apa)], are described. The 13 C and 1 H NMR, infrared, optical, and mass spectra of the pentadentate ligand and its technetium(V) complex are reported. The X-ray structure of [TcO(apa)] has been determined. Crystals are orthorhombic, space group Pbca, with a = 12.833 (2) angstrom, b = 33.320 (5) angstrom, c = 9.942(4) angstrom, V = 4251 (2) angstrom, and Z = 8. The structure was solved by Patterson and Fourier methods and was refined by full-matrix least-squares procedures to R = 0.028 and R W = 0.032 for 4054 reflections with I ≥ 3σ(I). The technetium(V) complex has a highly distorted octahedral coordination geometry comprising a [TcO] 3+ core and the triply deprotonated pentadentate ligand wrapping around the metal center. One of the two oxygen donor atoms of the pentadentate ligand is located trans to the Tc double-bond O bond while the remaining four donor atoms, N 3 O, occupy the equatorial sites. The distance between the deprotonated N(1) atom to the Tc center is significantly shorter than a normal Tc-N single bond length of 2.10 angstroms, but longer than that for a Tc-N triple bond. 1 H NMR spectral data reveal a rigid solution structure for the complex, which undergoes no conformational and configurational exchange at temperatures up to 50C

  13. Ruthenium(II) bipyridine complexes bearing new keto-enol azoimine ligands: synthesis, structure, electrochemistry and DFT calculations.

    Science.gov (United States)

    Al-Noaimi, Mousa; Awwadi, Firas F; Mansi, Ahmad; Abdel-Rahman, Obadah S; Hammoudeh, Ayman; Warad, Ismail

    2015-01-25

    The novel azoimine ligand, Ph-NH-N=C(COCH3)-NHPh(C≡CH) (H2L), was synthesized and its molecular structure was determined by X-ray crystallography. Catalytic hydration of the terminal acetylene of H2L in the presence of RuCl3·3H2O in ethanol at reflux temperature yielded a ketone (L1=Ph-N=N-C(COCH3)=N-Ph(COCH3) and an enol (L2=Ph-N=N-C(COCH3)=N-PhC(OH)=CH2) by Markovnikov addition of water. Two mixed-ligand ruthenium complexes having general formula, trans-[Ru(bpy)(Y)Cl2] (1-2) (where Y=L1 (1) and Y=L2 (2), bpy is 2.2'-bipyrdine) were achieved by the stepwise addition of equimolar amounts of (H2L) and bpy ligands to RuCl3·3H2O in absolute ethanol. Theses complexes were characterized by elemental analyses and spectroscopic (IR, UV-Vis, and NMR (1D (1)H NMR, (13)C NMR, (DEPT-135), (DEPT-90), 2D (1)H-(1)H and (13)C-(1)H correlation (HMQC) spectroscopy)). The two complexes exhibit a quasi-reversible one electron Ru(II)/Ru(III) oxidation couple at 604 mV vs. ferrocene/ferrocenium (Cp2Fe(0/+)) couple along with one electron ligand reduction at -1010 mV. The crystal structure of complex 1 showed that the bidentate ligand L1 coordinates to Ru(II) by the azo- and imine-nitrogen donor atoms. The complex adopts a distorted trans octahedral coordination geometry of chloride ligands. The electronic spectra of 1 and 1+ in dichloromethane have been modeled by time-dependent density functional theory (TD-DFT). Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Synthesis and structural studies of Cp{sup *} rhodium and Cp{sup *} iridium complexes of picolinic hydrazine ligand

    Energy Technology Data Exchange (ETDEWEB)

    Palepu, Narasinga Rao; Kollipara, Mohan Rao [Centre for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong (India); Kaminsky Werner [Dept. of Chemistry, University of Washington, Seattle (United States)

    2017-01-15

    A series of Cp{sup *}Rh and Cp{sup *}Ir complexes of picolinic hydrazine ligand are synthesized and characterized. Picolinic hydrazine has yielded only dinuclear complexes in the case of rhodium metal whereas both mono and dinuclear complexes with iridium metal. Iridium complexes are formed as quaternary salts by the migration of the N–H proton onto the adjacent amine group of the hydrazine after binding to the metal. Picolinic hydrazine acts as nitrogen and oxygen donor ligand in the form of bi and tetradentate bonding modes.

  15. An unbiased method to build benchmarking sets for ligand-based virtual screening and its application to GPCRs.

    Science.gov (United States)

    Xia, Jie; Jin, Hongwei; Liu, Zhenming; Zhang, Liangren; Wang, Xiang Simon

    2014-05-27

    Benchmarking data sets have become common in recent years for the purpose of virtual screening, though the main focus had been placed on the structure-based virtual screening (SBVS) approaches. Due to the lack of crystal structures, there is great need for unbiased benchmarking sets to evaluate various ligand-based virtual screening (LBVS) methods for important drug targets such as G protein-coupled receptors (GPCRs). To date these ready-to-apply data sets for LBVS are fairly limited, and the direct usage of benchmarking sets designed for SBVS could bring the biases to the evaluation of LBVS. Herein, we propose an unbiased method to build benchmarking sets for LBVS and validate it on a multitude of GPCRs targets. To be more specific, our methods can (1) ensure chemical diversity of ligands, (2) maintain the physicochemical similarity between ligands and decoys, (3) make the decoys dissimilar in chemical topology to all ligands to avoid false negatives, and (4) maximize spatial random distribution of ligands and decoys. We evaluated the quality of our Unbiased Ligand Set (ULS) and Unbiased Decoy Set (UDS) using three common LBVS approaches, with Leave-One-Out (LOO) Cross-Validation (CV) and a metric of average AUC of the ROC curves. Our method has greatly reduced the "artificial enrichment" and "analogue bias" of a published GPCRs benchmarking set, i.e., GPCR Ligand Library (GLL)/GPCR Decoy Database (GDD). In addition, we addressed an important issue about the ratio of decoys per ligand and found that for a range of 30 to 100 it does not affect the quality of the benchmarking set, so we kept the original ratio of 39 from the GLL/GDD.

  16. Ligand efficiency based approach for efficient virtual screening of compound libraries.

    Science.gov (United States)

    Ke, Yi-Yu; Coumar, Mohane Selvaraj; Shiao, Hui-Yi; Wang, Wen-Chieh; Chen, Chieh-Wen; Song, Jen-Shin; Chen, Chun-Hwa; Lin, Wen-Hsing; Wu, Szu-Huei; Hsu, John T A; Chang, Chung-Ming; Hsieh, Hsing-Pang

    2014-08-18

    Here we report for the first time the use of fit quality (FQ), a ligand efficiency (LE) based measure for virtual screening (VS) of compound libraries. The LE based VS protocol was used to screen an in-house database of 125,000 compounds to identify aurora kinase A inhibitors. First, 20 known aurora kinase inhibitors were docked to aurora kinase A crystal structure (PDB ID: 2W1C); and the conformations of docked ligand were used to create a pharmacophore (PH) model. The PH model was used to screen the database compounds, and rank (PH rank) them based on the predicted IC50 values. Next, LE_Scale, a weight-dependant LE function, was derived from 294 known aurora kinase inhibitors. Using the fit quality (FQ = LE/LE_Scale) score derived from the LE_Scale function, the database compounds were reranked (PH_FQ rank) and the top 151 (0.12% of database) compounds were assessed for aurora kinase A inhibition biochemically. This VS protocol led to the identification of 7 novel hits, with compound 5 showing aurora kinase A IC50 = 1.29 μM. Furthermore, testing of 5 against a panel of 31 kinase reveals that it is selective toward aurora kinase A & B, with <50% inhibition for other kinases at 10 μM concentrations and is a suitable candidate for further development. Incorporation of FQ score in the VS protocol not only helped identify a novel aurora kinase inhibitor, 5, but also increased the hit rate of the VS protocol by improving the enrichment factor (EF) for FQ based screening (EF = 828), compared to PH based screening (EF = 237) alone. The LE based VS protocol disclosed here could be applied to other targets for hit identification in an efficient manner. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. One-pot synthesis of water soluble iron nanoparticles using rationally-designed peptides and ligand release.

    Science.gov (United States)

    Papst, Stefanie; Cheong, Soshan; Banholzer, Moritz J; Brimble, Margaret A; Williams, David E; Tilley, Richard D

    2013-05-18

    Herein we report the rational design of new phosphopeptides for control of nucleation, growth and aggregation of water-soluble, superparamagnetic iron-iron oxide core-shell nanoparticles. The use of the designed peptides enables a one-pot synthesis that avoids utilizing unstable or toxic iron precursors, organic solvents, and the need for exchange of capping agent after synthesis of the NPs.

  18. Synthesis, resolution and radioiodination of S(-)trans-5-hydroxy-2-[N-n-propyl-N-(3'-iodo-2'-propenyl)amino]tet ralin-S(-)trans-5-OH-PIPAT: a new dopamine D2-like receptor ligand

    International Nuclear Information System (INIS)

    Chumpradit, Sumalee; Meiping Kung; Vessotskie, Janet; Kung, H.F.

    1995-01-01

    A new dopamine D2-like receptor ligand, (R,S)trans-5-hydroxy-2-[N-n0propyl-N-(3'-iodo-2'-propeny)amino]tet ralin ((R,S)trans-5-OH-PIPAT,3), based on high affinity dopamine receptor agonist 5-hydroxy-2-[N,N-(di-n-propyl)-2-amino]tetralin (5-OH-DPAT,1), was prepared. The synthesis was achieved by a reductive amination of 5-methoxy-2-tetralone with n-propylamine, followed by N-alkylation, to afford 5-methoxy-N-propyl-N-2'-aminotetralin,7. Reduction of 7 with tributyltin hydride gave the tri-n-butyl tin derivative,8, which was converted to 9 by an iododemetalation reaction. Demethylation of 9 gave the desired compound, (R,S)trans-5-OH-PIPAT,3. The resolved (R) and (S)trans-5-OH-PIPAT,3 were also quantitatively prepared. (author)

  19. Integration of ligand and structure-based virtual screening for identification of leading anabolic steroids.

    Science.gov (United States)

    Alvarez-Ginarte, Yoanna María; Montero-Cabrera, Luis Alberto; García-de la Vega, José Manuel; Bencomo-Martínez, Alberto; Pupo, Amaury; Agramonte-Delgado, Alina; Marrero-Ponce, Yovani; Ruiz-García, José Alberto; Mikosch, Hans

    2013-11-01

    Parallel ligand- and structure-based virtual screenings of 269 steroids with anabolic activity evaluated in vivo were performed. The quantitative structure-activity relationship (QSAR) model expressed by selected descriptors as the octanol-water partition coefficient, the molar volume and the quantum mechanical calculated charge values on atoms C1, C2, C5, C9, C10, C14 and C17 of the steroid skeleton, expresses structural features of anabolic steroids (AS) contributing to the transport and steroid-receptor interaction. On the other hand, computational simulations of a candidate ligand binding to a receptor study (a "docking" procedure) predict the association of these AS with the human androgen receptor (AR). Fourteen compounds were identified as lead; the most potent was the 7α-methylestr-4-en-3, 17-dione. It was concluded that a good anabolic activity requires hydrogen bonding interactions between both Arg752 and Gln711 residues in the cycles A with O3 atom of the steroid and either Asn705 and Thr877 residues in the cycles D of steroid with O17 atom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A magnetic bead-based ligand binding assay to facilitate human kynurenine 3-monooxygenase drug discovery.

    Science.gov (United States)

    Wilson, Kris; Mole, Damian J; Homer, Natalie Z M; Iredale, John P; Auer, Manfred; Webster, Scott P

    2015-02-01

    Human kynurenine 3-monooxygenase (KMO) is emerging as an important drug target enzyme in a number of inflammatory and neurodegenerative disease states. Recombinant protein production of KMO, and therefore discovery of KMO ligands, is challenging due to a large membrane targeting domain at the C-terminus of the enzyme that causes stability, solubility, and purification difficulties. The purpose of our investigation was to develop a suitable screening method for targeting human KMO and other similarly challenging drug targets. Here, we report the development of a magnetic bead-based binding assay using mass spectrometry detection for human KMO protein. The assay incorporates isolation of FLAG-tagged KMO enzyme on protein A magnetic beads. The protein-bound beads are incubated with potential binding compounds before specific cleavage of the protein-compound complexes from the beads. Mass spectrometry analysis is used to identify the compounds that demonstrate specific binding affinity for the target protein. The technique was validated using known inhibitors of KMO. This assay is a robust alternative to traditional ligand-binding assays for challenging protein targets, and it overcomes specific difficulties associated with isolating human KMO. © 2014 Society for Laboratory Automation and Screening.

  1. Sequence-specific inhibition of Dicer measured with a force-based microarray for RNA ligands.

    Science.gov (United States)

    Limmer, Katja; Aschenbrenner, Daniela; Gaub, Hermann E

    2013-04-01

    Malfunction of protein translation causes many severe diseases, and suitable correction strategies may become the basis of effective therapies. One major regulatory element of protein translation is the nuclease Dicer that cuts double-stranded RNA independently of the sequence into pieces of 19-22 base pairs starting the RNA interference pathway and activating miRNAs. Inhibiting Dicer is not desirable owing to its multifunctional influence on the cell's gene regulation. Blocking specific RNA sequences by small-molecule binding, however, is a promising approach to affect the cell's condition in a controlled manner. A label-free assay for the screening of site-specific interference of small molecules with Dicer activity is thus needed. We used the Molecular Force Assay (MFA), recently developed in our lab, to measure the activity of Dicer. As a model system, we used an RNA sequence that forms an aptamer-binding site for paromomycin, a 615-dalton aminoglycoside. We show that Dicer activity is modulated as a function of concentration and incubation time: the addition of paromomycin leads to a decrease of Dicer activity according to the amount of ligand. The measured dissociation constant of paromomycin to its aptamer was found to agree well with literature values. The parallel format of the MFA allows a large-scale search and analysis for ligands for any RNA sequence.

  2. Synthesis and vibrational circular dichroism of enantiopure chiral oxorhenium(V) complexes containing the hydrotris(1-pyrazolyl)borate ligand

    DEFF Research Database (Denmark)

    Lassen, Peter Rygaard

    2006-01-01

    The infrared and vibrational circular dichroism (VCD) spectra of six chiral oxorhenium(V) complexes, bearing a hydrotris(1-pyrazolyl)borate (Tp) ligand, have been investigated. These complexes are promising candidates for observation of parity violation (symmetry breaking due to the weak nuclear...

  3. Dinuclear hexamethylbenzene ruthenium cations containing eta(1):eta(2)-2-(ferrocenyl)ethen-1-yl ligands: Synthesis, structure, electrochemistry

    Czech Academy of Sciences Publication Activity Database

    Tschan, M. J.-L.; Therrien, B.; Ludvík, Jiří; Štěpnička, P.; Süss-Fink, G.

    2006-01-01

    Roč. 691, č. 20 (2006), s. 4304-4311 ISSN 0022-328X Institutional research plan: CEZ:AV0Z40400503 Keywords : arene ligands * electrochemistry * ferrocene derivatives Subject RIV: CG - Electrochemistry Impact factor: 2.332, year: 2006

  4. Fluorescent-labeled ligands for the benzodiazepine receptor - Part 1 : Synthesis and characterization of fluorescent-labeled benzodiazepines

    NARCIS (Netherlands)

    Janssen, M.J; Hulst, A.J R L; Kellogg, R.M; Hendriks, M.M W B; Ensing, K; de Zeeuw, R.A

    Because radioactive labeled ligands in receptor assays have several disadvantages, we synthesized a number of fluorescent-labeled benzodiazepines. Several fluorophores were attached at different positions of 1,4-benzodiazepine molecules in order to assess the impact of the fluorophores and their

  5. Synthesis and evaluation structure/extracting and complexing properties of new bi-topic ligands for group actinides extraction

    International Nuclear Information System (INIS)

    Bisson, J.

    2011-01-01

    The aim of this project is to design and study new extractants for spent nuclear fuel reprocessing. To decrease the long-term radiotoxicity of the waste, the GANEX process is an option to homogeneously recycle actinides. All actinides (U, Np, Pu, Am, Cm) would be extracted together from a highly acidic media and separated from fission products (especially from lanthanides). In this context, fourteen new bi-topic ligands constituted of a nitrogen poly-aromatic unit from the dipyridyl-phenanthroline and dipyridyl-1,3,5-triazine families and functionalized by amid groups were synthesized. Extraction studies performed with some of these ligands confirmed their interest to selectively separate actinides at different oxidation states from an aqueous solution 3M HNO 3 . To determine the influence of ligands structure on cation complexation, a study in a homogenous media (MeOH/H 2 O) has been carried out. Electro-spray ionization mass spectrometry have been used to characterize the complexes stoichiometries formed with several cations (Eu 3+ , Nd 3+ , Am 3+ , Pu 4+ and NpO 2 + ). Stability constants, evaluated by UV-Visible spectrophotometry, confirm the selectivity of these ligands toward actinides. Lanthanides and actinides complexes have also been characterized in the solid state by infra-red spectroscopy and X-Ray diffraction. Associated to nuclear magnetic resonance experiments and DFT calculations (Density Functional Theory), a better knowledge of their coordination mode was achieved. (author) [fr

  6. Synthesis and luminescence properties of europium and terbium complexes with pyridine- or bipyridine-linked oligothiophene ligand

    International Nuclear Information System (INIS)

    Liu Ping; Huang Mingsheng; Pan Wanzhang; Zhang Yamin; Hu Jianhua; Deng Wenji

    2006-01-01

    With an aim to develop novel luminescence materials, europium and terbium complexes of 2,5-(2-thiophene)-pyridine (TPY) and 5,5'-bis(5-(2,2'-bithiophene))-2,2'-bipyridine (B2TBPY) were synthesized, and their luminescence properties studied. The complexes exhibit ligand-sensitized emission, which is typical of Eu(III) and Tb(III) ions

  7. Synthesis, photo-, and electrochemistry of ruthenium bis(bipyridine) complexes comprising a N-heterocyclic carbene ligand.

    Science.gov (United States)

    Leigh, Vivienne; Ghattas, Wadih; Lalrempuia, Ralte; Müller-Bunz, Helge; Pryce, Mary T; Albrecht, Martin

    2013-05-06

    Analogues of [Ru(bpy)3](2+) were prepared in which one pyridine ligand site is substituted by a N-heterocyclic carbene (NHC) ligand, that is, either by an imidazolylidene with a variable wingtip group R (R = Me, 3a; R = Et, 3b; R = iPr, 3c), or by a benzimidazolylidene (Me wingtip group, 3d), or by a 1,2,3-triazolylidene (Me wingtip group, 3e). All complexes were characterized spectroscopically, photophysically, and electrochemically. An increase of the size of the wingtip groups from Me to Et or iPr groups distorts the octahedral geometry (NMR spectroscopy) and curtails the reversibility of the ruthenium oxidation. NHC ligands with methyl wingtip groups display reversible ruthenium oxidation at a potential that reflects the donor properties of the NHC ligand (triazolylidene > imidazolylidene > benzimidazolylidene). The most attractive properties were measured for the triazolylidene ruthenium complex 3e, featuring the smallest gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) in the series (2.41 eV), a slightly red-shifted absorption profile, and reasonable excited-state lifetime (188 ns) when compared to [Ru(bpy)3](2+). These features demonstrate the potential utility of triazolylidene ruthenium complexes as photosensitizers for solar energy conversion.

  8. Synthesis, Characterization, and Antibacterial Studies of Mixed Ligand Dioxouranium Complexes with 8-Hydroxyquinoline and Some Amino Acids

    Science.gov (United States)

    Patil, Sunil S.; Thakur, Ganesh A.; Shaikh, Manzoor M.

    2011-01-01

    Mixed ligand complexes of dioxouranium (VI) of the type [UO2(Q)(L)·2H2O] have been synthesized using 8-hydroxyquinoline (HQ) as a primary ligand and amino acids (HL) such as L-threonine, L-tryptophan, and L-isoleucine as secondary ligands. The metal complexes have been characterized by elemental analysis, electrical conductance, magnetic susceptibility measurements, and spectral and thermal studies. The electrical conductance studies of the complexes indicate their nonelectrolytic nature. Magnetic susceptibility measurements revealed diamagnetic nature of the complexes. Electronic absorption spectra of the complexes show intraligand and charge transfer transitions, respectively. Bonding of the metal ion through N- and O-donor atoms of the ligands is revealed by IR studies, and the chemical environment of the protons is confirmed by NMR studies. The thermal analysis data of the complexes indicate the presence of coordinated water molecules. The agar cup and tube dilution methods have been used to study the antibacterial activity of the complexes against the pathogenic bacteria S. aureus, C. diphtheriae, S. typhi, and E. coli. PMID:22389843

  9. Studies of Some Lanthanide(III Nitrate Complexes of Schiff Base Ligands

    Directory of Open Access Journals (Sweden)

    Kishor Arora Mukesh Sharma

    2009-01-01

    Full Text Available The studies of 16 new lanthanide(III nitrate complexes of Schiff base ligands are discussed. Schiff bases were obtained by the condensation of 2–methyl–4–N,N–bis–2' –cyanoethyl aminobenzaldehyde with aniline and 3 different substituted anilines. Lanthanide(III nitrates, viz. gadolinium(III nitrate, lanthanum(III nitrate, samarium(III nitrate and cerium(III nitrate were chosen to synthesize new complexes. The complexes were characterized on the basis of physicochemical studies viz. elemental analysis, spectral, viz. IR and electronic spectral and magnetic studies. TGA studies of some of the representative complexes were also done. Some of the representative complexes were also screened for the anti microbial studies.

  10. Schiff Base Ligand Coated Gold Nanoparticles for the Chemical Sensing of Fe(III Ions

    Directory of Open Access Journals (Sweden)

    Abiola Azeez Jimoh

    2015-01-01

    Full Text Available New Schiff base-coated gold nanoparticles (AuNPs of type AuNP@L (where L: thiolated Schiff base ligand have been synthesized and characterized using various spectroscopic techniques. The AuNPs and AuNP@L were imaged by transmission electron microscopy (TEM and were confirmed to be well-dispersed, uniformly distributed, spherical nanoparticles with an average diameter of 8–10 nm. Their potential applications for chemosensing were investigated in UV-Vis and fluorescence spectroscopic studies. The AuNP@L exhibited selectivity for Fe3+ in an ethanol/water mixture (ratio 9 : 1 v/v. The absorption and emission spectral studies revealed a 1 : 1 binding mode for Fe3+, with binding constants of 8.5×105 and 2.9×105 M−1, respectively.

  11. Synthesis and characterisation of luminescent rhenium tricarbonyl complexes with axially coordinated 1,2,3-triazole ligands.

    Science.gov (United States)

    Uppal, Baljinder S; Booth, Rebecca K; Ali, Noreen; Lockwood, Cindy; Rice, Craig R; Elliott, Paul I P

    2011-08-07

    A series of 1-alkyl-4-aryl-1,2,3-triazoles (1-methyl-4-phenyl-1,2,3-triazole (1a); 1-propyl-4-phenyl-1,2,3-triazole (1b); 1-benzyl-4-phenyl-1,2,3-triazole (1c); 1-propyl-4-p-tolyl-1,2,3-triazole (1d)) have been prepared through a one-pot procedure involving in situ generation of the alkyl azide from a halide precursor followed by copper catalysed alkyne/azide cycloaddition (CuAAC) with the appropriate aryl alkyne. Cationic Re(I) complexes [Re(bpy)(CO)(3)(1a-d)]PF(6) (2a-d) were then prepared by stirring [Re(bpy)(CO)(3)Cl] with AgPF(6) in dichloromethane in the presence of ligands 1a-d. X-ray crystal structures were obtained for 2a and 2b. In the solid state, 2a adopts a highly distorted geometry, which is not seen for 2b, in which the plane of the triazole ligand tilts by 13° with respect to the Re-N bond as a result of a π-stacking interaction between the Ph substituent and one of the rings of the bpy ligand. This π-stacking interaction also results in severe twisting of the bpy ligand. Infrared spectra of 2a-d exhibit ν(CO) bands at ∼2035 and ∼1926 cm(-1) suggesting that these ligands are marginally better donors than pyridine (ν(CO) = 2037, 1932 cm(-1)). The complexes are luminescent in aerated dichloromethane at room temperature with emission maxima at 542 to 552 nm comparable to that of the pyridine analogue (549 nm) and blue shifted relative to the parent chloride complex. Long luminescent lifetimes are observed for the triazole complexes (475 to 513 ns) in aerated dichloromethane solutions at room temperature.

  12. Ruthenium(II) arene complexes with chelating chloroquine analogue ligands: Synthesis, characterization and in vitro antimalarial activity†

    Science.gov (United States)

    Glans, Lotta; Ehnbom, Andreas; de Kock, Carmen; Martínez, Alberto; Estrada, Jesús; Smith, Peter J.; Haukka, Matti; Sánchez-Delgado, Roberto A.; Nordlander, Ebbe

    2012-01-01

    Three new ruthenium complexes with bidentate chloroquine analogue ligands, [Ru(η6-cym)(L1)Cl]Cl (1, cym = p-cymene, L1 = N-(2-((pyridin-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine), [Ru(η6-cym)(L2)Cl]Cl (2, L2 = N-(2-((1-methyl-1H-imidazol-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine) and [Ru(η6-cym)(L3)Cl] (3, L3 = N-(2-((2-hydroxyphenyl)methylimino)ethyl)-7-chloroquinolin-4-amine) have been synthesized and characterized. In addition, the X-ray crystal structure of 2 is reported. The antimalarial activity of complexes 1–3 and ligands L1, L2 and L3, as well as the compound N-(2-(bis((pyridin-2-yl)methyl)amino)ethyl)-7-chloroquinolin-4-amine (L4), against chloroquine sensitive and chloroquine resistant Plasmodium falciparum malaria strains was evaluated. While 1 and 2 are less active than the corresponding ligands, 3 exhibits high antimalarial activity. The chloroquine analogue L2 also shows good activity against both the choloroquine sensitive and the chloroquine resistant strains. Heme aggregation inhibition activity (HAIA) at an aqueous buffer/n-octanol interface (HAIR50) and lipophilicity (D, as measured by water/n-octanol distribution coefficients) have been measured for all ligands and metal complexes. A direct correlation between the D and HAIR50 properties cannot be made because of the relative structural diversity of the complexes, but it may be noted that these properties are enhanced upon complexation of the inactive ligand L3 to ruthenium, to give a metal complex (3) with promising antimalarial activity. PMID:22249579

  13. Custom Coordination Environments for Lanthanoids: Tripodal Ligands Achieve Near-Perfect Octahedral Coordination for Two Dysprosium-Based Molecular Nanomagnets.

    Science.gov (United States)

    Lim, Kwang Soo; Baldoví, José J; Jiang, ShangDa; Koo, Bong Ho; Kang, Dong Won; Lee, Woo Ram; Koh, Eui Kwan; Gaita-Ariño, Alejandro; Coronado, Eugenio; Slota, Michael; Bogani, Lapo; Hong, Chang Seop

    2017-05-01

    Controlling the coordination sphere of lanthanoid complexes is a challenging critical step toward controlling their relaxation properties. Here we present the synthesis of hexacoordinated dysprosium single-molecule magnets, where tripodal ligands achieve a near-perfect octahedral coordination. We perform a complete experimental and theoretical investigation of their magnetic properties, including a full single-crystal magnetic anisotropy analysis. The combination of electrostatic and crystal-field computational tools (SIMPRE and CONDON codes) allows us to explain the static behavior of these systems in detail.

  14. Site Identification by Ligand Competitive Saturation (SILCS) simulations for fragment-based drug design.

    Science.gov (United States)

    Faller, Christina E; Raman, E Prabhu; MacKerell, Alexander D; Guvench, Olgun

    2015-01-01

    Fragment-based drug design (FBDD) involves screening low molecular weight molecules ("fragments") that correspond to functional groups found in larger drug-like molecules to determine their binding to target proteins or nucleic acids. Based on the principle of thermodynamic additivity, two fragments that bind nonoverlapping nearby sites on the target can be combined to yield a new molecule whose binding free energy is the sum of those of the fragments. Experimental FBDD approaches, like NMR and X-ray crystallography, have proven very useful but can be expensive in terms of time, materials, and labor. Accordingly, a variety of computational FBDD approaches have been developed that provide different levels of detail and accuracy.The Site Identification by Ligand Competitive Saturation (SILCS) method of computational FBDD uses all-atom explicit-solvent molecular dynamics (MD) simulations to identify fragment binding. The target is "soaked" in an aqueous solution with multiple fragments having different identities. The resulting computational competition assay reveals what small molecule types are most likely to bind which regions of the target. From SILCS simulations, 3D probability maps of fragment binding called "FragMaps" can be produced. Based on the probabilities relative to bulk, SILCS FragMaps can be used to determine "Grid Free Energies (GFEs)," which provide per-atom contributions to fragment binding affinities. For essentially no additional computational overhead relative to the production of the FragMaps, GFEs can be used to compute Ligand Grid Free Energies (LGFEs) for arbitrarily complex molecules, and these LGFEs can be used to rank-order the molecules in accordance with binding affinities.

  15. Physico-chemical characterization of mixed-ligand complexes of Mn(III based on the acetylacetonate and maleic acid and its hydroxylamine derivative

    Directory of Open Access Journals (Sweden)

    Cakić Suzana M.

    2005-01-01

    Full Text Available Two new Mn(III mixed-ligand complexes with two acetylacetonate (acac ligands and one maleate ligand and its hydroxylamine derivative of the general formula [Mn(C5H7O22L] were prepared. Their structure was established by using elemental analysis, FTIR and UV/VIS spectroscopic methods, as well as magnetic measurement. Replacement of the acetylacetonate ligand by the corresponding acid ligand has been confirmed in Mn(III acetylacetonate. Based on the obtained experimental data and literature indications, structural formulae to these compounds were assigned.

  16. Oxygenated base chemicals from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Roeper, M.

    1984-11-01

    Methyl formate, a syngas based intermediate, is already today produced on large scale by base catalyzed methanol carbonylation. An alternative synthesis, based on methanol dehydrogenation, seems to be ready for commercialization, whereas other routes including direct carbon monoxide hydrogenation, formaldehyde disproportionation or methanol oxydehydrogenation are less advanced. Besides being used as a solvent or an insect control agent, methyl formate serves as a feedstock for e.g. formic acid, formamide, N,N-dimethylformamide, and N-formyl morpholine. Newer formic acid processes are based on direct hydrolysis of methyl formate, and appear to replace the traditional indirect formamide based route. Future use of methyl formate could include the production of pure carbon monoxide, methanol, dimethyl carbonate, diphosgene, ethylene glycol via methyl glycolate, acetic acid, and methyl propionate. All these processes either avoid the use of high purity carbon monoxide or proceed under milder conditions than conventional routes. They could gain interest, if syngas and methanol become available at a large scale as competitive feedstocks for the chemical industry.

  17. PATTERN BASED DETECTION OF POTENTIALLY DRUGGABLE BINDING SITES BY LIGAND SCREENING

    Directory of Open Access Journals (Sweden)

    Uttam Pal

    2018-03-01

    Full Text Available This article describes an innovative way of finding the potentially druggable sites on a target protein, which can be used for orthosteric and allosteric lead detection in a single virtual screening setup. Druggability estimation for an alternate binding site other than the canonical ligand-binding pocket of an enzyme is rewarding for several inherent benefits. Allostery is a direct and efficient way of regulating biomacromolecule function. The allosteric modulators can fine-tune protein mechanics. Besides, allosteric sites are evolutionarily less conserved/more diverse even in very similarly related proteins, thus, provides high degree of specificity in targeting a particular protein. Therefore, targeting of allosteric sites is gaining attention as an emerging strategy in rational drug design. However, the experimental approaches provide a limited degree of characterization of new allosteric sites. Computational approaches are useful to analyze and select potential allosteric sites for drug discovery. Here, the use of molecular docking, which has become an integral part of the drug discovery process, has been discussed to predict the druggability of novel allosteric sites as well as the active site on target proteins by ligand screening. Genetic algorithm was used for docking and the whole protein was placed in the search space. For each ligand in the library of small molecules, the genetic algorithm was run for multiple times to populate all the druggable sites in the target protein, which was then translated into two dimensional density maps or “patterns”. High density clusters were observed for lead like molecules in these pattern diagrams. Each cluster in such a pattern diagram indicated a plausible binding site and the density gave its druggability score in terms of weighted probabilities. The patterns were filtered to find the leads for each of the druggable sites on the target protein. Such a novel pattern based analysis of the

  18. The ligand-to-metal energy transfer and the role of Lewis base ligands and silver plasmons in emission of new type of lanthanide phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Gawryszewska, Paula [Faculty of Chemistry, University of Wroclaw, 14F. Joliot-Curie Street, 50-383 Wroclaw (Poland); Amirkhanov, Vladimir M.; Trush, Victor A. [Department of Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska Street 64, Kyiv 01601 (Ukraine); Kulesza, Dagmara [Faculty of Chemistry, University of Wroclaw, 14F. Joliot-Curie Street, 50-383 Wroclaw (Poland); Legendziewicz, Janina, E-mail: janina.legendziewicz@chem.uni.wroc.pl [Faculty of Chemistry, University of Wroclaw, 14F. Joliot-Curie Street, 50-383 Wroclaw (Poland)

    2016-02-15

    Two types of new Ln{sup 3+} chelates, phosphoro- and sulfono-derivatives of beta-diketones and Lewis base ligands were obtained and characterized by the high resolution photoluminescence spectroscopy at 293 and 77 as well as by luminescence decay times. The new type of phosphors shows very strong emission after excitation in the UV range within the ligand bands. The dynamics of the excited state will be discussed. The paths of the energy transfer (ET) are analyzed and mechanism of this process is proposed. The silica gels containing investigated complexes with silver particles were obtained and the role of silver plasmons on spectroscopic properties is displayed. - Highlights: • Spectral characteristic of new type of lanthanide chelates: Na[Ln(SP){sub 4}] and [Ln(SP){sub 3}L]. • Preparation of the energy-transfer (E-T) diagram. • Analysis of the possible pathways of energy transfer and their mechanism. • Application of chelates incorporated in sol–gel codoped by Ag particles.

  19. Synthesis, spectroscopic characterization, electrochemistry and biological evaluation of some metal (II) complexes with ONO donor ligand containing benzo[b]thiophene and coumarin moieties

    Science.gov (United States)

    Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.

    2014-09-01

    Schiff base ligand 3-chloro-N‧-((7-hydroxy-4-methyl-2-oxo-2H-chromen-8-yl)methylene)benzo[b]thiophene-2-carbohydrazide and its Cu(II), Co(II), Ni(II) and Zn(II) complexes were synthesized, characterized by elemental analysis and various physico-chemical techniques like, IR, 1H NMR, ESI-mass, UV-Visible, thermogravimetry - differential thermal analysis, magnetic measurements and molar conductance. Spectral analysis indicates octahedral geometry for all the complexes. Cu(II) complex have 1:1 stoichiometry of the type [M(L)(Cl)(H2O)2], whereas Co(II), Ni(II) and Zn(II) complexes have 1:2 stoichiometric ratio of the type [M(L)2]. The bonding sites are the oxygen atom of amide carbonyl, nitrogen of azomethine function and phenolic oxygen of the Schiff base ligand via deprotonation. The thermogravimetry - differential thermal analysis studies gave evidence for the presence of coordinated water molecules in the composition of Cu(II) complex which was further supported by IR measurements. All the complexes were investigated for their electrochemical activity, but only the Cu(II) complex showed the redox property. In order to evaluate the effect of antimicrobial potency of metal ions upon chelation, ligand and its metal complexes along with their respective metal chlorides were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligand. Ligand and its complexes were screened for free radical scavenging activity by DPPH method and DNA cleavage activity using Calf-thymus DNA (Cat. No-105850).

  20. Synthesis and Spectroscopic Studies of Mixed Ligand Complexes of Pt(II and Pd(II with Ethyl-α-Isonitrosoacetoacetate and Dienes

    Directory of Open Access Journals (Sweden)

    Anita Krishankant Taksande

    2015-12-01

    Full Text Available The mixed ligand complexes of the kind [M(L1 (L2] where M= Pt(II, Pd(II.L1 = primary ligand ethyl-α-isonitrosoacetoacetate derived from reaction between ethyl acetoacetate, acetic acid and sodium nitrite and L2=secondary ligand para-phenyldiamine (PPD are synthesized. All the prepared complexes were identified and confirmed by elemental analysis, molar conductance measurements, and infrared electronic absorption. Their complexes has been made based on elemental analysis, molar conductivity, UV-Vis, FT-IR and 1HNMR spectroscopy and magnetic moment measurements as well as thermal analysis (TGA and DTA. The elemental analysis information recommends that the stoichiometry of the complexes to be 1:2:1. The molar conductance measurements of the complexes indicate their non-electrolytic nature. The infrared spectral information showed the coordination sites of the free ligand with the central metal particle. The electronic absorption spectral information disclosed the existence of an octahedral geometry for Pt(II and Pd(II complexes. DOI: http://dx.doi.org/10.17807/orbital.v7i4.633 

  1. Synthesis, spectral, thermal and antimicrobial studies on cobalt(II), nickel(II), copper(II), zinc(II) and palladium(II) complexes containing thiosemicarbazone ligand

    Science.gov (United States)

    El-Sawaf, Ayman K.; El-Essawy, Farag; Nassar, Amal A.; El-Samanody, El-Sayed A.

    2018-04-01

    The coordination characteristic of new N4-morpholinyl isatin-3-thiosemicarbazone (HL) towards Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) has been studies. The structures of the complexes were described by elemental analyses, molar conductivity, magnetic, thermal and spectral (IR, UV-Vis, 1H and 13C NMR and ESR) studies. On the basis of analytical and spectral studies the ligand behaves as monobasic tridentate ONS donor forming two five membered rings towards cobalt, copper and palladium and afforded complexes of the kind [M(L)X], (Mdbnd Co, Cu or Pd; Xdbnd Cl, Br or OAc). Whereas the ligand bound to NiCl2 as neutral tridentate ONS donor and with ZnCl2 as neutral bidentate NS donor. The newly synthesized thiosemicarbazone ligand and some of its complexes were examined for antimicrobial activity against 2 gram negative bacterial strains (Escherichia coli Pseudomonas and aeruginosa), 2 gram positive bacterial strains (Streptococcus pneumoniae and Staphylococcus aureus)} and two Pathogenic fungi (Aspergillus fumigatus and Candida albicans). All metal complexes possess higher antimicrobial activity comparing with the free thiosemicarbazone ligand. The high potent activities of the complexes may arise from the coordination and chelation, which tends to make metal complexes act as more controlling and potent antimicrobial agents, thus hindering the growing of the microorganisms. The antimicrobial results also show that copper bromide complex is better antimicrobial agent as compared to the Schiff base and its metal complexes.

  2. The Development of Target-Specific Pose Filter Ensembles To Boost Ligand Enrichment for Structure-Based Virtual Screening.

    Science.gov (United States)

    Xia, Jie; Hsieh, Jui-Hua; Hu, Huabin; Wu, Song; Wang, Xiang Simon

    2017-06-26

    Structure-based virtual screening (SBVS) has become an indispensable technique for hit identification at the early stage of drug discovery. However, the accuracy of current scoring functions is not high enough to confer success to every target and thus remains to be improved. Previously, we had developed binary pose filters (PFs) using knowledge derived from the protein-ligand interface of a single X-ray structure of a specific target. This novel approach had been validated as an effective way to improve ligand enrichment. Continuing from it, in the present work we attempted to incorporate knowledge collected from diverse protein-ligand interfaces of multiple crystal structures of the same target to build PF ensembles (PFEs). Toward this end, we first constructed a comprehensive data set to meet the requirements of ensemble modeling and validation. This set contains 10 diverse targets, 118 well-prepared X-ray structures of protein-ligand complexes, and large benchmarking actives/decoys sets. Notably, we designed a unique workflow of two-layer classifiers based on the concept of ensemble learning and applied it to the construction of PFEs for all of the targets. Through extensive benchmarking studies, we demonstrated that (1) coupling PFE with Chemgauss4 significantly improves the early enrichment of Chemgauss4 itself and (2) PFEs show greater consistency in boosting early enrichment and larger overall enrichment than our prior PFs. In addition, we analyzed the pairwise topological similarities among cognate ligands used to construct PFEs and found that it is the higher chemical diversity of the cognate ligands that leads to the improved performance of PFEs. Taken together, the results so far prove that the incorporation of knowledge from diverse protein-ligand interfaces by ensemble modeling is able to enhance the screening competence of SBVS scoring functions.

  3. Antibacterial activity of Pd(II) complexes with salicylaldehyde-amino acids Schiff bases ligands.

    Science.gov (United States)

    Rîmbu, Cristina; Danac, Ramona; Pui, Aurel

    2014-01-01

    Palladium(II) complexes with Schiff bases ligands derived from salicylaldehyde and amino acids (Ala, Gly, Met, Ser, Val) have been synthesized and characterized by Fourier transform (FT)-IR, UV-Vis and (1)H-NMR spectroscopy. The electrospray mass spectrometry (ES-MS) spectrometry confirms the formation of palladium(II) complexes in 1/2 (M/L) molar ratio. All the Pd(II) complexes 1, [Pd(SalAla)2]Cl2; 2, [Pd(SalGly)2]Cl2; 3, [Pd(SalMet)2]Cl2; 4, [Pd(SalSer)2]Cl2; 5, [Pd(SalVal)2]Cl2; have shown antibacterial activity against Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli.

  4. Direct versus ligand-exchange synthesis of [PtAg28(BDT)12(TPP)4]4− nanoclusters: effect of a single-atom dopant on the optoelectronic and chemical properties

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa; Kozlov, Sergey M.; Cao, Zhen; Harb, Moussab; Parida, Manas R.; Hedhili, Mohamed N.; Mohammed, Omar F.; Bakr, Osman; Cavallo, Luigi; Basset, Jean-Marie

    2017-01-01

    to offer monodisperse doped NCs. For instance, the direct synthesis of PtAg28 NCs produces a mixture of [Ag29(BDT)12(TPP)4]3- and [PtAg28(BDT)12(TPP)4]4- NCs (TPP: triphenylphosphine; BDT: 1,3-benzenedithiolate). Here, we designed a ligand-exchange (LE

  5. Synthesis and electrochemical study of iron, chromium and tungsten aminocarbenes: Role of ligand structure and central metal nature

    Energy Technology Data Exchange (ETDEWEB)

    Hoskovcova, Irena [Department of Inorganic Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Rohacova, Jana; Dvorak, Dalimil; Tobrman, Tomas [Department of Organic Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Zalis, Stanislav [J. Heyrovsky Institute of Physical Chemistry, Academy of Science of the Czech Republic, Dolejskova 3, 182 23 Prague 8 (Czech Republic); Zverinova, Radka [Department of Inorganic Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); J. Heyrovsky Institute of Physical Chemistry, Academy of Science of the Czech Republic, Dolejskova 3, 182 23 Prague 8 (Czech Republic); Ludvik, Jiri, E-mail: jiri.ludvik@jh-inst.cas.c [J. Heyrovsky Institute of Physical Chemistry, Academy of Science of the Czech Republic, Dolejskova 3, 182 23 Prague 8 (Czech Republic)

    2010-11-30

    Several series of Fischer-type aminocarbene complexes with central Fe, Cr or W atoms and with various carbene substitution were synthesized and electrochemically investigated by dc-polarography and cyclic voltammetry. The shifts and changes of reduction and oxidation potentials were evaluated using the linear free energy relationship (LFER) approach with respect to (a) the type of coordination, (b) the substitution on the carbene ligand and (c) the nature of the central metal atom. The analysis of measured data confirms that the reduction center is localized on the carbene moiety and is strongly influenced by both electronic and sterical properties of its substituents. The oxidation proceeds on the metal and depends mainly on its nature and on the {pi}-acidity of the ligands. Electrochemistry thus represents an important experimental approach to the description and understanding of the molecular electronic structure and redox properties. Experimental results are supported by DFT calculation of HOMO and LUMO orbitals shape and composition.

  6. Synthesis of imine bond containing insoluble polymeric ligand and its transition metal complexes, structural characterization and catalytic activity on esterification reaction.

    Science.gov (United States)

    Gönül, İlyas; Ay, Burak; Karaca, Serkan; Saribiyik, Oguz Yunus; Yildiz, Emel; Serin, Selahattin

    2017-01-01

    In this study, synthesis of insoluble polymeric ligand (L) and its transition metal complexes [Cu(L)Cl 2 ]·2H 2 O (1) , [Co(L)Cl 2 (H 2 O) 2 ] (2) and [Ni(L)Cl 2 (H 2 O) 2 ] (3) , having the azomethine groups, were synthesized by the condensation reactions of the diamines and dialdehydes. The structural properties were characterized by the analytical and spectroscopic methods using by elemental analysis, Fourier Transform Infrared, Thermo Gravimetric Analysis, Powder X-ray Diffraction, magnetic susceptibility and Inductively Coupled Plasma. The solubilities of the synthesized polymeric materials were also investigated and found as insoluble some organic and inorganic solvents. Additionally, their catalytic performance was carried out for the esterification reaction of acetic acid and butyl acetate. The highest conversion rate is 75.75% by using catalyst 1 . The esterification of butanol gave butyl acetate with 100% selectivity.

  7. Design, synthesis and evaluation of 4,7-diamino-1,10-phenanthroline G-quadruplex ligands

    DEFF Research Database (Denmark)

    Nielsen, Mads Corvinius; Borch, Jonas; Ulven, Trond

    2009-01-01

    the central ionic column. Introduction of positively charged side chains results in compounds with appreciable G-quadruplex stabilizing properties and high aqueous solubility, with the longer side chains giving more potent compounds. Ligands carrying guanidine side chains in general show higher quadruplex...... stabilizing activity and distinctly slower kinetic properties than their amino and dimethylamino analogues, possibly due to specific hydrogen bond interactions with the G-quadruplex loops....

  8. Synthesis and evaluation of 17 alpha-(carboranylalkyl)estradiols as ligands for estrogen receptors alpha and beta

    Czech Academy of Sciences Publication Activity Database

    Sedlák, David; Eignerová, Barbara; Dračínský, Martin; Janoušek, Zbyněk; Bartůněk, Petr; Kotora, Martin

    2013-01-01

    Roč. 747, 1.12.2013 (2013), s. 178-183 ISSN 0022-328X R&D Projects: GA MŠk(CZ) LC06070; GA MŠk(CZ) LC06077; GA MŠk LM2011022; GA ČR GA204/09/1905 Institutional support: RVO:68378050 ; RVO:61388963 Keywords : carborane * estradiol * metathesis * estrogen receptor * steroid ligand Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.302, year: 2013

  9. SYNTHESIS OF CHIRAL BINAPHTHYL CROWN ETHERS AND THEIR USE IN ANIONIC POLYMERIZATION OF METHYL METHACRYLATE AS INITIATOR LIGANDS

    Institute of Scientific and Technical Information of China (English)

    Hong-wei Liu; Chuan-fu Chen; Fu Xi

    2004-01-01

    Some chiral binaphthyl crown ethers were synthesized. The anionic polymerization of methyl methacrylate (MMA) was carried out in the presence of t-BuOK, Ph2CHK or Ph2CHNa (RM), and RM coordination initiator by using chiral binaphthyl crown ethers as ligands, respectively. The results showed that in the former case the PMMA obtained has mainly isotactic structure but without optical activity, while in the later case the PMMA produced predominately has syndiotactic suucture also without optical activity.

  10. Synthesis and characterization of mixed ligand Cu(II) complexes of salicylic acid derivatives with 2-aminobenzotiyazol derivatives

    OpenAIRE

    İlkimen, Halil; Yenikaya, Cengiz

    2018-01-01

    In thisstudy, mixed ligand transitionmetal complexes of Cu(II)have been prepared between salicylic acid derivatives [salicylic acid (H2sal) or acetylsalicylic acid (Hasal)] and 2-aminobenzothiazole derivatives[2-aminobenzothiazole (abt) or 2-amino-6-chlorobenzothiazole (Clabt) or2-amino-6-methylbenzothiazole (Meabt)]. The structures of amorphous metalcomplexes have been proposed by evaluating the data obtained from elementalanalysis, ICP-OES, FT-IR, UV-Vis, thermal analysis, magnetic suscepti...

  11. Synthesis of mixed-ligand cobalt complexes and their applications in high cis-1,4-selective butadiene polymerization

    KAUST Repository

    Liu, Wen

    2015-08-03

    Incomplete oxidation of (N-di-tert-butylphosphino)-6-(2-methyl-2’H-benzoimidazole)-2-aminepyridine dichlorocobalt (PN3CoCl2) in DMF results in a unique co-crystal I formed with three parts including DMF, unit A and unit B complex with Co1 and Co2, respectively, (PN3 ligand in unit A: (N-di-tert-butylphosphino)-6-(2’-methyl-2’H-benzoimidazole)-2-aminepyridine, and O=PN3 ligand in unit B: (N-di-tert-butylphosphinoxide)-6-(2’-methyl-2’H-benzoimidazole)-2-aminepyridine) with 1:1:1 molar ratio. Co1 and Co2 complexes both display a five-coordinated distorted-square-pyramidal geometry around the metal center. The Co1 center is coordinated with PN3 ligand via two N atoms from pyridine, benzoimidazole moiety as well as one P atom, and the Co2 center is coordinated with the oxidized ligandO=PN3 via two N atoms from pyridine, benzoimidazole moiety as well as one O atom from DMF molecule, while the oxidized phosphine moiety (O=P) being excluded from the coordination sphere. Activated with AlEt2Cl, the co-crystallized complexes I are able to actively convert butadiene to polybutadiene, affording cis-1,4 polybutadiene with cis-1,4 unit up to 95.5-97.8% and number average molecular weight of cal. 105g/mol. The high cis-1,4 selectivity and monomodal GPC curve of resultant polymer imply that the identical active species generated from two distinctive cobalt centers.

  12. Synthesis of mixed-ligand cobalt complexes and their applications in high cis-1,4-selective butadiene polymerization

    KAUST Repository

    Liu, Wen; Pan, Weijing; Wang, Peng; Li, Wei; Mu, Jingshan; Weng, Gengsheng; Jia, Xiaoyu; Gong, Dirong; Huang, Kuo-Wei

    2015-01-01

    Incomplete oxidation of (N-di-tert-butylphosphino)-6-(2-methyl-2’H-benzoimidazole)-2-aminepyridine dichlorocobalt (PN3CoCl2) in DMF results in a unique co-crystal I formed with three parts including DMF, unit A and unit B complex with Co1 and Co2, respectively, (PN3 ligand in unit A: (N-di-tert-butylphosphino)-6-(2’-methyl-2’H-benzoimidazole)-2-aminepyridine, and O=PN3 ligand in unit B: (N-di-tert-butylphosphinoxide)-6-(2’-methyl-2’H-benzoimidazole)-2-aminepyridine) with 1:1:1 molar ratio. Co1 and Co2 complexes both display a five-coordinated distorted-square-pyramidal geometry around the metal center. The Co1 center is coordinated with PN3 ligand via two N atoms from pyridine, benzoimidazole moiety as well as one P atom, and the Co2 center is coordinated with the oxidized ligandO=PN3 via two N atoms from pyridine, benzoimidazole moiety as well as one O atom from DMF molecule, while the oxidized phosphine moiety (O=P) being excluded from the coordination sphere. Activated with AlEt2Cl, the co-crystallized complexes I are able to actively convert butadiene to polybutadiene, affording cis-1,4 polybutadiene with cis-1,4 unit up to 95.5-97.8% and number average molecular weight of cal. 105g/mol. The high cis-1,4 selectivity and monomodal GPC curve of resultant polymer imply that the identical active species generated from two distinctive cobalt centers.

  13. Novel multi-target-directed ligands for Alzheimer's disease: Combining cholinesterase inhibitors and 5-HT6 receptor antagonists. Design, synthesis and biological evaluation.

    Science.gov (United States)

    Więckowska, Anna; Kołaczkowski, Marcin; Bucki, Adam; Godyń, Justyna; Marcinkowska, Monika; Więckowski, Krzysztof; Zaręba, Paula; Siwek, Agata; Kazek, Grzegorz; Głuch-Lutwin, Monika; Mierzejewski, Paweł; Bienkowski, Przemysław; Sienkiewicz-Jarosz, Halina; Knez, Damijan; Wichur, Tomasz; Gobec, Stanislav; Malawska, Barbara

    2016-11-29

    As currently postulated, a complex treatment may be key to an effective therapy for Alzheimer's disease (AD). Recent clinical trials in patients with moderate AD have shown a superior effect of the combination therapy of donepezil (a selective acetylcholinesterase inhibitor) with idalopirdine (a 5-HT 6 receptor antagonist) over monotherapy with donepezil. Here, we present the first report on the design, synthesis and biological evaluation of a novel class of multifunctional ligands that combines a 5-HT 6 receptor antagonist with a cholinesterase inhibitor. Novel multi-target-directed ligands (MTDLs) were designed by combining pharmacophores directed against the 5-HT 6 receptor (1-(phenylsulfonyl)-4-(piperazin-1-yl)-1H-indole) and cholinesterases (tacrine or N-benzylpiperidine analogues). In vitro evaluation led to the identification of tacrine derivative 12 with well-balanced potencies against the 5-HT 6 receptor (K b  = 27 nM), acetylcholinesterase and butyrylcholinesterase (IC 50 hAChE  = 12 nM, IC 50 hBuChE  = 29 nM). The compound also showed good in vitro blood-brain-barrier permeability (PAMPA-BBB assay), which was confirmed in vivo (open field study). Central cholinomimetic activity was confirmed in vivo in rats using a scopolamine-induced hyperlocomotion model. A novel class of multifunctional ligands with compound 12 as the best derivative in a series represents an excellent starting point for the further development of an effective treatment for AD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Zinc(II) halide complexes with 2-methoxyaniline ligand: Synthesis, characterization, thermal analyses, crystal structure determination and luminescent properties

    Science.gov (United States)

    Amani, Vahid

    2018-03-01

    Three new mononuclear zinc(II) complexes, [Zn(2-MeO-C6H4NH2)2X2] (X is Cl in 1, Br in 2 and I in 3), were prepared from the reactions of ZnX2 with 2-methoxyaniline (2-MeO-C6H4NH2) ligand in methanol. Suitable crystals of these complexes were obtained for X-ray diffraction measurements by slow evaporation of methanol solution at room temperature. The three complexes were thoroughly characterized by thermogravimetric analysis, elemental analysis (CHNO), spectral methods (IR, UV-Vis, 13C{1H}NMR, 1H NMR and luminescence), and single crystal X-ray diffraction. The X-ray structural analysis indicated that in the structures of these complexes, the zinc(II) cation is four-coordinated in a distorted tetrahedral configuration by two N atoms from two 2-methoxyanyline ligands and two halide anions. Also, in these complexes intermolecular interactions, for example Nsbnd H⋯X hydrogen bonds (in 1-3), Csbnd H⋯X hydrogen bonds (in 3), Csbnd H⋯π interactions (in 1 and 2) and π⋯π interactions (in 3), are effective in the stabilization of the crystal structures. In addition, the luminescence spectra of all complexes in methanolic solution show that the intensity of their emission bands is stronger than that for free 2-methoxyaniline ligand.

  15. Severe Acute Respiratory Syndrome-Coronavirus Papain-Like Novel Protease Inhibitors: Design, Synthesis, Protein-Ligand X-ray Structure and Biological Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Arun K.; Takayama, Jun; Rao, Kalapala Venkateswar; Ratia, Kiira; Chaudhuri, Rima; Mulhearn, Debbie C.; Lee, Hyun; Nichols, Daniel B.; Baliji, Surendranath; Baker, Susan C.; Johnson, Michael E.; Mesecar, Andrew D. (Purdue); (UC); (UIC)

    2012-02-21

    The design, synthesis, X-ray crystal structure, molecular modeling, and biological evaluation of a series of new generation SARS-CoV PLpro inhibitors are described. A new lead compound 3 (6577871) was identified via high-throughput screening of a diverse chemical library. Subsequently, we carried out lead optimization and structure-activity studies to provide a series of improved inhibitors that show potent PLpro inhibition and antiviral activity against SARS-CoV infected Vero E6 cells. Interestingly, the (S)-Me inhibitor 15h (enzyme IC{sub 50} = 0.56 {mu}M; antiviral EC{sub 50} = 9.1 {mu}M) and the corresponding (R)-Me 15g (IC{sub 50} = 0.32 {mu}M; antiviral EC{sub 50} = 9.1 {mu}M) are the most potent compounds in this series, with nearly equivalent enzymatic inhibition and antiviral activity. A protein-ligand X-ray structure of 15g-bound SARS-CoV PLpro and a corresponding model of 15h docked to PLpro provide intriguing molecular insight into the ligand-binding site interactions.

  16. Antioxidant, electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff base ligands and their metal complexes

    Science.gov (United States)

    Ceyhan, Gökhan; Çelik, Cumali; Uruş, Serhan; Demirtaş, İbrahim; Elmastaş, Mahfuz; Tümer, Mehmet

    2011-10-01

    In this study, two Schiff base ligands (HL 1 and HL 2) and their Cu(II), Co(II), Ni(II), Pd(II) and Ru(III) metal complexes were synthesized and characterized by the analytical and spectroscopic methods. Alkane oxidation activities of the metal complexes were studied on cyclohexane as substrate. The ligands and their metal complexes were evaluated for their antimicrobial activity against Corynebacterium xerosis, Bacillus brevis, Bacillus megaterium, Bacillus cereus, Mycobacterium smegmatis, Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis (as Gram-positive bacteria) and Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Yersinia enterocolitica, Klebsiella fragilis, Saccharomyces cerevisiae, and Candida albicans (as Gram-negative bacteria). The antioxidant properties of the Schiff base ligands were evaluated in a series of in vitro tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH rad ) free radical scavenging and reducing power activity of superoxide anion radical generated non-enzymatic systems. Electrochemical and thermal properties of the compounds were investigated.

  17. Synthesis, crystal structures, and luminescent properties of Cd(II) coordination polymers assembled from semi-rigid multi-dentate N-containing ligand

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Gang; Shao, Kui-Zhan; Chen, Lei; Liu, Xin-Xin [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Su, Zhong-Min, E-mail: zmsu@nenu.edu.cn [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Ma, Jian-Fang [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China)

    2012-12-15

    Three new polymers, [Cd(L){sub 2}(H{sub 2}O){sub 2}]{sub n} (1), [Cd{sub 3}(L){sub 2}({mu}{sub 3}-OH){sub 2}({mu}{sub 2}-Cl){sub 2}(H{sub 2}O){sub 2}]{sub n} (2), {l_brace}[Cd{sub 2}(L){sub 2}(nic){sub 2}(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O{r_brace}{sub n} (3) (HL=5-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-1H-tetrazole, Hnic=nicotinic acid) have been prepared and structurally characterized. Compounds 1 and 2 display 2D monomolecular layers built by the inter-linking single helical chains and L{sup -} ligands connecting chain-like [Cd({mu}{sub 3}-OH)({mu}{sub 2}-Cl)]{sub n} secondary building units, respectively. Compound 3 is constructed from the mixed ligands and possesses a (3,4)-connected framework with (4{center_dot}8{sup 2})(4{center_dot}8{sup 2}{center_dot}10{sup 3}) topology. Moreover, the fluorescent properties of HL ligand and compounds 1-3 are also been investigated. - Graphical abstract: Three new coordination polymers based on the semi-rigid multidentate N-donor ligand have been successfully synthesized by hydrothermal reaction. Complexes 1 and 2 exhibit the 2D layers formed by inter-linking single helices and L{sup -} anions bridging 1D chain-like SBUs, respectively. Complex 3 is buit by L{sup -} and assistant nic{sup -} ligands connecting metal centers and possesses a (3,4)-connected framework with (4 Multiplication-Sign 8{sup 2})(4 Multiplication-Sign 8{sup 2} Multiplication-Sign 10{sup 3}) topology. Moreover, these complexes display fluorescent properties indicating that they may have potential applications as optical materials. Highlights: Black-Right-Pointing-Pointer Three Cd-compounds were prepared from semi-rigid HL ligand with different N-containing groups. Black-Right-Pointing-Pointer They exhibit diverse structures from 2D monomolecular layer to 3D covalent framework. Black-Right-Pointing-Pointer The HL ligands displayed various coordination modes under different reaction conditions. Black-Right-Pointing-Pointer These compounds exhibit

  18. Glucose Synthesis in a Protein-Based Artificial Photosynthesis System.

    Science.gov (United States)

    Lu, Hao; Yuan, Wenqiao; Zhou, Jack; Chong, Parkson Lee-Gau

    2015-09-01

    The objective of this study was to understand glucose synthesis of a protein-based artificial photosynthesis system affected by operating conditions, including the concentrations of reactants, reaction temperature, and illumination. Results from non-vesicle-based glyceraldehyde-3-phosphate (GAP) and glucose synthesis showed that the initial concentrations of ribulose-1,5-bisphosphate (RuBP) and adenosine triphosphate (ATP), lighting source, and temperature significantly affected glucose synthesis. Higher initial concentrations of RuBP and ATP significantly enhanced GAP synthesis, which was linearly correlated to glucose synthesis, confirming the proper functions of all catalyzing enzymes in the system. White fluorescent light inhibited artificial photosynthesis and reduced glucose synthesis by 79.2 % compared to in the dark. The reaction temperature of 40 °C was optimum, whereas lower or higher temperature reduced glucose synthesis. Glucose synthesis in the vesicle-based artificial photosynthesis system reconstituted with bacteriorhodopsin, F 0 F 1 ATP synthase, and polydimethylsiloxane-methyloxazoline-polydimethylsiloxane triblock copolymer was successfully demonstrated. This system efficiently utilized light-induced ATP to drive glucose synthesis, and 5.2 μg ml(-1) glucose was synthesized in 0.78-ml reaction buffer in 7 h. Light-dependent reactions were found to be the bottleneck of the studied artificial photosynthesis system.

  19. A Langmuir study of novel Schiff Base ligand for ion sensor application

    African Journals Online (AJOL)

    The analysis made from extrapolating the П-A graphs led to the result of the estimated area and the radius of the ligand molecules oriented on the air-water subphase. The UV-Visible spectrometer was used to study the optical properties of the ligands. This study was made in order to recognize the fundamental properties of ...

  20. KLIFS : a knowledge-based structural database to navigate kinase-ligand interaction space

    NARCIS (Netherlands)

    van Linden, O.P.J.; Kooistra, A.J.; Leurs, R.; de Esch, I.J.P.; de Graaf, C.

    2013-01-01

    Protein kinases regulate the majority of signal transduction pathways in cells and have become important targets for the development of designer drugs. We present a systematic analysis of kinase-ligand interactions in all regions of the catalytic cleft of all 1252 human kinase-ligand cocrystal

  1. Discovering new PI3Kα inhibitors with a strategy of combining ligand-based and structure-based virtual screening.

    Science.gov (United States)

    Yu, Miao; Gu, Qiong; Xu, Jun

    2018-02-01

    PI3Kα is a promising drug target for cancer chemotherapy. In this paper, we report a strategy of combing ligand-based and structure-based virtual screening to identify new PI3Kα inhibitors. First, naïve Bayesian (NB) learning models and a 3D-QSAR pharmacophore model were built based upon known PI3Kα inhibitors. Then, the SPECS library was screened by the best NB model. This resulted in virtual hits, which were validated by matching the structures against the pharmacophore models. The pharmacophore matched hits were then docked into PI3Kα crystal structures to form ligand-receptor complexes, which are further validated by the Glide-XP program to result in structural validated hits. The structural validated hits were examined by PI3Kα inhibitory assay. With this screening protocol, ten PI3Kα inhibitors with new scaffolds were discovered with IC 50 values ranging 0.44-31.25 μM. The binding affinities for the most active compounds 33 and 74 were estimated through molecular dynamics simulations and MM-PBSA analyses.

  2. Discovering new PI3Kα inhibitors with a strategy of combining ligand-based and structure-based virtual screening

    Science.gov (United States)

    Yu, Miao; Gu, Qiong; Xu, Jun

    2018-02-01

    PI3Kα is a promising drug target for cancer chemotherapy. In this paper, we report a strategy of combing ligand-based and structure-based virtual screening to identify new PI3Kα inhibitors. First, naïve Bayesian (NB) learning models and a 3D-QSAR pharmacophore model were built based upon known PI3Kα inhibitors. Then, the SPECS library was screened by the best NB model. This resulted in virtual hits, which were validated by matching the structures against the pharmacophore models. The pharmacophore matched hits were then docked into PI3Kα crystal structures to form ligand-receptor complexes, which are further validated by the Glide-XP program to result in structural validated hits. The structural validated hits were examined by PI3Kα inhibitory assay. With this screening protocol, ten PI3Kα inhibitors with new scaffolds were discovered with IC50 values ranging 0.44-31.25 μM. The binding affinities for the most active compounds 33 and 74 were estimated through molecular dynamics simulations and MM-PBSA analyses.

  3. Synthesis, Characterization and Antimicrobial Activity of Cu(II, Co(II and Ni(II Complexes with O, N, and S Donor Ligands

    Directory of Open Access Journals (Sweden)

    Vidyavati Reddy

    2008-01-01

    Full Text Available The complexes of the type ML2 [where M = Cu(II, Co(II, and Ni(II] L = 1-phenyl-1-ene-3-(2-hydroxyphenyl-prop-2-ene with 3- substituted-5-mercapto-4-amino-1,2,4-triazoles. Schiff base ligands have been prepared by reacting 3-(2-hydroxyphenyl-1-phenylprop-2-en-1-one and 3-phenyl/pyridyl-4-amino-5-mercapto-1,2,4-triazoles in an alcoholic medium. The complexes are non-electrolytes in DMF. The resulting complexes were characterized by elemental analysis, magnetic measurements, conductivity measurements and spectral studies. The Schiff base acts as a tridentate dibasic and coordinating through the deprotonated oxygen, thioenolic sulphur and azomethine nitrogen atoms. It is found that Cu(II, Co(II, and Ni(II complexes exhibited octahedral geometry. The antimicrobial activities of ligands and its complexes were screened by cup plate method.

  4. Diversity of coordination modes in the polymers based on 3,3',4,4'-biphenylcarboxylate ligand

    International Nuclear Information System (INIS)

    Du Xiaodi; Xiao Hongping; Zhou Xinhui; Wu Tao; You Xiaozeng

    2010-01-01

    Four new compounds [Ni 2 (4,4'-bpy)(3,4-bptc)(H 2 O) 4 ] n (1), [Ni(4,4'-bpy)(3,4-H 2 bptc)(H 2 O) 3 ] n (2), [Mn 2 (2,2'-bpy) 4 (3,4-H 2 bptc) 2 ] (3) and {[Mn(1,10-phen) 2 (3,4-H 2 bptc)].4H 2 O} n (4) (3,4-H 4 bptc=3,3',4,4'-biphenyltetracarboxylic acid, 4,4'-bpy=4,4'-bipyridine, 2,2'-bpy=2,2'-bipyridine, 1, 10-phen=1, 10-phenanthroline), have been prepared and structurally characterized. In all compounds, the derivative ligands of 3,4-H 4 bptc (3,4-bptc 4- and 3,4-H 2 bptc 2- ) exhibit different coordination modes and lead to the formation of various architectures. Compounds 1 and 2 display the three-dimensional (3D) framework: 1 shows a 3,4-connected topological network with (8 3 )(8 5 .10) topology symbol based on the coordination bonds while in 2, the hydrogen-bonding interactions are observed to connect the 1D linear chain generating a final 3D framework. 3 exhibits the 2D layer constructed from the hydrogen-bonding interactions between the dinuclear manganese units. Complex 4 shows the double layers motif through connecting the 1D zigzag chains with hydrogen-bonded rings. The thermal stability of 1-4 and magnetic property of 1 were also reported. - Graphical abstract: Four coordination compounds exhibiting four coordination modes of the 3,3',4,4'-biphenylcarboxylate ligand, with three of new in this system, are obtained showing diversified architectures.

  5. Synthesis and structural characterization of lithium

    Indian Academy of Sciences (India)

    synthesis and characterization of two new iminophos- phonamine ligands ... structures. 2.3 General synthetic method for ligands (1 and 2) ... 2.3b General method for the Synthesis of ligands ...... studies are currently underway in our laboratory.

  6. Spherical harmonics coefficients for ligand-based virtual screening of cyclooxygenase inhibitors.

    Science.gov (United States)

    Wang, Quan; Birod, Kerstin; Angioni, Carlo; Grösch, Sabine; Geppert, Tim; Schneider, Petra; Rupp, Matthias; Schneider, Gisbert

    2011-01-01

    Molecular descriptors are essential for many applications in computational chemistry, such as ligand-based similarity searching. Spherical harmonics have previously been suggested as comprehensive descriptors of molecular structure and properties. We investigate a spherical harmonics descriptor for shape-based virtual screening. We introduce and validate a partially rotation-invariant three-dimensional molecular shape descriptor based on the norm of spherical harmonics expansion coefficients. Using this molecular representation, we parameterize molecular surfaces, i.e., isosurfaces of spatial molecular property distributions. We validate the shape descriptor in a comprehensive retrospective virtual screening experiment. In a prospective study, we virtually screen a large compound library for cyclooxygenase inhibitors, using a self-organizing map as a pre-filter and the shape descriptor for candidate prioritization. 12 compounds were tested in vitro for direct enzyme inhibition and in a whole blood assay. Active compounds containing a triazole scaffold were identified as direct cyclooxygenase-1 inhibitors. This outcome corroborates the usefulness of spherical harmonics for representation of molecular shape in virtual screening of large compound collections. The combination of pharmacophore and shape-based filtering of screening candidates proved to be a straightforward approach to finding novel bioactive chemotypes with minimal experimental effort.

  7. Post hoc support vector machine learning for impedimetric biosensors based on weak protein-ligand interactions.

    Science.gov (United States)

    Rong, Y; Padron, A V; Hagerty, K J; Nelson, N; Chi, S; Keyhani, N O; Katz, J; Datta, S P A; Gomes, C; McLamore, E S

    2018-04-30

    Impedimetric biosensors for measuring small molecules based on weak/transient interactions between bioreceptors and target analytes are a challenge for detection electronics, particularly in field studies or in the analysis of complex matrices. Protein-ligand binding sensors have enormous potential for biosensing, but achieving accuracy in complex solutions is a major challenge. There is a need for simple post hoc analytical tools that are not computationally expensive, yet provide near real time feedback on data derived from impedance spectra. Here, we show the use of a simple, open source support vector machine learning algorithm for analyzing impedimetric data in lieu of using equivalent circuit analysis. We demonstrate two different protein-based biosensors to show that the tool can be used for various applications. We conclude with a mobile phone-based demonstration focused on the measurement of acetone, an important biomarker related to the onset of diabetic ketoacidosis. In all conditions tested, the open source classifier was capable of performing as well as, or better, than the equivalent circuit analysis for characterizing weak/transient interactions between a model ligand (acetone) and a small chemosensory protein derived from the tsetse fly. In addition, the tool has a low computational requirement, facilitating use for mobile acquisition systems such as mobile phones. The protocol is deployed through Jupyter notebook (an open source computing environment available for mobile phone, tablet or computer use) and the code was written in Python. For each of the applications, we provide step-by-step instructions in English, Spanish, Mandarin and Portuguese to facilitate widespread use. All codes were based on scikit-learn, an open source software machine learning library in the Python language, and were processed in Jupyter notebook, an open-source web application for Python. The tool can easily be integrated with the mobile biosensor equipment for rapid

  8. Identification of novel peptide ligands for the cancer-specific receptor mutation EFGRvIII using a mixture-based synthetic combinatorial library

    DEFF Research Database (Denmark)

    Denholt, Charlotte Lund; Hansen, Paul Robert; Pedersen, Nina

    2009-01-01

    We report here, the design and synthesis of a positional scanning synthetic combinatorial library for the identification of novel peptide ligands targeted against the cancer-specific epidermal growth factor tyrosine kinase receptor mutation variant III (EGFRvIII). This receptor is expressed in se...

  9. Synthesis and structure of unprecedented samarium complex with bulky bis-iminopyrrolyl ligand via intramolecular C=N bond activation

    Energy Technology Data Exchange (ETDEWEB)

    Das, Suman; Anga, Srinivas; Harinath, Adimulam; Panda, Tarun K. [Department of Chemistry, Indian Institute of Technology, Hyderabad (India); Pada Nayek, Hari [Department of Applied Chemistry, Indian Institute of Technology, (ISM) Dhanbad, Jharkhand (India)

    2017-12-29

    An unprecedentate samarium complex of the molecular composition [{κ"3-{(Ph_2CH)N=CH}{sub 2}C{sub 4}H{sub 2}N}{κ"3-{(Ph_2CHN=CH)(Ph_2CHNCH)C_4H_2N}Sm}{sub 2}] (2), which was isolated by the reaction of a potassium salt of 2,5-bis{N-(diphenylmethyl)-iminomethyl}pyrrolyl ligand [K(THF){sub 2}{(Ph_2CH)N=CH}{sub 2}C{sub 4}H{sub 2}N] (1) with anhydrous samarium diiodide in THF at 60 C through the in situ reduction of imine bond is presented. The homoleptic samarium complex [[κ{sup 3}-{(Ph_2CH)-N=CH}{sub 2}C{sub 4}H{sub 2}N]{sub 3}Sm] (3) can also be obtained from the reaction of compound 1 with anhydrous samarium triiodide (SmI{sub 3}) in THF at 60 C. The molecular structures of complexes 2 and 3 were established by single-crystal X-ray diffraction analysis. The molecular structure of complex 2 reveals the formation of a C-C bond in the 2,5-bis{N-(diphenylmethyl)iminomethyl}pyrrole ligand moiety (Ph{sub 2}Py{sup -}). However, complex 3 is a homoleptic samarium complex of three bis-iminopyrrolyl ligands. In complex 2, the samarium ion adopts an octahedral arrangement, whereas in complex 3, a distorted three face-centered trigonal prismatic mode of nine coordination is observed around the metal ion. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Asymmetric Ruthenium(II and Osmium(II Complexes with New Bidentate Polyquinoline Ligands. Synthesis and NMR Characterization

    Directory of Open Access Journals (Sweden)

    Antonino Mamo

    2010-03-01

    Full Text Available A series of Ru(II and Os(II tris-chelate complexes with new bidentate 2-pyridylquinoline ligands have been synthesized and fully characterized by EA,1H-NMR and FAB-MS techniques. The new ligands are: L1 = 4-p-methoxyphenyl-6-bromo-2-(2′- pyridylquinoline (mphbr-pq and L2 = 4-p-hydroxyphenyl-6-bromo-2-(2′-pyridyl-quinoline (hphbr-pq. The complexes studied are: [Ru(bpy2L1](PF62 (C1, [Ru(bpy2L2](PF62 (C2, [Os(bpy2L1](PF62 (C3, [Os(bpy2L2](PF62 (C4 (bpy = 2,2′-bipyridine, [Ru(dmbpy2L1](PF62 (C5, [Ru(dmbpy2L2](PF62 (C6, [Os(dmbpy2L1](PF62 (C7, and [Os(dmbpy2L2](PF62 (C8 (dmbpy = 4,4′-dimethyl-2,2′-bipyridine. Moreover, new functionalized complexes C9-C12 were obtained by the basecatalyzed direct alkylation of C2, C4, C6, and C8 with 6-bromo-1-hexene. The complete assignment of the 1H-NMR spectra for the two new ligands (L1 and L2, and their Ru(II or Os(II complexes has been accomplished using a combination of one- and two-dimensional NMR techniques. The JH,H values have been determined for the majority of the resonances.

  11. Mononuclear mercury(II) complexes containing bipyridine derivatives and thiocyanate ligands: Synthesis, characterization, crystal structure determination, and luminescent properties

    Science.gov (United States)

    Amani, Vahid; Alizadeh, Robabeh; Alavije, Hanieh Soleimani; Heydari, Samira Fadaei; Abafat, Marzieh

    2017-08-01

    A series of mercury(II) complexes, [Hg(Nsbnd N)(SCN)2] (Nsbnd N is 4,4‧-dimethyl-2,2‧-bipyridine in 1, 5,5‧-dimethyl-2,2‧-bipyridine in 2, 6,6‧-dimethyl-2,2‧-bipyridine in 3 and 6-methyl-2,2‧-bipyridine in 4), were prepared from the reactions of Hg(SCN)2 with mentioned ligands in methanol. Suitable crystals of these complexes were obtained for X-ray diffraction measurement by methanol diffusion into a DMSO solution. The four complexes were thoroughly characterized by spectral methods (IR, UV-Vis, 13C{1H}NMR, 1H NMR and luminescence), elemental analysis (CHNS) and single crystal X-ray diffraction. The X-ray structural analysis indicated that in the structures of these complexes, the mercury(II) cation is four-coordinated in a distorted tetrahedral configuration by two S atoms from two thiocyanate anions and two N atoms from one chelating 2,2‧-bipyridine derivative ligand. Also, in these complexes intermolecular interactions, for example Csbnd H⋯N hydrogen bonds (in 1-4), Csbnd H⋯S hydrogen bonds (in 1, 2 and 4), π … π interactions (in 2-4), Hg⋯N interactions (in 2) and S⋯S interactions (in 4), are effective in the stabilization of the crystal structures and the formation of the 3D supramolecular complexes. Furthermore, the luminescence spectra of the title complexes show that the intensity of their emission bands are stronger than the emission bands for the free bipyridine derivative ligands.

  12. Synthesis, spectroscopic characterization, biological studies and DFT calculations on some transition metal complexes of NO donor ligand

    Science.gov (United States)

    Zordok, W. A.; Sadeek, S. A.

    2018-04-01

    Seven new complexes of2-oxo-4,6-diphenyl-1,2-dihyropyridine-3-carbonitrile (L) with Fe(III), Co(II), Cu(II), Zn(II), Y(III), Zr(IV) and La(III) were synthesized. The isolated solid compounds were elucidated from micro analytical, IR, electronic, mass, 1H NMR, magnetic susceptibility measurements and TG/DTG, DTA analyses. The intensity of ν(Ctbnd N) was changed to strong and shifted to around 2200 cm-1. Also, the ν(Cdbnd O) was shifted to higher frequency value (1644 cm-1). The spectra of the complexes indicate that the free ligand is coordinated to the metal ions via nitrogen of carbonitrile group and oxygen of keto group. From DFT calculations the Cu(II) and Fe(III) complexes behave as regular octahedral, while other complexes are distorted octahedral. The value of energy gap of the free ligand (ΔE = 0.3343 eV) is greater than all new complexes, so they are more reactive than free ligand, also the Fe(III) complex (ΔE = 0.0985 eV) is the most reactive complex, while Cu(II) complex (ΔE = 0.3219 eV) is the least reactive complex. The LMCT in case of Zr(IV) complex was resulted from transitions from HOMO-2 (62%), HOMO-1 (16%)and HOMO (25%), while the d-d transition in Fe(III) complex was resulted from HOMO-1(30%), HOMO-2(62%) and HOMO(30%). Also, the metal complexes exhibit antibacterial activity for Gram-positive and Gram-negative and antifungal activity. The Y(III) and Cu(II) complexes are highly significant for Escherichia coli and salmonella typhimurium.

  13. Cycloalkyl-based unsymmetrical unsaturated (U2)-NHC ligands: Flexibility and dissymmetry in ruthenium-catalysed olefin metathesis

    KAUST Repository

    Rouen, Mathieu

    2014-01-01

    Air-stable Ru-indenylidene and Hoveyda-type complexes bearing new unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligands combining a mesityl unit and a flexible cycloalkyl moiety as N-substituents were synthesised. Structural features, chemical stabilities and catalytic profiles in olefin metathesis of this new library of cycloalkyl-based U2-NHC Ru complexes were studied and compared with their unsymmetrical saturated NHC-Ru homologues as well as a set of commercially available Ru-catalysts bearing either symmetrical SIMes or IMes NHC ligands. © 2014 the Partner Organisations.

  14. Metal-organic coordination architectures of tetrazole heterocycle ligands bearing acetate groups: Synthesis, characterization and magnetic properties

    Science.gov (United States)

    Hu, Bo-Wen; Zheng, Xiang-Yu; Ding, Cheng

    2015-12-01

    Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L)2]n (1) and [Co3(L)4(N3)2·2MeOH]n (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (42.6)2(44.62.88.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co3] units. And the magnetic properties of 1 and 2 have been studied.

  15. Synthesis of new copper nanoparticle-decorated anchored type ligands: Applications as non-enzymatic electrochemical sensors for hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ensafi, Ali A., E-mail: Ensafi@cc.iut.ac.ir; Zandi-Atashbar, N.; Ghiaci, M.; Taghizadeh, M.; Rezaei, B.

    2015-02-01

    In this work, copper nanoparticles (CuNPs) decorated on two new anchored type ligands were utilized to prepare two electrochemical sensors. These ligands are made from bonding amine chains to silica support including SiO{sub 2}–pro–NH{sub 2} (compound I) and SiO{sub 2}–pro–NH–cyanuric–NH{sub 2} (compound II). The morphology of synthesized CuNPs was characterized by transmission electron microscopy (TEM). The nano-particles were in the range of 13–37 nm with the average size of 23 nm. These materials were used to modify carbon paste electrode. Different electrochemical techniques, including cyclic voltammetry, electrochemical impedance spectroscopy and hydrodynamic chronoamperometry, were used to study the sensor behavior. These electrochemical sensors were used as a model for non-enzymatic detection of hydrogen peroxide (H{sub 2}O{sub 2}). To evaluate the abilities of the modified electrodes for H{sub 2}O{sub 2} detection, the electrochemical signals were compared in the absence and presence of H{sub 2}O{sub 2}. From them, two modified electrodes showed significant responses vs. H{sub 2}O{sub 2} addition. The amperograms illustrated that the sensors were selective for H{sub 2}O{sub 2} sensing with linear ranges of 5.14–1250 μmol L{sup −1} and 1.14–1120 μmol L{sup −1} with detection limits of 0.85 and 0.27 μmol L{sup −1} H{sub 2}O{sub 2}, sensitivities of 3545 and 11,293 μA mmol{sup −1} L and with response times less than 5 s for I/CPE and II/CPE, respectively. As further verification of the selected sensor, H{sub 2}O{sub 2} contained in milk sample was analyzed and the obtained results were comparable with the ones from classical control titration method. - Highlights: • Copper nanoparticles decorating on two new anchored type ligands were prepared. • Ligands are bonding to silica support as SiO{sub 2}–pro–NH{sub 2} and SiO{sub 2}–pro–NH–cyanuric–NH{sub 2}. • These materials were used as electrochemical sensors for H

  16. The Influence of Synthesis Parameters on Particle Size and Photoluminescence Characteristics of Ligand Capped Tb3+:LaF3

    Directory of Open Access Journals (Sweden)

    Phil Brown

    2011-11-01

    Full Text Available Organic ligand surface-treated Tb3+:LaF3 was synthesized in water and methanol for subsequent incorporation into polymethyl methacrylate (PMMA via solution-precipitation chemistry in order to produce optically active polymer nanocomposites. Nanoparticle agglomerate diameters ranged from 388 ± 188 nm when synthesized in water and 37 ± 2 nm when synthesized in methanol. Suspension stability is paramount for producing optically transparent materials. Methanol nanoparticle synthesized at a pH of 3 exhibited the smallest agglomerate size. Optical spectroscopy, dynamic light scattering, transmission electron microscopy, scanning transmission electron microscopy, and zeta potential analysis were used to characterize the particles synthesized.

  17. Synthesis, structure, spectroscopy and redox energetics of a series of uranium(4) mixed-ligand metallocene complexes

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, R.K.; Scott, B.L.; Morris, D.E.; Kiplinger, J.L. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2010-06-15

    A series of uranium(IV) mixed-ligand amide-halide/pseudo-halide complexes (C{sub 5}Me{sub 5}){sub 2}U[N(SiMe{sub 3}){sub 2}](X) (X = F (1), Cl (2), Br (3), I (4), N{sub 3} (5), NCO (6)), (C{sub 5}Me{sub 5}){sub 2}U(NPh{sub 2})(X) (X = Cl (7), N{sub 3} (8)), and (C{sub 5}Me{sub 5}){sub 2}U[N(Ph)(SiMe{sub 3})](X) (X Cl (9), N{sub 3} (10)) have been prepared by one electron oxidation of the corresponding uranium(III) amide precursors using either copper halides, silver iso-cyanate, or triphenylphosphine gold(I)azide. Agostic U---H-C interactions and {eta}{sub 3}-(N,C,C') coordination are observed for these complexes in both the solid-state and solution. There is a linear correlation between the chemical shift values of the C{sub 5}Me{sub 5} ligand protons in the {sup 1}H NMR spectra and the U(IV)/U(III) reduction potentials of the (C{sub 5}Me{sub 5}){sub 2}U[N(SiMe{sub 3}){sub 2}](X) complexes, suggesting that there is a common origin, that is overall {sigma}-/{pi}-donation from the ancillary (X) ligand to the metal, contributing to both observables. Optical spectroscopy of the series of complexes 1-6 is dominated by the (C{sub 5}Me{sub 5}){sub 2}U[N(SiMe{sub 3}){sub 2}] core, with small variations derived from the identity of the halide/pseudo-halide. The considerable {pi}-donating ability of the fluoride ligand is reflected in both the electrochemistry and UV-visible-NIR spectroscopic behavior of the fluoride complex (C{sub 5}Me{sub 5}){sub 2}U[N(SiMe{sub 3}){sub 2}](F) (1). The syntheses of the new trivalent uranium amide complex, (C{sub 5}Me{sub 5}){sub 2}U[N(Ph)(SiMe{sub 3})](THF), and the two new weakly-coordinating electrolytes, [Pr{sub 4}N][B{l_brace}3,5-(CF{sub 3}){sub 2}C{sub 6}H{sub 3{r_brace}4}] and [Pr{sub 4}N][B(C{sub 6}F{sub 5}){sub 4}], are also reported. (authors)

  18. Synthesis and characterization of new mixed ligand complexes of ruthenium(II) containing triphenylphosphine and 2'-hydroxychalcones

    International Nuclear Information System (INIS)

    Dharmaraj, N.; Natarajan, K.

    1994-01-01

    A few hexacoordinated ruthenium(II) complexes of the type [RuCl(CO) (HLL')(PPh 3 ) 2 ] and [RuCl(CO)(HLL')(B) (PPh 3 )] (where HLL' 2'-hydroxychalcone, 2'-hydroxy-4-methoxychalcone, 2'-hydroxy-3,4-dimethoxychalcone and B=pyridine(Py), piperidine(Pip), morpholine (Morph)) have been synthesised and characterized on the basis of their analytical and spectral data (IR, electronic and 1 H NMR). In all these complexes, the 2'-hydroxychalcones behave as a uninegative bidentate (OO - ) chelating ligand. (author). 17 refs., 1 tab

  19. Synthesis, fluorescence properties of Tb(Ⅲ) complexes with novel mono-substituted β-diketone ligands

    Institute of Scientific and Technical Information of China (English)

    罗一鸣; 李石凤; 李军; 陈学娟; 唐瑞仁

    2010-01-01

    Two novel pyridine-2,6-dicarboxylic acid derivatives of mono-β-diketone named methyl 6-biphenylacetyl-2-pyridinecarboxylate (MBP) and 6-biphenylacetyl-2-pyridinecarboxylic acid (BAA) and their corresponding binary complexes Tb(MBP)3.6H2O and Tb(BAA)3·6H2O were synthesized. The ligands were characterized by elemental analysis, FT-IR and 1H-NMR, and the complexes were characterized with elemental analysis, FT-IR, 1H-NMR and thermogravimetric and differential thermal analysis(TG-DTA). The investigation of fluo...

  20. Colorimetric detection of hydrogen peroxide by dioxido-vanadium(V) complex containing hydrazone ligand: synthesis and crystal structure

    Science.gov (United States)

    Kurbah, Sunshine D.; Syiemlieh, Ibanphylla; Lal, Ram A.

    2018-03-01

    Dioxido-vanadium(V) complex has been synthesized in good yield, the complex was characterized by IR, UV-visible and 1H NMR spectroscopy. Single crystal X-ray crystallography techniques were used to assign the structure of the complex. Complex crystallized with monoclinic P21/c space group with cell parameters a (Å) = 39.516(5), b (Å) = 6.2571(11), c (Å) = 17.424(2), α (°) = 90, β (°) = 102.668(12) and γ (°) = 90. The hydrazone ligand is coordinate to metal ion in tridentate fashion through -ONO- donor atoms forming a distorted square pyramidal geometry around the metal ion.

  1. Synthesis and Characterization of Divalent Manganese, Iron, and Cobalt Complexes in Tripodal Phenolate/N-Heterocyclic Carbene Ligand Environments

    DEFF Research Database (Denmark)

    Käß, Martina; Hohenberger, Johannes; Adelhardt, Mario

    2014-01-01

    . The complete ligand series offers a convenient way of tuning the electronic and steric environment around the metal center, thus, allowing for control of the complex’s reactivity. This series of divalent complexes of Mn, Fe, and Co was synthesized and characterized by 1H NMR, IR, and UV/vis spectroscopy...... as well as by single-crystal X-ray diffraction studies. Variable-temperature SQUID magnetization measurements in the range from 2 to 300 K confirmed high-spin ground states for all divalent complexes and revealed a trend of increasing zero-field splitting |D| from Mn(II), to Fe(II), to Co(II) complexes...

  2. Synthesis, Spectral, and In Vitro Antibacterial Studies of Organosilicon(IV) Complexes with Schiff Bases Derived from Amino Acids.

    Science.gov (United States)

    Singh, Har Lal; Singh, Jangbhadur; Mukherjee, A

    2013-01-01

    The present work stems from our interest in the synthesis, characterization, and antibacterial evaluation of organosilicon(IV) complexes of a class of amino-acid-based Schiff base which have been prepared by the interaction of ethoxytrimethylsilane with the Schiff bases (N OH) in 1 : 1 molar ratio. These complexes have been characterized by elemental analysis, molar conductance, and spectroscopic studies including electronic IR and NMR ((1)H, (13)C, and (29)Si) spectroscopy. The analytical and spectral data suggest trigonal bipyramidal geometry around the silicon atom in the resulting complexes. The ligands and their organosilicon complexes have also been evaluated for in vitro antimicrobial activity against bacteria (Bacillus cereus, Nocardia spp., E. aerogenes, Escherichia coli, Klebsiella spp., and Staphylococcus spp.). The complexes were found to be more potent as compared to the ligands.

  3. Synthesis and Ligand-Exchange Reactions of a Tri-Tungsten Cluster with Applications in Biomedical Imaging

    Science.gov (United States)

    Noey, Elizabeth; Curtis, Jeff C.; Tam, Sylvia; Pham, David M.; Jones, Ella F.

    2011-01-01

    In this experiment students are exposed to concepts in inorganic synthesis and various spectroscopies as applied to a tri-tungsten cluster with applications in biomedical imaging. The tungsten-acetate cluster, Na[W[superscript 3](mu-O)[subscript 2](CH[superscript 3]COO)[superscript 9

  4. Synthesis and characterization of novel substituted 3,6-bis(2-pyridyl)pyridazine metal-coordinating ligands

    NARCIS (Netherlands)

    Hoogenboom, R.; Kickelbick, G.; Schubert, U.S.

    2003-01-01

    The synthesis of novel functionalized 3,6-di(2-pyridyl)pyridazines via an inverse electron demand Diels-Alder reaction between the corresponding 3,6-di(2-pyridyl)-1,2,4,5-tetrazine and various alkynes is reported. The resulting 3,6-di(2-pyridyl)pyridazines were investigated using X-ray

  5. Reactivity of halide and pseudohalide ligands

    International Nuclear Information System (INIS)

    Kukushkin, Yu.N.

    1987-01-01

    Reactivity of halide and pseudohalide (cyanide, azide, thiocyanate, cyanate) ligands tending to form bridge bonds in transition metal (Re, Mo, W) complexes is considered. Complexes where transition metal salts are ligands of other, complex-forming ion, are described. Transformation of innerspheric pseudohalide ligands is an important way of directed synthesis of these metal coordination compounds

  6. Iron and Zinc Complexes of Bulky Bis-Imidazole Ligands : Enzyme Mimicry and Ligand-Centered Redox Activity

    NARCIS (Netherlands)

    Folkertsma, E.

    2016-01-01

    The research described in this thesis is directed to the development of cheap and non-toxic iron-based homogeneous catalysts, using enzyme models and redox non-innocent ligands. Inspired by nature, the first approach focuses on the synthesis of structural models of the active site of non-heme iron

  7. Novel cell-based assay reveals associations of circulating serum AhR-ligands with metabolic syndrome and mitochondrial dysfunction.

    Science.gov (United States)

    Park, Wook-Ha; Jun, Dae Won; Kim, Jin Taek; Jeong, Jae Hoon; Park, Hyokeun; Chang, Yoon-Seok; Park, Kyong Soo; Lee, Hong Kyu; Pak, Youngmi Kim

    2013-01-01

    Serum concentrations of environmental pollutants have been positively correlated with diabetes and metabolic syndrome in epidemiologic studies. In turn, abnormal mitochondrial function has been associated with the diseases. The relationships between these variables, however, have not been studied. We developed novel cell-based aryl hydrocarbon receptor (AhR) agonist bioassay system without solvent extraction process and analyzed whether low-dose circulating AhR ligands in human serum are associated with parameters of metabolic syndrome and mitochondrial function. Serum AhR ligand activities were measured as serum 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalent (sTCDDeq) in pM using 10 μL human sera from 97 Korean participants (47 with glucose intolerance and 50 matched controls, average age of 46.6 ± 9.9 years, 53 male and 45 female). sTCDDeq were higher in participants with glucose intolerance than normal controls and were positively associated (P fasting glucose, but not with HDL-cholesterol. Body mass index was in a positive linear relationship with serum AhR ligands in healthy participants. When myoblast cells were incubated with human sera, ATP generating power of mitochondria became impaired in an AhR ligand concentration-dependent manner. Our results support that circulating AhR ligands may directly reduce mitochondrial function in tissues, leading to weight gain, glucose intolerance, and metabolic syndrome. Our rapid cell-based assay using minute volume of human serum may provide one of the best monitoring systems for circulating AhR ligands, good clinical biomarkers for the progress of disease and therapeutic efficacy. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  8. I. The synthesis and coordination chemistry of novel 6pi-electron ligands. II. Improvement of student writing skills in general chemistry lab reports through the use of Calibrated Peer Review

    Science.gov (United States)

    William, Wilson Ngambeki

    ) were used to predict the possibility that the 6pi-cationic ligand of guanidinium analog would coordinate with a group 6B metal carbonyl. However, attempts to synthesize the predicted complex were unsuccessful; when neodymium nitrate was reacted with the 6pi-cationic ligand of guanidinium salt, a completely novel diguanidinium diaquapentakis(nitrato)neodymiate(III) was produced, as characterized by X-ray analysis, NMR, elemental analysis, and infrared spectroscopy. In the next approach, the synthesis of the 6pi-cationic ligand of guanidinium analog tripiperidine carbenium tetrafluoroborate was attempted; again the ligand could not be obtained; however, other novel compounds, 1-tritylpiperidine and diphenyldipiperidin-1-ylmethane were obtained as indicated by single crystal X-ray analysis. The last strategy was to synthesize a 6pi-anionic phosphorus-based complex using 2,4,6-tri-tert-butylaniline and PI5. While the desired complex was not obtained, another novel compound, 2,4,6-tri- tert-butylbenzenaminium iodide, was produced and characterized by single crystal X-ray analysis and 1H NMR. In conclusion, new strategies that combine DFT with novel synthetic approaches will be required to successfully produce coordination complexes containing 6pi-cationic ligands. Abstract II. The goal of this study was to assess effectiveness of using Calibrated Peer Review (CPR) for submitting post-lab reports. According to the literature the use of CPR could help improve students' writing skills (WS), conceptual understanding (CU) and critical thinking (CT). The first strategy of this study was to divide all students into two groups and required one group to use CPR for writing post-lab reports. The performances of the post-lab between the two groups were then compared. In second strategy I used an essay (pretest/posttest) to objectively assess students' writing skills that showed an improvement of 19% from students' who used CPR and 11% from students' who did not use CPR. When we

  9. Dinuclear Cu(II) complexes of isomeric bis-(3-acetylacetonate)benzene ligands: synthesis, structure, and magnetic properties.

    Science.gov (United States)

    Rancan, Marzio; Dolmella, Alessandro; Seraglia, Roberta; Orlandi, Simonetta; Quici, Silvio; Sorace, Lorenzo; Gatteschi, Dante; Armelao, Lidia

    2012-05-07

    Highly versatile coordinating ligands are designed and synthesized with two β-diketonate groups linked at the carbon 3 through a phenyl ring. The rigid aromatic spacer is introduced in the molecules to orient the two acetylacetone units along different angles and coordination vectors. The resulting para, meta, and ortho bis-(3-acetylacetonate)benzene ligands show efficient chelating properties toward Cu(II) ions. In the presence of 2,2'-bipyridine, they promptly react and yield three dimers, 1, 2, and 3, with the bis-acetylacetonate unit in bridging position between two metal centers. X-ray single crystal diffraction shows that the compounds form supramolecular chains in the solid state because of intermolecular interactions. Each of the dinuclear complexes shows a magnetic behavior which is determined by the combination of structural parameters and spin polarization effects. Notably, the para derivative (1) displays a moderate antiferromagnetic coupling (J = -3.3 cm(-1)) along a remarkably long Cu···Cu distance (12.30 Å).

  10. Synthesis, Characterization, and Cytotoxicity of the First Oxaliplatin Pt(IV Derivative Having a TSPO Ligand in the Axial Position

    Directory of Open Access Journals (Sweden)

    Salvatore Savino

    2016-06-01

    Full Text Available The first Pt(IV derivative of oxaliplatin carrying a ligand for TSPO (the 18-kDa mitochondrial translocator protein has been developed. The expression of the translocator protein in the brain and liver of healthy humans is usually low, oppositely to steroid-synthesizing and rapidly proliferating tissues, where TSPO is much more abundant. The novel Pt(IV complex, cis,trans,cis-[Pt(ethanedioatoCl{2-(2-(4-(6,8-dichloro-3-(2-(dipropylamino-2-oxoethylimidazo[1,2-a]pyridin-2-ylphenoxyacetate-ethanolato}(1R,2R-DACH] (DACH = diaminocyclohexane, has been fully characterized by spectroscopic and spectrometric techniques and tested in vitro against human MCF7 breast carcinoma, U87 glioblastoma, and LoVo colon adenocarcinoma cell lines. In addition, affinity for TSPO (IC50 = 18.64 nM, cellular uptake (ca. 2 times greater than that of oxaliplatin in LoVo cancer cells, after 24 h treatment, and perturbation of cell cycle progression were investigated. Although the new compound was less active than oxaliplatin and did not exploit a synergistic proapoptotic effect due to the presence of the TSPO ligand, it appears to be promising in a receptor-mediated drug targeting context towards TSPO-overexpressing tumors, in particular colorectal cancer (IC50 = 2.31 μM after 72 h treatment.

  11. Synthesis of a novel class of nitrido Tc-99m radiopharmaceuticals with phosphino-thiol ligands showing transient heart uptake

    Energy Technology Data Exchange (ETDEWEB)

    Bolzati, Cristina; Uccelli, Licia; Boschi, Alessandra; Malago, Erica; Duatti, Adriano E-mail: dta@unife.it; Tisato, Francesco; Refosco, Fiorenzo; Pasqualini, Roberto; Piffanelli, Adriano

    2000-05-01

    A novel class of technetium-99m radiopharmaceuticals showing high heart uptake is described. These complexes were prepared through a simple and efficient procedure, and their molecular structure fully characterized. They are formed by a terminal Tc{identical_to}N multiple bond and two bidentate phosphine-thiol ligands [R{sub 2}P-(CH{sub 2}){sub n}SH, n=2,3] coordinated to the metal ion through the neutral phosphorus atom and the deprotonated thiol sulfur atom. The resulting geometry was trigonal bipyramidal. Biodistribution studies were carried out in rats. The complexes exhibited high initial heart uptake and elimination through liver and kidneys. The washout kinetic from heart was dependent on the nature of the lateral R groups on the phosphine-thiol ligands. When R=phenyl, heart activity was rapidly eliminated within 10-20 min. Instead, when R=tolyl,cyclohexyl, persistent heart uptake was observed. Extraction of activity from myocardium tissue showed that no change of the chemical identity of the tracer occurred after heart uptake. On the contrary, metabolization to more hydrophilic species occurred in liver and kidneys.

  12. Synthesis and pharmacological characterization of novel xanthine carboxylate amides as A2A adenosine receptor ligands exhibiting bronchospasmolytic activity.

    Science.gov (United States)

    Yadav, Rakesh; Bansal, Ranju; Rohilla, Suman; Kachler, Sonja; Klotz, Karl-Norbert

    2016-04-01

    The carboxylate amides of 8-phenyl-1,3-dimethylxanthine described herein represent a new series of selective ligands of the adenosine A2A receptors exhibiting bronchospasmolytic activity. The effects of location of 8-phenyl substitutions on the adenosine receptor (AR) binding affinities of the newly synthesized xanthines have also been studied. The compounds displayed moderate to potent binding affinities toward various adenosine receptor subtypes when evaluated through radioligand binding studies. However, most of the compounds showed the maximum affinity for the A2A subtype, some with high selectivity versus all other subtypes. Xanthine carboxylate amide 13b with a diethylaminoethylamino moiety at the para-position of the 8-phenylxanthine scaffold was identified as the most potent A2A adenosine receptor ligand with Ki=0.06μM. Similarly potent and highly A2A-selective are the isovanillin derivatives 16a and 16d. In addition, the newly synthesized xanthine derivatives showed good in vivo bronchospasmolytic activity when tested in guinea pigs. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Synthesis, Characterization, and Physicochemical Studies of Mixed Ligand Complexes of Inner Transition Metals with Lansoprazole and Cytosine

    Directory of Open Access Journals (Sweden)

    Sarika Verma

    2013-01-01

    Full Text Available Few complexes of inner transition metals [Th(IV, Ce(IV, Nd(III, Gd(III] have been synthesized by reacting their metal salts with lansoprazole, 2-([3-methyl-4-(2,2,2-trifluoroethoxypyridin-2-yl]methylsulfinyl-1H-benzoimidazole and cytosine. All the complexes were synthesized in ethanolic medium. The yield percentage rangs from 80 to 90%. The complexes are coloured solids. The complexes were characterized through elemental analyses, conductance measurements, and spectroscopic methods (FT IR, FAB Mass, 1H NMR and UV. An IR spectrum indicates that the ligand behaves as bidentate ligands. The metal complexes have been screened for their antifungal activity towards Aspergillus niger fungi. The interaction of inner transition metals with lansoprazole, in presence of cytosine, has also been investigated potentiometrically at two different temperatures 26±1°C and 36±1°C and at 0.1 M (KNO3 ionic strength. The stability constants of ternary complexes indicate the stability order as Th(IV < Ce(IV < Gd(III < Nd(III. logK values obtained are positive and suggest greater stabilization of ternary complexes. The values of thermodynamic parameters (free energy (ΔG, enthalpy (ΔH, and entropy (ΔS are also calculated.

  14. Task based synthesis of serial manipulators

    Directory of Open Access Journals (Sweden)

    Sarosh Patel

    2015-05-01

    Full Text Available Computing the optimal geometric structure of manipulators is one of the most intricate problems in contemporary robot kinematics. Robotic manipulators are designed and built to perform certain predetermined tasks. There is a very close relationship between the structure of the manipulator and its kinematic performance. It is therefore important to incorporate such task requirements during the design and synthesis of the robotic manipulators. Such task requirements and performance constraints can be specified in terms of the required end-effector positions, orientations and velocities along the task trajectory. In this work, we present a comprehensive method to develop the optimal geometric structure (DH parameters of a non-redundant six degree of freedom serial manipulator from task descriptions. In this work we define, develop and test a methodology to design optimal manipulator configurations based on task descriptions. This methodology is devised to investigate all possible manipulator configurations that can satisfy the task performance requirements under imposed joint constraints. Out of all the possible structures, the structures that can reach all the task points with the required orientations are selected. Next, these candidate structures are tested to see whether they can attain end-effector velocities in arbitrary directions within the user defined joint constraints, so that they can deliver the best kinematic performance. Additionally least power consuming configurations are also identified.

  15. Robotics-based synthesis of human motion

    KAUST Repository

    Khatib, O.; Demircan, E.; De Sapio, V.; Sentis, L.; Besier, T.; Delp, S.

    2009-01-01

    The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods.

  16. Robotics-based synthesis of human motion

    KAUST Repository

    Khatib, O.

    2009-05-01

    The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods.

  17. Ligands, cell-based models, and readouts required for Toll-like receptor action.

    LENUS (Irish Health Repository)

    Dellacasagrande, Jerome

    2012-02-01

    This chapter details the tools that are available to study Toll-like receptor (TLR) biology in vitro. This includes ligands, host cells, and readouts. The use of modified TLRs to circumvent some technical problems is also discussed.

  18. Tailored Multivalent Neo-Glycoproteins: Synthesis, Evaluation, and Application of a Library of Galectin-3-Binding Glycan Ligands

    Czech Academy of Sciences Publication Activity Database

    Laaf, D.; Bojarová, Pavla; Pelantová, Helena; Křen, Vladimír; Elling, L.

    2017-01-01

    Roč. 28, č. 11 (2017), s. 2832-2840 ISSN 1043-1802 R&D Projects: GA ČR GC15-02578J; GA MŠk(CZ) LTC17005 Institutional support: RVO:61388971 Keywords : HOMOTYPIC CELL-AGGREGATION * ONE-POT SYNTHESIS * GALACTOSE-OXIDASE Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 4.818, year: 2016

  19. Radiolabelled neurotensin analogues. I. Solid phase synthesis and biological characterization of [Trp11]-neurotensin precursor of an ionidated ligand

    International Nuclear Information System (INIS)

    Labbe-Jullie, C.; Granier, C.; Van Rietschoten, J.; Kitabgi, P.; Vincent, J.P.

    1983-01-01

    In order to generate highly labelled neurotensin analogues, synthesis has been performed of two types of precursors, one for iodination and one for tritiation. Iodination of native neurotensin occurs on both tyrosines in position 3 and 11 and thus affects greatly its binding capacities. Synthesis and chemical characterization of [Trp 11 ]-neurotensin are described which can be iodinated without loss of activity. Synthesis was by solid phase procedure on an experimental support, Pab-resin, α-(4-chloromethylphenylacetamido)-benzyl copoly (styrene 1 per cent divinylbenzene). The homogeneity of [Trp 11 ]-neurotensin was assessed by amino acid analysis, high voltage paper electrophoresis and high pressure liquid chromatography. Iodination by the lactoperoxydase method gave iodo-[Trp 11 ]-neurotensin iodinated on the Tyr 3 . Compared to neurotensin, potency of [Trp 11 ]-neurotensin and of iodo-[Trp 11 ]-neurotensin in competitive inhibition of tritiated neurotensin binding to rat brain synaptic membranes was respectively 93 per cent and 80 per cent, but in the biological test on the contractility of isolated longitudinal smooth muscle strips of guinea pig the relative activity for the two analogues was of 10 per cent [fr

  20. New Proton-Ionizable, Calixarene-Based Ligands for Selective Metal Ion Separations

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Richard A.

    2012-06-04

    The project objective was the discovery of new ligands for performing metal ion separations. The research effort entailed the preparation of new metal ion complexing agents and polymers and their evaluation in metal ion separation processes of solvent extraction, synthetic liquid membrane transport, and sorption. Structural variations in acyclic, cyclic, and bicyclic organic ligands were used to probe their influence upon the efficiency and selectivity with which metal ion separations can be performed. A unifying feature of the ligand structures is the presence of one (or more) side arm with a pendent acidic function. When a metal ion is complexed within the central cavity of the ligand, ionization of the side arm(s) produces the requisite anion(s) for formation of an overall electroneutral complex. This markedly enhances extraction/transport efficiency for separations in which movement of aqueous phase anions of chloride, nitrate, or sulfate into an organic medium would be required. Through systematic structural variations, new ligands have been developed for efficient and selective separations of monovalent metal ions (e.g., alkali metal, silver, and thallium cations) and of divalent metal ion species (e.g., alkaline earth metal, lead, and mercury cations). Research results obtained in these fundamental investigations provide important insight for the design and development of ligands suitable for practical metal ion separation applications.

  1. Macrocyclic ligand decorated ordered mesoporous silica with large-pore and short-channel characteristics for effective separation of lithium isotopes: synthesis, adsorptive behavior study and DFT modeling.

    Science.gov (United States)

    Liu, Yuekun; Liu, Fei; Ye, Gang; Pu, Ning; Wu, Fengcheng; Wang, Zhe; Huo, Xiaomei; Xu, Jian; Chen, Jing

    2016-10-18

    Effective separation of lithium isotopes is of strategic value which attracts growing attention worldwide. This study reports a new class of macrocyclic ligand decorated ordered mesoporous silica (OMS) with large-pore and short-channel characteristics, which holds the potential to effectively separate lithium isotopes in aqueous solutions. Initially, a series of benzo-15-crown-5 (B15C5) derivatives containing different electron-donating or -withdrawing substituents were synthesized. Extractive separation of lithium isotopes in a liquid-liquid system was comparatively studied, highlighting the effect of the substituent, solvent, counter anion and temperature. The optimal NH 2 -B15C5 ligands were then covalently anchored to a short-channel SBA-15 OMS precursor bearing alkyl halides via a post-modification protocol. Adsorptive separation of the lithium isotopes was fully investigated, combined with kinetics and thermodynamics analysis, and simulation by using classic adsorption isotherm models. The NH 2 -B15C5 ligand functionalized OMSs exhibited selectivity to lithium ions against other alkali metal ions including K(i). Additionally, a more efficient separation of lithium isotopes could be obtained at a lower temperature in systems with softer counter anions and solvents with a lower dielectric constant. The highest value separation factor (α = 1.049 ± 0.002) was obtained in CF 3 COOLi aqueous solution at 288.15 K. Moreover, theoretical computation based on the density functional theory (DFT) was performed to elucidate the complexation interactions between the macrocyclic ligands and lithium ions. A suggested mechanism involving an isotopic exchange equilibrium was proposed to describe the lithium isotope separation by the functionalized OMSs.

  2. Structure-based design of ligands for protein basic domains: Application to the HIV-1 Tat protein

    Science.gov (United States)

    Filikov, Anton V.; James, Thomas L.

    1998-05-01

    A methodology has been developed for designing ligands to bind a flexible basic protein domain where the structure of the domain is essentially known. It is based on an empirical binding free energy function developed for highly charged complexes and on Monte Carlo simulations in internal coordinates with both the ligand and the receptor being flexible. HIV-1 encodes a transactivating regulatory protein called Tat. Binding of the basic domain of Tat to TAR RNA is required for efficient transcription of the viral genome. The structure of a biologically active peptide containing the Tat basic RNA-binding domain is available from NMR studies. The goal of the current project is to design a ligand which will bind to that basic domain and potentially inhibit the TAR-Tat interaction. The basic domain contains six arginine and two lysine residues. Our strategy was to design a ligand for arginine first and then a superligand for the basic domain by joining arginine ligands with a linker. Several possible arginine ligands were obtained by searching the Available Chemicals Directory with DOCK 3.5 software. Phytic acid, which can potentially bind multiple arginines, was chosen as a building block for the superligand. Calorimetric binding studies of several compounds to methylguanidine and Arg-/Lys-containing peptides were performed. The data were used to develop an empirical binding free energy function for prediction of affinity of the ligands for the Tat basic domain. Modeling of the conformations of the complexes with both the superligand and the basic domain being flexible has been carried out via Biased Probability Monte Carlo (BPMC) simulations in internal coordinates (ICM 2.6 suite of programs). The simulations used parameters to ensure correct folding, i.e., consistent with the experimental NMR structure of a 25-residue Tat peptide, from a random starting conformation. Superligands for the basic domain were designed by joining together two molecules of phytic acid with

  3. Supporting Information Synthesis of fatty monoester lubricant base ...

    Indian Academy of Sciences (India)

    Synthesis of fatty monoester lubricant base oil catalyzed by Fe-Zn ... Physical properties of fatty acid monoesters viz., kinematic viscosity, viscosity index, density ... The analysis method involves titration of the diluted sample with ethanolic alkali ...

  4. Evaluation of several two-step scoring functions based on linear interaction energy, effective ligand size, and empirical pair potentials for prediction of protein-ligand binding geometry and free energy.

    Science.gov (United States)

    Rahaman, Obaidur; Estrada, Trilce P; Doren, Douglas J; Taufer, Michela; Brooks, Charles L; Armen, Roger S

    2011-09-26

    The performances of several two-step scoring approaches for molecular docking were assessed for their ability to predict binding geometries and free energies. Two new scoring functions designed for "step 2 discrimination" were proposed and compared to our CHARMM implementation of the linear interaction energy (LIE) approach using the Generalized-Born with Molecular Volume (GBMV) implicit solvation model. A scoring function S1 was proposed by considering only "interacting" ligand atoms as the "effective size" of the ligand and extended to an empirical regression-based pair potential S2. The S1 and S2 scoring schemes were trained and 5-fold cross-validated on a diverse set of 259 protein-ligand complexes from the Ligand Protein Database (LPDB). The regression-based parameters for S1 and S2 also demonstrated reasonable transferability in the CSARdock 2010 benchmark using a new data set (NRC HiQ) of diverse protein-ligand complexes. The ability of the scoring functions to accurately predict ligand geometry was evaluated by calculating the discriminative power (DP) of the scoring functions to identify native poses. The parameters for the LIE scoring function with the optimal discriminative power (DP) for geometry (step 1 discrimination) were found to be very similar to the best-fit parameters for binding free energy over a large number of protein-ligand complexes (step 2 discrimination). Reasonable performance of the scoring functions in enrichment of active compounds in four different protein target classes established that the parameters for S1 and S2 provided reasonable accuracy and transferability. Additional analysis was performed to definitively separate scoring function performance from molecular weight effects. This analysis included the prediction of ligand binding efficiencies for a subset of the CSARdock NRC HiQ data set where the number of ligand heavy atoms ranged from 17 to 35. This range of ligand heavy atoms is where improved accuracy of predicted ligand

  5. Phosphane-Based Cyclodextrins as Mass Transfer Agents and Ligands for Aqueous Organometallic Catalysis

    Directory of Open Access Journals (Sweden)

    Eric Monflier

    2012-11-01

    Full Text Available The replacement of hazardous solvents and the utilization of catalytic processes are two key points of the green chemistry movement, so aqueous organometallic catalytic processes are of great interest in this context. Nevertheless, these processes require not only the use of water-soluble ligands such as phosphanes to solubilise the transition metals in water, but also the use of mass transfer agents to increase the solubility of organic substrates in water. In this context, phosphanes based on a cyclodextrin skeleton are an interesting alternative since these compounds can simultaneously act as mass transfer agents and as coordinating species towards transition metals. For twenty years, various cyclodextrin-functionalized phosphanes have been described in the literature. Nevertheless, while their coordinating properties towards transition metals and their catalytic properties were fully detailed, their mass transfer agent properties were much less discussed. As these mass transfer agent properties are directly linked to the availability of the cyclodextrin cavity, the aim of this review is to demonstrate that the nature of the reaction solvent and the nature of the linker between cyclodextrin and phosphorous moieties can deeply influence the recognition properties. In addition, the impact on the catalytic activity will be also discussed.

  6. SPR-based fragment screening with neurotensin receptor 1 generates novel small molecule ligands

    Science.gov (United States)

    Huber, Sylwia; Casagrande, Fabio; Hug, Melanie N.; Wang, Lisha; Heine, Philipp; Kummer, Lutz; Plückthun, Andreas; Hennig, Michael

    2017-01-01

    The neurotensin receptor 1 represents an important drug target involved in various diseases of the central nervous system. So far, the full exploitation of potential therapeutic activities has been compromised by the lack of compounds with favorable physicochemical and pharmacokinetic properties which efficiently penetrate the blood-brain barrier. Recent progress in the generation of stabilized variants of solubilized neurotensin receptor 1 and its subsequent purification and successful structure determination presents a solid starting point to apply the approach of fragment-based screening to extend the chemical space of known neurotensin receptor 1 ligands. In this report, surface plasmon resonance was used as primary method to screen 6369 compounds. Thereby 44 hits were identified and confirmed in competition as well as dose-response experiments. Furthermore, 4 out of 8 selected hits were validated using nuclear magnetic resonance spectroscopy as orthogonal biophysical method. Computational analysis of the compound structures, taking the known crystal structure of the endogenous peptide agonist into consideration, gave insight into the potential fragment-binding location and interactions and inspires chemistry efforts for further exploration of the fragments. PMID:28510609

  7. Benchmarking Ligand-Based Virtual High-Throughput Screening with the PubChem Database

    Directory of Open Access Journals (Sweden)

    Mariusz Butkiewicz

    2013-01-01

    Full Text Available With the rapidly increasing availability of High-Throughput Screening (HTS data in the public domain, such as the PubChem database, methods for ligand-based computer-aided drug discovery (LB-CADD have the potential to accelerate and reduce the cost of probe development and drug discovery efforts in academia. We assemble nine data sets from realistic HTS campaigns representing major families of drug target proteins for benchmarking LB-CADD methods. Each data set is public domain through PubChem and carefully collated through confirmation screens validating active compounds. These data sets provide the foundation for benchmarking a new cheminformatics framework BCL::ChemInfo, which is freely available for non-commercial use. Quantitative structure activity relationship (QSAR models are built using Artificial Neural Networks (ANNs, Support Vector Machines (SVMs, Decision Trees (DTs, and Kohonen networks (KNs. Problem-specific descriptor optimization protocols are assessed including Sequential Feature Forward Selection (SFFS and various information content measures. Measures of predictive power and confidence are evaluated through cross-validation, and a consensus prediction scheme is tested that combines orthogonal machine learning algorithms into a single predictor. Enrichments ranging from 15 to 101 for a TPR cutoff of 25% are observed.

  8. Large-scale ligand-based predictive modelling using support vector machines.

    Science.gov (United States)

    Alvarsson, Jonathan; Lampa, Samuel; Schaal, Wesley; Andersson, Claes; Wikberg, Jarl E S; Spjuth, Ola

    2016-01-01

    The increasing size of datasets in drug discovery makes it challenging to build robust and accurate predictive models within a reasonable amount of time. In order to investigate the effect of dataset sizes on predictive performance and modelling time, ligand-based regression models were trained on open datasets of varying sizes of up to 1.2 million chemical structures. For modelling, two implementations of support vector machines (SVM) were used. Chemical structures were described by the signatures molecular descriptor. Results showed that for the larger datasets, the LIBLINEAR SVM implementation performed on par with the well-established libsvm with a radial basis function kernel, but with dramatically less time for model building even on modest computer resources. Using a non-linear kernel proved to be infeasible for large data sizes, even with substantial computational resources on a computer cluster. To deploy the resulting models, we extended the Bioclipse decision support framework to support models from LIBLINEAR and made our models of logD and solubility available from within Bioclipse.

  9. A live zebrafish-based screening system for human nuclear receptor ligand and cofactor discovery.

    Science.gov (United States)

    Tiefenbach, Jens; Moll, Pamela R; Nelson, Meryl R; Hu, Chun; Baev, Lilia; Kislinger, Thomas; Krause, Henry M

    2010-03-22

    Nuclear receptors (NRs) belong to a superfamily of transcription factors that regulate numerous homeostatic, metabolic and reproductive processes. Taken together with their modulation by small lipophilic molecules, they also represent an important and successful class of drug targets. Although many NRs have been targeted successfully, the majority have not, and one third are still orphans. Here we report the development of an in vivo GFP-based reporter system suitable for monitoring NR activities in all cells and tissues using live zebrafish (Danio rerio). The human NR fusion proteins used also contain a new affinity tag cassette allowing the purification of receptors with bound molecules from responsive tissues. We show that these constructs 1) respond as expected to endogenous zebrafish hormones and cofactors, 2) facilitate efficient receptor and cofactor purification, 3) respond robustly to NR hormones and drugs and 4) yield readily quantifiable signals. Transgenic lines representing the majority of human NRs have been established and are available for the investigation of tissue- and isoform-specific ligands and cofactors.

  10. A live zebrafish-based screening system for human nuclear receptor ligand and cofactor discovery.

    Directory of Open Access Journals (Sweden)

    Jens Tiefenbach

    2010-03-01

    Full Text Available Nuclear receptors (NRs belong to a superfamily of transcription factors that regulate numerous homeostatic, metabolic and reproductive processes. Taken together with their modulation by small lipophilic molecules, they also represent an important and successful class of drug targets. Although many NRs have been targeted successfully, the majority have not, and one third are still orphans. Here we report the development of an in vivo GFP-based reporter system suitable for monitoring NR activities in all cells and tissues using live zebrafish (Danio rerio. The human NR fusion proteins used also contain a new affinity tag cassette allowing the purification of receptors with bound molecules from responsive tissues. We show that these constructs 1 respond as expected to endogenous zebrafish hormones and cofactors, 2 facilitate efficient receptor and cofactor purification, 3 respond robustly to NR hormones and drugs and 4 yield readily quantifiable signals. Transgenic lines representing the majority of human NRs have been established and are available for the investigation of tissue- and isoform-specific ligands and cofactors.

  11. A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage.

    Science.gov (United States)

    An, Tiance; Wang, Yuhang; Tang, Jing; Wang, Yang; Zhang, Lijuan; Zheng, Gengfeng

    2015-05-01

    A substantial challenge for direct utilization of metal-organic frameworks (MOFs) as lithium-ion battery anodes is to maintain the rigid MOF structure during lithiation/delithiation cycles. In this work, we developed a flexible, wavy layered nickel-based MOF (C20H24Cl2N8Ni, designated as Ni-Me4bpz) by a solvothermal approach of 3,3',5,5'-tetramethyl-4,4'-bipyrazole (H2Me4bpz) with nickel(II) chloride hexahydrate. The obtained MOF materials (Ni-Me4bpz) with metal azolate coordination mode provide 2-dimensional layered structure for Li(+) intercalation/extraction, and the H2Me4bpz ligands allow for flexible rotation feature and structural stability. Lithium-ion battery anodes made of the Ni-Me4bpz material demonstrate excellent specific capacity and cycling performance, and the crystal structure is well preserved after the electrochemical tests, suggesting the potential of developing flexible layered MOFs for efficient and stable electrochemical storage. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Copper-based metal coordination complexes with Voriconazole ligand: Syntheses, structures and antimicrobial properties

    Science.gov (United States)

    Zhao, Yan-Ming; Tang, Gui-Mei; Wang, Yong-Tao; Cui, Yue-Zhi; Ng, Seik Weng

    2018-03-01

    Three new chiral metal coordination complexes, namely, [Cu(FZ)2(CH3COO)2(H2O)]·2H2O (1), [Cu(FZ)2(NO3)2] (2), and [Cu2(FZ)2 (H2O)8](SO4)2·4H2O (3) [FZ = (2R,3S)-2-(2,4-difluorophenyl)-3-(5-fluoro-4-pyrimidiny)-1-(1H-1,2,4-triazol-1-yl)-2-butanol) (Voriconazole)] have been obtained by the reaction of Cu(II) salts and the free ligand FZ at room temperature. Complexes 1-3 were structurally characterized by X-ray single-crystal diffraction, IR, UV-vis, powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). Complex 1 crystallizes in the chiral space group C2, which exhibits a mono-nuclear structure. Both complexes 2 and 3 display a one-dimensional (1D) tape structure, which crystallize in chiral space group P21212 and P212121, respectively. Among these complexes, there exist a variety of hydrogen bonds and stacking interactions, through which a three-dimensional supramolecular architecture will be generated. Compared with the standard (Voriconazole), these Cu-based complexes show the more potent inhibiting efficiency against the species of Candida and Aspergillus. Moreover, among these complexes, complex 1 shows the most excellent efficiency.

  13. Regulation of the synthesis of the angucyclinone antibiotic alpomycin in Streptomyces ambofaciens by the autoregulator receptor AlpZ and its specific ligand.

    Science.gov (United States)

    Bunet, Robert; Mendes, Marta V; Rouhier, Nicolas; Pang, Xiuhua; Hotel, Laurence; Leblond, Pierre; Aigle, Bertrand

    2008-05-01

    Streptomyces ambofaciens produces an orange pigment and the antibiotic alpomycin, both of which are products of a type II polyketide synthase gene cluster identified in each of the terminal inverted repeats of the linear chromosome. Five regulatory genes encoding Streptomyces antibiotic regulatory proteins (alpV, previously shown to be an essential activator gene; alpT; and alpU) and TetR family receptors (alpZ and alpW) were detected in this cluster. Here, we demonstrate that AlpZ, which shows high similarity to gamma-butyrolactone receptors, is at the top of a pathway-specific regulatory hierarchy that prevents synthesis of the alp polyketide products. Deletion of the two copies of alpZ resulted in the precocious production of both alpomycin and the orange pigment, suggesting a repressor role for AlpZ. Consistent with this, expression of the five alp-located regulatory genes and of two representative biosynthetic structural genes (alpA and alpR) was induced earlier in the alpZ deletion strain. Furthermore, recombinant AlpZ was shown to bind to specific DNA sequences within the promoter regions of alpZ, alpV, and alpXW, suggesting direct transcriptional control of these genes by AlpZ. Analysis of solvent extracts of S. ambofaciens cultures identified the existence of a factor which induces precocious production of alpomycin and pigment in the wild-type strain and which can disrupt the binding of AlpZ to its DNA targets. This activity is reminiscent of gamma-butyrolactone-type molecules. However, the AlpZ-interacting molecule(s) was shown to be resistant to an alkali treatment capable of inactivating gamma-butyrolactones, suggesting that the AlpZ ligand(s) does not possess a lactone functional group.

  14. Copper(II) Complexes of Phenanthroline and Histidine Containing Ligands: Synthesis, Characterization and Evaluation of their DNA Cleavage and Cytotoxic Activity.

    Science.gov (United States)

    Leite, Sílvia M G; Lima, Luís M P; Gama, Sofia; Mendes, Filipa; Orio, Maylis; Bento, Isabel; Paulo, António; Delgado, Rita; Iranzo, Olga

    2016-11-21

    Copper(II) complexes have been intensely investigated in a variety of diseases and pathological conditions due to their therapeutic potential. The development of these complexes requires a good knowledge of metal coordination chemistry and ligand design to control species distribution in solution and tailor the copper(II) centers in the right environment for the desired biological activity. Herein we present the synthesis and characterization of two ligands HL1 and H 2 L2 containing a phenanthroline unit (phen) attached to the amino group of histidine (His). Their copper(II) coordination properties were studied using potentiometry, spectroscopy techniques (UV-vis and EPR), mass spectrometry (ESI-MS) and DFT calculations. The data showed the formation of single copper complexes, [CuL1] + and [CuL2], with high stability within a large pH range (from 3.0 to 9.0 for [CuL1] + and from 4.5 to 10.0 for [CuL2]). In both complexes the Cu 2+ ion is bound to the phen unit, the imidazole ring and the deprotonated amide group, and displays a distorted square pyramidal geometry as confirmed by single crystal X-ray crystallography. Interestingly, despite having similar structures, these copper complexes show different redox potentials, DNA cleavage properties and cytotoxic activity against different cancer cell lines (human ovarian (A2780), its cisplatin-resistant variant (A2780cisR) and human breast (MCF7) cancer cell lines). The [CuL2] complex has lower reduction potential (E pc = -0.722 V vs -0.452 V for [CuL1] + ) but higher biological activity. These results highlight the effect of different pendant functional groups (carboxylate vs amide), placed out of the coordination sphere, in the properties of these copper complexes.

  15. Droplet-based microfluidic method for synthesis of microparticles

    CSIR Research Space (South Africa)

    Mbanjwa, MB

    2012-10-01

    Full Text Available Droplet-based microfluidics has, in recent years, received increased attention as an important tool for performing numerous methods in modern day chemistry and biology such as the synthesis of hydrogel microparticles. Hydrogels have been used in many..., in recent years, received increased attention as an important tool for performing numerous methods in modern day chemistry and biology, such as synthesis of hydrogel microparticles. CONCLUSION AND OUTLOOK The droplet-based microfluidic method offers...

  16. Dielectric properties of ligand-modified gold nanoparticles/SU-8 photopolymer based nanocomposites

    KAUST Repository

    Toor, Anju; So, Hongyun; Pisano, Albert P.

    2017-01-01

    This article reports the enhanced dielectric properties of a photodefinable nanocomposite material containing sub–10 nm coated metal nanoparticles (NPs). The surface morphology of the synthesized dodecanethiol-functionalized gold NPs was characterized using the transmission electron microscopy (TEM). We investigated the particle agglomeration and dispersion during the various stages of the nanocomposite synthesis using TEM. Physical properties such as dielectric permittivity and dielectric loss were measured experimentally. The dependence of dielectric permittivity and loss tangent on particle concentration and frequency was studied. Nanocomposite films showed an approximately three times enhancement in average dielectric constant over the polymer base value and an average dielectric loss of 0.09 at 1 kHz, at a filler loading of 10% w/w.

  17. Dielectric properties of ligand-modified gold nanoparticles/SU-8 photopolymer based nanocomposites

    KAUST Repository

    Toor, Anju

    2017-04-15

    This article reports the enhanced dielectric properties of a photodefinable nanocomposite material containing sub–10 nm coated metal nanoparticles (NPs). The surface morphology of the synthesized dodecanethiol-functionalized gold NPs was characterized using the transmission electron microscopy (TEM). We investigated the particle agglomeration and dispersion during the various stages of the nanocomposite synthesis using TEM. Physical properties such as dielectric permittivity and dielectric loss were measured experimentally. The dependence of dielectric permittivity and loss tangent on particle concentration and frequency was studied. Nanocomposite films showed an approximately three times enhancement in average dielectric constant over the polymer base value and an average dielectric loss of 0.09 at 1 kHz, at a filler loading of 10% w/w.

  18. Synthesis of nucleosides and dNTPs bearing oligopyridine ligands linked through an octadiyne tether, their incorporation into DNA and complexation with transition metal cations

    Czech Academy of Sciences Publication Activity Database

    Kalachová, Lubica; Pohl, Radek; Bednárová, Lucie; Fanfrlík, Jindřich; Hocek, Michal

    2013-01-01

    Roč. 11, č. 1 (2013), s. 78-89 ISSN 1477-0520 R&D Projects: GA ČR GA203/09/0317 Institutional support: RVO:61388963 Keywords : cross - coupling reactions * base-pair * solid-phase synthesis * polymerase incorporation Subject RIV: CC - Organic Chemistry Impact factor: 3.487, year: 2013

  19. Sub-20 nm Stable Micelles Based on a Mixture of Coiled-Coils: A Platform for Controlled Ligand Presentation.

    Science.gov (United States)

    Ang, JooChuan; Ma, Dan; Jung, Benson T; Keten, Sinan; Xu, Ting

    2017-11-13

    Ligand-functionalized, multivalent nanoparticles have been extensively studied for biomedical applications from imaging agents to drug delivery vehicles. However, the ligand cluster size is usually heterogeneous and the local valency is ill-defined. Here, we present a mixed micelle platform hierarchically self-assembled from a mixture of two amphiphilic 3-helix and 4-helix peptide-polyethylene glycol (PEG)-lipid hybrid conjugates. We demonstrate that the local multivalent ligand cluster size on the micelle surface can be controlled based on the coiled-coil oligomeric state. The oligomeric states of mixed peptide bundles were found to be in their individual native states. Similarly, mixed micelles indicate the orthogonal self-association of coiled-coil amphiphiles. Using differential scanning calorimetry, fluorescence recovery spectroscopy, and coarse-grained molecular dynamics simulation, we studied the distribution of coiled-coil bundles within the mixed micelles and observed migration of coiled-coils into nanodomains within the sub-20 nm mixed micelle. This report provides important insights into the assembly and formation of nanophase-separated micelles with precise control over the local multivalent state of ligands on the micelle surface.

  20. Crystal structures and luminescence of two cadmium-carboxylate cluster-based compounds with mixed ligands

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hui-Fang; Lei, Qian; Wang, Yu-Ling; Yin, Shun-Gao; Liu, Qing-Yan [College of Chemistry and Chemical Engineering and Key Lab. of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal Univ., Nanchang (China)

    2017-04-04

    Reactions of Cd(NO{sub 3}){sub 2}.4H{sub 2}O with 2-quinolinecarboxylic acid (H-QLC) in the presence of 1,4-benzenedicarboxylic acid (H{sub 2}-BDC) or 1,3,5-benzenetricarboxylic acid (H-BTC) in DMF/H{sub 2}O solvent afforded two compounds, namely, [Cd(QLC)(BDC){sub 1/2}(H{sub 2}O)]{sub n} (1) and [Cd(QLC)(BTC){sub 1/3}]{sub n} (2). Both compounds are two-dimensional (2D) frameworks but feature different cadmium-carboxylate clusters as a result of the presence of the polycarboxylate ligands with different geometries and coordination preference. The dinuclear Cd{sub 2}(QLC){sub 2} units in 1 are bridged by the pairs of bridging water ligands to give a one-dimensional (1D) chain, which is further linked by the second ligand of BDC{sup 2-} to form a 2D structure. Compound 2 is constructed from unique hexanuclear macrometallacyclic Cd{sub 6}(QLC){sub 6} clusters, which are linked by the surrounding BTC{sup 3-} ligands to generate a 2D structure. Photoluminescence studies showed both compounds exhibit ligand-centered luminescent emissions with emission maxima at 405 and 401 nm, respectively. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)