WorldWideScience

Sample records for base excision dna

  1. Modulation of DNA base excision repair during neuronal differentiation

    DEFF Research Database (Denmark)

    Sykora, Peter; Yang, Jenq-Lin; Ferrarelli, Leslie K

    2013-01-01

    DNA damage susceptibility and base excision DNA repair (BER) capacity in undifferentiated and differentiated human neural cells. The results show that undifferentiated human SH-SY5Y neuroblastoma cells are less sensitive to oxidative damage than their differentiated counterparts, in part because...

  2. Enhanced base excision repair capacity in carotid atherosclerosis may protect nuclear DNA but not mitochondrial DNA

    DEFF Research Database (Denmark)

    Skarpengland, Tonje; B. Dahl, Tuva; Skjelland, Mona

    2016-01-01

    Lesional and systemic oxidative stress has been implicated in the pathogenesis of atherosclerosis, potentially leading to accumulation of DNA base lesions within atherosclerotic plaques. Although base excision repair (BER) is a major pathway counteracting oxidative DNA damage, our knowledge on BER...

  3. A history of the DNA repair and mutagenesis field: The discovery of base excision repair.

    Science.gov (United States)

    Friedberg, Errol C

    2016-01-01

    This article reviews the early history of the discovery of an DNA repair pathway designated as base excision repair (BER), since in contrast to the enzyme-catalyzed removal of damaged bases from DNA as nucleotides [called nucleotide excision repair (NER)], BER involves the removal of damaged or inappropriate bases, such as the presence of uracil instead of thymine, from DNA as free bases. Copyright © 2015. Published by Elsevier B.V.

  4. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase.

    NARCIS (Netherlands)

    B.P. Engelward (Bevin); G. Weeda (Geert); M.D. Wyatt; J.L.M. Broekhof (Jose'); J. de Wit (Jan); I. Donker (Ingrid); J.M. Allan (James); B. Gold (Bert); J.H.J. Hoeijmakers (Jan); L.D. Samson (Leona)

    1997-01-01

    textabstract3-methyladenine (3MeA) DNA glycosylases remove 3MeAs from alkylated DNA to initiate the base excision repair pathway. Here we report the generation of mice deficient in the 3MeA DNA glycosylase encoded by the Aag (Mpg) gene. Alkyladenine DNA glycosylase turns out to be the major DNA

  5. Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Rongxin; Mullins, Elwood A.; Shen, Xing; #8208; Xing; Lay, Kori T.; Yuen, Philip K.; David, Sheila S.; Rokas, Antonis; Eichman, Brandt F. (UCD); (Vanderbilt)

    2017-10-20

    DNA glycosylases preserve genome integrity and define the specificity of the base excision repair pathway for discreet, detrimental modifications, and thus, the mechanisms by which glycosylases locate DNA damage are of particular interest. Bacterial AlkC and AlkD are specific for cationic alkylated nucleobases and have a distinctive HEAT-like repeat (HLR) fold. AlkD uses a unique non-base-flipping mechanism that enables excision of bulky lesions more commonly associated with nucleotide excision repair. In contrast, AlkC has a much narrower specificity for small lesions, principally N3-methyladenine (3mA). Here, we describe how AlkC selects for and excises 3mA using a non-base-flipping strategy distinct from that of AlkD. A crystal structure resembling a catalytic intermediate complex shows how AlkC uses unique HLR and immunoglobulin-like domains to induce a sharp kink in the DNA, exposing the damaged nucleobase to active site residues that project into the DNA. This active site can accommodate and excise N3-methylcytosine (3mC) and N1-methyladenine (1mA), which are also repaired by AlkB-catalyzed oxidative demethylation, providing a potential alternative mechanism for repair of these lesions in bacteria.

  6. The role of DNA base excision repair in brain homeostasis and disease

    DEFF Research Database (Denmark)

    Akbari, Mansour; Morevati, Marya; Croteau, Deborah

    2015-01-01

    Chemical modification and spontaneous loss of nucleotide bases from DNA are estimated to occur at the rate of thousands per human cell per day. DNA base excision repair (BER) is a critical mechanism for repairing such lesions in nuclear and mitochondrial DNA. Defective expression or function of p...... energy homeostasis, mitochondrial function and cellular bioenergetics, with especially strong influence on neurological function. Further studies in this area could lead to novel approaches to prevent and treat human neurodegenerative disease....

  7. DNA Damage and Base Excision Repair in Mitochondria and Their Role in Aging

    Directory of Open Access Journals (Sweden)

    Ricardo Gredilla

    2011-01-01

    Full Text Available During the last decades, our knowledge about the processes involved in the aging process has exponentially increased. However, further investigation will be still required to globally understand the complexity of aging. Aging is a multifactorial phenomenon characterized by increased susceptibility to cellular loss and functional decline, where mitochondrial DNA mutations and mitochondrial DNA damage response are thought to play important roles. Due to the proximity of mitochondrial DNA to the main sites of mitochondrial-free radical generation, oxidative stress is a major source of mitochondrial DNA mutations. Mitochondrial DNA repair mechanisms, in particular the base excision repair pathway, constitute an important mechanism for maintenance of mitochondrial DNA integrity. The results reviewed here support that mitochondrial DNA damage plays an important role in aging.

  8. Oxidatively-induced DNA damage and base excision repair in euthymic patients with bipolar disorder.

    Science.gov (United States)

    Ceylan, Deniz; Tuna, Gamze; Kirkali, Güldal; Tunca, Zeliha; Can, Güneş; Arat, Hidayet Ece; Kant, Melis; Dizdaroglu, Miral; Özerdem, Ayşegül

    2018-05-01

    Oxidatively-induced DNA damage has previously been associated with bipolar disorder. More recently, impairments in DNA repair mechanisms have also been reported. We aimed to investigate oxidatively-induced DNA lesions and expression of DNA glycosylases involved in base excision repair in euthymic patients with bipolar disorder compared to healthy individuals. DNA base lesions including both base and nucleoside modifications were measured using gas chromatography-tandem mass spectrometry and liquid chromatography-tandem mass spectrometry with isotope-dilution in DNA samples isolated from leukocytes of euthymic patients with bipolar disorder (n = 32) and healthy individuals (n = 51). The expression of DNA repair enzymes OGG1 and NEIL1 were measured using quantitative real-time polymerase chain reaction. The levels of malondialdehyde were measured using high performance liquid chromatography. Seven DNA base lesions in DNA of leukocytes of patients and healthy individuals were identified and quantified. Three of them had significantly elevated levels in bipolar patients when compared to healthy individuals. No elevation of lipid peroxidation marker malondialdehyde was observed. The level of OGG1 expression was significantly reduced in bipolar patients compared to healthy individuals, whereas the two groups exhibited similar levels of NEIL1 expression. Our results suggest that oxidatively-induced DNA damage occurs and base excision repair capacity may be decreased in bipolar patients when compared to healthy individuals. Measurement of oxidatively-induced DNA base lesions and the expression of DNA repair enzymes may be of great importance for large scale basic research and clinical studies of bipolar disorder. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. How are base excision DNA repair pathways deployed in vivo? [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Upasna Thapar

    2017-03-01

    Full Text Available Since the discovery of the base excision repair (BER system for DNA more than 40 years ago, new branches of the pathway have been revealed at the biochemical level by in vitro studies. Largely for technical reasons, however, the confirmation of these subpathways in vivo has been elusive. We review methods that have been used to explore BER in mammalian cells, indicate where there are important knowledge gaps to fill, and suggest a way to address them.

  10. DNA Base Excision Repair (BER) and Cancer Gene Therapy: Use of the Human N-mythlpurien DNA Glycosylase (MPG) to Sensitize Breast Cancer Cells to Low Dose Chemotherapy

    National Research Council Canada - National Science Library

    Harvey, Tia

    2003-01-01

    The DNA Base Excision Repair (PER) pathway is responsible for the repair of alkylation and oxidative DNA damage resulting in protection against the deleterious effects of endogenous and exogenous agents encountered on a daily basis...

  11. Base excision DNA repair in the embryonic development of the sea urchin, Strongylocentrotus intermedius.

    Science.gov (United States)

    Torgasheva, Natalya A; Menzorova, Natalya I; Sibirtsev, Yurii T; Rasskazov, Valery A; Zharkov, Dmitry O; Nevinsky, Georgy A

    2016-06-21

    In actively proliferating cells, such as the cells of the developing embryo, DNA repair is crucial for preventing the accumulation of mutations and synchronizing cell division. Sea urchin embryo growth was analyzed and extracts were prepared. The relative activity of DNA polymerase, apurinic/apyrimidinic (AP) endonuclease, uracil-DNA glycosylase, 8-oxoguanine-DNA glycosylase, and other glycosylases was analyzed using specific oligonucleotide substrates of these enzymes; the reaction products were resolved by denaturing 20% polyacrylamide gel electrophoresis. We have characterized the profile of several key base excision repair activities in the developing embryos (2 blastomers to mid-pluteus) of the grey sea urchin, Strongylocentrotus intermedius. The uracil-DNA glycosylase specific activity sharply increased after blastula hatching, whereas the specific activity of 8-oxoguanine-DNA glycosylase steadily decreased over the course of the development. The AP-endonuclease activity gradually increased but dropped at the last sampled stage (mid-pluteus 2). The DNA polymerase activity was high at the first cleavage division and then quickly decreased, showing a transient peak at blastula hatching. It seems that the developing sea urchin embryo encounters different DNA-damaging factors early in development within the protective envelope and later as a free-floating larva, with hatching necessitating adaptation to the shift in genotoxic stress conditions. No correlation was observed between the dynamics of the enzyme activities and published gene expression data from developing congeneric species, S. purpuratus. The results suggest that base excision repair enzymes may be regulated in the sea urchin embryos at the level of covalent modification or protein stability.

  12. Base excision repair in Archaea: back to the future in DNA repair.

    Science.gov (United States)

    Grasso, Stefano; Tell, Gianluca

    2014-09-01

    Together with Bacteria and Eukarya, Archaea represents one of the three domain of life. In contrast with the morphological difference existing between Archaea and Eukarya, these two domains are closely related. Phylogenetic analyses confirm this evolutionary relationship showing that most of the proteins involved in DNA transcription and replication are highly conserved. On the contrary, information is scanty about DNA repair pathways and their mechanisms. In the present review the most important proteins involved in base excision repair, namely glycosylases, AP lyases, AP endonucleases, polymerases, sliding clamps, flap endonucleases, and ligases, will be discussed and compared with bacterial and eukaryotic ones. Finally, possible applications and future perspectives derived from studies on Archaea and their repair pathways, will be taken into account. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. On-bead fluorescent DNA nanoprobes to analyze base excision repair activities

    Energy Technology Data Exchange (ETDEWEB)

    Gines, Guillaume; Saint-Pierre, Christine; Gasparutto, Didier, E-mail: didier.gasparutto@cea.fr

    2014-02-17

    Graphical abstract: -- Highlights: •On magnetic beads fluorescent enzymatic assays. •Simple, easy, non-radioactive and electrophoresis-free functional assay. •Lesion-containing hairpin DNA probes are selective for repair enzymes. •The biosensing platform allows the measurement of DNA repair activities from purified enzymes or within cell free extracts. -- Abstract: DNA integrity is constantly threatened by endogenous and exogenous agents that can modify its physical and chemical structure. Changes in DNA sequence can cause mutations sparked by some genetic diseases or cancers. Organisms have developed efficient defense mechanisms able to specifically repair each kind of lesion (alkylation, oxidation, single or double strand break, mismatch, etc). Here we report the adjustment of an original assay to detect enzymes’ activity of base excision repair (BER), that supports a set of lesions including abasic sites, alkylation, oxidation or deamination products of bases. The biosensor is characterized by a set of fluorescent hairpin-shaped nucleic acid probes supported on magnetic beads, each containing a selective lesion targeting a specific BER enzyme. We have studied the DNA glycosylase alkyl-adenine glycosylase (AAG) and the human AP-endonuclease (APE1) by incorporating within the DNA probe a hypoxanthine lesion or an abasic site analog (tetrahydrofuran), respectively. Enzymatic repair activity induces the formation of a nick in the damaged strand, leading to probe's break, that is detected in the supernatant by fluorescence. The functional assay allows the measurement of DNA repair activities from purified enzymes or in cell-free extracts in a fast, specific, quantitative and sensitive way, using only 1 pmol of probe for a test. We recorded a detection limit of 1 μg mL{sup −1} and 50 μg mL{sup −1} of HeLa nuclear extracts for APE1 and AAG enzymes, respectively. Finally, the on-bead assay should be useful to screen inhibitors of DNA repair

  14. On-bead fluorescent DNA nanoprobes to analyze base excision repair activities

    International Nuclear Information System (INIS)

    Gines, Guillaume; Saint-Pierre, Christine; Gasparutto, Didier

    2014-01-01

    Graphical abstract: -- Highlights: •On magnetic beads fluorescent enzymatic assays. •Simple, easy, non-radioactive and electrophoresis-free functional assay. •Lesion-containing hairpin DNA probes are selective for repair enzymes. •The biosensing platform allows the measurement of DNA repair activities from purified enzymes or within cell free extracts. -- Abstract: DNA integrity is constantly threatened by endogenous and exogenous agents that can modify its physical and chemical structure. Changes in DNA sequence can cause mutations sparked by some genetic diseases or cancers. Organisms have developed efficient defense mechanisms able to specifically repair each kind of lesion (alkylation, oxidation, single or double strand break, mismatch, etc). Here we report the adjustment of an original assay to detect enzymes’ activity of base excision repair (BER), that supports a set of lesions including abasic sites, alkylation, oxidation or deamination products of bases. The biosensor is characterized by a set of fluorescent hairpin-shaped nucleic acid probes supported on magnetic beads, each containing a selective lesion targeting a specific BER enzyme. We have studied the DNA glycosylase alkyl-adenine glycosylase (AAG) and the human AP-endonuclease (APE1) by incorporating within the DNA probe a hypoxanthine lesion or an abasic site analog (tetrahydrofuran), respectively. Enzymatic repair activity induces the formation of a nick in the damaged strand, leading to probe's break, that is detected in the supernatant by fluorescence. The functional assay allows the measurement of DNA repair activities from purified enzymes or in cell-free extracts in a fast, specific, quantitative and sensitive way, using only 1 pmol of probe for a test. We recorded a detection limit of 1 μg mL −1 and 50 μg mL −1 of HeLa nuclear extracts for APE1 and AAG enzymes, respectively. Finally, the on-bead assay should be useful to screen inhibitors of DNA repair activities

  15. Chromatin associated mechanisms in base excision repair - nucleosome remodeling and DNA transcription, two key players.

    Science.gov (United States)

    Menoni, Hervé; Di Mascio, Paolo; Cadet, Jean; Dimitrov, Stefan; Angelov, Dimitar

    2017-06-01

    Genomic DNA is prone to a large number of insults by a myriad of endogenous and exogenous agents. The base excision repair (BER) is the major mechanism used by cells for the removal of various DNA lesions spontaneously or environmentally induced and the maintenance of genome integrity. The presence of persistent DNA damage is not compatible with life, since abrogation of BER leads to early embryonic lethality in mice. There are several lines of evidences showing existence of a link between deficient BER, cancer proneness and ageing, thus illustrating the importance of this DNA repair pathway in human health. Although the enzymology of BER mechanisms has been largely elucidated using chemically defined DNA damage substrates and purified proteins, the complex interplay of BER with another vital process like transcription or when DNA is in its natural state (i.e. wrapped in nucleosome and assembled in chromatin fiber is largely unexplored. Cells use chromatin remodeling factors to overcome the general repression associated with the nucleosomal organization. It is broadly accepted that energy-dependent nucleosome remodeling factors disrupt histones-DNA interactions at the expense of ATP hydrolysis to favor transcription as well as DNA repair. Importantly, unlike transcription, BER is not part of a regulated developmental process but represents a maintenance system that should be efficient anytime and anywhere in the genome. In this review we will discuss how BER can deal with chromatin organization to maintain genetic information. Emphasis will be placed on the following challenging question: how BER is initiated within chromatin? Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effects of post mortem interval and gender in DNA base excision repair activities in rat brains

    Energy Technology Data Exchange (ETDEWEB)

    Soltys, Daniela Tathiana; Pereira, Carolina Parga Martins; Ishibe, Gabriela Naomi; Souza-Pinto, Nadja Cristhina de, E-mail: nadja@iq.usp.br

    2015-06-15

    Most human tissues used in research are of post mortem origin. This is the case for all brain samples, and due to the difficulty in obtaining a good number of samples, especially in the case of neurodegenerative diseases, male and female samples are often included in the same experimental group. However, the effects of post mortem interval (PMI) and gender differences in the endpoints being analyzed are not always fully understood, as is the case for DNA repair activities. To investigate these effects, in a controlled genetic background, base excision repair (BER) activities were measured in protein extracts obtained from Wistar rat brains from different genders and defined PMI up to 24 hours, using a novel fluorescent-based in vitro incision assay. Uracil and AP-site incision activity in nuclear and mitochondrial extracts were similar in all groups included in this study. Our results show that gender and PMI up to 24 hours have no influence in the activities of the BER proteins UDG and APE1 in rat brains. These findings demonstrate that these variables do not interfere on the BER activities included in these study, and provide a security window to work with UDG and APE1 proteins in samples of post mortem origin.

  17. Effects of post mortem interval and gender in DNA base excision repair activities in rat brains

    International Nuclear Information System (INIS)

    Soltys, Daniela Tathiana; Pereira, Carolina Parga Martins; Ishibe, Gabriela Naomi; Souza-Pinto, Nadja Cristhina de

    2015-01-01

    Most human tissues used in research are of post mortem origin. This is the case for all brain samples, and due to the difficulty in obtaining a good number of samples, especially in the case of neurodegenerative diseases, male and female samples are often included in the same experimental group. However, the effects of post mortem interval (PMI) and gender differences in the endpoints being analyzed are not always fully understood, as is the case for DNA repair activities. To investigate these effects, in a controlled genetic background, base excision repair (BER) activities were measured in protein extracts obtained from Wistar rat brains from different genders and defined PMI up to 24 hours, using a novel fluorescent-based in vitro incision assay. Uracil and AP-site incision activity in nuclear and mitochondrial extracts were similar in all groups included in this study. Our results show that gender and PMI up to 24 hours have no influence in the activities of the BER proteins UDG and APE1 in rat brains. These findings demonstrate that these variables do not interfere on the BER activities included in these study, and provide a security window to work with UDG and APE1 proteins in samples of post mortem origin

  18. Mitochondrial base excision repair assays

    DEFF Research Database (Denmark)

    Maynard, Scott; de Souza-Pinto, Nadja C; Scheibye-Knudsen, Morten

    2010-01-01

    The main source of mitochondrial DNA (mtDNA) damage is reactive oxygen species (ROS) generated during normal cellular metabolism. The main mtDNA lesions generated by ROS are base modifications, such as the ubiquitous 8-oxoguanine (8-oxoG) lesion; however, base loss and strand breaks may also occur....... Many human diseases are associated with mtDNA mutations and thus maintaining mtDNA integrity is critical. All of these lesions are repaired primarily by the base excision repair (BER) pathway. It is now known that mammalian mitochondria have BER, which, similarly to nuclear BER, is catalyzed by DNA...... glycosylases, AP endonuclease, DNA polymerase (POLgamma in mitochondria) and DNA ligase. This article outlines procedures for measuring oxidative damage formation and BER in mitochondria, including isolation of mitochondria from tissues and cells, protocols for measuring BER enzyme activities, gene...

  19. Targeted detection of in vivo endogenous DNA base damage reveals preferential base excision repair in the transcribed strand.

    Science.gov (United States)

    Reis, António M C; Mills, Wilbur K; Ramachandran, Ilangovan; Friedberg, Errol C; Thompson, David; Queimado, Lurdes

    2012-01-01

    Endogenous DNA damage is removed mainly via base excision repair (BER), however, whether there is preferential strand repair of endogenous DNA damage is still under intense debate. We developed a highly sensitive primer-anchored DNA damage detection assay (PADDA) to map and quantify in vivo endogenous DNA damage. Using PADDA, we documented significantly higher levels of endogenous damage in Saccharomyces cerevisiae cells in stationary phase than in exponential phase. We also documented that yeast BER-defective cells have significantly higher levels of endogenous DNA damage than isogenic wild-type cells at any phase of growth. PADDA provided detailed fingerprint analysis at the single-nucleotide level, documenting for the first time that persistent endogenous nucleotide damage in CAN1 co-localizes with previously reported spontaneous CAN1 mutations. To quickly and reliably quantify endogenous strand-specific DNA damage in the constitutively expressed CAN1 gene, we used PADDA on a real-time PCR setting. We demonstrate that wild-type cells repair endogenous damage preferentially on the CAN1 transcribed strand. In contrast, yeast BER-defective cells accumulate endogenous damage preferentially on the CAN1 transcribed strand. These data provide the first direct evidence for preferential strand repair of endogenous DNA damage and documents the major role of BER in this process.

  20. DNA polymerases beta and lambda mediate overlapping and independent roles in base excision repair in mouse embryonic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Elena K Braithwaite

    2010-08-01

    Full Text Available Base excision repair (BER is a DNA repair pathway designed to correct small base lesions in genomic DNA. While DNA polymerase beta (pol beta is known to be the main polymerase in the BER pathway, various studies have implicated other DNA polymerases in back-up roles. One such polymerase, DNA polymerase lambda (pol lambda, was shown to be important in BER of oxidative DNA damage. To further explore roles of the X-family DNA polymerases lambda and beta in BER, we prepared a mouse embryonic fibroblast cell line with deletions in the genes for both pol beta and pol lambda. Neutral red viability assays demonstrated that pol lambda and pol beta double null cells were hypersensitive to alkylating and oxidizing DNA damaging agents. In vitro BER assays revealed a modest contribution of pol lambda to single-nucleotide BER of base lesions. Additionally, using co-immunoprecipitation experiments with purified enzymes and whole cell extracts, we found that both pol lambda and pol beta interact with the upstream DNA glycosylases for repair of alkylated and oxidized DNA bases. Such interactions could be important in coordinating roles of these polymerases during BER.

  1. Metal inhibition of human alkylpurine-DNA-N-glycosylase activityin base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ping; Guliaev, Anton B.; Hang, Bo

    2006-02-28

    Cadmium (Cd{sup 2+}), nickel (Ni{sup 2+}) and cobalt (Co{sup 2+}) are human and/or animal carcinogens. Zinc (Zn{sup 2+}) is not categorized as a carcinogen, and rather an essential element to humans. Metals were recently shown to inhibit DNA repair proteins that use metals for their function and/or structure. Here we report that the divalent ions Cd{sup 2+}, Ni{sup 2+}, and Zn{sup 2+} can inhibit the activity of a recombinant human N-methylpurine-DNA glycosylase (MPG) toward a deoxyoligonucleotide with ethenoadenine (var epsilonA). MPG removes a variety of toxic/mutagenic alkylated bases and does not require metal for its catalytic activity or structural integrity. At concentrations starting from 50 to 1000 {micro}M, both Cd{sup 2+} and Zn{sup 2+} showed metal-dependent inhibition of the MPG catalytic activity. Ni{sup 2+} also inhibited MPG, but to a lesser extent. Such an effect can be reversed with EDTA addition. In contrast, Co{sup 2+} and Mg{sup 2+} did not inhibit the MPG activity in the same dose range. Experiments using HeLa cell-free extracts demonstrated similar patterns of inactivation of the var epsilonA excision activity by the same metals. Binding of MPG to the substrate was not significantly affected by Cd{sup 2+}, Zn{sup 2+}, and Ni{sup 2+} at concentrations that show strong inhibition of the catalytic function, suggesting that the reduced catalytic activity is not due to altered MPG binding affinity to the substrate. Molecular dynamics (MD) simulations with Zn{sup 2+} showed that the MPG active site has a potential binding site for Zn{sup 2+}, formed by several catalytically important and conserved residues. Metal binding to such a site is expected to interfere with the catalytic mechanism of this protein. These data suggest that inhibition of MPG activity may contribute to metal genotoxicity and depressed repair of alkylation damage by metals in vivo.

  2. Repair of DNA-polypeptide crosslinks by human excision nuclease

    Science.gov (United States)

    Reardon, Joyce T.; Sancar, Aziz

    2006-03-01

    DNA-protein crosslinks are relatively common DNA lesions that form during the physiological processing of DNA by replication and recombination proteins, by side reactions of base excision repair enzymes, and by cellular exposure to bifunctional DNA-damaging agents such as platinum compounds. The mechanism by which pathological DNA-protein crosslinks are repaired in humans is not known. In this study, we investigated the mechanism of recognition and repair of protein-DNA and oligopeptide-DNA crosslinks by the human excision nuclease. Under our assay conditions, the human nucleotide excision repair system did not remove a 16-kDa protein crosslinked to DNA at a detectable level. However, 4- and 12-aa-long oligopeptides crosslinked to the DNA backbone were recognized by some of the damage recognition factors of the human excision nuclease with moderate selectivity and were excised from DNA at relatively efficient rates. Our data suggest that, if coupled with proteolytic degradation of the crosslinked protein, the human excision nuclease may be the major enzyme system for eliminating protein-DNA crosslinks from the genome. damage recognition | nucleotide excision repair

  3. The Influence of Hepatitis C Virus Therapy on the DNA Base Excision Repair System of Peripheral Blood Mononuclear Cells.

    Science.gov (United States)

    Czarny, Piotr; Merecz-Sadowska, Anna; Majchrzak, Kinga; Jabłkowski, Maciej; Szemraj, Janusz; Śliwiński, Tomasz; Karwowski, Bolesław

    2017-07-01

    Hepatitis C virus (HCV) can infect extrahepatic tissues, including lymphocytes, creating reservoir of the virus. Moreover, HCV proteins can interact with DNA damage response proteins of infected cells. In this article we investigated the influence of the virus infection and a new ombitasvir/paritaprevir/ritonavir ± dasabuvir ± ribavirin (OBV/PTV/r ± DSV ± RBV) anti-HCV therapy on the PBMCs (peripheral blood mononuclear cells, mainly lymphocytes) DNA base excision repair (BER) system. BER protein activity was analyzed in the nuclear and mitochondrial extracts (NE and ME) of PBMC isolated from patients before and after therapy, and from subjects without HCV, using modeled double-strand DNA, with 2'-deoxyuridine substitution as the DNA damage. The NE and ME obtained from patients before therapy demonstrated lower efficacy of 2'-deoxyuridine removal and DNA repair polymerization than those of the control group or patients after therapy. Moreover, the extracts from the patients after therapy had similar activity to those from the control group. However, the efficacy of apurinic/apyrimidinic site excision in NE did not differ between the studied groups. We postulate that infection of lymphocytes by the HCV can lead to a decrease in the activity of BER enzymes. However, the use of novel therapy results in the improvement of glycosylase activity as well as the regeneration of endonuclease and other crucial repair enzymes.

  4. Spontaneous germline excision of Tol1, a DNA-based transposable element naturally occurring in the medaka fish genome.

    Science.gov (United States)

    Watanabe, Kohei; Koga, Hajime; Nakamura, Kodai; Fujita, Akiko; Hattori, Akimasa; Matsuda, Masaru; Koga, Akihiko

    2014-04-01

    DNA-based transposable elements are ubiquitous constituents of eukaryotic genomes. Vertebrates are, however, exceptional in that most of their DNA-based elements appear to be inactivated. The Tol1 element of the medaka fish, Oryzias latipes, is one of the few elements for which copies containing an undamaged gene have been found. Spontaneous transposition of this element in somatic cells has previously been demonstrated, but there is only indirect evidence for its germline transposition. Here, we show direct evidence of spontaneous excision in the germline. Tyrosinase is the key enzyme in melanin biosynthesis. In an albino laboratory strain of medaka fish, which is homozygous for a mutant tyrosinase gene in which a Tol1 copy is inserted, we identified de novo reversion mutations related to melanin pigmentation. The gamete-based reversion rate was as high as 0.4%. The revertant fish carried the tyrosinase gene from which the Tol1 copy had been excised. We previously reported the germline transposition of Tol2, another DNA-based element that is thought to be a recent invader of the medaka fish genome. Tol1 is an ancient resident of the genome. Our results indicate that even an old element can contribute to genetic variation in the host genome as a natural mutator.

  5. Bypass of a 5',8-cyclopurine-2'-deoxynucleoside by DNA polymerase β during DNA replication and base excision repair leads to nucleotide misinsertions and DNA strand breaks.

    Science.gov (United States)

    Jiang, Zhongliang; Xu, Meng; Lai, Yanhao; Laverde, Eduardo E; Terzidis, Michael A; Masi, Annalisa; Chatgilialoglu, Chryssostomos; Liu, Yuan

    2015-09-01

    5',8-Cyclopurine-2'-deoxynucleosides including 5',8-cyclo-dA (cdA) and 5',8-cyclo-dG (cdG) are induced by hydroxyl radicals resulting from oxidative stress such as ionizing radiation. 5',8-cyclopurine-2'-deoxynucleoside lesions are repaired by nucleotide excision repair with low efficiency, thereby leading to their accumulation in the human genome and lesion bypass by DNA polymerases during DNA replication and base excision repair (BER). In this study, for the first time, we discovered that DNA polymerase β (pol β) efficiently bypassed a 5'R-cdA, but inefficiently bypassed a 5'S-cdA during DNA replication and BER. We found that cell extracts from pol β wild-type mouse embryonic fibroblasts exhibited significant DNA synthesis activity in bypassing a cdA lesion located in replication and BER intermediates. However, pol β knock-out cell extracts exhibited little DNA synthesis to bypass the lesion. This indicates that pol β plays an important role in bypassing a cdA lesion during DNA replication and BER. Furthermore, we demonstrated that pol β inserted both a correct and incorrect nucleotide to bypass a cdA at a low concentration. Nucleotide misinsertion was significantly stimulated by a high concentration of pol β, indicating a mutagenic effect induced by pol β lesion bypass synthesis of a 5',8-cyclopurine-2'-deoxynucleoside. Moreover, we found that bypass of a 5'S-cdA by pol β generated an intermediate that failed to be extended by pol β, resulting in accumulation of single-strand DNA breaks. Our study provides the first evidence that pol β plays an important role in bypassing a 5',8-cyclo-dA during DNA replication and repair, as well as new insight into mutagenic effects and genome instability resulting from pol β bypassing of a cdA lesion. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Use of capillary GC-MS for identification of radiation-induced DNA base damage: Implications for base-excision repair of DNA

    International Nuclear Information System (INIS)

    Dizdaroglu, M.

    1985-01-01

    Application of GC-MS to characterization of radiation-induced base products of DNA and DNa base-amino acid crosslinks is presented. Samples of γ-irradiated DNa were hydrolyzed with formic acid, trimethylsilylated and subjected to GC-MS analysis using a fused silica capillary column. Hydrolysis conditions suitable for the simultaneous analysis of the radiation-induced products of all four DNA bases in a single run were determined. The trimethylsilyl derivatives of these products had excellent GC-properties and easily interpretable mass spectra. The complementary use of t-butyldimetylsilyl derivatives was also demonstrated. Moreover, the usefulness of this method for identification of radiation-induced DNA base-amino acid crosslinks was shown using γ-irradiated mixtures of thymine and tyrosine or phenylalanine. Because of the excellent resolving power of capillary GC and the instant and highly sensitive identification by MS, GC-MS is suggested as a suitable technique for identification of altered bases removed from DNA by base-excision repair enzymes

  7. Nuclear translocation contributes to regulation of DNA excision repair activities

    DEFF Research Database (Denmark)

    Knudsen, Nina Østergaard; Andersen, Sofie Dabros; Lützen, Anne

    2009-01-01

    for regulation of nuclear import that is necessary for proper localization of the repair proteins. This review summarizes the current knowledge on nuclear import mechanisms of DNA excision repair proteins and provides a model that categorizes the import by different mechanisms, including classical nuclear import......DNA mutations are circumvented by dedicated specialized excision repair systems, such as the base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR) pathways. Although the individual repair pathways have distinct roles in suppressing changes in the nuclear DNA......, it is evident that proteins from the different DNA repair pathways interact [Y. Wang, D. Cortez, P. Yazdi, N. Neff, S.J. Elledge, J. Qin, BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures, Genes Dev. 14 (2000) 927-939; M. Christmann, M...

  8. Modulation of proteostasis counteracts oxidative stress and affects DNA base excision repair capacity in ATM-deficient cells.

    Science.gov (United States)

    Poletto, Mattia; Yang, Di; Fletcher, Sally C; Vendrell, Iolanda; Fischer, Roman; Legrand, Arnaud J; Dianov, Grigory L

    2017-09-29

    Ataxia telangiectasia (A-T) is a syndrome associated with loss of ATM protein function. Neurodegeneration and cancer predisposition, both hallmarks of A-T, are likely to emerge as a consequence of the persistent oxidative stress and DNA damage observed in this disease. Surprisingly however, despite these severe features, a lack of functional ATM is still compatible with early life, suggesting that adaptation mechanisms contributing to cell survival must be in place. Here we address this gap in our knowledge by analysing the process of human fibroblast adaptation to the lack of ATM. We identify profound rearrangement in cellular proteostasis occurring very early on after loss of ATM in order to counter protein damage originating from oxidative stress. Change in proteostasis, however, is not without repercussions. Modulating protein turnover in ATM-depleted cells also has an adverse effect on the DNA base excision repair pathway, the major DNA repair system that deals with oxidative DNA damage. As a consequence, the burden of unrepaired endogenous DNA lesions intensifies, progressively leading to genomic instability. Our study provides a glimpse at the cellular consequences of loss of ATM and highlights a previously overlooked role for proteostasis in maintaining cell survival in the absence of ATM function. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Modulation of DNA polymerase beta-dependent base excision repair in cultured human cells after low dose exposure to arsenite

    International Nuclear Information System (INIS)

    Sykora, Peter; Snow, Elizabeth T.

    2008-01-01

    Base excision repair (BER) is crucial for development and for the repair of endogenous DNA damage. However, unlike nucleotide excision repair, the regulation of BER is not well understood. Arsenic, a well-established human carcinogen, is known to produce oxidative DNA damage, which is repaired primarily by BER, whilst high doses of arsenic can also inhibit DNA repair. However, the mechanism of repair inhibition by arsenic and the steps inhibited are not well defined. To address this question we have investigated the regulation of DNA polymerase β (Pol β) and AP endonuclease (APE1), in response to low, physiologically relevant doses of arsenic. GM847 lung fibroblasts and HaCaT keratinocytes were exposed to sodium arsenite, As(III), and mRNA, protein levels and BER activity were assessed. Both Pol β and APE1 mRNA exhibited significant dose-dependant down regulation at doses of As(III) above 1 μM. However, at lower doses Pol β mRNA and protein levels, and consequently, BER activity were significantly increased. In contrast, APE1 protein levels were only marginally increased by low doses of As(III) and there was no correlation between APE1 and overall BER activity. Enzyme supplementation of nuclear extracts confirmed that Pol β was rate limiting. These changes in BER correlated with overall protection against sunlight UV-induced toxicity at low doses of As(III) and produced synergistic toxicity at high doses. The results provide evidence that changes in BER due to low doses of arsenic could contribute to a non-linear, threshold dose response for arsenic carcinogenesis

  10. APE1, the DNA base excision repair protein, regulates the removal of platinum adducts in sensory neuronal cultures by NER

    International Nuclear Information System (INIS)

    Kim, Hyun-Suk; Guo, Chunlu; Thompson, Eric L.; Jiang, Yanlin; Kelley, Mark R.; Vasko, Michael R.; Lee, Suk-Hee

    2015-01-01

    Peripheral neuropathy is one of the major side effects of treatment with the anticancer drug, cisplatin. One proposed mechanism for this neurotoxicity is the formation of platinum adducts in sensory neurons that could contribute to DNA damage. Although this damage is largely repaired by nuclear excision repair (NER), our previous findings suggest that augmenting the base excision repair pathway (BER) by overexpressing the repair protein APE1 protects sensory neurons from cisplatin-induced neurotoxicity. The question remains whether APE1 contributes to the ability of the NER pathway to repair platinum-damage in neuronal cells. To examine this, we manipulated APE1 expression in sensory neuronal cultures and measured Pt-removal after exposure to cisplatin. When neuronal cultures were treated with increasing concentrations of cisplatin for two or three hours, there was a concentration-dependent increase in Pt-damage that peaked at four hours and returned to near baseline levels after 24 h. In cultures where APE1 expression was reduced by ∼80% using siRNA directed at APE1, there was a significant inhibition of Pt-removal over eight hours which was reversed by overexpressing APE1 using a lentiviral construct for human wtAPE1. Overexpressing a mutant APE1 (C65 APE1), which only has DNA repair activity, but not its other significant redox-signaling function, mimicked the effects of wtAPE1. Overexpressing DNA repair activity mutant APE1 (226 + 177APE1), with only redox activity was ineffective suggesting it is the DNA repair function of APE1 and not its redox-signaling, that restores the Pt-damage removal. Together, these data provide the first evidence that a critical BER enzyme, APE1, helps regulate the NER pathway in the repair of cisplatin damage in sensory neurons

  11. APE1, the DNA base excision repair protein, regulates the removal of platinum adducts in sensory neuronal cultures by NER

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Suk [Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202 (United States); Guo, Chunlu; Thompson, Eric L. [Department of Pharmacology and Toxicology, Indianapolis, IN 46202 (United States); Jiang, Yanlin [Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Kelley, Mark R. [Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202 (United States); Department of Pharmacology and Toxicology, Indianapolis, IN 46202 (United States); Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Vasko, Michael R. [Department of Pharmacology and Toxicology, Indianapolis, IN 46202 (United States); Lee, Suk-Hee, E-mail: slee@iu.edu [Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202 (United States)

    2015-09-15

    Peripheral neuropathy is one of the major side effects of treatment with the anticancer drug, cisplatin. One proposed mechanism for this neurotoxicity is the formation of platinum adducts in sensory neurons that could contribute to DNA damage. Although this damage is largely repaired by nuclear excision repair (NER), our previous findings suggest that augmenting the base excision repair pathway (BER) by overexpressing the repair protein APE1 protects sensory neurons from cisplatin-induced neurotoxicity. The question remains whether APE1 contributes to the ability of the NER pathway to repair platinum-damage in neuronal cells. To examine this, we manipulated APE1 expression in sensory neuronal cultures and measured Pt-removal after exposure to cisplatin. When neuronal cultures were treated with increasing concentrations of cisplatin for two or three hours, there was a concentration-dependent increase in Pt-damage that peaked at four hours and returned to near baseline levels after 24 h. In cultures where APE1 expression was reduced by ∼80% using siRNA directed at APE1, there was a significant inhibition of Pt-removal over eight hours which was reversed by overexpressing APE1 using a lentiviral construct for human wtAPE1. Overexpressing a mutant APE1 (C65 APE1), which only has DNA repair activity, but not its other significant redox-signaling function, mimicked the effects of wtAPE1. Overexpressing DNA repair activity mutant APE1 (226 + 177APE1), with only redox activity was ineffective suggesting it is the DNA repair function of APE1 and not its redox-signaling, that restores the Pt-damage removal. Together, these data provide the first evidence that a critical BER enzyme, APE1, helps regulate the NER pathway in the repair of cisplatin damage in sensory neurons.

  12. RPA physically interacts with the human DNA glycosylase NEIL1 to regulate excision of oxidative DNA base damage in primer-template structures.

    Science.gov (United States)

    Theriot, Corey A; Hegde, Muralidhar L; Hazra, Tapas K; Mitra, Sankar

    2010-06-04

    The human DNA glycosylase NEIL1, activated during the S-phase, has been shown to excise oxidized base lesions in single-strand DNA substrates. Furthermore, our previous work demonstrating functional interaction of NEIL1 with PCNA and flap endonuclease 1 (FEN1) suggested its involvement in replication-associated repair. Here we show interaction of NEIL1 with replication protein A (RPA), the heterotrimeric single-strand DNA binding protein that is essential for replication and other DNA transactions. The NEIL1 immunocomplex isolated from human cells contains RPA, and its abundance in the complex increases after exposure to oxidative stress. NEIL1 directly interacts with the large subunit of RPA (K(d) approximately 20 nM) via the common interacting interface (residues 312-349) in NEIL1's disordered C-terminal region. RPA inhibits the base excision activity of both wild-type NEIL1 (389 residues) and its C-terminal deletion CDelta78 mutant (lacking the interaction domain) for repairing 5-hydroxyuracil (5-OHU) in a primer-template structure mimicking the DNA replication fork. This inhibition is reduced when the damage is located near the primer-template junction. Contrarily, RPA moderately stimulates wild-type NEIL1 but not the CDelta78 mutant when 5-OHU is located within the duplex region. While NEIL1 is inhibited by both RPA and Escherichia coli single-strand DNA binding protein, only inhibition by RPA is relieved by PCNA. These results showing modulation of NEIL1's activity on single-stranded DNA substrate by RPA and PCNA support NEIL1's involvement in repairing the replicating genome. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Acetylation regulates WRN catalytic activities and affects base excision DNA repair

    DEFF Research Database (Denmark)

    Muftuoglu, Meltem; Kusumoto, Rika; Speina, Elzbieta

    2008-01-01

    The Werner protein (WRN), defective in the premature aging disorder Werner syndrome, participates in a number of DNA metabolic processes, and we have been interested in the possible regulation of its function in DNA repair by post-translational modifications. Acetylation mediated by histone...... acetyltransferases is of key interest because of its potential importance in aging, DNA repair and transcription....

  14. An inverse switch in DNA base excision and strand break repair contributes to melphalan resistance in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Mirta M L Sousa

    Full Text Available Alterations in checkpoint and DNA repair pathways may provide adaptive mechanisms contributing to acquired drug resistance. Here, we investigated the levels of proteins mediating DNA damage signaling and -repair in RPMI8226 multiple myeloma cells and its Melphalan-resistant derivative 8226-LR5. We observed markedly reduced steady-state levels of DNA glycosylases UNG2, NEIL1 and MPG in the resistant cells and cross-resistance to agents inducing their respective DNA base lesions. Conversely, repair of alkali-labile sites was apparently enhanced in the resistant cells, as substantiated by alkaline comet assay, autoribosylation of PARP-1, and increased sensitivity to PARP-1 inhibition by 4-AN or KU58684. Reduced base-excision and enhanced single-strand break repair would both contribute to the observed reduction in genomic alkali-labile sites, which could jeopardize productive processing of the more cytotoxic Melphalan-induced interstrand DNA crosslinks (ICLs. Furthermore, we found a marked upregulation of proteins in the non-homologous end-joining (NHEJ pathway of double-strand break (DSB repair, likely contributing to the observed increase in DSB repair kinetics in the resistant cells. Finally, we observed apparent upregulation of ATR-signaling and downregulation of ATM-signaling in the resistant cells. This was accompanied by markedly increased sensitivity towards Melphalan in the presence of ATR-, DNA-PK, or CHK1/2 inhibitors whereas no sensitizing effect was observed subsequent to ATM inhibition, suggesting that replication blocking lesions are primary triggers of the DNA damage response in the Melphalan resistant cells. In conclusion, Melphalan resistance is apparently contributed by modulation of the DNA damage response at multiple levels, including downregulation of specific repair pathways to avoid repair intermediates that could impair efficient processing of cytotoxic ICLs and ICL-induced DSBs. This study has revealed several novel

  15. Dideoxynucleoside triphosphate-sensitive DNA polymerase from rice is involved in base excision repair and immunologically similar to mammalian DNA pol beta.

    Science.gov (United States)

    Sarkar, Sailendra Nath; Bakshi, Sankar; Mokkapati, Sanath K; Roy, Sujit; Sengupta, Dibyendu N

    2004-07-16

    A single polypeptide with ddNTP-sensitive DNA polymerase activity was purified to near homogeneity from the shoot tips of rice seedlings and analysis of the preparations by SDS-PAGE followed by silver staining showed a polypeptide of 67 kDa size. The DNA polymerase activity was found to be inhibitory by ddNTP in both in vitro DNA polymerase activity assay and activity gel analysis. Aphidicolin, an inhibitor of other types of DNA polymerases, had no effect on plant enzyme. The 67 kDa rice DNA polymerase was found to be recognized by the polyclonal antibody (purified IgG) made against rat DNA polymerase beta (pol beta) both in solution and also on Western blot. The recognition was found to be very specific as the activity of Klenow enzyme was unaffected by the antibody. The ability of rice nuclear extract to correct G:U mismatch of oligo-duplex was observed when oligo-duplex with 32P-labeled lower strand containing U (at 22nd position) was used as substrate. Differential appearance of bands at 21-mer, 22-mer, and 51-mer position in presence of dCTP was visible only with G:U mismatch oligo-duplex, but not with G:C oligo-duplex. While ddCTP or polyclonal antibody against rat-DNA pol beta inhibits base excision repair (BER), aphidicolin had no effect. These results for the first time clearly demonstrate the ability of rice nuclear extract to run BER and the involvement of ddNTP-sensitive pol beta type DNA polymerase. Immunological similarity of the ddNTP-sensitive DNA polymerase beta of rice and rat and its involvement in BER revealed the conservation of structure and function of ddNTP-sensitive DNA pol beta in plant and animal.

  16. DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    DEFF Research Database (Denmark)

    Osorio, Ana; Milne, Roger L; Kuchenbaecker, Karoline

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of th...

  17. DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    NARCIS (Netherlands)

    A. Osorio (Ana); R.L. Milne (Roger); K.B. Kuchenbaecker (Karoline); T. Vaclová (Tereza); G. Pita (Guillermo); R. Alonso (Rosario); P. Peterlongo (Paolo); I. Blanco (Ignacio); M. de La Hoya (Miguel); M. Durán (Mercedes); O. Díez (Orland); T. Ramon Y Cajal; I. Konstantopoulou (I.); C. Martínez-Bouzas (Cristina); R. Andrés Conejero (Raquel); P. Soucy (Penny); L. McGuffog (Lesley); D. Barrowdale (Daniel); A. Lee (Andrew); B. Arver (Brita Wasteson); J. Rantala (Johanna); N. Loman (Niklas); H. Ehrencrona (Hans); O.I. Olopade (Olofunmilayo); M.S. Beattie (Mary); S.M. Domchek (Susan); K.L. Nathanson (Katherine); R. Rebbeck (Timothy); B.K. Arun (Banu); B.Y. Karlan (Beth); C.S. Walsh (Christine); K.J. Lester (Kathryn); E.M. John (Esther); A.S. Whittemore (Alice); M.B. Daly (Mary); M.C. Southey (Melissa); J.L. Hopper (John); M.-B. Terry (Mary-Beth); S.S. Buys (Saundra); R. Janavicius (Ramunas); C.M. Dorfling (Cecilia); E.J. van Rensburg (Elizabeth); L. Steele (Linda); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); T.V.O. Hansen (Thomas); L. Jønson (Lars); B. Ejlertsen (Bent); A-M. Gerdes (Anne-Marie); J. Infante (Jon); B. Herráez (Belén); L.T. Moreno (Leticia Thais); J.N. Weitzel (Jeffrey); J. Herzog (Josef); K. Weeman (Kisa); S. Manoukian (Siranoush); B. Peissel (Bernard); D. Zaffaroni (D.); G. Scuvera (Giulietta); B. Bonnani (Bernardo); F. Mariette (F.); S. Volorio (Sara); A. Viel (Alessandra); L. Varesco (Liliana); L. Papi (Laura); L. Ottini (Laura); M.G. Tibiletti (Maria Grazia); P. Radice (Paolo); D. Yannoukakos (Drakoulis); J. Garber; S.D. Ellis (Steve); D. Frost (Debra); R. Platte (Radka); E. Fineberg (Elena); D.G. Evans (Gareth); F. Lalloo (Fiona); L. Izatt (Louise); R. Eeles (Rosalind); J.W. Adlard (Julian); R. Davidson (Rosemarie); T.J. Cole (Trevor); D. Eccles (Diana); J. Cook (Jackie); S.V. Hodgson (Shirley); C. Brewer (Carole); M. Tischkowitz (Marc); F. Douglas (Fiona); M.E. Porteous (Mary); L. Side (Lucy); L.J. Walker (Lisa); P.J. Morrison (Patrick); A. Donaldson (Alan); J. Kennedy (John); C. Foo (Claire); A.K. Godwin (Andrew); R.K. Schmutzler (Rita); B. Wapenschmidt (Barbara); K. Rhiem (Kerstin); C.W. Engel (Christoph); A. Meindl (Alfons); N. Ditsch (Nina); N. Arnold (Norbert); H. Plendl (Hansjoerg); D. Niederacher (Dieter); C. Sutter (Christian); S. Wang-Gohrke (Shan); D. Steinemann (Doris); S. Preisler-Adams (Sabine); K. Kast (Karin); R. Varon-Mateeva (Raymonda); P.A. Gehrig (Paola A.); D. Stoppa-Lyonnet (Dominique); O. Sinilnikova (Olga); S. Mazoyer (Sylvie); F. Damiola (Francesca); B. Poppe (Bruce); K. Claes (Kathleen); M. Piedmonte (Marion); K. Tucker (Kathryn); F.J. Backes (Floor); P.M. Rodríguez; W. Brewster (Wendy); K. Wakeley (Katie); T. Rutherford (Thomas); T. Caldes (Trinidad); H. Nevanlinna (Heli); K. Aittomäki (Kristiina); M.A. Rookus (Matti); T.A.M. van Os (Theo); L. van der Kolk (Lizet); J.L. de Lange (J.); E.J. Meijers-Heijboer (Hanne); A.H. van der Hout (Annemarie); C.J. van Asperen (Christi); E.B. Gómez García (Encarna); N. Hoogerbrugge (Nicoline); J.M. Collée (Margriet); C.H.M. van Deurzen (Carolien); R.B. van der Luijt (Rob); P. Devilee (Peter); E. Olah (Edith); C. Lazaro (Conxi); A. Teulé (A.); M. Menéndez (Mireia); A. Jakubowska (Anna); C. Cybulski (Cezary); J. Gronwald (Jacek); J. Lubinski (Jan); K. Durda (Katarzyna); K. Jaworska-Bieniek (Katarzyna); O.T. Johannson (Oskar); C. Maugard; M. Montagna (Marco); S. Tognazzo (Silvia); P.J. Teixeira; S. Healey (Sue); C. Olswold (Curtis); L. Guidugli (Lucia); N.M. Lindor (Noralane); S. Slager (Susan); C. Szabo (Csilla); J. Vijai (Joseph); M. Robson (Mark); N. Kauff (Noah); L. Zhang (Lingling); R. Rau-Murthy (Rohini); A. Fink-Retter (Anneliese); C.F. Singer (Christian); C. Rappaport (Christine); D. Geschwantler Kaulich (Daphne); G. Pfeiler (Georg); M.-K. Tea; A. Berger (Annemarie); C. Phelan (Catherine); M.H. Greene (Mark); P.L. Mai (Phuong); F. Lejbkowicz (Flavio); I.L. Andrulis (Irene); A.M. Mulligan (Anna Marie); G. Glendon (Gord); A.E. Toland (Amanda); S.E. Bojesen (Stig); I.S. Pedersen (Inge Sokilde); L. Sunde (Lone); M. Thomassen (Mads); T.A. Kruse (Torben); U.B. Jensen; E. Friedman (Eitan); Y. Laitman (Yael); S.P. Shimon (Shani Paluch); J. Simard (Jacques); D.F. Easton (Douglas); K. Offit (Kenneth); F.J. Couch (Fergus); G. Chenevix-Trench (Georgia); A.C. Antoniou (Antonis); J. Benítez (Javier)

    2014-01-01

    textabstractSingle Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between

  18. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    Osorio, A.; Milne, R.L.; Kuchenbaecker, K.; Vaclova, T.; Pita, G.; Alonso, R.; Peterlongo, P.; Blanco, I.; Hoya, M. de la; Duran, M.; Diez, O.; Ramon, Y.C.T.; Konstantopoulou, I.; Martinez-Bouzas, C.; Conejero, R. Andres; Soucy, P.; McGuffog, L.; Barrowdale, D.; Lee, A.; Swe, B.; Arver, B.; Rantala, J.; Loman, N.; Ehrencrona, H.; Olopade, O.I.; Beattie, M.S.; Domchek, S.M.; Nathanson, K.; Rebbeck, T.R.; Arun, B.K.; Karlan, B.Y.; Walsh, C.; Lester, J.; John, E.M.; Whittemore, A.S.; Daly, M.B.; Southey, M.; Hopper, J.; Terry, M.B.; Buys, S.S.; Janavicius, R.; Dorfling, C.M.; Rensburg, E.J. van; Steele, L.; Neuhausen, S.L.; Ding, Y.C.; Hansen, T.V.; Jonson, L.; Ejlertsen, B.; Gerdes, A.M.; Infante, M.; Herraez, B.; Moreno, L.T.; Weitzel, J.N.; Herzog, J.; Weeman, K.; Manoukian, S.; Peissel, B.; Zaffaroni, D.; Scuvera, G.; Bonanni, B.; Mariette, F.; Volorio, S.; Viel, A.; Varesco, L.; Papi, L.; Ottini, L.; Tibiletti, M.G.; Radice, P.; Yannoukakos, D.; Garber, J.; Ellis, S.; Frost, D.; Platte, R.; Fineberg, E.; Evans, G.; Lalloo, F.; Izatt, L.; Eeles, R.; Adlard, J.; Davidson, R.; Cole, T.; Eccles, D.; Cook, J; Hodgson, S.; Brewer, C.; Tischkowitz, M.; Douglas, F.; Porteous, M.; Side, L.; Walker, L.; Morrison, P.; Donaldson, A.; Kennedy, J.; Foo, C.; Godwin, A.K.; Schmutzler, R.K.; Wappenschmidt, B.; Rhiem, K.; Engel, C.; Hoogerbrugge-van der Linden, N.; et al.,

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the

  19. Excised radicle tips as a source of genomic DNA for PCR-based ...

    Indian Academy of Sciences (India)

    2012-12-13

    Dec 13, 2012 ... Cotton; cry1Ac; genomic DNA isolation; high-resolution melting curve analysis; radicle tip; seed purity testing .... cooled to 40°C. Fluorescence data for melting curves were ... greatly increased by introducing automation.

  20. Base excision repair of oxidative DNA damage and association with cancer and aging

    DEFF Research Database (Denmark)

    Maynard, Scott; Schurman, Shepherd H; Harboe, Charlotte

    2009-01-01

    Aging has been associated with damage accumulation in the genome and with increased cancer incidence. Reactive oxygen species (ROS) are produced from endogenous sources, most notably the oxidative metabolism in the mitochondria, and from exogenous sources, such as ionizing radiation. ROS attack DNA...

  1. The role of the PHP domain associated with DNA polymerase X from Thermus thermophilus HB8 in base excision repair.

    Science.gov (United States)

    Nakane, Shuhei; Nakagawa, Noriko; Kuramitsu, Seiki; Masui, Ryoji

    2012-11-01

    Base excision repair (BER) is one of the most commonly used DNA repair pathways involved in genome stability. X-family DNA polymerases (PolXs) play critical roles in BER, especially in filling single-nucleotide gaps. In addition to a polymerase core domain, bacterial PolXs have a polymerase and histidinol phosphatase (PHP) domain with phosphoesterase activity which is also required for BER. However, the role of the PHP domain of PolX in bacterial BER remains unresolved. We found that the PHP domain of Thermus thermophilus HB8 PolX (ttPolX) functions as two types of phosphoesterase in BER, including a 3'-phosphatase and an apurinic/apyrimidinic (AP) endonuclease. Experiments using T. thermophilus HB8 cell lysates revealed that the majority of the 3'-phosphatase and AP endonuclease activities are attributable to the another phosphoesterase in T. thermophilus HB8, endonuclease IV (ttEndoIV). However, ttPolX possesses significant 3'-phosphatase activity in ΔttendoIV cell lysate, indicating possible complementation. Our experiments also reveal that there are only two enzymes that display the 3'-phosphatase activity in the T. thermophilus HB8 cell, ttPolX and ttEndoIV. Furthermore, phenotypic analysis of ΔttpolX, ΔttendoIV, and ΔttpolX/ΔttendoIV using hydrogen peroxide and sodium nitrite supports the hypothesis that ttPolX functions as a backup for ttEndoIV in BER. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Base excision repair, aging and health span

    Czech Academy of Sciences Publication Activity Database

    Xu, G.; Herzig, M.; Rotrekl, Vladimír; Walter, Ch. A.

    2008-01-01

    Roč. 129, 7-8 (2008), s. 366-382 ISSN 0047-6374 Institutional research plan: CEZ:AV0Z50390512 Keywords : base excision repair * aging * DNA damage Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.915, year: 2008

  3. DNA excision repair in permeable human fibroblasts

    International Nuclear Information System (INIS)

    Kaufmann, W.K.; Bodell, W.J.; Cleaver, J.E.

    1983-01-01

    U.v. irradiation of confluent human fibroblasts activated DNA repair, aspects of which were characterized in the cells after they were permeabilized. Incubation of intact cells for 20 min between irradiation and harvesting was necessary to obtain a maximum rate of reparative DNA synthesis. Cells harvested immediately after irradiation before repair was initiated displayed only a small stimulation of DNA synthesis, indicating that permeable cells have a reduced capacity to recognize pyrimidine dimers and activate repair. The distribution of sizes of DNA strands labeled during 10 min of reparative DNA synthesis resembled that of parental DNA. However, during a 60-min incubation of permeable cells at 37 degrees C, parental DNA and DNA labeled by reparative DNA synthesis were both cleaved to smaller sizes. Cleavage also occurred in unirradiated cells, indicating that endogenous nuclease was active during incubation. Repair patches synthesized in permeable cells displayed increased sensitivity to digestion by micrococcal nuclease. However, the change in sensitivity during a chase with unlabeled DNA precursors was small, suggesting that reassembly of nucleosome structure at sites of repair was impaired. To examine whether this deficiency was due to a preponderance of incomplete or unligated repair patches, 3H-labeled (repaired) DNA was purified, then digested with exonuclease III and nuclease S1 to probe for free 3' ends and single-stranded regions. About 85% of the [3H]DNA synthesized during a 10-min pulse resisted digestion, suggesting that a major fraction of the repair patches that were filled were also ligated. U.v. light-activated DNA synthesis in permeable cells, therefore, appears to represent the continuation of reparative gap-filling at sites of excision repair activated within intact cells. Gap-filling and ligation were comparatively efficient processes in permeable cells

  4. Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair

    DEFF Research Database (Denmark)

    Akbari, Mansour; Keijzers, Guido; Maynard, Scott

    2014-01-01

    slower than the preceding mitochondrial BER steps. Overexpression of DNA ligase III in mitochondria improved the rate of overall BER, increased cell survival after menadione induced oxidative stress and reduced autophagy following the inhibition of the mitochondrial electron transport chain complex I...

  5. Recombinant methods for screening human DNA excision repair proficiency

    International Nuclear Information System (INIS)

    Athas, W.F.

    1988-01-01

    A method for measuring DNA excision repair in response to ultraviolet radiation (UV)-induced DNA damage has been developed, validated, and field-tested in cultured human lymphocytes. The methodology is amenable to population-based screening and should facilitate future epidemiologic studies seeking to investigate associations between excision repair proficiency and cancer susceptibility. The impetus for such endeavors derives from the belief that the high incidence of skin cancer in the genetic disorder xeroderma pigmentosum (XP) primarily is a result of the reduced capacity of patients cells to repair UV-induced DNA damage. For assay, UV-irradiated non-replicating recombinant plasmid DNA harboring a chloramphenicol acetyltransferase (CAT) indicator gene is introduced into lymphocytes using DEAE-dextran short-term transfection conditions. Exposure to UV induces transcriptionally-inactivating DNA photoproducts in the plasmid DNA which inactivate CAT gene expression. Excision repair of the damaged CAT gene is monitored indirectly as a function of reactivated CAT enzyme activity following a 40 hour repair/expression incubation period

  6. Metabolic modulation of mammalian DNA excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, T.J.

    1988-01-01

    First, ultraviolet light (UVL)- and dimethylsulfate (DMS)-induced excision repair was examined in quiescent and lectin-stimulated bovine lymphocytes. Upon mitogenic stimulation, UVL-induced repair increased by a factor of 2 to 3, and reached this maximum 2 days before the onset of DNA replication. However, DMS-induced repair increased sevenfold in parallel with DNA replication. Repair patch sizes were smaller for DMS-induced damage reflecting patches of 7 nucleotides in quiescent lymphocytes compared to 20 nucleotides induced by UVL. The patch size increased during lymphocyte stimulation until one day prior to the peak of DNA replication when patch sizes of 45 and 35 nucleotides were produced in response to UVL- and DMS-induced damage, respectively. At the peak of DNA replication, the patch sizes were equal for both damaging agents at 34 nucleotides. In the second study, a small amount of repair replication was observed in undamaged quiescent and concanavalin A-stimulated bovine lymphocytes as well as in human T98G glioblastoma cells. Repair incorporation doubled in the presence of hydroxyurea. Thirdly, the enhanced repair replication induced by the poly (ADP-ribose) polymerase inhibitor, 3-aminobenzamide, (3-AB), could not be correlated either with an increased rate of repair in the presence of 3-AB or with the use of hydroxyurea in the repair protocol. Finally, treatment of unstimulated lymphocytes with hyperthermia was accompanied by decreased repair replication while the repair patches remained constant at 20 nucleotides.

  7. A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering.

    Science.gov (United States)

    Nørholm, Morten H H

    2010-03-16

    The combined use of restriction enzymes with PCR has revolutionized molecular cloning, but is inherently restricted by the content of the manipulated DNA sequences. Uracil-excision based cloning is ligase and sequence independent and allows seamless fusion of multiple DNA sequences in simple one-tube reactions, with higher accuracy than overlapping PCR. Here, the addition of a highly efficient DNA polymerase and a low-background-, large-insertion- compatible site-directed mutagenesis protocol is described, largely expanding the versatility of uracil-excision DNA engineering. The different uracil-excision based molecular tools that have been developed in an open-source fashion, constitute a comprehensive, yet simple and inexpensive toolkit for any need in molecular cloning.

  8. Modeling base excision repair in Escherichia coli bacterial cells

    International Nuclear Information System (INIS)

    Belov, O.V.

    2011-01-01

    A model describing the key processes in Escherichia coli bacterial cells during base excision repair is developed. The mechanism is modeled of damaged base elimination involving formamidopyrimidine DNA glycosylase (the Fpg protein), which possesses several types of activities. The modeling of the transitions between DNA states is based on a stochastic approach to the chemical reaction description

  9. Is the Oxidative DNA Damage Level of Human Lymphocyte Correlated with the Antioxidant Capacity of Serum or the Base Excision Repair Activity of Lymphocyte?

    Directory of Open Access Journals (Sweden)

    Yi-Chih Tsai

    2013-01-01

    Full Text Available A random screening of human blood samples from 24 individuals of nonsmoker was conducted to examine the correlation between the oxidative DNA damage level of lymphocytes and the antioxidant capacity of serum or the base excision repair (BER activity of lymphocytes. The oxidative DNA damage level was measured with comet assay containing Fpg/Endo III cleavage, and the BER activity was estimated with a modified comet assay including nuclear extract of lymphocytes for enzymatic cleavage. Antioxidant capacity was determined with trolox equivalent antioxidant capacity assay. We found that though the endogenous DNA oxidation levels varied among the individuals, each individual level appeared to be steady for at least 1 month. Our results indicate that the oxidative DNA damage level is insignificantly or weakly correlated with antioxidant capacity or BER activity, respectively. However, lymphocytes from carriers of Helicobacter pylori (HP or Hepatitis B virus (HBV tend to give higher levels of oxidative DNA damage (P<0.05. Though sera of this group of individuals show no particular tendency with reduced antioxidant capacity, the respective BER activities of lymphocytes are lower in average (P<0.05. Thus, reduction of repair activity may be associated with the genotoxic effect of HP or HBV infection.

  10. Accurate DNA assembly and genome engineering with optimized uracil excision cloning

    DEFF Research Database (Denmark)

    Cavaleiro, Mafalda; Kim, Se Hyeuk; Seppala, Susanna

    2015-01-01

    Simple and reliable DNA editing by uracil excision (a.k.a. USER cloning) has been described by several research groups, but the optimal design of cohesive DNA ends for multigene assembly remains elusive. Here, we use two model constructs based on expression of gfp and a four-gene pathway that pro......Simple and reliable DNA editing by uracil excision (a.k.a. USER cloning) has been described by several research groups, but the optimal design of cohesive DNA ends for multigene assembly remains elusive. Here, we use two model constructs based on expression of gfp and a four-gene pathway...... that produces β-carotene to optimize assembly junctions and the uracil excision protocol. By combining uracil excision cloning with a genomic integration technology, we demonstrate that up to six DNA fragments can be assembled in a one-tube reaction for direct genome integration with high accuracy, greatly...... facilitating the advanced engineering of robust cell factories....

  11. Base excision repair of chemotherapeutically-induced alkylated DNA damage predominantly causes contractions of expanded GAA repeats associated with Friedreich's ataxia.

    Directory of Open Access Journals (Sweden)

    Yanhao Lai

    Full Text Available Expansion of GAA·TTC repeats within the first intron of the frataxin gene is the cause of Friedreich's ataxia (FRDA, an autosomal recessive neurodegenerative disorder. However, no effective treatment for the disease has been developed as yet. In this study, we explored a possibility of shortening expanded GAA repeats associated with FRDA through chemotherapeutically-induced DNA base lesions and subsequent base excision repair (BER. We provide the first evidence that alkylated DNA damage induced by temozolomide, a chemotherapeutic DNA damaging agent can induce massive GAA repeat contractions/deletions, but only limited expansions in FRDA patient lymphoblasts. We showed that temozolomide-induced GAA repeat instability was mediated by BER. Further characterization of BER of an abasic site in the context of (GAA20 repeats indicates that the lesion mainly resulted in a large deletion of 8 repeats along with small expansions. This was because temozolomide-induced single-stranded breaks initially led to DNA slippage and the formation of a small GAA repeat loop in the upstream region of the damaged strand and a small TTC loop on the template strand. This allowed limited pol β DNA synthesis and the formation of a short 5'-GAA repeat flap that was cleaved by FEN1, thereby leading to small repeat expansions. At a later stage of BER, the small template loop expanded into a large template loop that resulted in the formation of a long 5'-GAA repeat flap. Pol β then performed limited DNA synthesis to bypass the loop, and FEN1 removed the long repeat flap ultimately causing a large repeat deletion. Our study indicates that chemotherapeutically-induced alkylated DNA damage can induce large contractions/deletions of expanded GAA repeats through BER in FRDA patient cells. This further suggests the potential of developing chemotherapeutic alkylating agents to shorten expanded GAA repeats for treatment of FRDA.

  12. Archaeal DNA Polymerase-B as a DNA Template Guardian: Links between Polymerases and Base/Alternative Excision Repair Enzymes in Handling the Deaminated Bases Uracil and Hypoxanthine

    Directory of Open Access Journals (Sweden)

    Javier Abellón-Ruiz

    2016-01-01

    Full Text Available In Archaea repair of uracil and hypoxanthine, which arise by deamination of cytosine and adenine, respectively, is initiated by three enzymes: Uracil-DNA-glycosylase (UDG, which recognises uracil; Endonuclease V (EndoV, which recognises hypoxanthine; and Endonuclease Q (EndoQ, (which recognises both uracil and hypoxanthine. Two archaeal DNA polymerases, Pol-B and Pol-D, are inhibited by deaminated bases in template strands, a feature unique to this domain. Thus the three repair enzymes and the two polymerases show overlapping specificity for uracil and hypoxanthine. Here it is demonstrated that binding of Pol-D to primer-templates containing deaminated bases inhibits the activity of UDG, EndoV, and EndoQ. Similarly Pol-B almost completely turns off EndoQ, extending earlier work that demonstrated that Pol-B reduces catalysis by UDG and EndoV. Pol-B was observed to be a more potent inhibitor of the enzymes compared to Pol-D. Although Pol-D is directly inhibited by template strand uracil, the presence of Pol-B further suppresses any residual activity of Pol-D, to near-zero levels. The results are compatible with Pol-D acting as the replicative polymerase and Pol-B functioning primarily as a guardian preventing deaminated base-induced DNA mutations.

  13. Measurement of DNA base and nucleotide excision repair activities in mammalian cells and tissues using the comet assay - A methodological overview

    Czech Academy of Sciences Publication Activity Database

    Azqueta, A.; Langie, S. A. S.; Slyšková, Jana; Collins, A. R.

    2013-01-01

    Roč. 12, č. 11 (2013), s. 1007-1010 ISSN 1568-7864 Grant - others:EU FP6(XE) LSHB-CT-2006-037575 Institutional support: RVO:68378041 Keywords : comet assay * base excision repair * nucleotide excision repair Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.362, year: 2013

  14. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers.

    Directory of Open Access Journals (Sweden)

    Ana Osorio

    2014-04-01

    Full Text Available Single Nucleotide Polymorphisms (SNPs in genes involved in the DNA Base Excision Repair (BER pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase, and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2. Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2 gene (HR: 1.09, 95% CI (1.03-1.16, p = 2.7 × 10(-3 for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03-1.21, p = 4.8 × 10(-3. DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied.

  15. Correlation between base-excision repair gene polymorphisms and levels of in-vitro BPDE-induced DNA adducts in cultured peripheral blood lymphocytes.

    Directory of Open Access Journals (Sweden)

    Hongping Yu

    Full Text Available In vitro benzo[a]pyrene diol epoxide (BPDE-induced DNA adducts in cultured peripheral lymphocytes have been shown to be a phenotypic biomarker of individual's DNA repair phenotype that is associated with cancer risk. In this study, we explored associations between genotypes of base-excision repair genes (PARP1 Val762Ala, APEX1 Asp148Glu, and XRCC1 Arg399Gln and in vitro BPDE-induced DNA adducts in cultured peripheral blood lymphocytes in 706 cancer-free non-Hispanic white subjects. We found that levels of BPDE-induced DNA adducts were significantly higher in ever smokers than in never smokers and that individuals with the Glu variant genotypes (i.e., Asp/Glu and Glu/Glu exhibited lower levels of BPDE-induced DNA adducts than did individuals with the common Asp/Asp homozygous genotype (median RAL levels: 32.0 for Asp/Asp, 27.0 for Asp/Glu, and 17.0 for Glu/Glu, respectively; P(trend = 0.030. Further stratified analysis showed that compared with individuals with the common APEX1-148 homozygous Asp/Asp genotype, individuals with the APEX1-148Asp/Glu genotype or the Glu/Glu genotype had a lower risk of having higher-level adducts (adjusted OR = 0.60, 95% CI: 0.36-0.98 and adjusted OR = 0.47, 95% CI: 0.26-0.86, respectively; P(trend = 0.012 among smokers. Such an effect was not observed in non-smokers. However, there was no significant interaction between the APEX1 Asp148Glu polymorphism and smoking exposure in this study population (P = 0.512. Additional genotype-phenotype analysis found that the APEX1-148Glu allele had significantly increased expression of APEX1 mRNA in 270 Epstein-Barr virus-transformed lymphoblastoid cell lines, which is likely associated with more active repair activity. Our findings suggest that the functional APEX1-148Glu allele is associated with reduced risk of having high levels of BPDE-induced DNA adducts mediated with high levels of mRNA expression.

  16. Base excision repair mechanisms and relevance to cancer susceptibility

    International Nuclear Information System (INIS)

    Dogliotti, E.; Wilson, S.H.

    2009-01-01

    The base excision repair (BER) pathway is considered the predominant DNA repair system in mammalian cells for eliminating small DNA lesions generated at DNA bases either exogenously by environmental agents or endogenously by normal cellular metabolic processes (e.g. production of oxyradical species, alkylating agents, etc). The main goal of this project is the understanding of the involvement of BER in genome stability and in particular in sporadic cancer development associated with inflammation such as gastric cancer (GC). A major risk factor of GC is the infection by Helicobacter pylori, which causes oxidative stress. Oxidative DNA damage is mainly repaired by BER

  17. Both base excision repair and nucleotide excision repair in humans are influenced by nutritional factors.

    Science.gov (United States)

    Brevik, Asgeir; Karlsen, Anette; Azqueta, Amaya; Tirado, Anna Estaban; Blomhoff, Rune; Collins, Andrew

    2011-01-01

    Lack of reliable assays for DNA repair has largely prevented measurements of DNA repair from being included in human biomonitoring studies. Using newly developed modifications of the comet assay we tested whether a fruit- and antioxidant-rich plant-based intervention could affect base excision repair (BER) and nucleotide excision repair (NER) in a group of 102 male volunteers. BER and NER repair capacities were measured in lymphocytes before and after a dietary intervention lasting 8 weeks. The study had one control group, one group consuming three kiwifruits per day and one group consuming a variety of antioxidant-rich fruits and plant products in addition to their normal diet. DNA strand breaks were reduced following consumption of both kiwifruits (13%, p = 0.05) and antioxidant-rich plant products (20%, p = 0.02). Increased BER (55%, p = 0.01) and reduced NER (-39%, p plant products. Reduced NER was also observed in the kiwifruit group (-38%, p = 0.05), but BER was not affected in this group. Here we have demonstrated that DNA repair is affected by diet and that modified versions of the comet assay can be used to assess activity of different DNA repair pathways in human biomonitoring studies. Copyright © 2010 John Wiley & Sons, Ltd.

  18. Excision repair of 5,6-dihydroxydihydrothymine from the DNA of Micrococcus radiodurans

    International Nuclear Information System (INIS)

    Targovnik, H.S.; Hariharan, P.V.

    1980-01-01

    One of the major ionizing radiation products, 5,6-dihydroxydihydrothymine (thymine glycol), was measured in the DNA of Micrococcus radiodurans following exposure of cells to 6.8-MeV electrons or 254-nm ultraviolet light. Removal of 5,6-dihydroxydihydrothymine was measured in both an ionizing radiation-sensitive strain (262) and a highly radioresistant strain (the wild type W + ) of Micrococcus radiodurans. Within 30 min of incubation (33 0 C) following exposure to ultraviolet light (2400 J/m 2 ) approximately 60% of the thymine glycols were excised, whereas in the case of ionizing radiation (250 krad) only 35% were removed from the cellular DNA of the wild-type strain. In contrast less than 50% of the thymine glycols were excised from the sensitive strain. The amount of DNA degradation induced by radiation was less than 10% in both strains. The results suggest a possible correlation between reduced excision repair of base damage and increased radiation sensitivity

  19. A TetR family transcriptional factor directly regulates the expression of a 3-methyladenine DNA glycosylase and physically interacts with the enzyme to stimulate its base excision activity in Mycobacterium bovis BCG.

    Science.gov (United States)

    Liu, Lei; Huang, Cheng; He, Zheng-Guo

    2014-03-28

    3-Methyladenine DNA glycosylase recognizes and excises a wide range of damaged bases and thus plays a critical role in base excision repair. However, knowledge on the regulation of DNA glycosylase in prokaryotes and eukaryotes is limited. In this study, we successfully characterized a TetR family transcriptional factor from Mycobacterium bovis bacillus Calmette-Guerin (BCG), namely BCG0878c, which directly regulates the expression of 3-methyladenine DNA glycosylase (designated as MbAAG) and influences the base excision activity of this glycosylase at the post-translational level. Using electrophoretic mobility shift assay and DNase I footprinting experiments, we identified two conserved motifs within the upstream region of mbaag specifically recognized by BCG0878c. Significant down-regulation of mbaag was observed in BCG0878c-overexpressed M. bovis BCG strains. By contrast, about 12-fold up-regulation of mbaag expression was found in bcg0878c-deleted mutant M. bovis BCG strains. β-Galactosidase activity assays also confirmed these results. Thus, BCG0878c can function as a negative regulator of mbaag expression. In addition, the regulator was shown to physically interact with MbAAG to enhance the ability of the glycosylase to bind damaged DNA. Interaction between the two proteins was further found to facilitate AAG-catalyzed removal of hypoxanthine from DNA. These results indicate that a TetR family protein can dually regulate the function of 3-methyladenine DNA glycosylase in M. bovis BCG both at the transcriptional and post-translational levels. These findings enhance our understanding of the expression and regulation of AAG in mycobacteria.

  20. Nucleotide Excision Repair Lesion-Recognition Protein Rad4 Captures a Pre-Flipped Partner Base in a Benzo[a]pyrene-Derived DNA Lesion: How Structure Impacts the Binding Pathway.

    Science.gov (United States)

    Mu, Hong; Geacintov, Nicholas E; Min, Jung-Hyun; Zhang, Yingkai; Broyde, Suse

    2017-06-19

    The xeroderma pigmentosum C protein complex (XPC) recognizes a variety of environmentally induced DNA lesions and is the key in initiating their repair by the nucleotide excision repair (NER) pathway. When bound to a lesion, XPC flips two nucleotide pairs that include the lesion out of the DNA duplex, yielding a productively bound complex that can lead to successful lesion excision. Interestingly, the efficiencies of NER vary greatly among different lesions, influencing their toxicity and mutagenicity in cells. Though differences in XPC binding may influence NER efficiency, it is not understood whether XPC utilizes different mechanisms to achieve productive binding with different lesions. Here, we investigated the well-repaired 10R-(+)-cis-anti-benzo[a]pyrene-N 2 -dG (cis-B[a]P-dG) DNA adduct in a duplex containing normal partner C opposite the lesion. This adduct is derived from the environmental pro-carcinogen benzo[a]pyrene and is likely to be encountered by NER in the cell. We have extensively investigated its binding to the yeast XPC orthologue, Rad4, using umbrella sampling with restrained molecular dynamics simulations and free energy calculations. The NMR solution structure of this lesion in duplex DNA has shown that the dC complementary to the adducted dG is flipped out of the DNA duplex in the absence of XPC. However, it is not known whether the "pre-flipped" base would play a role in its recognition by XPC. Our results show that Rad4 first captures the displaced dC, which is followed by a tightly coupled lesion-extruding pathway for productive binding. This binding path differs significantly from the one deduced for the small cis-syn cyclobutane pyrimidine dimer lesion opposite mismatched thymines [ Mu , H. , ( 2015 ) Biochemistry , 54 ( 34 ), 5263 - 7 ]. The possibility of multiple paths that lead to productive binding to XPC is consistent with the versatile lesion recognition by XPC that is required for successful NER.

  1. Nasal base narrowing: the combined alar base excision technique.

    Science.gov (United States)

    Foda, Hossam M T

    2007-01-01

    To evaluate the role of the combined alar base excision technique in narrowing the nasal base and correcting excessive alar flare. The study included 60 cases presenting with a wide nasal base and excessive alar flaring. The surgical procedure combined an external alar wedge resection with an internal vestibular floor excision. All cases were followed up for a mean of 32 (range, 12-144) months. Nasal tip modification and correction of any preexisting caudal septal deformities were always completed before the nasal base narrowing. The mean width of the external alar wedge excised was 7.2 (range, 4-11) mm, whereas the mean width of the sill excision was 3.1 (range, 2-7) mm. Completing the internal excision first resulted in a more conservative external resection, thus avoiding any blunting of the alar-facial crease. No cases of postoperative bleeding, infection, or keloid formation were encountered, and the external alar wedge excision healed with an inconspicuous scar that was well hidden in the depth of the alar-facial crease. Finally, the risk of notching of the alar rim, which can occur at the junction of the external and internal excisions, was significantly reduced by adopting a 2-layered closure of the vestibular floor (P = .01). The combined alar base excision resulted in effective narrowing of the nasal base with elimination of excessive alar flare. Commonly feared complications, such as blunting of the alar-facial crease or notching of the alar rim, were avoided by using simple modifications in the technique of excision and closure.

  2. Pyrrolo-dC modified duplex DNA as a novel probe for the sensitive assay of base excision repair enzyme activity.

    Science.gov (United States)

    Lee, Chang Yeol; Park, Ki Soo; Park, Hyun Gyu

    2017-12-15

    We develop a novel approach to determine formamidopyrimidine DNA glycosylase (Fpg) activity by taking advantage of the unique fluorescence property of pyrrolo-dC (PdC) positioned opposite to 8-oxoguanine (8-oxoG) in duplex DNA. In its initial state, PdC in duplex DNA undergoes the efficient stacking and collisional quenching interactions, showing the low fluorescence signal. In contrast, the presence of Fpg, which specifically removes 8-oxoG and incises resulting apurinic (AP) site, transforms duplex DNA into single-stranded (ss) DNAs. As a result, the intrinsic fluorescence signal of PdC in ssDNA is recovered to exhibit the significantly enhanced fluorescence signal. Based on this Fpg-dependent fluorescence response of PdC, we could reliably determine Fpg activity down to 1.25U/ml with a linear response from 0 to 50U/ml. In addition, the diagnostic capability of this strategy was successfully demonstrated by reliably assaying Fpg activity in human blood serum, showing its great potential in the practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Alar base reduction: the boomerang-shaped excision.

    Science.gov (United States)

    Foda, Hossam M T

    2011-04-01

    A boomerang-shaped alar base excision is described to narrow the nasal base and correct the excessive alar flare. The boomerang excision combined the external alar wedge resection with an internal vestibular floor excision. The internal excision was inclined 30 to 45 degrees laterally to form the inner limb of the boomerang. The study included 46 patients presenting with wide nasal base and excessive alar flaring. All cases were followed for a mean period of 18 months (range, 8 to 36 months). The laterally oriented vestibular floor excision allowed for maximum preservation of the natural curvature of the alar rim where it meets the nostril floor and upon its closure resulted in a considerable medialization of alar lobule, which significantly reduced the amount of alar flare and the amount of external alar excision needed. This external alar excision measured, on average, 3.8 mm (range, 2 to 8 mm), which is significantly less than that needed when a standard vertical internal excision was used ( P boomerang alar base excision proved to be a safe and effective technique for narrowing the nasal base and elimination of the excessive flaring and resulted in a natural, well-proportioned nasal base with no obvious scarring. © Thieme Medical Publishers.

  4. Studies on the DNA-excision repair in lymphocytes of patients with recurrent Herpes simplex

    International Nuclear Information System (INIS)

    Fanta, D.; Topaloglou, A.; Altmann, H.

    1978-01-01

    Investigations of the semiconservatrive DNA replication and the excision repair in lymphocytes of patients with recurrent herpes simplex showed defects that could lead to mutations in the DNA with following lower immuncompetence and possibility for activation of already present oncogenic virus formations within the cellular DNA

  5. DNA excision repair as a component of adaptation to low doses of ionizing radiation Escherichia coli

    International Nuclear Information System (INIS)

    Huang, H.; Claycamp, H.G.

    1993-01-01

    In this study the authors examined whether or not DNA excision repair is a component of adaptation induced by very low-dose ionizing radiation in Escherichia coli, a well-characterized prokaryote, and investigated the relationship between enhanced excision repair and the SOS response. Their data suggest that there seems to be narrow 'windows' of dose-effect for the induction of SOS-independent DNA excision repair. Being similar to mammalian cell studies, the dose range for this effect was about 200-fold less than D 37 for radiation survival. (author)

  6. Inroads into base excision repair I. The discovery of apurinic/apyrimidinic (AP) endonuclease. "An endonuclease for depurinated DNA in Escherichia coli B," Canadian Journal of Biochemistry, 1972.

    Science.gov (United States)

    Lindahl, Tomas; Verly, W G; Paquette Y

    2004-11-02

    DNA treated with alkylating agents is incised at sites of damage by cell extracts. A key component of this DNA repair function was shown by Verly and co-workers to be an endonuclease acting at secondary lesions, apurinic sites, rather than directly at alkylated nucleotide residues.

  7. Base excision repair deficiency in acute myeloid leukemia

    International Nuclear Information System (INIS)

    Scheer, N.M.

    2009-01-01

    Acute myeloid leukemia (AML) is an aggressive malignancy of the hematopoietic system arising from a transformed myeloid progenitor cell. Genomic instability is the hallmark of AML and characterized by a variety of cytogenetic and molecular abnormalities. Whereas 10% to 20% of AML cases reflect long-term sequelae of cytotoxic therapies for a primary disorder, the etiology for the majority of AMLs remains unknown. The integrity of DNA is under continuous attack from a variety of exogenous and endogenous DNA damaging agents. The majority of DNA damage is caused by constantly generated reactive oxygen species (ROS) resulting from metabolic by-products. Base excision repair (BER) is the major DNA repair mechanism dealing with DNA base lesions that are induced by oxidative stress or alkylation. In this study we investigated the BER in AML. Primary AML patients samples as well as AML cell lines were treated with hydrogen peroxide (H 2 O 2 ). DNA damage induction and repair was monitored by the alkaline comet assay. In 15/30 leukemic samples from patients with therapy-related AML, in 13/35 with de novo AML and 14/26 with AML following a myelodysplastic syndrome, significantly reduced single strand breaks (SSBs) representing BER intermediates were found. In contrast, normal SSB formation was seen in mononuclear cells of 30 healthy individuals and 30/31 purified hematopoietic stem- and progenitor cell preparations obtained from umbilical cord blood. Additionally, in 5/10 analyzed AML cell lines, no SSBs were formed upon H 2 O 2 treatment, either. Differences in intracellular ROS concentrations or apoptosis could be excluded as reason for this phenomenon. A significantly diminished cleavage capacity for 7,8-dihydro-8-oxoguanine as well as for Furan was observed in cell lines that exhibited no SSB formation. These data demonstrate for the first time that initial steps of BER are impaired in a proportion of AML cell lines and leukemic cells from patients with different forms of

  8. Inhibition of excision repair of DNA in u.v.-irradiated Escherichia coli by phenethyl alcohol

    International Nuclear Information System (INIS)

    Tachibana, A.; Yonei, S.

    1985-01-01

    Membrane-specific drugs such as procaine and chlorpromazine have been shown to inhibit excision repair of DNA in u.v.-irradiated E. coli. One possible mechanism is that, if association of DNA with the cell membrane is essential for excision repair, this process may be susceptible to drugs affecting the structure of cell membranes. We examined the effect of phenethyl alcohol, which is a membrane-specific drug and known to dissociate the DNA-membrane complex, on excision repair of DNA in u.v.-irradiated E. coli cells. The cells were irradiated with u.v. light and then held at 30 0 C in buffer (liquid-holding) in the presence or absence of phenethyl alcohol. It was found that phenethyl alcohol inhibits the liquid-holding recovery in both wild-type and recA strains, corresponding to its dissociating action on the DNA-membrane complex. Thus, the association of DNA with cell membrane is an important factor for excision repair in E. coli. Procaine did not show the dissociating effect, suggesting that at least two different mechanisms are responsible for the involvement of cell membrane in excision repair of DNA in E. coli. (author)

  9. Nucleotide-excision repair of DNA in cell-free extracts of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Wang, Z.; Wu, X.; Friedberg, E.C.

    1993-01-01

    A wide spectrum of DNA lesions are repaired by the nucleotide-excision repair (NER) pathway in both eukaryotic and prokaryotic cells. We have developed a cell-free system in Saccharomyces cerevisiae that supports NER. NER was monitored by measuring repair synthesis in DNA treated with cisplatin or with UV radiation. Repair synthesis in vitro was defective in extracts of rad1, rad2, and rad10 mutant cells, all of which have mutations in genes whose products are known to be required for NER in vivo. Additionally, repair synthesis was complemented by mixing different mutant extracts, or by adding purified Rad1 or Rad10 protein to rad1 or rad10 mutant extracts, respectively. The latter observation demonstrates that the Rad1 and Rad10 proteins directly participate in the biochemical pathway of NER. NER supported by nuclear extracts requires ATP and Mg 2+ and is stimulated by polyethylene glycol and by small amounts of whole cell extract containing overexpressed Rad2 protein. The nuclear extracts also contain base-excision repair activity that is present at wild-type levels in rad mutant extracts. This cell-free system is expected to facilitate studies on the biochemical pathway of NER in S. cerevisiae

  10. X-ray repair cross complementing protein 1 in base excision repair

    DEFF Research Database (Denmark)

    Hanssen-Bauer, Audun; Solvang-Garten, Karin; Akbari, Mansour

    2012-01-01

    X-ray Repair Cross Complementing protein 1 (XRCC1) acts as a scaffolding protein in the converging base excision repair (BER) and single strand break repair (SSBR) pathways. XRCC1 also interacts with itself and rapidly accumulates at sites of DNA damage. XRCC1 can thus mediate the assembly of large...

  11. Base Sequence Context Effects on Nucleotide Excision Repair

    Directory of Open Access Journals (Sweden)

    Yuqin Cai

    2010-01-01

    Full Text Available Nucleotide excision repair (NER plays a critical role in maintaining the integrity of the genome when damaged by bulky DNA lesions, since inefficient repair can cause mutations and human diseases notably cancer. The structural properties of DNA lesions that determine their relative susceptibilities to NER are therefore of great interest. As a model system, we have investigated the major mutagenic lesion derived from the environmental carcinogen benzo[a]pyrene (B[a]P, 10S (+-trans-anti-B[a]P-2-dG in six different sequence contexts that differ in how the lesion is positioned in relation to nearby guanine amino groups. We have obtained molecular structural data by NMR and MD simulations, bending properties from gel electrophoresis studies, and NER data obtained from human HeLa cell extracts for our six investigated sequence contexts. This model system suggests that disturbed Watson-Crick base pairing is a better recognition signal than a flexible bend, and that these can act in concert to provide an enhanced signal. Steric hinderance between the minor groove-aligned lesion and nearby guanine amino groups determines the exact nature of the disturbances. Both nearest neighbor and more distant neighbor sequence contexts have an impact. Regardless of the exact distortions, we hypothesize that they provide a local thermodynamic destabilization signal for repair.

  12. Excision of thymine dimers from specifically incised DNA by extracts of xeroderma pigmentosum cells

    Energy Technology Data Exchange (ETDEWEB)

    Cook, K; Friedberg, E C; Slor, H; Cleaver, J E

    1975-07-17

    DNA repair defects as exhibited in fibroblasts from patients with xeroderma pigmentosa were studied. Five complementation groups for excision-repair defects were examined to test the hypothesis that a defective endonuclease or exonuclease may be the cause. No evidence was found to indicate that the enzyme activity functions in dimer excision. Since ultraviolet irradiated E. coli DNA incised with an endonuclease purified from phage-infected cells were used, it is possible that other factors may be involved in human UV endonuclease action. (JWP)

  13. Ku80-deleted cells are defective at base excision repair

    International Nuclear Information System (INIS)

    Li, Han; Marple, Teresa; Hasty, Paul

    2013-01-01

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H 2 O 2 and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs

  14. Ku80-deleted cells are defective at base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Li, Han [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain); Marple, Teresa [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Hasty, Paul, E-mail: hastye@uthscsa.edu [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain)

    2013-05-15

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H{sub 2}O{sub 2} and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs.

  15. Excision of pyrimidine dimers from epidermal DNA and nonsemiconservative epidermal DNA synthesis following ultraviolet irradiation of mouse skin

    International Nuclear Information System (INIS)

    Bowden, G.T.; Trosko, J.E.; Shapas, B.G.; Boutwell, R.K.

    1975-01-01

    Pyrimidine dimer production and excision in epidermal DNA were studied at five different dose levels of ultraviolet light in the skin of intact mice. Dimer production increased with dose up to 50,400 ergs/sq mm. Approximately 30 percent of the thymine-containing dimers were excised by 24 hr after irradiation at three lower dose levels of ultraviolet light. Nonsemiconservative DNA replication in ultraviolet-irradiated mouse skin was shown to continue for at least 18 hr. The rate of nonsemiconservative replication decreased with time, but did so slowly. The initial rates of nonsemiconservative replication increased with ultraviolet light dose levels up to about 4200 ergs/sq mm, after which the initial rates were decreased. Semiconservative epidermal DNA synthesis was shown to be inhibited by hydroxyurea, but hydroxyurea had no effect on ultraviolet light-induced nonsemiconservative DNA replication. The observed pyrimidine dimer excision and nonsemiconservative DNA replication suggest that in the intact mouse the cells of the epidermis are capable of DNA excision repair after ultraviolet irradiation of mouse skin

  16. Removal of oxygen free-radical-induced 5′,8-purine cyclodeoxynucleosides from DNA by the nucleotide excision-repair pathway in human cells

    Science.gov (United States)

    Kuraoka, Isao; Bender, Christina; Romieu, Anthony; Cadet, Jean; Wood, Richard D.; Lindahl, Tomas

    2000-01-01

    Exposure of cellular DNA to reactive oxygen species generates several classes of base lesions, many of which are removed by the base excision-repair pathway. However, the lesions include purine cyclodeoxynucleoside formation by intramolecular crosslinking between the C-8 position of adenine or guanine and the 5′ position of 2-deoxyribose. This distorting form of DNA damage, in which the purine is attached by two covalent bonds to the sugar-phosphate backbone, occurs as distinct diastereoisomers. It was observed here that both diastereoisomers block primer extension by mammalian and microbial replicative DNA polymerases, using DNA with a site-specific purine cyclodeoxynucleoside residue as template, and consequently appear to be cytotoxic lesions. Plasmid DNA containing either the 5′R or 5′S form of 5′,8-cyclo-2-deoxyadenosine was a substrate for the human nucleotide excision-repair enzyme complex. The R diastereoisomer was more efficiently repaired than the S isomer. No correction of the lesion by direct damage reversal or base excision repair was detected. Dual incision around the lesion depended on the core nucleotide excision-repair protein XPA. In contrast to several other types of oxidative DNA damage, purine cyclodeoxynucleosides are chemically stable and would be expected to accumulate at a slow rate over many years in the DNA of nonregenerating cells from xeroderma pigmentosum patients. High levels of this form of DNA damage might explain the progressive neurodegeneration seen in XPA individuals. PMID:10759556

  17. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair.

    Science.gov (United States)

    de Laat, W L; Appeldoorn, E; Sugasawa, K; Weterings, E; Jaspers, N G; Hoeijmakers, J H

    1998-08-15

    The human single-stranded DNA-binding replication A protein (RPA) is involved in various DNA-processing events. By comparing the affinity of hRPA for artificial DNA hairpin structures with 3'- or 5'-protruding single-stranded arms, we found that hRPA binds ssDNA with a defined polarity; a strong ssDNA interaction domain of hRPA is positioned at the 5' side of its binding region, a weak ssDNA-binding domain resides at the 3' side. Polarity appears crucial for positioning of the excision repair nucleases XPG and ERCC1-XPF on the DNA. With the 3'-oriented side of hRPA facing a duplex ssDNA junction, hRPA interacts with and stimulates ERCC1-XPF, whereas the 5'-oriented side of hRPA at a DNA junction allows stable binding of XPG to hRPA. Our data pinpoint hRPA to the undamaged strand during nucleotide excision repair. Polarity of hRPA on ssDNA is likely to contribute to the directionality of other hRPA-dependent processes as well.

  18. DNA damage and nucleotide excision repair capacity in healthy individuals

    Czech Academy of Sciences Publication Activity Database

    Slyšková, Jana; Naccarati, Alessio; Poláková, Veronika; Pardini, Barbara; Vodičková, Ludmila; Štětina, R.; Schmuczerová, Jana; Šmerhovský, Z.; Lipská, L.; Vodička, Pavel

    2011-01-01

    Roč. 25, č. 7 (2011), s. 511-517 ISSN 0893-6692 R&D Projects: GA ČR GAP304/10/1286; GA MŠk 7F10069 Grant - others:GA MŠk(CZ) GAUK124710 Institutional research plan: CEZ:AV0Z50390512 Keywords : BPDE-induced DNA repair capacity * comet assay * interindividual variability Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.709, year: 2011

  19. Uracil DNA glycosylase counteracts APOBEC3G-induced hypermutation of hepatitis B viral genomes: excision repair of covalently closed circular DNA.

    Directory of Open Access Journals (Sweden)

    Kouichi Kitamura

    Full Text Available The covalently closed circular DNA (cccDNA of the hepatitis B virus (HBV plays an essential role in chronic hepatitis. The cellular repair system is proposed to convert cytoplasmic nucleocapsid (NC DNA (partially double-stranded DNA into cccDNA in the nucleus. Recently, antiviral cytidine deaminases, AID/APOBEC proteins, were shown to generate uracil residues in the NC-DNA through deamination, resulting in cytidine-to-uracil (C-to-U hypermutation of the viral genome. We investigated whether uracil residues in hepadnavirus DNA were excised by uracil-DNA glycosylase (UNG, a host factor for base excision repair (BER. When UNG activity was inhibited by the expression of the UNG inhibitory protein (UGI, hypermutation of NC-DNA induced by either APOBEC3G or interferon treatment was enhanced in a human hepatocyte cell line. To assess the effect of UNG on the cccDNA viral intermediate, we used the duck HBV (DHBV replication model. Sequence analyses of DHBV DNAs showed that cccDNA accumulated G-to-A or C-to-T mutations in APOBEC3G-expressing cells, and this was extensively enhanced by UNG inhibition. The cccDNA hypermutation generated many premature stop codons in the P gene. UNG inhibition also enhanced the APOBEC3G-mediated suppression of viral replication, including reduction of NC-DNA, pre-C mRNA, and secreted viral particle-associated DNA in prolonged culture. Enhancement of APOBEC3G-mediated suppression by UNG inhibition was not observed when the catalytic site of APOBEC3G was mutated. Transfection experiments of recloned cccDNAs revealed that the combination of UNG inhibition and APOBEC3G expression reduced the replication ability of cccDNA. Taken together, these data indicate that UNG excises uracil residues from the viral genome during or after cccDNA formation in the nucleus and imply that BER pathway activities decrease the antiviral effect of APOBEC3-mediated hypermutation.

  20. Aag-initiated base excision repair promotes ischemia reperfusion injury in liver, brain, and kidney.

    Science.gov (United States)

    Ebrahimkhani, Mohammad R; Daneshmand, Ali; Mazumder, Aprotim; Allocca, Mariacarmela; Calvo, Jennifer A; Abolhassani, Nona; Jhun, Iny; Muthupalani, Sureshkumar; Ayata, Cenk; Samson, Leona D

    2014-11-11

    Inflammation is accompanied by the release of highly reactive oxygen and nitrogen species (RONS) that damage DNA, among other cellular molecules. Base excision repair (BER) is initiated by DNA glycosylases and is crucial in repairing RONS-induced DNA damage; the alkyladenine DNA glycosylase (Aag/Mpg) excises several DNA base lesions induced by the inflammation-associated RONS release that accompanies ischemia reperfusion (I/R). Using mouse I/R models we demonstrate that Aag(-/-) mice are significantly protected against, rather than sensitized to, I/R injury, and that such protection is observed across three different organs. Following I/R in liver, kidney, and brain, Aag(-/-) mice display decreased hepatocyte death, cerebral infarction, and renal injury relative to wild-type. We infer that in wild-type mice, Aag excises damaged DNA bases to generate potentially toxic abasic sites that in turn generate highly toxic DNA strand breaks that trigger poly(ADP-ribose) polymerase (Parp) hyperactivation, cellular bioenergetics failure, and necrosis; indeed, steady-state levels of abasic sites and nuclear PAR polymers were significantly more elevated in wild-type vs. Aag(-/-) liver after I/R. This increase in PAR polymers was accompanied by depletion of intracellular NAD and ATP levels plus the translocation and extracellular release of the high-mobility group box 1 (Hmgb1) nuclear protein, activating the sterile inflammatory response. We thus demonstrate the detrimental effects of Aag-initiated BER during I/R and sterile inflammation, and present a novel target for controlling I/R-induced injury.

  1. Base excision repair activities differ in human lung cancer cells and corresponding normal controls

    DEFF Research Database (Denmark)

    Karahalil, Bensu; Bohr, Vilhelm A; De Souza-Pinto, Nadja C

    2010-01-01

    Oxidative damage to DNA is thought to play a role in carcinogenesis by causing mutations, and indeed accumulation of oxidized DNA bases has been observed in samples obtained from tumors but not from surrounding tissue within the same patient. Base excision repair (BER) is the main pathway...... for the repair of oxidized modifications both in nuclear and mitochondrial DNA. In order to ascertain whether diminished BER capacity might account for increased levels of oxidative DNA damage in cancer cells, the activities of BER enzymes in three different lung cancer cell lines and their non......-cancerous counterparts were measured using oligonucleotide substrates with single DNA lesions to assess specific BER enzymes. The activities of four BER enzymes, OGG1, NTH1, UDG and APE1, were compared in mitochondrial and nuclear extracts. For each specific lesion, the repair activities were similar among the three...

  2. Quantitative characterization of pyrimidine dimer excision from UV-irradiated DNA (excision capacity) by cell-free extracts of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Bekker, M.L.; Kaboev, O.K.; Akhmedov, A.T.; Luchkina, L.A.

    1984-01-01

    Cell-free extracts from wild-type yeast (RAD + ) and from rad mutants belonging to the RAD3 epistatic group (rad1-1, rad2-1, rad3-1, rad4-1) contain activities catalyzing the excision of pyrimidine dimers (PD) from purified ultraviolet-irradiated DNA which was not pre-treated with exogenous UV-endonuclease. The level of these activities in cell-free extracts from rad mutants did not differ from that in wild-type extract and was close to the in vivo excision capacity of the latter calculated from the LD 37 (about 10 4 PD per haploid genome). (Auth.)

  3. Gamma-ray induced inhibition of DNA synthesis in ataxia telangiectasia fibroblasts is a function of excision repair capacity

    International Nuclear Information System (INIS)

    Smith, P.J.; Paterson, M.C.

    1980-01-01

    The extent of the deficiency in γ-ray induced DNA repair synthesis in an ataxia telangiectasia (AT) human fibroblast strain was found to show no oxygen enhancement, consistent with a defect in the repair of base damage. Repair deficiency, but not repair proficiency, in AT cells was accompanied by a lack of inhibition of DNA synthesis by either γ-rays or the radiomimetic drug bleomycin. Experiments with 4-nitroquinoline 1-oxide indicated that lack of inhibition was specific for radiogenic-type damage. Thus excision repair, perhaps by DNA strand incision or chromatin modification, appears to halt replicon initiation in irradiated repair proficient cells whereas in repair defective AT strains this putatively important biological function is inoperative

  4. Important role of the nucleotide excision repair pathway in Mycobacterium smegmatis in conferring protection against commonly encountered DNA-damaging agents.

    Science.gov (United States)

    Kurthkoti, Krishna; Kumar, Pradeep; Jain, Ruchi; Varshney, Umesh

    2008-09-01

    Mycobacteria are an important group of human pathogens. Although the DNA repair mechanisms in mycobacteria are not well understood, these are vital for the pathogen's persistence in the host macrophages. In this study, we generated a null mutation in the uvrB gene of Mycobacterium smegmatis to allow us to compare the significance of the nucleotide excision repair (NER) pathway with two important base excision repair pathways, initiated by uracil DNA glycosylase (Ung) and formamidopyrimidine DNA glycosylase (Fpg or MutM), in an isogenic strain background. The strain deficient in NER was the most sensitive to commonly encountered DNA-damaging agents such as UV, low pH, reactive oxygen species, hypoxia, and was also sensitive to acidified nitrite. Taken together with previous observations on NER-deficient M. tuberculosis, these results suggest that NER is an important DNA repair pathway in mycobacteria.

  5. Initial steps of the base excision repair pathway within the nuclear architecture

    International Nuclear Information System (INIS)

    Amouroux, R.

    2009-09-01

    Oxidative stress induced lesions threaten aerobic organisms by representing a major cause of genomic instability. A common product of guanine oxidation, 8-oxo-guanine (8- oxoG) is particularly mutagenic by provoking G to T transversions. Removal of oxidised bases from DNA is initiated by the recognition and excision of the damaged base by a DNA glycosylase, initiating the base excision repair (BER) pathway. In mammals, 8-oxoG is processed by the 8-oxoG-DNA-glycosylase I (OGG1), which biochemical mechanisms has been well characterised in vitro. However how and where this enzyme finds the modified base within the complex chromatin architecture is not yet understood. We show that upon induction of 8-oxoG, OGG1, together with at least two other proteins involved in BER, is recruited from a soluble fraction to chromatin. Formation kinetics of this patches correlates with 8-oxoG excision, suggesting a direct link between presence of this chromatin-associated complexes and 8-oxoG repair. More precisely, these repair patches are specifically directed to euchromatin regions, and completely excluded from heterochromatin regions. Inducing of artificial chromatin compaction results in a complete inhibition of the in vivo repair of 8-oxoG, probably by impeding the access of OGG1 to the lesion. Using OGG1 mutants, we show that OGG1 direct recognition of 8-oxoG did not trigger its re-localisation to the chromatin. We conclude that in response to the induction of oxidative DNA damage, the DNA glycosylase is actively recruited to regions of open chromatin allowing the access of the BER machinery to the lesions. (author)

  6. Evidence that DNA excision-repair in xeroderma pigmentosum group A is limited but biologically significant

    International Nuclear Information System (INIS)

    Hull, D.R.; Kantor, G.J.

    1983-01-01

    The loss of pyrimidine dimers in nondividing populations of an excision-repair deficient xeroderma pigmentosum group. A strain (XP12BE) was measured throughout long periods (up to 5 months) following exposure to low doses of ultraviolet light (UV, 254 nm) using a UV endonuclease-alkaline sedimentation assay. Excision of about 90% of the dimers induced by 1 J/m 2 occurred during the first 50 days. The rate curve has some similarities with that of normal excision-repair proficient cultures that may not be coincidental. Rate curves for both XP12BE and normal cultures are characterized by a fast and slow component, with both rate constants for the XP12BE cultures (0.15 day -1 and 0.025 day -1 ) a factor of 10 smaller than those observed for the respective components of normal cell cultures. The slow components for both XP12BE and normal cultures extrapolate to about 30% of the initial number of dimers. No further excision was detected throughout an additional 90-day period even though the cultures were capable of excision-repair of other newly-introduced pyrimidine dimers. We conclude that nondividing XP12BE cells in addition to having a slower repair rate, cannot repair some of the UV-induced DNA damage. The repair in XP12BE is shown to have biological significance as detected by a cell-survival assay and dose-fractionation techniques. Nondividing XP12BE cells are more resistant to UV when irradiated chronically than when irradiated acutely with the same total dose. (orig.)

  7. True Lies: The Double Life of the Nucleotide Excision Repair Factors in Transcription and DNA Repair

    Directory of Open Access Journals (Sweden)

    Nicolas Le May

    2010-01-01

    Full Text Available Nucleotide excision repair (NER is a major DNA repair pathway in eukaryotic cells. NER removes structurally diverse lesions such as pyrimidine dimers, arising upon UV irradiation or bulky chemical adducts, arising upon exposure to carcinogens and some chemotherapeutic drugs. NER defects lead to three genetic disorders that result in predisposition to cancers, accelerated aging, neurological and developmental defects. During NER, more than 30 polypeptides cooperate to recognize, incise, and excise a damaged oligonucleotide from the genomic DNA. Recent papers reveal an additional and unexpected role for the NER factors. In the absence of a genotoxic attack, the promoters of RNA polymerases I- and II-dependent genes recruit XPA, XPC, XPG, and XPF to initiate gene expression. A model that includes the growth arrest and DNA damage 45α protein (Gadd45α and the NER factors, in order to maintain the promoter of active genes under a hypomethylated state, has been proposed but remains controversial. This paper focuses on the double life of the NER factors in DNA repair and transcription and describes the possible roles of these factors in the RNA synthesis process.

  8. The influence of some prostaglandins on DNA synthesis and DNA excision repair in mouse spleen cells ''in vitro''

    International Nuclear Information System (INIS)

    Klein, W.; Altmann, H.; Kocsis, F.; Egg, D.; Guenther, R.

    1978-03-01

    ''In vitro'' experiments were performed on mouse spleen cells to establish possible influences of some naturally occurring prostaglandins on DNA synthesis and DNA excision repair. The prostaglandins A 1 , B 1 , E 1 , E 2 and Fsub(2α) were tested in concentrations of 10 pg, 5 ng and 2,5μg per ml cell suspension. DNA synthesis was significantly increased by PgFsub(2α) in all the three concentrations tested, while the other tested prostaglandins were essentially ineffective. DNA excision repair was significantly inhibited by PgE 1 and PgE 2 at 5 ng/ml and at 2,5 μg/ml but increased by PgFsub(2α) in the two lower concentrations. The rejoining of DNA-strand breaks after gamma-irradiation was slightly reduced by PgE 1 , PgE 2 and PgF 2 at 2,5 μg/ml. (author)

  9. DNA repair capacity and rate of excision repair in UV-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Inoue, Masao; Takebe, Hiraku.

    1978-01-01

    Repair capacities of five mammalian cell strains were measured by colony-forming ability, HCR of UV-irradiated virus, UDS, pyrimidine dimer excision, and semi-conservative DNA replication. Colony-forming ability of UV-irradiated cells was high for human amnion FL cells and mouse L cells, slightly low for African green monkey CV-1 cells, and extremely low for xeroderma pigmentosum cells. HCR of UV-irradiated Herpes simplex virus was high in CV-1 cells, FL and normal human fibroblast cells, low in both XP and L cells. The amount of UDS was high in FL and normal human fibroblast cells, considerably low in CV-1 cells, and essentially no UDS was observed in XP cells. Rate of UDS after UV-irradiation was slower for CV-1 cells than FL and human fibroblast cells. Rate of the excision of thymine-containing dimers from the acid-insoluble fraction during post-irradiation incubation of the cells was rapid in FL and normal human cells and slow in CV-1 cells, and no excision took place in XP cells. Semi-conservative DNA synthesis was reduced after UV-irradiation in all cell lines, but subsequently recovered in FL, normal human and CV-1 cells. The onset of recovery was 4 h after UV-irradiation for FL and normal human cells, but about 6 h for CV-1 cells. The apparent intermediate repair of CV-1 cells except for HCR may be related to the slow rate of excision repair. ''Patch and cut'' model is more favorable than ''cut and patch'' model to elucidate these results. (auth.)

  10. Physico-chemical and biological study of excision-repair of UV-irradiated PHIX 174 RF DNA in vitro

    International Nuclear Information System (INIS)

    Heijneker, H.L.

    1975-01-01

    A study is presented on the excision repair of ultraviolet-irradiated PHIX 174 RFI DNA in vitro with UV-specific endonuclease from micrococcus luteus, DNA polymerase I from E. coli and DNA ligase from phage T 4 infected E. coli. Excision repair was measured by physico-chemical and by biological methods. It is shown that more than 90% of the pyrimidine dimers can be repaired in vitro and that the repaired molecules have regained full biological activity. Endonuclease III was not essential for excision repair in vitro and did not stimulate repair; from this it was concluded that UV-endo generates 3' OH endgroups. The usefulness of the methods with regard to the study of excision repair is discussed

  11. DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents

    International Nuclear Information System (INIS)

    Hansson, J.; Keyse, S.M.; Lindahl, T.; Wood, R.D.

    1991-01-01

    Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurements of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links

  12. Recovery of DNA synthesis after ultraviolet irradiation of xeroderma pigmentosum cells depends on excision repair and is blocked by caffeine

    International Nuclear Information System (INIS)

    Park, S.D.; Cleaver, J.E.

    1979-01-01

    Normal human and xeroderma pigmentosum (XP, excision-defective group A) cells (both SV40-transformed) pulse-labeled with [ 3 H] thymidine at various times after irradiation with ultraviolet light showed a decline and recovery of both the molecular weights of newly synthesized DNA and the rated of synthesis per cell. At the same ultraviolet dose, both molecular weights and rates of synthesis were inhibited more in XP than in normal cells. This indicates that excision repair plays a role in minimizing the inhibition of chain growth, possibly by excision of dimers ahead of the growing point. The ability to synthesize normal-sized DNA recovered more rapidly than rates of synthesis in normal cells, but both parameters recovered in phase in XP cells. During recovery in normal cells there are therefore fewer actively replicating clusters of replicons because the single-strand breaks involved in the excision of dimers inhibit replicon initiation. XP cells have few excision repair events and therefore fewer breaks to interfere with initiation, but chain growth is blocked by unexcised dimers. In both cell types recovery of the ability to synthesize normal-sized DNA was prevented by growing cells in caffeine after irradiation, possibly because of competition between the DNA binding properties of caffeine and replication proteins. These observations imply that excision repair and semiconservative replication interact strongly in irradiated cells to produce a complex spectrum of changes in DNA replication which may be confused with parts of alternative systems such as post-replication repair. (author)

  13. 1-{beta}-D-arabinofuranosylcytosine is cytotoxic in quiescent normal lymphocytes undergoing DNA excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, Takahiro; Kawai, Yasukazu; Ueda, Takanori [Fukui Medical Univ., Matsuoka (Japan)

    2002-12-01

    We have sought to clarify the potential activity of the S-phase-specific antileukemic agent 1-{beta}-D-arabinofuranosylcytosine (ara-C), an inhibitor of DNA synthesis, in quiescent cells that are substantially non-sensitive to nucleoside analogues. It was hypothesized that the combination of ara-C with DNA damaging agents that initiate DNA repair will expand ara-C cytotoxicity to non-cycling cells. The repair kinetics, which included incision of damaged DNA, gap-filling by DNA synthesis and rejoining by ligation, were evaluated using the single cell gel electrophoresis (Comet) assay and the thymidine incorporation assay. When normal lymphocytes were treated with ultraviolet C or with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), the processes of DNA excision repair were promptly initiated and rapidly completed. When the cells were incubated with ara-C prior to irradiation or BCNU treatment, the steps of DNA synthesis and rejoining in the repair processes were both inhibited. The ara-C-mediated inhibition of the repair processes was concentration-dependent, with the effect peaking at 10{mu}M. The combination of ara-C with these DNA repair initiators exerted subsequent cytotoxicity, which was proportional to the extent of the repair inhibition in the presence of ara-C. In conclusion, ara-C was cytotoxic in quiescent cells undergoing DNA repair. This might be attributed to unrepaired DNA damage that remained in the cells, thereby inducing lethal cytotoxicity. Alternatively, ara-C might exert its own cytotoxicity by inhibiting DNA synthesis in the repair processes. Such a strategy may be effective against a dormant subpopulation in acute leukemia that survives chemotherapy. (author)

  14. 1-β-D-arabinofuranosylcytosine is cytotoxic in quiescent normal lymphocytes undergoing DNA excision repair

    International Nuclear Information System (INIS)

    Yamauchi, Takahiro; Kawai, Yasukazu; Ueda, Takanori

    2002-01-01

    We have sought to clarify the potential activity of the S-phase-specific antileukemic agent 1-β-D-arabinofuranosylcytosine (ara-C), an inhibitor of DNA synthesis, in quiescent cells that are substantially non-sensitive to nucleoside analogues. It was hypothesized that the combination of ara-C with DNA damaging agents that initiate DNA repair will expand ara-C cytotoxicity to non-cycling cells. The repair kinetics, which included incision of damaged DNA, gap-filling by DNA synthesis and rejoining by ligation, were evaluated using the single cell gel electrophoresis (Comet) assay and the thymidine incorporation assay. When normal lymphocytes were treated with ultraviolet C or with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), the processes of DNA excision repair were promptly initiated and rapidly completed. When the cells were incubated with ara-C prior to irradiation or BCNU treatment, the steps of DNA synthesis and rejoining in the repair processes were both inhibited. The ara-C-mediated inhibition of the repair processes was concentration-dependent, with the effect peaking at 10μM. The combination of ara-C with these DNA repair initiators exerted subsequent cytotoxicity, which was proportional to the extent of the repair inhibition in the presence of ara-C. In conclusion, ara-C was cytotoxic in quiescent cells undergoing DNA repair. This might be attributed to unrepaired DNA damage that remained in the cells, thereby inducing lethal cytotoxicity. Alternatively, ara-C might exert its own cytotoxicity by inhibiting DNA synthesis in the repair processes. Such a strategy may be effective against a dormant subpopulation in acute leukemia that survives chemotherapy. (author)

  15. Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers

    International Nuclear Information System (INIS)

    Fonseca, A.S.; Campos, V.M.A.; Magalhaes, L.A.G.; Paoli, F.

    2015-01-01

    Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T 4 endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T 4 endonuclease V. Low-intensity lasers: i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells, ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, and iv) did not alter the electrophoretic profile of plasmids incubated with T 4 endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers. (author)

  16. Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, A.S.; Campos, V.M.A.; Magalhaes, L.A.G., E-mail: adnfonseca@ig.com.br [Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, RJ (Brazil). Departamento de Biofisica e Biometria. Lab. de Ciencias Radiologicas; Paoli, F. [Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG (Brazil). Instituto de Ciencias Biologicas. Departamento de Morfologia

    2015-10-15

    Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T{sub 4} endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T{sub 4} endonuclease V. Low-intensity lasers: i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells, ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, and iv) did not alter the electrophoretic profile of plasmids incubated with T{sub 4} endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers. (author)

  17. The effect of DNA repair defects on reproductive performance in nucleotide excision repair (NER) mouse models: an epidemiological approach

    NARCIS (Netherlands)

    Tsai, P.S.; Nielen, M.; Horst, G.T.J. van der; Colenbrander, B.; Heesterbeek, J.A.P.; Fentener van Vlissingen, J.M.

    2005-01-01

    In this study, we used an epidemiological approach to analyze an animal database of DNA repair deficient mice on reproductive performance in five Nucleotide Excision Repair (NER) mutant mouse models on a C57BL/6 genetic background, namely CSA, CSB, XPA, XPC [models for the human DNA repair disorders

  18. Processing of free radical damaged DNA bases

    International Nuclear Information System (INIS)

    Wallace, S.

    2003-01-01

    Free radicals produced during the radiolysis of water gives rise to a plethora of DNA damages including single strand breaks, sites of base loss and a wide variety of purine and pyrimidine base lesions. All these damages are processed in cells by base excision repair. The oxidative DNA glycosylases which catalyze the first step in the removal of a base damage during base excision repair evolved primarily to protect the cells from the deleterious mutagenic effects of single free radical-induced DNA lesions arising during oxidative metabolism. This is evidenced by the high spontaneous mutation rate in bacterial mutants lacking the oxidative DNA glycosylases. However, when a low LET photon transverses the DNA molecule, a burst of free radicals is produced during the radiolysis of water that leads to the formation of clustered damages in the DNA molecule, that are recognized by the oxidative DNA glycosylases. When substrates containing two closely opposed sugar damages or base and sugar damages are incubated with the oxidative DNA glycosylases in vitro, one strand is readily incised by the lyase activity of the DNA glycosylase. Whether or not the second strand is incised depends on the distance between the strand break resulting from the incised first strand and the remaining DNA lesion on the other strand. If the lesions are more than two or three base pairs apart, the second strand is readily cleaved by the DNA glycosylase, giving rise to a double strand break. Even if the entire base excision repair system is reconstituted in vitro, whether or not a double strand break ensues depends solely upon the ability of the DNA glycosylase to cleave the second strand. These data predicted that cells deficient in the oxidative DNA glycosylases would be radioresistant while those that overproduce an oxidative DNA glycosylase would be radiosensitive. This prediction was indeed borne in Escherichia coli that is, mutants lacking the oxidative DNA glycosylases are radioresistant

  19. Role of excision repair in postradiation recovery of biological activity of cellular DNA Bacillus subtilis

    International Nuclear Information System (INIS)

    Filippov, V.D.

    1976-01-01

    DNA extracted from UV-irradiated prototroph cells of Bacillus subtilis uvr + (45 sec. of UV light, 20% survivals) has a lowered transforming activity (TA) of markers purB and metB, and a lowered ratio TA pur/TA met. During the subsequent incubation of uvr + cells in glucose-salt medium free of nitrogen sources the TA of markers and the ratio between them increase. No increase is observed during the postradiation incubation under the same conditions or in a nutrition medium of uvr cells, deficient in escision of pyrimidine dimers. The increment of DNA begins approsimately in 30 min. after the beginning of incubation of irradiated uvr cells in nutrition medium. On the basis of these facts it is concluded that neither the replication of damaged DNA nor the postreplication repair, but only excision repair, can provide the recovery of biological (transforming) activity of cellular DNA in Bac. subtilis. The system given might be a suitable model for testing compounds which affect the activity of this process. The well-known inhibitors of dark repair, caffeine, proflavine to inhibit reversibly the initial steps of the process/ and especially acriflavine, delay the recovery of markers of cellular DNA in irradiated uvr + cells. Caffeine is proved to inhibit reversibly the initial steps of the process

  20. Abnormal Base Excision Repair at Trinucleotide Repeats Associated with Diseases: A Tissue-Selective Mechanism

    Directory of Open Access Journals (Sweden)

    Agathi-Vasiliki Goula

    2013-07-01

    Full Text Available More than fifteen genetic diseases, including Huntington’s disease, myotonic dystrophy 1, fragile X syndrome and Friedreich ataxia, are caused by the aberrant expansion of a trinucleotide repeat. The mutation is unstable and further expands in specific cells or tissues with time, which can accelerate disease progression. DNA damage and base excision repair (BER are involved in repeat instability and might contribute to the tissue selectivity of the process. In this review, we will discuss the mechanisms of trinucleotide repeat instability, focusing more specifically on the role of BER.

  1. Nucleotide Excision DNA Repair is Associated with Age-Related Vascular Dysfunction

    Science.gov (United States)

    Durik, Matej; Kavousi, Maryam; van der Pluijm, Ingrid; Isaacs, Aaron; Cheng, Caroline; Verdonk, Koen; Loot, Annemarieke E.; Oeseburg, Hisko; Musterd-Bhaggoe, Usha; Leijten, Frank; van Veghel, Richard; de Vries, Rene; Rudez, Goran; Brandt, Renata; Ridwan, Yanto R.; van Deel, Elza D.; de Boer, Martine; Tempel, Dennie; Fleming, Ingrid; Mitchell, Gary F.; Verwoert, Germaine C.; Tarasov, Kirill V.; Uitterlinden, Andre G.; Hofman, Albert; Duckers, Henricus J.; van Duijn, Cornelia M.; Oostra, Ben A.; Witteman, Jacqueline C.M.; Duncker, Dirk J.; Danser, A.H. Jan; Hoeijmakers, Jan H.; Roks, Anton J.M.

    2012-01-01

    Background Vascular dysfunction in atherosclerosis and diabetes, as observed in the aging population of developed societies, is associated with vascular DNA damage and cell senescence. We hypothesized that cumulative DNA damage during aging contributes to vascular dysfunction. Methods and Results In mice with genomic instability due to the defective nucleotide excision repair genes ERCC1 and XPD (Ercc1d/− and XpdTTD mice), we explored age-dependent vascular function as compared to wild-type mice. Ercc1d/− mice showed increased vascular cell senescence, accelerated development of vasodilator dysfunction, increased vascular stiffness and elevated blood pressure at very young age. The vasodilator dysfunction was due to decreased endothelial eNOS levels as well as impaired smooth muscle cell function, which involved phosphodiesterase (PDE) activity. Similar to Ercc1d/− mice, age-related endothelium-dependent vasodilator dysfunction in XpdTTD animals was increased. To investigate the implications for human vascular disease, we explored associations between single nucleotide polymorphisms (SNPs) of selected nucleotide excision repair genes and arterial stiffness within the AortaGen Consortium, and found a significant association of a SNP (rs2029298) in the putative promoter region of DDB2 gene with carotid-femoral pulse wave velocity. Conclusions Mice with genomic instability recapitulate age-dependent vascular dysfunction as observed in animal models and in humans, but with an accelerated progression, as compared to wild type mice. In addition, we found associations between variations in human DNA repair genes and markers for vascular stiffness which is associated with aging. Our study supports the concept that genomic instability contributes importantly to the development of cardiovascular disease. PMID:22705887

  2. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription*

    Science.gov (United States)

    Nadkarni, Aditi; Burns, John A.; Gandolfi, Alberto; Chowdhury, Moinuddin A.; Cartularo, Laura; Berens, Christian; Geacintov, Nicholas E.; Scicchitano, David A.

    2016-01-01

    DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N6-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N6-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N6-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N6-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N6-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER. PMID:26559971

  3. Excision of HIV-1 proviral DNA by recombinant cell permeable tre-recombinase.

    Directory of Open Access Journals (Sweden)

    Lakshmikanth Mariyanna

    Full Text Available Over the previous years, comprehensive studies on antiretroviral drugs resulted in the successful introduction of highly active antiretroviral therapy (HAART into clinical practice for treatment of HIV/AIDS. However, there is still need for new therapeutic approaches, since HAART cannot eradicate HIV-1 from the infected organism and, unfortunately, can be associated with long-term toxicity and the development of drug resistance. In contrast, novel gene therapy strategies may have the potential to reverse the infection by eradicating HIV-1. For example, expression of long terminal repeat (LTR-specific recombinase (Tre-recombinase has been shown to result in chromosomal excision of proviral DNA and, in consequence, in the eradication of HIV-1 from infected cell cultures. However, the delivery of Tre-recombinase currently depends on the genetic manipulation of target cells, a process that is complicating such therapeutic approaches and, thus, might be undesirable in a clinical setting. In this report we demonstrate that E.coli expressed Tre-recombinases, tagged either with the protein transduction domain (PTD from the HIV-1 Tat trans-activator or the translocation motif (TLM of the Hepatitis B virus PreS2 protein, were able to translocate efficiently into cells and showed significant recombination activity on HIV-1 LTR sequences. Tre activity was observed using episomal and stable integrated reporter constructs in transfected HeLa cells. Furthermore, the TLM-tagged enzyme was able to excise the full-length proviral DNA from chromosomal integration sites of HIV-1-infected HeLa and CEM-SS cells. The presented data confirm Tre-recombinase activity on integrated HIV-1 and provide the basis for the non-genetic transient application of engineered recombinases, which may be a valuable component of future HIV eradication strategies.

  4. Methylation of deoxycytidine incorporated by excision-repair synthesis of DNA

    International Nuclear Information System (INIS)

    Kastan, M.B.; Gowans, B.J.; Lieberman, M.W.

    1982-01-01

    Methylation of deoxycytidine incorporated by DNA excision-repair was studied in human diploid fibroblasts following damage with ultraviolet radiation, N-methyl-N-nitrosourea, or N-acetoxy-2-acetylaminofluorene. In confluent, nondividing cells, methylation in repair patches induced by all three agents is slow and incomplete. Whereas after DNA replication in logarithmic-phase cultures a steady state level of 3.4% 5-methylcytosine is reached in less than 2 hr after cells are labeled with 6- 3H-deoxycytidine, following ultraviolet-stimulated repair synthesis in confluent cells it takes about 3 days to reach a level of approximately 2.0% 5-methylcytosine in the repair patch. In cells from cultures in logarithmic-phase growth, 5-methylcytosine formation in ultraviolet-induced repair patches occurs faster and to a greater extent, reaching a level of approximately 2.7% in 10-20 hr. Preexisting hypomethylated repair patches in confluent cells are methylated further when the cells are stimulated to divide; however, the repair patch may still not be fully methylated before cell division occurs. Thus DNA damage and repair may lead to heritable loss of methylation at some sites

  5. Repair of 3-methyladenine and abasic sites by base excision repair mediates glioblastoma resistance to temozolomide

    Energy Technology Data Exchange (ETDEWEB)

    Bobola, Michael S.; Kolstoe, Douglas D.; Blank, A. [Department of Neurological Surgery, University of Washington Medical Center, Seattle, WA (United States); Chamberlain, Marc C. [Department of Neurological Surgery, University of Washington Medical Center, Seattle, WA (United States); Department of Neurology, University of Washington Medical Center, Seattle, WA (United States); Silber, John R., E-mail: jrsilber@u.washington.edu [Department of Neurological Surgery, University of Washington Medical Center, Seattle, WA (United States)

    2012-11-30

    Alkylating agents have long played a central role in the adjuvant therapy of glioblastoma (GBM). More recently, inclusion of temozolomide (TMZ), an orally administered methylating agent with low systemic toxicity, during and after radiotherapy has markedly improved survival. Extensive in vitro and in vivo evidence has shown that TMZ-induced O{sup 6}-methylguanine (O{sup 6}-meG) mediates GBM cell killing. Moreover, low or absent expression of O{sup 6}-methylguanine-DNA methyltransferase (MGMT), the sole human repair protein that removes O{sup 6}-meG from DNA, is frequently associated with longer survival in GBMs treated with TMZ, promoting interest in developing inhibitors of MGMT to counter resistance. However, the clinical efficacy of TMZ is unlikely to be due solely to O{sup 6}-meG, as the agent produces approximately a dozen additional DNA adducts, including cytotoxic N3-methyladenine (3-meA) and abasic sites. Repair of 3-meA and abasic sites, both of which are produced in greater abundance than O{sup 6}-meG, is mediated by the base excision repair (BER) pathway, and occurs independently of removal of O{sup 6}-meG. These observations indicate that BER activities are also potential targets for strategies to potentiate TMZ cytotoxicity. Here we review the evidence that 3-meA and abasic sites mediate killing of GBM cells. We also present in vitro and in vivo evidence that alkyladenine-DNA glycosylase, the sole repair activity that excises 3-meA from DNA, and Ape1, the major human abasic site endonuclease, mediate TMZ resistance in GBMs and represent potential anti-resistance targets.

  6. Differential role of base excision repair proteins in mediating cisplatin cytotoxicity.

    Science.gov (United States)

    Sawant, Akshada; Floyd, Ashley M; Dangeti, Mohan; Lei, Wen; Sobol, Robert W; Patrick, Steve M

    2017-03-01

    Interstrand crosslinks (ICLs) are covalent lesions formed by cisplatin. The mechanism for the processing and removal of ICLs by DNA repair proteins involves nucleotide excision repair (NER), homologous recombination (HR) and fanconi anemia (FA) pathways. In this report, we monitored the processing of a flanking uracil adjacent to a cisplatin ICL by the proteins involved in the base excision repair (BER) pathway. Using a combination of extracts, purified proteins, inhibitors, functional assays and cell culture studies, we determined the specific BER proteins required for processing a DNA substrate with a uracil adjacent to a cisplatin ICL. Uracil DNA glycosylase (UNG) is the primary glycosylase responsible for the removal of uracils adjacent to cisplatin ICLs, whereas other uracil glycosylases can process uracils in the context of undamaged DNA. Repair of the uracil adjacent to cisplatin ICLs proceeds through the classical BER pathway, highlighting the importance of specific proteins in this redundant pathway. Removal of uracil is followed by the generation of an abasic site and subsequent cleavage by AP endonuclease 1 (APE1). Inhibition of either the repair or redox domain of APE1 gives rise to cisplatin resistance. Inhibition of the lyase domain of Polymerase β (Polβ) does not influence cisplatin cytotoxicity. In addition, lack of XRCC1 leads to increased DNA damage and results in increased cisplatin cytotoxicity. Our results indicate that BER activation at cisplatin ICLs influences crosslink repair and modulates cisplatin cytotoxicity via specific UNG, APE1 and Polβ polymerase functions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Physical interaction between components of DNA mismatch repair and nucleotide excision repair

    International Nuclear Information System (INIS)

    Bertrand, P.; Tishkoff, D.X.; Filosi, N.; Dasgupta, R.; Kolodner, R.D.

    1998-01-01

    Nucleotide excision repair (NER) and DNA mismatch repair are required for some common processes although the biochemical basis for this requirement is unknown. Saccharomyces cerevisiae RAD14 was identified in a two-hybrid screen using MSH2 as 'bait,' and pairwise interactions between MSH2 and RAD1, RAD2, RAD3, RAD10, RAD14, and RAD25 subsequently were demonstrated by two-hybrid analysis. MSH2 coimmunoprecipitated specifically with epitope-tagged versions of RAD2, RAD10, RAD14, and RAD25. MSH2 and RAD10 were found to interact in msh3 msh6 and mlh1 pms1 double mutants, suggesting a direct interaction with MSH2. Mutations in MSH2 increased the UV sensitivity of NER-deficient yeast strains, and msh2 mutations were epistatic to the mutator phenotype observed in NER-deficient strains. These data suggest that MSH2 and possibly other components of DNA mismatch repair exist in a complex with NER proteins, providing a biochemical and genetical basis for these proteins to function in common processes

  8. The Role of Altered Nucleotide Excision Repair and UVB-Induced DNA Damage in Melanomagenesis

    Directory of Open Access Journals (Sweden)

    Timothy Budden

    2013-01-01

    Full Text Available UVB radiation is the most mutagenic component of the UV spectrum that reaches the earth’s surface and causes the development of DNA damage in the form of cyclobutane pyrimidine dimers and 6-4 photoproducts. UV radiation usually results in cellular death, but if left unchecked, it can affect DNA integrity, cell and tissue homeostasis and cause mutations in oncogenes and tumour-suppressor genes. These mutations, if unrepaired, can lead to abnormal cell growth, increasing the risk of cancer development. Epidemiological data strongly associates UV exposure as a major factor in melanoma development, but the exact biological mechanisms involved in this process are yet to be fully elucidated. The nucleotide excision repair (NER pathway is responsible for the repair of UV-induced lesions. Patients with the genetic disorder Xeroderma Pigmentosum have a mutation in one of eight NER genes associated with the XP complementation groups XP-A to XP-G and XP variant (XP-V. XP is characterized by diminished repair capacity, as well as a 1000-fold increase in the incidence of skin cancers, including melanoma. This has suggested a significant role for NER in melanoma development as a result of UVB exposure. This review discusses the current research surrounding UVB radiation and NER capacity and how further investigation of NER could elucidate the role of NER in avoiding UV-induced cellular death resulting in melanomagenesis.

  9. Repair of single-strand breaks induced in the DNA of Proteus mirabilis by excision repair after UV-irradiation

    International Nuclear Information System (INIS)

    Stoerl, K.; Mund, C.

    1977-01-01

    Single-strand breaks have been produced in the DNA of P. mirabilis after UV-irradiation in dependence on the incident UV-doses. It has been found that there exists a discrepancy between the single-strand breaks estimated from sedimentation in alkaline sucrose gradients and the expected single-strand breaks approximated from measurements of dimer excision. The low number in incision breaks observed by sedimentation experiments is an indication that the cells are able to repair the excision-induced breaks as fast as they are formed. Toluenized cells have been used for investigation of the incision step independently of subsequent repair processes. In presence of NMN the appearance of more single-strand breaks in the DNA has been observed. Furthermore, the number of incision breaks in toluenized cells increased in presence of exogenous ATP. The completion of the excision repair process has been investigated by observing the rejoining of incision breaks. After irradiation with UV-doses higher than approximately 240 erg/mm 2 the number of single-strand breaks remaining unrepaired in the DNA increased. Studies of the influence of nutrition conditions on the repair process have shown approximately the same capacity for repair of single-strand breaks in growth medium as well as in buffer. Progress in the excision repair was also followed by investigation of the DNA synthesized at the template-DNA containing the pyrimidine dimers. In comparison with E. coli, P. mirabilis showed a somewhat lower efficiency for the repair of single-strand breaks during the excision repair. (author)

  10. Differential effects of procaine and phenethyl alcohol on excision repair of DNA in u.v.-irradiated Escherichia coli

    International Nuclear Information System (INIS)

    Tomiyama, H.; Tachibana, A.; Yonei, S.

    1986-01-01

    Experiments were performed to investigate the involvement of the cell membrane in the excision DNA repair process in Escherichia coli. Two membrane-binding drugs, procaine and phenethyl alcohol (PEA), inhibited liquid-holding recovery (LBR) in u.v.-irradiated E. coli wild-type and recA strains. In uvrB and polA strains where, after u.v.-irradiation, LHR was absent the two drugs had no effect. Both drugs markedly reduced the removal of u.v.-induced thymine dimers in the DNA of wild-type cells (H/r30). Analysis by alkaline sucrose gradients revealed that PEA inhibited the incision step in excision repair. In contrast, procaine had no effect on incision but apparently inhibited the late steps in excision repair. PEA dissociated DNA from the cell membrane, whereas procaine did not. The results suggest that the two drugs PEA and procaine inhibit LHR and the excision repair process operating on u.v.-induced damage in E. coli by at least two different mechanisms each of which may involve the cell membrane. (author)

  11. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription.

    Science.gov (United States)

    Nadkarni, Aditi; Burns, John A; Gandolfi, Alberto; Chowdhury, Moinuddin A; Cartularo, Laura; Berens, Christian; Geacintov, Nicholas E; Scicchitano, David A

    2016-01-08

    DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N(6)-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N(6)-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N(6)-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N(6)-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N(6)-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Extent of excision repair before DNA synthesis determines the mutagenic but not the lethal effect of UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Konze-Thomas, B.; Hazard, R.M.; Maher, V.M.; McCormick, J.J. (Michigan State Univ., East Lansing (USA). Carcinogenesis Lab.)

    1982-01-01

    Excision repair-proficient diploid fibroblasts from normal persons (NF) and repair-deficient cells from a xeroderma pigmentosum patient (XP12BE, group A) were grown to confluence and allowed to enter the G/sub 0/ state. Autoradiography studies of cells released from G/sub 0/ after 72 h and replated at lower densities (3-9 x 10/sup 3/ cells/cm/sup 2/) in fresh medium showed that semiconservative DNA synthesis (S phase) began approx. equal to 24 h after the replating. The task was to determine whether the time available for DNA excision repair between ultraviolet irradiation (254 nm) and the onset of DNA synthesis was critical in determining the cytotoxic and/or mutagenic effect of UV in human fibroblasts.

  13. Isolation and properties of strains of Micrococcus (Deinococcus) radiodurans unable to excise ultraviolet light-induced pyrimidine dimers from DNA: evidence for two excision pathways

    International Nuclear Information System (INIS)

    Moseley, B.E.B.; Evans, D.M.

    1983-01-01

    A mutant of Deinococcus (formerly Micrococcus) radiodurans sensitive to both the lethal effect of mitomycin C and the mutagenic effect of simple alkylating agents, but having wild-type resistance to UV light, was treated with the mutagen N-methyl-N'-nitro-N-nitrosoguanidine. Three strains were isolated that were UV-sensitive, but had wild-type resistance to the lethal effect of methyl methanesulphonate and all were shown to be unable to excise pyrimidine dimers. The three strains UVS9, UVS25 and UVS78 had, in addition to the mutation in mtcA, mutations in loci designated uvsC, uvsD and uvsE, respectively. When the mutant mtcA gene was replaced by its wild-type allele in all three strains they became UV- and mitomycin C-resistant. On incubating the double mutants UVS9, UVS25 and UVS78 with wild-type DNA about 50% of the transformants selected for UV resistance were mitomycin C-sensitive and about 50% resistant depending on whether the mutant mtcA or the uvsC, D or E genes had been replaced by their wild-type alleles. Although strains mutant singly in uvsC, D or E were UV-resistant the rates of excision of pyrimidine dimers differed between them and was slower in all of them than in the wild-type and strain 302. (author)

  14. Analysis of DNA binding by human factor xeroderma pigmentosum complementation group A (XPA) provides insight into its interactions with nucleotide excision repair substrates.

    Science.gov (United States)

    Sugitani, Norie; Voehler, Markus W; Roh, Michelle S; Topolska-Woś, Agnieszka M; Chazin, Walter J

    2017-10-13

    Xeroderma pigmentosum (XP) complementation group A (XPA) is an essential scaffolding protein in the multiprotein nucleotide excision repair (NER) machinery. The interaction of XPA with DNA is a core function of this protein; a number of mutations in the DNA-binding domain (DBD) are associated with XP disease. Although structures of the central globular domain of human XPA and data on binding of DNA substrates have been reported, the structural basis for XPA's DNA-binding activity remains unknown. X-ray crystal structures of the central globular domain of yeast XPA (Rad14) with lesion-containing DNA duplexes have provided valuable insights, but the DNA substrates used for this study do not correspond to the substrates of XPA as it functions within the NER machinery. To better understand the DNA-binding activity of human XPA in NER, we used NMR to investigate the interaction of its DBD with a range of DNA substrates. We found that XPA binds different single-stranded/double-stranded junction DNA substrates with a common surface. Comparisons of our NMR-based mapping of binding residues with the previously reported Rad14-DNA crystal structures revealed similarities and differences in substrate binding between XPA and Rad14. This includes direct evidence for DNA contacts to the residues extending C-terminally from the globular core, which are lacking in the Rad14 construct. Moreover, mutation of the XPA residue corresponding to Phe-262 in Rad14, previously reported as being critical for DNA binding, had only a moderate effect on the DNA-binding activity of XPA. The DNA-binding properties of several disease-associated mutations in the DBD were investigated. These results suggest that for XPA mutants exhibiting altered DNA-binding properties, a correlation exists between the extent of reduction in DNA-binding affinity and the severity of symptoms in XP patients. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Base excision repair of both uracil and oxidatively damaged bases contribute to thymidine deprivation-induced radiosensitization

    International Nuclear Information System (INIS)

    Allen, Bryan G.; Johnson, Monika; Marsh, Anne E.; Dornfeld, Kenneth J.

    2006-01-01

    Purpose: Increased cellular sensitivity to ionizing radiation due to thymidine depletion is the basis of radiosensitization with fluoropyrimidine and methotrexate. The mechanism responsible for cytotoxicity has not been fully elucidated but appears to involve both the introduction of uracil into, and its removal from, DNA. The role of base excision repair of uracil and oxidatively damaged bases in creating the increased radiosensitization during thymidine depletion is examined. Methods and Materials: Isogenic strains of S. cerevisiae differing only at loci involved in DNA repair functions were exposed to aminopterin and sulfanilamide to induce thymidine deprivation. Cultures were irradiated and survival determined by clonogenic survival assay. Results: Strains lacking uracil base excision repair (BER) activities demonstrated less radiosensitization than the parental strain. Mutant strains continued to show partial radiosensitization with aminopterin treatment. Mutants deficient in BER of both uracil and oxidatively damaged bases did not demonstrate radiosensitization. A recombination deficient rad52 mutant strain was markedly sensitive to radiation; addition of aminopterin increased radiosensitivity only slightly. Radiosensitization observed in rad52 mutants was also abolished by deletion of the APN1, NTG1, and NTG2 genes. Conclusion: These data suggest radiosensitization during thymidine depletion is the result of BER activities directed at both uracil and oxidatively damaged bases

  16. Excision repair of bulky lesions in the DNA of mammalian cells

    International Nuclear Information System (INIS)

    Setlow, R.B.; Grist, E.

    1980-01-01

    The report examines the process of excision repair of pyrimidine dimers from uv-irradiated and chemically challenged human cells. It is shown by means of a sensitive endonuclease assay that the amount of excision observed depends upon the isotope used to label cells, and that XP heterozygotes are between normals and XPs

  17. Conserved XPB Core Structure and Motifs for DNA Unwinding:Implications for Pathway Selection of Transcription or ExcisionRepair

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Li; Arval, Andrew S.; Cooper, Priscilla K.; Iwai, Shigenori; Hanaoka, Fumio; Tainer, John A.

    2005-04-01

    The human xeroderma pigmentosum group B (XPB) helicase is essential for transcription, nucleotide excision repair, and TFIIH functional assembly. Here, we determined crystal structures of an Archaeoglobus fulgidus XPB homolog (AfXPB) that characterize two RecA-like XPB helicase domains and discover a DNA damage recognition domain (DRD), a unique RED motif, a flexible thumb motif (ThM), and implied conformational changes within a conserved functional core. RED motif mutations dramatically reduce helicase activity, and the DRD and ThM, which flank the RED motif, appear structurally as well as functionally analogous to the MutS mismatch recognition and DNA polymerase thumb domains. Substrate specificity is altered by DNA damage, such that AfXPB unwinds dsDNA with 3' extensions, but not blunt-ended dsDNA, unless it contains a lesion, as shown for CPD or (6-4) photoproducts. Together, these results provide an unexpected mechanism of DNA unwinding with Implications for XPB damage verification in nucleotide excision repair.

  18. Effects of an extract from the sea squirt Ecteinascidia turbinata on DNA synthesis and excision repair in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, W.C.; Carrier, W.L.; Regan, J.D.

    1982-01-01

    An aqueous ethanol extract from the marine tunicate species Ecteinascidia turbinata was studied to determine its effect on semiconservative DNA synthesis in human skin fibroblast cultures as measured by (/sup 3/H) thymidine uptake in acid-insoluble cell fractions. In addition, the effect of this extract on DNA excision repair in ultraviolet light (254 nm) irradiated fibroblasts was measured by the bromodeoxyuridine photolysis assay, thymine dimer chromatography, and DNA single-strand break analysis on alkaline sucrose gradients. Repair inhibition was accompanied by an accumulation of single-strand DNA breaks which was enhanced by the addtion of 2 mM hydroxyurea. These results are discussed with respect to a mechanism of action of the marine tunicate extract at the level of DNA polymerases and are contrasted with previously studied inhibitory mechanisms of arabinofuranosyl nucleosides.

  19. RPA and XPA interaction with DNA structures mimicking intermediates of the late stages in nucleotide excision repair.

    Science.gov (United States)

    Krasikova, Yuliya S; Rechkunova, Nadejda I; Maltseva, Ekaterina A; Lavrik, Olga I

    2018-01-01

    Replication protein A (RPA) and the xeroderma pigmentosum group A (XPA) protein are indispensable for both pathways of nucleotide excision repair (NER). Here we analyze the interaction of RPA and XPA with DNA containing a flap and different size gaps that imitate intermediates of the late NER stages. Using gel mobility shift assays, we found that RPA affinity for DNA decreased when DNA contained both extended gap and similar sized flap in comparison with gapped-DNA structure. Moreover, crosslinking experiments with the flap-gap DNA revealed that RPA interacts mainly with the ssDNA platform within the long gap and contacts flap in DNA with a short gap. XPA exhibits higher affinity for bubble-DNA structures than to flap-gap-containing DNA. Protein titration analysis showed that formation of the RPA-XPA-DNA ternary complex depends on the protein concentration ratio and these proteins can function as independent players or in tandem. Using fluorescently-labelled RPA, direct interaction of this protein with XPA was detected and characterized quantitatively. The data obtained allow us to suggest that XPA can be involved in the post-incision NER stages via its interaction with RPA.

  20. RPA and XPA interaction with DNA structures mimicking intermediates of the late stages in nucleotide excision repair.

    Directory of Open Access Journals (Sweden)

    Yuliya S Krasikova

    Full Text Available Replication protein A (RPA and the xeroderma pigmentosum group A (XPA protein are indispensable for both pathways of nucleotide excision repair (NER. Here we analyze the interaction of RPA and XPA with DNA containing a flap and different size gaps that imitate intermediates of the late NER stages. Using gel mobility shift assays, we found that RPA affinity for DNA decreased when DNA contained both extended gap and similar sized flap in comparison with gapped-DNA structure. Moreover, crosslinking experiments with the flap-gap DNA revealed that RPA interacts mainly with the ssDNA platform within the long gap and contacts flap in DNA with a short gap. XPA exhibits higher affinity for bubble-DNA structures than to flap-gap-containing DNA. Protein titration analysis showed that formation of the RPA-XPA-DNA ternary complex depends on the protein concentration ratio and these proteins can function as independent players or in tandem. Using fluorescently-labelled RPA, direct interaction of this protein with XPA was detected and characterized quantitatively. The data obtained allow us to suggest that XPA can be involved in the post-incision NER stages via its interaction with RPA.

  1. Homology modeling, molecular docking and DNA binding studies of nucleotide excision repair UvrC protein from M. tuberculosis.

    Science.gov (United States)

    Parulekar, Rishikesh S; Barage, Sagar H; Jalkute, Chidambar B; Dhanavade, Maruti J; Fandilolu, Prayagraj M; Sonawane, Kailas D

    2013-08-01

    Mycobacterium tuberculosis is a Gram positive, acid-fast bacteria belonging to genus Mycobacterium, is the leading causative agent of most cases of tuberculosis. The pathogenicity of the bacteria is enhanced by its developed DNA repair mechanism which consists of machineries such as nucleotide excision repair. Nucleotide excision repair consists of excinuclease protein UvrABC endonuclease, multi-enzymatic complex which carries out repair of damaged DNA in sequential manner. UvrC protein is a part of this complex and thus helps to repair the damaged DNA of M. tuberculosis. Hence, structural bioinformatics study of UvrC protein from M. tuberculosis was carried out using homology modeling and molecular docking techniques. Assessment of the reliability of the homology model was carried out by predicting its secondary structure along with its model validation. The predicted structure was docked with the ATP and the interacting amino acid residues of UvrC protein with the ATP were found to be TRP539, PHE89, GLU536, ILE402 and ARG575. The binding of UvrC protein with the DNA showed two different domains. The residues from domain I of the protein VAL526, THR524 and LEU521 interact with the DNA whereas, amino acids interacting from the domain II of the UvrC protein included ARG597, GLU595, GLY594 and GLY592 residues. This predicted model could be useful to design new inhibitors of UvrC enzyme to prevent pathogenesis of Mycobacterium and so the tuberculosis.

  2. Excision repair of gamma-ray-induced alkali-stable DNA lesions with the help of γ-endonuclease from Micrococcus luteus

    International Nuclear Information System (INIS)

    Tomilin, N.V.; Barenfeld, L.S.

    1979-01-01

    γ-endonuclease Y, an enzyme that hydrolyses phosphodiester bonds at alkali-stable lesions in γ-irradiated (N 2 , tris buffer) DNA, has been partially purified from Micrococcus luteus. The enzyme has a molecular weight of about 19 000, induces single-strand breaks with 3'OH-5'PO 4 termini and contains endonuclease activity towards DNA treated with 7-bromomethylbenz(a)anthracene. γ-endonuclease Y induces breaks in OsO 4 -treated poly(dA-dT) and apparently is specific towards γ-ray-induced base lesions of the t' type. The complete excision repair of γ-endonuclease Y substrate sites has been performed in vitro by γ-endonuclease Y, DNA polymerase and ligase. (author)

  3. Excision repair of gamma-ray-induced alkali-stable DNA lesions with the help of. gamma. -endonuclease from Micrococcus luteus

    Energy Technology Data Exchange (ETDEWEB)

    Tomilin, N V; Barenfeld, L S [AN SSSR, Leningrad. Inst. Tsitologii

    1979-03-01

    ..gamma..-endonuclease Y, an enzyme that hydrolyses phosphodiester bonds at alkali-stable lesions in ..gamma..-irradiated (N/sub 2/, tris buffer) DNA, has been partially purified from Micrococcus luteus. The enzyme has a molecular weight of about 19 000, induces single-strand breaks with 3'OH-5'PO/sub 4/ termini and contains endonuclease activity towards DNA treated with 7-bromomethylbenz(a)anthracene. ..gamma..-endonuclease Y induces breaks in OsO/sub 4/-treated poly(dA-dT) and apparently is specific towards ..gamma..-ray-induced base lesions of the t' type. The complete excision repair of ..gamma..-endonuclease Y substrate sites has been performed in vitro by ..gamma..-endonuclease Y, DNA polymerase and ligase.

  4. Production and excision of thymine damage in the DNA of mammalian cells exposed to high-LET radiations

    International Nuclear Information System (INIS)

    Mattern, M.R.; Welch, G.P.

    1979-01-01

    HeLa S3 and Chinese hamster ovary cells were irradiated with high doses of carbon ions having linear energy transfers (LETs) of 170 and 780 keV/μm. The DNA was analyzed for 5,6-dihydroxydihydrothymine (t'-type) radiation products both before and after postirradiation incubation at 37 0 C. In HeLa cells, 2.1 x 10 -5 ring-damaged thymines were produced per kilorad per 10 6 daltons after irradiation with high-LET carbon ions - approximately one-fifth the efficiency of t' formation in HeLa cells exposed to low-LET x rays. t' products were also formed less efficiently in Chinese hamster ovary cells exposed to carbon ions than in those exposed to x rays. In both cell lines, up to 80% of the t' formed initially was excised selectively from the DNA during 60 min of postirradiation incubation at 37 0 C. Product excision was accompanied by small amounts of DNA degradation (less than 1%). Radiation with LET of 170 keV/μm - nearly the most effective LET for cell killing and the generation of unrejoined DNA strand breaks - produced ring-damaged thymines that were removed selectively from the DNA. This result is consistent with the conclusion that t'-type products do not contribute substantially to lethality after high-LET irradiation, although the alternative possibilities remain that t' is not excised as efficiently after biological doses, or that a particular subclass of t' or defective postexcision events contribute to cell killing

  5. Mitochondrial base excision repair in mouse synaptosomes during normal aging and in a model of Alzheimer's disease

    DEFF Research Database (Denmark)

    Diaz, Ricardo Gredilla; Weissman, Lior; Yang, JL

    2012-01-01

    Brain aging is associated with synaptic decline and synaptic function is highly dependent on mitochondria. Increased levels of oxidative DNA base damage and accumulation of mitochondrial DNA (mtDNA) mutations or deletions lead to mitochondrial dysfunction, playing an important role in the aging...... process and the pathogenesis of several neurodegenerative diseases. Here we have investigated the repair of oxidative base damage, in synaptosomes of mouse brain during normal aging and in an AD model. During normal aging, a reduction in the base excision repair (BER) capacity was observed...... suggest that the age-related reduction in BER capacity in the synaptosomal fraction might contribute to mitochondrial and synaptic dysfunction during aging. The development of AD-like pathology in the 3xTgAD mouse model was, however, not associated with deficiencies of the BER mechanisms...

  6. Excision without excision

    International Nuclear Information System (INIS)

    Brown, David; Sarbach, Olivier; Schnetter, Erik; Diener, Peter; Tiglio, Manuel; Hawke, Ian; Pollney, Denis

    2007-01-01

    to turducken (turduckens, turduckening, turduckened, turduckened) [math.]: To stuff a black hole. We analyze and apply an alternative to black hole excision based on smoothing the interior of black holes with arbitrary initial data, and solving the vacuum Einstein evolution equations everywhere. By deriving the constraint propagation system for our hyperbolic formulation of the BSSN evolution system we rigorously prove that the constraints propagate causally and so any constraint violations introduced inside the black holes cannot affect the exterior spacetime. We present evolutions of Cook-Pfeiffer binary black hole initial configurations showing that these techniques appear to work robustly for generic data. We also present evidence from spherically symmetric evolutions that for the gauge conditions used the same stationary end-state is approached irrespective of the choice of initial data and smoothing procedure

  7. NDR1 modulates the UV-induced DNA-damage checkpoint and nucleotide excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong-Min; Choi, Ji Ye [Department of Biological Science, Dong-A University, Busan (Korea, Republic of); Yi, Joo Mi [Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan (Korea, Republic of); Chung, Jin Woong; Leem, Sun-Hee; Koh, Sang Seok [Department of Biological Science, Dong-A University, Busan (Korea, Republic of); Kang, Tae-Hong, E-mail: thkang@dau.ac.kr [Department of Biological Science, Dong-A University, Busan (Korea, Republic of)

    2015-06-05

    Nucleotide excision repair (NER) is the sole mechanism of UV-induced DNA lesion repair in mammals. A single round of NER requires multiple components including seven core NER factors, xeroderma pigmentosum A–G (XPA–XPG), and many auxiliary effector proteins including ATR serine/threonine kinase. The XPA protein helps to verify DNA damage and thus plays a rate-limiting role in NER. Hence, the regulation of XPA is important for the entire NER kinetic. We found that NDR1, a novel XPA-interacting protein, modulates NER by modulating the UV-induced DNA-damage checkpoint. In quiescent cells, NDR1 localized mainly in the cytoplasm. After UV irradiation, NDR1 accumulated in the nucleus. The siRNA knockdown of NDR1 delayed the repair of UV-induced cyclobutane pyrimidine dimers in both normal cells and cancer cells. It did not, however, alter the expression levels or the chromatin association levels of the core NER factors following UV irradiation. Instead, the NDR1-depleted cells displayed reduced activity of ATR for some set of its substrates including CHK1 and p53, suggesting that NDR1 modulates NER indirectly via the ATR pathway. - Highlights: • NDR1 is a novel XPA-interacting protein. • NDR1 accumulates in the nucleus in response to UV irradiation. • NDR1 modulates NER (nucleotide excision repair) by modulating the UV-induced DNA-damage checkpoint response.

  8. DREMECELS: A Curated Database for Base Excision and Mismatch Repair Mechanisms Associated Human Malignancies.

    Directory of Open Access Journals (Sweden)

    Ankita Shukla

    Full Text Available DNA repair mechanisms act as a warrior combating various damaging processes that ensue critical malignancies. DREMECELS was designed considering the malignancies with frequent alterations in DNA repair pathways, that is, colorectal and endometrial cancers, associated with Lynch syndrome (also known as HNPCC. Since lynch syndrome carries high risk (~40-60% for both cancers, therefore we decided to cover all three diseases in this portal. Although a large population is presently affected by these malignancies, many resources are available for various cancer types but no database archives information on the genes specifically for only these cancers and disorders. The database contains 156 genes and two repair mechanisms, base excision repair (BER and mismatch repair (MMR. Other parameters include some of the regulatory processes that have roles in these disease progressions due to incompetent repair mechanisms, specifically BER and MMR. However, our unique database mainly provides qualitative and quantitative information on these cancer types along with methylation, drug sensitivity, miRNAs, copy number variation (CNV and somatic mutations data. This database would serve the scientific community by providing integrated information on these disease types, thus sustaining diagnostic and therapeutic processes. This repository would serve as an excellent accompaniment for researchers and biomedical professionals and facilitate in understanding such critical diseases. DREMECELS is publicly available at http://www.bioinfoindia.org/dremecels.

  9. Excision and crosslink repair of DNA and sister chromatid exchanges in cultured human fibroblasts with different repair capacities

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Y; Kano, Y; Paul, P; Goto, K; Yamamoto, K [Kobe Univ. (Japan). School of Medicine

    1981-01-01

    Xeroderma pigmentosum (XP) groups A to G lacked the initial stage of ultraviolet (UV) excision repair in the order of A = G > C > D > E asymptotically equals F, while the XP variant was weakly defective in the later repair steps. Killing sensitivities were in the orders of A >= G > D > C > E asymptotically equals F asymptotically equals variant > normal to UV, A = G > D > F > C = E > variant > normal to 4-nitroquinoline-1-oxide (4NQO), and A > C > D = E = F = variant > G = normal to decarbamoyl mitomycin-C(DCMC). The induced sister chromatid exchange (SCE) frequency was unrelated to the extent of repair deficiency. The SCE induction rate was consistently 3 - 6 fold higher by these UV-like mutagens in XP group A cells than in normal cells. However, repair-proficient Cockayne's syndrome (CS) cells showed a higher SCE induction by UV, which was normalized by NAD/sup +/, suggesting that chromatin lesions as well as DNA damage contribute to SCE. Two-step crosslink repair involves a first rapid half-excision and a second slow nucleotide-excision repair. Fanconi's anemia (FA) cells had an impaired first half-excision and were supersensitive to MC, but not to UV and DCMC. The SCE frequency induced by MC (1 hr) was higher in FA cells than in normal cells despite their normal response to DCMC, and vice versa in XP cells. FA cells lacked the first rapid decline and showed higher remaining SCEs. Thus, part of the crosslink seems to lead to SCE formation. Caffeine synergistically elevated UV-induced SCEs, but not UV induced mutations in V79 cells, implying that SCE may not necessarily involve mutation.

  10. Excision and crosslink repair of DNA and sister chromatid exchanges in cultured human fibroblasts with different repair capacities

    International Nuclear Information System (INIS)

    Fujiwara, Yoshisada; Kano, Yoshio; Paul, P.; Goto, Kaoru; Yamamoto, Kazuo

    1981-01-01

    Xeroderma pigmentosum (XP) groups A to G lacked the initial stage of ultraviolet (UV) excision repair in the order of A = G > C > D > E asymptotically equals F, while the XP variant was weakly defective in the later repair steps. Killing sensitivities were in the orders of A >= G > D > C > E asymptotically equals F asymptotically equals variant > normal to UV, A = G > D > F > C = E > variant > normal to 4-nitroquinoline-1-oxide (4NQO), and A > C > D = E = F = variant > G = normal to decarbamoyl mitomycin-C(DCMC). The induced sister chromatid exchange (SCE) frequency was unrelated to the extent of repair deficiency. The SCE induction rate was consistently 3 - 6 fold higher by these UV-like mutagens in XP group A cells than in normal cells. However, repair-proficient Cockayne's syndrome (CS) cells showed a higher SCE induction by UV, which was normalized by NAD + , suggesting that chromatin lesions as well as DNA damage contribute to SCE. Two-step crosslink repair involves a first rapid half-excision and a second slow nucleotide-excision repair. Fanconi's anemia (FA) cells had an impaired first half-excision and were supersensitive to MC, but not to UV and DCMC. The SCE frequency induced by MC (1 hr) was higher in FA cells than in normal cells despite their normal response to DCMC, and vice versa in XP cells. FA cells lacked the first rapid decline and showed higher remaining SCEs. Thus, part of the crosslink seems to lead to SCE formation. Caffeine synergistically elevated UV-induced SCEs, but not UV induced mutations in V79 cells, implying that SCE may not necessarily involve mutation. (J.P.N.)

  11. Excision and crosslink repair of DNA and sister chromatid exchanges in cultured human fibroblasts with different repair capacities

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Y.; Kano, Y.; Paul, P.; Goto, K.; Yamamoto, K. (Kobe Univ. (Japan). School of Medicine)

    1981-01-01

    Xeroderma pigmentosum (XP) groups A to G lacked the initial stage of ultraviolet (UV) excision repair in the order of A = G > C > D > E asymptotically equals F, while the XP variant was weakly defective in the later repair steps. Killing sensitivities were in the orders of A >= G > D > C > E asymptotically equals F asymptotically equals variant > normal to UV, A = G > D > F > C = E > variant > normal to 4-nitroquinoline-1-oxide (4NQO), and A > C > D = E = F = variant > G = normal to decarbamoyl mitomycin-C(DCMC). The induced sister chromatid exchange (SCE) frequency was unrelated to the extent of repair deficiency. The SCE induction rate was consistently 3 - 6 fold higher by these UV-like mutagens in XP group A cells than in normal cells. However, repair-proficient Cockayne's syndrome (CS) cells showed a higher SCE induction by UV, which was normalized by NAD/sup +/, suggesting that chromatin lesions as well as DNA damage contribute to SCE. Two-step crosslink repair involves a first rapid half-excision and a second slow nucleotide-excision repair. Fanconi's anemia (FA) cells had an impaired first half-excision and were supersensitive to MC, but not to UV and DCMC. The SCE frequency induced by MC (1 hr) was higher in FA cells than in normal cells despite their normal response to DCMC, and vice versa in XP cells. FA cells lacked the first rapid decline and showed higher remaining SCEs. Thus, part of the crosslink seems to lead to SCE formation. Caffeine synergistically elevated UV-induced SCEs, but not UV induced mutations in V79 cells, implying that SCE may not necessarily involve mutation.

  12. Effect of point substitutions within the minimal DNA-binding domain of xeroderma pigmentosum group A protein on interaction with DNA intermediates of nucleotide excision repair.

    Science.gov (United States)

    Maltseva, E A; Krasikova, Y S; Naegeli, H; Lavrik, O I; Rechkunova, N I

    2014-06-01

    Xeroderma pigmentosum factor A (XPA) is one of the key proteins in the nucleotide excision repair (NER) process. The effects of point substitutions in the DNA-binding domain of XPA (positively charged lysine residues replaced by negatively charged glutamate residues: XPA K204E, K179E, K141E, and tandem mutant K141E/K179E) on the interaction of the protein with DNA structures modeling intermediates of the damage recognition and pre-incision stages in NER were analyzed. All these mutations decreased the affinity of the protein to DNA, the effect depending on the substitution and the DNA structure. The mutant as well as wild-type proteins bind with highest efficiency partly open damaged DNA duplex, and the affinity of the mutants to this DNA is reduced in the order: K204E > K179E > K141E = K141/179E. For all the mutants, decrease in DNA binding efficiency was more pronounced in the case of full duplex and single-stranded DNA than with bubble-DNA structure, the difference between protein affinities to different DNA structures increasing as DNA binding activity of the mutant decreased. No effect of the studied XPA mutations on the location of the protein on the partially open DNA duplex was observed using photoinduced crosslinking with 5-I-dUMP in different positions of the damaged DNA strand. These results combined with earlier published data suggest no direct correlation between DNA binding and activity in NER for these XPA mutants.

  13. Effect of cordycepin(3'-deoxyadenosine) on excision repair of 5,6-dihydroxy-dihydrothymine-type products from the DNA of Micrococcus radiodurans

    International Nuclear Information System (INIS)

    Patil, M.S.; Tundo, V.J.; Locher, S.E.; Hariharan, P.V.

    1983-01-01

    Cordycepin(3'-deoxyadenosine), a nucleoside analog, has been shown to enhance radiation-induced cell killing. In an effort to elucidate the possible mechanism for enhancement of cell killing, the effect of cordycepin on the excision repair of radiation-induced 5,6-dihydroxy-dihydrothymine-type (t') products from the DNA of wild type Micrococcus radiodurans was investigated. The capacity of M. radiodurans to excise nondimeric (t') products from its DNA was significantly impaired after cordycepin treatment. The results suggest that the increased radiation sensitivity of cordycepin-treated cells could be due to alterations in cellular processes that repair DNA damage

  14. The base excision repair pathway is required for efficient lentivirus integration.

    Directory of Open Access Journals (Sweden)

    Kristine E Yoder

    Full Text Available An siRNA screen has identified several proteins throughout the base excision repair (BER pathway of oxidative DNA damage as important for efficient HIV infection. The proteins identified included early repair factors such as the base damage recognition glycosylases OGG1 and MYH and the late repair factor POLß, implicating the entire BER pathway. Murine cells with deletions of the genes Ogg1, Myh, Neil1 and Polß recapitulate the defect of HIV infection in the absence of BER. Defective infection in the absence of BER proteins was also seen with the lentivirus FIV, but not the gammaretrovirus MMLV. BER proteins do not affect HIV infection through its accessory genes nor the central polypurine tract. HIV reverse transcription and nuclear entry appear unaffected by the absence of BER proteins. However, HIV integration to the host chromosome is reduced in the absence of BER proteins. Pre-integration complexes from BER deficient cell lines show reduced integration activity in vitro. Integration activity is restored by addition of recombinant BER protein POLß. Lentiviral infection and integration efficiency appears to depend on the presence of BER proteins.

  15. DNA-based machines.

    Science.gov (United States)

    Wang, Fuan; Willner, Bilha; Willner, Itamar

    2014-01-01

    The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, "fuel." (3) The mechanical operation is accompanied by an energy consumption process that leads to "waste products." (4) The cyclic operation of the DNA devices, involves the use of "fuel" and "anti-fuel" ingredients. A variety of DNA-based machines are described, including the construction of "tweezers," "walkers," "robots," "cranes," "transporters," "springs," "gears," and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different "fuels", such as nucleic acid strands, pH (H⁺/OH⁻), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications.

  16. New insights in the removal of the hydantoins, oxidation product of pyrimidines, via the base excision and nucleotide incision repair pathways.

    Directory of Open Access Journals (Sweden)

    Modesto Redrejo-Rodríguez

    Full Text Available BACKGROUND: Oxidative damage to DNA, if not repaired, can be both miscoding and blocking. These genetic alterations can lead to mutations and/or cell death, which in turn cause cancer and aging. Oxidized DNA bases are substrates for two overlapping repair pathways: base excision (BER and nucleotide incision repair (NIR. Hydantoin derivatives such as 5-hydroxyhydantoin (5OH-Hyd and 5-methyl-5-hydroxyhydantoin (5OH-5Me-Hyd, major products of cytosine and thymine oxidative degradation pathways, respectively, have been detected in cancer cells and ancient DNA. Hydantoins are blocking lesions for DNA polymerases and excised by bacterial and yeast DNA glycosylases in the BER pathway. However little is known about repair of pyrimidine-derived hydantoins in human cells. METHODOLOGY/PRINCIPAL FINDINGS: Here, using both denaturing PAGE and MALDI-TOF MS analyses we report that the bacterial, yeast and human AP endonucleases can incise duplex DNA 5' next to 5OH-Hyd and 5OH-5Me-Hyd thus initiating the NIR pathway. We have fully reconstituted the NIR pathway for these lesions in vitro using purified human proteins. Depletion of Nfo in E. coli and APE1 in HeLa cells abolishes the NIR activity in cell-free extracts. Importantly, a number of redundant DNA glycosylase activities can excise hydantoin residues, including human NTH1, NEIL1 and NEIL2 and the former protein being a major DNA glycosylase activity in HeLa cells extracts. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that both BER and NIR pathways can compete and/or back-up each other to remove hydantoin DNA lesions in vivo.

  17. Repair of UV-irradiated plasmid DNA in excision repair deficient mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ikai, K.; Tano, K.; Ohnishi, T.; Nozu, K.

    1985-01-01

    The repair of UV-irradiated DNA of plasmid YEp13 was studied in the incision defective strains by measurement of cell transformation frequency. In Saccharomyces cerevisiae, rad1,2,3 and 4 mutants could repair UV-damaged plasmid DNA. In Escherichia coli, uvrA mutant was unable to repair UV-damaged plasmid DNA; however, pretreatment of the plasmid with Micrococcus luteus endonuclease increased repair. It was concluded that all the mutations of yeast were probably limited only to the nuclear DNA. (author)

  18. Poly(ADP-ribose) polymerase 1 escorts XPC to UV-induced DNA lesions during nucleotide excision repair.

    Science.gov (United States)

    Robu, Mihaela; Shah, Rashmi G; Purohit, Nupur K; Zhou, Pengbo; Naegeli, Hanspeter; Shah, Girish M

    2017-08-15

    Xeroderma pigmentosum C (XPC) protein initiates the global genomic subpathway of nucleotide excision repair (GG-NER) for removal of UV-induced direct photolesions from genomic DNA. The XPC has an inherent capacity to identify and stabilize at the DNA lesion sites, and this function is facilitated in the genomic context by UV-damaged DNA-binding protein 2 (DDB2), which is part of a multiprotein UV-DDB ubiquitin ligase complex. The nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1) has been shown to facilitate the lesion recognition step of GG-NER via its interaction with DDB2 at the lesion site. Here, we show that PARP1 plays an additional DDB2-independent direct role in recruitment and stabilization of XPC at the UV-induced DNA lesions to promote GG-NER. It forms a stable complex with XPC in the nucleoplasm under steady-state conditions before irradiation and rapidly escorts it to the damaged DNA after UV irradiation in a DDB2-independent manner. The catalytic activity of PARP1 is not required for the initial complex formation with XPC in the nucleoplasm but it enhances the recruitment of XPC to the DNA lesion site after irradiation. Using purified proteins, we also show that the PARP1-XPC complex facilitates the handover of XPC to the UV-lesion site in the presence of the UV-DDB ligase complex. Thus, the lesion search function of XPC in the genomic context is controlled by XPC itself, DDB2, and PARP1. Our results reveal a paradigm that the known interaction of many proteins with PARP1 under steady-state conditions could have functional significance for these proteins.

  19. Zinc finger nuclease: a new approach for excising HIV-1 proviral DNA from infected human T cells.

    Science.gov (United States)

    Qu, Xiying; Wang, Pengfei; Ding, Donglin; Wang, Xiaohui; Zhang, Gongmin; Zhou, Xin; Liu, Lin; Zhu, Xiaoli; Zeng, Hanxian; Zhu, Huanzhang

    2014-09-01

    A major reason that Acquired Immune Deficiency Syndrome (AIDS) cannot be completely cured is the human immunodeficiency virus 1 (HIV-1) provirus integrated into the human genome. Though existing therapies can inhibit replication of HIV-1, they cannot eradicate it. A molecular therapy gains popularity due to its specifically targeting to HIV-1 infected cells and effectively removing the HIV-1, regardless of viral genes being active or dormant. Now, we propose a new method which can excellently delete the HIV provirus from the infected human T cell genome. First, we designed zinc-finger nucleases (ZFNs) that target a sequence within the long terminal repeat (LTR) U3 region that is highly conserved in whole clade. Then, we screened out one pair of ZFN and named it as ZFN-U3. We discovered that ZFN-U3 can exactly target and eliminate the full-length HIV-1 proviral DNA after the infected human cell lines treated with it, and the frequency of its excision was about 30 % without cytotoxicity. These results prove that ZFN-U3 can efficiently excise integrated HIV-1 from the human genome in infected cells. This method to delete full length HIV-1 in human genome can therefore provide a novel approach to cure HIV-infected individuals in the future.

  20. Studies on the DNA excision repair in lymphocytes of patients with recurrent herpes simplex

    International Nuclear Information System (INIS)

    Fanta, D.; Topaloglou, A.; Altmann, H.

    1979-01-01

    DNA repair was investigated in lymphocytes from patients with recurrent herpes simplex and from healthy controls. From the results - depressed UV type repair, depressed gamma type repair, reduced RF - it may be concluded that mutations can be expected due to the faults remaining in the DNA. This may not only lower cellular immunocompetence, but also activate already present oncogenic virus informations within the cellular DNA. Thus, irrespective of the possible oncogenic potential of HSV, there seems to be an increased risk of late effects in patients with recurrent herpetic manifestations. (Auth.)

  1. Investigations on the mechanism of DNA excision repair in tissue culture cells

    International Nuclear Information System (INIS)

    Wawra, E.; Dolejs, I.; Ott, E.

    1976-12-01

    Semiconservative DNA- synthesis and repair- synthesis was measured in HeLa cells and spleen cells under different conditions (i.e. different temperatures, addition of p-chloromercuribenzoate or cytosine-arabinoside). In order to obtain more information about the enzymatic background of these steps of DNA metabolism, parallel in vitro experiments were done with two different types of DNA polymerase, which had been isolated from pig spleen. At least the experiments at different temperatures are showing some correlations of α-polymerase with semiconservative synthesis and of β-polymerase with repair synthesis. (author)

  2. Silymarin protects epidermal keratinocytes from ultraviolet radiation-induced apoptosis and DNA damage by nucleotide excision repair mechanism.

    Directory of Open Access Journals (Sweden)

    Santosh K Katiyar

    Full Text Available Solar ultraviolet (UV radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum, inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells.

  3. Biochemical properties and base excision repair complex formation of apurinic/apyrimidinic endonuclease from Pyrococcus furiosus

    OpenAIRE

    Kiyonari, Shinichi; Tahara, Saki; Shirai, Tsuyoshi; Iwai, Shigenori; Ishino, Sonoko; Ishino, Yoshizumi

    2009-01-01

    Apurinic/apyrimidinic (AP) sites are the most frequently found mutagenic lesions in DNA, and they arise mainly from spontaneous base loss or modified base removal by damage-specific DNA glycosylases. AP sites are cleaved by AP endonucleases, and the resultant gaps in the DNA are repaired by DNA polymerase/DNA ligase reactions. We identified the gene product that is responsible for the AP endonuclease activity in the hyperthermophilic euryarchaeon, Pyrococcus furiosus. Furthermore, we detected...

  4. Accurate Dna Assembly And Direct Genome Integration With Optimized Uracil Excision Cloning To Facilitate Engineering Of Escherichia Coli As A Cell Factory

    DEFF Research Database (Denmark)

    Cavaleiro, Mafalda; Kim, Se Hyeuk; Nørholm, Morten

    2015-01-01

    Plants produce a vast diversity of valuable compounds with medical properties, but these are often difficult to purify from the natural source or produce by organic synthesis. An alternative is to transfer the biosynthetic pathways to an efficient production host like the bacterium Escherichia co......-excision-based cloning and combining it with a genome-engineering approach to allow direct integration of whole metabolic pathways into the genome of E. coli, to facilitate the advanced engineering of cell factories........ Cloning and heterologous gene expression are major bottlenecks in the metabolic engineering field. We are working on standardizing DNA vector design processes to promote automation and collaborations in early phase metabolic engineering projects. Here, we focus on optimizing the already established uracil...

  5. UvrD Participation in Nucleotide Excision Repair Is Required for the Recovery of DNA Synthesis following UV-Induced Damage in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kelley N. Newton

    2012-01-01

    Full Text Available UvrD is a DNA helicase that participates in nucleotide excision repair and several replication-associated processes, including methyl-directed mismatch repair and recombination. UvrD is capable of displacing oligonucleotides from synthetic forked DNA structures in vitro and is essential for viability in the absence of Rep, a helicase associated with processing replication forks. These observations have led others to propose that UvrD may promote fork regression and facilitate resetting of the replication fork following arrest. However, the molecular activity of UvrD at replication forks in vivo has not been directly examined. In this study, we characterized the role UvrD has in processing and restoring replication forks following arrest by UV-induced DNA damage. We show that UvrD is required for DNA synthesis to recover. However, in the absence of UvrD, the displacement and partial degradation of the nascent DNA at the arrested fork occur normally. In addition, damage-induced replication intermediates persist and accumulate in uvrD mutants in a manner that is similar to that observed in other nucleotide excision repair mutants. These data indicate that, following arrest by DNA damage, UvrD is not required to catalyze fork regression in vivo and suggest that the failure of uvrD mutants to restore DNA synthesis following UV-induced arrest relates to its role in nucleotide excision repair.

  6. Mobile phone specific electromagnetic fields induce transient DNA damage and nucleotide excision repair in serum-deprived human glioblastoma cells.

    Science.gov (United States)

    Al-Serori, Halh; Ferk, Franziska; Kundi, Michael; Bileck, Andrea; Gerner, Christopher; Mišík, Miroslav; Nersesyan, Armen; Waldherr, Monika; Murbach, Manuel; Lah, Tamara T; Herold-Mende, Christel; Collins, Andrew R; Knasmüller, Siegfried

    2018-01-01

    Some epidemiological studies indicate that the use of mobile phones causes cancer in humans (in particular glioblastomas). It is known that DNA damage plays a key role in malignant transformation; therefore, we investigated the impact of the UMTS signal which is widely used in mobile telecommunications, on DNA stability in ten different human cell lines (six brain derived cell lines, lymphocytes, fibroblasts, liver and buccal tissue derived cells) under conditions relevant for users (SAR 0.25 to 1.00 W/kg). We found no evidence for induction of damage in single cell gel electrophoresis assays when the cells were cultivated with serum. However, clear positive effects were seen in a p53 proficient glioblastoma line (U87) when the cells were grown under serum free conditions, while no effects were found in p53 deficient glioblastoma cells (U251). Further experiments showed that the damage disappears rapidly in U87 and that exposure induced nucleotide excision repair (NER) and does not cause double strand breaks (DSBs). The observation of NER induction is supported by results of a proteome analysis indicating that several proteins involved in NER are up-regulated after exposure to UMTS; additionally, we found limited evidence for the activation of the γ-interferon pathway. The present findings show that the signal causes transient genetic instability in glioma derived cells and activates cellular defense systems.

  7. Ultraviolet-induced DNA excision repair in human B and T lymphocytes. II

    International Nuclear Information System (INIS)

    Yew, F.F.-H.; Johnson, R.T.

    1979-01-01

    Despite their great sensitivity to ultraviolet light purified human B and T lymphocytes are capable of complete repair provided that the ultraviolet dose does not exceed 0.5 Jm -2 . Their capacity to repair, as measured by the restoration of DNA supercoiling in preparations of nucleoids, and their survival are significantly increased in the presence of deoxyribonucleosides. Certain agents which inhibit semi-conservative DNA synthesis (hydroxyurea, 1-β-D-arabino-furanosylcytosine (arafCyt) either stop or delay the repair process in lymphocytes. The effect of hydroxyurea is eventually overcome spontaneously, but changes in the sedimentation behaviour of ultraviolet-irradiated nucleoids caused by arafCyt can only be neutralized by addition of deoxycytidine. The effective inhibition of repair by arafCyt permits the detection of extremely small amounts of ultraviolet damage and also the estimation of when repair is complete. (Auth.)

  8. Excision of x-ray-induced thymine damage in chromatin from heated cells

    International Nuclear Information System (INIS)

    Warters, R.L.; Roti Roti, J.L.

    1979-01-01

    Experiments were performed to distinguish between two possible modes of hyperthermia-induced inhibition of thymine base damage excision from the DNA of CHO cells: (1) heat denaturation of excision enzyme(s) or (2) heat-induced alteration of the substrate for damage excision (chromatin). While hyperthermia (45 0 C, 15 min) had no apparent effect on the capacity of the excision enzymes to excise damage from DNA it had a dramatic effect (ca. 80% inhibition) on the ability of chromatin to serve as a substrate for unheated enzymes. These results suggest that hyperthermia-induced radiosensitization of CHO cells may be due primarily to lesions in the cellular chromatin

  9. Dependence of u.v.-induced DNA excision repair on deoxyribonucleoside triphosphate concentrations in permeable human fibroblasts: a model for the inhibition of repair by hydroxyurea

    International Nuclear Information System (INIS)

    Hunting, D.J.; Dresler, S.L.

    1985-01-01

    We have tested the hypothesis that the inhibition by hydroxyurea of repair patch ligation and chromatin rearrangement during u.v.-induced DNA excision repair results from a reduction in cellular deoxyribonucleotide concentrations and not from a direct effect of hydroxyurea on the repair process. Using permeable human fibroblasts, we have shown that hydroxyurea has no direct effect on either repair synthesis or repair patch ligation. We also have shown that by reducing the deoxyribonucleoside triphosphate concentrations in the permeable cell reaction mixture, we can mimic the inhibition of repair patch ligation and chromatin rearrangement seen when u.v.-damaged intact confluent fibroblasts are treated with hydroxyurea. Our results are consistent with the concept that hydroxyurea inhibits DNA repair in intact cells by inhibiting deoxyribonucleotide synthesis through its effect on ribonucleotide reductase and, conversely, that continued deoxyribonucleotide synthesis is required for the excision repair of u.v.-induced DNA damage even in resting cells

  10. Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae. IV. Influence of DNA replication and excision repair on REV2 dependent UV-mutagenesis and repair

    Energy Technology Data Exchange (ETDEWEB)

    Siede, W.; Eckardt, F.

    1986-01-01

    A double mutant being thermoconditionally defective in mutation induction as well as in repair of pre-lethal UV-induced DNA damage (rev2ts) and deficient in excision repair (rad3-2) was studied in temperature-shift experiments. The influence of inhibitors of DNA replication (hydroxyurea, aphidicolin) was determined. Additionally, an analysis of the dose-response pattern of mutation induction (mutation kinetics) at several ochre alleles was carried out. It was concluded that the UV-inducible REV2 dependent mutagenic repair process is not induced in excision-deficient cells. In excision-deficient cells, REV2 dependent mutation fixation is slow and mostly post-replicative though not dependent on DNA replication. The REV2 mediated mutagenic process could be separated from the repair function.

  11. In vivo excision of pyrimidine dimers is mediated by a DNA N-glycosylase in Micrococcus luteus but not in human fibroblasts

    International Nuclear Information System (INIS)

    La Belle, M.; Linn, S.

    1982-01-01

    It has been previously shown that Micrococcus luteus possesses a pyrimidine dimer-specific endonuclease which in vitro, functions as both an endonuclease and DNA-glycosylase. To determine if these combined activities function in vivo, the excision products of UV-irradiated M. luteus were isolated and examined. In addition, a procedure was devised to isolate and examine the excision products from UV-irradiated human fibroblasts to determine if an endonuclease/glycosylase activity functions in the excision of UV-induced pyrimidine dimers in human fibroblasts. It was shown that, in vivo, an endonuclease/glycosylase mechanism is utilized extensively in the repair of pyrimidine dimers by M. luteus, but that human fibroblasts do not appear to use this mechanism. (author)

  12. In vivo excision of pyrimidine dimers is mediated by a DNA N-glycosylase in Micrococcus luteus but not in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    La Belle, M; Linn, S [California Univ., Berkeley (USA). Dept. of Biochemistry

    1982-09-01

    It has been previously shown that Micrococcus luteus possesses a pyrimidine dimer-specific endonuclease which in vitro, functions as both an endonuclease and DNA-glycosylase. To determine if these combined activities function in vivo, the excision products of UV-irradiated M. luteus were isolated and examined. In addition, a procedure was devised to isolate and examine the excision products from UV-irradiated human fibroblasts to determine if an endonuclease/glycosylase activity functions in the excision of UV-induced pyrimidine dimers in human fibroblasts. It was shown that, in vivo, an endonuclease/glycosylase mechanism is utilized extensively in the repair of pyrimidine dimers by M. luteus, but that human fibroblasts do not appear to use this mechanism.

  13. KIN17, XPC, DNA-PKCS and XRCC4 proteins in the cellular response to DNA damages. Relations between nucleotide excision repair and non-homologous end joining in a human syn-genic model

    International Nuclear Information System (INIS)

    Despras, Emmanuelle

    2006-01-01

    The response to genotoxic stress involves many cellular factors in a complex network of mechanisms that aim to preserve the genetic integrity of the organism. These mechanisms enclose the detection and repair of DNA lesions, the regulation of transcription and replication and, eventually, the setting of cell death. Among the nuclear proteins involved in this response, kin17 proteins are zinc-finger proteins conserved through evolution and activated by ultraviolet (UV) or ionizing radiations (IR). We showed that human kin17 protein (HSAkin17) is found in the cell under a soluble form and a form tightly anchored to nuclear structures. A fraction of HSAkin17 protein is directly associated with chromatin. HSAkin17 protein is recruited to nuclear structures 24 hours after treatment with various agents inducing DNA double-strand breaks (DSB) and/or replication forks blockage. Moreover, the reduction of total HSAkin17 protein level sensitizes RKO cells to IR. We also present evidence for the involvement of HSAkin17 protein in DNA replication. This hypothesis was further confirmed by the biochemical demonstration of its belonging to the replication complex. HSAkin17 protein could link DNA replication and DNA repair, a defect in the HSAkin17 pathway leading to an increased radiosensitivity. In a second part, we studied the interactions between two DNA repair mechanisms: nucleotide excision repair (NER) and non-homologous end joining (NHEJ). NER repairs a wide variety of lesions inducing a distortion of the DNA double helix including UV-induced pyrimidine dimers. NHEJ allows the repair of DSB by direct joining of DNA ends. We used a syn-genic model for DNA repair defects based on RNA interference developed in the laboratory. Epstein-Barr virus-derived vectors (pEBV) allow long-term expression of siRNA and specific extinction of the targeted gene. The reduction of the expression of genes involved in NER (XPA and XPC) or NHEJ (DNA-PKcs and XRCC4) leads to the expected

  14. Excision-repair in mutants of Escherichia coli deficient in DNA polymerase I and/or its associated 5'. -->. 3' exonuclease

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, P [Stanford Univ., Calif. (USA). Dept. of Biological Sciences

    1977-01-01

    The UV sensitivity of E.coli mutants deficient in the 5'..-->..3' exonuclease activity of DNA polymerase I is intermediate between that of pol/sup +/ strains and mutants which are deficient in the polymerizing activity of pol I (polA1). Like polA1 mutants, the 5'-econuclease deficient mutants exhibit increased UV-induced DNA degradation and increased repair synthesis compared to a pol/sup +/ strain, although the increase is not as great as in polA1 or in the conditionally lethal mutant BT4113ts deficient in both polymerase I activities. When dimer excision was measured at UV doses low enough to avoid interference from extensive DNA degradation, all three classes of polymerase I deficient mutants were found to remove dimers efficiently from their DNA. We conclude that enzymes alternative to polymerase I can operate in both the excision and resynthesis steps of excision repair and that substitution for either of the polymerase I functions results in longer patches of repair. A model is proposed detailing the possible events in the alternative pathways.

  15. Distinct spatio temporal patterns and PARP dependence of XRCC1 recruitment to single-strand break and base excision repair

    International Nuclear Information System (INIS)

    Campalans, Anna; Kortulewski, Thierry; Amouroux, Rachel; Radicella, J. Pablo; Menoni, Herve; Vermeulen, Wim

    2013-01-01

    Single-strand break repair (SSBR) and base excision repair (BER) of modified bases and abasic sites share several players. Among them is XRCC1, an essential scaffold protein with no enzymatic activity, required for the coordination of both pathways. XRCC1 is recruited to SSBR by PARP-1, responsible for the initial recognition of the break. The recruitment of XRCC1 to BER is still poorly understood. Here we show by using both local and global induction of oxidative DNA base damage that XRCC1 participation in BER complexes can be distinguished from that in SSBR by several criteria. We show first that XRCC1 recruitment to BER is independent of PARP. Second, unlike SSBR complexes that are assembled within minutes after global damage induction, XRCC1 is detected later in BER patches, with kinetics consistent with the repair of oxidized bases. Third, while XRCC1-containing foci associated with SSBR are formed both in eu- and heterochromatin domains, BER complexes are assembled in patches that are essentially excluded from heterochromatin and where the oxidized bases are detected. (authors)

  16. In vitro Repair of Oxidative DNA Damage by Human Nucleotide Excision Repair System: Possible Explanation for Neurodegeneration in Xeroderma Pigmentosum Patients

    Science.gov (United States)

    Reardon, Joyce T.; Bessho, Tadayoshi; Kung, Hsiang Chuan; Bolton, Philip H.; Sancar, Aziz

    1997-08-01

    Xeroderma pigmentosum (XP) patients fail to remove pyrimidine dimers caused by sunlight and, as a consequence, develop multiple cancers in areas exposed to light. The second most common sign, present in 20-30% of XP patients, is a set of neurological abnormalities caused by neuronal death in the central and peripheral nervous systems. Neural tissue is shielded from sunlight-induced DNA damage, so the cause of neurodegeneration in XP patients remains unexplained. In this study, we show that two major oxidative DNA lesions, 8-oxoguanine and thymine glycol, are excised from DNA in vitro by the same enzyme system responsible for removing pyrimidine dimers and other bulky DNA adducts. Our results suggest that XP neurological disease may be caused by defective repair of lesions that are produced in nerve cells by reactive oxygen species generated as by-products of an active oxidative metabolism.

  17. denV gene of bacteriophage T4 restores DNA excision repair to mei-9 and mus201 mutants of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Banga, S.S.; Boyd, J.B.; Valerie, K.; Harris, P.V.; Kurz, E.M.; de Riel, J.K.

    1989-01-01

    The denV gene of bacteriophage T4 was fused to a Drosophila hsp70 (70-kDa heat shock protein) promoter and introduced into the germ line of Drosophila by P-element-mediated transformation. The protein product of that gene (endonuclease V) was detected in extracts of heat-shocked transformants with both enzymological and immunoblotting procedures. That protein restores both excision repair and UV resistance to mei-9 and mus201 mutants of this organism. These results reveal that the denV gene can compensate for excision-repair defects in two very different eukayotic mutants, in that the mus201 mutants are typical of excision-deficient mutants in other organisms, whereas the mei-9 mutants exhibit a broad pleiotropism that includes a strong meiotic deficiency. This study permits an extension of the molecular analysis of DNA repair to the germ line of higher eukaryotes. It also provides a model system for future investigations of other well-characterized microbial repair genes on DNA damage in the germ line of this metazoan organism

  18. Uracil excision repair in Mycobacterium tuberculosis cell-free extracts.

    Science.gov (United States)

    Kumar, Pradeep; Bharti, Sanjay Kumar; Varshney, Umesh

    2011-05-01

    Uracil excision repair is ubiquitous in all domains of life and initiated by uracil DNA glycosylases (UDGs) which excise the promutagenic base, uracil, from DNA to leave behind an abasic site (AP-site). Repair of the resulting AP-sites requires an AP-endonuclease, a DNA polymerase, and a DNA ligase whose combined activities result in either short-patch or long-patch repair. Mycobacterium tuberculosis, the causative agent of tuberculosis, has an increased risk of accumulating uracils because of its G + C-rich genome, and its niche inside host macrophages where it is exposed to reactive nitrogen and oxygen species, two major causes of cytosine deamination (to uracil) in DNA. In vitro assays to study DNA repair in this important human pathogen are limited. To study uracil excision repair in mycobacteria, we have established assay conditions using cell-free extracts of M. tuberculosis and M. smegmatis (a fast-growing mycobacterium) and oligomer or plasmid DNA substrates. We show that in mycobacteria, uracil excision repair is completed primarily via long-patch repair. In addition, we show that M. tuberculosis UdgB, a newly characterized family 5 UDG, substitutes for the highly conserved family 1 UDG, Ung, thereby suggesting that UdgB might function as backup enzyme for uracil excision repair in mycobacteria. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Hide and seek: How do DNA glycosylases locate oxidatively damaged DNA bases amidst a sea of undamaged bases?

    Science.gov (United States)

    Lee, Andrea J; Wallace, Susan S

    2017-06-01

    The first step of the base excision repair (BER) pathway responsible for removing oxidative DNA damage utilizes DNA glycosylases to find and remove the damaged DNA base. How glycosylases find the damaged base amidst a sea of undamaged bases has long been a question in the BER field. Single molecule total internal reflection fluorescence microscopy (SM TIRFM) experiments have allowed for an exciting look into this search mechanism and have found that DNA glycosylases scan along the DNA backbone in a bidirectional and random fashion. By comparing the search behavior of bacterial glycosylases from different structural families and with varying substrate specificities, it was found that glycosylases search for damage by periodically inserting a wedge residue into the DNA stack as they redundantly search tracks of DNA that are 450-600bp in length. These studies open up a wealth of possibilities for further study in real time of the interactions of DNA glycosylases and other BER enzymes with various DNA substrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Small serine recombination systems ParA-MRS and CinH-RS2 perform precise excision of plastid DNA

    Science.gov (United States)

    Selectable marker genes (SMGs) are necessary for selection of transgenic plants. However, once stable transformants have been identified, the marker gene is no longer needed. In this study, we demonstrate the use of the small serine recombination systems, ParA-MRS and CinH-RS2, to precisely excise ...

  1. Polymerization by DNA polymerase eta is blocked by cis-diamminedichloroplatinum(II) 1,3-d(GpTpG) cross-link: implications for cytotoxic effects in nucleotide excision repair-negative tumor cells.

    Science.gov (United States)

    Chijiwa, Shotaro; Masutani, Chikahide; Hanaoka, Fumio; Iwai, Shigenori; Kuraoka, Isao

    2010-03-01

    cis-Diamminedichloroplatinum(II) (cisplatin) forms DNA adducts that interfere with replication and transcription. The most common adducts formed in vivo are 1,2-intrastrand d(GpG) cross-links (Pt-GG) and d(ApG) cross-links (Pt-AG), with minor amounts of 1,3-d(GpNpG) cross-links (Pt-GNG), interstrand cross-links and monoadducts. Although the relative contribution of these different adducts to toxicity is not known, literature implicates that Pt-GG and Pt-AG adducts block replication. Thus, nucleotide excision repair (NER), by which platinum adducts are excised, and translesion DNA synthesis (TLS), which permits adduct bypass, are thought to be associated with cisplatin resistance. Recent studies have reported that the clinical benefit from platinum-based chemotherapy is high if tumor cells express low levels of NER factors. To investigate the role of platinum-DNA adducts in mediating tumor cell survival by TLS, we examined whether 1,3-intrastrand d(GpTpG) platinum cross-links (Pt-GTG), which probably exist in NER-negative tumor cells but not in NER-positive tumor cells, are bypassed by the translesion DNA polymerase eta (pol eta), which is known to bypass Pt-GG. We show that pol eta can incorporate the correct deoxycytidine triphosphate opposite the first 3'-cross-linked G of Pt-GTG but cannot insert any nucleotides opposite the second intact T or the third 5'-cross-linked G of the adducts, thereby suggesting that TLS does not facilitate replication past Pt-GTG adducts. Thus, our findings implicate Pt-GNG adducts as mediating the cytotoxicity of platinum-DNA adducts in NER-negative tumors in vivo.

  2. Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging

    NARCIS (Netherlands)

    Y. Kamenisch (York); M.I. Fousteri (Maria); J. Knoch (Jennifer); A.K. Von Thaler (Anna Katherina); B. Fehrenbacher (Birgit); H. Kato (Hiroki); T. Becker (Tim); M.E.T. Dollé (Martijn); R. Kuiper (Ruud); M. Majora (Marc); M. Schaller (Martin); G.T.J. van der Horst (Gijsbertus); H. van Steeg (Harry); M. Röcken (Martin); D. Rapaport (Doron); J. Krutmann (Jean); L.H.F. Mullenders (Leon); M. Berneburg (Mark)

    2010-01-01

    textabstractDefects in the DNA repair mechanism nucleotide excision repair (NER) may lead to tumors in xeroderma pigmentosum (XP) or to premature aging with loss of subcutaneous fat in Cockayne syndrome (CS). Mutations of mitochondrial (mt)DNA play a role in aging, but a link between the

  3. Protective Effect of Diphlorethohydroxycarmalol against Ultraviolet B Radiation-Induced DNA Damage by Inducing the Nucleotide Excision Repair System in HaCaT Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Mei Jing Piao

    2015-09-01

    Full Text Available We investigated the protective properties of diphlorethohydroxycarmalol (DPHC, a phlorotannin, against ultraviolet B (UVB radiation-induced cyclobutane pyrimidine dimers (CPDs in HaCaT human keratinocytes. The nucleotide excision repair (NER system is the pathway by which cells identify and repair bulky, helix-distorting DNA lesions such as ultraviolet (UV radiation-induced CPDs and 6-4 photoproducts. CPDs levels were elevated in UVB-exposed cells; however, this increase was reduced by DPHC. Expression levels of xeroderma pigmentosum complementation group C (XPC and excision repair cross-complementing 1 (ERCC1, which are essential components of the NER pathway, were induced in DPHC-treated cells. Expression of XPC and ERCC1 were reduced following UVB exposure, whereas DPHC treatment partially restored the levels of both proteins. DPHC also increased expression of transcription factor specificity protein 1 (SP1 and sirtuin 1, an up-regulator of XPC, in UVB-exposed cells. DPHC restored binding of the SP1 to the XPC promoter, which is reduced in UVB-exposed cells. These results indicate that DPHC can protect cells against UVB-induced DNA damage by inducing the NER system.

  4. The role of base excision repair in the development of primary open angle glaucoma in the Polish population

    Energy Technology Data Exchange (ETDEWEB)

    Cuchra, Magda; Markiewicz, Lukasz; Mucha, Bartosz [Department of Clinical Chemistry and Biochemistry, Medical University of Lodz (Poland); Pytel, Dariusz [The Abramson Family Cancer Research Institute, Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425 (United States); Szymanek, Katarzyna [Department of Ophthalmology, Medical University of Warsaw, SPKSO Hospital, Warsaw (Poland); Szemraj, Janusz [Department of Medical Biochemistry, Medical University of Lodz, Lodz (Poland); Szaflik, Jerzy; Szaflik, Jacek P. [Department of Ophthalmology, Medical University of Warsaw, SPKSO Hospital, Warsaw (Poland); Majsterek, Ireneusz, E-mail: ireneusz.majsterek@umed.lodz.pl [Department of Clinical Chemistry and Biochemistry, Medical University of Lodz (Poland)

    2015-08-15

    Highlights: • We suggested the association of XRCC1 gene with the increase risk of POAG development. • We indicated the association of clinical factor and XRCC1, MUTYH, ADPRT and APE1 genes with POAG progression. • We postulated the increase level of oxidative DNA damage in group of patients with POAG in relation to healthy controls. • We suggested the slightly decrease ability to repair of oxidative DNA damage. • This is the first data that showed the role of BER mechanism in POAG pathogenesis. - Abstract: Glaucoma is a leading cause of irreversible blindness in developing countries. Previous data have shown that progressive loss of human TM cells may be connected with chronic exposure to oxidative stress. This hypothesis may suggest a role of the base excision repair (BER) pathway of oxidative DNA damage in primary open angle glaucoma (POAG) patients. The aim of our study was to evaluate an association of BER gene polymorphism with a risk of POAG. Moreover, an association of clinical parameters was examined including cup disk ratio (c/d), rim area (RA) and retinal nerve fiber layer (RNFL) with glaucoma progression according to BER gene polymorphisms. Our research included 412 patients with POAG and 454 healthy controls. Gene polymorphisms were analyzed by PCR-RFLP. Heidelberg Retinal Tomography (HRT) clinical parameters were also analyzed. The 399Arg/Gln genotype of the XRCC1 gene (OR 1.38; 95% CI 1.02–1.89 p = 0.03) was associated with an increased risk of POAG occurrence. It was indicated that the 399Gln/Gln XRCC1 genotype might increase the risk of POAG progression according to the c/d ratio (OR 1.67; 95% CI 1.07–2.61 P = 0.02) clinical parameter. Moreover, the association of VF factor with 148Asp/Glu of APE1 genotype distribution and POAG progression (OR 2.25; 95% CI 1.30–3.89) was also found. Additionally, the analysis of the 324Gln/His MUTYH polymorphism gene distribution in the patient group according to RNFL factor showed that it might

  5. DNA fragments assembly based on nicking enzyme system.

    Directory of Open Access Journals (Sweden)

    Rui-Yan Wang

    Full Text Available A couple of DNA ligation-independent cloning (LIC methods have been reported to meet various requirements in metabolic engineering and synthetic biology. The principle of LIC is the assembly of multiple overlapping DNA fragments by single-stranded (ss DNA overlaps annealing. Here we present a method to generate single-stranded DNA overlaps based on Nicking Endonucleases (NEases for LIC, the method was termed NE-LIC. Factors related to cloning efficiency were optimized in this study. This NE-LIC allows generating 3'-end or 5'-end ss DNA overlaps of various lengths for fragments assembly. We demonstrated that the 10 bp/15 bp overlaps had the highest DNA fragments assembling efficiency, while 5 bp/10 bp overlaps showed the highest efficiency when T4 DNA ligase was added. Its advantage over Sequence and Ligation Independent Cloning (SLIC and Uracil-Specific Excision Reagent (USER was obvious. The mechanism can be applied to many other LIC strategies. Finally, the NEases based LIC (NE-LIC was successfully applied to assemble a pathway of six gene fragments responsible for synthesizing microbial poly-3-hydroxybutyrate (PHB.

  6. Effects of nucleotide pool imbalances on the excision repair of ultraviolet-induced damage in the DNA of human diploid fibroblasts

    International Nuclear Information System (INIS)

    Snyder, R.D.

    1985-01-01

    In an attempt to better understand the mechanism of repair inhibition by DNA polymerase inhibitors, and the nature of hydroxyurea enhancement, experiments were initiated in which the effects of a series of ribonucleotide reductase inhibitors on dNTP pools and on the DNA repair process were determined in both quiescent cultures and log-phase cultures of human fibroblasts. It was determined that hydroxyurea, deoxyadenosine, pyridine-2-carboxaldehyde thiosemicarbazone (TSC), pyrozoloimidazole (IMPY), 3,5-diamino-1,2,4-triazole (guanazole), 3,4,5-trihydroxy benzohydroxamic acid (THBA) and 3,4-dihydroxy benzohydroxamic acid (DHBA) are all effective inhibitors of the DNA repair process in confluent cells but not in log-phase cells. Moreover, the effects of these inhibitors can be reversed by the addition of certain combinations of deoxynucleosides. These reversal studies and the direct analysis of dNTP pool modulation by these compounds in log phase and confluent cultures support the notion that specific pool depletions rather than general imbalance of pools gives rise to the inhibition of the DNA excision repair process

  7. Discrepancies between biopsy-based and excision-based grading of cervical intraepithelial neoplasia: the important role of time between excision and biopsy.

    Science.gov (United States)

    Zhang, Lu; Li, Qiang; Zhao, Mingyu; Jia, Lin; Zhang, Youzhong

    2015-05-01

    We sought to evaluate the rate of cervical intraepithelial neoplasia (CIN) ≤ 1 in loop electrosurgical excision procedure (LEEP) specimens after the treatment of biopsy-proven CIN 2-3, and to identify factors that are associated with the rate of CIN ≤ 1, especially focusing on the time interval between biopsy and LEEP. The goal of this research is to reduce the overtreatment of women with CIN 2-3. This was a retrospective study performed on women undergoing LEEP for biopsy-proven CIN 2-3 in Qilu hospital in Shandong, China. Patients were separated according to LEEP pathology (CIN ≤ 1 vs. CIN 2-3), and compared using the χ2 test and Student t test. The main outcome measures were pathologic discrepancy (defined as CIN 2-3 at biopsy, but CIN ≤ 1 at excision). Of the 391 women with biopsy-proven CIN 2-3, 26.9% had LEEP specimens with CIN ≤ 1 histologies. The likelihood of a CIN ≤ 1 LEEP specimen increases for greater biopsy-LEEP intervals (odds ratio, 1.374; 95% confidence interval, 1.089-1.735; P = 0.008). Cases in younger women and biopsy-assessed CIN 2 cases were both more likely to have CIN 1 or negative LEEP specimens. The rate of spontaneous histologic regression (defined as CIN ≤ 1 at resection) was 26.9%. These low-grade lesions were more common in LEEP specimens from young women with CIN 2 at biopsy, and who underwent LEEP later after the initial biopsy.

  8. Base excision repair efficiency and mechanism in nuclear extracts are influenced by the ratio between volume of nuclear extraction buffer and nuclei-Implications for comparative studies

    DEFF Research Database (Denmark)

    Akbari, Mansour; Krokan, Hans E

    2012-01-01

    The base excision repair (BER) pathway corrects many different DNA base lesions and is important for genomic stability. The mechanism of BER cannot easily be investigated in intact cells and therefore in vitro methods that reflect the in vivo processes are in high demand. Reconstitution of BER...... using purified proteins essentially mirror properties of the proteins used, and does not necessarily reflect the mechanism as it occurs in the cell. Nuclear extracts from cultured cells have the capacity to carry out complete BER and can give important information on the mechanism. Furthermore......, candidate proteins in extracts can be inhibited or depleted in a controlled way, making defined extracts an important source for mechanistic studies. The major drawback is that there is no standardized method of preparing nuclear extract for BER studies, and it does not appear to be a topic given much...

  9. Principles of DNA architectonics: design of DNA-based nanoobjects

    International Nuclear Information System (INIS)

    Vinogradova, O A; Pyshnyi, D V

    2012-01-01

    The methods of preparation of monomeric DNA blocks that serve as key building units for the construction of complex DNA objects are described. Examples are given of the formation of DNA blocks based on native and modified oligonucleotide components using hydrogen bonding and nucleic acid-specific types of bonding and also some affinity interactions with RNA, proteins, ligands. The static discrete and periodic two- and three-dimensional DNA objects reported to date are described systematically. Methods used to prove the structures of DNA objects and the prospects for practical application of nanostructures based on DNA and its analogues in biology, medicine and biophysics are considered. The bibliography includes 195 references.

  10. ATR- and ATM-Mediated DNA Damage Response Is Dependent on Excision Repair Assembly during G1 but Not in S Phase of Cell Cycle.

    Science.gov (United States)

    Ray, Alo; Blevins, Chessica; Wani, Gulzar; Wani, Altaf A

    2016-01-01

    Cell cycle checkpoint is mediated by ATR and ATM kinases, as a prompt early response to a variety of DNA insults, and culminates in a highly orchestrated signal transduction cascade. Previously, we defined the regulatory role of nucleotide excision repair (NER) factors, DDB2 and XPC, in checkpoint and ATR/ATM-dependent repair pathway via ATR and ATM phosphorylation and recruitment to ultraviolet radiation (UVR)-induced damage sites. Here, we have dissected the molecular mechanisms of DDB2- and XPC- mediated regulation of ATR and ATM recruitment and activation upon UVR exposures. We show that the ATR and ATM activation and accumulation to UVR-induced damage not only depends on DDB2 and XPC, but also on the NER protein XPA, suggesting that the assembly of an active NER complex is essential for ATR and ATM recruitment. ATR and ATM localization and H2AX phosphorylation at the lesion sites occur as early as ten minutes in asynchronous as well as G1 arrested cells, showing that repair and checkpoint-mediated by ATR and ATM starts early upon UV irradiation. Moreover, our results demonstrated that ATR and ATM recruitment and H2AX phosphorylation are dependent on NER proteins in G1 phase, but not in S phase. We reasoned that in G1 the UVR-induced ssDNA gaps or processed ssDNA, and the bound NER complex promote ATR and ATM recruitment. In S phase, when the UV lesions result in stalled replication forks with long single-stranded DNA, ATR and ATM recruitment to these sites is regulated by different sets of proteins. Taken together, these results provide evidence that UVR-induced ATR and ATM recruitment and activation differ in G1 and S phases due to the existence of distinct types of DNA lesions, which promote assembly of different proteins involved in the process of DNA repair and checkpoint activation.

  11. Nucleotide excision repair in yeast

    NARCIS (Netherlands)

    Eijk, Patrick van

    2012-01-01

    Nucleotide Excision Repair (NER) is a conserved DNA repair pathway capable of removing a broad spectrum of DNA damage. In human cells a defect in NER leads to the disorder Xeroderma pigmentosum (XP). The yeast Saccharomyces cerevisiae is an excellent model organism to study the mechanism of NER. The

  12. Genetic variation in the base excision repair pathway, environmental risk factors, and colorectal adenoma risk.

    Directory of Open Access Journals (Sweden)

    Roman Corral

    Full Text Available Cigarette smoking, high alcohol intake, and low dietary folate levels are risk factors for colorectal adenomas. Oxidative damage caused by these three factors can be repaired through the base excision repair pathway (BER. We hypothesized that genetic variation in BER might modify colorectal adenoma risk. In a sigmoidoscopy-based study, we examined associations between 182 haplotype tagging SNPs in 14 BER genes, and colorectal adenoma risk, and examined their potential role as modifiers of the effect cigarette smoking, alcohol intake, and dietary folate levels. Among all individuals, no statistically significant associations between BER SNPs and adenoma risk persisted after correction for multiple comparisons. However, among Asian-Pacific Islanders we observed two SNPs in FEN1 and one in NTHL1, and among African-Americans one SNP in APEX1 that were associated with colorectal adenoma risk. Significant associations were also observed between SNPs in the NEIL2 gene and rectal adenoma risk. Three SNPS modified the effect of smoking (MUTYH interaction p = 0.002; OGG1 interaction p = 0.013; FEN1 interaction p = 0.013, one SNP in LIG3 modified the effect of alcohol consumption (interaction p = 0.024 and two SNPs in LIG3 modified the effect of dietary folate (interaction p = 0.001 and p = 0.08 on colorectal adenoma risk. These findings support a role for genetic variants in the BER pathway as potential modifiers of colorectal adenoma risk. Our findings strengthen the role of oxidative damage induced by key lifestyle and dietary risk factors in colorectal adenoma formation.

  13. Concordance of DNA methylation profiles between breast core biopsy and surgical excision specimens containing ductal carcinoma in situ (DCIS).

    Science.gov (United States)

    Chen, Youdinghuan; Marotti, Jonathan D; Jenson, Erik G; Onega, Tracy L; Johnson, Kevin C; Christensen, Brock C

    2017-08-01

    The utility and reliability of assessing molecular biomarkers for translational applications on pre-operative core biopsy specimens assume consistency of molecular profiles with larger surgical specimens. Whether DNA methylation in ductal carcinoma in situ (DCIS), measured in core biopsy and surgical specimens are similar, remains unclear. Here, we compared genome-scale DNA methylation measured in matched core biopsy and surgical specimens from DCIS, including specific DNA methylation biomarkers of subsequent invasive cancer. DNA was extracted from guided 2mm cores of formalin fixed paraffin embedded (FFPE) specimens, bisulfite-modified, and measured on the Illumina HumanMethylation450 BeadChip. DNA methylation profiles of core biopsies exhibited high concordance with matched surgical specimens. Within-subject variability in DNA methylation was significantly lower than between-subject variability (all Pcore biopsy and surgical specimens, 15%, and a pathway analysis of these CpGs indicated enrichment for genes related with wound healing. Our results indicate that DNA methylation measured in core biopsies are representative of the matched surgical specimens and suggest that DCIS biomarkers measured in core biopsies can inform clinical decision-making. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. DNA based radiological dosimetry technology

    International Nuclear Information System (INIS)

    Diaz Quijada, Gerardo A.; Roy, Emmanuel; Veres, Teodor; Dumoulin, Michel M.; Vachon, Caroline; Blagoeva, Rosita; Pierre, Martin

    2008-01-01

    Full text: The purpose of this project is to develop a personal and wearable dosimeter using a highly-innovative approach based on the specific recognition of DNA damage with a polymer hybrid. Our biosensor will be sensitive to breaks in nucleic acid macromolecules and relevant to mixed-field radiation. The dosimeter proposed will be small, field deployable and will sense damages for all radiation types at the DNA level. The generalized concept for the novel-based radiological dosimeter: 1) Single or double stranded oligonucleotide is immobilized on surface; 2) Single stranded has higher cross-section for fragmentation; 3) Double stranded is more biological relevant; 4) Radiation induces fragmentation; 5) Ultra-sensitive detection of fragments provides radiation dose. Successful efforts have been made towards a proof-of-concept personal wearable DNA-based dosimeter that is appropriate for mixed-field radiation. The covalent immobilization of oligonucleotides on large areas of plastic surfaces has been demonstrated and corroborated spectroscopically. The surface concentration of DNA was determined to be 8 x 1010 molecules/cm 2 from a Ce(IV) catalyzed hydrolysis study of a fluorescently labelled oligonucleotide. Current efforts are being directed at studying radiation induced fragmentation of DNA followed by its ultra-sensitive detection via a novel method. In addition, proof-of-concept wearable personal devices and a detection platform are presently being fabricated. (author)

  15. The mitochondrial transcription factor A functions in mitochondrial base excision repair

    DEFF Research Database (Denmark)

    Canugovi, Chandrika; Maynard, Scott; Bayne, Anne-Cécile V

    2010-01-01

    Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids. TFAM plays an important role in mitochondrial transcription and replication. TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected i...

  16. The current state of eukaryotic DNA base damage and repair.

    Science.gov (United States)

    Bauer, Nicholas C; Corbett, Anita H; Doetsch, Paul W

    2015-12-02

    DNA damage is a natural hazard of life. The most common DNA lesions are base, sugar, and single-strand break damage resulting from oxidation, alkylation, deamination, and spontaneous hydrolysis. If left unrepaired, such lesions can become fixed in the genome as permanent mutations. Thus, evolution has led to the creation of several highly conserved, partially redundant pathways to repair or mitigate the effects of DNA base damage. The biochemical mechanisms of these pathways have been well characterized and the impact of this work was recently highlighted by the selection of Tomas Lindahl, Aziz Sancar and Paul Modrich as the recipients of the 2015 Nobel Prize in Chemistry for their seminal work in defining DNA repair pathways. However, how these repair pathways are regulated and interconnected is still being elucidated. This review focuses on the classical base excision repair and strand incision pathways in eukaryotes, considering both Saccharomyces cerevisiae and humans, and extends to some important questions and challenges facing the field of DNA base damage repair. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Excision of deaminated cytosine from the vertebrate genome: role of the SMUG1 uracil–DNA glycosylase

    Science.gov (United States)

    Nilsen, Hilde; Haushalter, Karl A.; Robins, Peter; Barnes, Deborah E.; Verdine, Gregory L.; Lindahl, Tomas

    2001-01-01

    Gene-targeted mice deficient in the evolutionarily conserved uracil–DNA glycosylase encoded by the UNG gene surprisingly lack the mutator phenotype characteristic of bacterial and yeast ung– mutants. A complementary uracil–DNA glycosylase activity detected in ung–/– murine cells and tissues may be responsible for the repair of deaminated cytosine residues in vivo. Here, specific neutralizing antibodies were used to identify the SMUG1 enzyme as the major uracil–DNA glycosylase in UNG-deficient mice. SMUG1 is present at similar levels in cell nuclei of non-proliferating and proliferating tissues, indicating a replication- independent role in DNA repair. The SMUG1 enzyme is found in vertebrates and insects, whereas it is absent in nematodes, plants and fungi. We propose a model in which SMUG1 has evolved in higher eukaryotes as an anti-mutator distinct from the UNG enzyme, the latter being largely localized to replication foci in mammalian cells to counteract de novo dUMP incorporation into DNA. PMID:11483530

  18. A novel role for Gadd45α in base excision repair: Modulation of APE1 activity by the direct interaction of Gadd45α with PCNA

    International Nuclear Information System (INIS)

    Kim, Hye Lim; Kim, Sang Uk; Seo, Young Rok

    2013-01-01

    Highlights: ► Emerging critical role for Gadd45α in modulating BER activity. ► Identifying specific PCNA binding site on Gadd45α protein. ► Regulating APE1 activity through interaction between Gadd45α and PCNA. ► Suggesting potential role of Gadd45α–PCNA binding in pancreatic carcinogenesis. -- Abstract: The growth arrest and DNA damage inducible, alpha (Gadd45α) protein regulates DNA repair by interacting with proliferating cell nuclear antigen (PCNA). Our previous study suggested a potential role for Gadd45α in the base excision repair (BER) pathway by affecting apurinic/apyrimidinic endonuclease 1 (APE1) protein in addition to its accepted role in nucleotide excision repair (NER). Here, we investigated whether the interaction of Gadd45α with PCNA affects APE1 activity. To address this issue, we used a siRNA directed to Gadd45α and a form of Gadd45α with a mutation to the predicted site of PCNA binding. There was a reduction of APE1 activity in cells transfected with the Gadd45α siRNA. Furthermore, the interaction of Gadd45α with PCNA and APE1 was lower in cells transfected with mutant Gadd45α compared with cells transfected with wild-type Gadd45α. Indeed, we observed that the APE1 activity in the Gadd45α-interacting complex was significantly lower in cells that overexpress mutant Gadd45α compared with cells that overexpress wild-type Gadd45α. We conclude that the PCNA binding site on Gadd45α plays a critical role in modulating the interaction with PCNA and APE1, affecting BER activity. These results provide novel insights into the mechanisms by which BER activity is modulated, although the interaction of Gadd45α with APE1 needs to be clarified

  19. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage

    Science.gov (United States)

    Klungland, Arne; Rosewell, Ian; Hollenbach, Stephan; Larsen, Elisabeth; Daly, Graham; Epe, Bernd; Seeberg, Erling; Lindahl, Tomas; Barnes, Deborah E.

    1999-01-01

    DNA damage generated by oxidant byproducts of cellular metabolism has been proposed as a key factor in cancer and aging. Oxygen free radicals cause predominantly base damage in DNA, and the most frequent mutagenic base lesion is 7,8-dihydro-8-oxoguanine (8-oxoG). This altered base can pair with A as well as C residues, leading to a greatly increased frequency of spontaneous G·C→T·A transversion mutations in repair-deficient bacterial and yeast cells. Eukaryotic cells use a specific DNA glycosylase, the product of the OGG1 gene, to excise 8-oxoG from DNA. To assess the role of the mammalian enzyme in repair of DNA damage and prevention of carcinogenesis, we have generated homozygous ogg1−/− null mice. These animals are viable but accumulate abnormal levels of 8-oxoG in their genomes. Despite this increase in potentially miscoding DNA lesions, OGG1-deficient mice exhibit only a moderately, but significantly, elevated spontaneous mutation rate in nonproliferative tissues, do not develop malignancies, and show no marked pathological changes. Extracts of ogg1 null mouse tissues cannot excise the damaged base, but there is significant slow removal in vivo from proliferating cells. These findings suggest that in the absence of the DNA glycosylase, and in apparent contrast to bacterial and yeast cells, an alternative repair pathway functions to minimize the effects of an increased load of 8-oxoG in the genome and maintain a low endogenous mutation frequency. PMID:10557315

  20. Base excision repair efficiency and mechanism in nuclear extracts are influenced by the ratio between volume of nuclear extraction buffer and nuclei—Implications for comparative studies

    International Nuclear Information System (INIS)

    Akbari, Mansour; Krokan, Hans E.

    2012-01-01

    Highlights: • We examine effect of volume of extraction buffer relative to volume of isolated nuclei on repair activity of nuclear extract. • Base excision repair activity of nuclear extracts prepared from the same batch and number of nuclei varies inversely with the volume of nuclear extraction buffer. • Effect of the volume of extraction buffer on BER activity of nuclear extracts can only be partially reversed after concentration of the more diluted extract by ultrafiltration. - Abstract: The base excision repair (BER) pathway corrects many different DNA base lesions and is important for genomic stability. The mechanism of BER cannot easily be investigated in intact cells and therefore in vitro methods that reflect the in vivo processes are in high demand. Reconstitution of BER using purified proteins essentially mirror properties of the proteins used, and does not necessarily reflect the mechanism as it occurs in the cell. Nuclear extracts from cultured cells have the capacity to carry out complete BER and can give important information on the mechanism. Furthermore, candidate proteins in extracts can be inhibited or depleted in a controlled way, making defined extracts an important source for mechanistic studies. The major drawback is that there is no standardized method of preparing nuclear extract for BER studies, and it does not appear to be a topic given much attention. Here we have examined BER activity of nuclear cell extracts from HeLa cells, using as substrate a circular DNA molecule with either uracil or an AP-site in a defined position. We show that BER activity of nuclear extracts from the same batch of cells varies inversely with the volume of nuclear extraction buffer relative to nuclei volume, in spite of identical protein concentrations in the BER assay mixture. Surprisingly, the uracil–DNA glycosylase activity (mainly UNG2), but not amount of UNG2, also correlated negatively with the volume of extraction buffer. These studies demonstrate

  1. DNA-based watermarks using the DNA-Crypt algorithm

    Science.gov (United States)

    Heider, Dominik; Barnekow, Angelika

    2007-01-01

    Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms. PMID:17535434

  2. DNA-based watermarks using the DNA-Crypt algorithm

    Directory of Open Access Journals (Sweden)

    Barnekow Angelika

    2007-05-01

    Full Text Available Abstract Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.

  3. DNA-based watermarks using the DNA-Crypt algorithm.

    Science.gov (United States)

    Heider, Dominik; Barnekow, Angelika

    2007-05-29

    The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.

  4. The degree of compliance based on excise duties in Romania between 2002 and 2015

    Directory of Open Access Journals (Sweden)

    Todor Silvia Paula

    2017-09-01

    Full Text Available The fiscal policy is an instrument that collects resources for the state budget necessary to perform state functions; stabilize the economy; regulation of the economy and recovery growth. The most important instruments are taxes and taxpayers. Since 1989, with the transition to a market economy, a special tax policy has been known by excise taxes. Analyzing the case of Romania and the evolution of excise duties (hereinafter ED conformity we created some regressions that illustrate the ED correlation in Romania between 2002 and 2015. The methodology used: three unifactorial regression models showing how ED impacts economic indicators such as GDP, power purchase expressed through the net annual average salary, and household final consumption expenditure. Moreover, each model has been tested and verified using statistic tests to give reliable results. In a first stage, we analyzed the correlation between GDP and consumption as endogen variable and ED, then we created another model that we kept ED as an independent variable, but we changed the dependent variable using the purchasing power as a dependent variable. Because according to the used tests we demonstrated that correlation coefficients are significant, we proceeded to explain them starting from fiscal policy and economic reality, own of these analyzed 14 years. In conclusion we highlighted below as the ED depends on GDP and consumption and the purchasing power can influence the ED. For future discussion and studies we intend to compare the results with other countries in different geographic areas in Europe

  5. IS IT NECESSARY TO EXCISE ALL BREAST LESIONS? EXPERIENCE FROM A UNIVERSITY-BASED BREAST UNIT

    Directory of Open Access Journals (Sweden)

    YIP CH

    2009-01-01

    Full Text Available Background: Breast cancer is becoming more important in Asia since it affect the younger age group. Question arises whether it is safe for breast lesions to be left in-situ if all the elements in triple assessment are benign. The aim of this study is to audit all the excision biopsies of breast lumps done in the University Malaya Medical Centre (UMMC, to review the association of age with the type of pathological finding and to evaluate the rate of carcinoma in these biopsies. Methods: We conducted a retrospective study of all women who had excision biopsy of a breast lump in the University Malaya Medical Centre from January 2005 to December 2006. All patients with malignant preoperative biopsies were excluded. Results: Of 717 lesions in 664 patients, 459 (64% were fibroadenoma, 114 (15.9% were fibrocystic disease, 20 (2.8% were phylloides tumour, 27 (3.8% were papilloma, 59 (8.2% were malignant and 38 (5.3% were of other pathology. Of the 717 open biopsies, 449 (62.6% had fine-needle aspiration cytology (FNAC, 31 (4.3% had core needle biopsy (CNB, while 14 (2.0% had both FNAC and CNB done prior to excision biopsy. 251 (35% had neither FNAC nor CNB. The incidence of fibroadenoma decreased with increasing age and the incidence of fibrocystic changes and papilloma increased with increasing age. There was no association of age with phylloides tumour. The incidence of unexpected malignancy increased with increasing age. The incidence rates were 0.3%, 4.5%, 19.4%, 29.7% and 29.6% for the age group below 30, 30-39, 40-49, 50-59 and above 60 years of age respectively. Of the 59 malignant lesions, FNAC was performed on 47 (79.7% and CNB on 16 (27.1%. 9 had both FNAC and CNB and 3 had neither FNAC nor CNB. Out of the 56 lesions where FNAC/CNB were done, 23 (41.1% were reported as benign, 20 (35.7% as suspicious, 4 (7.1% as atypical, 5 (8.9% as inadequate, 2 (3.6% as equivocal and 2 (3.6% as lymphoid lesions. Out of the 23 prior biopsies reported as

  6. Radiation-induced thymine base damage and its excision repair in active and inactive chromatin of HeLa cells

    International Nuclear Information System (INIS)

    Patil, M.S.; Locher, S.E.; Hariharan, P.V.

    1985-01-01

    The extent of production and excision repair of 5,6-dihydroxydihydrothymine type base (t') damage was determined in transcriptionally active and inactive chromatin of HeLa cells after exposure to 6.8 MeV electrons. It was observed that not only the yield but also rate of repair of t' products was greater in the active chromatin compared to the inactive chromatin of HeLa cells. The results strongly indicate that the conformation of chromatin is an important factor in determining the sensitivity to radiation damage and accessibility to enzymes required for repair of such damage. (author)

  7. The mechanism of the glycosylase reaction with hOGG1 base-excision repair enzyme: concerted effect of Lys249 and Asp268 during excision of 8-oxoguanine

    Czech Academy of Sciences Publication Activity Database

    Šebera, Jakub; Hattori, Y.; Sato, D.; Řeha, David; Nencka, Radim; Kohno, T.; Kojima, C.; Tanaka, Y.; Sychrovský, Vladimír

    2017-01-01

    Roč. 45, č. 9 (2017), s. 5231-5242 ISSN 0305-1048 R&D Projects: GA ČR GA13-27676S Institutional support: RVO:61388963 ; RVO:61388971 Keywords : 8-oxoguanine * hOGG1 * QM/MM * NMR * base-excision repair Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 10.162, year: 2016 https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkx157

  8. DNA excision repair in human cells treated with ultraviolet radiation and 7,12-dimethylbenz(a)anthracene 5,6-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, F.E.; Gentil, A.; Renstein, B.S.; Setlow, R.B.

    1980-01-01

    Excision repair was measured in normal human and xeroderma pigmentosum group C cells treated with 7,12-dimethylbenz(a)anthracene 5,6-oxide and with ultraviolet radiation by the techniques of unscheduled DNA synthesis, repair replication, a modification and bromodeoxyuridine photolysis and endonuclease-sensitive sites assay. Radiautography and repair replication showed that in normal cells the magnitude of repair after a saturation dose of the epoxide to be 0.1 to 0.2, that after a saturating ultraviolet dose, though survival data showed that both doses gave nearly similar killings. Repair was of the long-patch type and repair kinetics after the epoxide treatment were similar to ultraviolet. After a combined treatment with both agents, unscheduled synthesis in normal cells was more than additive. The data indicate that there are different rate-limiting steps in the removal of the ultraviolet and the epoxide damages, and that the residual repair activity in xeroderma pigmentosum cells is accomplished by different, not just fewer, enzymes than in normal cells.

  9. UCE: A uracil excision (USERTM)-based toolbox for transformation of cereals

    DEFF Research Database (Denmark)

    Hebelstrup, Kim H; Christiansen, Michael W; Carciofi, Massimiliano

    2010-01-01

    Background Cloning of gene casettes and other DNA sequences into the conventional vectors for biolistic or Agrobacterium-mediated transformation is hampered by a limited amount of unique restriction sites and by the difficulties often encountered when ligating small single strand DNA overhangs...... (USER cereal), ready for use in cloning of complex constructs into the T-DNA. A series of the vectors were tested and shown to perform successfully in Agrobacterium-mediated transformation of barley (Hordeum vulgare L.) as well as in biolistic transformation of endosperm cells conferring transient...

  10. Aag-initiated base excision repair drives alkylation-induced retinal degeneration in mice.

    Science.gov (United States)

    Meira, Lisiane B; Moroski-Erkul, Catherine A; Green, Stephanie L; Calvo, Jennifer A; Bronson, Roderick T; Shah, Dharini; Samson, Leona D

    2009-01-20

    Vision loss affects >3 million Americans and many more people worldwide. Although predisposing genes have been identified their link to known environmental factors is unclear. In wild-type animals DNA alkylating agents induce photoreceptor apoptosis and severe retinal degeneration. Alkylation-induced retinal degeneration is totally suppressed in the absence of the DNA repair protein alkyladenine DNA glycosylase (Aag) in both differentiating and postmitotic retinas. Moreover, transgenic expression of Aag activity restores the alkylation sensitivity of photoreceptors in Aag null animals. Aag heterozygotes display an intermediate level of retinal degeneration, demonstrating haploinsufficiency and underscoring that Aag expression confers a dominant retinal degeneration phenotype.

  11. Niacin deficiency delays DNA excision repair and increases spontaneous and nitrosourea-induced chromosomal instability in rat bone marrow.

    Science.gov (United States)

    Kostecki, Lisa M; Thomas, Megan; Linford, Geordie; Lizotte, Matthew; Toxopeus, Lori; Bartleman, Anne-Pascale; Kirkland, James B

    2007-12-01

    We have shown that niacin deficiency impairs poly(ADP-ribose) formation and enhances sister chromatid exchanges and micronuclei formation in rat bone marrow. We designed the current study to investigate the effects of niacin deficiency on the kinetics of DNA repair following ethylation, and the accumulation of double strand breaks, micronuclei (MN) and chromosomal aberrations (CA). Weanling male Long-Evans rats were fed niacin deficient (ND), or pair fed (PF) control diets for 3 weeks. We examined repair kinetics by comet assay in the 36h following a single dose of ethylnitrosourea (ENU) (30mg/kg bw). There was no effect of ND on mean tail moment (MTM) before ENU treatment, or on the development of strand breaks between 0 and 8h after ENU. Repair kinetics between 12 and 30h were significantly delayed by ND, with a doubling of area under the MTM curve during this period. O(6)-ethylation of guanine peaked by 1.5h, was largely repaired by 15h, and was also delayed in bone marrow cells from ND rats. ND significantly enhanced double strand break accumulation at 24h after ENU. ND alone increased chromosome and chromatid breaks (four- and two-fold). ND alone caused a large increase in MN, and this was amplified by ENU treatment. While repair kinetics suggest that ND may be acting by creating catalytically inactive PARP molecules with a dominant-negative effect on repair processes, the effect of ND alone on O(6)-ethylation, MN and CA, in the absence of altered comet results, suggests additional mechanisms are also leading to chromosomal instability. These data support the idea that the bone marrow cells of niacin deficient cancer patients may be more sensitive to the side effects of genotoxic chemotherapy, resulting in acute bone marrow suppression and chronic development of secondary leukemias.

  12. Nucleotide excision repair in the test tube.

    NARCIS (Netherlands)

    N.G.J. Jaspers (Nicolaas); J.H.J. Hoeijmakers (Jan)

    1995-01-01

    textabstractThe eukaryotic nucleotide excision-repair pathway has been reconstituted in vitro, an achievement that should hasten the full enzymological characterization of this highly complex DNA-repair pathway.

  13. Uracil Excision for Assembly of Complex Pathways

    DEFF Research Database (Denmark)

    Cavaleiro, Mafalda; Nielsen, Morten Thrane; Kim, Se Hyeuk

    2015-01-01

    Despite decreasing prices on synthetic DNA constructs, higher-order assembly of PCR-generated DNA continues to be an important exercise in molecular and synthetic biology. Simplicity and robustness are attractive features met by the uracil excision DNA assembly method, which is one of the most in...

  14. Functional, genetic and epigenetic aspects of base and nucleotide excision repair in colorectal carcinomas

    Czech Academy of Sciences Publication Activity Database

    Slyšková, Jana; Korenková, Vlasta; Collins, A. R.; Procházka, Pavel; Vodičková, Ludmila; Švec, Jiří; Lipská, L.; Levý, M.; Schneiderová, M.; Liška, V.; Holubec, L.; Kumar, R.; Souček, P.; Naccarati, Alessio; Vodička, Pavel

    2012-01-01

    Roč. 18, č. 21 (2012), s. 5878-5887 ISSN 1078-0432 R&D Projects: GA ČR GAP304/12/1585; GA ČR(CZ) GAP304/10/1286; GA MZd NT12025 Grant - others:UICC(XE) ICR/11/068/2011; EEA-research fund:(NO) B/CZ0046/40031 Institutional research plan: CEZ:AV0Z50390512 Institutional support: RVO:68378041 ; RVO:86652036 Keywords : DNA repair capacity * DNA repair gene expression * methylation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.837, year: 2012

  15. Metallic Nanostructures Based on DNA Nanoshapes

    Directory of Open Access Journals (Sweden)

    Boxuan Shen

    2016-08-01

    Full Text Available Metallic nanostructures have inspired extensive research over several decades, particularly within the field of nanoelectronics and increasingly in plasmonics. Due to the limitations of conventional lithography methods, the development of bottom-up fabricated metallic nanostructures has become more and more in demand. The remarkable development of DNA-based nanostructures has provided many successful methods and realizations for these needs, such as chemical DNA metallization via seeding or ionization, as well as DNA-guided lithography and casting of metallic nanoparticles by DNA molds. These methods offer high resolution, versatility and throughput and could enable the fabrication of arbitrarily-shaped structures with a 10-nm feature size, thus bringing novel applications into view. In this review, we cover the evolution of DNA-based metallic nanostructures, starting from the metallized double-stranded DNA for electronics and progress to sophisticated plasmonic structures based on DNA origami objects.

  16. Glycosylase-mediated repair of radiation-induced DNA bases: substrate specificities and mechanisms

    International Nuclear Information System (INIS)

    D'ham, Cedric

    1998-01-01

    Cellular DNA is subject to permanent damage and repair processes. One way to restore the integrity of DNA involves the base excision repair pathway. Glycosylases are the key-enzymes of this process. The present work deals with the determination of the substrate specificity and the mechanism of action of three glycosylases: endonuclease III and Fpg of Escherichia coli and Ogg1 of Saccharomyces cerevisiae. The present manuscript is divided into four parts: Endonuclease III-mediated excision of 5,6-dihydro-thymine and 5-hydroxy-5,6-dihydro-thymine from γ-irradiated DNA was analyzed by a gas chromatography-mass spectrometry assay, including a liquid chromatography pre-purification step. This was found to be necessary in order to separate the cis and trans isomers of 6-hydroxy-5,6-dihydro-thymine from the 5-hydroxy-5,6-dihydro-thymine. Modified oligonucleotides that contained a unique lesion, including thymine glycol, 5,6-dihydro-thymine and 5-hydroxy-cytosine were synthesized to assess the substrate specificity of endonuclease III and Fpg. The order of preference of the enzymes for the substrates was determined by the measurement of the Michaelis constants of the kinetics. Furthermore, the mechanism of action of endonuclease III has been reconsidered, after analysis using the MALDI mass spectrometry technique. These studies reveal that hydrolysis is the main pathway by which endonuclease III cleaves the DNA backbone. Using a modified oligonucleotide, 8-oxo-7,8-dihydro-adenine was shown to be a product of excision of the Ogg1 enzyme. The role of the complementary base towards the lesion was found to be preponderant in the damage excision. A last chapter concerns the synthesis and the characterization of the four isomers of 5(6)-hydroxy-6(5)-hydroperoxides of thymine. These products may be substrates for endonuclease III or Fpg. (author) [fr

  17. Alkyltransferase-like proteins: brokers dealing with alkylated DNA bases.

    Science.gov (United States)

    Schärer, Orlando D

    2012-07-13

    A new pathway for the repair of DNA alkylation damage is described in this issue of Molecular Cell (Latypov et al., 2012). Alkyltransferase-like enzymes mark O(6)-alkylguanine lesions and, depending on adduct size, channel them into global genome or transcription-coupled nucleotide excision repair pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Modulation of radiation-induced base excision repair pathway gene expression by melatonin

    Directory of Open Access Journals (Sweden)

    Saeed Rezapoor

    2017-01-01

    Full Text Available Objective: Approximately 70% of all cancer patients receive radiotherapy. Although radiotherapy is effective in killing cancer cells, it has adverse effects on normal cells as well. Melatonin (MLT as a potent antioxidant and anti-inflammatory agent has been proposed to stimulate DNA repair capacity. We investigated the capability of MLT in the modification of radiation-induced DNA damage in rat peripheral blood cells. Materials and Methods: In this experimental study, male rats (n = 162 were divided into 27 groups (n = 6 in each group including: irradiation only, vehicle only, vehicle with irradiation, 100 mg/kg MLT alone, 100 mg/kg MLT plus irradiation in 3 different time points, and control. Subsequently, they were irradiated with a single whole-body X-ray radiation dose of 2 and 8 Gy at a dose rate of 200 MU/min. Rats were given an intraperitoneal injection of MLT or the same volume of vehicle alone 1 h prior to irradiation. Blood samples were also taken 8, 24, and 48 h postirradiation, in order to measure the 8-oxoguanine glycosylase1 (Ogg1, Apex1, and Xrcc1 expression using quantitative real-time-polymerase chain reaction. Results: Exposing to the ionizing radiation resulted in downregulation of Ogg1, Apex1, and Xrcc1 gene expression. The most obvious suppression was observed in 8 h after exposure. Pretreatments with MLT were able to upregulate these genes when compared to the irradiation-only and vehicle plus irradiation groups (P < 0.05 in all time points. Conclusion: Our results suggested that MLT in mentioned dose may result in modulation of Ogg1, Apex1, and Xrcc1 gene expression in peripheral blood cells to reduce X-ray irradiation-induced DNA damage. Therefore, administration of MLT may increase the normal tissue tolerance to radiation through enhancing the cell DNA repair capacity. We believed that MLT could play a radiation toxicity reduction role in patients who have undergone radiation treatment as a part of cancer radiotherapy.

  19. Analysis of DNA repair in XP-HeLa hybrids; lack of correlation between excision repair of u.v. damage and adenovirus reactivation in an XP(D)-like cell line

    International Nuclear Information System (INIS)

    Johnson, R.Y.; Squires, S.; Elliott, G.C.

    1986-01-01

    Hybrids formed between HeLa cells and fibroblasts from xeroderma pigmentosum group D show either HeLa sensitivity or XPD-like hypersensitivity to u.v. radiation and corresponding high or low excision repair capability. Hybrids with low repair are presumed to have lost, via chromosome segregation, the HeLa wild type D alleles. The u.v. sensitivity and excision repair capability of another hybrid, HD1A, derived spontaneously from the normally sensitive hybrid HD1 are analyzed. While HD1A closely resembles the XPD phenotype in terms of u.v. sensitivity and excision repair it differs from XPD because of its ability to reactivate u.v.-irradiated adenovirus 2 to an extent similar to that of its HeLa parent. This capacity functionally dissociates excision repair of chromatin-based damage from damage in a viral environment. Moreover, on the basis of complementation studies the excision repair of genomic damage by HD1A is subtly different from that of a true XPD-like hybrid, HD2. The data are discussed in terms of a second change in the defective D allele of the HD1A cell. (author)

  20. DNA-Based Applications in Nanobiotechnology

    Directory of Open Access Journals (Sweden)

    Khalid M. Abu-Salah

    2010-01-01

    Full Text Available Biological molecules such as deoxyribonucleic acid (DNA have shown great potential in fabrication and construction of nanostructures and devices. The very properties that make DNA so effective as genetic material also make it a very suitable molecule for programmed self-assembly. The use of DNA to assemble metals or semiconducting particles has been extended to construct metallic nanowires and functionalized nanotubes. This paper highlights some important aspects of conjugating the unique physical properties of dots or wires with the remarkable recognition capabilities of DNA which could lead to miniaturizing biological electronics and optical devices, including biosensors and probes. Attempts to use DNA-based nanocarriers for gene delivery are discussed. In addition, the ecological advantages and risks of nanotechnology including DNA-based nanobiotechnology are evaluated.

  1. The Mutyh base excision repair gene influences the inflammatory response in a mouse model of ulcerative colitis.

    Directory of Open Access Journals (Sweden)

    Ida Casorelli

    Full Text Available BACKGROUND: The Mutyh DNA glycosylase is involved in the repair of oxidized DNA bases. Mutations in the human MUTYH gene are responsible for colorectal cancer in familial adenomatous polyposis. Since defective DNA repair genes might contribute to the increased cancer risk associated with inflammatory bowel diseases, we compared the inflammatory response of wild-type and Mutyh(-/- mice to oxidative stress. METHODOLOGY/PRINCIPAL FINDINGS: The severity of colitis, changes in expression of genes involved in DNA repair and inflammation, DNA 8-oxoguanine levels and microsatellite instability were analysed in colon of mice treated with dextran sulfate sodium (DSS. The Mutyh(-/- phenotype was associated with a significant accumulation of 8-oxoguanine in colon DNA of treated mice. A single DSS cycle induced severe acute ulcerative colitis in wild-type mice, whereas lesions were modest in Mutyh(-/- mice, and this was associated with moderate variations in the expression of several cytokines. Eight DSS cycles caused chronic colitis in both wild-type and Mutyh(-/- mice. Lymphoid hyperplasia and a significant reduction in Foxp3(+ regulatory T cells were observed only in Mutyh(-/- mice. CONCLUSIONS: The findings indicate that, in this model of ulcerative colitis, Mutyh plays a major role in maintaining intestinal integrity by affecting the inflammatory response.

  2. Loop electrosurgical excision of the cervix and subsequent risk for spontaneous preterm delivery: a population-based study of singleton deliveries during a 9-year period

    DEFF Research Database (Denmark)

    Noehr, Bugge; Jensen, Allan; Frederiksen, Kirsten

    2009-01-01

    OBJECTIVE: Our aim was to assess the association between loop electrosurgical excision procedure (LEEP) and the subsequent risk for spontaneous preterm delivery, with the use of population-based data from various nationwide registries. STUDY DESIGN: The study population consisted of all singleton...

  3. Variation within 3' UTRs of base excision repair genes and response to therapy in colorectal cancer patients: a potential modulation of microRNAs binding.

    Czech Academy of Sciences Publication Activity Database

    Pardini, B.; Rosa, F.; Barone, E.; Di Gaetano, C.; Slyšková, Jana; Novotný, J.; Levý, M.; Garritano, S.; Vodičková, Ludmila; Buchler, T.; Gemignani, F.; Landi, S.; Vodička, Pavel; Naccarati, Alessio

    2013-01-01

    Roč. 19, č. 21 (2013), s. 6044-6056 ISSN 1078-0432 R&D Projects: GA ČR GAP304/10/1286; GA ČR(CZ) GAP304/12/1585 Institutional support: RVO:68378041 Keywords : colorectal cancer * base excision repair * survival Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.193, year: 2013

  4. Charge transport through DNA based electronic barriers

    Science.gov (United States)

    Patil, Sunil R.; Chawda, Vivek; Qi, Jianqing; Anantram, M. P.; Sinha, Niraj

    2018-05-01

    We report charge transport in electronic 'barriers' constructed by sequence engineering in DNA. Considering the ionization potentials of Thymine-Adenine (AT) and Guanine-Cytosine (GC) base pairs, we treat AT as 'barriers'. The effect of DNA conformation (A and B form) on charge transport is also investigated. Particularly, the effect of width of 'barriers' on hole transport is investigated. Density functional theory (DFT) calculations are performed on energy minimized DNA structures to obtain the electronic Hamiltonian. The quantum transport calculations are performed using the Landauer-Buttiker framework. Our main findings are contrary to previous studies. We find that a longer A-DNA with more AT base pairs can conduct better than shorter A-DNA with a smaller number of AT base pairs. We also find that some sequences of A-DNA can conduct better than a corresponding B-DNA with the same sequence. The counterions mediated charge transport and long range interactions are speculated to be responsible for counter-intuitive length and AT content dependence of conductance of A-DNA.

  5. Polymorphisms in base excision repair genes as colorectal cancer risk factors and modifiers of the effect of diets high in red meat.

    Science.gov (United States)

    Brevik, Asgeir; Joshi, Amit D; Corral, Román; Onland-Moret, N Charlotte; Siegmund, Kimberly D; Le Marchand, Loïc; Baron, John A; Martinez, Maria Elena; Haile, Robert W; Ahnen, Dennis J; Sandler, Robert S; Lance, Peter; Stern, Mariana C

    2010-12-01

    A diet high in red meat is an established colorectal cancer (CRC) risk factor. Carcinogens generated during meat cooking have been implicated as causal agents and can induce oxidative DNA damage, which elicits repair by the base excision repair (BER) pathway. Using a family-based study, we investigated the role of polymorphisms in 4 BER genes (APEX1 Gln51His, Asp148Glu; OGG1 Ser236Cys; PARP Val742Ala; and XRCC1 Arg194Trp, Arg280His, Arg399Gln) as potential CRC risk factors and modifiers of the association between diets high in red meat or poultry and CRC risk. We tested for gene-environment interactions using case-only analyses (n = 577) and compared statistically significant results with those obtained using case-unaffected sibling comparisons (n = 307 sibships). Carriers of the APEX1 codon 51 Gln/His genotype had a reduced CRC risk compared with carriers of the Gln/Gln genotype (odds ratio (OR) = 0.15, 95% CI = 0.03-0.69, P = 0.015). The association between higher red meat intake (>3 servings per week) and CRC was modified by the PARP Val762Ala single-nucleotide polymorphisms (SNP; case-only interaction P = 0.026). This SNP also modified the association between higher intake of high-temperature cooked red meat (case-only interaction P = 0.0009). We report evidence that the BER pathway PARP gene modifies the association of diets high in red meat cooked at high temperatures with risk of CRC. Our findings suggest a contribution to colorectal carcinogenesis of free radical damage as one of the possible harmful effects of a diet high in red meat. ©2010 AACR.

  6. Anatomy of the Transverse Mesocolon Based on Embryology for Laparoscopic Complete Mesocolic Excision of Right-Sided Colon Cancer.

    Science.gov (United States)

    Matsuda, Takeru; Sumi, Yasuo; Yamashita, Kimihiro; Hasegawa, Hiroshi; Yamamoto, Masashi; Matsuda, Yoshiko; Kanaji, Shingo; Oshikiri, Taro; Nakamura, Tetsu; Suzuki, Satoshi; Kakeji, Yoshihiro

    2017-11-01

    To treat colon cancer via complete mesocolic excision (CME) with central vascular ligation (CVL), dissection along the embryologic fusion planes is required. However, this surgery is difficult, especially for right-sided colon cancer, because the anatomy and embryology of the transverse mesocolon are not familiar to gastrointestinal surgeons. In this video article, the anatomic details of the transverse mesocolon based on embryology are illustrated with a focus on the venous anatomy. Dissection of the transverse mesocolon along the embryologic planes using a cranial approach during laparoscopic right hemicolectomy also is presented. During the development of the primitive gastrointestinal tract, the transverse mesocolon locates between the terminal portion of the midgut and the beginning of the hindgut. After 270° counterclockwise rotation of the primary intestinal loop, the transverse mesocolon fuses with the frontal surface of the duodenum and pancreas. Simultaneously, the greater omentum hangs down from the greater curvature of the stomach in front of the transverse colon and fuses with the transverse mesocolon. Moreover, the drainage vein of the right colon sometimes joins the right gastroepiploic vein, and the gastrocolic trunk is formed. Anatomic complexity of the transverse mesocolon is caused by rotation and fusion of the gastrointestinal tract during embryologic development. Knowledge concerning these embryologic peculiarities of the transverse mesocolon should be useful in the performance of laparoscopic CME with CVL for right-sided colon cancer.

  7. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko

    2016-07-01

    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  8. Recent progress on DNA based walkers.

    Science.gov (United States)

    Pan, Jing; Li, Feiran; Cha, Tae-Gon; Chen, Haorong; Choi, Jong Hyun

    2015-08-01

    DNA based synthetic molecular walkers are reminiscent of biological protein motors. They are powered by hybridization with fuel strands, environment induced conformational transitions, and covalent chemistry of oligonucleotides. Recent developments in experimental techniques enable direct observation of individual walkers with high temporal and spatial resolution. The functionalities of state-of-the-art DNA walker systems can thus be analyzed for various applications. Herein we review recent progress on DNA walker principles and characterization methods, and evaluate various aspects of their functions for future applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. DNA Based Electrochromic and Photovoltaic Cells

    Science.gov (United States)

    2012-01-01

    using deoxyribonucleic acid complex as an electron blocking layer App. Phys. Lett. 88 (2006) 171109. 23. F.H.C. Crick , J.D. Watson . The complementary...9550-09-1-0647 final 01-09-2009 ; 30-11-2011 DNA Based Electrochromic and Photovoltaic Cells FA 9550-09-1-0647 Pawlicka, Agnieszka, J. Instituto de...Available. DNA is an abundant natural product with very good biodegradation properties and can be used to obtain gel polymer electrolytes (GPEs) with high

  10. DNA N-glycosylases and uv repair

    Energy Technology Data Exchange (ETDEWEB)

    Demple, B; Linn, S

    1980-09-18

    Repair of some DNA photoproducts can be mediated by glycosylic bond hydrolysis. Thus, Escherichia coli endonuclease III releases 5,6-hydrated thymines as free bases, while T4 uv endonuclease releases one of two glycosylic bonds holding pyrimidine dimers in DNA. In contrast, uninfected E. coli apparently does not excise pyrimidine dimers via a DNA glycosylase.

  11. Global-genome Nucleotide Excision Repair Controlled by Ubiquitin/Sumo Modifiers

    Directory of Open Access Journals (Sweden)

    Peter eRuethemann

    2016-04-01

    Full Text Available Global-genome nucleotide excision repair (GG-NER prevents genome instability by excising a wide range of structurally unrelated DNA base adducts and crosslinks induced by chemical carcinogens, ultraviolet (UV radiation or intracellular metabolic by-products. As a versatile damage sensor, xeroderma pigmentosum group C (XPC protein initiates this generic defense reaction by locating the damage and recruiting the subunits of a large lesion demarcation complex that, in turn, triggers the excision of aberrant DNA by endonucleases. In the very special case of a DNA repair response to UV radiation, the function of this XPC initiator is tightly controlled by the dual action of cullin-type CRL4DDB2 and sumo-targeted RNF111 ubiquitin ligases. This twofold protein ubiquitination system promotes GG-NER reactions by spatially and temporally regulating the interaction of XPC protein with damaged DNA across the nucleosome landscape of chromatin. In the absence of either CRL4DDB2 or RNF111, the DNA excision repair of UV lesions is inefficient, indicating that these two ubiquitin ligases play a critical role in mitigating the adverse biological effects of UV light in the exposed skin.

  12. "Blow-torch phenomenon" during laser assisted excision of a thyroglossal cyst at the base of the tongue

    Directory of Open Access Journals (Sweden)

    Anitha G Bhat

    2012-01-01

    Full Text Available We report a case of blow-torch phenomenon encountered during diode laser assisted excision of a thyroglossal cyst in a child. This is first such case report from India and highlights an unusual complication which anesthesiologists need to be aware of due to the increasing use of operative laser.

  13. Evaluation of a cervical cancer screening program based on HPV testing and LLETZ excision in a low resource setting.

    Directory of Open Access Journals (Sweden)

    Margaret McAdam

    Full Text Available We conducted studies in Vanuatu to evaluate potential screening and treatment strategies to assist with control of cervical cancer. In a pilot study of 496 women, visual inspection and cytology were evaluated as screening tests for detection of CIN 2 or worse (CIN2+, observed in 21 of 206 subjects biopsied on the basis of abnormal visual inspection or cytology. Sensitivity of visual inspection with Lugol's Iodine for detection of CIN2+ on biopsy was 0.63, specificity was 0.32, and the positive predictive value was 0.09. For HSIL cytology, sensitivity was 0.99, specificity was 0.77, and the positive predictive value was 0.88. HSIL cytology was significantly more sensitive and had a significantly higher PPV for CIN 2+ than visual inspection (p<0.01. In a further study of 514 women, we compared testing for HR HPV and cytology as predictors of biopsy proven CIN 2+. Sensitivity of HSIL cytology for CIN2+ as established by loop excision of the cervix was 0.81, specificity was 0.94, and positive predictive value was 0.48. Sensitivity of a positive test for HR HPV for detection of CIN2+ was non-significantly different from cytology at 0.81, specificity was 0.94, and positive predictive value was 0.42. Combining the two tests gave a significantly lower sensitivity of 0.63, a specificity of 0.98, and a positive predictive value of 0.68. For women over 30 in a low resource setting without access to cytology, a single locally conducted test for high risk HPV with effective intervention could reduce cervical cancer risk as effectively as intervention based on cytology conducted in an accredited laboratory.

  14. Polymorphisms in RAI and in genes of nucleotide and base excision repair are not associated with risk of testicular cancer.

    Science.gov (United States)

    Laska, Magdalena J; Nexø, Bjørn A; Vistisen, Kirsten; Poulsen, Henrik Enghusen; Loft, Steffen; Vogel, Ulla

    2005-07-28

    Testicular cancer has been suggested to be primed in utero and there is familiar occurrence, particularly brothers and sons of men with testicular cancer have increased risk. Although no specific causative genotoxic agents have been identified, variations in DNA repair capacity could be associated with the risk of testicular cancer. A case-control study of 184 testicular cancer cases and 194 population-based controls living in the Copenhagen Greater Area in Denmark was performed. We found that neither polymorphisms in several DNA repair genes nor alleles of several polymorphisms in the chromosomal of region 19q13.2-3, encompassing the genes ASE, ERCC1, RAI and XPD, were associated with risk of testicular cancer in Danish patients. This is in contrast to other cancers, where we reported strong associations between polymorphisms in ERCC1, ASE and RAI and occurrence of basal cell carcinoma, breast cancer and lung. To our knowledge this is the first study of DNA repair gene polymorphisms and risk of testicular cancer.

  15. [Single-molecule detection and characterization of DNA replication based on DNA origami].

    Science.gov (United States)

    Wang, Qi; Fan, Youjie; Li, Bin

    2014-08-01

    To investigate single-molecule detection and characterization of DNA replication. Single-stranded DNA (ssDNA) as the template of DNA replication was attached to DNA origami by a hybridization reaction based on the complementary base-pairing principle. DNA replication catalyzed by E.coli DNA polymerase I Klenow Fragment (KF) was detected using atomic force microscopy (AFM). The height variations between the ssDNA and the double-stranded DNA (dsDNA), the distribution of KF during DNA replication and biotin-streptavidin (BA) complexes on the DNA strand after replication were detected. Agarose gel electrophoresis was employed to analyze the changes in the DNA after replication. The designed ssDNA could be anchored on the target positions of over 50% of the DNA origami. The KF was capable of binding to the ssDNA fixed on DNA origami and performing its catalytic activities, and was finally dissociated from the DNA after replication. The height of DNA strand increased by about 0.7 nm after replication. The addition of streptavidin also resulted in an DNA height increase to about 4.9 nm due to the formation of BA complexes on the biotinylated dsDNA. The resulting dsDNA and BA complex were subsequently confirmed by agarose gel electrophoresis. The combination of AFM and DNA origami allows detection and characterization of DNA replication at the single molecule level, and this approach provides better insights into the mechanism of DNA polymerase and the factors affecting DNA replication.

  16. The formation of double-strand breaks at multiply damaged sites is driven by the kinetics of excision/incision at base damage in eukaryotic cells

    International Nuclear Information System (INIS)

    Kozmin, S.G.; Sedletska, Y.; Reynaud-Angelin, A.; Sage, E.; Kozmin, S.G.; Sedletska, Y.; Reynaud-Angelin, A.; Sage, E.; Gasparutto, D.

    2009-01-01

    It has been stipulated that repair of clustered DNA lesions may be compromised, possibly leading to the formation of double-strand breaks (DSB) and, thus, to deleterious events. Using a variety of model multiply damaged sites (MDS), we investigated parameters that govern the formation of DSB during the processing of MDS. Duplexes carrying MDS were inserted into replicative or integrative vectors, and used to transform yeast Saccharomyces cerevisiae. Formation of DSB was assessed by a relevant plasmid survival assay. Kinetics of excision/incision and DSB formation at MDS was explored using yeast cell extracts. We show that MDS composed of two uracils or abasic sites, were rapidly incised and readily converted into DSB in yeast cells. In marked contrast, none of the MDS carrying opposed oG and hU separated by 38 bp gave rise to DSB, despite the fact that some of them contained preexisting single-strand break (a 1-nt gap). Interestingly, the absence of DSB formation in this case correlated with slow excision/incision rates of lesions. We propose that the kinetics of the initial repair steps at MDS is a major parameter that direct towards the conversion of MDS into DSB. Data provides clues to the biological consequences of MDS in eukaryotic cells. (authors)

  17. Random amplified polymorphic DNA based genetic characterization ...

    African Journals Online (AJOL)

    Random amplified polymorphic DNA based genetic characterization of four important species of Bamboo, found in Raigad district, Maharashtra State, India. ... Bambusoideae are differentiated from other members of the family by the presence of petiolate blades with parallel venation and stamens are three, four, six or more, ...

  18. Histone displacement during nucleotide excision repair

    DEFF Research Database (Denmark)

    Dinant, C.; Bartek, J.; Bekker-Jensen, S.

    2012-01-01

    Nucleotide excision repair (NER) is an important DNA repair mechanism required for cellular resistance against UV light and toxic chemicals such as those found in tobacco smoke. In living cells, NER efficiently detects and removes DNA lesions within the large nuclear macromolecular complex called...... of histone variants and histone displacement (including nucleosome sliding). Here we review current knowledge, and speculate about current unknowns, regarding those chromatin remodeling activities that physically displace histones before, during and after NER....

  19. Communication: Electron ionization of DNA bases

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M. A.; Krishnakumar, E., E-mail: ekkumar@tifr.res.in

    2016-04-28

    No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.

  20. DNA repair and its coupling to DNA replication in eukaryotic cells. [UV, x ray

    Energy Technology Data Exchange (ETDEWEB)

    Cleaver, J.E.

    1978-01-01

    This review article with 184 references presents the view that mammalian cells have one major repair system, excision repair, with many branches (nucleotide excision repair, base excision repair, crosslink repair, etc.) and a multiplicity of enzymes. Any particular carcinogen makes a spectrum of damaged sites and each kind of damage may be repaired by one or more branches of excision repair. Excision repair is rarely complete, except at very low doses, and eukaryotic cells survive and replicate DNA despite the presence of unrepaired damage. An alteration in a specific biochemical pathway seen in damaged or mutant cells will not always be the primary consequence of damage or of the biochemical defect of the cells. Detailed kinetic data are required to understand comprehensively the various facets of excision repair and replication. Correlation between molecular events of repair and cytological and cellular changes such as chromosomal damage, mutagenesis, transformation, and carcinogenesis are also rudimentary.

  1. Neil3-dependent base excision repair regulates lipid metabolism and prevents atherosclerosis in Apoe-deficient mice

    DEFF Research Database (Denmark)

    Skarpengland, Tonje; Holm, Sverre; Scheffler, Katja

    2016-01-01

    Increasing evidence suggests that oxidative DNA damage accumulates in atherosclerosis. Recently, we showed that a genetic variant in the human DNA repair enzyme NEIL3 was associated with increased risk of myocardial infarction. Here, we explored the role of Neil3/NEIL3 in atherogenesis by both...

  2. Safety and efficacy of a xenogeneic DNA vaccine encoding for human tyrosinase as adjunctive treatment for oral malignant melanoma in dogs following surgical excision of the primary tumor.

    Science.gov (United States)

    Grosenbaugh, Deborah A; Leard, A Timothy; Bergman, Philip J; Klein, Mary K; Meleo, Karri; Susaneck, Steven; Hess, Paul R; Jankowski, Monika K; Jones, Pamela D; Leibman, Nicole F; Johnson, Maribeth H; Kurzman, Ilene D; Wolchok, Jedd D

    2011-12-01

    To evaluate the safety and efficacy of a vaccine containing plasmid DNA with an insert encoding human tyrosinase (ie, huTyr vaccine) as adjunctive treatment for oral malignant melanoma (MM) in dogs. 111 dogs (58 prospectively enrolled in a multicenter clinical trial and 53 historical controls) with stage II or III oral MM (modified World Health Organization staging scale, I to IV) in which locoregional disease control was achieved. 58 dogs received an initial series of 4 injections of huTyr vaccine (102 μg of DNA/injection) administered transdermally by use of a needle-free IM vaccination device. Dogs were monitored for adverse reactions. Surviving dogs received booster injections at 6-month intervals thereafter. Survival time for vaccinates was compared with that of historical control dogs via Kaplan-Meier survival analysis for the outcome of death. Kaplan-Meier analysis of survival time until death attributable to MM was determined to be significantly improved for dogs that received the huTyr vaccine, compared with that of historical controls. However, median survival time could not be determined for vaccinates because dogs as adjunctive treatment for oral MM. Response to DNA vaccination in dogs with oral MM may be useful in development of plasmid DNA vaccination protocols for human patients with similar disease.

  3. Detection of DNA damage based on metal-mediated molecular beacon and DNA strands displacement reaction

    Science.gov (United States)

    Xiong, Yanxiang; Wei, Min; Wei, Wei; Yin, Lihong; Pu, Yuepu; Liu, Songqin

    2014-01-01

    DNA hairpin structure probes are usually designed by forming intra-molecular duplex based on Watson-Crick hydrogen bonds. In this paper, a molecular beacon based on silver ions-mediated cytosine-Ag+-cytosine base pairs was used to detect DNA. The inherent characteristic of the metal ligation facilitated the design of functional probe and the adjustment of its binding strength compared to traditional DNA hairpin structure probes, which make it be used to detect DNA in a simple, rapid and easy way with the help of DNA strands displacement reaction. The method was sensitive and also possesses the good specificity to differentiate the single base mismatched DNA from the complementary DNA. It was also successfully applied to study the damage effect of classic genotoxicity chemicals such as styrene oxide and sodium arsenite on DNA, which was significant in food science, environmental science and pharmaceutical science.

  4. DNA & Protein detection based on microbead agglutination

    KAUST Repository

    Kodzius, Rimantas

    2012-06-06

    We report a simple and rapid room temperature assay for point-of-care (POC) testing that is based on specific agglutination. Agglutination tests are based on aggregation of microparticles in the presence of a specific analyte thus enabling the macroscopic observation. Agglutination-based tests are most often used to explore the antibody-antigen reactions. Agglutination has been used for mode protein assays using a biotin/streptavidin two-component system, as well as a hybridization based two-component assay; however, as our work shows, two-component systems are prone to self-termination of the linking analyte and thus have a lower sensitivity. Three component systems have also been used with DNA hybridization, as in our work; however, their assay requires 48 hours for incubation, while our assay is performed in 5 minutes making it a real candidate for POC testing. We demonstrate three assays: a two-component biotin/streptavidin assay, a three-component hybridization assay using single stranded DNA (ssDNA) molecules and a stepped three-component hybridization assay. The comparison of these three assays shows our simple stepped three-component agglutination assay to be rapid at room temperature and more sensitive than the two-component version by an order of magnitude. An agglutination assay was also performed in a PDMS microfluidic chip where agglutinated beads were trapped by filter columns for easy observation. We developed a rapid (5 minute) room temperature assay, which is based on microbead agglutination. Our three-component assay solves the linker self-termination issue allowing an order of magnitude increase in sensitivity over two–component assays. Our stepped version of the three-component assay solves the issue with probe site saturation thus enabling a wider range of detection. Detection of the agglutinated beads with the naked eye by trapping in microfluidic channels has been shown.

  5. DNA Damage Induced by Alkylating Agents and Repair Pathways

    OpenAIRE

    Natsuko Kondo; Akihisa Takahashi; Koji Ono; Takeo Ohnishi

    2010-01-01

    The cytotoxic effects of alkylating agents are strongly attenuated by cellular DNA repair processes, necessitating a clear understanding of the repair mechanisms. Simple methylating agents form adducts at N- and O-atoms. N-methylations are removed by base excision repair, AlkB homologues, or nucleotide excision repair (NER). O 6-methylguanine (MeG), which can eventually become cytotoxic and mutagenic, is repaired by O 6-methylguanine-DNA methyltransferase, and O 6MeG:T mispairs are recognized...

  6. DNA Array-Based Gene Profiling

    Science.gov (United States)

    Mocellin, Simone; Provenzano, Maurizio; Rossi, Carlo Riccardo; Pilati, Pierluigi; Nitti, Donato; Lise, Mario

    2005-01-01

    Cancer is a heterogeneous disease in most respects, including its cellularity, different genetic alterations, and diverse clinical behaviors. Traditional molecular analyses are reductionist, assessing only 1 or a few genes at a time, thus working with a biologic model too specific and limited to confront a process whose clinical outcome is likely to be governed by the combined influence of many genes. The potential of functional genomics is enormous, because for each experiment, thousands of relevant observations can be made simultaneously. Accordingly, DNA array, like other high-throughput technologies, might catalyze and ultimately accelerate the development of knowledge in tumor cell biology. Although in its infancy, the implementation of DNA array technology in cancer research has already provided investigators with novel data and intriguing new hypotheses on the molecular cascade leading to carcinogenesis, tumor aggressiveness, and sensitivity to antiblastic agents. Given the revolutionary implications that the use of this technology might have in the clinical management of patients with cancer, principles of DNA array-based tumor gene profiling need to be clearly understood for the data to be correctly interpreted and appreciated. In the present work, we discuss the technical features characterizing this powerful laboratory tool and review the applications so far described in the field of oncology. PMID:15621987

  7. Excited state dynamics of DNA bases

    Czech Academy of Sciences Publication Activity Database

    Kleinermanns, K.; Nachtigallová, Dana; de Vries, M. S.

    2013-01-01

    Roč. 32, č. 2 (2013), s. 308-342 ISSN 0144-235X R&D Projects: GA ČR GAP208/12/1318 Grant - others:National Science Foundation(US) CHE-0911564; NASA (US) NNX12AG77G; Deutsche Forschungsgemeinschaft(DE) SFB 663; Deutsche Forschungsgemeinschaft(DE) KI 531-29 Institutional support: RVO:61388963 Keywords : DNA bases * nucleobases * excited state * dynamics * computations * gas phase * conical intersections Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.920, year: 2013

  8. Drosophila mutations at the mei-9 and mus(2)201 loci which block excision of thymine dimers also block induction of unscheluded DNA synthesis by methyl methanesulfonate, ethyl methanesulfonate, N-methyl-N-nitrosourea, UV light and X-rays

    International Nuclear Information System (INIS)

    Dusenbery, R.L.; McCormick, S.C.; Smith, P.D.

    1983-01-01

    The mei-9 and mus(2)201 mutants of Drosophila melanogaster were identified as mutagen-sensitive mutants on the basis of larval hypersensitivity to methyl methanesulfonate and characterized as excision repair-deficient on the basis of a greatly reduced capacity to excise thymine dimers from cellular DNA. The high degree of larval cytotoxicity observed with a variety of other chemical and physical agents indicated that these mutants may be unable to excise other important classes of DNA adducts. We have measured the ability of the single mutants and the double mutant combination mei-9;mus(2)201 to perform the resynthesis step in excision repair by means of an autoradiographic analysis of unscheduled DNA synthesis (UDS) induced in a mixed population of primary cells in culture. The 3 strains exhibit no detectable UDS activity in response to applied doses of 1.5-6.0 mM methyl methanesulfonate, 1.0-4.5 nM N-methyl-N-nitrosourea or 10-40 J/m 2 254-nm UV light, dose ranges in which control cells exhibit a strong dose-dependent UDS response. The mei-9 and mei-9;mus(2)201 mutants also have no detectable UDS response to X-ray doses of 300-1.800 rad, whereas the mus(2)201 mutant exhibits a reduced, but dose-dependent, response over this range. These data correlate well with the degree of larval hypersensitivity of the strains and suggest that mutations at both loci block the excision repair of a wide variety of DNA damage prior to the resynthesis step. (orig.)

  9. Recognition and processing of a new repertoire of DNA substrates by human 3-methyladenine DNA glycosylase (AAG).

    Science.gov (United States)

    Lee, Chun-Yue I; Delaney, James C; Kartalou, Maria; Lingaraju, Gondichatnahalli M; Maor-Shoshani, Ayelet; Essigmann, John M; Samson, Leona D

    2009-03-10

    The human 3-methyladenine DNA glycosylase (AAG) recognizes and excises a broad range of purines damaged by alkylation and oxidative damage, including 3-methyladenine, 7-methylguanine, hypoxanthine (Hx), and 1,N(6)-ethenoadenine (epsilonA). The crystal structures of AAG bound to epsilonA have provided insights into the structural basis for substrate recognition, base excision, and exclusion of normal purines and pyrimidines from its substrate recognition pocket. In this study, we explore the substrate specificity of full-length and truncated Delta80AAG on a library of oligonucleotides containing structurally diverse base modifications. Substrate binding and base excision kinetics of AAG with 13 damaged oligonucleotides were examined. We found that AAG bound to a wide variety of purine and pyrimidine lesions but excised only a few of them. Single-turnover excision kinetics showed that in addition to the well-known epsilonA and Hx substrates, 1-methylguanine (m1G) was also excised efficiently by AAG. Thus, along with epsilonA and ethanoadenine (EA), m1G is another substrate that is shared between AAG and the direct repair protein AlkB. In addition, we found that both the full-length and truncated AAG excised 1,N(2)-ethenoguanine (1,N(2)-epsilonG), albeit weakly, from duplex DNA. Uracil was excised from both single- and double-stranded DNA, but only by full-length AAG, indicating that the N-terminus of AAG may influence glycosylase activity for some substrates. Although AAG has been primarily shown to act on double-stranded DNA, AAG excised both epsilonA and Hx from single-stranded DNA, suggesting the possible significance of repair of these frequent lesions in single-stranded DNA transiently generated during replication and transcription.

  10. A DNA Structure-Based Bionic Wavelet Transform and Its Application to DNA Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2003-01-01

    Full Text Available DNA sequence analysis is of great significance for increasing our understanding of genomic functions. An important task facing us is the exploration of hidden structural information stored in the DNA sequence. This paper introduces a DNA structure-based adaptive wavelet transform (WT – the bionic wavelet transform (BWT – for DNA sequence analysis. The symbolic DNA sequence can be separated into four channels of indicator sequences. An adaptive symbol-to-number mapping, determined from the structural feature of the DNA sequence, was introduced into WT. It can adjust the weight value of each channel to maximise the useful energy distribution of the whole BWT output. The performance of the proposed BWT was examined by analysing synthetic and real DNA sequences. Results show that BWT performs better than traditional WT in presenting greater energy distribution. This new BWT method should be useful for the detection of the latent structural features in future DNA sequence analysis.

  11. Arthroscopic excision of ganglion cysts.

    Science.gov (United States)

    Bontempo, Nicholas A; Weiss, Arnold-Peter C

    2014-02-01

    Arthroscopy is an advancing field in orthopedics, the applications of which have been expanding over time. Traditionally, excision of ganglion cysts has been done in an open fashion. However, more recently, studies show outcomes following arthroscopic excision to be as good as open excision. Cosmetically, the incisions are smaller and heal faster following arthroscopy. In addition, there is the suggested benefit that patients will regain function and return to work faster following arthroscopic excision. More prospective studies comparing open and arthroscopic excision of ganglion cysts need to be done in order to delineate if there is a true functional benefit. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. DNA repair deficiency in neurodegeneration

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A; Stevnsner, Tinna V.

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive...... neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative...... base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby...

  13. My journey to DNA repair.

    Science.gov (United States)

    Lindahl, Tomas

    2013-02-01

    I completed my medical studies at the Karolinska Institute in Stockholm but have always been devoted to basic research. My longstanding interest is to understand fundamental DNA repair mechanisms in the fields of cancer therapy, inherited human genetic disorders and ancient DNA. I initially measured DNA decay, including rates of base loss and cytosine deamination. I have discovered several important DNA repair proteins and determined their mechanisms of action. The discovery of uracil-DNA glycosylase defined a new category of repair enzymes with each specialized for different types of DNA damage. The base excision repair pathway was first reconstituted with human proteins in my group. Cell-free analysis for mammalian nucleotide excision repair of DNA was also developed in my laboratory. I found multiple distinct DNA ligases in mammalian cells, and led the first genetic and biochemical work on DNA ligases I, III and IV. I discovered the mammalian exonucleases DNase III (TREX1) and IV (FEN1). Interestingly, expression of TREX1 was altered in some human autoimmune diseases. I also showed that the mutagenic DNA adduct O(6)-methylguanine (O(6)mG) is repaired without removing the guanine from DNA, identifying a surprising mechanism by which the methyl group is transferred to a residue in the repair protein itself. A further novel process of DNA repair discovered by my research group is the action of AlkB as an iron-dependent enzyme carrying out oxidative demethylation. Copyright © 2013. Production and hosting by Elsevier Ltd.

  14. Nucleotide excision repair II: From yeast to mammals

    NARCIS (Netherlands)

    J.H.J. Hoeijmakers (Jan)

    1993-01-01

    textabstractAn intricate network of repair systems safeguards the integrity of genetic material, by eliminating DNA lesions induced by numerous environmental and endogenous genotoxic agents. Nucleotide excision repair (NER) is one of the most versatile DNA repair systems. Deficiencies in this

  15. Analytical Devices Based on Direct Synthesis of DNA on Paper.

    Science.gov (United States)

    Glavan, Ana C; Niu, Jia; Chen, Zhen; Güder, Firat; Cheng, Chao-Min; Liu, David; Whitesides, George M

    2016-01-05

    This paper addresses a growing need in clinical diagnostics for parallel, multiplex analysis of biomarkers from small biological samples. It describes a new procedure for assembling arrays of ssDNA and proteins on paper. This method starts with the synthesis of DNA oligonucleotides covalently linked to paper and proceeds to assemble microzones of DNA-conjugated paper into arrays capable of simultaneously capturing DNA, DNA-conjugated protein antigens, and DNA-conjugated antibodies. The synthesis of ssDNA oligonucleotides on paper is convenient and effective with 32% of the oligonucleotides cleaved and eluted from the paper substrate being full-length by HPLC for a 32-mer. These ssDNA arrays can be used to detect fluorophore-linked DNA oligonucleotides in solution, and as the basis for DNA-directed assembly of arrays of DNA-conjugated capture antibodies on paper, detect protein antigens by sandwich ELISAs. Paper-anchored ssDNA arrays with different sequences can be used to assemble paper-based devices capable of detecting DNA and antibodies in the same device and enable simple microfluidic paper-based devices.

  16. Controlling charge current through a DNA based molecular transistor

    Energy Technology Data Exchange (ETDEWEB)

    Behnia, S., E-mail: s.behnia@sci.uut.ac.ir; Fathizadeh, S.; Ziaei, J.

    2017-01-05

    Molecular electronics is complementary to silicon-based electronics and may induce electronic functions which are difficult to obtain with conventional technology. We have considered a DNA based molecular transistor and study its transport properties. The appropriate DNA sequence as a central chain in molecular transistor and the functional interval for applied voltages is obtained. I–V characteristic diagram shows the rectifier behavior as well as the negative differential resistance phenomenon of DNA transistor. We have observed the nearly periodic behavior in the current flowing through DNA. It is reported that there is a critical gate voltage for each applied bias which above it, the electrical current is always positive. - Highlights: • Modeling a DNA based molecular transistor and studying its transport properties. • Choosing the appropriate DNA sequence using the quantum chaos tools. • Choosing the functional interval for voltages via the inverse participation ratio tool. • Detecting the rectifier and negative differential resistance behavior of DNA.

  17. Repair of Clustered Damage and DNA Polymerase Iota.

    Science.gov (United States)

    Belousova, E A; Lavrik, O I

    2015-08-01

    Multiple DNA lesions occurring within one or two turns of the DNA helix known as clustered damage are a source of double-stranded DNA breaks, which represent a serious threat to the cells. Repair of clustered lesions is accomplished in several steps. If a clustered lesion contains oxidized bases, an individual DNA lesion is repaired by the base excision repair (BER) mechanism involving a specialized DNA polymerase after excising DNA damage. Here, we investigated DNA synthesis catalyzed by DNA polymerase iota using damaged DNA templates. Two types of DNA substrates were used as model DNAs: partial DNA duplexes containing breaks of different length, and DNA duplexes containing 5-formyluracil (5-foU) and uracil as a precursor of apurinic/apyrimidinic sites (AP) in opposite DNA strands. For the first time, we showed that DNA polymerase iota is able to catalyze DNA synthesis using partial DNA duplexes having breaks of different length as substrates. In addition, we found that DNA polymerase iota could catalyze DNA synthesis during repair of clustered damage via the BER system by using both undamaged and 5-foU-containing templates. We found that hPCNA (human proliferating cell nuclear antigen) increased efficacy of DNA synthesis catalyzed by DNA polymerase iota.

  18. Value of histopathologic analysis of subcutis excisions by general practitioners

    Directory of Open Access Journals (Sweden)

    Verweij Wim

    2007-01-01

    Full Text Available Abstract Background Only around 60% of skin lesions excised by GPs are referred to a pathologist. Clinical diagnoses of skin excisions by GPs may not be very accurate. Subcutis excisions are rarely done by GPs, and there is hence little information in the literature on the histopathological yield of subcutis excisions by GPs with regard to malignancies. The aim of this study was to evaluate the yield of histopathological investigation of a relatively large group of subcutis excisions by GPs, with special emphasis on discrepancies between clinical and histopathological diagnoses of malignancy. Methods We investigated a series of 90 subcutis excisions, which was derived from a database of consecutive GP submissions from the years 1999–2000 where in the same time period 4595 skin excisions were performed by the same group of GPs. This underlines the apparent reluctance of GPs to perform subcutis excisions. Results The final diagnosis was benign in 88 cases (97.8% and malignant in 2 cases (2.2%. Seven cases had no clinical diagnosis, all of which were benign. Of the 83 clinically benign cases, 81 (97.6% were indeed benign and 2 (2.4% were malignant: one Merkel cell carcinoma and one dermatofibrosarcoma protuberans. The former was clinically thought to be a lipoma, and the latter a trichilemmal cyst. The dermatofibrosarcoma protuberans presented at the age of 27, and the Merkel cell carcinoma at the age of 60. Both were incompletely removed and required re-excision by a surgical oncologist. Conclusion Histopathological investigation of subcutis excisions by GPs yields unexpected and rare malignancies in about 2% of cases that may initially be excised inadequately. Based on these data, and because of the relatively rareness of these type of excisions, it could be argued that it may be worthwhile to have all subcutis excisions by GPs routinely investigated by histopathology.

  19. Synthesis of furan-based DNA binders and their interaction with DNA

    International Nuclear Information System (INIS)

    Voege, Andrea; Hoffmann, Sascha; Gabel, Detlef

    2006-01-01

    In recent years, many substances, based on naturally occurring DNA-binding molecules have been developed for the use in cancer therapy and as virostatica. Most of these substances are binding specifically to A-T rich sequences in the DNA minor groove. Neutral and positively charged DNA-binders are known. BNCT is most effective, which the boron is directly located in the cellular nucleus, so that the intercation with thermal neutrons can directly damage the DNA. To reach this aim, we have connected ammonioundecahydrododecaborate(1-) to DNA-binding structures such as 2,5-bis(4-formylphenyl)furan via a Schiff-Base reaction followed by a reduction of the imine to a secondary amine. In a following step the amine can be alkylated to insert positive charges to prevent repulsion between the compounds and the negatively charged sugar-phosphate-backbone of the DNA. (author)

  20. DNA sequence modeling based on context trees

    NARCIS (Netherlands)

    Kusters, C.J.; Ignatenko, T.; Roland, J.; Horlin, F.

    2015-01-01

    Genomic sequences contain instructions for protein and cell production. Therefore understanding and identification of biologically and functionally meaningful patterns in DNA sequences is of paramount importance. Modeling of DNA sequences in its turn can help to better understand and identify such

  1. Electroporation-based DNA delivery technology

    DEFF Research Database (Denmark)

    Gothelf, A; Gehl, Julie

    2014-01-01

    DNA delivery to for example skin and muscle can easily be performed with electroporation. The method is efficient, feasible, and inexpensive and the future possibilities are numerous. Here we present our protocol for gene transfection to mouse skin using naked plasmid DNA and electric pulses....

  2. DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces cerevisiae

    Science.gov (United States)

    Boiteux, Serge; Jinks-Robertson, Sue

    2013-01-01

    DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage. PMID:23547164

  3. Induced Polarization Influences the Fundamental Forces in DNA Base Flipping

    OpenAIRE

    Lemkul, Justin A.; Savelyev, Alexey; MacKerell, Alexander D.

    2014-01-01

    Base flipping in DNA is an important process involved in genomic repair and epigenetic control of gene expression. The driving forces for these processes are not fully understood, especially in the context of the underlying dynamics of the DNA and solvent effects. We studied double-stranded DNA oligomers that have been previously characterized by imino proton exchange NMR using both additive and polarizable force fields. Our results highlight the importance of induced polarization on the base...

  4. Removal of misincorporated ribonucleotides from prokaryotic genomes: an unexpected role for nucleotide excision repair.

    Directory of Open Access Journals (Sweden)

    Alexandra Vaisman

    2013-11-01

    Full Text Available Stringent steric exclusion mechanisms limit the misincorporation of ribonucleotides by high-fidelity DNA polymerases into genomic DNA. In contrast, low-fidelity Escherichia coli DNA polymerase V (pol V has relatively poor sugar discrimination and frequently misincorporates ribonucleotides. Substitution of a steric gate tyrosine residue with alanine (umuC_Y11A reduces sugar selectivity further and allows pol V to readily misincorporate ribonucleotides as easily as deoxynucleotides, whilst leaving its poor base-substitution fidelity essentially unchanged. However, the mutability of cells expressing the steric gate pol V mutant is very low due to efficient repair mechanisms that are triggered by the misincorporated rNMPs. Comparison of the mutation frequency between strains expressing wild-type and mutant pol V therefore allows us to identify pathways specifically directed at ribonucleotide excision repair (RER. We previously demonstrated that rNMPs incorporated by umuC_Y11A are efficiently removed from DNA in a repair pathway initiated by RNase HII. Using the same approach, we show here that mismatch repair and base excision repair play minimal back-up roles in RER in vivo. In contrast, in the absence of functional RNase HII, umuC_Y11A-dependent mutagenesis increases significantly in ΔuvrA, uvrB5 and ΔuvrC strains, suggesting that rNMPs misincorporated into DNA are actively repaired by nucleotide excision repair (NER in vivo. Participation of NER in RER was confirmed by reconstituting ribonucleotide-dependent NER in vitro. We show that UvrABC nuclease-catalyzed incisions are readily made on DNA templates containing one, two, or five rNMPs and that the reactions are stimulated by the presence of mispaired bases. Similar to NER of DNA lesions, excision of rNMPs proceeds through dual incisions made at the 8(th phosphodiester bond 5' and 4(th-5(th phosphodiester bonds 3' of the ribonucleotide. Ribonucleotides misinserted into DNA can therefore be

  5. Rational Inhibitors of DNA Base Excision Repair Enzymes: New Tools for Elucidating the Role of BER in Cancer Chemotherapy. Addendum

    Science.gov (United States)

    2006-11-01

    exponential decay to obtain koff (eq 5). Because of the very slow dissociation of UF‚M, its koff was measured by manually mixing a solution consisting...integrated high-throughput ( HTP ) platform for discovering small-molecule ligands that inhibit UNG. The strategy takes advantage of the extrahelical...robust HTP activity assay, and initial hits are quickly optimized using subsequent structure-activity studies. This tethering approach, which uses

  6. Excision repair in MUT-mutants of Proteus mirabilis after UV-irradiation

    International Nuclear Information System (INIS)

    Stoerl, K.; Mund, C.

    1977-01-01

    The behaviour of MUT-mutants of P.mirabilis to perform certain steps of excision repair after U.V.-irradiation is described. MUT-mutants introduce single-strand breaks in the DNA immediately after U.V.-irradiation, but their ability to excise pyrimidine dimers from the DNA is very diminished. Moreover, they are not able to accomplish the excision repair by rejoining of the single-strand breaks. The connection between the incomplete excision repair and the mutator phenotype of these mutants is discussed. (author)

  7. Random amplified polymorphic DNA based genetic characterization ...

    African Journals Online (AJOL)

    DIRECTOR

    2013-07-10

    Jul 10, 2013 ... Electrophoresis) buffer, 2 µl of SYBR-safe (DNA staining dye) was added to it, mixed properly, ..... tools in plant genetic resources conservation: a guide to the technologies. IPGRI. Rome ... Creating Capital. Seethalakshmi KK ...

  8. Base damage within single-strand DNA underlies in vivo hypermutability induced by a ubiquitous environmental agent.

    Directory of Open Access Journals (Sweden)

    Kin Chan

    Full Text Available Chromosomal DNA must be in single-strand form for important transactions such as replication, transcription, and recombination to occur. The single-strand DNA (ssDNA is more prone to damage than double-strand DNA (dsDNA, due to greater exposure of chemically reactive moieties in the nitrogenous bases. Thus, there can be agents that damage regions of ssDNA in vivo while being inert toward dsDNA. To assess the potential hazard posed by such agents, we devised an ssDNA-specific mutagenesis reporter system in budding yeast. The reporter strains bear the cdc13-1 temperature-sensitive mutation, such that shifting to 37°C results in telomere uncapping and ensuing 5' to 3' enzymatic resection. This exposes the reporter region, containing three closely-spaced reporter genes, as a long 3' ssDNA overhang. We validated the ability of the system to detect mutagenic damage within ssDNA by expressing a modified human single-strand specific cytosine deaminase, APOBEC3G. APOBEC3G induced a high density of substitutions at cytosines in the ssDNA overhang strand, resulting in frequent, simultaneous inactivation of two reporter genes. We then examined the mutagenicity of sulfites, a class of reactive sulfur oxides to which humans are exposed frequently via respiration and food intake. Sulfites, at a concentration similar to that found in some foods, induced a high density of mutations, almost always as substitutions at cytosines in the ssDNA overhang strand, resulting in simultaneous inactivation of at least two reporter genes. Furthermore, sulfites formed a long-lived adducted 2'-deoxyuracil intermediate in DNA that was resistant to excision by uracil-DNA N-glycosylase. This intermediate was bypassed by error-prone translesion DNA synthesis, frequently involving Pol ζ, during repair synthesis. Our results suggest that sulfite-induced lesions in DNA can be particularly deleterious, since cells might not possess the means to repair or bypass such lesions

  9. A nuclear DNA-based species determination and DNA quantification assay for common poultry species.

    Science.gov (United States)

    Ng, J; Satkoski, J; Premasuthan, A; Kanthaswamy, S

    2014-12-01

    DNA testing for food authentication and quality control requires sensitive species-specific quantification of nuclear DNA from complex and unknown biological sources. We have developed a multiplex assay based on TaqMan® real-time quantitative PCR (qPCR) for species-specific detection and quantification of chicken (Gallus gallus), duck (Anas platyrhynchos), and turkey (Meleagris gallopavo) nuclear DNA. The multiplex assay is able to accurately detect very low quantities of species-specific DNA from single or multispecies sample mixtures; its minimum effective quantification range is 5 to 50 pg of starting DNA material. In addition to its use in food fraudulence cases, we have validated the assay using simulated forensic sample conditions to demonstrate its utility in forensic investigations. Despite treatment with potent inhibitors such as hematin and humic acid, and degradation of template DNA by DNase, the assay was still able to robustly detect and quantify DNA from each of the three poultry species in mixed samples. The efficient species determination and accurate DNA quantification will help reduce fraudulent food labeling and facilitate downstream DNA analysis for genetic identification and traceability.

  10. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization.

    Science.gov (United States)

    Yang, Lan-Hee; Ahn, Dong June; Koo, Eunhae

    2016-12-01

    In the diagnosis of genetic diseases, rapid and highly sensitive DNA detection is crucial. Therefore, many strategies for detecting target DNA have been developed, including electrical, optical, and mechanical methods. Herein, a highly sensitive FRET based sensor was developed by using PNA (Peptide Nucleic Acid) probe and QD, in which red color QDs are hybridized with capture probes, reporter probes and target DNAs by EDC-NHS coupling. The hybridized probe with target DNA gives off fluorescent signal due to the energy transfer from QD to Cy5 dye in the reporter probe. Compared to the conventional DNA sensor using DNA probes, the DNA sensor using PNA probes shows higher FRET factor and efficiency due to the higher reactivity between PNA and target DNA. In addition, to elicit the effect of the distance between the donor and the acceptor, we have investigated two types of the reporter probes having Cy5 dyes attached at the different positions of the reporter probes. Results show that the shorter the distance between QDs and Cy5s, the stronger the signal intensity. Furthermore, based on the fluorescence microscopy images using microcapillary chips, the FRET signal is enhanced to be up to 276% times stronger than the signal obtained using the cuvette by the fluorescence spectrometer. These results suggest that the PNA probe system conjugated with QDs can be used as ultrasensitive DNA nanosensors. Copyright © 2016. Published by Elsevier B.V.

  11. Indicator Based and Indicator - Free Electrochemical DNA Biosensors

    National Research Council Canada - National Science Library

    Kerman, Kagan

    2001-01-01

    The utility and advantages of an indicator free and MB based sequence specific DNA hybridization biosensor based on guanine and adenine oxidation signals and MB reduction signals have been demonstrated...

  12. DNA nanostructure-based drug delivery nanosystems in cancer therapy.

    Science.gov (United States)

    Wu, Dandan; Wang, Lei; Li, Wei; Xu, Xiaowen; Jiang, Wei

    2017-11-25

    DNA as a novel biomaterial can be used to fabricate different kinds of DNA nanostructures based on its principle of GC/AT complementary base pairing. Studies have shown that DNA nanostructure is a nice drug carrier to overcome big obstacles existing in cancer therapy such as systemic toxicity and unsatisfied drug efficacy. Thus, different types of DNA nanostructure-based drug delivery nanosystems have been designed in cancer therapy. To improve treating efficacy, they are also developed into more functional drug delivery nanosystems. In recent years, some important progresses have been made. The objective of this review is to make a retrospect and summary about these different kinds of DNA nanostructure-based drug delivery nanosystems and their latest progresses: (1) active targeting; (2) mutidrug co-delivery; (3) construction of stimuli-responsive/intelligent nanosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    International Nuclear Information System (INIS)

    Jackson, Christopher B.; Gallati, Sabina; Schaller, André

    2012-01-01

    Highlights: ► Serial qPCR accurately determines fragmentation state of any given DNA sample. ► Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. ► Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. ► Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze–thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA (λ nDNA ) and mtDNA (λ mtDNA ) we present an approach to possibly correct measurements in degraded samples in the future. To our knowledge this is the first time different degradation impact of the two

  14. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Christopher B., E-mail: Christopher.jackson@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland); Gallati, Sabina, E-mail: sabina.gallati@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland); Schaller, Andre, E-mail: andre.schaller@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Serial qPCR accurately determines fragmentation state of any given DNA sample. Black-Right-Pointing-Pointer Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. Black-Right-Pointing-Pointer Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. Black-Right-Pointing-Pointer Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA ({lambda}{sub nDNA}) and mtDNA ({lambda}{sub mtDNA}) we present an approach to possibly correct measurements in

  15. Cold-knife conisation and large loop excision of transformation zone significantly increase the risk for spontaneous preterm birth: a population-based cohort study.

    Science.gov (United States)

    Jančar, Nina; Mihevc Ponikvar, Barbara; Tomšič, Sonja

    2016-08-01

    Our aim was to explore the association between cold-knife conisation and large loop excision of transformation zone (LLETZ) with spontaneous preterm birth in a large 10-year national sample. We wanted to explore further the association of these procedures with preterm birth according to gestation. We conducted a population based retrospective cohort study, using data from national Medical Birth Registry. The study population consisted of all women giving birth to singletons in the period 2003-2012 in Slovenia, excluding all induced labors and elective cesarean sections before 37 weeks of gestation (N=192730). We compared the prevalence of spontaneous preterm births (before 28 weeks, before 32 weeks, before 34 weeks and before 37 weeks of gestation) in women with cold-knife conisation or LLETZ compared to women without history of conisation, calculating odds ratios (OR), adjusted for potential confounders. Chi-square test was used for descriptive analysis. Logistic regression analyses were performed to estimate crude odds ratio (OR) and adjusted odds ratio (aOR) and their 95% confidence intervals (95% CI) with two-sided probability (p) values. A total of 8420 (4.4%) women had a preterm birth before 37 weeks of gestation, 2250 (1.2%) before 34 weeks of gestation, 1333 (0.7%) before 32 weeks of gestation and 603 (0.3%) before 28 weeks of gestation. A total of 4580 (2.4%) women had some type of conisation in their medical history: 2083 (1.1%) had cold-knife conisation and 2498 (1.3%) had LLETZ. In women with history of cold-knife conisation, the adjusted OR for preterm birth before 37 weeks of gestation was 3.13 (95% CI; 2.74-3.57) and for preterm birth before 28 weeks of gestation 5.96 (95% CI; 4.3-8.3). In women with history of LLETZ, the adjusted OR was 1.95 (95% CI; 1.68-2.25) and 2.88 (95% CI; 1.87-4.43), respectively. Women with cervical excision procedure of any kind have significantly increased odds for preterm birth, especially for preterm birth before 28

  16. A NOVEL ROLLING BASED DNA CRYPTOGRAPHY

    Directory of Open Access Journals (Sweden)

    Rejwana Haque

    2017-05-01

    Full Text Available DNA Cryptography can be defined as a hiding data in terms of DNA Sequence. In this paper we propose a new DNA Encryption Technique where three different types of ordering is use to make binary data into cipher text. The main stages of this encryption technique are: Key Analysis, Data and Key Arrangement, Roll in encoding, Secondary Arrangement and Shifting. Decryption process has six main steps to obtain the original binary data from the encrypted data and key. Decryption steps are: Key Analysis, Shifting, Secondary Arrangement, Key Arrangement, Roll-out decoding, Data Arrangement. Here key size is half of binary data and the key is varies from data to data so key are used as one time pad. In this paper we also discuss about the implementation from sample data and security analysis for this given method.

  17. DNA hybridization sensor based on pentacene thin film transistor.

    Science.gov (United States)

    Kim, Jung-Min; Jha, Sandeep Kumar; Chand, Rohit; Lee, Dong-Hoon; Kim, Yong-Sang

    2011-01-15

    A DNA hybridization sensor using pentacene thin film transistors (TFTs) is an excellent candidate for disposable sensor applications due to their low-cost fabrication process and fast detection. We fabricated pentacene TFTs on glass substrate for the sensing of DNA hybridization. The ss-DNA (polyA/polyT) or ds-DNA (polyA/polyT hybrid) were immobilized directly on the surface of the pentacene, producing a dramatic change in the electrical properties of the devices. The electrical characteristics of devices were studied as a function of DNA immobilization, single-stranded vs. double-stranded DNA, DNA length and concentration. The TFT device was further tested for detection of λ-phage genomic DNA using probe hybridization. Based on these results, we propose that a "label-free" detection technique for DNA hybridization is possible through direct measurement of electrical properties of DNA-immobilized pentacene TFTs. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Demographics and Outcomes of Stage I-II Merkel Cell Carcinoma Treated with Mohs Micrographic Surgery Compared with Wide Local Excision in the National Cancer Data Base.

    Science.gov (United States)

    Singh, Babu; Qureshi, Muhammad M; Truong, Minh Tam; Sahni, Debjani

    2018-02-03

    The optimal surgical approach (wide local excision (WLE) vs. Mohs micrographic surgery (MOHS)) for treating Merkel cell carcinoma (MCC) is yet to be determined. To compare survival outcomes in patients with early stage MCC treated with MOHS versus WLE. A retrospective review of all cases in the National Cancer Data Base (NCDB) of MCC of clinical Stage I-II MCC treated with WLE or MOHS was performed. 1,795 cases of Stage I-II MCC were identified who underwent WLE (N=1,685) or MOHS (N=110). There was no difference in residual tumor on surgical margins between the two treatment groups (p=0.588). On multivariate analysis, there was no difference in overall survival between the treatment modalities (adjusted HR 1.02; 95% CI 0.72-1.45, p=0.897). There was no difference in overall survival between the two groups on propensity score matched analysis. Disease specific survival was not reported as this data in not available in the NCDB. MOHS appears to be as effective as WLE in treating early stage MCC. Copyright © 2018. Published by Elsevier Inc.

  19. Towards DNA-Based Programmable Matter

    Science.gov (United States)

    2012-02-28

    thiolated   ssDNA  was  first  immobilized  onto  the  gold...surface.  The  surface  was  then  passivated  with   mercaptohexanol.  Subsequently,  another  complementary   thiolated ...right).       Approach  3:  DNA-­‐mediated  interaction  between   polymer -­‐coated  surfaces   We  also  tried

  20. Single-nucleotide polymorphisms in base excision repair, nucleotide excision repair, and double strand break genes as markers for response to radiotherapy in patients with Stage I to II head-and-neck cancer

    International Nuclear Information System (INIS)

    Carles, Joan; Monzo, Mariano; Amat, Marta; Jansa, Sonia; Artells, Rosa; Navarro, Alfons; Foro, Palmira; Alameda, Francesc; Gayete, Angel; Gel, Bernat; Miguel, Maribel; Albanell, Joan; Fabregat, Xavier

    2006-01-01

    Purpose: Polymorphisms in DNA repair genes can influence response to radiotherapy. We analyzed single-nucleotide polymorphisms (SNP) in nine DNA repair genes in 108 patients with head-and-neck cancer (HNSCC) who had received radiotherapy only. Methods and Materials: From May 1993 to December 2004, patients with Stage I and II histopathologically confirmed HNSCC underwent radiotherapy. DNA was obtained from paraffin-embedded tissue, and SNP analysis was performed using a real-time polymerase chain reaction allelic discrimination TaqMan assay with minor modifications. Results: Patients were 101 men (93.5%) and 7 (6.5%) women, with a median age of 64 years (range, 40 to 89 years). Of the patients, 76 (70.4%) patients were Stage I and 32 (29.6%) were Stage II. The XPF/ERCC1 SNP at codon 259 and XPG/ERCC5 at codon 46 emerged as significant predictors of progression (p 0.00005 and 0.049, respectively) and survival (p = 0.0089 and 0.0066, respectively). Similarly, when variant alleles of XPF/ERCC1, XPG/ERCC5 and XPA were examined in combination, a greater number of variant alleles was associated with shorter time to progression (p = 0.0003) and survival (p 0.0002). Conclusions: Genetic polymorphisms in XPF/ERCC1, XPG/ERCC5, and XPA may significantly influence response to radiotherapy; large studies are warranted to confirm their role in HNSCC

  1. Repair of oxidative DNA base damage in the host genome influences the HIV integration site sequence preference.

    Directory of Open Access Journals (Sweden)

    Geoffrey R Bennett

    Full Text Available Host base excision repair (BER proteins that repair oxidative damage enhance HIV infection. These proteins include the oxidative DNA damage glycosylases 8-oxo-guanine DNA glycosylase (OGG1 and mutY homolog (MYH as well as DNA polymerase beta (Polβ. While deletion of oxidative BER genes leads to decreased HIV infection and integration efficiency, the mechanism remains unknown. One hypothesis is that BER proteins repair the DNA gapped integration intermediate. An alternative hypothesis considers that the most common oxidative DNA base damages occur on guanines. The subtle consensus sequence preference at HIV integration sites includes multiple G:C base pairs surrounding the points of joining. These observations suggest a role for oxidative BER during integration targeting at the nucleotide level. We examined the hypothesis that BER repairs a gapped integration intermediate by measuring HIV infection efficiency in Polβ null cell lines complemented with active site point mutants of Polβ. A DNA synthesis defective mutant, but not a 5'dRP lyase mutant, rescued HIV infection efficiency to wild type levels; this suggested Polβ DNA synthesis activity is not necessary while 5'dRP lyase activity is required for efficient HIV infection. An alternate hypothesis that BER events in the host genome influence HIV integration site selection was examined by sequencing integration sites in OGG1 and MYH null cells. In the absence of these 8-oxo-guanine specific glycosylases the chromatin elements of HIV integration site selection remain the same as in wild type cells. However, the HIV integration site sequence preference at G:C base pairs is altered at several positions in OGG1 and MYH null cells. Inefficient HIV infection in the absence of oxidative BER proteins does not appear related to repair of the gapped integration intermediate; instead oxidative damage repair may participate in HIV integration site preference at the sequence level.

  2. Mapping Base Modifications in DNA by Transverse-Current Sequencing

    Science.gov (United States)

    Alvarez, Jose R.; Skachkov, Dmitry; Massey, Steven E.; Kalitsov, Alan; Velev, Julian P.

    2018-02-01

    Sequencing DNA modifications and lesions, such as methylation of cytosine and oxidation of guanine, is even more important and challenging than sequencing the genome itself. The traditional methods for detecting DNA modifications are either insensitive to these modifications or require additional processing steps to identify a particular type of modification. Transverse-current sequencing in nanopores can potentially identify the canonical bases and base modifications in the same run. In this work, we demonstrate that the most common DNA epigenetic modifications and lesions can be detected with any predefined accuracy based on their tunneling current signature. Our results are based on simulations of the nanopore tunneling current through DNA molecules, calculated using nonequilibrium electron-transport methodology within an effective multiorbital model derived from first-principles calculations, followed by a base-calling algorithm accounting for neighbor current-current correlations. This methodology can be integrated with existing experimental techniques to improve base-calling fidelity.

  3. Human inherited diseases with altered mechanisms for DNA repair and mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cleaver, J.E.

    1977-01-01

    A variety of human diseases involving clinical symptoms of increased cancer risk, and disorders of the central nervous system, and of hematopoietic, immunological, ocular, and cutaneous tissues and embryological development have defects in biochemical pathways for excision repair of damaged DNA. Excision repair has multiple branches by which damaged nucleotides, bases, and cross-links are excised and requires cofactors that control the access of repair enzymes to damage in DNA in chromatin. Diseases in which repair defects are a consistent feature of their biochemistry include xeroderma pigmentosum, ataxia telangiectasia and Fanconi's anemia.

  4. DNA interaction with platinum-based cytostatics revealed by DNA sequencing.

    Science.gov (United States)

    Smerkova, Kristyna; Vaculovic, Tomas; Vaculovicova, Marketa; Kynicky, Jindrich; Brtnicky, Martin; Eckschlager, Tomas; Stiborova, Marie; Hubalek, Jaromir; Adam, Vojtech

    2017-12-15

    The main mechanism of action of platinum-based cytostatic drugs - cisplatin, oxaliplatin and carboplatin - is the formation of DNA cross-links, which restricts the transcription due to the disability of DNA to enter the active site of the polymerase. The polymerase chain reaction (PCR) was employed as a simplified model of the amplification process in the cell nucleus. PCR with fluorescently labelled dideoxynucleotides commonly employed for DNA sequencing was used to monitor the effect of platinum-based cytostatics on DNA in terms of decrease in labeling efficiency dependent on a presence of the DNA-drug cross-link. It was found that significantly different amounts of the drugs - cisplatin (0.21 μg/mL), oxaliplatin (5.23 μg/mL), and carboplatin (71.11 μg/mL) - were required to cause the same quenching effect (50%) on the fluorescent labelling of 50 μg/mL of DNA. Moreover, it was found that even though the amounts of the drugs was applied to the reaction mixture differing by several orders of magnitude, the amount of incorporated platinum, quantified by inductively coupled plasma mass spectrometry, was in all cases at the level of tenths of μg per 5 μg of DNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Highly sensitive DNA sensors based on cerium oxide nanorods

    Science.gov (United States)

    Nguyet, Nguyen Thi; Hai Yen, Le Thi; Van Thu, Vu; lan, Hoang; Trung, Tran; Vuong, Pham Hung; Tam, Phuong Dinh

    2018-04-01

    In this work, a CeO2 nanorod (NR)-based electrochemical DNA sensor was developed to identify Salmonella that causes food-borne infections. CeO2 NRs were synthesized without templates via a simple and unexpensive hydrothermal approach at 170 °C for 12 h by using CeO(NO3)3·6H2O as a Ce source. The DNA probe was immobilized onto the CeO2 NR-modified electrode through covalent attachment. The characteristics of the hybridized DNA were analyzed through electrochemical impedance spectroscopy (EIS) with [Fe(CN)6]3-/4- as a redox probe. Experimental results showed that electron transfer resistance (Ret) increased after the DNA probe was attached to the electrode surface and increased further after the DNA probe hybridized with its complementary sequence. A linear response of Ret to the target DNA concentration was found from 0.01 μM to 2 μM. The detection limit and sensitivity of the DNA sensor were 0.01 μM and 3362.1 Ω μM-1 cm-2, respectively. Various parameters, such as pH value, ionic strength, DNA probe concentration, and hybridization time, influencing DNA sensor responses were also investigated.

  6. Mitochondrial DNA diagnosis for taeniasis and cysticercosis.

    Science.gov (United States)

    Yamasaki, Hiroshi; Nakao, Minoru; Sako, Yasuhito; Nakaya, Kazuhiro; Sato, Marcello Otake; Ito, Akira

    2006-01-01

    Molecular diagnosis for taeniasis and cysticercosis in humans on the basis of mitochondrial DNA analysis was reviewed. Development and application of three different methods, including restriction fragment length polymorphism analysis, base excision sequence scanning thymine-base analysis and multiplex PCR, were described. Moreover, molecular diagnosis of cysticerci found in specimens submitted for histopathology and the molecular detection of taeniasis using copro-DNA were discussed.

  7. Structure of a DNA glycosylase that unhooks interstrand cross-links

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, Elwood A.; Warren, Garrett M.; Bradley, Noah P.; Eichman, Brandt F. (Vanderbilt)

    2017-04-10

    DNA glycosylases are important editing enzymes that protect genomic stability by excising chemically modified nucleobases that alter normal DNA metabolism. These enzymes have been known only to initiate base excision repair of small adducts by extrusion from the DNA helix. However, recent reports have described both vertebrate and microbial DNA glycosylases capable of unhooking highly toxic interstrand cross-links (ICLs) and bulky minor groove adducts normally recognized by Fanconi anemia and nucleotide excision repair machinery, although the mechanisms of these activities are unknown. Here we report the crystal structure of Streptomyces sahachiroi AlkZ (previously Orf1), a bacterial DNA glycosylase that protects its host by excising ICLs derived from azinomycin B (AZB), a potent antimicrobial and antitumor genotoxin. AlkZ adopts a unique fold in which three tandem winged helix-turn-helix motifs scaffold a positively charged concave surface perfectly shaped for duplex DNA. Through mutational analysis, we identified two glutamine residues and a β-hairpin within this putative DNA-binding cleft that are essential for catalytic activity. Additionally, we present a molecular docking model for how this active site can unhook either or both sides of an AZB ICL, providing a basis for understanding the mechanisms of base excision repair of ICLs. Given the prevalence of this protein fold in pathogenic bacteria, this work also lays the foundation for an emerging role of DNA repair in bacteria-host pathogenesis.

  8. Hepatitis B virus DNA polymerase gene polymorphism based ...

    African Journals Online (AJOL)

    Hepatitis B virus DNA polymerase gene polymorphism based prediction of genotypes in chronic HBV patients from Western India. Yashwant G. Chavan, Sharad R. Pawar, Minal Wani, Amol D. Raut, Rabindra N. Misra ...

  9. Mitochondrial DNA repair and aging

    International Nuclear Information System (INIS)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-01-01

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis

  10. Mitochondrial DNA repair and aging

    Energy Technology Data Exchange (ETDEWEB)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-11-30

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis.

  11. Size and Base Composition of RNA in Supercoiled Plasmid DNA

    Science.gov (United States)

    Williams, Peter H.; Boyer, Herbert W.; Helinski, Donald R.

    1973-01-01

    The average size and base composition of the covalently integrated RNA segment in supercoiled ColE1 DNA synthesized in Escherichia coli in the presence of chloramphenicol (CM-ColE1 DNA) have been determined by two independent methods. The two approaches yielded similar results, indicating that the RNA segment in CM-ColE1 DNA contains GMP at the 5′ end and comprises on the average 25 to 26 ribonucleotides with a base composition of 10-11 G, 3 A, 5-6 C, and 6-7 U. PMID:4359488

  12. Faulty DNA-polymerase δ/ε-mediated excision-repair in response to gamma-radiation or ultraviolet-light in P53-deficient fibroblast strains from affected members of a cancer-prone family with Li-Fraumeni syndrome

    International Nuclear Information System (INIS)

    Mirzayans, R.; Enns, L.; Dietrich, K.; Barley, R.D.C.; Paterson, M.C.; Alberta Univ., Edmonton, AB; Alberta Univ., Edmonton, AB

    1996-01-01

    Dermal fibroblast strains cultured from affected members of a cancer-prone family with Li-Fraumeni syndrome (LFS) harbor a point mutation in one allele of the p53 tumor suppressor gene, resulting in loss of normal p53-deficient strains to carry out the long-patch mode of excision repair, mediated by DNA polymerases delta and epsilon, after exposure to Co-60 gamma radiation or far ultraviolet (UV) (chiefly 254 mm) light. Repair was monitored by incubation of the irradiated cultures in the presence of aphidicolin (ape) or 1-beta-D-arabinofuranosylcytosine (araC), each a specific inhibitor of long-patch repair, followed by measurement of drug-induced DNA strand breaks (reflecting non-ligated strand incision events) by alkaline surcrose velocity sedimentation. The LFS strains displayed deficient repair capacity in response to both gamma rays and UV light. The repair anomaly in UV-irradiated LFS cultures was manifested not only in the overall genome, but also in the transcriptionally active, preferentially repaired c-myc gene. Using autoradiography we also assessed unscheduled DNA synthesis (UDS) after UV irradiation and found this conventional measure of repair replication to be deficient in LFS strains. Moreover, both ape and araC decreased the level of UV-induced UDS by similar to 75% in normal cells, but each had only a marginal effect on LFS cells. We further demonstrated that the LFS strains are impaired in the recovery of both RNA and replicative DNA syntheses after UV treatment, two molecular anomalies of the DNA repair deficiency disorders xeroderma pigmentosum and Cockayne's syndrome. Together these results imply a critical role for wild-type p53 protein in DNA polymerase delta/epsilon-mediated excision repair, both the mechanism operating on the entire genome and that acting on expressed genes. (Author)

  13. PCR-based cDNA library construction: general cDNA libraries at the level of a few cells.

    OpenAIRE

    Belyavsky, A; Vinogradova, T; Rajewsky, K

    1989-01-01

    A procedure for the construction of general cDNA libraries is described which is based on the amplification of total cDNA in vitro. The first cDNA strand is synthesized from total RNA using an oligo(dT)-containing primer. After oligo(dG) tailing the total cDNA is amplified by PCR using two primers complementary to oligo(dA) and oligo(dG) ends of the cDNA. For insertion of the cDNA into a vector a controlled trimming of the 3' ends of the cDNA by Klenow enzyme was used. Starting from 10 J558L ...

  14. Regulation of nucleotide excision repair through ubiquitination

    Institute of Scientific and Technical Information of China (English)

    Jia Li; Audesh Bhat; Wei Xiao

    2011-01-01

    Nucleotide excision repair (NER) is the most versatile DNA-repair pathway in all organisms.While bacteria require only three proteins to complete the incision step of NER,eukaryotes employ about 30 proteins to complete the same step.Here we summarize recent studies demonstrating that ubiquitination,a post-translational modification,plays critical roles in regulating the NER activity either dependent on or independent of ubiquitin-proteolysis.Several NER components have been shown as targets of ubiquitination while others are actively involved in the ubiquitination process.We argue through this analysis that ubiquitination serves to coordinate various steps of NER and meanwhile connect NER with other related pathways to achieve the efficient global DNA-damage response.

  15. Programmable molecular recognition based on the geometry of DNA nanostructures.

    Science.gov (United States)

    Woo, Sungwook; Rothemund, Paul W K

    2011-07-10

    From ligand-receptor binding to DNA hybridization, molecular recognition plays a central role in biology. Over the past several decades, chemists have successfully reproduced the exquisite specificity of biomolecular interactions. However, engineering multiple specific interactions in synthetic systems remains difficult. DNA retains its position as the best medium with which to create orthogonal, isoenergetic interactions, based on the complementarity of Watson-Crick binding. Here we show that DNA can be used to create diverse bonds using an entirely different principle: the geometric arrangement of blunt-end stacking interactions. We show that both binary codes and shape complementarity can serve as a basis for such stacking bonds, and explore their specificity, thermodynamics and binding rules. Orthogonal stacking bonds were used to connect five distinct DNA origami. This work, which demonstrates how a single attractive interaction can be developed to create diverse bonds, may guide strategies for molecular recognition in systems beyond DNA nanostructures.

  16. Multidirectional Vector Excision Leads to Better Outcomes than Traditional Elliptical Excision of Facial Congenital Melanocytic Nevus

    Directory of Open Access Journals (Sweden)

    Seung Il Oh

    2013-09-01

    Full Text Available Background The elliptical excision is the standard method of removing benign skin lesions,such as congenital melanocytic nevi. This technique allows for primary closure, with little to nodog-ear deformity, but may sacrifice normal tissue adjacent to the lesion, resulting in scarswhich are unnecessarily long. This study was designed to compare the predicted results ofelliptical excision with those resulting from our excision technique.Methods Eighty-two patients with congenital melanocytic nevus on the face were prospectivelystudied. Each lesion was examined and an optimal ellipse was designed and marked onthe skin. After an incision on one side of the nevus margin, subcutaneous undermining wasperformed in the appropriate direction. The skin flap was pulled up and approximated alongseveral vectors to minimize the occurrence of dog-ear deformity.Results Overall, the final wound length was 21.1% shorter than that achieved by ellipticalexcision. Only 8.5% of the patients required dog-ear repair. There was no significant distortionof critical facial structures. All of the scars were deemed aesthetically acceptable based ontheir Patient and Observer Scar Assessment Scale scores.Conclusions When compared to elliptical excision, our technique appears to minimize dogeardeformity and decrease the final wound length. This technique should be considered analternative method for excision of facial nevi.

  17. DNA repair

    International Nuclear Information System (INIS)

    Setlow, R.

    1978-01-01

    Some topics discussed are as follows: difficulty in extrapolating data from E. coli to mammalian systems; mutations caused by UV-induced changes in DNA; mutants deficient in excision repair; other postreplication mechanisms; kinds of excision repair systems; detection of repair by biochemical or biophysical means; human mutants deficient in repair; mutagenic effects of UV on XP cells; and detection of UV-repair defects among XP individuals

  18. How stable are the mutagenic tautomers of DNA bases?

    Directory of Open Access Journals (Sweden)

    Brovarets’ O. O.

    2010-02-01

    Full Text Available Aim. To determine the lifetime of the mutagenic tautomers of DNA base pairs through the investigation of the physicochemical mechanisms of their intramolecular proton transfer. Methods. Non-empirical quantum chemistry, the analysis of the electron density by means of Bader’s atom in molecules (AIM theory and physicochemical kinetics were used. Results. Physicochemical character of the transition state of the intramolecular tautomerisation of DNA bases was investigated, the lifetime of mutagenic tautomers was calculated. Conclusions. The lifetime of the DNA bases mutagenic tautomers by 3–10 orders exceeds typical time of DNA replication in the cell (~103 s. This fact confirms that the postulate, on which the Watson-Crick tautomeric hypothesis of spontaneous transitions grounds, is adequate. The absence of intramolecular H-bonds in the canonical and mutagenic tautomeric forms determine their high stability

  19. Oxidative DNA base modifications as factors in carcinogenesis

    International Nuclear Information System (INIS)

    Olinski, R.; Jaruga, P.; Zastawny, T.H.

    1998-01-01

    Reactive oxygen species can cause extensive DNA modifications including modified bases. Some of the DNA base damage has been found to possess premutagenic properties. Therefore, if not repaired, it can contribute to carcinogenesis. We have found elevated amounts of modified bases in cancerous and precancerous tissues as compared with normal tissues. Most of the agents used in anticancer therapy are paradoxically responsible for induction of secondary malignancies and some of them may generate free radicals. The results of our experiments provide evidence that exposure of cancer patients to therapeutic doses of ionizing radiation and anticancer drugs cause base modifications in genomic DNA of lymphocytes. Some of these base damages could lead to mutagenesis in critical genes and ultimately to secondary cancers such as leukemias. This may point to an important role of oxidative base damage in cancer initiation. Alternatively, the increased level of the modified base products may contribute to genetic instability and metastatic potential of tumor cells. (author)

  20. Functional roles of DNA polymerases β and γ

    International Nuclear Information System (INIS)

    Huebscher, U.; Kuenzle, C.C.; Spadari, S.

    1979-01-01

    The physiological functions of DNA polymerases (deoxynucleosidetriphosphate:DNA deoxynucleotidyltransferase, EC2.7.7.7)β and γ were investigated by using neuronal nuclei and synaptosomes isolated from rat brain. uv irradiation of neuronal nuclei from 60-day-old rats resulted in a 7- to 10-fold stimulation of DNA repair synthesis attributable to DNA polymerase β which, at this developmental stage, is virtually the only DNA polymerase present in the nuclei. No repair synthesis could be elicited by treating the nuclei with N-methyl-N-nitrosourea, but this was probably due to the inability of brain tissue to excise alkylated bases from DNA. The role of DNA polymerase γ was studied in synaptosomes by using a system mimicking in vivo mitochondrial DNA synthesis. By showing that under these conditions, DNA replication occurs in miatochondria, and exploiting the fact that DNA polymerase γ is the only DNA polymerase present in mitochondria, evidence was obtained for a role of DNA polymerase γ in mitochondrial DNA replication. Based on these results and on the wealth of literature on DNA polymerase α, we conclude that DNA polymerase α is mainly responsible for DNA replication in nuclei, DNA polymerase β is involved in nuclear DNA repair, and DNA polymerase γ is the mitochondrial replicating enzyme. However, minor roles for DNA polymerase α in DNA repair or for DNA polymerase β in DNA replication cannot be excluded

  1. The Bacillus anthracis chromosome contains four conserved, excision-proficient, putative prophages

    Directory of Open Access Journals (Sweden)

    Sozhamannan Shanmuga

    2006-04-01

    Full Text Available Abstract Background Bacillus anthracis is considered to be a recently emerged clone within the Bacillus cereus sensu lato group. The B. anthracis genome sequence contains four putative lambdoid prophages. We undertook this study in order to understand whether the four prophages are unique to B. anthracis and whether they produce active phages. Results More than 300 geographically and temporally divergent isolates of B. anthracis and its near neighbors were screened by PCR for the presence of specific DNA sequences from each prophage region. Every isolate of B. anthracis screened by PCR was found to produce all four phage-specific amplicons whereas none of the non-B. anthracis isolates, produced more than one phage-specific amplicon. Excision of prophages could be detected by a PCR based assay for attP sites on extra-chromosomal phage circles and for attB sites on phage-excised chromosomes. SYBR-green real-time PCR assays indicated that prophage excision occurs at very low frequencies (2 × 10-5 - 8 × 10-8/cell. Induction with mitomycin C increased the frequency of excision of one of the prophages by approximately 250 fold. All four prophages appear to be defective since, mitomycin C induced culture did not release any viable phage particle or lyse the cells or reveal any phage particle under electron microscopic examination. Conclusion The retention of all four putative prophage regions across all tested strains of B. anthracis is further evidence of the very recent emergence of this lineage and the prophage regions may be useful for differentiating the B. anthracis chromosome from that of its neighbors. All four prophages can excise at low frequencies, but are apparently defective in phage production.

  2. Genetic instability associated with loop or stem–loop structures within transcription units can be independent of nucleotide excision repair

    Science.gov (United States)

    Burns, John A; Chowdhury, Moinuddin A; Cartularo, Laura; Berens, Christian; Scicchitano, David A

    2018-01-01

    Abstract Simple sequence repeats (SSRs) are found throughout the genome, and under some conditions can change in length over time. Germline and somatic expansions of trinucleotide repeats are associated with a series of severely disabling illnesses, including Huntington's disease. The underlying mechanisms that effect SSR expansions and contractions have been experimentally elusive, but models suggesting a role for DNA repair have been proposed, in particular the involvement of transcription-coupled nucleotide excision repair (TCNER) that removes transcription-blocking DNA damage from the transcribed strand of actively expressed genes. If the formation of secondary DNA structures that are associated with SSRs were to block RNA polymerase progression, TCNER could be activated, resulting in the removal of the aberrant structure and a concomitant change in the region's length. To test this, TCNER activity in primary human fibroblasts was assessed on defined DNA substrates containing extrahelical DNA loops that lack discernible internal base pairs or DNA stem–loops that contain base pairs within the stem. The results show that both structures impede transcription elongation, but there is no corresponding evidence that nucleotide excision repair (NER) or TCNER operates to remove them. PMID:29474673

  3. DNA barcode-based molecular identification system for fish species.

    Science.gov (United States)

    Kim, Sungmin; Eo, Hae-Seok; Koo, Hyeyoung; Choi, Jun-Kil; Kim, Won

    2010-12-01

    In this study, we applied DNA barcoding to identify species using short DNA sequence analysis. We examined the utility of DNA barcoding by identifying 53 Korean freshwater fish species, 233 other freshwater fish species, and 1339 saltwater fish species. We successfully developed a web-based molecular identification system for fish (MISF) using a profile hidden Markov model. MISF facilitates efficient and reliable species identification, overcoming the limitations of conventional taxonomic approaches. MISF is freely accessible at http://bioinfosys.snu.ac.kr:8080/MISF/misf.jsp .

  4. A Novel Image Encryption Algorithm Based on DNA Subsequence Operation

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2012-01-01

    Full Text Available We present a novel image encryption algorithm based on DNA subsequence operation. Different from the traditional DNA encryption methods, our algorithm does not use complex biological operation but just uses the idea of DNA subsequence operations (such as elongation operation, truncation operation, deletion operation, etc. combining with the logistic chaotic map to scramble the location and the value of pixel points from the image. The experimental results and security analysis show that the proposed algorithm is easy to be implemented, can get good encryption effect, has a wide secret key's space, strong sensitivity to secret key, and has the abilities of resisting exhaustive attack and statistic attack.

  5. A multistep damage recognition mechanism for global genomic nucleotide excision repair.

    Science.gov (United States)

    Sugasawa, K; Okamoto, T; Shimizu, Y; Masutani, C; Iwai, S; Hanaoka, F

    2001-03-01

    A mammalian nucleotide excision repair (NER) factor, the XPC-HR23B complex, can specifically bind to certain DNA lesions and initiate the cell-free repair reaction. Here we describe a detailed analysis of its binding specificity using various DNA substrates, each containing a single defined lesion. A highly sensitive gel mobility shift assay revealed that XPC-HR23B specifically binds a small bubble structure with or without damaged bases, whereas dual incision takes place only when damage is present in the bubble. This is evidence that damage recognition for NER is accomplished through at least two steps; XPC-HR23B first binds to a site that has a DNA helix distortion, and then the presence of injured bases is verified prior to dual incision. Cyclobutane pyrimidine dimers (CPDs) were hardly recognized by XPC-HR23B, suggesting that additional factors may be required for CPD recognition. Although the presence of mismatched bases opposite a CPD potentiated XPC-HR23B binding, probably due to enhancement of the helix distortion, cell-free excision of such compound lesions was much more efficient than expected from the observed affinity for XPC-HR23B. This also suggests that additional factors and steps are required for the recognition of some types of lesions. A multistep mechanism of this sort may provide a molecular basis for ensuring the high level of damage discrimination that is required for global genomic NER.

  6. A Rewritable, Random-Access DNA-Based Storage System.

    Science.gov (United States)

    Yazdi, S M Hossein Tabatabaei; Yuan, Yongbo; Ma, Jian; Zhao, Huimin; Milenkovic, Olgica

    2015-09-18

    We describe the first DNA-based storage architecture that enables random access to data blocks and rewriting of information stored at arbitrary locations within the blocks. The newly developed architecture overcomes drawbacks of existing read-only methods that require decoding the whole file in order to read one data fragment. Our system is based on new constrained coding techniques and accompanying DNA editing methods that ensure data reliability, specificity and sensitivity of access, and at the same time provide exceptionally high data storage capacity. As a proof of concept, we encoded parts of the Wikipedia pages of six universities in the USA, and selected and edited parts of the text written in DNA corresponding to three of these schools. The results suggest that DNA is a versatile media suitable for both ultrahigh density archival and rewritable storage applications.

  7. A universal DNA-based protein detection system.

    Science.gov (United States)

    Tran, Thua N N; Cui, Jinhui; Hartman, Mark R; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C; Lis, John T; Cui, Haixin; Luo, Dan

    2013-09-25

    Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability.

  8. Single-Molecule Methods for Nucleotide Excision Repair: Building a System to Watch Repair in Real Time.

    Science.gov (United States)

    Kong, Muwen; Beckwitt, Emily C; Springall, Luke; Kad, Neil M; Van Houten, Bennett

    2017-01-01

    Single-molecule approaches to solving biophysical problems are powerful tools that allow static and dynamic real-time observations of specific molecular interactions of interest in the absence of ensemble-averaging effects. Here, we provide detailed protocols for building an experimental system that employs atomic force microscopy and a single-molecule DNA tightrope assay based on oblique angle illumination fluorescence microscopy. Together with approaches for engineering site-specific lesions into DNA substrates, these complementary biophysical techniques are well suited for investigating protein-DNA interactions that involve target-specific DNA-binding proteins, such as those engaged in a variety of DNA repair pathways. In this chapter, we demonstrate the utility of the platform by applying these techniques in the studies of proteins participating in nucleotide excision repair. © 2017 Elsevier Inc. All rights reserved.

  9. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    International Nuclear Information System (INIS)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A.

    2014-01-01

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting

  10. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A., E-mail: sarah.martin@qmul.ac.uk [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ (United Kingdom)

    2014-08-05

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting.

  11. Ultraviolet enhancement of DNA base release by bleomycin

    International Nuclear Information System (INIS)

    Kakinuma, J.; Tanabe, M.; Orii, H.

    1984-01-01

    The effect of UV irradiation on base-releasing activity of bleomycin was studied on bleomycin A 2 -DNA reaction mixture in the presence of Fe(II) and 2-mercaptoethanol. This effect was measured by the release of free bases from calf thymus DNA with high-performance liquid chromatography. UV irradiation enhanced DNA base-releasing activity of bleomycin and simultaneously caused disappearance of fluorescence emission maximum at 355 nm assigned to bithiazole rings and increase in the intensity of a peak at 400 nm. UV irradiation at 295 nm, the UV absorption maximum of bleomycin, is the most effective in releasing free bases and in changing fluorescence emission patterns. From these results, we suggest that some alterations in the bithiazole group of bleomycin molecule were initiated by UV irradiation and contributed to increased base-releasing activity of bleomycin through a yet unexplained mechanism, presumably through bleomycin dimer formation. (orig.)

  12. A unique uracil-DNA binding protein of the uracil DNA glycosylase superfamily.

    Science.gov (United States)

    Sang, Pau Biak; Srinath, Thiruneelakantan; Patil, Aravind Goud; Woo, Eui-Jeon; Varshney, Umesh

    2015-09-30

    Uracil DNA glycosylases (UDGs) are an important group of DNA repair enzymes, which pioneer the base excision repair pathway by recognizing and excising uracil from DNA. Based on two short conserved sequences (motifs A and B), UDGs have been classified into six families. Here we report a novel UDG, UdgX, from Mycobacterium smegmatis and other organisms. UdgX specifically recognizes uracil in DNA, forms a tight complex stable to sodium dodecyl sulphate, 2-mercaptoethanol, urea and heat treatment, and shows no detectable uracil excision. UdgX shares highest homology to family 4 UDGs possessing Fe-S cluster. UdgX possesses a conserved sequence, KRRIH, which forms a flexible loop playing an important role in its activity. Mutations of H in the KRRIH sequence to S, G, A or Q lead to gain of uracil excision activity in MsmUdgX, establishing it as a novel member of the UDG superfamily. Our observations suggest that UdgX marks the uracil-DNA for its repair by a RecA dependent process. Finally, we observed that the tight binding activity of UdgX is useful in detecting uracils in the genomes. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Different organization of base excision repair of uracil in DNA in nuclei and mitochondria and selective upregulation of mitochondrial uracil-DNA glycosylase after oxidative stress

    DEFF Research Database (Denmark)

    Akbari, M; Otterlei, M; Pena Diaz, Javier

    2007-01-01

    , indicating regulatory effects of oxidative stress on mitochondrial BER. To examine the overall organization of uracil-BER in nuclei and mitochondria, we constructed cell lines expressing EYFP (enhanced yellow fluorescent protein) fused to UNG1 or UNG2. These were used to investigate the possible presence...... BER processes are differently organized. Furthermore, the upregulation of mRNA for mitochondrial UNG1 after oxidative stress indicates that it may have an important role in repair of oxidized pyrimidines....

  14. A seventh complementation group in excision-deficient xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Keijzer, W.; Jaspers, N.G.J.; Bootsma, D.; Abrahams, P.J.; Taylor, A.M.R.; Arlett, C.F.; Zelle, B.; Kinmont, P.D.S.

    1979-01-01

    Cells from a xeroderma pigmentosum patient XP2B1 who has reached 17 years of age with no keratoses or skin tumours constitute a new, 7th complementation group G. These cells exhibit a low residual level of excision repair, 2% of normal after a UV dose of 5 J/m 2 and an impairment of post-replication repair characteristic of excision-defective XPs. They are also sensitive to the lethal effects of UV and defective in host-cell reactivation of UV-irradiated SV40 DNA. (Auth.)

  15. DNA based random key generation and management for OTP encryption.

    Science.gov (United States)

    Zhang, Yunpeng; Liu, Xin; Sun, Manhui

    2017-09-01

    One-time pad (OTP) is a principle of key generation applied to the stream ciphering method which offers total privacy. The OTP encryption scheme has proved to be unbreakable in theory, but difficult to realize in practical applications. Because OTP encryption specially requires the absolute randomness of the key, its development has suffered from dense constraints. DNA cryptography is a new and promising technology in the field of information security. DNA chromosomes storing capabilities can be used as one-time pad structures with pseudo-random number generation and indexing in order to encrypt the plaintext messages. In this paper, we present a feasible solution to the OTP symmetric key generation and transmission problem with DNA at the molecular level. Through recombinant DNA technology, by using only sender-receiver known restriction enzymes to combine the secure key represented by DNA sequence and the T vector, we generate the DNA bio-hiding secure key and then place the recombinant plasmid in implanted bacteria for secure key transmission. The designed bio experiments and simulation results show that the security of the transmission of the key is further improved and the environmental requirements of key transmission are reduced. Analysis has demonstrated that the proposed DNA-based random key generation and management solutions are marked by high security and usability. Published by Elsevier B.V.

  16. Deficiency of UV-induced excision repair in human thymocytes

    International Nuclear Information System (INIS)

    Gensler, H.L.; Lindberg, R.E.; Pinnas, J.L.; Jones, J.F.

    1985-01-01

    The capacity of human thymocytes and of differentiated lymphocytes circulating in peripheral blood to perform unscheduled DNA synthesis (a measure of nucleotide excision repair) after UV irradiation was measured by radioautographic analysis. Only 4% of immature T lymphocytes, but 68% of circulating lymphocytes exhibited unscheduled DNA synthesis. When UV sensitivity of peripheral blood lymphocytes and thymocytes from the same donor were compared, the thymocytes, in each case, were significantly more UV sensitive than were the circulating lymphocytes. Peripheral blood lymphocytes from subjects undergoing halothane and morphine anesthesia during surgery showed 56% less excision repair capacity than those from unanesthetized donors. The difference occurred in the number of cells capable of repair rather than in the extent of repair synthesis per cell. Ultraviolet-induced unscheduled DNA synthesis occurred in only 3% of the thymocytes removed from rats killed by cervical dislocation. Therefore, the deficiency of excision repair was observed in rat thymocytes which had not been affected by anesthesia or surgical trauma. The results indicate that immature T-cells are deficient in nucleotide excision repair whereas the majority of mature peripheral blood lymphocytes exhibit such repair. (author)

  17. Application of DNA-based methods in forensic entomology.

    Science.gov (United States)

    Wells, Jeffrey D; Stevens, Jamie R

    2008-01-01

    A forensic entomological investigation can benefit from a variety of widely practiced molecular genotyping methods. The most commonly used is DNA-based specimen identification. Other applications include the identification of insect gut contents and the characterization of the population genetic structure of a forensically important insect species. The proper application of these procedures demands that the analyst be technically expert. However, one must also be aware of the extensive list of standards and expectations that many legal systems have developed for forensic DNA analysis. We summarize the DNA techniques that are currently used in, or have been proposed for, forensic entomology and review established genetic analyses from other scientific fields that address questions similar to those in forensic entomology. We describe how accepted standards for forensic DNA practice and method validation are likely to apply to insect evidence used in a death or other forensic entomological investigation.

  18. Comparison of the effect of nalidixic acid and thymine deprivation on excision repair in Escherichia coli

    International Nuclear Information System (INIS)

    Masek, F.; Slezarikova, V.; Sedliakova, M.

    1975-01-01

    A difference was found in the extent of inhibition of thymine dimers (TT) excision in ultraviolet (UV) irradiated cells of E. coli after preirradiation depression of protein and DNA syntheses induced by a simultaneous removal of essential amino acids (AA - ) and thymine (T - ) or by the removal of essential amino acids and the addition of nalidixic acid (NAL + ). The difference was observed in both E. coli B/r Hcr + and E. coli K12 SR20 uvr + cells. The depression of DNA synthesis by nalidixic acid as an exogenous agent inhibited TT excision to a lower degree than the depression of DNA synthesis by thymine starvation. The extent of TT excision had no appreciable effect on the restoration of the sedimentation profile of a newly synthesized DNA nor on UV resistance of cells during dark repair. A DNA molecule having the size of a molecule of nonirradiated cells became synthesized while TT were still present in the DNA. (author)

  19. Transforming bases to bytes: Molecular computing with DNA

    Indian Academy of Sciences (India)

    Despite the popular image of silicon-based computers for computation, an embryonic field of mole- cular computation is emerging, where molecules in solution perform computational ..... [4] Mao C, Sun W, Shen Z and Seeman N C 1999. A nanomechanical device based on the B-Z transition of DNA; Nature 397 144–146.

  20. DNA based methods used for characterization and detection of food ...

    African Journals Online (AJOL)

    Detection of food borne pathogen is of outmost importance in the food industries and related agencies. For the last few decades conventional methods were used to detect food borne pathogens based on phenotypic characters. At the advent of complementary base pairing and amplification of DNA, the diagnosis of food ...

  1. Transvaginal sling excision: tips and tricks.

    Science.gov (United States)

    Clifton, Marisa M; Goldman, Howard B

    2017-01-01

    Complications of synthetic midurethral sling surgery include bladder outlet obstruction, mesh extrusion, and vaginal pain. A treatment of these complications is transvaginal mesh removal. The objectives of this video are to present cases of complications after sling placement and describe techniques to help with successful sling removal. Three patients are presented in this video. One experienced urinary hesitancy and was found to have bladder outlet obstruction on urodynamic study. The second patient presented to the clinic with diminished force of stream and significant dyspareunia. The last patient presented with mesh extrusion. After discussion of management options, all three patients wished to pursue transvaginal sling excision. All patients had successful removal of a portion of their synthetic midurethral sling. This video presents techniques to aide with dissection, mesh excision and prevention of further mesh complications. These include using an individualized surgical technique based on patient presentation and surgeon expertise, planning surgical incisions based on where mesh can be identified or palpated, using a cystoscope sheath or urethral dilator to identify any bladder outlet obstruction, and using a knife blade to identify mesh from surrounding tissue. Sling excision can be successfully performed with careful surgical technique and dissection.

  2. DNA & Protein detection based on microbead agglutination

    KAUST Repository

    Kodzius, Rimantas; Castro, David; Foulds, Ian G.; Parameswaran, Ash M.; Sumanpreet, K. Chhina

    2012-01-01

    the macroscopic observation. Agglutination-based tests are most often used to explore the antibody-antigen reactions. Agglutination has been used for mode protein assays using a biotin/streptavidin two-component system, as well as a hybridization based two

  3. Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD.

    Directory of Open Access Journals (Sweden)

    Stefanie C Wolski

    2008-06-01

    Full Text Available DNA damage recognition by the nucleotide excision repair pathway requires an initial step identifying helical distortions in the DNA and a proofreading step verifying the presence of a lesion. This proofreading step is accomplished in eukaryotes by the TFIIH complex. The critical damage recognition component of TFIIH is the XPD protein, a DNA helicase that unwinds DNA and identifies the damage. Here, we describe the crystal structure of an archaeal XPD protein with high sequence identity to the human XPD protein that reveals how the structural helicase framework is combined with additional elements for strand separation and DNA scanning. Two RecA-like helicase domains are complemented by a 4Fe4S cluster domain, which has been implicated in damage recognition, and an alpha-helical domain. The first helicase domain together with the helical and 4Fe4S-cluster-containing domains form a central hole with a diameter sufficient in size to allow passage of a single stranded DNA. Based on our results, we suggest a model of how DNA is bound to the XPD protein, and can rationalize several of the mutations in the human XPD gene that lead to one of three severe diseases, xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy.

  4. Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A + T-Rich DNA, and nuclear DNA analyses

    Science.gov (United States)

    Freeman, S.; Pham, M.; Rodriguez, R.J.

    1993-01-01

    Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A + T-rich DNA, and nuclear DNA analyses. Experimental Mycology 17, 309-322. Isolates of Colletotrichum were grouped into 10 separate species based on arbitrarily primed PCR (ap-PCR), A + T-rich DNA (AT-DNA) and nuclear DNA banding patterns. In general, the grouping of Colletotrichum isolates by these molecular approaches corresponded to that done by classical taxonomic identification, however, some exceptions were observed. PCR amplification of genomic DNA using four different primers allowed for reliable differentiation between isolates of the 10 species. HaeIII digestion patterns of AT-DNA also distinguished between species of Colletotrichum by generating species-specific band patterns. In addition, hybridization of the repetitive DNA element (GcpR1) to genomic DNA identified a unique set of Pst 1-digested nuclear DNA fragments in each of the 10 species of Colletotrichum tested. Multiple isolates of C. acutatum, C. coccodes, C. fragariae, C. lindemuthianum, C. magna, C. orbiculare, C. graminicola from maize, and C. graminicola from sorghum showed 86-100% intraspecies similarity based on ap-PCR and AT-DNA analyses. Interspecies similarity determined by ap-PCR and AT-DNA analyses varied between 0 and 33%. Three distinct banding patterns were detected in isolates of C. gloeosporioides from strawberry. Similarly, three different banding patterns were observed among isolates of C. musae from diseased banana.

  5. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Science.gov (United States)

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-01-01

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  6. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Md. Mahbubur Rahman

    2015-02-01

    Full Text Available Conducting polymers (CPs are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.

  7. DNA-based species detection capabilities using laser transmission spectroscopy.

    Science.gov (United States)

    Mahon, A R; Barnes, M A; Li, F; Egan, S P; Tanner, C E; Ruggiero, S T; Feder, J L; Lodge, D M

    2013-01-06

    Early detection of invasive species is critical for effective biocontrol to mitigate potential ecological and economic damage. Laser transmission spectroscopy (LTS) is a powerful solution offering real-time, DNA-based species detection in the field. LTS can measure the size, shape and number of nanoparticles in a solution and was used here to detect size shifts resulting from hybridization of the polymerase chain reaction product to nanoparticles functionalized with species-specific oligonucleotide probes or with the species-specific oligonucleotide probes alone. We carried out a series of DNA detection experiments using the invasive freshwater quagga mussel (Dreissena bugensis) to evaluate the capability of the LTS platform for invasive species detection. Specifically, we tested LTS sensitivity to (i) DNA concentrations of a single target species, (ii) the presence of a target species within a mixed sample of other closely related species, (iii) species-specific functionalized nanoparticles versus species-specific oligonucleotide probes alone, and (iv) amplified DNA fragments versus unamplified genomic DNA. We demonstrate that LTS is a highly sensitive technique for rapid target species detection, with detection limits in the picomolar range, capable of successful identification in multispecies samples containing target and non-target species DNA. These results indicate that the LTS DNA detection platform will be useful for field application of target species. Additionally, we find that LTS detection is effective with species-specific oligonucleotide tags alone or when they are attached to polystyrene nanobeads and with both amplified and unamplified DNA, indicating that the technique may also have versatility for broader applications.

  8. Ionizing radiation sensitivity of DNA polymerase lambda-deficient cells.

    NARCIS (Netherlands)

    Vermeulen, C.; Bertocci, B.; Begg, A.C.; Vens, C.

    2007-01-01

    Ionizing radiation induces a diverse spectrum of DNA lesions, including strand breaks and oxidized bases. In mammalian cells, ionizing radiation-induced lesions are targets of non-homologous end joining, homologous recombination, and base excision repair. In vitro assays show a potential involvement

  9. Identification of a residue critical for the excision of 3′-blocking ends in apurinic/apyrimidinic endonucleases of the Xth family

    Science.gov (United States)

    Castillo-Acosta, Víctor M.; Ruiz-Pérez, Luis M.; Yang, Wei; González-Pacanowska, Dolores; Vidal, Antonio E.

    2009-01-01

    DNA single-strand breaks containing 3′-blocking groups are generated from attack of the sugar backbone by reactive oxygen species or after base excision by DNA glycosylase/apurinic/apyrimidinic (AP) lyases. In human cells, APE1 excises sugar fragments that block the 3′-ends thus facilitating DNA repair synthesis. In Leishmania major, the causal agent of leishmaniasis, the APE1 homolog is the class II AP endonuclease LMAP. Expression of LMAP but not of APE1 reverts the hypersensitivity of a xth nfo repair-deficient Escherichia coli strain to the oxidative compound hydrogen peroxide (H2O2). To identify the residues specifically involved in the repair of oxidative DNA damage, we generated random mutations in the ape1 gene and selected those variants that conferred protection against H2O2. Among the resistant clones, we isolated a mutant in the nuclease domain of APE1 (D70A) with an increased capacity to remove 3′-blocking ends in vitro. D70 of APE1 aligns with A138 of LMAP and mutation of the latter to aspartate significantly reduces its 3′-phosphodiesterase activity. Kinetic analysis shows a novel role of residue D70 in the excision rate of 3′-blocking ends. The functional and structural differences between the parasite and human enzymes probably reflect a divergent molecular evolution of their DNA repair responses to oxidative damage. PMID:19181704

  10. Improved chaos-based video steganography using DNA alphabets

    Directory of Open Access Journals (Sweden)

    Nirmalya Kar

    2018-03-01

    Full Text Available DNA based steganography plays a vital role in the field of privacy and secure communication. Here, we propose a DNA properties-based mechanism to send data hidden inside a video file. Initially, the video file is converted into image frames. Random frames are then selected and data is hidden in these at random locations by using the Least Significant Bit substitution method. We analyze the proposed architecture in terms of peak signal-to-noise ratio as well as mean squared error measured between the original and steganographic files averaged over all video frames. The results show minimal degradation of the steganographic video file. Keywords: Chaotic map, DNA, Linear congruential generator, Video steganography, Least significant bit

  11. DNA methylation based biomarkers: Practical considerations and applications

    DEFF Research Database (Denmark)

    Nielsen, Helene Myrtue; How Kit, Alexandre; Tost, Jorg

    2012-01-01

    of biochemical molecules such as proteins, DNA, RNA or lipids, whereby protein biomarkers have been the most extensively studied and used, notably in blood-based protein quantification tests or immunohistochemistry. The rise of interest in epigenetic mechanisms has allowed the identification of a new type...... of biomarker, DNA methylation, which is of great potential for many applications. This stable and heritable covalent modification mostly affects cytosines in the context of a CpG dinucleotide in humans. It can be detected and quantified by a number of technologies including genome-wide screening methods...... as well as locus- or gene-specific high-resolution analysis in different types of samples such as frozen tissues and FFPE samples, but also in body fluids such as urine, plasma, and serum obtained through non-invasive procedures. In some cases, DNA methylation based biomarkers have proven to be more...

  12. Trial watch: Naked and vectored DNA-based anticancer vaccines.

    Science.gov (United States)

    Bloy, Norma; Buqué, Aitziber; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-05-01

    One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm.

  13. DNA-based random number generation in security circuitry.

    Science.gov (United States)

    Gearheart, Christy M; Arazi, Benjamin; Rouchka, Eric C

    2010-06-01

    DNA-based circuit design is an area of research in which traditional silicon-based technologies are replaced by naturally occurring phenomena taken from biochemistry and molecular biology. This research focuses on further developing DNA-based methodologies to mimic digital data manipulation. While exhibiting fundamental principles, this work was done in conjunction with the vision that DNA-based circuitry, when the technology matures, will form the basis for a tamper-proof security module, revolutionizing the meaning and concept of tamper-proofing and possibly preventing it altogether based on accurate scientific observations. A paramount part of such a solution would be self-generation of random numbers. A novel prototype schema employs solid phase synthesis of oligonucleotides for random construction of DNA sequences; temporary storage and retrieval is achieved through plasmid vectors. A discussion of how to evaluate sequence randomness is included, as well as how these techniques are applied to a simulation of the random number generation circuitry. Simulation results show generated sequences successfully pass three selected NIST random number generation tests specified for security applications.

  14. Mitochondrial DNA sequence-based phylogenetic relationship ...

    Indian Academy of Sciences (India)

    cophaga ranges from 0.037–0.106 and 0.049–0.207 for COI and ND5 genes, respectively (tables 2 and 3). Analysis of genetic distance on the basis of sequence difference for both the mitochondrial genes shows very little genetic difference. The discrepancy in the phylogenetic trees based on individ- ual genes may be due ...

  15. Incomplete excision repair process after UV-irradiation in MUT-mutants of Proteus mirabillis

    International Nuclear Information System (INIS)

    Stoerl, K.

    1977-01-01

    MUT-mutants of P. mirabilis seem to be able to perform the incision step in the course of excision repair. In contrast to the corresponding wildtype strains with MUT-mutants the number of single-strand breaks formed after UV-irradiation is independent of the UV-dose up to about 720 erg/mm 2 . Incubation in minimal medium over a longer time does not result in completion of excision repair; about 3-6 single-strand breaks in the DNA of these mutants remain open. Likewise, the low molecular weight of the newly synthesized daughter DNA confirms an incompletely proceeding or delayed repair process. As a possible reason for the mutator phenotype an alteration of the DNA-polymerase playing a role in excision and resynthesis steps of excision repair is discussed. (author)

  16. Charge transfer in DNA: role of base pairing

    Czech Academy of Sciences Publication Activity Database

    Kratochvílová, Irena; Bunček, M.; Schneider, Bohdan

    2009-01-01

    Roč. 38, Suppl. (2009), S123-S123 ISSN 0175-7571. [EBSA European Biophysics Congress /7./. Genoa, 11.07.2009-15.07.2009] Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z50520701 Keywords : DNA * charge transport * base pairing Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.437, year: 2009

  17. DNA-based asymmetric organometallic catalysis in water

    NARCIS (Netherlands)

    Oelerich, Jens; Roelfes, Gerard

    2013-01-01

    Here, the first examples of DNA-based organometallic catalysis in water that give rise to high enantioselectivities are described. Copper complexes of strongly intercalating ligands were found to enable the asymmetric intramolecular cyclopropanation of alpha-diazo-beta-keto sulfones in water. Up to

  18. DNA/RNA-based formulations for treatment of breast cancer.

    Science.gov (United States)

    Xie, Zhaolu; Zeng, Xianghui

    2017-12-01

    To develop a successful formulation for the gene therapy of breast cancer, an effective therapeutic nucleic acid and a proper delivery system are essential. Increased understanding of breast cancer, and developments in biotechnology, material science and nanotechnology have provided a major impetus in the development of effective formulations for the gene therapy of breast cancer. Areas covered: We discuss DNA/RNA-based formulations that can inhibit the growth of breast cancer cells and control the progress of breast cancer. Targets for the gene therapy of breast cancer, DNA/RNA-based therapeutics and delivery systems are summarized. And examples of successful DNA/RNA-based formulations for breast cancer gene therapy are reviewed. Expert opinion: Several challenges remain in developing effective DNA/RNA-based formulations for treatment of breast cancer. Firstly, most of the currently utilized targets are not effective enough as monotherapy for breast cancer. Secondly, the requirements for co-delivery system make the preparation of formulation more complicated. Thirdly, nanoparticles with the modification of tumor-targeting ligands could be more unstable in circulation and normal tissues. Lastly, immune responses against the viral vectors are unfavorable for the gene therapy of breast cancer because of the damage to the host and the impaired therapeutic ability.

  19. (Brassicaceae) based on nuclear ribosomal ITS DNA sequences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 93; Issue 2. Phylogeny and biogeography of Alyssum (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. Yan Li Yan Kong Zhe Zhang Yanqiang Yin Bin Liu Guanghui Lv Xiyong Wang. Research Article Volume 93 Issue 2 August 2014 pp 313-323 ...

  20. Poxvirus uracil-DNA glycosylase-An unusual member of the family I uracil-DNA glycosylases: Poxvirus Uracil-DNA Glycosylase

    Energy Technology Data Exchange (ETDEWEB)

    Schormann, Norbert [Department of Medicine, University of Alabama at Birmingham, Birmingham Alabama 35294; Zhukovskaya, Natalia [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Bedwell, Gregory [Department of Microbiology, University of Alabama at Birmingham, Birmingham Alabama 35294; Nuth, Manunya [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Gillilan, Richard [MacCHESS (Macromolecular Diffraction Facility at CHESS) Cornell University, Ithaca New York 14853; Prevelige, Peter E. [Department of Microbiology, University of Alabama at Birmingham, Birmingham Alabama 35294; Ricciardi, Robert P. [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Abramson Cancer Center, School of Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Banerjee, Surajit [Department of Chemistry and Chemical Biology, Cornell University, and NE-CAT Argonne Illinois 60439; Chattopadhyay, Debasish [Department of Medicine, University of Alabama at Birmingham, Birmingham Alabama 35294

    2016-11-02

    We report that uracil-DNA glycosylases are ubiquitous enzymes, which play a key role repairing damages in DNA and in maintaining genomic integrity by catalyzing the first step in the base excision repair pathway. Within the superfamily of uracil-DNA glycosylases family I enzymes or UNGs are specific for recognizing and removing uracil from DNA. These enzymes feature conserved structural folds, active site residues and use common motifs for DNA binding, uracil recognition and catalysis. Within this family the enzymes of poxviruses are unique and most remarkable in terms of amino acid sequences, characteristic motifs and more importantly for their novel non-enzymatic function in DNA replication. UNG of vaccinia virus, also known as D4, is the most extensively characterized UNG of the poxvirus family. D4 forms an unusual heterodimeric processivity factor by attaching to a poxvirus-specific protein A20, which also binds to the DNA polymerase E9 and recruits other proteins necessary for replication. D4 is thus integrated in the DNA polymerase complex, and its DNA-binding and DNA scanning abilities couple DNA processivity and DNA base excision repair at the replication fork. In conclusion, the adaptations necessary for taking on the new function are reflected in the amino acid sequence and the three-dimensional structure of D4. We provide an overview of the current state of the knowledge on the structure-function relationship of D4.

  1. DNA-Based Self-Assembly of Fluorescent Nanodiamonds.

    Science.gov (United States)

    Zhang, Tao; Neumann, Andre; Lindlau, Jessica; Wu, Yuzhou; Pramanik, Goutam; Naydenov, Boris; Jelezko, Fedor; Schüder, Florian; Huber, Sebastian; Huber, Marinus; Stehr, Florian; Högele, Alexander; Weil, Tanja; Liedl, Tim

    2015-08-12

    As a step toward deterministic and scalable assembly of ordered spin arrays we here demonstrate a bottom-up approach to position fluorescent nanodiamonds (NDs) with nanometer precision on DNA origami structures. We have realized a reliable and broadly applicable surface modification strategy that results in DNA-functionalized and perfectly dispersed NDs that were then self-assembled in predefined geometries. With optical studies we show that the fluorescence properties of the nitrogen-vacancy color centers in NDs are preserved during surface modification and DNA assembly. As this method allows the nanoscale arrangement of fluorescent NDs together with other optically active components in complex geometries, applications based on self-assembled spin lattices or plasmon-enhanced spin sensors as well as improved fluorescent labeling for bioimaging could be envisioned.

  2. Micromechanics of base pair unzipping in the DNA duplex

    International Nuclear Information System (INIS)

    Volkov, Sergey N; Paramonova, Ekaterina V; Yakubovich, Alexander V; Solov’yov, Andrey V

    2012-01-01

    All-atom molecular dynamics (MD) simulations of DNA duplex unzipping in a water environment were performed. The investigated DNA double helix consists of a Drew-Dickerson dodecamer sequence and a hairpin (AAG) attached to the end of the double-helix chain. The considered system is used to examine the process of DNA strand separation under the action of an external force. This process occurs in vivo and now is being intensively investigated in experiments with single molecules. The DNA dodecamer duplex is consequently unzipped pair by pair by means of the steered MD. The unzipping trajectories turn out to be similar for the duplex parts with G⋅C content and rather distinct for the parts with A⋅T content. It is shown that during the unzipping each pair experiences two types of motion: relatively quick rotation together with all the duplex and slower motion in the frame of the unzipping fork. In the course of opening, the complementary pair passes through several distinct states: (i) the closed state in the double helix, (ii) the metastable preopened state in the unzipping fork and (iii) the unbound state. The performed simulations show that water molecules participate in the stabilization of the metastable states of the preopened base pairs in the DNA unzipping fork. (paper)

  3. Reflective type objective based spectral-domain phase-sensitive optical coherence tomography for high-sensitive structural and functional imaging of cochlear microstructures through intact bone of an excised guinea pig cochlea

    Science.gov (United States)

    Subhash, Hrebesh M.; Wang, Ruikang K.; Chen, Fangyi; Nuttall, Alfred L.

    2013-03-01

    Most of the optical coherence tomographic (OCT) systems for high resolution imaging of biological specimens are based on refractive type microscope objectives, which are optimized for specific wave length of the optical source. In this study, we present the feasibility of using commercially available reflective type objective for high sensitive and high resolution structural and functional imaging of cochlear microstructures of an excised guinea pig through intact temporal bone. Unlike conventional refractive type microscopic objective, reflective objective are free from chromatic aberrations due to their all-reflecting nature and can support a broadband of spectrum with very high light collection efficiency.

  4. Recovery Based Nanowire Field-Effect Transistor Detection of Pathogenic Avian Influenza DNA

    Science.gov (United States)

    Lin, Chih-Heng; Chu, Chia-Jung; Teng, Kang-Ning; Su, Yi-Jr; Chen, Chii-Dong; Tsai, Li-Chu; Yang, Yuh-Shyong

    2012-02-01

    Fast and accurate diagnosis is critical in infectious disease surveillance and management. We proposed a DNA recovery system that can easily be adapted to DNA chip or DNA biosensor for fast identification and confirmation of target DNA. This method was based on the re-hybridization of DNA target with a recovery DNA to free the DNA probe. Functionalized silicon nanowire field-effect transistor (SiNW FET) was demonstrated to monitor such specific DNA-DNA interaction using high pathogenic strain virus hemagglutinin 1 (H1) DNA of avian influenza (AI) as target. Specific electric changes were observed in real-time for AI virus DNA sensing and device recovery when nanowire surface of SiNW FET was modified with complementary captured DNA probe. The recovery based SiNW FET biosensor can be further developed for fast identification and further confirmation of a variety of influenza virus strains and other infectious diseases.

  5. Immunogenicity of a DNA-launched replicon-based canine parvovirus DNA vaccine expressing VP2 antigen in dogs.

    Science.gov (United States)

    Dahiya, Shyam S; Saini, Mohini; Kumar, Pankaj; Gupta, Praveen K

    2012-10-01

    A replicon-based DNA vaccine encoding VP2 gene of canine parvovirus (CPV) was developed by cloning CPV-VP2 gene into a replicon-based DNA vaccine vector (pAlpha). The characteristics of a replicon-based DNA vaccine like, self-amplification of transcripts and induction of apoptosis were analyzed in transfected mammalian cells. When the pAlpha-CPV-VP2 was injected intradermal as DNA-launched replicon-based DNA vaccine in dogs, it induced CPV-specific humoral and cell mediated immune responses. The virus neutralization antibody and lymphocyte proliferative responses were higher than conventional CPV DNA vaccine and commercial CPV vaccine. These results indicated that DNA-launched replicon-based CPV DNA vaccine was effective in inducing both CPV-specific humoral and cellular immune responses and can be considered as effective alternative to conventional CPV DNA vaccine and commercial CPV vaccine. Crown Copyright © 2012. Published by Elsevier India Pvt Ltd. All rights reserved.

  6. Genetic diversity of sago palm in Indonesia based on chloroplast DNA (cpDNA markers

    Directory of Open Access Journals (Sweden)

    MEMEN SURAHMAN

    2010-07-01

    Full Text Available Abbas B, Renwarin Y, Bintoro MH, Sudarsono, Surahman M, Ehara H (2010 Genetic diversity of sago palm in Indonesia based on chloroplast DNA (cpDNA markers. Biodiversitas 11: 112-117. Sago palm (Metroxylon sagu Rottb. was believed capable to accumulate high carbohydrate content in its trunk. The capability of sago palm producing high carbohydrate should be an appropriate criterion for defining alternative crops in anticipating food crisis. The objective of this research was to study genetic diversity of sago palm in Indonesia based on cpDNA markers. Total genome extraction was done following the Qiagen DNA isolation protocols 2003. Single Nucleotide Fragments (SNF analyses were performed by using ABI Prism GeneScanR 3.7. SNF analyses detected polymorphism revealing eleven alleles and ten haplotypes from total 97 individual samples of sago palm. Specific haplotypes were found in the population from Papua, Sulawesi, and Kalimantan. Therefore, the three islands will be considered as origin of sago palm diversities in Indonesia. The highest haplotype numbers and the highest specific haplotypes were found in the population from Papua suggesting this islands as the centre and the origin of sago palm diversities in Indonesia. The research had however no sufficient data yet to conclude the Papua origin of sago palm. Genetic hierarchies and differentiations of sago palm samples were observed significantly different within populations (P=0.04574, among populations (P=0.04772, and among populations within the island (P=0.03366, but among islands no significant differentiations were observed (P= 0.63069.

  7. Lumbar disc excision through fenestration

    Directory of Open Access Journals (Sweden)

    Sangwan S

    2006-01-01

    Full Text Available Background : Lumbar disc herniation often causes sciatica. Many different techniques have been advocated with the aim of least possible damage to other structures while dealing with prolapsed disc surgically in the properly selected and indicated cases. Methods : Twenty six patients with clinical symptoms and signs of prolapsed lumbar intervertebral disc having radiological correlation by MRI study were subjected to disc excision by interlaminar fenestration method. Results : The assessment at follow-up showed excellent results in 17 patients, good in 6 patients, fair in 2 patients and poor in 1 patient. The mean preoperative and postoperative Visual Analogue Scores were 9.34 ±0.84 and 2.19 ±0.84 on scale of 0-10 respectively. These were statistically significant (p value< 0.001, paired t test. No significant complications were recorded. Conclusion : Procedures of interlaminar fenestration and open disc excision under direct vision offers sufficient adequate exposure for lumbar disc excision with a smaller incision, lesser morbidity, shorter convalescence, early return to work and comparable overall results in the centers where recent laser and endoscopy facilities are not available.

  8. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    Science.gov (United States)

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies. Copyright © 2015 John Wiley & Sons, Inc.

  9. DNA-based identification of spices: DNA isolation, whole genome amplification, and polymerase chain reaction.

    Science.gov (United States)

    Focke, Felix; Haase, Ilka; Fischer, Markus

    2011-01-26

    Usually spices are identified morphologically using simple methods like magnifying glasses or microscopic instruments. On the other hand, molecular biological methods like the polymerase chain reaction (PCR) enable an accurate and specific detection also in complex matrices. Generally, the origins of spices are plants with diverse genetic backgrounds and relationships. The processing methods used for the production of spices are complex and individual. Consequently, the development of a reliable DNA-based method for spice analysis is a challenging intention. However, once established, this method will be easily adapted to less difficult food matrices. In the current study, several alternative methods for the isolation of DNA from spices have been developed and evaluated in detail with regard to (i) its purity (photometric), (ii) yield (fluorimetric methods), and (iii) its amplifiability (PCR). Whole genome amplification methods were used to preamplify isolates to improve the ratio between amplifiable DNA and inhibiting substances. Specific primer sets were designed, and the PCR conditions were optimized to detect 18 spices selectively. Assays of self-made spice mixtures were performed to proof the applicability of the developed methods.

  10. Identification of Species in Tripterygium (Celastraceae) Based on DNA Barcoding.

    Science.gov (United States)

    Zhang, Xiaomei; Li, Na; Yao, Yuanyuan; Liang, Xuming; Qu, Xianyou; Liu, Xiang; Zhu, Yingjie; Yang, Dajian; Sun, Wei

    2016-11-01

    Species of genus Tripterygium (Celastraceae) have attracted much attention owing to their excellent effect on treating autoimmune and inflammatory diseases. However, due to high market demand causing overexploitation, natural populations of genus Tripterygium have rapidly declined. Tripterygium medicinal materials are mainly collected from the wild, making the quality of medicinal materials unstable. Additionally, identification of herbal materials from Tripterygium species and their adulterants is difficult based on morphological characters. Therefore, an accurate, convenient, and stability method is urgently needed. In this wok, we developed a DNA barcoding technique to distinguish T. wilfordii HOOK. f., T. hypoglaucum (LÉVL.) HUTCH, and T. regelii SPRAGUE et TAKEDA and their adulterants based on four uniform and standard DNA regions (internal transcribed spacer 2 (ITS2), matK, rbcL, and psbA-trnH). DNA was extracted from 26 locations of fresh leaves. Phylogenetic tree was constructed with Neighbor-Joining (NJ) method, while barcoding gap was analyzed to assess identification efficiency. Compared with the other DNA barcodes applied individually or in combination, ITS2+psbA-trnH was demonstrated as the optimal barcode. T. hypoglaucum and T. wilfordii can be considered as conspecific, while T. regelii was recognized as a separate species. Furthermore, identification of commercial Tripterygium samples was conducted using BLAST against GenBank and Species Identification System for Traditional Chinese Medicine. Our results indicated that DNA barcoding is a convenient, effective, and stability method to identify and distinguish Tripterygium and its adulterants, and could be applied as the quality control for Tripterygium medicinal preparations and monitoring of the medicinal herb trade in markets.

  11. Computational modeling of a carbon nanotube-based DNA nanosensor

    Energy Technology Data Exchange (ETDEWEB)

    Kalantari-Nejad, R; Bahrami, M [Mechanical Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Rafii-Tabar, H [Department of Medical Physics and Biomedical Engineering and Research Centre for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of); Rungger, I; Sanvito, S, E-mail: mbahrami@aut.ac.ir [School of Physics and CRANN, Trinity College, Dublin 2 (Ireland)

    2010-11-05

    During the last decade the design of biosensors, based on quantum transport in one-dimensional nanostructures, has developed as an active area of research. Here we investigate the sensing capabilities of a DNA nanosensor, designed as a semiconductor single walled carbon nanotube (SWCNT) connected to two gold electrodes and functionalized with a DNA strand acting as a bio-receptor probe. In particular, we have considered both covalent and non-covalent bonding between the DNA probe and the SWCNT. The optimized atomic structure of the sensor is computed both before and after the receptor attaches itself to the target, which consists of another DNA strand. The sensor's electrical conductance and transmission coefficients are calculated at the equilibrium geometries via the non-equilibrium Green's function scheme combined with the density functional theory in the linear response limit. We demonstrate a sensing efficiency of 70% for the covalently bonded bio-receptor probe, which drops to about 19% for the non-covalently bonded one. These results suggest that a SWCNT may be a promising candidate for a bio-molecular FET sensor.

  12. Computational modeling of a carbon nanotube-based DNA nanosensor

    International Nuclear Information System (INIS)

    Kalantari-Nejad, R; Bahrami, M; Rafii-Tabar, H; Rungger, I; Sanvito, S

    2010-01-01

    During the last decade the design of biosensors, based on quantum transport in one-dimensional nanostructures, has developed as an active area of research. Here we investigate the sensing capabilities of a DNA nanosensor, designed as a semiconductor single walled carbon nanotube (SWCNT) connected to two gold electrodes and functionalized with a DNA strand acting as a bio-receptor probe. In particular, we have considered both covalent and non-covalent bonding between the DNA probe and the SWCNT. The optimized atomic structure of the sensor is computed both before and after the receptor attaches itself to the target, which consists of another DNA strand. The sensor's electrical conductance and transmission coefficients are calculated at the equilibrium geometries via the non-equilibrium Green's function scheme combined with the density functional theory in the linear response limit. We demonstrate a sensing efficiency of 70% for the covalently bonded bio-receptor probe, which drops to about 19% for the non-covalently bonded one. These results suggest that a SWCNT may be a promising candidate for a bio-molecular FET sensor.

  13. Molecular cloning and biological characterization of the human excision repair gene ERCC-3

    International Nuclear Information System (INIS)

    Weeda, G.; van Ham, R.C.; Masurel, R.; Westerveld, A.; Odijk, H.; de Wit, J.; Bootsma, D.; van der Eb, A.J.; Hoeijmakers, J.H.

    1990-01-01

    In this report we present the cloning, partial characterization, and preliminary studies of the biological activity of a human gene, designated ERCC-3, involved in early steps of the nucleotide excision repair pathway. The gene was cloned after genomic DNA transfection of human (HeLa) chromosomal DNA together with dominant marker pSV3gptH to the UV-sensitive, incision-defective Chinese hamster ovary (CHO) mutant 27-1. This mutant belongs to complementation group 3 of repair-deficient rodent mutants. After selection of UV-resistant primary and secondary 27-1 transformants, human sequences associated with the induced UV resistance were rescued in cosmids from the DNA of a secondary transformant by using a linked dominant marker copy and human repetitive DNA as probes. From coinheritance analysis of the ERCC-3 region in independent transformants, we deduce that the gene has a size of 35 to 45 kilobases, of which one essential segment has so far been refractory to cloning. Conserved unique human sequences hybridizing to a 3.0-kilobase mRNA were used to isolate apparently full-length cDNA clones. Upon transfection to 27-1 cells, the ERCC-3 cDNA, inserted in a mammalian expression vector, induced specific and (virtually) complete correction of the UV sensitivity and unscheduled DNA synthesis of mutants of complementation group 3 with very high efficiency. Mutant 27-1 is, unlike other mutants of complementation group 3, also very sensitive toward small alkylating agents. This unique property of the mutant is not corrected by introduction of the ERCC-3 cDNA, indicating that it may be caused by an independent second mutation in another repair function. By hybridization to DNA of a human x rodent hybrid cell panel, the ERCC-3 gene was assigned to chromosome 2, in agreement with data based on cell fusion

  14. Exonuclease of human DNA polymerase gamma disengages its strand displacement function.

    Science.gov (United States)

    He, Quan; Shumate, Christie K; White, Mark A; Molineux, Ian J; Yin, Y Whitney

    2013-11-01

    Pol γ, the only DNA polymerase found in human mitochondria, functions in both mtDNA repair and replication. During mtDNA base-excision repair, gaps are created after damaged base excision. Here we show that Pol γ efficiently gap-fills except when the gap is only a single nucleotide. Although wild-type Pol γ has very limited ability for strand displacement DNA synthesis, exo(-) (3'-5' exonuclease-deficient) Pol γ has significantly high activity and rapidly unwinds downstream DNA, synthesizing DNA at a rate comparable to that of the wild-type enzyme on a primer-template. The catalytic subunit Pol γA alone, even when exo(-), is unable to synthesize by strand displacement, making this the only known reaction of Pol γ holoenzyme that has an absolute requirement for the accessory subunit Pol γB. © 2013. Published by Elsevier B.V.

  15. A dynamic bead-based microarray for parallel DNA detection

    International Nuclear Information System (INIS)

    Sochol, R D; Lin, L; Casavant, B P; Dueck, M E; Lee, L P

    2011-01-01

    A microfluidic system has been designed and constructed by means of micromachining processes to integrate both microfluidic mixing of mobile microbeads and hydrodynamic microbead arraying capabilities on a single chip to simultaneously detect multiple bio-molecules. The prototype system has four parallel reaction chambers, which include microchannels of 18 × 50 µm 2 cross-sectional area and a microfluidic mixing section of 22 cm length. Parallel detection of multiple DNA oligonucleotide sequences was achieved via molecular beacon probes immobilized on polystyrene microbeads of 16 µm diameter. Experimental results show quantitative detection of three distinct DNA oligonucleotide sequences from the Hepatitis C viral (HCV) genome with single base-pair mismatch specificity. Our dynamic bead-based microarray offers an effective microfluidic platform to increase parallelization of reactions and improve microbead handling for various biological applications, including bio-molecule detection, medical diagnostics and drug screening

  16. DNA polymerase beta participates in mitochondrial DNA repair

    DEFF Research Database (Denmark)

    Sykora, P; Kanno, S; Akbari, M

    2017-01-01

    We have detected DNA polymerase beta (Polβ), known as a key nuclear base excision repair (BER) protein, in mitochondrial protein extracts derived from mammalian tissue and cells. Manipulation of the N-terminal sequence affected the amount of Polβ in the mitochondria. Using Polβ fragments, mitocho......We have detected DNA polymerase beta (Polβ), known as a key nuclear base excision repair (BER) protein, in mitochondrial protein extracts derived from mammalian tissue and cells. Manipulation of the N-terminal sequence affected the amount of Polβ in the mitochondria. Using Polβ fragments......, mitochondrial-specific protein partners were identified, with the interactors mainly functioning in DNA maintenance and mitochondrial import. Of particular interest was the identification of the proteins TWINKLE, SSBP1 and TFAM, all of which are mitochondria specific DNA effectors and are known to function...... in the nucleoid. Polβ directly interacted with, and influenced the activity of, the mitochondrial helicase TWINKLE. Human kidney cells with Polβ knock-out (KO) had higher endogenous mtDNA damage. Mitochondrial extracts derived from heterozygous Polβ mouse tissue and KO cells had lower nucleotide incorporation...

  17. Detecção do DNA do papilomavírus humano após excisão da zona de transformação com alça diatérmica para tratamento de neoplasia intra-epitelial cervical Human papillomavirus DNA detection after large loop excision of the transformation zone for the treatment of cervical intraepithelial neoplasia

    Directory of Open Access Journals (Sweden)

    Priscila Garcia Figueirêdo

    2003-02-01

    Full Text Available OBJETIVO: avaliar a presença do DNA do papilomavírus humano (HPV de alto risco oncológico antes e quatro meses após excisão da zona de transformação com alça diatérmica em mulheres com neoplasia intra-epitelial cervical (NIC. MÉTODOS: neste estudo clínico prospectivo foram incluídas 78 mulheres submetidas à excisão da zona de transformação tratadas no período de fevereiro a dezembro de 2001. Todas foram submetidas a colposcopia, citologia oncológica e captura híbrida II (CH II antes da cirurgia e após 4±1,25 meses. Para análise estatística utilizou-se o cálculo do odds ratio (OR com intervalo de confiança de 95% (IC 95%. RESULTADOS: antes da excisão, 67 (86% mulheres apresentavam CH II positiva para DNA-HPV de alto risco oncológico e destas, apenas 22 (33% mantiveram a CH II positiva quatro meses após. A detecção do DNA-HPV após o tratamento não se relacionou com a carga viral prévia, presença de doença nas margens da peça cirúrgica ou idade da mulher. Após quatro meses, a detecção do DNA-HPV associou-se significativamente com a presença de alterações citológicas (OR = 4,8; IC 95% = 1,7-13,7, porém não se relacionou com doença residual ou recidiva histológica (OR = 6,0; IC 95% = 0,8-52,3. CONCLUSÃO: após o tratamento da NIC, a detecção do DNA-HPV diminuiu significativamente porém não se observou relação com a presença de doença residual ou recidiva histológica.PURPOSE: to evaluate the detection of high oncogenic risk human papillomavirus DNA (HPV-DNA immediately before and 4±1.25 months after large loop excision of the transformation zone (LLETZ in the treatment of cervical intraepithelial neoplasia (CIN. METHODS: in this clinical prospective study, 78 patients submitted to LLETZ from February to December 2001 were enrolled. All patients were submitted to colposcopic evaluation and had Pap smear and hybrid capture II (HC II specimens collected immediately before LLETZ and four months

  18. DNA repair processes and their impairment in some human diseases

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1977-01-01

    Some human diseases show enhanced sensitivity to the action of environmental mutagens, and among these several are known which are defective in the repair of damaged DNA. Xeroderma pigmentosum (XP) is mainly defective in excision repair of a large variety of damaged DNA bases caused by ultraviolet light and chemical mutagens. XP involves at least 6 distinct groups, some of which may lack cofactors required for excising damage from chromatin. As a result of these defects the sensitivity of XP cells to many mutagens is increased 5- to 10-fold. Ataxia telangiectasia and Fanconi's anemia may similarly involve defects in repair of certain DNA base damage or cross-links, respectively. But most of these and other mutagen-sensitive diseases only show increases of about 2-fold in sensitivity to mutagens, and the biochemical defects in the diseases may be more complex and less directly involved in DNA repair than in XP. (Auth.)

  19. Arduino-based automation of a DNA extraction system.

    Science.gov (United States)

    Kim, Kyung-Won; Lee, Mi-So; Ryu, Mun-Ho; Kim, Jong-Won

    2015-01-01

    There have been many studies to detect infectious diseases with the molecular genetic method. This study presents an automation process for a DNA extraction system based on microfluidics and magnetic bead, which is part of a portable molecular genetic test system. This DNA extraction system consists of a cartridge with chambers, syringes, four linear stepper actuators, and a rotary stepper actuator. The actuators provide a sequence of steps in the DNA extraction process, such as transporting, mixing, and washing for the gene specimen, magnetic bead, and reagent solutions. The proposed automation system consists of a PC-based host application and an Arduino-based controller. The host application compiles a G code sequence file and interfaces with the controller to execute the compiled sequence. The controller executes stepper motor axis motion, time delay, and input-output manipulation. It drives the stepper motor with an open library, which provides a smooth linear acceleration profile. The controller also provides a homing sequence to establish the motor's reference position, and hard limit checking to prevent any over-travelling. The proposed system was implemented and its functionality was investigated, especially regarding positioning accuracy and velocity profile.

  20. DNA-based approaches to identify forest fungi in Pacific Islands: A pilot study

    Science.gov (United States)

    Anna E. Case; Sara M. Ashiglar; Phil G. Cannon; Ernesto P. Militante; Edwin R. Tadiosa; Mutya Quintos-Manalo; Nelson M. Pampolina; John W. Hanna; Fred E. Brooks; Amy L. Ross-Davis; Mee-Sook Kim; Ned B. Klopfenstein

    2013-01-01

    DNA-based diagnostics have been successfully used to characterize diverse forest fungi (e.g., Hoff et al. 2004, Kim et al. 2006, Glaeser & Lindner 2011). DNA sequencing of the internal transcribed spacer (ITS) and large subunit (LSU) regions of nuclear ribosomal DNA (rDNA) has proved especially useful (Sonnenberg et al. 2007, Seifert 2009, Schoch et al. 2012) for...

  1. Diagnostic markers of urothelial cancer based on DNA methylation analysis

    International Nuclear Information System (INIS)

    Chihara, Yoshitomo; Hirao, Yoshihiko; Kanai, Yae; Fujimoto, Hiroyuki; Sugano, Kokichi; Kawashima, Kiyotaka; Liang, Gangning; Jones, Peter A; Fujimoto, Kiyohide; Kuniyasu, Hiroki

    2013-01-01

    Early detection and risk assessment are crucial for treating urothelial cancer (UC), which is characterized by a high recurrence rate, and necessitates frequent and invasive monitoring. We aimed to establish diagnostic markers for UC based on DNA methylation. In this multi-center study, three independent sample sets were prepared. First, DNA methylation levels at CpG loci were measured in the training sets (tumor samples from 91 UC patients, corresponding normal-appearing tissue from these patients, and 12 normal tissues from age-matched bladder cancer-free patients) using the Illumina Golden Gate methylation assay to identify differentially methylated loci. Next, these methylated loci were validated by quantitative DNA methylation by pyrosequencing, using another cohort of tissue samples (Tissue validation set). Lastly, methylation of these markers was analyzed in the independent urine samples (Urine validation set). ROC analysis was performed to evaluate the diagnostic accuracy of these 12 selected markers. Of the 1303 CpG sites, 158 were hyper ethylated and 356 were hypo ethylated in tumor tissues compared to normal tissues. In the panel analysis, 12 loci showed remarkable alterations between tumor and normal samples, with 94.3% sensitivity and 97.8% specificity. Similarly, corresponding normal tissue could be distinguished from normal tissues with 76.0% sensitivity and 100% specificity. Furthermore, the diagnostic accuracy for UC of these markers determined in urine samples was high, with 100% sensitivity and 100% specificity. Based on these preliminary findings, diagnostic markers based on differential DNA methylation at specific loci can be useful for non-invasive and reliable detection of UC and epigenetic field defect

  2. Complete sequence analysis of 18S rDNA based on genomic DNA extraction from individual Demodex mites (Acari: Demodicidae).

    Science.gov (United States)

    Zhao, Ya-E; Xu, Ji-Ru; Hu, Li; Wu, Li-Ping; Wang, Zheng-Hang

    2012-05-01

    The study for the first time attempted to accomplish 18S ribosomal DNA (rDNA) complete sequence amplification and analysis for three Demodex species (Demodex folliculorum, Demodex brevis and Demodex canis) based on gDNA extraction from individual mites. The mites were treated by DNA Release Additive and Hot Start II DNA Polymerase so as to promote mite disruption and increase PCR specificity. Determination of D. folliculorum gDNA showed that the gDNA yield reached the highest at 1 mite, tending to descend with the increase of mite number. The individual mite gDNA was successfully used for 18S rDNA fragment (about 900 bp) amplification examination. The alignments of 18S rDNA complete sequences of individual mite samples and those of pooled mite samples ( ≥ 1000mites/sample) showed over 97% identities for each species, indicating that the gDNA extracted from a single individual mite was as satisfactory as that from pooled mites for PCR amplification. Further pairwise sequence analyses showed that average divergence, genetic distance, transition/transversion or phylogenetic tree could not effectively identify the three Demodex species, largely due to the differentiation in the D. canis isolates. It can be concluded that the individual Demodex mite gDNA can satisfy the molecular study of Demodex. 18S rDNA complete sequence is suitable for interfamily identification in Cheyletoidea, but whether it is suitable for intrafamily identification cannot be confirmed until the ascertainment of the types of Demodex mites parasitizing in dogs. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. A Graphene-Based Biosensing Platform Based on Regulated Release of an Aptameric DNA Biosensor.

    Science.gov (United States)

    Mao, Yu; Chen, Yongli; Li, Song; Lin, Shuo; Jiang, Yuyang

    2015-11-09

    A novel biosensing platform was developed by integrating an aptamer-based DNA biosensor with graphene oxide (GO) for rapid and facile detection of adenosine triphosphate (ATP, as a model target). The DNA biosensor, which is locked by GO, is designed to contain two sensing modules that include recognition site for ATP and self-replication track that yields the nicking domain for Nt.BbvCI. By taking advantage of the different binding affinity of single-stranded DNA, double-stranded DNA and aptamer-target complex toward GO, the DNA biosensor could be efficiently released from GO in the presence of target with the help of a complementary DNA strand (CPDNA) that partially hybridizes to the DNA biosensor. Then, the polymerization/nicking enzyme synergetic isothermal amplification could be triggered, leading to the synthesis of massive DNA amplicons, thus achieving an enhanced sensitivity with a wide linear dynamic response range of four orders of magnitude and good selectivity. This biosensing strategy expands the applications of GO-DNA nanobiointerfaces in biological sensing, showing great potential in fundamental research and biomedical diagnosis.

  4. Deficiency of gamma-ray excision repair in skin fibroblasts from patients with Fanconi's anemia

    International Nuclear Information System (INIS)

    Remsen, J.F.; Cerutti, P.A.

    1976-01-01

    The capacity of preparations of skin fibroblasts from normal individuals and patients with Fanconi's anemia to excise gamma-ray products of the 5,6-dihydroxydihydrothymine type from exogenous DNA was investigated. The excision capacity of whole-cell homogenates of fibroblasts from two of four patients with Fanconi's anemia was substantially below normal. This repair deficiency was further pronounced in nuclear preparations from cells of the same two patients

  5. Electrochemical DNA biosensor based on avidin-biotin conjugation for influenza virus (type A) detection

    Science.gov (United States)

    Chung, Da-Jung; Kim, Ki-Chul; Choi, Seong-Ho

    2011-09-01

    An electrochemical DNA biosensor (E-DNA biosensor) was fabricated by avidin-biotin conjugation of a biotinylated probe DNA, 5'-biotin-ATG AGT CTT CTA ACC GAG GTC GAA-3', and an avidin-modified glassy carbon electrode (GCE) to detect the influenza virus (type A). An avidin-modified GCE was prepared by the reaction of avidin and a carboxylic acid-modified GCE, which was synthesized by the electrochemical reduction of 4-carboxyphenyl diazonium salt. The current value of the E-DNA biosensor was evaluated after hybridization of the probe DNA and target DNA using cyclic voltammetry (CV). The current value decreased after the hybridization of the probe DNA and target DNA. The DNA that was used follows: complementary target DNA, 5'-TTC GAC CTC GGT TAG AAG ACT CAT-3' and two-base mismatched DNA, 5'-TTC GAC AGC GGT TAT AAG ACT CAT-3'.

  6. Magnetophoresis of flexible DNA-based dumbbell structures

    Science.gov (United States)

    Babić, B.; Ghai, R.; Dimitrov, K.

    2008-02-01

    Controlled movement and manipulation of magnetic micro- and nanostructures using magnetic forces can give rise to important applications in biomedecine, diagnostics, and immunology. We report controlled magnetophoresis and stretching, in aqueous solution, of a DNA-based dumbbell structure containing magnetic and diamagnetic microspheres. The velocity and stretching of the dumbbell were experimentally measured and correlated with a theoretical model based on the forces acting on individual magnetic beads or the entire dumbbell structures. The results show that precise and predictable manipulation of dumbbell structures is achievable and can potentially be applied to immunomagnetic cell separators.

  7. Developing a biological dosimeter based on mitochondrial DNA

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S; Carlisle, S M; Unrau, P; Deugau, K V [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    Direct measurement of deoxyribonucleic acid (DNA) damage from ionizing radiation may be advantageous in determining radiation radiation exposures and assessing their effects on atomic radiation workers. The mitochondrial DNA molecule is one potential cellular DNA target which is: fully defined and sequenced; present in many copies per cell; not vital to cellular survival; and less subject to DNA repair than nuclear DNA. A method is described to isolate and analyse normal mitochondrial DNA. We describe the developments needed to determine DNA damage in mitochondrial DNA. The target is to make a biological dosimeter. (author). 6 refs., 3 figs.

  8. Developing a biological dosimeter based on mitochondrial DNA

    International Nuclear Information System (INIS)

    Adams, S.; Carlisle, S.M.; Unrau, P.; Deugau, K.V.

    1995-01-01

    Direct measurement of deoxyribonucleic acid (DNA) damage from ionizing radiation may be advantageous in determining radiation radiation exposures and assessing their effects on atomic radiation workers. The mitochondrial DNA molecule is one potential cellular DNA target which is: fully defined and sequenced; present in many copies per cell; not vital to cellular survival; and less subject to DNA repair than nuclear DNA. A method is described to isolate and analyse normal mitochondrial DNA. We describe the developments needed to determine DNA damage in mitochondrial DNA. The target is to make a biological dosimeter. (author). 6 refs., 3 figs

  9. Germline excision of transgenes in Aedes aegypti by homing endonucleases.

    Science.gov (United States)

    Aryan, Azadeh; Anderson, Michelle A E; Myles, Kevin M; Adelman, Zach N

    2013-01-01

    Aedes (Ae.) aegypti is the primary vector for dengue viruses (serotypes1-4) and chikungunya virus. Homing endonucleases (HEs) are ancient selfish elements that catalyze double-stranded DNA breaks (DSB) in a highly specific manner. In this report, we show that the HEs Y2-I-AniI, I-CreI and I-SceI are all capable of catalyzing the excision of genomic segments from the Ae. aegypti genome in a heritable manner. Y2-I-AniI demonstrated the highest efficiency at two independent genomic targets, with 20-40% of Y2-I-AniI-treated individuals producing offspring that had lost the target transgene. HE-induced DSBs were found to be repaired via the single-strand annealing (SSA) and non-homologous end-joining (NHEJ) pathways in a manner dependent on the availability of direct repeat sequences in the transgene. These results support the development of HE-based gene editing and gene drive strategies in Ae. aegypti, and confirm the utility of HEs in the manipulation and modification of transgenes in this important vector.

  10. Electrochemical DNA biosensor based on the BDD nanograss array electrode.

    Science.gov (United States)

    Jin, Huali; Wei, Min; Wang, Jinshui

    2013-04-10

    The development of DNA biosensor has attracted considerable attention due to their potential applications, including gene analysis, clinical diagnostics, forensic study and more medical applications. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry in this study. Electrochemical DNA biosensor was developed based on the BDD film electrode (fBDD) and BDD nanograss array electrode (nBDD). In comparison with fBDD and AuNPs/CA/fBDD electrode, the lower semicircle diameter of electrochemical impedance spectroscopy obtained on nBDD and AuNPs/CA/nBDD electrode indicated that the presence of nanograss array improved the reactive site, reduced the interfacial resistance, and made the electron transfer easier. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry. The experimental results demonstrated that the prepared AuNPs/CA/nBDD electrode was suitable for DNA hybridization with favorable performance of faster response, higher sensitivity, lower detection limit and satisfactory selectivity, reproducibility and stability.

  11. Tyramine Hydrochloride Based Label-Free System for Operating Various DNA Logic Gates and a DNA Caliper for Base Number Measurements.

    Science.gov (United States)

    Fan, Daoqing; Zhu, Xiaoqing; Dong, Shaojun; Wang, Erkang

    2017-07-05

    DNA is believed to be a promising candidate for molecular logic computation, and the fluorogenic/colorimetric substrates of G-quadruplex DNAzyme (G4zyme) are broadly used as label-free output reporters of DNA logic circuits. Herein, for the first time, tyramine-HCl (a fluorogenic substrate of G4zyme) is applied to DNA logic computation and a series of label-free DNA-input logic gates, including elementary AND, OR, and INHIBIT logic gates, as well as a two to one encoder, are constructed. Furthermore, a DNA caliper that can measure the base number of target DNA as low as three bases is also fabricated. This DNA caliper can also perform concatenated AND-AND logic computation to fulfil the requirements of sophisticated logic computing. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Triple negative breast cancers have a reduced expression of DNA repair genes.

    Directory of Open Access Journals (Sweden)

    Enilze Ribeiro

    Full Text Available DNA repair is a key determinant in the cellular response to therapy and tumor repair status could play an important role in tailoring patient therapy. Our goal was to evaluate the mRNA of 13 genes involved in different DNA repair pathways (base excision, nucleotide excision, homologous recombination, and Fanconi anemia in paraffin embedded samples of triple negative breast cancer (TNBC compared to luminal A breast cancer (LABC. Most of the genes involved in nucleotide excision repair and Fanconi Anemia pathways, and CHK1 gene were significantly less expressed in TNBC than in LABC. PARP1 levels were higher in TNBC than in LABC. In univariate analysis high level of FANCA correlated with an increased overall survival and event free survival in TNBC; however multivariate analyses using Cox regression did not confirm FANCA as independent prognostic factor. These data support the evidence that TNBCs compared to LABCs harbour DNA repair defects.

  13. The Fanconi anaemia components UBE2T and FANCM are functionally linked to nucleotide excision repair.

    Directory of Open Access Journals (Sweden)

    Ian R Kelsall

    Full Text Available The many proteins that function in the Fanconi anaemia (FA monoubiquitylation pathway initiate replicative DNA crosslink repair. However, it is not clear whether individual FA genes participate in DNA repair pathways other than homologous recombination and translesion bypass. Here we show that avian DT40 cell knockouts of two integral FA genes--UBE2T and FANCM are unexpectedly sensitive to UV-induced DNA damage. Comprehensive genetic dissection experiments indicate that both of these FA genes collaborate to promote nucleotide excision repair rather than translesion bypass to protect cells form UV genotoxicity. Furthermore, UBE2T deficiency impacts on the efficient removal of the UV-induced photolesion cyclobutane pyrimidine dimer. Therefore, this work reveals that the FA pathway shares two components with nucleotide excision repair, intimating not only crosstalk between the two major repair pathways, but also potentially identifying a UBE2T-mediated ubiquitin-signalling response pathway that contributes to nucleotide excision repair.

  14. Decrease in Abundance of Apurinic/Apyrimidinic Endonuclease Causes Failure of Base Excision Repair in Culture-Adapted Human Embryonic Stem Cells

    Czech Academy of Sciences Publication Activity Database

    Krutá, M.; Bálek, L.; Hejnová, R.; Dobšáková, Z.; Eiselleová, L.; Matulka, K.; Bárta, T.; Fojtík, P.; Fajkus, Jiří; Hampl, A.; Dvořák, P.; Rotrekl, V.

    2013-01-01

    Roč. 31, č. 4 (2013), s. 693-702 ISSN 1066-5099 R&D Projects: GA ČR(CZ) GBP302/12/G157 Grant - others:GA MŠk(CZ) ED1.100/02/0123 Institutional support: RVO:68081707 Keywords : DNA -DAMAGE * GENOMIC INSTABILITY * HETEROZYGOUS MICE Subject RIV: BO - Biophysics Impact factor: 7.133, year: 2013

  15. Solution-based targeted genomic enrichment for precious DNA samples

    Directory of Open Access Journals (Sweden)

    Shearer Aiden

    2012-05-01

    Full Text Available Abstract Background Solution-based targeted genomic enrichment (TGE protocols permit selective sequencing of genomic regions of interest on a massively parallel scale. These protocols could be improved by: 1 modifying or eliminating time consuming steps; 2 increasing yield to reduce input DNA and excessive PCR cycling; and 3 enhancing reproducible. Results We developed a solution-based TGE method for downstream Illumina sequencing in a non-automated workflow, adding standard Illumina barcode indexes during the post-hybridization amplification to allow for sample pooling prior to sequencing. The method utilizes Agilent SureSelect baits, primers and hybridization reagents for the capture, off-the-shelf reagents for the library preparation steps, and adaptor oligonucleotides for Illumina paired-end sequencing purchased directly from an oligonucleotide manufacturing company. Conclusions This solution-based TGE method for Illumina sequencing is optimized for small- or medium-sized laboratories and addresses the weaknesses of standard protocols by reducing the amount of input DNA required, increasing capture yield, optimizing efficiency, and improving reproducibility.

  16. Benchmarking DNA Metabarcoding for Biodiversity-Based Monitoring and Assessment

    KAUST Repository

    Aylagas, Eva

    2016-06-10

    Characterization of biodiversity has been extensively used to confidently monitor and assess environmental status. Yet, visual morphology, traditionally and widely used for species identification in coastal and marine ecosystem communities, is tedious and entails limitations. Metabarcoding coupled with high-throughput sequencing (HTS) represents an alternative to rapidly, accurately, and cost-effectively analyze thousands of environmental samples simultaneously, and this method is increasingly used to characterize the metazoan taxonomic composition of a wide variety of environments. However, a comprehensive study benchmarking visual and metabarcoding-based taxonomic inferences that validates this technique for environmental monitoring is still lacking. Here, we compare taxonomic inferences of benthic macroinvertebrate samples of known taxonomic composition obtained using alternative metabarcoding protocols based on a combination of different DNA sources, barcodes of the mitochondrial cytochrome oxidase I gene and amplification conditions. Our results highlight the influence of the metabarcoding protocol in the obtained taxonomic composition and suggest the better performance of an alternative 313 bp length barcode to the traditionally 658 bp length one used for metazoan metabarcoding. Additionally, we show that a biotic index inferred from the list of macroinvertebrate taxa obtained using DNA-based taxonomic assignments is comparable to that inferred using morphological identification. Thus, our analyses prove metabarcoding valid for environmental status assessment and will contribute to accelerating the implementation of this technique to regular monitoring programs.

  17. Benchmarking DNA Metabarcoding for Biodiversity-Based Monitoring and Assessment

    KAUST Repository

    Aylagas, Eva; Borja, Á ngel; Irigoien, Xabier; Rodrí guez-Ezpeleta, Naiara

    2016-01-01

    Characterization of biodiversity has been extensively used to confidently monitor and assess environmental status. Yet, visual morphology, traditionally and widely used for species identification in coastal and marine ecosystem communities, is tedious and entails limitations. Metabarcoding coupled with high-throughput sequencing (HTS) represents an alternative to rapidly, accurately, and cost-effectively analyze thousands of environmental samples simultaneously, and this method is increasingly used to characterize the metazoan taxonomic composition of a wide variety of environments. However, a comprehensive study benchmarking visual and metabarcoding-based taxonomic inferences that validates this technique for environmental monitoring is still lacking. Here, we compare taxonomic inferences of benthic macroinvertebrate samples of known taxonomic composition obtained using alternative metabarcoding protocols based on a combination of different DNA sources, barcodes of the mitochondrial cytochrome oxidase I gene and amplification conditions. Our results highlight the influence of the metabarcoding protocol in the obtained taxonomic composition and suggest the better performance of an alternative 313 bp length barcode to the traditionally 658 bp length one used for metazoan metabarcoding. Additionally, we show that a biotic index inferred from the list of macroinvertebrate taxa obtained using DNA-based taxonomic assignments is comparable to that inferred using morphological identification. Thus, our analyses prove metabarcoding valid for environmental status assessment and will contribute to accelerating the implementation of this technique to regular monitoring programs.

  18. Regulation and function of DNA methylation in plants and animals

    KAUST Repository

    He, Xinjian

    2011-02-15

    DNA methylation is an important epigenetic mark involved in diverse biological processes. In plants, DNA methylation can be established through the RNA-directed DNA methylation pathway, an RNA interference pathway for transcriptional gene silencing (TGS), which requires 24-nt small interfering RNAs. In mammals, de novo DNA methylation occurs primarily at two developmental stages: during early embryogenesis and during gametogenesis. While it is not clear whether establishment of DNA methylation patterns in mammals involves RNA interference in general, de novo DNA methylation and suppression of transposons in germ cells require 24-32-nt piwi-interacting small RNAs. DNA methylation status is dynamically regulated by DNA methylation and demethylation reactions. In plants, active DNA demethylation relies on the repressor of silencing 1 family of bifunctional DNA glycosylases, which remove the 5-methylcytosine base and then cleave the DNA backbone at the abasic site, initiating a base excision repair (BER) pathway. In animals, multiple mechanisms of active DNA demethylation have been proposed, including a deaminase- and DNA glycosylase-initiated BER pathway. New information concerning the effects of various histone modifications on the establishment and maintenance of DNA methylation has broadened our understanding of the regulation of DNA methylation. The function of DNA methylation in plants and animals is also discussed in this review. © 2011 IBCB, SIBS, CAS All rights reserved.

  19. The replicative DNA polymerase of herpes simplex virus 1 exhibits apurinic/apyrimidinic and 5′-deoxyribose phosphate lyase activities

    OpenAIRE

    Bogani, Federica; Boehmer, Paul E.

    2008-01-01

    Base excision repair (BER) is essential for maintaining genome stability both to counter the accumulation of unusual bases and to protect from base loss in the DNA. Herpes simplex virus 1 (HSV-1) is a large dsDNA virus that encodes its own DNA replication machinery, including enzymes involved in nucleotide metabolism. We report on a replicative family B and a herpesvirus-encoded DNA Pol that possesses DNA lyase activity. We have discovered that the catalytic subunit of the HSV-1 DNA polymeras...

  20. Systematic analysis of DNA damage induction and DNA repair pathway activation by continuous wave visible light laser micro-irradiation

    Directory of Open Access Journals (Sweden)

    Britta Muster

    2017-02-01

    Full Text Available Laser micro-irradiation can be used to induce DNA damage with high spatial and temporal resolution, representing a powerful tool to analyze DNA repair in vivo in the context of chromatin. However, most lasers induce a mixture of DNA damage leading to the activation of multiple DNA repair pathways and making it impossible to study individual repair processes. Hence, we aimed to establish and validate micro-irradiation conditions together with inhibition of several key proteins to discriminate different types of DNA damage and repair pathways using lasers commonly available in confocal microscopes. Using time-lapse analysis of cells expressing fluorescently tagged repair proteins and also validation of the DNA damage generated by micro-irradiation using several key damage markers, we show that irradiation with a 405 nm continuous wave laser lead to the activation of all repair pathways even in the absence of exogenous sensitization. In contrast, we found that irradiation with 488 nm laser lead to the selective activation of non-processive short-patch base excision and single strand break repair, which were further validated by PARP inhibition and metoxyamine treatment. We conclude that these low energy conditions discriminated against processive long-patch base excision repair, nucleotide excision repair as well as double strand break repair pathways.

  1. Functional Polymorphisms of Base Excision Repair Genes XRCC1 and APEX1 Predict Risk of Radiation Pneumonitis in Patients With Non-Small Cell Lung Cancer Treated With Definitive Radiation Therapy

    International Nuclear Information System (INIS)

    Yin Ming; Liao Zhongxing; Liu Zhensheng; Wang, Li-E; Gomez, Daniel; Komaki, Ritsuko; Wei Qingyi

    2011-01-01

    Purpose: To explore whether functional single nucleotide polymorphisms (SNPs) of base-excision repair genes are predictors of radiation treatment-related pneumonitis (RP), we investigated associations between functional SNPs of ADPRT, APEX1, and XRCC1 and RP development. Methods and Materials: We genotyped SNPs of ADPRT (rs1136410 [V762A]), XRCC1 (rs1799782 [R194W], rs25489 [R280H], and rs25487 [Q399R]), and APEX1 (rs1130409 [D148E]) in 165 patients with non-small cell lung cancer (NSCLC) who received definitive chemoradiation therapy. Results were assessed by both Logistic and Cox regression models for RP risk. Kaplan-Meier curves were generated for the cumulative RP probability by the genotypes. Results: We found that SNPs of XRCC1 Q399R and APEX1 D148E each had a significant effect on the development of Grade ≥2 RP (XRCC1: AA vs. GG, adjusted hazard ratio [HR] = 0.48, 95% confidence interval [CI], 0.24-0.97; APEX1: GG vs. TT, adjusted HR = 3.61, 95% CI, 1.64-7.93) in an allele-dose response manner (Trend tests: p = 0.040 and 0.001, respectively). The number of the combined protective XRCC1 A and APEX1 T alleles (from 0 to 4) also showed a significant trend of predicting RP risk (p = 0.001). Conclusions: SNPs of the base-excision repair genes may be biomarkers for susceptibility to RP. Larger prospective studies are needed to validate our findings.

  2. Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions

    Science.gov (United States)

    Gardner, Shea N; Mariella, Jr., Raymond P; Christian, Allen T; Young, Jennifer A; Clague, David S

    2013-06-25

    A method of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths.

  3. Cloud-based adaptive exon prediction for DNA analysis.

    Science.gov (United States)

    Putluri, Srinivasareddy; Zia Ur Rahman, Md; Fathima, Shaik Yasmeen

    2018-02-01

    Cloud computing offers significant research and economic benefits to healthcare organisations. Cloud services provide a safe place for storing and managing large amounts of such sensitive data. Under conventional flow of gene information, gene sequence laboratories send out raw and inferred information via Internet to several sequence libraries. DNA sequencing storage costs will be minimised by use of cloud service. In this study, the authors put forward a novel genomic informatics system using Amazon Cloud Services, where genomic sequence information is stored and accessed for processing. True identification of exon regions in a DNA sequence is a key task in bioinformatics, which helps in disease identification and design drugs. Three base periodicity property of exons forms the basis of all exon identification techniques. Adaptive signal processing techniques found to be promising in comparison with several other methods. Several adaptive exon predictors (AEPs) are developed using variable normalised least mean square and its maximum normalised variants to reduce computational complexity. Finally, performance evaluation of various AEPs is done based on measures such as sensitivity, specificity and precision using various standard genomic datasets taken from National Center for Biotechnology Information genomic sequence database.

  4. Bacteriophage T4 gene 32 participates in excision repair as well as recombinational repair of UV damages

    International Nuclear Information System (INIS)

    Mosig, G.

    1985-01-01

    Gene 32 of phage T4 has been shown previously to be involved in recombinational repair of UV damages but, based on a mutant study, was thought not to be required for excision repair. However, a comparison of UV-inactivation curves of several gene 32 mutants grown under conditions permissive for progeny production in wild-type or polA- hosts demonstrates that gene 32 participates in both kinds of repair. Different gene 32 mutations differentially inactivate these repair functions. Under conditions permissive for DNA replication and progeny production, all gene 32 mutants investigated here are partially defective in recombinational repair, whereas only two of them, P7 and P401, are also defective in excision repair. P401 is the only mutant whose final slope of the inactivation curve is significantly steeper than that of wild-type T4. These results are discussed in terms of interactions of gp32, a single-stranded DNA-binding protein, with DNA and with other proteins

  5. Intelligent DNA-based molecular diagnostics using linked genetic markers

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, D.K.; Perlin, M.W.; Hoffman, E.P.

    1994-12-31

    This paper describes a knowledge-based system for molecular diagnostics, and its application to fully automated diagnosis of X-linked genetic disorders. Molecular diagnostic information is used in clinical practice for determining genetic risks, such as carrier determination and prenatal diagnosis. Initially, blood samples are obtained from related individuals, and PCR amplification is performed. Linkage-based molecular diagnosis then entails three data analysis steps. First, for every individual, the alleles (i.e., DNA composition) are determined at specified chromosomal locations. Second, the flow of genetic material among the individuals is established. Third, the probability that a given individual is either a carrier of the disease or affected by the disease is determined. The current practice is to perform each of these three steps manually, which is costly, time consuming, labor-intensive, and error-prone. As such, the knowledge-intensive data analysis and interpretation supersede the actual experimentation effort as the major bottleneck in molecular diagnostics. By examining the human problem solving for the task, we have designed and implemented a prototype knowledge-based system capable of fully automating linkage-based molecular diagnostics in X-linked genetic disorders, including Duchenne Muscular Dystrophy (DMD). Our system uses knowledge-based interpretation of gel electrophoresis images to determine individual DNA marker labels, a constraint satisfaction search for consistent genetic flow among individuals, and a blackboard-style problem solver for risk assessment. We describe the system`s successful diagnosis of DMD carrier and affected individuals from raw clinical data.

  6. Communication: Site-selective bond excision of adenine upon electron transfer

    Science.gov (United States)

    Cunha, T.; Mendes, M.; Ferreira da Silva, F.; Eden, S.; García, G.; Limão-Vieira, P.

    2018-01-01

    This work demonstrates that selective excision of hydrogen atoms at a particular site of the DNA base adenine can be achieved in collisions with electronegative atoms by controlling the impact energy. The result is based on analysing the time-of-flight mass spectra yields of potassium collisions with a series of labeled adenine derivatives. The production of dehydrogenated parent anions is consistent with neutral H loss either from selective breaking of C-H or N-H bonds. These unprecedented results open up a new methodology in charge transfer collisions that can initiate selective reactivity as a key process in chemical reactions that are dominant in different areas of science and technology.

  7. DNA Source Selection for Downstream Applications Based on DNA Quality Indicators Analysis

    Science.gov (United States)

    Lucena-Aguilar, Gema; Sánchez-López, Ana María; Barberán-Aceituno, Cristina; Carrillo-Ávila, José Antonio; López-Guerrero, José Antonio

    2016-01-01

    High-quality human DNA samples and associated information of individuals are necessary for biomedical research. Biobanks act as a support infrastructure for the scientific community by providing a large number of high-quality biological samples for specific downstream applications. For this purpose, biobank methods for sample preparation must ensure the usefulness and long-term functionality of the products obtained. Quality indicators are the tool to measure these parameters, the purity and integrity determination being those specifically used for DNA. This study analyzes the quality indicators in DNA samples derived from 118 frozen human tissues in optimal cutting temperature (OCT) reactive, 68 formalin-fixed paraffin-embedded (FFPE) tissues, 119 frozen blood samples, and 26 saliva samples. The results obtained for DNA quality are discussed in association with the usefulness for downstream applications and availability of the DNA source in the target study. In brief, if any material is valid, blood is the most approachable option of prospective collection of samples providing high-quality DNA. However, if diseased tissue is a requisite or samples are available, the recommended source of DNA would be frozen tissue. These conclusions will determine the best source of DNA, according to the planned downstream application. Furthermore our results support the conclusion that a complete procedure of DNA quantification and qualification is necessary to guarantee the appropriate management of the samples, avoiding low confidence results, high costs, and a waste of samples. PMID:27158753

  8. Principles of Periocular Reconstruction following Excision of Cutaneous Malignancy

    International Nuclear Information System (INIS)

    Hayano, S. M.; Whipple, K. M.; Korn, B. S.; Kikkawa, D. O.

    2012-01-01

    Reconstruction of periocular defects following excision of cutaneous malignancy can present difficulties for oculofacial and reconstructive surgeons. The intricate anatomy of the eyelids and face requires precise restoration in order to avoid postoperative functional anesthetic concerns. Various reconstructive procedures based on common principles, location and size of the defect, can be applied to achieve restoration with the best possible functional and aesthetic outcomes.

  9. DNA based identification of medicinal materials in Chinese patent medicines

    Science.gov (United States)

    Chen, Rong; Dong, Juan; Cui, Xin; Wang, Wei; Yasmeen, Afshan; Deng, Yun; Zeng, Xiaomao; Tang, Zhuo

    2012-12-01

    Chinese patent medicines (CPM) are highly processed and easy to use Traditional Chinese Medicine (TCM). The market for CPM in China alone is tens of billions US dollars annually and some of the CPM are also used as dietary supplements for health augmentation in the western countries. But concerns continue to be raised about the legality, safety and efficacy of many popular CPM. Here we report a pioneer work of applying molecular biotechnology to the identification of CPM, particularly well refined oral liquids and injections. What's more, this PCR based method can also be developed to an easy to use and cost-effective visual chip by taking advantage of G-quadruplex based Hybridization Chain Reaction. This study demonstrates that DNA identification of specific Medicinal materials is an efficient and cost-effective way to audit highly processed CPM and will assist in monitoring their quality and legality.

  10. Dendrimer-based biosensor for chemiluminescent detection of DNA hybridization

    International Nuclear Information System (INIS)

    Liu, P.; Hun, X.; Qing, H.

    2011-01-01

    We report on a highly sensitive chemiluminescent (CL) biosensor for the sequence-specific detection of DNA using a novel bio barcode DNA probe modified with gold nanoparticles that were covered with a dendrimer. The modified probe is composed of gold nanoparticles, a dendrimer, the CL reagent, and the DNA. The capture probe DNA was immobilized on magnetic beads covered with gold. It first hybridizes with the target DNA and then with one terminal end of the signal DNA on the barcoded DNA probe. CL was generated by adding H 2 O 2 and Co(II) ions as the catalyst. The immobilization of dendrimer onto the gold nanoparticles can significantly enhance sensitivity and gives a detection limit of 6 fmol L -1 of target DNA. (author)

  11. Human longevity and variation in DNA damage response and repair

    DEFF Research Database (Denmark)

    Debrabant, Birgit; Soerensen, Mette; Flachsbart, Friederike

    2014-01-01

    others. Data were applied on 592 SNPs from 77 genes involved in nine sub-processes: DNA-damage response, base excision repair (BER), nucleotide excision repair, mismatch repair, non-homologous end-joining, homologous recombinational repair (HRR), RecQ helicase activities (RECQ), telomere functioning...... in genotyping procedures and investigated SNPs, potentially inducing differences in the coverage of gene regions. Specifically, five genes were not covered at all in the German data. Therefore, investigations in additional study populations are needed before final conclusion can be drawn....

  12. A DNA-based nanomechanical device with three robust states

    OpenAIRE

    Chakraborty, Banani; Sha, Ruojie; Seeman, Nadrian C.

    2008-01-01

    DNA has been used to build a variety of devices, ranging from those that are controlled by DNA structural transitions to those that are controlled by the addition of specific DNA strands. These sequence-dependent devices fulfill the promise of DNA in nanotechnology because a variety of devices in the same physical environment can be controlled individually. Many such devices have been reported, but most of them contain one or two structurally robust end states, in addition to a floppy interme...

  13. Feasibility study of transanal total mesorectal excision

    NARCIS (Netherlands)

    Velthuis, S.; Boezem, P.B. van den; Peet, D.L. van der; Cuesta, M.A.; Sietses, C.

    2013-01-01

    BACKGROUND: Laparoscopic resection of colorectal cancers is a safe alternative to open surgery. The conversion rate to open surgery remains fairly constant but is associated with increased morbidity. A new approach to the surgical excision of rectal cancer is transanal total mesorectal excision

  14. Statistical length of DNA based on AFM image measured by a computer

    International Nuclear Information System (INIS)

    Chen Xinqing; Qiu Xijun; Zhang Yi; Hu Jun; Wu Shiying; Huang Yibo; Ai Xiaobai; Li Minqian

    2001-01-01

    Taking advantage of image processing technology, the contour length of DNA molecule was measured automatically by a computer. Based on the AFM image of DNA, the topography of DNA was simulated into a curve. Then the DNA length was measured automatically by inserting mode. It was shown that the experimental length of a naturally deposited DNA (180.4 +- 16.4 nm) was well consistent with the theoretical length (185.0 nm). Comparing to other methods, the present approach had advantages of precision and automatism. The stretched DNA was also measured. It present approach had advantages of precision and automatism. The stretched DNA was also measured. It was shown that the experimental length (343.6 +- 20.7 nm) was much longer than the theoretical length (307.0 nm). This result indicated that the stretching process had a distinct effect on the DNA length. However, the method provided here avoided the DNA-stretching effect

  15. Design and specificity of long ssDNA donors for CRISPR-based knock-in

    OpenAIRE

    Leonetti, Manuel; Li, Han; Beckman, Kyle; Pessino, Veronica; Huang, Bo; Weissman, Jonathan

    2017-01-01

    CRISPR/Cas technologies have transformed our ability to manipulate genomes for research and gene-based therapy. In particular, homology-directed repair after genomic cleavage allows for precise modification of genes using exogenous donor sequences as templates. While both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) forms of donors have been used as repair templates, a systematic comparison of the performance and specificity of repair using ssDNA versus dsDNA donors is still la...

  16. Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs.

    Science.gov (United States)

    Takezawa, Yusuke; Shionoya, Mitsuhiko

    2012-12-18

    With its capacity to store and transfer the genetic information within a sequence of monomers, DNA forms its central role in chemical evolution through replication and amplification. This elegant behavior is largely based on highly specific molecular recognition between nucleobases through the specific hydrogen bonds in the Watson-Crick base pairing system. While the native base pairs have been amazingly sophisticated through the long history of evolution, synthetic chemists have devoted considerable efforts to create alternative base pairing systems in recent decades. Most of these new systems were designed based on the shape complementarity of the pairs or the rearrangement of hydrogen-bonding patterns. We wondered whether metal coordination could serve as an alternative driving force for DNA base pairing and why hydrogen bonding was selected on Earth in the course of molecular evolution. Therefore, we envisioned an alternative design strategy: we replaced hydrogen bonding with another important scheme in biological systems, metal-coordination bonding. In this Account, we provide an overview of the chemistry of metal-mediated base pairing including basic concepts, molecular design, characteristic structures and properties, and possible applications of DNA-based molecular systems. We describe several examples of artificial metal-mediated base pairs, such as Cu(2+)-mediated hydroxypyridone base pair, H-Cu(2+)-H (where H denotes a hydroxypyridone-bearing nucleoside), developed by us and other researchers. To design the metallo-base pairs we carefully chose appropriate combinations of ligand-bearing nucleosides and metal ions. As expected from their stronger bonding through metal coordination, DNA duplexes possessing metallo-base pairs exhibited higher thermal stability than natural hydrogen-bonded DNAs. Furthermore, we could also use metal-mediated base pairs to construct or induce other high-order structures. These features could lead to metal-responsive functional

  17. Electrochemical DNA biosensor based on MNAzyme-mediated signal amplification

    International Nuclear Information System (INIS)

    Diao, Wei; Tang, Min; Ding, Xiaojuan; Zhang, Ye; Yang, Jianru; Cheng, Wenbin; Mo, Fei; Wen, Bo; Xu, Lulu; Yan, Yurong

    2016-01-01

    The authors describe an electrochemical sensing strategy for highly sensitive and specific detection of target (analyte) DNA based on an amplification scheme mediated by a multicomponent nucleic acid enzyme (MNAzyme). MNAzymes were formed by multicomponent complexes which produce amplified “output” signals in response to specific “input” signal. In the presence of target nucleic acid, multiple partial enzymes (partzymes) oligonucleotides are assembled to form active MNAzymes. These can cleave H0 substrate into two pieces, thereby releasing the activated MNAzyme to undergo an additional cycle of amplification. Here, the two pieces contain a biotin-tagged sequence and a byproduct. The biotin-tagged sequences are specifically captured by the detection probes immobilized on the gold electrode. By employing streptavidinylated alkaline phosphatase as an enzyme label, an electrochemical signal is obtained. The electrode, if operated at a working potential of 0.25 V (vs. Ag/AgCl) in solution of pH 7.5, covers the 100 pM to 0.25 μM DNA concentration range, with a 79 pM detection limit. In our perception, the strategy introduced here has a wider potential in that it may be applied to molecular diagnostics and pathogen detection. (author)

  18. PCR-based detection of a rare linear DNA in cell culture

    Directory of Open Access Journals (Sweden)

    Saveliev Sergei V.

    2002-01-01

    Full Text Available The described method allows for detection of rare linear DNA fragments generated during genomic deletions. The predicted limit of the detection is one DNA molecule per 107 or more cells. The method is based on anchor PCR and involves gel separation of the linear DNA fragment and chromosomal DNA before amplification. The detailed chemical structure of the ends of the linear DNA can be defined with the use of additional PCR-based protocols. The method was applied to study the short-lived linear DNA generated during programmed genomic deletions in a ciliate. It can be useful in studies of spontaneous DNA deletions in cell culture or for tracking intracellular modifications at the ends of transfected DNA during gene therapy trials.

  19. PCR-based detection of a rare linear DNA in cell culture.

    Science.gov (United States)

    Saveliev, Sergei V.

    2002-11-11

    The described method allows for detection of rare linear DNA fragments generated during genomic deletions. The predicted limit of the detection is one DNA molecule per 10(7) or more cells. The method is based on anchor PCR and involves gel separation of the linear DNA fragment and chromosomal DNA before amplification. The detailed chemical structure of the ends of the linear DNA can be defined with the use of additional PCR-based protocols. The method was applied to study the short-lived linear DNA generated during programmed genomic deletions in a ciliate. It can be useful in studies of spontaneous DNA deletions in cell culture or for tracking intracellular modifications at the ends of transfected DNA during gene therapy trials.

  20. DNA-based asymmetric catalysis : Sequence-dependent rate acceleration and enantioselectivity

    NARCIS (Netherlands)

    Boersma, Arnold J.; Klijn, Jaap E.; Feringa, Ben L.; Roelfes, Gerard

    2008-01-01

    This study shows that the role of DNA in the DNA-based enantioselective Diels-Alder reaction of azachalcone with cyclopentadiene is not limited to that of a chiral scaffold. DNA in combination with the copper complex of 4,4'-dimethyl-2,2'-bipyridine (Cu-L1) gives rise to a rate acceleration of up to

  1. Constructing DNA Barcode Sets Based on Particle Swarm Optimization.

    Science.gov (United States)

    Wang, Bin; Zheng, Xuedong; Zhou, Shihua; Zhou, Changjun; Wei, Xiaopeng; Zhang, Qiang; Wei, Ziqi

    2018-01-01

    Following the completion of the human genome project, a large amount of high-throughput bio-data was generated. To analyze these data, massively parallel sequencing, namely next-generation sequencing, was rapidly developed. DNA barcodes are used to identify the ownership between sequences and samples when they are attached at the beginning or end of sequencing reads. Constructing DNA barcode sets provides the candidate DNA barcodes for this application. To increase the accuracy of DNA barcode sets, a particle swarm optimization (PSO) algorithm has been modified and used to construct the DNA barcode sets in this paper. Compared with the extant results, some lower bounds of DNA barcode sets are improved. The results show that the proposed algorithm is effective in constructing DNA barcode sets.

  2. Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA.

    Science.gov (United States)

    Takalkar, Sunitha; Baryeh, Kwaku; Liu, Guodong

    2017-12-15

    We report a fluorescent carbon nanoparticle (FCN)-based lateral flow biosensor for ultrasensitive detection of DNA. Fluorescent carbon nanoparticle with a diameter of around 15nm was used as a tag to label a detection DNA probe, which was complementary with the part of target DNA. A capture DNA probe was immobilized on the test zone of the lateral flow biosensor. Sandwich-type hybridization reactions among the FCN-labeled DNA probe, target DNA and capture DNA probe were performed on the lateral flow biosensor. In the presence of target DNA, FCNs were captured on the test zone of the biosensor and the fluorescent intensity of the captured FCNs was measured with a portable fluorescent reader. After systematic optimizations of experimental parameters (the components of running buffers, the concentration of detection DNA probe used in the preparation of FCN-DNA conjugates, the amount of FCN-DNA dispensed on the conjugate pad and the dispensing cycles of the capture DNA probes on the test-zone), the biosensor could detect a minimum concentration of 0.4 fM DNA. This study provides a rapid and low-cost approach for DNA detection with high sensitivity, showing great promise for clinical application and biomedical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The Development of DNA Based Methods for the Reliable and Efficient Identification of Nicotiana tabacum in Tobacco and Its Derived Products

    Directory of Open Access Journals (Sweden)

    Sukumar Biswas

    2016-01-01

    Full Text Available Reliable methods are needed to detect the presence of tobacco components in tobacco products to effectively control smuggling and classify tariff and excise in tobacco industry to control illegal tobacco trade. In this study, two sensitive and specific DNA based methods, one quantitative real-time PCR (qPCR assay and the other loop-mediated isothermal amplification (LAMP assay, were developed for the reliable and efficient detection of the presence of tobacco (Nicotiana tabacum in various tobacco samples and commodities. Both assays targeted the same sequence of the uridine 5′-monophosphate synthase (UMPS, and their specificities and sensitivities were determined with various plant materials. Both qPCR and LAMP methods were reliable and accurate in the rapid detection of tobacco components in various practical samples, including customs samples, reconstituted tobacco samples, and locally purchased cigarettes, showing high potential for their application in tobacco identification, particularly in the special cases where the morphology or chemical compositions of tobacco have been disrupted. Therefore, combining both methods would facilitate not only the detection of tobacco smuggling control, but also the detection of tariff classification and of excise.

  4. Pyrimidine dimer excision in human cells and skin cancer

    International Nuclear Information System (INIS)

    Regan, J.D.; Carrier, W.L.; Smith, D.P.; Waters, R.

    1977-01-01

    We have compared three different methods for estimating the induction and removal of uv induced pyrimidine dimers from the DNA of human fibroblasts. Results indicate that after uv doses of 5-20 J/m 2 50% of the dimers are removed by 24 hours after irradiation. Almost complete excision can be observed if the cells are incubated for periods not less than 72 hours after 5 J/m 2 . After higher doses it probably takes even longer fr such complete removal to be seen

  5. Alkylation damage in DNA and RNA--repair mechanisms and medical significance

    DEFF Research Database (Denmark)

    Drabløs, Finn; Feyzi, Emadoldin; Aas, Per Arne

    2004-01-01

    Alkylation lesions in DNA and RNA result from endogenous compounds, environmental agents and alkylating drugs. Simple methylating agents, e.g. methylnitrosourea, tobacco-specific nitrosamines and drugs like temozolomide or streptozotocin, form adducts at N- and O-atoms in DNA bases. These lesions...... are mainly repaired by direct base repair, base excision repair, and to some extent by nucleotide excision repair (NER). The identified carcinogenicity of O(6)-methylguanine (O(6)-meG) is largely caused by its miscoding properties. Mutations from this lesion are prevented by O(6)-alkylG-DNA alkyltransferase......, inactivation of the MMR system in an AGT-defective background causes resistance to the killing effects of O(6)-alkylating agents, but not to the mutagenic effect. Bifunctional alkylating agents, such as chlorambucil or carmustine (BCNU), are commonly used anti-cancer drugs. DNA lesions caused by these agents...

  6. DNA methylation-based classification of central nervous system tumours

    DEFF Research Database (Denmark)

    Capper, David; Jones, David T.W.; Sill, Martin

    2018-01-01

    Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging - with substantial inter-observer variabil......Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging - with substantial inter......-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show...

  7. A sequence-dependent rigid-base model of DNA

    Science.gov (United States)

    Gonzalez, O.; Petkevičiutė, D.; Maddocks, J. H.

    2013-02-01

    A novel hierarchy of coarse-grain, sequence-dependent, rigid-base models of B-form DNA in solution is introduced. The hierarchy depends on both the assumed range of energetic couplings, and the extent of sequence dependence of the model parameters. A significant feature of the models is that they exhibit the phenomenon of frustration: each base cannot simultaneously minimize the energy of all of its interactions. As a consequence, an arbitrary DNA oligomer has an intrinsic or pre-existing stress, with the level of this frustration dependent on the particular sequence of the oligomer. Attention is focussed on the particular model in the hierarchy that has nearest-neighbor interactions and dimer sequence dependence of the model parameters. For a Gaussian version of this model, a complete coarse-grain parameter set is estimated. The parameterized model allows, for an oligomer of arbitrary length and sequence, a simple and explicit construction of an approximation to the configuration-space equilibrium probability density function for the oligomer in solution. The training set leading to the coarse-grain parameter set is itself extracted from a recent and extensive database of a large number of independent, atomic-resolution molecular dynamics (MD) simulations of short DNA oligomers immersed in explicit solvent. The Kullback-Leibler divergence between probability density functions is used to make several quantitative assessments of our nearest-neighbor, dimer-dependent model, which is compared against others in the hierarchy to assess various assumptions pertaining both to the locality of the energetic couplings and to the level of sequence dependence of its parameters. It is also compared directly against all-atom MD simulation to assess its predictive capabilities. The results show that the nearest-neighbor, dimer-dependent model can successfully resolve sequence effects both within and between oligomers. For example, due to the presence of frustration, the model can

  8. A sequence-dependent rigid-base model of DNA.

    Science.gov (United States)

    Gonzalez, O; Petkevičiūtė, D; Maddocks, J H

    2013-02-07

    A novel hierarchy of coarse-grain, sequence-dependent, rigid-base models of B-form DNA in solution is introduced. The hierarchy depends on both the assumed range of energetic couplings, and the extent of sequence dependence of the model parameters. A significant feature of the models is that they exhibit the phenomenon of frustration: each base cannot simultaneously minimize the energy of all of its interactions. As a consequence, an arbitrary DNA oligomer has an intrinsic or pre-existing stress, with the level of this frustration dependent on the particular sequence of the oligomer. Attention is focussed on the particular model in the hierarchy that has nearest-neighbor interactions and dimer sequence dependence of the model parameters. For a Gaussian version of this model, a complete coarse-grain parameter set is estimated. The parameterized model allows, for an oligomer of arbitrary length and sequence, a simple and explicit construction of an approximation to the configuration-space equilibrium probability density function for the oligomer in solution. The training set leading to the coarse-grain parameter set is itself extracted from a recent and extensive database of a large number of independent, atomic-resolution molecular dynamics (MD) simulations of short DNA oligomers immersed in explicit solvent. The Kullback-Leibler divergence between probability density functions is used to make several quantitative assessments of our nearest-neighbor, dimer-dependent model, which is compared against others in the hierarchy to assess various assumptions pertaining both to the locality of the energetic couplings and to the level of sequence dependence of its parameters. It is also compared directly against all-atom MD simulation to assess its predictive capabilities. The results show that the nearest-neighbor, dimer-dependent model can successfully resolve sequence effects both within and between oligomers. For example, due to the presence of frustration, the model can

  9. DNA microarray-based PCR ribotyping of Clostridium difficile.

    Science.gov (United States)

    Schneeberg, Alexander; Ehricht, Ralf; Slickers, Peter; Baier, Vico; Neubauer, Heinrich; Zimmermann, Stefan; Rabold, Denise; Lübke-Becker, Antina; Seyboldt, Christian

    2015-02-01

    This study presents a DNA microarray-based assay for fast and simple PCR ribotyping of Clostridium difficile strains. Hybridization probes were designed to query the modularly structured intergenic spacer region (ISR), which is also the template for conventional and PCR ribotyping with subsequent capillary gel electrophoresis (seq-PCR) ribotyping. The probes were derived from sequences available in GenBank as well as from theoretical ISR module combinations. A database of reference hybridization patterns was set up from a collection of 142 well-characterized C. difficile isolates representing 48 seq-PCR ribotypes. The reference hybridization patterns calculated by the arithmetic mean were compared using a similarity matrix analysis. The 48 investigated seq-PCR ribotypes revealed 27 array profiles that were clearly distinguishable. The most frequent human-pathogenic ribotypes 001, 014/020, 027, and 078/126 were discriminated by the microarray. C. difficile strains related to 078/126 (033, 045/FLI01, 078, 126, 126/FLI01, 413, 413/FLI01, 598, 620, 652, and 660) and 014/020 (014, 020, and 449) showed similar hybridization patterns, confirming their genetic relatedness, which was previously reported. A panel of 50 C. difficile field isolates was tested by seq-PCR ribotyping and the DNA microarray-based assay in parallel. Taking into account that the current version of the microarray does not discriminate some closely related seq-PCR ribotypes, all isolates were typed correctly. Moreover, seq-PCR ribotypes without reference profiles available in the database (ribotype 009 and 5 new types) were correctly recognized as new ribotypes, confirming the performance and expansion potential of the microarray. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Roles of the Amino Group of Purine Bases in the Thermodynamic Stability of DNA Base Pairing

    Directory of Open Access Journals (Sweden)

    Shu-ichi Nakano

    2014-08-01

    Full Text Available The energetic aspects of hydrogen-bonded base-pair interactions are important for the design of functional nucleotide analogs and for practical applications of oligonucleotides. The present study investigated the contribution of the 2-amino group of DNA purine bases to the thermodynamic stability of oligonucleotide duplexes under different salt and solvent conditions, using 2'-deoxyriboinosine (I and 2'-deoxyribo-2,6-diaminopurine (D as non-canonical nucleotides. The stability of DNA duplexes was changed by substitution of a single base pair in the following order: G•C > D•T ≈ I•C > A•T > G•T > I•T. The apparent stabilization energy due to the presence of the 2-amino group of G and D varied depending on the salt concentration, and decreased in the water-ethanol mixed solvent. The effects of salt concentration on the thermodynamics of DNA duplexes were found to be partially sequence-dependent, and the 2-amino group of the purine bases might have an influence on the binding of ions to DNA through the formation of a stable base-paired structure. Our results also showed that physiological salt conditions were energetically favorable for complementary base recognition, and conversely, low salt concentration media and ethanol-containing solvents were effective for low stringency oligonucleotide hybridization, in the context of conditions employed in this study.

  11. Association of DNA repair polymorphisms with DNA repair functional outcomes in healthy human subjects

    Czech Academy of Sciences Publication Activity Database

    Vodička, Pavel; Štětina, R.; Poláková, Veronika; Tulupová, Elena; Naccarati, Alessio; Vodičková, Ludmila; Kumar, R.; Hánová, Monika; Pardini, Barbara; Slyšková, Jana; Musak, L.; De Palma, G.; Souček, P.; Hemminki, K.

    2007-01-01

    Roč. 28, č. 3 (2007), s. 657-664 ISSN 0143-3334 R&D Projects: GA MZd NR8563; GA ČR GA310/05/2626 Institutional research plan: CEZ:AV0Z50390512 Keywords : Base excision DNA * Single-strand breaks * Peripheral blood lymphocytes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.406, year: 2007

  12. Transcriptional and Posttranslational Regulation of Nucleotide Excision Repair: The Guardian of the Genome against Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    Jeong-Min Park

    2016-11-01

    Full Text Available Ultraviolet (UV radiation from sunlight represents a constant threat to genome stability by generating modified DNA bases such as cyclobutane pyrimidine dimers (CPD and pyrimidine-pyrimidone (6-4 photoproducts (6-4PP. If unrepaired, these lesions can have deleterious effects, including skin cancer. Mammalian cells are able to neutralize UV-induced photolesions through nucleotide excision repair (NER. The NER pathway has multiple components including seven xeroderma pigmentosum (XP proteins (XPA to XPG and numerous auxiliary factors, including ataxia telangiectasia and Rad3-related (ATR protein kinase and RCC1 like domain (RLD and homologous to the E6-AP carboxyl terminus (HECT domain containing E3 ubiquitin protein ligase 2 (HERC2. In this review we highlight recent data on the transcriptional and posttranslational regulation of NER activity.

  13. Impact of cigarette taxation policy on excise revenues and cigarette consumption in Uzbekistan

    Directory of Open Access Journals (Sweden)

    Konstantin S. Krasovsky

    2013-05-01

    Full Text Available BACKGROUND: In 2012, Uzbekistan ratified the Framework Convention on Tobacco Control, which states that price and tax measures are an effective means of reducing tobacco consumption. We aimed to explore the effect of taxation policies on revenues and cigarette consumption. METHODS: Data on tax rates, revenues, cigarette sales were taken from national reports. To forecast potential revenues, a scenario analysis was performed. RESULTS: In 1991-2004, ad valorem excise system was in place in Uzbekistan, which was later replaced by the specific excise system. In 1997-2011, the nominal average excise has increased by a factor of twenty, but in real terms, after a sharp increase in 1999, average excise declined annually and increased only in 2010-2011. Annual cigarette sales per capita of adult population in 1999-2007 constituted 17-25 cigarette packs, while in 2008-2011 it increased to 30-37 packs. Four scenarios of excise tax increases in 2012 were developed: one actual scenario based on the rates effective in Uzbekistan in 2012, and three hypothetical ones anticipating excise rates increase by 1.5, 2 and 3-fold. With actual excise increase in 2012, the inflation-adjusted budget revenues would grow by 5%, and with three hypothetical - by 17%, 35% and 66% respectively, despite the decline of tax-paid cigarette sales. CONCLUSION: Stabilization or reduction in cigarette excises in Uzbekistan in 2002-2008 led to a decline in real excise revenues and the growth of cigarette sales. In 1999 and 2010-2011, excises were significantly increased and the real revenues have risen, despite the decline in cigarette sales. As cigarette prices are low, the illegal outflow of cigarettes from Uzbekistan apparently exceeds the illegal inflow. A significant increase in cigarette excise (1.5-3 fold can both increase budget revenues and reduce cigarette consumption, with greater increase yielding more benefits.

  14. DNA2—An Important Player in DNA Damage Response or Just Another DNA Maintenance Protein?

    Directory of Open Access Journals (Sweden)

    Elzbieta Pawłowska

    2017-07-01

    Full Text Available The human DNA2 (DNA replication helicase/nuclease 2 protein is expressed in both the nucleus and mitochondria, where it displays ATPase-dependent nuclease and helicase activities. DNA2 plays an important role in the removing of long flaps in DNA replication and long-patch base excision repair (LP-BER, interacting with the replication protein A (RPA and the flap endonuclease 1 (FEN1. DNA2 can promote the restart of arrested replication fork along with Werner syndrome ATP-dependent helicase (WRN and Bloom syndrome protein (BLM. In mitochondria, DNA2 can facilitate primer removal during strand-displacement replication. DNA2 is involved in DNA double strand (DSB repair, in which it is complexed with BLM, RPA and MRN for DNA strand resection required for homologous recombination repair. DNA2 can be a major protein involved in the repair of complex DNA damage containing a DSB and a 5′ adduct resulting from a chemical group bound to DNA 5′ ends, created by ionizing radiation and several anticancer drugs, including etoposide, mitoxantrone and some anthracyclines. The role of DNA2 in telomere end maintenance and cell cycle regulation suggests its more general role in keeping genomic stability, which is impaired in cancer. Therefore DNA2 can be an attractive target in cancer therapy. This is supported by enhanced expression of DNA2 in many cancer cell lines with oncogene activation and premalignant cells. Therefore, DNA2 can be considered as a potential marker, useful in cancer therapy. DNA2, along with PARP1 inhibition, may be considered as a potential target for inducing synthetic lethality, a concept of killing tumor cells by targeting two essential genes.

  15. DNA repair in Mycobacterium tuberculosis revisited.

    Science.gov (United States)

    Dos Vultos, Tiago; Mestre, Olga; Tonjum, Tone; Gicquel, Brigitte

    2009-05-01

    Our understanding of Mycobacterium tuberculosis DNA repair mechanisms is still poor compared with that of other bacterial organisms. However, the publication of the first complete M. tuberculosis genome sequence 10 years ago boosted the study of DNA repair systems in this organism. A first step in the elucidation of M. tuberculosis DNA repair mechanisms was taken by Mizrahi and Andersen, who identified homologs of genes involved in the reversal or repair of DNA damage in Escherichia coli and related organisms. Genes required for nucleotide excision repair, base excision repair, recombination, and SOS repair and mutagenesis were identified. Notably, no homologs of genes involved in mismatch repair were identified. Novel characteristics of the M. tuberculosis DNA repair machinery have been found over the last decade, such as nonhomologous end joining, the presence of Mpg, ERCC3 and Hlr - proteins previously presumed to be produced exclusively in mammalian cells - and the recently discovered bifunctional dCTP deaminase:dUTPase. The study of these systems is important to develop therapeutic agents that can counteract M. tuberculosis evolutionary changes and to prevent adaptive events resulting in antibiotic resistance. This review summarizes our current understanding of the M. tuberculosis DNA repair system.

  16. Slow elimination of injured liver DNA bases of γ-irradiated old mice

    International Nuclear Information System (INIS)

    Gaziev, A.I.; Malakhov, L.V.; Fomenko, L.A.

    1982-01-01

    The paper presents a study of the elimination of injured bases from the liver DNA of old and young mice after their exposure to γ rays. The presented data show that if DNA from the liver of irradiated mice is treated with incision enzymes, its priming activity is increased. In the case of enzymatic treatment of DNA isolated 5 h after irradiation we find a great difference between the priming activity of the liver DNA of old and young mice. The reason for this difference is that the liver DNA of 20-month old mice 5 h after irradiation still has many unrepaired injured bases. These data indicated that the rate of incision of γ-injured DNA bases in the liver of old mice is lower than in the liver of young mice. In the liver of mice of different age the rate of restitution of DNA, single-strand breaks induced by γ rays in doses up to 100 Gy is the same. At the same time, the level of induced reparative synthesis of DNA in cells of an old organism is lower than in cells of a young organism. The obtained data suggest that reduction of the rate of elimination of modified bases from the cell DNA of 20-month old mice is due to reduction of the activity of the DNA repair enzymes or to restrictions in the chromatin in the access of these enzymes to the injured regions of DNA in the cells of old animals

  17. Fundamental study of the radiation monitoring system based on evaluation of DNA lesions

    International Nuclear Information System (INIS)

    Shimizu, K.; Matuo, Y.; Izumi, Y.; Ikeda, T.

    2011-01-01

    The biological dosemeter that measures biological responses to ionising radiation is useful for radiation protection. This paper presents the development and characterisation of a gamma ray irradiation dosimetry system based on real-time PCR (polymerase chain reaction) methodology. Real-time PCR is used to amplify and simultaneously quantify a targeted DNA molecule. If there are no limitations due to limiting substrates or reagents, at each extension step, the amount of DNA target is doubled, leading to exponential (geometric) amplification of the specific DNA fragment. The essential point of this assay is that DNA lesions caused by ionising radiation block DNA synthesis by DNA polymerase, resulting in a decrease in the amplification of a damaged DNA template compared with that of non-damaged DNA templates. (authors)

  18. Effect of food processing on plant DNA degradation and PCR-based GMO analysis: a review.

    Science.gov (United States)

    Gryson, Nicolas

    2010-03-01

    The applicability of a DNA-based method for GMO detection and quantification depends on the quality and quantity of the DNA. Important food-processing conditions, for example temperature and pH, may lead to degradation of the DNA, rendering PCR analysis impossible or GMO quantification unreliable. This review discusses the effect of several food processes on DNA degradation and subsequent GMO detection and quantification. The data show that, although many of these processes do indeed lead to the fragmentation of DNA, amplification of the DNA may still be possible. Length and composition of the amplicon may, however, affect the result, as also may the method of extraction used. Also, many techniques are used to describe the behaviour of DNA in food processing, which occasionally makes it difficult to compare research results. Further research should be aimed at defining ingredients in terms of their DNA quality and PCR amplification ability, and elaboration of matrix-specific certified reference materials.

  19. Detection of influenza A virus using carbon nanotubes field effect transistor based DNA sensor

    Science.gov (United States)

    Tran, Thi Luyen; Nguyen, Thi Thuy; Huyen Tran, Thi Thu; Chu, Van Tuan; Thinh Tran, Quang; Tuan Mai, Anh

    2017-09-01

    The carbon nanotubes field effect transistor (CNTFET) based DNA sensor was developed, in this paper, for detection of influenza A virus DNA. Number of factors that influence the output signal and analytical results were investigated. The initial probe DNA, decides the available DNA strands on CNTs, was 10 μM. The hybridization time for defined single helix was 120 min. The hybridization temperature was set at 30 °C to get a net change in drain current of the DNA sensor without altering properties of any biological compounds. The response time of the DNA sensor was less than one minute with a high reproducibility. In addition, the DNA sensor has a wide linear detection range from 1 pM to 10 nM, and a very low detection limit of 1 pM. Finally, after 7-month storage in 7.4 pH buffer, the output signal of DNA sensor recovered 97%.

  20. The use of gold nanoparticle aggregation for DNA computing and logic-based biomolecular detection

    International Nuclear Information System (INIS)

    Lee, In-Hee; Yang, Kyung-Ae; Zhang, Byoung-Tak; Lee, Ji-Hoon; Park, Ji-Yoon; Chai, Young Gyu; Lee, Jae-Hoon

    2008-01-01

    The use of DNA molecules as a physical computational material has attracted much interest, especially in the area of DNA computing. DNAs are also useful for logical control and analysis of biological systems if efficient visualization methods are available. Here we present a quick and simple visualization technique that displays the results of the DNA computing process based on a colorimetric change induced by gold nanoparticle aggregation, and we apply it to the logic-based detection of biomolecules. Our results demonstrate its effectiveness in both DNA-based logical computation and logic-based biomolecular detection

  1. Phylogeny of the Serrasalmidae (Characiformes based on mitochondrial DNA sequences

    Directory of Open Access Journals (Sweden)

    Guillermo Ortí

    2008-01-01

    Full Text Available Previous studies based on DNA sequences of mitochondrial (mt rRNA genes showed three main groups within the subfamily Serrasalminae: (1 a "pacu" clade of herbivores (Colossoma, Mylossoma, Piaractus; (2 the "Myleus" clade (Myleus, Mylesinus, Tometes, Ossubtus; and (3 the "piranha" clade (Serrasalmus, Pygocentrus, Pygopristis, Pristobrycon, Catoprion, Metynnis. The genus Acnodon was placed as the sister taxon of clade (2+3. However, poor resolution within each clade was obtained due to low levels of variation among rRNA gene sequences. Complete sequences of the hypervariable mtDNA control region for a total of 45 taxa, and additional sequences of 12S and 16S rRNA from a total of 74 taxa representing all genera in the family are now presented to address intragroup relationships. Control region sequences of several serrasalmid species exhibit tandem repeats of short motifs (12 to 33 bp in the 3' end of this region, accounting for substantial length variation. Bayesian inference and maximum parsimony analyses of these sequences identify the same groupings as before and provide further evidence to support the following observations: (a Serrasalmus gouldingi and species of Pristobrycon (non-striolatus form a monophyletic group that is the sister group to other species of Serrasalmus and Pygocentrus; (b Catoprion, Pygopristis, and Pristobrycon striolatus form a well supported clade, sister to the group described above; (c some taxa assigned to the genus Myloplus (M. asterias, M tiete, M ternetzi, and M rubripinnis form a well supported group whereas other Myloplus species remain with uncertain affinities (d Mylesinus, Tometes and Myleus setiger form a monophyletic group.

  2. Nucleotide excision repair in differentiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Wees, Caroline van der [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Department of Cardiology, Leiden University Medical Center, Leiden (Netherlands); Jansen, Jacob [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Vrieling, Harry [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Laarse, Arnoud van der [Department of Cardiology, Leiden University Medical Center, Leiden (Netherlands); Zeeland, Albert van [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Mullenders, Leon [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands)]. E-mail: l.mullenders@lumc.nl

    2007-01-03

    Nucleotide excision repair (NER) is the principal pathway for the removal of a wide range of DNA helix-distorting lesions and operates via two NER subpathways, i.e. global genome repair (GGR) and transcription-coupled repair (TCR). Although detailed information is available on expression and efficiency of NER in established mammalian cell lines, little is known about the expression of NER pathways in (terminally) differentiated cells. The majority of studies in differentiated cells have focused on repair of UV-induced cyclobutane pyrimidine dimers (CPD) and 6-4-photoproducts (6-4PP) because of the high frequency of photolesions at low level of toxicity and availability of sensitive technologies to determine photolesions in defined regions of the genome. The picture that emerges from these studies is blurred and rather complex. Fibroblasts and terminally differentiated myocytes of the rat heart display equally efficient GGR of 6-4PP but poor repair of CPD due to the absence of p48 expression. This repair phenotype is clearly different from human terminal differentiated neurons. Furthermore, both cell types were found to carry out TCR of CPD, thus mimicking the repair phenotype of established rodent cell lines. In contrast, in intact rat spermatogenic cells repair was very inefficient at the genome overall level and in transcriptionally active genes indicating that GGR and TCR are non-functional. Also, non-differentiated mouse embryonic stem (ES) cells exhibit low levels of NER after UV irradiation. However, the mechanisms that lead to low NER activity are clearly different: in differentiated spermatogenic cells differences in chromatin compaction and sequestering of NER proteins may underlie the lack of NER activity in pre-meiotic cells, whereas in non-differentiated ES cells NER is impaired by a strong apoptotic response.

  3. Studies of base pair sequence effects on DNA solvation based on all

    Indian Academy of Sciences (India)

    Detailed analyses of the sequence-dependent solvation and ion atmosphere of DNA are presented based on molecular dynamics (MD) simulations on all the 136 unique tetranucleotide steps obtained by the ABC consortium using the AMBER suite of programs. Significant sequence effects on solvation and ion localization ...

  4. Recognition of base J in duplex DNA by J-binding protein

    NARCIS (Netherlands)

    Sabatini, Robert; Meeuwenoord, Nico; van Boom, Jacques H.; Borst, Piet

    2002-01-01

    beta-d-Glucosylhydroxymethyluracil, also called base J, is an unusual modified DNA base conserved among Kinetoplastida. Base J is found predominantly in repetitive DNA and correlates with epigenetic silencing of telomeric variant surface glycoprotein genes. We have previously found a J-binding

  5. Isothermal amplification of environmental DNA (eDNA for direct field-based monitoring and laboratory confirmation of Dreissena sp.

    Directory of Open Access Journals (Sweden)

    Maggie R Williams

    Full Text Available Loop-mediated isothermal amplification (LAMP of aquatic invasive species environmental DNA (AIS eDNA was used for rapid, sensitive, and specific detection of Dreissena sp. relevant to the Great Lakes (USA basin. The method was validated for two uses including i direct amplification of eDNA using a hand filtration system and ii confirmation of the results after DNA extraction using a conventional thermal cycler run at isothermal temperatures. Direct amplification eliminated the need for DNA extraction and purification and allowed detection of target invasive species in grab or concentrated surface water samples, containing both free DNA as well as larger cells and particulates, such as veligers, eggs, or seeds. The direct amplification method validation was conducted using Dreissena polymorpha and Dreissena bugensis and uses up to 1 L grab water samples for high target abundance (e.g., greater than 10 veligers (larval mussels per L for Dreissena sp. or 20 L samples concentrated through 35 μm nylon screens for low target abundance, at less than 10 veligers per liter water. Surface water concentrate samples were collected over a period of three years, mostly from inland lakes in Michigan with the help of a network of volunteers. Field samples collected from 318 surface water locations included i filtered concentrate for direct amplification validation and ii 1 L grab water sample for eDNA extraction and confirmation. Though the extraction-based protocol was more sensitive (resulting in more positive detections than direct amplification, direct amplification could be used for rapid screening, allowing for quicker action times. For samples collected between May and August, results of eDNA direct amplification were consistent with known presence/absence of selected invasive species. A cross-platform smartphone application was also developed to disseminate the analyzed results to volunteers. Field tests of the direct amplification protocol using a

  6. Characterization of DNA repair phenotypes of Xeroderma pigmentosum cell lines by a paralleled in vitro test

    International Nuclear Information System (INIS)

    Raffin, A.L.

    2009-06-01

    DNA is constantly damaged modifying the genetic information for which it encodes. Several cellular mechanisms as the Base Excision Repair (BER) and the Nucleotide Excision Repair (NER) allow recovering the right DNA sequence. The Xeroderma pigmentosum is a disease characterised by a deficiency in the NER pathway. The aim of this study was to propose an efficient and fast test for the diagnosis of this disease as an alternative to the currently available UDS test. DNA repair activities of XP cell lines were quantified using in vitro miniaturized and paralleled tests in order to establish DNA repair phenotypes of XPA and XPC deficient cells. The main advantage of the tests used in this study is the simultaneous measurement of excision or excision synthesis (ES) of several lesions by only one cellular extract. We showed on one hand that the relative ES of the different lesions depend strongly on the protein concentration of the nuclear extract tested. Working at high protein concentration allowed discriminating the XP phenotype versus the control one, whereas it was impossible under a certain concentration's threshold. On the other hand, while the UVB irradiation of control cells stimulated their repair activities, this effect was not observed in XP cells. This study brings new information on the XPA and XPC protein roles during BER and NER and underlines the complexity of the regulations of DNA repair processes. (author)

  7. Helicobacter pylori infection induces genetic instability of nuclear and mitochondrial DNA in gastric cells

    DEFF Research Database (Denmark)

    Machado, Ana Manuel Dantas; Figueiredo, Ceu; Touati, Eliette

    2009-01-01

    of genetic instabilities in the nuclear and mitochondrial DNA (mtDNA) were examined. EXPERIMENTAL DESIGN: We observed the effects of H. pylori infection on a gastric cell line (AGS), on C57BL/6 mice, and on individuals with chronic gastritis. In AGS cells, the effect of H. pylori infection on base excision...... cells and chronic gastritis tissue were determined by PCR, single-stranded conformation polymorphism, and sequencing. H. pylori vacA and cagA genotyping was determined by multiplex PCR and reverse hybridization. RESULTS: Following H. pylori infection, the activity and expression of base excision repair...... and MMR are down-regulated both in vitro and in vivo. Moreover, H. pylori induces genomic instability in nuclear CA repeats in mice and in mtDNA of AGS cells and chronic gastritis tissue, and this effect in mtDNA is associated with bacterial virulence. CONCLUSIONS: Our results suggest that H. pylori...

  8. Enhanced Stability of DNA Nanostructures by Incorporation of Unnatural Base Pairs.

    Science.gov (United States)

    Liu, Qing; Liu, Guocheng; Wang, Ting; Fu, Jing; Li, Rujiao; Song, Linlin; Wang, Zhen-Gang; Ding, Baoquan; Chen, Fei

    2017-11-03

    Self-assembled DNA nanostructures hold great promise in the fields of nanofabrication, biosensing and nanomedicine. However, the inherent low stability of the DNA double helices, formed by weak interactions, largely hinders the assembly and functions of DNA nanostructures. In this study, we redesigned and constructed a six-arm DNA junction by incorporation of the unnatural base pairs 5-Me-isoC/isoG and A/2-thioT into the double helices. They not only retained the structural integrity of the DNA nanostructure, but also showed enhanced thermal stability and resistance to T7 Exonuclease digestion. This research may expand the applications of DNA nanostructures in nanofabrication and biomedical fields, and furthermore, the genetic alphabet expansion with unnatural base pairs may enable us to construct more complicated and diversified self-assembled DNA nanostructures. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. SUMO and ubiquitin-dependent XPC exchange drives nucleotide excision repair

    DEFF Research Database (Denmark)

    Van Cuijk, Loes; Van Belle, Gijsbert J.; Turkyilmaz, Yasemin

    2015-01-01

    XPC recognizes UV-induced DNA lesions and initiates their removal by nucleotide excision repair (NER). Damage recognition in NER is tightly controlled by ubiquitin and SUMO modifications. Recent studies have shown that the SUMO-targeted ubiquitin ligase RNF111 promotes K63-linked ubiquitylation o...

  10. DNA methylation-based classification of central nervous system tumours.

    Science.gov (United States)

    Capper, David; Jones, David T W; Sill, Martin; Hovestadt, Volker; Schrimpf, Daniel; Sturm, Dominik; Koelsche, Christian; Sahm, Felix; Chavez, Lukas; Reuss, David E; Kratz, Annekathrin; Wefers, Annika K; Huang, Kristin; Pajtler, Kristian W; Schweizer, Leonille; Stichel, Damian; Olar, Adriana; Engel, Nils W; Lindenberg, Kerstin; Harter, Patrick N; Braczynski, Anne K; Plate, Karl H; Dohmen, Hildegard; Garvalov, Boyan K; Coras, Roland; Hölsken, Annett; Hewer, Ekkehard; Bewerunge-Hudler, Melanie; Schick, Matthias; Fischer, Roger; Beschorner, Rudi; Schittenhelm, Jens; Staszewski, Ori; Wani, Khalida; Varlet, Pascale; Pages, Melanie; Temming, Petra; Lohmann, Dietmar; Selt, Florian; Witt, Hendrik; Milde, Till; Witt, Olaf; Aronica, Eleonora; Giangaspero, Felice; Rushing, Elisabeth; Scheurlen, Wolfram; Geisenberger, Christoph; Rodriguez, Fausto J; Becker, Albert; Preusser, Matthias; Haberler, Christine; Bjerkvig, Rolf; Cryan, Jane; Farrell, Michael; Deckert, Martina; Hench, Jürgen; Frank, Stephan; Serrano, Jonathan; Kannan, Kasthuri; Tsirigos, Aristotelis; Brück, Wolfgang; Hofer, Silvia; Brehmer, Stefanie; Seiz-Rosenhagen, Marcel; Hänggi, Daniel; Hans, Volkmar; Rozsnoki, Stephanie; Hansford, Jordan R; Kohlhof, Patricia; Kristensen, Bjarne W; Lechner, Matt; Lopes, Beatriz; Mawrin, Christian; Ketter, Ralf; Kulozik, Andreas; Khatib, Ziad; Heppner, Frank; Koch, Arend; Jouvet, Anne; Keohane, Catherine; Mühleisen, Helmut; Mueller, Wolf; Pohl, Ute; Prinz, Marco; Benner, Axel; Zapatka, Marc; Gottardo, Nicholas G; Driever, Pablo Hernáiz; Kramm, Christof M; Müller, Hermann L; Rutkowski, Stefan; von Hoff, Katja; Frühwald, Michael C; Gnekow, Astrid; Fleischhack, Gudrun; Tippelt, Stephan; Calaminus, Gabriele; Monoranu, Camelia-Maria; Perry, Arie; Jones, Chris; Jacques, Thomas S; Radlwimmer, Bernhard; Gessi, Marco; Pietsch, Torsten; Schramm, Johannes; Schackert, Gabriele; Westphal, Manfred; Reifenberger, Guido; Wesseling, Pieter; Weller, Michael; Collins, Vincent Peter; Blümcke, Ingmar; Bendszus, Martin; Debus, Jürgen; Huang, Annie; Jabado, Nada; Northcott, Paul A; Paulus, Werner; Gajjar, Amar; Robinson, Giles W; Taylor, Michael D; Jaunmuktane, Zane; Ryzhova, Marina; Platten, Michael; Unterberg, Andreas; Wick, Wolfgang; Karajannis, Matthias A; Mittelbronn, Michel; Acker, Till; Hartmann, Christian; Aldape, Kenneth; Schüller, Ulrich; Buslei, Rolf; Lichter, Peter; Kool, Marcel; Herold-Mende, Christel; Ellison, David W; Hasselblatt, Martin; Snuderl, Matija; Brandner, Sebastian; Korshunov, Andrey; von Deimling, Andreas; Pfister, Stefan M

    2018-03-22

    Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.

  11. Pms2 and uracil-DNA glycosylases act jointly in the mismatch repair pathway to generate Ig gene mutations at A-T base pairs.

    Science.gov (United States)

    Girelli Zubani, Giulia; Zivojnovic, Marija; De Smet, Annie; Albagli-Curiel, Olivier; Huetz, François; Weill, Jean-Claude; Reynaud, Claude-Agnès; Storck, Sébastien

    2017-04-03

    During somatic hypermutation (SHM) of immunoglobulin genes, uracils introduced by activation-induced cytidine deaminase are processed by uracil-DNA glycosylase (UNG) and mismatch repair (MMR) pathways to generate mutations at G-C and A-T base pairs, respectively. Paradoxically, the MMR-nicking complex Pms2/Mlh1 is apparently dispensable for A-T mutagenesis. Thus, how detection of U:G mismatches is translated into the single-strand nick required for error-prone synthesis is an open question. One model proposed that UNG could cooperate with MMR by excising a second uracil in the vicinity of the U:G mismatch, but it failed to explain the low impact of UNG inactivation on A-T mutagenesis. In this study, we show that uracils generated in the G1 phase in B cells can generate equal proportions of A-T and G-C mutations, which suggests that UNG and MMR can operate within the same time frame during SHM. Furthermore, we show that Ung -/- Pms2 -/- mice display a 50% reduction in mutations at A-T base pairs and that most remaining mutations at A-T bases depend on two additional uracil glycosylases, thymine-DNA glycosylase and SMUG1. These results demonstrate that Pms2/Mlh1 and multiple uracil glycosylases act jointly, each one with a distinct strand bias, to enlarge the immunoglobulin gene mutation spectrum from G-C to A-T bases. © 2017 Girelli Zubani et al.

  12. High Interlaboratory Reprocucibility of DNA Sequence-based Typing of Bacteria in a Multicenter Study

    DEFF Research Database (Denmark)

    Sousa, MA de; Boye, Kit; Lencastre, H de

    2006-01-01

    Current DNA amplification-based typing methods for bacterial pathogens often lack interlaboratory reproducibility. In this international study, DNA sequence-based typing of the Staphylococcus aureus protein A gene (spa, 110 to 422 bp) showed 100% intra- and interlaboratory reproducibility without...... extensive harmonization of protocols for 30 blind-coded S. aureus DNA samples sent to 10 laboratories. Specialized software for automated sequence analysis ensured a common typing nomenclature....

  13. Obturator foramen dissection for excision of symptomatic transobturator mesh.

    Science.gov (United States)

    Reynolds, W Stuart; Kit, Laura Chang; Kaufman, Melissa R; Karram, Mickey; Bales, Gregory T; Dmochowski, Roger R

    2012-05-01

    Groin pain after transobturator synthetic mesh placement can be recalcitrant to conservative therapy and ultimately requires surgical excision. We describe our experiences with and technique of obturator foramen dissection for mesh excision. The records of 8 patients treated from 2005 to 2010, were reviewed. Obturator dissection was performed via a lateral groin incision over the inferior pubic ramus at the level of the obturator foramen, typically in conjunction with orthopedic surgery. Five patients had transobturator mid urethral sling surgery for stress urinary incontinence, 2 had mid urethral sling and trocar based anterior vaginal wall mesh kits with transobturator passage of mesh arms for stress urinary incontinence and pelvic organ prolapse, and 1 had an anterior vaginal wall mesh kit for pelvic organ prolapse. Patients had 0 to 2 prior transvaginal mesh excisions before obturator surgery. All patients presented with intractable pain in the area of the obturator foramen and/or medial groin for which conservative treatment measures had failed. Six patients underwent concurrent vaginal and obturator dissection and 2 underwent obturator dissection alone. In all cases residual mesh (3 to 11 cm) was identified and excised from the obturator foramen. Mesh was closely associated to or traversing the adductor longus muscle and tendon with significant fibrous reaction in all cases. Postoperatively 5 patients were cured of pain and/or infection, and 3 reported no or some improvement at a mean followup of 6 months (range 1 to 12). Our experience suggests that surgical excision of residual mesh can alleviate many of the symptoms in many patients. In all cases mesh remnants were identified and removed, and typically involved neuromuscular structures adjacent to the obturator foramen. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. Potential for DNA-based identification of Great Lakes fauna: Match and mismatch between taxa inventories and DNA barcode libraries

    Science.gov (United States)

    DNA-based identification of mixed-organism samples offers the potential to greatly reduce the need for resource-intensive morphological identification, which would be of value both to biotic condition assessment and non-native species early-detection monitoring. However, the abi...

  15. Influence of DNA isolation on Q-PCR-based quantification of methanogenic Archaea in biogas fermenters.

    Science.gov (United States)

    Bergmann, I; Mundt, K; Sontag, M; Baumstark, I; Nettmann, E; Klocke, M

    2010-03-01

    Quantitative real-time PCR (Q-PCR) is commonly applied for the detection of certain microorganisms in environmental samples. However, some environments, like biomass-degrading biogas fermenters, are enriched with PCR-interfering substances. To study the impact of the DNA extraction protocol on the results of Q-PCR-based analysis of the methane-producing archaeal community in biogas fermenters, nine different protocols with varying cell disruption and DNA purification approaches were tested. Differences in the quantities of the isolated DNA and the purity parameters were found, with the best cell lysis efficiencies being obtained by a combined lysozyme/SDS-based lysis. When DNA was purified by sephacryl columns, the amount of DNA decreased by one log cycle but PCR inhibitors were eliminated sufficiently. In the case of detection of methanogenic Archaea, the chosen DNA isolation protocol strongly influenced the Q-PCR-based determination of 16S rDNA copy numbers. For example, with protocols including mechanical cell disruption, the 16S rDNA of Methanobacteriales were predominantly amplified (81-90% of the total 16S rDNA copy numbers), followed by the 16S rDNA of Methanomicrobiales (9-18%). In contrast, when a lysozyme/SDS-based cell lysis was applied, the 16S rDNA copy numbers determined for these two orders were the opposite (Methanomicrobiales 82-95%, Methanobacteriales 4-18%). In extreme cases, the DNA isolation method led to discrimination of some groups of methanogens (e.g. members of the Methanosaetaceae). In conclusion, for extraction of high amounts of microbial DNA with high purity from samples of biogas plants, a combined lysozyme/SDS-based cell lysis followed by a purification step with sephacryl columns is recommended. Copyright 2010 Elsevier GmbH. All rights reserved.

  16. Balancing repair and tolerance of DNA damage caused by alkylating agents

    OpenAIRE

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D.

    2012-01-01

    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial ...

  17. SERIES: Genomic instability in cancer Balancing repair and tolerance of DNA damage caused by alkylating agents

    OpenAIRE

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D

    2012-01-01

    Alkylating agents comprise a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER), and mismatch repair (MMR) respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial fo...

  18. Novel DNA sequence detection method based on fluorescence energy transfer

    International Nuclear Information System (INIS)

    Kobayashi, S.; Tamiya, E.; Karube, I.

    1987-01-01

    Recently the detection of specific DNA sequence, DNA analysis, has been becoming more important for diagnosis of viral genomes causing infections disease and human sequences related to inherited disorders. These methods typically involve electrophoresis, the immobilization of DNA on a solid support, hybridization to a complementary probe, the detection using labeled with /sup 32/P or nonisotopically with a biotin-avidin-enzyme system, and so on. These techniques are highly effective, but they are very time-consuming and expensive. A principle of fluorescene energy transfer is that the light energy from an excited donor (fluorophore) is transferred to an acceptor (fluorophore), if the acceptor exists in the vicinity of the donor and the excitation spectrum of donor overlaps the emission spectrum of acceptor. In this study, the fluorescence energy transfer was applied to the detection of specific DNA sequence using the hybridization method. The analyte, single-stranded DNA labeled with the donor fluorophore is hybridized to a probe DNA labeled with the acceptor. Because of the complementary DNA duplex formation, two fluorophores became to be closed to each other, and the fluorescence energy transfer was occurred

  19. Microcantilver-based DNA hybridization sensors for Salmonella identification

    Directory of Open Access Journals (Sweden)

    Carlo Ricciardi

    2012-02-01

    Full Text Available The detection of pathogenic microorganisms in foods remains a challenging since the safety of foodstuffs has to be ensured by the food producing companies. Conventional methods for the detection and identification of bacteria mainly rely on specific microbiological and biochemical identification. Biomolecular methods, are commonly used as a support for traditional techniques, thanks to their high sensitivity, specificity and not excessive costs. However, new methods like biosensors for example, can be an exciting alternative to the more traditional tecniques for the detection of pathogens in food. In this study we report Salmonella enterica serotype Enteritidis DNA detection through a novel class of label-free biosensors: microcantilevers (MCs. In general, MCs can operate as a microbalance and is used to detect the mass of the entities anchored to the cantilever surface using the decrease in the resonant frequency. We use DNA hybridization as model reaction system and for this reason, specific single stranded probe DNA of the pathogen and three different DNA targets (single-stranded complementary DNA, PCR product and serial dilutions of DNA extracted from S. Enteritidis strains were applied. Two protocols were reported in order to allow the probe immobilization on cantilever surface: i MC surface was functionalized with 3-aminopropyltriethoxysilane and glutaraldehyde and an amino-modified DNA probe was used; ii gold-coated sensors and thiolated DNA probes were used in order to generate a covalent bonding (Th-Au. For the first one, measures after hybridization with the PCR product showed related frequency shift 10 times higher than hybridization with complementary probe and detectable signals were obtained at the concentrations of 103 and 106 cfu/mL after hybridization with bacterial DNA. There are currently optimizations of the second protocol, where preliminary results have shown to be more uniform and therefore more precise within each of the

  20. DNAzyme-Based Logic Gate-Mediated DNA Self-Assembly.

    Science.gov (United States)

    Zhang, Cheng; Yang, Jing; Jiang, Shuoxing; Liu, Yan; Yan, Hao

    2016-01-13

    Controlling DNA self-assembly processes using rationally designed logic gates is a major goal of DNA-based nanotechnology and programming. Such controls could facilitate the hierarchical engineering of complex nanopatterns responding to various molecular triggers or inputs. Here, we demonstrate the use of a series of DNAzyme-based logic gates to control DNA tile self-assembly onto a prescribed DNA origami frame. Logic systems such as "YES," "OR," "AND," and "logic switch" are implemented based on DNAzyme-mediated tile recognition with the DNA origami frame. DNAzyme is designed to play two roles: (1) as an intermediate messenger to motivate downstream reactions and (2) as a final trigger to report fluorescent signals, enabling information relay between the DNA origami-framed tile assembly and fluorescent signaling. The results of this study demonstrate the plausibility of DNAzyme-mediated hierarchical self-assembly and provide new tools for generating dynamic and responsive self-assembly systems.

  1. Comparison of the effect of nalidixic acid and thymine deprivation on excision repair in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Masek, F; Slezarikova, V; Sedliakova, M [Slovenska Akademia Vied, Bratislava (Czechoslovakia). Vyskumny Ustav Onkologicky

    1975-01-01

    A difference was found in the extent of inhibition of thymine dimers (TT) excision in ultraviolet (UV) irradiated cells of E. coli after preirradiation depression of protein and DNA syntheses induced by a simultaneous removal of essential amino acids (AA/sup -/) and thymine (T/sup -/) or by the removal of essential amino acids and the addition of nalidixic acid (NAL/sup +/). The difference was observed in both E. coli B/r Hcr/sup +/ and E. coli K12 SR20 uvr/sup +/ cells. The depression of DNA synthesis by nalidixic acid as an exogenous agent inhibited TT excision to a lower degree than the depression of DNA synthesis by thymine starvation. The extent of TT excision had no appreciable effect on the restoration of the sedimentation profile of a newly synthesized DNA nor on UV resistance of cells during dark repair. A DNA molecule having the size of a molecule of nonirradiated cells became synthesized while TT were still present in the DNA.

  2. EVOLUTIONARY RELATIONSHIPS BETWEEN 4 SPECIES OF CLADOPHORA (CLADOPHORALES, CHLOROPHYTA) BASED ON DNA-DNA HYBRIDIZATION

    NARCIS (Netherlands)

    BOT, PVM; BRUSSAARD, CPD; STAM, WT; VANDENHOEK, C

    1991-01-01

    Analysis of the reassociation kinetics of the DNA from Cladophora pellucida (Huds.) Kutz. indicates that the genome of this benthic alga is comprised of approximately 75% repetitive sequences. Single-copy sequences reassociated with a rate constant of 1.8 x 10(-3) M-1.s-1, which corresponds to a

  3. Electron accommodation dynamics in the DNA base thymine

    Science.gov (United States)

    King, Sarah B.; Stephansen, Anne B.; Yokoi, Yuki; Yandell, Margaret A.; Kunin, Alice; Takayanagi, Toshiyuki; Neumark, Daniel M.

    2015-07-01

    The dynamics of electron attachment to the DNA base thymine are investigated using femtosecond time-resolved photoelectron imaging of the gas phase iodide-thymine (I-T) complex. An ultraviolet pump pulse ejects an electron from the iodide and prepares an iodine-thymine temporary negative ion that is photodetached with a near-IR probe pulse. The resulting photoelectrons are analyzed with velocity-map imaging. At excitation energies ranging from -120 meV to +90 meV with respect to the vertical detachment energy (VDE) of 4.05 eV for I-T, both the dipole-bound and valence-bound negative ions of thymine are observed. A slightly longer rise time for the valence-bound state than the dipole-bound state suggests that some of the dipole-bound anions convert to valence-bound species. No evidence is seen for a dipole-bound anion of thymine at higher excitation energies, in the range of 0.6 eV above the I-T VDE, which suggests that if the dipole-bound anion acts as a "doorway" to the valence-bound anion, it only does so at excitation energies near the VDE of the complex.

  4. Electron accommodation dynamics in the DNA base thymine

    Energy Technology Data Exchange (ETDEWEB)

    King, Sarah B.; Yandell, Margaret A.; Kunin, Alice [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Stephansen, Anne B. [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 København Ø (Denmark); Yokoi, Yuki; Takayanagi, Toshiyuki [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan); Neumark, Daniel M., E-mail: dneumark@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-07-14

    The dynamics of electron attachment to the DNA base thymine are investigated using femtosecond time-resolved photoelectron imaging of the gas phase iodide-thymine (I{sup −}T) complex. An ultraviolet pump pulse ejects an electron from the iodide and prepares an iodine-thymine temporary negative ion that is photodetached with a near-IR probe pulse. The resulting photoelectrons are analyzed with velocity-map imaging. At excitation energies ranging from −120 meV to +90 meV with respect to the vertical detachment energy (VDE) of 4.05 eV for I{sup −}T, both the dipole-bound and valence-bound negative ions of thymine are observed. A slightly longer rise time for the valence-bound state than the dipole-bound state suggests that some of the dipole-bound anions convert to valence-bound species. No evidence is seen for a dipole-bound anion of thymine at higher excitation energies, in the range of 0.6 eV above the I{sup −}T VDE, which suggests that if the dipole-bound anion acts as a “doorway” to the valence-bound anion, it only does so at excitation energies near the VDE of the complex.

  5. Expression of DNA repair genes in burned skin exposed to low-level red laser.

    Science.gov (United States)

    Trajano, Eduardo Tavares Lima; Mencalha, Andre Luiz; Monte-Alto-Costa, Andréa; Pôrto, Luís Cristóvão; de Souza da Fonseca, Adenilson

    2014-11-01

    Although red laser lights lie in the region of non-ionizing radiations in the electromagnetic spectrum, there are doubts whether absorption of these radiations causes lesions in the DNA molecule. Our aim was to investigate the expression of the genes involved with base excision and nucleotide excision repair pathways in skin tissue submitted to burn injury and exposed to low-level red laser. Wistar rats were divided as follows: control group-rats burned and not irradiated, laser group-rats burned and irradiated 1 day after injury for five consecutive days, and later laser group-rats injured and treated 4 days after injury for five consecutive days. Irradiation was performed according to a clinical protocol (20 J/cm(2), 100 mW, continuous wave emission mode). The animals were sacrificed on day 10, and scarred tissue samples were withdrawn for total RNA extraction, complementary DNA (cDNA) synthesis, and evaluation of gene expression by quantitative polymerase chain reaction. Low-level red laser exposure (1) reduces the expression of APE1 messenger (mRNA), (2) increases the expression of OGG1 mRNA, (3) reduces the expression of XPC mRNA, and (4) increases the expression of XPA mRNA both in laser and later laser groups. Red laser exposure at therapeutic fluences alters the expression of genes related to base excision and nucleotide excision pathways of DNA repair during wound healing of burned skin.

  6. Solvent effects on hydrogen bonds in Watson-Crick, mismatched, and modified DNA base pairs

    NARCIS (Netherlands)

    Poater, Jordi; Swart, Marcel; Guerra, Celia Fonseca; Bickelhaupt, F. Matthias

    2012-01-01

    We have theoretically analyzed a complete series of Watson–Crick and mismatched DNA base pairs, both in gas phase and in solution. Solvation causes a weakening and lengthening of the hydrogen bonds between the DNA bases because of the stabilization of the lone pairs involved in these bonds. We have

  7. Gold-based optical biosensor for single-mismatched DNA detection using salt-induced hybridization

    DEFF Research Database (Denmark)

    Zhan, Zongrui; Ma, Xingyi; Cao, Cuong

    2011-01-01

    In this study, a gold nanoparticle (Au-NP)-based detection method for sensitive and specific DNA-based diagnostic applications is described. A sandwich format consisting of Au-NPs/DNA/PMP (Streptavidin-coated MagnetSphere Para-Magnetic Particles) was fabricated. PMPs captured and separated target...

  8. Electrochemical DNA biosensor based on grafting-to mode of terminal deoxynucleoside transferase-mediated extension.

    Science.gov (United States)

    Chen, Jinyuan; Liu, Zhoujie; Peng, Huaping; Zheng, Yanjie; Lin, Zhen; Liu, Ailin; Chen, Wei; Lin, Xinhua

    2017-12-15

    Previously reported electrochemical DNA biosensors based on in-situ polymerization approach reveal that terminal deoxynucleoside transferase (TdTase) has good amplifying performance and promising application in the design of electrochemical DNA biosensor. However, this method, in which the background is significantly affected by the amount of TdTase, suffers from being easy to produce false positive result and poor stability. Herein, we firstly present a novel electrochemical DNA biosensor based on grafting-to mode of TdTase-mediated extension, in which DNA targets are polymerized in homogeneous solution and then hybridized with DNA probes on BSA-based DNA carrier platform. It is surprising to find that the background in the grafting-to mode of TdTase-based electrochemical DNA biosensor have little interference from the employed TdTase. Most importantly, the proposed electrochemical DNA biosensor shows greatly improved detection performance over the in-situ polymerization approach-based electrochemical DNA biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. comparison between dna-based, pomological and chemical ...

    African Journals Online (AJOL)

    2015-09-01

    Sep 1, 2015 ... of extra virgin olive oil and consequently for better marketing. Habitually, the ... Several molecular marker techniques such as random amplified .... negatively correlated to the rate of unsaponifiable matter. .... DNA Extraction.

  10. Phylogenetic relationships of the Gomphales based on nuc-25S-rDNA, mit-12S-rDNA, and mit-atp6-DNA combined sequences

    Science.gov (United States)

    Admir J. Giachini; Kentaro Hosaka; Eduardo Nouhra; Joseph Spatafora; James M. Trappe

    2010-01-01

    Phylogenetic relationships among Geastrales, Gomphales, Hysterangiales, and Phallales were estimated via combined sequences: nuclear large subunit ribosomal DNA (nuc-25S-rDNA), mitochondrial small subunit ribosomal DNA (mit-12S-rDNA), and mitochondrial atp6 DNA (mit-atp6-DNA). Eighty-one taxa comprising 19 genera and 58 species...

  11. DNA hydrogel-based supercapacitors operating in physiological fluids

    OpenAIRE

    Hur, Jaehyun; Im, Kyuhyun; Hwang, Sekyu; Choi, ByoungLyong; Kim, Sungjee; Hwang, Sungwoo; Park, Nokyoung; Kim, Kinam

    2013-01-01

    DNA nanostructures have been attractive due to their structural properties resulting in many important breakthroughs especially in controlled assemblies and many biological applications. Here, we report a unique energy storage device which is a supercapacitor that uses nanostructured DNA hydrogel (Dgel) as a template and layer-by-layer (LBL)-deposited polyelectrolyte multilayers (PEMs) as conductors. Our device, named as PEM-Dgel supercapacitor, showed excellent performance in direct contact ...

  12. Slow elimination of DNA damaged bases in the liver of old gamma-irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Gaziev, A I; Malakhova, L V; Fomenko, L A [AN SSSR, Pushchino-na-Oke. Inst. Biologicheskoj Fiziki

    1981-01-01

    Elimination of the DNA damaged bases in the liver of old and young mice after their gamma-irradiation is studied. It is established that the incision rate of DNA gamma-damaged bases in the liver of old mice is lower than in the liver of the young ones. It is supposed to be connected with the decrease of the activity of DNA reparation ferments or with the presence of limitations in chromatin for the access of these ferments to the damaged parts of DNA in the cells of old animals.

  13. DNA origami-based standards for quantitative fluorescence microscopy.

    Science.gov (United States)

    Schmied, Jürgen J; Raab, Mario; Forthmann, Carsten; Pibiri, Enrico; Wünsch, Bettina; Dammeyer, Thorben; Tinnefeld, Philip

    2014-01-01

    Validating and testing a fluorescence microscope or a microscopy method requires defined samples that can be used as standards. DNA origami is a new tool that provides a framework to place defined numbers of small molecules such as fluorescent dyes or proteins in a programmed geometry with nanometer precision. The flexibility and versatility in the design of DNA origami microscopy standards makes them ideally suited for the broad variety of emerging super-resolution microscopy methods. As DNA origami structures are durable and portable, they can become a universally available specimen to check the everyday functionality of a microscope. The standards are immobilized on a glass slide, and they can be imaged without further preparation and can be stored for up to 6 months. We describe a detailed protocol for the design, production and use of DNA origami microscopy standards, and we introduce a DNA origami rectangle, bundles and a nanopillar as fluorescent nanoscopic rulers. The protocol provides procedures for the design and realization of fluorescent marks on DNA origami structures, their production and purification, quality control, handling, immobilization, measurement and data analysis. The procedure can be completed in 1-2 d.

  14. A DNA-based nanomechanical device with three robust states.

    Science.gov (United States)

    Chakraborty, Banani; Sha, Ruojie; Seeman, Nadrian C

    2008-11-11

    DNA has been used to build a variety of devices, ranging from those that are controlled by DNA structural transitions to those that are controlled by the addition of specific DNA strands. These sequence-dependent devices fulfill the promise of DNA in nanotechnology because a variety of devices in the same physical environment can be controlled individually. Many such devices have been reported, but most of them contain one or two structurally robust end states, in addition to a floppy intermediate or even a floppy end state. We describe a system in which three different structurally robust end states can be obtained, all resulting from the addition of different set strands to a single floppy intermediate. This system is an extension of the PX-JX(2) DNA device. The three states are related to each other by three different motions, a twofold rotation, a translation of approximately 2.1-2.5 nm, and a twofold screw rotation, which combines these two motions. We demonstrate the transitions by gel electrophoresis, by fluorescence resonance energy transfer, and by atomic force microscopy. The control of this system by DNA strands opens the door to trinary logic and to systems containing N devices that are able to attain 3(N) structural states.

  15. The 2015 Nobel Prize in Chemistry The Discovery of Essential Mechanisms that Repair DNA Damage.

    Science.gov (United States)

    Lindahl, Tomas; Modrich, Paul; Sancar, Aziz

    2016-01-01

    The Royal Swedish Academy awarded the Nobel Prize in Chemistry for 2015 to Tomas Lindahl, Paul Modrich and Aziz Sancar for their discoveries in fundamental mechanisms of DNA repair. This pioneering research described three different essential pathways that correct DNA damage, safeguard the integrity of the genetic code to ensure its accurate replication through generations, and allow proper cell division. Working independently of each other, Tomas Lindahl, Paul Modrich and Aziz Sancar delineated the mechanisms of base excision repair, mismatch repair and nucleotide excision repair, respectively. These breakthroughs challenged and dismissed the early view that the DNA molecule was very stable, paving the way for the discovery of human hereditary diseases associated with distinct DNA repair deficiencies and a susceptibility to cancer. It also brought a deeper understanding of cancer as well as neurodegenerative or neurological diseases, and let to novel strategies to treat cancer.

  16. DENA: A Configurable Microarchitecture and Design Flow for Biomedical DNA-Based Logic Design.

    Science.gov (United States)

    Beiki, Zohre; Jahanian, Ali

    2017-10-01

    DNA is known as the building block for storing the life codes and transferring the genetic features through the generations. However, it is found that DNA strands can be used for a new type of computation that opens fascinating horizons in computational medicine. Significant contributions are addressed on design of DNA-based logic gates for medical and computational applications but there are serious challenges for designing the medium and large-scale DNA circuits. In this paper, a new microarchitecture and corresponding design flow is proposed to facilitate the design of multistage large-scale DNA logic systems. Feasibility and efficiency of the proposed microarchitecture are evaluated by implementing a full adder and, then, its cascadability is determined by implementing a multistage 8-bit adder. Simulation results show the highlight features of the proposed design style and microarchitecture in terms of the scalability, implementation cost, and signal integrity of the DNA-based logic system compared to the traditional approaches.

  17. Research on Image Encryption Based on DNA Sequence and Chaos Theory

    Science.gov (United States)

    Tian Zhang, Tian; Yan, Shan Jun; Gu, Cheng Yan; Ren, Ran; Liao, Kai Xin

    2018-04-01

    Nowadays encryption is a common technique to protect image data from unauthorized access. In recent years, many scientists have proposed various encryption algorithms based on DNA sequence to provide a new idea for the design of image encryption algorithm. Therefore, a new method of image encryption based on DNA computing technology is proposed in this paper, whose original image is encrypted by DNA coding and 1-D logistic chaotic mapping. First, the algorithm uses two modules as the encryption key. The first module uses the real DNA sequence, and the second module is made by one-dimensional logistic chaos mapping. Secondly, the algorithm uses DNA complementary rules to encode original image, and uses the key and DNA computing technology to compute each pixel value of the original image, so as to realize the encryption of the whole image. Simulation results show that the algorithm has good encryption effect and security.

  18. Label-free DNA biosensor based on resistance change of platinum nanoparticles assemblies.

    Science.gov (United States)

    Skotadis, Evangelos; Voutyras, Konstantinos; Chatzipetrou, Marianneza; Tsekenis, Georgios; Patsiouras, Lampros; Madianos, Leonidas; Chatzandroulis, Stavros; Zergioti, Ioanna; Tsoukalas, Dimitris

    2016-07-15

    A novel nanoparticle based biosensor for the fast and simple detection of DNA hybridization events is presented. The sensor utilizes hybridized DNA's charge transport properties, combining them with metallic nanoparticle networks that act as nano-gapped electrodes. The DNA hybridization events can be detected by a significant reduction in the sensor's resistance due to the conductive bridging offered by hybridized DNA. By modifying the nanoparticle surface coverage, which can be controlled experimentally being a function of deposition time, and the structural properties of the electrodes, an optimized biosensor for the in situ detection of DNA hybridization events is ultimately fabricated. The fabricated biosensor exhibits a wide response range, covering four orders of magnitude, a limit of detection of 1nM and can detect a single base pair mismatch between probe and complementary DNA. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair

    Directory of Open Access Journals (Sweden)

    Elisa Mentegari

    2016-08-01

    Full Text Available DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell’s genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.

  20. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair.

    Science.gov (United States)

    Mentegari, Elisa; Kissova, Miroslava; Bavagnoli, Laura; Maga, Giovanni; Crespan, Emmanuele

    2016-08-31

    DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell's genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.

  1. Repair of endogenous and ionizing radiation-induced DNA damages: mechanisms and biological functions

    International Nuclear Information System (INIS)

    Boiteux, S.

    2002-01-01

    The cellular DNA is continuously exposed to endogenous and exogenous stress. Oxidative stress due to cellular metabolism is the major cause of endogenous DNA damage. On the other hand, ionizing radiation (IR) is an important exogenous stress. Both induce similar DNA damages: damaged bases, abasic sites and strand breakage. Most of these lesions are lethal and/or mutagenic. The survival of the cell is managed by efficient and accurate DNA repair mechanisms that remove lesions before their replication or transcription. DNA repair pathways involved in the removal of IR-induced lesions are briefly described. Base excision repair (BER) is mostly involved in the removal of base damage, abasic sites and single strand breaks. In contrast, DNA double strand breaks are mostly repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). How DNA repair pathways prevent cancer process is also discussed. (author)

  2. Principles of Periocular Reconstruction following Excision of Cutaneous Malignancy

    Directory of Open Access Journals (Sweden)

    Scott M. Hayano

    2012-01-01

    Full Text Available Reconstruction of periocular defects following excision of cutaneous malignancy can present difficulties for oculofacial and reconstructive surgeons. The intricate anatomy of the eyelids and face requires precise restoration in order to avoid postoperative functional anesthetic concerns. Various reconstructive procedures based on common principles, location and size of the defect, can be applied to achieve restoration with the best possible functional and aesthetic outcomes.

  3. European Union Harmonized Excise Taxation : Occasional Importation Process

    OpenAIRE

    Tanhua, Taina

    2013-01-01

    This thesis was written with the intent to compile the information related to occasional importation process and European Union harmonized taxation into a single package. The process is based on European Union legislation and the aim of it is to unify the taxation within the internal market area. The national excise duties are not part of the occasional importation process but are partly linked to it. The first part of the thesis discusses the occasional importation of goods subject to ha...

  4. A child with xeroderma pigmentosum for excision of basal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Sridevi M Mulimani

    2013-01-01

    Full Text Available Xeroderma pigmentosum (XP is characterized by hypersensitivity to sunlight, ocular involvement, and progressive neurological complications. These manifestations are due to a cellular hypersensitivity to ultraviolet radiation leading to a defect in repair of DNA by the process of nucleotide excision repair. Basal cell carcinoma which is rare in children can occur with XP. Though the XP induced changes are predominately dermatologic, pose several challenges in anaesthetic management. Hence, we are reporting a 9-year-old child with XP scheduled for excision of basal cell carcinoma under general anaesthesia.

  5. All-Atom Polarizable Force Field for DNA Based on the Classical Drude Oscillator Model

    Science.gov (United States)

    Savelyev, Alexey; MacKerell, Alexander D.

    2014-01-01

    Presented is a first generation atomistic force field for DNA in which electronic polarization is modeled based on the classical Drude oscillator formalism. The DNA model is based on parameters for small molecules representative of nucleic acids, including alkanes, ethers, dimethylphosphate, and the nucleic acid bases and empirical adjustment of key dihedral parameters associated with the phosphodiester backbone, glycosidic linkages and sugar moiety of DNA. Our optimization strategy is based on achieving a compromise between satisfying the properties of the underlying model compounds in the gas phase targeting QM data and reproducing a number of experimental properties of DNA duplexes in the condensed phase. The resulting Drude force field yields stable DNA duplexes on the 100 ns time scale and satisfactorily reproduces (1) the equilibrium between A and B forms of DNA and (2) transitions between the BI and BII sub-states of B form DNA. Consistency with the gas phase QM data for the model compounds is significantly better for the Drude model as compared to the CHARMM36 additive force field, which is suggested to be due to the improved response of the model to changes in the environment associated with the explicit inclusion of polarizability. Analysis of dipole moments associated with the nucleic acid bases shows the Drude model to have significantly larger values than those present in CHARMM36, with the dipoles of individual bases undergoing significant variations during the MD simulations. Additionally, the dipole moment of water was observed to be perturbed in the grooves of DNA. PMID:24752978

  6. Investigation of the charge effect on the electrochemical transduction in a quinone-based DNA sensor

    DEFF Research Database (Denmark)

    Reisberg, S.; Piro, B.; Noel, V.

    2008-01-01

    To elucidate the mechanism involved in the electrochemical transduction process of a conducting polymer-based DNA sensor, peptide nucleic acids (PNA) were used. PNA are DNA analogues having similar hybridization properties but are neutral. This allows to discriminate the electrostatic effect of D...... strands from the steric hindrance generated on the bioelectrode upon hybridization. It can be concluded that DNA conformational changes are determinant in the transduction process and that the electrostatic effect is negligible....

  7. DNA methylation-based variation between human populations.

    Science.gov (United States)

    Kader, Farzeen; Ghai, Meenu

    2017-02-01

    Several studies have proved that DNA methylation affects regulation of gene expression and development. Epigenome-wide studies have reported variation in methylation patterns between populations, including Caucasians, non-Caucasians (Blacks), Hispanics, Arabs, and numerous populations of the African continent. Not only has DNA methylation differences shown to impact externally visible characteristics, but is also a potential biomarker for underlying racial health disparities between human populations. Ethnicity-related methylation differences set their mark during early embryonic development. Genetic variations, such as single-nucleotide polymorphisms and environmental factors, such as age, dietary folate, socioeconomic status, and smoking, impacts DNA methylation levels, which reciprocally impacts expression of phenotypes. Studies show that it is necessary to address these external influences when attempting to differentiate between populations since the relative impacts of these factors on the human methylome remain uncertain. The present review summarises several reported attempts to establish the contribution of differential DNA methylation to natural human variation, and shows that DNA methylation could represent new opportunities for risk stratification and prevention of several diseases amongst populations world-wide. Variation of methylation patterns between human populations is an exciting prospect which inspires further valuable research to apply the concept in routine medical and forensic casework. However, trans-generational inheritance needs to be quantified to decipher the proportion of variation contributed by DNA methylation. The future holds thorough evaluation of the epigenome to understand quantification, heritability, and the effect of DNA methylation on phenotypes. In addition, methylation profiling of the same ethnic groups across geographical locations will shed light on conserved methylation differences in populations.

  8. The interaction of taurine-salicylaldehyde Schiff base copper(II) complex with DNA and the determination of DNA using the complex as a fluorescence probe

    Science.gov (United States)

    Zhang, Xiaoyan; Wang, Yong; Zhang, Qianru; Yang, Zhousheng

    2010-09-01

    The interaction of taurine-salicylaldehyde Schiff base copper(II) (Cu(TSSB) 22+) complex with DNA was explored by using UV-vis, fluorescence spectrophotometry, and voltammetry. In pH 7.4 Tris-HCl buffer solution, the binding constant of the Cu(TSSB) 22+ complex interaction with DNA was 3.49 × 10 4 L mol -1. Moreover, due to the fluorescence enhancing of Cu(TSSB) 22+ complex in the presence of DNA, a method for determination of DNA with Cu(TSSB) 22+ complex as a fluorescence probe was developed. The fluorescence spectra indicated that the maximum excitation and emission wavelength were 389 nm and 512 nm, respectively. Under optimal conditions, the calibration graphs are linear over the range of 0.03-9.03 μg mL -1 for calf thymus DNA (CT-DNA), 0.10-36 μg mL -1 for yeast DNA and 0.01-10.01 μg mL -1 for salmon DNA (SM-DNA), respectively. The corresponding detection limits are 7 ng mL -1 for CT-DNA, 3 ng mL -1 for yeast DNA and 3 ng mL -1 for SM-DNA. Using this method, DNA in synthetic samples was determined with satisfactory results.

  9. High-resolution NMR studies of chimeric DNA-RNA-DNA duplexes, heteronomous base pairing, and continuous base stacking at junctions

    International Nuclear Information System (INIS)

    Chou, Shanho; Flynn, P.; Wang, A.; Reid, B.

    1991-01-01

    Two symmetrical DNA-RNA-DNA duplex chimeras, d(CGCG)r(AAUU)d(CGCG) (designated rAAUU) and d(CGCG)r(UAUA)d(CGCG) (designated rUAUA), and a nonsymmetrical chimeric duplex, d(CGTT)r(AUAA)d(TGCG)/d(CGCA)r(UUAU)d(AACG) (designated rAUAA), as well as their pure DNA analogues, containing dU instead of T, have been synthesized by solid-phase phosphoramidite methods and studied by high-resolution NMR techniques. The 1D imino proton NOE spectra of these d-r-d chimeras indicate normal Watson-Crick hydrogen bonding and base stacking at the junction region. Preliminary qualitative NOESY, COSY, and chemical shift data suggest that the internal RNA segment contains C3'-endo (A-type) sugar conformations except for the first RNA residues (position 5 and 17) following the 3' end of the DNA block, which, unlike the other six ribonucleotides, exhibit detectable H1'-H2' J coupling. The nucleosides of the two flanking DNA segments appear to adopt a fairly normal C2'-endo B-DNA conformation except at the junction with the RNA blocks (residues 4 and 16), where the last DNA residue appears to adopt an intermediate sugar conformation. The data indicate that A-type and B-type conformations can coexist in a single short continuous nucleic acid duplex, but these results differ somewhat from previous theoretical model studies

  10. Genomic island excisions in Bordetella petrii

    Directory of Open Access Journals (Sweden)

    Levillain Erwan

    2009-07-01

    Full Text Available Abstract Background Among the members of the genus Bordetella B. petrii is unique, since it is the only species isolated from the environment, while the pathogenic Bordetellae are obligately associated with host organisms. Another feature distinguishing B. petrii from the other sequenced Bordetellae is the presence of a large number of mobile genetic elements including several large genomic regions with typical characteristics of genomic islands collectively known as integrative and conjugative elements (ICEs. These elements mainly encode accessory metabolic factors enabling this bacterium to grow on a large repertoire of aromatic compounds. Results During in vitro culture of Bordetella petrii colony variants appear frequently. We show that this variability can be attributed to the presence of a large number of metastable mobile genetic elements on its chromosome. In fact, the genome sequence of B. petrii revealed the presence of at least seven large genomic islands mostly encoding accessory metabolic functions involved in the degradation of aromatic compounds and detoxification of heavy metals. Four of these islands (termed GI1 to GI3 and GI6 are highly related to ICEclc of Pseudomonas knackmussii sp. strain B13. Here we present first data about the molecular characterization of these islands. We defined the exact borders of each island and we show that during standard culture of the bacteria these islands get excised from the chromosome. For all but one of these islands (GI5 we could detect circular intermediates. For the clc-like elements GI1 to GI3 of B. petrii we provide evidence that tandem insertion of these islands which all encode highly related integrases and attachment sites may also lead to incorporation of genomic DNA which originally was not part of the island and to the formation of huge composite islands. By integration of a tetracycline resistance cassette into GI3 we found this island to be rather unstable and to be lost from

  11. Implication of Posttranslational Histone Modifications in Nucleotide Excision Repair

    Directory of Open Access Journals (Sweden)

    Shisheng Li

    2012-09-01

    Full Text Available Histones are highly alkaline proteins that package and order the DNA into chromatin in eukaryotic cells. Nucleotide excision repair (NER is a conserved multistep reaction that removes a wide range of generally bulky and/or helix-distorting DNA lesions. Although the core biochemical mechanism of NER is relatively well known, how cells detect and repair lesions in diverse chromatin environments is still under intensive research. As with all DNA-related processes, the NER machinery must deal with the presence of organized chromatin and the physical obstacles it presents. A huge catalogue of posttranslational histone modifications has been documented. Although a comprehensive understanding of most of these modifications is still lacking, they are believed to be important regulatory elements for many biological processes, including DNA replication and repair, transcription and cell cycle control. Some of these modifications, including acetylation, methylation, phosphorylation and ubiquitination on the four core histones (H2A, H2B, H3 and H4 or the histone H2A variant H2AX, have been found to be implicated in different stages of the NER process. This review will summarize our recent understanding in this area.

  12. Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes

    International Nuclear Information System (INIS)

    Zhu Ningning; Chang Zhu; He Pingang; Fang Yuzhi

    2005-01-01

    Platinum nanoparticles were used in combination with multi-walled carbon nanotubes (MWCNTs) for fabricating sensitivity-enhanced electrochemical DNA biosensor. Multi-walled carbon nanotubes and platinum nanoparticles were dispersed in Nafion, which were used to fabricate the modification of the glassy carbon electrode (GCE) surface. Oligonucleotides with amino groups at the 5' end were covalently linked onto carboxylic groups of MWCNTs on the electrode. The hybridization events were monitored by differential pulse voltammetry (DPV) measurement of the intercalated daunomycin. Due to the ability of carbon nanotubes to promote electron-transfer reactions, the high catalytic activities of platinum nanoparticles for chemical reactions, the sensitivity of presented electrochemical DNA biosensors was remarkably improved. The detection limit of the method for target DNA was 1.0 x 10 -11 mol l -1

  13. DNA origami-based nanoribbons: assembly, length distribution, and twist

    Energy Technology Data Exchange (ETDEWEB)

    Jungmann, Ralf; Scheible, Max; Kuzyk, Anton; Pardatscher, Guenther; Simmel, Friedrich C [Lehrstuhl fuer Bioelektronik, Physik-Department and ZNN/WSI, Technische Universitaet Muenchen, Am Coulombwall 4a, 85748 Garching (Germany); Castro, Carlos E, E-mail: simmel@ph.tum.de [Labor fuer Biomolekulare Nanotechnologie, Physik-Department and ZNN/WSI, Technische Universitaet Muenchen, Am Coulombwall 4a, 85748 Garching (Germany)

    2011-07-08

    A variety of polymerization methods for the assembly of elongated nanoribbons from rectangular DNA origami structures are investigated. The most efficient method utilizes single-stranded DNA oligonucleotides to bridge an intermolecular scaffold seam between origami monomers. This approach allows the fabrication of origami ribbons with lengths of several micrometers, which can be used for long-range ordered arrangement of proteins. It is quantitatively shown that the length distribution of origami ribbons obtained with this technique follows the theoretical prediction for a simple linear polymerization reaction. The design of flat single layer origami structures with constant crossover spacing inevitably results in local underwinding of the DNA helix, which leads to a global twist of the origami structures that also translates to the nanoribbons.

  14. DNA origami-based nanoribbons: assembly, length distribution, and twist

    International Nuclear Information System (INIS)

    Jungmann, Ralf; Scheible, Max; Kuzyk, Anton; Pardatscher, Guenther; Simmel, Friedrich C; Castro, Carlos E

    2011-01-01

    A variety of polymerization methods for the assembly of elongated nanoribbons from rectangular DNA origami structures are investigated. The most efficient method utilizes single-stranded DNA oligonucleotides to bridge an intermolecular scaffold seam between origami monomers. This approach allows the fabrication of origami ribbons with lengths of several micrometers, which can be used for long-range ordered arrangement of proteins. It is quantitatively shown that the length distribution of origami ribbons obtained with this technique follows the theoretical prediction for a simple linear polymerization reaction. The design of flat single layer origami structures with constant crossover spacing inevitably results in local underwinding of the DNA helix, which leads to a global twist of the origami structures that also translates to the nanoribbons.

  15. Spreadsheet-based program for alignment of overlapping DNA sequences.

    Science.gov (United States)

    Anbazhagan, R; Gabrielson, E

    1999-06-01

    Molecular biology laboratories frequently face the challenge of aligning small overlapping DNA sequences derived from a long DNA segment. Here, we present a short program that can be used to adapt Excel spreadsheets as a tool for aligning DNA sequences, regardless of their orientation. The program runs on any Windows or Macintosh operating system computer with Excel 97 or Excel 98. The program is available for use as an Excel file, which can be downloaded from the BioTechniques Web site. Upon execution, the program opens a specially designed customized workbook and is capable of identifying overlapping regions between two sequence fragments and displaying the sequence alignment. It also performs a number of specialized functions such as recognition of restriction enzyme cutting sites and CpG island mapping without costly specialized software.

  16. Bisphenol a promotes cell survival following oxidative DNA damage in mouse fibroblasts.

    Directory of Open Access Journals (Sweden)

    Natalie R Gassman

    Full Text Available Bisphenol A (BPA is a biologically active industrial chemical used in production of consumer products. BPA has become a target of intense public scrutiny following concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer. Recent studies link BPA with the generation of reactive oxygen species, and base excision repair (BER is responsible for removing oxidatively induced DNA lesions. Yet, the relationship between BPA and BER has yet to be examined. Further, the ubiquitous nature of BPA allows continuous exposure of the human genome concurrent with the normal endogenous and exogenous insults to the genome, and this co-exposure may impact the DNA damage response and repair. To determine the effect of BPA exposure on base excision repair of oxidatively induced DNA damage, cells compromised in double-strand break repair were treated with BPA alone or co-exposed with either potassium bromate (KBrO3 or laser irradiation as oxidative damaging agents. In experiments with KBrO3, co-treatment with BPA partially reversed the KBrO3-induced cytotoxicity observed in these cells, and this was coincident with an increase in guanine base lesions in genomic DNA. The improvement in cell survival and the increase in oxidatively induced DNA base lesions were reminiscent of previous results with alkyl adenine DNA glycosylase-deficient cells, suggesting that BPA may prevent initiation of repair of oxidized base lesions. With laser irradiation-induced DNA damage, treatment with BPA suppressed DNA repair as revealed by several indicators. These results are consistent with the hypothesis that BPA can induce a suppression of oxidized base lesion DNA repair by the base excision repair pathway.

  17. Intercalation of a Zn(II) complex containing ciprofloxacin drug between DNA base pairs.

    Science.gov (United States)

    Shahabadi, Nahid; Asadian, Ali Ashraf; Mahdavi, Mryam

    2017-11-02

    In this study, an attempt has been made to study the interaction of a Zn(II) complex containing an antibiotic drug, ciprofloxacin, with calf thymus DNA using spectroscopic methods. It was found that Zn(II) complex could bind with DNA via intercalation mode as evidenced by: hyperchromism in UV-Vis spectrum; these spectral characteristics suggest that the Zn(II) complex interacts with DNA most likely through a mode that involves a stacking interaction between the aromatic chromophore and the base pairs of DNA. DNA binding constant (K b = 1.4 × 10 4 M -1 ) from spectrophotometric studies of the interaction of Zn(II) complex with DNA is comparable to those of some DNA intercalative polypyridyl Ru(II) complexes 1.0 -4.8 × 10 4 M -1 . CD study showed stabilization of the right-handed B form of DNA in the presence of Zn(II) complex as observed for the classical intercalator methylene blue. Thermodynamic parameters (ΔH DNA-MB, indicating that it binds to DNA in strong competition with MB for the intercalation.

  18. Exploring the Feasibility of a DNA Computer: Design of an ALU Using Sticker-Based DNA Model.

    Science.gov (United States)

    Sarkar, Mayukh; Ghosal, Prasun; Mohanty, Saraju P

    2017-09-01

    Since its inception, DNA computing has advanced to offer an extremely powerful, energy-efficient emerging technology for solving hard computational problems with its inherent massive parallelism and extremely high data density. This would be much more powerful and general purpose when combined with other existing well-known algorithmic solutions that exist for conventional computing architectures using a suitable ALU. Thus, a specifically designed DNA Arithmetic and Logic Unit (ALU) that can address operations suitable for both domains can mitigate the gap between these two. An ALU must be able to perform all possible logic operations, including NOT, OR, AND, XOR, NOR, NAND, and XNOR; compare, shift etc., integer and floating point arithmetic operations (addition, subtraction, multiplication, and division). In this paper, design of an ALU has been proposed using sticker-based DNA model with experimental feasibility analysis. Novelties of this paper may be in manifold. First, the integer arithmetic operations performed here are 2s complement arithmetic, and the floating point operations follow the IEEE 754 floating point format, resembling closely to a conventional ALU. Also, the output of each operation can be reused for any next operation. So any algorithm or program logic that users can think of can be implemented directly on the DNA computer without any modification. Second, once the basic operations of sticker model can be automated, the implementations proposed in this paper become highly suitable to design a fully automated ALU. Third, proposed approaches are easy to implement. Finally, these approaches can work on sufficiently large binary numbers.

  19. Evaluation of DNA Extraction Methods Suitable for PCR-based Detection and Genotyping of Clostridium botulinum

    DEFF Research Database (Denmark)

    Auricchio, Bruna; Anniballi, Fabrizio; Fiore, Alfonsina

    2013-01-01

    in terms of cost, time, labor, and supplies. Eleven botulinum toxin–producing clostridia strains and 25 samples (10 food, 13 clinical, and 2 environmental samples) naturally contaminated with botulinum toxin–producing clostridia were used to compare 4 DNA extraction procedures: Chelex® 100 matrix, Phenol......Sufficient quality and quantity of extracted DNA is critical to detecting and performing genotyping of Clostridium botulinum by means of PCR-based methods. An ideal extraction method has to optimize DNA yield, minimize DNA degradation, allow multiple samples to be extracted, and be efficient...

  20. Feasibility of using DNA-immobilized nanocellulose-based immunoadsorbent for systemic lupus erythematosus plasmapheresis.

    Science.gov (United States)

    Xu, Changgang; Carlsson, Daniel O; Mihranyan, Albert

    2016-07-01

    The goal of this project was to study the feasibility of using a DNA-immobilized nanocellulose-based immunoadsorbent for possible application in medical apheresis such as systemic lupus erythematosus (SLE) treatment. Calf thymus DNA was bound to high surface area nanocellulose membrane at varying concentrations using UV-irradiation. The DNA-immobilized samples were characterized with scanning electron microscopy, atomic force microscopy, and phosphorus elemental analysis. The anti-ds-DNA IgG binding was tested in vitro using ELISA. The produced sample showed high affinity in vitro to bind anti-ds-DNA-antibodies from mice, as much as 80% of added IgG was bound by the membrane. Furthermore, the binding efficiency was quantitatively dependent on the amount of immobilized DNA onto nanocellulose membrane. The described nanocellulose membranes are interesting immunoadsorbents for continued clinical studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Ulnar nerve entrapment complicating radial head excision

    Directory of Open Access Journals (Sweden)

    Kevin Parfait Bienvenu Bouhelo-Pam

    Full Text Available Introduction: Several mechanisms are involved in ischemia or mechanical compression of ulnar nerve at the elbow. Presentation of case: We hereby present the case of a road accident victim, who received a radial head excision for an isolated fracture of the radial head and complicated by onset of cubital tunnel syndrome. This outcome could be the consequence of an iatrogenic valgus of the elbow due to excision of the radial head. Hitherto the surgical treatment of choice it is gradually been abandoned due to development of radial head implant arthroplasty. However, this management option is still being performed in some rural centers with low resources. Discussion: The radial head plays an important role in the stability of the elbow and his iatrogenic deformity can be complicated by cubital tunnel syndrome. Conclusion: An ulnar nerve release was performed with favorable outcome. Keywords: Cubital tunnel syndrome, Peripheral nerve palsy, Radial head excision, Elbow valgus

  2. Elliptical excisions: variations and the eccentric parallelogram.

    Science.gov (United States)

    Goldberg, Leonard H; Alam, Murad

    2004-02-01

    The elliptical (fusiform) excision is a basic tool of cutaneous surgery. To assess the design, functionality, ease of construction, and aesthetic outcomes of the ellipse. A systematic review of elliptical designs and their site-specific benefits and limitations. In particular, we consider the (1). context of prevailing relaxed skin tension lines and tissue laxity; and (2). removal of the smallest possible amount of tissue around the lesion and in the "dog-ears." Attention is focused on intuitive methods that can be reproducibly planned and executed. Elliptical variations are easily designed and can be adapted to many situations. The eccentric parallelogram excision is offered as a new technique that minimizes notching and focal tension in the center of an elliptical closure. Conclusion The elliptical (fusiform) excision is an efficient, elegant, and versatile technique that will remain a mainstay of the cutaneous surgical armamentarium.

  3. Performance of various density functionals for the hydrogen bonds in DNA base pairs

    NARCIS (Netherlands)

    van der Wijst, T.; Fonseca Guerra, C.; Swart, M.; Bickelhaupt, F.M.

    2006-01-01

    We have investigated the performance of seven popular density functionals (B3LYP, BLYP, BP86, mPW, OPBE, PBE, PW91) for describing the geometry and stability of the hydrogen bonds in DNA base pairs. For the gas-phase situation, the hydrogen-bond lengths and strengths in the DNA pairs have been

  4. MitBASE : a comprehensive and integrated mitochondrial DNA database. The present status

    NARCIS (Netherlands)

    Attimonelli, M.; Altamura, N.; Benne, R.; Brennicke, A.; Cooper, J. M.; D'Elia, D.; Montalvo, A.; Pinto, B.; de Robertis, M.; Golik, P.; Knoop, V.; Lanave, C.; Lazowska, J.; Licciulli, F.; Malladi, B. S.; Memeo, F.; Monnerot, M.; Pasimeni, R.; Pilbout, S.; Schapira, A. H.; Sloof, P.; Saccone, C.

    2000-01-01

    MitBASE is an integrated and comprehensive database of mitochondrial DNA data which collects, under a single interface, databases for Plant, Vertebrate, Invertebrate, Human, Protist and Fungal mtDNA and a Pilot database on nuclear genes involved in mitochondrial biogenesis in Saccharomyces

  5. Sex determination based on amelogenin DNA by modified electrode with gold nanoparticle.

    Science.gov (United States)

    Mazloum-Ardakani, Mohammad; Rajabzadeh, Nooshin; Benvidi, Ali; Heidari, Mohammad Mehdi

    2013-12-15

    We have developed a simple and renewable electrochemical biosensor based on carbon paste electrode (CPE) for the detection of DNA synthesis and hybridization. CPE was modified with gold nanoparticles (AuNPs), which are helpful for immobilization of thiolated bioreceptors. AuNPs were characterized by scanning electron microscopy (SEM). Self-assembled monolayers (SAMs) of thiolated single-stranded DNA (SH-ssDNA) of the amelogenin gene was formed on CPE. The immobilization of the probe and its hybridization with the target DNA was optimized using different experimental conditions. The modified electrode was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical response of ssDNA hybridization and DNA synthesis was measured using differential pulse voltammetry (DPV) with methylene blue (MB) as an electroactive indicator. The new biosensor can distinguish between complementary and non-complementary strands of amelogenin ssDNA. Genomic DNA was extracted from blood and was detected based on changes in the MB reduction signal. These results demonstrated that the new biosensor could be used for sex determination. The proposed biosensor in this study could be used for detection and discrimination of polymerase chain reaction (PCR) products of amelogenin DNA. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. DNA isolation by galactoacrylate-based nano-poly(HEMA-co-Gal-OPA) nanopolymers.

    Science.gov (United States)

    Türkcan Kayhan, Ceren; Zeynep Ural, Fulden; Koruyucu, Meryem; Gül Salman, Yeşim; Uygun, Murat; Aktaş Uygun, Deniz; Akgöl, Sinan; Denizli, Adil

    2017-10-01

    Isolation of DNA is one of the important processes for biotechnological applications such as investigation of DNA structures and functions, recombinant DNA preparations, identification of genetic factors and diagnosis and treatment of genetic disorders. The aim of this study was to synthesis and characterizes the galactoacrylate based nanopolymers with high surface area and to investigate the usability of these synthesized nanopolymers for DNA isolation studies. Nanopolymers were synthesized by the surfactant free emulsion polymerization technique by using the monomers of 2-hydroxyl ethylmethacrylate and 6-O-(2 ' -hydroxy-3 ' -acryloyloxypropyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose. Galactoacrylate origin of these newly synthesized nanopolymers increased the interaction between DNA and nanopolymers. Prepared nanopolymers were characterized by SEM, FT-IR and ZETA sizer analysis. Synthesized nanopolymers were spherical, and their average particle size was about 246.8 nm. Adsorption of DNA onto galactoacrylate based nanopolymers was investigated by using different pHs, temperatures, ionic strength, DNA concentrations and desorption studies and maximum DNA adsorption was found to be as 567.12 mg/g polymer at 25 °C, in pH 5.0 acetate buffer. Reusability was investigated for 5 successive reuse and DNA adsorption capacity decreased only about 10% at the end of the 5th reuse.

  7. A colorimetric platform for sensitively differentiating telomere DNA with different lengths, monitoring G-quadruplex and dsDNA based on silver nanoclusters and unmodified gold nanoparticles

    Science.gov (United States)

    Qu, Fei; Chen, Zeqiu; You, Jinmao; Song, Cuihua

    2018-05-01

    Human telomere DNA plays a vital role in genome integrity control and carcinogenesis as an indication for extensive cell proliferation. Herein, silver nanoclusters (Ag NCs) templated by polymer and unmodified gold nanoparticles (Au NPs) are designed as a new colorimetric platform for sensitively differentiating telomere DNA with different lengths, monitoring G-quadruplex and dsDNA. Ag NCs can produce the aggregation of Au NPs, so the color of Au NPs changes to blue and the absorption peak moves to 700 nm. While the telomere DNA can protect Au NPs from aggregation, the color turns to red again and the absorption band blue shift. Benefiting from the obvious color change, we can differentiate the length of telomere DNA by naked eyes. As the length of telomere DNA is longer, the variation of color becomes more noticeable. The detection limits of telomere DNA containing 10, 22, 40, 64 bases are estimated to be 1.41, 1.21, 0.23 and 0.22 nM, respectively. On the other hand, when telomere DNA forms G-quadruplex in the presence of K+, or dsDNA with complementary sequence, both G-quadruplex and dsDNA can protect Au NPs better than the unfolded telomere DNA. Hence, a new colorimetric platform for monitoring structure conversion of DNA is established by Ag NCs-Au NPs system, and to prove this type of application, a selective K+ sensor is developed.

  8. Random amplified polymorphic DNA (RAPD) based assessment of ...

    African Journals Online (AJOL)

    SAM

    2014-05-07

    May 7, 2014 ... Knowledge of genetic distances between genotypes is important for efficient organization and conservation of ... after maize, wheat, and pearl millet (FAO, 2006). Sor- ... properties, which tend to reduce the nutritional quality of sorghum .... extraction. The DNA extraction buffer was modified from Jhingan.

  9. DNA fingerprinting based on simple sequence repeat (SSR ...

    African Journals Online (AJOL)

    New varieties of sugarcane are protected using morphological descriptors, which have limitations in identifying morphologically similar cultivars. Development of a reliable DNA fingerprint system for identification of new varieties would contribute greatly to the breeding of these species. Microsatellite markers are tools with ...

  10. SSR marker based DNA fingerprinting and diversity study in rice ...

    African Journals Online (AJOL)

    The genetic diversity and DNA fingerprinting of 15 elite rice genotypes using 30 SSR primers on chromosome numbers 7-12 was investigated. The results revealed that all the primers showed distinct polymorphism among the cultivars studied indicating the robust nature of microsatellites in revealing polymorphism. Cluster ...

  11. Substrate overlap and functional competition between human nucleotide excision repair and Escherichia coli photolyase and (A)BC excision nuclease

    International Nuclear Information System (INIS)

    Sibghat-Ullah; Sancar, Z.

    1990-01-01

    Human cell free extract prepared by the method of Manley et al. carries out repair synthesis on UV-irradiated DNA. Removal of pyrimidine dimers by photoreactivation with DNA photolyase reduces repair synthesis by about 50%. With excess enzyme in the reaction mixture photolyase reduced the repair signal by the same amount even in the absence of photoreactivating light, presumably by binding to pyrimidine dimers and interfering with the binding of human damage recognition protein. Similarly, the UvrB subunit of Escherichia coli (A)BC excinuclease when loaded onto UV-irradiated or psoralen-adducted DNA inhibited repair synthesis by cell-free extract by 75-80%. The opposite was true also as HeLa cell free extract specifically inhibited the photorepair of a thymine dimer by DNA photolyase and its removal by (A)BC excinuclease. Cell-free extracts from xeroderma pigmentosum (XP) complementation groups A and C were equally effective in blocking the E. coli repair proteins, while extracts from complementation groups D and E were ineffective in blocking the E. coli enzyme. These results suggest that XP-D and XP-E cells are defective in the damage recognition subunits(s) of human excision nuclease

  12. [Under what conditions does G.C Watson-Crick DNA base pair acquire all four configurations characteristic for A.T Watson-Crick DNA base pair?].

    Science.gov (United States)

    Brovarets', O O

    2013-01-01

    At the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of theory it was established for the first time, that the Löwdin's G*.C* DNA base pair formed by the mutagenic tautomers can acquire, as the A-T Watson-Crick DNA base pair, four biologically important configurations, namely: Watson-Crick, reverse Watson-Crick, Hoogsteen and reverse Hoogsteen. This fact demonstrates rather unexpected role of the tautomerisation of the one of the Watson-Crick DNA base pairs, in particular, via double proton transfer: exactly the G.C-->G*.C* tautomerisation allows to overcome steric hindrances for the implementation of the above mentioned configurations. Geometric, electron-topological and energetic properties of the H-bonds that stabilise the studied pairs, as well as the energetic characteristics of the latters are presented.

  13. One-Dimensional Multichromophor Arrays Based on DNA: From Self-Assembly to Light-Harvesting.

    Science.gov (United States)

    Ensslen, Philipp; Wagenknecht, Hans-Achim

    2015-10-20

    Light-harvesting complexes collect light energy and deliver it by a cascade of energy and electron transfer processes to the reaction center where charge separation leads to storage as chemical energy. The design of artificial light-harvesting assemblies faces enormous challenges because several antenna chromophores need to be kept in close proximity but self-quenching needs to be avoided. Double stranded DNA as a supramolecular scaffold plays a promising role due to its characteristic structural properties. Automated DNA synthesis allows incorporation of artificial chromophore-modified building blocks, and sequence design allows precise control of the distances and orientations between the chromophores. The helical twist between the chromophores, which is induced by the DNA framework, controls energy and electron transfer and thereby reduces the self-quenching that is typically observed in chromophore aggregates. This Account summarizes covalently multichromophore-modified DNA and describes how such multichromophore arrays were achieved by Watson-Crick-specific and DNA-templated self-assembly. The covalent DNA systems were prepared by incorporation of chromophores as DNA base substitutions (either as C-nucleosides or with acyclic linkers as substitutes for the 2'-deoxyribofuranoside) and as DNA base modifications. Studies with DNA base substitutions revealed that distances but more importantly relative orientations of the chromophores govern the energy transfer efficiencies and thereby the light-harvesting properties. With DNA base substitutions, duplex stabilization was faced and could be overcome, for instance, by zipper-like placement of the chromophores in both strands. For both principal structural approaches, DNA-based light-harvesting antenna could be realized. The major disadvantages, however, for covalent multichromophore DNA conjugates are the poor yields of synthesis and the solubility issues for oligonucleotides with more than 5-10 chromophore

  14. Robust embryo identification using first polar body single nucleotide polymorphism microarray-based DNA fingerprinting.

    Science.gov (United States)

    Treff, Nathan R; Su, Jing; Kasabwala, Natasha; Tao, Xin; Miller, Kathleen A; Scott, Richard T

    2010-05-01

    This study sought to validate a novel, minimally invasive system for embryo tracking by single nucleotide polymorphism microarray-based DNA fingerprinting of the first polar body. First polar body-based assignments of which embryos implanted and were delivered after multiple ET were 100% consistent with previously validated embryo DNA fingerprinting-based assignments. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Nanostructured ZnO-based biosensor: DNA immobilization and hybridization

    Directory of Open Access Journals (Sweden)

    Ahmed Mishaal Mohammed

    2017-09-01

    Full Text Available An electrochemical DNA biosensor was successfully fabricated by using (3-aminopropyl triethoxysilane (APTES with zinc oxide (ZnO nanorods synthesized using microwave-assisted chemical bath deposition method on thermally oxidized SiO2 thin films. The structural quality and morphology of the ZnO nanorods were determined by employing scanning electron microscopy (SEM and X-ray diffraction (XRD, which show a hexagonal wurtzite structure with a preferred orientation along the (101 direction. The surface of the SiO2 thin films was chemically modified with ZnO. Label-free detection DNA immobilization and hybridization were performed using potassium hexacyanoferrate with cyclic voltammetry (CV measurements. The capacitance, permittivity, and conductivity profiles of the fabricated sensor clearly indicate DNA immobilization and hybridization. Results show that the capacitance values of bare, ZnO- modified surface immobilization, and target DNA hybridization were 46×10−12F, 47×10−8F, 27μF, and 17μF, respectively, at 1Hz. The permittivity measurement increased from 3.94×103 to 251×103 and 165×103 at the frequency range of approximately 200 to 1Hz for bare and DNA immobilization and hybridization, respectively. The measured conductivity values for the bare, ZnO, immobilized, and hybridization device were 2.4×10−9, 10×10−8, 1.6×10−7, and 1.3×10−7Scm−1, respectively. Keywords: Zinc oxide, Biosensor, Capacitance, Permittivity, Conductivity

  16. UV-Visible Spectroscopy-Based Quantification of Unlabeled DNA Bound to Gold Nanoparticles.

    Science.gov (United States)

    Baldock, Brandi L; Hutchison, James E

    2016-12-20

    DNA-functionalized gold nanoparticles have been increasingly applied as sensitive and selective analytical probes and biosensors. The DNA ligands bound to a nanoparticle dictate its reactivity, making it essential to know the type and number of DNA strands bound to the nanoparticle surface. Existing methods used to determine the number of DNA strands per gold nanoparticle (AuNP) require that the sequences be fluorophore-labeled, which may affect the DNA surface coverage and reactivity of the nanoparticle and/or require specialized equipment and other fluorophore-containing reagents. We report a UV-visible-based method to conveniently and inexpensively determine the number of DNA strands attached to AuNPs of different core sizes. When this method is used in tandem with a fluorescence dye assay, it is possible to determine the ratio of two unlabeled sequences of different lengths bound to AuNPs. Two sizes of citrate-stabilized AuNPs (5 and 12 nm) were functionalized with mixtures of short (5 base) and long (32 base) disulfide-terminated DNA sequences, and the ratios of sequences bound to the AuNPs were determined using the new method. The long DNA sequence was present as a lower proportion of the ligand shell than in the ligand exchange mixture, suggesting it had a lower propensity to bind the AuNPs than the short DNA sequence. The ratio of DNA sequences bound to the AuNPs was not the same for the large and small AuNPs, which suggests that the radius of curvature had a significant influence on the assembly of DNA strands onto the AuNPs.

  17. Strip biosensor for amplified detection of nerve growth factor-beta based on a molecular translator and catalytic DNA circuit.

    Science.gov (United States)

    Liu, Jun; Lai, Ting; Mu, Kejie; Zhou, Zheng

    2014-10-07

    We have demonstrated a new visual detection approach based on a molecular translator and a catalytic DNA circuit for the detection of nerve growth factor-beta (NGF-β). In this assay, a molecular translator based on the binding-induced DNA strand-displacement reaction was employed to convert the input protein to an output DNA signal. The molecular translator is composed of a target recognition element and a signal output element. Target recognition is achieved by the binding of the anti-NGF-β antibody to the target protein. Polyclonal anti-NGF-β antibody is conjugated to DNA1 and DNA2. The antibody conjugated DNA1 is initially hybridized to DNA3 to form a stable DNA1/DNA3 duplex. In the presence of NGF-β, the binding of the same target protein brings DNA1 and DNA2 into close proximity, resulting in an increase in their local effective concentration. This process triggers the strand-displacement reaction between DNA2 and DNA3 and releases the output DNA3. The released DNA3 is further amplified by a catalytic DNA circuit. The product of the catalytic DNA circuit is detected by a strip biosensor. This proposed assay has high sensitivity and selectivity with a dynamic response ranging from 10 fM to 10 pM, and its detection limit is 10 fM of NGF-β. This work provides a sensitive, enzyme-free, and universal strategy for the detection of other proteins.

  18. DNA cross-linking by dehydromonocrotaline lacks apparent base sequence preference.

    Science.gov (United States)

    Rieben, W Kurt; Coulombe, Roger A

    2004-12-01

    Pyrrolizidine alkaloids (PAs) are ubiquitous plant toxins, many of which, upon oxidation by hepatic mixed-function oxidases, become reactive bifunctional pyrrolic electrophiles that form DNA-DNA and DNA-protein cross-links. The anti-mitotic, toxic, and carcinogenic action of PAs is thought to be caused, at least in part, by these cross-links. We wished to determine whether the activated PA pyrrole dehydromonocrotaline (DHMO) exhibits base sequence preferences when cross-linked to a set of model duplex poly A-T 14-mer oligonucleotides with varying internal and/or end 5'-d(CG), 5'-d(GC), 5'-d(TA), 5'-d(CGCG), or 5'-d(GCGC) sequences. DHMO-DNA cross-links were assessed by electrophoretic mobility shift assay (EMSA) of 32P endlabeled oligonucleotides and by HPLC analysis of cross-linked DNAs enzymatically digested to their constituent deoxynucleosides. The degree of DNA cross-links depended upon the concentration of the pyrrole, but not on the base sequence of the oligonucleotide target. Likewise, HPLC chromatograms of cross-linked and digested DNAs showed no discernible sequence preference for any nucleotide. Added glutathione, tyrosine, cysteine, and aspartic acid, but not phenylalanine, threonine, serine, lysine, or methionine competed with DNA as alternate nucleophiles for cross-linking by DHMO. From these data it appears that DHMO exhibits no strong base preference when forming cross-links with DNA, and that some cellular nucleophiles can inhibit DNA cross-link formation.

  19. Optimization of DNA Sensor Model Based Nanostructured Graphene Using Particle Swarm Optimization Technique

    Directory of Open Access Journals (Sweden)

    Hediyeh Karimi

    2013-01-01

    Full Text Available It has been predicted that the nanomaterials of graphene will be among the candidate materials for postsilicon electronics due to their astonishing properties such as high carrier mobility, thermal conductivity, and biocompatibility. Graphene is a semimetal zero gap nanomaterial with demonstrated ability to be employed as an excellent candidate for DNA sensing. Graphene-based DNA sensors have been used to detect the DNA adsorption to examine a DNA concentration in an analyte solution. In particular, there is an essential need for developing the cost-effective DNA sensors holding the fact that it is suitable for the diagnosis of genetic or pathogenic diseases. In this paper, particle swarm optimization technique is employed to optimize the analytical model of a graphene-based DNA sensor which is used for electrical detection of DNA molecules. The results are reported for 5 different concentrations, covering a range from 0.01 nM to 500 nM. The comparison of the optimized model with the experimental data shows an accuracy of more than 95% which verifies that the optimized model is reliable for being used in any application of the graphene-based DNA sensor.

  20. Alterations of ultraviolet irradiated DNA

    International Nuclear Information System (INIS)

    Davila, C.; Garces, F.

    1980-01-01

    Thymine dimers production has been studied in several DNA- 3 H irradiated at various wave lenght of U.V. Light. The influence of dimers on the hydrodynamic and optic properties, thermal structural stability and transformant capacity of DNA have been studied too. At last the recognition and excision of dimers by the DNA-UV-Endonuclease and DNA-Polimerase-I was also studied. (author)

  1. International congress on DNA damage and repair: Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This document contains the abstracts of 105 papers presented at the Congress. Topics covered include the Escherichia coli nucleotide excision repair system, DNA repair in malignant transformations, defective DNA repair, and gene regulation. (TEM)

  2. International congress on DNA damage and repair: Book of abstracts

    International Nuclear Information System (INIS)

    1987-01-01

    This document contains the abstracts of 105 papers presented at the Congress. Topics covered include the Escherichia coli nucleotide excision repair system, DNA repair in malignant transformations, defective DNA repair, and gene regulation

  3. Faulty DNA repair following ultraviolet irradiation in Fanconi's anemia

    International Nuclear Information System (INIS)

    Poon, P.K.; Parker, J.W.; O'Brien, R.L.

    1975-01-01

    Fibroblasts from a patient with Fanconi's anemia were deficient in their ability to excise uv-induced pyrimidine dimers from their DNA but were capable of single-strand break production and unscheduled DNA synthesis

  4. The use of carrier RNA to enhance DNA extraction from microfluidic-based silica monoliths.

    Science.gov (United States)

    Shaw, Kirsty J; Thain, Lauren; Docker, Peter T; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J

    2009-10-12

    DNA extraction was carried out on silica-based monoliths within a microfluidic device. Solid-phase DNA extraction methodology was applied in which the DNA binds to silica in the presence of a chaotropic salt, such as guanidine hydrochloride, and is eluted in a low ionic strength solution, such as water. The addition of poly-A carrier RNA to the chaotropic salt solution resulted in a marked increase in the effective amount of DNA that could be recovered (25ng) compared to the absence of RNA (5ng) using the silica-based monolith. These findings confirm that techniques utilising nucleic acid carrier molecules can enhance DNA extraction methodologies in microfluidic applications.

  5. Detection of dopamine in dopaminergic cell using nanoparticles-based barcode DNA analysis.

    Science.gov (United States)

    An, Jeung Hee; Kim, Tae-Hyung; Oh, Byung-Keun; Choi, Jeong Woo

    2012-01-01

    Nanotechnology-based bio-barcode-amplification analysis may be an innovative approach to dopamine detection. In this study, we evaluated the efficacy of this bio-barcode DNA method in detecting dopamine from dopaminergic cells. Herein, a combination DNA barcode and bead-based immunoassay for neurotransmitter detection with PCR-like sensitivity is described. This method relies on magnetic nanoparticles with antibodies and nanoparticles that are encoded with DNA, and antibodies that can sandwich the target protein captured by the nanoparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated in order to remove the conjugated barcode DNA. The DNA barcodes were then identified via PCR analysis. The dopamine concentration in dopaminergic cells can be readily and rapidly detected via the bio-barcode assay method. The bio-barcode assay method is, therefore, a rapid and high-throughput screening tool for the detection of neurotransmitters such as dopamine.

  6. Kinetics of thymine dimer excision in ultraviolet-irradiated human cells

    International Nuclear Information System (INIS)

    Ehmann, U.K.; Cook, K.H.; Friedberg, E.C.

    1978-01-01

    We have investigated the kinetics of the loss of thymine dimers from the acid-insoluble fraction of several ultraviolet (uv)-irradiated cultured human cell lines. Our results show that uv fluences between 10 and 40 J/m 2 produce an average of 21 to 85 x 10 5 thymine dimers per cell and an eventual maximal loss per cell of 12 to 20 x 10 5 thymine dimers. The time for half-maximal loss of dimers ranged from 12 to 22 h after uv irradiation. In contrast, the time for half-maximal repair synthesis of DNA measured by autoradiography was 4.5 h. This figure agrees well with reported half-maximal repair synthesis times, which range from 0.5 to 3.6 h based on our analysis. The discrepancy in the kinetics of the loss of thymine dimers from DNA and repair synthesis is discussed in terms of possible molecular mechanisms of thymine dimer excision in vivo and in terms of possible experimental artifacts

  7. Solar ultraviolet radiation-induced DNA damage in aquatic organisms: potential environmental impact

    International Nuclear Information System (INIS)

    Haeder, Donat-P.; Sinha, Rajeshwar P.

    2005-01-01

    Continuing depletion of stratospheric ozone and subsequent increases in deleterious ultraviolet (UV) radiation at the Earth's surface have fueled the interest in its ecological consequences for aquatic ecosystems. The DNA is certainly one of the key targets for UV-induced damage in a variety of aquatic organisms. UV radiation induces two of the most abundant mutagenic and cytotoxic DNA lesions, cyclobutane pyrimidine dimers (CPDs) and pyrimidine pyrimidone photoproducts (6-4PPs) and their Dewar valence isomers. However, aquatic organisms have developed a number of repair and tolerance mechanisms to counteract the damaging effects of UV on DNA. Photoreactivation with the help of the enzyme photolyase is one of the most important and frequently occurring repair mechanisms in a variety of organisms. Excision repair, which can be distinguished into base excision repair (BER) and nucleotide excision repair (NER), also play an important role in DNA repair in several organisms with the help of a number of glycosylases and polymerases, respectively. In addition, mechanisms such as mutagenic repair or dimer bypass, recombinational repair, cell-cycle checkpoints, apoptosis and certain alternative repair pathways are also operative in various organisms. This review deals with the UV-induced DNA damage and repair in a number of aquatic organisms as well as methods of detecting DNA damage

  8. Silver(I)-Mediated Base Pairs in DNA Sequences Containing 7-Deazaguanine/Cytosine: towards DNA with Entirely Metallated Watson-Crick Base Pairs.

    Science.gov (United States)

    Méndez-Arriaga, José M; Maldonado, Carmen R; Dobado, José A; Galindo, Miguel A

    2018-03-26

    DNA sequences comprising noncanonical 7-deazaguanine ( 7C G) and canonical cytosine (C) are capable of forming Watson-Crick base pairs via hydrogen bonds as well as silver(I)-mediated base pairs by coordination to central silver(I) ions. Duplexes I and II containing 7C G and C have been synthesized and characterized. The incorporation of silver(I) ions into these duplexes has been studied by means of temperature-dependent UV spectroscopy, circular dichroism, and DFT calculations. The results suggest the formation of DNA molecules comprising contiguous metallated 7C G-Ag I -C Watson-Crick base pairs that preserve the original B-type conformation. Furthermore, additional studies performed on duplex III indicated that, in the presence of Ag I ions, 7C G-C and 7C A-T Watson-Crick base pairs ( 7C A, 7-deazadenine; T, thymine) can be converted to metallated 7C G-Ag I -C and 7C A-Ag I -T base pairs inside the same DNA molecule whilst maintaining its initial double helix conformation. These findings are very important for the development of customized silver-DNA nanostructures based on a Watson-Crick complementarity pattern. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A new model for ancient DNA decay based on paleogenomic meta-analysis.

    Science.gov (United States)

    Kistler, Logan; Ware, Roselyn; Smith, Oliver; Collins, Matthew; Allaby, Robin G

    2017-06-20

    The persistence of DNA over archaeological and paleontological timescales in diverse environments has led to a revolutionary body of paleogenomic research, yet the dynamics of DNA degradation are still poorly understood. We analyzed 185 paleogenomic datasets and compared DNA survival with environmental variables and sample ages. We find cytosine deamination follows a conventional thermal age model, but we find no correlation between DNA fragmentation and sample age over the timespans analyzed, even when controlling for environmental variables. We propose a model for ancient DNA decay wherein fragmentation rapidly reaches a threshold, then subsequently slows. The observed loss of DNA over time may be due to a bulk diffusion process in many cases, highlighting the importance of tissues and environments creating effectively closed systems for DNA preservation. This model of DNA degradation is largely based on mammal bone samples due to published genomic dataset availability. Continued refinement to the model to reflect diverse biological systems and tissue types will further improve our understanding of ancient DNA breakdown dynamics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Influence of amino acids Shiff bases on irradiated DNA stability in vivo.

    Science.gov (United States)

    Karapetyan, N H; Malakyan, M H; Bajinyan, S A; Torosyan, A L; Grigoryan, I E; Haroutiunian, S G

    2013-01-01

    To reveal protective role of the new Mn(II) complexes with Nicotinyl-L-Tyrosinate and Nicotinyl-L-Tryptophanate Schiff Bases against ionizing radiation. The DNA of the rats liver was isolated on 7, 14, and 30 days after X-ray irradiation. The differences between the DNA of irradiated rats and rats pre-treated with Mn(II) complexes were studied using the melting, microcalorimetry, and electrophoresis methods. The melting parameters and the melting enthalpy of rats livers DNA were changed after the X-ray irradiation: melting temperature and melting enthalpy were decreased and melting interval was increased. These results can be explained by destruction of DNA molecules. It was shown that pre-treatment of rats with Mn(II) complexes approximates the melting parameters to norm. Agarose gel electrophoresis data confirmed the results of melting studies. The separate DNA fragments were revealed in DNA samples isolated from irradiated animals. The DNA isolated from animals pre-treated with the Mn(II) chelates had better electrophoretic characteristics, which correspond to healthy DNA. Pre-treatment of the irradiated rats with Mn(II)(Nicotinil-L-Tyrosinate) and Mn(II)(Nicotinil-L-Tryptophanate)2 improves the DNA characteristics.

  11. In vivo repair of methylation damage in Aag 3-methyladenine DNA glycosylase null mouse cells

    OpenAIRE

    Smith, Stephen A.; Engelward, Bevin P.

    2000-01-01

    3-Methyladenine (3MeA) DNA glycosylases initiate base excision repair by removing 3MeA. These glycosylases also remove a broad spectrum of spontaneous and environmentally induced base lesions in vitro. Mouse cells lacking the Aag 3MeA DNA glycosylase (also known as the Mpg, APNG or ANPG DNA glycosylase) are susceptible to 3MeA-induced S phase arrest, chromosome aberrations and apoptosis, but it is not known if Aag is solely responsible for repair of 3MeA in vivo. Here we show that in Aag–/– c...

  12. DNA hydrogel-based supercapacitors operating in physiological fluids

    Science.gov (United States)

    Hur, Jaehyun; Im, Kyuhyun; Hwang, Sekyu; Choi, ByoungLyong; Kim, Sungjee; Hwang, Sungwoo; Park, Nokyoung; Kim, Kinam

    2013-01-01

    DNA nanostructures have been attractive due to their structural properties resulting in many important breakthroughs especially in controlled assemblies and many biological applications. Here, we report a unique energy storage device which is a supercapacitor that uses nanostructured DNA hydrogel (Dgel) as a template and layer-by-layer (LBL)-deposited polyelectrolyte multilayers (PEMs) as conductors. Our device, named as PEM-Dgel supercapacitor, showed excellent performance in direct contact with physiological fluids such as artificial urine and phosphate buffered saline without any need of additional electrolytes, and exhibited almost no cytotoxicity during cycling tests in cell culture medium. Moreover, we demonstrated that the PEM-Dgel supercapacitor has greater charge-discharge cycling stability in physiological fluids than highly concentrated acid electrolyte solution which is normally used for supercapacitor operation. These conceptually new supercapacitors have the potential to be a platform technology for the creation of implantable energy storage devices for packageless applications directly utilizing biofluids. PMID:23412432

  13. Chemical Morphing of DNA Containing Four Noncanonical Bases.

    Science.gov (United States)

    Eremeeva, Elena; Abramov, Michail; Margamuljana, Lia; Rozenski, Jef; Pezo, Valerie; Marlière, Philippe; Herdewijn, Piet

    2016-06-20

    The ability of alternative nucleic acids, in which all four nucleobases are substituted, to replicate in vitro and to serve as genetic templates in vivo was evaluated. A nucleotide triphosphate set of 5-chloro-2'-deoxyuridine, 7-deaza-2'-deoxyadenosine, 5-fluoro-2'-deoxycytidine, and 7-deaza-2'deoxyguanosine successfully underwent polymerase chain reaction (PCR) amplification using templates of different lengths (57 or 525mer) and Taq or Vent (exo-) DNA polymerases as catalysts. Furthermore, a fully morphed gene encoding a dihydrofolate reductase was generated by PCR using these fully substituted nucleotides and was shown to transform and confer trimethoprim resistance to E. coli. These results demonstrated that fully modified templates were accurately read by the bacterial replication machinery and provide the first example of a long fully modified DNA molecule being functional in vivo. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. An ultrasensitive hollow-silica-based biosensor for pathogenic Escherichia coli DNA detection.

    Science.gov (United States)

    Ariffin, Eda Yuhana; Lee, Yook Heng; Futra, Dedi; Tan, Ling Ling; Karim, Nurul Huda Abd; Ibrahim, Nik Nuraznida Nik; Ahmad, Asmat

    2018-03-01

    A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer-Emmett-Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10 -12 -1.0×10 -2 μM, with a low detection limit of 8.17×10 -14 μM (R 2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay. Graphical abstract Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres.

  15. Lower Lip Reconstruction after Wide Excision of a Malignancy with Barrel-Shaped Excision or the Webster Modification of the Bernard Operation

    Directory of Open Access Journals (Sweden)

    Hyung Joon Seo

    2013-01-01

    Full Text Available BackgroundBecause there are numerous methods for reconstruction of the lower lip, it is not easy to choose the optimal method. In choosing the surgical method for lower lip reconstruction, we obtained acceptable outcomes based on our treatment strategy, which included either a barrel-shaped excision or the Webster modification of the Bernard operation. We report on the surgical outcomes based on our treatment strategy.MethodsThis study included 26 patients who underwent lower lip reconstructive surgery from September 1996 to September 2010. The operation was done using either a barrel-shaped excision or the Webster modification, considering the location of the defect, the size of the defect, and the amount of residual tissue on the lateral side of the vermilion after excision.ResultsIn our series, 3 patients underwent a single barrel-shaped excision, and nine patients underwent a double barrel-shaped excision. In addition, the unilateral Webster modification was performed on in 6 patients, and there were eight cases of bilateral Webster modification. All of the patients except one were satisfied with the postoperative shape of the lip. In one case both recurrence and dehiscence occurred. One patient had a good postoperative lip shape, but had difficulty wearing a denture, and also underwent commissuroplasty. Furthermore, there were two patients who complained of drooling, and 4 with paresthesia.ConclusionsA soft tissue defect resulting from wide excision of a lower lip malignancy can be successfully reconstructed using only one of two surgical methods: the barrel-shaped excision or the Webster modification of the Bernard operation.

  16. Robotic Extramucosal Excision of Bladder Wall Leiomyoma

    Directory of Open Access Journals (Sweden)

    Khalid E. Al-Othman

    2014-01-01

    Full Text Available Introduction: Multiple case reports and reviews have been described in the literature for bladder wall leiomyoma resection via different approaches. The minimally invasive partial cystectomy remains the most widely accepted technique; however, case reports for enucleation of bladder wall leiomyoma have also been described. The purpose of this video is to demonstrate the robotic extramucosal excision of a bladder wall leiomyoma, without cystotomy, but with complete removal of the muscular layer. Materials and Methods: A 35-year old male present with lower urinary tract symptoms and imaging showed bladder wall mass with histopathology showed leiomyoma. The patient consented for mass excision with the possibility of a partial cystectomy. The patient was placed in the supine, 30-degree Trendelenburg position during the procedure. A total of 4 ports were inserted. A 3-arm da Vinci robotic surgical system was docked, and the arms were connected. Extramucosal excision was accomplished without cystotomy and muscle approximation was achieved by 2 0 Vicryle. Result: The operative time was 90 minutes, blood loss of approximately 50mL and the patient was discharged after 72 hours with no immediate complications and a 6 months follow-up showed no recurrence. Conclusion: Such a technique results in complete excision of the tumor, without cystotomy, and also maintains an intact mucosa. These steps, in addition to decreasing the risk of local recurrence, also shorten the period of postoperative catheterization and hospitalization.

  17. On pitch jumps between chest and falsetto registers in voice : Data from living and excised human larynges

    NARCIS (Netherlands)

    Svec, JG; Schutte, HK; Miller, DG

    The paper offers a new concept of studying abrupt chest-falsetto register transitions Clumps) based on the theory of nonlinear dynamics. The jumps were studied in an excised human larynx and in three living subjects tone female and two male). Data from the excised larynx revealed that a small and

  18. Novel organization of genes involved in prophage excision identified in the temperate lactococcal bacteriophage TP901-1

    DEFF Research Database (Denmark)

    Breuner, Anne; Brøndsted, Lone; Hammer, Karin

    1999-01-01

    of genetic material based upon the upp gene (encoding uracil phosphoribosyltransferase) was designed, since upp mutants are resistant to fluorouracil. By using this system, frequencies of excision on the order of 10(-5) per cell could easily be measured. The described selection principle may be of general...... use for many organisms and also for types of deletion events other than excision....

  19. Opto-electronic DNA chip-based integrated card for clinical diagnostics.

    Science.gov (United States)

    Marchand, Gilles; Broyer, Patrick; Lanet, Véronique; Delattre, Cyril; Foucault, Frédéric; Menou, Lionel; Calvas, Bernard; Roller, Denis; Ginot, Frédéric; Campagnolo, Raymond; Mallard, Frédéric

    2008-02-01

    Clinical diagnostics is one of the most promising applications for microfluidic lab-on-a-chip or lab-on-card systems. DNA chips, which provide multiparametric data, are privileged tools for genomic analysis. However, automation of molecular biology protocol and use of these DNA chips in fully integrated systems remains a great challenge. Simplicity of chip and/or card/instrument interfaces is amongst the most critical issues to be addressed. Indeed, current detection systems for DNA chip reading are often complex, expensive, bulky and even limited in terms of sensitivity or accuracy. Furthermore, for liquid handling in the lab-on-cards, many devices use complex and bulky systems, either to directly manipulate fluids, or to ensure pneumatic or mechanical control of integrated valves. All these drawbacks prevent or limit the use of DNA-chip-based integrated systems, for point-of-care testing or as a routine diagnostics tool. We present here a DNA-chip-based protocol integration on a plastic card for clinical diagnostics applications including: (1) an opto-electronic DNA-chip, (2) fluid handling using electrically activated embedded pyrotechnic microvalves with closing/opening functions. We demonstrate both fluidic and electric packaging of the optoelectronic DNA chip without major alteration of its electronical and biological functionalities, and fluid control using novel electrically activable pyrotechnic microvalves. Finally, we suggest a complete design of a card dedicated to automation of a complex biological protocol with a fully electrical fluid handling and DNA chip reading.