WorldWideScience

Sample records for basaltic volcanoes eruptive

  1. Large explosive basaltic eruptions at Katla volcano, Iceland: Fragmentation, grain size and eruption dynamics

    Science.gov (United States)

    Schmith, Johanne; Höskuldsson, Ármann; Holm, Paul Martin; Larsen, Guðrún

    2018-04-01

    Katla volcano in Iceland produces hazardous large explosive basaltic eruptions on a regular basis, but very little quantitative data for future hazard assessments exist. Here details on fragmentation mechanism and eruption dynamics are derived from a study of deposit stratigraphy with detailed granulometry and grain morphology analysis, granulometric modeling, componentry and the new quantitative regularity index model of fragmentation mechanism. We show that magma/water interaction is important in the ash generation process, but to a variable extent. By investigating the large explosive basaltic eruptions from 1755 and 1625, we document that eruptions of similar size and magma geochemistry can have very different fragmentation dynamics. Our models show that fragmentation in the 1755 eruption was a combination of magmatic degassing and magma/water-interaction with the most magma/water-interaction at the beginning of the eruption. The fragmentation of the 1625 eruption was initially also a combination of both magmatic and phreatomagmatic processes, but magma/water-interaction diminished progressively during the later stages of the eruption. However, intense magma/water interaction was reintroduced during the final stages of the eruption dominating the fine fragmentation at the end. This detailed study of fragmentation changes documents that subglacial eruptions have highly variable interaction with the melt water showing that the amount and access to melt water changes significantly during eruptions. While it is often difficult to reconstruct the progression of eruptions that have no quantitative observational record, this study shows that integrating field observations and granulometry with the new regularity index can form a coherent model of eruption evolution.

  2. Modelling Pre-eruptive Progressive Damage in Basaltic Volcanoes: Consequences for the Pre-eruptive Process

    Science.gov (United States)

    Got, J. L.; Amitrano, D.; Carrier, A.; Marsan, D.; Jouanne, F.; Vogfjord, K. S.

    2017-12-01

    At Grimsvötn volcano, high-quality earthquake and continuous GPS data were recorded by the Icelandic Meteorological Office during its 2004-2011 inter-eruptive period and exhibited remarkable patterns : acceleration of the cumulated earthquake number, and a 2-year exponential decrease in displacement rate followed by a 4-year constant inflation rate. We proposed a model with one magma reservoir in a non-linear elastic damaging edifice, with incompressible magma and a constant pressure at the base of the magma conduit. We first modelled seismicity rate and damage as a function of time, and show that Kachanov's elastic brittle damage law may be used to express the decrease of the effective shear modulus with time. We then derived simple analytical expressions for the magma reservoir overpressure and the surface displacement as a function of time. We got a very good fit of the seismicity and surface displacement data by adjusting only three phenomenological parameters and computed magma reservoir overpressure, magma flow and strain power as a function of time. Overpressure decrease is controlled by damage and shear modulus decrease. Displacement increases, although overpressure is decreasing, because shear modulus decreases more than overpressure. Normalized strain power reaches a maximum 0.25 value. This maximum is a physical limit, after which the elasticity laws are no longer valid, earthquakes cluster, cumulative number of earthquakes departs from the model. State variable extrema provide four reference times that may be used to assess the mechanical state and dynamics of the volcanic edifice. We also performed the spatial modelling of the progressive damage and strain localization around a pressurized magma reservoir. We used Kachanov's damage law and finite element modelling of an initially elastic volcanic edifice pressurized by a spherical magma reservoir, with a constant pressure in the reservoir and various external boundary conditions. At each node of the

  3. The Uwekahuna Ash Member of the Puna Basalt: product of violent phreatomagmatic eruptions at Kilauea volcano, Hawaii, between 2800 and 2100 14C years ago

    Science.gov (United States)

    Dzurisin, D.; Lockwood, J.P.; Casadevall, T.J.; Rubin, M.

    1995-01-01

    Kilauea volcano's reputation for relatively gentle effusive eruptions belies a violent geologic past, including several large phreatic and phreatomagmatic eruptions that are recorded by Holocene pyroclastic deposits which mantle Kilauea's summit area and the southeast flank of adjacent Mauna Loa volcano. The most widespread of these deposits is the Uwekahuna Ash Member, a basaltic surge and fall deposit emplaced during two or more eruptive episodes separated by a few decades to several centuries. It is infered that the eruptions which produced the Uwekahuna were driven by water interacting with a fluctuating magma column. The volume, extent and character of the Uwekahuna deposits underscore the hazards posed by relatively infrequent but potentially devastating explosive eruptions at Kilauea, as well as at other basaltic volcanoes. -from Authors

  4. Decompression Induced Crystallization of Basaltic Andesite Magma: Constraints on the Eruption of Arenal Volcano, Costa Rica.

    Science.gov (United States)

    Szramek, L. A.; Gardner, J. E.; Larsen, J. F.

    2004-12-01

    Arenal Volcano is a small stratovolcano located 90 km NW of San Jose, Costa Rica. In 1968 current activity began with a Plinian phase, and has continued to erupt lava flows and pyroclastic flows intermittently since. Samples from the Plinian, pyroclastic flow, strombolian, and effusive phases have been studied texturally. Little variation in crystallinity occurs amongst the different phases. Number density of crystals, both 2D and 3D are 50-70 mm-2 and 30,000-50,000 mm-3 in the Plinian sample, compared to the lesser values in other eruptive types. Characteristic crystal size also increases as explosivity decreases. Two samples, both lava flows collected while warm, overlap with the Plinian sample. This suggests that the variations seen may be a result of cooling history. Plagioclase differs between the Plinian sample, in which they are only tabular in shape, and the other eruptive types, which contain both tabular and equant crystals. To link decompression paths of the Arenal magma to possible pre-eruptive conditions, we have carried out hydrothermal experiments. The experiments were preformed in TZM pressure vessels buffered at a fugacity of Ni-NiO and water saturation. Phase equilibria results in conjunction with mineral compositions and temperature estimates by previous workers from active lava flows and two-pyroxene geothermometry, constrain the likely pre-eruptive conditions for the Arenal magma to 950-1040° C with a water pressure of 50-80 MPa. Samples that started from conditions that bracket our estimated pre-eruptive conditions were decompressed in steps of 5-30 MPa and held for various times at each step until 20 MPa was reached, approximating average decompression rates of 0.25, 0.025, 0.0013 MPa/s. Comparison of textures found in the natural samples to the experimentally produced textures suggest that the Plinian eruption likely was fed by magma ascending at 0.05-1 m/s, whereas the less explosive phases were fed by magma ascending at 0.05 m/s or less.

  5. Temperature evolution during magma ascent in basaltic effusive eruptions: A numerical application to Stromboli volcano

    Science.gov (United States)

    La Spina, G.; Burton, M.; de'Michieli Vitturi, M.

    2015-09-01

    The dynamics of magma ascent are controlled by the complex, interdependent processes of crystallisation, rheological evolution, gas exsolution, outgassing, non-ideal gas expansion and temperature evolution. Temperature changes within the conduit, in particular, play a key role on ascent dynamics, since temperature strongly controls the crystallisation process, which in turn has an impact on viscosity and thus on magma ascent rate. The cooling produced by gas expansion is opposed by the heat produced by crystallisation, and therefore the temperature profile within the conduit is quite complex. This complexity means that unravelling the dynamics controlling magma ascent requires a numerical model. Unfortunately, comprehensive, integrated models with full thermodynamic treatment of multiple phases and rheological evolution are challenging to produce, due to the numerical challenges involved. Until now, models have tended to focus on aspects of the problem, without a holistic approach in which petrological, thermodynamic, rheological and degassing processes, and their interactions, were all explicitly addressed and quantified. Here, we present a new, multiphase steady-state model for magma ascent in which the main physical and chemical processes, such as crystallisation, degassing, outgassing, rheological evolution and temperature variations, are quantitatively calculated. Basaltic magma's crystallisation and flow are sensitive to initial temperature and volatile content, and therefore we investigate temperature variations during magma ascent in a basaltic system with a range of volatile contents. As a test case, we use one of the most well-studied recent basaltic effusive eruptions: the 2007 eruption of Stromboli, Italy. Assuming equilibrium crystallisation and exsolution, we compare the solutions obtained both with and without an isothermal constraint, finding that temperature variations within the conduit have a significant influence on the ascent dynamics and

  6. Eruptive viscosity and volcano morphology

    International Nuclear Information System (INIS)

    Posin, S.B.; Greeley, R.

    1988-01-01

    Terrestrial central volcanoes formed predominantly from lava flows were classified as shields, stratovolcanoes, and domes. Shield volcanoes tend to be large in areal extent, have convex slopes, and are characterized by their resemblance to inverted hellenic war shields. Stratovolcanoes have concave slopes, whereas domes are smaller and have gentle convex slopes near the vent that increase near the perimeter. In addition to these differences in morphology, several other variations were observed. The most important is composition: shield volcanoes tend to be basaltic, stratovolcanoes tend to be andesitic, and domes tend to be dacitic. However, important exceptions include Fuji, Pico, Mayon, Izalco, and Fuego which have stratovolcano morphologies but are composed of basaltic lavas. Similarly, Ribkwo is a Kenyan shield volcano composed of trachyte and Suswa and Kilombe are shields composed of phonolite. These exceptions indicate that eruptive conditions, rather than composition, may be the primary factors that determine volcano morphology. The objective of this study is to determine the relationships, if any, between eruptive conditions (viscosity, erupted volume, and effusion rate) and effusive volcano morphology. Moreover, it is the goal of this study to incorporate these relationships into a model to predict the eruptive conditions of extraterrestrial (Martian) volcanoes based on their morphology

  7. Degassing vs. eruptive styles at Mt. Etna volcano (Sicily, Italy): Volatile stocking, gas fluxing, and the shift from low-energy to highly-explosive basaltic eruptions

    Science.gov (United States)

    Moretti, Roberto; Métrich, Nicole; Di Renzo, Valeria; Aiuppa, Alessandro; Allard, Patrick; Arienzo, Ilenia

    2017-04-01

    Basaltic magmas can transport and release large amounts of volatiles into the atmosphere, especially in subduction zones, where slab-derived fluids enrich the mantle wedge. Depending on magma volatile content, basaltic volcanoes thus display a wide spectrum of eruptive styles, from common Strombolian-type activity to Plinian events. Mt. Etna in Sicily, is a typical basaltic volcano where the volatile control on such a variable activity can be investigated. Based on a melt inclusion study in products from Strombolian or lava-fountain activity to Plinian eruptions, here we show that for the same initial volatile content, different eruptive styles reflect variable degassing paths throughout the composite Etnean plumbing system. The combined influence of i) crystallization, ii) deep degassing and iii) CO2 gas fluxing can explain the evolution of H2O, CO2, S and Cl in products from such a spectrum of activity. Deep crystallization produces the CO2-rich gas fluxing the upward magma portions, which will become buoyant and easily mobilized in small gas-rich batches stored within the plumbing system. When reaching gas dominated conditions (i.e., a gas/melt mass ratio of 0.3 and CO2,gas/H2Ogas molar ratio 5 ), these will erupt effusively or mildly explosively, whilst in case of the 122 BC Plinian eruption, open-system degassing conditions took place within the plumbing system, such that continuous CO2-fluxing determined gas accumulation on top of the magmatic system. The emission of such a cap in the early eruptive phase triggered the arrival of deep H2O-rich whose fast decompression and bubble nucleation lead to the highly explosive character, enhanced by abundant microlite crystallization and consequent increase of magma effective viscosity. This could explain why open system basaltic systems like Etna may experience highly explosive or even Plinian episodes during eruptions that start with effusive to mildly explosive phases. The proposed mechanism also determines a

  8. Basaltic cannibalism at Thrihnukagigur volcano, Iceland

    Science.gov (United States)

    Hudak, M. R.; Feineman, M. D.; La Femina, P. C.; Geirsson, H.

    2014-12-01

    Magmatic assimilation of felsic continental crust is a well-documented, relatively common phenomenon. The extent to which basaltic crust is assimilated by magmas, on the other hand, is not well known. Basaltic cannibalism, or the wholesale incorporation of basaltic crustal material into a basaltic magma, is thought to be uncommon because basalt requires more energy than higher silica rocks to melt. Basaltic materials that are unconsolidated, poorly crystalline, or palagonitized may be more easily ingested than fully crystallized massive basalt, thus allowing basaltic cannibalism to occur. Thrihnukagigur volcano, SW Iceland, offers a unique exposure of a buried cinder cone within its evacuated conduit, 100 m below the main vent. The unconsolidated tephra is cross-cut by a NNE-trending dike, which runs across the ceiling of this cave to a vent that produced lava and tephra during the ~4 Ka fissure eruption. Preliminary petrographic and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) analyses indicate that there are two populations of plagioclase present in the system - Population One is stubby (aspect ratio 2.1), subhedral to euhedral, and has much higher Ba/Sr ratios. Population One crystals are observed in the cinder cone, dike, and surface lavas, whereas Population Two crystals are observed only in the dike and surface lavas. This suggests that a magma crystallizing a single elongate population of plagioclase intruded the cinder cone and rapidly assimilated the tephra, incorporating the stubbier population of phenocrysts. This conceptual model for basaltic cannibalism is supported by field observations of large-scale erosion upward into the tephra, which is coated by magma flow-back indicating that magma was involved in the thermal etching. While the unique exposure at Thrihnukagigur makes it an exceptional place to investigate basaltic cannibalism, we suggest that it is not limited to this volcanic system. Rather it is a process that likely

  9. Perspectives on basaltic magma crystallization and differentiation: Lava-lake blocks erupted at Mauna Loa volcano summit, Hawaii

    Science.gov (United States)

    McCarter, Renee L.; Fodor, R.V.; Trusdell, Frank A.

    2006-01-01

    Explosive eruptions at Mauna Loa summit ejected coarse-grained blocks (free of lava coatings) from Moku'aweoweo caldera. Most are gabbronorites and gabbros that have 0–26 vol.% olivine and 1–29 vol.% oikocrystic orthopyroxene. Some blocks are ferrogabbros and diorites with micrographic matrices, and diorite veins (≤2 cm) cross-cut some gabbronorites and gabbros. One block is an open-textured dunite.The MgO of the gabbronorites and gabbros ranges ∼ 7–21 wt.%. Those with MgO >10 wt.% have some incompatible-element abundances (Zr, Y, REE; positive Eu anomalies) lower than those in Mauna Loa lavas of comparable MgO; gabbros (MgO <10 wt.%) generally overlap lava compositions. Olivines range Fo83–58, clinopyroxenes have Mg#s ∼83–62, and orthopyroxene Mg#s are 84–63 — all evolved beyond the mineral-Mg#s of Mauna Loa lavas. Plagioclase is An75–50. Ferrogabbro and diorite blocks have ∼ 3–5 wt.% MgO (TiO2 3.2–5.4%; K2O 0.8–1.3%; La 16–27 ppm), and a diorite vein is the most evolved (SiO2 59%, K2O 1.5%, La 38 ppm). They have clinopyroxene Mg#s 67–46, and plagioclase An57–40. The open-textured dunite has olivine ∼ Fo83.5. Seven isotope ratios are 87Sr/86Sr 0.70394–0.70374 and 143Nd/144Nd 0.51293–0.51286, and identify the suite as belonging to the Mauna Loa system.Gabbronorites and gabbros originated in solidification zones of Moku'aweoweo lava lakes where they acquired orthocumulate textures and incompatible-element depletions. These features suggest deeper and slower cooling lakes than the lava lake paradigm, Kilauea Iki, which is basalt and picrite. Clinopyroxene geobarometry suggests crystallization at <1 kbar P. Highly evolved mineral Mg#s, <75, are largely explained by cumulus phases exposed to evolving intercumulus liquids causing compositional ‘shifts.’ Ferrogabbro and diorite represent segregation veins from differentiated intercumulus liquids filter pressed into rigid zones of cooling lakes. Clinopyroxene

  10. Volcanology and hazards of phreatomagmatic basaltic eruptions

    DEFF Research Database (Denmark)

    Schmith, Johanne

    Iceland is one of the most active terrestrial volcanic regions on Earth with an average of more than 20 eruptions per century. Around 80% of all events are tephra generating explosive eruptions, but less than 10 % of all known tephra layers have been mapped. Recent hazard assessment models show...... that the two key parameters for hazard assessment modeling are total grain size distribution (TGSD) and eruptive style. These two parameters have been determined for even fewer eruptive events in Iceland. One of the most hazardous volcanoes in Iceland is Katla and no data set of TGSD or other eruptive...... parameters exist. Katla has not erupted for 99 years, but at least 2 of the 20 eruptions since the settlement of Iceland in 871 have reached Northern Europe as visible tephra fall. These eruptions occurred in 1755 and 1625 and remain enigmatic both in terms of actual size and eruption dynamics. This work...

  11. Decreasing Magmatic Footprints of Individual Volcanos in a Waning Basaltic Field

    Energy Technology Data Exchange (ETDEWEB)

    G.A> Valentine; F.V. Perry

    2006-06-06

    The distribution and characteristics of individual basaltic volcanoes in the waning Southwestern Nevada Volcanic Field provide insight into the changing physical nature of magmatism and the controls on volcano location. During Pliocene-Pleistocene times the volumes of individual volcanoes have decreased by more than one order of magnitude, as have fissure lengths and inferred lava effusion rates. Eruptions evolved from Hawaiian-style eruptions with extensive lavas to eruptions characterized by small pulses of lava and Strombolian to violent Strombolian mechanisms. These trends indicate progressively decreasing partial melting and length scales, or magmatic footprints, of mantle source zones for individual volcanoes. The location of each volcano is determined by the location of its magmatic footprint at depth, and only by shallow structural and topographic features that are within that footprint. The locations of future volcanoes in a waning system are less likely to be determined by large-scale topography or structures than were older, larger volume volcanoes.

  12. The 2014 eruptions of Pavlof Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Haney, Matthew M.; Wallace, Kristi; Cameron, Cheryl E.; Schneider, David J.

    2017-12-22

    Pavlof Volcano is one of the most frequently active volcanoes in the Aleutian Island arc, having erupted more than 40 times since observations were first recorded in the early 1800s . The volcano is located on the Alaska Peninsula (lat 55.4173° N, long 161.8937° W), near Izembek National Wildlife Refuge. The towns and villages closest to the volcano are Cold Bay, Nelson Lagoon, Sand Point, and King Cove, which are all within 90 kilometers (km) of the volcano (fig. 1). Pavlof is a symmetrically shaped stratocone that is 2,518 meters (m) high, and has about 2,300 m of relief. The volcano supports a cover of glacial ice and perennial snow roughly 2 to 4 cubic kilometers (km3) in volume, which is mantled by variable amounts of tephra fall, rockfall debris, and pyroclastic-flow deposits produced during historical eruptions. Typical Pavlof eruptions are characterized by moderate amounts of ash emission, lava fountaining, spatter-fed lava flows, explosions, and the accumulation of unstable mounds of spatter on the upper flanks of the volcano. The accumulation and subsequent collapse of spatter piles on the upper flanks of the volcano creates hot granular avalanches, which erode and melt snow and ice, and thereby generate watery debris-flow and hyperconcentrated-flow lahars. Seismic instruments were first installed on Pavlof Volcano in the early 1970s, and since then eruptive episodes have been better characterized and specific processes have been documented with greater certainty. The application of remote sensing techniques, including the use of infrasound data, has also aided the study of more recent eruptions. Although Pavlof Volcano is located in a remote part of Alaska, it is visible from Cold Bay, Sand Point, and Nelson Lagoon, making distal observations of eruptive activity possible, weather permitting. A busy air-travel corridor that is utilized by a numerous transcontinental and regional air carriers passes near Pavlof Volcano. The frequency of air travel

  13. Petrologic insights into basaltic volcanism at historically active Hawaiian volcanoes: Chapter 6 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Helz, Rosalind L.; Clague, David A.; Sisson, Thomas W.; Thornber, Carl R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Study of the petrology of Hawaiian volcanoes, in particular the historically active volcanoes on the Island of Hawai‘i, has long been of worldwide scientific interest. When Dr. Thomas A. Jaggar, Jr., established the Hawaiian Volcano Observatory (HVO) in 1912, detailed observations on basaltic activity at Kīlauea and Mauna Loa volcanoes increased dramatically. The period from 1912 to 1958 saw a gradual increase in the collection and analysis of samples from the historical eruptions of Kīlauea and Mauna Loa and development of the concepts needed to evaluate them. In a classic 1955 paper, Howard Powers introduced the concepts of magnesia variation diagrams, to display basaltic compositions, and olivine-control lines, to distinguish between possibly comagmatic and clearly distinct basaltic lineages. In particular, he and others recognized that Kīlauea and Mauna Loa basalts must have different sources.

  14. Giant Plagioclase Basalts, eruption rate versus time

    Indian Academy of Sciences (India)

    R.Narasimhan(krishtel emaging) 1461 1996 Oct 15 13:05:22

    I found the GPB lavas to be very interest- ing because in some ... by Venkatesan et al (1993) and thus in a way validates my approach. ... and age calculation of lavas from phenocrysts. Keywords. Deccan Trap; Giant Plagioclase Basalts; eruption duration. Proc. Indian Acad. Sci. (Earth Planet. Sci.), 111, No. 4, December ...

  15. Assessing Eruption Column Height in Ancient Flood Basalt Eruptions

    Science.gov (United States)

    Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.

    2015-01-01

    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at approximately 45 deg N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the approximately 180 km of known Roza fissure length could have supported approximately 36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (approximately 66 Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained

  16. Temporal variations in volumetric magma eruption rates of Quaternary volcanoes in Japan

    Science.gov (United States)

    Yamamoto, Takahiro; Kudo, Takashi; Isizuka, Osamu

    2018-04-01

    Long-term evaluations of hazard and risk related to volcanoes rely on extrapolations from volcano histories, including the uniformity of their eruption rates. We calculated volumetric magma eruption rates, compiled from quantitative eruption histories of 29 Japanese Quaternary volcanoes, and analyzed them with respect to durations spanning 101-105 years. Calculated eruption rates vary greatly (101-10-4 km3 dense-rock equivalent/1000 years) between individual volcanoes. Although large basaltic stratovolcanoes tend to have high eruption rates and relatively constant repose intervals, these cases are not representative of the various types of volcanoes in Japan. At many Japanese volcanoes, eruption rates are not constant through time, but increase, decrease, or fluctuate. Therefore, it is important to predict whether eruption rates will increase or decrease for long-term risk assessment. Several temporal co-variations of eruption rate and magmatic evolution suggest that there are connections between them. In some cases, magma supply rates increased in response to changing magma-generation processes. On the other hand, stable plumbing systems without marked changes in magma composition show decreasing eruption rates through time.[Figure not available: see fulltext.

  17. Volcanoes in Eruption - Set 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or mountain...

  18. Volcanoes in Eruption - Set 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or mountain...

  19. Radioactive equilibria and disequilibria of U-series nuclides in erupting magmas from Izu arc volcanoes

    International Nuclear Information System (INIS)

    Sato, Jun; Kurihara, Yuichi; Takahashi, Masaomi

    2009-01-01

    Radioactive disequilibria among U-series nuclides are observed in the magmas from volcanoes in the world. Basaltic products from Izu arc volcanoes, including Izu-Oshima and Fuji volcanoes, show 230 Th 238 U and 226 Ra> 230 Th disequilibria, indicating that the addition of U-and Ra-rich fluid from the subducting slab to the mantle wedge at the magma genesis. The disequilibria of 226 Ra> 230 Th in the erupting magmas suggest that the timescale from magma genesis to the eruption may be less than 8000 years. (author)

  20. Eruption style at Kīlauea Volcano in Hawai‘i linked to primary melt composition

    Science.gov (United States)

    Sides. I.R.,; Edmonds, M.; Maclennan, J.; Swanson, Don; Houghton, Bruce F.

    2014-01-01

    Explosive eruptions at basaltic volcanoes have been linked to gas segregation from magmas at shallow depths in the crust. The composition of primary melts formed at greater depths was thought to have little influence on eruptive style. Ocean island basaltic volcanoes are the product of melting of a geochemically heterogeneous mantle plume and are expected to give rise to heterogeneous primary melts. This range in primary melt composition, particularly with respect to the volatile components, will profoundly influence magma buoyancy, storage and eruption style. Here we analyse the geochemistry of a suite of melt inclusions from 25 historical eruptions at the ocean island volcano of Kīlauea, Hawai‘i, over the past 600 years. We find that more explosive styles of eruption at Kīlauea Volcano are associated statistically with more geochemically enriched primary melts that have higher volatile concentrations. These enriched melts ascend faster and retain their primary nature, undergoing little interaction with the magma reservoir at the volcano’s summit. We conclude that the eruption style and magma-supply rate at Kīlauea are fundamentally linked to the geochemistry of the primary melts formed deep below the volcano. Magmas might therefore be predisposed towards explosivity right at the point of formation in their mantle source region.

  1. Eruption of soufriere volcano on st. Vincent island, 1971-1972.

    Science.gov (United States)

    Aspinall, W P; Sigurdsson, H; Shepherd, J B

    1973-07-13

    The Soufrière volcano in St. Vincent erupted from October 1971 to March 1972, as 80 x 10(6) m(3) of basaltic andesite lava was quietly extruded inside the mile-wide crater. The eruption was largely subaqueous, taking place in the 180-m-deep crater lake, and resulted in the emergence of a steep-sided island. The mild character of the eruption and the absence of seismic activity stand in direct contrast to the highly explosive character of the eruption of 1902 to 1903.

  2. Interdisciplinary studies of eruption at Chaiten Volcano, Chile

    Science.gov (United States)

    John S. Pallister; Jon J. Major; Thomas C. Pierson; Richard P. Hoblitt; Jacob B. Lowenstern; John C. Eichelberger; Lara. Luis; Hugo Moreno; Jorge Munoz; Jonathan M. Castro; Andres Iroume; Andrea Andreoli; Julia Jones; Fred Swanson; Charlie Crisafulli

    2010-01-01

    There was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaiten volcano, southern Chile, a 3-kilometer-diameter caldera volcano with a prehistoric record of rhyolite eruptions. Vigorous explosions occurred through 8 May 2008, after which...

  3. Geomechanical rock properties of a basaltic volcano

    Directory of Open Access Journals (Sweden)

    Lauren N Schaefer

    2015-06-01

    Full Text Available In volcanic regions, reliable estimates of mechanical properties for specific volcanic events such as cyclic inflation-deflation cycles by magmatic intrusions, thermal stressing, and high temperatures are crucial for building accurate models of volcanic phenomena. This study focuses on the challenge of characterizing volcanic materials for the numerical analyses of such events. To do this, we evaluated the physical (porosity, permeability and mechanical (strength properties of basaltic rocks at Pacaya Volcano (Guatemala through a variety of laboratory experiments, including: room temperature, high temperature (935 °C, and cyclically-loaded uniaxial compressive strength tests on as-collected and thermally-treated rock samples. Knowledge of the material response to such varied stressing conditions is necessary to analyze potential hazards at Pacaya, whose persistent activity has led to 13 evacuations of towns near the volcano since 1987. The rocks show a non-linear relationship between permeability and porosity, which relates to the importance of the crack network connecting the vesicles in these rocks. Here we show that strength not only decreases with porosity and permeability, but also with prolonged stressing (i.e., at lower strain rates and upon cooling. Complimentary tests in which cyclic episodes of thermal or load stressing showed no systematic weakening of the material on the scale of our experiments. Most importantly, we show the extremely heterogeneous nature of volcanic edifices that arise from differences in porosity and permeability of the local lithologies, the limited lateral extent of lava flows, and the scars of previous collapse events. Input of these process-specific rock behaviors into slope stability and deformation models can change the resultant hazard analysis. We anticipate that an increased parameterization of rock properties will improve mitigation power.

  4. Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions

    Science.gov (United States)

    White, Randall A.; McCausland, Wendy

    2016-01-01

    We present data on 136 high-frequency earthquakes and swarms, termed volcano-tectonic (VT) seismicity, which preceded 111 eruptions at 83 volcanoes, plus data on VT swarms that preceded intrusions at 21 other volcanoes. We find that VT seismicity is usually the earliest reported seismic precursor for eruptions at volcanoes that have been dormant for decades or more, and precedes eruptions of all magma types from basaltic to rhyolitic and all explosivities from VEI 0 to ultraplinian VEI 6 at such previously long-dormant volcanoes. Because large eruptions occur most commonly during resumption of activity at long-dormant volcanoes, VT seismicity is an important precursor for the Earth's most dangerous eruptions. VT seismicity precedes all explosive eruptions of VEI ≥ 5 and most if not all VEI 4 eruptions in our data set. Surprisingly we find that the VT seismicity originates at distal locations on tectonic fault structures at distances of one or two to tens of kilometers laterally from the site of the eventual eruption, and rarely if ever starts beneath the eruption site itself. The distal VT swarms generally occur at depths almost equal to the horizontal distance of the swarm from the summit out to about 15 km distance, beyond which hypocenter depths level out. We summarize several important characteristics of this distal VT seismicity including: swarm-like nature, onset days to years prior to the beginning of magmatic eruptions, peaking of activity at the time of the initial eruption whether phreatic or magmatic, and large non-double couple component to focal mechanisms. Most importantly we show that the intruded magma volume can be simply estimated from the cumulative seismic moment of the VT seismicity from:

  5. Sunset Crater, AZ: Evolution of a highly explosive basaltic eruption as indicated by granulometry and clast componentry

    Science.gov (United States)

    Allison, C. M.; Clarke, A. B.; Pioli, L.; Alfano, F.

    2011-12-01

    Basaltic scoria cone volcanoes are the most abundant volcanic edifice on Earth and occur in all tectonic settings. Basaltic magmas have lower viscosities, higher temperatures, and lower volatile contents than silicic magmas, and therefore generally have a lower potential for explosive activity. However, basaltic eruptions display great variability in eruptive style, from mild lava flows to more energetic explosions with large plumes. The San Francisco Volcanic Field (SFVF) in northern Arizona, active from 6 Ma-present, consists of over 600 volcanoes, mostly alkali basalt scoria cones, and five silicic centers [Wood and Kienle (1990), Cambridge University Press]. The eruption of Sunset Crater in the SFVF during the Holocene was an anomalously large basaltic explosive eruption, consisting of eight tephra-bearing phases and three lava flows [Amos (1986), MS thesis, ASU]. Typical scoria cone-forming eruptions have volumes sorted. Future work will include textural analysis of bubbles and crystals to understand the ascent and cooling history of the different clast types, and also to better interpret differences in abundance as related to variations in eruption or vent dynamics.

  6. Darwin's triggering mechanism of volcano eruptions

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    Charles Darwin wrote that ‘… the elevation of many hundred square miles of territory near Concepcion is part of the same phenomenon, with that splashing up, if I may so call it, of volcanic matter through the orifices in the Cordillera at the moment of the shock;…' and ‘…a power, I may remark, which acts in paroxysmal upheavals like that of Concepcion, and in great volcanic eruptions,…'. Darwin reports that ‘…several of the great chimneys in the Cordillera of central Chile commenced a fresh period of activity ….' In particular, Darwin reported on four-simultaneous large eruptions from the following volcanoes: Robinson Crusoe, Minchinmavida, Cerro Yanteles and Peteroa (we cite the Darwin's sentences following his The Voyage of the Beagle and researchspace. auckland. ac. nz/handle/2292/4474). Let us consider these eruptions taking into account the volcano shape and the conduit. Three of the volcanoes (Minchinmavida (2404 m), Cerro Yanteles (2050 m), and Peteroa (3603 m)) are stratovolcanos and are formed of symmetrical cones with steep sides. Robinson Crusoe (922 m) is a shield volcano and is formed of a cone with gently sloping sides. They are not very active. We may surmise, that their vents had a sealing plug (vent fill) in 1835. All these volcanoes are conical. These common features are important for Darwin's triggering model, which is discussed below. The vent fill material, usually, has high level of porosity and a very low tensile strength and can easily be fragmented by tension waves. The action of a severe earthquake on the volcano base may be compared with a nuclear blast explosion of the base. It is known, that after a underground nuclear explosion the vertical motion and the surface fractures in a tope of mountains were observed. The same is related to the propagation of waves in conical elements. After the explosive load of the base. the tip may break and fly off at high velocity. Analogous phenomenon may be generated as a result of a

  7. When does eruption run-up begin? Multidisciplinary insight from the 1999 eruption of Shishaldin volcano

    Science.gov (United States)

    Rasmussen, Daniel J.; Plank, Terry A.; Roman, Diana C.; Power, John A.; Bodnar, Robert J.; Hauri, Erik H.

    2018-03-01

    During the run-up to eruption, volcanoes often show geophysically detectable signs of unrest. However, there are long-standing challenges in interpreting the signals and evaluating the likelihood of eruption, especially during the early stages of volcanic unrest. Considerable insight can be gained from combined geochemical and geophysical studies. Here we take such an approach to better understand the beginning of eruption run-up, viewed through the lens of the 1999 sub-Plinian basaltic eruption of Shishaldin volcano, Alaska. The eruption is of interest due to its lack of observed deformation and its apparent long run-up time (9 months), following a deep long-period earthquake swarm. We evaluate the nature and timing of recharge by examining the composition of 138 olivine macrocrysts and 53 olivine-hosted melt inclusions and through shear-wave splitting analysis of regional earthquakes. Magma mixing is recorded in three crystal populations: a dominant population of evolved olivines (Fo60-69) that are mostly reversely zoned, an intermediate population (Fo69-76) with mixed zonation, and a small population of normally zoned more primitive olivines (Fo76-80). Mixing-to-eruption timescales are obtained through modeling of Fe-Mg interdiffusion in 78 olivines. The large number of resultant timescales provides a thorough record of mixing, demonstrating at least three mixing events: a minor event ∼11 months prior to eruption, overlapping within uncertainty with the onset of deep long-period seismicity; a major event ∼50 days before eruption, coincident with a large (M5.2) shallow earthquake; and a final event about a week prior to eruption. Shear-wave splitting analysis shows a change in the orientation of the local stress field about a month after the deep long-period swarm and around the time of the M5.2 event. Earthquake depths and vapor saturation pressures of Raman-reconstructed melt inclusions indicate that the recharge magma originated from depths of at least 20

  8. Magma decompression rates during explosive eruptions of Kīlauea volcano, Hawaii, recorded by melt embayments

    Science.gov (United States)

    Ferguson, David J.; Gonnermann, Helge M.; Ruprecht, Philipp; Plank, Terry; Hauri, Erik H.; Houghton, Bruce F.; Swanson, Donald A.

    2016-10-01

    The decompression rate of magma as it ascends during volcanic eruptions is an important but poorly constrained parameter that controls many of the processes that influence eruptive behavior. In this study, we quantify decompression rates for basaltic magmas using volatile diffusion in olivine-hosted melt tubes (embayments) for three contrasting eruptions of Kīlauea volcano, Hawaii. Incomplete exsolution of H2O, CO2, and S from the embayment melts during eruptive ascent creates diffusion profiles that can be measured using microanalytical techniques, and then modeled to infer the average decompression rate. We obtain average rates of ~0.05-0.45 MPa s-1 for eruptions ranging from Hawaiian style fountains to basaltic subplinian, with the more intense eruptions having higher rates. The ascent timescales for these magmas vary from around ~5 to ~36 min from depths of ~2 to ~4 km, respectively. Decompression-exsolution models based on the embayment data also allow for an estimate of the mass fraction of pre-existing exsolved volatiles within the magma body. In the eruptions studied, this varies from 0.1 to 3.2 wt% but does not appear to be the key control on eruptive intensity. Our results do not support a direct link between the concentration of pre-eruptive volatiles and eruptive intensity; rather, they suggest that for these eruptions, decompression rates are proportional to independent estimates of mass discharge rate. Although the intensity of eruptions is defined by the discharge rate, based on the currently available dataset of embayment analyses, it does not appear to scale linearly with average decompression rate. This study demonstrates the utility of the embayment method for providing quantitative constraints on magma ascent during explosive basaltic eruptions.

  9. Magma decompression rates during explosive eruptions of Kīlauea volcano, Hawaii, recorded by melt embayments

    Science.gov (United States)

    Ferguson, David J.; Gonnermann, Helge M.; Ruprecht, Philipp; Plank, Terry; Hauri, Erik H.; Houghton, Bruce F.; Swanson, Donald A.

    2016-01-01

    The decompression rate of magma as it ascends during volcanic eruptions is an important but poorly constrained parameter that controls many of the processes that influence eruptive behavior. In this study, we quantify decompression rates for basaltic magmas using volatile diffusion in olivine-hosted melt tubes (embayments) for three contrasting eruptions of Kīlauea volcano, Hawaii. Incomplete exsolution of H2O, CO2, and S from the embayment melts during eruptive ascent creates diffusion profiles that can be measured using microanalytical techniques, and then modeled to infer the average decompression rate. We obtain average rates of ~0.05–0.45 MPa s−1 for eruptions ranging from Hawaiian style fountains to basaltic subplinian, with the more intense eruptions having higher rates. The ascent timescales for these magmas vary from around ~5 to ~36 min from depths of ~2 to ~4 km, respectively. Decompression-exsolution models based on the embayment data also allow for an estimate of the mass fraction of pre-existing exsolved volatiles within the magma body. In the eruptions studied, this varies from 0.1 to 3.2 wt% but does not appear to be the key control on eruptive intensity. Our results do not support a direct link between the concentration of pre-eruptive volatiles and eruptive intensity; rather, they suggest that for these eruptions, decompression rates are proportional to independent estimates of mass discharge rate. Although the intensity of eruptions is defined by the discharge rate, based on the currently available dataset of embayment analyses, it does not appear to scale linearly with average decompression rate. This study demonstrates the utility of the embayment method for providing quantitative constraints on magma ascent during explosive basaltic eruptions.

  10. Rangitoto Volcano Drilling Project: Life of a Small 'Monogenetic' Basaltic Shield in the Auckland Volcanic Field

    Science.gov (United States)

    Shane, P. A. R.; Linnell, T.; Lindsay, J. M.; Smith, I. E.; Augustinus, P. M.; Cronin, S. J.

    2014-12-01

    Rangitoto is a small basaltic shield volcano representing the most recent and most voluminous episode of volcanism in the Auckland Volcanic Field, New Zealand. Auckland City is built on the field, and hence, Rangitoto's importance in hazard-risk modelling. The symmetrical edifice, ~6 km wide and 260 m high, has volume of 1.78 km3. It comprises summit scoria cones and a lava field. However, the lack of deep erosion dissection has prevented the development of an eruptive stratigraphy. Previous studies suggested construction in a relatively short interval at 550-500 yrs BP. However, microscopic tephra have been interpreted as evidence of intermittent activity from 1498 +/- 140 to 504 +/- 6 yrs BP, a longevity of 1000 years. A 150-m-deep hole was drilled through the edifice in February 2014 to obtain a continuous core record. The result is an unparalleled stratigraphy of the evolution of a small shield volcano. The upper 128 m of core comprises at least 27 lava flows with thicknesses in the range 0.3-15 m, representing the main shield-building phase. Underlying marine sediments are interbedded with 8 m of pyroclastic lapilli, and a thin lava flow, representing the explosive phreatomagmatic birth of the volcano. Preliminary geochemical analyses reveal suite of relatively uniform transitional basalts (MgO = 8.1 to 9.7 wt %). However, 4 compositional groups are distinguished that were erupted in sequential order. High-MgO magmas were erupted first, followed by a two more heterogeneous groups displaying differentiation trends with time. Finally, distinct low-MgO basalts were erupted. Each magma type appears to represent a new magma batch. The core places the magma types in a time series, which can be correlated to the surface lava field. Hence, allowing a geometrical reconstruction of the shield growth. Additional petrologic investigations are providing insight to magmatic ascent processes, while radiocarbon and paleomagnetic secular variation studies will reveal the

  11. Tsunamis generated by eruptions from mount st. Augustine volcano, alaska.

    Science.gov (United States)

    Kienle, J; Kowalik, Z; Murty, T S

    1987-06-12

    During an eruption of the Alaskan volcano Mount St. Augustine in the spring of 1986, there was concern about the possibility that a tsunami might be generated by the collapse of a portion of the volcano into the shallow water of Cook Inlet. A similar edifice collapse of the volcano and ensuing sea wave occurred during an eruption in 1883. Other sea waves resulting in great loss of life and property have been generated by the eruption of coastal volcanos around the world. Although Mount St. Augustine remained intact during this eruptive cycle, a possible recurrence of the 1883 events spurred a numerical simulation of the 1883 sea wave. This simulation, which yielded a forecast of potential wave heights and travel times, was based on a method that could be applied generally to other coastal volcanos.

  12. The isotope systematics of a juvenile intraplate volcano: Pb, Nd, and Srisotope ratios of basalts from Loihi Seamount, Hawaii

    International Nuclear Information System (INIS)

    Staudigel, H.; Zindler, A.; Leslie, T.

    1984-01-01

    Sr, Nd, and Pb isotope ratios for a representative suite of 15 basanites, alkali basalts, transitional basalts and tholeiites from Loihi Seamount, Hawaii, display unusually large variations for a single volcano, but lie within known ranges for Hawaiian basalts. Nd isotope ratios in alkali basalts show the largest relative variation (0.51291 - 0.51305), and include the nearly constant tholeiite value (approx.= 0.51297). Pb isotope ratios show similarly large ranges for tholeiites and alkali basalts and continue Tatsumoto's [31] 'Loa' trend towards higher 206 Pb/ 204 Pb, ratios, resulting in a substantial overlap with the 'Kea' trend. 206 Pb/ 204 Pb ratios for Loihi and other volcanoes along the Loa and Kea trends [31] are observed to correlate with the age of the underlying lithosphere suggesting lithosphere involvement in the formation of Hawaiian tholeiites. Loihi lavas display no correlation of Nd, Sr, or Pb isotope ratios with major element compositions or eruptive age, in contrast with observations of some other Hawaiian volcanoes. Isotope data for Loihi, as well as average values for Hawaiian volcanoes, are not adequately explained by previously proposed two-end-member models; new models for the origin and the development of Hawaiian volcanoes must include mixing of at least three geochemically distinct source regions and allow for the involvement of heterogeneous oceanic lithosphere. (orig.)

  13. A new model for the growth of basaltic shields based on deformation of Fernandina volcano, Galápagos Islands

    Science.gov (United States)

    Bagnardi, Marco; Amelung, Falk; Poland, Michael P.

    2013-01-01

    Space-geodetic measurements of surface deformation produced by the most recent eruptions at Fernandina – the most frequently erupting volcano in the Galápagos Archipelago – reveal that all have initiated with the intrusion of subhorizontal sills from a shallow magma reservoir. This includes eruptions from fissures that are oriented both radially and circumferentially with respect to the summit caldera. A Synthetic Aperture Radar (SAR) image acquired 1–2 h before the start of a radial fissure eruption in 2009 captures one of these sills in the midst of its propagation toward the surface. Galápagos eruptive fissures of all orientations have previously been presumed to be fed by vertical dikes, and this assumption has guided models of the origin of the eruptive fissure geometry and overall development of the volcanoes. Our findings allow us to reinterpret the internal structure and evolution of Galápagos volcanoes and of similar basaltic shields. Furthermore, we note that stress changes generated by the emplacement of subhorizontal sills feeding one type of eruption may control the geometry of subsequent eruptive fissures. Specifically, circumferential fissures tend to open within areas uplifted by sill intrusions that initiated previous radial fissure eruptions. This mechanism provides a possible explanation for the pattern of eruptive fissures that characterizes all the western Galápagos volcanoes, as well as the alternation between radial and circumferential fissure eruptions at Fernandina. The same model suggests that the next eruption of Fernandina will be from a circumferential fissure in the area uplifted by the 2009 sill intrusion, just southwest of the caldera rim.

  14. Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions

    Science.gov (United States)

    White, Randall; McCausland, Wendy

    2016-01-01

    We present data on 136 high-frequency earthquakes and swarms, termed volcano-tectonic (VT) seismicity, which preceded 111 eruptions at 83 volcanoes, plus data on VT swarms that preceded intrusions at 21 other volcanoes. We find that VT seismicity is usually the earliest reported seismic precursor for eruptions at volcanoes that have been dormant for decades or more, and precedes eruptions of all magma types from basaltic to rhyolitic and all explosivities from VEI 0 to ultraplinian VEI 6 at such previously long-dormant volcanoes. Because large eruptions occur most commonly during resumption of activity at long-dormant volcanoes, VT seismicity is an important precursor for the Earth's most dangerous eruptions. VT seismicity precedes all explosive eruptions of VEI ≥ 5 and most if not all VEI 4 eruptions in our data set. Surprisingly we find that the VT seismicity originates at distal locations on tectonic fault structures at distances of one or two to tens of kilometers laterally from the site of the eventual eruption, and rarely if ever starts beneath the eruption site itself. The distal VT swarms generally occur at depths almost equal to the horizontal distance of the swarm from the summit out to about 15 km distance, beyond which hypocenter depths level out. We summarize several important characteristics of this distal VT seismicity including: swarm-like nature, onset days to years prior to the beginning of magmatic eruptions, peaking of activity at the time of the initial eruption whether phreatic or magmatic, and large non-double couple component to focal mechanisms. Most importantly we show that the intruded magma volume can be simply estimated from the cumulative seismic moment of the VT seismicity from: Log10 V = 0.77 Log ΣMoment - 5.32, with volume, V, in cubic meters and seismic moment in Newton meters. Because the cumulative seismic moment can be approximated from the size of just the few largest events, and is quite insensitive to precise locations

  15. Fuego Volcano eruption (Guatemala, 1974): evidence of a tertiary fragmentation?

    International Nuclear Information System (INIS)

    Brenes-Andre, Jose

    2014-01-01

    Values for mode and dispersion calculated from SFT were analyzed using the SFT (Sequential Fragmentation/Transport) model to Fuego Volcano eruption (Guatemala, 1974). Analysis results have showed that the ideas initially proposed for Irazu, can be applied to Fuego Volcano. Experimental evidence was found corroborating the existence of tertiary fragmentations. (author) [es

  16. Volcanic geology and eruption frequency, lower east rift zone of Kilauea volcano, Hawaii

    Science.gov (United States)

    Moore, Richard B.

    1992-08-01

    Detailed geologic mapping and radiocarbon dating of tholeiitic basalts covering about 275 km2 on the lower east rift zone (LERZ) and adjoining flanks of Kilauea volcano, Hawaii, show that at least 112 separate eruptions have occurred during the past 2360 years. Eruptive products include spatter ramparts and cones, a shield, two extensive lithic-rich tuff deposits, aa and pahoehoe flows, and three littoral cones. Areal coverage, number of eruptions and average dormant interval estimates in years for the five age groups assigned are: (I) historic, i.e. A D 1790 and younger: 25%, 5, 42.75; (II) 200 400 years old: 50%, 15, 14.3: (III) 400 750 years old: 20%, 54, 6.6; (IV) 750 1500 years old: 5%, 37, 20.8; (V) 1500 3000 years old: LERZ during the past 1500 years. Estimated volumes of the exposed products of individual eruptions range from a few tens of cubic meters for older units in small kipukas to as much as 0.4 km3 for the heiheiahulu shield. The average dormant interval has been about 13.6 years during the past 1500 years. The most recent eruption occurred in 1961, and the area may be overdue for its next eruption. However, eruptive activity will not resume on the LERZ until either the dike feeding the current eruption on the middle east rift zone extends farther down rift, or a new dike, unrelated to the current eruption, extends into the LERZ.

  17. Deposits, petrology and mechanism of the 2010-2013 eruption of Kizimen volcano in Kamchatka, Russia

    Science.gov (United States)

    Auer, A.; Belousov, A.; Belousova, M.

    2018-04-01

    Kizimen volcano in Kamchatka is well known as a source of highly heterogeneous poorly mingled magmas ranging from dacites to basaltic andesites. In 2010-2013, the volcano produced its first historical magmatic eruption with the deposition of 0.27 km3 of block and ash pyroclastic flows accompanied by slow extrusion of a 200-m-thick, highly viscous (1010-1011 Pa s) block lava flow with a volume of 0.3 km3. The total volume of erupted magma comprised approximately 0.4 km3 DRE. We provide description of the eruption chronology, as well as the lithology and petrology of eruptive products. The erupted material is represented by banded dacite and high-silica andesite. The dacitic magma was formed during a long dormancy after the previous magmatic eruption several hundred years ago with mineral compositions indicating average pre-eruptive temperatures of 810 °C, fO2 of 0.9-1.6 log units above the nickel-nickel oxide (NNO) buffer and shallow crustal storage conditions at 123 MPa. The silica-rich andesite represents a hybrid magma, which shows signs of recent thermal and compositional disequilibrium. We suggest that the hybrid magma started to form in 1963 when a swarm of deep earthquakes indicated an input of mafic magma from depth into the 6-11-km-deep silicic magma chamber. It took the following 46 years until the magma filling the chamber reached an eruptible state. Poor mingling of the two melts is attributed to its unusually high viscosity that could be associated with the pre-eruptive long-term leakage of volatiles from the chamber through a regional tectonic fault. Our investigations have shown that shallow magma chambers of dormant volcanoes demonstrating strong persistent fumarolic activity can contain highly viscous, degassed magma of evolved composition. Reactivation of such magma chambers by injection of basic magma takes a long time (several decades). Thus, eruption forecasts at such volcanoes should include a possibility of long time lag between a swarm of

  18. Eruption cycles in a basaltic andesite system: insights from numerical modeling

    Science.gov (United States)

    Smekens, J. F.; Clarke, A. B.; De'Michieli Vitturi, M.

    2015-12-01

    Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. Many of these systems present relatively evolved compositions (andesite to rhyolite), and their cyclic activity has been the subject of extensive work (e.g., Soufriere Hills Volcano, Montserrat). However, the same periodic behavior can also be observed at open systems of more mafic compositions, such as Semeru in Indonesia or Karymsky in Kamchatka for example. In this work, we use DOMEFLOW, a 1D transient numerical model of magma ascent, to identify the conditions that lead to and control periodic eruptions in basaltic andesite systems, where the viscosity of the liquid phase can be drastically lower. Periodic behavior occurs for a very narrow range of conditions, for which the mass balance between magma flux and open-system gas escape repeatedly generates a viscous plug, pressurizes the magma beneath the plug, and then explosively disrupts it. The characteristic timescale and magnitude of the eruptive cycles are controlled by the overall viscosity of the magmatic mixture, with higher viscosities leading to longer cycles and lower flow rates at the top of the conduit. Cyclic eruptions in basaltic andesite systems are observed for higher crystal contents, smaller conduit radii, and over a wider range of chamber pressures than the andesitic system, all of which are the direct consequence of a decrease in viscosity of the melt phase, and in turn in the intensity of the viscous forces generated by the system. Results suggest that periodicity can exist in more mafic systems with relatively lower chamber pressures than andesite and rhyolite systems, and may explain why more mafic magmas sometimes remain active for decades.

  19. Reconstructing an Explosive Basaltic Eruption in the Pinacate Volcanic Field, NW Sonora, Mexico

    Science.gov (United States)

    Zawacki, E. E.; Clarke, A. B.; Arrowsmith, R.; Lynch, D. J.

    2017-12-01

    Tephra deposits from explosive volcanic eruptions provide a means to reconstruct eruption characteristics, such as column height and erupted volume. Parameters like these are essential in assessing the explosivity of past eruptions and associated volcanic hazards. We applied such methods to a basaltic tephra deposit from one of the youngest eruptions in the Pinacate volcanic field (NW Sonora, Mexico). This roughly circular tephra blanket extends 13 km E-W and 13 km N-S, and covers an area of at least 135 km2. The source vent of this eruption is hypothesized to be the Tecolote volcano (lat 31.877, long -113.362), which is dated to 27 ± 6 ka (40Ar/39Ar). Fifty-three pits were dug across the extent of the tephra deposit to measure its thickness, record stratigraphy, characterize grain size distribution, and determine maximum clast size. Isopleth and isopach maps were created from these data to determine the column height (>9 km), estimate mass eruption rate (>2.1x106 kg/s), and calculate the erupted volume (>4.2x10-2 km3). Stratigraphic descriptions support two distinct episodes of tephra production. Unit A is dispersed in an approximately circular pattern ( 6.5 km radius) with its center shifted to the east of the vent. The distribution of Unit B is oblate ( 9.5 km major axis, 4.5 km minor axis) and trends to the southeast of the vent. Lava samples were collected from each of the seven Tecolote flows for XRF and ICP-MS geochemical analyses. These samples were compared to geochemical signatures from a Tecolote bomb, tephra from Units A and B, and cinder from the La Laja cone, which is the youngest dated cone in the field at 12 ± 4 ka (40Ar/39Ar). The La Laja sample is geochemically distinct from all Tecolote samples, confirming that it did not contribute to the two tephra units. Tephra from Unit A and Unit B have distinct signatures and fit within the geochemical evolution of the Tecolote lavas, supporting two explosive episodes from the Tecolote volcano, which has

  20. Sulfur degassing due to contact metamorphism during flood basalt eruptions

    Science.gov (United States)

    Yallup, Christine; Edmonds, Marie; Turchyn, Alexandra V.

    2013-11-01

    We present a study aimed at quantifying the potential for generating sulfur-rich gas emissions from the devolatilization of sediments accompanying sill emplacement during flood basalt eruptions. The potential contribution of sulfur-rich gases from sediments might augment substantially the magma-derived sulfur gases and hence impact regional and global climate. We demonstrate, from a detailed outcrop-scale study, that sulfur and total organic carbon have been devolatilized from shales immediately surrounding a 3-m thick dolerite sill on the Isle of Skye, Scotland. Localized partial melting occurred within a few centimetres of the contact in the shale, generating melt-filled cracks. Pyrite decomposed on heating within 80 cm of the contact, generating sulfur-rich gases (a mixture of H2S and SO2) and pyrrhotite. The pyrrhotite shows 32S enrichment, due to loss of 34S-enriched SO2. Further decomposition and oxidation of pyrrhotite resulted in hematite and/or magnetite within a few cm of the contact. Iron sulfates were produced during retrogressive cooling and oxidation within 20 cm of the contact. Decarbonation of the sediments due to heating is also observed, particularly along the upper contact of the sill, where increasing δ13C is consistent with loss of methane gas. The geochemical and mineralogical features observed in the shales are consistent with a short-lived intrusion, emplaced in desulfurization, as well as decarbonation, of shales adjacent to an igneous intrusion. The liberated fluids, rich in sulfur and carbon, are likely to be focused along regions of low pore fluid pressure along the margins of the sill. The sulfur gases liberated from the sediments would have augmented the sulfur dioxide (and hydrogen sulfide) yield of the eruption substantially, had they reached the surface. This enhancement of the magmatic sulfur budget has important implications for the climate impact of large flood basalt eruptions that erupt through thick, volatile-rich sedimentary

  1. Postglacial eruptive history and geochemistry of Semisopochnoi volcano, western Aleutian Islands, Alaska

    Science.gov (United States)

    Coombs, Michelle L.; Larsen, Jessica F.; Neal, Christina A.

    2018-02-14

    Semisopochnoi Island, located in the Rat Islands group of the western Aleutian Islands and Aleutian volcanic arc, is a roughly circular island composed of scattered volcanic vents, the prominent caldera of Semisopochnoi volcano, and older, ancestral volcanic rocks. The oldest rocks on the island are gently radially dipping lavas that are the remnants of a shield volcano and of Ragged Top, which is an eroded stratocone southeast of the current caldera. None of these oldest rocks have been dated, but they all are likely Pleistocene in age. Anvil Peak, to the caldera’s north, has the morphology of a young stratocone and is latest Pleistocene to early Holocene in age. The oldest recognized Holocene deposits are those of the caldera-forming eruption, which produced the 7- by 6-km caldera in the center of the island, left nonwelded ignimbrite in valleys below the edifice, and left welded ignimbrite high on its flanks. The caldera-forming eruption produced rocks showing a range of intermediate whole-rock compositions throughout the eruption sequence, although a majority of clasts analyzed form a fairly tight cluster on SiO2-variation diagrams at 62.9 to 63.4 weight percent SiO2. This clustering of compositions at about 63 weight percent SiO2 includes black, dense, obsidian-like clasts, as well as tan, variably oxidized, highly inflated pumice clasts. The best estimate for the timing of the eruption is from a soil dated at 6,920±60 14C years before present underlying a thin facies of the ignimbrite deposit on the island’s north coast. Shortly after the caldera-forming eruption, two scoria cones on the northwest flank of the volcano outside the caldera, Ringworm crater and Threequarter Cone, simultaneously erupted small volumes of andesite.The oldest intracaldera lavas, on the floor of the caldera, are andesitic to dacitic, but are mostly covered by younger lavas and tephras. These intracaldera lavas include the basaltic andesites of small Windy cone, as well as the

  2. The 2000 AD eruption of Copahue Volcano, Southern Andes

    OpenAIRE

    Naranjo, José Antonio; Polanco, Edmundo

    2004-01-01

    Although all historic eruptions of the Copahue volcano (37°45'S-71°10.2'W, 3,001 m a.s.l.) have been of low magnitude, the largest (VEI=2) and longest eruptive cycle occurred from July to October 2000. Phreatic phases characterized the main events as a former acid crater lake was blown up. Low altitude columns were deviated by low altitude winds in variable directions, but slightly predominant to the NNE. The presence of the El Agrio caldera depression to the east of Copahue volcano may have ...

  3. Chaparrastique (San Mighel) Volcano Eruptions since Dec. 29th, 2013, El Salvador

    Science.gov (United States)

    Martinez-Hackert, B.; Bajo, J. V.; Escobar, D.; Gutierrez, E.

    2015-12-01

    The December 29th, 2013 eruption of Chaparrastique (San Miguel) volcano in El Salvador came as a surprise and was the first of several small eruptions in the past two years. They came after many years of preceeding earthquake swarms and significant degassing. Being the second volcano to erupt in El Salvador in less than ten years, it caused grave concern for the population of the country. Although they were not large eruptions (VEI 2), the materials were widespread and caused deposits of volcanic tephra as far at the capital San Salvador and closed the airports in the vecinity for a couple of days. This is a summary of the research, mitigation and services that were done days after the first eruption on December 29, 2013 and the follwing months. In conjunction with the team of the Direccion General del Observatorio Ambiental from the Ministerio de Medio Ambiente y Recursos Naturales possible first response strategies were discussed and decided to obtain results that could be quickly put in place to mitigate and decide on actions such as evacuations or relocations of people living in volcano related high-risk hazard areas. Collection of samples, mapping and measurements of the volcanic tephra in the field together with Digital Globe and areal photography after the event, allowed identification of four different volcanic products that can be correlated to the opening of the vent and ending in the eruption of juvenile materials of basaltic to trachybasaltic composition, and the production of a lahar hazard map based on LaharZ.

  4. The dynamics of Hawaiian-style eruptions: a century of study: Chapter 8 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Mangan, Margaret T.; Cashman, Katharine V.; Swanson, Donald A.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    This chapter, prepared in celebration of the Hawaiian Volcano Observatoryʼs centennial, provides a historical lens through which to view modern paradigms of Hawaiian-style eruption dynamics. The models presented here draw heavily from observations, monitoring, and experiments conducted on Kīlauea Volcano, which, as the site of frequent and accessible eruptions, has attracted scientists from around the globe. Long-lived eruptions in particular—Halema‘uma‘u 1907–24, Kīlauea Iki 1959, Mauna Ulu 1969–74, Pu‘u ‘Ō‘ō-Kupaianaha 1983–present, and Halema‘uma‘u 2008–present—have offered incomparable opportunities to conceptualize and constrain theoretical models with multidisciplinary data and to field-test model results. The central theme in our retrospective is the interplay of magmatic gas and near-liquidus basaltic melt. A century of study has shown that gas exsolution facilitates basaltic dike propagation; volatile solubility and vesiculation kinetics influence magma-rise rates and fragmentation depths; bubble interactions and gas-melt decoupling modulate magma rheology, eruption intensity, and plume dynamics; and pyroclast outgassing controls characteristics of eruption deposits. Looking to the future, we anticipate research leading to a better understanding of how eruptive activity is influenced by volatiles, including the physics of mixed CO2-H2O degassing, gas segregation in nonuniform conduits, and vaporization of external H2O during magma ascent.

  5. 238U-230Th-226Ra radioactive disequilibria in the products from 1707 eruption of Fuji volcano, Japan

    International Nuclear Information System (INIS)

    Kurihara, Yuichi; Takahashi, Masaomi; Sato, Jun

    2008-01-01

    Time scale of magmatic processes in the 1707 eruptive activity of Fuji volcano, Japan, was estimated by the 238 U- 230 Th- 226 Ra disequilibria observed in the 1707 volcanic products. The activity ratios of 226 Ra/ 230 Th in the products were larger than unity, being enriched in 226 Ra relative to 230 Th. The decay-corrected 226 Ra/ 230 Th activity ratio to the time of the eruption versus 238 U/ 230 Th activity ratio diagram for the 1707 volcanic products showed a positive correlation, suggesting that the 238 U/ 230 Th- 226 Ra disequilibria occurred during the magma genesis of Fuji volcano. The 230 Th- 226 Ra disequilibria in the 1707 volcanic products suggested that the time scale from the magma genesis to the eruption, including the melting of the mantle wedge, magma storage and magmatic differentiation from basalt to andesite, was less than 8000 years. (author)

  6. The eruption of Mount Pagan volcano, Mariana Islands, 15 May 1981

    Science.gov (United States)

    Banks, N.G.; Koyanagi, R.Y.; Sinton, J.M.; Honma, K.T.

    1984-01-01

    A major explosive eruption occurred 15 May 1981 at Mount Pagan Volcano, the larger of two historic eruptive centers on Pagan Island, Mariana Islands. The eruption was preceded by increased numbers of locally felt earthquakes beginning in late March or early April and by new ground cracks, new sublimates, and increased gas emissions. A swarm of felt earthquakes began at 0745h (local time = UCT+10 hours) 15 May, and at 0915 h, closely following a loud sonic boom, a strong plinian column issued from the volcano. The high-altitude ash cloud (at least 13.5 km) travelled south-southeast, but ash and scoria deposits were thickest (> 2 m) in the NW sector of the island because of the prevailing low-altitude southeasterly winds. The early activity of 15 May probably involved magmatic eruption along a fissure system oriented about N10??E. However, the eruption became hydromagmatic, possibly within minutes, and was largely restricted to three long-lived vents. The northernmost of these built a substantial new scoria-ash cinder cone. Flows and air-fall deposits, consisting almost entirely of juvenile material, exceeded 105 ?? 106 m3 in volume (75 ?? 106 m3 of magma) on land and at least 70-100 ?? 606 m3 at sea. An unknown volume was carried away by stratospheric winds. Lithic blocks and juvenile bombs as large as 1 m in diameter were thrown more than 2 km from the summit, and evidence for base-surge was observed in restricted corridors as low as 200 m elevation on the north and south slopes of the volcano. Neither of these events resulted in serious injuries to the 54 residents of the island, nor did the eruption produce serious chemical hazards in their water supply. Weak eruptions occurred during the ensuing month, and some of these were monitored by ground observations, seismic monitoring, and deformation studies. Precursory seismicity and possibly deformation occurred with some of the observed eruptions. More vigorous eruptions were reported by visiting residents in late

  7. May 2011 eruption of Telica Volcano, Nicaragua: Multidisciplinary observations

    Science.gov (United States)

    Witter, M. R.; Geirsson, H.; La Femina, P. C.; Roman, D. C.; Rodgers, M.; Muñoz, A.; Morales, A.; Tenorio, V.; Chavarria, D.; Feineman, M. D.; Furman, T.; Longley, A.

    2011-12-01

    Telica volcano, an andesitic stratovolcano in north-western Nicaragua, erupted in May 2011. The eruption, produced ash but no lava and required the evacuation of over 500 people; no injuries were reported. We present the first detailed report of the eruption, using information from the TElica Seismic ANd Deformation (TESAND) network, that provides real-time data, along with visual observations, ash leachate analysis, and fumarole temperature measurements. Telica is located in the Maribios mountain range. It is one of the most active volcanoes in Nicaragua and has frequent small explosions and rare large (VEI 4) eruptions, with the most recent sizable eruptions (VEI 2) occurring in 1946 and 1999. The 2011 eruption is the most explosive since 1999. The eruption consisted of a series of ash explosions, with the first observations from May 8, 2011 when local residents reported ash fall NE of the active crater. Popping sounds could be heard coming from the crater on May 10. On May 13, the activity intensified and continued with some explosions every day for about 2 weeks. The well-defined plumes originated from the northern part of the crater. Ash fall was reported 4 km north of the active crater on May 14. The largest explosion at 2:54 pm (local time) on May 21 threw rocks from the crater and generated a column 2 km in height. Fresh ash samples were collected on May 16, 18, and 21 and preliminary inspection shows that the majority of the material is fragmented rock and crystalline material, i.e. not juvenile. Ash leachates (ash:water = 1:25) contain a few ppb As, Se, and Cd; tens of ppb Co and Ni; and up to a few hundred ppb Cu and Zn. Telica typically has hundreds of small seismic events every day, even when the volcano is not erupting. The TESAND network detected an increase in the rate and magnitude of seismic activity, with a maximum magnitude of 3.3. Elevated fumarole temperatures at locations near the active vent were also observed throughout the May 2011

  8. Forecasting deflation, intrusion and eruption at inflating volcanoes

    Science.gov (United States)

    Blake, Stephen; Cortés, Joaquín A.

    2018-01-01

    A principal goal of volcanology is to successfully forecast the start of volcanic eruptions. This paper introduces a general forecasting method, which relies on a stream of monitoring data and a statistical description of a given threshold criterion for an eruption to start. Specifically we investigate the timing of intrusive and eruptive events at inflating volcanoes. The gradual inflation of the ground surface is a well-known phenomenon at many volcanoes and is attributable to pressurised magma accumulating within a shallow chamber. Inflation usually culminates in a rapid deflation event caused by magma escaping from the chamber to produce a shallow intrusion and, in some cases, a volcanic eruption. We show that the ground elevation during 15 inflation periods at Krafla volcano, Iceland, increased with time towards a limiting value by following a decaying exponential with characteristic timescale τ. The available data for Krafla, Kilauea and Mauna Loa volcanoes show that the duration of inflation (t*) is approximately equal to τ. The distribution of t* / τ values follows a log-logistic distribution in which the central 60% of the data lie between 0.99 deflation event starting during a specified time interval to be estimated. The time window in which there is a specified probability of deflation starting can also be forecast, and forecasts can be updated after each new deformation measurement. The method provides stronger forecasts than one based on the distribution of repose times alone and is transferable to other types of monitoring data and/or other patterns of pre-eruptive unrest.

  9. TWO-DIMENSIONAL SIMULATIONS OF EXPLOSIVE ERUPTIONS OF KICK-EM JENNY AND OTHER SUBMARINE VOLCANOS

    Directory of Open Access Journals (Sweden)

    Galen Gisler

    2006-01-01

    Full Text Available Kick-em Jenny, in the Eastern Caribbean, is a submerged volcanic cone that has erupted a dozen or more times since its discovery in 1939. The most likely hazard posed by this volcano is to shipping in the immediate vicinity (through volcanic missiles or loss-of-buoyancy, but it is of interest to estimate upper limits on tsunamis that might be produced by a catastrophic explosive eruption. To this end, we have performed two-dimensional simulations of such an event in a geometry resembling that of Kick-em Jenny with our SAGE adaptive mesh Eulerian multifluid compressible hydrocode. We use realistic equations of state for air, water, and basalt, and follow the event from the initial explosive eruption, through the generation of a transient water cavity and the propagation of waves away from the site. We find that even for extremely catastrophic explosive eruptions, tsunamis from Kick-em Jenny are unlikely to pose significant danger to nearby islands. For comparison, we have also performed simulations of explosive eruptions at the much larger shield volcano Vailulu'u in the Samoan chain, where the greater energy available can produce a more impressive wave. In general, however, we conclude that explosive eruptions do not couple well to water waves. The waves that are produced from such events are turbulent and highly dissipative, and don't propagate well. This is consistent with what we have found previously in simulations of asteroid-impact generated tsunamis. Non-explosive events, however, such as landslides or gas hydrate releases, do couple well to waves, and our simulations of tsunamis generated by sub- aerial and sub-aqueous landslides demonstrate this.

  10. Sedimentology, eruptive mechanism and facies architecture of basaltic scoria cones from the Auckland Volcanic Field (New Zealand)

    Science.gov (United States)

    Kereszturi, Gábor; Németh, Károly

    2016-09-01

    Scoria cones are a common type of basaltic to andesitic small-volume volcanoes (e.g. 10- 1-10- 5 km3) that results from gas-bubble driven explosive eruptive styles. Although they are small in volume, they can produce complex eruptions, involving multiple eruptive styles. Eight scoria cones from the Quaternary Auckland Volcanic Field in New Zealand were selected to define the eruptive style variability from their volcanic facies architecture. The reconstruction of their eruptive and pyroclastic transport mechanisms was established on the basis of study of their volcanic sedimentology, stratigraphy, and measurement of their pyroclast density, porosity, Scanning Electron Microscopy, 2D particle morphology analysis and Visible and Near Visible Infrared Spectroscopy. Collection of these data allowed defining three end-member types of scoria cones inferred to be constructed from lava-fountaining, transitional fountaining and Strombolian type, and explosive Strombolian type. Using the physical and field-based characteristics of scoriaceous samples a simple generalised facies model of basaltic scoria cones for the AVF is developed that can be extended to other scoria cones elsewhere. The typical AVF scoria cone has an initial phreatomagmatic phases that might reduce the volume of magma available for subsequent scoria cone forming eruptions. This inferred to have the main reason to have decreased cone volumes recognised from Auckland in comparison to other volcanic fields evolved dominantly in dry eruptive condition (e.g. no external water influence). It suggests that such subtle eruptive style variations through a scoria cone evolution need to be integrated into the hazard assessment of a potentially active volcanic field such as that in Auckland.

  11. Pyroclastic sulphur eruption at Poas Volcano, Costa Rica

    Energy Technology Data Exchange (ETDEWEB)

    Francis, P.W.; Thorpe, R.S.; Brown, G.C.; Glasscock, J.

    1980-01-01

    The recent Voyager missions to Jupiter have highlighted the role of sulphur in volcanic processes on io. Although fumarolic sulphur and SO/sub 2/ gas are almost universal in terrestrial active volcanoes, and rare instances of sulphur lava flows have been reported, sulphur in a pyroclastic form has only been described from Poas Volcano, Costa Rica. Here we amplify the original descriptions by Bennett and Raccichini and describe a recent eruption of pyroclastic sulphur scoria and ejected blocks that are characterised by miniature sulphur stalactites and stalagmites.

  12. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000-2012

    Science.gov (United States)

    Anderson, Kyle R.; Poland, Michael P.

    2016-08-01

    Estimating rates of magma supply to the world's volcanoes remains one of the most fundamental aims of volcanology. Yet, supply rates can be difficult to estimate even at well-monitored volcanoes, in part because observations are noisy and are usually considered independently rather than as part of a holistic system. In this work we demonstrate a technique for probabilistically estimating time-variable rates of magma supply to a volcano through probabilistic constraint on storage and eruption rates. This approach utilizes Bayesian joint inversion of diverse datasets using predictions from a multiphysical volcano model, and independent prior information derived from previous geophysical, geochemical, and geological studies. The solution to the inverse problem takes the form of a probability density function which takes into account uncertainties in observations and prior information, and which we sample using a Markov chain Monte Carlo algorithm. Applying the technique to Kīlauea Volcano, we develop a model which relates magma flow rates with deformation of the volcano's surface, sulfur dioxide emission rates, lava flow field volumes, and composition of the volcano's basaltic magma. This model accounts for effects and processes mostly neglected in previous supply rate estimates at Kīlauea, including magma compressibility, loss of sulfur to the hydrothermal system, and potential magma storage in the volcano's deep rift zones. We jointly invert data and prior information to estimate rates of supply, storage, and eruption during three recent quasi-steady-state periods at the volcano. Results shed new light on the time-variability of magma supply to Kīlauea, which we find to have increased by 35-100% between 2001 and 2006 (from 0.11-0.17 to 0.18-0.28 km3/yr), before subsequently decreasing to 0.08-0.12 km3/yr by 2012. Changes in supply rate directly impact hazard at the volcano, and were largely responsible for an increase in eruption rate of 60-150% between 2001 and

  13. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000–2012

    Science.gov (United States)

    Anderson, Kyle R.; Poland, Michael

    2016-01-01

    Estimating rates of magma supply to the world's volcanoes remains one of the most fundamental aims of volcanology. Yet, supply rates can be difficult to estimate even at well-monitored volcanoes, in part because observations are noisy and are usually considered independently rather than as part of a holistic system. In this work we demonstrate a technique for probabilistically estimating time-variable rates of magma supply to a volcano through probabilistic constraint on storage and eruption rates. This approach utilizes Bayesian joint inversion of diverse datasets using predictions from a multiphysical volcano model, and independent prior information derived from previous geophysical, geochemical, and geological studies. The solution to the inverse problem takes the form of a probability density function which takes into account uncertainties in observations and prior information, and which we sample using a Markov chain Monte Carlo algorithm. Applying the technique to Kīlauea Volcano, we develop a model which relates magma flow rates with deformation of the volcano's surface, sulfur dioxide emission rates, lava flow field volumes, and composition of the volcano's basaltic magma. This model accounts for effects and processes mostly neglected in previous supply rate estimates at Kīlauea, including magma compressibility, loss of sulfur to the hydrothermal system, and potential magma storage in the volcano's deep rift zones. We jointly invert data and prior information to estimate rates of supply, storage, and eruption during three recent quasi-steady-state periods at the volcano. Results shed new light on the time-variability of magma supply to Kīlauea, which we find to have increased by 35–100% between 2001 and 2006 (from 0.11–0.17 to 0.18–0.28 km3/yr), before subsequently decreasing to 0.08–0.12 km3/yr by 2012. Changes in supply rate directly impact hazard at the volcano, and were largely responsible for an increase in eruption rate of 60–150% between

  14. On the absence of InSAR-detected volcano deformation spanning the 1995-1996 and 1999 eruptions of Shishaldin Volcano, Alaska

    Science.gov (United States)

    Moran, S.C.; Kwoun, O.; Masterlark, Timothy; Lu, Z.

    2006-01-01

    Shishaldin Volcano, a large, frequently active basaltic-andesite volcano located on Unimak Island in the Aleutian Arc of Alaska, had a minor eruption in 1995–1996 and a VEI 3 sub-Plinian basaltic eruption in 1999. We used 21 synthetic aperture radar images acquired by ERS-1, ERS-2, JERS-1, and RADARSAT-1 satellites to construct 12 coherent interferograms that span most of the 1993–2003 time interval. All interferograms lack coherence within ∼5 km of the summit, primarily due to persistent snow and ice cover on the edifice. Remarkably, in the 5–15 km distance range where interferograms are coherent, the InSAR images show no intrusion- or withdrawal-related deformation at Shishaldin during this entire time period. However, several InSAR images do show deformation associated with a shallow ML 5.2 earthquake located ∼14 km west of Shishaldin that occurred 6 weeks before the 1999 eruption. We use a theoretical model to predict deformation magnitudes due to a volumetric expansion source having a volume equivalent to the 1999 erupted volume, and find that deformation magnitudes for sources shallower than 10 km are within the expected detection capabilities for interferograms generated from C-band ERS 1/2 and RADARSAT-1 synthetic aperture radar images. We also find that InSAR images cannot resolve relatively shallow deformation sources (1–2 km below sea level) due to spatial gaps in the InSAR images caused by lost coherence. The lack of any deformation, particularly for the 1999 eruption, leads us to speculate that magma feeding eruptions at the summit moves rapidly (at least 80m/day) from > 10 km depth, and that the intrusion–eruption cycle at Shishaldin does not produce significant permanent deformation at the surface.

  15. Selective environmental stress from sulphur emitted by continental flood basalt eruptions

    Science.gov (United States)

    Schmidt, Anja; Skeffington, Richard; Thordarson, Thorvaldur; Self, Stephen; Forster, Piers; Rap, Alexandru; Ridgwell, Andy; Fowler, David; Wilson, Marjorie; Mann, Graham; Wignall, Paul; Carslaw, Ken

    2016-04-01

    Several biotic crises during the past 300 million years have been linked to episodes of continental flood basalt volcanism, and in particular to the release of massive quantities of magmatic sulphur gas species. Flood basalt provinces were typically formed by numerous individual eruptions, each lasting years to decades. However, the environmental impact of these eruptions may have been limited by the occurrence of quiescent periods that lasted hundreds to thousands of years. Here we use a global aerosol model to quantify the sulphur-induced environmental effects of individual, decade-long flood basalt eruptions representative of the Columbia River Basalt Group, 16.5-14.5 million years ago, and the Deccan Traps, 65 million years ago. For a decade-long eruption of Deccan scale, we calculate a decadal-mean reduction in global surface temperature of 4.5 K, which would recover within 50 years after an eruption ceased unless climate feedbacks were very different in deep-time climates. Acid mists and fogs could have caused immediate damage to vegetation in some regions, but acid-sensitive land and marine ecosystems were well-buffered against volcanic sulphur deposition effects even during century-long eruptions. We conclude that magmatic sulphur from flood basalt eruptions would have caused a biotic crisis only if eruption frequencies and lava discharge rates had been high and sustained for several centuries at a time.

  16. A model for calculating eruptive volumes for monogenetic volcanoes — Implication for the Quaternary Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Kereszturi, Gábor; Németh, Károly; Cronin, Shane J.; Agustín-Flores, Javier; Smith, Ian E. M.; Lindsay, Jan

    2013-10-01

    Monogenetic basaltic volcanism is characterised by a complex array of behaviours in the spatial distribution of magma output and also temporal variability in magma flux and eruptive frequency. Investigating this in detail is hindered by the difficulty in evaluating ages of volcanic events as well as volumes erupted in each volcano. Eruptive volumes are an important input parameter for volcanic hazard assessment and may control eruptive scenarios, especially transitions between explosive and effusive behaviour and the length of eruptions. Erosion, superposition and lack of exposure limit the accuracy of volume determination, even for very young volcanoes. In this study, a systematic volume estimation model is developed and applied to the Auckland Volcanic Field in New Zealand. In this model, a basaltic monogenetic volcano is categorised in six parts. Subsurface portions of volcanoes, such as diatremes beneath phreatomagmatic volcanoes, or crater infills, are approximated by geometrical considerations, based on exposed analogue volcanoes. Positive volcanic landforms, such as scoria/spatter cones, tephras rings and lava flow, were defined by using a Light Detection and Ranging (LiDAR) survey-based Digital Surface Model (DSM). Finally, the distal tephra associated with explosive eruptions was approximated using published relationships that relate original crater size to ejecta volumes. Considering only those parts with high reliability, the overall magma output (converted to Dense Rock Equivalent) for the post-250 ka active Auckland Volcanic Field in New Zealand is a minimum of 1.704 km3. This is made up of 1.329 km3 in lava flows, 0.067 km3 in phreatomagmatic crater lava infills, 0.090 km3 within tephra/tuff rings, 0.112 km3 inside crater lava infills, and 0.104 km3 within scoria cones. Using the minimum eruptive volumes, the spatial and temporal magma fluxes are estimated at 0.005 km3/km2 and 0.007 km3/ka. The temporal-volumetric evolution of Auckland is

  17. Preliminary impact assessment of effusive eruptions at Etna volcano

    Science.gov (United States)

    Cappello, Annalisa; Michaud-Dubuy, Audrey; Branca, Stefano; De Beni, Emanuela; Del Negro, Ciro

    2016-04-01

    Lava flows are a recurring and widespread form of volcanic activity that threaten people and property around the world. The growing demographic congestion around volcanic structures increases the potential risks and costs that lava flows represent, and leads to a pressing need for faster and more accurate assessment of lava flow impact. To fully evaluate potential effects and losses that an effusive eruption may cause to society, property and environment, it is necessary to consider the hazard, the distribution of the exposed elements at stake and the associated vulnerability. Lava flow hazard assessment is at an advanced state, whereas comprehensive vulnerability assessment is lacking. Cataloguing and analyzing volcanic impacts provide insight on likely societal and physical vulnerabilities during future eruptions. Here we quantify the lava flow impact of two past main effusive eruptions of Etna volcano: the 1669, which is the biggest and destructive flank eruption to have occurred on Etna in historical time, and the 1981, lasting only 6 days, but characterized by an intense eruptive dynamics. Different elements at stake are considered, including population, hospitals, critical facilities, buildings of historic value, industrial infrastructures, gas and electricity networks, railways, roads, footways and finally land use. All these elements were combined with the 1669 and 1981 lava flow fields to quantify the social damage and economic loss.

  18. Data Processing Methods for 3D Seismic Imaging of Subsurface Volcanoes: Applications to the Tarim Flood Basalt.

    Science.gov (United States)

    Wang, Lei; Tian, Wei; Shi, Yongmin

    2017-08-07

    The morphology and structure of plumbing systems can provide key information on the eruption rate and style of basalt lava fields. The most powerful way to study subsurface geo-bodies is to use industrial 3D reflection seismological imaging. However, strategies to image subsurface volcanoes are very different from that of oil and gas reservoirs. In this study, we process seismic data cubes from the Northern Tarim Basin, China, to illustrate how to visualize sills through opacity rendering techniques and how to image the conduits by time-slicing. In the first case, we isolated probes by the seismic horizons marking the contacts between sills and encasing strata, applying opacity rendering techniques to extract sills from the seismic cube. The resulting detailed sill morphology shows that the flow direction is from the dome center to the rim. In the second seismic cube, we use time-slices to image the conduits, which corresponds to marked discontinuities within the encasing rocks. A set of time-slices obtained at different depths show that the Tarim flood basalts erupted from central volcanoes, fed by separate pipe-like conduits.

  19. Volcanoes

    Science.gov (United States)

    ... rock, steam, poisonous gases, and ash reach the Earth's surface when a volcano erupts. An eruption can also cause earthquakes, mudflows and flash floods, rock falls and landslides, acid rain, fires, and even tsunamis. Volcanic gas ...

  20. Seeking a paleontological signature for mass extinctions caused by flood basalt eruptions

    Science.gov (United States)

    Payne, J.; Bush, A. M.; Chang, E. T.; Heim, N. A.; Knope, M. L.; Pruss, S. B.

    2016-12-01

    Flood basalt eruptions coincide with numerous extinction events in the fossil record. Increasingly precise absolute age determinations for both the timing of eruption and of species extinctions have strengthened the case for flood basalt eruptions as the single most important trigger for major mass extinction events in the fossil record. However, the extent to which flood basalt eruptions cause a pattern of biotic loss distinctive from extinctions triggered by other geological or biological processes remains an open question. In the absence of diagnostic mapping between geological triggers and biological losses, establishing the identities of causal agents for mass extinctions will continue to depend primarily on evidence for temporal coincidence. Here we use a synoptic database of marine animal genera spanning the Phanerozoic, including times of first and last occurrence, body size, motility, life position, feeding mode, and respiratory physiology to assess whether extinction events temporally associated with flood basalt eruptions exhibit a diagnostic pattern of extinction selectivity. We further ask whether any events not associated with known large igneous provinces nevertheless display extinction patterns suggestive of such a cause. Finally, we ask whether extinction events associated with other primary causes, such as glaciation or bolide impact, are distinguishable from events apparently triggered by flood basalt eruptions on the basis of extinction selectivity patterns

  1. Emission of gas and atmospheric dispersion of SO2 during the December 2013 eruption at San Miguel volcano (El Salvador)

    Science.gov (United States)

    Salerno, Giuseppe G.; Granieri, Domenico; Liuzzo, Marco; La Spina, Alessandro; Giuffrida, Giovanni B.; Caltabiano, Tommaso; Giudice, Gaetano; Gutierrez, Eduardo; Montalvo, Francisco; Burton, Michael; Papale, Paolo

    2016-04-01

    San Miguel volcano, also known as Chaparrastique, is a basaltic volcano along the Central American Volcanic Arc (CAVA). Volcanism is induced by the convergence of the Cocos Plate underneath the Caribbean Plate, along a 1200-km arc, extending from Guatemala to Costa Rica and parallel to the Central American Trench. The volcano is located in the eastern part of El Salvador, in proximity to the large communities of San Miguel, San Rafael Oriente, and San Jorge. Approximately 70,000 residents, mostly farmers, live around the crater and the city of San Miguel, the second largest city of El Salvador, ten km from the summit, has a population of ~180,000 inhabitants. The Pan-American and Coastal highways cross the north and south flanks of the volcano.San Miguel volcano has produced modest eruptions, with at least 28 VEI 1-2 events between 1699 and 1967 (datafrom Smithsonian Institution http://www.volcano.si.edu/volcano.cfm?vn=343100). It is characterized by visible milddegassing from a summit vent and fumarole field, and by intermittent lava flows and Strombolian activity. Since the last vigorous fire fountaining of 1976, San Miguel has only experienced small steam explosions and gas emissions, minor ash fall and rock avalanches. On 29 December 2013 the volcano erupted producing an eruption that has been classified as VEI 2. While eruptions tend to be low-VEI, the presence of major routes and the dense population in the surrounding of the volcano increases the risk that weak explosions with gas and/or ash emission may pose. In this study, we present the first inventory of SO2, CO2, HCl, and HF emission rates on San Miguel volcano, and an analysis of the hazard from volcanogenic SO2 discharged before, during, and after the December 2013 eruption. SO2 was chosen as it is amongst the most critical volcanogenic pollutants, which may cause acute and chronicle disease to humans. Data were gathered by the geochemical monitoring network managed by the Ministerio de Medio Ambiente

  2. Soufriere volcano, st. Vincent: observations of its 1979 eruption from the ground, aircraft, and satellites.

    Science.gov (United States)

    Fiske, R S; Sigurdsson, H

    1982-06-04

    Rapid response by earth, atmospheric, and space scientists made possible diverse observations during the explosive phase of the 1979 eruption of Soufriere Volcano. The 11 reports that follow indicate that, with the availability of appropriate personnel, equipment, and logistical support, a significant body of geophysical data can be gathered on short notice at erupting volcanoes in remote parts of the world.

  3. Rheology of the 2006 eruption at Tungurahua volcano, Ecuador

    Science.gov (United States)

    Hanson, J. B.; Lavallée, Y.; Hess, K.-U.; von Aulock, F. W.; Dingwell, D. B.

    2009-04-01

    During August 16th to 18th 2006, the eruptive crisis at Tungurahua volcano (Ecuador) culminated in VEI 2 eruption with tens of pyroclastic flows and the extrusion of a lava flow. The nearly simultaneous occurrence of a lava flow and a pyroclastic flow from a single vent deserves attention. Generally, the rheology is a chief determinant of eruption style. Specifically, magmas are ductile (effusive) at low strain rates whereas they are brittle (explosive) at high strain rates. Although this distinction has been extensively described for single-phase magmas, there remain many questions as to the rheological implications of crystals and bubbles present in magmas. Here we present preliminary characterizations of the complex rheology of the magma involved in the 2006 eruption at Tungurahua volcano. The magma present in this eruption was andesitic with an interstitial melt composition averaging ~58 wt.% SiO2. The bombs present in the pyroclastic deposit show an open porosity ranging from 15 to 35 vol.% and a crystallinity generally greater than ~30 vol.% and occasionally up to 60 vol.% in samples affected by microlite growth. Petrographic analyses revealed magma batches with different crystallization histories. In high-porosity samples containing microlites, a recrystallization rim around clinopyroxene and resorption of the plagioclase were observed. In contrast, the dense samples show pristine, euhedral crystals and a near absence of microlites. The heterogeneous petrographic structures suggest the possibilities of mingling in the conduit or of magma batches with different decompression rates. Dilatometric analyses suggest glass transition temperatures (Tg) of ~974 °C for the dense material (porosity~15 vol.%) and as high as ~1060 °C for the high-porosity bombs (porosity~35 vol.%). Successive series of heating and cooling of the glass reveal an increase of Tg by as much as 60 °C indicative of significant water left in the melt. Preliminary analyses of images obtained

  4. Modelling of Magma Density and Viscocity Changes and Their Influences towards the Characteristic of Kelud Volcano Eruption

    Directory of Open Access Journals (Sweden)

    Hanik Humaida

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i4.129The effusive eruption of Kelud Volcano in 2007 was different from the previous ones, which in general were more explosive. Among others, density and viscosity are factors that determine the type of eruption. Therefore, the study on the difference of the recent eruption style based on the density and viscosity of magma was carried out. The method used in this study was based on geochemical analysis of the rock and then a modeling was established by using the above parameter. The study on the explosive eruption was emphasized on the data of 1990 eruption, whereas the effusive eruption was based on the data of 2007 eruption. The result shows that the magma viscosity of Kelud Volcano depend on the H O concentration as one of the volatile compound in magma, and temperature which gives the exponential equation. The higher the increase of H O content the smaller the value of its viscosity as well as the higher the temperature. The H O content in silica fluid can break the polymer bond of the silica fluid, because a shorter polymer will produce a lower viscosity. The density of the silica content of Kelud Volcano ranges between andesitic and basaltic types, but andesite is more likely. The fluid density of the material of 1990 eruption is different from 2007 eruption. Compared to the 2007, the 1990 eruption material gave a lower density value in its silica fluid than that of the 2007 one. The low density value of the silica fluid of the 1990 eruption material was reflecting a more acid magma. The level of density value of silica fluid depends on its temperature. At the temperature of 1073 K the density of the 1990 Kelud magma is 2810 kg/m3 and the 2007 magma is 2818 kg/m3, whereas at a temperature of 1673 K, the density is 2672 kg/m3 and 2682 kg/m3 of the 1990 and 2007 eruptions respectively. A modeling by using an ideal gas law of Henry’s Law illustrated that the ascent of Kelud’s magma to the surface may cause changes

  5. The 2012-2014 eruptive cycle of Copahue Volcano, Southern Andes. Magmatic-Hydrothermal system interaction and manifestations.

    Science.gov (United States)

    Morales, Sergio; Alarcón, Alex; Basualto, Daniel; Bengoa, Cintia; Bertín, Daniel; Cardona, Carlos; Córdova, Maria; Franco, Luis; Gil, Fernando; Hernandez, Erasmo; Lara, Luis; Lazo, Jonathan; Mardones, Cristian; Medina, Roxana; Peña, Paola; Quijada, Jonathan; San Martín, Juan; Valderrama, Oscar

    2015-04-01

    Copahue Volcano (COPV), in Southern Andes of Chile, is an andesitic-basaltic stratovolcano, which is located on the western margin of Caviahue Caldera. The COPV have a NE-trending fissure with 9 aligned vents, being El Agrio the main currently active vent, with ca. 400 m in diameter. The COPV is placed into an extensive hydrothermal system which has modulated its recent 2012-2014 eruptive activity, with small phreatic to phreatomagmatic eruptions and isolated weak strombolian episodes and formation of crater lakes inside the main crater. Since 2012, the Southern Andes Volcano Observatory (OVDAS) carried out the real-time monitoring with seismic broadband stations, GPS, infrasound sensors and webcams. In this work, we report pre, sin, and post-eruptive seismic activity of the last two main eruptions (Dec, 2012 and Oct, 2014) both with different seismic precursors and superficial activity, showing the second one a particularly appearance of seismic quiescence episodes preceding explosive activity, as an indicator of interaction between magmatic-hydrothermal systems. The first episode, in late 2012, was characterized by a low frequency (0.3-0.4 Hz and 1.0-1.5 Hz) continuous tremor which increased gradually from background noise level amplitude to values of reduced displacement (DR), close to 50 cm2 at the peak of the eruption, reaching an eruptive column of ~1.5 km height. After few months of recording low energy seismicity, a sequence of low frequency, repetitive and low energy seismic events arose, with a frequency of occurrence up to 300 events/hour. Also, the VLP earthquakes were added to the record probably associated with magma intrusion into a deep magmatic chamber during all stages of eruptive process, joined to the record of VT seismicity during the same period, which is located throughout the Caviahue Caldera area. Both kind of seismic patterns were again recorded in October 2014, being the precursor of the new eruptive cycle at this time as well as the

  6. Geology of Tok Island, Korea: eruptive and depositional processes of a shoaling to emergent island volcano

    Science.gov (United States)

    Sohn, Y. K.

    1995-02-01

    Detailed mapping of Tok Island, located in the middle of the East Sea (Sea of Japan), along with lithofacies analysis and K-Ar age determinations reveal that the island is of early to late Pliocene age and comprises eight rock units: Trachyte I, Unit P-I, Unit P-II, Trachyandesite (2.7±0.1 Ma), Unit P-III, Trachyte II (2.7±0.1 Ma), Trachyte III (2.5±0.1 Ma) and dikes in ascending stratigraphic order. Trachyte I is a mixture of coherent trachytic lavas and breccias that are interpreted to be subaqueous lavas and related hyaloclastites. Unit P-I comprises massive and inversely graded basaltic breccias which resulted from subaerial gain flows and subaqueous debris flows. A basalt clast from the unit, derived from below Trachyte I, has an age of 4.6±0.4 Ma. Unit P-II is composed of graded and stratified lapilli tuffs with the characteristics of proximal pyroclastic surge deposits. The Trachyandesite is a massive subaerial lava ponded in a volcano-tectonic depression, probably a summit crater. A pyroclastic sequence containing flattened scoria clasts (Unit P-III) and a small volume subaerial lava (Trachyte II) occur above the Trachyandesite, suggesting resumption of pyroclastic activity and lava effusion. Afterwards, shallow intrusion of magma occurred, producing Trachyte III and trachyte dikes. The eight rock units provide an example of the changing eruptive and depositional processes and resultant succession of lithofacies as a seamount builds up above sea level to form an island volcano: Trachyte I represents a wholly subaqueous and effusive stage; Units P-I and P-II represent Surtseyan and Taalian eruptive phases during an explosive transitional (subaqueous to emergent) stage; and the other rock units represent later subaerial effusive and explosive stages. Reconstruction of volcano morphology suggests that the island is a remnant of the south-western crater rim of a volcano the vent of which lies several hundred meters to the north-east.

  7. An overview of the 2009 eruption of Redoubt Volcano, Alaska

    Science.gov (United States)

    Bull, Katharine F.; Buurman, Helena

    2013-06-01

    In March 2009, Redoubt Volcano, Alaska erupted for the first time since 1990. Explosions ejected plumes that disrupted international and domestic airspace, sent lahars more than 35 km down the Drift River to the coast, and resulted in tephra fall on communities over 100 km away. Geodetic data suggest that magma began to ascend slowly from deep in the crust and reached mid- to shallow-crustal levels as early as May, 2008. Heat flux at the volcano during the precursory phase melted ~ 4% of the Drift glacier atop Redoubt's summit. Petrologic data indicate the deeply sourced magma, low-silica andesite, temporarily arrested at 9-11 km and/or at 4-6 km depth, where it encountered and mixed with segregated stored high-silica andesite bodies. The two magma compositions mixed to form intermediate-silica andesite, and all three magma types erupted during the earliest 2009 events. Only intermediate- and high-silica andesites were produced throughout the explosive and effusive phases of the eruption. The explosive phase began with a phreatic explosion followed by a seismic swarm, which signaled the start of lava effusion on March 22, shortly prior to the first magmatic explosion early on March 23, 2009 (UTC). More than 19 explosions (or “Events”) were produced over 13 days from a single vent immediately south of the 1989-90 lava domes. During that period multiple small pyroclastic density currents flowed primarily to the north and into glacial ravines, three major lahars flooded the Drift River Terminal over 35 km down-river on the coast, tephra fall deposited on all aspects of the edifice and on several communities north and east of the volcano, and at least two, and possibly three lava domes were emplaced. Lightning accompanied almost all the explosions. A shift in the eruptive character took place following Event 9 on March 27 in terms of infrasound signal onsets, the character of repeating earthquakes, and the nature of tephra ejecta. More than nine additional

  8. Resistivity variations related to the large March 9, 1998 eruption at La Fournaise volcano inferred by continuous MT monitoring

    Science.gov (United States)

    Wawrzyniak, Pierre; Zlotnicki, Jacques; Sailhac, Pascal; Marquis, Guy

    2017-11-01

    The 2645 m-high La Fournaise volcano, located in the Southwest of Réunion Island (Indian Ocean), is a shield basaltic volcano where effusive eruptions generally occur along long fissures starting from the summit, alongside major fractures that characterize the eruptions' dynamism and effusivity. Between 1992 and 1998, the volcano underwent a quiet period during which few earthquakes were recorded. Minor seismic activity returned after 1997 and picked up in March 1998 during the 35 h preceding the March 9 eruption. From 1996, two autonomous stations (CSV and BAV) were installed on the volcano. CSV was located inside the Enclos Fouqué caldera while BAV was positioned 8.2 km NW of the volcano summit. Horizontal components of the electric and magnetic fields were sampled every 20 s. Continuous time-series were available from 1996 to 1999 at CSV, and from 1997 to March 1998 at BAV. Data have been processed using both single-station and remote-reference processing. Both results show apparent resistivity variations synchronous to the eruption. Time-lapse impedance estimates are computed on overlapping time windows of about two days at both stations. The only major decrease of the observed impedance coincides with the March 1998 eruption. At CSV, the resistivity started to drop about five days before the eruption, reached several local minima until April, and then slowly increased as the volcanic crisis reduced in activity. After the end of the crisis in September 1998, the apparent resistivity recovered its pre-crisis value. The time-lapse results also show variability in directionality: sharp and elongated phase tensor ellipse residuals appear during the eruption with a N105° orientation, suggesting the emergence of an almost NS-striking dyke. A 1D background model built from MT soundings performed during the quiet period (1996 to February 1998) on which a 3D NS-striking dyke was added shows a good agreement with phase tensor residuals and spatial distribution of the

  9. Waters associated with an active basaltic volcano, Kilauea, Hawaii: Variation in solute sources, 1973-1991

    Science.gov (United States)

    Tilling, R.I.; Jones, B.F.

    1996-01-01

    Chemical and isotopic analyses of samples collected from a 1262-m-deep research borehole at the summit of Kilauea Volcano provide unique time-series data for composition of waters in the uppermost part of its hydrothermal system. These waters have a distinctive geochemical signature: a very low proportion of chloride relative to other anions compared with other Hawaiian wa-ters - thermal (???30 ??C) or nonthermal (eruption (December 31, 1974) and associated intense seismicity. Following the initial sharp increase, the PCO2 then decreased, approaching preemption values in April 1976. Beginning in mid-1975, solute concentrations of the borehole waters decreased substantially, from ???45 meq/L to <25 meq/L in only eight months; by 1991, total solute concentrations were <17 meq/L. This decline in solutes cannot be attributed to rainfall dilution and is inferred to reflect the decreasing availability with time of the easily leachable salts of alkali metals and sulfate, which originated in sublimates and fumarolic encrustations in fractures and cavities of rocks along the hydrologic flow paths. The overall chemistry of the summit-borehole waters is largely determined by hydrolysis reactions associated with normal weathering of host tholeiitic basalts on a geologic time scale, despite short-term perturbations in composition caused by rainfall dilution or volcanic activity.

  10. Reconstruction of the eruptive activity on the NE sector of Stromboli volcano: timing of flank eruptions since 15 ka

    NARCIS (Netherlands)

    Calvari, S.; Branca, S.; Corsaro, R.A.; De Beni, E.; Miraglia, L.; Norini, G.; Wijbrans, J.R.; Boschi, E.

    2011-01-01

    A multidisciplinary geological and compositional investigation allowed us to reconstruct the occurrence of flank eruptions on the lower NE flank of Stromboli volcano since 15 ka. The oldest flank eruption recognised is Roisa, which occurred at ~15 ka during the Vancori period, and has transitional

  11. Role of syn-eruptive plagioclase disequilibrium crystallization in basaltic magma ascent dynamics.

    Science.gov (United States)

    La Spina, G; Burton, M; De' Michieli Vitturi, M; Arzilli, F

    2016-12-12

    Timescales of magma ascent in conduit models are typically assumed to be much longer than crystallization and gas exsolution for basaltic eruptions. However, it is now recognized that basaltic magmas may rise fast enough for disequilibrium processes to play a key role on the ascent dynamics. The quantification of the characteristic times for crystallization and exsolution processes are fundamental to our understanding of such disequilibria and ascent dynamics. Here we use observations from Mount Etna's 2001 eruption and a magma ascent model to constrain timescales for crystallization and exsolution processes. Our results show that plagioclase reaches equilibrium in 1-2 h, whereas ascent times were magma ascent rate and disequilibrium crystallization and exsolution plays a key role in controlling eruption dynamics in basaltic volcanism.

  12. Assessment of the potential respiratory hazard of volcanic ash from future Icelandic eruptions: A study of archived basaltic to rhyolitic ash samples

    Science.gov (United States)

    Damby, David; Horwell, Claire J.; Larsen, Gudrun; Thordarson, Thorvaldur; Tomatis, Maura; Fubini, Bice; Donaldson, Ken

    2017-01-01

    BackgroundThe eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011), Iceland, triggered immediate, international consideration of the respiratory health hazard of inhaling volcanic ash, and prompted the need to estimate the potential hazard posed by future eruptions of Iceland’s volcanoes to Icelandic and Northern European populations. MethodsA physicochemical characterization and toxicological assessment was conducted on a suite of archived ash samples spanning the spectrum of past eruptions (basaltic to rhyolitic magmatic composition) of Icelandic volcanoes following a protocol specifically designed by the International Volcanic Health Hazard Network. ResultsIcelandic ash can be of a respirable size (up to 11.3 vol.% < 4 μm), but the samples did not display physicochemical characteristics of pathogenic particulate in terms of composition or morphology. Ash particles were generally angular, being composed of fragmented glass and crystals. Few fiber-like particles were observed, but those present comprised glass or sodium oxides, and are not related to pathogenic natural fibers, like asbestos or fibrous zeolites, thereby limiting concern of associated respiratory diseases. None of the samples contained cristobalite or tridymite, and only one sample contained quartz, minerals of interest due to the potential to cause silicosis. Sample surface areas are low, ranging from 0.4 to 1.6 m2 g−1, which aligns with analyses on ash from other eruptions worldwide. All samples generated a low level of hydroxyl radicals (HO•), a measure of surface reactivity, through the iron-catalyzed Fenton reaction compared to concurrently analyzed comparative samples. However, radical generation increased after ‘refreshing’ sample surfaces, indicating that newly erupted samples may display higher reactivity. A composition-dependent range of available surface iron was measured after a 7-day incubation, from 22.5 to 315.7 μmol m−2, with mafic samples releasing more iron

  13. Assessment of the potential respiratory hazard of volcanic ash from future Icelandic eruptions: a study of archived basaltic to rhyolitic ash samples.

    Science.gov (United States)

    Damby, David E; Horwell, Claire J; Larsen, Gudrun; Thordarson, Thorvaldur; Tomatis, Maura; Fubini, Bice; Donaldson, Ken

    2017-09-11

    The eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011), Iceland, triggered immediate, international consideration of the respiratory health hazard of inhaling volcanic ash, and prompted the need to estimate the potential hazard posed by future eruptions of Iceland's volcanoes to Icelandic and Northern European populations. A physicochemical characterization and toxicological assessment was conducted on a suite of archived ash samples spanning the spectrum of past eruptions (basaltic to rhyolitic magmatic composition) of Icelandic volcanoes following a protocol specifically designed by the International Volcanic Health Hazard Network. Icelandic ash can be of a respirable size (up to 11.3 vol.% fiber-like particles were observed, but those present comprised glass or sodium oxides, and are not related to pathogenic natural fibers, like asbestos or fibrous zeolites, thereby limiting concern of associated respiratory diseases. None of the samples contained cristobalite or tridymite, and only one sample contained quartz, minerals of interest due to the potential to cause silicosis. Sample surface areas are low, ranging from 0.4 to 1.6 m 2  g -1 , which aligns with analyses on ash from other eruptions worldwide. All samples generated a low level of hydroxyl radicals (HO • ), a measure of surface reactivity, through the iron-catalyzed Fenton reaction compared to concurrently analyzed comparative samples. However, radical generation increased after 'refreshing' sample surfaces, indicating that newly erupted samples may display higher reactivity. A composition-dependent range of available surface iron was measured after a 7-day incubation, from 22.5 to 315.7 μmol m -2 , with mafic samples releasing more iron than silicic samples. All samples were non-reactive in a test of red blood cell-membrane damage. The primary particle-specific concern is the potential for future eruptions of Iceland's volcanoes to generate fine, respirable material and, thus, to

  14. Remote observations of eruptive clouds and surface thermal activity during the 2009 eruption of Redoubt volcano

    Science.gov (United States)

    Webley, P. W.; Lopez, T. M.; Ekstrand, A. L.; Dean, K. G.; Rinkleff, P.; Dehn, J.; Cahill, C. F.; Wessels, R. L.; Bailey, J. E.; Izbekov, P.; Worden, A.

    2013-06-01

    Volcanoes often erupt explosively and generate a variety of hazards including volcanic ash clouds and gaseous plumes. These clouds and plumes are a significant hazard to the aviation industry and the ground features can be a major hazard to local communities. Here, we provide a chronology of the 2009 Redoubt Volcano eruption using frequent, low spatial resolution thermal infrared (TIR), mid-infrared (MIR) and ultraviolet (UV) satellite remote sensing data. The first explosion of the 2009 eruption of Redoubt Volcano occurred on March 15, 2009 (UTC) and was followed by a series of magmatic explosive events starting on March 23 (UTC). From March 23-April 4 2009, satellites imaged at least 19 separate explosive events that sent ash clouds up to 18 km above sea level (ASL) that dispersed ash across the Cook Inlet region. In this manuscript, we provide an overview of the ash clouds and plumes from the 19 explosive events, detailing their cloud-top heights and discussing the variations in infrared absorption signals. We show that the timing of the TIR data relative to the event end time was critical for inferring the TIR derived height and true cloud top height. The ash clouds were high in water content, likely in the form of ice, which masked the negative TIR brightness temperature difference (BTD) signal typically used for volcanic ash detection. The analysis shown here illustrates the utility of remote sensing data during volcanic crises to measure critical real-time parameters, such as cloud-top heights, changes in ground-based thermal activity, and plume/cloud location.

  15. The origin of plagioclase phenocrysts in basalts from continental monogenetic volcanoes of the Kaikohe-Bay of Islands field, New Zealand: implications for magmatic assembly and ascent

    Science.gov (United States)

    Coote, Alisha; Shane, Phil; Stirling, Claudine; Reid, Malcolm

    2018-02-01

    Late Quaternary, porphyritic basalts erupted in the Kaikohe-Bay of Islands area, New Zealand, provide an opportunity to explore the crystallization and ascent history of small volume magmas in an intra-continental monogenetic volcano field. The plagioclase phenocrysts represent a diverse crystal cargo. Most of the crystals have a rim growth that is compositionally similar to groundmass plagioclase ( An65) and is in equilibrium with the host basalt rock. The rims surround a resorbed core that is either less calcic ( An20-45) or more calcic (> An70), having crystallized in more differentiated or more primitive melts, respectively. The relic cores, particularly those that are less calcic (The erupted basalts represent mafic recharge of this system, as indicated by the final crystal rim growths around the entrained antecrystic and xenocrystic cargo. The recharge also entrained cognate gabbros that occur as inclusions, and produced mingled groundmasses. Multi-stage magmatic ascent and interaction is indicated, and is consistent with the presence of a partial melt body in the lower crust detected by geophysical methods. This crystallization history contrasts with traditional concepts of low-flux basaltic systems where rapid ascent from the mantle is inferred. From a hazards perspective, the magmatic system inferred here increases the likelihood of detecting eruption precursor phenomena such as seismicity, degassing and surface deformation.

  16. Magma genesis, storage and eruption processes at Aluto volcano, Ethiopia: lessons from remote sensing, gas emissions and geochemistry

    Science.gov (United States)

    Hutchison, William; Biggs, Juliet; Mather, Tamsin; Pyle, David; Gleeson, Matthew; Lewi, Elias; Yirgu, Gezahgen; Caliro, Stefano; Chiodini, Giovanni; Fischer, Tobias

    2016-04-01

    One of the most intriguing aspects of magmatism during the transition from continental rifting to sea-floor spreading is that large silicic magmatic systems develop within the rift zone. In the Main Ethiopian Rift (MER) these silicic volcanoes not only pose a significant hazard to local populations but they also sustain major geothermal resources. Understanding the journey magma takes from source to surface beneath these volcanoes is vital for determining its eruption style and for better evaluating the geothermal resources that these complexes host. We investigate Aluto, a restless silicic volcano in the MER, and combine a wide range of geochemical and geophysical techniques to constrain magma genesis, storage and eruption processes and shed light on magmatic-hydrothermal-tectonic interactions. Magma genesis and storage processes at Aluto were evaluated using new whole-rock geochemical data from recent eruptive products. Geochemical modelling confirms that Aluto's peralkaline rhyolites, that constitute the bulk of recent erupted products, are generated from protracted fractionation (>80 %) of basalt that is compositionally similar to rift-related basalts found on the margins of the complex. Crustal melting did not play a significant role in rhyolite genesis and melt storage depths of ~5 km can reproduce almost all aspects of their geochemistry. InSAR methods were then used to investigate magma storage and fluid movement at Aluto during an episode of ground deformation that took place between 2008 and 2010. Combining new SAR imagery from different viewing geometries we identified an accelerating uplift pulse and found that source models support depths of magmatic and/or fluid intrusion at ~5 km for the uplift and shallower depths of ~4 km for the subsidence. Finally, gas samples collected on Aluto in 2014 were used to evaluate magma and fluid transport processes. Our results show that gases are predominantly emanating from major fault zones on Aluto and that they

  17. A critical evaluation of the evidence for multiple Late Pleistocene eruptions of Laacher See Volcano

    DEFF Research Database (Denmark)

    Zernack, Anke Verena; Hoggard, Christian Steven; Sauer, Florian Rudolf

    The c. 12,900 BP Plinian eruption of Laacher See Volcano is one of the largest known volcanic events of the Late Pleistocene in the Northern Hemisphere. It buried proximal areas under tens of meters of pyroclastic flow, surge and fallout deposits and deposited a widespread tephra layer across much...... of dispersal of the products from varying eruptive stages and some sites even report two distinct Laacher See Tephra layers that have been interpreted as evidence of a precursor eruption. In order to assess the potential for multiple Late Pleistocene eruptions of Laacher See Volcano, we have compiled...

  18. Pre-eruption deformation caused by dike intrusion beneath Kizimen volcano, Kamchatka, Russia, observed by InSAR

    Science.gov (United States)

    Ji, Lingyun; Lu, Zhong; Dzurisin, Daniel; Senyukov, Sergey

    2013-01-01

    Interferometric synthetic aperture radar (InSAR) images reveal a pre-eruption deformation signal at Kizimen volcano, Kamchatka, Russia, where an ongoing eruption began in mid-November, 2010. The previous eruption of this basaltic andesite-to-dacite stratovolcano occurred in 1927–1928. InSAR images from both ascending and descending orbital passes of Envisat and ALOS PALSAR satellites show as much as 6 cm of line-of-sight shortening from September 2008 to September 2010 in a broad area centered at Kizimen. About 20 cm of opening of a nearly vertical dike provides an adequate fit to the surface deformation pattern. The model dike is approximately 14 km long, 10 km high, centered 13 km beneath Kizimen, and strikes NE–SW. Time-series analysis of multi-temporal interferograms indicates that (1) intrusion started sometime between late 2008 and July 2009, (2) continued at a nearly constant rate, and (3) resulted in a volume expansion of 3.2 × 107 m3 by September 2010, i.e., about two months before the onset of the 2010 eruption. Earthquakes located above the tip of the dike accompanied the intrusion. Eventually, magma pressure in the dike exceeded the confining strength of the host rock, triggering the 2010 eruption. Our results provide insight into the intrusion process that preceded an explosive eruption at a Pacific Rim stratovolcano following nearly a century of quiescence, and therefore have implications for monitoring and hazards assessment at similar volcanoes elsewhere.

  19. Halogen degassing during ascent and eruption of water-poor basaltic magma

    Science.gov (United States)

    Edmonds, M.; Gerlach, T.M.; Herd, Richard A.

    2009-01-01

    A study of volcanic gas composition and matrix glass volatile concentrations has allowed a model for halogen degassing to be formulated for K??lauea Volcano, Hawai'i. Volcanic gases emitted during 2004-2005 were characterised by a molar SO2/HCl of 10-64, with a mean of 33; and a molar HF/HCl of 0-5, with a mean of 1.0 (from approximately 2500 measurements). The HF/HCl ratio was more variable than the SO2/HCl ratio, and the two correlate weakly. Variations in ratio took place over rapid timescales (seconds). Matrix glasses of Pele's tears erupted in 2006 have a mean S, Cl and F content of 67, 85 and 173??ppm respectively, but are associated with a large range in S/F. A model is developed that describes the open system degassing of halogens from parental magmas, using the glass data from this study, previously published results and parameterisation of sulphur degassing from previous work. The results illustrate that halogen degassing takes place at pressures of < 1??MPa, equivalent to < ~ 35??m in the conduit. Fluid-melt partition coefficients for Cl and F are low (< 1.5); F only degasses appreciably at < 0.1??MPa above atmospheric pressure, virtually at the top of the magma column. This model reproduces the volcanic gas data and other observations of volcanic activity well and is consistent with other studies of halogen degassing from basaltic magmas. The model suggests that variation in volcanic gas halogen ratios is caused by exsolution and gas-melt separation at low pressures in the conduit. There is no evidence that either diffusive fractionation or near-vent chemical reactions involving halogens is important in the system, although these processes cannot be ruled out. The fluxes of HCl and HF from K??lauea during 2004-5 were ~ 25 and 12??t/d respectively. ?? 2008 Elsevier B.V.

  20. Magmatic controls on eruption dynamics of the 1950 yr B.P. eruption of San Antonio Volcano, Tacaná Volcanic Complex, Mexico-Guatemala

    Science.gov (United States)

    Mora, Juan Carlos; Gardner, James Edward; Macías, José Luis; Meriggi, Lorenzo; Santo, Alba Patrizia

    2013-07-01

    San Antonio Volcano, in the Tacaná Volcanic Complex, erupted ~ 1950 yr. B.P., with a Pelean type eruption that produced andesitic pyroclastic surges and block-and-ash flows destroying part of the volcano summit and producing a horse-shoe shaped crater open to the SW. Between 1950 and 800 yr B.P. the eruption continued with effusive andesites followed by a dacite lava flow and a summit dome, all from a single magma batch. All products consist of phenocrysts and microphenocrysts of zoned plagioclase, amphibole, pyroxene, magnetite ± ilmenite, set in partially crystallized groundmass of glass and microlites of the same mineral phases, except for the lack of amphibole. Included in the andesitic blocks of the block-and-ash flow deposit are basaltic andesite enclaves with elongated and ellipsoidal forms and chilled margins. The enclaves have intersertal textures with brown glass between microphenocrysts of plagioclase, hornblende, pyroxene, and olivine, and minor proportions of phenocrysts of plagioclase, hornblende, and pyroxene. A compositional range obtained of blocks and enclaves resulted from mixing between andesite (866 °C ± 22) and basaltic andesite (enclaves, 932 °C ± 22), which may have triggered the explosive Pelean eruption. Vestiges of that mixing are preserved as complex compositional zones in plagioclase and clinopyroxene-rich reaction rims in amphibole in the andesite. Whole-rock chemistry, geothermometry, experimental petrology and modeling results suggest that after the mixing event the eruption tapped hybrid andesitic magma (≤ 900 °C) and ended with effusive dacitic magma (~ 825 °C), all of which were stored at ~ 200 MPa water pressure. A complex open-system evolution that involved crustal end-members best explains the generation of effusive dacite from the hybrid andesite. Amphibole in the dacite is rimmed by reaction products of plagioclase, orthopyroxene, and Fe-Ti oxides produced by decompression during ascent. Amphibole in the andesite

  1. Formation of perched lava ponds on basaltic volcanoes: Interaction between cooling rate and flow geometry allows estimation of lava effusion rates

    Science.gov (United States)

    Wilson, L.; Parfitt, E. A.

    1993-01-01

    Perched lava ponds are infrequent but distinctive topographic features formed during some basaltic eruptions. Two such ponds, each approximately 150 m in diameter, formed during the 1968 eruption at Napau Crater and the 1974 eruption of Mauna Ulu, both on Kilauea Volcano, Hawaii. Each one formed where a channelized, high volume flux lava flow encountered a sharp reduction of slope: the flow spread out radially and stalled, forming a well-defined terminal levee enclosing a nearly circular lava pond. We describe a model of how cooling limits the motion of lava spreading radially into a pond and compare this with the case of a channelized flow. The difference in geometry has a major effect, such that the size of a pond is a good indicator of the volume flux of the lava forming it. Lateral spreading on distal shallow slopes is a major factor limiting the lengths of lava flows.

  2. Ilchulbong tuff cone, Jeju Island, Korea, revisited: A compound monogenetic volcano involving multiple magma batches, shifting vents, and discrete eruptive phases

    Science.gov (United States)

    Sohn, Y.; Brenna, M.; Smith, I. E.; Nemeth, K.; White, J. D.; Murtagh, R.; Jeon, Y.; Kwon, C.; Cronin, S. J.

    2010-12-01

    Ilchulbong (Sunrise Peak) tuff cone is a UNESCO World Heritage site that owes its scientific importance to the outstanding coastal exposures that surround it. It is also one of the classic sites that provided the sedimentary evidence for the primary pyroclastic processes that occur during phreatomagmatic basaltic eruptions. It has been long considered, based on the cone morphology, that this classic cone was produced via eruption from a single vent site. Reanalysis of the detailed sedimentary sequence has now revealed that two subtle paraconformities occur in this deposition sequence, one representing a significant time break of perhaps days to weeks or months, during which erosion and compaction of the lower cone occurred, the conduit cooled and solidified and a subsequent resumption of eruption took place in a new vent location. Detailed geochemical study of the juvenile clasts through this cone reveals that three separate alkali basaltic magma batches were erupted, the first and third erupted may be genetically related, with the latter showing evidence for longer periods of shallow-level fractionation. The second magma batch erupted was generated in a different mantle source area. Reconstructing the eruption sequence, the lower Ilchulbong cone was formed by eruption of magma 1. Cessation of eruption was accompanied by erosion to generate a volcano-wide unconformity, associated with reworked deposits in the lower cone flanks. The eruption resumed with magma 2 that, due to the cooled earlier conduit, was forced to erupt in a new site to the west of the initial vent. This formed the middle cone sequence over the initially formed structure. The third magma batch erupted with little or no interval after magma 2 from the same vent location, associated with cone instability and slumping, and making up the deposits of the upper cone. These results demonstrate how critical the examination for sedimentary evidence for time breaks in such eruption sequences is for

  3. The Hawaiian Volcano Observatory: a natural laboratory for studying basaltic volcanism: Chapter 1 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Tilling, Robert I.; Kauahikaua, James P.; Brantley, Steven R.; Neal, Christina A.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    In the beginning of the 20th century, geologist Thomas A. Jaggar, Jr., argued that, to fully understand volcanic and associated hazards, the expeditionary mode of studying eruptions only after they occurred was inadequate. Instead, he fervently advocated the use of permanent observatories to record and measure volcanic phenomena—at and below the surface—before, during, and after eruptions to obtain the basic scientific information needed to protect people and property from volcanic hazards. With the crucial early help of American volcanologist Frank Alvord Perret and the Hawaiian business community, the Hawaiian Volcano Observatory (HVO) was established in 1912, and Jaggar’s vision became reality. From its inception, HVO’s mission has centered on several goals: (1) measuring and documenting the seismic, eruptive, and geodetic processes of active Hawaiian volcanoes (principally Kīlauea and Mauna Loa); (2) geological mapping and dating of deposits to reconstruct volcanic histories, understand island evolution, and determine eruptive frequencies and volcanic hazards; (3) systematically collecting eruptive products, including gases, for laboratory analysis; and (4) widely disseminating observatory-acquired data and analysis, reports, and hazard warnings to the global scientific community, emergency-management authorities, news media, and the public. The long-term focus on these goals by HVO scientists, in collaboration with investigators from many other organizations, continues to fulfill Jaggar’s career-long vision of reducing risks from volcanic and earthquake hazards across the globe.

  4. Interdisciplinary Studies of Eruption at Chaitén Volcano, Chile

    Science.gov (United States)

    Pallister, John S.; Major, Jon J.; Pierson, Thomas C.; Hoblitt, Richard P.; Lowenstern, Jacob B.; Eichelberger, John C.; Lara, Luis; Moreno, Hugo; Muñoz, Jorge; Castro, Jonathan M.; Iroumé, Andrés; Andreoli, Andrea; Jones, Julia; Swanson, Fred; Crisafulli, Charlie

    2010-10-01

    High-silica rhyolite magma fuels Earth's largest and most explosive eruptions. Recurrence intervals for such highly explosive eruptions are in the 100- to 100,000­year time range, and there have been few direct observations of such eruptions and their immediate impacts. Consequently, there was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaitén volcano, southern Chile, a 3-kilometer­diameter caldera volcano with a prehistoric record of rhyolite eruptions [Naranjo and Stern, 2004; Servicio Nacional de Geología y Minería (SERNAGEOMIN), 2008; Carn et al., 2009; Castro and Dingwell, 2009; Lara, 2009; Muñoz et al., 2009]. Vigorous explosions occurred through 8 May 2008, after which explosive activity waned and a new lava dome was extruded.

  5. Estimating rates of decompression from textures of erupted ash particles produced by 1999-2006 eruptions of Tungurahua volcano, Ecuador

    Science.gov (United States)

    Wright, Heather M.N.; Cashman, Katharine V.; Mothes, Patricia A.; Hall, Minard L.; Ruiz, Andrés Gorki; Le Pennec, Jean-Luc

    2012-01-01

    Persistent low- to moderate-level eruptive activity of andesitic volcanoes is difficult to monitor because small changes in magma supply rates may cause abrupt transitions in eruptive style. As direct measurement of magma supply is not possible, robust techniques for indirect measurements must be developed. Here we demonstrate that crystal textures of ash particles from 1999 to 2006 Vulcanian and Strombolian eruptions of Tungurahua volcano, Ecuador, provide quantitative information about the dynamics of magma ascent and eruption that is difficult to obtain from other monitoring approaches. We show that the crystallinity of erupted ash particles is controlled by the magma supply rate (MSR); ash erupted during periods of high magma supply is substantially less crystalline than during periods of low magma supply. This correlation is most easily explained by efficient degassing at very low pressures (<<50 MPa) and degassing-driven crystallization controlled by the time available prior to eruption. Our data also suggest that the observed transition from intermittent Vulcanian explosions at low MSR to more continuous periods of Strombolian eruptions and lava fountains at high MSR can be explained by the rise of bubbles through (Strombolian) or trapping of bubbles beneath (Vulcanian) vent-capping, variably viscous (and crystalline) magma.

  6. The source and longevity of sulfur in an Icelandic flood basalt eruption plume

    Science.gov (United States)

    Ilyinskaya, Evgenia; Edmonds, Marie; Mather, Tamsin; Schmidt, Anja; Hartley, Margaret; Oppenheimer, Clive; Pope, Francis; Donovan, Amy; Sigmarsson, Olgeir; Maclennan, John; Shorttle, Oliver; Francis, Peter; Bergsson, Baldur; Barsotti, Sara; Thordarson, Thorvaldur; Bali, Eniko; Keller, Nicole; Stefansson, Andri

    2015-04-01

    The Holuhraun fissure eruption (Bárðarbunga volcanic system, central Iceland) has been ongoing since 31 August 2014 and is now the largest in Europe since the 1783-84 Laki event. For the first time in the modern age we have the opportunity to study at first hand the environmental impact of a flood basalt fissure eruption (>1 km3 lava). Flood basalt eruptions are one of the most hazardous volcanic scenarios in Iceland and have had enormous societal and economic consequences across the northern hemisphere in the past. The Laki eruption caused the deaths of >20% of the Icelandic population by environmental pollution and famine and potentially also increased European levels of mortality through air pollution by sulphur-bearing gas and aerosol. A flood basalt eruption was included in the UK National Risk Register in 2012 as one of the highest priority risks. The gas emissions from Holuhraun have been sustained since its beginning, repeatedly causing severe air pollution in populated areas in Iceland. During 18-22 September, SO2 fluxes reached 45 kt/day, a rate of outgassing rarely observed during sustained eruptions, suggesting that the sulfur loading per kg of erupted magma exceeds both that of other recent eruptions in Iceland and perhaps also other historic basaltic eruptions globally. This raises key questions regarding the origin of these prodigious quantities of sulphur. A lack of understanding of the source of this sulfur, the conversion rates of SO2 gas into aerosol, the residence times of aerosol in the plume and the dependence of these on meteorological factors is limiting our confidence in the ability of atmospheric models to forecast gas and aerosol concentrations in the near- and far-field from Icelandic flood basalt eruptions. In 2015 our group is undertaking a project funded by UK NERC urgency scheme to investigate several aspects of the sulfur budget at Holuhraun using a novel and powerful approach involving simultaneous tracking of sulfur and

  7. Magnetic noise preceding the august 1971 summit eruption of kilauea volcano.

    Science.gov (United States)

    Keller, G V; Jackson, D B; Rapolla, A

    1972-03-31

    During the course of an electromagnetic survey about Kilauea Volcano in Hawaii, an unusual amount of low-frequency noise was observed at one recording location. Several weeks later an eruption occurred very close to this site. The high noise level appeared to be associated in some way with the impending eruption.

  8. Late Holocene Eruptive History of Popocatepetl Volcano, Mexico: Implications for Future Hazards

    Science.gov (United States)

    Abrams, M.

    1995-01-01

    Detailed mapping of the strata around the Popocatepetl Volcano in central Mexico indicates that there have been major eruptions every 1000 to 2000 years. The last two of these destroyed pre- Columbian cities in the area, and a similar level of eruption today might require evacuation of as many as 30 million people.

  9. Mechanism of the 1996-97 non-eruptive volcano-tectonic earthquake swarm at Iliamna Volcano, Alaska

    Science.gov (United States)

    Roman, D.C.; Power, J.A.

    2011-01-01

    A significant number of volcano-tectonic(VT) earthquake swarms, some of which are accompanied by ground deformation and/or volcanic gas emissions, do not culminate in an eruption.These swarms are often thought to represent stalled intrusions of magma into the mid- or shallow-level crust.Real-time assessment of the likelihood that a VTswarm will culminate in an eruption is one of the key challenges of volcano monitoring, and retrospective analysis of non-eruptive swarms provides an important framework for future assessments. Here we explore models for a non-eruptive VT earthquake swarm located beneath Iliamna Volcano, Alaska, in May 1996-June 1997 through calculation and inversion of fault-plane solutions for swarm and background periods, and through Coulomb stress modeling of faulting types and hypocenter locations observed during the swarm. Through a comparison of models of deep and shallow intrusions to swarm observations,we aim to test the hypothesis that the 1996-97 swarm represented a shallow intrusion, or "failed" eruption.Observations of the 1996-97 swarm are found to be consistent with several scenarios including both shallow and deep intrusion, most likely involving a relatively small volume of intruded magma and/or a low degree of magma pressurization corresponding to a relatively low likelihood of eruption. ?? 2011 Springer-Verlag.

  10. Petrologic characteristics of the 1982 and pre-1982 eruptive products of El Chichon volcano, Chiapas, Mexico.

    Science.gov (United States)

    McGee, J.J.; Tilling, R.I.; Duffield, W.A.

    1987-01-01

    Studies on a suite of rocks from this volcano indicate that the juvenile materials of the 1982 and pre-1982 eruptions of the volcano have essentially the same mineralogy and chemistry. Data suggest that chemical composition changed little over the 0.3 m.y. sample period. Modally, plagioclase is the dominant phenocryst, followed by amphibole, clinopyroxene and minor phases including anhydrite. Plagioclase phenocrysts show complex zoning: the anorthite-rich zones are probably the result of changing volatile P on the magma and may reflect the changes in the volcano's magma reservoir in response to repetitive, explosive eruptive activity.-R.E.S.

  11. Rifts of deeply eroded Hawaiian basaltic shields: A structural analog for large Martian volcanoes

    Science.gov (United States)

    Knight, Michael D.; Walker, G. P. L.; Mouginis-Mark, P. J.; Rowland, Scott K.

    1988-01-01

    Recently derived morphologic evidence suggests that intrusive events have not only influenced the growth of young shield volcanoes on Mars but also the distribution of volatiles surrounding these volcanoes: in addition to rift zones and flank eruptions on Arsia Mons and Pavonis Mons, melt water channels were identified to the northwest of Hecates Tholus, to the south of Hadriaca Patera, and to the SE of Olympus Mons. Melt water release could be the surface expression of tectonic deformation of the region or, potentially, intrusive events associated with dike emplacement from each of these volcanoes. In this study the structural properties of Hawaiian shield volcanoes were studied where subaerial erosion has removed a sufficient amount of the surface to enable a direct investigation of the internal structure of the volcanoes. The field investigation of dike morphology and magma flow characteristics for several volcanoes in Hawaii is reported. A comprehensive investigation was made of the Koolau dike complex that passes through the summit caldera. A study of two other dissected Hawaiian volcanoes, namely Waianae and East Molokai, was commenced. The goal is not only to understand the emplacement process and magma flow within these terrestrial dikes, but also to explore the possible role that intrusive events may have played in volcano growth and the distribution of melt water release on Mars.

  12. Rifts of deeply eroded Hawaiian basaltic shields: a structural analog for large Martian volcanoes

    International Nuclear Information System (INIS)

    Knight, M.D.; Walker, G.P.L.; Mouginis-Mark, P.J.; Rowland, S.K.

    1988-01-01

    Recently derived morphologic evidence suggests that intrusive events have not only influenced the growth of young shield volcanoes on Mars but also the distribution of volatiles surrounding these volcanoes: in addition to rift zones and flank eruptions on Arsia Mons and Pavonis Mons, melt water channels were identified to the northwest of Hecates Tholus, to the south of Hadriaca Patera, and to the SE of Olympus Mons. Melt water release could be the surface expression of tectonic deformation of the region or, potentially, intrusive events associated with dike emplacement from each of these volcanoes. In this study the structural properties of Hawaiian shield volcanoes were studied where subaerial erosion has removed a sufficient amount of the surface to enable a direct investigation of the internal structure of the volcanoes. The field investigation of dike morphology and magma flow characteristics for several volcanoes in Hawaii is reported. A comprehensive investigation was made of the Koolau dike complex that passes through the summit caldera. A study of two other dissected Hawaiian volcanoes, namely Waianae and East Molokai, was commenced. The goal is not only to understand the emplacement process and magma flow within these terrestrial dikes, but also to explore the possible role that intrusive events may have played in volcano growth and the distribution of melt water release on Mars

  13. Edifice growth, deformation and rift zone development in basaltic setting: Insights from Piton de la Fournaise shield volcano (Réunion Island)

    Science.gov (United States)

    Michon, Laurent; Cayol, Valérie; Letourneur, Ludovic; Peltier, Aline; Villeneuve, Nicolas; Staudacher, Thomas

    2009-07-01

    The overall morphology of basaltic volcanoes mainly depends on their eruptive activity (effusive vs. explosive), the geometry of the rift zones and the characteristics of both endogenous and exogenous growth processes. The origin of the steep geometry of the central cone of Piton de la Fournaise volcano, which is unusual for a basaltic effusive volcano, and its deformation are examined with a combination of a detailed morphological analysis, field observations, GPS data from the Piton de la Fournaise Volcano Observatory and numerical models. The new caldera walls formed during the April 2007 summit collapse reveal that the steep cone is composed of a pyroclastic core, inherited from an earlier explosive phase, overlapped by a pile of thin lava flows. This suggests that exogenous processes played a major role in the building of the steep central cone. Magma injections into the cone, which mainly occur along the N25-30 and N120 rift zones, lead to an asymmetric outward inflation concentrated in the cone's eastern half. This endogenous growth progressively tilts the southeast and east flanks of the cone, and induces the development of a dense network of flank fractures. Finally, it is proposed that intrusions along the N120 rift zone are encouraged by stresses induced by magma injections along the N25-30 rift zone.

  14. Unearthing The Eruptive Personality Of El Salvador's Santa Ana (Ilamatepec) Volcano Though In-depth Stratigraphic Analysis Of Pre-1904 Deposits

    Science.gov (United States)

    Gallant, E.; Martinez-Hackert, B.

    2011-12-01

    The Santa Ana (Ilamatepec) volcano (2384 m) in densely populated El Salvador Central America presents serious volcanic hazard potential. The volcano is a prevalent part of every day life in El Salvador; the sugarcane and coffee belt of the country are to its Southern and Western flanks, recreational areas lies to its East, and second and third largest cities of El Salvador exist within its 25 km radius. Understanding the eruptive characteristics and history is imperative due to the volcano's relative size (the highest in the country) and it's explosive, composite nature. Historical records indicate at least 9 potential VEI 3 eruptions since 1521 AD. The volcano's relative inaccessibility and potential hazards do not promote a vast reservoir of research activity, as can be seen in the scarcity of published papers on topics prior to the 1904 eruption. This research represents the first steps towards creating a comprehensive stratigraphic record of the crater and characterizing its eruptive history, with an eventual goal of recreating the volcanic structure prior to its collapse. Samples of pre-1904 eruptive material were taken from the southern wall of an E-W oriented fluvial gully located within the SSW of the tertiary crater. These were analyzed using thin sections and optical microscopy, grain size distribution techniques, and scanning electron microscopy. The 15-layer sequence indicates an explosive history characterized by intense phreatomagmatic phases, plinian, sub-plinian and basaltic/andesitic composition strombolian activity. Another poster within the session will discuss an older sequence within the walls of the secondary crater. Further detailed studies will be required to gain a better understanding of the characteristics of Santa Ana Volcano.

  15. Monitoring a restless volcano: The 2004 eruption of Mount St. Helens

    Science.gov (United States)

    Gardner, C.

    2005-01-01

    Although the precise course of volcanic activity is difficult to predict, volcanologists are pretty adept at interpreting volcanic signals from well-monitored volcanoes in order to make short-term forecasts. Various monitoring tools record effects to give us warning before eruptions, changes in eruptive behavior during eruptions, or signals that an eruption is ending. Foremost among these tools is seismic monitoring. The character, size, depth and rate of earthquakes are all important to the interpretation of what is happening belowground. The first inkling of renewed activity at Mount St. Helens began in the early hours of Sept. 23, when a seismic swarm - tens to hundreds of earthquakes over days to a week - began beneath the volcano. This article details the obervations made during the eruptive sequence.

  16. Disruption of tephra fall deposits caused by lava flows during basaltic eruptions

    Science.gov (United States)

    Brown, R. J.; Thordarson, T.; Self, S.; Blake, S.

    2015-10-01

    Observations in the USA, Iceland and Tenerife, Canary Islands reveal how processes occurring during basaltic eruptions can result in complex physical and stratigraphic relationships between lava and proximal tephra fall deposits around vents. Observations illustrate how basaltic lavas can disrupt, dissect (spatially and temporally) and alter sheet-form fall deposits. Complexity arises through synchronous and alternating effusive and explosive activity that results in intercalated lavas and tephra deposits. Tephra deposits can become disrupted into mounds and ridges by lateral and vertical displacement caused by movement (including inflation) of underlying pāhoehoe lavas and clastogenic lavas. Mounds of tephra can be rafted away over distances of 100 s to 1,000 s m from proximal pyroclastic constructs on top of lava flows. Draping of irregular topography by fall deposits and subsequent partial burial of topographic depressions by later lavas can result in apparent complexity of tephra layers. These processes, deduced from field relationships, have resulted in considerable stratigraphic complexity in the studied proximal regions where fallout was synchronous or alternated with inflation of subjacent lava sheets. These mechanisms may lead to diachronous contact relationships between fall deposits and lava flows. Such complexities may remain cryptic due to textural and geochemical quasi-homogeneity within sequences of interbedded basaltic fall deposits and lavas. The net effect of these processes may be to reduce the usefulness of data collected from proximal fall deposits for reconstructing basaltic eruption dynamics.

  17. Post-Eruption Deformation Processes Measured Using ALOS-1 and UAVSAR InSAR at Pacaya Volcano, Guatemala

    Directory of Open Access Journals (Sweden)

    Lauren N. Schaefer

    2016-01-01

    Full Text Available Pacaya volcano is a persistently active basaltic cone complex located in the Central American Volcanic Arc in Guatemala. In May of 2010, violent Volcanic Explosivity Index-3 (VEI-3 eruptions caused significant topographic changes to the edifice, including a linear collapse feature 600 m long originating from the summit, the dispersion of ~20 cm of tephra and ash on the cone, the emplacement of a 5.4 km long lava flow, and ~3 m of co-eruptive movement of the southwest flank. For this study, Interferometric Synthetic Aperture Radar (InSAR images (interferograms processed from both spaceborne Advanced Land Observing Satellite-1 (ALOS-1 and aerial Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR data acquired between 31 May 2010 and 10 April 2014 were used to measure post-eruptive deformation events. Interferograms suggest three distinct deformation processes after the May 2010 eruptions, including: (1 subsidence of the area involved in the co-eruptive slope movement; (2 localized deformation near the summit; and (3 emplacement and subsequent subsidence of about a 5.4 km lava flow. The detection of several different geophysical signals emphasizes the utility of measuring volcanic deformation using remote sensing techniques with broad spatial coverage. Additionally, the high spatial resolution of UAVSAR has proven to be an excellent compliment to satellite data, particularly for constraining motion components. Measuring the rapid initiation and cessation of flank instability, followed by stabilization and subsequent influence on eruptive features, provides a rare glimpse into volcanic slope stability processes. Observing these and other deformation events contributes both to hazard assessment at Pacaya and to the study of the stability of stratovolcanoes.

  18. On the geochemistry of the Kyra eruption sequence of Nisyros volcano on Nisyros and Tilos, Greece

    International Nuclear Information System (INIS)

    Sterba, Johannes H.; Steinhauser, Georg; Bichler, Max

    2011-01-01

    The Kyra sequence is a volcanic eruption sequence originating from the eastern flank of Nisyros volcano, Greece. Its eruptions products can be found not only on Nisyros itself but also on the nearby non-volcanic island of Tilos. In an extensive sampling campaign, outcrops of the Kyra eruption products on Nisyros were sampled and corresponding samples on Tilos were taken. The clear stratigraphical relationship between the different units within in the individual outcrops, combined with the chemical information gained by the application of instrumental neutron activation analysis (INAA) to the samples, made a detailed chemo-stratigraphy of the complete eruption sequence possible. It can be shown that the sequence is separated into eight distinguishable eruptions. Furthermore, no eruption products of the caldera-forming eruptions from Nisyros (Lower- and Upper Caldera Pumice) or from Santorin were found on Tilos.

  19. Special issue “The phreatic eruption of Mt. Ontake volcano in 2014”

    Science.gov (United States)

    Yamaoka, Koshun; Geshi, Nobuo; Hashimoto, Tasheki; Ingebritsen, Steven E.; Oikawa, Teruki

    2016-01-01

    Mt. Ontake volcano erupted at 11:52 on September 27, 2014, claiming the lives of at least 58 hikers. This eruption was the worst volcanic disaster in Japan since the 1926 phreatic eruption of Mt. Tokachidake claimed 144 lives (Table 1). The timing of the eruption contributed greatly to the heavy death toll: near midday, when many hikers were near the summit, and during a weekend of clear weather conditions following several rainy weekends. The importance of this timing is reflected by the fact that a somewhat larger eruption of Mt. Ontake in 1979 resulted in injuries but no deaths. In 2014, immediate precursors were detected with seismometers and tiltmeters about 10 min before the eruption, but the eruption started before a warning was issued.

  20. On the geochemistry of the Kyra eruption sequence of Nisyros volcano on Nisyros and Tilos, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Sterba, Johannes H., E-mail: jsterba@ati.ac.at [Atominstitut der oesterreichischen Universitaeten, Vienna University of Technology (Austria); Steinhauser, Georg; Bichler, Max [Atominstitut der oesterreichischen Universitaeten, Vienna University of Technology (Austria)

    2011-11-15

    The Kyra sequence is a volcanic eruption sequence originating from the eastern flank of Nisyros volcano, Greece. Its eruptions products can be found not only on Nisyros itself but also on the nearby non-volcanic island of Tilos. In an extensive sampling campaign, outcrops of the Kyra eruption products on Nisyros were sampled and corresponding samples on Tilos were taken. The clear stratigraphical relationship between the different units within in the individual outcrops, combined with the chemical information gained by the application of instrumental neutron activation analysis (INAA) to the samples, made a detailed chemo-stratigraphy of the complete eruption sequence possible. It can be shown that the sequence is separated into eight distinguishable eruptions. Furthermore, no eruption products of the caldera-forming eruptions from Nisyros (Lower- and Upper Caldera Pumice) or from Santorin were found on Tilos.

  1. Soil gas geochemistry in relation to eruptive fissures on Timanfaya volcano, Lanzarote Island (Canary Islands, Spain)

    Science.gov (United States)

    Padrón, Eleazar; Padilla, Germán; Hernández, Pedro A.; Pérez, Nemesio M.; Calvo, David; Nolasco, Dácil; Barrancos, José; Melián, Gladys V.; Dionis, Samara; Rodríguez, Fátima

    2013-01-01

    We report herein the first results of an extensive soil gas survey performed on Timanfaya volcano on May 2011. Soil gas composition at Timanfaya volcano indicates a main atmospheric source, slightly enriched in CO2 and He. Soil CO2 concentration showed a very slight deep contribution of the Timanfaya volcanic system, with no clear relation to the main eruptive fissures of the studied area. The existence of soil helium enrichments in Timanfaya indicates a shallow degassing of crustal helium and other possible deeper sources probably form cooling magma bodies at depth. The main soil helium enrichments were observed in good agreement with the main eruptive fissures of the 1730-36 eruption, with the highest values located at those areas with a higher density of recent eruptive centers, indicating an important structural control for the leakage of helium at Timanfaya volcano. Atmospheric air slightly polluted by deep-seated helium emissions, CO2 degassed from a cooling magma body, and biogenic CO2, might be the most plausible explanation for the existence of soil gas. Helium is a deep-seated gas, exhibiting important emission rates along the main eruptive fissure of the 1730-36 eruption of Timanfaya volcano.

  2. Hydrovolcanic and Hydrothermal Biomediated Mineral Growth in Basaltic Tuff, Surtsey Volcano, Iceland

    Science.gov (United States)

    Jackson, M. D.; Couper, S.; Ivarsson, M.; Stan, C. V.; Tamura, N.; Miyagi, L. M.; Moore, J. G.

    2017-12-01

    this hypothesis. Hydrovolcanic fragmentation apparently increased ingress of seawater from the marine biosphere. Both eruptive and hydrothermal water-rock interactions influenced palagonitic alteration at the submillimeter scale during diverse temperature chronologies in the very young volcano.

  3. Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes, central Mexico

    Science.gov (United States)

    Macias, J.L.; Garcia, P.A.; Arce, J.L.; Siebe, C.; Espindola, J.M.; Komorowski, J.C.; Scott, K.

    1997-01-01

    This field guide describes a five day trip to examine deposits of Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes in central Mexico. We will discuss the stratigraphy, petrology, and sedimentological characteristics of these deposits which provide insights into the eruptive history, type of volcanic activity, and transport and emplacement mechanisms of pyroclastic materials. These parameters will allow us to discuss the kinds of hazards and the risk that they pose to populations around these volcanoes. The area to be visited is tectonically complex thus we will also discuss the location of the volcanoes with respect to the tectonic environment. The first four days of the field trip will be dedicated to Nevado de Toluca Volcano (19 degrees 09'N; 99 degrees 45'W) located at 23 km. southwest of the City of Toluca, and is the fourth highest peak in the country, reaching an elevation of 4,680 meters above sea level (m.a.s.l.). Nevado de Toluca is an andesitic-dacitic stratovolcano, composed of a central vent excavated upon the remains of older craters destroyed by former events. Bloomfield and Valastro, (1974, 1977) concluded that the last cycle of activity occurred nearly equal 11,600 yr. ago. For this reason Nevado de Toluca has been considered an extinct volcano. Our studies, however, indicate that Nevado de Toluca has had at least two episodes of cone destruction by sector collapse as well as several explosive episodes including plinian eruptions and dome-destruction events. These eruptions occurred during the Pleistocene but a very young eruption characterized by surge and ash flows occurred ca. 3,300 yr. BP. This new knowledge of the volcano's eruptive history makes the evaluation of its present state of activity and the geological hazards necessary. This is important because the area is densely populated and large cities such as Toluca and Mexico are located in its proximity.

  4. Emplacement controls for the basaltic-andesitic radial dikes of Summer Coon volcano and implications for flank vents at stratovolcanoes

    Science.gov (United States)

    Harp, A. G.; Valentine, G. A.

    2018-02-01

    Mafic flank eruptions are common events that pose a serious hazard to the communities and infrastructure often encroaching on the slopes of stratovolcanoes. Flank vent locations are dictated by the propagation path of their feeder dikes. The dikes are commonly thought to propagate either laterally from the central conduit or vertically from a deeper source. However, these interpretations are often based on indirect measurements, such as surface deformation and seismicity at active systems, and several studies at eroded volcanoes indicate the propagation paths may be more complex. We investigated the Oligocene age Summer Coon volcano (Colorado, USA), where erosion has exposed over 700 basaltic-andesitic radial dikes, to constrain the propagation directions, geometries, and spatial distributions of mafic dikes within a stratovolcano. The mean fabric angle of aligned plagioclase crystals was measured in oriented samples from the margins of 77 dikes. Of the 41 dikes with statistically significant flow fabrics, 85% had fabric angles that were inclined—plunging both inward and outward relative to the center of the volcano. After comparing fabric angles to those reported in other studies, we infer that, while most of the dikes with outward-plunging fabrics descended toward the flanks from a source within the edifice and near its axis, dikes with inward-plunging fabrics ascended through the edifice and toward the flanks from a deeper source. A possible control for the inclination of ascending dikes was the ratio between magma overpressure and the normal stress in the host rock. While higher ratios led to high-angle propagation, lower ratios resulted in inclined emplacement. Dikes crop out in higher frequencies within a zone surrounding the volcano axis at 2500 m radial distance from the center and may be the result of ascending dikes, emplaced at similar propagation angles, intersecting the current level of exposure at common distances from the volcano axis. The process

  5. Chronology of the episode 54 eruption at Kilauea Volcano, Hawaii, from GOES-9 satellite data

    Science.gov (United States)

    Harris, A.J.L.; Keszthelyi, L.; Flynn, L.P.; Mouginis-Mark, P. J.; Thornber, C.; Kauahikaua, J.; Sherrod, D.; Trusdell, F.; Sawyer, M.W.; Flament, P.

    1997-01-01

    The free availability of GOES satellite data every 15 minutes makes these data an attractive tool for studying short-term changes on cloud-free volcanoes in the Pacific basin. We use cloud-free GOES-9 data to investigate the chronology of the January 1997, episode 54 eruption of Kilauea Volcano, Hawaii. Seventy-six images for this effusive eruption were collected over a 60-hour period and show the opening and shutdown of active fissures, the draining and refilling of the Pu'u 'O'o lava lake, and the cessation of activity at the ocean entry. Copyright 1997 by the American Geophysical Union.

  6. A novel approach to estimate the eruptive potential and probability in open conduit volcanoes.

    Science.gov (United States)

    De Gregorio, Sofia; Camarda, Marco

    2016-07-26

    In open conduit volcanoes, volatile-rich magma continuously enters into the feeding system nevertheless the eruptive activity occurs intermittently. From a practical perspective, the continuous steady input of magma in the feeding system is not able to produce eruptive events alone, but rather surplus of magma inputs are required to trigger the eruptive activity. The greater the amount of surplus of magma within the feeding system, the higher is the eruptive probability.Despite this observation, eruptive potential evaluations are commonly based on the regular magma supply, and in eruptive probability evaluations, generally any magma input has the same weight. Conversely, herein we present a novel approach based on the quantification of surplus of magma progressively intruded in the feeding system. To quantify the surplus of magma, we suggest to process temporal series of measurable parameters linked to the magma supply. We successfully performed a practical application on Mt Etna using the soil CO2 flux recorded over ten years.

  7. Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes.

    Science.gov (United States)

    Sandri, Laura; Costa, Antonio; Selva, Jacopo; Tonini, Roberto; Macedonio, Giovanni; Folch, Arnau; Sulpizio, Roberto

    2016-04-12

    Assessment of volcanic hazards is necessary for risk mitigation. Typically, hazard assessment is based on one or a few, subjectively chosen representative eruptive scenarios, which use a specific combination of eruptive sizes and intensities to represent a particular size class of eruption. While such eruptive scenarios use a range of representative members to capture a range of eruptive sizes and intensities in order to reflect a wider size class, a scenario approach neglects to account for the intrinsic variability of volcanic eruptions, and implicitly assumes that inter-class size variability (i.e. size difference between different eruptive size classes) dominates over intra-class size variability (i.e. size difference within an eruptive size class), the latter of which is treated as negligible. So far, no quantitative study has been undertaken to verify such an assumption. Here, we adopt a novel Probabilistic Volcanic Hazard Analysis (PVHA) strategy, which accounts for intrinsic eruptive variabilities, to quantify the tephra fallout hazard in the Campania area. We compare the results of the new probabilistic approach with the classical scenario approach. The results allow for determining whether a simplified scenario approach can be considered valid, and for quantifying the bias which arises when full variability is not accounted for.

  8. Asthenosphere versus lithosphere as possible sources for basaltic magmas erupted during formation of the Red Sea

    International Nuclear Information System (INIS)

    Altherr, R.; Henjes-Kunst, F.; Baumann, A.

    1990-01-01

    Representative basalts from the axial trough of the Red Sea and from volcanic fields of the Arabian Peninsula ranging in composition from N-type MORB to basanite and in age from Early Miocene to Recent show a limited variation in their isotopic compositions: 87 Sr/ 86 Sr = 0.70240-0.70361, 206 Pb/ 204 Pb = 18.040-19.634, 207 Pb/ 204 Pb = 15.496-15.666, 208 Pb/ 204 Pb = 37.808-39.710, 143 Nd/ 144 Nd = 0.513194-0.512670. There is a poorly constrained correlation between chemical composition and isotope ratios: with increasing alkalinity, Sr and Pb isotope ratios increase and the Nd isotope ratio tends to decrease. In Pb isotope variation diagrams most of the basalts plot significantly above the NHRLs, irrespective of tectonic setting, i.e. thickness of underlying crust and/or lithosphere. MORBs from the axial trough of the Red Sea have higher Pb isotope ratios for a given 87 Sr/ 86 Sr than MORBs from the Indian Ocean ridges, including the Carlsberg Ridge. It is therefore suggested that both spreading ridges tap different convective systems in the asthenosphere. The tectonic setting of the basalts is reflected in their Nd-Sr isotope characteristics. Basalts from areas where the continental lithosphere is drastically thinned or absent (i.e. Red Sea axial trough and coastal plain, Afar) plot along a reference line defined by N-type MORB and Tristan da Cunha. Basalts erupted in areas with Pan-African crust of normal thickness and moderately thinned lithospheric mantle (i.e. rift shoulder) are characterized by relative low 143 Nd/ 144 Nd ratios and plot below the reference line towards an EM I component which is also found in the subcontinental lithospheric mantle. These differences in the Nd-Sr isotopic compositions of the basalts are independent of bulk-rock chemistry and are therefore controlled by tectonic setting alone. (orig./WL)

  9. Evolution of 222 Rn and chemical species related with eruptive processes of the Popocatepetl volcano

    International Nuclear Information System (INIS)

    Aranda, P.; Ceballos, S.; Cruz, D.; Hernandez, A.; Lopez, R.; Pena, P.; Salazar, S.; Segovia, N.; Tamez, E.

    1997-01-01

    The 222 Rn monitoring in the Popocatepetl volcano was initiated on 1993. At December 21, 1994 it is initiated an eruptive stage in the volcano with gas emission, ashes and the lava dome formation on the crater at middle 1996. During all this time it has been determined radon concentrations on soils with active and passive detectors. In this work the changes in radon contents are reported also the physicochemical parameters in spring water related with the volcanic building associated to the recent activity of the volcano. (Author)

  10. Infrasound and SO2 Observations of the 2011 Explosive Eruption of Nabro Volcano, Eritrea

    Science.gov (United States)

    Fee, D.; Carn, S. A.; Prata, F.

    2011-12-01

    Nabro volcano, Eritrea erupted explosively on 12 June 2011 and produced near continuous emissions and infrasound until mid-July. The eruption disrupted air traffic and severely affected communities in the region. Although the eruption was relatively ash-poor, it produced significant SO2 emissions, including: 1) the highest SO2 column ever retrieved from space (3700 DU), 2) >1.3 Tg SO2 mass on 13 June, and 3) >2 Tg of SO2 for the entire eruption, one of the largest eruptive SO2 masses produced since the 1991 eruption of Mt. Pinatubo. Peak emissions reached well into the stratosphere (~19 km). Although the 12 June eruption was preceded by significant seismicity and clearly detected by satellite sensors, Nabro volcano is an understudied volcano that lies in a remote region with little ground-based monitoring. The Nabro eruption also produced significant infrasound signals that were recorded by two infrasound arrays: I19DJ (Djibouti, 264 km) and I32KE (Kenya, 1708 km). The I19DJ infrasound array detected the eruption with high signal-noise and provides the most detailed eruption chronology available, including eruption onset, duration, changes in intensity, etc. As seen in numerous other studies, sustained low frequency infrasound from Nabro is coincident with high-altitude emissions. Unexpectedly, the eruption also produced hundreds of short-duration, impulsive explosion signals, in addition to the sustained infrasonic jetting signals more typical of subplinian-plinian eruptions. These explosions are variable in amplitude, duration, and often cluster in groups. Here we present: 1) additional analyses, classification, and source estimation of the explosions, 2) infrasound propagation modeling to determine acoustic travel times and propagation paths, 3) detection and characterization of the SO2 emissions using the Ozone Monitoring Instrument (OMI) and Spin Enhanced Visible and Infra-Red Instrument (SEVIRI), and 4) a comparison between the relative infrasound energy and

  11. Volcano monitoring using GPS: Developing data analysis strategies based on the June 2007 Kīlauea Volcano intrusion and eruption

    Science.gov (United States)

    Larson, Kristine M.; Poland, Michael; Miklius, Asta

    2010-01-01

    The global positioning system (GPS) is one of the most common techniques, and the current state of the art, used to monitor volcano deformation. In addition to slow (several centimeters per year) displacement rates, GPS can be used to study eruptions and intrusions that result in much larger (tens of centimeters over hours-days) displacements. It is challenging to resolve precise positions using GPS at subdaily time intervals because of error sources such as multipath and atmospheric refraction. In this paper, the impact of errors due to multipath and atmospheric refraction at subdaily periods is examined using data from the GPS network on Kīlauea Volcano, Hawai'i. Methods for filtering position estimates to enhance precision are both simulated and tested on data collected during the June 2007 intrusion and eruption. Comparisons with tiltmeter records show that GPS instruments can precisely recover the timing of the activity.

  12. The 2003 phreatomagmatic eruptions of Anatahan volcano - Textural and petrologic features of deposits at an emergent island volcano

    Science.gov (United States)

    Pallister, J.S.; Trusdell, F.A.; Brownfield, I.K.; Siems, D.F.; Budahn, J.R.; Sutley, S.F.

    2005-01-01

    Stratigraphic and field data are used in conjunction with textural and chemical evidence (including data from scanning electron microscope, electron microprobe, X-ray fluorescence, X-ray diffraction, and instrumental neutron activation analysis) to establish that the 2003 eruption of Anatahan volcano was mainly phreatomagmatic, dominated by explosive interaction of homogeneous composition low-viscosity crystal-poor andesite magma with water. The hydromagmatic mode of eruption contributed to the significant height of initial eruptive columns and to the excavation and eruption of altered rock debris from the sub-volcanic hydrothermal system. Volatile contents of glass inclusions in equilibrium phenocrysts less abundances of these constituents in matrix glass times the estimated mass of juvenile magma indicate minimum emissions of 19 kt SO2 and 13 kt Cl. This petrologic estimate of SO2 emission is an order-of-magnitude less than an estimate from TOMS. Similarly, inferred magma volumes from the petrologic data are an order of magnitude greater than those modeled from deformation data. Both discrepancies indicate additional sources of volatiles, likely derived from a separate fluid phase in the magma. The paucity of near-source volcanic-tectonic earthquakes preceding the eruption, and the dominance of sustained long-period tremor are attributed to the ease of ascent of the hot low-viscosity andesite, followed by a shallow phreatomagmatic mode of eruption. Phreatomagmatic eruptions are probably more common at emergent tropical island volcanoes, where shallow fresh-water lenses occur at near-sea-level vents. These relations suggest that phreatomagmatic explosions contributed to the formation of many of the near-sea-level craters and possibly even to the small calderas at the other Mariana islands.

  13. The 2008 Eruption of Chaitén Volcano, Chile and National Volcano-Monitoring Programs in the U.S. and Chile

    Science.gov (United States)

    Ewert, J. W.; Lara, L. E.; Moreno, H.

    2008-12-01

    Chaitén volcano, southern Chile, began erupting on 2 May 2008. The eruption produced 3 Plinian eruption pulses between May 2 and 8. Between Plinian phases the volcano emitted a constant column of ash to approximately 10 km, gradually diminishing to approximately 3 km by the end of June. The eruption of Chaitén was remarkable on several counts--it was the first rhyolite eruption on the planet since Novarupta (Katmai) erupted in 1912, and Chaitén had apparently lain dormant for approximately 9300 years. Though Chaitén is located in a generally sparsely populated region, the eruption had widespread impacts. More than 5000 people had to be quickly evacuated from proximal areas and aviation in southern South America was disrupted for weeks. Within 10 days secondary lahars had overrun much of the town of Chaitén complicating the prospects of the townspeople to return to their homes. Prior to the eruption onset, the nearest real-time seismic station was 300 km distant, and earthquakes were not felt by local citizens until approximately 30 hours before the eruption onset. No other signs of unrest were noted. Owing to the lack of near-field monitoring, and the nighttime eruption onset, there was initial confusion about which volcano was erupting: Chaitén or nearby Michinmahuida. Lack of monitoring systems at Chaitén meant that warning time for the public at risk was extremely short, and owing to the nature of the eruption and the physical geography of the area, it was very difficult to install monitoring instruments to track its progress after the eruption started. The lack of geophysical monitoring also means that an important data set on precursory behavior for silicic systems was not collected. With more than 120 Pleistocene to Holocene-age volcanoes within its continental territory, Chile is one of the more volcanically active countries in the world. The eruption of Chaitén has catalyzed the creation of a new program within the Servicio Nacional de Geología y

  14. Sequential assimilation of volcanic monitoring data to quantify eruption potential: Application to Kerinci volcano

    Science.gov (United States)

    Zhan, Yan; Gregg, Patricia M.; Chaussard, Estelle; Aoki, Yosuke

    2017-12-01

    Quantifying the eruption potential of a restless volcano requires the ability to model parameters such as overpressure and calculate the host rock stress state as the system evolves. A critical challenge is developing a model-data fusion framework to take advantage of observational data and provide updates of the volcanic system through time. The Ensemble Kalman Filter (EnKF) uses a Monte Carlo approach to assimilate volcanic monitoring data and update models of volcanic unrest, providing time-varying estimates of overpressure and stress. Although the EnKF has been proven effective to forecast volcanic deformation using synthetic InSAR and GPS data, until now, it has not been applied to assimilate data from an active volcanic system. In this investigation, the EnKF is used to provide a “hindcast” of the 2009 explosive eruption of Kerinci volcano, Indonesia. A two-sources analytical model is used to simulate the surface deformation of Kerinci volcano observed by InSAR time-series data and to predict the system evolution. A deep, deflating dike-like source reproduces the subsiding signal on the flanks of the volcano, and a shallow spherical McTigue source reproduces the central uplift. EnKF predicted parameters are used in finite element models to calculate the host-rock stress state prior to the 2009 eruption. Mohr-Coulomb failure models reveal that the shallow magma reservoir is trending towards tensile failure prior to 2009, which may be the catalyst for the 2009 eruption. Our results illustrate that the EnKF shows significant promise for future applications to forecasting the eruption potential of restless volcanoes and hind-cast the triggering mechanisms of observed eruptions.

  15. Sequential Assimilation of Volcanic Monitoring Data to Quantify Eruption Potential: Application to Kerinci Volcano, Sumatra

    Directory of Open Access Journals (Sweden)

    Yan Zhan

    2017-12-01

    Full Text Available Quantifying the eruption potential of a restless volcano requires the ability to model parameters such as overpressure and calculate the host rock stress state as the system evolves. A critical challenge is developing a model-data fusion framework to take advantage of observational data and provide updates of the volcanic system through time. The Ensemble Kalman Filter (EnKF uses a Monte Carlo approach to assimilate volcanic monitoring data and update models of volcanic unrest, providing time-varying estimates of overpressure and stress. Although the EnKF has been proven effective to forecast volcanic deformation using synthetic InSAR and GPS data, until now, it has not been applied to assimilate data from an active volcanic system. In this investigation, the EnKF is used to provide a “hindcast” of the 2009 explosive eruption of Kerinci volcano, Indonesia. A two-sources analytical model is used to simulate the surface deformation of Kerinci volcano observed by InSAR time-series data and to predict the system evolution. A deep, deflating dike-like source reproduces the subsiding signal on the flanks of the volcano, and a shallow spherical McTigue source reproduces the central uplift. EnKF predicted parameters are used in finite element models to calculate the host-rock stress state prior to the 2009 eruption. Mohr-Coulomb failure models reveal that the host rock around the shallow magma reservoir is trending toward tensile failure prior to 2009, which may be the catalyst for the 2009 eruption. Our results illustrate that the EnKF shows significant promise for future applications to forecasting the eruption potential of restless volcanoes and hind-cast the triggering mechanisms of observed eruptions.

  16. Submarine Flood Basalt Eruptions and Flows of Ontong Java Plateau, Nauru Basin and East Mariana Basin

    Science.gov (United States)

    Michael, P. J.; Trowbridge, S. R.; Zhang, J.; Johnson, A. L.

    2016-12-01

    The preservation of fresh basalt glasses from the submarine Cretaceous Ontong Java Plateau (OJP), Earth's largest LIP, has allowed correlation of precise lava compositions over 100s of km, as well as determination of eruption depths using dissolved H2O and CO2 contents. Low dissolved H2O in glasses shows that H2O in the mantle source is low [1,2], suggesting mantle temperatures are high. Very high dissolved Cl indicates that magmas interacted extensively with brines. The near total absence of vesicles in OJP glasses contrasts sharply with MORB, and suggests that OJP lavas were saturated or undersaturated with CO2 when they were emplaced, in contrast to MORB that are often oversaturated. The lavas likely remained liquid for a longer period of time so that they degassed to equilibrium levels of dissolved CO2 andlost all bubbles. Very precise major and trace element analyses of glasses, uncomplicated by crystals or alteration, show how lavas within and between widely-spaced drill holes could be related. For example, glasses from Sites 1185B and 1186A, which are about 200 km apart, are compositionally identical within precise limits and must have erupted from the same well-mixed magma chamber. They erupted at about the same depth, but 1186A has a corrected basement depth that is >700m deeper. With a slope of 0.3°, this suggests a flow distance >130km. The eruption depths for glasses from East Mariana and Nauru Basins are similar to those of 1185B and 1186A on OJP, even though their reconstructed basement depths are about 2000 m deeper. It suggests that the plateau lavas flowed into the basins. Similarly, eruption depths in Hole 807C are 3040m for Kwaimbaita lavas but are 1110m [1,2] for Singgalo lavas that directly overlie them. It is unlikely that plateau uplift and subsidence accounts for the observed eruption depths. All of these observations are best explained by very large-volume eruptions whose lavas traveled for long distances, up to 100s of km, into deeper

  17. Fertility of the early post-eruptive surfaces of Kasatochi Island volcano

    Science.gov (United States)

    Michaelson, G. J.; Wang, Bronwen; Ping, C. L.

    2016-01-01

    In the four years after the 2008 eruption and burial of Kasatochi Island volcano, erosion and the return of bird activity have resulted in new and altered land surfaces and initiation of ecosystem recovery. We examined fertility characteristics of the recently deposited pyroclastic surfaces, patches of legacy pre-eruptive surface soil (LS), and a post-eruptive surface with recent bird roosting activity. Pyroclastic materials were found lacking in N, but P, K, and other macronutrients were in sufficient supply for plants. Erosion and leaching are moving mobile P and Fe downslope to deposition fan areas. Legacy soil patches that currently support plants have available-N at levels (10–22 mg N kg-1) similar to those added by birds in a recent bird roosting area. Roosting increased surface available N from fertile pre-eruptive soils and erosion-mixing of pre-eruptive soils with newly erupted materials, along with inputs of nutrients from bird activities, each will exert significant influences on the surface fertility and recovery pattern of the new post-eruptive Kasatochi volcano. For this environment, these influences could help to speed recovery of a more diverse plant community by providing N (LS and bird inputs) as alternatives to relying most heavily on N-fixing plants to build soil fertility.

  18. The Krakatau volcano 125 years after the catastrophic eruption (August 27, 1883)

    Czech Academy of Sciences Publication Activity Database

    Špičák, Aleš; Kozák, Jan; Vaněk, Jiří; Hanuš, Václav

    2008-01-01

    Roč. 52, č. 3 (2008), s. 449-454 ISSN 0039-3169 Institutional research plan: CEZ:AV0Z30120515 Keywords : Krakatau volcano * 1883 eruption * anniversary Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.770, year: 2008

  19. Tephra-Producing Eruptions of Holocene Age at Akutan Volcano, Alaska; Frequency, Magnitude, and Hazards

    Science.gov (United States)

    Waythomas, C. F.; Wallace, K. L.; Schwaiger, H.

    2012-12-01

    Akutan Volcano in the eastern Aleutian Islands of Alaska is one of the most historically active volcanoes in the Aleutian arc (43 eruptions in about the past 250 years). Explosive eruptions pose major hazards to aircraft flying north Pacific air routes and to local infrastructure on Akutan and neighboring Unalaska Island. Air travel, infrastructure, and population in the region have steadily increased during the past several decades, and thus it is important to better understand the frequency, magnitude, and characteristics of tephra-producing eruptions. The most recent eruption was a VEI 2 event on March 8-May 21, 1992 that resulted in minor ash emissions and trace amounts of proximal fallout. Nearly continuous low-level emission of ash and steam is typical of historical eruptions, and most of the historical events have been similar in magnitude to the 1992 event. The most recent major eruption occurred about 1600 yr. B.P. and likely produced the ca. 2-km diameter summit caldera and inundated valleys that head on the volcano with pyroclastic-flow and lahar deposits that are tens of meters thick. The 1600 yr. B.P. eruption covered most of Akutan Island with up to 2.5 m of coarse scoriaceous tephra fall, including deposits 0.5-1 m thick near the City of Akutan. Tephra-fall deposits associated with this eruption exhibit a continuous sequence of black, fine to coarse scoriaceous lapilli overlain by a lithic-rich facies and finally a muddy aggregate-rich facies indicating water involvement during the latter stages of the eruption. Other tephra deposits of Holocene age on Akutan Island include more than a dozen discrete fine to coarse ash beds and 3-6 beds of scoriaceous, coarse lapilli tephra indicating that there have been several additional major eruptions (>VEI 3) of Akutan Volcano during the Holocene. Radiocarbon dates on these events are pending. In addition to tephra falls from Akutan, other fine ash deposits are found on the island that originated from other

  20. Potential ash impact from Antarctic volcanoes: Insights from Deception Island's most recent eruption.

    Science.gov (United States)

    Geyer, A; Marti, A; Giralt, S; Folch, A

    2017-11-28

    Ash emitted during explosive volcanic eruptions may disperse over vast areas of the globe posing a threat to human health and infrastructures and causing significant disruption to air traffic. In Antarctica, at least five volcanoes have reported historic activity. However, no attention has been paid to the potential socio-economic and environmental consequences of an ash-forming eruption occurring at high southern latitudes. This work shows how ash from Antarctic volcanoes may pose a higher threat than previously believed. As a case study, we evaluate the potential impacts of ash for a given eruption scenario from Deception Island, one of the most active volcanoes in Antarctica. Numerical simulations using the novel MMB-MONARCH-ASH model demonstrate that volcanic ash emitted from Antarctic volcanoes could potentially encircle the globe, leading to significant consequences for global aviation safety. Results obtained recall the need for performing proper hazard assessment on Antarctic volcanoes, and are crucial for understanding the patterns of ash distribution at high southern latitudes with strong implications for tephrostratigraphy, which is pivotal to synchronize palaeoclimatic records.

  1. January 30, 1997 eruptive event on Kilauea Volcano, Hawaii, as monitored by continuous GPS

    Science.gov (United States)

    Owen, S.; Segall, P.; Lisowski, M.; Miklius, Asta; Murray, M.; Bevis, M.; Foster, J.

    2000-01-01

    A continuous Global Positioning System (GPS) network on Kilauea Volcano captured the most recent fissure eruption in Kilauea's East Rift Zone (ERZ) in unprecedented spatial and temporal detail. The short eruption drained the lava pond at Pu'u O' o, leading to a two month long pause in its on-going eruption. Models of the GPS data indicate that the intrusion's bottom edge extended to only 2.4 km. Continuous GPS data reveal rift opening 8 hours prior to the eruption. Absence of precursory summit inflation rules out magma storage overpressurization as the eruption's cause. We infer that stresses in the shallow rift created by the continued deep rift dilation and slip on the south flank decollement caused the rift intrusion.

  2. Characterization of pyroclastic deposits and pre-eruptive soils following the 2008 eruption of Kasatochi Island Volcano, Alaska

    Science.gov (United States)

    Wang, B.; Michaelson, G.; Ping, C.-L.; Plumlee, G.; Hageman, P.

    2010-01-01

    The 78 August 2008 eruption of Kasatochi Island volcano blanketed the island in newly generated pyroclastic deposits and deposited ash into the ocean and onto nearby islands. Concentrations of water soluble Fe, Cu, and Zn determined from a 1:20 deionized water leachate of the ash were sufficient to provide short-term fertilization of the surface ocean. The 2008 pyroclastic deposits were thicker in concavities at bases of steeper slopes and thinner on steep slopes and ridge crests. By summer 2009, secondary erosion had exposed the pre-eruption soils along gulley walls and in gully bottoms on the southern and eastern slopes, respectively. Topographic and microtopographic position altered the depositional patterns of the pyroclastic flows and resulted in pre-eruption soils being buried by as little as 1 m of ash. The different erosion patterns gave rise to three surfaces on which future ecosystems will likely develop: largely pre-eruptive soils; fresh pyroclastic deposits influenced by shallowly buried, pre-eruptive soil; and thick (>1 m) pyroclastic deposits. As expected, the chemical composition differed between the pyroclastic deposits and the pre-eruptive soils. Pre-eruptive soils hold stocks of C and N important for establishing biota that are lacking in the fresh pyroclastic deposits. The pyroclastic deposits are a source for P and K but have negligible nutrient holding capacity, making these elements vulnerable to leaching loss. Consequently, the pre-eruption soils may also represent an important long-term P and K source. ?? 2010 Regents of the University of Colorado.

  3. High water contents in basaltic melt inclusions from Arenal volcano, Costa Rica

    Science.gov (United States)

    Wade, J. A.; Plank, T.; Hauri, E. H.; Melson, W. G.; Soto, G. J.

    2004-12-01

    Despite the importance of water to arc magma genesis, fractionation and eruption, few quantitative constraints exist on the water content of Arenal magmas. Early estimates, by electron microprobe sum deficit, suggested up to 4 wt% H2O in olivine-hosted basaltic andesite melt inclusions (MI) from pre-historic ET-6 tephra (Melson, 1982), and up to 7 wt% H2O in plagioclase and orthopyroxene-hosted dacitic MI from 1968 lapilli (Anderson, 1979). These high water contents are consistent with abundant hornblende phenocrysts in Arenal volcanics, but inconsistent with geochemical tracers such as 10Be and Ba/La that suggest a low flux of recycled material (and presumably water) from the subduction zone. In order to test these ideas, and provide the first direct measurements of water in mafic Arenal magmas, we have studied olivine-hosted MI from the prehistoric (900 yBP; Soto et al., 1998) ET3 tephra layer. MI range from andesitic (> 58% SiO2) to basaltic compositions ( 4 wt%) found here for Arenal basaltic MI support the semi-quantitative data from earlier studies, but are somewhat unexpected given predictions from slab tracers. Arenal water contents (4%) approach those of the 1995 eruption of Cerro Negro in Nicaragua (4-5 wt% in basaltic MI; Roggensack et al., 1997), despite the fact that the latter has Ba/La of > 100, while Arenal has Ba/La Journal of Geology; Melson, William G. (1982) Boletin de Volcanologia; Roggensack et al. (1997) Science; Soto et al. (1998) OSIVAM; Williams-Jones et al. (2001) Journal of Volc. and Geoth. Res.

  4. Satellite Observations of Volcanic Clouds from the Eruption of Redoubt Volcano, Alaska, 2009

    Science.gov (United States)

    Dean, K. G.; Ekstrand, A. L.; Webley, P.; Dehn, J.

    2009-12-01

    Redoubt Volcano began erupting on 23 March 2009 (UTC) and consisted of 19 events over a 14 day period. The volcano is located on the Alaska Peninsula, 175 km southwest of Anchorage, Alaska. The previous eruption was in 1989/1990 and seriously disrupted air traffic in the region, including the near catastrophic engine failure of a passenger airliner. Plumes and ash clouds from the recent eruption were observed on a variety of satellite data (AVHRR, MODIS and GOES). The eruption produced volcanic clouds up to 19 km which are some of the highest detected in recent times in the North Pacific region. The ash clouds primarily drifted north and east of the volcano, had a weak ash signal in the split window data and resulted in light ash falls in the Cook Inlet basin and northward into Alaska’s Interior. Volcanic cloud heights were measured using ground-based radar, and plume temperature and wind shear methods but each of the techniques resulted in significant variations in the estimates. Even though radar showed the greatest heights, satellite data and wind shears suggest that the largest concentrations of ash may be at lower altitudes in some cases. Sulfur dioxide clouds were also observed on satellite data (OMI, AIRS and Calipso) and they primarily drifted to the east and were detected at several locations across North America, thousands of kilometers from the volcano. Here, we show time series data collected by the Alaska Volcano Observatory, illustrating the different eruptive events and ash clouds that developed over the subsequent days.

  5. Late Holocene history of Chaitén Volcano: new evidence for a 17th century eruption

    Science.gov (United States)

    Lara, Luis E.; Moreno, Rodrigo; Amigo, Álvaro; Hoblitt, Richard P.; Pierson, Thomas C.

    2013-01-01

    Prior to May 2008, it was thought that the last eruption of Chaitén Volcano occurred more than 5,000 years ago, a rather long quiescent period for a volcano in such an active arc segment. However, increasingly more Holocene eruptions are being identified. This article presents both geological and historical evidence for late Holocene eruptive activity in the 17th century (AD 1625-1658), which included an explosive rhyolitic eruption that produced pumice ash fallout east of the volcano and caused channel aggradation in the Chaitén River. The extents of tephra fall and channel aggradation were similar to those of May 2008. Fine ash, pumice and obsidian fragments in the pre-2008 deposits are unequivocally derived from Chaitén Volcano. This finding has important implications for hazards assessment in the area and suggests the eruptive frequency and magnitude should be more thoroughly studied.

  6. Determining the Ages and Eruption Rates of the Columbia River Basalt Group Magnetozones

    Science.gov (United States)

    Jarboe, N. A.; Coe, R. S.; Renne, P. R.; Glen, J. M.

    2009-12-01

    The Columbia River Basalt Group (CRBG) eruptions have a well defined relative magnetostratigraphy but have not been definitively correlated to the geomagnetic polarity time scale. Fifteen 40Ar/39Ar ages from lavas erupted in the R0 through R1 magnetozones of the CRBG, in conjunction with the geomagnetic polarity time scales (GPTS) of Lourens et al. (2004) and Billups et al. (2004) based on sea-floor spreading rates and orbital tuning, identify the R0 as the C5Cr chron. Particularly important for correlation to GPTS are four ages from transitionally magnetized lavas from the R0-N0 transition (Steens Reversal) found at Steens Mountain, Catlow Peak and Poker Jim Ridge. These transitionally magnetized lavas, found in sections separated by ~100 km and definitively erupted during the same reversal based on the similarity of their transitional field paths, have a weighted mean age 16.58 ±± 0.19 Ma (±± stands for two sigma). At the top of the Catlow Peak section, a more precise age of 16.654 ±± 0.050 Ma of the normally magnetized Oregon Canyon Tuff places further constraints on the age of the Steens Reversal. Using Isoplot’s Bayesian statistical “Stacked Beds” function on four flows at Catlow Peak (including the mean age of the Steens Reversal) gives a best age of the Steens Reversal at that section of 16.73 +0.13/-0.08 Ma (95% confidence). A normally magnetized Imnaha Basalt age of 16.85 ±± 0.42 Ma, a normally magnetized basalt age from Pole Creek (16.45 ±± 0.22 Ma), and other ages correlate the N0 to the C5Cn.3n chron. Depending on the geomagnetic polarity time scale model, the eruption rate from N0 through R2 (0.34-0.42 Ma in the middle and the bulk of the CRBG emplacement) averaged 0.33-0.45 km3/a and peaked at a rate 1 ½ to 4 ½ times higher during R2. Billups, K., H. Palike, J. E. T. Channell, J. C. Zachos, and N. J. Shackleton, Astronomic Calibration of the Late Oligocene Through Early Miocene Geomagnetic Polarity Time Scale, Earth and Planetary

  7. Post-Eruptive Inflation of Okmok Volcano, Alaska, from InSAR, 2008–2014

    Directory of Open Access Journals (Sweden)

    Feifei Qu

    2015-12-01

    Full Text Available Okmok, a ~10-km wide caldera that occupies most of the northeastern end of Umnak Island, is one of the most active volcanoes in the Aleutian arc. The most recent eruption at Okmok during July–August 2008 was by far its largest and most explosive since at least the early 19th century. We investigate post-eruptive magma supply and storage at the volcano during 2008–2014 by analyzing all available synthetic aperture radar (SAR images of Okmok acquired during that time period using the multi-temporal InSAR technique. Data from the C-band Envisat and X-band TerraSAR-X satellites indicate that Okmok started inflating very soon after the end of 2008 eruption at a time-variable rate of 48–130 mm/y, consistent with GPS measurements. The “model-assisted” phase unwrapping method is applied to improve the phase unwrapping operation for long temporal baseline pairs. The InSAR time-series is used as input for deformation source modeling, which suggests magma accumulating at variable rates in a shallow storage zone at ~3.9 km below sea level beneath the summit caldera, consistent with previous studies. The modeled volume accumulation in the six years following the 2008 eruption is ~75% of the 1997 eruption volume and ~25% of the 2008 eruption volume.

  8. Post-eruptive inflation of Okmok Volcano, Alaska, from InSAR, 2008–2014

    Science.gov (United States)

    Qu, Feifei; Lu, Zhong; Poland, Michael; Freymueller, Jeffrey T.; Zhang, Qin; Jung, Hyung-Sup

    2016-01-01

    Okmok, a ~10-km wide caldera that occupies most of the northeastern end of Umnak Island, is one of the most active volcanoes in the Aleutian arc. The most recent eruption at Okmok during July-August 2008 was by far its largest and most explosive since at least the early 19th century. We investigate post-eruptive magma supply and storage at the volcano during 2008–2014 by analyzing all available synthetic aperture radar (SAR) images of Okmok acquired during that time period using the multi-temporal InSAR technique. Data from the C-band Envisat and X-band TerraSAR-X satellites indicate that Okmok started inflating very soon after the end of 2008 eruption at a time-variable rate of 48-130 mm/y, consistent with GPS measurements. The “model-assisted” phase unwrapping method is applied to improve the phase unwrapping operation for long temporal baseline pairs. The InSAR time-series is used as input for deformation source modeling, which suggests magma accumulating at variable rates in a shallow storage zone at ~3.9 km below sea level beneath the summit caldera, consistent with previous studies. The modeled volume accumulation in the 6 years following the 2008 eruption is ~75% of the 1997 eruption volume and ~25% of the 2008 eruption volume.

  9. SSMILes: Investigating Various Volcanic Eruptions and Volcano Heights.

    Science.gov (United States)

    Wagner-Pine, Linda; Keith, Donna Graham

    1994-01-01

    Presents an integrated math/science activity that shows students the differences among the three types of volcanoes using observation, classification, graphing, sorting, problem solving, measurement, averages, pattern relationships, calculators, computers, and research skills. Includes reproducible student worksheet. Lists 13 teacher resources.…

  10. Frictional-faulting model for harmonic tremor before Redoubt Volcano eruptions

    Science.gov (United States)

    Dmitrieva, Ksenia; Hotovec-Ellis, Alicia J.; Prejean, Stephanie G.; Dunham, Eric M.

    2013-01-01

    Seismic unrest, indicative of subsurface magma transport and pressure changes within fluid-filled cracks and conduits, often precedes volcanic eruptions. An intriguing form of volcano seismicity is harmonic tremor, that is, sustained vibrations in the range of 0.5–5 Hz. Many source processes can generate harmonic tremor. Harmonic tremor in the 2009 eruption of Redoubt Volcano, Alaska, has been linked to repeating earthquakes of magnitudes around 0.5–1.5 that occur a few kilometres beneath the vent. Before many explosions in that eruption, these small earthquakes occurred in such rapid succession—up to 30 events per second—that distinct seismic wave arrivals blurred into continuous, high-frequency tremor. Tremor abruptly ceased about 30 s before the explosions. Here we introduce a frictional-faulting model to evaluate the credibility and implications of this tremor mechanism. We find that the fault stressing rates rise to values ten orders of magnitude higher than in typical tectonic settings. At that point, inertial effects stabilize fault sliding and the earthquakes cease. Our model of the Redoubt Volcano observations implies that the onset of volcanic explosions is preceded by active deformation and extreme stressing within a localized region of the volcano conduit, at a depth of several kilometres.

  11. Tephra Fallout Hazard Assessment for VEI5 Plinian Eruption at Kuju Volcano, Japan, Using TEPHRA2

    Science.gov (United States)

    Tsuji, Tomohiro; Ikeda, Michiharu; Kishimoto, Hiroshi; Fujita, Koji; Nishizaka, Naoki; Onishi, Kozo

    2017-06-01

    Tephra fallout has a potential impact on engineered structures and systems at nuclear power plants. We provide the first report estimating potential accumulations of tephra fallout as big as VEI5 eruption from Kuju Volcano and calculated hazard curves at the Ikata Power Plant, using the TEPHRA2 computer program. We reconstructed the eruptive parameters of Kj-P1 tephra fallout deposit based on geological survey and literature review. A series of parameter studies were carried out to determine the best values of empirical parameters, such as diffusion coefficient and the fall time threshold. Based on such a reconstruction, we represent probabilistic analyses which assess the variation in meteorological condition, using wind profiles extracted from a 22 year long wind dataset. The obtained hazard curves and probability maps of tephra fallout associated to a Plinian eruption were used to discuss the exceeding probability at the site and the implications of such a severe eruption scenario.

  12. Magma fluxes and recurreance rate of eruptions at Nevado de Toluca volcano (Mexico)

    Science.gov (United States)

    Weber, Gregor; Probst, Line; Arce, José L.; Caricchi, Luca

    2017-04-01

    Forecasting the frequency and size of volcanic eruptions is a long-term goal for hazard mitigation. The frequency at which a given crustal magmatic system is driven towards a critical state and the magnitude of the resulting volcanic events are linked to the supply rate of fresh magma, crustal properties, and tectonic setting. Our ability to forecast the recurrence rate of eruptions is hampered by the lack of data on key variables such as the average magma flux locally and globally. The aim of this project is to identify the average magma supply rate and injection frequency for eruptions of different magnitude and eruptive style. We centred our study at Nevado de Toluca in Mexico, a subduction-related volcano with an eruptive history spanning about 1.5 million years of comparatively well documented effusive and explosive eruptions dominantly of dacitic composition. We carry out in-situ high precision zircon geochronology for a sequence of eruptions of different magnitude to obtain a distribution of crystal ages from which average crustal magma fluxes can be calculated. Eruptive fluxes will be constrained by extracting lava flow volumes from a digital elevation model. A combination of whole rock and mineral chemistry will provide quantitative insights on petrogenetic processes and on the frequency at which intensive parameters changed within the magma reservoir before the eruptions. Our results will be integrated in a global database including other volcanic systems and literature data to attempt to identify similarities and differences between magmatic reservoirs feeding volcanic eruptions of different magnitude. The final target of this project is to identify the physical factors controlling the recurrence rate of volcanic eruptions at regional and global scale.

  13. Phreatic explosions during basaltic fissure eruptions: Kings Bowl lava field, Snake River Plain, USA

    Science.gov (United States)

    Hughes, Scott S.; Kobs Nawotniak, Shannon E.; Sears, Derek W. G.; Borg, Christian; Garry, William Brent; Christiansen, Eric H.; Haberle, Christopher W.; Lim, Darlene S. S.; Heldmann, Jennifer L.

    2018-02-01

    Physical and compositional measurements are made at the 7 km-long ( 2200 years B.P.) Kings Bowl basaltic fissure system and surrounding lava field in order to further understand the interaction of fissure-fed lavas with phreatic explosive events. These assessments are intended to elucidate the cause and potential for hazards associated with phreatic phases that occur during basaltic fissure eruptions. In the present paper we focus on a general understanding of the geological history of the site. We utilize geospatial analysis of lava surfaces, lithologic and geochemical signatures of lava flows and explosively ejected blocks, and surveys via ground observation and remote sensing. Lithologic and geochemical signatures readily distinguish between Kings Bowl and underlying pre-Kings Bowl lava flows, both of which comprise phreatic ejecta from the Kings Bowl fissure. These basalt types, as well as neighboring lava flows from the contemporaneous Wapi lava field and the older Inferno Chasm vent and outflow channel, fall compositionally within the framework of eastern Snake River Plain olivine tholeiites. Total volume of lava in the Kings Bowl field is estimated to be 0.0125 km3, compared to a previous estimate of 0.005 km3. The main (central) lava lake lost a total of 0.0018 km3 of magma by either drain-back into the fissure system or breakout flows from breached levees. Phreatic explosions along the Kings Bowl fissure system occurred after magma supply was cut off, leading to fissure evacuation, and were triggered by magma withdrawal. The fissure system produced multiple phreatic explosions and the main pit is accompanied by others that occur as subordinate pits and linear blast corridors along the fissure. The drop in magma supply and the concomitant influx of groundwater were necessary processes that led to the formation of Kings Bowl and other pits along the fissure. A conceptual model is presented that has relevance to the broader range of low-volume, monogenetic

  14. Radiographic visualization of magma dynamics in an erupting volcano.

    Science.gov (United States)

    Tanaka, Hiroyuki K M; Kusagaya, Taro; Shinohara, Hiroshi

    2014-03-10

    Radiographic imaging of magma dynamics in a volcanic conduit provides detailed information about ascent and descent of magma, the magma flow rate, the conduit diameter and inflation and deflation of magma due to volatile expansion and release. Here we report the first radiographic observation of the ascent and descent of magma along a conduit utilizing atmospheric (cosmic ray) muons (muography) with dynamic radiographic imaging. Time sequential radiographic images show that the top of the magma column ascends right beneath the crater floor through which the eruption column was observed. In addition to the visualization of this magma inflation, we report a sequence of images that show magma descending. We further propose that the monitoring of temporal variations in the gas volume fraction of magma as well as its position in a conduit can be used to support existing eruption prediction procedures.

  15. Turmoil at Turrialba volcano (Costa Rica): Degassing and eruptive behavior inferred from high-frequency gas monitoring

    OpenAIRE

    de Moor, J Maarten; Aiuppa, Alessandro; Avard, Geoffroy; Wehrmann, Heidi; Dunbar, Nelia W; Muller, Cyril; Tamburello, Giancarlo; Guidice, Gaetano; Liuzzo, Marco; Moretti, Roberto; Conde, A Vladimir; Galle, Bo

    2016-01-01

    Eruptive activity at Turrialba volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here, we use high frequency gas monitoring to track the behavior of the volcano between 2014 and 2015, and to decipher magmatic vs. hydrothermal contributions to the eruptions...

  16. Dispersal of volcaniclastic material by buoyant water plumes in deep-ocean explosive basaltic eruptions

    Science.gov (United States)

    Barreyre, T.; Soule, S.; Reves-Sohn, R. A.

    2009-12-01

    The ability of mid-ocean ridge (MOR) volcanic systems to generate explosive eruptions is inhibited by the large hydrostatic pressures associated with their deep-sea location, which suppress volatile exsolution from the magma, and which preclude the generation of steam from lava-water interaction. Nevertheless, volcaniclastic material indicative of explosive activity has been found along many parts of the global MOR, raising important questions regarding the volatile systematics within mid-ocean ridge magmatic systems, and the processes by which volcaniclastic material may be dispersed during deep-sea eruptions. In this study we measured the settling velocities of volcaniclastic grains recovered from the Gakkel Ridge, Loihi Seamount, and Axial Volcano, and developed empirical settling velocity models as a function of particle size for three different particle shapes (angular, sheet, and rod). We then used the Morton, Turner, Taylor turbulent plume model to investigate how a plume of buoyant water may distribute this volcaniclastic material during a deep-sea eruption so that the physical characteristics of the deposits may be used to constrain the location and size (i.e., energy) of the eruptions that produced them. We ran the turbulent plume model for conditions ranging from a typical black smoker (~150 MW) to a megaplume (~30000 MW), and for water column density stratifications and currents corresponding to nominal conditions for the Arctic and Pacific Oceans. We found that maximum dispersal distances for the dominant size of volcaniclastic material within buoyant water plumes range from Pele). These distances are insufficient to explain the areal extent of the volcaniclastic deposits observed along the 85°E segment of the Gakkel Ridge and various portions of the Juan de Fuca Ridge, indicating that additional energy in the form of momentum from expanding gases is required to produce the observed deposits.

  17. How summit calderas collapse on basaltic volcanoes: new insights from the April 2007 caldera collapse of Piton de la Fournaise volcano

    Energy Technology Data Exchange (ETDEWEB)

    Michon, Laurent; Catry, Thibault; Merle, Olivier [Laboratoire GeoSciences Reunion, Universite de la Reunion, Institut de Physique du Globe de Paris, CNRS, UMR 7154 - Geologie des Systemes Volcaniques, 15 avenue Rene Cassin, 97715 Saint Denis (France); Villeneuve, Nicolas [Institut de Recherche pour le Developpement, US 140, BP172, 97492 Sainte-Clotilde cedex (France)], E-mail: laurent.michon@univ-reunion.fr

    2008-10-01

    In April 2007, Piton de la Fournaise volcano experienced a caldera collapse during its largest historical eruption. We present here the resulting deformation and a synthesis of the seismicity recorded during recent caldera collapses. It allows us to propose a unifying mechanism that explains the pulsating collapse dynamics.

  18. Sulfur release from the Columbia River Basalts and other flood lava eruptions constrained by a model of sulfide saturation

    Science.gov (United States)

    Blake, S.; Self, S.; Sharma, K.; Sephton, S.

    2010-11-01

    A very likely cause of widespread environmental impacts of flood basalt eruptions is the emission of sulfur, chlorine, and possibly fluorine from the erupting magma. We present new data on the S contents of rare glass inclusions and matrix glasses preserved in quenched lava selvages from lava fields of the Columbia River Basalt Group (CRBG; Ginkgo, Sand Hollow and Sentinel Gap flows, Wanapum Basalt Formation). We compare these results with published data from Neral and Jawar Formation lavas (Deccan Traps, India) and the Roza flow (CRBG). CRBG glass inclusions have up to 2000 ppm S and 15-16 wt.% FeO total. By contrast, the Deccan examples have about 1400 ppm S and 10 wt.% FeO total. Several of the glass inclusions are partly degassed, indicating entrapment during magma rise, and matrix glasses are typically more evolved than glass inclusions due to small amounts of in situ crystallization. Using only the highest S inclusions and taking account of the effect of in situ crystallization and degassing on the S content of the residual matrix glasses indicates S yields of about 0.07 to 0.1 wt.% from Deccan eruptions and about 0.15 wt.% from Wanapum (CRBG) eruptions. The pre-eruptive S contents of these magmas correlate with weight% FeO total in the same way as undegassed sulfide-saturated mid-ocean ridge basalts. Using oceanic basalts to define a sulfide saturation line, and data on S contents of degassed basalts, we propose an equation to estimate the weight% S yield (ΔS) from initially sulfide-saturated basalt liquid without the need to find well-preserved, rare, undegassed glass inclusions and matrix glasses: ΔS=(0.01418×FeO-0.06381)±0.02635. This compares well with independent estimates derived from the petrologic method by taking the difference in S concentration of glass inclusions and matrix glass. Applying our method to the aphyric Grande Ronde Basalts of the CRBG implies a total yield of about 1000 Gt SO 2 delivered into the Miocene atmosphere in

  19. Precursory changes in well water level prior to the March, 2000 eruption of Usu Volcano, Japan

    Science.gov (United States)

    Shibata, Tomo; Akita, Fujio

    The height of water levels in two wells located near Usu volcano, Japan, changed in a systematic fashion for several months prior to the eruption of Usu volcano on 31 March 2000. In one well, water-level decrease relative to normal levels was first observed at the beginning of October 1999. The decreasing water-level is postulated to result from groundwater flow into cracks widened by intruding magma during dike formation. From the beginning of January 2000, the rate of decrease became higher. During this time, the water level of the second well increased by 0.05 m and then gradually decreased. The water-level changes are consistent with volumetric expansion of magma inside the magma chamber, followed by intrusion of magma into the fracture system associated with widening of cracks. We conclude that water-level observations can provide information that may potentially be used to predict further volcanic eruptions.

  20. New Perspectives on the Climatic Impact of the 1600 Eruption of Huaynaputina Volcano, Peru

    Science.gov (United States)

    Verosub, K. L.; Lippman, J.

    2007-05-01

    A critical test of the new understanding of volcanic aerosols developed since 1982 is to determine if it can predict the effects of larger eruptions than those that have occurred since El Chichon. To do that, requires detailed information about the effects of specific large eruptions. We have been investigating the human and climatic impacts of the 1600 eruption of Huaynaputina volcano in Peru. The estimated Volcanic Explosivity Index for this eruption is 6, which is comparable to that of the 1815 eruption of Tambora volcano in Indonesia, which produced global cooling and led to crop failures, famine and social unrest. On the basis of tree-ring data, Briffa et al. (1998) suggested that the most severe short-term Northern Hemisphere cooling event of the past 600 years occurred in 1601, the year following the Huaynaputina eruption. In order gain a better understanding of the nature and extent of this cooling, we have been collecting annual time series that provide information about climatic conditions during time intervals that bracket the Huaynaputina eruption. Among the time series that we have examined (or plan to examine) are ice conditions in the harbors of Tallinn, Estonia, and Riga, Latvia and in Lake Suwa in Japan: cherry blossom blooming (sakura) dates from Kyoto, Japan; records of agricultural production from China and Russia; tithe records from the Spanish colonial empire; dates of the beginning of the wine harvest in France and the rye harvest in Sweden; prices of agricultural commodities in Europe; and river flows from the Nile and the Colorado. Often, in the records we have examined, 1601 shows up as one of the coldest years, if not the coldest year. In addition, the worst famines in Russian history took place between 1601 and 1603, which eventually led to the overthrow of Tsar Boris Gudonov. Thus, there is considerable evidence that the climatic impacts of the Huaynaputina eruption were comparable to those from the Tambora eruption. This result is

  1. Characterization of volcanic deposits and geoarchaeological studies from the 1815 eruption of Tambora volcano

    Directory of Open Access Journals (Sweden)

    Igan Supriatman Sutawidjaja

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol1no1.20066aThe eruption of Tambora volcano on the island of Sumbawa in 1815 is generally considered as the largest and the most violent volcanic event in recorded history. The cataclysmic eruption occurred on 11 April 1815 was initiated by Plinian eruption type on 5 April and killed more than 90,000 people on Sumbawa and nearby Lombok. The type plinian eruptions occurred twice and ejected gray pumice and ash, to form stratified deposits as thick as 40-150 cm on the slopes and mostly distributed over the district west of the volcano. Following this, at about 7 pm, on 11 April the first pyroclastic surge was generated and progressively became greater extending to almost whole direction, mainly to the north, west, and south districts from the eruption center. The deadliest volcanic eruption buried ancient villages by pyroclastic surge and flow deposits in almost intact state, thus preserving important archaeological evidence for the period. High preservation in relatively stable conditions and known date of the eruptions provide approximate dating for the archaeological remains. Archaeological excavations on the site uncovered a variety of remains were relieved by ground penetrating radar (GPR to map structural remains of the ancient villages under the pyroclastic surge and flow deposits. These traverses showed that GPR could define structures as deep as 10 m (velocity 0.090 m/ns and could accurately map the thickness of the stratified volcanic deposits in the Tambora village area.    

  2. Fertility of the early post-eruptive surfaces of Kasatochi Island volcano

    Science.gov (United States)

    Michaelson, G. J.; Wang, Bronwen; Ping, C. L.

    2016-01-01

    In the four years after the 2008 eruption and burial of Kasatochi Island volcano, erosion and the return of bird activity have resulted in new and altered land surfaces and initiation of ecosystem recovery. We examined fertility characteristics of the recently deposited pyroclastic surfaces, patches of legacy pre-eruptive surface soil (LS), and a post-eruptive surface with recent bird roosting activity. Pyroclastic materials were found lacking in N, but P, K, and other macronutrients were in sufficient supply for plants. Erosion and leaching are moving mobile P and Fe downslope to deposition fan areas. Legacy soil patches that currently support plants have available-N at levels (10–22 mg N kg-1) similar to those added by birds in a recent bird roosting area. Roosting increased surface available N from 40% that of the LS surface. Laboratory plant growth trials using Lupinus nootkatensis and Leymus mollis indicated that the influence of eroded and redeposited LS in amounts as little as 10% by volume mixed with new pyroclastic materials could aid plant recovery by supplying vital N and soil biota to plants as propagules are introduced to the new surface. Erosion-exposure of fertile pre-eruptive soils and erosion-mixing of pre-eruptive soils with newly erupted materials, along with inputs of nutrients from bird activities, each will exert significant influences on the surface fertility and recovery pattern of the new post-eruptive Kasatochi volcano. For this environment, these influences could help to speed recovery of a more diverse plant community by providing N (LS and bird inputs) as alternatives to relying most heavily on N-fixing plants to build soil fertility.

  3. Kulanaokuaiki Tephra (ca, A.D. 400-1000): Newly recognized evidence for highly explosive eruptions at Kilauea Volcano, Hawai'i

    Science.gov (United States)

    Fiske, R.S.; Rose, T.R.; Swanson, D.A.; Champion, D.E.; McGeehin, J.P.

    2009-01-01

    K??lauea may be one of the world's most intensively monitored volcanoes, but its eruptive history over the past several thousand years remains rather poorly known. Our study has revealed the vestiges of thin basaltic tephra deposits, overlooked by previous workers, that originally blanketed wide, near-summit areas and extended more than 17 km to the south coast of Hawai'i. These deposits, correlative with parts of tephra units at the summit and at sites farther north and northwest, show that K??lauea, commonly regarded as a gentle volcano, was the site of energetic pyroclastic eruptions and indicate the volcano is significantly more hazardous than previously realized. Seventeen new calibrated accelerator mass spectrometry (AMS) radiocarbon ages suggest these deposits, here named the Kulanaokuaiki Tephra, were emplaced ca. A.D. 400-1000, a time of no previously known pyroclastic activity at the volcano. Tephra correlations are based chiefly on a marker unit that contains unusually high values of TiO2 and K2O and on paleomagnetic signatures of associated lava flows, which show that the Kulanaokuaiki deposits are the time-stratigraphic equivalent of the upper part of a newly exhumed section of the Uw??kahuna Ash in the volcano's northwest caldera wall. This section, thought to have been permanently buried by rockfalls in 1983, is thicker and more complete than the previously accepted type Uw??kahuna at the base of the caldera wall. Collectively, these findings justify the elevation of the Uw??kahuna Ash to formation status; the newly recognized Kulanaokuaiki Tephra to the south, the chief focus of this study, is defined as a member of the Uw??kahuna Ash. The Kulanaokuaiki Tephra is the product of energetic pyroclastic falls; no surge- or pyroclastic-flow deposits were identified with certainty, despite recent interpretations that Uw??kahuna surges extended 10-20 km from K??lauea's summit. ?? 2009 Geological Society of America.

  4. The violent Strombolian eruption of 10 ka Pelado shield volcano, Sierra Chichinautzin, Central Mexico

    Science.gov (United States)

    Lorenzo-Merino, A.; Guilbaud, M.-N.; Roberge, J.

    2018-03-01

    Pelado volcano is a typical example of an andesitic Mexican shield with a summital scoria cone. It erupted ca. 10 ka in the central part of an elevated plateau in what is today the southern part of Mexico City. The volcano forms a roughly circular, 10-km wide lava shield with two summital cones, surrounded by up to 2.7-m thick tephra deposits preserved up to a distance of 3 km beyond the shield. New cartographic, stratigraphic, granulometric, and componentry data indicate that Pelado volcano was the product of a single, continuous eruption marked by three stages. In the early stage, a > 1.5-km long fissure opened and was active with mild explosive activity. Intermediate and late stages were mostly effusive and associated with the formation of a 250-m high lava shield. Nevertheless, during these stages, the emission of lava alternated and/or coexisted with highly explosive events that deposited a widespread tephra blanket. In the intermediate stage, multiple vents were active along the fissure, but activity was centered at the main cone during the late stage. The final activity was purely effusive. The volcano emitted > 0.9 km3 dense-rock equivalent (DRE) of tephra and up to 5.6 km3 DRE of lavas. Pelado shares various features with documented "violent Strombolian" eruptions, including a high fragmentation index, large dispersal area, occurrence of plate tephra, high eruptive column, and simultaneous explosive and effusive activity. Our results suggest that the associated hazards (mostly tephra fallout and emplacement of lava) would seriously affect areas located up to 25 km from the vent for fallout and 5 km from the vent for lava, an important issue for large cities built near or on potentially active zones, such as Mexico City.

  5. Using infrared spectroscopy and satellite data to accurately monitor remote volcanoes and map their eruptive products

    Science.gov (United States)

    Ramsey, M. S.

    2011-12-01

    The ability to detect the onset of new activity at a remote volcano commonly relies on high temporal resolution thermal infrared (TIR) satellite-based observations. These observations from sensors such as AVHRR and MODIS are being used in innovative ways to produce trends of activity, which are critical for hazard response planning and scientific modeling. Such data are excellent for detection of new thermal features, volcanic plumes, and tracking changes over the hour time scale, for example. For some remote volcanoes, the lack of ground-based monitoring typically means that these sensors provide the first and only confirmation of renewed activity. However, what is lacking is the context of the higher spatial scale, which provides the volcanologist with meter-scale information on specific temperatures and changes in the composition and texture of the eruptive products. For the past eleven years, the joint US-Japanese ASTER instrument has been acquiring image-based data of volcanic eruptions around the world, including in the remote northern Pacific region. There have been more ASTER observations of Kamchatka volcanoes than any other location on the globe due mainly to an operational program put into place in 2004. Automated hot spot alarms from AVHRR data trigger ASTER acquisitions using the instrument's "rapid response" mode. Specifically for Kamchatka, this program has resulted in more than 700 additional ASTER images of the most thermally-active volcanoes (e.g., Shiveluch, Kliuchevskoi, Karymsky, Bezymianny). The scientific results from this program at these volcanoes will be highlighted. These results were strengthened by several field seasons used to map new products, collect samples for laboratory-based spectroscopy, and acquire TIR camera data. The fusion of ground, laboratory and space-based spectroscopy provided the most accurate interpretation of the eruptions and laid the ground work for future VSWIR/TIR sensors such as HyspIRI, which are a critically

  6. Paleomagnetic Secular Variation Constraints on the Rapid Eruption of the Emeishan Continental Flood Basalts in Southwestern China and Northern Vietnam

    Science.gov (United States)

    Xu, Yingchao; Yang, Zhenyu; Tong, Ya-Bo; Jing, Xianqing

    2018-04-01

    Estimating the duration of magma eruptions using isotopic dating methods is difficult because of the intrinsic errors of the technique regarding the dated materials (such as zircon). However, the long-term variation of the geomagnetic field recorded by lava flows can be used to estimate the net duration of an eruption sequence. The Emeishan basalts at Dongchuan, with a thickness of 630 m, yielded a reliable characteristic remanent magnetization of normal polarity and which passed the fold test (Tauxe & Watson, 1994, https://doi.org/10.1016/0012-821X(94)90006-X). Stratigraphic and magnetostratigraphic correlations of the Emeishan basalts in the Dongchuan section with other sections indicate that the eruption of the Emeishan basalts at Dongchuan spans the entire normal polarity zone in the early stage of the Emeishan large igneous province. A flow-by-flow analysis of geomagnetic directions of the Emeishan basalts at Dongchuan indicates that four directional groups and fifteen individual lava directions were recorded, with a net duration (excluding quiescent intervals) of no more than 3100 years. The averaged site directions from the Emeishan basalts with normal polarity conforming to a geocentric axial dipole direction indicate that this interval is longer than 104-105 years. In addition, a magnetostratigraphic study indicates that the normal polarity interval recorded by the Emeishan basalts was shorter than 2-20 × 104 years. Thus, the total duration of the normal polarity stage of the Emeishan large igneous province was roughly 105 years. There is a possible relationship between the rapid eruption and the Late Capitanian mass extinction (259.8 ± 0.4 Ma, Henderson et al., 2012).

  7. Osmium isotope variations accompanying the eruption of a single lava flow field in the Columbia River Flood Basalt Province

    Science.gov (United States)

    Vye-Brown, C.; Gannoun, A.; Barry, T. L.; Self, S.; Burton, K. W.

    2013-04-01

    Geochemical interpretations of continental flood basalts usually assume that individual lava flows represent compositionally homogenous and rapidly erupted products of large well-mixed magma reservoirs. However, inflated pāhoehoe lavas may develop over considerable periods of time and preserve chemical variations that can be temporally linked through flow formation to eruption sequence thus providing an understanding of magma evolution over the timescale of a single eruption. This study presents comprehensive major, trace element and Re-Os isotope data for a single eruption that formed the 2660 km3 Sand Hollow flow field in the Columbia River Basalt Province, USA. Major and trace element variations accompanying flow emplacement (e.g. MgO 3.09-4.55 wt%, Ni 17.5-25.6 ppm) are consistent with fractional crystallisation, but other petrogenetic processes or variable sources cannot be distinguished. However, there is a systematic shift in the initial 187Os/188Os isotope composition of the magma (age corrected to 15.27 Ma), from 0.174 (lava core) to 1.444 (lava crust) within a single 35 m thick sheet lobe. Lava crust values are more radiogenic than any known mantle source, consistent with previous data indicating that neither an enriched reservoir nor the sub-continental lithospheric mantle are likely to have sourced these basalts. Rather, these data indicate that lavas emplaced during the earliest stages of eruption have higher degrees of crustal contamination. These results highlight the limitations of applying chemostratigraphic correlation across continental flood basalt provinces, the use of single data points to define melt sources and magmatic processes, and the dangers of using conventional isochron techniques in such basalt sequences for absolute chronology.

  8. Eruption dynamics and explosive-effusive transitions during the 1400 cal BP eruption of Opala volcano, Kamchatka, Russia

    Science.gov (United States)

    Andrews, Benjamin J.; Dufek, Josef; Ponomareva, Vera

    2018-05-01

    Deposits and pumice from the 1400 cal BP eruption of Opala volcano record activity that occurred at the explosive-effusive transition, resulting in intermittent, or stop-start, behavior, where explosive activity resumed following a pause. The eruption deposited distinctive, biotite-bearing rhyolite tephra across much of Kamchatka, and its stratigraphy consists of a lithic-rich pumice fall, overlain by pumice falls and pyroclastic density deposits, with the proportion of the latter increasing with height. This sequence repeats such that the middle of the total deposit is marked by a lithic-rich fall with abundant obsidian clasts. Notably, the eruptive pumice are poorly vesiculated, with vesicle textures that record fragmentation of a partially collapsed magmatic foam. The eruption vent, Baranii Amphitheater is filled with obsidian lavas of the same composition as the rhyolite tephra. Based upon the stratigraphic and compositional relations, we divide the eruption into four phases. Phase I initiated with eruption of a lithic-rich pumice fall, followed by eruption of Plinian falls and pyroclastic density currents. During Phase II, the eruption paused for at least 5-6 h; in this time, microlites nucleated and began to grow in the magma. Phase III essentially repeated the Phase I sequence. Obsidian lavas were emplaced during Phase IV. The pumice textures suggest that the magma ascended very near the threshold decompression rate for the transition between explosive (fast) and effusive (slow) behavior. The pause during Phase II likely occurred as decompression slowed enough for the magma to develop sufficient permeability for gas to escape resulting in collapse of the magmatic foam, stopping the eruption and temporarily sealing the conduit. After about 5-6 h, eruption resumed with, once again, magma decompressing very near the explosive-effusive transition. Phase III ended when the decompression rate slowed and lava dome emplacement began. Distributions of pumice and

  9. Geochemistry and volatile content of magmas feeding explosive eruptions at Telica volcano (Nicaragua)

    Science.gov (United States)

    Robidoux, P.; Rotolo, S. G.; Aiuppa, A.; Lanzo, G.; Hauri, E. H.

    2017-07-01

    Telica volcano, in north-west Nicaragua, is a young stratovolcano of intermediate magma composition producing frequent Vulcanian to phreatic explosive eruptions. The Telica stratigraphic record also includes examples of (pre)historic sub-Plinian activity. To refine our knowledge of this very active volcano, we analyzed major element composition and volatile content of melt inclusions from some stratigraphically significant Telica tephra deposits. These include: (1) the Scoria Telica Superior (STS) deposit (2000 to 200 years Before Present; Volcanic Explosive Index, VEI, of 2-3) and (2) pyroclasts from the post-1970s eruptive cycle (1982; 2011). Based on measurements with nanoscale secondary ion mass spectrometry, olivine-hosted (forsterite [Fo] > 80) glass inclusions fall into 2 distinct clusters: a group of H2O-rich (1.8-5.2 wt%) inclusions, similar to those of nearby Cerro Negro volcano, and a second group of CO2-rich (360-1700 μg/g CO2) inclusions (Nejapa, Granada). Model calculations show that CO2 dominates the equilibrium magmatic vapor phase in the majority of the primitive inclusions (XCO2 > 0.62-0.95). CO2, sulfur (generally 400 MPa) and early crystallization of magmas. Chlorine exhibits a wide concentration range (400-2300 μg/g) in primitive olivine-entrapped melts (likely suggesting variable source heterogeneity) and is typically enriched in the most differentiated melts (1000-3000 μg/g). Primitive, volatile-rich olivine-hosted melt inclusions (entrapment pressures, 5-15 km depth) are exclusively found in the largest-scale Telica eruptions (exemplified by STS in our study). These eruptions are thus tentatively explained as due to injection of deep CO2-rich mafic magma into the shallow crustal plumbing system. More recent (post-1970), milder (VEI 1-2) eruptions, instead, do only exhibit evidence for low-pressure (P viscosity of resident magma in shallow plumbing system (< 2.4 km), due to crystallization and degassing.

  10. Rain-triggered lahars following the 2010 eruption of Merapi volcano, Indonesia: A major risk

    Science.gov (United States)

    de Bélizal, Edouard; Lavigne, Franck; Hadmoko, Danang Sri; Degeai, Jean-Philippe; Dipayana, Gilang Aria; Mutaqin, Bachtiar Wahyu; Marfai, Muh Aris; Coquet, Marie; Mauff, Baptiste Le; Robin, Anne-Kyria; Vidal, Céline; Cholik, Noer; Aisyah, Nurnaning

    2013-07-01

    The 2010 VEI 4 eruption of Merapi volcano deposited roughly ten times the volume of pyroclastic materials of the 1994 and 2006 eruptions, and is recognized as one of the most intense eruption since 1872. However, as the eruptive phase is now over, another threat endangers local communities: rain-triggered lahars. Previous papers on lahars at Merapi presented lahar-related risk following small-scale dome-collapse PDCs. Thus the aim of this study is to provide new insights on lahar-related risk following a large scale VEI 4 eruption. The paper highlights the high number of events (240) during the 2010-2011 rainy season (October 2010-May 2011). The frequency of the 2010-2011 lahars is also the most important ever recorded at Merapi. Lahars occurred in almost all drainages located under the active cone, with runout distances exceeding 15 km. The geomorphic impacts of lahars on the distal slope of the volcano are then explained as they directly threaten houses and infrastructures: creation of large corridors, avulsions, riverbank erosion and riverbed downcutting are detailed through local scale examples. Related damage is also studied: 860 houses damaged, 14 sabo-dams and 21 bridges destroyed. Sedimentological characteristics of volcaniclastic sediments in lahar corridors are presented, with emphasis on the resource in building material that they represent for local communities. Risk studies should not forget that thousands of people are exposing themselves to lahar hazard when they quarry volcaniclastic sediment on lahar corridors. Finally, the efficient community-based crisis management is explained, and shows how local people organize themselves to manage the risk: 3 fatalities were reported, although lahars reached densely populated areas. To summarize, this study provides an update of lahar risk issues at Merapi, with emphasis on the distal slope of the volcano where lahars had not occurred for 40 years, and where lahar corridors were rapidly formed.

  11. Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption.

    Science.gov (United States)

    Ripepe, Maurizio; Donne, Dario Delle; Genco, Riccardo; Maggio, Giuseppe; Pistolesi, Marco; Marchetti, Emanuele; Lacanna, Giorgio; Ulivieri, Giacomo; Poggi, Pasquale

    2015-05-18

    Effusive eruptions are explained as the mechanism by which volcanoes restore the equilibrium perturbed by magma rising in a chamber deep in the crust. Seismic, ground deformation and topographic measurements are compared with effusion rate during the 2007 Stromboli eruption, drawing an eruptive scenario that shifts our attention from the interior of the crust to the surface. The eruption is modelled as a gravity-driven drainage of magma stored in the volcanic edifice with a minor contribution of magma supplied at a steady rate from a deep reservoir. Here we show that the discharge rate can be predicted by the contraction of the volcano edifice and that the very-long-period seismicity migrates downwards, tracking the residual volume of magma in the shallow reservoir. Gravity-driven magma discharge dynamics explain the initially high discharge rates observed during eruptive crises and greatly influence our ability to predict the evolution of effusive eruptions.

  12. The 2008 phreatomagmatic eruption of Okmok volcano, Aleutian Islands, Alaska: Chronology, deposits, and landform changes

    Science.gov (United States)

    Jessica Larsen,; Neal, Christina; Schaefer, Janet R.; Kaufman, Max; Lu, Zhong

    2015-01-01

    Okmok volcano, Aleutian Islands, Alaska, explosively erupted over a five-week period between July 12 and August 23, 2008. The eruption was predominantly phreatomagmatic, producing fine-grained tephra that covered most of northeastern Umnak Island. The eruption had a maximum Volcanic Explosivity Index (VEI) of 4, with eruption column heights up to 16 km during the opening phase. Several craters and a master tuff cone formed in the caldera as a result of phreatomagmatic explosions and accumulated tephra-fall and surge deposits. Ascending magma continuously interacted with an extensive shallow groundwater table in the caldera, resulting in the phreatomagmatic character of the eruption. Syneruptive explosion and collapse processes enlarged a pre-existing lake, created a second, entirely new lake, and formed new, deep craters. A field of ephemeral collapse pits and collapse escarpments formed where rapid groundwater withdrawal removed material from beneath capping lava flows. This was the first significant phreatomagmatic event in the U.S. since the Ukinrek Maars eruption in 1977.

  13. Reconstructing the deadly eruptive events of 1790 CE at Kīlauea Volcano, Hawai‘i

    Science.gov (United States)

    Swanson, Don; Weaver, Samantha J; Houghton, Bruce F.

    2014-01-01

    A large number of people died during an explosive eruption of Kīlauea Volcano in 1790 CE. Detailed study of the upper part of the Keanakāko‘i Tephra has identified the deposits that may have been responsible for the deaths. Three successive units record shifts in eruption style that agree well with accounts of the eruption based on survivor interviews 46 yr later. First, a wet fall of very fine, accretionary-lapilli–bearing ash created a “cloud of darkness.” People walked across the soft deposit, leaving footprints as evidence. While the ash was still unconsolidated, lithic lapilli fell into it from a high eruption column that was seen from 90 km away. Either just after this tephra fall or during its latest stage, pulsing dilute pyroclastic density currents, probably products of a phreatic eruption, swept across the western flank of Kīlauea, embedding lapilli in the muddy ash and crossing the trail along which the footprints occur. The pyroclastic density currents were most likely responsible for the fatalities, as judged from the reported condition and probable location of the bodies. This reconstruction is relevant today, as similar eruptions will probably occur in the future at Kīlauea and represent its most dangerous and least predictable hazard.

  14. A Late Holocene explosive mafic eruption of Villarrica volcano, Southern Andes: The Chaimilla deposit

    Science.gov (United States)

    Costantini, L.; Pioli, L.; Bonadonna, C.; Clavero, J.; Longchamp, C.

    2011-03-01

    Villarrica (Chile) is one of the most active volcanoes in South America having erupted about 60 times in the last 460 years. Although its historical eruptive activity has been mainly effusive and weakly explosive, it had strong explosive behaviour in postglacial times. Chaimilla (activity. The deposit is dispersed over an area of 250 km 2 and consists of 8 units (A-H) which were grouped into four sequences. Stratigraphic data suggest that the eruption had a relatively short duration and evolved from i) an Opening phase, dispersing ash, lapilli clasts, accretionary lapilli, blocks and bombs, to ii) a Pulsatory phase, originating a series of magmatic explosions, to iii) a Collapsing phase, characterised by unstable plumes which emplaced a series of pyroclastic density currents intercalated with thin fallout layers and finally to iv) a Climactic phase forming a more sustained plume which eventually collapsed generating the final pyroclastic density currents. The deposit (fall and flow) has a minimum cumulative volume of 0.6 km 3, with the main sustained phase being associated with a VEI 4 and the flow units having a minimum estimated total volume of 0.04 km 3. The erupted material has a homogenous chemical composition but displays a remarkable variability in both textural and physical properties. The density distribution of juvenile products shows a clear bimodality characterised by two main populations: P1 and P2. Population P1 consists of highly vesicular clasts (modal density around 1000 kg m - 3 ) with mostly sub-spherical bubbles and moderately crystallised groundmass with large-sized microlites. Clasts from population P2 are poorly vesicular (modal density around 1600 kg m - 3 ) with irregular to collapsed bubbles and numerous smaller microlites. The variability of both vesicularity and microlite characteristics suggests the involvement of two magma batches with distinct pre-eruptive degassing and rising histories. Our eruption conceptual model implies the

  15. Eruptive history and magmatic stability of Erebus volcano, Antarctica: Insights from englacial tephra

    Science.gov (United States)

    Iverson, N. A.; Kyle, P. R.; Dunbar, N. W.; Pearce, N. J.

    2012-12-01

    Erebus is the most active volcano in Antarctica and hosts a persistent convecting and degassing phonolite lava lake in its summit crater. Small Strombolian eruptions occasionally eject volcanic bombs onto the crater rim and floor. 40 years of observations, during the austral summer, show that ash eruptions are rare, but extensive records of small tephra (volcanic ash) layers are found embedded in ablating blue ice areas on the flanks of the volcano. Most tephra are deposited within 15km of the summit, although 3 Erebus phonolite tephra have been located over 200km away. The tephra provide a stratigraphic eruptive sequence of Erebus and gives insight into its explosive history. There is very little age control on the eruptions but based on their phonolitic composition they likely span the past 10-40ka. SEM images and Image Particle Analysis (IPA) of tephra were used to determine shard morphology and shape parameters, respectively. The tephra layers characterized by Pele's hair, glass spheres and budding ash are interpreted to be from Strombolian eruptions. In contrast, layers that are dominated by chemical pitting, quenched textures, mossy and adhering particles are mostly likely from phreatomagmatic eruptions. IPA parameters are characterized by rectangularity, compactness, elongation and circularity. Strombolian particles have larger elongation and circularity values exhibited by their stretched and irregular shape and lower rectangularity and compactness values. Phreatomagmatic tephra are more blocky and have higher rectangularity and compactness values and lower elongation and circularity values than Strombolian particles. Based on imagery, many Erebus tephra layers appear to contain a mixture of Strombolian and phreatomagmatic fragments. These mixed eruptions would likely start as phreatomagmatic and transition into magmatic Strombolian eruptions as the water source is exhausted. Major and trace element analyses of the glass shards were measured by electron

  16. New insight on the Toba volcano super eruption (Sumatra Island, Indonesia) from BAR-9425 core.

    Science.gov (United States)

    Caron, B.; del Manzo, G.; Moreno, E.; Annachiara, B.; Baudin, F.; Bassinot, F. C.; Villemant, B.

    2017-12-01

    The famous 73 ka Toba eruption has produced about 2800 km3 of magma and is considered as one of the largest known eruptions during the Quaternary (Rose and Chesner, 1990). The BAR-9425 piston core collected during the 1994 joint French-Indonesian BARAT Cruise in the north Sumatra Island has recorded the volcano history of Toba from 60 to 100 ka (including the 73 ka Young Toba Tuff (YTT)). Tephra layers within this sediment core have been systematically studied using a combined analysis including stable isotope (δ18O, van der Kaars et al., 2012), high resolution tephrostratigraphic, morphological and a major-trace element studies. Our preliminary results show that not only one major eruption occurred between 60 and 100 ka but probably 11 distinct eruptions occurred. The 11 eruptions display an homogeneous major element composition. The oldest tephra with an estimated age of 101 ka, have a rhyolitic composition and 30% of relative abundance of volcanic glass shards. The other eruptive phases are dated at: 91,5-89,2 ka with a maximum of 16% of volcanic tephra; 85,7-84,8 ka with 64%; 81,8 ka with 22%; 74,4 ka with 43%, 72,3 ka with 89%, 71,4 ka with 92%; 68,9% with 96%; 66,5 ka with 94%; 65,2 ka with 75% and 63,1-60,3 ka with a maximum of 96% of volcanic tephra respectively (ages were calculated with a constant sediment rate of 4,3 cm/ka from data from van der Kaars et al., 2012). Some of these eruptions have had direct effect on regional vegetation as suggested by Van der Kaars et al. (2012) who propose that the gradual expansion of pine cover for the 7000 years following the eruption, is a consequence of the ash deposit from the 89 ka eruption. Our detailed tephrostratigraphy study of Toba eruptions will help to understand the impact on the ecosystems of northern Sumatra and on global climate change. Moreover, we expect to correlate the new tephra layers of Toba volcano to other sites by using AL-ICP-MS traces analyses and to use it as chronological makers.

  17. El Chichón's "surprise" eruption in 1982: lessons for reducing volcano risk

    Science.gov (United States)

    Tilling, R.I.

    2009-01-01

    During one week (28 March–4 April 1982), three powerful explosive eruptions (VEI 5) of El Chichón Volcano caused the worst volcanic disaster in Mexico's recorded history. Pyroclastic flows and surges obliterated nine villages, killing about 2,000 people, and ashfalls downwind posed socio–economic hardships for many thousands of inhabitants of the States of Chiapas and Tabasco. The unexpected and vigorous eruption of 28 caused a hasty, confused evacuation of most villagers in the area. Activity was greatly diminished the next five days, and then the most powerful and lethal eruptions occurred 3–4 April—tragically, after many evacuees were allowed by authorities to return home.

  18. Deep Structure of the Zone of Tolbachik Fissure Eruptions (Kamchatka, Klyuchevskoy Volcano Group): Evidence from a Complex of Geological and Geophysical Data

    Science.gov (United States)

    Kugaenko, Yu. A.; Saltykov, V. A.; Gorvatikov, A. V.; Stepanova, M. Yu.

    2018-05-01

    With the use of the method of low-frequency microseismic sounding, the configuration of the magmatic feeding system of the Tolbachinsky Dol—a regional zone of areal basaltic volcanism in the southern part of the Klyuchevskoy volcano group in Kamchatka—is studied. The initial data are obtained by a stepby-step recording of the background microseismic noise in 2010-2015 within a thoroughly marked-out survey area covering the zones of fissure eruptions in 1975-1976 and 2012-2013 and, partly, the edifice of the Ploskii (flat) Tolbachik volcano. The depth sections reflecting the distributions of the relative velocities of seismic waves in the Earth's crust are constructed. For a more reliable interpretation of the revealed deep anomalies, the results of independent geological and geophysical studies are used. The ascertained low-velocity structures are closely correlated to the manifestations of present-day volcanism. It is shown that the feeding structure of the Tolbachinsky Dol is spatially heterogeneous, incorporating subvertical and lateral pipeshaped magma conduits, closely spaced magma feeding channels, and shallow magma reservoirs. A longlived local transcrustal magma conducting zone is revealed, and regularities in the deep structure of the feeding systems of fissure eruptions are identified. The configuration of the established subvertical magma conduits permits basalts moving to rise to the surface by different paths, which, inter alia, explains the contrasting magma compositions observed during a single eruption. Thus, based on the instrumental data, it is shown that the magmatic feeding structure of the Tolbachinsky Dol has a number of specific peculiarities and is significantly more complicated than has been previously thought about the areal volcanic fields.

  19. Quickly erupted volcanic sections of the Steens Basalt, Columbia River Basalt Group: Secular variation, tectonic rotation, and the Steens Mountain reversal

    Science.gov (United States)

    Jarboe, Nicholas A.; Coe, Robert S.; Renne, Paul R.; Glen, Jonathan M. G.; Mankinen, Edward A.

    2008-01-01

    The Steens Basalt, now considered part of the Columbia River Basalt Group (CRBG), contains the earliest eruptions of this magmatic episode. Lava flows of the Steens Basalt cover about 50,000 km2 of the Oregon Plateau in sections up to 1000 m thick. The large number of continuously exposed, quickly erupted lava flows (some sections contain over 200 flows) allows for small loops in the magnetic field direction paths to be detected. For volcanic rocks, this detail and fidelity are rarely found outside of the Holocene and yield estimates of eruption durations at our four sections of ∼2.5 ka for 260 m at Pueblo Mountains, 0.5 to 1.5 ka for 190 m at Summit Springs, 1–3 ka for 170 m at North Mickey, and ∼3 ka for 160 m at Guano Rim. That only one reversal of the geomagnetic field occurred during the eruption of the Steens Basalt (the Steens reversal at approximately 16.6 Ma) is supported by comparing 40Ar/39Ar ages and magnetic polarities to the geomagnetic polarity timescale. At Summit Springs two 40Ar/39Ar ages from normal polarity flows (16.72 ± ± 0.29 Ma (16.61) and 16.92 ± ± 0.52 Ma (16.82); ± ± equals 2σ error) place their eruptions after the Steens reversal, while at Pueblo Mountains an 40Ar/39Ar age of 16.72 ± ± 0.21 Ma (16.61) from a reverse polarity flow places its eruption before the Steens reversal. Paleomagnetic field directions yielded 50 nontransitional directional-group poles which, combined with 26 from Steens Mountain, provide a paleomagnetic pole for the Oregon Plateau of 85.7°N, 318.4°E, K = 15.1, A95 = 4.3. Comparison of this new pole with a reference pole derived from CRBG flows from eastern Washington and a synthetic reference pole for North America derived from global data implies relative clockwise rotation of the Oregon Plateau of 7.4 ± 5.0° or 14.5 ± 5.4°, respectively, probably due to northward decreasing extension of the basin and range.

  20. The VEI-7 Millennium eruption, Changbaishan-Tianchi volcano, China/DPRK: New field, petrological, and chemical constraints on stratigraphy, volcanology, and magma dynamics

    Science.gov (United States)

    Pan, Bo; de Silva, Shanaka L.; Xu, Jiandong; Chen, Zhengquan; Miggins, Daniel P.; Wei, Haiquan

    2017-09-01

    Field relations, petrography, bulk and micro-scale chemistry reveal that the most recent history of hazardous Changbaishan-Tianchi volcano should be revised with important implications for volcanic hazard in NE Asia. Currently, the two most recent large eruptions are identified separately as a VEI 5 trachytic Baguamiao eruption (BGM) and the much heralded VEI 7, late 946 CE (Common Era) "Millennium" eruption (ME) of comendite. However, we find that the former is part of the latter based on the following evidence: (1) trachytic fallout of the BGM lies directly on the comendite tephra of the ME without any indication of depositional hiatus; (2) abundant mingled trachyte-comendite pumice in the tephra deposits; (3) similar chemistry of mingled pumice and its components to those in the BGM and ME products; (4) correlation of bimodal glass shard compositions in the distal 'B-Tm' ash from the Japan Sea with comendite and trachyte glass from the BGM and ME products. Based on the above evidence, we suggest that the great Millennium eruption of 946 CE should be revised finally to include the BGM trachyte as its final stage. Furthermore, deposits attributed to two other trachytic eruptions in 1668 and/or 1702 CE (also called Baguamiao by some authors), and 1903 CE referred to in historic accounts were also examined. Our field observations, petrography, bulk and micro-scale chemistry combined with previously published Ra/Th ages indicate that all these trachytes are either primary deposits of the ME or its reworked deposits. Thus our findings do not support two separate post-ME eruptions and require that volcanic hazard assessment at Changbaishan volcano include this new interpretation. Recently published geochronological data integrated with our new petrochemical and volcanological framework informs the magma dynamics leading to the ME. The ME comendite, derived from a parental trachyte similar to the BGM started accumulating at shallow levels around 12 ka to 8 ka. Around 4

  1. The 1793 Eruption of San Martin Volcano (Los Tuxtlas, Veracruz, Mexico)

    Science.gov (United States)

    Espindola, J. M.; Zamora-Camacho, A.; Godinez, M. L.; Rodriguez-Elizarraras, S.

    2007-12-01

    San Martin Tuxtla Volcano is located in the State of Veracruz, Eastern Mexico (18.572N, 95.169W, 1650 masl). Its last eruption, which occurred 1793, was described by D. Jose Moziño, a naturalist sent by the Viceroy-of the then New Spain-to report on the eruption. The activity lasted for several months with distinct events of explosive character, which produced thick ash fall deposits in its vicinity. The explosions were heard, among other places, in the coasts of Tampico some 500km NW from the volcano. The ash fall reached distances up to 200 Km from the crater and covered an area of about 112,000 Km2. Following the description of Moziño and the results of field studies we make a reconstruction of the eruption. We identified the air fall deposit from this eruption and present an isopach map. We present radiocarbon ages of the paleosoils under the ash bed as an indirect evidence of its age. This data together with present day wind velocities, and a diffusion-advection model of the dispersion of ashes allow to estimate in at least 10km the altitude reached by some of the eruptive plumes. An estimation of the minimum volume of ash erupted, based on the reconstructed isopachs, is of about 1.3 x 108 m3. Microphotographs of the ashes suggest that the activity was of phreatomagmatic and strombolian nature. Finally, we address some aspects of the volcanic risk in the area derived from our study.

  2. Volcanic tremor associated with eruptive activity at Bromo volcano

    Directory of Open Access Journals (Sweden)

    E. Gottschämmer

    1999-06-01

    Full Text Available Three broadband stations were deployed on Bromo volcano, Indonesia, from September to December 1995. The analysis of the seismograms shows that the signals produced by the volcanic sources cover the frequency range from at least 25 Hz down to periods of several minutes and underlines, therefore, the importance of broadband recordings. Frequency analysis reveals that the signal can be divided into four domains. In the traditional frequency range of volcanic tremor (1-10 Hz sharp transitions between two distinct values of the tremor amplitude can be observed. Additional tremor signal including frequencies from 10 to 20 Hz could be found during late November and early December. Throughout the whole experiment signals with periods of some hundred seconds were observed which are interpreted as ground tilts. For these long-period signals a particle motion analysis was performed in order to estimate the source location. Depth and radius can be estimated when the source is modeled as a sudden pressure change in a sphere. The fourth frequency range lies between 0.1 and 1 Hz and is dominated by two spectral peaks which are due to marine microseism. The phase velocity and the direction of wave propagation of these signals could be determined using the tripartite-method.

  3. Using InSAR for Characterizing Pyroclastic Flow Deposits at Augustine Volcano Across Two Eruptive Cycles

    Science.gov (United States)

    McAlpin, D. B.; Meyer, F. J.; Lu, Z.; Beget, J. E.

    2014-12-01

    Augustine Island is a small, 8x11 km island in South Central Alaska's lower Cook Inlet. It is approximately 280 km southwest of Anchorage, and occupied entirely by its namesake Augustine Volcano. At Augustine Volcano, SAR data suitable for interferometry is available from 1992 to 2005, from March 2006 to April 2007, and from July 2007 to October 2010. Its last two eruptive episodes, in 1986 and 2006, resulted in substantial pyroclastic flow deposits (PFDs) on the Volcano's north flank. Earlier InSAR analyses of the area, from 1992-1999, identified local subsidence, but no volcano-wide deformation indicative of magma-chamber evacuation. In contrast to previous studies, we use InSAR data to determine a range of geophysical parameters for PFDs emplaced during the Augustine's two most recent eruption cycles. Based on InSAR measurements between 1992 and 2010, we reconstruct the deformation behavior of PFDs emplaced during Augustine's last two eruption cycles. Using a combination of InSAR measurements and modeling, we determine the thickness and long-term deformation of overlaying pyroclastic flow deposits emplaced in 1986 and 2006. Consistent with previous observations of pyroclastic flows, we found that the PFDs on Augustine Island rapidly subsided after emplacement due to an initial compaction of the material. We determined the length of this initial settling period and measured the compaction rate. Subsequent to this initial rapid subsidence, we found that PFD deformation slowed to a more persistent, linear, long-term rate, related to cooling of the deposits. We established that the deposits' contraction rate is linearly related to their thickness and measured the contraction rate. Finally, a study of long term coherence properties of the Augustine PFDs showed remarkable stability of the surface over long time periods. This information provides clues on the structural properties and composition of the emplaced material.

  4. VHub - Cyberinfrastructure for volcano eruption and hazards modeling and simulation

    Science.gov (United States)

    Valentine, G. A.; Jones, M. D.; Bursik, M. I.; Calder, E. S.; Gallo, S. M.; Connor, C.; Carn, S. A.; Rose, W. I.; Moore-Russo, D. A.; Renschler, C. S.; Pitman, B.; Sheridan, M. F.

    2009-12-01

    Volcanic risk is increasing as populations grow in active volcanic regions, and as national economies become increasingly intertwined. In addition to their significance to risk, volcanic eruption processes form a class of multiphase fluid dynamics with rich physics on many length and time scales. Risk significance, physics complexity, and the coupling of models to complex dynamic spatial datasets all demand the development of advanced computational techniques and interdisciplinary approaches to understand and forecast eruption dynamics. Innovative cyberinfrastructure is needed to enable global collaboration and novel scientific creativity, while simultaneously enabling computational thinking in real-world risk mitigation decisions - an environment where quality control, documentation, and traceability are key factors. Supported by NSF, we are developing a virtual organization, referred to as VHub, to address this need. Overarching goals of the VHub project are: Dissemination. Make advanced modeling and simulation capabilities and key data sets readily available to researchers, students, and practitioners around the world. Collaboration. Provide a mechanism for participants not only to be users but also co-developers of modeling capabilities, and contributors of experimental and observational data sets for use in modeling and simulation, in a collaborative environment that reaches far beyond local work groups. Comparison. Facilitate comparison between different models in order to provide the practitioners with guidance for choosing the "right" model, depending upon the intended use, and provide a platform for multi-model analysis of specific problems and incorporation into probabilistic assessments. Application. Greatly accelerate access and application of a wide range of modeling tools and related data sets to agencies around the world that are charged with hazard planning, mitigation, and response. Education. Provide resources that will promote the training of the

  5. The Origin of Basalt and Cause of Melting Beneath East Antarctica as Revealed by the Southernmost Volcanoes on Earth

    Science.gov (United States)

    Reindel, J. L.; Panter, K. S.; Smellie, J. L.; McIntosh, W. C.

    2017-12-01

    Mt. Early and Sheridan Bluff are two basaltic monogenetic volcanoes located at 87° South latitude at the head of the Scott Glacier. These Early Miocene volcanoes lie 800 km from any other volcano and 200 km inland from the shoulder of the West Antarctic Rift System (WARS), which is the foci of most Cenozoic alkaline volcanism in Antarctica. Preliminary 40Ar/39Ar dates suggest that Mt. Early is older than previously determined and closer in age to Sheridan Bluff ( 19 Ma). Petrography, mineral chemistry and whole rock major and trace element concentrations are used to characterize the basalts and to determine whether they are genetically related to mafic volcanism in the WARS. The basalts are porphyritic with phenocrysts of olivine (Fo 58-84%), plagioclase (An 48-67%) ± clinopyroxene (Wo 43-48%). Whole rock MgO range from 10 to 4 wt.% and have restricted SiO2 (48 to 50 wt.%) contents. The basalts vary from alkaline (up to 6 wt.% Ne-normative) to subalkaline (up to 6 wt.% Hy-normative). The alkaline basalts that occur at both Mt. Early and Sheridan Bluff are more strongly enriched in incompatible elements (La 33-49 ppm, Ba 270-484 ppm, Sr 712-1009 ppm), have LaN/YbN ratios >10 and show prominent Pb negative anomalies with only slight K negative anomalies on primitive mantle normalized, multi-element diagrams. Subalkaline basalts (only at Sheridan Bluff) have lower concentrations of incompatible elements (La 14-16 ppm, Ba 110-144 ppm, and Sr 358-380 ppm), LaN/YbN ratios base of the East Antarctic craton and its replacement by warmer asthenosphere has been proposed for this region based on geophysical evidence (Heeszel et al., 2016). The volcanism may constrain the timing of this event. Heeszel et al. (2016) JGR, 121, 1758-1775.

  6. Volcano geodesy: The search for magma reservoirs and the formation of eruptive vents

    Science.gov (United States)

    Dvorak, J.J.; Dzurisin, D.

    1997-01-01

    Routine geodetic measurements are made at only a few dozen of the world's 600 or so active volcanoes, even though these measurements have proven to be a reliable precursor of eruptions. The pattern and rate of surface displacement reveal the depth and rate of pressure increase within shallow magma reservoirs. This process has been demonstrated clearly at Kilauea and Mauna Loa, Hawaii; Long Valley caldera, California; Campi Flegrei caldera, Italy; Rabaul caldera, Papua New Guinea; and Aira caldera and nearby Sakurajima, Japan. Slower and lesser amounts of surface displacement at Yellowstone caldera, Wyoming, are attributed to changes in a hydrothermal system that overlies a crustal magma body. The vertical and horizontal dimensions of eruptive fissures, as well as the amount of widening, have been determined at Kilauea, Hawaii; Etna, Italy; Tolbachik, Kamchatka; Krafla, Iceland; and Asal-Ghoubbet, Djibouti, the last a segment of the East Africa Rift Zone. Continuously recording instruments, such as tiltmeters, extensometers, and dilatometers, have recorded horizontal and upward growth of eruptive fissures, which grew at rates of hundreds of meters per hour, at Kilauea; Izu-Oshima, Japan; Teishi Knoll seamount, Japan; and Piton de la Fournaise, Re??union Island. In addition, such instruments have recorded the hour or less of slight ground movement that preceded small explosive eruptions at Sakurajima and presumed sudden gas emissions at Galeras, Colombia. The use of satellite geodesy, in particular the Global Positioning System, offers the possibility of revealing changes in surface strain both local to a volcano and over a broad region that includes the volcano.

  7. Geomorphological mapping using drones into the eruptive summit of Turrialba volcano, Costa Rica

    Science.gov (United States)

    Ruiz, P.; Mora, M.; Soto, G. J.; Vega, P.; Barrantes, R.

    2017-12-01

    We produced and compared two detailed topographic datasets of the SW active crater on the summit of Turrialba volcano (03/2016 and 06/2017). These datasets are based on hundreds of orthophotos obtained by low-height flights by drones (Phantom-3, and Inspire-1) to collect the aerial data, and ground control points from RTK-GPS surveys (for ground survey and control points, we used reflective marks and local stations). Photogrammetry software and GIS were used to processes the data for creating DEMs. Using these data, we have been able to document the geomorphological changes generated by eruptions. We have learned the processes involved in the crater evolution during an eruption period passing from a close-system to an open one. Turrialba has been erupting since 2010, when a phreatic explosion opened a small vent on the SW crater. Further minor phreatic eruptions occurred in 2011-2013 with a slow increase of juvenile content in its products, until it clearly evolved to phreatomagmatism in 2014 and an open-system in mid-2016. We recorded significant changes in the morphology of the active crater in the latest period of eruption. These changes are the result of stronger eruptions between 04/2016 and 01/2017, finally clearing the main conduit that opened the system and favored the rise of magma up to the surface. Lava now lies on the bottom of the crater, forming a small lava pool (25m x 15m). We found that in the 15-month period during the opening of the volcanic system, the active crater got 100 m deeper and wider at the bottom (in 06/2017, depth was 230 m, and the empty volume of the crater 2.5x106m3. These observations are consistent with the seismic records through the opening of the system and the eruption style. Aerial dataset from low-height flights by drones are a powerful tool to understand the evolution of volcanoes from close to open systems and for volcano hazard assessments.

  8. Diverse Eruptive Activity Revealed by Acoustic and Electromagnetic Observations of the 14 July 2013 Intense Vulcanian Eruption of Tungurahua Volcano, Ecuador

    Science.gov (United States)

    Anderson, J. F.; Johnson, J. B.; Steele, A. L.; Ruiz, M. C.; Brand, B. D.

    2018-04-01

    During the powerful July 2013 eruption of Tungurahua volcano, Ecuador, we recorded exceptionally high amplitude, long-period infrasound (1,600-Pa peak-to-peak amplitude, 5.5-s period) on sensors within 2 km of the vent alongside electromagnetic signals from volcanic lightning serendipitously captured as interference. This explosion was one of Tungurahua's most powerful vulcanian eruptions since recent activity began in 1999, and its acoustic wave is among the most powerful volcanic infrasound ever recorded anywhere. We use these data to quantify erupted volume from the main explosion and to classify postexplosive degassing into distinct emission styles. Additionally, we demonstrate a highly effective method of recording lightning-related electromagnetic signals alongside infrasound. Detailed chronologies of powerful vulcanian eruptions are rare; this study demonstrates that diverse eruptive processes can occur in such eruptions and that near-vent infrasound and electromagnetic data can elucidate them.

  9. Viscoelastic behavior of basaltic ash from Stromboli volcano inferred from intermittent compression experiments

    Science.gov (United States)

    Kurokawa, A. K.; Miwa, T.; Okumura, S.; Uesugi, K.

    2017-12-01

    After ash-dominated Strombolian eruption, considerable amount of ash falls back to the volcanic conduit forming a dense near-surface region compacted by weights of its own and other fallback clasts (Patrick et al., 2007). Gas accumulation below this dense cap causes a substantial increase in pressure within the conduit, causing the volcanic activity to shift to the preliminary stages of a forthcoming eruption (Del Bello et al., 2015). Under such conditions, rheology of the fallback ash plays an important role because it controls whether the fallback ash can be the cap. However, little attention has been given to the point. We examined the rheology of ash collected at Stromboli volcano via intermittent compression experiments changing temperature and compression time/rate. The ash deformed at a constant rate during compression process, and then it was compressed without any deformation during rest process. The compression and rest processes repeated during each experiment to see rheological variations with progression of compaction. Viscoelastic changes during the experiment were estimated by Maxwell model. The results show that both elasticity and viscosity increases with decreasing porosity. On the other hand, the elasticity shows strong rate-dependence in the both compression and rest processes while the viscosity dominantly depends on the temperature, although the compression rate also affects the viscosity in the case of the compression process. Thus, the ash behaves either elastically or viscously depending on experimental process, temperature, and compression rate/time. The viscoelastic characteristics can be explained by magnitude relationships between the characteristic relaxation times and times for compression and rest processes. This indicates that the balance of the time scales is key to determining the rheological characteristics and whether the ash behaves elastically or viscously may control cyclic Strombolian eruptions.

  10. Crustal CO2 liberation during the 2006 eruption and earthquake events at Merapi volcano, Indonesia

    Science.gov (United States)

    Troll, Valentin R.; Hilton, David R.; Jolis, Ester M.; Chadwick, Jane P.; Blythe, Lara S.; Deegan, Frances M.; Schwarzkopf, Lothar M.; Zimmer, Martin

    2012-06-01

    High-temperature volcanic gas is widely considered to originate from ascending, mantle-derived magma. In volcanic arc systems, crustal inputs to magmatic gases mainly occur via subducted sediments in the mantle source region. Our data from Merapi volcano, Indonesia imply, however, that during the April-October 2006 eruption significant quantities of CO2 were added from shallow crustal sources. We show that prior to the 2006 events, summit fumarole gas δ13C(CO2) is virtually constant (δ13C1994-2005 = -4.1 ± 0.3‰), but during the 2006 eruption and after the shallow Yogyakarta earthquake of late May, 2006 (M6.4; hypocentres at 10-15 km depth), carbon isotope ratios increased to -2.4 ± 0.2‰. This rise in δ13C is consistent with considerable addition of crustal CO2 and coincided with an increase in eruptive intensity by a factor of ˜3 to 5. We postulate that this shallow crustal volatile input supplemented the mantle-derived volatile flux at Merapi, intensifying and sustaining the 2006 eruption. Late-stage volatile additions from crustal contamination may thus provide a trigger for explosive eruptions independently of conventional magmatic processes.

  11. Sensitivity to lunar cycles prior to the 2007 eruption of Ruapehu volcano.

    Science.gov (United States)

    Girona, Társilo; Huber, Christian; Caudron, Corentin

    2018-01-24

    A long-standing question in Earth Science is the extent to which seismic and volcanic activity can be regulated by tidal stresses, a repeatable and predictable external excitation induced by the Moon-Sun gravitational force. Fortnightly tides, a ~14-day amplitude modulation of the daily tidal stresses that is associated to lunar cycles, have been suggested to affect volcano dynamics. However, previous studies found contradictory results and remain mostly inconclusive. Here we study how fortnightly tides have affected Ruapehu volcano (New Zealand) from 2004 to 2016 by analysing the rolling correlation between lunar cycles and seismic amplitude recorded close to the crater. The long-term (~1-year) correlation is found to increase significantly (up to confidence level of 5-sigma) during the ~3 months preceding the 2007 phreatic eruption of Ruapehu, thus revealing that the volcano is sensitive to fortnightly tides when it is prone to explode. We show through a mechanistic model that the real-time monitoring of seismic sensitivity to lunar cycles may help to detect the clogging of active volcanic vents, and thus to better forecast phreatic volcanic eruptions.

  12. Precursory earthquakes of the 1943 eruption of Paricutin volcano, Michoacan, Mexico

    Science.gov (United States)

    Yokoyama, I.; de la Cruz-Reyna, S.

    1990-12-01

    Paricutin volcano is a monogenetic volcano whose birth and growth were observed by modern volcanological techniques. At the time of its birth in 1943, the seismic activity in central Mexico was mainly recorded by the Wiechert seismographs at the Tacubaya seismic station in Mexico City about 320 km east of the volcano area. In this paper we aim to find any characteristics of precursory earthquakes of the monogenetic eruption. Though there are limits in the available information, such as imprecise location of hypocenters and lack of earthquake data with magnitudes under 3.0. The available data show that the first precursory earthquake occurred on January 7, 1943, with a magnitude of 4.4. Subsequently, 21 earthquakes ranging from 3.2 to 4.5 in magnitude occurred before the outbreak of the eruption on February 20. The (S - P) durations of the precursory earthquakes do not show any systematic changes within the observational errors. The hypocenters were rather shallow and did not migrate. The precursory earthquakes had a characteristic tectonic signature, which was retained through the whole period of activity. However, the spectra of the P-waves of the Paricutin earthquakes show minor differences from those of tectonic earthquakes. This fact helped in the identification of Paricutin earthquakes. Except for the first shock, the maximum earthquake magnitudes show an increasing tendency with time towards the outbreak. The total seismic energy released by the precursory earthquakes amounted to 2 × 10 19 ergs. Considering that statistically there is a threshold of cumulative seismic energy release (10 17-18ergs) by precursory earthquakes in polygenetic volcanoes erupting after long quiescence, the above cumulative energy is exceptionally large. This suggests that a monogenetic volcano may need much more energy to clear the way of magma passage to the earth surface than a polygenetic one. The magma ascent before the outbreak of Paricutin volcano is interpretable by a model

  13. Probabilistic short-term forecasting of eruption rate at Kīlauea Volcano using a physics-based model

    Science.gov (United States)

    Anderson, K. R.

    2016-12-01

    Deterministic models of volcanic eruptions yield predictions of future activity conditioned on uncertainty in the current state of the system. Physics-based eruption models are well-suited for deterministic forecasting as they can relate magma physics with a wide range of observations. Yet, physics-based eruption forecasting is strongly limited by an inadequate understanding of volcanic systems, and the need for eruption models to be computationally tractable. At Kīlauea Volcano, Hawaii, episodic depressurization-pressurization cycles of the magma system generate correlated, quasi-exponential variations in ground deformation and surface height of the active summit lava lake. Deflations are associated with reductions in eruption rate, or even brief eruptive pauses, and thus partly control lava flow advance rates and associated hazard. Because of the relatively well-understood nature of Kīlauea's shallow magma plumbing system, and because more than 600 of these events have been recorded to date, they offer a unique opportunity to refine a physics-based effusive eruption forecasting approach and apply it to lava eruption rates over short (hours to days) time periods. A simple physical model of the volcano ascribes observed data to temporary reductions in magma supply to an elastic reservoir filled with compressible magma. This model can be used to predict the evolution of an ongoing event, but because the mechanism that triggers events is unknown, event durations are modeled stochastically from previous observations. A Bayesian approach incorporates diverse data sets and prior information to simultaneously estimate uncertain model parameters and future states of the system. Forecasts take the form of probability distributions for eruption rate or cumulative erupted volume at some future time. Results demonstrate the significant uncertainties that still remain even for short-term eruption forecasting at a well-monitored volcano - but also the value of a physics

  14. The 2015 Wolf volcano (Galápagos) eruption studied using Sentinel-1 and ALOS-2 data

    KAUST Repository

    Xu, Wenbin

    2016-09-28

    An energetic eruption started on 25 May 2015 from a circumferential fissure at the summit of Wolf volcano on Isabela Island, western Galápagos. Further eruptive activity within the Wolf caldera followed in mid-June 2015. As no geodetic observations of earlier eruptions at Wolf exist, this eruption provides an opportunity to study the volcano\\'s magmatic plumbing system for the first time. Here we use interferometric synthetic aperture radar (InSAR) data from both the Sentinel-1A and ALOS-2 satellites to map and analyze the surface deformation at four time periods during the activity. These data allow us to identify the two eruption phases and reveal strong coeruptive subsidence within the Wolf caldera that is superimposed on a larger volcano-wide subsidence signal. Modeling of the surface displacements shows that two shallow magma reservoirs located under Wolf at ~1 km and ~5 km below sea level explain the subsidence and that these reservoirs appear to be hydraulically connected. We also suggest that the transition from the circumferential to the intracaldera eruption may have involved ring fault activity.

  15. A new approach to investigate an eruptive paroxysmal sequence using camera and strainmeter networks: Lessons from the 3-5 December 2015 activity at Etna volcano

    Science.gov (United States)

    Bonaccorso, A.; Calvari, S.

    2017-10-01

    Explosive sequences are quite common at basaltic and andesitic volcanoes worldwide. Studies aimed at short-term forecasting are usually based on seismic and ground deformation measurements, which can be used to constrain the source region and quantify the magma volume involved in the eruptive process. However, during single episodes of explosive sequences, integration of camera remote sensing and geophysical data are scant in literature, and the total volume of pyroclastic products is not determined. In this study, we calculate eruption parameters for four powerful lava fountains occurring at the main and oldest Mt. Etna summit crater, Voragine, between 3 and 5 December 2015. These episodes produced impressive eruptive columns and plume clouds, causing lapilli and ash fallout to more than 100 km away. We analyse these paroxysmal events by integrating the images recorded by a network of monitoring cameras and the signals from three high-precision borehole strainmeters. From the camera images we calculated the total erupted volume of fluids (gas plus pyroclastics), inferring amounts from 1.9 ×109 m3 (first event) to 0.86 ×109 m3 (third event). Strain changes recorded during the first and most powerful event were used to constrain the depth of the source. The ratios of strain changes recorded at two stations during the four lava fountains were used to constrain the pyroclastic fraction for each eruptive event. The results revealed that the explosive sequence was characterized by a decreasing trend of erupted pyroclastics with time, going from 41% (first event) to 13% (fourth event) of the total erupted pyroclastic volume. Moreover, the volume ratio fluid/pyroclastic decreased markedly in the fourth and last event. To the best of our knowledge, this is the first time ever that erupted volumes of both fluid and pyroclastics have been estimated for an explosive sequence from a monitoring system using permanent cameras and high precision strainmeters. During future

  16. A distal earthquake cluster concurrent with the 2006 explosive eruption of Augustine Volcano, Alaska

    Science.gov (United States)

    Fisher, M.A.; Ruppert, N.A.; White, R.A.; Wilson, Frederic H.; Comer, D.; Sliter, R.W.; Wong, F.L.

    2009-01-01

    Clustered earthquakes located 25??km northeast of Augustine Volcano began about 6??months before and ceased soon after the volcano's 2006 explosive eruption. This distal seismicity formed a dense cluster less than 5??km across, in map view, and located in depth between 11??km and 16??km. This seismicity was contemporaneous with sharply increased shallow earthquake activity directly below the volcano's vent. Focal mechanisms for five events within the distal cluster show strike-slip fault movement. Cluster seismicity best defines a plane when it is projected onto a northeast-southwest cross section, suggesting that the seismogenic fault strikes northwest. However, two major structural trends intersect near Augustine Volcano, making it difficult to put the seismogenic fault into a regional-geologic context. Specifically, interpretation of marine multichannel seismic-reflection (MCS) data shows reverse faults, directly above the seismicity cluster, that trend northeast, parallel to the regional geologic strike but perpendicular to the fault suggested by the clustered seismicity. The seismogenic fault could be a reactivated basement structure.

  17. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano.

    Science.gov (United States)

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-02-19

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards.

  18. Volcaniclastic dykes tell on fracturing, explosive eruption and lateral collapse at Stromboli volcano (Italy)

    Science.gov (United States)

    Vezzoli, Luigina; Corazzato, Claudia

    2016-05-01

    In the upper part of the Stromboli volcano, in the Le Croci and Bastimento areas, two dyke-like bodies of volcanic breccia up to two-metre thick crosscut and intrude the products of Vancori and Neostromboli volcanoes. We describe the lithofacies association of these unusual volcaniclastic dykes, interpret the setting of dyke-forming fractures and the emplacement mechanism of internal deposits, and discuss their probable relationships with the explosive eruption and major lateral collapse events that occurred at the end of the Neostromboli period. The dyke volcaniclastic deposits contain juvenile magmatic fragments (pyroclasts) suggesting a primary volcanic origin. Their petrographic characteristics are coincident with the Neostromboli products. The architecture of the infilling deposits comprises symmetrically-nested volcaniclastic units, separated by sub-vertical boundaries, which are parallel to the dyke margins. The volcanic units are composed of distinctive lithofacies. The more external facies is composed of fine and coarse ash showing sub-vertical laminations, parallel to the contact wall. The central facies comprises stratified, lithic-rich breccia and lapilli-tuff, whose stratification is sub-horizontal and convolute, discordant to the dyke margins. Only at Le Croci dyke, the final unit shows a massive tuff-breccia facies. The volcaniclastic dykes experienced a polyphasic geological evolution comprising three stages. The first phase consisted in fracturing, explosive intrusion related to magma rising and upward injection of magmatic fluids and pyroclasts. The second phase recorded the dilation of fractures and their role as pyroclastic conduits in an explosive eruption possibly coeval with the lateral collapse of the Neostromboli lava cone. Finally, in the third phase, the immediately post-eruption mass-flow remobilization of pyroclastic deposits took place on the volcano slopes.

  19. 1986 eruption of Augustine Volcano: Public safety response by Alaskan volcanologists

    Science.gov (United States)

    Kienle, J.; Davies, J. N.; Miller, T. P.; Yount, M. E.

    Although, in a general sense, all scientific work on hazardous natural phenomena such as weather, earthquakes, and volcanic eruptions can advance the public safely, we wish to describe some specific actions that were motivated by direct considerations of safety. These kinds of actions are normally at the fringes of scientific research and become important only during some crisis; in this instance, the crisis was the eruption on March 27, 1986, of Augustine Volcano (Figure 1). The agencies involved were the Geophysical Institute of the University of Alaska (UAGI), the Division of Geological and Geophysical Surveys of the State of Alaska (DGGS), and the Alaska Branch of the United States Geological Survey (USGS). The central theme of our mutual effort during the crisis was to communicate to response agencies and the public, in the most meaningful way possible, a prediction of what could happen next and how it would affect the public.

  20. Monitoring so2 emission at the Soufriere Hills volcano: Implications for changes in eruptive conditions

    Science.gov (United States)

    Young, S.R.; Francis, P.W.; Barclay, J.; Casadevall, T.J.; Gardner, C.A.; Darroux, B.; Davies, M.A.; Delmelle, P.; Norton, G.E.; Maciejewski, A.J.H.; Oppenheimer, C.M.M.; Stix, J.; Watson, I.M.

    1998-01-01

    Correlation spectrometer measurements of sulfur dioxide (SO2) emission rates during the current eruption of the Soufriere Hills volcano, Montserrat, have contributed towards identifying different phases of volcanic activity. SO2 emission rate has increased from 550 td-1 (>6.4 kgs-1) after July 1996, with the uncertainty associated with any individual measurement ca. 30%. Significantly enhanced SO2 emission rates have been identified in association with early phreatic eruptions (800 td-1 (9.3 kgs-1)) and episodes of vigorous dome collapse and pyroclastic flow generation (900 to 1500 td-1 (10.4 to 17.4 kgs-1)). SO2 emission rate has proved a useful proxy measurement for magma production rate. Observed SO2 emission rates are significantly higher than those inferred from analyses of glass inclusions in phenocrysts, implying the existence of a S-rich magmatic vapour phase.

  1. Correlations of volcanic ash texture with explosion earthquakes from vulcanian eruptions at Sakurajima volcano, Japan

    Science.gov (United States)

    Miwa, T.; Toramaru, A.; Iguchi, M.

    2009-07-01

    We compare the texture of volcanic ash with the maximum amplitude of explosion earthquakes ( Aeq) for vulcanian eruptions from Sakurajima volcano. We analyze the volcanic ash emitted by 17 vulcanian eruptions from 1974 to 1987. Using a stereoscopic microscope, we classify the glassy particles into smooth surface particles (S-type particles) and non-smooth surface particles (NS-type particles) according to their surface conditions—gloss or non-gloss appearance—as an indicator of the freshness of the particles. S-type particles are further classified into V-type particles (those including vesicles) and NV-type particles (those without vesicles) by means of examinations under a polarized microscopic of polished thin sections. Cross-correlated examinations against seismological data show that: 1) the number fraction of S-type particles (S-fraction) has a positive correlation with Aeq, 2) the number ratio of NV-type particles to V-type particles (the N/V number ratio) has a positive correlation with Aeq, and 3) for explosions accompanied with BL-type earthquake swarms, the N/V number ratio has a negative correlation with the duration of the BL-Swarms. BL-Swarms refer to the phenomenon of numerous BL-type earthquakes occurring within a few days, prior to an increase in explosive activity [Kamo, K., 1978. Some phenomena before the summit crater eruptions at Sakura-zima volcano. Bull. Volcanol. Soc. Japan., 23, 53-64]. The positive correlation between the N/V number ratio and Aeq could indicate that a large amount of separated gas from fresh magma results in a large Aeq. Plagioclase microlite textual analysis of NV-type particles from five explosive events without BL-Swarms shows that the plagioclase microlite number density (MND) and the L/ W (length/width) ratio have a positive correlation with Aeq. A comparison between textural data (MND, L/ W ratio, crystallinity) and the result of a decompression-induced crystallization experiment [Couch, S., Sparks, R

  2. Pre-eruptive volatile and erupted gas phase characterization of the 2014 basalt of Bárðarbunga volcanic system, Iceland.

    Science.gov (United States)

    Haddadi, Baptiste; Moune, Séverine; Sigmarsson, Olgeir; Gauthier, Pierre-Jean; Gouhier, Mathieu

    2015-04-01

    The 2014 Holuhraun eruption on the Bárðarbunga Volcanic System is the largest fissure eruption in Iceland since the 1783 Laki eruption. The eruption started end of August 2014 and has been characterized by large emission of SO2 into the atmosphere. It provides a rare opportunity to study in details magmatic and degassing processes during a large-volume fissure eruption. In order to characterize the pre-eruptive magmatic composition and to assess the plume chemistry at the eruption site, lava and tephra were sampled together with the eruption plume. The basalt composition is olivine tholeiite with MgO close to 7 wt%. It is phenocryst-poor with plagioclase as the dominant mineral phase but olivine and clinopyroxene are also present together with sulphide globules composed principally of pyrite and chalcopyrite. The volatile (S, Cl and F) and major element concentrations were measured by the electron microprobe in melt inclusions (MIs) trapped in plagioclase and clinopyroxene and groundmass glass. The MIs composition ranges from fairly primitive basaltic compositions (MgO: 9.03 wt%) down to evolved qz-tholeiites (MgO: 5.57 wt%), with estimated pre-eruptive S concentrations of 1500 ppm. Tephra groundmass glass contains 400 ppm S, whereas Cl and F concentrations are respectively slightly lower and indistinguishable from those in the MIs. This implies limited exsolution of halogens but 75% of the initial sulphur content. Relatively to their total iron content, MIs are sulphur saturated, and their oxygen fugacity close to the FMQ buffer. The difference between the estimated initial volatile concentrations measured in the MIs and in the tephra groundmass (i.e. the so-called petrological method) yields 7.2 Mt SO2, limited HCl and no HF atmospheric mass loading from the Holuhraun 2014 eruption. The SO2/HCl molar ratio of the gas phase, calculated from the MIs, is 13 and 14, respectively, using average and estimated pre-eruptive S and Cl concentrations in the MIs. Filter

  3. A dynamic balance between magma supply and eruption rate at Kilauea volcano, Hawaii

    Science.gov (United States)

    Denlinger, R.P.

    1997-01-01

    The dynamic balance between magma supply and vent output at Kilauea volcano is used to estimate both the volume of magma stored within Kilauea volcano and its magma supply rate. Throughout most of 1991 a linear decline in volume flux from the Kupaianaha vent on Kilauea's east rift zone was associated with a parabolic variation in the elevation of Kilauea's summit as vent output initially exceeded then lagged behind the magma supply to the volcano. The correspondence between summit elevation and tilt established with over 30 years of data provided daily estimates of summit elevation in terms of summit tilt. The minimum in the parabolic variation in summit tilt and elevation (or zero elevation change) occurs when the magma supply to the reservoir from below the volcano equals the magma output from the reservoir to the surface, so that the magma supply rate is given by vent flux on that day. The measurements of vent flux and tilt establish that the magma supply rate to Kilauea volcano on June 19, 1991, was 217,000 ?? 10,000 m3/d (or 0.079 ?? 0.004 km3/yr). This is close to the average eruptive rate of 0.08 km3/yr between 1958 and 1984. In addition, the predictable response of summit elevation and tilt to each east rift zone eruption near Puu Oo since 1983 shows that summit deformation is also a measure of magma reservoir pressure. Given this, the correlation between the elevation of the Puu Oo lava lake (4 km uprift of Kupaianaha and 18 km from the summit) and summit tilt provides an estimate for magma pressure changes corresponding to summit tilt changes. The ratio of the change in volume to the change in reservoir pressure (dV/dP) during vent activity may be determined by dividing the ratio of volume erupted to change in summit tilt (dV/dtilt) by the ratio of pressure change to change in summit tilt (dP/dtilt). This measure of dV/dP, when combined with laboratory measurements of the bulk modulus of tholeitic melt, provides an estimate of 240 ?? 50 km3 for the volume

  4. Compositional Trends in Acid Fluids of Copahue Volcano, Argentina: Evidence for a failed eruption in 2004?

    Science.gov (United States)

    Kading, T. J.; Brophy, M.; Varekamp, J. C.

    2008-12-01

    The concentrations and fluxes of major, minor, and trace elements in the crater lake, volcanic spring, and acidified watershed of Copahue Volcano, Neuquen province, Argentina, have been monitored over the last decade. The 2000 Copahue eruption resulted in enhanced S/Cl, increased concentrations and fluxes of rock forming elements (especially Mg and Na) with strongly raised Mg/Cl and Mg/K values. The degree of LREE enrichment decreased and a pronounced Eu anomaly developed in the fluids (Eu/Eu*> rock values). These patterns are explained as the result of hot acid fluid attack on newly intruded magma, with early dissolution of olivine (Mg spike) and plagioclase (Na spike, Eu anomaly). Similar compositional changes were observed in water samples taken in November, 2004, but no eruption occurred. These may be the signals of a small magmatic intrusion into the hydrothermal system, which failed to continue into an eruption. The compositional changes of Copahue volcanic fluids over the last decade will be discussed in the context of chemical signals of an actual and a suspected 'failed eruption'.

  5. Explosive eruptive history of Pantelleria, Italy: Repeated caldera collapse and ignimbrite emplacement at a peralkaline volcano

    Science.gov (United States)

    Jordan, Nina J.; Rotolo, Silvio G.; Williams, Rebecca; Speranza, Fabio; McIntosh, William C.; Branney, Michael J.; Scaillet, Stéphane

    2018-01-01

    A new, pre-Green Tuff (46 ka) volcanic stratigraphy is presented for the peralkaline Pantelleria Volcano, Italy. New 40Ar/39Ar and paleomagnetic data are combined with detailed field studies to develop a comprehensive stratigraphic reconstruction of the island. We find that the pre-46 ka succession is characterised by eight silica-rich peralkaline (trachyte to pantellerite) ignimbrites, many of which blanketed the entire island. The ignimbrites are typically welded to rheomorphic, and are commonly associated with lithic breccias and/or pumice deposits. They record sustained radial pyroclastic density currents fed by low pyroclastic fountains. The onset of ignimbrite emplacement is typically preceded (more rarely followed) by pumice fallout with limited dispersal, and some eruptions lack any associated pumice fall deposit, suggesting the absence of tall eruption columns. Particular attention is given to the correlation of well-developed lithic breccias in the ignimbrites, interpreted as probable tracers of caldera collapses. They record as many as five caldera collapse events, in contrast to the two events reported to date. Inter-ignimbrite periods are characterised by explosive and effusive eruptions with limited dispersal, such as small pumice cones, as well as pedogenesis. These periods have similar characteristics as the current post-Green Tuff activity on the island, and, while not imminent, it is reasonable to postulate the occurrence of another ignimbrite-forming eruption sometime in the future.

  6. The dispersal of ash during explosive eruptions from central volcanoes and calderas: an underestimated hazard for the central Mediterranean area

    Energy Technology Data Exchange (ETDEWEB)

    Sulpizio, Roberto [CIRISIVU, c/o Dipartimento Geomineralogico, via Orabona 4, 70125, Bari (Italy); Caron, Benoit; Zanchetta, Giovanni; Santacroce, Roberto [Dipartimento di Scienze della Terra, via S. Maria 53, 56126, Pisa (Italy); Giaccio, Biagio [Istituto di Geologia Ambientale e Geoingegneria, CNR, Via Bolognola 7, 00138 Rome (Italy); Paterne, Martine [LSCE, Laboratoire Mixte CEA-CNRS-UVSQ, Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex (France); Siani, Giuseppe [IDES-UMR 8148, Universite Paris-XI, 91405 Orsay Cedex (France)], E-mail: r.sulpizio@geomin.uniba.it

    2008-10-01

    The central Mediterranean area comprises some of the most active volcanoes of the northern hemisphere. Some of their names recall myths or events in human history: Somma-Vesuvius, Etna, Stromboli, Vulcano, Ischia and Campi Flegrei. These volcanoes are still active today, and produce both effusive and explosive eruptions. In particular, explosive eruptions can produce and disperse large amount of volcanic ash, which pose a threat to environment, economy and human health over a large part of the Mediterranean area. We present and discuss data of ash dispersal from some explosive eruptions of southern Italy volcanoes, which dispersed centimetre -thick ash blankets hundred of kilometres from the source, irrespective of the more limited dispersal of the respective coarse grained fallout and PDC deposits. The collected data also highlight the major role played by lower atmosphere winds in dispersal of ash from weak plumes and ash clouds that accompany PDC emplacement.

  7. Eruptive history, current activity and risk estimation using geospatial information in the Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Camarena-Garcia, M.; Nunez-Cornu, F. J.; Flores-Peña, S.

    2013-12-01

    Colima volcano, also known as Volcan de Fuego (19 30.696 N, 103 37.026 W), is located on the border between the states of Jalisco and Colima, and is the most active volcano in Mexico. In January 20, 1913, Colima had its biggest explosion of the twentieth century, with VEI 4, after the volcano had been dormant for almost 40 years. In 1961, a dome reached the northeastern edge of the crater and started a new lava flow, and from this date maintains constant activity. In February 10, 1999, a new explosion occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching altitudes between 4,500 and 9,000 masl, further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events, ash emissions were generated in all directions reaching distances up to 100 km, slightly affecting the nearby villages: Tuxpan, Tonila, Zapotlan, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During 2005 to July 2013, this volcano has had an intense effusive-explosive activity; similar to the one that took place during the period of 1890 through 1905. That was before the Plinian eruption of 1913, where pyroclastic flows reached a distance of 15 km from the crater. In this paper we estimate the risk of Colima volcano through the analysis of the vulnerability variables, hazard and exposure, for which we use: satellite imagery, recurring Fenix helicopter over flights of the state government of Jalisco, the use of the images of Google Earth and the population census 2010 INEGI. With this information and data identified changes in economic activities, development, and use of land. The expansion of the agricultural frontier in the lower sides of the volcano Colima, and with the advancement of traditional crops of sugar cane and corn, increased the growth of

  8. Constraining recent Shiveluch volcano eruptions (Kamchatka, Russia by means of dendrochronology

    Directory of Open Access Journals (Sweden)

    O. Solomina

    2008-10-01

    Full Text Available Shiveluch (N 56°38´, E 161°19´; elevation: active dome ~2500 m, summit of Old Shiveluch 3283 m is one of the most active volcanoes in Kamchatka. The eruptions of Shiveluch commonly result in major environmental damage caused by debris avalanches, hot pyroclastic flows, tephra falls and lahars. Constraining these events in time and space is important for the understanding and prediction of these natural hazards. The last major eruption of Shiveluch occurred in 2005; earlier ones, dated by instrumental, historical, 14C and tephrochronological methods, occurred in the last millennium around AD 1030, 1430, 1650, 1739, 1790–1810, 1854, 1879–1883, 1897–1898, 1905, 1927–1929, 1944–1950, and 1964. A lava dome has been growing in the 1964 crater since 1980, occasionally producing tephra falls and pyroclastic flows. Several Shiveluch eruptions (~AD 1050, 1650, 1854, 1964 may have been climatically effective and are probably recorded in the Greenland ice cores.

    Previously, most dates for eruptions before AD 1854 were obtained by tephrochronology and constrained by radiocarbon dating with an accuracy of several decades or centuries. In this paper we report tree-ring dates for a recent pyroclastic flow in Baidarnaia valley. Though the wood buried in these deposits is carbonized, fragile and poorly preserved, we were able to measure ring-width using standard tree-ring equipment or photographs and to cross-date these samples against the regional Kamchatka larch ring-width chronology. The dates of the outer rings indicate the date of the eruptions. In the Baidarnaia valley the eruption occurred shortly after AD 1756, but not later than AD 1758. This date coincides with the decrease of ring-width in trees growing near Shiveluch volcano in 1758–1763 in comparison with the control "non-volcanic" chronology. The pyroclastic flow in Kamenskaia valley, although similar in appearance to the one in Baidarnaia valley, definitively

  9. Monitoring and analysis of nyamulagira volcano activity using modis data: case of the 2011-2012 eruption

    Directory of Open Access Journals (Sweden)

    Bagalwa Montfort

    2015-01-01

    Full Text Available In this paper we analyzed the 2011-2012 eruption of Nyamulagira volcano using MODIS Data. Eruptions have been occurring every 3–4 years throughout the last century. Satellite infrared data, collected by MODIS sensor to estimate pixels thermal anomaly of hot spots were analized, the radiance emitted at 3,959 and 12.02μm for each pixel and the thermal emissions at Nyamulagira feall into three distinct radiating regimes released during the 2011–2012 eruption. Initial activity was detected on 6 November, at 19:55 UTC, with a large thermal anomaly with 28 pixels approximately on the north flank of the volcano. The anomaly was limited to the north flank. The anomaly reached a maximum size of 1188 pixels in January 2012. The size and intensity of the anomaly rapidly diminished to first April 2012 were no more than 2 piixels indicate the end of eruption.

  10. Diverse, discrete, mantle-derived batches of basalt erupted along a short normal fault zone: The Poison Lake chain, southernmost Cascades

    Science.gov (United States)

    Muffler, L.J.P.; Clynne, M.A.; Calvert, A.T.; Champion, D.E.

    2011-01-01

    The Poison Lake chain consists of small, monogenetic, calc-alkaline basaltic volcanoes located east of the Cascade arc axis, 30 km ENE of Lassen Peak in northeastern California. This chain consists of 39 distinguishable units in a 14-km-long and 2-kmwide zone trending NNW, parallel to nearby Quaternary normal faults. The 39 units fall into nine coherent groups based on stratigraphy, field characteristics, petrography, and major-element compositions. Petrographic differences among groups are expressed by different amounts and proportions of phenocrysts. MgO-SiO 2, K 2O-SiO 2, and TiO 2-SiO 2 variation diagrams illustrate clear differences in compatible and incompatible elements among the groups. Variation of K 2O/ TiO 2 and K 2O/P 2O 5 with MgO indicates that most of the basalts of the Poison Lake chain cannot be related by crystal fractionation at different pressures and that compositions have not been affected significantly by incorporation of low-degree silicic crustal melt or interaction with sialic crust. Limited traceelement and whole-rock isotopic data also suggest little if any incorporation of uppercrustal material, and that compositional variation among groups primarily reflects source compositional differences. Precise 40Ar/ 39Ar determinations show that the lavas were erupted between 100 and 110 ka. The migration of paleomagnetic remanent directions over 30?? suggests that the entire Poison Lake chain could represent three short-lived episodes of volcanism within a period as brief as 500 yr. The diverse geologic, petrographic, chemical, paleomagnetic, and age data indicate that each of the nine groups represents a small, discrete magma batch generated in the mantle and stored briefly in the lower crust. A NNW normal fault zone provided episodic conduits that allowed rapid ascent of these batches to the surface, where they erupted as distinct volcanic groups, each aligned along a segment of the Poison Lake chain. Compositional diversity of these primitive

  11. Geochemical signatures of tephras from Quaternary Antarctic Peninsula volcanoes

    OpenAIRE

    Kraus,Stefan; Kurbatov,Andrei; Yates,Martin

    2013-01-01

    In the northern Antarctic Peninsula area, at least 12 Late Plelstocene-Holocene volcanic centers could be potential sources of tephra layers in the region. We present unique geochemical fingerprints for ten of these volcanoes using major, trace, rare earth element, and isotope data from 95 samples of tephra and other eruption products. The volcanoes have predominantly basaltic and basaltic andesitic compositions. The Nb/Y ratio proves useful to distinguish between volcanic centers located on ...

  12. The Pu'u 'O'o-Kupaianaha Eruption of Kilauea Volcano, Hawaii: The First 20 Years

    Science.gov (United States)

    Heliker, Christina C.; Swanson, Donald A.; Takahashi, Taeko Jane

    2003-01-01

    The Pu'u 'O'o-Kupaianaha eruption started on January 3, 1983. The ensuing 20-year period of nearly continuous eruption is the longest at Kilauea Volcano since the famous lava-lake activity of the 19th century. No rift-zone eruption in more than 600 years even comes close to matching the duration and volume of activity of these past two decades. Fortunately, such a landmark event came during a period of remarkable technological advancements in volcano monitoring. When the eruption began, the Global Positioning System (GPS) and the Geographic Information System (GIS) were but glimmers on the horizon, broadband seismology was in its infancy, and the correlation spectrometer (COSPEC), used to measure SO2 flux, was still very young. Now, all of these techniques are employed on a daily basis to track the ongoing eruption and construct models about its behavior. The 12 chapters in this volume, written by present or past Hawaiian Volcano Observatory staff members and close collaborators, celebrate the growth of understanding that has resulted from research during the past 20 years of Kilauea's eruption. The chapters range widely in emphasis, subject matter, and scope, but all present new concepts or important modifications of previous ideas - in some cases, ideas long held and cherished.

  13. The 2015 Wolf volcano (Galápagos) eruption studied using Sentinel-1 and ALOS-2 data

    KAUST Repository

    Xu, Wenbin; Jonsson, Sigurjon; Ruch, Joel; Aoki, Yosuke

    2016-01-01

    An energetic eruption started on 25 May 2015 from a circumferential fissure at the summit of Wolf volcano on Isabela Island, western Galápagos. Further eruptive activity within the Wolf caldera followed in mid-June 2015. As no geodetic observations of earlier eruptions at Wolf exist, this eruption provides an opportunity to study the volcano's magmatic plumbing system for the first time. Here we use interferometric synthetic aperture radar (InSAR) data from both the Sentinel-1A and ALOS-2 satellites to map and analyze the surface deformation at four time periods during the activity. These data allow us to identify the two eruption phases and reveal strong coeruptive subsidence within the Wolf caldera that is superimposed on a larger volcano-wide subsidence signal. Modeling of the surface displacements shows that two shallow magma reservoirs located under Wolf at ~1 km and ~5 km below sea level explain the subsidence and that these reservoirs appear to be hydraulically connected. We also suggest that the transition from the circumferential to the intracaldera eruption may have involved ring fault activity.

  14. Eruption of a deep-sea mud volcano triggers rapid sediment movement

    Science.gov (United States)

    Feseker, Tomas; Boetius, Antje; Wenzhöfer, Frank; Blandin, Jerome; Olu, Karine; Yoerger, Dana R.; Camilli, Richard; German, Christopher R.; de Beer, Dirk

    2014-01-01

    Submarine mud volcanoes are important sources of methane to the water column. However, the temporal variability of their mud and methane emissions is unknown. Methane emissions were previously proposed to result from a dynamic equilibrium between upward migration and consumption at the seabed by methane-consuming microbes. Here we show non-steady-state situations of vigorous mud movement that are revealed through variations in fluid flow, seabed temperature and seafloor bathymetry. Time series data for pressure, temperature, pH and seafloor photography were collected over 431 days using a benthic observatory at the active Håkon Mosby Mud Volcano. We documented 25 pulses of hot subsurface fluids, accompanied by eruptions that changed the landscape of the mud volcano. Four major events triggered rapid sediment uplift of more than a metre in height, substantial lateral flow of muds at average velocities of 0.4 m per day, and significant emissions of methane and CO2 from the seafloor. PMID:25384354

  15. Time-dependent deformation at elevated temperatures in basalt from El Hierro, Stromboli and Teide volcanoes

    Science.gov (United States)

    Benson, P. M.; Fahrner, D.; Harnett, C. E.; Fazio, M.

    2014-12-01

    Time dependent deformation describes the process whereby brittle materials deform at a stress level below their short-term material strength (Ss), but over an extended time frame. Although generally well understood in engineering (where it is known as static fatigue or "creep"), knowledge of how rocks creep and fail has wide ramifications in areas as diverse as mine tunnel supports and the long term stability of critically loaded rock slopes. A particular hazard relates to the instability of volcano flanks. A large number of flank collapses are known such as Stromboli (Aeolian islands), Teide, and El Hierro (Canary Islands). Collapses on volcanic islands are especially complex as they necessarily involve the combination of active tectonics, heat, and fluids. Not only does the volcanic system generate stresses that reach close to the failure strength of the rocks involved, but when combined with active pore fluid the process of stress corrosion allows the rock mass to deform and creep at stresses far lower than Ss. Despite the obvious geological hazard that edifice failure poses, the phenomenon of creep in volcanic rocks at elevated temperatures has yet to be thoroughly investigated in a well controlled laboratory setting. We present new data using rocks taken from Stromboli, El Heirro and Teide volcanoes in order to better understand the interplay between the fundamental rock mechanics of these basalts and the effects of elevated temperature fluids (activating stress corrosion mechanisms). Experiments were conducted over short (30-60 minute) and long (8-10 hour) time scales. For this, we use the method of Heap et al., (2011) to impose a constant stress (creep) domain deformation monitored via non-contact axial displacement transducers. This is achieved via a conventional triaxial cell to impose shallow conditions of pressure (<25 MPa) and temperature (<200 °C), and equipped with a 3D laboratory seismicity array (known as acoustic emission, AE) to monitor the micro

  16. Fallout of thorium isotopes from the 1982 eruption of El Chichon volcano

    International Nuclear Information System (INIS)

    Barbod, T.

    1985-01-01

    Radiochemical measurements of the concentrations of the 228 Th, 230 Th, and 232 Th have been carried out for a total of 38 individual samples of rain and snow collected at Fayetteville (36 N, 94 0 W), Arkansas, during the period between April 1982 and December 1983. The concentrations of 228 Th, 230 Th, and 232 Th in a total of 9 composite rain samples, each covering a period of three months, have been also determined radiochemically. The thorium isotope data thus obtained were compared with the results of measurements of the concentrations of uranium isotopes in these rain and snow samples, which were carried out in our laboratories by previous investigators. The eruption of El Chichon volcano in Mexico occurred on March 28, 1982, and was followed by the second phase consisting of two major eruptions of April 3 and April 4, 1982. Marked increases in the concentrations of thorium and uranium isotopes were observed during the months of January and February 1983, followed by small peaks in April and May 1983. The concentrations of the 23 2''Th and 238 U in rain samples collected at Fayetteville, Arkansas, decreased steadily during the second half of 1983. The ratios of 228 Th/ 232 Th and 230 Th/ 232 Th in rain also showed a marked increase during the first half of 1983. These results indicate that the thorium and uranium isotopes in rain during the first half of 1983 had their origin in a large amount of volcanic ash materials injected into the stratosphere by the 1982 eruption of El Chichon volcano in Mexico

  17. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: earthquake locations and source parameters

    Science.gov (United States)

    Ruppert, Natalia G.; Prejean, Stephanie G.; Hansen, Roger A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field.

  18. Ascent Rates from Melt Embayments: Insights into the Eruption Dynamics of Arc Volcanoes

    Science.gov (United States)

    Ruprecht, P.; Lloyd, A. S.; Hauri, E.; Rose, W. I.; Gonnermann, H. M.; Plank, T. A.

    2014-12-01

    A significant fraction of the magma that is added from the mantle to the subvolcanic plumbing system ultimately erupts at the surface. The initial volatile content of the magmas as well as the interplay between volatile loss and magma ascent plays a significant role in determining the eruption style (effusive versus explosive) as well as the magnitude of the eruption. The October 17, 1974 sub-Plinian eruption of Volcán de Fuego represents a particularly well-characterized system in terms of volatile content and magma chemistry to investigate the relation between initial water content of the magmas and the ascent rate. By modeling volatile element distribution in melt embayments through diffusion and degassing during ascent we can estimate magma ascent from the storage region in the crust to the surface. The novel aspect is the measurement of concentration gradients multiple volatile elements (in particular CO2, H2O, S) at fine-scale (5-10 μm) using the NanoSIMS. The wide range in diffusivity and solubility of these different volatiles provides multiple constraints on ascent timescales over a range of depths. H2O, CO2, and S all decrease toward the embayment outlet bubble documenting the loss of H2O and CO2 compared to an extensive melt inclusion suite from the same day of the eruption. The data is best described by a two-stage model. At high pressure (>145 MPa) decompression is slow (0.05- 0.3 MPa/s) and CO2 is bled off predominantly. At shallow levels decompression accelerates to 0.3-0.5 MPa/s at the point of H2O exsolution, which strongly affects the buoyancy of the ascending magma. The magma ascent rates presented are among the first for explosive basaltic eruptions and demonstrate the potential of the embayment method for quantifying magmatic timescales associated with eruptions of different vigor. [1] Lloyd et al. (2014) JVGR, http://dx.doi.org/10.1016/j.jvolgeores.2014.06.002

  19. Magma buoyancy and volatile ascent driving autocyclic eruptivity at Hekla Volcano (Iceland)

    Science.gov (United States)

    Hautmann, Stefanie; Sacks, I. Selwyn; Linde, Alan T.; Roberts, Matthew J.

    2017-09-01

    Volcanic eruptions are typically accompanied by ground deflation due to the withdrawal of magma from depth and its effusion at the surface. Here, based on continuous high-resolution borehole strain data, we show that ground deformation was absent during the major effusion phases of the 1991 and 2000 eruptions of Hekla Volcano, Iceland. This lack of surface deformation challenges the classic model of magma intrusion/withdrawal as source for volcanic ground uplift/subsidence. We incorporate geodetic and geochemical observables into theoretical models of magma chamber dynamics in order to constrain quantitatively alternative co- and intereruptive physical mechanisms that govern magma propagation and system pressurization. We find the lack of surface deformation during lava effusion to be linked to chamber replenishment from below whilst magma migrates as a buoyancy-driven flow from the magma chamber towards the surface. We further demonstrate that intereruptive pressure build-up is likely to be generated by volatile ascent within the chamber rather than magma injection. Our model explains the persistent periodic eruptivity at Hekla throughout historic times with self-initiating cycles and is conceptually relevant to other volcanic systems.

  20. Eruption mass estimation using infrasound waveform inversion and ash and gas measurements: Evaluation at Sakurajima Volcano, Japan [Comparison of eruption masses at Sakurajima Volcano, Japan calculated by infrasound waveform inversion and ground-based sampling

    International Nuclear Information System (INIS)

    Fee, David; Izbekov, Pavel; Kim, Keehoon; Yokoo, Akihiko; Lopez, Taryn

    2017-01-01

    Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been applied to the inversion technique. Furthermore we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan.

  1. Multi-disciplinary Monitoring of the 2014 Eruption of Fogo Volcano, Cape Verde

    Science.gov (United States)

    Fernandes, R. M. S.; Faria, B. V. E.

    2015-12-01

    The Fogo volcano, located in the Cape Verde Archipelago (offshore Western Africa), is a complete stratovolcano system. It is the most recent expression of the Cape Verde hotspot, that has formed the archipelago. The summit reaches ~2830m above sea level, and raises 1100m above Chã das Caldeiras, an almost flat circular area. The last eruption of Fogo started on November 23, 2014 (~10:00UTC), after 19 years of inactivity. C4G, a distributed research infrastructure created in 2014 in the framework of the Portuguese Roadmap for Strategic Research Infrastructures, collaborated immediately with INMG, the Cape Verdean Meteorological and Geophysical Institut with the goal of complementing the permanent geophysical monitoring network in operation on Fogo island. The INMG permanent network is composed of seven seismographic stations and three tiltmeter stations, with real-time data transmitted. On the basis of increased pre-event activity (which started in October 2014), INMG issued a formal alert of an impending eruption to the Civil Protection Agency, about 24 hours before the onset of the eruption. Although the eruption caused no casualties or personal injuries due to the warnings issued, the lava expelled by the eruption (which last until the end of January) destroyed the two main villages in the caldera (~1000 inhabitants) and covered vast areas of agricultural land, causing very large economic losses and an uncertain future of the local populations. The C4G team installed a network of seven GNSS receivers and nine seismometers, distributed by the entire island. The data collection started on 28th November 2014, and continued until the end of January 2015. The mission also included a new detailed gravimetric survey of the island, the acquisition of geological samples, and the analysis of the air quality during the eruption. We present here a detailed description of the monitoring efforts carried out during the eruption as well as initial results of the analysis of the

  2. A statistical method linking geological and historical eruption time series for volcanic hazard estimations: Applications to active polygenetic volcanoes

    Science.gov (United States)

    Mendoza-Rosas, Ana Teresa; De la Cruz-Reyna, Servando

    2008-09-01

    The probabilistic analysis of volcanic eruption time series is an essential step for the assessment of volcanic hazard and risk. Such series describe complex processes involving different types of eruptions over different time scales. A statistical method linking geological and historical eruption time series is proposed for calculating the probabilities of future eruptions. The first step of the analysis is to characterize the eruptions by their magnitudes. As is the case in most natural phenomena, lower magnitude events are more frequent, and the behavior of the eruption series may be biased by such events. On the other hand, eruptive series are commonly studied using conventional statistics and treated as homogeneous Poisson processes. However, time-dependent series, or sequences including rare or extreme events, represented by very few data of large eruptions require special methods of analysis, such as the extreme-value theory applied to non-homogeneous Poisson processes. Here we propose a general methodology for analyzing such processes attempting to obtain better estimates of the volcanic hazard. This is done in three steps: Firstly, the historical eruptive series is complemented with the available geological eruption data. The linking of these series is done assuming an inverse relationship between the eruption magnitudes and the occurrence rate of each magnitude class. Secondly, we perform a Weibull analysis of the distribution of repose time between successive eruptions. Thirdly, the linked eruption series are analyzed as a non-homogeneous Poisson process with a generalized Pareto distribution as intensity function. As an application, the method is tested on the eruption series of five active polygenetic Mexican volcanoes: Colima, Citlaltépetl, Nevado de Toluca, Popocatépetl and El Chichón, to obtain hazard estimates.

  3. Historical volcanic eruptions in the Canary Islands, tephra composition, and insights into the crystal cargo of basaltic magmas

    Science.gov (United States)

    Longpre, M. A.; Muller, J.; Beaudry, P.; Andronikides, A.; Felpeto, A.

    2017-12-01

    Since the 16th century, at least 13 volcanic eruptions have occurred in the Canary Islands that formed monogenetic cinder cones and lava flow fields: 2 on Lanzarote, 4 on Tenerife, 6 on La Palma, and 1 on the submarine flank of El Hierro. Here we present a comprehensive new dataset of tephra composition for all 13 eruptions, comprising major and trace element data for bulk rocks and matrix glasses, as well as vesicularity and crystallinity measurements. In addition, we compile available volcanological and petrological information for specific eruptions, including estimates of lava flow area and volume. All lapilli samples show a vesicularity of 40-50 vol% and a vesicle-free crystallinity (crystals ≥ 250 µm) of 5-15 vol%. Modal mineralogy varies significantly between samples, typically consisting of olivine ± clinopyroxene ± Fe-Ti oxide ± plagioclase ± amphibole in different proportions. All but 2 tephras have basanite-tephrite bulk rock compositions. Lapilli from vents of the AD 1730-1736 Timanfaya eruption, Lanzarote, largely are basaltic, whereas the AD 1798 Chahorra eruption, Tenerife, produced phonotephrite tephra. These results are in agreement with published bulk lava flow data. Unsurprisingly, glass compositions are more evolved than bulk rocks and MgOglass is weakly positively correlated to MgObulk (MgOglass = 0.30*MgObulk + 2.11, R2 = 0.54). Both bulk rocks and glasses show strikingly similar multi-element diagram patterns, with strong enrichment relative to the bulk-silicate Earth and marked positive Nb and Ta and negative Pb anomalies — typical for ocean island basalts. Glass/bulk rock elemental ratios reveal systematic differences between samples that relate to their mineralogy; for example, Lanzarote tephras that lack significant clinopyroxene and Fe-Ti oxide crystals have higher Scglass/Scbulk and Vglass/Vbulk than Tenerife, La Palma and El Hierro samples that typically contain these minerals. Among all elements, K and P display the greatest

  4. Volcanic lightning and plume behavior reveal evolving hazards during the April 2015 eruption of Calbuco volcano, Chile

    Science.gov (United States)

    Van Eaton, Alexa; Amigo, Álvaro; Bertin, Daniel; Mastin, Larry G.; Giacosa, Raúl E; González, Jerónimo; Valderrama, Oscar; Fontijn, Karen; Behnke, Sonja A

    2016-01-01

    Soon after the onset of an eruption, model forecasts of ash dispersal are used to mitigate the hazards to aircraft, infrastructure and communities downwind. However, it is a significant challenge to constrain the model inputs during an evolving eruption. Here we demonstrate that volcanic lightning may be used in tandem with satellite detection to recognize and quantify changes in eruption style and intensity. Using the eruption of Calbuco volcano in southern Chile on 22-23 April 2015, we investigate rates of umbrella cloud expansion from satellite observations, occurrence of lightning, and mapped characteristics of the fall deposits. Our remote-sensing analysis gives a total erupted volume that is within uncertainty of the mapped volume (0.56 ±0.28 km3 bulk). Observations and volcanic plume modeling further suggest that electrical activity was enhanced both by ice formation in the ash clouds >10 km asl and development of a low-level charge layer from ground-hugging currents.

  5. Doppler weather radar observations of the 2009 eruption of Redoubt Volcano, Alaska

    Science.gov (United States)

    Schneider, David J.; Hoblitt, Richard P.

    2013-01-01

    The U.S. Geological Survey (USGS) deployed a transportable Doppler C-band radar during the precursory stage of the 2009 eruption of Redoubt Volcano, Alaska that provided valuable information during subsequent explosive events. We describe the capabilities of this new monitoring tool and present data captured during the Redoubt eruption. The MiniMax 250-C (MM-250C) radar detected seventeen of the nineteen largest explosive events between March 23 and April 4, 2009. Sixteen of these events reached the stratosphere (above 10 km) within 2–5 min of explosion onset. High column and proximal cloud reflectivity values (50 to 60 dBZ) were observed from many of these events, and were likely due to the formation of mm-sized accretionary tephra-ice pellets. Reflectivity data suggest that these pellets formed within the first few minutes of explosion onset. Rapid sedimentation of the mm-sized pellets was observed as a decrease in maximum detection cloud height. The volcanic cloud from the April 4 explosive event showed lower reflectivity values, due to finer particle sizes (related to dome collapse and related pyroclastic flows) and lack of significant pellet formation. Eruption durations determined by the radar were within a factor of two compared to seismic and pressure-sensor derived estimates, and were not well correlated. Ash dispersion observed by the radar was primarily in the upper troposphere below 10 km, but satellite observations indicate the presence of volcanogenic clouds in the stratosphere. This study suggests that radar is a valuable complement to traditional seismic and satellite monitoring of explosive eruptions.

  6. The recent pumice eruptions of Mt. Pelée volcano, Martinique. Part I: Depositional sequences, description of pumiceous deposits

    Science.gov (United States)

    Traineau, Hervé; Westercamp, Denis; Bardintzeff, Jacques-Marie; Miskovsky, Jean-Claude

    1989-08-01

    Mount Pelée is one of the most active volcanoes of the Lesser Antilles arc, with more than twenty eruptions over the last 5000 years. Both nuée ardente-type eruptions, which are well known, and pumice eruptions, although little known, are very common in the stratigraphic record. The four younger pumice eruptions, P4 (2440 y.B.P.), P3 (2010 y.B.P.), P2 (1670 y.B.P.) and P1 (650 y.B.P.) can be used to reconstruct the eruption sequences. The various pumiceous deposits can be described as fine lithic ash layer, Plinian fall deposits, pumice and ash flow deposits with associated ash cloud fall deposits, and pumice surge deposits. Three kinds of depositional sequences have been defined. The distinctions between them are based on the occurrence of an initial Plinian phase and the generation of intraflow pyroclastic surges. The pumice eruptions of Mt. Pelée are small in intensity and magnitude, as expressed by the dispersal of their products and by the total mass of erupted material which is estimated to be less than 1 km 3 in each case. The pumice fall deposits have dispersal characteristics of small Plinian eruptions, close to the sub-Plinian type. Nevertheless, the probability of an occurrence of a new pumice eruption at Mt. Pelée is high, and the widespread distribution of pumice deposits around the volcano suggests that such an eruption is a major volcanic risk during the present stage of activity.

  7. 10,000 Years of explosive eruptions of Merapi Volcano, Central Java: archaeological and modern implications

    Science.gov (United States)

    Newhall, C.G.; Bronto, S.; Alloway, B.; Banks, N.G.; Bahar, I.; Del Marmol, M.A.; Hadisantono, R.D.; Holcomb, R.T.; McGeehin, J.; Miksic, J.N.; Rubin, M.; Sayudi, S.D.; Sukhyar, R.; Andreastuti, Supriyati; Tilling, R.I.; Torley, R.; Trimble, D.; Wirakusumah, A.D.

    2000-01-01

    Stratigraphy and radiocarbon dating of pyroclastic deposits at Merapi Volcano, Central Java, reveals ~10,000 years of explosive eruptions. Highlights include: (1) Construction of an Old Merapi stratovolcano to the height of the present cone or slightly higher. Our oldest age for an explosive eruption is 9630±60 14C y B.P.; construction of Old Merapi certainly began earlier. (2) Collapse(s) of Old Merapi that left a somma rim high on its eastern slope and sent one or more debris avalanche(s) down its southern and western flanks. Impoundment of Kali Progo to form an early Lake Borobudur at ~3400 14C y B.P. hints at a possible early collapse of Merapi. The latest somma-forming collapse occurred ~1900 14C y B.P. The current cone, New Merapi, began to grow soon thereafter. (3) Several large and many small Buddhist and Hindu temples were constructed in Central Java between 732 and ~900 A.D. (roughly, 1400-1000 14C y B.P.). Explosive Merapi eruptions occurred before, during and after temple construction. Some temples were destroyed and (or) buried soon after their construction, and we suspect that this destruction contributed to an abrupt shift of power and organized society to East Java in 928 A.D. Other temples sites, though, were occupied by "caretakers" for several centuries longer. (4) A partial collapse of New Merapi occurred 14C y B.P. Eruptions ~700-800 14C y B.P. (12-14th century A.D.) deposited ash on the floors of (still-occupied?) Candi Sambisari and Candi Kedulan. We speculate but cannot prove that these eruptions were triggered by (the same?) partial collapse of New Merapi, and that the eruptions, in turn, ended "caretaker" occupation at Candi Sambisari and Candi Kedulan. A new or raised Lake Borobudur also existed during part or all of the 12-14th centuries, probably impounded by deposits from Merapi. (5) Relatively benign lava-dome extrusion and dome-collapse pyroclastic flows have dominated activity of the 20th century, but explosive eruptions much

  8. Santorini Volcano's 20th Century Eruptions: A Combined Petrogenetical, Volcanological, Sociological and Environmental Study

    Science.gov (United States)

    Drymoni, Kyriaki; Magganas, Andreas; Pomonis, Panagiotis

    2014-05-01

    Santorini, the famous stratovolcano in the Aegean Sea, erupted three time periods during the 20th century (1925-1928, 1939-1941, 1950) and since then remains dormant. This study tried to combine and evaluate new and published volcanological, petrological, geochemical, environmental and sociological data of these three phases of Santorini's activity, which practically restricted to the caldera center on the Nea Kameni Islet. After field work on the formed dacite flows, pyroclastics and domes, representative rock samples and enclaves were collected and investigated for their texture, physical parameters, mineralogy and chemical composition by polarizing light microscope, scanning electron microscope (SEM-EDS), XRD, Raman spectroscopy and ICP-MS. The petrogenetic evaluation of the data obtained suggests slight but significant changes in the solid and aerial phases produced during the three explosion stages, which can be attributed to minor variations in the magmatic differentiation and magma chamber physicochemical conditions. These variations were also expressed by decrease of duration and intensity of the eruptions, as well as in their volume of ejecta and lava. Probably, the subsequent relatively long dormant period of the volcano is also related to this tension of decrease. The first compared results were collected from scientific literature, old photos as well as local and regional press and state documents from the different periods of volcanism, record the past hazard case scenarios and civil defense planning of the individual eruptions. As part of the disaster management a pilot survey, in which personal interviews with aged local islanders that were eye-witnesses of the events and elderly people or tourists that they indirectly experienced or have heard about them, was also conducted. This event-tracing, along with air pollution software models using volcanological data have shown the social impacts and the environmental consequences of the volcanic

  9. Photogrammetric Analysis of the Current Dome-Building Eruption of Mount St. Helens Volcano

    Science.gov (United States)

    Diefenbach, A. K.; Dzurisin, D.; Crider, J. G.; Schilling, S. P.

    2006-12-01

    Beginning in October 2004 and continuing to present day, the eruption of Mount St. Helens has provided a unique opportunity to experiment with new tools and techniques to study the dome-building eruption of a Cascade volcano. At the onset of eruption, a permanent camera station called Sugar Bowl was installed on the northeast rim of the crater about 2 km from the vent. Since that time, four additional cameras have been installed on the rim and crater floor to provide continuous visual observation of dome growth and crater conditions. We have analyzed images from four of the cameras to measure variations in three-dimensional lineal growth rates of lava spines extruding from the growing dome. Using photogrammetric techniques it is possible to obtain quantitative information on the geometry and displacement of a changing topographic model, in this case the evolving dome and glaciers in the crater of Mount St. Helens. The technique is an inexpensive, high-resolution, and efficient method that uses standard commercial software and an off-the-shelf digital camera to determine the x, y, z positions of selected points on the model surface. The model geometry at any given time is defined by the positions of all the points, and displacements are measured by tracking the changing positions of the points through time. Lineal extrusion rates during the first few months of the eruption ranged from 6-11 m/d, and subsequent estimates by other techniques were 4-5 m/d (Dzurisin et. al, 2005). For the past six months the extrusion rate has leveled off at 1 m/d, possibly indicative of steady-state extrusion or an approaching pause in the eruption. Another aspect of the project involves the use of overlapping oblique photos taken from a helicopter in 2004 and 2005 to produce fast and coarse digital elevation models (DEMs), which supplement high resolution DEMs produced by the USGS every 1 - 2 months. Comparing these results with seismicity and ground tilt measured by shallow borehole

  10. From mantle roots to surface eruptions: Cenozoic and Mesozoic continental basaltic magmatism

    Czech Academy of Sciences Publication Activity Database

    Kämpf, H.; Németh, K.; Puziewicz, J.; Mrlina, Jan; Geissler, W.H.

    2015-01-01

    Roč. 104, č. 8 (2015), s. 1909-1912 ISSN 1437-3254 Institutional support: RVO:67985530 Keywords : continental basaltic volcanism * BASALT 2013 conference * Cenozoic * Mesozoic Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.133, year: 2015

  11. Crystallization Conditions at Cascade and Other Arc Volcanoes: The Role of Recharge, and Ultimate, Proximal and Immediate Causes of Eruption

    Science.gov (United States)

    Putirka, K. D.

    2016-12-01

    A number of hypotheses have been offered to explain why volcanoes erupt. These include magma mixing, mafic recharge, or partial crystallization, any of which can drive parts or all of a system to vapor saturation, and so add to a magma's buoyancy. Age dates indicate long pre-eruption storage times for felsic magmas erupted at arcs, indicating that mafic recharge magmas, which can reinvigorate such systems, is a possible eruption trigger. However, plutonic systems reveal numerous recharge events that have no obvious ties to eruption (Coint et al. 2013; Putirka et al. 2014). And crystallization conditions at some arc systems support the implicit view, that recharge might be a necessary, but not a sufficient condition for eruption. At several Cascade volcanoes, Cpx and Amp crystals record coolings of 100-300oC. The Cpx grains derive exclusively from mafic enclaves, while Amp grains derive from both host and enclave materials. These considerable coolings call for a time lag following recharge, and indicate that vapor saturation is a proximal, although not necessarily an immediate cause of eruption. But we cannot discount recharge altogether. At the Cascades and at other arcs, Cpx crystalizes throughout the middle and upper crust, mostly from the surface down to 15 km. And high Fo olivine grains provide evidence for very hot magmas that intrude the upper mantle and lower crust, and possibly the middle crust, if hydrous. Volcanic pathways thus clearly extend into the middle crust, and at times, well below the Moho. It is unclear to what extent these deep pathways are hydraulically connected to the surface, or the role of deep-seated processes in initiating or sustaining eruptions. Progress in understanding these pathways, and triggering mechanisms, requires our differentiating "ultimate", "proximal" and "immediate" causes, and determining which of various magmatic processes provide necessary or sufficient conditions for eruption.

  12. Short-period volcanic gas precursors to phreatic eruptions: Insights from Poás Volcano, Costa Rica

    Science.gov (United States)

    de Moor, Maarten; Aiuppa, Alessandro; Pacheco, Javier; Avard, Geoffroy; Kern, Christoph; Liuzzo, Marco; Martinez, Maria; Giudice, Gaetano; Fischer, Tobias P.

    2016-01-01

    Volcanic eruptions involving interaction with water are amongst the most violent and unpredictable geologic phenomena on Earth. Phreatic eruptions are exceptionally difficult to forecast by traditional geophysical techniques. Here we report on short-term precursory variations in gas emissions related to phreatic blasts at Poás volcano, Costa Rica, as measured with an in situ multiple gas analyzer that was deployed at the edge of the erupting lake. Gas emitted from this hyper-acid crater lake approaches magmatic values of SO2/CO2 1–6 days prior to eruption. The SO2 flux derived from magmatic degassing through the lake is measureable by differential optical absorption spectrometry (sporadic campaign measurements), which allows us to constrain lake gas output and input for the major gas species during eruptive and non-eruptive periods. We can further calculate power supply to the hydrothermal system using volatile mass balance and thermodynamics, which indicates that the magmatic heat flux into the shallow hydrothermal system increases from ∼27 MW during quiescence to ∼59 MW during periods of phreatic events. These transient pulses of gas and heat from the deeper magmatic system generate both phreatic eruptions and the observed short-term changes in gas composition, because at high gas flux scrubbing of sulfur by the hydrothermal system is both kinetically and thermodynamically inhibited whereas CO2gas is always essentially inert in hyperacid conditions. Thus, the SO2/CO2 of lake emissions approaches magmatic values as gas and power supply to the sub-limnic hydrothermal system increase, vaporizing fluids and priming the hydrothermal system for eruption. Our results suggest that high-frequency real-time gas monitoring could provide useful short-term eruptive precursors at volcanoes prone to phreatic explosions.

  13. Looking for Larvae Above an Erupting Submarine Volcano, NW Rota-1, Mariana Arc

    Science.gov (United States)

    Beaulieu, S.; Hanson, M.; Tunnicliffe, V.; Chadwick, W. W., Jr.; Breuer, E. R.

    2016-02-01

    In 2009 the first marine protected areas for deep-sea hydrothermal vents in U.S. waters were established as part of the Volcanic Unit of the Marianas Trench Marine National Monument. In this region, hydrothermal vents are located along the Mariana Arc and back-arc spreading center. In particular hydrothermal vents are located near the summit of NW Rota-1, an active submarine volcano on the Mariana Arc which was erupting between 2003 and 2010 and ceased as of 2014. NW Rota-1 experienced a massive landslide in late 2009, decimating the habitat on the southern side of the volcano. This project looked at zooplankton tow samples taken from the water column above NW Rota-1 in 2010, searching for larvae which have the potential to recolonize the sea floor after such a major disturbance. Samples were sorted in entirety into coarse taxa, and then larvae were removed for DNA barcoding. Overall zooplankton composition was dominated by copepods, ostracods, and chaetognaths, the majority of which are pelagic organisms. Comparatively few larvae of benthic invertebrates were found, but shrimp, gastropod, barnacle, and polychaete larvae did appear in low numbers in the samples. Species-level identification obtained via genetic barcoding will allow for these larvae to be matched to species known to inhabit the benthic communities at NW Rota-1. Identified larvae will give insight into the organisms which can re-colonize the seafloor vent communities after a disturbance such as the 2009 landslide. Communities at hydrothermal vents at other submarine volcanoes in the Monument may act as sources for these larvae, but connectivity in this region of complex topography is unknown. As the microinvertebrate biodiversity in the Monument has yet to be fully characterized, our project also provides an opportunity to better describe both the zooplankton and benthic community composition in this area of the Monument.

  14. Geology of kilauea volcano

    Science.gov (United States)

    Moore, R.B.; Trusdell, F.A.

    1993-01-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.

  15. Pre-eruptive conditions of the ~31 ka rhyolitic magma of Tlaloc volcano, Sierra Nevada Volcanic Range, Central Mexico

    Science.gov (United States)

    Macias, J.; Arce, J.; Rueda, H.; Gardner, J.

    2008-12-01

    Tlaloc volcano is located at the northern tip of the Sierra Nevada Volcanic Range in Central Mexico. This Pleistocene to Recent volcanic range consists from north to south of Tlaloc-Telapón-Teyotl-Iztaccíhuatl-and- Popocatépetl volcanoes. While andesitic to barely dacitic volcanism dominates the southern part of the range (i.e. Popocatépetl and Iztaccíhuatl); dacitic and rare rhyolithic volcanism (i.e. Telapón, Tlaloc) dominates the northern end. The known locus of rhyolitic magmatism took place at Tlaloc volcano with a Plinian-Subplinian eruption that occurred 31 ka ago. The eruption emplaced the so-called multilayered fallout and pumiceous pyroclastic flows (~2 km3 DRE). The deposit consists of 95% vol. of juvenile particles (pumice + crystals) and minor altered lithics 5% vol. The mineral association of the pumice fragments (74-76 % wt. SiO2) consists of quartz + plagioclase + sanidine + biotite and rare oxides set in a glassy groundmass with voids. Melt inclusions in quartz phenocrysts suggest that prior to the eruption the rhyolitic contain ~7% of H2O and Nevado de Toluca volcano (~6 km) some 50 km to the southwest.

  16. Long-range volcanic ash transport and fallout during the 2008 eruption of Chaiten volcano, Chile

    Science.gov (United States)

    Durant, A. J.; Prata, A. J.; Villarosa, G.; Rose, W. I.; Delmelle, P.; Viramonte, J.

    2012-04-01

    The May 2008 eruption of Chaitén volcano, Chile, provided a rare opportunity to measure the long-range transport of volcanic emissions and characteristics of a widely-dispersed terrestrial ash deposit. Airborne ash mass, quantified using thermal infrared satellite remote sensing, ranged between 0.2-0.4 Tg during the period 3-7 May 2008. A high level of spatiotemporal correspondence was observed between cloud trajectories and changes in surface reflectivity, which was inferred to indicate ash deposition. The evolution of the deposit was mapped for the first time using satellite-based observations of surface reflectivity. The distal (>80 km) ash deposit was poorly sorted and fine grained, and mean particle size varied very little beyond a distance >300 km. There were 3 consistent particle size subpopulations in fallout at distances >300 km which suggests that aggregation influenced particle settling. Discrete temporal sampling and characterisation of fallout demonstrated contributions from specific eruptive phases. Some evidence for winnowing was identified through comparison of samples collected at the time of deposition to bulk samples collected months after deposition. X-Ray Photoelectron Spectroscopy (XPS) analyses revealed surface enrichments in Ca, Na and Fe and the presence of coatings of mixed Ca-, Na- and Fe-rich salts on ash particles prior to deposition. XPS analyses revealed strong surface Fe enrichments (in contrast to the results from bulk leachate analyses), which indicates that surface analysis techniques should be applied to investigate potential influences on ocean productivity in response to volcanic ash fallout over oceans. Low S:Cl ratios in leachates indicate that the eruption had a low S content, and high Cl:F ratios imply gas-ash interaction within a Cl-rich environment. We estimate that ash fallout had potential to scavenge ~42 % of total S released into the atmosphere prior to deposition.

  17. Spatial analysis of the impacts of the Chaitén volcano eruption (Chile) in three fluvial systems

    Science.gov (United States)

    Ulloa, H.; Iroumé, A.; Picco, L.; Mohr, C. H.; Mazzorana, B.; Lenzi, M. A.; Mao, L.

    2016-08-01

    The eruption of the Chaitén volcano in May 2008 generated morphological and ecological disturbances in adjacent river basins, and the magnitude of these disturbances depended on the type of dominant volcanic process affecting each of them. The aim of this study is to analyse the morphological changes in different periods in river segments of the Blanco, El Amarillo and Rayas river basins located near the Chaitén volcano. These basins suffered disturbances of different intensity and spatial distribution caused by tephra fall, dome collapses and pyroclastic density currents that damaged hillslope forests, widened channels and destroyed island and floodplain vegetation. Changes continued to occur in the fluvial systems in the years following the eruption, as a consequence of the geomorphic processes indirectly induced by the eruption. Channel changes were analyzed by comparing remote images of pre and post-eruption conditions. Two periods were considered: the first from 2008 to 2009-2010 associated with the explosive and effusive phases of the eruption and the second that correspond to the post-eruption stage from 2009-2010 to 2013. Following the first phases channel segments widened 91% (38 m/yr), 6% (7 m/yr) and 7% (22 m/yr) for Blanco, Rayas and El Amarillo Rivers, respectively, compared to pre-eruption condition. In the second period, channel segments additionally widened 42% (8 m/yr), 2% (2 m/yr) and 5% (4 m/yr) for Blanco, Rayas and El Amarillo Rivers, respectively. In the Blanco River 62 and 82% of the islands disappeared in the first and second period, respectively, which is 6-8 times higher than in the El Amarillo approximately twice the Rayas. Sinuosity increased after the eruption only in the Blanco River but the three study channels showed a high braiding intensity mainly during the first post-eruption period. The major disturbances occurred during the eruptive and effusive phases of Chaitén volcano, and the intensity of these disturbances reflects the

  18. Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily)

    Energy Technology Data Exchange (ETDEWEB)

    Aiuppa, A.; Allard, P.; D' Alessandro, W.; Michel, A.; Parello, F.; Treuil, M.; Valenza, M.

    2000-06-01

    The concentrations and fluxes of major, minor and trace metals were determined in 53 samples of groundwaters from around Mt. Etna, in order to evaluate the conditions and extent of alkali basalt weathering by waters enriched in magma-derived CO{sub 2} and the contribution of aqueous transport to the overall metal discharge of the volcano. The authors show that gaseous input of magmatic volatile metals into the Etnean aquifer is small or negligible, being limited by cooling of the rising fluids. Basalt leaching by weakly acidic, CO{sub 2}-charged water is the overwhelming source of metals and appears to be more extensive in two sectors of the S-SW (Paterno) and E (Zafferana) volcano flanks, where out flowing groundwaters are the richest in metals and bicarbonate of magmatic origin. Thermodynamic modeling of the results allows evaluation of the relative mobility and chemical speciation of various elements during their partitioning between solid and liquid phases through the weathering process. At Mt. Etna, poorly mobile elements (Al, Th, Fe) are preferentially retained in the solid residue of weathering, while alkalis, alkaline earth and oxo-anion-forming elements (As, Se, Sb, Mo) are more mobile and released to the aqueous system. Transition metals display an intermediate behavior and are strongly dependent on either the redox conditions (Mn, Cr, V) or solid surface-related processes (V, Zn, Cu).

  19. Seismic energy data analysis of Merapi volcano to test the eruption time prediction using materials failure forecast method (FFM)

    Science.gov (United States)

    Anggraeni, Novia Antika

    2015-04-01

    The test of eruption time prediction is an effort to prepare volcanic disaster mitigation, especially in the volcano's inhabited slope area, such as Merapi Volcano. The test can be conducted by observing the increase of volcanic activity, such as seismicity degree, deformation and SO2 gas emission. One of methods that can be used to predict the time of eruption is Materials Failure Forecast Method (FFM). Materials Failure Forecast Method (FFM) is a predictive method to determine the time of volcanic eruption which was introduced by Voight (1988). This method requires an increase in the rate of change, or acceleration of the observed volcanic activity parameters. The parameter used in this study is the seismic energy value of Merapi Volcano from 1990 - 2012. The data was plotted in form of graphs of seismic energy rate inverse versus time with FFM graphical technique approach uses simple linear regression. The data quality control used to increase the time precision employs the data correlation coefficient value of the seismic energy rate inverse versus time. From the results of graph analysis, the precision of prediction time toward the real time of eruption vary between -2.86 up to 5.49 days.

  20. Salt shell fallout during the ash eruption at the Nakadake crater, Aso volcano, Japan: evidence of an underground hydrothermal system surrounding the erupting vent

    Science.gov (United States)

    Shinohara, Hiroshi; Geshi, Nobuo; Yokoo, Akihiko; Ohkura, Takahiro; Terada, Akihiko

    2018-03-01

    A hot and acid crater lake is located in the Nakadake crater, Aso volcano, Japan. The volume of water in the lake decreases with increasing activity, drying out prior to the magmatic eruptions. Salt-rich materials of various shapes were observed, falling from the volcanic plume during the active periods. In May 2011, salt flakes fell from the gas plume emitted from an intense fumarole when the acid crater lake was almost dry. The chemical composition of these salt flakes was similar to those of the salts formed by the drying of the crater lake waters, suggesting that they originated from the crater lake water. The salt flakes are likely formed by the drying up of the crater lake water droplets sprayed into the plume by the fumarolic gas jet. In late 2014, the crater lake dried completely, followed by the magmatic eruptions with continuous ash eruptions and intermittent Strombolian explosions. Spherical hollow salt shells were observed on several occasions during and shortly after the weak ash eruptions. The chemical composition of the salt shells was similar to the salts formed by the drying of the crater lake water. The hollow structure of the shells suggests that they were formed by the heating of hydrothermal solution droplets suspended by a mixed stream of gas and ash in the plume. The salt shells suggest the existence of a hydrothermal system beneath the crater floor, even during the course of magmatic eruptions. Instability of the magmatic-hydrothermal interface can cause phreatomagmatic explosions, which often occur at the end of the eruptive phase of this volcano.

  1. Geochemistry of volcanic ashes, thermal waters and gases ejected during the 1979 eruption of Ontake Volcano, Japan

    International Nuclear Information System (INIS)

    Sugiura, Tumomu; Sugisaki, Ryuichi; Mizutani, Yoshihiko; Kusakabe, Minoru.

    1980-01-01

    Ontake Volcano suddenly began to erupt on its south-western flank near the summit at 05sup(h)20sup(m) on Oct. 28, 1979, forming several new craters and ejecting large amounts of volcanic ash and steam. Up to that time, the volcano had been believed to be dormant, though there were weak geothermal activities at a part of the south-western flank of the volcano, Jigokudani. This paper reports some results obtained by preliminary examination of volcanic ashes, thermal waters and gases collected on and around Ontake Volcano during the early stage of eruptive activity. The volcanic ashes are homogeneous in chemical and mineralogical compositions, and similar in chemical composition to the pre-historic volcanic ashes. The ashes contain pyrite, anhydrite, cristobalite and clay minerals. The sulfur isotopic equilibrium temperature is estimated to be about 400 0 C for pyrite-anhydrite pairs in the volcanic ashes. The estimated temperature is apparently too high for the temperature of phreatic explosion. The interpretation of this isotopic data remains unsettled. The thermal waters collected from the boiling pools in craters are enriched in D and 18 O. The isotopic enrichment is probably caused by evaporation of water at the surface of boiling pool. The hydrogen and oxygen isotopic data also suggest that spring waters issuing around Ontake Volcano are meteoric in origin. Nigorigo Hot Spring, about 4 km north-west of Ontake Volcano, showed significant increase in the concentrations of major dissolved chemical components soon after the eruption, but since then no significant change in chemical and isotopic composition has been observed. (author)

  2. Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high-frequency gas monitoring

    Science.gov (United States)

    de Moor, J. Maarten; Aiuppa, A.; Avard, G.; Wehrmann, H.; Dunbar, N.; Muller, C.; Tamburello, G.; Giudice, G.; Liuzzo, M.; Moretti, R.; Conde, V.; Galle, B.

    2016-08-01

    Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high-frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO2-rich gas (CO2/Stotal > 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2 weeks before eruptions, which are accompanied by shallowly derived sulfur-rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is 8-10 km deep, whereas the shallow magmatic gas source is at 3-5 km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H2S/SO2 varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000 T/d SO2 and H2S/SO2 > 1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H2S/SO2 < 0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high-temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity.

  3. Volcanic ash and daily mortality in Sweden after the Icelandic volcano eruption of May 2011.

    Science.gov (United States)

    Oudin, Anna; Carlsen, Hanne K; Forsberg, Bertil; Johansson, Christer

    2013-12-10

    In the aftermath of the Icelandic volcano Grimsvötn's eruption on 21 May 2011, volcanic ash reached Northern Europe. Elevated levels of ambient particles (PM) were registered in mid Sweden. The aim of the present study was to investigate if the Grimsvötn eruption had an effect on mortality in Sweden. Based on PM measurements at 16 sites across Sweden, data were classified into an ash exposed data set (Ash area) and an unexposed data set (No ash area). Data on daily all-cause mortality were obtained from Statistics Sweden for the time period 1 April through 31 July 2011. Mortality ratios were calculated as the ratio between the daily number of deaths in the Ash area and the No ash area. The exposure period was defined as the week following the days with elevated particle concentrations, namely 24 May through 31 May. The control period was defined as 1 April through 23 May and 1 June through 31 July. There was no absolute increase in mortality during the exposure period. However, during the exposure period the mean mortality ratio was 2.42 compared with 2.17 during the control period, implying a relatively higher number of deaths in the Ash area than in the No ash area. The differences in ratios were mostly due to a single day, 31 May, and were not statistically significant when tested with a Mann-Whitney non-parametric test (p > 0.3). The statistical power was low with only 8 days in the exposure period (24 May through 31 May). Assuming that the observed relative differences were not due to chance, the results would imply an increase of 128 deaths during the exposure period 24-31 May. If 31 May was excluded, the number of extra deaths was reduced to 20. The results of the present study are contradicting and inconclusive, but may indicate that all-cause mortality was increased by the ash-fall from the Grimsvötn eruption. Meta-analysis or pooled analysis of data from neighboring countries might make it possible to reach sufficient statistical power to study effects

  4. Volcanic Ash and Daily Mortality in Sweden after the Icelandic Volcano Eruption of May 2011

    Science.gov (United States)

    Oudin, Anna; Carlsen, Hanne K.; Forsberg, Bertil; Johansson, Christer

    2013-01-01

    In the aftermath of the Icelandic volcano Grimsvötn’s eruption on 21 May 2011, volcanic ash reached Northern Europe. Elevated levels of ambient particles (PM) were registered in mid Sweden. The aim of the present study was to investigate if the Grimsvötn eruption had an effect on mortality in Sweden. Based on PM measurements at 16 sites across Sweden, data were classified into an ash exposed data set (Ash area) and an unexposed data set (No ash area). Data on daily all-cause mortality were obtained from Statistics Sweden for the time period 1 April through 31 July 2011. Mortality ratios were calculated as the ratio between the daily number of deaths in the Ash area and the No ash area. The exposure period was defined as the week following the days with elevated particle concentrations, namely 24 May through 31 May. The control period was defined as 1 April through 23 May and 1 June through 31 July. There was no absolute increase in mortality during the exposure period. However, during the exposure period the mean mortality ratio was 2.42 compared with 2.17 during the control period, implying a relatively higher number of deaths in the Ash area than in the No ash area. The differences in ratios were mostly due to a single day, 31 May, and were not statistically significant when tested with a Mann-Whitney non-parametric test (p > 0.3). The statistical power was low with only 8 days in the exposure period (24 May through 31 May). Assuming that the observed relative differences were not due to chance, the results would imply an increase of 128 deaths during the exposure period 24–31 May. If 31 May was excluded, the number of extra deaths was reduced to 20. The results of the present study are contradicting and inconclusive, but may indicate that all-cause mortality was increased by the ash-fall from the Grimsvötn eruption. Meta-analysis or pooled analysis of data from neighboring countries might make it possible to reach sufficient statistical power to study

  5. Emission of SO2, CO2, and H2S from Augustine Volcano, 2002-2008: Chapter 26 in The 2006 eruption of Augustine Volcano, Alaska

    Science.gov (United States)

    McGee, Kenneth A.; Doukas, Michael P.; McGimsey, Robert G.; Neal, Christina A.; Wessels, Rick L.; Power, John A.; Coombs, Michelle L.; Freymueller, Jeffrey T.

    2010-01-01

    Airborne surveillance of gas emissions from Augustine Volcano and other Cook Inlet volcanoes began in 1990 to identify baseline emission levels during noneruptive conditions. Gas measurements at Augustine for SO2, CO2, and H2S showed essentially no evidence of anomalous degassing through spring 2005. Neither did a measurement on May 10, 2005, right after the onset of low level seismicity and inflation. The following measurement, on December 20, 2005, showed Augustine to be degassing about 600 metric tons per day (t/d) of SO2, and by January 4, 2006, only 7 days before the first explosive event, SO2 emissions had climbed to ten times that amount. Maximum emission rates measured during the subsequent eruption were: 8,930 t/d SO2 (February 24, 2006), 1,800 t/d CO2 (March 9, 2006), and 4.3 t/d H2S (January 19, 2006). In total, 45 measurements for SO2 were made from December 2005 through the end of 2008, with 19 each for CO2 and H2S during the same period. Molar CO2/SO2 ratios averaged about 1.6. In general, SO2 emissions appeared to increase during inflation of the volcanic edifice, whereas CO2 emissions were at their highest during the period of deflation associated with the vigorous effusive phase of the eruption in March. High SO2 was probably associated with degassing of shallow magma, whereas high CO2 likely reflected deep (>4 km) magma recharge of the sub-volcanic plumbing system, For the 2005–6 period, the volcano released a total of about 1.5×106 tons of CO2 to the atmosphere, a level similar to the annual output of a medium-sized natural-gas-fired powerplant. Augustine also emitted about 8×105 tons of SO2, similar to that produced by the 1976 and 1986 eruptions of the volcano.

  6. NanoSIMS results from olivine-hosted melt embayments: Magma ascent rate during explosive basaltic eruptions

    Science.gov (United States)

    Lloyd, Alexander S.; Ruprecht, Philipp; Hauri, Erik H.; Rose, William; Gonnermann, Helge M.; Plank, Terry

    2014-08-01

    pressure (> 145 MPa), with similar decompression rates to the single-stage model for the shallower stage. The magma ascent rates reported here are among the first for explosive basaltic eruptions and demonstrate the potential of the embayment method for quantifying magmatic timescales associated with eruptions of different vigor.

  7. Use of new and old technologies and methods by the Alaska Volcano Observatory during the 2006 eruption of Augustine Volcano, Alaska

    Science.gov (United States)

    Murray, T. L.; Nye, C. J.; Eichelberger, J. C.

    2006-12-01

    The recent eruption of Augustine Volcano was the first significant volcanic event in Cook Inlet, Alaska since 1992. In contrast to eruptions at remote Alaskan volcanoes that mainly affect aviation, ash from previous eruptions of Augustine has affected communities surrounding Cook Inlet, home to over half of Alaska's population. The 2006 eruption validated much of AVO's advance preparation, underscored the need to quickly react when a problem or opportunity developed, and once again demonstrated that while technology provides us with wonderful tools, professional relationships, especially during times of crisis, are still important. Long-term multi-parametric instrumental monitoring and background geological and geophysical studies represent the most fundamental aspect of preparing for any eruption. Once significant unrest was detected, AVO augmented the existing real-time network with additional instrumentation including web cameras. GPS and broadband seismometers that recorded data on site were also quickly installed as their data would be crucial for post-eruption research. Prior to 2006, most of most of AVO's eruption response plans and protocols had focused on the threat to aviation rather than ground-based hazards. However, the relationships and protocols developed for the aviation threat were sufficient to be adapted to the ash fall hazard, though it is apparent that more work, both scientific and with response procedures, is needed. Similarly, protocols were quickly developed for warning of a flank- collapse induced tsunami. Information flow within the observatory was greatly facilitated by an internal web site that had been developed and refined specifically for eruption response. Because AVO is a partnership of 3 agencies (U.S. Geological Survey, University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys) with offices in both Fairbanks and Anchorage, web and internet-facing data servers provided

  8. Glacier melting during lava dome growth at Nevado de Toluca volcano (Mexico): Evidences of a major threat before main eruptive phases at ice-caped volcanoes

    Science.gov (United States)

    Capra, L.; Roverato, M.; Groppelli, G.; Caballero, L.; Sulpizio, R.; Norini, G.

    2015-03-01

    Nevado de Toluca volcano is one of the largest stratovolcanoes in the Trans-Mexican Volcanic Belt. During Late Pleistocene its activity was characterized by large dome growth and subsequent collapse emplacing large block and ash flow deposits, intercalated by Plinian eruptions. Morphological and paleoclimate studies at Nevado de Toluca and the surrounding area evidenced that the volcano was affected by extensive glaciation during Late Pleistocene and Holocene. During the older recognized glacial period (27-60 ka, MIS 3), the glacier was disturbed by the intense magmatic and hydrothermal activity related to two dome extrusion episodes (at 37 ka and 28 ka). Glacier reconstruction indicates maximum ice thickness of 90 m along main valleys, as at the Cano ravines, the major glacial valley on the northern slope of the volcano. Along this ravine, both 37 and 28 ka block-and-ash deposits are exposed, and they directly overlay a fluviatile sequence, up to 40 m-thick, which 14C ages clearly indicate that their emplacement occurred just before the dome collapsed. These evidences point to a clear interaction between the growing dome and its hydrothermal system with the glacier. During dome growth, a large amount of melting water was released along major glacial valleys forming thick fluvioglacial sequences that were subsequently covered by the block-and-ash flow deposits generated by the collapse of the growing dome. Even though this scenario is no longer possible at the Nevado de Toluca volcano, the data presented here indicate that special attention should be paid to the possible inundation areas from fluviatile/lahar activity prior to the main magmatic eruption at ice-capped volcanoes.

  9. Erratum: Correction to: Emplacement controls for the basaltic-andesitic radial dikes of Summer Coon volcano and implications for flank vents at stratovolcanoes

    Science.gov (United States)

    Harp, A. G.; Valentine, G. A.

    2018-06-01

    In the article "Emplacement controls for the basaltic-andesitic radial dikes of Summer Coon volcano and implications for flank vents at stratovolcanoes", the vertical axis for Fig. 8 a was incorrectly labeled (i.e., the value for dikes per km2).

  10. The 1963–65 eruption of Irazú volcano, Costa Rica (the period of March 1963 to October 1964)

    Science.gov (United States)

    Murata, K.J.; Dondoli, C.; Saenz, R.

    1966-01-01

    The 1963–65 eruption of Irazú, like all others of this volcano during the historic period, produced only ash and other fragmental ejecta without lava. The initial outbreak on March 13, 1963 started with a series of great explosions that hurled out much ash, blocks, and bombs, but the activity soon settled down to alternating periods of explosive cruptions and quiet emission of steam.

  11. Silicic magma generation at Askja volcano, Iceland

    Science.gov (United States)

    Sigmarsson, O.

    2009-04-01

    Rate of magma differentiation is an important parameter for hazard assessment at active volcanoes. However, estimates of these rates depend on proper understanding of the underlying magmatic processes and magma generation. Differences in isotope ratios of O, Th and B between silicic and in contemporaneous basaltic magmas have been used to emphasize their origin by partial melting of hydrothermally altered metabasaltic crust in the rift-zones favoured by a strong geothermal gradient. An alternative model for the origin of silicic magmas in the Iceland has been proposed based on U-series results. Young mantle-derived mafic protolith is thought to be metasomatized and partially melted to form the silicic end-member. However, this model underestimates the compositional variations of the hydrothermally-altered basaltic crust. New data on U-Th disequilibria and O-isotopes in basalts and dacites from Askja volcano reveal a strong correlation between (230Th/232Th) and delta 18O. The 1875 AD dacite has the lowest Th- and O isotope ratios (0.94 and -0.24 per mille, respectively) whereas tephra of evolved basaltic composition, erupted 2 months earlier, has significantly higher values (1.03 and 2.8 per mille, respectively). Highest values are observed in the most recent basalts (erupted in 1920 and 1961) inside the Askja caldera complex and out on the associated fissure swarm (Sveinagja basalt). This correlation also holds for older magma such as an early Holocene dacites, which eruption may have been provoked by rapid glacier thinning. Silicic magmas at Askja volcano thus bear geochemical signatures that are best explained by partial melting of extensively hydrothermally altered crust and that the silicic magma source has remained constant during the Holocene at least. Once these silicic magmas are formed they appear to erupt rapidly rather than mixing and mingling with the incoming basalt heat-source that explains lack of icelandites and the bi-modal volcanism at Askja

  12. Long term storage of explosively erupted magma at Nevado de Toluca volcano, Mexico

    Science.gov (United States)

    Arce, J. L.; Gardner, J.; Macias, J. L.

    2007-12-01

    Dacitic magmas production is common in subduction-related volcanoes, occurring in those with a long period of activity as a result of the magmatic evolution. However, in this evolution many factors (i.e. crystal fractionation, assimilation, magma mixing) can interact to produce dacites. Nevado de Toluca volcano (4,680 masl; 19°09'N; 99°45'W) Central Mexico has recorded a long period of time producing dacites explosively, at least during 42 ka of activity, involving several km3 of magma, with two important Plinian-type eruptions occurred at ~21.7 ka (Lower Toluca Pumice) and ~10.5 ka (Upper Toluca Pumice). Questions like, what was the mechanism responsible to produce voluminous dacitic magma and how the volatiles and pressure changed in the Nevado de Toluca system, remain without answers. Dacites from the Lower Toluca Pumice (LTP) contain plagioclase, amphibole, iron-titanium oxides, and minor resorbed biotite, set in a glassy-vesicular matrix and the Upper Toluca Pumice (UTP) dacites contain the same mineral phases plus orthopyroxene. Ilmenite- ulvospinel geothermometry yielded a temperature of ~860°C for the LTP dacite, a little hotter than the UTP (~ 840°C). Based on hydrothermal experiments data, amphibole is stable above 100 MPa under 900°C, while plagioclase crystallizes up to 250-100 MPa at temperatures of 850-900°C. Pyroxene occurs only at pressures of 200-100 MPa with its respective temperatures of 825-900°C. Water contents in the LTP magma (2-3.5 wt %) are similar to that calculated for the UTP magma (1.3-3.6 wt %). So, there are only small changes in temperature and pressure from ~21.7 ka to 10.5 ka. It is noteworthy that orthopyroxene is absent in the LTP, however reaction-rimmed biotite (probably xenocrystic) is commonly observed in all dacites. Hence, almost all dacitic magmas seem to be stored at relatively similar pressures, water contents, and temperatures. All of these data could suggest repetitive basic magma injections producing the

  13. Results from the Autonomous Triggering of in situ Sensors on Kilauea Volcano, HI, from Eruption Detection by Spacecraft

    Science.gov (United States)

    Doubleday, J.; Behar, A.; Davies, A.; Mora-Vargas, A.; Tran, D.; Abtahi, A.; Pieri, D. C.; Boudreau, K.; Cecava, J.

    2008-12-01

    Response time in acquiring sensor data in volcanic emergencies can be greatly improved through use of autonomous systems. For instance, ground-based observations and data processing applications of the JPL Volcano Sensor Web have promptly triggered spacecraft observations [e.g., 1]. The reverse command and information flow path can also be useful, using autonomous analysis of spacecraft data to trigger in situ sensors. In this demonstration project, SO2 sensors were incorporated into expendable "Volcano Monitor" capsules and placed downwind of the Pu'u 'O'o vent of Kilauea volcano, Hawai'i. In nominal (low) power conservation mode, data from these sensors were collected and transmitted every hour to the Volcano Sensor Web through the Iridium Satellite Network. When SO2 readings exceeded a predetermined threshold, the modem within the Volcano Monitor sent an alert to the Sensor Web, and triggered a request for prompt Earth Observing-1 (EO-1) spacecraft data acquisition. The Volcano Monitors were also triggered by the Sensor Web in response to an eruption detection by the MODIS instrument on Terra. During these pre- defined "critical events" the Sensor Web ordered the SO2 sensors within the Volcano Monitor to increase their sampling frequency to every 5 minutes (high power "burst mode"). Autonomous control of the sensors' sampling frequency enabled the Sensor Web to monitor and respond to rapidly evolving conditions, and allowed rapid compilation and dissemination of these data to the scientific community. Reference: [1] Davies et al., (2006) Eos, 87, (1), 1 and 5. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. Support was provided by the NASA AIST program, the Idaho Space Grant Consortium, and the New Mexico Space Grant Program. We also especially thank the personnel of the USGS Hawaiian Volcano Observatory for their invaluable scientific guidance and logistical assistance.

  14. Seismic energy data analysis of Merapi volcano to test the eruption time prediction using materials failure forecast method (FFM)

    International Nuclear Information System (INIS)

    Anggraeni, Novia Antika

    2015-01-01

    The test of eruption time prediction is an effort to prepare volcanic disaster mitigation, especially in the volcano’s inhabited slope area, such as Merapi Volcano. The test can be conducted by observing the increase of volcanic activity, such as seismicity degree, deformation and SO2 gas emission. One of methods that can be used to predict the time of eruption is Materials Failure Forecast Method (FFM). Materials Failure Forecast Method (FFM) is a predictive method to determine the time of volcanic eruption which was introduced by Voight (1988). This method requires an increase in the rate of change, or acceleration of the observed volcanic activity parameters. The parameter used in this study is the seismic energy value of Merapi Volcano from 1990 – 2012. The data was plotted in form of graphs of seismic energy rate inverse versus time with FFM graphical technique approach uses simple linear regression. The data quality control used to increase the time precision employs the data correlation coefficient value of the seismic energy rate inverse versus time. From the results of graph analysis, the precision of prediction time toward the real time of eruption vary between −2.86 up to 5.49 days

  15. Seismic energy data analysis of Merapi volcano to test the eruption time prediction using materials failure forecast method (FFM)

    Energy Technology Data Exchange (ETDEWEB)

    Anggraeni, Novia Antika, E-mail: novia.antika.a@gmail.com [Geophysics Sub-department, Physics Department, Faculty of Mathematic and Natural Science, Universitas Gadjah Mada. BLS 21 Yogyakarta 55281 (Indonesia)

    2015-04-24

    The test of eruption time prediction is an effort to prepare volcanic disaster mitigation, especially in the volcano’s inhabited slope area, such as Merapi Volcano. The test can be conducted by observing the increase of volcanic activity, such as seismicity degree, deformation and SO2 gas emission. One of methods that can be used to predict the time of eruption is Materials Failure Forecast Method (FFM). Materials Failure Forecast Method (FFM) is a predictive method to determine the time of volcanic eruption which was introduced by Voight (1988). This method requires an increase in the rate of change, or acceleration of the observed volcanic activity parameters. The parameter used in this study is the seismic energy value of Merapi Volcano from 1990 – 2012. The data was plotted in form of graphs of seismic energy rate inverse versus time with FFM graphical technique approach uses simple linear regression. The data quality control used to increase the time precision employs the data correlation coefficient value of the seismic energy rate inverse versus time. From the results of graph analysis, the precision of prediction time toward the real time of eruption vary between −2.86 up to 5.49 days.

  16. Observation of atmospheric 210Pb and 212Pb originating from the 2004 eruptive activity of Asama volcano, Japan, and relevant 222Rn releasing from the erupting magma

    International Nuclear Information System (INIS)

    Kukita, Kazuhiko; Koike, Yuya; Nakamura, Toshihiro; Sato, Jun; Saito, Takashi

    2005-01-01

    This paper describes a study of observation of atmospheric 210Pb and 212Pb possibly from the volcano (36 deg N, 138 deg E) activity in the title and of measurement of 222Rn releasing efficiency with the ash-fall deposit collected around the period. The aerosol sample was collected from Sep. 1, an eruption day, on a building terrace (10 m high) of Meiji University at Kawasaki, located at 140 km SE of the volcano, every 24 hr on the glass fiber filter using a high volume air sampler. The filter was cut out to 4 disks, which were packed into acrylic canisters with a window of a thin Mylar film for non-destructive γ-ray measurement. 210Pb and 212Pb radioactivities were determined by the 46.5- and 238.6-keV γ-rays with an LEPS (low energy photon spectrometer) and an HPGe spectrometer, respectively. The ash-fall sample from the eruption Sep. 14, was collected at Kanrakumachi, Gunma Pref., 40 km SE of the volcano, and measurement for the growth curve of 222Rn from the fall started 1 week after the eruption. A well-type HPGe spectrometer was used for determination of the 351.9-keV γ-ray of 222Rn from 214Pb in equilibrium, which was normalized by the 911.1-keV 228Ac γ-ray. 210Pb and 212Pb emitted into the atmosphere were suggested to have been transported 140 km within the time of a few times of the 212Pb half life (10.6 hr) on the northerly wind. 210Pb and 212Pb, and 222Rn were suggested to be a possibly useful tool of monitoring magmatic activities. (S.I.)

  17. The 2011-2012 eruption of Cordón Caulle volcano (Southern Andes): Evolution, crisis management and current hazards

    Science.gov (United States)

    Silva Parejas, C.; Lara, L. E.; Bertin, D.; Amigo, A.; Orozco, G.

    2012-04-01

    A new kind of integrated approach was for first time achieved during the eruptive crisis of Cordón Caulle volcano (Southern Andes, 40.59°S, 72.12°W) in Chile. The monitoring network of SERNAGEOMIN around the volcano detected the increasing precursory seismicity, alerting the imminence of an eruption about 5 hours before its onset, on June 4, 2011. In addition, SERNAGEOMIN generated daily forecasts of tephra dispersal and fall (ASHFALL advection-diffusion model), and prepared simulations of areas affected by the possible occurrence of lahars and pyroclastic flows. Models were improved with observed effects on the field and satellite imagery, resulting in a good correlation. The information was timely supplied to the authorities as well as recommendations in order to better precise the vulnerable areas. Eruption has initially occurred from a couple of overlapped cones located along the eastern fault scarp of the Pleistocene-Holocene extensional graben of Cordón Caulle. Eruptive products have virtually the same bulk composition as those of the historical 1921 and 1960 eruptions, corresponding to phenocryst-poor rhyodacites (67-70 % SiO2). During the first eruptive stage, a ca. 15-km strong Plinian column lasting 27 hours emitted 0.2-0.4 km3 of magma (DRE). Thick tephra deposits have been accumulated in Chile and Argentina, whereas fine particles and aerosols dispersion disrupted air navigation across the Southern Hemisphere. The second ongoing eruptive stage, which started in mid-June, has been characterized by lava emission already covering a total area comparable to the 1960 lava flows with a total estimated volume Argentina until the end of the year. Main current hazards at Cordón Caulle volcano are fine tephra fallout, secondary lahars, minor explosions and lava flow front collapse. Even if this case can be considered successful from the point of view of eruption forecast and hazard assessment, a new protocol of volcanic alerts has been recently signed

  18. High Resolution Satellite Remote Sensing of the 2013-2014 Eruption of Sinabung Volcano, Sumatra, Indonesia

    Science.gov (United States)

    Wessels, R. L.; Griswold, J. P.

    2014-12-01

    Satellite remote sensing provided timely observations of the volcanic unrest and several months-long eruption at Sinabung Volcano, Indonesia. Visible to thermal optical and synthetic aperture radar (SAR) systems provided frequent observations of Sinabung. High resolution image data with spatial resolutions from 0.5 to 1.5m offered detailed measurements of early summit deformation and subsequent lava dome and lava flow extrusion. The high resolution data were captured by commercial satellites such as WorldView-1 and -2 visible to near-infrared (VNIR) sensors and by CosmoSkyMed, Radarsat-2, and TerraSar-X SAR systems. Less frequent 90 to 100m spatial resolution night time thermal infrared (TIR) observations were provided by ASTER and Landsat-8. The combination of data from multiple sensors allowed us to construct a more complete timeline of volcanic activity than was available via only ground-based observations. This satellite observation timeline documents estimates of lava volume and effusion rates and major explosive and lava collapse events. Frequent, repeat volume estimates suggest at least three high effusion rate pulses of up to 20 m3/s occurred during the first three months of lava effusion with an average effusion rate of 6m3/s from January 2014 to August 2014. Many of these rates and events show some correlation to variations in the Real-time Seismic-Amplitude Measurement (RSAM) documented by the Indonesian Center for Volcanology and Geologic Hazard Mitigation (CVGHM).

  19. An Integrative Approach for Defining Plinian and Sub-Plinian Eruptive Scenarios at Andesitic Volcanoes: Event-Lithostratigraphy, Eruptive Parameters and Pyroclast Textural Variations of the Largest Late-Holocene Eruptions of Mt. Taranaki, New Zealand.

    Science.gov (United States)

    Torres-Orozco, R.; Cronin, S. J.; Damaschke, M.; Kosik, S.; Pardo, N.

    2016-12-01

    Three eruptive scenarios were determined based on the event-lithostratigraphic reconstruction of the largest late-Holocene eruptions of the andesitic Mt. Taranaki, New Zealand: a) sustained dome-effusion followed by sudden stepwise collapse and unroofing of gas-rich magma; b) repeated plug and burst events generated by transient open-/closed-vent conditions; and c) open-vent conditions of more mafic magmas erupting from a satellite vent. Pyroclastic density currents (PDCs) are the most frequent outcome in every scenario. They can be produced in any/every eruption phase by formation and either repetitive-partial or total gravity-driven collapse of lava domes in the summit crater (block-and-ash flows), frequently followed by sudden magma decompression and violent, highly unsteady to quasi-steady lateral expansion (blast-like PDCs); by collapse or single-pulse fall-back of unsteady eruption columns (pyroclastic flow- and surge-type currents); or during highly unsteady and explosive hydromagmatic phases (wet surges). Fall deposits are produced during the climatic phase of each eruptive scenario by the emplacement of (i) high, sustained and steady, (ii) sustained and height-oscillating, (iii) quasi-steady and pulsating, or (iv) unsteady and totally collapsing eruption columns. Volumes, column heights and mass- and volume-eruption rates indicate that these scenarios correspond to VEI 4-5 plinian and sub-plinian multi-phase and style-shifting episodes, similar or larger than the most recent 1655 AD activity, and comparable to plinian eruptions of e.g. Apoyeque, Colima, Merapi and Tarawera volcanoes. Whole-rock chemistry, textural reconstructions and density-porosity determinations suggest that the different eruptive scenarios are mainly driven by variations in the density structure of magma in the upper conduit. Assuming a simple single conduit model, the style transitions can be explained by differing proportions of alternating gas-poor/degassed and gas-rich magma.

  20. Acoustic and tephra records of explosive eruptions at West Mata submarine volcano, NE Lau Basin

    Science.gov (United States)

    Dziak, R. P.; Bohnenstiehl, D. R.; Baker, E. T.; Matsumoto, H.; Caplan-Auerbach, J.; Mack, C. J.; Embley, R. W.; Merle, S. G.; Walker, S. L.; Lau, T. A.

    2013-12-01

    West Mata is a 1200 m deep submarine volcano where explosive boninite eruptions were directly observed in May 2009. Here we present long-term acoustic and tephra records of West Mata explosion activity from three deployments of hydrophone and particle sensor moorings beginning on 8 January 2009. These records provide insights into the character of explosive magma degassing occurring at the volcano's summit vent until the decline and eventual cessation of the eruption during late 2010 and early 2011. The detailed acoustic records show three types of volcanic signals, 1) discrete explosions, 2) diffuse explosions, and 3) volcanic tremor. Discrete explosions are short duration, high amplitude broad-band signals caused by rapid gas bubble release. Diffuse signals are likely a result of 'trap-door' explosions where a quench cap of cooled lava forms over the magmatic vent but gas pressure builds underneath the cap. This pressure eventually causes the cap to breach and gas is explosively released until pressure reduces and the cap once again forms. Volcanic tremor is typified by narrow-band, long-duration signals with overtones, as well as narrow-band tones that vary frequency over time between 60-100 Hz. The harmonic tremor is thought to be caused by modulation of rapid, short duration gas explosion pulses and not a magma resonance phenomenon. The variable frequency tones may be caused by focused degassing or hydrothermal fluid flow from a narrow volcanic vent or conduit. High frequency (>30 Hz) tremor-like bands of energy are a result of interference caused by multipath wide-band signals, including sea-surface reflected acoustic phases, that arrive at the hydrophone with small time delays. Acoustic data suggest that eruption velocities for a single explosion range from 4-50 m s-1, although synchronous arrival of explosion signals has complicated our efforts to estimate long-term gas flux. Single explosions exhibit ~4-40 m3 s-1 of total volume flux (gas and rock) but

  1. Distribution and mass of tephra-fall deposits from volcanic eruptions of Sakurajima Volcano based on posteruption surveys

    Science.gov (United States)

    Oishi, Masayuki; Nishiki, Kuniaki; Geshi, Nobuo; Furukawa, Ryuta; Ishizuka, Yoshihiro; Oikawa, Teruki; Yamamoto, Takahiro; Nanayama, Futoshi; Tanaka, Akiko; Hirota, Akinari; Miwa, Takahiro; Miyabuchi, Yasuo

    2018-04-01

    We estimate the total mass of ash fall deposits for individual eruptions of Sakurajima Volcano, southwest Japan based on distribution maps of the tephra fallout. Five ash-sampling campaigns were performed between 2011 and 2015, during which time Sakurajima continued to emit ash from frequent Vulcanian explosions. During each survey, between 29 and 53 ash samplers were installed in a zone 2.2-43 km downwind of the source crater. Total masses of erupted tephra were estimated using several empirical methods based on the relationship between the area surrounded by a given isopleth and the thickness of ash fall within each isopleth. We obtained 70-40,520 t (4.7 × 10-8-2.7 × 10-5-km3 DRE) as the minimum estimated mass of erupted materials for each eruption period. The minimum erupted mass of tephra produced during the recorded events was calculated as being 890-5140 t (5.9 × 10-7-3.6 × 10-6-km3 DRE). This calculation was based on the total mass of tephra collected during any one eruptive period and the number of eruptions during that period. These values may thus also include the contribution of continuous weak ash emissions before and after prominent eruptions. We analyzed the meteorological effects on ash fall distribution patterns and concluded that the width of distribution area of an ash fall is strongly controlled by the near-ground wind speed. The direction of the isopleth axis for larger masses is affected by the local wind direction at ground level. Furthermore, the wind direction influences the direction of the isopleth axes more at higher altitude. While a second maximum of ash fall can appear, the influence of rain might only affect the finer particles in distal areas.

  2. Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER) project and a next-generation real-time volcano hazard assessment system

    Science.gov (United States)

    Takarada, S.

    2012-12-01

    The first Workshop of Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER1) was held in Tsukuba, Ibaraki Prefecture, Japan from February 23 to 24, 2012. The workshop focused on the formulation of strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis, and volcanic eruptions. More than 150 participants attended the workshop. During the workshop, the G-EVER1 accord was approved by the participants. The Accord consists of 10 recommendations like enhancing collaboration, sharing of resources, and making information about the risks of earthquakes and volcanic eruptions freely available and understandable. The G-EVER Hub website (http://g-ever.org) was established to promote the exchange of information and knowledge among the Asia-Pacific countries. Several G-EVER Working Groups and Task Forces were proposed. One of the working groups was tasked to make the next-generation real-time volcano hazard assessment system. The next-generation volcano hazard assessment system is useful for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is planned to be developed based on volcanic eruption scenario datasets, volcanic eruption database, and numerical simulations. Defining volcanic eruption scenarios based on precursor phenomena leading up to major eruptions of active volcanoes is quite important for the future prediction of volcanic eruptions. Compiling volcanic eruption scenarios after a major eruption is also important. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and styles, is important for the next-generation volcano hazard assessment system. The volcanic eruption database is developed based on past eruption results, which only represent a subset of possible future scenarios. Hence, different distributions from the previous deposits are mainly observed due to the differences in

  3. Aligning petrology with geophysics: the Father's Day intrusion and eruption, Kīlauea Volcano, Hawai`i

    Science.gov (United States)

    Salem, L. C.; Edmonds, M.; Maclennan, J.; Houghton, B. F.; Poland, M. P.

    2016-12-01

    The Father's Day 2007 eruption at Kīlauea Volcano, Hawai`i, is an unprecedented opportunity to align geochemical techniques with the exceptionally detailed volcano monitoring data collected by the Hawaiian Volcano Observatory (HVO). Increased CO2 emissions were measured during a period of inflation at the summit of Kilauea in 2003-2007, suggesting that the rate of magma supply to the summit had increased [Poland et al., 2012]. The June 2007 Father's Day eruption in the East Rift Zone (ERZ) occurred at the peak of the summit inflation. It offers the potential to sample magmas that have ascended on short timescales prior to 2007 from the lower crust, and perhaps mantle, with limited fractionation in the summit reservoir. The bulk rock composition of the lavas erupted are certainly consistent with this idea, with >8.5 wt% MgO compared to a typical 7.0-7.5 wt% for contemporaneous Pu`u`O`o ERZ lavas. However, our analysis of the major and trace element chemistry of olivine-hosted melt inclusions shows that the melts are in fact relatively evolved, with Mg# eruptions, e.g. Kīlauea Iki. The magma evidently entrained a crystal cargo of more primitive olivines, compositionally typical of summit eruption magma (with 81-84 mol% Fo). The melt inclusion chemistry shows homogenized and narrowly distributed trace element ratios, medium/low CO2 abundances and high concentrations of sulfur (unlike typical ERZ magmas). However, the chemistry is unlike melts that have partially bypassed the summit reservoir, e.g. those erupted at Kīlauea Iki, Mauna Ulu. We suggest that the Father's Day magma had been resident in the magma reservoir prior to the 2003-2007 inflation, and was evacuated from the reservoir into the ERZ in response to the increased rate of intrusion of magma from depth. Dissolved volatile contents along profiles in embayments ("open" melt inclusions) were measured and compared to diffusion models to predict timescales of magma decompression prior to eruption. These are

  4. Earthquake induced variations in extrusion rate: A numerical modeling approach to the 2006 eruption of Merapi Volcano (Indonesia)

    Science.gov (United States)

    Carr, Brett B.; Clarke, Amanda B.; de'Michieli Vitturi, Mattia

    2018-01-01

    Extrusion rates during lava dome-building eruptions are variable and eruption sequences at these volcanoes generally have multiple phases. Merapi Volcano, Java, Indonesia, exemplifies this common style of activity. Merapi is one of Indonesia's most active volcanoes and during the 20th and early 21st centuries effusive activity has been characterized by long periods of very slow (work has suggested that the peak extrusion rates observed in early June were triggered by the earthquake through either dynamic stress-induced overpressure or the addition of CO2 due to decarbonation and gas escape from new fractures in the bedrock. We use the numerical model to test the feasibility of these proposed hypotheses and show that, in order to explain the observed change in extrusion rate, an increase of approximately 5-7 MPa in magma storage zone overpressure is required. We also find that the addition of ∼1000 ppm CO2 to some portion of the magma in the storage zone following the earthquake reduces water solubility such that gas exsolution is sufficient to generate the required overpressure. Thus, the proposed mechanism of CO2 addition is a viable explanation for the peak phase of the Merapi 2006 eruption. A time-series of extrusion rate shows a sudden increase three days following the earthquake. We explain this three-day delay by the combined time required for the effects of the earthquake and corresponding CO2 increase to develop in the magma storage system (1-2 days), and the time we calculate for the affected magma to ascend from storage zone to surface (40 h). The increased extrusion rate was sustained for 2-7 days before dissipating and returning to pre-earthquake levels. During this phase, we estimate that 3.5 million m3 DRE of magma was erupted along with 11 ktons of CO2. The final phase of the 2006 eruption was characterized by highly variable extrusion rates. We demonstrate that those changes were likely controlled by failure of the edifice that had been confining

  5. The 2006 Eruption of Raoul Volcano (Kermadecs): A Phreato-magmatic Event From a Hydrothermally-Sealed Volcanic Conduit System.

    Science.gov (United States)

    Christenson, B. W.; Reyes, A. G.; Werner, C. A.

    2006-12-01

    The March 17, 2006 eruption from Raoul volcano (Kermadec Islands, NZ), which tragically claimed the life of NZ Department of Conservation staff member Mark Kearney, is being interpreted as a magmatic-hydrothermal event triggered by shaking associated with regional earthquake swarm activity. Although the eruption released ca. 200 T of SO2, thus confirming its magmatic nature, it occurred without significant precursory volcanic seismicity, and without any of the precursory responses of the volcanic hydrothermal system which were observed prior to the last eruption in 1964. Raoul Island has a long and varied eruption history dating back > 1.4 ma, and has been hydrothermally active throughout historic time. Present day fumarolic and hotspring discharges within Raoul caldera point to the existence of a small but well established, mixed meteoric - seawater hydrothermal system within the volcano. Magmatic signatures are apparent in fumarolic gas discharges, but are heavily masked by their interaction with hydrothermal system fluids (eg. near complete scrubbing of sulphur and halogen gases from the boiling point fumarolic discharges). A diffuse degassing study conducted in 2004 revealed that ca. 80 T/d CO2 is passively discharged from the volcano, suggesting that ongoing (albeit low level) convective degassing of magma occurs at depth. Interestingly, vent locations from the 2006 eruption correspond to areas of relatively low CO2 discharge on the crater floor in 2004. This, in conjunction with the preliminary findings of abundant hydrothermal mineralisation (calcite, anhydrite, quartz) in eruption ejecta, suggests that the main volcanic conduits had become effectively sealed during the interval since the last eruption. Calcite-hosted fluid inclusions are CO2 clathrate-bearing, and have relatively low homogenisation temperatures (165-180 °C), suggesting that the seal environment was both gas-charged and shallowly seated (< 200 m). Shaking associated with the regional

  6. Thermobarometry of Whangarei volcanic field lavas, New Zealand: Constraints on plumbing systems of small monogenetic basalt volcanoes

    Science.gov (United States)

    Shane, Phil; Coote, Alisha

    2018-04-01

    The intra-plate, basaltic Whangarei volcanic field (WVF) is a little-studied cluster of Quaternary monogenetic volcanoes in northern New Zealand. Clinopyroxene-melt equilibria provides an insight to the ascent and storage of the magmas that is not evident from whole-rock-scale geochemistry. Basalts from two of the younger volcanoes contain a population of equilibrium and disequilibrium clinopyroxene phenocrysts. Many of the crystals are resorbed, and are characterised by diffuse, patchy zoning, and low MgO (Mg#70-80) and Cr2O3 contents. Such crystals also occur as relic cores in other phenocrysts. These grew in a magma that was more evolved than that of the host rock composition. Equilibrium clinopyroxenes are enriched in MgO (Mg#83-88) and Cr2O3 ( 0.4-0.9 wt%), and occur as reverse-zoned crystals, and rim/mantle overgrowths on relic cores of other crystals. These crystals and rim/mantles zones nucleated in magma with a composition similar to that of the host rock. The textural relationships demonstrate that a mafic magma intruded a more silicic resident magma, resulting in crystal-exchange and entrainment of antecrysts. Clinopyroxene-melt equilibria indicate that the crystallisation occurred at temperatures in the range 1135-1195 °C, and pressures in the range 290-680 MPa. The dominant pressure mode (400-550 MPa) equates to depths of about 15-19 km which coincides with a present-day body of partial melt in the crust. Higher pressures indicated by subordinate crystal populations indicate staged ascent and crystallisation above the Moho ( 26 km depth). Thus, the magmatic system is envisaged as a crystal mush column through the lower and mid crust. Such crystallisation histories are perhaps not expected in low flux, monogenetic magma systems, and reflect the importance of the crustal density structure beneath the volcanoes. Future activity could be preceded by seismic events in the lower crust as the magmas intrude localised crystal mush bodies.

  7. The story of the Hawaiian Volcano Observatory -- A remarkable first 100 years of tracking eruptions and earthquakes

    Science.gov (United States)

    Babb, Janet L.; Kauahikaua, James P.; Tilling, Robert I.

    2011-01-01

    part of the USGS, the Nation’s premier Earth science agency. It currently operates under the direction of the USGS Volcano Science Center, which now supports five volcano observatories covering six U.S. areas—Hawaiʻi (HVO), Alaska and the Northern Mariana Islands (Alaska Volcano Observatory), Washington and Oregon (Cascades Volcano Observatory), California (California Volcano Observatory), and the Yellowstone region (Yellowstone Volcano Observatory). Although the National Park Service (NPS) managed HVO for only 12 years, HVO has enjoyed a close working relationship with Hawaiʻi Volcanoes National Park (named Hawaii National Park until 1961) since the park’s founding in 1916. Today, as in past years, the USGS and NPS work together to ensure the safety and education of park visitors. We are grateful to all park employees, particularly Superintendent Cindy Orlando and Chief Ranger Talmadge Magno and their predecessors, for their continuing support of HVO’s mission. HVO also works closely with the Hawaiʻi County Civil Defense. During volcanic and earthquake crises, we have appreciated the support of civil defense staff, especially that of Harry Kim and Quince Mento, who administered the agency during highly stressful episodes of Kīlauea's ongoing eruption. Our work in remote areas on Hawaiʻi’s active volcanoes is possible only with the able assistance of Hawaiʻi County and private pilots who have safely flown HVO staff to eruption sites through the decades. A special mahalo goes to David Okita, who has been HVO’s principal helicopter pilot for more than two decades. Many commercial and Civil Air Patrol pilots have also assisted HVO by reporting their observations during various eruptive events. Hawaiʻi’s news media—print, television, radio, and online sources—do an excellent job of distributing volcano and earthquake information to the public. Their assistance is invaluable to HVO, especially during times of crisis. HVO’s efforts to provide

  8. Micro-textures in plagioclase from 1994–1995 eruption, Barren Island Volcano: Evidence of dynamic magma plumbing system in the Andaman subduction zone

    Directory of Open Access Journals (Sweden)

    M.L. Renjith

    2014-01-01

    Full Text Available A systematic account of micro-textures and a few compositional profiles of plagioclase from high-alumina basaltic aa lava erupted during the year 1994–1995, from Barren Island Volcano, NE India ocean, are presented for the first time. The identified micro-textures can be grouped into two categories: (i Growth related textures in the form of coarse/fine-sieve morphology, fine-scale oscillatory zoning and resorption surfaces resulted when the equilibrium at the crystal-melt interface was fluctuated due to change in temperature or H2O or pressure or composition of the crystallizing melt; and (ii morphological texture, like glomerocryst, synneusis, swallow-tailed crystal, microlite and broken crystals, formed by the influence of dynamic behavior of the crystallizing magma (convection, turbulence, degassing, etc.. Each micro-texture has developed in a specific magmatic environment, accordingly, a first order magma plumbing model and crystallization dynamics are envisaged for the studied lava unit. Magma generated has undergone extensive fractional crystallization of An-rich plagioclase in stable magmatic environment at a deeper depth. Subsequently they ascend to a shallow chamber where the newly brought crystals and pre-existing crystals have undergone dynamic crystallization via dissolution-regrowth processes in a convective self-mixing environment. Such repeated recharge-recycling processes have produced various populations of plagioclase with different micro-textural stratigraphy in the studied lava unit. Intermittent degassing and eruption related decompression have also played a major role in the final stage of crystallization dynamics.

  9. Evidence for water influx from a caldera lake during the explosive hydromagmatic eruption of 1790, Kilauea volcano, Hawaii

    Science.gov (United States)

    Mastin, L.G.

    1997-01-01

    In 1790 a major hydromagmatic eruption at the summit of Kilauea volcano, Hawaii, deposited up to 10 m of pyroclastic fall and surge deposits and killed several dozen Hawaiian natives who were crossing the island. Previous studies have hypothesized that the explosivity of this eruption was due to the influx of groundwater into the conduit and mixing of the groundwater with ascending magma. This study proposes that surface water, not groundwater, was the agent responsible for the explosiveness of the eruption. That is, a lake or pond may have existed in the caldera in 1790 and explosions may have taken place when magma ascended into the lake from below. That assertion is based on two lines of evidence: (1) high vesicularity (averaging 73% of more than 3000 lapilli) and high vesicle number density (105-107 cm-3 melt) of pumice clasts suggest that some phases of the eruption involved vigorous, sustained magma ascent; and (2) numerical calculations suggest that under most circumstances, hydrostatic pressure would not be sufficient to drive water into the eruptive conduit during vigorous magma ascent unless the water table were above the ground surface. These results are supported by historical data on the rate of infilling of the caldera floor during the early 1800s. When extrapolated back to 1790, they suggest that the caldera floor was below the water table.

  10. Introduction - The impacts of the 2008 eruption of Kasatochi Volcano on terrestrial and marine ecosystems in the Aleutian Islands, Alaska

    Science.gov (United States)

    DeGange, Anthony R.; Byrd, G. Vernon; Walker, Lawrence R.; Waythomas, C.F.

    2010-01-01

    The Aleutian Islands are situated on the northern edge of the so-called “Pacific Ring of Fire,” a 40,000-km-long horseshoe-shaped assemblage of continental landmasses and islands bordering the Pacific Ocean basin that contains many of the world's active and dormant volcanoes. Schaefer et al. (2009) listed 27 historically active volcanoes in the Aleutian Islands, of which nine have had at least one major eruptive event since 1990. Volcanic eruptions are often significant natural disturbances, and ecosystem responses to volcanic eruptions may vary markedly with eruption style (effusive versus explosive), frequency, and magnitude of the eruption as well as isolation of the disturbed sites from potential colonizing organisms (del Moral and Grishin, 1999). Despite the relatively high frequency of volcanic activity in the Aleutians, the response of island ecosystems to volcanic disturbances is largely unstudied because of the region's isolation. The only ecological studies in the region that address the effects of volcanic activity were done on Bogoslof Island, a remote, highly active volcanic island in the eastern Aleutians, which grew from a submarine eruption in 1796 (Merriam, 1910; Byrd et al., 1980; Byrd and Williams, 1994). Nevertheless, in the 214 years of Bogoslof's existence, the island has been visited only intermittently.Kasatochi Island is a small (2.9 km by 2.6 km, 314 m high) volcano in the central Aleutian Islands of Alaska (52.17°N latitude, 175.51°W longitude; Fig. 1) that erupted violently on 7-8 August 2008 after a brief, but intense period of precursory seismic activity (Scott et al., 2010 [this issue]; Waythomas et al., in review). The island is part of the Aleutian arc volcanic front, and is an isolated singular island. Although the immediate offshore areas are relatively shallow (20–50 m water depth), the island is about 10 km south of the 2000 m isobath, north of which, ocean depths increase markedly. Kasatochi is located between the

  11. Degassing of CO2, SO2, and H2S associated with the 2009 eruption of Redoubt Volcano, Alaska

    Science.gov (United States)

    Werner, Cynthia; Kelly, Peter J.; Doukas, Michael; Lopez, Taryn; Pfeffer, Melissa; McGimsey, Robert; Neal, Christina

    2013-06-01

    The 2009 eruption of Redoubt Volcano, Alaska was particularly well monitored for volcanic gas emissions. We report 35 airborne measurements of CO2, SO2, and H2S emission rates that span from October 2008 to August 2010. The magmatic system degassed primarily as a closed system although minor amounts of open system degassing were observed in the 6 months prior to eruption on March 15, 2009 and over 1 year following cessation of dome extrusion. Only 14% of the total CO2 was emitted prior to eruption even though high emissions rates (between 3630 and 9020 t/d) were observed in the final 6 weeks preceding the eruption. A minor amount of the total SO2 was observed prior to eruption (4%), which was consistent with the low emission rates at that time (up to 180 t/d). The amount of the gas emitted during the explosive and dome growth period (March 15-July 1, 2009) was 59 and 66% of the total CO2 and SO2, respectively. Maximum emission rates were 33,110 t/d CO2, 16,650 t/d SO2, and 1230 t/d H2S. Post-eruptive passive degassing was responsible for 27 and 30% of the total CO2 and SO2, respectively. SO2 made up on average 92% of the total sulfur degassing throughout the eruption. Magmas were vapor saturated with a C- and S-rich volatile phase, and regardless of composition, the magmas appear to be buffered by a volatile composition with a molar CO2/SO2 ratio of ~ 2.4. Primary volatile contents calculated from degassing and erupted magma volumes range from 0.9 to 2.1 wt.% CO2 and 0.27-0.56 wt.% S; whole-rock normalized values are slightly lower (0.8-1.7 wt.% CO2 and 0.22-0.47 wt.% S) and are similar to what was calculated for the 1989-90 eruption of Redoubt. Such contents argue that primary arc magmas are rich in CO2 and S. Similar trends between volumes of estimated degassed magma and observed erupted magma during the eruptive period point to primary volatile contents of 1.25 wt.% CO2 and 0.35 wt.% S. Assuming these values, up to 30% additional unerupted magma degassed in the

  12. Remote Monitoring of Post-eruption Volcano Environment Based-On Wireless Sensor Network (WSN): The Mount Sinabung Case

    Science.gov (United States)

    Soeharwinto; Sinulingga, Emerson; Siregar, Baihaqi

    2017-01-01

    An accurate information can be useful for authorities to make good policies for preventive and mitigation after volcano eruption disaster. Monitoring of environmental parameters of post-eruption volcano provides an important information for authorities. Such monitoring system can be develop using the Wireless Network Sensor technology. Many application has been developed using the Wireless Sensor Network technology, such as floods early warning system, sun radiation mapping, and watershed monitoring. This paper describes the implementation of a remote environment monitoring system of mount Sinabung post-eruption. The system monitor three environmental parameters: soil condition, water quality and air quality (outdoor). Motes equipped with proper sensors, as components of the monitoring system placed in sample locations. The measured value from the sensors periodically sends to data server using 3G/GPRS communication module. The data can be downloaded by the user for further analysis.The measurement and data analysis results generally indicate that the environmental parameters in the range of normal/standard condition. The sample locations are safe for living and suitable for cultivation, but awareness is strictly required due to the uncertainty of Sinabung status.

  13. Pre-eruptive conditions of dacitic magma erupted during the 21.7 ka Plinian event at Nevado de Toluca volcano, Central Mexico

    Science.gov (United States)

    Arce, J. L.; Gardner, J. E.; Macías, J. L.

    2013-01-01

    The Nevado de Toluca volcano in Central Mexico has been active over the last ca. 42 ka, during which tens of km3 of pyroclastic material were erupted and two important Plinian-type eruptions occurred at ca. 21.7 ka (Lower Toluca Pumice: LTP) and ca. 10.5 ka (Upper Toluca Pumice: UTP). Samples from both the LTP and UTP contain plagioclase, amphibole, iron-titanium oxides, and minor anhedral biotite, set in a vesicular, rhyolitic, glassy matrix. In addition, UTP dacites contain orthopyroxene. Analysis of melt inclusions in plagioclase phenocrysts yields H2O contents of 2-3.5 wt.% for LTP and 1.3-3.6 wt.% for UTP samples. Ilmenite-ulvospinel geothermometry yields an average temperature of ~ 868 °C for the LTP magma (hotter than the UTP magma, ~ 842 °C; Arce et al., 2006), whereas amphibole-plagioclase geothermometry yields a temperature of 825-859 °C for the LTP magma. Water-saturated experiments using LTP dacite suggest that: (i) amphibole is stable above 100 MPa and below 900 °C; (ii) plagioclase crystallizes below 250-100 MPa at temperatures of 850-900 °C; and (iii) pyroxene is stable only below pressures of 200-100 MPa and temperatures of 825-900 °C. Comparison of natural and experimental data suggests that the LTP dacitic magma was stored at 150-200 MPa (5.8-7.7 km below the volcano summit). No differences in pressure found between 21.7 ka and 10.5 ka suggest that these two magmas were stored at similar depths. Orthopyroxene produced in lower temperature LTP experiments is compositionally different to those found in UTP natural samples, suggesting that they originated in two different magma batches. Whole-rock chemistry, petrographic features, and mineral compositions suggest that magma mixing was responsible for the generation of the dacitic Plinian LTP eruption.

  14. RESEARCH: Effects of Recent Volcanic Eruptions on Aquatic Habitat in the Drift River, Alaska, USA: Implications at Other Cook Inlet Region Volcanoes.

    Science.gov (United States)

    DORAVA; MILNER

    1999-02-01

    / Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano. During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano. KEY WORDS: Aquatic habitat; Volcanoes; Lahars; Lahar-runout flows; Macroinvertebrates; Community structure; Community composition

  15. Magma migration and resupply during the 1974 summit eruptions of Kilauea Volcano, Hawaii

    Science.gov (United States)

    Lockwood, John P.; Tilling, Robert I.; Holcomb, Robin T.; Klein, Fred W.; Okamura, Arnold T.; Peterson, Donald W.

    1999-01-01

    The purpose of this paper is to present a complete account of contrasting yet related eruptions, thus filling a gap in the published narratives of recent activity of Kilauea; and to examine their significance within a broader context of regional magmatic and eruptive dynamics. We have gained a historical perspective and can view these three eruptions within a multidecade context of the eruptive behavior of not only Kilauea, but also of the adjacent Mauna Loa.

  16. Compound-specific carbon isotopes from Earth’s largest flood basalt eruptions directly linked to the end-Triassic mass extinction

    Science.gov (United States)

    Whiteside, Jessica H.; Olsen, Paul E.; Eglinton, Timothy; Brookfield, Michael E.; Sambrotto, Raymond N.

    2010-01-01

    A leading hypothesis explaining Phanerozoic mass extinctions and associated carbon isotopic anomalies is the emission of greenhouse, other gases, and aerosols caused by eruptions of continental flood basalt provinces. However, the necessary serial relationship between these eruptions, isotopic excursions, and extinctions has never been tested in geological sections preserving all three records. The end-Triassic extinction (ETE) at 201.4 Ma is among the largest of these extinctions and is tied to a large negative carbon isotope excursion, reflecting perturbations of the carbon cycle including a transient increase in CO2. The cause of the ETE has been inferred to be the eruption of the giant Central Atlantic magmatic province (CAMP). Here, we show that carbon isotopes of leaf wax derived lipids (n-alkanes), wood, and total organic carbon from two orbitally paced lacustrine sections interbedded with the CAMP in eastern North America show similar excursions to those seen in the mostly marine St. Audrie’s Bay section in England. Based on these results, the ETE began synchronously in marine and terrestrial environments slightly before the oldest basalts in eastern North America but simultaneous with the eruption of the oldest flows in Morocco, a CO2 super greenhouse, and marine biocalcification crisis. Because the temporal relationship between CAMP eruptions, mass extinction, and the carbon isotopic excursions are shown in the same place, this is the strongest case for a volcanic cause of a mass extinction to date. PMID:20308590

  17. Changes of polarimetric scattering characteristics of ALOS PALSAR caused by the 2011 Eruption of Shinmoe-dake Volcano

    Science.gov (United States)

    Ohkura, Hiroshi

    Full polarimetric SAR images of ALOS PALSAR of Shinmoe-dake volcano in Japan were analyzed. The volcano erupted in January, 2011 and volcano ash deposited more than 10 cm in 12 km (2) and 1 m in 2 km (2) . Two images before and after the eruption were compared based on a point view of the four-component scattering model to detect changes of polarimetric scattering characteristics. The main detected changes are as follows. Total power of the four-component scattering model decreased on a farslope after the eruption. An incident angle on a farslope is larger than the angle on a foreslope. Decrease of surface roughness due to deposited volcanic ashes makes back-scattering smaller in the area of a larger incidence angle. However the rate of the double-bounce component got higher in a forest at the foot of a mountain slope and on a plain, where the ground surface is almost horizontal and the incident angle is relatively-large. Decrease of roughness of the forest floor increases forward scattering on the floor of the larger incident angle. This increases the double-bounced scattering due to bouncing back between the forest floor and trunks which stand "perpendicularly" on the almost horizontal forest floor. The rate of the surface scattering component got higher around an area where layover occurred. In the study area, most of layovers occurred at a ridge where an incidence angle was small. Decrease of surface roughness due to the ash deposit increases the surface scattering power in the area of the small incidence angle.

  18. Three-armed rifts or masked radial pattern of eruptive fissures? The intriguing case of El Hierro volcano (Canary Islands)

    Science.gov (United States)

    Becerril, L.; Galindo, I.; Martí, J.; Gudmundsson, A.

    2015-04-01

    Using new surface structural data as well as subsurface structural data obtained from seventeen water galleries, we provide a comprehensive model of the volcano-tectonic evolution of El Hierro (Canary Islands). We have identified, measured and analysed more than 1700 volcano-structural elements including vents, eruptive fissures, dykes and faults. The new data provide important information on the main structural patterns of the island and on its stress and strain fields, all of which are crucial for reliable hazard assessments. We conducted temporal and spatial analyses of the main structural elements, focusing on their relative age and association with the three main cycles in the construction of the island: the Tiñor Edifice, the El Golfo-Las Playas Edifice, and the Rift Volcanism. A radial strike distribution, which can be related to constructive episodes, is observed in the on-land structures. A similar strike distribution is seen in the submarine eruptive fissures, which are radial with respect to the centre of the island. However, the volcano-structural elements identified onshore and reflecting the entire volcano-tectonic evolution of the island also show a predominant NE-SW strike, which coincides with the main regional trend of the Canary archipelago as a whole. Two other dominant directions of structural elements, N-S and WNW-ESE, are evident from the establishment of the El Golfo-Las Playas edifice, during the second constructive cycle. We suggest that the radial-striking structures reflect comparatively uniform stress fields during the constructive episodes, mainly conditioned by the combination of overburden pressure, gravitational spreading, and magma-induced stresses in each of the volcanic edifices. By contrast, in the shallower parts of the edifice the NE-SW, N-S and WNW-ESE-striking structures reflect local stress fields related to the formation of mega-landslides and masking the general and regional radial patterns.

  19. Chronology of the 2015 eruption of Hakone volcano, Japan: geological background, mechanism of volcanic unrest and disaster mitigation measures during the crisis

    Science.gov (United States)

    Mannen, Kazutaka; Yukutake, Yohei; Kikugawa, George; Harada, Masatake; Itadera, Kazuhiro; Takenaka, Jun

    2018-04-01

    The 2015 eruption of Hakone volcano was a very small phreatic eruption, with total erupted ash estimated to be in the order of only 102 m3 and ballistic blocks reaching less than 30 m from the vent. Precursors, however, had been recognized at least 2 months before the eruption and mitigation measures were taken by the local governments well in advance. In this paper, the course of precursors, the eruption and the post-eruptive volcanic activity are reviewed, and a preliminary model for the magma-hydrothermal process that caused the unrest and eruption is proposed. Also, mitigation measures taken during the unrest and eruption are summarized and discussed. The first precursors observed were an inflation of the deep source and deep low-frequency earthquakes in early April 2015; an earthquake swarm then started in late April. On May 3, steam wells in Owakudani, the largest fumarolic area on the volcano, started to blowout. Seismicity reached its maximum in mid-May and gradually decreased; however, at 7:32 local time on June 29, a shallow open crack was formed just beneath Owakudani as inferred from sudden tilt change and InSAR analysis. The same day mud flows and/or debris flows likely started before 11:00 and ash emission began at about 12:30. The volcanic unrest and the eruption of 2015 can be interpreted as a pressure increase in the hydrothermal system, which was triggered by magma replenishment to a deep magma chamber. Such a pressure increase was also inferred from the 2001 unrest and other minor unrests of Hakone volcano during the twenty-first century. In fact, monitoring of repeated periods of unrest enabled alerting prior to the 2015 eruption. However, since open crack formation seems to occur haphazardly, eruption prediction remains impossible and evacuation in the early phase of volcanic unrest is the only way to mitigate volcanic hazard.[Figure not available: see fulltext.

  20. Quantifying gas emissions from the 946 CE Millennium Eruption of Paektu volcano, Democratic People's Republic of Korea/China

    Science.gov (United States)

    Iacovino, Kayla; Ju-Song, Kim; Sisson, Thomas W.; Lowenstern, Jacob B.; Ku-Hun, Ri; Jong-Nam, Jang; Kun-Ho, Song; Song-Hwan, Ham; Clive Oppenheimer,; James O.S. Hammond,; Amy Donovan,; Kosima Weber-Liu,; Kum-Ran , Ryu

    2016-01-01

    Paektu volcano (Changbaishan) is a rhyolitic caldera that straddles the border between the Democratic People's Republic of Korea (DPRK) and China. Its most recent large eruption was the Millennium Eruption (ME; 23 km3 DRE) circa 946 CE, which resulted in the release of copious magmatic volatiles (H2O, CO2, sulfur, and halogens). Accurate quantification of volatile yield and composition is critical in assessing volcanogenic climate impacts but is elusive, particularly for pre-historic or unmonitored eruptions. Here we employ a geochemical technique to quantify volatile composition and yield from the ME by examining trends in incompatible trace and volatile element concentrations in crystal-hosted melt inclusions. We estimate a maximum of 45 Tg S was injected into the stratosphere during the ME. If true yields are close to this maximum, this equates to more than 1.5 times the S released during the 1815 eruption of Tambora, which contributed to the "Year Without a Summer". Our maximum gas yield estimates place the ME among the strongest emitters of climate forcing gases in recorded human history in stark contrast to ice core records that indicate minimal atmospheric sulfate loading after the eruption. We conclude that the potential lack of strong climate forcing occurred in spite of the substantial S yield and suggest that other factors predominated in minimizing climatic effects. This paradoxical case in which high S emissions do not result in substantial climate forcing may present a way forward in building more generalized models for predicting which volcanic eruptions will produce large climate impacts.

  1. Hazard assessment of long-range tephra dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico). Inplications on civil aviation

    Science.gov (United States)

    Bonasia, R.; Scaini, C.; Capra, L.; Nathenson, M.; Siebe, C.; Arana-Salinas, L.; Folch, A.

    2013-12-01

    Popocatépetl is one of the most active volcanoes in Mexico threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene-Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude. The current volcanic hazards map, reconstructed after the crisis occurred in 1994, considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra dispersal hazard, especially related to atmospheric dispersal, has been performed. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is strongly required. In this work we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels. Tephra dispersal modelling is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the 'Ochre Pumice' Plinian eruption (4965 14C yrBP). FALL3D model input eruptive parameters are constrained through an inversion method carried out with the semi-analytical HAZMAP model and are varied sampling them on the base of a Probability Density Function. We analyze the influence of seasonal variations on ash dispersal and estimate the average persistence of critical ash concentrations at relevant locations and airports. This study assesses the impact that a Plinian eruption similar to the Ochre Pumice eruption would have on the main airports of Mexico and adjacent areas. The hazard maps presented here

  2. Juvenile magma recognition and eruptive dynamics inferred from the analysis of ash time series: The 2015 reawakening of Cotopaxi volcano

    Science.gov (United States)

    Gaunt, H. Elizabeth; Bernard, Benjamin; Hidalgo, Silvana; Proano, Antonio; Wright, Heather M.; Mothes, Patricia; Criollo, Evelyn; Kueppers, Ulrich

    2016-01-01

    Forecasting future activity and performing hazard assessments during the reactivation of volcanoes remain great challenges for the volcanological community. On August 14, 2015 Cotopaxi volcano erupted for the first time in 73 years after approximately four months of precursory activity, which included an increase in seismicity, gas emissions, and minor ground deformation. Here we discuss the use of near real-time petrological monitoring of ash samples as a complementary aid to geophysical monitoring, in order to infer eruption dynamics and evaluate possible future eruptive activity at Cotopaxi. Twenty ash samples were collected between August 14 and November 23, 2015 from a monitoring site on the west flank of the volcano. These samples contain a range of grain types that we classified as: hydrothermal/altered, lithic, juvenile, and free crystals. The relative proportions of theses grains evolved as the eruption progressed, with increasing amounts of juvenile material and a decrease in hydrothermally altered material. In samples from the initial explosion, juvenile grains are glassy, microlite-poor and contain hydrothermal minerals (opal and alunite). The rising magma came in contact with the hydrothermal system under confinement, causing hydro-magmatic explosions that cleared the upper part of the plumbing system. Subsequently, the magmatic column produced a thermal aureole in the conduit and dried out the hydrothermal system, allowing for dry eruptions. Magma ascent rates were low enough to allow for efficient outgassing and microlite growth. Constant supply of magma from below caused quasi-continuous disruption of the uppermost magma volume through a combination of shear-deformation and gas expansion. The combination of increasing crystallinity of juvenile grains, and high measured SO2 flux indicate decreasing integrated magma ascent rates and clearing of the hydrothermal system along transport pathways in a system open to gas loss. The near real

  3. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response

    Science.gov (United States)

    Fraile-Nuez, E.; Santana-Casiano, J.; Gonzalez-Davila, M.

    2013-12-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments. (A) Natural color composite from the MEdium Resolution Imaging Spectrometer (MERIS) instrument aboard ENVISAT Satellite (European Space Agency), (November 9, 2011 at 14:45 UTC). Remote sensing data have been used to monitor the evolution of the volcanic emissions, playing a fundamental role during field cruises in guiding the Spanish government oceanographic vessel to the appropriate sampling areas. The inset map shows the position of Canary Islands west of Africa and the study area (solid white box). (B) Location of the stations carried out from November 2011 to February 2012 at El Hierro. Black lines denote transects A-B and C-D.

  4. Externally triggered renewed bubble nucleation in basaltic magma: the 12 October 2008 eruption at Halema‘uma‘u Overlook vent, Kīlauea, Hawai‘i, USA

    Science.gov (United States)

    Carey, Rebecca J.; Manga, Michael; Degruyter, Wim; Swanson, Donald; Houghton, Bruce F.; Orr, Tim R.; Patrick, Matthew R.

    2012-01-01

    From October 2008 until present, dozens of small impulsive explosive eruptions occurred from the Overlook vent on the southeast side of Halema‘uma‘u Crater, at Kīlauea volcano, USA. These eruptions were triggered by rockfalls from the walls of the volcanic vent and conduit onto the top of the lava column. Here we use microtextural observations and data from clasts erupted during the well-characterized 12 October 2008 explosive eruption at Halema‘uma‘u to extend existing models of eruption triggering. We present a potential mechanism for this eruption by combining microtextural observations with existing geophysical and visual data sets. We measure the size and number density of bubbles preserved in juvenile ejecta using 2D images and X-ray microtomography. Our data suggest that accumulations of large bubbles with diameters of >50μm to at least millimeters existed at shallow levels within the conduit prior to the 12 October 2008 explosion. Furthermore, a high number density of small bubbles nucleation of bubbles. Visual observations, combined with preexisting geophysical data, suggest that the impact of rockfalls onto the magma free surface induces pressure changes over short timescales that (1) nucleated new additional bubbles in the shallow conduit leading to high number densities of small bubbles and (2) expanded the preexisting bubbles driving upward acceleration. The trigger of eruption and bubble nucleation is thus external to the degassing system.

  5. Volcanic sulfur dioxide index and volcanic explosivity index inferred from eruptive volume of volcanoes in Jeju Island, Korea: application to volcanic hazard mitigation

    Science.gov (United States)

    Ko, Bokyun; Yun, Sung-Hyo

    2016-04-01

    Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS

  6. Effects of recent volcanic eruptions on aquatic habitat in the Drift River, Alaska, USA: Implications at other Cook Inlet region volcanoes

    Science.gov (United States)

    Dorava, J.M.; Milner, A.M.

    1999-01-01

    Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano: During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano.

  7. Petrology of the 2004-2006 Mount St. Helens lava dome -- implications for magmatic plumbing and eruption triggering: Chapter 30 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    Science.gov (United States)

    Pallister, John S.; Thornber, Carl R.; Cashman, Katharine V.; Clynne, Michael A.; Lowers, Heather; Mandeville, Charles W.; Brownfield, Isabelle K.; Meeker, Gregory P.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Eighteen years after dome-forming eruptions ended in 1986, and with little warning, Mount St. Helens began to erupt again in October 2004. During the ensuing two years, the volcano extruded more than 80×106 m3 of gas-poor, crystal-rich dacite lava. The 2004-6 dacite is remarkably uniform in bulk-rock composition and, at 65 percent SiO2

  8. Using Himawari-8, estimation of SO2 cloud altitude at Aso volcano eruption, on October 8, 2016

    Science.gov (United States)

    Ishii, Kensuke; Hayashi, Yuta; Shimbori, Toshiki

    2018-02-01

    It is vital to detect volcanic plumes as soon as possible for volcanic hazard mitigation such as aviation safety and the life of residents. Himawari-8, the Japan Meteorological Agency's (JMA's) geostationary meteorological satellite, has high spatial resolution and sixteen observation bands including the 8.6 μm band to detect sulfur dioxide (SO2). Therefore, Ash RGB composite images (RED: brightness temperature (BT) difference between 12.4 and 10.4 μm, GREEN: BT difference between 10.4 and 8.6 μm, BLUE: 10.4 μm) discriminate SO2 clouds and volcanic ash clouds from meteorological clouds. Since the Himawari-8 has also high temporal resolution, the real-time monitoring of ash and SO2 clouds is of great use. A phreatomagmatic eruption of Aso volcano in Kyushu, Japan, occurred at 01:46 JST on October 8, 2016. For this eruption, the Ash RGB could detect SO2 cloud from Aso volcano immediately after the eruption and track it even 12 h after. In this case, the Ash RGB images every 2.5 min could clearly detect the SO2 cloud that conventional images such as infrared and split window could not detect sufficiently. Furthermore, we could estimate the height of the SO2 cloud by comparing the Ash RGB images and simulations of the JMA Global Atmospheric Transport Model with a variety of height parameters. As a result of comparison, the top and bottom height of the SO2 cloud emitted from the eruption was estimated as 7 and 13-14 km, respectively. Assuming the plume height was 13-14 km and eruption duration was 160-220 s (as estimated by seismic observation), the total emission mass of volcanic ash from the eruption was estimated as 6.1-11.8 × 108 kg, which is relatively consistent with 6.0-6.5 × 108 kg from field survey. [Figure not available: see fulltext.

  9. The submarine volcano eruption off El Hierro Island: Effects on the scattering migrant biota and the evolution of the pelagic communities

    KAUST Repository

    Ariza, Alejandro

    2014-07-21

    The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community. © 2014 Ariza et al.

  10. 3-D high-speed imaging of volcanic bomb trajectory in basaltic explosive eruptions

    Science.gov (United States)

    Gaudin, D.; Taddeucci, J; Houghton, Bruce F.; Orr, Tim R.; Andronico, D.; Del Bello, E.; Kueppers, U.; Ricci, T.; Scarlato, P.

    2016-01-01

    Imaging, in general, and high speed imaging in particular are important emerging tools for the study of explosive volcanic eruptions. However, traditional 2-D video observations cannot measure volcanic ejecta motion toward and away from the camera, strongly hindering our capability to fully determine crucial hazard-related parameters such as explosion directionality and pyroclasts' absolute velocity. In this paper, we use up to three synchronized high-speed cameras to reconstruct pyroclasts trajectories in three dimensions. Classical stereographic techniques are adapted to overcome the difficult observation conditions of active volcanic vents, including the large number of overlapping pyroclasts which may change shape in flight, variable lighting and clouding conditions, and lack of direct access to the target. In particular, we use a laser rangefinder to measure the geometry of the filming setup and manually track pyroclasts on the videos. This method reduces uncertainties to 10° in azimuth and dip angle of the pyroclasts, and down to 20% in the absolute velocity estimation. We demonstrate the potential of this approach by three examples: the development of an explosion at Stromboli, a bubble burst at Halema'uma'u lava lake, and an in-flight collision between two bombs at Stromboli.

  11. High-precision 40Ar/39Ar dating of Quaternary basalts from Auckland Volcanic Field, New Zealand, with implications for eruption rates and paleomagnetic correlations

    Science.gov (United States)

    Leonard, Graham S.; Calvert, Andrew T.; Hopkins, Jenni L.; Wilson, Colin J. N.; Smid, Elaine R.; Lindsay, Jan M.; Champion, Duane E.

    2017-09-01

    The Auckland Volcanic Field (AVF), which last erupted ca. 550 years ago, is a late Quaternary monogenetic basaltic volcanic field (ca. 500 km2) in the northern North Island of New Zealand. Prior to this study only 12 out of the 53 identified eruptive centres of the AVF had been reliably dated. Careful sample preparation and 40Ar/39Ar analysis has increased the number of well-dated centres in the AVF to 35. The high precision of the results is attributed to selection of fresh, non-vesicular, non-glassy samples from lava flow interiors. Sample selection was coupled with separation techniques that targeted only the groundmass of samples with 10 μm wide, coupled with ten-increment furnace step-heating of large quantities (up to 200 mg) of material. The overall AVF age data indicate an onset at 193.2 ± 2.8 ka, an apparent six-eruption flare-up from 30 to 34 ka, and a ≤ 10 kyr hiatus between the latest and second-to-latest eruptions. Such non-uniformity shows that averaging the number of eruptions over the life-span of the AVF to yield a mean eruption rate is overly simplistic. Together with large variations in eruption volumes, and the large sizes and unusual chemistry within the latest eruptions (Rangitoto 1 and Rangitoto 2), our results illuminate a complex episodic eruption history. In particular, the rate of volcanism in AVF has increased since 60 ka, suggesting that the field is still in its infancy. Multiple centres with unusual paleomagnetic inclination and declination orientations are confirmed to fit into a number of geomagnetic excursions, with five identified in the Mono Lake, two within the Laschamp, one within the post-Blake or Blake, and two possibly within the Hilina Pali.

  12. Volcanic activity in the Acambay Graben: a < 25 Ka subplinian eruption from the Temascalcingo volcano and implications for volcanic hazard.

    Science.gov (United States)

    Pedrazzi, Dario; Aguirre Díaz, Gerardo; Sunyé Puchol, Ivan; Bartolini, Stefania; Geyer, Adelina

    2016-04-01

    The Trans-Mexican Volcanic Belt (TMVB) contains a large number of stratovolcanoes, some well-known, as Popocatepetl, Iztaccihuatl, Nevado de Toluca, or Colima and many others of more modest dimensions that are not well known but constitute the majority in the TMVB. Such volcanoes are, for example, Tequila, San Juan, Sangangüey, Cerro Culiacán, Cerro Grande, El Zamorano, La Joya, Palo Huerfano, Jocotitlán, Altamirano and Temascalcingo, among many others. The Temascalcingo volcano (TV) is an andesitic-dacitic stratovolcano located in the Trans-Mexican Volcanic Belt (TMVB) at the eastern part of the Acambay Graben (northwest portion of Estado de México). The TV is composed mainly by dacitic, porphyritic lavas, block and ash deposits and subordinate pumice fall deposits and ignimbrites (Roldán-Quintana et al., 2011). The volcanic structure includes a summit caldera that has a rectangular shape, 2.5×3.5 km, with the largest side oriented E-W, parallel to major normal faults affecting the edifice. The San Mateo Pumice eruption is one of the greatest paroxysmal episodes of this volcano with pumice deposits mainly exposed at the scarp of the Acambay-Tixmadeje fault and at the northern and northeastern flanks of TV. It overlies a paleosol dated at 25 Ka. A NE-trending dispersion was obtained from field data covering an area of at least 80 km2. These deposits overlie older lava flows and mud flows and are discontinuously covered and eroded by younger reworked deposits of Temascalcingo volcano. This event represents a highly explosive phase that generated a relatively thick and widespread pumice fallout deposit that may occur again in future eruptions. A similar eruption today would have a significantly impact in the region, overall due to the fact that there has been no systematic assessment of the volcanic hazard in any of the studies that have been conducted so far in the area. So, this is a pending and urgent subject that must be tackled without delay. Financed by

  13. Modeling lunar volcanic eruptions

    Science.gov (United States)

    Housley, R. M.

    1978-01-01

    Simple physical arguments are used to show that basaltic volcanos on different planetary bodies would fountain to the same height if the mole fraction of gas in the magma scaled with the acceleration of gravity. It is suggested that the actual eruption velocities and fountain heights are controlled by the velocities of sound in the two phase gas/liquid flows. These velocities are in turn determined by the gas contents in the magma. Predicted characteristics of Hawaiian volcanos are in excellent accord with observations. Assuming that the only gas in lunar volcano is the CO which would be produced if the observed Fe metal in lunar basalts resulted from graphite reduction, lunar volcanos would fountain vigorously, but not as spectacularly as their terrestrial counterparts. The volatile trace metals, halogens, and sulfur released would be transported over the entire moon by the transient atmosphere. Orange and black glass type pyroclastic materials would be transported in sufficient amounts to produce the observed dark mantle deposits.

  14. Seismic Activity Related to the 2002-2003 Mt. Etna Volcano Eruption (Italy): Fault Plane Solutions and Stress Tensor Computation

    Science.gov (United States)

    Barberi, G.; Cammarata, L.; Cocina, O.; Maiolino, V.; Musumeci, C.; Privitera, E.

    2003-04-01

    Late on the night of October 26, 2002, a bi-lateral eruption started on both the eastern and the southeastern flanks of Mt. Etna. The opening of the eruptive fracture system on the NE sector and the reactivation of the 2001 fracture system, on the S sector, were accompanied by a strong seismic swarm recorded between October 26 and 28 and by sharp increase of volcanic tremor amplitude. After this initial phase, on October 29 another seismogenetic zone became active in the SE sector of the volcano. At present (January 2003) the eruption is still in evolution. During the whole period a total of 862 earthquakes (Md≫1) was recorded by the local permanent seismic network run by INGV - Sezione di Catania. The maximum magnitude observed was Md=4.4. We focus our attention on 55 earthquakes with magnitude Md≫ 3.0. The dataset consists of accurate digital pickings of P- and S-phases including first-motion polarities. Firstly earthquakes were located using a 1D velocity model (Hirn et alii, 1991), then events were relocated by using two different 3D velocity models (Aloisi et alii, 2002; Patane et alii, 2002). Results indicate that most of earthquakes are located to the east of the Summit Craters and to northeast of them. Fault plane solutions (FPS) obtained show prevalent strike-slip rupture mechanisms. The suitable FPSs were considered for the application of Gephart and Forsyth`s algorithm in order to evaluate seismic stress field characteristics. Taking into account the preliminary results we propose a kinematic model of the eastern flank eastward movement in response of the intrusion processes in the central part of the volcano. References Aloisi M., Cocina O., Neri G., Orecchio B., Privitera E. (2002). Seismic tomography of the crust underneath the Etna volcano, Sicily. Physics of the Earth and Planetary Interiors 4154, pp. 1-17 Hirn A., Nercessian A., Sapin M., Ferrucci F., Wittlinger G. (1991). Seismic heterogeneity of Mt. Etna: structure and activity. Geophys. J

  15. Stratigraphy and eruption ages of deposits at the southeast side of Nishiyama volcano, Hachijo island during the last 2,500 years; Hachijojima, Nishiyama kazan nantoroku ni okeru saikin 2,500 nenkan no funshutsubutsu no sojo to funka nendai

    Energy Technology Data Exchange (ETDEWEB)

    Sugihara, S.; Shimada, S. [Meiji University, Tokyo (Japan)

    1998-10-25

    The Nishiyama volcano of the Hachijo island is a stratovolcano whose volcanic activity started approximately 10,000 years ago. Among the lateral volcanos surrounding the cone-shaped mountain, there is a Kandoyama tuff cone formed by a phreatomagmatic eruption at the southeastern base of the Nishiyama volcano. It is known that Kandoyama`s latest eruption is not older than 4,000 years. In this report, the stratigraphy of eruptive deposits and the types of eruptions involving Nishiyama after Kandoyama formation are clarified. Also, the history of Nishiyama` eruption is discussed, for which a study is made about the stratigraphic relationship between its eruption and the results of {sup 14}C dating or the eruption remainders, corresponding terrestrial episodes recorded in ancient literature usable for eruption dating, etc. The conclusion is summarized below. The eruptive deposits are to be supposedly dated at a period after the completion of caldera aggradation. At the southeastern base of Nishiyama, the eruption of 1605 is to immediately follow the eruption of approximately 1,100 years ago, and no eruption so active as to cause the outflow of lava is noticed therebetween. It is inferred that the Nishiyama volcano erupts once in a period of 300-700 years. 44 refs., 11 figs., 2 tabs.

  16. Geology of Kilauea volcano

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. (Geological Survey, Denver, CO (United States). Federal Center); Trusdell, F.A. (Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  17. Physicochemical and toxicological profiling of ash from the 2010 and 2011 eruptions of Eyjafjallajökull and Grímsvötn volcanoes, Iceland using a rapid respiratory hazard assessment protocol.

    Science.gov (United States)

    Horwell, C J; Baxter, P J; Hillman, S E; Calkins, J A; Damby, D E; Delmelle, P; Donaldson, K; Dunster, C; Fubini, B; Kelly, F J; Le Blond, J S; Livi, K J T; Murphy, F; Nattrass, C; Sweeney, S; Tetley, T D; Thordarson, T; Tomatis, M

    2013-11-01

    The six week eruption of Eyjafjallajökull volcano in 2010 produced heavy ash fall in a sparsely populated area of southern and south eastern Iceland and disrupted European commercial flights for at least 6 days. We adopted a protocol for the rapid analysis of volcanic ash particles, for the purpose of informing respiratory health risk assessments. Ash collected from deposits underwent a multi-laboratory physicochemical and toxicological investigation of their mineralogical parameters associated with bio-reactivity, and selected in vitro toxicology assays related to pulmonary inflammatory responses. Ash from the eruption of Grímsvötn, Iceland, in 2011 was also studied. The results were benchmarked against ash from Soufrière Hills volcano, Montserrat, which has been extensively studied since the onset of eruptive activity in 1995. For Eyjafjallajökull, the grain size distributions were variable: 2-13 vol% of the bulk samples were <4 µm, with the most explosive phases of the eruption generating abundant respirable particulate matter. In contrast, the Grímsvötn ash was almost uniformly coarse (<3.5 vol%<4 µm material). Surface area ranged from 0.3 to 7.7 m2 g(-1) for Eyjafjallajökull but was very low for Grímsvötn (<0.6 m2 g(-1)). There were few fibre-like particles (which were unrelated to asbestos) and the crystalline silica content was negligible in both eruptions, whereas Soufrière Hills ash was cristobalite-rich with a known potential to cause silicosis. All samples displayed a low ability to deplete lung antioxidant defences, showed little haemolysis and low acute cytotoxicity in human alveolar type-1 like epithelial cells (TT1). However, cell-free tests showed substantial hydroxyl radical generation in the presence of hydrogen peroxide for Grímsvötn samples, as expected for basaltic, Fe-rich ash. Cellular mediators MCP-1, IL-6, and IL-8 showed chronic pro-inflammatory responses in Eyjafjallajökull, Grímsvötn and Soufrière Hills samples

  18. Pigeonholing pyroclasts: Insights from the 19 March 2008 explosive eruption of Kīlauea volcano

    Science.gov (United States)

    Houghton, Bruce F.; Swanson, D.A.; Carey, R.J.; Rausch, J.; Sutton, A.J.

    2011-01-01

    We think, conventionally, of volcanic explosive eruptions as being triggered in one of two ways: by release and expansion of volatiles dissolved in the ejected magma (magmatic explosions) or by transfer of heat from magma into an external source of water (phreatic or phreatomagmatic explosions). We document here an event where neither magma nor an external water source was involved in explosive activity at K??lauea. Instead, the eruption was powered by the expansion of decoupled magmatic volatiles released from deeper magma, which was not ejected by the eruption, and the trigger was a collapse of near-surface wall rocks that then momentarily blocked that volatile flux. Mapping of the advected fall deposit a day after this eruption has highlighted the difficulty of constraining deposit edges from unobserved or prehistoric eruptions of all magnitudes. Our results suggest that the dispersal area of advected fall deposits could be miscalculated by up to 30% of the total, raising issues for accurate hazard zoning and assessment. Eruptions of this type challenge existing classification schemes for pyroclastic deposits and explosive eruptions and, in the past, have probably been interpreted as phreatic explosions, where the eruptive mechanism has been assumed to involve flashing of groundwater to steam. ?? 2011 Geological Society of America.

  19. The May 2005 eruption of Fernandina volcano, Galápagos: The first circumferential dike intrusion observed by GPS and InSAR

    Science.gov (United States)

    Chadwick, W.W.; Jonsson, Sigurjon; Geist, Dennis J.; Poland, M.; Johnson, Daniel J.; Batt, S.; Harpp, Karen S.; Ruiz, A.

    2011-01-01

    The May 2005 eruption of Fernandina volcano, Galápagos, occurred along circumferential fissures parallel to the caldera rim and fed lava flows down the steep southwestern slope of the volcano for several weeks. This was the first circumferential dike intrusion ever observed by both InSAR and GPS measurements and thus provides an opportunity to determine the subsurface geometry of these enigmatic structures that are common on Galápagos volcanoes but are rare elsewhere. Pre- and post- eruption ground deformation between 2002 and 2006 can be modeled by the inflation of two separate magma reservoirs beneath the caldera: a shallow sill at ~1 km depth and a deeper point-source at ~5 km depth, and we infer that this system also existed at the time of the 2005 eruption. The co-eruption deformation is dominated by uplift near the 2005 eruptive fissures, superimposed on a broad subsidence centered on the caldera. Modeling of the co-eruption deformation was performed by including various combinations of planar dislocations to simulate the 2005 circumferential dike intrusion. We found that a single planar dike could not match both the InSAR and GPS data. Our best-fit model includes three planar dikes connected along hinge lines to simulate a curved concave shell that is steeply dipping (~45–60°) toward the caldera at the surface and more gently dipping (~12–14°) at depth where it connects to the horizontal sub-caldera sill. The shallow sill is underlain by the deep point source. The geometry of this modeled magmatic system is consistent with the petrology of Fernandina lavas, which suggest that circumferential eruptions tap the shallowest parts of the system, whereas radial eruptions are fed from deeper levels. The recent history of eruptions at Fernandina is also consistent with the idea that circumferential and radial intrusions are sometimes in a stress-feedback relationship and alternate in time with one another.

  20. Geochemical and Thermodinamic Modeling of Segara Anak Lake and the 2009 Eruption of Rinjani Volcano, Lombok, Indonesia

    Directory of Open Access Journals (Sweden)

    Akhmad Solikhin

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v5i4.106Rinjani is the second highest volcano in Indonesia with an elevation of 3726 m above sea level. The steep and highest cone of Rinjani consists mainly of loose pyroclastic ejecta and contains a crater with a few solfataras. The West of this cone is Segara Anak caldera. The western side of the caldera is occupied by a 230 m deep lake, covering an area of 11 km² and its volume was (before the 2009 eruption estimated 1.02 km3. This is probably the largest hot volcanic lake in the world.The lake water is neutral (pH: 7-8 and its chemistry dominated by chlorides and sulfates with a relatively high TDS (Total Dissolved Solids: 2640 mg/l. This unusual TDS as well as the lake surface temperatures (20 - 22°C well above ambient temperatures (14 - 15°C for this altitude, reflect a strong input of hydrothermal fluids. Numerous hot springs are located along the shore at the foot of Barujari volcanic cone. Bathymetric profiles show also several areas with columns of gas bubbles escaping from the lake floor indicating a significant discharge of CO gas into the lake. The mass and energy balance model of Rinjani Crater Lake produce total heat lost value on the average of 1700 MW. Most of the heating periods of the lake occurred when the heat released by the surface of the lake to the atmosphere was lower than the heat supplied from the hydrothermal system. Peaks of heat losses correspond to period of strong winds. Crater lake monitoring can provide a basic information about deep magmatic activity and surface processes that occur in the volcano. The monitoring also contributes to predict the next eruption in order to improve mitigation of volcanic eruption. Precursory signals of the May 2009 eruption can be seen from significant changes in the temperature and chemistry of some of the hot springs, the increase of Fe concentrations in spring #54, chemical plume of low pH and dissolved oxygen, acidification of Segara

  1. ´Áā lava flows in the Deccan Volcanic Province, India, and their significance for the nature of continental flood basalt eruptions

    Science.gov (United States)

    Brown, Richard J.; Blake, S.; Bondre, N. R.; Phadnis, V. M.; Self, S.

    2011-08-01

    Newly identified ´áā lava flows outcrop intermittently over an area of ~110 km2 in the western Deccan Volcanic Province (DVP), India. They occur in the upper Thakurvadi Formation in the region south of Sangamner. The flows, one of which is compound, are 15-25 m thick, and exhibit well-developed basal and flow-top breccias. The lavas have microcrystalline groundmasses and are porphyritic or glomerocrystic and contain phenocrysts of olivine, clinopyroxene or plagioclase feldspar. They are chemically similar to compound pāhoehoe flows at a similar stratigraphic horizon along the Western Ghats. Petrographic and geochemical differences between ´áā flows at widely spaced outcrops at the same stratigraphic horizon suggest that they are the product of several eruptions, potentially from different sources. Their presence in the DVP could suggest relative proximity to vents. This discovery is significant because ´áā lavas are generally scarce in large continental flood basalt provinces, which typically consist of numerous inflated compound pāhoehoe lobes and sheet lobes. Their scarcity is intriguing, and may relate to either their occurrence only in poorly preserved or exposed proximal areas or to the flat plateau-like topography of flood basalt provinces that may inhibit channelization and ´áā formation, or both. In this context, the ´áā flow fields described here are inferred to be the products of eruptions that produced unusually high-effusion-rate lavas compared to typical flood basalt eruptions. Whether these phases were transitional to lower intensity, sustained eruptions that fed extensive low effusion rate pāhoehoe flow fields remains unclear.

  2. Should We Stay Or Should We Go Now? Hazard Warnings, Risk Perception, and Evacuation Decisions at Pacaya Volcano, Guatemala During the 2010 Eruption.

    Science.gov (United States)

    Lechner, H. N.; Rouleau, M.

    2017-12-01

    Pacaya volcano, in Guatemala, presents considerable risk to nearby communities and in May 2010, the volcano experienced its largest eruption in more than a decade. The eruption damaged or destroyed hundreds of homes, injured scores of people with one fatality, and prompted the evacuation of approximately 2000 people from several communities. During this eruption crisis, people living within at-risk communities were presented with the choice to evacuate or remain in the hazard zone. Many chose not to leave. Using quantitative methodologies, this research investigates evacuation decisions through causal relationships between hazard warnings, evacuation orders, risk perception, evacuation intention and behavior, and attempts to understand why some people chose to stay in harm's-way. In October 2016, we conducted a door-to-door survey administered to 172 households in eight communities within 5 km of the active vent. Participants were asked to rank factors that influenced their decision to evacuate or not, their level of trust in emergency management agencies, and the intention to evacuate during a future crisis. Initial analysis suggests that many people have confidence in emergency management agencies and information from volcano scientists; however, during the 2010 eruption, warning messages and evacuation orders were based on previous eruption patterns and tephra distribution and therefore disseminated differentially to at-risk communities. This likely delayed evacuation decisions by households in the communities that were most affected by the eruption. The data also suggest that while many households perceive evacuation as the most effective protective action, the perceived risk to one's home and property may play a more important role in the decision making process. We will discuss these results as well as communication strategies between agencies and communities, and how to better facilitate more effective and successful evacuations during future eruption crises

  3. Recolonization of the intertidal and shallow subtidal community following the 2008 eruption of Alaska's Kasatochi Volcano

    Science.gov (United States)

    Jewett, S. C.; Drew, G. S.

    2014-03-01

    The intertidal and nearshore benthic communities of Kasatochi Island are described following a catastrophic volcanic eruption in 2008. Prior to the eruption, the island was surrounded by a dense bed of canopy-forming dragon kelp Eualaria fistulosa which supported a productive nearshore community. The eruption extended the coastline of the island approximately 400 m offshore to roughly the 20 m isobath. One year following the eruption a reconnaissance survey found the intertidal zone devoid of life. Subtidally, the canopy kelp, as well as limited understory algal species and associated benthic fauna on the hard substratum, were buried by debris from the eruption. The resulting substrate was comprised almost entirely of medium and coarse sands with a depauperate benthic community. Comparisons of habitat and biological communities with other nearby Aleutian Islands and the Icelandic submarine volcanic eruption of Surtsey confirm dramatic reductions in flora and fauna consistent with the initial stages of recovery from a large-scale disturbance event. Four and five years following the eruption brief visits revealed dramatic intertidal and subtidal recolonization of the flora and fauna in some areas. Signs of nesting and fledging of young pigeon guillemots Cepphus columba suggest that the recovery of the nearshore biota may have begun affecting higher trophic levels. Recolonization or lack thereof was tied to bathymetric changes from coastal and nearshore erosion over the study period.

  4. Degassing of CO2, SO2, and H2S associated with the 2009 eruption of Redoubt Volcano, Alaska

    Science.gov (United States)

    Werner, Cynthia A.; Kelly, Peter; Doukas, Michael P.; Lopez, Taryn; Pfeffer, Melissa; McGimsey, Robert G.; Neal, Christina

    2013-01-01

    The 2009 eruption of Redoubt Volcano, Alaska was particularly well monitored for volcanic gas emissions. We report 35 airborne measurements of CO2, SO2, and H2S emission rates that span from October 2008 to August 2010. The magmatic system degassed primarily as a closed system although minor amounts of open system degassing were observed in the 6 months prior to eruption on March 15, 2009 and over 1 year following cessation of dome extrusion. Only 14% of the total CO2 was emitted prior to eruption even though high emissions rates (between 3630 and 9020 t/d) were observed in the final 6 weeks preceding the eruption. A minor amount of the total SO2 was observed prior to eruption (4%), which was consistent with the low emission rates at that time (up to 180 t/d). The amount of the gas emitted during the explosive and dome growth period (March 15–July 1, 2009) was 59 and 66% of the total CO2and SO2, respectively. Maximum emission rates were 33,110 t/d CO2, 16,650 t/d SO2, and 1230 t/d H2S. Post-eruptive passive degassing was responsible for 27 and 30% of the total CO2 and SO2, respectively. SO2 made up on average 92% of the total sulfur degassing throughout the eruption. Magmas were vapor saturated with a C- and S-rich volatile phase, and regardless of composition, the magmas appear to be buffered by a volatile composition with a molar CO2/SO2 ratio of ~ 2.4. Primary volatile contents calculated from degassing and erupted magma volumes range from 0.9 to 2.1 wt.% CO2 and 0.27–0.56 wt.% S; whole-rock normalized values are slightly lower (0.8–1.7 wt.% CO2 and 0.22–0.47 wt.% S) and are similar to what was calculated for the 1989–90 eruption of Redoubt. Such contents argue that primary arc magmas are rich in CO2 and S. Similar trends between volumes of estimated degassed magma and observed erupted magma during the eruptive period point to primary volatile contents of 1.25 wt.% CO2 and 0.35 wt.% S. Assuming these values, up to 30% additional

  5. Degassing behavior of Mt. Etna volcano (Italy) before and during the 2008-2009 eruption, inferred from crater plume and soil gas measurements

    Science.gov (United States)

    Salerno, Giuseppe; La Spina, Alessandro; Giammanco, Salvatore; Burton, Michael; Caltabiano, Tommaso; Murè, Filippo; Randazzo, Daniele; Lopez, Manuela; Bruno, Nicola; Longo, Vincenza

    2010-05-01

    The evolution of magmatic degassing that preceded and accompanied the 2008-2009 Mt. Etna eruption was monitored by using a combination of: i) near-daily SO2 flux measurements; ii) calculated HCl and HF fluxes, obtained combining the daily SO2 flux values with discrete FTIR measurements of SO2/HCl and SO2/HF molar ratios; iii) periodic soil CO2 flux measurements. Thanks to the differential release of magmatic gas species from an ascending magma body we were able to track the magma transfer process in the volcano plumbing system from depth (gas-rich magma ascending and degassing via the central conduit system prior to eruption at the peripheral SEC. Conversely, the 15 month long 2008-09 eruption event was characterized by quasi steady state magma supply. The calculated volume of magma required to produce the observed SO2 flux during the 2008-2009 eruption closely matches the volume of erupted magma. This "eruptive" steady-state would indicate an almost perfect process of magma migration and eruption at the surface, without substantial storage within the volcano plumbing system.

  6. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety

    Science.gov (United States)

    Bonasia, Rosanna; Scaini, Chiara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau

    2014-01-01

    Popocatépetl is one of Mexico's most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene-Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl's reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the "Ochre Pumice" Plinian eruption (4965 14C yr BP

  7. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety

    Science.gov (United States)

    Bonasia, Rosanna; Scaini, Chirara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau

    2013-01-01

    Popocatépetl is one of Mexico’s most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene–Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl’s reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the “Ochre Pumice” Plinian eruption (4965 14C

  8. Entrainment Heat Flux Computed with Lidar and Wavelet Technique in Buenos Aires During Last Chaitén Volcano Eruption

    Directory of Open Access Journals (Sweden)

    Pawelko Ezequiel Eduardo

    2016-01-01

    Full Text Available At Lidar Division of CEILAP (CITEDEF-CONICET a multiwavelength Raman-Rayleigh lidar optimized to measure the atmospheric boundary layer is being operated. This instrument is used for monitoring important aerosol intrusion events in Buenos Aires, such as the arrival of volcanic ashes from the Chaitén volcano eruption on May 2008. That was the first monitoring of volcanic ash with lidar in Argentina. In this event several volcanic ash plumes with high aerosol optical thickness were detected in the free atmosphere, affecting the visibility, surface radiation and therefore, the ABL evolution. In this work, the impact of ashes in entrainment flux ratio is studied. This parameter is obtained from the atmospheric boundary layer height and entrainment zone thickness using algorithms based on covariance wavelet transform.

  9. Magma viscosity estimation based on analysis of erupted products. Potential assessment for large-scale pyroclastic eruptions

    International Nuclear Information System (INIS)

    Takeuchi, Shingo

    2010-01-01

    After the formulation of guidelines for volcanic hazards in site evaluation for nuclear installations (e.g. JEAG4625-2009), it is required to establish appropriate methods to assess potential of large-scale pyroclastic eruptions at long-dormant volcanoes, which is one of the most hazardous volcanic phenomena on the safety of the installations. In considering the volcanic dormancy, magma eruptability is an important concept. The magma eruptability is dominantly controlled by magma viscosity, which can be estimated from petrological analysis of erupted materials. Therefore, viscosity estimation of magmas erupted in past eruptions should provide important information to assess future activities at hazardous volcanoes. In order to show the importance of magma viscosity in the concept of magma eruptability, this report overviews dike propagation processes from a magma chamber and nature of magma viscosity. Magma viscosity at pre-eruptive conditions of magma chambers were compiled based on previous petrological studies on past eruptions in Japan. There are only 16 examples of eruptions at 9 volcanoes satisfying data requirement for magma viscosity estimation. Estimated magma viscosities range from 10 2 to 10 7 Pa·s for basaltic to rhyolitic magmas. Most of examples fall below dike propagation limit of magma viscosity (ca. 10 6 Pa·s) estimated based on a dike propagation model. Highly viscous magmas (ca. 10 7 Pa·s) than the dike propagation limit are considered to lose eruptability which is the ability to form dikes and initiate eruptions. However, in some cases, small precursory eruptions of less viscous magmas commonly occurred just before climactic eruptions of the highly viscous magmas, suggesting that the precursory dike propagation by the less viscous magmas induced the following eruptions of highly viscous magmas (ca. 10 7 Pa·s). (author)

  10. Occurrence of inter-eruption debris flow and hyperconcentrated flood-flow deposits on Vesuvio volcano, Italy

    Science.gov (United States)

    Lirer, L.; Vinci, A.; Alberico, I.; Gifuni, T.; Bellucci, F.; Petrosino, P.; Tinterri, R.

    2001-02-01

    In the period between AD 79 and AD 472 eruptions, inter-eruption debris flow and hyperconcentrated-flood-flow deposits were deposited in the Somma-Vesuvio areas. These deposits, forming cliffs at the Torre Bassano and Torre Annunziata, were generated by highly erosive floods, whose erosive capacity was enhanced by acceleration due to the steepness of the volcano slopes. In this type of deposits were distinguished five depositional facies (from A to E) outcropping well at Torre Bassano where they are stacked in three fining-upward (FU) sequences, probably representing three forestepping — backstepping episodes in the emplacement area of gravity flows. These five facies from coarse to fine are interpreted to represent the downcurrent evolution of particular composite sediment gravity flows characterized by horizontal segregation of the main grain-size population. The blocking of these highly concentrated composite parent flows would first produce the deposition of the coarse front part to form facies A and then the overriding of this deposit by the bipartite flow, which constitutes the body of the flow. This flow is composed of a highly concentrated basal inertia carpet responsible for the deposition of facies B, C and D and an upper hyperconcentrated flood flow that forms facies E, through traction plus fallout processes, respectively. Finally, the occurrence of "lahar" type events at Somma-Vesuvio region even at present times is discussed.

  11. Comparative features of volcanoes on Solar system bodies

    Science.gov (United States)

    Vidmachenko, A. P.

    2018-05-01

    The bark of many cosmic bodies is in motion because of the displacement of tectonic plates on magma. Pouring molten magma through cracks in the cortex is called a volcanic eruption. There are two main types of volcanoes: basaltic, appearing where a new material of tectonic plates is formed, and andesitic, which located in the places of destruction of these plates.The third type of volcanoes is cryovolcanoes, or ice volcanoes. This type of volcano ejects matter in the form of ice volcanic melts or steam from water, ammonia, methane. After the eruption, the cryomagma at a low temperature condenses to a solid phase. Cryovolcanoes can be formed on such objects as Pluto, Ceres, Titan, Enceladus, Europe, Triton, etc. Potential sources of energy for melting ice in the production of cryovolcanoes are tidal friction and/or radioactive decay. Semi-transparent deposits of frozen materials that can create a subsurface greenhouse effect, with the possibility of accumulating the required heat with subsequent explosive eruption, are another way to start the cryovolcano action. This type of eruption is observed on Mars and Triton. The first and second types of eruptions (basaltic and andesitic) are characteristic of terrestrial planets (Mercury, Venus, Mars) and for some satellites of the planets of the Solar system.

  12. Magma supply, storage, and transport at shield-stage Hawaiian volcanoes: Chapter 5 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Poland, Michael P.; Miklius, Asta; Montgomery-Brown, Emily K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The characteristics of magma supply, storage, and transport are among the most critical parameters governing volcanic activity, yet they remain largely unconstrained because all three processes are hidden beneath the surface. Hawaiian volcanoes, particularly Kīlauea and Mauna Loa, offer excellent prospects for studying subsurface magmatic processes, owing to their accessibility and frequent eruptive and intrusive activity. In addition, the Hawaiian Volcano Observatory, founded in 1912, maintains long records of geological, geophysical, and geochemical data. As a result, Hawaiian volcanoes have served as both a model for basaltic volcanism in general and a starting point for many studies of volcanic processes.

  13. Multifractal investigation of continuous seismic signal recorded at El Hierro volcano (Canary Islands) during the 2011-2012 pre- and eruptive phases

    Science.gov (United States)

    Telesca, Luciano; Lovallo, Michele; Martì Molist, Joan; López Moreno, Carmen; Abella Meléndez, Rafael

    2015-02-01

    The Multifractal Detrended Fluctuation Analysis (MF-DFA) is an effective method that allows detecting multifractality in non-stationary signals. We applied the MF-DFA to the continuous seismic signal recorded at El Hierro volcano (Canary Islands), which was affected by a submarine monogenetic eruption in October 2011. We investigated the multifractal properties of the continuous seismic signal before the onset of the eruption and after. We analysed three frames of the signal, one measured before the onset of eruption that occurred on October 10, 2011; and two after, but corresponding to two distinct eruptive episodes, the second one started on November 22, 2011 and lasting until late February 2012. The results obtained show a striking difference in the width of the multifractal spectrum, which is generally used to quantify the multifractal degree of a signal: the multifractal spectra of the signal frames recorded during the eruptive episodes are almost identical and much narrower than that of the signal frame measured before the onset of the eruption. Such difference indicates that the seismic signal recorded during the unrest reflects mostly the fracturing of the host rock under the overpressure exerted by the intruding magma, while that corresponding to the eruptive phases was mostly influenced by the flow of magma through the plumbing system, even some fracturing remains, not being possible to distinguish among the two eruptive episodes in terms of rock fracture mechanics.

  14. Temperatures and Melt Water Contents at the Onset of Phenocryst Growth in Quaternary Nepheline-Normative Basalts Erupted along the Tepic-Zacoalco Rift in Western Mexico

    Science.gov (United States)

    Mesa, J.; Lange, R. A.; Pu, X.

    2017-12-01

    Nepheline-normative, high-Mg basalts erupted from the western Mexican arc, along the Tepic-Zacoalco rift (TZR), have a trace-element signature consistent with an asthenosphere source, whereas calc-alkaline basalts erupted from the central Mexican arc in the Michoacan-Guanajuato volcanic field (MGVF) have a trace-element signature consistent with a mantle source strongly affected by subduction fluids. In this study, olivine-melt thermometry and plagioclase-liquid hygrometry are used to constrain the temperature and melt water content of the alkaline TZR basalts. The presence of diffusion-limited growth textures in olivine and plagioclase phenocrysts provide preliminary evidence of rapid growth during ascent. For each basalt sample, a histogram of all analyzed olivines in each sample allows the most Fo-rich composition to be identified, which matches the calculated composition at the liquidus via MELTS (Ghiorso & Sack, 1995; Asimow & Ghiorso, 1998) at fO2 values of QFM +2. Therefore a newly developed olivine-melt thermometer, based on DNiol/liq (Pu et al., 2017) was used to calculate temperature at the onset of olivine crystallization during ascent. Temperatures range from 1076-1247°C, whereas those calculated using an olivine-melt thermometer based on DMgol/liq range from 1141-1236 °C. Olivine-melt thermometers based on DMgol/liq are sensitive to melt H2O content, therefore ΔT = TMg - TNi (≤ 82 degrees) may be used as a qualitative indicator of melt H2O (≤ 2.6 wt% H2O; Pu et al., 2017). When temperatures from the Ni-thermometer are applied to the most calcic plagioclase in each sample (Waters & Lange, 2015), calculated melt H2O contents range from 1.3-1.9 (± 0.4) wt%. These values are significantly lower than those obtained from high-Mg calc-alkaline basalts from the MGVF using similar methods (1.9-5.0 wt%; Pu et al., 2017), consistent with a reduced involvement of slab-derived fluids in the origin of the alkaline TZR basalts from western Mexico.

  15. Deployment of a seismic array for volcano monitoring during the ongoing submarine eruption at El Hierro, Canary Islands

    Science.gov (United States)

    Abella, R.; Almendros, J.; Carmona, E.; Martin, R.

    2012-04-01

    On 17 July 2011 there was an important increase of the seismic activity at El Hierro (Canary Islands, Spain). This increase was detected by the Volcano Monitoring Network (Spanish national seismic network) run by the Instituto Geográfico Nacional (IGN). As a consequence, the IGN immediately deployed a dense, complete monitoring network that included seismometers, GPS stations, geochemical equipment, magnetometers, and gravity meters. During the first three months of activity, the seismic network recorded over ten thousand volcano-tectonic earthquakes, with a maximum magnitude of 4.6. On 10 October 2011 an intense volcanic tremor started. It was a monochromatic signal, with variable amplitude and frequency content centered at about 1-2 Hz. The tremor onset was correlated with the initial stages of the submarine eruption that occurred from a vent located south of El Hierro island, near the village of La Restinga. At that point the IGN, in collaboration with the Instituto Andaluz de Geofísica, deployed a seismic array intended for volcanic tremor monitoring and analysis. The seismic array is located about 7 km NW of the submarine vent. It has a 12-channel, 24-bit data acquisition system sampling each channel at 100 sps. The array is composed by 1 three-component and 9 vertical-component seismometers, distributed in a flat area with an aperture of 360 m. The data provided by the seismic array are going to be processed using two different approaches: (1) near-real-time, to produce information that can be useful in the management of the volcanic crisis; and (2) detailed investigations, to study the volcanic tremor characteristics and relate them to the eruption dynamics. At this stage we are mostly dedicated to produce fast, near-real-time estimates. Preliminary results have been obtained using the maximum average cross-correlation method. They indicate that the tremor wavefronts are highly coherent among array stations and propagate across the seismic array with an

  16. Patterns of volcanotectonic seismicity and stress during the ongoing eruption of the Soufrière Hills Volcano, Montserrat (1995-2007)

    Science.gov (United States)

    Roman, D.C.; De Angelis, S.; Latchman, J.L.; White, Rickie

    2008-01-01

    The ongoing eruption of the Soufrière Hills Volcano, Montserrat, has been accompanied throughout by varying levels of high-frequency, ‘volcanotectonic’ (VT), seismicity. These earthquakes reflect the brittle response of the host rock to stresses generated within the magmatic system and thus reveal interesting and useful information about the structure of the volcanic conduit system and processes occurring within it. In general, systematic changes in the rate, location, and fault-plane solutions of VT earthquakes correspond to changes in the volcano's behavior, and indicate that the main conduit for the eruption is a dike or system of dikes trending NE–SW and centered beneath the eruptive vent. To date, the eruption has comprised three extrusive phases, separated by two ~ 1–2 year-long periods of residual activity. Prior to the start of each extrusive phase, VT earthquakes with fault-plane solution p-axes oriented perpendicular to inferred regional maximum compression dominate the data set, consistent with stresses induced by the inflation of the mid-level conduit system. ~ 90°-rotated VT fault-plane solutions are also observed preceding a change in eruption style from effusive to explosive in 1997. While increases in the rate of VT earthquakes precede eruption phase onsets, high rates of VT seismicity are also observed during the first period of residual activity and in this case appear to reflect the relaxation of host rock following withdrawal of magma from the mid-crustal system. Most VT earthquakes are located directly beneath the eruptive vent, although two ‘distal VT clusters’ were observed during the first six months of the eruption (late 1995–early 1996). Both of these distal clusters likely resulted from stresses generated during the establishment of the main conduit system.

  17. Character, mass, distribution, and origin of tephra-fall deposits from the 2009 eruption of Redoubt Volcano, Alaska: highlighting the significance of particle aggregation

    Science.gov (United States)

    Wallace, Kristi; Coombs, Michelle L; Schaefer, Janet R.

    2013-01-01

    The 2009 eruption of Redoubt Volcano included 20 tephra-producing explosions between March 15, 2009 and April 4, 2009 (UTC). Next-Generation radar (NEXRAD) data show that plumes reached heights between 4.6 km and 19 km asl and were distributed downwind along nearly all azimuths of the volcano. Explosions lasted between 0.8 mm thick), including communities along the Kenai Peninsula (80–100 km) and the city of Anchorage (170 km). Trace ash (mass of tephra-fall deposits at 54.6 × 109 kg with a total DRE volume of 20.6 × 106 m3.

  18. The 2014-15 eruption and the short-term geochemical evolution of the Fogo volcano (Cape Verde): Evidence for small-scale mantle heterogeneity

    Science.gov (United States)

    Mata, J.; Martins, S.; Mattielli, N.; Madeira, J.; Faria, B.; Ramalho, R. S.; Silva, P.; Moreira, M.; Caldeira, R.; Moreira, M.; Rodrigues, J.; Martins, L.

    2017-09-01

    Recurrent eruptions at very active ocean island volcanoes provide the ideal means to gain insight on the scale of spatial variations at the mantle source and on temporal changes of magma genesis and evolution processes. In 2014, after 19 years of quiescence, Fogo volcano (Cape Verde Archipelago) experienced a new eruption, with the vents located 200 m from those of the 1995 eruption, and less than 2000 m from those of the 1951 event. This offered a unique opportunity to investigate the existence of small-scale mantle heterogeneities and the short-term compositional evolution of magmas erupted by a very active oceanic volcano like Fogo. Here we present petrological and geochemical data from the early stages of the Fogo's most recent eruption - started on November 23, 2014 - and compare them with the signature of previous eruptions (particularly those of 1995 and 1951). The magmas erupted in 2014 are alkaline (up to 23.4% and 0.94% of normative ne and lc, respectively) with somewhat evolved compositions (Mg # < 56), ranging from tephrites to phonotephrites. The eruption of phonotephritic lavas preceded the effusion of tephritic ones. Lavas carried to the surface clinopyroxene and kaersutite phenocrysts and cognate megacrysts, which indicate that the main stages of magma evolution occurred in magma chambers most probably located at mantle depths (25.6 ± 5.5 km below sea level). This was followed by a shallower (< 1.5 km below sea level) and shorter (≈ 50 days) magma stagnation before the eruption. 2014 magmas have more unradiogenic Sr and more radiogenic Nd compositions than those of the previous 1951 and 1995 eruptions, which generally have less radiogenic Pb ratios. These isotopic differences - coming from quasi-coeval materials erupted almost in the same place - are remarkable and reflect the small-scale heterogeneity of the underlying mantle source. Moreover, they reflect the limited isotopic averaging of the source composition during partial melting events as

  19. Characterization of the ashes from the 2014-2015 Turrialba Volcano eruptions by means of scanning electron microscopy and energy dispersive X-Ray spectroscopy

    International Nuclear Information System (INIS)

    Lucke, Oscar H.; Calderon, Ariadna

    2016-01-01

    The Turrialba Volcano is a stratovolcano located approximately 35 km northwest from San Jose, Costa Rica's capital city. A series of eruptions since October 29, 2014 until at least late 2015, has represented the most significant activity of this volcano since the 1860s. A significant volume of ash was dispersed with this eruptions that reached the most populous areas of the country. The characteristics of the ash particles are analyzed in order to establish the nature of the eruptive events that occurred on 2014 and 2015, and to monitor the evolution of the eruptive processes. The analysis was carried out utilizing optical microscopy and stereomicroscopy techniques, as well as novel scanning electron microscopy (SEM) methods that involve imaging and element composition analysis by means of Energy Dispersive X-Ray Spectroscopy (EDX). The evolution of the Turrialba eruptions is showed from phreatic events in 2014, with ashes composed entirely of non-juvenile fragments, to phreatomagmatic events starting on March 12, 2015 with the appearance of a significant fraction of juvenile components in the ash. (author)

  20. Volcanic risk metrics at Mt Ruapehu, New Zealand: some background to a probabilistic eruption forecasting scheme and a cost/benefit analysis at an open conduit volcano

    Science.gov (United States)

    Jolly, Gill; Sandri, Laura; Lindsay, Jan; Scott, Brad; Sherburn, Steve; Jolly, Art; Fournier, Nico; Keys, Harry; Marzocchi, Warner

    2010-05-01

    The Bayesian Event Tree for Eruption Forecasting software (BET_EF) is a probabilistic model based on an event tree scheme that was created specifically to compute long- and short-term probabilities of different outcomes (volcanic unrest, magmatic unrest, eruption, vent location and eruption size) at long-time dormant and routinely monitored volcanoes. It is based on the assumption that upward movements of magma in a closed conduit volcano will produce detectable changes in the monitored parameters at the surface. In this perspective, the goal of BET_EF is to compute probabilities by merging information from geology, models, past data and present monitoring measurements, through a Bayesian inferential method. In the present study, we attempt to apply BET_EF to Mt Ruapehu, a very active and well-monitored volcano exhibiting the typical features of open conduit volcanoes. In such conditions, current monitoring at the surface is not necessarily able to detect short term changes at depth that may occur only seconds to minutes before an eruption. This results in so-called "blue sky eruptions" of Mt Ruapehu (for example in September 2007), that are volcanic eruptions apparently not preceded by any presently detectable signal in the current monitoring. A further complication at Mt Ruapehu arises from the well-developed hydrothermal system and the permanent crater lake sitting on top of the magmatic conduit. Both the hydrothermal system and crater lake may act to mask or change monitoring signals (if present) that magma produces deeper in the edifice. Notwithstanding these potential drawbacks, we think that an attempt to apply BET_EF at Ruapehu is worthwhile, for several reasons. First, with the exception of a few "blue sky" events, monitoring data at Mt Ruapehu can be helpful in forecasting major events, especially if a large amount of magma is intruded into the edifice and becomes available for phreatomagmatic or magmatic eruptions, as for example in 1995-96. Secondly, in

  1. The 2007 and 2014 eruptions of Stromboli at match: monitoring the potential occurrence of effusion-driven basaltic paroxysmal explosions from a volcanic CO2 flux perspective

    Science.gov (United States)

    Liuzzo, Marco; Aiuppa, Alessandro; Salerno, Giuseppe; Burton, Mike; Federico, Cinzia; Caltabiano, Tommaso; Giudice, Gaetano; Giuffrida, Giovanni

    2015-04-01

    The recent effusive unrests of Stromboli occurred in 2002 and 2007 were both punctuated by short-lived, violent paroxysmal explosions generated from the volcano's summit craters. When effusive activity recently resumed on Stromboli, on 6 August 2014, much concern was raised therefore on whether or not a paroxysm would have occurred again. The occurrence of these potentially hazardous events has stimulated research toward understanding the mechanisms through which effusive eruptions can perturb the volcano's plumbing system, to eventually trigger a paroxysm. The anomalously large CO2 gas emissions measured prior to the 15 March 2007 paroxysmal explosion of Stromboli [1] have first demonstrated the chance to predict days in advance the effusive-to-explosive transition. Here 2007 and 2014 volcanic CO2 flux records have been compared for exploring causes/conditions that had not triggered any paroxysm event in the 2014 case. We show that the 2007 and 2014 datasets shared both similarities and remarkable differences. The pre-eruptive trends of CO2 and SO2 flux emissions were strikingly similar in both 2007 and 2014, indicating similar conditions within the plumbing system prior to onset of both effusive crises. In both events, the CO2 flux substantially accelerated (relative to the pre-eruptive mean flux) after onset of the effusion. However, this CO2 flux acceleration was a factor 3 lower in 2014 than in 2007, and the excess CO2 flux (the fraction of CO2 not associated with the shallowly emplaced/erupted magma, and therefore contributed by the deep magmatic system) never returned to the very high levels observed prior to the 15 March 2007 paroxysm. We conclude therefore that, although similar quantities of magma were effusively erupted in 2007 and 2014, the deep magmatic system was far less perturbed in the most recent case. We speculate that the rate at which the deep magmatic system is decompressed, rather than the level of de-compression itself, determine if the deep

  2. The impacts of pyroclastic surges on buildings at the eruption of the Soufrière Hills volcano, Montserrat

    Science.gov (United States)

    Baxter, Peter J.; Boyle, Robin; Cole, Paul; Neri, Augusto; Spence, Robin; Zuccaro, Giulio

    2005-04-01

    We investigated the impacts on buildings of three pyroclastic surges that struck three separate villages on 25 June, 21 September and 26 December, 1997, during the course of the andesitic dome building eruption of the Soufrière Hills Volcano, Montserrat, which began on 18 July, 1995. A detailed analysis of the building damage of the 26 December event was used to compare the findings on the flow and behaviour of dilute pyroclastic density currents (PDCs) with the classical reports of PDCs from historical eruptions of similar size. The main characteristics of the PDC, as inferred from the building damage, were the lateral loading and directionality of the current; the impacts corresponded to the dynamic pressure of the PDC, with a relatively slow rate of rise and without the peak overpressure or a shock front associated with explosive blast; and the entrainment of missiles and ground materials which greatly added to the destructiveness of the PDC. The high temperature of the ash, causing the rapid ignition of furniture and other combustibles, was a major cause of damage even where the dynamic pressure was low at the periphery of the current. The vulnerability of buildings lay in the openings, mainly windows, which allowed the current to enter the building envelope, and in the flammable contents, as well as the lack of resistance to the intense heat and dynamic pressure of some types of vernacular building construction, such as wooden chattel houses, rubble masonry walls and galvanised steel-sheet roofs. Marked variability in the level of damage due to dynamic pressure (in a range 1-5 kPa, or more) was evident throughout most of the impact area, except for the zone of total loss, and this was attributable to the effects of topography and sheltering, and projectiles, and probably localised variations in current velocity and density. A marked velocity gradient existed from the outer part to the central axis of the PDC, where buildings and vegetation were razed to the

  3. Eruption and emplacement dynamics of a thick trachytic lava flow of the Sancy volcano (France)

    Science.gov (United States)

    Latutrie, Benjamin; Harris, Andrew; Médard, Etienne; Gurioli, Lucia

    2017-01-01

    A 70-m-thick, 2200-m-long (51 × 106 m3) trachytic lava flow unit underlies the Puy de Cliergue (Mt. Dore, France). Excellent exposure along a 400-m-long and 60- to 85-m-high section allows the flow interior to be accessed on two sides of a glacial valley that cuts through the unit. We completed an integrated morphological, structural, textural, and chemical analysis of the unit to gain insights into eruption and flow processes during emplacement of this thick silicic lava flow, so as to elucidate the chamber and flow dynamic processed that operate during the emplacement of such systems. The unit is characterized by an inverse chemical stratification, where there is primitive lava beneath the evolved lava. The interior is plug dominated with a thin basal shear zone overlying a thick basal breccia, with ramping affecting the entire flow thickness. To understand these characteristics, we propose an eruption model that first involves processes operating in the magma chamber whereby a primitive melt is injected into an evolved magma to create a mixed zone at the chamber base. The eruption triggered by this event first emplaced a trachytic dome, into which banded lava from the chamber base was injected. Subsequent endogenous dome growth led to flow down the shallow slope to the east on which the highly viscous (1012 Pa s) coulée was emplaced. The flow likely moved extremely slowly, being emplaced over a period of 4-10 years in a glacial manner, where a thick (>60-m) plug slid over a thin (5-m-thick) basal shear zone. Excellent exposure means that the Puy de Cliergue complex can be viewed as a case type location for understanding and defining the eruption and emplacement of thick, high-viscosity, silicic lava flow systems.

  4. Explosive eruptions triggered by rockfalls at Kīlauea volcano, Hawaii

    Science.gov (United States)

    Orr, Tim R.; Thelen, Weston A.; Patrick, Matthew R.; Swanson, Donald A.; Wilson, David C.

    2012-01-01

    Ongoing eruptive activity at Kīlauea volcano’s (Hawai‘i) summit has been controlled in part by the evolution of its vent from a 35-m-diameter opening into a collapse crater 150 m across. Geologic observations, in particular from a network of webcams, have provided an unprecedented look at collapse crater development, lava lake dynamics, and shallow outgassing processes. These observations show unequivocally that the hundreds of transient outgassing bursts and weak explosive eruptions that have punctuated the vent’s otherwise nearly steady-state behavior, and that are associated with composite seismic events, were triggered by rockfalls from the vent walls onto the top of the lava column. While the process by which rockfalls drive the explosive bursts is not fully understood, we believe that it is initiated by the generation of a rebound splash, or Worthington jet, which then undergoes fragmentation. The external triggering of low-energy outgassing events by rockfalls represents a new class of small transient explosive eruptions.

  5. DISTRIBUTION OF THE TEMPERATURE IN THE ASH-GAS FLOW DURING KORYAKSKY VOLCANO ERUPTION IN 2009

    Science.gov (United States)

    Gordeev, E.; Droznin, V.

    2009-12-01

    The observations of the ash-gas plumes during the Koryaksky eruption in March 2009 by the high resolution thermovision camera allowed obtaining thermal distributions inside the ash-gas flows. The plume structure is formed by single emissions. They rise at the rate of 5.5-7 m/s. The plume structure in general is represented as 3 zones: 1. a zone of high heat exchange; 2. a zone of floating up; 3. a zone of lateral movement. The plume temperature within the zone of lateral movement exceeds the atmospheric temperature by 3-5 oC, within the zone of floating up it exceeds by 20 oC. Its rate within the zone of floating up comprises 5-7 m/s. At the boundary between the zones of high heat exchange and floating up where we know the plume section, from heat balance equation we can estimate steam rate and heat power of the fluid thermal flow. Power of the overheated steam was estimated as Q=35 kg/s. It forms the ash-gas plume from the eruption and has temperature equal to 450 oC. The total volume of water steam produced during 100 days of eruption was estimated 3*105 t, its energy - 109 MJ.

  6. The origin of a coarse lithic breccia in the 34 ka caldera-forming Sounkyo eruption, Taisetsu volcano group, central Hokkaido, Japan

    Science.gov (United States)

    Yasuda, Y.; Suzuki-Kamata, K.

    2018-05-01

    The 34 ka Sounkyo eruption produced 7.6 km3 of tephra ( 5 km3 DRE) as fallout, ignimbrite, and lithic breccia units, forming a small, 2-km-diameter summit caldera in the Taisetsu volcano group, Japan. The Sounkyo eruption products are made up of five eruptive units (SK-A to -E) in proximal regions, corresponding to the distal deposits, a 1- to 2-m-thick pumice fallout and the Px-type ignimbrite up to 220 m thick. The eruption began with a fallout phase, producing unstable low eruption columns during the earlier phase to form a 27-m-thick, unstratified and ungraded, coarse lithic breccia (SK-C). The failure in turn choked the conduit, and then the eruption stopped. After a short eruptive hiatus, the eruption resumed with a short-lived fall phase, establishing an eruption column up to 16 km high and producing a <6-m-thick scoria fallout (SK-D). Finally, the eruption ended with the generation of PDCs by eruption column collapse to form a 5- to 15-m-thick ignimbrite in the proximal area (SK-E). Volume relationships between the caldera, ejected magma, and ejected lithic fragments suggest that the caldera was not essentially formed by caldera collapse but, instead, by vent widening as a consequence of explosive erosion and failure of the shallow conduit. The dominance of shallow-origin volcanic rocks in the lithic fraction throughout the Sounkyo eruption products implies the development of a flaring funnel-shaped vent. Hence, the occurrence of lithic breccias within small caldera-forming eruption products does not necessarily reflect either the existence or the timing of caldera collapse, as commonly assumed in literature. Lithic breccias commonly overlie climactic ignimbrite/fallout deposits in small caldera-forming eruptions, and an alternative explanation is that this reflects the collapse of the shallow conduit after an eruption climax, whose walls had been highly fractured and had become unstable owing to progressive erosion.

  7. Large submarine sand-rubble flow on Kilauea volcano, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Fornari, D J [Columbia Univ., Palisades, NY; Moore, J G; Calk, L

    1979-05-01

    Papa'u seamount on the south submarine slope of Kilauea volcano is a large landslide about 19 km long, 6 km wide, and up to 1 km thick with a volume of about 39 km/sup 3/. Dredge hauls, remote camera photographs, and submersible observations indicate that it is composed primarily of unconsolidated angular glassy basalt sand with scattered basalt blocks up to 1 m in size; no lava flows were seen. Sulfur contents of basalt glass from several places on the sand-rubble flow and nearby areas are low (< 240 ppm), indicating that the clastic basaltic material was all erupted on land. The Papa'u sandrubble flow was emplaced during a single flow event fed from a large near-shore bank of clastic basaltic material which in turn was formed as lava flows from the summit area of Kilauea volcano disintegrated when they entered the sea. The current eruptive output of the volcano suggests that the material in the submarine sand-rubble flow represents about 6000 years of accumulation, and that the flow event occurred several thousand years ago.

  8. The May 2005 eruption of Fernandina volcano, Galápagos: The first circumferential dike intrusion observed by GPS and InSAR

    KAUST Repository

    Chadwick, William W Jr

    2010-12-15

    The May 2005 eruption of Fernandina volcano, Galápagos, occurred along circumferential fissures parallel to the caldera rim and fed lava flows down the steep southwestern slope of the volcano for several weeks. This was the first circumferential dike intrusion ever observed by both InSAR and GPS measurements and thus provides an opportunity to determine the subsurface geometry of these enigmatic structures that are common on Galápagos volcanoes but are rare elsewhere. Pre- and post- eruption ground deformation between 2002 and 2006 can be modeled by the inflation of two separate magma reservoirs beneath the caldera: a shallow sill at ~1 km depth and a deeper point-source at ~5 km depth, and we infer that this system also existed at the time of the 2005 eruption. The co-eruption deformation is dominated by uplift near the 2005 eruptive fissures, superimposed on a broad subsidence centered on the caldera. Modeling of the co-eruption deformation was performed by including various combinations of planar dislocations to simulate the 2005 circumferential dike intrusion. We found that a single planar dike could not match both the InSAR and GPS data. Our best-fit model includes three planar dikes connected along hinge lines to simulate a curved concave shell that is steeply dipping (~45-60°) toward the caldera at the surface and more gently dipping (~12-14°) at depth where it connects to the horizontal sub-caldera sill. The shallow sill is underlain by the deep point source. The geometry of this modeled magmatic system is consistent with the petrology of Fernandina lavas, which suggest that circumferential eruptions tap the shallowest parts of the system, whereas radial eruptions are fed from deeper levels. The recent history of eruptions at Fernandina is also consistent with the idea that circumferential and radial intrusions are sometimes in a stress-feedback relationship and alternate in time with one another. © 2010 Springer-Verlag.

  9. The May 2005 eruption of Fernandina volcano, Galápagos: The first circumferential dike intrusion observed by GPS and InSAR

    KAUST Repository

    Chadwick, William W Jr; Jonsson, Sigurjon; Geist, Dennis J.; Poland, Michael P.; Johnson, Daniel J.; Batt, Spencer; Harpp, Karen S.; Ruiz, André s Gorki

    2010-01-01

    The May 2005 eruption of Fernandina volcano, Galápagos, occurred along circumferential fissures parallel to the caldera rim and fed lava flows down the steep southwestern slope of the volcano for several weeks. This was the first circumferential dike intrusion ever observed by both InSAR and GPS measurements and thus provides an opportunity to determine the subsurface geometry of these enigmatic structures that are common on Galápagos volcanoes but are rare elsewhere. Pre- and post- eruption ground deformation between 2002 and 2006 can be modeled by the inflation of two separate magma reservoirs beneath the caldera: a shallow sill at ~1 km depth and a deeper point-source at ~5 km depth, and we infer that this system also existed at the time of the 2005 eruption. The co-eruption deformation is dominated by uplift near the 2005 eruptive fissures, superimposed on a broad subsidence centered on the caldera. Modeling of the co-eruption deformation was performed by including various combinations of planar dislocations to simulate the 2005 circumferential dike intrusion. We found that a single planar dike could not match both the InSAR and GPS data. Our best-fit model includes three planar dikes connected along hinge lines to simulate a curved concave shell that is steeply dipping (~45-60°) toward the caldera at the surface and more gently dipping (~12-14°) at depth where it connects to the horizontal sub-caldera sill. The shallow sill is underlain by the deep point source. The geometry of this modeled magmatic system is consistent with the petrology of Fernandina lavas, which suggest that circumferential eruptions tap the shallowest parts of the system, whereas radial eruptions are fed from deeper levels. The recent history of eruptions at Fernandina is also consistent with the idea that circumferential and radial intrusions are sometimes in a stress-feedback relationship and alternate in time with one another. © 2010 Springer-Verlag.

  10. Iridium emissions from Hawaiian volcanoes

    International Nuclear Information System (INIS)

    Finnegan, D.L.; Zoller, W.H.; Miller, T.M.

    1988-01-01

    Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were collected using a filterpack system consisting of a Teflon particle filter followed by a series of 4 base-treated Whatman filters. The samples were analyzed by INAA for over 40 elements. As previously reported in the literature, Ir was first detected on particle filters at the Mauna Loa Observatory and later from non-erupting high temperature vents at Kilauea. Since that time Ir was found in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Enrichment factors for Ir in the volcanic fumes range from 10,000 to 100,000 relative to BHVO. Charcoal impregnated filters following a particle filter were collected to see if a significant amount of the Ir was in the gas phase during sample collection. Iridium was found on charcoal filters collected close to the vent, no Ir was found on the charcoal filters. This indicates that all of the Ir is in particulate form very soon after its release. Ratios of Ir to F and Cl were calculated for the samples from Mauna Loa and Kilauea collected during fountaining activity. The implications for the KT Ir anomaly are still unclear though as Ir was not found at volcanoes other than those at Hawaii. Further investigations are needed at other volcanoes to ascertain if basaltic volcanoes other than hot spots have Ir enrichments in their fumes

  11. Iridium emissions from Hawaiian volcanoes

    Science.gov (United States)

    Finnegan, D. L.; Zoller, W. H.; Miller, T. M.

    1988-01-01

    Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were collected using a filterpack system consisting of a Teflon particle filter followed by a series of 4 base-treated Whatman filters. The samples were analyzed by INAA for over 40 elements. As previously reported in the literature, Ir was first detected on particle filters at the Mauna Loa Observatory and later from non-erupting high temperature vents at Kilauea. Since that time Ir was found in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Enrichment factors for Ir in the volcanic fumes range from 10,000 to 100,000 relative to BHVO. Charcoal impregnated filters following a particle filter were collected to see if a significant amount of the Ir was in the gas phase during sample collection. Iridium was found on charcoal filters collected close to the vent, no Ir was found on the charcoal filters. This indicates that all of the Ir is in particulate form very soon after its release. Ratios of Ir to F and Cl were calculated for the samples from Mauna Loa and Kilauea collected during fountaining activity. The implications for the KT Ir anomaly are still unclear though as Ir was not found at volcanoes other than those at Hawaii. Further investigations are needed at other volcanoes to ascertain if basaltic volcanoes other than hot spots have Ir enrichments in their fumes.

  12. Geologic map of Medicine Lake volcano, northern California

    Science.gov (United States)

    Donnelly-Nolan, Julie M.

    2011-01-01

    Medicine Lake volcano forms a broad, seemingly nondescript highland, as viewed from any angle on the ground. Seen from an airplane, however, treeless lava flows are scattered across the surface of this potentially active volcanic edifice. Lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, cover more than 2,000 km2 east of the main axis of the Cascade Range in northern California. Across the Cascade Range axis to the west-southwest is Mount Shasta, its towering volcanic neighbor, whose stratocone shape contrasts with the broad shield shape of Medicine Lake volcano. Hidden in the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of Medicine Lake volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 8,000 ft (2,440 m). The maximum extent of lavas from this half-million-year-old volcano is about 80 km north-south by 45 km east-west. In postglacial time, 17 eruptions have added approximately 7.5 km3 to its total estimated volume of 600 km3, and it is considered to be the largest by volume among volcanoes of the Cascades arc. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascades arc volcanoes except Mount St. Helens.

  13. Multiphase modelling of mud volcanoes

    Science.gov (United States)

    Colucci, Simone; de'Michieli Vitturi, Mattia; Clarke, Amanda B.

    2015-04-01

    Mud volcanism is a worldwide phenomenon, classically considered as the surface expression of piercement structures rooted in deep-seated over-pressured sediments in compressional tectonic settings. The release of fluids at mud volcanoes during repeated explosive episodes has been documented at numerous sites and the outflows resemble the eruption of basaltic magma. As magma, the material erupted from a mud volcano becomes more fluid and degasses while rising and decompressing. The release of those gases from mud volcanism is estimated to be a significant contributor both to fluid flux from the lithosphere to the hydrosphere, and to the atmospheric budget of some greenhouse gases, particularly methane. For these reasons, we simulated the fluid dynamics of mud volcanoes using a newly-developed compressible multiphase and multidimensional transient solver in the OpenFOAM framework, taking into account the multicomponent nature (CH4, CO2, H2O) of the fluid mixture, the gas exsolution during the ascent and the associated changes in the constitutive properties of the phases. The numerical model has been tested with conditions representative of the LUSI, a mud volcano that has been erupting since May 2006 in the densely populated Sidoarjo regency (East Java, Indonesia), forcing the evacuation of 40,000 people and destroying industry, farmland, and over 10,000 homes. The activity of LUSI mud volcano has been well documented (Vanderkluysen et al., 2014) and here we present a comparison of observed gas fluxes and mud extrusion rates with the outcomes of numerical simulations. Vanderkluysen, L.; Burton, M. R.; Clarke, A. B.; Hartnett, H. E. & Smekens, J.-F. Composition and flux of explosive gas release at LUSI mud volcano (East Java, Indonesia) Geochem. Geophys. Geosyst., Wiley-Blackwell, 2014, 15, 2932-2946

  14. Reconsideration of evolutionary model of the Hawaiian-type volcano: 40Ar/39Ar ages for lavas from deep interior of Oahu Island and alkali basalts from the North Arch volcanic field

    Science.gov (United States)

    Uto, K.; Ishizuka, O.; Garcia, M. O.; Clague, D. A.; Naka, J.

    2002-12-01

    Growth history of Hawaiian-type volcanoes is typified into four stages: pre-shield, shield-forming, post-shield and rejuvinated. Duration of volcanism from pre-shield to post-shield stage is considered to be at most two million years, and is followed by the rejuvinated-stage after the dormance of one to two million years. There are, however, considerable amount of volcanic products hidden beneath the surface, and the above model may not be real due to the limited observation. US-Japan joint research on Hawaiian volcanism using ROV {\\KAIKO} and submersible {\\SHINKAI6500} of JAMSTEC has revealed many unknown volcanic processes of Hawaii. We challenge the well-established growth model of Hawaiian volcanoes from 40Ar/39Ar dating on rocks collected from the deep root of the submarine cliff of Oahu Island and from the widespread lava field off the coast of Oahu. Northern slope of Oahu Island is a deeply dissected steep wall from the ridge 1,000 m above the sea level to 3,000 m beneath the sea level. We expected to discover the deeper part of volcanic products forming Oahu Island. We obtained 6 40Ar/39Ar ages for tholeiitic lavas collected from 3,000 m to 2,600 m below the sea level. Ages are 5.7 and 6 Ma for two samples from the depth of 2,800 - 3,000 m, 4 Ma for a sample from 2,630 m, 3 Ma for a rock dredged between 2,500 and 2,800m, and 2.2 Ma for a sample from 2,602 m. Ages between 2.2 and 4 Ma are compatible with existing ages on subaerial shield-forming lavas on Koolau and Waianae volcano on Oahu, but ages of 5.7 and 6 Ma are about two million years older. Duplicate analyses gave concordant results and isochron ages have atmospheric 40Ar/36Ar initials. We, therefore, consider that these ages represent eruptive ages of samples. Current results suggest that tholeiitic volcanism forming Oahu Island continued almost 4 million years, which is far longer than ever considered. Considering the 8.7 cm/y of plate velocity, volcanism continued while Oahu Island moved 350 km

  15. Hawaiian cultural influences on support for lava flow hazard mitigation measures during the January 1960 eruption of Kīlauea volcano, Kapoho, Hawai‘i

    Science.gov (United States)

    Gregg, Chris E.; Houghton, Bruce F.; Paton, Douglas; Swanson, D.A.; Lachman, R.; Bonk, W.J.

    2008-01-01

    In 1960, Kīlauea volcano in Hawaii erupted, destroying most of the village of Kapoho and forcing evacuation of its approximately 300 residents. A large and unprecedented social science survey was undertaken during the eruption to develop an understanding of human behavior, beliefs, and coping strategies among the adult evacuees (n = 160). Identical studies were also performed in three control towns located at varying distances from the eruption site (n = 478). During these studies data were collected that characterized ethnic grouping and attitudes toward Hawaiian cultural issues such as belief in Pele and two lava flow mitigation measures—use of barriers and bombs to influence the flow of lava, but the data were never published. Using these forgotten data, we examined the relationship between Hawaiian cultural issues and attitudes toward the use of barriers and bombs as mitigation strategies to protect Kapoho.

  16. Evolving magma storage conditions beneath Mount St. Helens inferred from chemical variations in melt inclusions from the 1980-1986 and current (2004-2006) eruptions: Chapter 33 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    Science.gov (United States)

    Blundy, Jon; Cashman, Katharine V.; Berlo, Kim; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Major element, trace element, and volatile concentrations in 187 glassy melt inclusions and 25 groundmass glasses from the 1980-86 eruption of Mount St. Helens are presented, together with 103 analyses of touching FE-Ti oxide pairs from the same samples. These data are used to evaluate the temporal evolution of the magmatic plumbing system beneath the volcano during 1980-86 and so provide a framework in which to interpret analyses of melt inclusions from the current (2004-2006) eruption. Major and trace element concentrations of all melt inclusions lie at the high SiO2 end of the data array defined by eruptive products of the late Quaternary age from Mount St. Helens. For several major and trace elements, the glasses define a trend that is oblique to the whole-rock trend, indicating that different mineral assemblages were responsible for the two trends. The whole-rock trend can be ascribed to differentiation of hydrous basaltic parents in a deep-seated magma reservoir, probably at depths great enough to stabilize garnet. In contrast, the glass trends were generated by closed-system crystallization of the phenocryst and microlite mineral assemblages at low pressures. The dissolved H2O content of the melt inclusions from 1980-86, as measured by the ion microprobe, ranges from 0 to 6.7 wt. percent, with the highest values obtained from the plinian phase of May 18, 1980. Water contents decrease with increasing SiO2, consistent with decompression-driven crystallization. Preliminary data for dissolved CO2 in melt inclusions from the May 18 plinian phase from August 7, 1980, indicate that XH2O in a vapor phase was approximately constant at 0.80, irrespective of H2O content, suggestive of closed-system degassing with a high bubble fraction or gas streaming through the subvolcanic system. Temperature and f

  17. Magma-carbonate interaction processes and associated CO2 release at Merapi volcano, Indonesia: insights from experimental petrology

    NARCIS (Netherlands)

    Deegan, F.M.; Troll, V.R.; Freda, C.; Misti, V.; Chadwick, J.P.

    2010-01-01

    There is considerable evidence for continuing, late-stage interaction between the magmatic system at Merapi volcano, Indonesia, and local crustal carbonate (limestone). Calc-silicate xenoliths within Merapi basaltic-andesite eruptive rocks display textures indicative of intense interaction between

  18. A space-borne, multi-parameter, Virtual Volcano Observatory for the real-time, anywhere-anytime support to decision-making during eruptive crises

    Science.gov (United States)

    Ferrucci, F.; Tampellini, M.; Loughlin, S. C.; Tait, S.; Theys, N.; Valks, P.; Hirn, B.

    2013-12-01

    The EVOSS consortium of academic, industrial and institutional partners in Europe and Africa, has created a satellite-based volcano observatory, designed to support crisis management within the Global Monitoring for Environment and Security (GMES) framework of the European Commission. Data from 8 different payloads orbiting on 14 satellite platforms (SEVIRI on-board MSG-1, -2 and -3, MODIS on-board Terra and Aqua, GOME-2 and IASI onboard MetOp-A, OMI on-board Aura, Cosmo-SkyMED/1, /2, /3 and /4, JAMI on-board MTSAT-1 and -2, and, until April 8th2012, SCHIAMACHY on-board ENVISAT) acquired at 5 different down-link stations, are disseminated to and automatically processed at 6 locations in 4 countries. The results are sent, in four separate geographic data streams (high-temperature thermal anomalies, volcanic Sulfur dioxide daily fluxes, volcanic ash and ground deformation), to a central facility called VVO, the 'Virtual Volcano Observatory'. This system operates 24H/24-7D/7 since September 2011 on all volcanoes in Europe, Africa, the Lesser Antilles, and the oceans around them, and during this interval has detected, measured and monitored all subaerial eruptions occurred in this region (44 over 45 certified, with overall detection and processing efficiency of ~97%). EVOSS borne realtime information is delivered to a group of 14 qualified end users, bearing the direct or indirect responsibility of monitoring and managing volcano emergencies, and of advising governments in Comoros, DR Congo, Djibouti, Ethiopia, Montserrat, Uganda, Tanzania, France and Iceland. We present the full set of eruptions detected and monitored - from 2004 to present - by multispectral payloads SEVIRI onboard the geostationary platforms of the MSG constellation, for developing and fine tuning-up the EVOSS system along with its real-time, pre- and post-processing automated algorithms. The set includes 91% of subaerial eruptions occurred at 15 volcanoes (Piton de la Fournaise, Karthala, Jebel al

  19. Evolution of 222 Rn and chemical species related with eruptive processes of the Popocatepetl volcano

    International Nuclear Information System (INIS)

    Aranda Z, P.

    1998-01-01

    The study of the water quality for human consumption has always been great importance, considering the factors that can affect water quality as aquifers recharge and underground permeability. In this work, the behavior of three water springs related with the Popocatepetl volcano were studied within April 1997 and March 1998. The spring in Paso de Cortes in the municipality of Amecameca, State of Mexico, and the springs of Atlimeyaya and Axocopan in Atlixco, State of Puebla; the water of these last two springs is used for human consumption. The content of radon in water was determined by means of liquid scintillation, and a concentration of 1.22 Bq/l was found in the spring of Atlimeyaya, which represents 2 % of the maximum permissible level established by ICRP. A significant increase was observed in the Paso de Cortes spring in the month of July 1997. The content of radium, was determined by means of gamma spectrophotometry and small quantities of this element ( 2+ , Mg 2+ , K + , Na + , H C O 3 - , Cl - , S O 4 - 2 , Li, B, Sc, Ti, V, Rb, Sr and Ba, primarily, which did not show any significant variation with the change of seasons. No important variations in the concentration of radon, radium or for other volcanic activity related species were found in the entire study. (Author)

  20. Self-potential signals caused by eruptions of the Galeras volcano – Colombia

    Directory of Open Access Journals (Sweden)

    Greinwald S.

    2007-12-01

    Full Text Available The National Institute of Geology and Mining, INGEOMINAS - Colombia, and the Federal Institute for Geosciences and Natural Resources, BGR - Germany, perform since 1997 as a joint venture
    multi-parameter measurements at the Galeras volcano, in the southwest of Colombia. Since the end of 1998 the Multi-parameter Station at Galeras (Estación Multiparámetro del Galeras - EMG includes the continuous monitoring of electromagnetic variations. The electromagnetic (EM station is located at the north-eastern foot walls of the central cone inside the caldera.
    During almost six years of electromagnetic monitoring, the data did not show significant variations of the electromagnetic field, which could be related to the volcanic activity. In July 2004 a new active period of Galeras began with two strong ash emissions. During both emissions strong self potential- (SP signals were recorded lasting for several hours. The present paper will present the data which could give some indications on the movements of liquids during ash emissions.

  1. InSAR analysis for detecting the route of hydrothermal fluid to the surface during the 2015 phreatic eruption of Hakone Volcano, Japan

    Science.gov (United States)

    Doke, Ryosuke; Harada, Masatake; Mannen, Kazutaka; Itadera, Kazuhiro; Takenaka, Jun

    2018-04-01

    Although the 2015 Hakone Volcano eruption was a small-scale phreatic eruption with a discharged mass of only about 100 tons, interferometric synthetic aperture radar successfully detected surface deformations related to the eruption. Inversion model of the underground hydrothermal system based on measured ground displacements by ALOS-2/PALSAR-2 images showed that a crack opened at an elevation of about 530-830 m, probably at the time of the eruption. A geomorphological analysis detected several old NW-SE trending fissures, and the open crack was located just beneath one of the fissures. Thus, the crack that opened during the 2015 eruption could have been a preexisting crack that formed during a more voluminous hydrothermal eruption. In addition, the inversion model implies that a sill deflation occurred at an elevation of about 225 m, probably at the time of the eruption. The deflation of sill-like body represents a preexisting hydrothermal reservoir at an elevation of 100-400 m, which intruded fluid in the open crack prior to eruption. The volume changes of the open crack and the sill were calculated to be 1.14 × 105 m3 (inflation) and 0.49 × 105 m3 (deflation), respectively. A very local swelling (about 200 m in diameter) was also detected at the eruption center 2 months before the eruption. The local swelling, whose rate in satellite line-of-sight was 0.7-0.9 cm/day during May 2015 and declined in June, had been monitored until the time of the eruption, when its uplift halted. This was modeled as a point pressure source at an elevation of about 900 m (at a depth of about 80-90 m from the ground surface) and is considered to be a minor hydrothermal reservoir just beneath the fumarolic field. Our analysis shows that the northernmost tip of the open crack reached within 200 m of the surface. Thus, it is reasonable to assume that the hydrothermal fluid in the open crack found a way to the surface and formed the eruption.[Figure not available: see fulltext.

  2. Petrologic testament to changes in shallow magma storage and transport during 30+ years of recharge and eruption at Kīlauea Volcano, Hawai‘i: Chapter 8

    Science.gov (United States)

    Thornber, Carl R.; Orr, Tim R.; Heliker, Christina; Hoblitt, Richard P.; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique

    2015-01-01

    Petrologic monitoring of Kīlauea Volcano from January 1983 to October 2013 has yielded an extensive record of glass, phenocryst, melt inclusion, and bulk-lava chemistry from well-quenched lava. When correlated with 30+ years of geophysical and geologic monitoring, petrologic details testify to physical maturation of summit-to-rift magma plumbing associated with sporadic intrusion and prolonged magmatic overpressurization. Changes through time in bulk-lava major- and trace-element compositions, along with glass thermometry, record shifts in the dynamic balance of fractionation, mixing, and assimilation processes inherent to magma storage and transport during near-continuous recharge and eruption. Phenocryst composition, morphology, and texture, along with the sulfur content of melt inclusions, constrain coupled changes in eruption behavior and geochemistry to processes occurring in the shallow magmatic system. For the first 17 years of eruption, magma was steadily tapped from a summit reservoir at 1–4 km depth and circulating between 1180 and 1200°C. Furthermore, magma cooled another 30°C while flowing through the 18 km long rift conduit, before erupting olivine-spinel-phyric lava at temperatures of 1150–1170°C in a pattern linked with edifice deformation, vent formation, eruptive vigor, and presumably the flux of magma into and out of the summit reservoir. During 2000–2001, a fundamental change in steady state eruption petrology to that of relatively low-temperature, low-MgO, olivine(-spinel)-clinopyroxene-plagioclase-phryic lava points to a physical transformation of the shallow volcano plumbing uprift of the vent. Preeruptive comagmatic mixing between hotter and cooler magma is documented by resorption, overgrowth, and compositional zonation in a mixed population of phenocrysts grown at higher and lower temperatures. Large variations of sulfur (50 to >1000 ppm) in melt inclusions within individual phenocrysts and among phenocrysts in most samples

  3. The 2006-2009 activity of the Ubinas volcano (Peru): Petrology of the 2006 eruptive products and insights into genesis of andesite magmas, magma recharge and plumbing system

    Science.gov (United States)

    Rivera, Marco; Thouret, Jean-Claude; Samaniego, Pablo; Le Pennec, Jean-Luc

    2014-01-01

    Following a fumarolic episode that started six months earlier, the most recent eruptive activity of the Ubinas volcano (south Peru) began on 27 March 2006, intensified between April and October 2006 and slowly declined until December 2009. The chronology of the explosive episode and the extent and composition of the erupted material are documented with an emphasis on ballistic ejecta. A petrological study of the juvenile products allows us to infer the magmatic processes related to the 2006-2009 eruptions of the andesitic Ubinas volcano. The juvenile magma erupted during the 2006 activity shows a homogeneous bulk-rock andesitic composition (56.7-57.6 wt.% SiO2), which belongs to a medium- to high-K calc-alkaline series. The mineral assemblage of the ballistic blocks and tephra consists of plagioclase > two-pyroxenes > Fe-Ti oxide and rare olivine and amphibole set in a groundmass of the same minerals with a dacitic composition (66-67 wt.% SiO2). Thermo-barometric data, based on two-pyroxene and amphibole stability, records a magma temperature of 998 ± 14 °C and a pressure of 476 ± 36 MPa. Widespread mineralogical and textural features point to a disequilibrium process in the erupted andesite magma. These features include inversely zoned "sieve textures" in plagioclase, inversely zoned clinopyroxene, and olivine crystals with reaction and thin overgrowth rims. They indicate that the pre-eruptive magmatic processes were dominated by recharge of a hotter mafic magma into a shallow reservoir, where magma mingling occurred and triggered the eruption. Prior to 2006, a probable recharge of a mafic magma produced strong convection and partial homogenization in the reservoir, as well as a pressure increase and higher magma ascent rate after four years of fumarolic activity. Mafic magmas do not prevail in the Ubinas pre-historical lavas and tephras. However, mafic andesites have been erupted during historical times (e.g. AD 1667 and 2006-2009 vulcanian eruptions). Hence

  4. Hydrothermal system of the Papandayan Volcano, West Java, Indonesia and its geochemistry evolution of thermal water after the November 2002 eruption

    Directory of Open Access Journals (Sweden)

    Agnes Mazot

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol2no1.20072Papandayan is a strato volcano situated in West Java, Indonesia. After the last magmatic eruptionin 1772, only few phreatic explosions have been occurring. At the present time, the activity is centeredin the northeast crater manifested by the presence of fumaroles and hot springs. In November 2002an explosive eruption occurred and ejected ash and altered rocks. Study of the altered rocks revealedthat an advanced argillic alteration took place in the hydrothermal system by an interaction betweenacid fl uids and rocks. Four zones of alteration have been formed as a limited extension along faults oracross permeable structures at different levels beneath the active crater of the volcano.Two types of acid fl uids are distinguished in the crater of the Papandayan Volcano: (1 acidsulphate-chloride water with pH values between 1.6 and 4.6, and (2 acid sulphate water with pHvalues between 1.2 and 2.5. The samples collected after the eruption revealed an increase in the SO4/Cl and Mg / Cl ratios. This evolution is likely explained by an increase in the neutralization of acidfl uids which tends to show that water-rock interactions were more signifi cant after the eruption. Thechanges in chemistry observed in 2003 were the consequence of the opening of new fractures whereunaltered or less altered volcanic rocks were in contact with the ascending acid water. The high δ34Svalues (9-17‰ observed in the acid sulphate-chloride water before the November 2002 eruptionsuggest that dissolved sulphates were mainly formed by the disproportionation of magmatic SO2. Onthe other hand, the low δ34S values (-0.3-7 ‰ observed in acid sulphate-chloride water sampled afterthe eruption suggest that the origin of dissolved sulphates for these waters is the surfi cial oxidation ofhydrogen sulphide.

  5. Crater lake and post-eruption hydrothermal activity, El Chichón Volcano, Mexico

    Science.gov (United States)

    Casadevall, Thomas J.; De la Cruz-Reyna, Servando; Rose, William I.; Bagley, Susan; Finnegan, David L.; Zoller, William H.

    1984-01-01

    Explosive eruptions of Volcán El Chichón in Chiapas, Mexico on March 28 and April 3–4, 1982 removed 0.2 km3 of rock to form a 1-km-wide 300-m-deep summit crater. By late April 1982 a lake had begun to form on the crater floor, and by November 1982 it attained a maximum surface area of 1.4 × 105 m2 and a volume of 5 × 106 m3. Accumulation of 4–5 m of rainfall between July and October 1982 largely formed the lake. In January 1983, temperatures of fumaroles on the crater floor and lower crater walls ranged from 98 to 115°C; by October 1983 the maximum temperature of fumarole emissions was 99°C. In January 1983 fumarole gas emissions were greater than 99 vol. % H2O with traces of CO2, SO2, and H2S. The water of the lake was a hot (T = 52–58°C), acidic (pH = 0.5), dilute solution (34,046 mg L−1 dissolved solids; Cl/S = 20.5). Sediment from the lake contains the same silicate minerals as the rocks of the 1982 pyroclastic deposits, together with less than 1% of elemental sulfur. The composition and temperature of the lake water is attributed to: (1) solution of fumarole emissions; (2) reaction of lake water with hot rocks beneath the lake level; (3) sediments washed into the lake from the crater walls; (4) hydrothermal fluids leaching sediments and formational waters in sedimentary rocks of the basement; (5) evaporation; and (6) precipitation.

  6. Velocity variations associated with the large 2010 eruption of Merapi volcano, Java, retrieved from seismic multiplets and ambient noise cross-correlation

    Science.gov (United States)

    Budi-Santoso, Agus; Lesage, Philippe

    2016-07-01

    We present a study of the seismic velocity variations that occurred in the structure before the large 2010 eruption of Merapi volcano. For the first time to our knowledge, the technique of coda wave interferometry is applied to both families of similar events (multiplets) and to correlation functions of seismic noise. About half of the seismic events recorded at the summit stations belong to one of the ten multiplets identified, including 120 similar events that occurred in the last 20 hr preceding the eruption onset. Daily noise cross-correlation functions (NCF) were calculated for the six pairs of short-period stations available. Using the stretching method, we estimate time-series of apparent velocity variation (AVV) for each multiplet and each pair of stations. No significant velocity change is detected until September 2010. From 10 October to the beginning of the eruption on 26 October, a complex pattern of AVV is observed with amplitude of up to ±1.5 per cent. Velocity decrease is first observed from families of deep events and then from shallow earthquakes. In the same period, AVV with different signs and chronologies are estimated from NCF calculated for various station pairs. The location in the horizontal plane of the velocity perturbations related with the AVV obtained from NCF is estimated by using an approach based on the radiative transfer approximation. Although their spatial resolution is limited, the resulting maps display velocity decrease in the upper part of the edifice in the period 12-25 October. After the eruption onset, the pattern of velocity perturbations is significantly modified with respect to the previous one. We interpret these velocity variations in the framework of a scenario of magmatic intrusion that integrates most observations. The perturbation of the stress field associated with the magma migration can induce both decrease and increase of the seismic velocity of rocks. Thus the detected AVVs can be considered as precursors of

  7. Volatile-induced magma differentiation in the plumbing system of Mt. Etna volcano (Italy): evidence from glass in tephra of the 2001 eruption

    Science.gov (United States)

    Ferlito, Carmelo; Viccaro, Marco; Cristofolini, Renato

    2008-02-01

    Mount Etna volcano was shaken during the summer 2001 by one of the most singular eruptive episodes of the last centuries. For about 3 weeks, several eruptive fractures developed, emitting lava flows and tephra that significantly modified the landscape of the southern flank of the volcano. This event stimulated the attention of the scientific community especially for the simultaneous emission of petrologically distinct magmas, recognized as coming from different segments of the plumbing system. A stratigraphically controlled sampling of tephra layers was performed at the most active vents of the eruption, in particular at the 2,100 m (CAL) and at the 2,550 m (LAG) scoria cones. Detailed scanning electron microscope and energy dispersive x-ray spectrometer (SEM-EDS) analyses performed on glasses found in tephra and comparison with lava whole rock compositions indicate an anomalous increase in Ti, Fe, P, and particularly of K and Cl in the upper layers of the LAG sequence. Mass balance and thermodynamic calculations have shown that this enrichment cannot be accounted for by “classical” differentiation processes, such as crystal fractionation and magma mixing. The analysis of petrological features of the magmas involved in the event, integrated with the volcanological evolution, has evidenced the role played by volatiles in controlling the magmatic evolution within the crustal portion of the plumbing system. Volatiles, constituted of H2O, CO2, and Cl-complexes, originated from a deeply seated magma body (DBM). Their upward migration occurred through a fracture network possibly developed by the seismic swarms during the period preceding the event. In the upper portion of the plumbing system, a shallower residing magma body (ABT) had chemical and physical conditions to receive migrating volatiles, which hence dissolved the mobilized elements producing the observed selective enrichment. This volatile-induced differentiation involved exclusively the lowest erupted

  8. Active Submarine Volcanoes and Electro-Optical Sensor Networks: The Potential of Capturing and Quantifying an Entire Eruptive Sequence at Axial Seamount, Juan de Fuca Ridge

    Science.gov (United States)

    Delaney, J. R.; Kelley, D. S.; Proskurowski, G.; Fundis, A. T.; Kawka, O.

    2011-12-01

    The NE Pacific Regional Scale Nodes (RSN) component of the NSF Ocean Observatories Initiative is designed to provide unprecedented electrical power and bandwidth to the base and summit of Axial Seamount. The scientific community is engaged in identifying a host of existing and innovative observation and measurement techniques that utilize the high-power and bandwidth infrastructure and its real-time transmission capabilities. The cable, mooring, and sensor arrays will enable the first quantitative documentation of myriad processes leading up to, during, and following a submarine volcanic event. Currently planned RSN instrument arrays will provide important and concurrent spatial and temporal constraints on earthquake activity, melt migration, hydrothermal venting behavior and chemistry, ambient currents, microbial community structure, high-definition (HD) still images and HD video streaming from the vents, and water-column chemistry in the overlying ocean. Anticipated, but not yet funded, additions will include AUVs and gliders that continually document the spatial-temporal variations in the water column above the volcano and the distal zones. When an eruption appears imminent the frequency of sampling will be increased remotely, and the potential of repurposing the tracking capabilities of the mobile sensing platforms will be adapted to the spatial indicators of likely eruption activity. As the eruption begins mobile platforms will fully define the geometry, temperature, and chemical-microbial character of the volcanic plume as it rises into the thoroughly documented control volume above the volcano. Via the Internet the scientific community will be able to witness and direct adaptive sampling in response to changing conditions of plume formation. A major goal will be to document the eruptive volume and link the eruption duration to the volume of erupted magma. For the first time, it will be possible to begin to quantify the time-integrated output of an underwater

  9. Stratigraphy, distribution, and evidence for mafic triggering of the ca. 8.5 ka Driftwood Pumice eruption, Makushin Volcano, Alaska, U.S.A

    Science.gov (United States)

    Lerner, Allan H.; Crowley, Peter D.; Nicolaysen, Kirsten P.; Hazlett, Richard W.

    2018-05-01

    Makushin Volcano on Unalaska Island, Alaska, threatens the Aleutian's largest population centers (Unalaska and Dutch Harbor), yet its eruption mechanisms are poorly known. This study presents a detailed stratigraphic and geochemical investigation of Makushin's most recent highly explosive event: the ca. 8.5 ka Driftwood Pumice eruption. The Driftwood Pumice has measured thicknesses of over 2.5 m, and isopach reconstructions estimate a total deposit volume of 0.3 to 1.6 km3, indicating a VEI 4-5 eruption. Proximal deposits consist of normally-graded, tan, dacitic to andesitic pumice, capped by a thinner dark layer of lower-silica andesitic scoria mixed with abundant lithic fragments. This stratigraphy is interpreted as an initial vent-clearing eruption that strengthened into a climactic ejection of pumice and ash and concluded with vent destabilization and the eruption of somewhat more mafic, gas-poor magma. Within the pumice, geochemical trends, disequilibrium mineral populations, and mineral zonation patterns show evidence of magma mixing between a bulk silicic magma and a mafic melt. Euhedral high-Ca plagioclase (An68-91) and high-Mg olivine (Fo69-77) phenocrysts are in disequilibrium with trachydacitic glass (65-68 wt% SiO2) and more abundant sodic plagioclase (An34-55), indicating the former originally crystallized in a more mafic melt. Tephra whole rock compositions become more mafic upwards through the deposit, ranging from a basal low-silica dacite to an andesite (total range: 60.8-63.3 wt% SiO2). Collectively, these compositional variations suggest magma mixing in the Driftwood Pumice (DWP) magma reservoir, with a systematic increase in the amount of a mafic component (up to 25%) upward through the deposit. Olivine-liquid and liquid-only thermometry indicate the mafic magma intruded at temperatures 140-200 °C hotter than the silicic magma. Diffusion rates calculated for 5-7 μm thick, lower-Mg rims on the olivine phenocrysts (Fo60 rim vs Fo76 bulk) suggest

  10. Magma dynamics within a basaltic conduit revealed by textural and compositional features of erupted ash: the December 2015 Mt. Etna paroxysms.

    Science.gov (United States)

    Pompilio, Massimo; Bertagnini, Antonella; Del Carlo, Paola; Di Roberto, Alessio

    2017-07-06

    In December 2015, four violent explosive episodes from Mt. Etna's oldest summit crater, the Voragine, produced eruptive columns extending up to 15 km a.s.l. and significant fallout of tephra up to a hundred km from the vent. A combined textural and compositional study was carried out on pyroclasts from three of the four tephra deposits sampled on the volcano at 6 to 14 km from the crater. Ash fractions (Φ = 1-2) were investigated because these grain sizes preserve the magma properties unmodified by post- emplacement processes. Results were used to identify processes occurring in the conduit during each single paroxysm and to understand how they evolve throughout the eruptive period. Results indicate that the magmatic column is strongly heterogeneous, mainly with respect to microlite, vescicle content and melt composition. During each episode, the heterogeneities can develop at time scales as short as a few tens of hours, and differences between distinct episodes indicate that the time scale for completely refilling the system and renewing magma is in the same order of magnitude. Our data also confirm that the number and shape of microlites, together with melt composition, have a strong control on rheological properties and fragmentation style.

  11. Total grain-size distribution of four subplinian-Plinian tephras from Hekla volcano, Iceland: Implications for sedimentation dynamics and eruption source parameters

    Science.gov (United States)

    Janebo, Maria H.; Houghton, Bruce F.; Thordarson, Thorvaldur; Bonadonna, Costanza; Carey, Rebecca J.

    2018-05-01

    The size distribution of the population of particles injected into the atmosphere during a volcanic explosive eruption, i.e., the total grain-size distribution (TGSD), can provide important insights into fragmentation efficiency and is a fundamental source parameter for models of tephra dispersal and sedimentation. Recent volcanic crisis (e.g. Eyjafjallajökull 2010, Iceland and Córdon Caulle 2011, Chile) and the ensuing economic losses, highlighted the need for a better constraint of eruption source parameters to be used in real-time forecasting of ash dispersal (e.g., mass eruption rate, plume height, particle features), with a special focus on the scarcity of published TGSD in the scientific literature. Here we present TGSD data associated with Hekla volcano, which has been very active in the last few thousands of years and is located on critical aviation routes. In particular, we have reconstructed the TGSD of the initial subplinian-Plinian phases of four historical eruptions, covering a range of magma composition (andesite to rhyolite), eruption intensity (VEI 4 to 5), and erupted volume (0.2 to 1 km3). All four eruptions have bimodal TGSDs with mass fraction of fine ash (primary fragmentation. Due to differences in plume height, this contrast is not seen in samples from individual sites, especially in the near field, where lapilli have a wider spatial coverage in the Plinian deposits. The distribution of pyroclast sizes in Plinian versus subplinian falls reflects competing influences of more efficient fragmentation (e.g., producing larger amounts of fine ash) versus more efficient particle transport related to higher and more vigorous plumes, displacing relatively coarse lapilli farther down the dispersal axis.

  12. Long-Term Volumetric Eruption Rates and Magma Budgets

    Energy Technology Data Exchange (ETDEWEB)

    Scott M. White Dept. Geological Sciences University of South Carolina Columbia, SC 29208; Joy A. Crisp Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA 91109; Frank J. Spera Dept. Earth Science University of California, Santa Barbara Santa Barbara, CA 93106

    2005-01-01

    A global compilation of 170 time-averaged volumetric volcanic output rates (Qe) is evaluated in terms of composition and petrotectonic setting to advance the understanding of long-term rates of magma generation and eruption on Earth. Repose periods between successive eruptions at a given site and intrusive:extrusive ratios were compiled for selected volcanic centers where long-term (>104 years) data were available. More silicic compositions, rhyolites and andesites, have a more limited range of eruption rates than basalts. Even when high Qe values contributed by flood basalts (9 ± 2 Å~ 10-1 km3/yr) are removed, there is a trend in decreasing average Qe with lava composition from basaltic eruptions (2.6 ± 1.0 Å~ 10-2 km3/yr) to andesites (2.3 ± 0.8 Å~ 10-3 km3/yr) and rhyolites (4.0 ± 1.4 Å~ 10-3 km3/yr). This trend is also seen in the difference between oceanic and continental settings, as eruptions on oceanic crust tend to be predominately basaltic. All of the volcanoes occurring in oceanic settings fail to have statistically different mean Qe and have an overall average of 2.8 ± 0.4 Å~ 10-2 km3/yr, excluding flood basalts. Likewise, all of the volcanoes on continental crust also fail to have statistically different mean Qe and have an overall average of 4.4 ± 0.8 Å~ 10-3 km3/yr. Flood basalts also form a distinctive class with an average Qe nearly two orders of magnitude higher than any other class. However, we have found no systematic evidence linking increased intrusive:extrusive ratios with lower volcanic rates. A simple heat balance analysis suggests that the preponderance of volcanic systems must be open magmatic systems with respect to heat and matter transport in order to maintain eruptible magma at shallow depth throughout the observed lifetime of the volcano. The empirical upper limit of Å`10-2 km3/yr for magma eruption rate in systems with relatively high intrusive:extrusive ratios may be a consequence of the fundamental parameters

  13. Geophysical Analysis of Young Monogenetic Volcanoes in the San Francisco Volcanic Field, Arizona

    Science.gov (United States)

    Rees, S.; Porter, R. C.; Riggs, N.

    2017-12-01

    The San Francisco Volcanic Field (SFVF), located in northern Arizona, USA, contains some of the youngest intracontinental volcanism within the United States and, given its recent eruptive history, presents an excellent opportunity to better understand how these systems behave. Geophysical techniques such as magnetics, paleomagnetics, and seismic refraction can be used to understand eruptive behavior and image shallow subsurface structures. As such, they present an opportunity to understand eruptive processes associated with the monogenetic volcanism that is common within the SFVF. These techniques are especially beneficial in areas where erosion has not exposed shallow eruptive features within the volcano. We focus on two volcanoes within the SFVF, Merriam Crater and Crater 120 for this work. These are thought to be some of the youngest volcanoes in the field and, as such, are well preserved. Aside from being young, they both exhibit interesting features such as multiple vents, apparent vent alignment, and lack of erosional features that are present at many of the other volcanoes in the SFVF, making them ideal for this work. Initial results show that shallow subsurface basaltic masses can be located using geophysical techniques. These masses are interpreted as dikes or lava flows that are covered by younger scoria. Propagating dikes drive eruptions at monogenetic volcanoes, which often appear in aligned clusters. Locating these features will further the understanding of how magma is transported and how eruptions may have progressed.

  14. The 1994-2001 eruptive period at Rabaul, Papua New Guinea: Petrological and geochemical evidence for basalt injections into a shallow dacite magma reservoir, and significant SO2 flux

    Science.gov (United States)

    Patia, H.; Eggins, S. M.; Arculus, R. J.; McKee, C. O.; Johnson, R. W.; Bradney, A.

    2017-10-01

    The eruptions that began at Rabaul Caldera on 19 September 1994 had two focal points, the vents Tavurvur and Vulcan, located 6 km apart on opposing sides of the caldera. Vulcan eruptives define a tight cluster of dacite compositions, whereas Tavurvur eruptives span an array from equivalent dacite compositions to mafic andesites. The eruption of geochemically and mineralogically identical dacites from both vents indicates sourcing from the same magma reservoir. This, together with previously reported H2O-CO2 volatile contents of dacite melt inclusions, a caldera-wide seismic low-velocity zone, and a seismically active caldera ring fault structure are consistent with the presence at 3-6 km depth of an extensive, tabular dacitic magma body having volume of about 15-150 km3. The Tavurvur andesites form a linear compositional array and have strongly bimodal phenocryst assemblages that reflect dacite hybridisation with a mafic basalt. The moderately large volume SO2 flux documented in the Tavurvur volcanic plume (and negligible SO2 flux in the Vulcan plume) combined with high dissolved S contents of basaltic melt inclusions trapped in olivine of Tavurvur eruptives, indicate that the amount of degassed basaltic magma was 0.1 km3 and suggest that the injection of this magma was confined to the Tavurvur-side (eastern to northeastern sector) of the caldera. Circumstantial evidence suggests that the eruption was triggered and evolved in response to a series of basaltic magma injections that may have commenced in 1971 and continued up until at least the start of the 1994 eruptions. The presence of zoned plagioclase phenocrysts reflecting older basalt-dacite interaction events (i.e. anorthite cores overgrown with thick andesine rims), evaluation of limited available data for the products of previous eruptions in 1878 and 1937-1943, and the episodic occurrence of major intra-caldera seismo-deformational events indicates that the shallow magma system at Rabaul Caldera is

  15. Orientation of the eruption fissures controlled by a shallow magma chamber in Miyakejima

    Directory of Open Access Journals (Sweden)

    Nobuo Geshi

    2016-11-01

    Full Text Available Orientation of the eruption fissures and composition of the lavas of the Miyakejima volcano indicate tectonic influence of a shallow magma chamber on the distribution of eruption fissures. We examined the distributions and magmatic compositions of 23 fissures that formed within the last 2800 years, based on a field survey and a new dataset of 14C ages. The dominant orientation of the eruption fissures in the central portion of the volcano was found to be NE-SW, which is perpendicular to the direction of regional maximum horizontal compressive stress (σHmax. Magmas that show evidences of magma mixing between basaltic and andesitic magmas erupted mainly from the eruption fissures with a higher offset angle from the regional σHmax direction. The presence of a shallow dike-shaped magma chamber controls the distribution of the eruption fissures. The injection of basaltic magma into the shallow andesitic magma chamber caused the temporal rise of internal magmatic pressure in the shallow magma chamber. Dikes extending from the andesitic magma chamber intrude along the local compressive stress field which is generated by the internal excess pressure of the andesitic magma chamber. As the result, the eruption fissures trend parallel to the elongation direction of the shallow magma chamber. Injection of basaltic magma into the shallow andesitic magma chamber caused the magma mixing. Some basaltic dikes from the deep-seated magma chamber reach the ground surface without intersection with the andesitic magma chamber. The patterns of the eruption fissures can be modified in the future as was observed in the case of the destruction of the shallow magma chamber during the 2000 AD eruption.

  16. A dynamical analysis of the seismic activity of Villarrica volcano (Chile) during September-October 2000

    Energy Technology Data Exchange (ETDEWEB)

    Tarraga, Marta [Departamento de Volcanologia. Museo Nacional de Ciencias Naturales, CSIC, Madrid (Spain)], E-mail: martat@mncn.csic.es; Carniel, Roberto [Dipartimento di Georisorse e Territorio, Universita di Udine, Via Cotonificio 114, 33100 Udine (Italy)], E-mail: roberto.carniel@uniud.it; Ortiz, Ramon; Garcia, Alicia [Departamento de Volcanologia. Museo Nacional de Ciencias Naturales, CSIC, Madrid (Spain); Moreno, Hugo [Observatorio Volcanologico de los Andes del Sur (OVDAS), Servicio Nacional de Geologia y Mineria de Chile (SERNAGEOMIN), Temuco, IX Region (Chile)

    2008-09-15

    Although Villarrica volcano in Chile is one of the most active in the southern Andes, the literature studying its seismic activity is relatively scarce. An interesting problem recently tackled is the possibility for a regional tectonic event to trigger a change in the volcanic activity of this basaltic to basaltic-andesitic volcano, which is in turn reflected in the time evolution of the properly volcanic seismicity, especially in the form of a continuous volcanic tremor. In this work, we conduct a spectral, dynamical and statistical analysis of the tremor recorded during September and October 2000, in order to characterize the anomalous behaviour of the volcano following a tectonic event recorded on 20th September 2000. The observed dynamical transitions are compared with remote sensing and visual observations describing the changes in the eruptive style of the volcano.

  17. A dynamical analysis of the seismic activity of Villarrica volcano (Chile) during September-October 2000

    International Nuclear Information System (INIS)

    Tarraga, Marta; Carniel, Roberto; Ortiz, Ramon; Garcia, Alicia; Moreno, Hugo

    2008-01-01

    Although Villarrica volcano in Chile is one of the most active in the southern Andes, the literature studying its seismic activity is relatively scarce. An interesting problem recently tackled is the possibility for a regional tectonic event to trigger a change in the volcanic activity of this basaltic to basaltic-andesitic volcano, which is in turn reflected in the time evolution of the properly volcanic seismicity, especially in the form of a continuous volcanic tremor. In this work, we conduct a spectral, dynamical and statistical analysis of the tremor recorded during September and October 2000, in order to characterize the anomalous behaviour of the volcano following a tectonic event recorded on 20th September 2000. The observed dynamical transitions are compared with remote sensing and visual observations describing the changes in the eruptive style of the volcano

  18. The Upper Toluca Pumice (10.5 kyr): Product of the last major Plinian eruption of Nevado de Toluca volcano, Central Mexico

    Science.gov (United States)

    Arce, J. L.; Macias, J. L.

    2001-12-01

    The last Plinian eruption at Nevado de Toluca volcano occurred 10.5 kyr ago producing the Upper Toluca Pumice (UTP). The UTP consists of four widespread fallout layers, interbedded with pyroclastic flow and surge deposits. The UTP event occurred under open vent conditions starting with hydromagmatic explosions that emplaced a hot pyroclastic flow (F0) on the east and northern flanks of the volcano. This explosion decompressed the magmatic system allowing almost immediately the formation of a 21 km high Plinian column that was dispersed by predominant winds 5o to the NE (PC0), which waned after some time. The eruption recommenced with the establishment of three Plinian columns that were dispersed in a NE-E direction, reaching heights of 39, 42, and 28 km, and deposited fall layers (PC1, PC2, and PC3) respectively. These Plinian columns were interrupted several times by phreatomagmatic and collapse events that emplaced pyroclastic flows (F1, F2, and F3) and surges (S1, and S2), mainly on the eastern and northern flanks of the volcano. The juvenile components of the UTP sequence are white, gray and banded pumice and gray juvenile lithic clasts both of dacitic composition (63-66wt% SiO2), and minor accidental lithics. The fallout deposits (PC1 and PC2) covered a minimum area of 2000 km2 with a total volume of 14 km3 (ca. 6 km3 D.R.E.); a mass eruption rate ranging from 3\\times107 to 5\\times108 kg/s and a total mass of 1.2\\times1013 kg. The UTP emplaced 1.5 m of gravel-sized pumice in the modern City of Toluca region and ca. 20 cm of fine sand in the Mexico City region. A future event of this magnitude might represent a major catastrophe to the 30 million people living in these cities and their surroundings.

  19. Eruption and degassing dynamics of the major August 2015 Piton de la Fournaise eruption

    Science.gov (United States)

    Di Muro, Andrea; Arellano, Santiago; Aiuppa, Alessandro; Bachelery, Patrick; Boudoire, Guillaume; Coppola, Diego; Ferrazzini, Valerie; Galle, Bo; Giudice, Gaetano; Gurioli, Lucia; Harris, Andy; Liuzzo, Marco; Metrich, Nicole; Moune, Severine; Peltier, Aline; Villeneuve, Nicolas; Vlastelic, Ivan

    2016-04-01

    Piton de la Fournaise (PdF) shield volcano is one of the most active basaltic volcanoes in the World with one eruption every nine months, on average. This frequent volcanic activity is broadly bimodal, with frequent small volume, short lived eruptions (de la Fournaise volcanological observatory (DOAS, MultiGaS, diffuse CO2 soil emissions). Regular lava and tephra sampling was also performed for geochemical and petrological analysis. The eruption was preceded by a significant increase in CO2 soil emissions at distal soil stations (ca. 15 km from the summit), with CO2 enrichment also being recorded at summit low temperature fumaroles. Eruptive products were spectacularly zoned, with plagioclase and pyroxene being abundant in the early erupted products and olivine being the main phase in the late-erupted lavas. Total gas emissions at the eruptive vent underwent a decrease during the first half of the eruption and then an increase, mirroring the time evolution of magma discharge rate (from 5-10 m3/s in September to 15-30 m3/s in late-October) and the progressive change in magma composition. In spite of significant evolution in magma and gas output, CO2/SO2 ratios in high temperature gases remained quite low (< 0.3) and with little temporal change. Geochemical data indicated that this relatively long-lived eruption corresponded to the progressive drainage of most of the shallow part of PdF plumbing system, triggered by a new pulse of deep magma. While erupted magma and high temperature gases were mostly provided by the shallow part of the system, distal sites and summit low temperature fumaroles recorded a deeper triggering mechanism.

  20. Waiting for a catastrophe from the eruption of Vesuvius or Phlegraean Fields volcanoes from the lack of autoregulation of the territories at risk

    Science.gov (United States)

    Dobran, F.

    2017-12-01

    Vesuvius and Phlegraean Fields volcanoes in the Bay of Naples produce large-scale eruptions with periods that range from centuries and several millennia for the former and tens of thousands of years for the latter. The city of Naples with one million inhabitants is situated between these volcanoes and is surrounded with another two million people. The eruptions of Vesuvius have during the past 2000 years destroyed many local communities and Naples is built on the Phlegraean Fields eruption deposits of 15,000 years ago. The Vesuvius Observatory monitors these volcanoes for seismicity, ground deformation, and gas emissions, and was an independent entity until 15 years ago when it passed under the control of the central government in Rome. The Observatory lost its ability to work directly with local authorities to make rapid decisions in case of volcanic emergencies and the central decision-making process risks to produce catastrophic consequences that are much worse than those from Katrina. As in the Katrina situation, the central authority risk management strategy is flawed because it is politicized and lacks the knowledge of the territory at risk for taking timely decisions. In the Neapolitan area there are many actors with different interests and without an effective collaboration between volunteers, businesses, social, cultural and professional groups there is an excessive likelihood that an emergency decision will end in tragedy. The evacuation plans for Neapolitan volcanoes call for relocating more than two million people and the key issues are who will give the evacuation order, on what basis, and when, because by waiting for too long can produce a catastrophe and by reacting too early can drain the national treasury and cause significant social and political consequences. To avoid this dilemma is to replace massive evacuation or deportation plans of geologists with a risk reduction strategy that produces an autoregulation of the territory that is resilient

  1. The 21,700 yr b.p. Lower Toluca Pumice Plinian Eruption of Nevado de Toluca Volcano (Mexico): Evidences of Magma Mixing Process as Triggering Mechanism.

    Science.gov (United States)

    Capra, L.; Arce, J.; Macias, J.

    2006-05-01

    Approximately 21,700 yr B.P., after a period of quiescence of 4800 yr, Nevado de Toluca volcano erupted, producing the Lower Toluca Pumice deposit. The activity generated a 24-km-high Plinian column that lasted ~11 h and dispersed 2.3 km3 (0.8 km3 dense rock equivalent) of tephra toward the NE, blanketing the Lerma basin, an area occupied today by the city of Toluca, with up to 5 cm of ash. Subsequent eruptive pulses were sub-Plinian in style, accompanied by phreatomagmatic explosions that emplaced surge deposits. Finally, the column collapsed toward the NE with the emplacement of a pumice flow deposit. The high vesicularity of the pumice from the basal Plinian layer, up to 83% by volume, indicates that exsolution was dominantly magmatic, and that pressurization of the magma chamber was probably due to a magma mixing process. Evidence for this includes the compositional range of juvenile products (from 55 to 65 wt% SiO2), as well as the presence of two types of plagioclase, one in equilibrium and the other one with disequilibrium textures and reverse zoning. This suggests input of an andesitic liquid into the dacitic magma chamber. Based on the eruptive record, the most likely future eruptive activity at Nevado de Toluca volcano will be Plinian. Although quiet for more than 3250 yr, Plinian activity could occur after a long period of quiescence, and it could represent a hazard for the entire Toluca basin, where more than one million people live today.

  2. A Sulfur Trigger for the 2017 Phreatomagmatic Eruption of Poás Volcano, Costa Rica? Insights from MultiGAS and Drone-based Gas Monitoring

    Science.gov (United States)

    de Moor, M. J.; Aiuppa, A.; Avard, G.; Diaz, J. A.; Corrales, E.; Rüdiger, J.; D´Arcy, F.; Fischer, T. P.; Stix, J.; Alan, A.

    2017-12-01

    In April 2017 Poás volcano entered its first magmatic eruption period of the 21st century. The initial explosive blasts produced eruption columns up to 4 km in height, destroyed the pre-existing dome that was emplaced during the last magmatic eruption in the 1950s, and showered the tourist observation deck with bombs. Over the following months, the hyperacid crater lake dried out and a transition from phreatomagmatic to strombolian activity was observed. Two vents now dominate the activity. The main vent (old dome site) produces gas, ash, and scoria. A second vent is located in the dried-out lake bed and produces a peculiar canary-yellow gas plume. A fixed MultiGAS instrument installed in the crater bottom recorded large changes in gas composition prior to the explosive eruptions. The station recorded a dramatic increase in SO2/CO2 from an average of 0.04 for March 2017 to an average of 7.4 the day before the first explosive eruption that occurred at 18:30 on 12 April. A simultaneous rapid decrease in H2S/SO2 from 2.7 to drones, allowing continued gas monitoring despite dangerous conditions. Extremely high SO2/CO2 of 33 was measured with drone-based miniaturized MultiGAS ("miniGAS") in May 2017, and the ratio has since dropped to 3, which are more typical values of high temperature magmatic gases at Poás. The SO2 flux from Poás was at record low levels (Drone-based SO2 DOAS ("DROAS") measurements indicate high SO2 fluxes from Poas of >2000 T/d since the explosive eruptions, indicating a strong magmatic source and open conduits. We attribute the unusually S-rich gas compositions observed at Poás prior to and during the initial eruptions to combustion of previously deposited hydrothermal sulfur. The very low gas flux from the system prior to the explosive eruptions suggests that this sulfur may have played a role in hydrothermal sealing, leading to pressurization of the magmatic-hydrothermal system and ultimately triggering phreatomagmatic eruptions and "top down

  3. Episode 49 of the Pu'u 'Ō'ō-Kūpaianaha eruption of Kilauea volcano-breakdown of a steady-state eruptive era

    Science.gov (United States)

    Mangan, M.T.; Heliker, C.C.; Mattox, T.N.; Kauahikaua, J.P.; Helz, R.T.

    1995-01-01

    The Pu'u 'O'o-Kupaianaha eruption (1983-present) is the longest lived rift eruption of either Kilauea or neighboring Mauna Loa in recorded history. The initial fissure opening in January 1983 was followed by three years of episodic fire fountaining at the Pu'u 'O'o vent on Kilauea's east rift zone ∼19km from the summit (episodes 4–47). These spectacular events gave way in July 1986 to five and a half years of near-continuous, low-level effusion from the Kupaianaha vent, ∼ 3km to the cast (episode 48). A 49th episode began in November 1991 with the opening of a new fissure between Pu'u 'O'o and Kupaianaha. This three week long outburst heralded an era of more erratic eruptive behavior characterized by the shut down of Kupaianaha in February 1992 and subsequent intermittent eruption from vents on the west flank of Pu'u 'O'o (episodes 50 and 51). The events occurring over this period are due to progressive shrinkage of the rift-zone reservoir beneath the eruption site, and had limited impact on eruption temperatures and lava composition.

  4. High-Mg basalts as a Signal of Magma System Replenishment at Lopevi Island, Vanuatu

    Science.gov (United States)

    Stewart, R. B.; Smith, I. E.; Turner, M. B.; Cronin, S. J.

    2007-05-01

    Lopevi is is a basalt to basaltic andesite island stratovolcano in central Vanuatu and is part of a long-lived, mature Island Arc chain. Central Vanuatu is tectonically influenced by the subduction of the D'Entrecasteaux zone. Primitive rock types that have been identified from the arc include picrites, ankaramites and high MgO basalts. High MgO rocks are generally considered to be a relatively rare component of arc-type magma suites but as detailed sequence sampling of individual volcanoes occurs, they have been identified more often. Here we report on the occurrence of high-Mg basalts in a sequence of lavas erupted in the last 100 years from Lopevi volcano. Activity at Lopevi is characteristically intermittent with eruptive sequences occurring over a c. 6 year period, separated by longer periods of repose. A major eruptive episode in 1939 caused evacuation of the island and the next eruptive episode in the 1960's also led to evacuation. The 1960's cycle of activity ended in 1982. The most recent phase of activity commenced in 1998 with a return to eruption of more siliceous, high alumina basaltic andesite. Geochemical data show that the 1960's lavas were different from those erupted earlier and later. They are olivine basalts with up to 9 wt percent MgO, 70 ppm Ni and 300 ppm Cr; Al2O3 content is about 12 wt percent. The 2003 lavas and pre-1960's lavas, in contrast, are basaltic andesites with c. 4 wt percent MgO, less than 25 ppm Ni, less than 100 ppm Cr and c. 20 wt percent Al2O3. The 1960's Lopevi sequence of eruptions represents an injection of a more primitive, high MgO magma at the end of a 21 year quiescent period after the major eruptions of 1939. Injection of small batches of more primitive magmas over decadal time periods at Lopevi marks the initiation of a new magmatic cycle. The occurrence of high MgO magmas as part of a cycle that includes typically low MgO arc type rocks demonstrates a consanguineous relationship and shows that high MgO arc type

  5. Chemical and Mineralogical Characterization of Acid-Sulfate Alteration of Basaltic Material on Mauna Kea Volcano, Hawaii: Jarosite and Hydrated Halloysite

    Science.gov (United States)

    Graff, Trevor G.; Morris, R. V.; Archilles C. N.; Agresti, D. G.; Ming, D. W.; Hamilton, J. C.; Mertzman, S. A.; Smith, J.

    2012-01-01

    Sulfates have been identified on the martian surface during robotic surface exploration and by orbital remote sensing. Measurements at Meridiani Planum (MP) by the Alpha-Particle X-ray Spectrometer (APXS) and Mossbauer (MB) instruments on the Mars Exploration Rover Opportunity document the presence of a ubiquitous sulfate-rich outcrop (20-40% SO3) that has jarosite as an anhydrous Fe3+-sulfate [1- 3]. The presence of jarosite implies a highly acidic (pH <3) formation environment [4]. Jarosite and other sulfate minerals, including kieserite, gypsum, and alunite have also been identified in several locations in orbital remote sensing data from the MEx OMEGA and MRO CRISM instruments [e.g. 5-8]. Acid sulfate weathering of basaltic materials is an obvious pathway for formation of sulfate-bearing phases on Mars [e.g. 4, 9, 10]. In order to constrain acid-sulfate pathways on Mars, we are studying the mineralogical and chemical manifestations of acid-sulfate alteration of basaltic compositions in terrestrial environments. We have previously shown that acidsulfate alteration of tephra under hydrothermal conditions on the Puu Poliahu cone (summit region of Mauna Kea volcano, Hawaii) resulted in jarosite and alunite as sulfate-bearing alteration products [11-14]. Other, more soluble, sulfates may have formed, but were leached away by rain and melting snow. Acidsulfate processes on Puu Poliahu also formed hematite spherules similar (except in size) to the hematite spherules observed at MP as an alteration product [14]. Phyllosilicates, usually smectite }minor kaolinite are also present as alteration products [13]. We discuss here an occurrence of acid-sulfate alteration on Mauna Kea Volcano (Hawaii). We report VNIR spectra (0.35-2.5 microns ASD spectrometer), Mossbauer spectra (MER-like ESPI backscatter spectrometer), powder XRD (PANalytical), and major element chemical compositions (XRF with LOI and Fe redox) for comparison to similar data acquired or to be acquired by MRO

  6. The Dynamics of an Ongoing Andesitic Eruption: What We Have Learned From Surface Deformation at Soufriere Hills Volcano, Montserrat, BWI

    Science.gov (United States)

    Mattioli, G.; Herd, R.; Aponte, M.; Dixon, T.; Jansma, P.; Smith, A.

    2002-05-01

    The Soufriere Hills volcano (SHV) CGPS network consists of 6 dual-frequency code-phase receivers, with Dorn-Margolin choke-ring antennae, which share a common RF telemetry network. All GPS data were processed using GIPSY-OASISII to obtain free-network point positions using final orbit, clock, and earth orientation parameters from JPL. Positions were recast into ITRF97 and these positions were used to calculate component velocities. Final site velocities for each site are reported relative a fixed Caribbean reference frame (DeMets et al., 2000). By examination of the individual time series of both the campaign and continuous sites, we have been able to divide the ground deformation observations in several distinct phases, correlated with the type of eruptive behavior manifested at the surface. While the CGPS data is limited in space, and has some important and substantial gaps because of equipment failures (some of which could not be fixed due to hazardous eruptive activity), we find that the entire GPS data set can be usefully discussed in terms of three distinct periods: (1) late 1995 to the end of 1997; (2) early 1998 to late 1999; and (3) early 2000 to the present. The primary criterion used for this distinction is the vertical velocity field. During the first period (1995-1997), all stations show strong subsidence as a function of radial distance from the SH dome (Mattioli et al., 1998). Although there is a data gap between late fall 1997 and the re-establishment of the CGPS network in early 1998, all sites show inflation at about half the rate observed for the previous period of subsidence. Thus periods of significant surface outflow (1995-1997) are strongly correlated with surface subsidence, while periods of no apparent surface magma flux are strongly correlated with ground surface inflation. Although the exact timing is somewhat equivocal, subsidence resumed at all CGPS sites just prior to the emergence of the Millennium Dome in late November to Early

  7. Space imaging of a 300 years old cooling magma chamber: Timanfaya volcano (Lanzarote, Canary Islands)

    Science.gov (United States)

    Gonzalez, P. J.; Tiampo, K. F.

    2010-12-01

    Multitemporal space radar interferometry analysis between 1992 and 2000 revealed significantly deforming areas with a magnitude of 4-6 mm/yr of lengthening in the radar line of sight at Timanfaya volcano (Lanzarote, Canary Island). Timanfaya volcano erupted almost 300 years ago (1730-1736), along a 15 km-long fissure-feeding magmatic system, resulting in the longest and largest historical eruption of the Canarian archipelago to date, with >1 km3 of erupted basaltic lavas covering 200 km2. High surficial temperature (600 degrees-C at 13 m) and high heat flux measurements (150 mW/m2) suggest that the remnants of the magmatic chamber that fed the 1730-1736 are still partly molten. Here, we present preliminary models of the subsidence taking into account all available data, including geophysical data (heat flux, seismic, magnetotelluric and gravity), the geochemistry of freshly erupted lavas, upper mantle and crustal xenoliths, and structural geology.

  8. Late Holocene volcanism at Medicine Lake Volcano, northern California Cascades

    Science.gov (United States)

    Donnelly-Nolan, Julie M.; Champion, Duane E.; Grove, Timothy L.

    2016-05-23

    Late Holocene volcanism at Medicine Lake volcano in the southern Cascades arc exhibited widespread and compositionally diverse magmatism ranging from basalt to rhyolite. Nine well-characterized eruptions have taken place at this very large rear-arc volcano since 5,200 years ago, an eruptive frequency greater than nearly all other Cascade volcanoes. The lavas are widely distributed, scattered over an area of ~300 km2 across the >2,000-km2 volcano. The eruptions are radiocarbon dated and the ages are also constrained by paleomagnetic data that provide strong evidence that the volcanic activity occurred in three distinct episodes at ~1 ka, ~3 ka, and ~5 ka. The ~1-ka final episode produced a variety of compositions including west- and north-flank mafic flows interspersed in time with fissure rhyolites erupted tangential to the volcano’s central caldera, including the youngest and most spectacular lava flow at the volcano, the ~950-yr-old compositionally zoned Glass Mountain flow. At ~3 ka, a north-flank basalt eruption was followed by an andesite eruption 27 km farther south that contains quenched basalt inclusions. The ~5-ka episode produced two caldera-focused dacitic eruptions. Quenched magmatic inclusions record evidence of intrusions that did not independently reach the surface. The inclusions are present in five andesitic, dacitic, and rhyolitic host lavas, and were erupted in each of the three episodes. Compositional and mineralogic evidence from mafic lavas and inclusions indicate that both tholeiitic (dry) and calcalkaline (wet) parental magmas were present. Petrologic evidence records the operation of complex, multi-stage processes including fractional crystallization, crustal assimilation, and magma mixing. Experimental evidence suggests that magmas were stored at 3 to 6 km depth prior to eruption, and that both wet and dry parental magmas were involved in generating the more silicic magmas. The broad distribution of eruptive events and the relative

  9. Self-potential chenges associated with volcanic activity: Short-term signals associated with March 9, 1998 eruption on La Fournaise volcano (Reunion Island

    Directory of Open Access Journals (Sweden)

    P. Yvetot

    2001-06-01

    Full Text Available After six years of quietness La Fournaise volcano entered into activity on March 9, 1998. Fissures opened gradually downwards on the northern flank of the cone. Two cones, Kapor and Krafft built, from which lava poured until September 1998. Several other vents opened during this eruption. Mappings, surveys, and continuous recordings of the Self-Potential have been performed on the volcano for twenty years. SP mappings disclose the variability of large scale SP anomalies due to the modification of the hydrothermal system over some ten years. Most of the eruptions take place along a Main Fracture Zone (MFZ in which ground water flows prevail. SP measurements have also regularly been made on the northern flank of the cone, on a west-east profile crossing the MFZ. Between 1981 and 1992 an enlargement and a shift of the MFZ to the east are evidenced. In particular, the eastern fissural axis trending N35°E could be related to the possible collapse of the east flank of the volcano. After a decrease between 1992 and 1997, the SP anomaly was enhanced again by the 1998 eruption. Short scale, about 250 m wide, 750 mV amplitude anomalies were superimposed on a large scale one, 2500 m wide, and about 250 mV in amplitude. For several years, continuous stations have been measuring the electric field along two directions, with a 20 s sampling, in order to record the genesis of SP signals associated with the volcanic activity. Oscillations belonging to the ULF band were evidenced several days before the 1988 eruption, some of them at 9 km from the summit. Their amplitude reached several tens mV/km. These oscillations sometimes present a phase lag from one station to another; they progressively shift towards the location of the future effusive vents. The polarisation of the oscillations is similar to the polarisation of longer SP variations (1 h period or more and are correlated with the structural anisotropy. Finally, during the last hours preceding the

  10. Archeomagnetic dating of the eruption of Xitle volcano (Mexico) from a reappraisal of the paleointensity with the MSP-DSC protocol.

    Science.gov (United States)

    Bravo-Ayala, Manuel; Camps, Pierre; Alva-Valdivia, Luis; Poidras, Thierry; Nicol, Patrick

    2014-05-01

    The Xitle volcano, located south of Mexico City, is a monogenic volcano that has provided seven lava flows in a time interval of a few years. The age of these eruptions, estimated by means of radiocarbon dates on charcoal from beneath the flows, is still very poorly known, ranging from 4765±90 BC to 520±200 AD (see Siebe, JVGR, 2000 for a review). This lava field was emplaced over the archaeological city of Cuicuilco whose occupation is estimated between 700 BC and 150 AD. Thus a question is still pending: Is the downfall of Cuicuilco directly attributable to the eruption of Xitle? It seems that the answer is negative if we consider the latest radiocarbon dating by Siebe (2000), which sets the age of the eruption to 280±35 AD, that is significantly younger to the abandon of the city. Because this new age has direct implications on the history of the movements of ancient populations in the Central Valley of Mexico, we propose in the present study to check this estimate by archaeomagnetic dating. Xitle lava have been investigated several times for paleomagnetism, including directional analyses and absolute paleointensity determinations (see Alva, EPS, 57, 839-853, 2005 for a review). The characteristic Remanence direction is precisely determined. It is much more difficult to estimate precisely the paleointensity with the Thellier method: values scatter between 40 and 90 μT in a single flow (Alva, 2005). We propose here to estimate the paleointensity by means of the MSP-DSC protocol (Fabian and Leonhardt, 2010) with the new ultra-fast heating furnace FUReMAG developed in Montpellier (France). The sampling was performed along four profiles, one vertical through the entire thickness of the flow and three horizontal (at the top, middle and the bottom of the flow). Our preliminary results show that there is no difference between the values found in the different profiles, all providing a value around 62 μT. The comparison of our results (Dec = 359.0°, Inc = 35.2

  11. Self-potential changes associated with volcanic activity. Short-term signals associated with March 9, 1998 eruption on La Fournaise volcano (Reunion Island)

    Energy Technology Data Exchange (ETDEWEB)

    Zlotniki, J. [UMR6530, Clermont-Ferrand (France); Institut de Physique du Globe de Paris, Laboratoire de Geomagnetisme, Paris (France); Le Mouel, J. L. [Institut de Physique du Globe de Paris, Laboratoire de Geomagnetisme, Paris (France); Sasai, Y. [Tokyo Univ., Tokyo (Italy). Earthquake Research Institute; Yvetot, P.; Ardisson, M. H. [UMR6524, Laboratoire de Geophysique d' Orleans, Orleans (France)

    2001-04-01

    After six years of quietness La Fournaise volcano entered into activity on March 9, 1998. Fissures opened gradually downwards on the northern flank of the cone. Two cones, Kapor and Krafft built, from which lava poured until September 1998. Several other vents opened during this eruption. Mappings, surveys, and continuous recordings of the Self-Potential have been performed on the volcano for twenty years. SP mappings disclose the variability of large scale SP anomalies due to the modification of the hydrothermal system over some ten years. Most of the eruptions take place along a Main Fracture Zone (MFZ), in which ground water flows prevail. SP measurements have also regularly been made on the northern flank of the cone, on a west-east profile crossing the MFZ. Between 1981 and 1992 an enlargement and a shift of the MFZ to the east are evidenced. In particular, the eastern fissural axis trending N35{sup 0}E could be related to the possible collapse of the east flank of the volcano. After a decrease between 1992 and 1997, the SP anomaly was enhanced again by the 1998 eruption. Short scale, about 250 m wide, 750 mV amplitude anomalies were superimposed on a large scale one, 2500 m wide, and about 250 mV in amplitude. For several years, continuous stations have been measuring the electric field along two directions, with a 20 s sampling, in order to record the genesis of SP signals associated with the volcanic activity. Oscillations belonging to the ULF band were evidenced several days before the 1988 eruption, some of them at 9 km from the summit. Their amplitude reached several tens mV/km. These oscillations sometimes present a phase lag from summit. Their amplitude reached several tens mV/km. These oscillations sometimes present a phase lag from one station to another; they progressively shift towards the location of the future effusive vents. The polarisation of the oscillations is similar to the polarisation of longer SP variations (1 h period or more) and are

  12. Classification of Volcanic Eruptions on Io and Earth Using Low-Resolution Remote Sensing Data

    Science.gov (United States)

    Davies, A. G.; Keszthelyi, L. P.

    2005-01-01

    Two bodies in the Solar System exhibit high-temperature active volcanism: Earth and Io. While there are important differences in the eruptions on Earth and Io, in low-spatial-resolution data (corresponding to the bulk of available and foreseeable data of Io), similar styles of effusive and explosive volcanism yield similar thermal flux densities. For example, a square metre of an active pahoehoe flow on Io looks very similar to a square metre of an active pahoehoe flow on Earth. If, from observed thermal emission as a function of wavelength and change in thermal emission with time, the eruption style of an ionian volcano can be constrained, estimates of volumetric fluxes can be made and compared with terrestrial volcanoes using techniques derived for analysing terrestrial remotely-sensed data. In this way we find that ionian volcanoes fundamentally differ from their terrestrial counterparts only in areal extent, with Io volcanoes covering larger areas, with higher volumetric flux. Io outbursts eruptions have enormous implied volumetric fluxes, and may scale with terrestrial flood basalt eruptions. Even with the low-spatial resolution data available it is possible to sometimes constrain and classify eruption style both on Io and Earth from the integrated thermal emission spectrum. Plotting 2 and 5 m fluxes reveals the evolution of individual eruptions of different styles, as well as the relative intensity of eruptions, allowing comparison to be made from individual eruptions on both planets. Analyses like this can be used for interpretation of low-resolution data until the next mission to the jovian system. For a number of Io volcanoes (including Pele, Prometheus, Amirani, Zamama, Culann, Tohil and Tvashtar) we do have high/moderate resolution imagery to aid determination of eruption mode from analyses based only on low spatial-resolution data.

  13. Cotectic proportions of olivine and spinel in olivine-tholeiitic basalt and evaluation of pre-eruptive processes

    Science.gov (United States)

    Roeder, Peter; Gofton, Emma; Thornber, Carl

    2006-01-01

    The volume %, distribution, texture and composition of coexisting olivine, Cr-spinel and glass has been determined in quenched lava samples from Hawaii, Iceland and mid-oceanic ridges. The volume ratio of olivine to spinel varies from 60 to 2800 and samples with >0·02% spinel have a volume ratio of olivine to spinel of approximately 100. A plot of wt % MgO vs ppm Cr for natural and experimental basaltic glasses suggests that the general trend of the glasses can be explained by the crystallization of a cotectic ratio of olivine to spinel of about 100. One group of samples has an olivine to spinel ratio of approximately 100, with skeletal olivine phenocrysts and small (within olivine phenocrysts is thought to be due to skeletal olivine phenocrysts coming into physical contact with spinel by synneusis during the chaotic conditions of ascent and extrusion. A second group of samples tend to have large olivine phenocrysts relatively free of included spinel, a few large (>100 μm) spinel crystals that show evidence of two stages of growth, and a volume ratio of olivine to spinel of 100 to well over 1000. The olivine and spinel in this group have crystallized more slowly with little physical interaction, and show evidence that they have accumulated in a magma chamber.

  14. Evolution of {sup 222} Rn and chemical species related with eruptive processes of the Popocatepetl volcano; Evolucion de {sup 222} Rn y especies quimicas relacionadas con procesos eruptivos del volcan Popocatepetl

    Energy Technology Data Exchange (ETDEWEB)

    Aranda, P.; Ceballos, S.; Cruz, D.; Hernandez, A.; Lopez, R.; Pena, P.; Salazar, S.; Segovia, N.; Tamez, E. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The {sup 222} Rn monitoring in the Popocatepetl volcano was initiated on 1993. At December 21, 1994 it is initiated an eruptive stage in the volcano with gas emission, ashes and the lava dome formation on the crater at middle 1996. During all this time it has been determined radon concentrations on soils with active and passive detectors. In this work the changes in radon contents are reported also the physicochemical parameters in spring water related with the volcanic building associated to the recent activity of the volcano. (Author)

  15. Petrology of dune sand derived from basalt on the Ka'u Desert, Hawaii

    Science.gov (United States)

    Gooding, J. L.

    1982-01-01

    Dune sand from the Ka'u Desert, southwest flank of Kilauea volcano, Hawaii, is moderately well-sorted (median = 1.60 Phi, deviation = 0.60, skewness = 0.25, kurtosis = 0.68) and composed mostly of frosted subangular particles of basalt glass ('unfractionated' olivine-normative tholeitte), olivine, lithic fragments (subophitic and intersertal basalts; magnetite-ilmenite-rich basalts), reticular basalt glass, magnetite, ilmenite, and plagioclase, in approximately that order of abundance. Quantitative lithological comparison of the dune sand with sand-sized ash from the Keanakakoi Formation supports suggestions that the dune sand was derived largely from Keanakakoi ash. The dune sand is too well sorted to have been emplaced in its present form by base-surge but could have evolved by post-eruption reworking of the ash.

  16. Elastic energy release in great earthquakes and eruptions

    Directory of Open Access Journals (Sweden)

    Agust eGudmundsson

    2014-05-01

    Full Text Available The sizes of earthquakes are measured using well-defined, measurable quantities such as seismic moment and released (transformed elastic energy. No similar measures exist for the sizes of volcanic eruptions, making it difficult to compare the energies released in earthquakes and eruptions. Here I provide a new measure of the elastic energy (the potential mechanical energy associated with magma chamber rupture and contraction (shrinkage during an eruption. For earthquakes and eruptions, elastic energy derives from two sources: (1 the strain energy stored in the volcano/fault zone before rupture, and (2 the external applied load (force, pressure, stress, displacement on the volcano/fault zone. From thermodynamic considerations it follows that the elastic energy released or transformed (dU during an eruption is directly proportional to the excess pressure (pe in the magma chamber at the time of rupture multiplied by the volume decrease (-dVc of the chamber, so that . This formula can be used as a basis for a new eruption magnitude scale, based on elastic energy released, which can be related to the moment-magnitude scale for earthquakes. For very large eruptions (>100 km3, the volume of the feeder-dike is negligible, so that the decrease in chamber volume during an eruption corresponds roughly to the associated volume of erupted materials , so that the elastic energy is . Using a typical excess pressures of 5 MPa, it is shown that the largest known eruptions on Earth, such as the explosive La Garita Caldera eruption (27-28 million years ago and largest single (effusive Colombia River basalt lava flows (15-16 million years ago, both of which have estimated volumes of about 5000 km3, released elastic energy of the order of 10EJ. For comparison, the seismic moment of the largest earthquake ever recorded, the M9.5 1960 Chile earthquake, is estimated at 100 ZJ and the associated elastic energy release at 10EJ.

  17. Carbonate Cements from the Sverrefjell and Sigurdfjell Volcanoes, Svalbard Norway: Analogs for Martian Carbonates

    Science.gov (United States)

    Blake, D. F.; Treiman, A. H.; Morris, R.; Bish, D.; Amundsen, H.E.F.; Steele, A.

    2011-01-01

    The Sverrefjell and Sigurdfjell volcanic complexes erupted at 1Ma on Svalbard, Norway. Sverrefjell is a cone of cinders, pillow lavas and dikes; Sigurdfjell is elongate in outcrop and may represent a fissure eruption [1]. The lavas of both volcanos were volatile rich. The volcanos erupted under ice and were subsequently dissected by glaciation (glacial eratics are present on most of Sverrefjell, even on its summit). Eruption beneath an ice sheet is inferred, based on the presence of pillow lavas from near sea level to 1000 m above sea level. Sverrefjell contains the largest fraction of ultramafic xenoliths of any volcanic complex in the world, in places accounting for as much as 50% of the volume of the outcrop. The Sverrefjell and Sigurdfell volcanos contain carbonate cements of several varieties: (1) Amundsen [2] reported Mg-Fe-rich carbonate in sub-mm globules in basalts and ultramafic xenoliths from the volcanos. These globules are the best terrestrial analogs to the carbonate globules in the Mars meteorite ALH84001 [3]. (2) Thick (1-3 cm) coatings of carbonate cement drape the walls of vertical volcanic pipes or conduits on the flanks and near the present summit of Sverrefjell. Similar occurrences are found on Sigurdfjell. (3) Breccia-filled pipes or vents occur on Sverrefjell and Siggurdfjell in which the breccia fragments are cemented by carbonate. The fragments themselves commonly contain carbonate globules similar to those found in the basalts and ultramafic xenoliths.

  18. Field and experimental constraints on the rheology of arc basaltic lavas: the January 2014 Eruption of Pacaya (Guatemala)

    Science.gov (United States)

    Soldati, A.; Sehlke, A.; Chigna, G.; Whittington, A.

    2016-06-01

    We estimated the rheology of an active basaltic lava flow in the field, and compared it with experimental measurements carried out in the laboratory. In the field we mapped, sampled, and recorded videos of the 2014 flow on the southern flank of Pacaya, Guatemala. Velocimetry data extracted from videos allowed us to determine that lava traveled at ˜2.8 m/s on the steep ˜45° slope 50 m from the vent, while 550 m further downflow it was moving at only ˜0.3 m/s on a ˜4° slope. Estimates of effective viscosity based on Jeffreys' equation increased from ˜7600 Pa s near the vent to ˜28,000 Pa s downflow. In the laboratory, we measured the viscosity of a representative lava composition using a concentric cylinder viscometer, at five different temperatures between 1234 and 1199 °C, with crystallinity increasing from 0.1 to 40 vol%. The rheological data were best fit by power law equations, with the flow index decreasing as crystal fraction increased, and no detectable yield strength. Although field-based estimates are based on lava characterized by a lower temperature, higher crystal and bubble fraction, and with a more complex petrographic texture, field estimates and laboratory measurements are mutually consistent and both indicate shear-thinning behavior. The complementary field and laboratory data sets allowed us to isolate the effects of different factors in determining the rheological evolution of the 2014 Pacaya flows. We assess the contributions of cooling, crystallization, and changing ground slope to the 3.7-fold increase in effective viscosity observed in the field over 550 m, and conclude that decreasing slope is the single most important factor over that distance. It follows that the complex relations between slope, flow velocity, and non-Newtonian lava rheology need to be incorporated into models of lava flow emplacement.

  19. Collateral variations between the concentrations of mercury and other water soluble ions in volcanic ash samples and volcanic activity during the 2014-2016 eruptive episodes at Aso volcano, Japan

    Science.gov (United States)

    Marumoto, Kohji; Sudo, Yasuaki; Nagamatsu, Yoshizumi

    2017-07-01

    During 2014-2016, the Aso volcano, located in the center of the Kyushu Islands, Japan, erupted and emitted large amounts of volcanic gases and ash. Two episodes of the eruption were observed; firstly Strombolian magmatic eruptive episodes from 25 November 2014 to the middle of May 2015, and secondly phreatomagmatic and phreatic eruptive episodes from September 2015 to February 2016. Bulk chemical analyses on total mercury (Hg) and major ions in water soluble fraction in volcanic ash fall samples were conducted. During the Strombolian magmatic eruptive episodes, total Hg concentrations averaged 1.69 ± 0.87 ng g- 1 (N = 33), with a range from 0.47 to 3.8 ng g- 1. In addition, the temporal variation of total Hg concentrations in volcanic ash varied with the amplitude change of seismic signals. In the Aso volcano, the volcanic tremors are always observed during eruptive stages and quiet interludes, and the amplitudes of tremors increase at eruptive stages. So, the temporal variation of total Hg concentrations could provide an indication of the level of volcanic activity. During the phreatomagmatic and phreatic eruptive episodes, on the other hand, total Hg concentrations in the volcanic ash fall samples averaged 220 ± 88 ng g- 1 (N = 5), corresponding to 100 times higher than those during the Strombolian eruptive episode. Therefore, it is possible that total Hg concentrations in volcanic ash samples are largely varied depending on the eruptive type. In addition, the ash fall amounts were also largely different among the two eruptive episodes. This can be also one of the factors controlling Hg concentrations in volcanic ash.

  20. Influences on the variability of eruption sequences and style transitions in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Kereszturi, Gábor; Németh, Károly; Cronin, Shane J.; Procter, Jonathan; Agustín-Flores, Javier

    2014-10-01

    Monogenetic basaltic volcanism is characterised by a complex array of eruptive behaviours, reflecting spatial and temporal variability of the magmatic properties (e.g. composition, eruptive volume, magma flux) as well as environmental factors at the vent site (e.g. availability of water, country rock geology, faulting). These combine to produce changes in eruption style over brief periods (minutes to days) in many eruption episodes. Monogenetic eruptions in some volcanic fields often start with a phreatomagmatic vent-opening phase that later transforms into "dry" magmatic explosive or effusive activity, with a strong variation in the duration and importance of this first phase. Such an eruption sequence pattern occurred in 83% of the known eruption in the 0.25 My-old Auckland Volcanic Field (AVF), New Zealand. In this investigation, the eruptive volumes were compared with the sequences of eruption styles preserved in the pyroclastic record at each volcano of the AVF, as well as environmental influencing factors, such as distribution and thickness of water-saturated semi- to unconsolidated sediments, topographic position, distances from known fault lines. The AVF showed that there is no correlation between ejecta ring volumes and environmental influencing factors that is valid for the entire AVF. In contrary, using a set of comparisons of single volcanoes with well-known and documented sequences, resultant eruption sequences could be explained by predominant patterns of the environment in which these volcanoes were erupted. Based on the spatial variability of these environmental factors, a first-order susceptibility hazard map was constructed for the AVF that forecasts areas of largest likelihood for phreatomagmatic eruptions by overlaying topographical and shallow geological information. Combining detailed phase-by-phase breakdowns of eruptive volumes and the event sequences of the AVF, along with the new susceptibility map, more realistic eruption scenarios can be

  1. Deformation and rupture of the oceanic crust may control growth of Hawaiian volcanoes.

    Science.gov (United States)

    Got, Jean-Luc; Monteiller, Vadim; Monteux, Julien; Hassani, Riad; Okubo, Paul

    2008-01-24

    Hawaiian volcanoes are formed by the eruption of large quantities of basaltic magma related to hot-spot activity below the Pacific Plate. Despite the apparent simplicity of the parent process--emission of magma onto the oceanic crust--the resulting edifices display some topographic complexity. Certain features, such as rift zones and large flank slides, are common to all Hawaiian volcanoes, indicating similarities in their genesis; however, the underlying mechanism controlling this process remains unknown. Here we use seismological investigations and finite-element mechanical modelling to show that the load exerted by large Hawaiian volcanoes can be sufficient to rupture the oceanic crust. This intense deformation, combined with the accelerated subsidence of the oceanic crust and the weakness of the volcanic edifice/oceanic crust interface, may control the surface morphology of Hawaiian volcanoes, especially the existence of their giant flank instabilities. Further studies are needed to determine whether such processes occur in other active intraplate volcanoes.

  2. Recolonization of the intertidal and shallow subtidal community following the 2008 eruption of Alaska’s Kasatochi Volcano

    Science.gov (United States)

    Jewett, S.C.; Drew, Gary S.

    2014-01-01

    The intertidal and nearshore benthic communities of Kasatochi Island are described following a catastrophic volcanic eruption in 2008. Prior to the eruption, the island was surrounded by a dense bed of canopy-forming dragon kelp Eualaria fistulosa which supported a productive nearshore community. The eruption extended the coastline of the island approximately 400 m offshore to roughly the 20 m isobath. One year following the eruption a reconnaissance survey found the intertidal zone devoid of life. Subtidally, the canopy kelp, as well as limited understory algal species and associated benthic fauna on the hard substratum, were buried by debris from the eruption. The resulting substrate was comprised almost entirely of medium and coarse sands with a depauperate benthic community. Comparisons of habitat and biological communities with other nearby Aleutian Islands and the Icelandic submarine volcanic eruption of Surtsey confirm dramatic reductions in flora and fauna consistent with the initial stages of recovery from a large-scale disturbance event. Four and five years following the eruption brief visits revealed dramatic intertidal and subtidal recolonization of the flora and fauna in some areas. Signs of nesting and fledging of young pigeon guillemots Cepphus columba suggest that the recovery of the nearshore biota may have begun affecting higher trophic levels. Recolonization or lack thereof was tied to bathymetric changes from coastal and nearshore erosion over the study period.

  3. Volcanoes: Coming Up from Under.

    Science.gov (United States)

    Science and Children, 1980

    1980-01-01

    Provides specific information about the eruption of Mt. St. Helens in March 1980. Also discusses how volcanoes are formed and how they are monitored. Words associated with volcanoes are listed and defined. (CS)

  4. C-14 dating of volcanic eruptions. Application to the dating of a volcano of the french Massif Central

    Energy Technology Data Exchange (ETDEWEB)

    Delibrias, G; Labeyrie, J; Pelletier, H; Perquis, M Th [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The volcanic eruption of Puy-de-la-Vache (Puy-de-Dome) has been dated by means of age measurements carried out on charcoal fragments found under a flow of lava; the result is 7650 {+-} 350 years. (author) [French] Une mesure d'age effectuee sur des fragments de charbons de bois trouves sous une coulee de lave, au Puy-de-la-Vache (Puy-de-Dome) a permis de dater cette eruption; le resultat est de 7650 {+-} 350 ans. (auteur)

  5. Dynamic behavior of Kilauea Volcano and its relation to hydrothermal systems and geothermal energy

    Science.gov (United States)

    Kauhikaua, Jim; Moore, R.B.; ,

    1993-01-01

    Exploitation of hydrothermal systems on active basaltic volcanoes poses some unique questions about the role of volcanism and hydrothermal system evolution. Volcanic activity creates and maintains hydrothermal systems while earthquakes create permeable fractures that, at least temporarily, enhance circulation. Magma and water, possibly hydrothermal water, can interact violently to produce explosive eruptions. Finally, we speculate on whether volcanic behavior can be affected by high rates of heat extraction.

  6. Managing public and media response to a reawakening volcano: lessons from the 2004 eruptive activity of Mount St. Helens: Chapter 23 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    Science.gov (United States)

    Frenzen, Peter M.; Matarrese, Michael T.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Volcanic eruptions and other infrequent, large-scale natural disturbances pose challenges and opportunities for public-land managers. In the days and weeks preceding an eruption, there can be considerable uncertainty surrounding the magnitude and areal extent of eruptive effects. At the same time, public and media interest in viewing developing events is high and concern for public safety on the part of local land managers and public safety officials is elevated. Land managers and collaborating Federal, State, and local officials must decide whether evacuations or restrictions to public access are necessary, the appropriate level of advance preparation, and how best to coordinate between overlapping jurisdictions. In the absence of a formal Federal or State emergency declaration, there is generally no identified source of supplemental funding for emergency-response preparation or managing extraordinary public and media response to developing events. In this chapter, we examine responses to escalating events that preceded the 2004 Mount St. Helens eruption and changes in public perception during the extended period of the largely nonexplosive, dome-building eruption that followed. Lessons learned include the importance of maintaining up-to-date emergency-response plans, cultivating close working relationships with collaborating agencies, and utilizing an organized response framework that incorporates clearly defined roles and responsibilities and effective communication strategies.

  7. Mutnovsky and Gorely Volcanoes, Kamchatka as Planetary Analogue Sites

    Science.gov (United States)

    Evdokimova, N.; Izbekov, P. E.; Krupskaya, V.; Muratov, A.

    2016-12-01

    Recent advances in Mars studies suggest that volcanic rocks, which dominated Martian surface in the past, have been exposed to alteration processes in a water-bearing environment during Noachian, before 3.7 Gy. Active volcanoes on Earth are natural laboratories, where volcanic processes and their associated products can be studied directly. This is particularly important for studying of alteration of juvenile volcanic products in aqueous environment because of the transient nature of some of the alteration products, as well as the environment itself. Terrestrial analogues help us to better understand processes on Mars; they are particularly useful as a test sites for preparation to future Mars missions. In this presentation we describe planetary analogue sites at Mutnovsky and Gorely Volcanoes in Kamchatka, which might be helpful for comparative studies and preparation to future Mars missions. Mutnovsky and Gorely Volcanoes are located 75 km south of Petropavlovsk-Kamchatsky, in the southern part of the Kamchatka Peninsula, Russia. The modern volcanic landscape in the area was shaped in Holocene (recent 10,000 years) through intermittent eruption of magmas ranging in composition from basalts to dacites and rhyodacites, with basaltic andesite lavas dominating in the modern relief. Two localities could be of a particular interest: (1) Mutnovsky NW thermal field featuring processes of active hydrothermal alteration of lavas of basaltic andesite and (2) dry lake at the bottom of Gorely caldera featuring products of mechanical disintegration of basaltic andesite lavas by eolian processes with short seasonal sedimentation in aqueous environment.

  8. The anatomy of an andesite volcano: A time-stratigraphic study of andesite petrogenesis and crustal evolution at Ruapehu volcano, New Zealand

    DEFF Research Database (Denmark)

    Price, R.C.; Gamble, J.A.; Smith, I.E.M.

    2012-01-01

    Ruapehu, New Zealand’s largest active andesite volcano is located at the southern tip of the Taupo Volcanic Zone (TVZ), the main locus of subduction-related volcanism in the North Island. Geophysical data indicate that crustal thickness transitions from ... Ruapehu. The volcano is built on a basement of Mesozoic metagreywacke and geophysical evidence together with xenoliths contained in lavas indicates that this is underlain by oceanic, meta-igneous lower crust. The present-day Ruapehu edifice has been constructed by a series of eruptive events that produced...... and andesite. Dacite also occurs but only one basalt flow has been identified. There have been progressive changes in the minor and trace element chemistry and isotopic composition of Ruapehu eruptives over time. In comparison with rocks from younger formations, Te Herenga eruptives have lower K2O abundances...

  9. Volcano-ice interactions on Mars

    International Nuclear Information System (INIS)

    Allen, C.C.

    1979-01-01

    Central volcanic eruptions beneath terrestrial glaciers have built steep-sided, flat-topped mountains composed of pillow lava, glassy tuff, capping flows, and cones of basalt. Subglacial fissure eruptions produced ridges of similar compostion. In some places the products from a number of subglacial vents have combined to form widespread deposits. The morphologies of these subglacial volcanoes are distinctive enough to allow their recognition at the resolutions characteristic of Viking orbiter imagery. Analogs to terrestrial subglacial volcanoes have been identified on the northern plains and near the south polar cap of Mars. The polar feature provides probable evidence of volcanic eruptions beneath polar ice. A mixed unit of rock and ice is postulated to have overlain portions of the northern plains, with eruptions into this ground ice having produced mountains and ridges analogous to those in Iceland. Subsequent breakdown of this unit due to ice melting revealed the volcanic features. Estimated heights of these landforms indicate that the ice-rich unit once ranged from approximately 100 to 1200 m thick

  10. Textural constraints on the dynamics of the 2000 Miyakejima eruption

    Science.gov (United States)

    Garozzo, Ileana; Romano, Claudia; Giordano, Guido; Geshi, Nobuo; Vona, Alessandro

    2016-04-01

    Miyakejima Volcano is a basaltic-andesite stratovolcano active from ~10.000 years, located on the north of the Izu-Bonin arc. During the last 600 years the volcano has been characterized mainly by flank fissure activity, with explosive phreatomagmatic eruptions on the coastal areas. In the last century, the activity became more frequent and regular with intervals of 20 to 70 years (1940, 1962, 1983 and 2000). The last activity started on 27 June 2000, with a minor submarine eruption on the west coast of the volcano, and proceeded with six major summit eruptions from July 8 to August 29. The eruptions led to the formation of a collapse caldera ~1.6 km across. The total erupted tephra represents only 1.7% in volume of the caldera, the high fragmentation of magma produced mainly fine-grained volcanic ash. In order to improve the understanding on the triggering and dynamics of this explosive eruption, we carried out a detailed investigation of the erupted materials with particular attention to the textural features of juvenile pyroclasts (Vesicle and Crystal Size Distributions). The stratigraphic record can be divided into six fall units, corresponding to the six summit eruptions, although juvenile materials were identified only in 4 units (unit 2, 4, 5, 6). We selected about 100 juvenile grains sampled from the bottom to the top of each level, to be analyzed by scanning electron microscopy. The study of juvenile morphological features allowed us to recognize the existence of three characteristic morphotypes, showing marked differences in their external morphologies and internal textures (from poorly to highly crystallized and vesiculated clasts). The distribution of these morphotypes is non-homogeneous along the eruptive sequence indicating changes of dynamics during magma ascent. Juveniles do not show features inherited from the interaction with external water. Vesicle Volume Distributions of the selected ash grains show that the three types of pyroclasts experienced

  11. An investigation of the distribution of eruptive products on the shield volcanoes of the western Galapagos Islands using remotely sensed data

    Science.gov (United States)

    Munro, Duncan C.; Rowland, Scott K.; Mouginis-Mark, Peter J.; Wilson, Lionel; Oviedo-Perez, Victor-Hugo

    1991-01-01

    Recent volcanic activity in the Galapagos Islands is concentrated on the two westernmost islands, Isla Isabela and Isla Fernandina. Difficult access has thus far prevented comprehensive geological field studies, so we examine the potential of remotely sensed data as a means of studying volcanic processes in the region. Volcan Wolf is used as an example of the analysis of SPOT HRV-1 data undertaken for each volcano. Landsat TM data are analyzed in an attempt to construct a relative age sequence for the recent eruptive activity on Isla Fernandina. No systematic variation in the surface reflectance of lava flows as a function of age could be detected with these data. Thus it was not possible to complete a study of the temporal distribution of volcanic activity.

  12. Magmatic storage conditions, decompression rate, and incipient caldera collapse of the 1902 eruption of Santa Maria Volcano, Guatemala

    Science.gov (United States)

    Andrews, Benjamin J.

    2014-08-01

    Phase equilibria experiments and analysis of natural pumice and phenocryst compositions indicate the 1902 Santa Maria dacite was stored at ~ 140-170 MPa and 840-850 °C prior to eruption. H2O-saturated, cold-seal experiments conducted in vessels with an intrinsic log fO2 of NNO + 1 ± 0.5 show that the natural phase assemblage (melt + plagioclase + amphibole + orthopyroxene + Fe-Ti oxides + apatite) is stable from approximately 115-140 MPa at temperatures below ~ 825 °C, to ~ 840-860 °C at 150 MPa, to > 850 and Ridolfi et al., 2010) applied to experimental samples suggest two populations of amphiboles, phenocrysts grown during the experiments and inherited xenocrysts, but the pressure-temperature conditions returned by the geothermobarometer are routinely > 50 MPa and > 50 °C greater than experimental run conditions; precise estimates of magmatic conditions based solely upon amphibole composition are likely inaccurate. The experimental results and analysis of natural crystals suggest that although the natural amphiboles likely record a broad range of magmatic conditions, only the lower bounds of that range reflect pre-eruptive storage conditions. Comparison of Santa Maria microlite abundances with decompression experiments examining other silicic systems from the literature suggests that the 1902 dacite decompressed at the rate of ~ 0.005 to 0.01 MPa/s during the eruption. Applying the decompression rate with the previously described eruption rate of approximately 2-3 × 108 kg/s (Williams and Self, 1983; Carey and Sparks, 1986) to the conduit model CONFLOW reveals that the eruption conduit was dike-like with an along-strike length > 1 km. Despite depositing ~ 20 km3 of dacite tephra (equivalent to ~ 8.5 km3 magma), the 1902 eruption did not form an obvious caldera. This work suggests that collapse of the dike-like conduit terminated the eruption, preventing full caldera collapse.

  13. Mapping three-dimensional surface deformation by combining multiple-aperture interferometry and conventional interferometry: Application to the June 2007 eruption of Kilauea Volcano, Hawaii

    Science.gov (United States)

    Jung, H.-S.; Lu, Z.; Won, J.-S.; Poland, Michael P.; Miklius, Asta

    2011-01-01

    Surface deformation caused by an intrusion and small eruption during June 17-19, 2007, along the East Rift Zone of Kilauea Volcano, Hawaii, was three-dimensionally reconstructed from radar interferograms acquired by the Advanced Land Observing Satellite (ALOS) phased-array type L-band synthetic aperture radar (SAR) (PALSAR) instrument. To retrieve the 3-D surface deformation, a method that combines multiple-aperture interferometry (MAI) and conventional interferometric SAR (InSAR) techniques was applied to one ascending and one descending ALOS PALSAR interferometric pair. The maximum displacements as a result of the intrusion and eruption are about 0.8, 2, and 0.7 m in the east, north, and up components, respectively. The radar-measured 3-D surface deformation agrees with GPS data from 24 sites on the volcano, and the root-mean-square errors in the east, north, and up components of the displacement are 1.6, 3.6, and 2.1 cm, respectively. Since a horizontal deformation of more than 1 m was dominantly in the north-northwest-south-southeast direction, a significant improvement of the north-south component measurement was achieved by the inclusion of MAI measurements that can reach a standard deviation of 3.6 cm. A 3-D deformation reconstruction through the combination of conventional InSAR and MAI will allow for better modeling, and hence, a more comprehensive understanding, of the source geometry associated with volcanic, seismic, and other processes that are manifested by surface deformation.

  14. Eruptive and Geomorphic Processes at the Lathrop Wells Scoria Cone

    International Nuclear Information System (INIS)

    G. Valentine; D.J. Krier; F.V. Perry; G. Heiken

    2006-01-01

    The ∼80 ka Lathrop Wells volcano (southern Nevada, U.S.A.) preserves evidence for a range of explosive processes and emplacement mechanisms of pyroclastic deposits and lava fields in a small-volume basaltic center. Early cone building by Strombolian bursts was accompanied by development of a fan-like lava field reaching ∼800 m distance from the cone, built upon a gently sloping surface. Lava flows carried rafts of cone deposits, which provide indirect evidence for cone facies in lieu of direct exposures in the active quarry. Subsequent activity was of a violent Strombolian nature, with many episodes of sustained eruption columns up to a few km in height. These deposited layers of scoria lapilli and ash in different directions depending upon wind direction at the time of a given episode, reaching up to ∼20 km from the vent, and also produced the bulk of the scoria cone. Lava effusion migrated from south to north around the eastern base of the cone as accumulation of lavas successively reversed the topography at the base of the cone. Late lavas were emplaced during violent Strombolian activity and continued for some time after explosive eruptions had waned. Volumes of the eruptive products are: fallout--0.07 km 3 , scoria cone--0.02 km 3 , and lavas--0.03 km 3 . Shallow-derived xenolith concentrations suggest an upper bound on average conduit diameter of ∼21 m in the uppermost 335 m beneath the volcano. The volcano was constructed over a period of at least seven months with cone building occurring only during part of that time, based upon analogy with historical eruptions. Post-eruptive geomorphic evolution varied for the three main surface types that were produced by volcanic activity: (1) scoria cone, (2) low relief surfaces (including lavas) with abundant pyroclastic material, and (3) lavas with little pyroclastic material. The role of these different initial textures must be accounted for in estimating relative ages of volcanic surfaces, and failure to

  15. Eruptive and Geomorphic Processes at the Lathrop Wells Scoria Cone

    Energy Technology Data Exchange (ETDEWEB)

    G. Valentine; D.J. Krier; F.V. Perry; G. Heiken

    2006-08-03

    The {approx}80 ka Lathrop Wells volcano (southern Nevada, U.S.A.) preserves evidence for a range of explosive processes and emplacement mechanisms of pyroclastic deposits and lava fields in a small-volume basaltic center. Early cone building by Strombolian bursts was accompanied by development of a fan-like lava field reaching {approx}800 m distance from the cone, built upon a gently sloping surface. Lava flows carried rafts of cone deposits, which provide indirect evidence for cone facies in lieu of direct exposures in the active quarry. Subsequent activity was of a violent Strombolian nature, with many episodes of sustained eruption columns up to a few km in height. These deposited layers of scoria lapilli and ash in different directions depending upon wind direction at the time of a given episode, reaching up to {approx}20 km from the vent, and also produced the bulk of the scoria cone. Lava effusion migrated from south to north around the eastern base of the cone as accumulation of lavas successively reversed the topography at the base of the cone. Late lavas were emplaced during violent Strombolian activity and continued for some time after explosive eruptions had waned. Volumes of the eruptive products are: fallout--0.07 km{sup 3}, scoria cone--0.02 km{sup 3}, and lavas--0.03 km{sup 3}. Shallow-derived xenolith concentrations suggest an upper bound on average conduit diameter of {approx}21 m in the uppermost 335 m beneath the volcano. The volcano was constructed over a period of at least seven months with cone building occurring only during part of that time, based upon analogy with historical eruptions. Post-eruptive geomorphic evolution varied for the three main surface types that were produced by volcanic activity: (1) scoria cone, (2) low relief surfaces (including lavas) with abundant pyroclastic material, and (3) lavas with little pyroclastic material. The role of these different initial textures must be accounted for in estimating relative ages of

  16. The ocean response to volcanic iron fertilisation after the eruption of Kasatochi volcano: a regional-scale biogeochemical ocean model study

    Directory of Open Access Journals (Sweden)

    A. Lindenthal

    2013-06-01

    Full Text Available In high-nutrient–low-chlorophyll regions, phytoplankton growth is limited by the availability of water-soluble iron. The eruption of Kasatochi volcano in August 2008 led to ash deposition into the iron-limited NE Pacific Ocean. Volcanic ash released iron upon contact with seawater and generated a massive phytoplankton bloom. Here we investigate this event with a one-dimensional ocean biogeochemical column model to illuminate the ocean response to iron fertilisation by volcanic ash. The results indicate that the added iron triggered a phytoplankton bloom in the summer of 2008. Associated with this bloom, macronutrient concentrations such as nitrate and silicate decline and zooplankton biomass is enhanced in the ocean mixed layer. The simulated development of the drawdown of carbon dioxide and increase of pH in surface seawater is in good agreement with available observations. Sensitivity studies with different supply dates of iron to the ocean emphasise the favourable oceanic conditions in the NE Pacific to generate massive phytoplankton blooms in particular during July and August in comparison to other months. By varying the amount of volcanic ash and associated bio-available iron supplied to the ocean, model results demonstrate that the NE Pacific Ocean has higher, but limited capabilities to consume CO2 after iron fertilisation than those observed after the volcanic eruption of Kasatochi.

  17. Dynamics of an unusual cone-building trachyte eruption at Pu`u Wa`awa`a, Hualālai volcano, Hawai`i

    Science.gov (United States)

    Shea, Thomas; Leonhardi, Tanis; Giachetti, Thomas; Lindoo, Amanda; Larsen, Jessica; Sinton, John; Parsons, Elliott

    2017-04-01

    The Pu`u Wa`awa`a pyroclastic cone and Pu`u Anahulu lava flow are two prominent monogenetic eruptive features assumed to result from a single eruption during the trachyte-dominated early post-shield stage of Hualālai volcano (Hawaíi). Púu Wa`awa`a is composed of complex repetitions of crudely cross-stratified units rich in dark dense clasts, which reversely grade into coarser pumice-rich units. Pyroclasts from the cone are extremely diverse texturally, ranging from glassy obsidian to vesicular scoria or pumice, in addition to fully crystalline end-members. The >100-m thick Pu`u Anahulu flow is, in contrast, entirely holocrystalline. Using field observations coupled with whole rock analyses, this study aimed to test whether the Pu`u Wa`awa`a tephra and Pu`u Anahulu lava flows originated from the same eruption, as had been previously assumed. Crystal and vesicle textures are characterized along with the volatile contents of interstitial glasses to determine the origin of textural variability within Pu`u Wáawáa trachytes (e.g., magma mixing vs. degassing origin). We find that (1) the two eruptions likely originated from distinct vents and magma reservoirs, despite their proximity and similar age, (2) the textural diversity of pyroclasts forming Pu`u Wa`awa`a can be fully explained by variable magma degassing and outgassing within the conduit, (3) the Pu`u Wa`awa`a cone was constructed during explosions transitional in style between violent Strombolian and Vulcanian, involving the formation of a large cone and with repeated disruption of conduit plugs, but without production of large pyroclastic density currents (PDCs), and (4) the contrasting eruption styles of Hawaiian trachytes (flow-, cone-, and PDC-forming) are probably related to differences in the outgassing capacity of the magmas prior to reaching the surface and not in intrinsic compositional or temperature properties. These results further highlight that trachytes are "kinetically faster" magmas compared

  18. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    primitive basalts and trachybasalts but also more evolved samples from the retroarc region and the larger volcanoes Payún Matrú and Payún Liso are presented. The samples cover a broad range of compositions from intraplate lavas similar to ocean island basalts to arc andesites. A common feature found...... are isotopically similar to the Andean Southern Volcanic Zone arc rocks and their mantle source possibly resembled the source of South Atlantic N-MORB prior to addition of fluids and melts from the subduction channel. However, it must have been more enriched than the estimates of depleted upper mantle from...... the lithosphere is thinnest and possibly in areas of elevated mantle temperatures. The pyroxenite melts formed at deeper levels react with the surrounding peridotite and thereby changes composition leading to eruption of melts which experienced variable degrees of melt-peridotite interaction. This can presumably...

  19. Heavy metals in moss samples exposed to tHe atmospHeric dust after eruption of eyjafjallajökull volcano

    Directory of Open Access Journals (Sweden)

    Patryk Ochota

    2012-03-01

    Full Text Available Background: Volcanic ash, which is ejected during volcanic eruptions, flies in the air and spreads by the wind over large distances. It is a magmatic source and as such may contain heavy metals. The aim of the study was to carry out investigation on heavy metal content: Pb, Cd, Zn, Fe, Mn, Cu and Cr in samples of moss bags exposed to atmospheric dust containing volcanic ash in Sosnowiec (Poland after eruption of Eyjafjallajökull volcano in Iceland. Materials and methods: Samples have been exposed to atmospheric dust after volcanic eruption for 2 months, and were mineralised in 70% HNO3 and 30% H2O2. The content of Pb and Cd was analysed by atomic absorption spectrometry with electrothermal atomization (ETAAS and Zn, Fe, Mn, Cu, Cr by atomic absorption spectrometry with flame atomization (FAAS. Results: During the experiment the content of lead in samples of moss increased by 54,9 μg/g, cadmium by 3,41 μg/g, manganese by 150 μg/g, iron by 6,09 mg/g, zinc by 514 μg/g, copper by 20,77 μg/g and chromium by 6,99 μg/g. Conclusions: In Sosnowiec the comparable increase of metal content was from several to 41 times higher than in the areas not exposed to volcanic ash. It indicates that volcanic ash can be a potential source of heavy metals in the environment and, consequently, affect our health.

  20. Pushing the Volcanic Explosivity Index to its limit and beyond: Constraints from exceptionally weak explosive eruptions at Kīlauea in 2008

    Science.gov (United States)

    Houghton, Bruce F.; Swanson, Don; Rausch, J.; Carey, R.J.; Fagents, S.A.; Orr, Tim R.

    2013-01-01

    Estimating the mass, volume, and dispersal of the deposits of very small and/or extremely weak explosive eruptions is difficult, unless they can be sampled on eruption. During explosive eruptions of Halema‘uma‘u Crater (Kīlauea, Hawaii) in 2008, we constrained for the first time deposits of bulk volumes as small as 9–300 m3 (1 × 104 to 8 × 105 kg) and can demonstrate that they show simple exponential thinning with distance from the vent. There is no simple fit for such products within classifications such as the Volcanic Explosivity Index (VEI). The VEI is being increasingly used as the measure of magnitude of explosive eruptions, and as an input for both hazard modeling and forecasting of atmospheric dispersal of tephra. The 2008 deposits demonstrate a problem for the use of the VEI, as originally defined, which classifies small, yet ballistic-producing, explosive eruptions at Kīlauea and other basaltic volcanoes as nonexplosive. We suggest a simple change to extend the scale in a fashion inclusive of such very small deposits, and to make the VEI more consistent with other magnitude scales such as the Richter scale for earthquakes. Eruptions of this magnitude constitute a significant risk at Kīlauea and elsewhere because of their high frequency and the growing number of “volcano tourists” visiting basaltic volcanoes.

  1. Explosive eruption of El Chichon volcano (Mexico) disrupted 6th century Maya civilization and contributed to global cooling

    NARCIS (Netherlands)

    Nooren, Kees; Hoek, Wim Z.; van der Plicht, Hans; Sigl, Michael; van Bergen, Manfred J.; Galop, Didier; Torrescano-Valle, Nuria; Islebe, Gerald; Huizinga, Annika; Winkels, Tim; Middelkoop, Hans

    A remarkably long period of Northern Hemispheric cooling in the 6th century CE, which disrupted human societies across large parts of the globe, has been attributed to volcanic forcing of climate. A major tropical eruption in 540 CE is thought to have played a key role, but there is no consensus

  2. Explosive eruption of El Chichón volcano (Mexico) disrupted 6thcentury Maya civilization and contributed to global cooling

    NARCIS (Netherlands)

    Nooren, Kees; Hoek, Wim Z.; van der Plicht, Hans; Sigl, Michael; van Bergen, Manfred J.; Galop, Didier; Torrescano-Valle, Nuria; Islebe, Gerald; Huizinga, Annika; Winkels, Tim; Middelkoop, Hans

    A remarkably long period of Northern Hemispheric cooling in the 6th century CE, which disrupted human societies across large parts of the globe, has been attributed to volcanic forcing of climate. A major tropical eruption in 540 CE is thought to have played a key role, but there is no consensus

  3. Petrology and geochemistry of Late Holocene felsic magmas from Rungwe volcano (Tanzania), with implications for trachytic Rungwe Pumice eruption dynamics

    NARCIS (Netherlands)

    Fontijn, K.; Elburg, M.A.; Nikogosian, I.K.; van Bergen, M.J.; Ernst, G.G.J.

    2013-01-01

    Rungwe in southern Tanzania is an active volcanic centre in the East African Rift System, characterised by Plinian-style explosive eruptions of metaluminous to slightly peralkaline trachytic silica-undersaturated magmas during its late Holocene history. Variations in whole-rock major and trace

  4. C-14 dating of volcanic eruptions. Application to the dating of a volcano of the french Massif Central

    International Nuclear Information System (INIS)

    Delibrias, G.; Labeyrie, J.; Pelletier, H.; Perquis, M.Th.

    1960-01-01

    The volcanic eruption of Puy-de-la-Vache (Puy-de-Dome) has been dated by means of age measurements carried out on charcoal fragments found under a flow of lava; the result is 7650 ± 350 years. (author) [fr

  5. Chemical compositions of lavas from Myoko volcano group

    International Nuclear Information System (INIS)

    Hasenaka, Toshiaki; Yoshida, Takeyoshi; Hayatsu, Kenji.

    1995-01-01

    In the volcanic rocks produced in island arc and continental margin arc, the phenomena of magma mixing is observed considerably generally. The research on these phenomena has been carried out also in Japan, and the periodically refilled magma chamber model has been proposed. In this report, the results of the photon activation analysis for the volcanic rock samples of Myoko volcano, for which the magma chamber model that the supply of basalt magma is periodically received was proposed, and of which the age of eruption and the stratigraphy are clearly known, are shown, and the above model is examined together with the published data of fluorescent X-ray analysis and others. The history of activities and the rate of magma extrusion of Myoko volcano group are described. The modal compositions of the volcanic rock samples of Myoko and Kurohime volcanos, for which photon activation analysis was carried out, are shown and discussed. The results of the analysis of the chemical composition of 39 volcanic rock samples from Myoko, Kurohime and Iizuna volcanos are shown. The primary magma in Myoko volcano group, the crystallization differentiation depth and moisture content of magma in Myoko and Kurohime volcanos, the presumption of Felsic and Mafic end-members in R type andesite in Myoko volcano group, and the change of magma composition with lapse of time are described. (K.I.)

  6. Chemical compositions of lavas from Myoko volcano group

    Energy Technology Data Exchange (ETDEWEB)

    Hasenaka, Toshiaki; Yoshida, Takeyoshi [Tohoku Univ., Sendai (Japan). Faculty of Science; Hayatsu, Kenji

    1995-08-01

    In the volcanic rocks produced in island arc and continental margin arc, the phenomena of magma mixing is observed considerably generally. The research on these phenomena has been carried out also in Japan, and the periodically refilled magma chamber model has been proposed. In this report, the results of the photon activation analysis for the volcanic rock samples of Myoko volcano, for which the magma chamber model that the supply of basalt magma is periodically received was proposed, and of which the age of eruption and the stratigraphy are clearly known, are shown, and the above model is examined together with the published data of fluorescent X-ray analysis and others. The history of activities and the rate of magma extrusion of Myoko volcano group are described. The modal compositions of the volcanic rock samples of Myoko and Kurohime volcanos, for which photon activation analysis was carried out, are shown and discussed. The results of the analysis of the chemical composition of 39 volcanic rock samples from Myoko, Kurohime and Iizuna volcanos are shown. The primary magma in Myoko volcano group, the crystallization differentiation depth and moisture content of magma in Myoko and Kurohime volcanos, the presumption of Felsic and Mafic end-members in R type andesite in Myoko volcano group, and the change of magma composition with lapse of time are described. (K.I.)

  7. Geology, tectonics, and the 2002-2003 eruption of the Semeru volcano, Indonesia: Interpreted from high-spatial resolution satellite imagery

    Science.gov (United States)

    Solikhin, Akhmad; Thouret, Jean-Claude; Gupta, Avijit; Harris, Andy J. L.; Liew, Soo Chin

    2012-02-01

    The paper illustrates the application of high-spatial resolution satellite images in interpreting volcanic structures and eruption impacts in the Tengger-Semeru massif in east Java, Indonesia. We use high-spatial resolution images (IKONOS and SPOT 5) and aerial photos in order to analyze the structures of Semeru volcano and map the deposits. Geological and tectonic mapping is based on two DEMs and on the interpretation of aerial photos and four SPOT and IKONOS optical satellite images acquired between 1996 and 2002. We also compared two thermal Surface Kinetic Temperature ASTER images before and after the 2002-2003 eruption in order to delineate and evaluate the impacts of the pyroclastic density currents. Semeru's principal structural features are probably due to the tectonic setting of the volcano. A structural map of the Tengger-Semeru massif shows four groups of faults orientated N40, N160, N75, and N105 to N140. Conspicuous structures, such as the SE-trending horseshoe-shaped scar on Semeru's summit cone, coincide with the N160-trending faults. The direction of minor scars on the east flank parallels the first and second groups of faults. The Semeru composite cone hosts the currently active Jonggring-Seloko vent. This is located on, and buttressed against, the Mahameru edifice at the head of a large scar that may reflect a failure plane at shallow depth. Dipping 35° towards the SE, this failure plane may correspond to a weak basal layer of weathered volcaniclastic rocks of Tertiary age. We suggest that the deformation pattern of Semeru and its large scar may be induced by flank spreading over the weak basal layer of the volcano. It is therefore necessary to consider the potential for flank and summit collapse in the future. The last major eruption took place in December 2002-January 2003, and involved emplacement of block-and-ash flows. We have used the 2003 ASTER Surface Kinetic Temperature image to map the 2002-2003 pyroclastic density current deposits. We

  8. A Comparison of MODIS and DOAS Sulfur Dioxide Measurements of the April 24, 2004 Eruption of Anatahan Volcano, Mariana Islands

    Science.gov (United States)

    Meier, V. L.; Scuderi, L.; Fischer, T.; Realmuto, V.; Hilton, D.

    2006-12-01

    Measurements of volcanic SO2 emissions provide insight into the processes working below a volcano, which can presage volcanic events. Being able to measure SO2 in near real-time is invaluable for the planning and response of hazard mitigation teams. Currently, there are several methods used to quantify the SO2 output of degassing volcanoes. Ground and aerial-based measurements using the differential optical absorption spectrometer (mini-DOAS) provide real-time estimates of SO2 output. Satellite-based measurements, which can provide similar estimates in near real-time, have increasingly been used as a tool for volcanic monitoring. Direct Broadcast (DB) real-time processing of remotely sensed data from NASA's Earth Observing System (EOS) satellites (MODIS Terra and Aqua) presents volcanologists with a range of spectral bands and processing options for the study of volcanic emissions. While the spatial resolution of MODIS is 1 km in the Very Near Infrared (VNIR) and Thermal Infrared (TIR), a high temporal resolution and a wide range of radiance measurements in 32 channels between VNIR and TIR combine to provide a versatile space borne platform to monitor SO2 emissions from volcanoes. An important question remaining to be answered is how well do MODIS SO2 estimates compare with DOAS estimates? In 2004 ground-based plume measurements were collected on April 24th and 25th at Anatahan volcano in the Mariana Islands using a mini-DOAS (Fischer and Hilton). SO2 measurements for these same dates have also been calculated using MODIS images and SO2 mapping software (Realmuto). A comparison of these different approaches to the measurement of SO2 for the same plume is presented. Differences in these observations are used to better quantify SO2 emissions, to assess the current mismatch between ground based and remotely sensed retrievals, and to develop an approach to continuously and accurately monitor volcanic activity from space in near real-time.

  9. Isotopic evolution of Mauna Loa volcano

    International Nuclear Information System (INIS)

    Kurz, M.D.; Kammer, D.P.

    1991-01-01

    In an effort to understand the temporal helium isotopic variations in Mauna Loa volcano, we have measured helium, strontium and lead isotopes in a suite of Mauna Loa lavas that span most of the subaerial eruptive history of the volcano. The lavas range in age from historical flows to Ninole basalt which are thought to be several hundred thousand years old. Most of the samples younger than 30 ka in age (Kau Basalt) are radiocarbon-dated flows, while the samples older than 30 ka are stratigraphically controlled (Kahuku and Ninole Basalt). The data reveal a striking change in the geochemistry of the lavas approximately 10 ka before present. The lavas older than 10 ka are characterized by high 3 He/ 4 He (≅ 16-20 times atmospheric), higher 206 Pb/ 204 Pb (≅ 18.2), and lower 87 Sr/ 86 Sr(≅ 0.70365) ratios than the younger Kau samples (having He, Pb and Sr ratios of approximately 8.5 x atmospheric, 18.1 and 0.70390, respectively). The historical lavas are distinct in having intermediate Sr and Pb isotopic compositions with 3 He/ 4 He ratios similar to the other young Kau basalt (≅ 8.5 x atmospheric). The isotopic variations are on a shorter time scale (100 to 10,000 years) than has previously been observed for Hawaiian volcanoes, and demonstrate the importance of geochronology and stratigraphy to geochemical studies. The data show consistency between all three isotope systems, which suggests that the variations are not related to magma chamber degassing processes, and that helium is not decoupled from the other isotopes. However, the complex temporal evolution suggests that three distinct mantle sources are required to explain the isotopic data. Most of the Mauna Loa isotopic variations could be explained by mixing between a plume type source, similar to Loihi, and an asthenospheric source with helium isotopic composition close to MORB and elevated Sr isotopic values. (orig./WL)

  10. Digital Geologic Map Database of Medicine Lake Volcano, Northern California

    Science.gov (United States)

    Ramsey, D. W.; Donnelly-Nolan, J. M.; Felger, T. J.

    2010-12-01

    Medicine Lake volcano, located in the southern Cascades ~55 km east-northeast of Mount Shasta, is a large rear-arc, shield-shaped volcano with an eruptive history spanning nearly 500 k.y. Geologic mapping of Medicine Lake volcano has been digitally compiled as a spatial database in ArcGIS. Within the database, coverage feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The database can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. These data, in turn, can be used to better understand the evolution, growth, and potential hazards of this large, rear-arc Cascades volcano. Queries of the database reveal that the total area covered by lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, is about 2,200 km2, encompassing all or parts of 27 U.S. Geological Survey 1:24,000-scale topographic quadrangles. The maximum extent of these lavas is about 80 km north-south by 45 km east-west. Occupying the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of the volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 2,440 m. Approximately 250 geologic units have been mapped, only half a dozen of which are thin surficial units such as alluvium. These volcanic units mostly represent eruptive events, each commonly including a vent (dome, cinder cone, spatter cone, etc.) and its associated lava flow. Some cinder cones have not been matched to lava flows, as the corresponding flows are probably buried, and some flows cannot be correlated with vents. The largest individual units on the map are all basaltic in composition, including the late Pleistocene basalt of Yellowjacket Butte (296 km2 exposed), the largest unit on the

  11. Analysis of volcano rocks by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sitek, J.; Dekan, J.

    2012-01-01

    In this work we have analysed the basalt rock from Mount Ba tur volcano situated on the Island of Bali in Indonesia.We compared our results with composition of basalt rocks from some other places on the Earth. (authors)

  12. Evaluation of Kilauea Eruptions By Using Stable Isotope Analysis

    Science.gov (United States)

    Rahimi, K. E.; Bursik, M. I.

    2016-12-01

    Kilauea, on the island of Hawaii, is a large volcanic edifice with numerous named vents scattered across its surface. Halema`uma`u crater sits with Kilauea caldera, above the magma reservoir, which is the main source of lava feeding most vents on Kilauea volcano. Halema`uma`u crater produces basaltic explosive activity ranging from weak emission to sub-Plinian. Changes in the eruption style are thought to be due to the interplay between external water and magma (phreatomagmatic/ phreatic), or to segregation of gas from magma (magmatic) at shallow depths. Since there are three different eruption mechanisms (phreatomagmatic, phreatic, and magmatic), each eruption has its own isotope ratios. The aim of this study is to evaluate the eruption mechanism by using stable isotope analysis. Studying isotope ratios of D/H and δ18O within fluid inclusion and volcanic glass will provide an evidence of what driven the eruption. The results would be determined the source of water that drove an eruption by correlating the values with water sources (groundwater, rainwater, and magmatic water) since each water source has a diagnostic value of D/H and δ18O. These results will provide the roles of volatiles in eruptions. The broader application of this research is that these methods could help volcanologists forecasting and predicting the current volcanic activity by mentoring change in volatiles concentration within deposits.

  13. Hematite Spherules in Basaltic Tephra Altered Under Aqueous, Acid-Sulfate Conditions on Mauna Kea Volcano, Hawaii: Possible Clues for the Occurrence of Hematite-Rich Spherules in the Burns Formation at Meridiani Planum, Mars

    Science.gov (United States)

    Morris, R. V.; Ming, D. W.; Graff, T. G.; Arvidson, R. E.; Bell, J. F., III; Squyres, S. W.; Mertzman, S. A.; Gruener, J. E.; Golden, D. C.; Robinson, G. A.

    2005-01-01

    Iron-rich spherules (>90% Fe2O3 from electron microprobe analyses) approx.10-100 microns in diameter are found within sulfate-rich rocks formed by aqueous, acid-sulfate alteration of basaltic tephra on Mauna Kea volcano, Hawaii. Although some spherules are nearly pure Fe, most have two concentric compositional zones, with the core having a higher Fe/Al ratio than the rim. Oxide totals less than 100% (93-99%) suggest structural H2O and/or /OH. The transmission Moessbauer spectrum of a spherule-rich separate is dominated by a hematite (alpha-Fe2O3) sextet whose peaks are skewed toward zero velocity. Skewing is consistent with Al(3+) for Fe(3+) substitution and structural H2O and/or /OH. The grey color of the spherules implies specular hematite. Whole-rock powder X-ray diffraction spectra are dominated by peaks from smectite and the hydroxy sulfate mineral natroalunite as alteration products and plagioclase feldspar that was present in the precursor basaltic tephra. Whether spherule formation proceeded directly from basaltic material in one event (dissolution of basaltic material and precipitation of hematite spherules) or whether spherule formation required more than one event (formation of Fe-bearing sulfate rock and subsequent hydrolysis to hematite) is not currently constrained. By analogy, a formation pathway for the hematite spherules in sulfate-rich outcrops at Meridiani Planum on Mars (the Burns formation) is aqueous alteration of basaltic precursor material under acid-sulfate conditions. Although hydrothermal conditions are present on Mauna Kea, such conditions may not be required for spherule formation on Mars if the time interval for hydrolysis at lower temperatures is sufficiently long.

  14. Making rhyolite in a basalt crucible

    Science.gov (United States)

    Eichelberger, John

    2016-04-01

    Iceland has long attracted the attention of those concerned with the origin of rhyolitic magmas and indeed of granitic continental crust, because it presents no alternative for such magmas other than deriving them from a basaltic source. Hydrothermally altered basalt has been identified as the progenitor. The fact that rhyolite erupts as pure liquid requires a process of melt-crustal separation that is highly efficient despite the high viscosity of rhyolite melt. Volcanoes in Iceland are foci of basaltic magma injection along the divergent plate boundary. Repeated injection produces remelting, digestion, and sometimes expulsion or lateral withdrawal of material resulting in a caldera, a "crucible" holding down-dropped and interlayered lava flows, tephras, and injected sills. Once melting of this charge begins, a great deal of heat is absorbed in the phase change. Just 1% change in crystallinity per degree gives a melt-present body an effective heat capacity >5 times the subsolidus case. Temperature is thus buffered at the solidus and melt composition at rhyolite. Basalt inputs are episodic ("fires") so likely the resulting generation of rhyolite by melting is too. If frequent enough to offset cooling between events, rhyolite melt extractions will accumulate as a rhyolite magma reservoir rather than as discrete crystallized sills. Evidently, such magma bodies can survive multiple firings without themselves erupting, as the 1875 eruption of Askja Caldera of 0.3 km3 of rhyolite equilibrated at 2-km depth without previous leakage over a ten-millennium period and the surprise discovery of rhyolite magma at 2-km depth in Krafla suggest. Water is required for melting; otherwise melting cannot begin at a temperature lower than that of the heat source. Because the solubility of water in melt is pressure-dependent and almost zero at surface pressure, there must be a minimum depth at which basalt-induced melting can occur and a rhyolite reservoir sustained. In practice, the

  15. Tectonic evolution of the central-eastern sector of Trans Mexican Volcanic Belt and its influence on the eruptive history of the Nevado de Toluca volcano (Mexico)

    Science.gov (United States)

    Bellotti, F.; Capra, L.; Groppelli, G.; Norini, G.

    2006-11-01

    The Nevado de Toluca is an andesitic to dacitic stratovolcano of Late Pliocene-Holocene age located within the central and eastern sectors of the Trans Mexican Volcanic Belt. Morphostructural analysis, aerial photograph and satellite image interpretation, structural analysis and geological fieldwork were methods used to investigate the relationship between the evolution of the volcano and the tectonic framework of its basement. The study revealed that the area of Nevado de Toluca is affected by three main fault systems that intersect close to the volcanic edifice. These are from oldest to youngest, the Taxco-Querétaro, San Antonio and Tenango fault systems. The NNW-SSE Taxco-Querétaro fault system was active in the area since Early Miocene, and is characterized by right-lateral transtensive movement. Its reactivation during Early to Middle Pleistocene was responsible for the emplacement of andesitic to dacitic lava flows and domes of La Cieneguilla Supersynthem. The NE-SW San Antonio fault system was active during Late Pliocene, before the reactivation of the Taxco-Querétaro fault system, and is characterized by extensional left-lateral oblique-slip kinematics. The youngest is the E-W Tenango fault system that has been active since Late Pleistocene. This fault system is characterized by transtensive left-lateral strike-slip movement, and partly coeval with the youngest eruptive phase, the Nevado Supersynthem, which formed the present summit cone of the Nevado de Toluca volcano. The stress re-orientation from the Taxco-Querétaro to the Tenango fault system during Late Pleistocene is responsible for the ˜ 1 Ma hiatus in the magmatic activity between 1.15 Ma and 42 ka. After this period of repose, the eruptive style drastically changed from effusive to explosive with the emission of dacitic products. The methodology presented here furnish new data that can be used to better assess the complex structural evolution of this sector of the Trans Mexican Volcanic Belt

  16. A century of studying effusive eruptions in Hawai'i: Chapter 9 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Cashman, Katherine V.; Mangan, Margaret T.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The Hawaiian Volcano Observatory (HVO) was established as a natural laboratory to study volcanic processes. Since the most frequent form of volcanic activity in Hawai‘i is effusive, a major contribution of the past century of research at HVO has been to describe and quantify lava flow emplacement processes. Lava flow research has taken many forms; first and foremost it has been a collection of basic observational data on active lava flows from both Mauna Loa and Kīlauea volcanoes that have occurred over the past 100 years. Both the types and quantities of observational data have changed with changing technology; thus, another important contribution of HVO to lava flow studies has been the application of new observational techniques. Also important has been a long-term effort to measure the physical properties (temperature, viscosity, crystallinity, and so on) of flowing lava. Field measurements of these properties have both motivated laboratory experiments and presaged the results of those experiments, particularly with respect to understanding the rheology of complex fluids. Finally, studies of the dynamics of lava flow emplacement have combined detailed field measurements with theoretical models to build a framework for the interpretation of lava flows in numerous other terrestrial, submarine, and planetary environments. Here, we attempt to review all these aspects of lava flow studies and place them into a coherent framework that we hope will motivate future research.

  17. The 2012-2016 eruptive cycle at Copahue volcano (Argentina) versus the peripheral gas manifestations: hints from the chemical and isotopic features of fumarolic fluids

    Science.gov (United States)

    Tassi, F.; Agusto, M.; Lamberti, C.; Caselli, A. T.; Pecoraino, G.; Caponi, C.; Szentiványi, J.; Venturi, S.; Vaselli, O.

    2017-10-01

    This study presents the chemical and isotopic compositions of hydrothermal gases from fumaroles discharging around Copahue volcano (Argentina). Gas samples, including those from two fumaroles at the active summit crater, were collected during 13 surveys carried out by different research teams from 1976 to February 2016. The time-series of H2, CO and light hydrocarbons showed episodic increases related to the main events of the last eruptive cycle that started on 19 July 2012. Concentration peaks were likely caused by enhanced input of hot magmatic fluids affecting the hydrothermal reservoir. These data contrast with the temporal variations shown by Rc/ Ra and δ13C-CO2 values in 2012-2014, which indicated an increasing input from a crustal fluid source. In 2015-2016, however, these isotopic parameters showed opposite trends; their composition became closer to that of the two summit fumaroles, which possibly corresponds to that of the deep magmatic-related end-member. The delayed and reduced compositional changes in the peripheral hydrothermal fluid discharge in response to the 2012-2016 eruptive events suggest that geochemical surveys of these emissions are unlikely to provide premonitory signals of volcanic unrest if the volcanic activity remains centered in the main crater. Instead, an instrument which is able to provide measurements of volcanic gases in the air (e.g. MultiGAS) may be used to detect changes at the summit crater. Otherwise, monitoring of seismic activity and ground deformation, as well as the periodic measurement of the chemistry of the water in the Rio Agrio, which is fed by thermal discharge from the summit crater, seem to represent the most reliable means of monitoring at Copahue. However, the relative compositional stability of the hydrothermal reservoir is a great advantage in terms of geothermal resource exploitation and could encourage new investments in the Copahue geothermal project which was abandoned in the 1990s.

  18. Locally distributed ground deformation in an area of potential phreatic eruption, Midagahara volcano, Japan, detected by single-look-based InSAR time series analysis

    Science.gov (United States)

    Kobayashi, Tomokazu

    2018-05-01

    Although it is difficult to monitor the spatial extent and temporal evolution of local and small-magnitude ground inflation, this information is vital to assess the potential for phreatic eruption. Herein, we demonstrate the detection of locally distributed ground deformation preceding the enhancement of geothermal activity in the Midagahara volcano, Japan, through the application of single-look-based interferometric synthetic aperture radar analysis. In the Jigoku-dani geothermal area, the ground deformation proceeded at a low speed of 4 cm/year at most with a spatial extent of 500 m in the east-west direction and 250 m in the north-south direction. The deformation can be recognized to progress from 2007, at the latest, to 2010, after which the geothermal activity increased, with the collapse of sulfur towers and the appearance of active fumaroles and boiling water on the ground surface. The most deformed area corresponds to the geothermal area with the highest activity observed on the ground surface. Assuming a sill opening model, the deformation source is estimated to be located at a depth of 50 m from the surface with a speed of 7 cm/year at most, which is consistent with the depth of the highly conductive medium inferred from magnetotelluric analyses. This may suggest that volcanic fluid and/or heat was injected into the fluid-rich medium from depth and caused the ground inflation. Our results demonstrate that high-spatial-resolution deformation data can be an effective tool to monitor subsurface pressure conditions with pinpoint spatial accuracy during the build-up to phreatic eruptions.

  19. Olivine-melt relationships and syneruptive redox variations in the 1959 eruption of K$\\bar{i}$lauea Volcano as revealed by XANES

    Energy Technology Data Exchange (ETDEWEB)

    Helz, R. T.; Cottrell, E.; Brounce, M. N.; Kelley, K. A.

    2017-03-01

    The 1959 summit eruption of K$\\bar{i}$lauea Volcano exhibited high lava fountains of gas-rich, primitive magma, containing olivine + chromian spinel in highly vesicular brown glass. Microprobe analysis of these samples shows that euhedral rims on olivine phenocrysts, in direct contact with glass, vary significantly in forsterite (Fo) content, at constant major-element melt composition, as do unzoned groundmass olivine crystals. Ferric/total iron (Fe+ 3/FeT)ratios for matrix and interstitial glasses, plus olivine-hosted glass inclusions in eight 1959 scoria samples have been determined by micro X-ray absorption near-edge structure spectroscopy (μ-XANES). These data show that much of the variation in Fo content reflects variation in oxidation state of iron in the melt, which varies with sulfur concentration in the glass and (locally) with proximity to scoria edges in contact with air. Data for 24 olivine-melt pairs in the better-equilibrated samples from later in the eruption show KD averaging 0.280 ± 0.03 for the exchange of Fe and Mg between olivine and melt, somewhat displaced from the value of 0.30 ± 0.03 given by Roeder and Emslie (1970). This may reflect the low SiO2 content of the 1959 magmas, which is lower than that in most K$\\bar{i}$lauea tholeiites. More broadly, we show the potential of μ-XANES and electron microprobe to revisit and refine the value of KD in natural systems.

  20. Character, mass, distribution, and origin of tephra-fall deposits of the 1989-1990 eruption of redoubt volcano, south-central Alaska

    Science.gov (United States)

    Scott, W.E.; McGimsey, R.G.

    1994-01-01

    The 1989-1990 eruption of Redoubt Volcano spawned about 20 areally significant tephra-fall deposits between December 14, 1989 and April 26, 1990. Tephra plumes rose to altitudes of 7 to more than 10 km and were carried mainly northward and eastward by prevailing winds, where they substantially impacted air travel, commerce, and other activities. In comparison to notable eruptions of the recent past, the Redoubt events produced a modest amount of tephra-fall deposits - 6 ?? 107 to 5 ?? 1010 kg for individual events and a total volume (dense-rock equivalent) of about 3-5 ?? 107 m3 of andesite and dacite. Two contrasting tephra types were generated by these events. Pumiceous tephra-fall deposits of December 14 and 15 were followed on December 16 and all later events by fine-grained lithic-crystal tephra deposits, much of which fell as particle aggregates. The change in the character of the tephra-fall deposits reflects their fundamentally different modes of origin. The pumiceous deposits were produced by magmatically driven explosions. The finegrained lithic-crystal deposits were generated by two processes. Hydrovolcanic vent explosions generated tephrafall deposits of December 16 and 19. Such explosions continued as a tephra source, but apparently with diminishing importance, during events of January and February. Ash clouds of lithic pyroclastic flows generated by collapse of actively growing lava domes probably contributed to tephra-fall deposits of all events from January 2 to April 26, and were the sole source of tephra fall for at least the last 4 deposits. ?? 1994.

  1. BASALT A: Basaltic Terrains in Idaho and Hawaii as Planetary Analogs for Mars Geology and Astrobiology

    Science.gov (United States)

    Hughes, Scott S.; Haberle, Christopher W.; Nawotniak, Shannon E. Kobs; Sehlke, Alexander; Garry, W. Brent; Elphic, Richard C.; Payler, Sam J.; Stevens, Adam H.; Cockell, Charles S.; Brady, Allyson L.; hide

    2018-01-01

    Assessments of field research target regions are described within two notably basaltic geologic provinces as Earth analogs to Mars. Regions within the eastern Snake River Plain of Idaho and the Big Island of Hawaii, USA, provinces that represent analogs of present-day and early Mars, respectively, were evaluated on the basis of geologic settings, rock lithology and geochemistry, rock alteration, and climate. Each of these factors provide rationale for the selection of specific targets for field research in five analog target regions: (1) Big Craters and (2) Highway lava flows at Craters of the Moon National Monument and Preserve, Idaho; and (3) Mauna Ulu low shield, (4) Kilauea Iki lava lake and (5) Kilauea caldera in the Kilauea Volcano summit region and the East Rift Zone of Hawaii. Our evaluation of compositional and textural differences, as well as the effects of syn- and post-eruptive rock alteration, shows that the basaltic terrains in Idaho and Hawaii provide a way to characterize the geology and major geologic substrates that host biological activity of relevance to Mars exploration. This work provides the foundation to better understand the scientific questions related to the habitability of basaltic terrains, the rationale behind selecting analog field targets, and their applicability as analogs to Mars.

  2. Volcanoes: observations and impact

    Science.gov (United States)

    Thurber, Clifford; Prejean, Stephanie G.

    2012-01-01

    Volcanoes are critical geologic hazards that challenge our ability to make long-term forecasts of their eruptive behaviors. They also have direct and indirect impacts on human lives and society. As is the case with many geologic phenomena, the time scales over which volcanoes evolve greatly exceed that of a human lifetime. On the other hand, the time scale over which a volcano can move from inactivity to eruption can be rather short: months, weeks, days, and even hours. Thus, scientific study and monitoring of volcanoes is essential to mitigate risk. There are thousands of volcanoes on Earth, and it is impractical to study and implement ground-based monitoring at them all. Fortunately, there are other effective means for volcano monitoring, including increasing capabilities for satellite-based technologies.

  3. Forecasting Effusive Dynamics and Decompression Rates by Magmastatic Model at Open-vent Volcanoes.

    Science.gov (United States)

    Ripepe, Maurizio; Pistolesi, Marco; Coppola, Diego; Delle Donne, Dario; Genco, Riccardo; Lacanna, Giorgio; Laiolo, Marco; Marchetti, Emanuele; Ulivieri, Giacomo; Valade, Sébastien

    2017-06-20

    Effusive eruptions at open-conduit volcanoes are interpreted as reactions to a disequilibrium induced by the increase in magma supply. By comparing four of the most recent effusive eruptions at Stromboli volcano (Italy), we show how the volumes of lava discharged during each eruption are linearly correlated to the topographic positions of the effusive vents. This correlation cannot be explained by an excess of pressure within a deep magma chamber and raises questions about the actual contributions of deep magma dynamics. We derive a general model based on the discharge of a shallow reservoir and the magmastatic crustal load above the vent, to explain the linear link. In addition, we show how the drastic transition from effusive to violent explosions can be related to different decompression rates. We suggest that a gravity-driven model can shed light on similar cases of lateral effusive eruptions in other volcanic systems and can provide evidence of the roles of slow decompression rates in triggering violent paroxysmal explosive eruptions, which occasionally punctuate the effusive phases at basaltic volcanoes.

  4. Development of geothermal field following the 2000 eruption of Usu volcano as revealed by ground temperature, resistivity and self-potential variations

    Directory of Open Access Journals (Sweden)

    T. Mogi

    2007-06-01

    Full Text Available The 2000 eruption of Usu volcano, NE Japan, took place on the foot of the somma, and formed a cryptodome of 65 m high accompanying numerous faults. We made repeated measurements of ground temperature, Self-Potential (SP and electrical resistivity, in order to clarify the mechanism of development of the newly formed geothermal field on the fault zone. Prior to the expansion of the geothermal field, we detected a resistive zone at the center of the geothermal zone and it supposed to evidence that the zone involving dry steam phase had been formed beneath the fault zone. A rapid expansion of the geothermal field followed along the fault zone away from the craters. The place of maximum amplitude of the SP field also migrated following the expansion of the high ground temperature zone. The high resistive part has shrunk as a consequence of the progress of condensation to warm the surroundings. Based on the observations, we delineated the process of the hydrothermal circulation. Considering the topographic effect of the SP field observed on the highly permeable zone in the Usu somma, the potential flow along the slope of the soma was expected to play an important role to promote the rapid expansion of the geothermal field and the migration of the most active part.

  5. Field-trip guide to the geologic highlights of Newberry Volcano, Oregon

    Science.gov (United States)

    Jensen, Robert A.; Donnelly-Nolan, Julie M.

    2017-08-09

    Newberry Volcano and its surrounding lavas cover about 3,000 square kilometers (km2) in central Oregon. This massive, shield-shaped, composite volcano is located in the rear of the Cascades Volcanic Arc, ~60 km east of the Cascade Range crest. The volcano overlaps the northwestern corner of the Basin and Range tectonic province, known locally as the High Lava Plains, and is strongly influenced by the east-west extensional environment. Lava compositions range from basalt to rhyolite. Eruptions began about half a million years ago and built a broad composite edifice that has generated more than one caldera collapse event. At the center of the volcano is the 6- by 8-km caldera, created ~75,000 years ago when a major explosive eruption of compositionally zoned tephra led to caldera collapse, leaving the massive shield shape visible today. The volcano hosts Newberry National Volcanic Monument, which encompasses the caldera and much of the northwest rift zone where mafic eruptions occurred about 7,000 years ago. These young lava flows erupted after the volcano was mantled by the informally named Mazama ash, a blanket of volcanic ash generated by the eruption that created Crater Lake about 7,700 years ago. This field trip guide takes the visitor to a variety of easily accessible geologic sites in Newberry National Volcanic Monument, including the youngest and most spectacular lava flows. The selected sites offer an overview of the geologic story of Newberry Volcano and feature a broad range of lava compositions. Newberry’s most recent eruption took place about 1,300 years ago in the center of the caldera and produced tephra and lava of rhyolitic composition. A significant mafic eruptive event occurred about 7,000 years ago along the northwest rift zone. This event produced lavas ranging in composition from basalt to andesite, which erupted over a distance of 35 km from south of the caldera to Lava Butte where erupted lava flowed west to temporarily block the Deschutes

  6. Copahue volcano and its regional magmatic setting

    Science.gov (United States)

    Varekamp, J C; Zareski, J E; Camfield, L M; Todd, Erin

    2016-01-01

    Copahue volcano (Province of Neuquen, Argentina) has produced lavas and strombolian deposits over several 100,000s of years, building a rounded volcano with a 3 km elevation. The products are mainly basaltic andesites, with the 2000–2012 eruptive products the most mafic. The geochemistry of Copahue products is compared with those of the main Andes arc (Llaima, Callaqui, Tolhuaca), the older Caviahue volcano directly east of Copahue, and the back arc volcanics of the Loncopue graben. The Caviahue rocks resemble the main Andes arc suite, whereas the Copahue rocks are characterized by lower Fe and Ti contents and higher incompatible element concentrations. The rocks have negative Nb-Ta anomalies, modest enrichments in radiogenic Sr and Pb isotope ratios and slightly depleted Nd isotope ratios. The combined trace element and isotopic data indicate that Copahue magmas formed in a relatively dry mantle environment, with melting of a subducted sediment residue. The back arc basalts show a wide variation in isotopic composition, have similar water contents as the Copahue magmas and show evidence for a subducted sedimentary component in their source regions. The low 206Pb/204Pb of some backarc lava flows suggests the presence of a second endmember with an EM1 flavor in its source. The overall magma genesis is explained within the context of a subducted slab with sediment that gradually looses water, water-mobile elements, and then switches to sediment melt extracts deeper down in the subduction zone. With the change in element extraction mechanism with depth comes a depletion and fractionation of the subducted complex that is reflected in the isotope and trace element signatures of the products from the main arc to Copahue to the back arc basalts.

  7. Characteristics of volcanic gas correlated to the eruption activity; Case study in the Merapi Volcano, periods of 1990-1994

    Directory of Open Access Journals (Sweden)

    Priatna Priatna

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol2no4.20074Volcanic gases, collected from Gendol and Woro solfatara fields, the summit of Merapi Volcano during 1990-1994, show an increase in chemical composition of H , CO, CO , SO , and HCl prior to the volcanic events, on the contrary to the drastic decreasing water vapour. The carbon/sulfur ratio of the volcanic gases lies between 1.5 and 5.7 which means that they were derived from the fresh magma. The Apparent Equilibrium Temperature (AET which is calculated from chemical compositions of volcanic gases using reaction of SO +3H = H S+2H O showed an increasing value prior to the volcanic events. The Merapi activities lasted during August 1990 to November 1994 showed a significant increase in ratio SO /H S prior to the November 1994 pyroclastic flow. The isotopic composition of volcanic gas condensates indicates that water vapour in Gendol is directly derived from the fresh magma. On the other hand, the contamination and cooling by the subsurface water occurred around the Woro field at a shallow part. 

  8. The Evolution of Galápagos Volcanoes: An Alternative Perspective

    Directory of Open Access Journals (Sweden)

    Karen S. Harpp

    2018-05-01

    Full Text Available The older eastern Galápagos are different in almost every way from the historically active western Galápagos volcanoes. Geochemical, geologic, and geophysical data support the hypothesis that the differences are not evolutionary, but rather the eastern volcanoes grew in a different tectonic environment than the younger volcanoes. The western Galápagos volcanoes have steep upper slopes and are topped by large calderas, whereas none of the older islands has a caldera, an observation that is supported by recent gravity measurements. Most of the western volcanoes erupt evolved basalts with an exceedingly small range of Mg#, Lan/Smn, and Smn/Ybn. This is attributed to homogenization in a crustal-scale magmatic mush column, which is maintained in a thermochemical steady state, owing to high magma supply directly over the Galápagos mantle plume. In contrast, the eastern volcanoes erupt relatively primitive magmas, with a large range in Mg#, Lan/Smn, and Smn/Ybn. These differences are attributed to isolated, ephemeral magmatic plumbing systems supplied by smaller magmatic fluxes throughout their histories. Consequently, each batch of magma follows an independent course of evolution, owing to the low volume of supersolidus material beneath these volcanoes. The magmatic flux to Galápagos volcanoes negatively correlates to the distance to the Galápagos Spreading Center (GSC. When the ridge was close to the plume, most of the plume-derived magma was directed to the ridge. Currently, the active volcanoes are much farther from the GSC, thus most of the plume-derived magma erupts on the Nazca Plate and can be focused beneath the large young shields. We define an intermediate sub-province comprising Rabida, Santiago, and Pinzon volcanoes, which were most active about 1 Ma. They have all erupted dacites, rhyolites, and trachytes, similar to the dying stage of the western volcanoes, indicating that there was a relatively large volume of mush beneath them

  9. On the mechanism of explosive eruption of mount erebus volcano: the dynamics of the rupture structure in a cavitating layer

    International Nuclear Information System (INIS)

    Bol'shakova, E S; Kedrinskiy, V K

    2016-01-01

    This paper presents the results of an experimental simulation of rupture development in heavily cavitating magma melt flow in volcanic conduits and its effect on the structure of explosive volcanic eruptions. The dynamics of the state of a layer of distilled water (similar in the density of cavitation nuclei to magma melt) under shock-wave loading was studied. The experiments were performed using electromagnetic hydrodynamic shock tubes (EM HST) with maximum capacitor bank energy of up to 100 J and 5 kJ. It was found that the topology of the rupture formed on the membrane surface did not change during its development. Empirical estimates were obtained for the proportion of the capacitor bank energy expended in the development of the rupture and the characteristic time of its existence. The study revealed a number of fundamentally new physical effects in the cavity dynamics in a cavitating medium: a cavitation “boundary layer” is formed on the surface of the quasi-empty rupture, which is transformed into a cluster of high energy density upon closure of the flow. (paper)

  10. Geodetic evidence for en echelon dike emplacement and concurrent slow slip during the June 2007 intrusion and eruption at Kīlauea volcano, Hawaii

    Science.gov (United States)

    Montgomery-Brown, E. K.; Sinnett, D.K.; Poland, M.; Segall, P.; Orr, T.; Zebker, H.; Miklius, Asta

    2010-01-01

    A series of complex events at Kīlauea Volcano, Hawaii, 17 June to 19 June 2007, began with an intrusion in the upper east rift zone (ERZ) and culminated with a small eruption (1500 m3). Surface deformation due to the intrusion was recorded in unprecedented detail by Global Positioning System (GPS) and tilt networks as well as interferometric synthetic aperture radar (InSAR) data acquired by the ENVISAT and ALOS satellites. A joint nonlinear inversion of GPS, tilt, and InSAR data yields a deflationary source beneath the summit caldera and an ENE-striking uniform-opening dislocation with ~2 m opening, a dip of ∼80° to the south, and extending from the surface to ~2 km depth. This simple model reasonably fits the overall pattern of deformation but significantly misfits data near the western end of an inferred dike-like source. Three more complex dike models are tested that allow for distributed opening including (1) a dike that follows the surface trace of the active rift zone, (2) a dike that follows the symmetry axis of InSAR deformation, and (3) two en echelon dike segments beneath mapped surface cracks and newly formed steaming areas. The en echelon dike model best fits near-field GPS and tilt data. Maximum opening of 2.4 m occurred on the eastern segment beneath the eruptive vent. Although this model represents the best fit to the ERZ data, it still fails to explain data from a coastal tiltmeter and GPS sites on Kīlauea's southwestern flank. The southwest flank GPS sites and the coastal tiltmeter exhibit deformation consistent with observations of previous slow slip events beneath Kīlauea's south flank, but inconsistent with observations of previous intrusions. Slow slip events at Kīlauea and elsewhere are thought to occur in a transition zone between locked and stably sliding zones of a fault. An inversion including slip on a basal decollement improves fit to these data and suggests a maximum of ~15 cm of seaward fault motion, comparable to previous slow

  11. Penguin Bank: A Loa-Trend Hawaiian Volcano

    Science.gov (United States)

    Xu, G.; Blichert-Toft, J.; Clague, D. A.; Cousens, B.; Frey, F. A.; Moore, J. G.

    2007-12-01

    Hawaiian volcanoes along the Hawaiian Ridge from Molokai Island in the northwest to the Big Island in the southeast, define two parallel trends of volcanoes known as the Loa and Kea spatial trends. In general, lavas erupted along these two trends have distinctive geochemical characteristics that have been used to define the spatial distribution of geochemical heterogeneities in the Hawaiian plume (e.g., Abouchami et al., 2005). These geochemical differences are well established for the volcanoes forming the Big Island. The longevity of the Loa- Kea geochemical differences can be assessed by studying East and West Molokai volcanoes and Penguin Bank which form a volcanic ridge perpendicular to the Loa and Kea spatial trends. Previously we showed that East Molokai volcano (~1.5 Ma) is exclusively Kea-like and that West Molokai volcano (~1.8 Ma) includes lavas that are both Loa- and Kea-like (Xu