WorldWideScience

Sample records for basaltic pyroclastic deposits

  1. Posteruptive impacts of pyroclastic deposits from basaltic andesite stratovolcanoes on surface water composition

    Science.gov (United States)

    Genareau, K.; Cronin, S. J.; Stewart, C.; Bhattacharyya, S.; Donahoe, R.

    2016-05-01

    Volcanic ash deposition following explosive eruptions can pose significant hazards for water quality, human health, agriculture, and infrastructure functionality. Many studies have examined how fresh ash deposition may lower the pH of, and introduce a range of potentially toxic elements into, exposed surface waters. However, no study has yet determined the effects on water composition as a result of mechanical pyroclast disaggregation and production of new fresh particle surfaces and increasingly fine grained particles. Such disaggregation could result from natural posteruptive processes such as debris avalanches, lahars, or fluvial/aeolian transport and human activities such as cleanup efforts or mining of pyroclastic deposits. The posteruption time scales of pyroclast disaggregation may vary from months in moist tropical or temperate environments to years or decades in arid settings. Here we show, for the first time in experimental studies, that mechanical milling of pyroclasts will introduce a range of elements into exposed waters, including Al, which can be toxic at elevated levels, and Na, which increases the electrical conductivity of solutions. The pH of leaching solutions also increases by several log units. Such dramatic changes on the experimental scale may have implications for surface water composition in posteruptive settings, necessitating longer-term risk assessments for ecosystem health and consideration of the role of pyroclastic deposits in element cycling in volcanically active regions.

  2. An unusually energetic basaltic phreatomagmatic eruption: Using deposit characteristics to constrain dilute pyroclastic density current dynamics

    Science.gov (United States)

    Brand, Brittany D.; Clarke, Amanda B.

    2012-10-01

    Multiple, highly erosive base surges of the Table Rock Complex tuff ring (TRC2), Oregon, produced dune-bedded deposits with crest to crest bedform wavelengths up to 200 m, which are amongst the largest ever recognized in the deposits of pyroclastic density currents. Here we use bedform wavelength, surmounted obstacles, and a large chute-and-pool feature to estimate near-source velocities (118-233 m s- 1), lower-bound velocities at radial distances of 1.6, 2 and 4.7 km from source (34, 29 and 20 m s- 1, respectively), and corresponding column collapse heights (up to 2.8 km). This paper represents one of the few studies that attempt to quantify flow characteristics, such as emplacement velocities at different distances from source, eruption column collapse height, and eruptive energy, based on deposit characteristics.

  3. DESERT PAVEMENTS AND SOILS ON BASALTIC PYROCLASTIC DEPOSITS AT LATHROP WELLS AND RED CONE VOLCANOES, SOUTHERN NEVADA ABSTRACT

    Energy Technology Data Exchange (ETDEWEB)

    G.A. Valentine; C.D. Harrington

    2005-08-26

    Formation of desert pavement and accretionary soils are intimately linked in arid environments such as the Mojave Desert. Well-sorted fallout scoria lapilli at Lathrop Wells (75-80 ky) and Red Cone ({approx}1 Ma) volcanoes (southern Nevada) formed an excellent starting material for pavement, allowing infiltration of eolian silt and fine sand that first clogs the pore space of underlying tephra and then aggrades and develops vesicular A (Av) horizons. Variations in original pyroclast sizes provide insight into minimum and maximum clast sizes that promote pavement and soil formation: pavement becomes ineffective when clasts can saltate under the strongest winds, while clasts larger than coarse lapilli are unable to form an interlocking pavement that promotes silt accumulation (necessary for Av development). Contrary to predictions that all pavements above altitudes of {approx}400 m would have been ''reset'' in their development after late Pleistocene vegetation advances (about 15 ka), the soils and pavements show clear differences in maturity between the two volcanoes. This indicates that either the pavements/soils develop slowly over many 10,000's of years and then are very stable, or that, if they are disrupted by vegetation advances, subsequent pavements are reestablished with successively more mature characteristics.

  4. DESERT PAVEMENTS AND SOILS ON BASALTIC PYROCLASTIC DEPOSITS AT LATHROP WELLS AND RED CONE VOLCANOES, SOUTHERN NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    G.A. Valentine; C.D. Harrington

    2005-08-10

    Formation of desert pavement and accretionary soils are intimately linked in arid environments such as the Mojave Desert. Well-sorted fallout scoria lapilli at Lathrop Wells (75-80 ky) and Red Cone ({approx}1 Ma) volcanoes (southern Nevada) formed an excellent starting material for pavement, allowing infiltration of eolian silt and fine sand that first clogs the pore space of underlying tephra and then aggrades and develops vesicular A (Av) horizons. Variations in original pyroclast sizes provide insight into minimum and maximum clast sizes that promote pavement and soil formation: pavement becomes ineffective when clasts can saltate under the strongest winds, while clasts larger than coarse lapilli are unable to form an interlocking pavement that promotes silt accumulation (necessary for Av development). Contrary to predictions that all pavements above altitudes of {approx}400 m would have been ''reset'' in their development after late Pleistocene vegetation advances (about 15 ka), the soils and pavements show clear differences in maturity between the two volcanoes. This indicates that either the pavement soils develop slowly over many 10,000's of years and then are very stable, or that, if they are disrupted by vegetation advances, subsequent pavements are reestablished with successively more mature characteristics.

  5. Derivation of FEO Abundances in Lunar Pyroclastic Deposits Using Diviner

    Science.gov (United States)

    Allen, Carlton C.; Greenhagen, Benjamin T.; DonaldsonHanna, Kerri L.; Oehler, Dorothy Z.; Paige, David A.

    2012-01-01

    Telescopic observations and orbital images of the Moon reveal at least 75 lunar pyroclastic deposits (LPDs), interpreted as the products of explosive volcanic eruptions [1]. The deposits are understood to be composed primarily of sub-millimeter beads of basaltic composition, ranging from glassy to partially-crystallized [2]. Delano [3] documented 25 distinct pyroclastic bead compositions in lunar soil samples, with a range of FeO abundances from 16.5 - 24.7 wt%. Green glasses generally have lower FeO abundances and red, yellow, and orange glasses generally have higher FeO abundances. The current study employs data from the Diviner Lunar Radiometer Experiment onboard the Lunar Reconnaissance Orbiter (LRO) to derive the FeO compositions of glasses from unsampled lunar pyroclastic deposits. The pyroclastic glasses are the deepest-sourced and most primitive basalts on the Moon [4]. Recent analyses have documented the presence of water in these glasses, demonstrating that the lunar interior is considerably more volatile-rich than previously understood [5]. Experiments have shown that the iron-rich pyroclastic glasses release the highest percentage of oxygen of any Apollo soils, making these deposits promising lunar resources [6].

  6. Ranking welding intensity in pyroclastic deposits

    Science.gov (United States)

    Quane, Steven L.; Russell, James K.

    2005-02-01

    Welding of pyroclastic deposits involves flattening of glassy pyroclasts under a compactional load at temperatures above the glass transition temperature. Progressive welding is recorded by changes in the petrographic (e.g., fabric) and physical (e.g., density) properties of the deposits. Mapping the intensity of welding can be integral to studies of pyroclastic deposits, but making systematic comparisons between deposits can be problematical. Here we develop a scheme for ranking welding intensity in pyroclastic deposits on the basis of petrographic textural observations (e.g., oblateness of pumice lapilli and micro-fabric orientation) and measurements of physical properties, including density, porosity, point load strength and uniaxial compressive strength. Our dataset comprises measurements on 100 samples collected from a single cooling unit of the Bandelier Tuff and parallel measurements on 8 samples of more densely welded deposits. The proposed classification comprises six ranks of welding intensity ranging from unconsolidated (Rank I) to obsidian-like vitrophyre (Rank VI) and should allow for reproducible mapping of subtle variations in welding intensity between different deposits. The application of the ranking scheme is demonstrated by using published physical property data on welded pyroclastic deposits to map the total accumulated strain and to reconstruct their pre-welding thicknesses.

  7. Compositional analyses of small lunar pyroclastic deposits using Clementine multispectral data

    Science.gov (United States)

    Gaddis, Lisa R.; Hawke, B. Ray; Robinson, Mark S.; Coombs, Cassandra

    2000-02-01

    Clementine ultraviolet-visible (UVVIS) data are used to examine the compositions of 18 pyroclastic deposits (15 small, three large) at 13 sites on the Moon. Compositional variations among pyroclastic deposits largely result from differing amounts of new basaltic (or juvenile) material and reworked local material entrained in their ejecta upon eruption. Characterization of pyroclastic deposit compositions allows us to understand the mechanisms of lunar explosive volcanism. Evidence for compositional differences between small pyroclastic deposits at a single site is observed at Atlas crater. At all sites, compositional variation among the small pyroclastic deposits is consistent with earlier classification based on Earth-based spectra: three compositional groups can be observed, and the trend of increasing mafic absorption band strength from Group 1 to Group 2 to Group 3 is noted. As redefined here, Group 1 deposits include those of Alphonsus West, Alphonsus Southeast, Alphonsus Northeast 2, Atlas South, Crüger, Franklin, Grimaldi, Lavoisier, Oppenheimer, Orientale, and Riccioli. Group 1 deposits resemble lunar highlands, with weak mafic bands and relatively high UV/VIS ratios. Group 2 deposits include those of Alphonsus Northeast 1, Atlas North, Eastern Frigoris East and West, and Aristarchus Plateau; Group 2 deposits are similar to mature lunar maria, with moderate mafic band depths and intermediate UV/VIS ratios. The single Group 3 deposit, J. Herschel, has a relatively strong mafic band and a low UV/VIS ratio, and olivine is a likely juvenile component. Two of the deposits in these groups, Orientale and Aristarchus, are large pyroclastic deposits. The third large pyroclastic deposit, Apollo 17/Taurus Littrow, has a very weak mafic band and a high UV/VIS ratio and it does not belong to any of the compositional groups for small pyroclastic deposits. The observed compositional variations indicate that highland and mare materials are also present in many large and

  8. Localized Pyroclastic Deposits in the Grimaldi Region of the Moon

    Science.gov (United States)

    Hawke, B. R.; Giguere, T. A.; Gaddis, L. R.; Gustafson, O.; Lawrence, S. J.; Stopar, J. D.; Peterson, C. A.; Bell, J. F.; Robinson, M. S.; LROC Science Team

    2012-03-01

    LRO Camera WAC and NAC images were used to identify and characterize previously unknown localized pyroclastic deposits in the Grimaldi region. Some are among the smallest pyroclastic deposits yet identified on the lunar surface.

  9. The compositional and physical properties of localized lunar pyroclastic deposits

    Science.gov (United States)

    Trang, David; Gillis-Davis, Jeffrey J.; Lemelin, Myriam; Cahill, Joshua T. S.; Hawke, B. Ray; Giguere, Thomas A.

    2017-02-01

    Lunar localized pyroclastic deposits are low albedo deposits with areas thermal-infrared-derived measures of surficial rock abundance and regolith density, and mineral abundances. Our goals are to (1) quantitatively characterize the physical and mineralogical properties of each localized pyroclastic deposit, (2) investigate the physical and mineralogical variations among localized pyroclastic deposits, (3) compare these properties of localized ( 2500 km2), and (4) provide useful parameters for future volcanological modeling. From this study, we find that: (1) localized pyroclastic deposits exhibit low relief structures, (2) the surface rock abundance and circular polarization ratio of localized pyroclastic deposits display a wide range of values (0.2-0.5% and 0.3-0.6, respectively), (3) the glass abundance of localized pyroclastic deposits vary between ∼0 and ∼80 wt.%, (4) there are four types of localized pyroclastic deposits based upon the surface rock abundance and glass abundance parameters, (5) pyroclastic deposits within the same floor-fractured crater tend to have similar properties, and (6) localized pyroclastic deposits are diverse with respect to regional pyroclastic deposits, but a subset of localized pyroclastic deposits have similar physical and mineralogical properties to regional pyroclastic deposits.

  10. Mercury's Pyroclastic Deposits and their spectral variability

    Science.gov (United States)

    Besse, Sebastien; Doressoundiram, Alain

    2016-10-01

    Observations of the MESSENGER spacecraft in orbit around Mercury have shown that volcanism is a very important process that has shaped the surface of the planet, in particular in its early history.In this study, we use the full range of the MASCS spectrometer (300-1400nm) to characterize the spectral properties of the pyroclastic deposits. Analysis of deposits within the Caloris Basin, and on other location of Mercury's surface (e.g., Hesiod, Rachmaninoff, etc.) show two main results: 1) Spectral variability is significant in the UV and VIS range between the deposits themselves, and also with respect to the rest of the planet and other features like hollows, 2) Deposits exhibit a radial variability similar to those found with the lunar pyroclastic deposits of floor fractured craters.These results are put in context with the latest analysis of other instruments of the MESSENGER spacecraft, in particular the visible observations from the imager MDIS, and the elemental composition given by the X-Ray spectrometer. Although all together, the results do not allow pointing to compositional variability of the deposits for certain, information on the formation mechanisms, the weathering and the age formation can be extrapolated from the radial variability and the elemental composition.

  11. Componentry of pyroclastic fall deposits from 2008-2012 small explosive eruptions at Kilauea summit crater: insights into the dynamics of an open basaltic lava column

    Science.gov (United States)

    Eychenne, J.; Houghton, B. F.; Swanson, D.; Orr, T. R.; Carey, R. J.

    2012-12-01

    Eruptive activity began at Kilauea volcano's summit in March 2008 after 25 years of repose, when a small explosive event opened a 35-m-wide vent on the south wall of Halema`uma`u crater, initiating an eruptive period that extends to the time of writing. The activity has been characterized by: 1) a vigorous outgassing, 2) an unevenly intense spattering of the free surface at the top of the lava column (background activity), and 3) the occurrence of small explosive events consistently triggered by conduit-wall and/or rim collapses. A daily sampling of the pyroclasts ejected from the vent has been organized by the Hawaii Volcano Observatory since 2008. The componentry analyses of samples collected prior to and following different events from 2008 to 2012 allow us to distinguish consistent classes of juvenile particles according to their vesicularity, crystallinity and morphology. The abundances of these different classes vary from background- to explosion-samples, revealing consistent contrasting degassing and fragmentation processes before the disruption of the lava free surface by the rockfalls, and during and soon after the explosive events. These results, for samples collected in 2011-2012 combined with geophysical and visual datasets, give insights into the dynamics of the lava column and particularly into the behavior of the top of the column responding to outgassing and external disruption of the free surface-equilibrium state.

  12. Emplacement temperatures of pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa

    Science.gov (United States)

    Fontana, Giovanni; Mac Niocaill, Conall; Brown, Richard J.; Sparks, R. Stephen J.; Field, Matthew

    2011-10-01

    Palaeomagnetic techniques for estimating the emplacement temperatures of volcanic deposits have been applied to pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa. Lithic clasts were sampled from a variety of lithofacies from three pipes for which the internal geology is well constrained (the Cretaceous A/K1 pipe, Orapa Mine, Botswana, and the Cambrian K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling breccias with varying abundances of lithic inclusions, layered crater-filling pyroclastic deposits, talus breccias and volcaniclastic breccias. Basalt lithic clasts in the layered and massive vent-filling pyroclastic deposits in the A/K1 pipe at Orapa were emplaced at >570°C, in the pyroclastic crater-filling deposits at 200-440°C and in crater-filling talus breccias and volcaniclastic breccias at 560°C, although the interpretation of these results is hampered by the presence of Mesozoic magnetic overprints. These temperatures are comparable to the estimated emplacement temperatures of other kimberlite deposits and fall within the proposed stability field for common interstitial matrix mineral assemblages within vent-filling volcaniclastic kimberlites. The temperatures are also comparable to those obtained for pyroclastic deposits in other, silicic, volcanic systems. Because the lithic content of the studied deposits is 10-30%, the initial bulk temperature of the pyroclastic mixture of cold lithic clasts and juvenile kimberlite magma could have been 300-400°C hotter than the palaeomagnetic estimates. Together with the discovery of welded and agglutinated juvenile pyroclasts in some pyroclastic kimberlites, the palaeomagnetic results indicate that there are examples of kimberlites where phreatomagmatism did not play a major role in the generation of the pyroclastic deposits. This study indicates that palaeomagnetic methods can successfully distinguish differences in the

  13. A Pyroclastic Flow Deposit on Venus

    Science.gov (United States)

    Ghail, R.; Wilson, L.

    2013-12-01

    Explosive volcanism on Venus is severely inhibited by its high atmospheric pressure and lack of water. This paper shows that a deposit located near 16°S, 144°E, here referred to as Scathach Fluctus, displays a number of morphological characteristics consistent with a pyroclastic flow deposit. These characteristics, particularly its lack of channelisation and evidence for momentum rather than cooling limited flow length, contrast with fissure-fed lava flow deposits. The total erupted volume is estimated to have been between 225 km3 and 875 km3 but this may have been emplaced in more than one event. Interaction between Scathach Fluctus and a small volcanic cone constrain the flow velocity to 48 m s-1 and plausible volatile concentrations to at least 1.8 wt% H2O, 4.3 wt% CO2 or 6.1 wt% SO2, the latter two implying magma sourced directly from the mantle. The deposit has radar characteristics, particularly an exponential backscatter function, that are similar to those of nearly half the planetary surface, implying that pyroclastic deposits may be much more common on Venus than has been recognised to date, and suggesting both a relatively volatile-rich mantle and a volcanic source for atmospheric SO2. Unfortunately, because the plains usually lack clear flow boundaries and structures, the features diagnostic of a high momentum flow - linear undulating deposits that lack channel morphology, cross narrow graben without deviation, climb obstacles and show evidence for parabolic flow out from steep drops - may not be identifiable. Thus, while pyroclastic flows may be common on Venus, Scathach Fluctus may, indeed, become the only proven example from Magellan data. False colour image of Scathach Fluctus using data from Cycle 1 (left-looking), Cycle 2 (right-looking) and passive emissivity combined to enhance the impression of relief in the grey scale image, overlain with colour-coded derived asperity height, defined as surface roughness at the scale-length of the Magellan

  14. Ranking welding intensity in pyroclastic deposits

    Science.gov (United States)

    Quane, S. L.; Russell, J. K.

    2003-04-01

    Pyroclastic deposits emplaced at high temperatures and having sufficient thickness become welded. The welding process involves sintering, compaction and flattening of hot glassy pyroclastic material and is attended by systematic changes in physical properties. Historically, the terms nonwelded, incipiently welded, partially welded with pumice, partially welded with fiamme, moderately welded and densely welded have been used as field descriptors for welding intensity (e.g., Smith &Bailey, 1966; Smith, 1979; Ross &Smith, 1980; Streck &Grunder, 1995). While using these descriptive words is often effective for delineating variations of welding intensity within a single deposit, their qualitative character does not provide for consistency between field areas or workers, and inhibits accurate comparison between deposits. Hence, there is a need for a universal classification of welding intensity in pyroclastic deposits. Here we develop an objective ranking system. The system recognizes 8 ranks (I to VIII) based on measurements of physical properties and petrographic characteristics. The physical property measurements include both lab and field observations: density, porosity, uniaxial compressive strength, point load strength, fiamme elongation, and foliation/fabric. The values are normalized in order to make the system universal. The rank divisions are adaptations of a rock mass-rating scheme based on rock strength (Hoek &Brown, 1980) and previous divisions of welding degree based on physical properties (e.g., density: Ragan &Sheridan, 1972, Streck &Grunder, 1995; fiamme elongation: Peterson, 1979). Each rank comprises a range of normalized values for each of the physical properties and a corresponding set of petrographic characteristics. Our new ranking system provides a consistent, objective means by which each sample or section of welded tuff can be evaluated, thus providing a much needed uniformity in nomenclature for degree of welding. References: Hoek, E. &Brown, E

  15. Local spectrophotometric properties of pyroclastic deposits at the Lavoisier lunar crater

    Science.gov (United States)

    Souchon, A. L.; Besse, S.; Pinet, P. C.; Chevrel, S. D.; Daydou, Y. H.; Josset, J.-L.; D'Uston, L.; Haruyama, J.

    2013-07-01

    We present a study of the Lavoisier lunar crater combining photometric data from the AMIE camera (SMART-1 mission) and hyperspectral data from the Moon Mineralogy Mapper M3 (Chandrayaan-1 mission), with a special emphasis on the pyroclastic deposits considered to be present on the crater floor. The photometric parameters are in agreement with the general photometric behaviors of the lunar regolith, especially the backscattering properties. The assumed pyroclastic materials within Lavoisier present at first order a rather homogeneous photometric behavior, in favor of their surface state homogeneity. However, they are not significantly different from other "non-dark" patches on the crater's floor, whereas the assumed pyroclastic deposit of Lavoisier F displays clearly different photometric parameters, indicative of distinct physical surface properties from the pyroclastic materials within Lavoisier. Using laboratory data to get hindsight on the reliability of results from orbital datasets, we show that the use of more or less depleted phase curves for photometric inversions has a clear impact on the photometric parameters that are derived. The hyperspectral analysis of Lavoisier crater shows that the various pyroclastic deposits present the same mineralogical composition, distinct from the floor of the crater and the mare basalts. M3 spectra do not differentiate between the pyroclastic deposits within Lavoisier and Lavoisier F. They have the same spectral signatures, share a similar mineralogical composition, and probably the same volcanic origin. Therefore, the differences seen in the photometric analysis from the AMIE observations are indicative of variations in grain sizes, and/or roughness, and/or particles scattering properties, and/or compaction state. The combined mineralogical and photometric analysis is a very useful approach to document the nature of the pyroclastic deposits of the Moon, and possibly of other objects of the Solar System (e.g., Mercury) as

  16. Ilmenite-rich pyroclastic deposits - An ideal lunar resource

    Science.gov (United States)

    Hawke, B. R.; Clark, B.; Coombs, C. R.

    1990-01-01

    With a view of investigating possible economic benefits that a permanent lunar settlement might provide to the near-earth space infrastructures, consideration was given to the ilmenite-rich pyroclastic deposits as sources of oxygen (for use as a propellant) and He-3 (for nuclear fusion fuel). This paper demonstrates that ilmenite-rich pyroclastic deposits would be excellent sources of a wide variety of valuable elements besides O and He-3, including Fe, Ti, H2, N, C, S, Cu, Zn, Cd, Bi, and Pb. It is shown that several ilmenite-rich pyroclastic deposits of regional extent exist on the lunar surface. The suitability of regional pyroclastic deposits for lunar mining operations, construction activities, and the establishment of permanent lunar settlements is examined.

  17. Submarine pyroclastic deposits in Tertiary basins, NE Slovenia

    Directory of Open Access Journals (Sweden)

    Polona Kralj

    2013-12-01

    Full Text Available In Tertiary basins of NE Slovenia, Upper Oligocene volcanic activity occurred in a submarine environment that experienced contemporaneous clastic sedimentation. Pyroclastic deposits are essentially related to gas- and watersupported eruption-fed density currents. At Trobni Dol, the Lako Basin, an over 100 m thick deposit formed by a sigle sustained volcanic explosion that fed gas-supported pyroclastic flow. Diagnostic features are large matrixshard content, normal grading of pumice lapilli, collapsed pumice lapilli and the presence of charcoal. In the Smrekovec Volcanic Complex, several but only up to 5 m thick deposits related to eruption-fed gassupported pyroclastic flows occur. Deposits settled from water-supported eruption-fed density currents form fining- and thinning-upward sedimentary units which resemble the units of volcaniclastic turbidites. Pyroclastic deposits related to gas- and water-supported density currents occur in an up to 1000 m thick succession composed of coherent volcanics, autoclastic, pyroclastic, reworked volcaniclastic and mixed volcaniclastic-siliciclastic deposits that indicate a complex explosive and depositional history of the Smrekovec Volcanic Complex.

  18. Subaqueous explosive eruption and welding of pyroclastic deposits.

    Science.gov (United States)

    Kokelaar, P; Busby, C

    1992-07-10

    Silicic tuffs infilling an ancient submarine caldera, at Mineral King in California, show microscopic fabrics indicative of welding of glass shards and pumice at temperatures >500 degrees C. The occurrence indicates that subaqueous explosive eruption and emplacement of pyroclastic materials can occur without substantial admixture of the ambient water, which would cause chilling. Intracaldera progressive aggradation of pumice and ash from a thick, fast-moving pyroclastic flow occurred during a short-lived explosive eruption of approximately 26 cubic kilometers of magma in water >/=150 meters deep. The thickness, high velocity, and abundant fine material of the erupted gas-solids mixture prevented substantial incorporation of ambient water into the flow. Stripping of pyroclasts from upper surfaces of subaqueous pyroclastic flows in general, both above the vent and along any flow path, may be the main process giving rise to buoyant-convective subaqueous eruption columns and attendant fallout deposits.

  19. The architecture and shallow conduits of Laki-type pyroclastic cones: insights into a basaltic fissure eruption

    Science.gov (United States)

    Reynolds, P.; Brown, R. J.; Thordarson, T.; Llewellin, E. W.

    2016-05-01

    Pyroclastic cones built along basaltic fissures provide important volcanological information, but it is often difficult to examine the early-erupted products due to burial by later products. Furthermore, it is rare to see the link between the feeder dyke and overlying cone fully exposed. In this study, we detail the architecture of a hybrid spatter cone, scoria half-cone and feeder dyke that has been dissected to below the pre-eruption surface by glacial floods. The cones were constructed during the 6-8 ka Rauðuborgir-Kvensöðul fissure eruption in North Iceland during Hawaiian- and Strombolian-style activities. Widening of their feeder dyke in the shallow sub-surface to produce an upward flaring morphology was accommodated by country rock removal and elastic host rock deformation. Ballistic calculations and stratigraphic relationships indicate that the scoria half-cone was constructed early in the eruption from the deposits of a lava fountain ~100 m high. A decline in fountain height and the generation of abundant welded deposits resulted in the formation of a nested spatter cone within the scoria half-cone. The cones are similar in structure and size to the hybrid scoria and spatter cones produced during the 15-km3 1783 Laki eruption and serve as a valuable window into the construction of pyroclastic edifices during basaltic fissure eruptions.

  20. New tools to investigate textures of pyroclastic deposits

    Energy Technology Data Exchange (ETDEWEB)

    Sarocchi, Damiano [Instituto de GeologIa / Fac. IngenierIa UASLP, Dr. M. Nava No 5, Zona Universitaria 78240, San Luis PotosI (Mexico); Borselli, Lorenzo [Istituto di Ricerca per la Protezione Idrogeologica, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino (Italy); MacIas, Jose Luis [Departamento de VulcanologIa, Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Coyoacan 04510, D.F. (Mexico)

    2008-10-01

    A pyroclastic flow deposit keeps a fingerprint of the physical processes that occurred in the flow during transport and settling. Part of this information is recorded in the texture of the deposit offering an instantaneous view of the flow prior to freezing. In this work we introduce some texture's analysis techniques, based on image analysis, that we have developed or tuned during the last years.

  1. Geology and Stratigraphy of Four Candidate Pyroclastic Deposits on Mercury

    Science.gov (United States)

    Weinauer, Julia; Hiesinger, Harald; Bauch, Karin; Preusker, Frank

    2016-04-01

    The MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) spacecraft [1] to Mercury revealed numerous new findings, including the discovery of potential pyroclastic deposits [2-9]. Besides impact cratering, volcanic processes, including the deposition of pyroclastic materials are among the most important processes to shape the surface of a planet. Volcanic processes allow us to study the thermal evolution of the planet, and impacts provide insights into the composition of the crust, and possible the mantle. In this study we focus on four specific examples of potential pyroclastic deposits: Lermontov NE (-48.15°E, 15.80°), Lermontov SE (-49.08°E, 15.04°), Glinka (-112.42°E, 15.01°), and Unnamed crater 7 (88.20°E, 32.40°). For our investigation we used data of the Mercury Dual Imaging System (MDIS) [10]. In particular we studied narrow-angle Camera (NAC) images with a resolution of 25-100 m/pixel and wide-angle camera (WAC) images with a resolution of about 170-250 m/pixel. Our data set is complemented by Digital Terrain Models (DTM) based on photogrammetric analyses of stereo images [11]. The objectives of this study are to investigate the geologic context of the pyroclastic deposits, to map their morphological/compositional sub-units in detail, to derive volume estimates for these deposits, to study their eruption conditions, and to derive information on the timing of the emplacement of these units. In addition, absolute model ages are determined to develop a stratigraphy of the mapped units Several morphologic features were observed in association with the pyroclastic deposits, including lobate scarps, melt pools, and large irregular depressions, as well as small-scale irregularly shaped, shallow, rimless depressions, i.e., hollows [2]. In Lermontov, the large irregular depressions that can be plausibly interpreted as vent structures [6,7] occur within a roughly circular depression of about 50 km in diameter, located in the center of

  2. Stratigraphy of Pyroclastic Deposits of EL Aguajito Caldera, Baja California Sur, MÉXICO

    Science.gov (United States)

    Osorio Ocampo, L. S.; Macias, J. L.; García Sánchez, L.; Pola, A.; Saucedo, R.; Sánchez, J. M.; Avellán, D. R.; Cardona, S.; Reyes-Agustín, G.; Arce, J. L.

    2015-12-01

    El Aguajito caldera is located in the State of Baja California Sur, it comprises an area of 450 km2 and sits within the Santa Rosalía Basin which is controlled by NE-SW extensional structures and the NW-SE Cimarron Fault that transects the caldera structure. The oldest rocks are ~90 Ma granodiorites covered by an Oligocene-Miocene volcano-sedimentary sequence, the Miocene Santa Lucia Formation and La Esperanza basalt. Pliocene volcanism is represented by La Reforma caldera, El Aguajito caldera, and the Tres Vírgenes Volcanic complex. This study focuses on the cartography and stratigraphy of area in order to understand the evolution of the volcanic system. The stratigraphy from base to top consists of a series of shallow marine sediments (fossiliferous sandstones) covered by a thick sequence of ignimbrites and pyroclastic flows interbedded with volcaniclastic deposits (Gloria and El Infierno Formations). On top of these deposits is El Aguajito caldera, it consists of a 2 m thick pumice fallout followed by an ignimbrite with three transitional lithofacies: a ≤30-m thick light-pink pyroclastic flow enriched in pumice at the base that gradually becomes enrich in lithics towards the top with the occurrence of degasing pipes. On top rests a 15 m-thick light-purple ignimbrite slightly welded with fiammes and a sequence of pumiceous pyroclastic flows and fallouts. These deposits have been associate to the caldera formation with a collapse diameter of ~8 km marked by rhyolitic domes exposed along a ring collapse crowned the sequence as well as NW-SE aligned rhyolitic domes parallel to the seashore. This cartography allowed to present a preliminary new geological map with four stratigraphic units recognized so far, that were emplaced under subaerial conditions beginning with a Plinian column followed by the emplacement of El Aguajito ignimbrite with its subsequent caldera collapse and finally the extrusion of resurgent domes.

  3. Outburst fan deposit from pyroclastic flows, Williamson River canyon, south-central Oregon

    Science.gov (United States)

    Cummings, M. L.; Eibert, D.

    2016-12-01

    Pyroclastic flows from the Holocene eruption of Mount Mazama in the Cascade volcanic arc of Oregon, blocked the narrow (210 to 225 m wide, 35 to 40 m deep), bedrock-lined canyon of the Williamson River. The estimated volume of the long, narrow blockage was 4.4 x 10^7 cubic meters. The blockage eventually failed releasing an impounded lake and depositing a debris fan at the mouth of the canyon. Remnants of the debris fan underlie a gently sloping surface dissected by various abandoned channels of the river. The modern Williamson River cut its channel across the upper part of the fan. Three bedrock units are present as boulders: hydrovolcanic tuff (Di = 2.75 m) derived from tuff cones in the lower reaches of the canyon, distinctly layered geochemically primitive olivine basalt (Di = 3.4 m) that crops out approximately 6 km upstream, and massive basaltic andesite that underlies the channel in the upper canyon and cliffs that define the right bank of the canyon near the mouth. Matrix between boulders and deposits that flank and overlie the boulder deposit are dominated by medium- to fine-grained sand (ASTM; 61-70 wt. % in matrix; 76-100 wt. % elsewhere). Sand grains are predominantly well-rounded phenocryst-bearing glass that vary from massive to moderately vesiculated and crystals of plagioclase and hornblende commonly with attached remnants of groundmass. Crystals are most abundant in the medium- and fine-grained size range (>20 and fragments (twigs and molds) are common in medium-sand and larger. Elongate bars of rounded pumice gravel provide local current directions during the waning stage of the outburst flood. The thickness of the boulder deposit near the mouth of the canyon is not known. Sand deposits are 1 to 1.5 m thick near the mouth of the canyon and thin to 70 cm at about 3.4 km from the mouth of the canyon.

  4. Characterization of previously unidentified lunar pyroclastic deposits using Lunar Reconnaissance Orbiter Camera (LROC) data

    Science.gov (United States)

    Gustafson, J. Olaf; Bell, James F.; Gaddis, Lisa R.R.; Hawke, B. Ray Ray; Giguere, Thomas A.

    2012-01-01

    We used a Lunar Reconnaissance Orbiter Camera (LROC) global monochrome Wide-angle Camera (WAC) mosaic to conduct a survey of the Moon to search for previously unidentified pyroclastic deposits. Promising locations were examined in detail using LROC multispectral WAC mosaics, high-resolution LROC Narrow Angle Camera (NAC) images, and Clementine multispectral (ultraviolet-visible or UVVIS) data. Out of 47 potential deposits chosen for closer examination, 12 were selected as probable newly identified pyroclastic deposits. Potential pyroclastic deposits were generally found in settings similar to previously identified deposits, including areas within or near mare deposits adjacent to highlands, within floor-fractured craters, and along fissures in mare deposits. However, a significant new finding is the discovery of localized pyroclastic deposits within floor-fractured craters Anderson E and F on the lunar farside, isolated from other known similar deposits. Our search confirms that most major regional and localized low-albedo pyroclastic deposits have been identified on the Moon down to ~100 m/pix resolution, and that additional newly identified deposits are likely to be either isolated small deposits or additional portions of discontinuous, patchy deposits.

  5. Hybrid fall deposits in the Bishop Tuff, California: A novel pyroclastic depositional mechanism

    Science.gov (United States)

    Wilson, C.J.N.; Hildreth, W.

    1998-01-01

    Hybrid fall deposits in the Bishop Tuff show features common to both archetypal fall and surge deposits. Like normal-fall deposits, they have an overall plane-parallel bedding and flat-lying pumice clasts but also, like surge deposits, they show variable development of cross-bedding, some crystal and pumice sorting, and some rounding of pumice clasts. All variations exist from normal-fall deposits, through streaky material with incipient development of cross-bedding, to the hybrid fall deposits with well-developed cross-bedding. The streaky and hybrid deposits are interpreted as fall material contemporaneously redeposited by strong (up to 40 m/s) swirling winds, comparable to firestorm whirlwinds, generated by air currents associated with coeval emplacement of pyroclastic flows. Recognition of hybrid fall deposits is important in interpreting the dynamics of explosive eruptions and correctly assessing volcanic hazards. However, although such deposits may be commonly produced by explosive eruptions, especially where pyroclastic flows accompany fall activity, they are likely to be overlooked, or wrongly interpreted as surge deposits or secondary, reworked material.

  6. Secondary hydroeruptions in pyroclastic-flow deposits: Examples from Mount St. Helens

    Science.gov (United States)

    Moyer, T.C.; Swanson, D.A.

    1987-01-01

    Secondary hydroeruptions occur in pyroclastic-flow deposits when water or ice is trapped beneath hot pyroclastic debris and rapidly heated to steam. These eruptions display various styles of activity including fumarolic degassing, tephra fountaining, and explosive cratering. The deposits, which occupy the layer 3 stratigraphic position on the top of pyroclastic-flow units, can be distinguished from ash-cloud material by lateral thickness variation, clast composition, and other sedimentary features. The ejecta of secondary hydroeruptions comprise a subset of hydrovolcanic pyroclastic deposits. A small secondary hydroeruption observed on the Mount St. Helens pumice plain in 1981 produced tephra that was emplaced ballistically, by deposition from base surges, and by fallout from an eruption column. Stratigraphic descriptions and grain-size analysis of the ejecta from several secondary craters on the pumice plain demonstrate that the bedforms produced by a hydroeruption change with crater diameter. In particular, craters of small diameter are surrounded by interbedded ripple-laminated ash horizons and nonstratified, fines-depleted units; large craters have ejecta ramparts comprised of coarse dunes and antidunes. These bedform changes are related to a progressive increase in eruptive energy, which produces base surges of greater power and eruptive columns of greater height. We suggest that the style of activity displayed during a secondary hydroeruption is controlled by both the total thermal energy of the system and the permeability of the pyroclastic overburden. ?? 1987.

  7. Performance characteristics of tunnel boring machine in basalt and pyroclastic rocks of Deccan traps – A case study

    Directory of Open Access Journals (Sweden)

    Prasnna Jain

    2014-02-01

    Full Text Available A 12.24 km long tunnel between Maroshi and Ruparel College is being excavated by tunnel boring machine (TBM to improve the water supply system of Greater Mumbai, India. In this paper, attempt has been made to establish the relationship between various litho-units of Deccan traps, stability of tunnel and TBM performances during the construction of 5.83 km long tunnel between Maroshi and Vakola. The Maroshi–Vakola tunnel passes under the Mumbai Airport and crosses both runways with an overburden cover of around 70 m. The tunneling work was carried out without disturbance to the ground. The rock types encountered during excavation are fine compacted basalt, porphyritic basalt, amygdaloidal basalt, pyroclastic rocks with layers of red boles and intertrappean beds consisting of various types of shales. Relations between rock mass properties, physico-mechanical properties, TBM specifications and the corresponding TBM performance were established. A number of support systems installed in the tunnel during excavation were also discussed. The aim of this paper is to establish, with appropriate accuracy, the nature of subsurface rock mass condition and to study how it will react to or behave during underground excavation by TBM. The experiences gained from this project will increase the ability to cope with unexpected ground conditions during tunneling using TBM.

  8. Radiocarbon dates for lava flows and pyroclastic deposits on Sao Miguel, Azores

    Science.gov (United States)

    Moore, R.B.; Rubin, M.

    1991-01-01

    We report 63 new radiocarbon analyses of samples from Sao Miguel, the largest island in the Azores archipelago. The samples are mainly carbonized tree roots and other plant material collected from beneath 20 mafic lava flows and spatter deposits and from within and beneath 42 trachytic pyroclastic flow, pyroclastic surge, mudflow, pumice-fall and lacustrine deposits and lava flows. One calcite date is reported. These dates establish ages for 48 previously undated lava flows and pyroclastic deposits, and revise three ages previously reported. These data are critical to deciphering the Holocene and late Pleistocene eruptive history of Sao Miguel and evaluating its potential volcanic hazards. Average dormant intervals during the past 3000 years are about 400 years for Sete Cidades volcano, 145 years for volcanic Zone 2, 1150 years for Agua de Pau volcano and 320 years for Furnas volcano. No known eruptions have occurred in volcanic Zone 4 during the past 3000 years. -from Authors

  9. Palaeomagnetic Emplacement Temperature Determinations of Pyroclastic and Volcaniclastic Deposits in Southern African Kimberlite Pipes

    Science.gov (United States)

    Fontana, G.; Mac Niocaill, C.; Brown, R.; Sparks, R. S.; Matthew, F.; Gernon, T. M.

    2009-12-01

    Kimberlites are complex, ultramafic and diamond-bearing volcanic rocks preserved in volcanic pipes, dykes and craters. The formation of kimberlite pipes is a strongly debated issue and two principal theories have been proposed to explain pipe formation: (1) the explosive degassing of magma, and (2) the interaction of rising magma with groundwater (phreatomagmatism). Progressive thermal demagnetization studies are a powerful tool for determining the emplacement temperatures of ancient volcanic deposits and we present the first application of such techniques to kimberlite deposits. Lithic clasts were sampled from a variety of lithofacies, from three pipes for which the internal geology is well constrained (A/K1 pipe, Orapa Mine, Botswana and the K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling breccias with varying abundances of lithic inclusions and layered crater-filling pyroclastic deposits, talus breccias and volcaniclastic breccias. Lithic clasts sampled from layered and massive vent-filling pyroclastic deposits in A/K1 were emplaced at >590° C. Results from K1 and K2 provide a maximum emplacement temperature limit for vent-filling breccias of 420-460° C; and constrain equilibrium deposit temperatures at 300-340° C. Crater-filling volcaniclastic kimberlite breccias and talus deposits from A/K1 were emplaced at ambient temperatures, consistent with infilling of the pipe by post-eruption epiclastic processes. Identified within the epiclastic crater-fill succession is a laterally extensive 15-20 metre thick kimberlite pyroclastic flow deposit emplaced at temperatures of 220-440° C. It overlies the post-eruption epiclastic units and is considered an extraneous pyroclastic kimberlite deposit erupted from another kimberlite vent. The results provide important constraints on kimberlite emplacement mechanisms and eruption dynamics. Emplacement temperatures of >590°C for pipe-filling pyroclastic deposits

  10. Observations and modelling of soil slip-debris flow initiation processes in pyroclastic deposits: the Sarno 1998 event

    OpenAIRE

    Crosta, G. B.; Negro, P.

    2003-01-01

    Pyroclastic soils mantling a wide area of the Campanian Apennines are subjected to recurrent instability phenomena. This study analyses the 5 and 6 May 1998 event which affected the Pizzo d’Alvano (Campania, southern Italy). More than 400 slides affecting shallow pyroclastic deposits were triggered by intense and prolonged but not extreme rainfall. Landslides affected the pyroclastic deposits that cover the steep calcareous ridges and are ...

  11. Analysis of the Pyroclastic Flow Deposits of Mount Sinabung and Merapi Using Landsat Imagery and the Artificial Neural Networks Approach

    Directory of Open Access Journals (Sweden)

    Prima Riza Kadavi

    2017-09-01

    Full Text Available Volcanic eruptions cause pyroclastic flows, which can destroy plantations and settlements. We used image data from Landsat 7 Bands 7, 4 and 2 and Landsat 8 Bands 7, 5 and 3 to observe and analyze the distribution of pyroclastic flow deposits for two volcanos, Mount Sinabung and Merapi, over a period of 10 years (2001–2017. The satellite data are used in conjunction with an artificial neural network method to produce maps of pyroclastic precipitation for Landsat 7 and 8, then we calculated the pyroclastic precipitation area using an artificial neural network method after dividing the images into four classes based on color. Red, green, blue and yellow were used to indicate pyroclastic deposits, vegetation and forest, water and cloud, and farmland, respectively. The area affected by a volcanic eruption was deduced from the neural network processing, including calculating the area of pyroclastic deposits. The main differences between the pyroclastic flow deposits of Mount Sinabung and Mount Merapi are: the sediment deposits of the pyroclastic flows of Mount Sinabung tend to widen, whereas those of Merapi elongated; the direction of pyroclastic flow differed; and the area affected by an eruption was greater for Mount Merapi than Mount Sinabung because the VEI (Volcanic Explosivity Index during the last 10 years of Mount Merapi was larger than Mount Sinabung.

  12. Emplacement temperatures of pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa

    OpenAIRE

    Fontana, Giovanni; Mac Niocaill, Conall; Brown, Richard J.; Sparks, R. Stephen J.; Field, Matthew

    2011-01-01

    Palaeomagnetic techniques for estimating the emplacement temperatures of volcanic deposits have been applied to pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa. Lithic clasts were sampled from a variety of lithofacies from three pipes for which the internal geology is well constrained (the Cretaceous A/K1 pipe, Orapa Mine, Botswana, and the Cambrian K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling brecc...

  13. Field-trip guide to Mount St. Helens, Washington - An overview of the eruptive history and petrology, tephra deposits, 1980 pyroclastic density current deposits, and the crater

    Science.gov (United States)

    Pallister, John S.; Clynne, Michael A.; Wright, Heather M.; Van Eaton, Alexa R.; Vallance, James W.; Sherrod, David R.; Kokelaar, B. Peter

    2017-08-02

    This field trip will provide an introduction to several fascinating features of Mount St. Helens. The trip begins with a rigorous hike of about 15 km from the Johnston Ridge Observatory (9 km north-northeast of the crater vent), across the 1980 Pumice Plain, to Windy Ridge (3.6 km northeast of the crater vent) to examine features that document the dynamics and progressive emplacement of pyroclastic flows. The next day, we examine classic tephra outcrops of the past 3,900 years and observe changes in thickness and character of these deposits as we traverse their respective lobes. We examine clasts in the deposits and discuss how the petrology and geochemistry of Mount St. Helens deposits reveal the evolution of the magmatic system through time. We also investigate the stratigraphy of the 1980 blast deposit and review the chronology of this iconic eruption as we travel through the remains of the blown-down forest. The third day is another rigorous hike, about 13 km round trip, climbing from the base of Windy Ridge (elevation 1,240 m) to the front of the Crater Glacier (elevation 1,700 m). En route we examine basaltic andesite and basalt lava flows emplaced between 1,800 and 1,700 years before present, a heterolithologic flow deposit produced as the 1980 blast and debris avalanche interacted, debris-avalanche hummocks that are stranded on the north flank and in the crater mouth, and shattered dacite lava domes that were emplaced between 3,900 and 2,600 years before present. These domes underlie the northern part of the volcano. In addition, within the crater we traverse well-preserved pyroclastic-flow deposits that were emplaced on the crater floor during the summer of 1980, and a beautiful natural section through the 1980 deposits in the upper canyon of the Loowit River.Before plunging into the field-trip log, we provide an overview of Mount St. Helens geology, geochemistry, petrology, and volcanology as background. The volcano has been referred to as a

  14. Evaluation of eruptive energy of a pyroclastic deposit applying fractal geometry to fragment size distributions

    Science.gov (United States)

    Paredes Marino, Joali; Morgavi, Daniele; Di Vito, Mauro; de Vita, Sandro; Sansivero, Fabio; Perugini, Diego

    2016-04-01

    Fractal fragmentation theory has been applied to characterize the particle size distribution of pyroclastic deposits generated by volcanic explosions. Recent works have demonstrated that fractal dimension on grain size distributions can be used as a proxy for estimating the energy associated with volcanic eruptions. In this work we seek to establish a preliminary analytical protocol that can be applied to better characterize volcanic fall deposits and derive the potential energy for fragmentation that was stored in the magma prior/during an explosive eruption. The methodology is based on two different techniques for determining the grain-size distribution of the pyroclastic samples: 1) dry manual sieving (particles larger than 297μm), and 2) automatic grain size analysis via a CamSizer-P4®device, the latter measure the distribution of projected area, obtaining a cumulative distribution based on volume fraction for particles up to 30mm. Size distribution data have been analyzed by applying the fractal fragmentation theory estimating the value of Df, i.e. the fractal dimension of fragmentation. In order to test our protocol we studied the Cretaio eruption, Ischia island, Italy. Results indicate that size distributions of pyroclastic fall deposits follow a fractal law, indicating that the fragmentation process of these deposits reflects a scale-invariant fragmentation mechanism. Matching the results from manual and automated techniques allows us to obtain a value of the "fragmentation energy" from the explosive eruptive events that generate the Cretaio deposits. We highlight the importance of these results, based on fractal statistics, as an additional volcanological tool for addressing volcanic risk based on the analyses of grain size distributions of natural pyroclastic deposits. Keywords: eruptive energy, fractal dimension of fragmentation, pyroclastic fallout.

  15. Integrated Multispectral and Geophysical Datasets: A Global View of Lunar Pyroclastic Deposits

    Science.gov (United States)

    Gaddis, Lisa R.; Rosanova, C.; Hawke, B. R.; Coombs, Cassandra; Robinson, M.; Sable, J.

    1998-01-01

    We are integrating multispectral Clementine UVVIS data with crustal thickness data to examine the composition and distribution of lunar pyroclastic deposits. Examples are the large deposits of Apollo 17/Taurus Littrow and Aristarchus and the small deposits (or endogenic "dark-halo" craters) located along fractures in the floors of Alphonsus , Atlas, and Schrodinger craters. Our early efforts focus on the small pyroclastic deposits because of their relative youth (about 1 Ga in some cases), their broad global distribution, and the fact that their small sizes may have inhibited early Earth-based (about 500 m spectral spot size at best) spectral analyses. We are now studying a variety of small deposits, including those of the Atlas Crater, Franklin Crater, Eastern Frigoris highlands, Oppenheimer Crater, Lavoisier Crater. and Orientale Crater regions. Our goals are to: (1) understand the full extent of interdeposit compositional variations among small lunar pyroclastic deposits; (2) evaluate the possible effects of soil maturation and lateral mixing on the "true" compositions of these deposits; (3) determine the prevalence and nature of intradeposit compositional variations; (4) identify and characterize the juvenile components of these deposits; and (5) understand the implications of these results for studying lunar eruption mechanisms.

  16. Towards the definition of AMS facies in the deposits of pyroclastic density currents

    Science.gov (United States)

    Ort, M.H.; Newkirk, T.T.; Vilas, J.F.; Vazquez, J.A.; Ort, M.H.; Porreca, Massimiliano; Geissman, J.W.

    2014-01-01

    Anisotropy of magnetic susceptibility (AMS) provides a statistically robust technique to characterize the fabrics of deposits of pyroclastic density currents (PDCs). AMS fabrics in two types of pyroclastic deposits (small-volume phreatomagmatic currents in the Hopi Buttes volcanic field, Arizona, USA, and large-volume caldera-forming currents, Caviahue Caldera, Neuquén, Argentina) show similar patterns. Near the vent and in areas of high topographical roughness, AMS depositional fabrics are poorly grouped, with weak lineations and foliations. In a densely welded proximal ignimbrite, this fabric is overprinted by a foliation formed as the rock compacted and deformed. Medial deposits have moderate–strong AMS lineations and foliations. The most distal deposits have strong foliations but weak lineations. Based on these facies and existing models for pyroclastic density currents, deposition in the medial areas occurs from the strongly sheared, high-particle-concentration base of a density-stratified current. In proximal areas and where topography mixes this denser base upwards into the current, deposition occurs rapidly from a current with little uniformity to the shear, in which particles fall and collide in a chaotic fashion. Distal deposits are emplaced by a slowing or stalled current so that the dominant particle motion is vertical, leading to weak lineation and strong foliation.

  17. Thorium abundances on the aristarchus plateau: Insights into the composition of the aristarchus pyroclastic glass deposits

    Science.gov (United States)

    Hagerty, J.J.; Lawrence, D.J.; Hawke, B.R.; Gaddis, L.R.

    2009-01-01

    Thorium (Th) data from the Lunar Prospector gamma ray spectrometer (LP-GRS) are used to constrain the composition of lunar pyroclastic glass deposits on top of the Aristarchus plateau. Our goal is to use forward modeling of LP-GRS Th data to measure the Th abundances on the plateau and then to determine if the elevated Th abundances on the plateau are associated with the pyroclastic deposits or with thorium-rich ejecta from Aristarchus crater. We use a variety of remote sensing data to show that there is a large, homogenous portion of the pyroclastics on the plateau that has seen little or no contamination from the Th-rich ejecta of Aristarchus crater. Our results show that the uncontaminated pyroclastic glasses on Aristarchus plateau have an average Th content of 6.7 ppm and ???7 wt % TiO2. These Th and Ti values are consistent with Th-rich, intermediate-Ti yellow glasses from the lunar sample suite. On the basis of this information, we use petrologic equations and interelement correlations for the Moon to estimate the composition of the source region from which the Aristarchus glasses were derived. We find that the source region for the Aristarchus glasses contained high abundances of heat-producing elements, which most likely served as a thermal driver for the prolonged volcanic activity in this region of the Moon. Copyright 2009 by the American Geophysical Union.

  18. Pyroclastics Northeast of Gassendi Crater: Discovery/Characteristics/Implications

    Science.gov (United States)

    Giguere, T. A.; Hawke, B. R.; Trang, D.; Gaddis, L. R.; Lawrence, S. J.; Stopar, J. D.; Gustafson, J. O.; Boyce, J. M.; Gillis-Davis, J. J.

    2017-01-01

    In our ongoing effort to better understand lunar volcanism on the Moon, we are investigating pyroclastic deposits in the Gassendi region. Interest in pyroclastics has remained high due to the availability of high-resolution data (LRO, Kaguya), which is used to build on previous remote sensing studies [e.g., 1, 2, 3] and also extensive studies of lunar pyroclastic glasses [4, 5]. Analyses conducted in the laboratory of pyroclastic spheres from several deposits show that this volcanic material had a greater depth of origin and lesser fractional crystallization than mare basalts [e.g., 4, 6]. Data indicates that pyroclastic glasses are the best examples of primitive materials on the Moon, and they are important for both characterizing the lunar interior and as a starting place for under-standing the origin and evolution of lunar basaltic magmatism [2].

  19. Spectral Analysis of Surface Features of Subaquaeous Pyroclastic Flow Deposits Around Santorini Volcano, Greece

    Science.gov (United States)

    Croff, K. L.; Sigurdsson, H.; Carey, S.; Alexandri, M.; Sakellariou, D.; Nomikou, P.

    2006-12-01

    Multibeam bathymetry mapping and seismic airgun surveys of the submarine region around the Santorini volcanic field in the Hellenic Arc (Greece) have revealed regions of terraced or step-like topography. These features may be related to the transport and deposition of submarine pyroclastic flows from the last major eruption of this volcano (~3600yrs. B.P.). The uppermost sediment sequence identified in seismic records has an average thickness of approximately 29 meters and may represent the pyroclastic flow deposits from this eruption. These terraced or step-like features are mainly located in areas that are approximately five kilometers offshore and at depths in the range of 200 to 800 meters. The seafloor in these areas has slope ratios on the order of 1:20. Profiles of the seafloor topography were sampled from seismic profiles that radiate from the Sanotrini caldera in five regions of interest. Spectral analysis of seafloor topography has been carried out to determine spectral characteristics of these features, including power spectrum, periodicity and amplitude of the waveforms, variance, and roughness of topography. The results are compared to surface features of the subaqueous pyroclastic deposits from the 1883 explosive eruption of Krakatau (Indonesia) and other areas with similar environments, to determine the parameters that are characteristic of this new feature of submarine volcaniclastic deposits.

  20. Volcanic glass signatures in spectroscopic survey of newly proposed lunar pyroclastic deposits

    Science.gov (United States)

    Besse, S.; Sunshine, J.M.; Gaddis, L.R.

    2014-01-01

    Moon Mineralogy Mapper spectroscopic observations are used to assess the mineralogy of five sites that have recently been proposed to include lunar dark mantle deposits (DMDs). Volcanic glasses have, for the first time, clearly been identified at the location of three of the proposed pyroclastic deposits. This is the first time that volcanic glasses have been identified at such a small scale on the lunar surface from remote sensing observations. Deposits at Birt E, Schluter, and Walther A appear to be glassy DMDs. Deposits at Birt E and Schluter show (1) morphological evidence suggesting a likely vent and (2) mineralogical evidence indicative of the presence of volcanic glasses. The Walther A deposits, although they show no morphological evidence of vents, have the spectroscopic characteristics diagnostic of volcanic glasses. The deposits of the Freundlich-Sharonov basin are separated in two areas: (1) the Buys-Ballot deposits lack mineralogical and morphological evidence and thus are found to be associated with mare volcanism not with DMDs and (2) the Anderson crater deposits, which do not exhibit glassy DMD signatures, but they appear to be associated with possible vent structures and so may be classifiable as DMDs. Finally, dark deposits near the crater Kopff are found to be associated with likely mare volcanism and not associated with DMDs. The spectral identification of volcanic glass seen in many of the potential DMDs is a strong indicator of their pyroclastic origin.

  1. Emplacement Temperatures of Pyroclastic and Volcaniclastic Deposits in Kimberlite Pipes in Southern Africa: New constraints From Palaeomagnetic Measurements

    Science.gov (United States)

    Fontana, G. P.; Macniocaill, C.; Brown, R. J.; Sparks, S. R.; Field, M.; Gernon, T. M.

    2009-05-01

    Palaeomagnetic techniques for estimating the emplacement temperatures of volcanic deposits have been applied for the first time to pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa. Lithic clasts were sampled from a variety of lithofacies, from three pipes for which the internal geology is well constrained (A/K1 pipe, Orapa Mine, Botswana and the K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling breccias with varying abundances of lithic inclusions and layered crater-filling pyroclastic deposits, talus breccias and volcaniclastic breccias. Lithic clasts sampled from layered and massive vent-filling pyroclastic deposits in A/K1 were emplaced at >590° C. Results from K1 and K2 provide a maximum emplacement temperature limit for vent-filling breccias of 420-460° C; and constrain equilibrium deposit temperatures at 300-340° C. Crater-filling volcaniclastic kimberlite breccias and talus deposits from A/K1 were emplaced at ambient temperatures, consistent with infilling of the pipe by post-eruption epiclastic processes. Identified within the epiclastic crater- fill succession is a laterally extensive 15-20 metre thick kimberlite pyroclastic flow deposit emplaced at temperatures of 220-440° C. It overlies the post-eruption epiclastic units and is considered an extraneous pyroclastic kimberlite deposit erupted from another kimberlite vent. The emplacement temperature results are comparable to the estimated emplacement temperatures of other kimberlite deposits and pyroclastic deposits from other volcanic systems, and fall within the proposed stability field for common interstitial matrix mineral assemblages within vent-filling volcaniclastic kimberlites. This is in the range where welding and agglutination of juvenile pyroclasts occurs in other types of pyroclastic deposits. Such high emplacement temperatures for vent-filling pyroclastic deposits are consistent with volatile

  2. Analysis of three classes of small lunar pyroclastic deposits with Clementine data

    Science.gov (United States)

    Gaddis, Lisa; Robinson, Mark; Hawke, B. R.

    1997-03-01

    The U.S. Geological Survey's Integrated Software for Imaging Spectrometers (ISIS) software was used to create and examine Clementine UV-VIS multispectral mosaics (about 100 m/pixel) of areas representative of the three major compositional classes of small lunar pyroclastic deposits. Compositional analyses of these deposits may provide clues to the nature of deep-source late-stage volcanism and eruption mechanisms on the moon. Small deposits of the Atlas Crater, east of Aristoteles, and J. Herschel Crater regions are studied. The goals are (1) to understand the full extent of interdeposit compositional variations among small lunar pyroclastic deposits, (2) to evaluate the possible effects of soil maturation and lateral mixing on the 'true' compositions of these deposits, (3) to determine the prevalence and nature of intradeposit compositional variations previously observed in deposits of Alphonsus Crater, (4) to identify and characterize the juvenile components of these deposits, and (5) to understand the implications of these results for studying lunar eruption mechanisms.

  3. Magnetic fabric and remanent magnetization of pyroclastic surge deposits from Vulcano (Aeolian Islands, Italy)

    Science.gov (United States)

    Zanella, E.; De Astis, G.; Dellino, P.; Lanza, R.; La Volpe, L.

    1999-11-01

    Tufi di Grotte dei Rossi Inferiori are unwelded, fine-grained pyroclastic deposits of hydromagmatic origin emplaced between 21 and 11-8.6 ka at Vulcano (Aeolian Islands, Italy) by deposition through surges spreading laterally from inside the La Fossa caldera. In this study, the deposit's magnetic properties were investigated and interpreted in terms of eruptive and emplacement dynamics. Rock-magnetism data were supplemented by grain size and textural characteristic analyses as well as scanning electron microscope (SEM) investigations. Curie point measurements, isothermal remanent magnetization and microprobe analyses showed that magnetization is carried by low-Ti titanomagnetite. The size of the grains ranges from about 20 to 300 micrometres, their shape from equidimensional to highly elongated. The magnetic fabric is typical of fine-grained pyroclastics. Foliation is well developed and in most sites lineation is directed towards the source area of the La Fossa caldera. The remanent magnetization consists of two components whose blocking temperature spectra partially overlap. The direction of the low-temperature component is close to that of the axial dipole, and consistent with the palaeosecular variation curve for the Aeolian Islands. The high-temperature component is systematically shallowed and close to the direction of the magnetic lineation. The overall results suggest that the high-temperature component was acquired before, and the low-temperature component after, the actual deposition of grains. Immediately after eruption, the grains cooled and moved as free particles in the turbulent cloud during the expansion of the surge flows. Those particles with high blocking temperatures acquired a thermal remanence. They were then deposited and shear at the very base of the flow oriented them and imprinted the rock's fabric and high-temperature magnetization component. Volcanological and magnetic data suggest turbulent transportation and traction deposition of

  4. Observations and modelling of soil slip-debris flow initiation processes in pyroclastic deposits: the Sarno 1998 event

    Directory of Open Access Journals (Sweden)

    G. B. Crosta

    2003-01-01

    Full Text Available Pyroclastic soils mantling a wide area of the Campanian Apennines are subjected to recurrent instability phenomena. This study analyses the 5 and 6 May 1998 event which affected the Pizzo d’Alvano (Campania, southern Italy. More than 400 slides affecting shallow pyroclastic deposits were triggered by intense and prolonged but not extreme rainfall. Landslides affected the pyroclastic deposits that cover the steep calcareous ridges and are soil slip-debris flows and rapid mudflows. About 30 main channels were deeply scoured by flows which reached the alluvial fans depositing up to 400 000 m3 of material in the piedmont areas. About 75% of the landslides are associated with morphological discontinuities such as limestone cliffs and roads. The sliding surface is located within the pyroclastic cover, generally at the base of a pumice layer. Geotechnical characterisation of pyroclastic deposits has been accomplished by laboratory and in situ tests. Numerical modelling of seepage processes and stability analyses have been run on four simplified models representing different settings observed at the source areas. Seepage modelling showed the formation of pore pressure pulses in pumice layers and the localised increase of pore pressure in correspondence of stratigraphic discontinuities as response to the rainfall event registered between 28 April and 5 May. Numerical modelling provided pore pressure values for stability analyses and pointed out critical conditions where stratigraphic or morphological discontinuities occur. This study excludes the need of a groundwater flow from the underlying bedrock toward the pyroclastic cover for instabilities to occur.

  5. Observations and modelling of soil slip-debris flow initiation processes in pyroclastic deposits: the Sarno 1998 event

    Science.gov (United States)

    Crosta, G. B.; Dal Negro, P.

    Pyroclastic soils mantling a wide area of the Campanian Apennines are subjected to recurrent instability phenomena. This study analyses the 5 and 6 May 1998 event which affected the Pizzo d'Alvano (Campania, southern Italy). More than 400 slides affecting shallow pyroclastic deposits were triggered by intense and prolonged but not extreme rainfall. Landslides affected the pyroclastic deposits that cover the steep calcareous ridges and are soil slip-debris flows and rapid mudflows. About 30 main channels were deeply scoured by flows which reached the alluvial fans depositing up to 400 000 m3 of material in the piedmont areas. About 75% of the landslides are associated with morphological discontinuities such as limestone cliffs and roads. The sliding surface is located within the pyroclastic cover, generally at the base of a pumice layer. Geotechnical characterisation of pyroclastic deposits has been accomplished by laboratory and in situ tests. Numerical modelling of seepage processes and stability analyses have been run on four simplified models representing different settings observed at the source areas. Seepage modelling showed the formation of pore pressure pulses in pumice layers and the localised increase of pore pressure in correspondence of stratigraphic discontinuities as response to the rainfall event registered between 28 April and 5 May. Numerical modelling provided pore pressure values for stability analyses and pointed out critical conditions where stratigraphic or morphological discontinuities occur. This study excludes the need of a groundwater flow from the underlying bedrock toward the pyroclastic cover for instabilities to occur.

  6. Using InSAR for Characterizing Pyroclastic Flow Deposits at Augustine Volcano Across Two Eruptive Cycles

    Science.gov (United States)

    McAlpin, D. B.; Meyer, F. J.; Lu, Z.; Beget, J. E.

    2014-12-01

    Augustine Island is a small, 8x11 km island in South Central Alaska's lower Cook Inlet. It is approximately 280 km southwest of Anchorage, and occupied entirely by its namesake Augustine Volcano. At Augustine Volcano, SAR data suitable for interferometry is available from 1992 to 2005, from March 2006 to April 2007, and from July 2007 to October 2010. Its last two eruptive episodes, in 1986 and 2006, resulted in substantial pyroclastic flow deposits (PFDs) on the Volcano's north flank. Earlier InSAR analyses of the area, from 1992-1999, identified local subsidence, but no volcano-wide deformation indicative of magma-chamber evacuation. In contrast to previous studies, we use InSAR data to determine a range of geophysical parameters for PFDs emplaced during the Augustine's two most recent eruption cycles. Based on InSAR measurements between 1992 and 2010, we reconstruct the deformation behavior of PFDs emplaced during Augustine's last two eruption cycles. Using a combination of InSAR measurements and modeling, we determine the thickness and long-term deformation of overlaying pyroclastic flow deposits emplaced in 1986 and 2006. Consistent with previous observations of pyroclastic flows, we found that the PFDs on Augustine Island rapidly subsided after emplacement due to an initial compaction of the material. We determined the length of this initial settling period and measured the compaction rate. Subsequent to this initial rapid subsidence, we found that PFD deformation slowed to a more persistent, linear, long-term rate, related to cooling of the deposits. We established that the deposits' contraction rate is linearly related to their thickness and measured the contraction rate. Finally, a study of long term coherence properties of the Augustine PFDs showed remarkable stability of the surface over long time periods. This information provides clues on the structural properties and composition of the emplaced material.

  7. Toward a Facies Model for AMS Fabrics in Deposits from Pyroclastic Currents

    Science.gov (United States)

    Ort, M. H.; Newkirk, T.; Vilas, J. F.; Vazquez, J. A.

    2011-12-01

    Studies of the anisotropy of magnetic susceptibility (AMS) in deposits from pyroclastic density currents have been made for 30 years. Early studies sought to find vent locations, but later studies have also used AMS to interpret flow and depositional processes. These studies show that AMS fabrics reflect shear directions at the base of the depositional regime and thoughtful interpretations of the directions, coupled with good observations of the deposits, can lead to a better understanding of depositional and flow processes in the currents. Here, we compare the AMS fabrics and deposit characteristics of deposits of dense and dilute pyroclastic density currents in order to develop an AMS facies model for such deposits. Deposits from individual phreatomagmatic density currents produced in the NE Hopi Buttes volcanic field, NE Arizona, can be traced from the maar edge laterally for 1.5 km or more. This allows the depositional facies to be described and sampled for AMS. The most proximal facies, consisting of tuff breccias, is characterized by a disorganized AMS fabric, marked by some grouping of the AMS axes but a very weak foliation. By about 350 m from the maar rim and extending out over a kilometer, a well lineated and foliated fabric develops in the stratified to sand-wave-bearing lapilli-tuffs, reflecting the shear within the well-developed current. At distances over a km from the vent, where the deposits are plane-parallel tuffs, a girdled fabric develops, with overlapping K1 and K2 axes. This likely reflects weak shearing within the slowing flow. At Caviahue caldera, Neuquen, Argentina, lateral sampling of ignimbrites from within the caldera and on a SE transect to ~25 km from the caldera rim, reveals systematic changes in the AMS fabric, with less obvious changes in the sedimentary characteristics. Intracaldera ignimbrites are rheomorphic and very densely welded, and their AMS fabrics are very strongly foliated but with a weak lineation. Moving out from the

  8. Remote Identification of Pyroclastic Deposits on Mars and the Moon with Near-Infrared Spectroscopy

    Science.gov (United States)

    Horgan, B. H.; Chojnacki, M.; Lai, J. C.; Bennett, K. A.; Bell, J. F.

    2013-12-01

    A major challenge for interpreting the volcanic history of the terrestrial planets is differentiating effusive from explosive volcanic deposits, especially when these deposits are only exposed in cross section. One major difference between these deposits is the presence of glass. Pyroclastic flows and other explosive deposits can contain large quantities of glass, depending on factors including water content at the time of eruption, whereas glass is largely restricted to the fragile cooling rind in effusive deposits. Thus, the presence of significant glass in a deposit most likely indicates an explosive origin. Here we present a new method for discriminating lava flows from pyroclastic deposits using near-infrared spectroscopy. Iron-bearing glass exhibits a broad and shallow absorption band due to iron in the glass structure, centered between 1.10-1.18 μm. This band is longward of similar bands caused by other Fe-bearing phases (e.g., olivine and pyroxene), and therefore allows unique identification of glass where it is present at high abundances (>80 wt.% of Fe-bearing phases). Lower abundances of glass in a mixture with other Fe-bearing phases can still be detected based on the effects of the glass absorption band, which shifts the 1 μm band center and causes a high asymmetry in the shape of the band, both toward longer wavelengths. By analyzing near-infrared spectra from the Mars Express OMEGA imaging spectrometer for these 1 μm band characteristics consistent with Fe-bearing glass, we have mapped the distribution of glass-bearing deposits globally on Mars at 1 km resolution. Where available, we have confirmed our detections with high resolution observations from the MRO CRISM imaging spectrometer (18-36 m/pixel). Glass is a component of many dune fields, in sediments derived from local erosion of layered units, in the widespread dark sediments in the northern plains, and in deposits associated with linear features (possible fissures). These results suggest a

  9. Erosion Modeling of the Pyroclastic Flow Deposits From the 1991 Eruption of Mt. Pinatubo, Philippines

    Science.gov (United States)

    Daag, A. S.; Daag, A. S.

    2001-12-01

    The June 15-16 1991 eruption of Mt. Pinatubo had emplaced approximately 6km3 of sand-size pumiceous pyroclastic flow deposits that affected 8 major watersheds surrounding the volcano. These deposits attained thickness of about 200m on deep channels and remained unconsolidated, when it rains they are the main source of lahars for several years. This study focuses on the eastern watersheds namely, Sacobia-Pasig-Abacan, because it posed the greatest risk due to lahar flow hazards being the highly developed and the most populated. In order to study and monitor the erosions of the pyroclastic flow deposits, several methods were used. Yearly direct quantification of erosions were made using multi-temporal Digital Elevation Models (DEMs), aerial photos and satellite imageries. GIS and image processing software were used to compute erosion volumes and in determining geomorphic changes. To understand the different parameters affecting the erosiveness of in-situ deposits, a portable rainfall simulator was used. Regression modeling was utilized to determine the effect of the different parameters in the erosion such as, slope, rainfall intensity, grain size and shear strength of the deposits. Yearly rainfall events that yielded lahars were all analyzed to get the yearly deviations and relationships of the rainfall-lahar triggering thresholds. A physically based distributed simulation model was developed using PCRaster program that simulates the catchments' response on a certain rainfall and predicts the lahar hydrographs. This model utilizes DEM and other catchment's physical parameters. The flow predicts the volumetric ratio of sediments and water using Meunier mudflow equation.

  10. Remote Analysis of Grain Size Characteristic in Submarine Pyroclastic Deposits from Kolumbo Volcano, Greece

    Science.gov (United States)

    Smart, C.; Whitesell, D. P.; Roman, C.; Carey, S.

    2011-12-01

    Grain size characteristics of pyroclastic deposits provide valuable information about source eruption energetics and depositional processes. Maximum size and sorting are often used to discriminate between fallout and sediment gravity flow processes during explosive eruptions. In the submarine environment the collection of such data in thick pyroclastic sequences is extremely challenging and potentially time consuming. A method has been developed to extract grain size information from stereo images collected by a remotely operated vehicle (ROV). In the summer of 2010 the ROV Hercules collected a suite of stereo images from a thick pumice sequence in the caldera walls of Kolumbo submarine volcano located about seven kilometers off the coast of Santorini, Greece. The highly stratified, pumice-rich deposit was likely created by the last explosive eruption of the volcano that took place in 1650 AD. Each image was taken from a distance of only a few meters from the outcrop in order to capture the outlines of individual clasts with relatively high resolution. Mosaics of individual images taken as the ROV transected approximately 150 meters of vertical outcrop were used to create large-scale vertical stratigraphic columns that proved useful for overall documentation of the eruption sequence and intracaldera correlations of distinct tephra units. Initial image processing techniques, including morphological operations, edge detection, shape and size estimation were implemented in MatLab and applied to a subset of individual images of the mosiacs. A large variety of algorithms were tested in order to best discriminate the outlines of individual pumices. This proved to be challenging owing to the close packing and overlapping of individual pumices. Preliminary success was achieved in discriminating the outlines of the large particles and measurements were carried out on the largest clasts present at different stratigraphic levels. In addition, semi-quantitative analysis of the

  11. Secular variation study from non-welded pyroclastic deposits from Montagne Pelée volcano, Martinique (West Indies)

    Science.gov (United States)

    Genevey, A.; Gallet, Y.; Boudon, G.

    2002-07-01

    We present palaeomagnetic data obtained from large clasts collected in non-welded pyroclastic deposits from Montagne Pelée volcano (Martinique Island, West Indies). These deposits, dated by the 14C method from 5000 yr BP to the present, comprise block- and ash-flows, ash- and pumice-flows and pumice fallouts. Alternating fields treatment was as a routine chosen to demagnetise large samples for which the magnetisation was measured with a specially designed inductometer. The mean directions obtained from block- and ash-flow deposits of the 1902 and 1929 eruptions are in good agreement with the expected geomagnetic directions at these times in Martinique. The so-called P1 eruption (˜1345 AD), which is characterised by a rarely observed transition from a Peléean to a Plinian eruptive style, allows a direct comparison of the palaeomagnetic directions obtained from the three types of pyroclastic deposits. All deposits provide identical mean directions, which further demonstrates the suitability of the non-welded pyroclastic deposits for geomagnetic secular variation study with a very good accuracy and precision. The possibility of using pyroclastic deposits is promising for obtaining a wider distribution of sampling sites, which may better allow us to constrain our knowledge on the geomagnetic secular variation. We find that large geomagnetic changes occurred in Martinique during the last millennium, while the variations appear more limited prior to this period.

  12. Long-term contraction of pyroclastic flow deposits at Augustine Volcano using InSAR

    Science.gov (United States)

    McAlpin, D. B.; Meyer, F. J.; Lu, Z.; Beget, J. E.

    2013-12-01

    Augustine Island is a small, 8x11 km island in South Central Alaska's lower Cook Inlet. It is approximately 280 km southwest of Anchorage, and occupied entirely by its namesake Augustine Volcano. The volcano's nearly symmetrical central cone reaches an altitude of 1260 m, and the surrounding island is composed almost entirely of volcanic deposits. It is the youngest and most frequently active volcano in the lower Cook Inlet, with at least seven known eruptions since the beginning of written records in 1812. Its two most recent eruptions occurred during March-August 1986, and January-March 2006 The 1986 and 2006 Augustine eruptions produced significant pyroclastic flow deposits (PFDs) on the island, both which have been well mapped by previous studies. Subsidence of material deposited by these pyroclastic flows has been measured by InSAR data, and can be attributed to at least four processes: (1) initial, granular settling; (2) thermal contraction; (3) loading of 1986 PFDs from overlying 2006 deposits; and (4) continuing subsidence of 1986 PFDs buried beneath 2006 flows. For this paper, SAR data for PFDs from Augustine Volcano were obtained from 1992 through 2005, from 2006-2007, and from 2007-2011. These time frames provided InSAR data for long-term periods after both 1986 and 2006 eruptions. From time-series analysis of these datasets, deformation rates of 1986 PFDs and 2006 PFDs were determined, and corrections applied where newer deposits were emplaced over old deposits. The combination of data sets analyzed in this study enabled, for the first time, an analysis of long and short term subsidence rates of volcanic deposits emplaced by the two eruptive episodes. The generated deformation time series provides insight into the significance and duration of the initial settling period and allows us to study the thermal regime and heat loss of the PFDs. To extract quantitative information about thermal properties and composition of the PFDs, we measured the thickness

  13. Two coarse pyroclastic flow deposits, northern Mono-Inyo Craters, CA

    Science.gov (United States)

    Dennen, R. L.; Bursik, M. I.; Stokes, P. J.; Lagamba, M.; Fontanella, N.; Hintz, A. R.; Jayko, A. S.

    2010-12-01

    The ~1350 A.D., rhyolitic North Mono eruption, Mono-Inyo Craters, CA, included the extrusion and destruction of Panum Dome and associated clastic deposits. Overlying the tephras of the North Mono sequence, the Panum deposits include a block-and-ash flow (BAF) deposit, covering ~3.5 km2. Blocks within the deposit are typically lithic rhyolite and banded gray micro-vesicular glass, showing white, almost powdery marks ranging from circular to linear in shape. These marks are interpreted as friction marks resulting from collisions between clasts. The deposit also contains bread-crusted obsidians with pressed-in clasts as well as reticulite with a bread-crusted surface texture. Near the centerline of the deposit is a ridge-topping train of jigsaw fractured blocks, often with reddish-orange alteration. One house sized jigsaw block sits upstream of a long, thinning pile of reddish orange debris; this “flow shadow” indicates that the block remained relatively stationary while the block and ash flow continued to propagate around it. The bread-crusted reticulite is most common at proximal localities. It is proposed that the dome destruction included a debris avalanche emplacing the train of jigsaw fractured blocks and creating a topographic high, the block-and-ash flow (the farthest reaching deposit from this event) which flowed around the debris avalanche deposits, and a final “lateral expansion” of a magma foam, creating the reticulite seen concentrated at proximal locations. Another coarse pyroclastic flow (here termed the “lower blast deposit”) underlies the North Mono tephra. It is more obsidian rich and finer grained than the Panum BAF. The lower blast deposit may have originated from Pumice Pit vent, which is now capped with an older dome ~0.5 km southeast of Panum. The lower blast deposit extends farther from the Panum vent than does the Panum BAF deposit, and apparently was mistaken for the Panum BAF deposit by previous workers. Hence the run

  14. Comparing Volcanic Terrains on Venus and Earth: How Prevalent are Pyroclastic Deposits on Venus?

    Science.gov (United States)

    Carter, Lynn M.; Campbell, B. A.; Glaze, L. S.

    2012-01-01

    In the last several years, astronomers have discovered several exoplanets with masses less than 10 times that of the Earth [1]. Despite the likely abundance of Earth-sized planets, little is known about the pathways through which these planets evolve to become habitable or uninhabitable. Venus and Earth have similar planetary radii and solar orbital distance, and therefore offer a chance to study in detail the divergent evolution of two objects that now have radically different climates. Understanding the extent, duration, and types of volcanism present on Venus is an important step towards understanding how volatiles released from the interior of Venus have influenced the development of the atmosphere. Placing constraints on the extent of explosive volcanism on Venus can provide boundary conditions for timing, volumes, and altitudes for atmospheric injection of volatiles. In addition, atmospheric properties such as near-surface temperature and density affect how interior heat and volatiles are released. Radar image data for Venus can be used to determine the physical properties of volcanic deposits, and in particular, they can be used to search for evidence of pyroclastic deposits that may result from explosive outgassing of volatiles. For explosive volcanism to occur with the current high atmospheric pressure, magma volatile contents must be higher than is typical on Earth (at least 2-4% by weight) [2,3]. In, addition, pyroclastic flows should be more prevalent on Venus than convective plumes and material may not travel as far from the vent source as it would on Earth [3]. Areas of high radar backscatter with wispy margins that occur near concentric fractures on Sapho Patera [4] and several coronae in Eastern Eistla Regio [5] have been attributed to collapse of eruption columns and runout of rough materials.

  15. Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): 1. Flow direction and deposition

    Science.gov (United States)

    Gurioli, L.; Zanella, E.; Pareschi, M. T.; Lanza, R.

    2007-05-01

    To assess ways in which the products of explosive eruptions interact with human settlements, we performed volcanological and rock magnetic analyses on the deposits of the A.D. 79 eruption at the Pompeii excavations (Italy). During this eruption the Roman town of Pompeii was covered by 2.5 m of fallout pumice and then partially destroyed by pyroclastic density currents (PDCs). Anisotropy of magnetic susceptibility measurements performed on the fine matrix of the deposits allowed the quantification of the variations in flow direction and emplacement mechanisms of the parental PDCs that entered the town. These results, integrated with volcanological field investigations, revealed that the presence of buildings, still protruding through the fallout deposits, strongly affected the distribution and accumulation of the erupted products. All of the PDCs that entered the town, even the most dilute ones, were density stratified currents in which interaction with the urban fabric occurred in the lower part of the current. The degree of interaction varied mainly as a function of obstacle height and density stratification within the current. For examples, the lower part of the EU4pf current left deposits up to 3 m thick and was able to interact with 2- to 4-m-high obstacles. However, a decrease in thickness and grain size of the deposits across the town indicates that even though the upper portion of the current was able to decouple from the lower portion, enabling it to flow over the town, it was not able to fully restore the sediment supply to the lower portion in order to maintain the deposition observed upon entry into the town.

  16. Transport and deposition of pyroclastic material from the ˜1000 A.D. caldera-forming eruption of Volcán Ceboruco, Nayarit, Mexico

    Science.gov (United States)

    Browne, B. L.; Gardner, J. E.

    2005-06-01

    The complex eruption sequence from the ˜1000 A.D. caldera-forming eruption of Volcán Ceboruco, known as the Jala Pumice, offers an exceptional opportunity to examine how pyroclastic material is transported and deposited from pyroclastic density currents over variable topography. Three main pyroclastic surge deposits (S1, S2, and S3) and two pyroclastic flow deposits (Marquesado and North-Flank PFDs) were emplaced during this eruption. Pyroclastic surge deposits are massive, planar, or cross-bedded, poor-to-well sorted, and display fluctuations in thickness, median diameter, sorting, and lithology as a function of distance, topography, and flow dynamics. Marquesado pyroclastic flow deposits reveal lateral variations from massive, poorly sorted deposits located within 5 km of Ceboruco to planar bedded, moderately well sorted deposits located >15 km away over the nearly horizontal topography to the south of Ceboruco. North-Flank pyroclastic flow deposits also reveal lateral variations from massive, poorly sorted deposits located within 4 km of Ceboruco to planar bedded, moderately well sorted deposits located 8 km away atop an escarpment that steeply rises 230 m from the northern valley floor. Field observations, granulometric analyses, component analyses, and crystal sedimentation calculations along flow-parallel sampling transects all suggest that both surges and flows were density stratified currents, where deposition occurred from a basal region of higher particle concentration that was supplied from an overlying dilute layer that transports particles in suspension. This supports the idea of a transition between “flow” and “surge” end members with variations in particle concentration. Topography greatly affects the transport and depositional capacity of the pyroclastic density currents as a result of “blocking”, either by topographic obstacles or by abrupt breaks at the base of volcano slopes, whereas the origin of Jala Pumice surge deposits

  17. Magnetic petrofabric of igneous rocks: Lessons from pyroclastic density current deposits and obsidians

    Science.gov (United States)

    Cañón-Tapia, E.; Mendoza-Borunda, R.

    2014-12-01

    Measurement of the anisotropy of magnetic susceptibility (AMS) of igneous rocks can provide clues concerning their mechanism of formation and in particular are very helpful as flow direction indicators. Unlike other igneous rocks, however, pyroclastic density current deposits (PDCDs) present a challenge in the interpretation of AMS measurements due to the complexity of their mechanism of emplacement. In this paper we review the most common assumptions made in the interpretation of the AMS of PDCD, taking advantage of key lessons obtained from obsidians. Despite the complexities on the mechanism of formation of PDCDs, it is shown that a key element for the fruitful interpretation of AMS is to give proper attention to the various components likely to be involved in controlling their general petrofabric. The anisotropies of ferromagnetic crystals (whether as free phases or embedded within clasts or shards), and those of paramagnetic minerals (mainly ferrosilicates) need to be taken into consideration when interpreting the AMS measurements of PDCDs. Variations of the deposition regime both as a function of position and of time also need to be considered on the interpretations. Nevertheless, if a suitable sampling strategy is adopted, the potential of the AMS method as a petrofabric indicator is maximized.

  18. Pyroclastic Flow Deposits and InSAR: Analysis of Long-Term Subsidence at Augustine Volcano, Alaska

    Directory of Open Access Journals (Sweden)

    David B. McAlpin

    2016-12-01

    Full Text Available Deformation of pyroclastic flow deposits begins almost immediately after emplacement, and continues thereafter for months or years. This study analyzes the extent, volume, thickness, and variability in pyroclastic flow deposits (PFDs on Augustine Volcano from measuring their deformation rates with interferometric synthetic aperture radar (InSAR. To conduct this analysis, we obtained 48 SAR images of Augustine Volcano acquired between 1992 and 2010, spanning its most recent eruption in 2006. The data were processed using d-InSAR time-series analysis to measure the thickness of the Augustine PFDs, as well as their surface deformation behavior. Because much of the 2006 PFDs overlie those from the previous eruption in 1986, geophysical models were derived to decompose deformation contributions from the 1986 deposits underlying the measured 2006 deposits. To accomplish this, we introduce an inversion approach to estimate geophysical parameters for both 1986 and 2006 PFDs. Our analyses estimate the expanded volume of pyroclastic flow material deposited during the 2006 eruption to be 3.3 × 107 m3 ± 0.11 × 107 m3, and that PFDs in the northeastern part of Augustine Island reached a maximum thickness of ~31 m with a mean of ~5 m. Similarly, we estimate the expanded volume of PFDs from the 1986 eruption at 4.6 × 107 m3 ± 0.62 × 107 m3, with a maximum thickness of ~31 m, and a mean of ~7 m.

  19. Sedimentology and geomorphology of the deposits from the August 2006 pyroclastic density currents at Tungurahua volcano, Ecuador.

    Science.gov (United States)

    Douillet, Guilhem Amin; Tsang-Hin-Sun, Ève; Kueppers, Ulrich; Letort, Jean; Pacheco, Daniel Alejandro; Goldstein, Fabian; Von Aulock, Felix; Lavallée, Yan; Hanson, Jonathan Bruce; Bustillos, Jorge; Robin, Claude; Ramón, Patricio; Hall, Minard; Dingwell, Donald B

    The deposits of the pyroclastic density currents from the August 2006 eruption of Tungurahua show three facies associations depending on the topographic setting: the massive, proximal cross-stratified, and distal cross-stratified facies. (1) The massive facies is confined to valleys on the slopes of the volcano. It contains clasts of >1 m diameter to fine ash material, is massive, and interpreted as deposited from dense pyroclastic flows. Its surface can exhibit lobes and levees covered with disk-shaped and vesicular large clasts. These fragile large clasts must have rafted at the surface of the flows all along the path in order to be preserved, and thus imply a sharp density boundary near the surface of these flows. (2) The proximal cross-stratified facies is exposed on valley overbanks on the upper part of the volcano and contains both massive coarse-grained layers and cross-stratified ash and lapilli bedsets. It is interpreted as deposited from (a) dense pyroclastic flows that overflowed the gentle ridges of valleys of the upper part of the volcano and (b) dilute pyroclastic density currents created from the dense flows by the entrainment of air on the steep upper flanks. (3) The distal cross-stratified facies outcrops as spatially limited, isolated, and wedge-shaped bodies of cross-stratified ash deposits located downstream of cliffs on valleys overbanks. It contains numerous aggrading dune bedforms, whose crest orientations reveal parental flow directions. A downstream decrease in the size of the dune bedforms, together with a downstream fining trend in the grain size distribution are observed on a 100-m scale. This facies is interpreted to have been deposited from dilute pyroclastic density currents with basal tractional boundary layers. We suggest that the parental flows were produced from the dense flows by entrainment of air at cliffs, and that these diluted currents might rapidly deposit through "pneumatic jumps". Three modes are present in the grain

  20. The antidune question for bedforms in deposits of dilute pyroclastic density currents

    Science.gov (United States)

    Amin Douillet, Guilhem; Kueppers, Ulrich; Dingwell, Donald B.

    2014-05-01

    Dilute pyroclastic density currents (PDCs) are mixture of volcanic particles and gas that can be produced during explosive volcanic eruptions. Like turbidites, they travel on the ground driven by their higher density compared to the ambient fluid, which is due to the load of suspended particles. Dilute PDCs have a low enough particle concentration so that their deposit can contain cross stratification, but high enough so that they do not lift off as ash clouds. Since the 1970's most dune bedform cross stratifications found within dilute PDC deposits have been interpreted as antidunes, mainly due to the fact that they can exhibit more aggradation on the stoss than on the lee side. However, several studies have challenged this interpretation in the last few years (stepwise aggradation, differential draping, flow reversal, near-bed load blocking). In order to decipher which are the valuable arguments to confirm or infirm the antidune interpretation, we document deposits from different eruptions: Tungurahua (Ecuador), Laacher See (Germany), Purrumbete (Australia), Ubehebe (USA), Stromboli (Italy), Yasur (Vanuatu). We consider fluid dynamics arguments on the formation of gravity waves within the shallow water approximation and for internal gravity waves within a stratified medium. Indeed, antidunes are by definition sedimentary prints of stationary gravity waves. We also consider the possibility of cyclic steps as a parental phenomenon for the formation of dilute PDC bedforms. Finally, results of wind tunnel experiments for boundary layer conditions give another independent set of data to interpret cross stratifications within dilute PDC deposits. Whereas we cannot rule out an interpretation as antidunes for some bedforms (lensoidal stoss-depositional structures, low aspect ratio bedforms in train), others can clearly be disregarded based on geometrical considerations. Overall, the interpretation as antidune cannot be simply based on stoss-deposition, and needs to take

  1. Fluctuating Eruption Style at Blue Lake Crater, Central Oregon Cascades: Insights from Deposit Granulometry and Componentry and Pyroclast Textures

    Science.gov (United States)

    Johnson, E. R.

    2016-12-01

    Blue Lake crater in the central Oregon Cascades is one of the youngest Cascades volcanoes, erupting pyroclastic deposits to better understand changes in eruption style as the eruption progressed. Based on a new isopach map of the deposit thickness, the volume of erupted material is 4 x 107 m3. The deposits also suggest that the eruption was dominantly magmatic; phreatomagmatic surge deposits (pyroclasts from throughout the deposit reveal more subtle changes in the influence of external water over time. Granulometry from a complete deposit section (130 cm) reveals that the average grain size is finest immediately overlying the basal surge deposits and increases upsection. Componentry from this section shows that lithic and dense clasts are most abundant below and directly above the surges (near the deposit base) and decrease in abundance upsection, where vesicular scoria dominates. High magnification SEM BSE images of tephra clasts from throughout the deposit were obtained in order to better assess the changing role of external water during the eruption. Preliminary assessment of the images reveals that clasts from the eruption initiation have a glassier matrix compared to those upsection, which have a highly microcrystalline matrix, suggesting that early-erupted samples were likely quenched with external water. Taken together, these datasets suggest that the eruption initiated as dominantly phreatomagmatic but then rapidly transitioned to dominantly magmatic for the eruption duration. Further investigation of clast vesicularity and crystallinity will aid in understanding the changing influence of external water during the Blue Lake eruption.

  2. Proximal pyroclastic deposits from the 1989-1990 eruption of Redoubt Volcano, Alaska - stratigraphy, distribution, and physical characteristics

    Science.gov (United States)

    Gardner, C.A.; Neal, C.A.; Waitt, R.B.; Janda, R.J.

    1994-01-01

    More than 20 eruptive events during the 1989-1990 eruption of Redoubt Volcano emplaced a complex sequence of lithic pyroclastic-flow, -surge, -fall, ice-diamict, and lahar deposits mainly on the north side of the volcano. The deposits record the changing eruption dynamics from initial gas-rich vent-clearing explosions to episodic gas-poor lava-dome extrusions and failures. The repeated dome failures produced lithic pyroclastic flows that mixed with snow and glacial ice to generate lahars that were channelled off Drift glacier into the Drift River valley. Some of the dome failures occurred without precursory seismic warning and appeared to result solely from gravitational instability. Material from the disrupted lava domes avalanched down a steep, partly ice-filled canyon incised on the north flank of the volcano and came to rest on the heavily crevassed surface of the piedmont lobe of Drift glacier. Most dome-collapse events resulted in single, monolithologic, massive to reversely graded, medium- to coarse-grained, sandy pyroclastic-flow deposits containing abundant dense dome clasts. These deposits vary in thickness, grain size, and texture depending on distance from the vent and local topography; deposits are finer and better sorted down flow, thinner and finer on hummocks, and thicker and coarser where ponded in channels cut through the glacial ice. The initial vent-clearing explosions emplaced unusual deposits of glacial ice, snow, and rock in a frozen matrix on the north and south flanks of the volcano. Similar deposits were described at Nevado del Ruiz, Columbia and have probably been emplaced at other snow-and-ice-clad volcanoes, but poor preservation makes them difficult to recognize in the geologic record. In a like fashion, most deposits from the 1989-1990 eruption of Redoubt Volcano may be difficult to recognize and interpret in the future because they were emplaced in an environment where glacio-fluvial processes dominate and quickly obscure the primary

  3. Propagation and deposition mechanisms of dense pyroclastic density currents: insights from analogue laboratory experiments. (Invited)

    Science.gov (United States)

    Roche, O.; Montserrat, S.; Niño, Y.; Tamburrino, A.

    2010-12-01

    Analogue laboratory experiments on air-particle flows represent a useful tool to investigate the mechanisms of propagation and deposition of dense (or the dense part of) pyroclastic density currents. In this context, we carried out experiments in the dam-break configuration and studied the emplacement processes of analogue biphasic currents generated from the quasi-instantaneous release of fluidized columns of fine (80 µm) particles. The low permeability of the granular material permitted relatively slow diffusion of the initial pore pressure within the flows until they came to halt. Analysis of the flow kinematics and comparison with flows of water in the same apparatus revealed that the air-particle currents propagated in two distinct stages. They behaved as their inertial water counterparts for most their emplacement, as both types of flows had the same morphology and propagated at constant front velocity U~√(2gh), h being the initial height of the granular column. This occurred as long as the height of the collapsing fluidized columns was higher than the that of the resultant flows, thus generating a driving pressure gradient. This fluid-inertial behavior suggested that the pore fluid pressure was high during propagation of the mixture. In order to check this hypothesis, we carried out non invasive measurements of the pore fluid pressure at the base of the air-particle flows and made correlation of the pressure signal with the flow structure from analyses of high speed videos. The flow structure consisted of a sliding head that caused underpressure relative to ambient conditions and whose magnitude correlated with the flow velocity. The flow head was followed by a body that generated overpressure and at the base of which a deposit aggraded at a nearly constant rate. Both the flow head and body were sheared pervasively as the internal velocity increased upwards. The combination of pressure advection from the source and relatively slow pressure diffusion

  4. Categorizing vitric lithofacies on seamounts: implications for recognizing deep-marine pyroclastic deposits

    Science.gov (United States)

    Portner, R. A.; Clague, D. A.

    2011-12-01

    Glassy fragmental deposits commonly found capping seamounts have been variably interpreted as the products of quench-fragmentation (hyaloclastite), suppressed steam expansion, and/or explosive fire-fountains (pyroclastite). To better understand these vitriclastic deposits we use a multidisciplinary approach that outlines six lithofacies based on textures, sedimentary structures, geochemical diversity, and associations with seamount landforms. All seamounts studied yield MORB compositions and formed on or near mid-ocean ridge axes of the northeast Pacific Ocean. Consolidated deposits were sampled from the Taney (~29 Ma), President Jackson (~3 Ma), and Vance (~2 Ma) seamounts using ROV manipulator arms and dredge hauls. Unconsolidated deposits from the currently active Axial Seamount of the Juan de Fuca Ridge were sampled using ROV push core and vacuum techniques. Lithofacies occur with talus breccias and pillow basalt on steeply dipping outer flanks and caldera walls, and with pillow and sheet flows on subhorizontal rims and nested caldera floors of the seamounts. Vitric lithofacies within or near steeply dipping regions have very angular textures, coarse grain-sizes and abundant crystalline basalt fragments. Jig-saw fit texture is common in units with monomict geochemistry and closely associated with adjacent pillow basalt, suggesting in-situ fragmentation akin to pillow breccia. Similar units bearing polymodal geochemistry are generally associated with talus breccias along caldera walls and basal slopes, and are interpreted as fault-scarp derived debrites. Laterally these lithofacies abruptly grade into bottom-current reworked lithofacies on flat caldera floors. Reworked lithofacies have >40% muddy matrix with abundant angular mineral fragments, biogenic grains and minor devitrified glass shards. They typically exhibit well-defined planar lamination and locally show sinusoidal ripple forms. Horizontal burrows including Planolites are common. Locally this

  5. Surface height adjustments in pyroclastic-flow deposits observed at Unzen volcano by JERS-1 SAR interferometry

    Science.gov (United States)

    Matthews, J. P.; Kamata, H.; Okuyama, S.; Yusa, Y.; Shimizu, H.

    2003-07-01

    Pyroclastic flows from the 1990-1995 eruption of Unzen, a dacitic volcano in the southwest of Japan, descended the mountain along a variety of routes causing widespread damage and loss of life. Interferograms constructed from JERS-1 L-band Synthetic Aperture Radar (SAR) images show a number of features related to these pyroclastic flows and their secondary effects. The most useful interferogram in this respect is based on images acquired on 22 July 1993 and 1 December 1993 and shows the descent paths for pyroclastic flows occurring in four valley systems within this time window as zones of decorrelation caused by the repeated resurfacing. The 22 July 1993 SAR image was, through considerable good fortune, acquired only 2.6 days after a major pyroclastic flow had descended into the Mizunashi valley so that, in the absence of rainfall, the fresh 2-m-thick deposits were dry when first imaged. The largest differential surface height changes observed in the interferogram represent height decreases in the vertical of ˜12 cm and, significantly, lie within a small region of the Mizunashi valley which was resurfaced by the pyroclastic flow of 19 July 1993 but not subsequently. Within this small region, radar coherence is higher (maximum correlation value of ˜0.75) in a center-valley site where ash but relatively few large boulders are present. In a qualitative sense, the new ash surfaces exhibit higher levels of radar coherence than the older (pre-19 July) deposits. In other Unzen valleys visited by pyroclastic flows, smaller differential surface height decreases (˜4 cm) are observed where the surface deposits were emplaced by events taking place between 1-3 months before the acquisition date of the 22 July 1993 image. The 'extra' ˜8 cm of surface height decrease observed in the case of the freshly laid Mizunashi deposits must result from a deflationary mechanism (or mechanisms) operating in a spatially uniform manner in order for radar coherence to be maintained. A

  6. The reinterpretation of Leone Lake sediments as a pyroclastic surge deposit and its tectonic significance. [volcanics in Cascade Range of Oregon

    Science.gov (United States)

    Mcdonough, W. F.; Waibel, A. F.; Gannett, M. W.

    1984-01-01

    The Leone Lake sediments, previously interpreted as being of fluvial and lacustrine origin, are reinterpreted as subaerial pyroclastic surge and palagonite tuff cone deposits. This conclusion is based on bedforms, particle morphology, the primary mineral assemblage, and the nature and mineralogy of the alteration. The principal characteristics of the pyroclastic surge units and palagonite tuffs are examined, and the tectonic significance of the reinterpretation is briefly discussed.

  7. Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): 2. Temperature of the deposits and hazard implications

    Science.gov (United States)

    Zanella, E.; Gurioli, L.; Pareschi, M. T.; Lanza, R.

    2007-05-01

    During the A.D. 79 eruption of Vesuvius, Italy, the Roman town of Pompeii was covered by 2.5 m of pyroclastic fall pumice and then partially destroyed by pyroclastic density currents (PDCs). Thermal remanent magnetization measurements performed on the lithic and roof tile fragments embedded in the PDC deposits allow us to quantify the variations in the temperature (Tdep) of the deposits within and around Pompeii. These results reveal that the presence of buildings strongly influenced the deposition temperature of the erupted products. The first two currents, which entered Pompeii at a temperature around 300-360°C, show drastic decreases in the Tdep, with minima of 100-140°C, found in the deposits within the town. We interpret these decreases in temperature as being the result of localized interactions between the PDCs and the city structures, which were only able to affect the lower part of the currents. Down flow of Pompeii, the lowermost portion of the PDCs regained its original physical characteristics, emplacing hot deposits once more. The final, dilute PDCs entered a town that was already partially destroyed by the previous currents. These PDCs left thin ash deposits, which mantled the previous ones. The lack of interaction with the urban fabric is indicated by their uniform temperature everywhere. However, the relatively high temperature of the deposits, between 140 and 300°C, indicates that even these distal, thin ash layers, capped by their accretionary lapilli bed, were associated with PDCs that were still hot enough to cause problems for unsheltered people.

  8. Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma-Vesuvius Caldera

    Science.gov (United States)

    Cioni, Raffaello; Santacroce, Roberto; Sbrana, Alessandro

    The evolution of the Somma-Vesuvius caldera has been reconstructed based on geomorphic observations, detailed stratigraphic studies, and the distribution and facies variations of pyroclastic and epiclastic deposits produced by the past 20,000years of volcanic activity. The present caldera is a multicyclic, nested structure related to the emptying of large, shallow reservoirs during Plinian eruptions. The caldera cuts a stratovolcano whose original summit was at 1600-1900m elevation, approximately 500m north of the present crater. Four caldera-forming events have been recognized, each occurring during major Plinian eruptions (18,300 BP "Pomici di Base", 8000 BP "Mercato Pumice", 3400 BP "Avellino Pumice" and AD 79 "Pompeii Pumice"). The timing of each caldera collapse is defined by peculiar "collapse-marking" deposits, characterized by large amounts of lithic clasts from the outer margins of the magma chamber and its apophysis as well as from the shallow volcanic and sedimentary units. In proximal sites the deposits consist of coarse breccias resulting from emplacement of either dense pyroclastic flows (Pomici di Base and Pompeii eruptions) or fall layers (Avellino eruption). During each caldera collapse, the destabilization of the shallow magmatic system induced decompression of hydrothermal-magmatic and hydrothermal fluids hosted in the wall rocks. This process, and the magma-ground water interaction triggered by the fracturing of the thick Mesozoic carbonate basement hosting the aquifer system, strongly enhanced the explosivity of the eruptions.

  9. Asbestiform tremolite within the Holocene late pyroclastic deposits of Colli Albani volcano (Latium, Italy): Occurrence and crystal-chemistry

    CERN Document Server

    Della Ventura, Giancarlo; Bellatreccia, Fabio; De Benedetti, Arnaldo A; Mottana, Annibale

    2013-01-01

    This work relates the occurrence and the characterization of fibrous tremolite within the latest pyroclastic deposits of the Colli Albani (Alban Hills) volcano, to the south-east of Rome (Italy). These mineralizations were observed during a systematic rock-sampling undertaken to complete the geological survey for the new 1:50 000 map of this volcanic area. The examined specimens were collected inside distal deposits correlated to the last Albano Maar activity, which are geographically located within the boundaries of the Nemi community. Tremolite occurs within both carbonate ejecta and the host pyroclastic rocks. It shows up as whitish to light gray coloured aggregates of crystals with fibrous aspect and sericeous brightness. Due to the extremely small crystal dimensions, never exceeding 0.5 micron in diameter, the micro-chemical composition of the fibres could be obtained only by combining P-XRD, SEM-EDX and FTIR methods. Infrared spectroscopy, in particular, proved to be a valuable technique to characterize...

  10. Insights into Proximal-Medial Pyroclastic Density Current Deposits at a High-Risk Glaciated Volcano: Mt Ruapehu, New Zealand

    Science.gov (United States)

    Cowlyn, J.; Kennedy, B.; Gravley, D. M.; Cronin, S. J.; Pardo, N.; Wilson, T. M.; Leonard, G.; Townsend, D.; Dufek, J.

    2014-12-01

    Pyroclastic density currents (PDCs) are a destructive volcanic hazard. Quantifying the types, frequency and magnitudes of PDC events in the geological record is essential for effective risk management. However small-medium volume valley-confined PDC deposits have low preservation potential, especially when emplaced in active drainages or onto snow or ice. Where PDC deposits are preserved they can be difficult to distinguish from other surficial deposits and are frequently misinterpreted or overlooked. This is the case at Mt. Ruapehu; a much visited, high-risk active volcano in New Zealand with no historical PDCs. Through systematic field observations we identified several young proximal-medial andesitic PDC deposits exposed on Ruapehu's eastern flanks. The oldest deposits (Ohinewairua PDCs, 10km from source (South Crater) and correlates with Ruapehu's last known plinian eruption (~11.6 ka). Several younger locally preserved PDC deposits (Tukino PDCs) with denser juvenile clasts represent proximal PDCs from smaller eruptions at South Crater. Finally, a variably welded, bedded deposit containing clasts of welded spatter is interpreted to represent multiple failures of near-vent (North Ruapehu) accumulations of erupted material. Here, PDC initiation appears to have been controlled by the topographic gradient and deposition rate, without requiring a collapsing eruption column. The Ruapehu deposits highlight the limited preservation of PDC deposits, which appears to be favoured at PDC margins. Lateral and vertical flow stratification means the resulting deposits may not then represent the bulk flow. Additionally, deposit textures, distributions, and associations with moraines indicate that many of Ruapehu's PDCs encountered glacial ice during transport. This affected their distribution, mobility and preservation, and has implications for assessing the PDC hazard at Ruapehu and other glaciated volcanoes. The deposits reinforce that hazardous PDCs threatening life and

  11. Inferred Variable FeO Content in Medium-sized Lunar Pyroclastic Deposits from LRO Diviner Data

    Science.gov (United States)

    Bennett, K. A.; Horgan, B.; Greenhagen, B.; Allen, C.; Bell, J. F., III

    2014-01-01

    Lunar pyroclastic deposits (LPDs) are low albedo features that mantle underlying terrain (Gaddis et al. 1985). They are high priority targets for science and exploration as they are believed to originate from and therefore reflect the composition of the deep lunar interior (NRC, 2011). They are also the best potential resource of oxygen out of any Apollo samples (Allen et al. 1996). Historically, LPDs have been divided into regional versus local categories (Gaddis et al. 2003). The large (>1000 km2 area) regional deposits are deeply sourced (>400 km deep) and result from fire fountaining. Small (medium-sized deposits to characterize this potential new class of deposits and understand the magnitude of variations in inferred FeO among pyroclastic deposits. We use the method of Greenhagen et al. (2010) to calculate the wavelength of the Christiansen Feature (CF) from Lunar Reconnaissance Orbiter Diviner Lunar Radiometer instrument thermal-infrared observations for four medium-sized deposits. From the CF values, we estimate each deposit's FeO abundance using the method of Allen et al. (2012). The four LPDs that we examined (Oppenheimer South, Beer, Cleomedes, and J. Herschel) all have average CF values from 8.22-8.28 microns, corresponding to FeO abundances of approx. 10-15 wt.%. All of these values are within the range and uncertainties of FeO abundances measured in Apollo samples. As previously identified, the Oppenheimer South deposit exhibits an area of enhanced CF values (8.49 microns) that, if the methods of Allen et al. (2012) can be extrapolated, correspond to a highest observed approx. 30 wt.% FeO. Moon Mineralogy Mapper near-infrared spectra indicate that this area is glass-rich as opposed to olivine-rich. While we are still investigating the nature of the high CF wavelength in Oppenheimer South, spatially-resolved observations there and (to a smaller degree) in our other study sites, shows that FeO wt.% can vary within LPDs. Thus, obtaining only the average

  12. Landslide susceptibility assessment in ash-fall pyroclastic deposits surrounding Mount Somma-Vesuvius: Application of geophysical surveys for soil thickness mapping

    Science.gov (United States)

    De Vita, P.; Agrello, D.; Ambrosino, F.

    2006-06-01

    Along the steep slopes of the carbonate mountains that surround the Campanian Plain and Mount Somma-Vesuvius, rainfall-triggered debris slides occur in unconsolidated ash-fall pyroclastic deposits. The initial debris slides evolve into debris flows that often cause significant property damage and loss of human life in the towns located at the foot of the slopes. In this particular geological situation, the pyroclastic soil thickness, the slope angle, and the morphological variations of the slope profile are the most important factors that contribute to landslide susceptibility. In this paper, the results of an experimental application of shallow resistivity and refraction seismic soundings in mapping the thickness of pyroclastic soils are presented. These geophysical methods are proposed as low-cost and versatile methods to be used in the difficult morphological conditions of the steep slopes in which debris-slides initiate. The methods have been used experimentally in a sample area located on the upper slope of Mount Pizzo d'Alvano, from which debris flows initiated that dramatically hit the town of Sarno on 5-6 May 1998. The inversion of geoelectrical soundings has been calibrated with resistivity values measured directly on pyroclastic outcrops and with soil thickness estimations derived from refraction seismic soundings and from the application of a mobile dynamic penetrometer. The results of the field experimentation can be summarised as follows: (i) unconsolidated ash-fall pyroclastic deposits, ranging in particle size from fine ash to lapilli, can be differentiated from fractured carbonate bedrock by means of electrical resistivity and velocity values of longitudinal seismic waves; (ii) thickness of ash-fall pyroclastic soils can be empirically related to the slope angle using an inverse relationship; and (iii) the empirical model has been applied to Digital Elevation Model data, allowing pyroclastic soil thickness mapping in the sample area.

  13. Comparison of high-resolution P- and SH-wave reflection seismic data in alluvial and pyroclastic deposits in Indonesia

    Science.gov (United States)

    Wiyono, Wiyono; Polom, Ulrich; Krawczyk, Charlotte M.

    2013-04-01

    Seismic reflection is one of the stable methods to investigate subsurface conditions. However, there are still many unresolved issues, especially for areas with specific and complex geological environments. Here, each location has an own characteristic due to material compounds and the geological structure. We acquired high-resolution, P-and SH-wave seismic reflection profiles at two different locations in Indonesia. The first location was in Semarang (Central Java) and the second one was in Tiris (East Java). The first region is located on an alluvial plain with thick alluvial deposits of more than 100 m estimated thickness, and the second location was located on pyroclastic deposit material. The seismic measurements for both locations were carried out using a 48-channel recording system (14-Hz P-wave, 10-Hz SH-wave geophones) with geophone intervals of 5 m (P-waves) and 1 m (SH-waves), respectively. The seismic source for the P-wave was a ca. 4 kg sledge hammer which generated a seismic signal by by hitting on an aluminum plate of 30x30 cm, whereas the SH-wave source was a mini-vibrator ELVIS (Electrodynamic Vibrator System), version 3. Thirteen seismic profiles at Semarang and eighth profiles at Tiris were acquired. The results of seismic data in Semarang show fair to good seismic records for both P-and SH-waves. The raw data contain high signal-to-noise-ratio. Many clear reflectors can be detected. The P-wave data shows reflectors down to 250 ms two-way time while the SH-wave records show seismic events up to 600 ms two-way time. This result is in strong contrast to the seismic data result from the Tiris region. The P-wave data show very low signal to noise ratio, there is no reflection signal visible, only the surface waves and the ambient noise from the surrounding area are visible. The SH-waves give a fair to good result which enables reflector detection down to 300 ms two-way time. The results from the two seismic campaigns show that SH-wave reflection

  14. The fractal nature of fragment size distributions of pyroclastic fall deposits from Cretaio eruption, Ischia Island (Italy)

    Science.gov (United States)

    Paredes Marino, Joali; Morgavi, Daniele; Di Vito, Mauro; de Vita, Sandro; Sansivero, Fabio; Perugini, Diego

    2016-04-01

    The principles of fractal theory have had a strong influence on the understanding of many geological processes. Combining laboratory experiments on natural deposits generated by explosive volcanic eruptions along with statistical fractal analysis allows us to characterize precisely pyroclastic deposits and opens the possibility for substantial advances in the quantification of fragmentation processes during explosive volcanic events. A set of samples from the Cretaio eruption (1.86 Ka B.P.) was analyzed using fractal geometry to characterize the particle size distribution (PSD) of pyroclastic fragments erupted during its fallout phase. PSD analyses were performed on ten samples corresponding to ten different explosive episodes during the eruption. Samples were divided in juvenile fraction, (JV) and lithic fraction, (LC). Each fraction was analyzed separately. The results for the investigated size range (3mm to 300μm) showed that the fragmentation process is well characterized by a fractal distribution, exhibiting a multi-fractal behavior, explained by different and sequential processes of fragmentation. Frequency-size distribution of JV and LC fractions exhibit opposite behavior: for JV-fraction smaller particles (<1mm) shows a higher dimension of fragmentation relative to the bigger particles, a feature that can be related to a secondary process of fragmentation; the opposite behavior is observed for the LC fraction (smallest dimensions of fragmentation correspond to the smaller particle sizes). These differences can be explained by the different rheology of the fragmented materials and/or the occurrence of different fragmentation processes. These results highlight the importance of fractal statistics as a tool for addressing volcanic risk based on the analyses of natural grain size distributions and allow discriminating different fragmentation processes occurring inside the conduit during the volcanic explosions. Keywords: volcanic fragmentation; juvenile

  15. Joint M3 and Diviner Analysis of the Mineralogy, Glass Composition, and Country Rock Content of Pyroclastic Deposits in Oppenheimer Crater

    Science.gov (United States)

    Bennett, Kristen A.; Horgan, Briony H. N.; Greenhagen, Benjamin T.; Allen, Carlton C.; Paige, David A.; Bell, James F., III

    2013-01-01

    Here we present our analysis of the near- and mid-infrared spectral properties of pyroclastic deposits within the floor fractured Oppenheimer Crater that are hypothesized to be Vulcanian in origin. These are the first results of our global study of lunar pyroclastic deposits aimed at constraining the range of eruption processes on the Moon. In the near-infrared, we have employed a new method of spectral analysis developed in Horgan et al. (2013) of the 1 ?m iron absorption band in Chandrayaan-1 Moon Mineralogy Mapper (M3) spectra. By analyzing both the position and shape of the 1 ?m band we can detect and map the distribution of minerals, glasses, and mixtures of these phases in pyroclastic deposits. We are also using mid-infrared spectra from the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment to develop 200 m/pixel Christiansen Feature (CF) maps, which correlate with silica abundance. One of the benefits of using CF maps for analysis of pyroclastic deposits is that they can be used to detect silicic country rock that may have been emplaced by Vulcanian-style eruptions, and are sensitive to iron abundance in glasses, neither of which is possible in the near-infrared. M3 analysis reveals that the primary spectral endmembers are low-calcium pyroxene and iron-bearing glass, with only minor high-calcium pyroxene, and no detectable olivine. The large deposit in the south shows higher and more extensive glass concentrations than the surrounding deposits. We interpret the M3 spectra of the pyroclastic deposits as indicating a mixture of low-calcium pyroxene country rock and juvenile glass, and no significant olivine. Analysis of Diviner CF maps of the Oppenheimer crater floor indicates an average CF value of 8.16, consistent with a mixture of primarily plagioclase and some pyroxene. The average CF values of the pyroclastic deposits range from 8.31 in the SW to 8.24 in the SE. Since CF values within the deposits are as high as 8.49, the lower average CF

  16. Field Investigations of the July 2015 Pyroclastic Density Current Deposits of Volcán de Colima, Mexico

    Science.gov (United States)

    Atlas, Z. D.; Macorps, E.; Charbonnier, S. J.; Varley, N. R.

    2016-12-01

    Small-volume pyroclastic density currents (PDCs) occur relatively frequently and pose severe threats to surrounding populations and infrastructures at active explosive volcanoes. They are characterized by short duration and complex multiphase flow dynamics due to time and space variability in their properties, which include amongst others, particle concentration, granulometry, componentry, bulk rheology and velocity. Field investigations of the deposits emplaced by small-volume concentrated PDCs aim to improve our understanding of the transport and depositional processes of these flows: time and space variations in flow dynamics within a PDC moving downslope will reflect on the distribution, grainsize and component characteristics of its deposits. Our study focuses on the recent events of July 10th and 11th, 2015 at Volcán de Colima (Mexico) where the collapse of the recent lava dome complex and a portion of the southern crater rim led to the emplacement of successive pulses of small-volume concentrated PDCs on the southern flank, along the Montegrande and San Antonio ravines. A 3-dimensional field analysis of the PDCs' deposit architecture, total grain size distribution and component properties together with a geomorphic analysis of the affected ravines provide new insights on the lateral and vertical variations of flow dynamics for some of these small-volume concentrated PDCs. Preliminary results reveal three stratigraphic units with massive block, lapilli, ash facies within the valley confined and concentrated overbank deposits with increasing content in fines with distance from the summit, suggesting an increase in fragmentation processes within the PDCs. The middle unit is characterized by a finer grainsize, a higher accidental lithic content and a lower free crystal content. Moreover, direct correlations are found between rapid changes in channel morphology and generation of overbank (unconfined) flows that escaped valley confines, which could provide the

  17. A Stratigraphic, Granulometric, and Textural Comparison of recent pyroclastic density current deposits exposed at West Island and Burr Point, Augustine Volcano, Alaska

    Science.gov (United States)

    Rath, C. A.; Browne, B. L.

    2011-12-01

    Augustine Volcano (Alaska) is the most active volcano in the eastern Aleutian Islands, with 6 violent eruptions over the past 200 years and at least 12 catastrophic debris-avalanche deposits over the past ~2,000 years. The frequency and destructive nature of these eruptions combined with the proximity of Augustine Volcano to commercial ports and populated areas represents a significant hazard to the Cook Inlet region of Alaska. The focus of this study examines the relationship between debris-avalanche events and the subsequent emplacement of pyroclastic density currents by comparing the stratigraphic, granulometric, and petrographic characteristics of pyroclastic deposits emplaced following the 1883 A.D. Burr Point debris-avalanche and those emplaced following the ~370 14C yr B.P. West Island debris-avalanche. Data from this study combines grain size and componentry analysis of pyroclastic deposits with density, textural, and compositional analysis of juvenile clasts contained in the pyroclastic deposits. The 1883 A.D. Burr Point pyroclastic unit immediately overlies the 1883 debris avalanche deposit and underlies the 1912 Katmai ash. It ranges in thickness from 4 to 48 cm and consists of fine to medium sand-sized particles and coarser fragments of andesite. In places, this unit is normally graded and exhibits cross-bedding. Many of these samples are fines-enriched, with sorting coefficients ranging from -0.1 to 1.9 and median grain size ranging from 0.1 to 2.4 mm. The ~370 14C yr B.P. West Island pyroclastic unit is sandwiched between the underlying West Island debris-avalanche deposit and the overlying 1912 Katmai Ash deposit, and at times a fine-grained gray ash originating from the 1883 eruption. West Island pyroclastic deposit is sand to coarse-sand-sized and either normally graded or massive with sorting coefficients ranging from 0.9 to 2.8 and median grain sizes ranging from 0.4 to 2.6 mm. Some samples display a bimodal distribution of grain sizes, while

  18. Hydrological modelling of a slope covered with shallow pyroclastic deposits from field monitoring data

    Directory of Open Access Journals (Sweden)

    R. Greco

    2013-10-01

    Full Text Available A one-dimensional hydrological model of a slope covered with pyroclastic materials is proposed. The soil cover is constituted by layers of loose volcanic ashes and pumices, with a total thickness between 1.8 m and 2.5 m, lying upon a fractured limestone bedrock. The mean inclination of the slope is around 40°, slightly larger than the friction angle of the ashes. Thus, the equilibrium of the slope, significantly affected by the cohesive contribution exerted by soil suction in unsaturated conditions, may be altered by rainfall infiltration. The model assumes a single homogeneous soil layer occupying the entire depth of the cover, and takes into account seasonally variable canopy interception of precipitation and root water uptake by vegetation, mainly constituted by deciduous chestnut woods with a dense underbrush growing during late spring and summer. The bottom boundary condition links water potential at the soil–bedrock interface with the fluctuations of the water table of the aquifer located in the fractured limestone, which is conceptually modelled as a linear reservoir. Most of the model parameters have been assigned according to literature indications or from experimental data. Soil suction and water content data measured between 1 January 2011 and 20 July 2011 at a monitoring station installed along the slope allowed the remaining parameters to be identified. The calibrated model, which reproduced very closely the data of the calibration set, has been applied to the simulation of the hydrological response of the slope to the hourly precipitation record of 1999, when a large flow-like landslide was triggered close to the monitored location. The simulation results show that the lowest soil suction ever attained occurred just at the time the landslide was triggered, indicating that the model is capable of predicting slope failure conditions.

  19. Basaltic ignimbrites in monogenetic volcanism: the example of La Garrotxa volcanic field

    Science.gov (United States)

    Martí, J.; Planagumà, L. l.; Geyer, A.; Aguirre-Díaz, G.; Pedrazzi, D.; Bolós, X.

    2017-05-01

    Ignimbrites are pyroclastic density current deposits common in explosive volcanism involving intermediate and silicic magmas and in less abundance in eruptions of basaltic central and shield volcanoes. However, they are not widely described in association with monogenetic volcanism, where typical products include lava flows, scoria and lapilli fall deposits, as well as various kinds of pyroclastic density current deposits and explosion breccias. In La Garrotxa basaltic monogenetic volcanic field, part of the Neogene-Quaternary European rift system located in the northeast of the Iberian Peninsula, we have identified a particular group of pyroclastic density current deposits that show similar textural characteristics to silicic ignimbrites, indicating an overlap in transport and depositional processes. These deposits can be clearly distinguished from other pyroclastic density current deposits generated during phreatomagmatic phases that typically correspond to thinly laminated units with planar-to-cross-bedded stratification. The monogenetic ignimbrite deposits correspond to a few meters to several tens of meters thick units rich in lithic- and lapilli scoria fragments, with an abundant ash matrix, and internally massive structure, emplaced along valleys and gullies, with run-out distances up to 6 km and individual volumes ranging from 106 to 1.5 × 107 m3. The presence of flattened scoria and columnar jointing in some of these deposits suggests relatively high emplacement temperatures, coinciding with available paleomagnetic data that suggests an emplacement temperature around 450-500 °C. In this work, we describe the main characteristics of these pyroclastic deposits that were generated by a number of phreatomagmatic episodes. Comparison with similar deposits from silicic eruptions and previous examples of ignimbrites associated with basaltic volcanism allows us to classify them as `basaltic ignimbrites'. The recognition in monogenetic volcanism of such

  20. Shallow hydrothermal alteration and permeability changes in pyroclastic deposits: a case study at La Fossa cone (Vulcano island, Italy):

    Science.gov (United States)

    Cangemi, Marianna; Madonia, Paolo; Speziale, Sergio; Oliveri, Ygor

    2016-04-01

    La Fossa cone at Vulcano, the southernmost island of the Aeolian volcanic archipelago (Italy), has been characterized by an intense fumarolic activity since its last eruption dated 1888-90. Mineralogical alteration induced by shallow hydrothermal circulation has significantly reduced the permeability of the volcanic products, causing important feedbacks on the circulation of fluids in the shallowest portion of the volcanic edifice. The summit area of the cone is sealed by a quite continuous coating surface, fostering the condensation of hydrothermal fluids inside the volcanic edifice. The combination of fractures and volcano-stratigraphic discontinuities, conveying hydrothermal fluids, makes significant rock volumes prone to slide seaward, as occurred in 1988 during the main unrest experienced by Vulcano island since its last eruption. Similar instability conditions are found over the Forgia Vecchia crater rim area, formed by phreatic activity on the NE flank of the cone, where tensile fracturing and hydrothermal circulation interacts with mutual negative feedbacks. In the behalf of the DPC-INGV V3 Project 2012-15 we investigated the mineralogical composition and the hydraulic conductivity (under saturated conditions) of volcanic deposits potentially prone to hydrothermal fluid circulation, for evaluating their ability in retaining water, creating favourable conditions for gravitational instability. We also measured rainfall rate and volumetric soil moisture content in two automated stations located in different areas, with and without active hydrothermal circulation. We found that hydrothermal alteration transforms volcanic products into clay minerals, significantly reducing permeability of volcanic deposits. Argillified volcanic materials show background water contents, modulated by impulsive increments following rainfalls, higher than unaltered pyroclastic deposits, due to the combination of lower permeability and direct condensation of hydrothermal vapour. The

  1. Directional fabric measurements: an investigative approach to transport and depositional mechanisms in pyroclastic flows

    Science.gov (United States)

    Capaccioni, Bruno; Nappi, Giovanni; Valentini, Laura

    2001-07-01

    Computer-assisted image analysis data of rock fabrics from two quaternary ignimbrites in the Vulsini and Cimini Volcanic Districts of Central Italy are interpreted in terms of transport and depositional mechanisms. Samples were collected vertically at m spaces up two sections through each deposit. The Orvieto-Bagnoregio ignimbrite (OBI) is a non-welded ignimbrite that shows both fluctuations in the mean particle orientation values of up to approximately ±60°, and large variations in the strength of particle iso-orientation with height. The circular frequency distributions of particle orientations are almost always anisotropic and unimodal, in line with a theoretical Von Mises distribution (the circular equivalent of a unimodal, log-normal distribution). In contrast, the welded Cimina ignimbrite (CI) shows vertical homogeneities in mean orientation values with height, and generally lower degrees of anisotropy. Such differences are interpreted as being the results of different depositional mechanisms: incremental deposition at the base of a density-stratified, partially turbulent flow for the OBI; deposition of a laminar mass flow for the CI. In the former case, during transport particles under solidus temperature are subjected to a frictional regime, particles gliding and dispersive pressures, which finally produce size-inverse grading and variable fabric development, depending on the residence time of particles at the basal shear conditions. In the latter case, elongated particles, supported in a laminar flowing viscous matrix, undergo periodic motions which tend to develop parallel-to-flow iso-orientation. Fabric data in the deposit suggest vertical constancy in the rheological properties of the flow, absence of rheological decoupling and (shearing pervasively during transport) a minor importance of plug horizons.

  2. Slope Instability on Pyroclastic Deposits: Landslide Distribution and Risk Mapping in Zacapoaxtla,Sierra Norte De Puebla, Mexico

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In October 1999, rainfall induced landslides devastated different communities of the Sierra Norte, Puebla, causing more than 250 victims and economic losses greater than $ 450 million. The town of Zacapoaxtla was one of the sectors most affected by slope instability due to the existing geological features and geomorphic characters determined by material properties, landforms and processes. Extensive areas formed by pyroclastic piedmonts developed on the Quaternary volcanic ignimbrite deposits highly dissected by marginal gully erosion combined with an extreme rainfall event played a significant role as an ideal scenario for the occurrence of landsliding. Distribution of landslides triggered by rainfall within the main sector of the Zacapoaxtla municipality was analyzed by using IKONOS images in terms of exploring the likely relationship between mass movement incidence and levels of vegetation density. The later was undertaken by means of producing an NDVI and applying a fragmentation algorithm. Finally, a map of potential areas of mass movements risk was produced based on the combination of a socio-economic vulnerability index, geologic and geomorphological maps and the spatial landslide distribution.

  3. Pyroclastic flow deposits on Venus as indicators of renewed magmatic activity

    Science.gov (United States)

    Campbell, Bruce A.; Morgan, Gareth A.; Whitten, Jennifer L.; Carter, Lynn M.; Glaze, Lori S.; Campbell, Donald B.

    2017-07-01

    Radar bright deposits on Venus that have diffuse margins suggest eruptions that distribute debris over large areas due to ground-hugging flows from plume collapse. We examine deposits in eastern Eistla, western Eistla, Phoebe, and Dione Regiones using Magellan data and Earth-based radar maps. The radar bright units have no marginal lobes or other features consistent with viscous flow. Their morphology, radar echo strength, polarization properties, and microwave emissivity are consistent with mantling deposits composed of few centimeters or larger clasts. This debris traveled downhill up to 100 km on modest slopes and blanketed lava flows and tectonic features to depths of tens of centimeters to a few meters over areas up to 40 × 103 km2. There is evidence for ongoing removal and exhumation of previously buried terrain. A newly identified occurrence is associated with a ridge belt south of Ushas Mons. We also note radar bright streaks of coarse material west of Rona Chasma that reflect the last traces of a deposit mobilized by winds from the formation of Mirabeau crater. If the radar bright units originate by the collapse of eruption columns, with coarse fragmental material entrained and fluidized by hot gases, then their extent suggests large erupted volatile (CO2 or H2O) amounts. We propose that these deposits reflect the early stage of renewed magmatic activity, with volatile-rich, disrupted magma escaping through vents in fractured regions of the upper crust. Rapidly eroding under Venus surface conditions or buried by subsequent eruptions, these markers of recently renewed activity have disappeared from older regions.

  4. Pyroclastic deposits:an important reservoir for hydrocarbon accumulation%火山碎屑沉积物是油气的重要储层

    Institute of Scientific and Technical Information of China (English)

    刘祥; 郎建军; 杨清福

    2011-01-01

    Pyroclastic deposits are important reservoirs and can be divided into fallout tephradeposits, pyroclastic flow deposits, lahar deposits and base surge deposits by their genesis. The four kinds of pyroclastic deposits have different reservoir characteristics and potential. The identification and interpretation of the pyroclastic deposits can significantly influence the exploration methods of volcaniclastic sequences and the prediction of reservoir geometry and quality. The Lower Jurassic Wrightson Formation in Arizona is a multi-crater complex. Its pyroclastic deposits and lavas with various genesis can be divided into crater, proximal, middle and distal facies. The influences of these facies on reservoir quality are discussed. Volcanic clasts are mostly composed of chemically active and unstable minerals that can change rapidly and extensively during burial diagenesis. The occurrence of volcanic clasts may contribute to the development of dissolution porosity which can enhance reservoir quality.%火山碎屑沉积物是重要的油气储层.火山碎屑沉积按成因划分为火山喷发空中降落堆积物、火山碎屑流状堆积物、火山泥流堆积物和火山基浪堆积物等.它们的特征和储层潜能是不同的.火山碎屑沉积物的识别和解释能够极大的影响火山碎屑层序的勘探方法、储油层几何形态和性能的预测.美国亚利桑那洲早侏罗世怀特申组是一个多喷发火山口复合体,把不同成因类型的火山碎屑堆积物和熔岩分为4个相:火口相、近火口相、中间相和远端相.讨论了这些相对储层性能的影响.火山碎屑大部分由化学性活泼的和不稳定矿物组成,在埋藏成岩期间具有迅速和广泛的变化.火山碎屑的赋存,有助于溶解孔隙的发育,能够增强储油层性能.

  5. Local Environmental Effects from Deposition of Basaltic Tephra

    Science.gov (United States)

    Ort, M. H.; Sheppard, P. R.; Anderson, K. C.; Elson, M. D.

    2012-12-01

    Basaltic tephra is produced by scoria cones and by composite and stratovolcanoes, which may cover 1000s-10,000's km2 with tephra to depths greater than 1 cm. This tephra changes the abiotic and biotic environment. The thickness of the tephra affects whether plants can send their seeds and roots to the soil underneath or grow through the tephra to reach the surface. More than 20 cm of tephra greatly inhibits most plant growth, as shown by agricultural experiments and observations of natural landscapes. At Sunset Crater in northern Arizona, incipient soil formation (after ~925 years) consists of eolian grains having sifted down to a depth of 10-20 cm, forming a finer grained layer that retains water. Plant roots concentrate at this level, helping to trap more fine grains and adding organic material to the layer. This then provides a more hospitable environment for further plant growth and the development of soil ecosystems. Fresh tephra, especially if coarse, allows water to pass through it to the underlying soil, reducing runoff, and slows subsequent evaporation. At Sunset Crater, increased water infiltration led to better plant growth in semiarid grasslands and forest and possibly to new springs and increased surface water. At Parícutin in Michoacán, México, flooding caused by abundant rain that saturated the tephra led to stream shifts and erosion. Tephra has available ions on the surface of grains and the volcanic glass may be easily altered. This, combined with increased water retention in the soil, can lead to changes in soil and groundwater chemistry underlying the tephra. Adhering sulfur, as well as HCl- and HNO3-rich rainfall, can lower pH in the water, dissolving soil ions as mineralogical phase changes occur in response to the lower pH. At three scoria cones (Sunset Crater, Paricutin, and Cinder Cone, which is in northeast California), tree-ring chemistry reflects changes in the soil-water composition. P and S increase for a few years to decades after

  6. Identifying pyroclastic and lahar deposits and assessing erosion and lahar hazards at active volcanoes using multi-temporal HSR image analysis and techniques for change detection

    Science.gov (United States)

    Kassouk, Zeineb; Thouret, Jean-Claude; Oehler, Jean-François; Solikhin, Akhmad

    2014-05-01

    The increasing availability of high-spatial resolution (HSR) remote sensing images leads to new opportunities for hazard assessment in the case of active volcanoes. Object-oriented analysis (OOA) of HSR images helps to simultaneously exploit spatial, spectral and contextual information. Here, we identify and delineate pyroclastic density current (PDC) and post-eruption lahar deposits on the south flank of Merapi volcano, Indonesia, after the large 2010 eruption. GeoEye-1 (2010 and 2011) and Pleiades (2012) images were analyzed with an adjusted object-oriented method. The PDC deposits include valley-confined block-and-ash flows (BAFs), unconfined, overbank pyroclastic flows (OPFs), and high-energy surges or ash-cloud surges. We follow up the evolution of the pyroclastic and lahar deposits through changes in the spectral indices calculated in segmented features, which represent the principal units of deposits and devastated areas. The object-oriented analysis has been applied to the pseudo image comprising of three spectral indices (NDWI water index; NDVI vegetation index; and NDRSI Red Soil Index). This pseudo image has enabled us to delineate fifteen units of PDC and lahar deposits, and damaged forests and settlements in the Gendol-Opak catchment (c.80 sqkm). The units represent 75% of classes obtained by photointerpretation of the same image and supported by field observations. A combination of NDWI and NDVI helps to separate areas affected by surges (NDWI 0.3 and NDWIsurges. The NDWI/NDRSI 2010 plot displays two clusters: NDRSI close to 0 is assigned to scoria-rich PFs while NDWI close to 0 and NDRSI4 x106/km2/year) from erosion acting in the Gendol valley, which characterize composite volcanoes after a large eruption. HSR images have also helped to measure geomorphic characteristics (channel capacity/wetted section; longitudinal change in channel confinement, and channel sinuosity) of river channels, which favor overbank and avulsion of lahars on a densely

  7. A new type of rare earth elements deposit in weathering crust of Permian basalt in western Guizhou, NW China

    Institute of Scientific and Technical Information of China (English)

    YANG Ruidong; WANG Wei; ZHANG Xiaodong; LIU Ling; WEI Huairui; BAO Miao; WANG Jingxin

    2008-01-01

    A new type of rare earth elements (REEs) deposit was discovered from the gaolinite mudstone in the weathering crust of Permian basalt, Bijie region, western Guizhou, China. It contained ∑-RE2O3 0.065%-1.086%. This type of REEs deposit was widely distributed with steady horizon and thickness of 3-4 m. The ore-bearing weathering crust (kaolinite) of the three discovered REEs deposits belonged to the third episode of the Emeishan basalt eruption. The new type of REEs deposit was suggested that basalt (tuff) weathering could lead to the en- richment of the rare earth elements. Therefore, it is of important economic significance to explore REEs deposits in the weathering crust of basalt (tufts) in Yunnan, Guizhou, and Sichuan Provinces.

  8. Economic and ecologic importance of the non - metalic deposits in basalt maars of Southern Slovakia

    Directory of Open Access Journals (Sweden)

    Vass Dionýz

    1998-03-01

    Full Text Available By investigation of the basalt maars infill in Luèenská kotlina Depression the diatomite and alginite deposits have been found. Both maars belong to Podreèany basalt formation, Pontian (Late Miocene in age. By technological investigation it was proved the diatomite can be used in the building trade as raw materil for light tiles convenient especially for the construction of the saddle roof with attic appatments. The alginite can be used in the agriculture and horticulture, as a fertiliser becouse of humus, nutritive end same trace elements, a desodorant in livestoc feedlots, a water and nutritive elements trap to distribute them for the growing plants. The alginite can be used as well as in pharmacy and in different industrial branches. Both deposits are of high significance for the ecology and the nature protection.

  9. PYFLOW_2.0. A new open-source software for quantifying impact parameters and deposition rates of dilute pyroclastic density currents

    Science.gov (United States)

    Dioguardi, Fabio; Dellino, Pierfrancesco; Mele, Daniela

    2016-04-01

    Dilute pyroclastic density currents (DPDCs) are one of the hazardous events that can happen during explosive eruptions. They are ground-hugging turbulent gas-particle flows that move down volcano slopes under the combined action of density contrast and gravity. DPDCs are dangerous for human lives and infrastructures both because they exert a dynamic pressure in their direction of motion and transport volcanic ash particles, which remain in the atmosphere during and after the passage of DPDC until they settle on the ground. Deposits formed by the passage of a DPDC show peculiar characteristics that can be linked to flow field variables. This has been the subject of extensive investigations in the past years leading to the formulation of a sedimentological model (Dellino et al. 2008), which has been used for evaluating the impact parameters of past eruptions on a statistical basis for hazard assessment purposes. The model has been recently translated in a Fortran code (PYFLOW, Dioguardi and Dellino, 2014). Here we present the latest release of this code (PYFLOW_2.0) which, besides significant improvements in the code structure, computation times and the introduction of a user friendly data input method, allows to calculate the deposition time and rate of the ash and lapilli layer formed by a DPDC by linking deposit (e.g. componentry, grainsize) to flow (e.g. flow average density and shear velocity) characteristics as calculated by the aforementioned sedimentological model. The deposition rate is calculated by summing the contributions of each grainsize class of all components constituting the deposit (e.g. juvenile particles, crystals, etc.), which are in turn computed as a function of particle density, terminal velocity, concentration and deposition probability. Here we apply the concept of deposition probability, previously introduced for estimating the deposition rates of turbidity currents (Stow and Bowen, 1980), to DPDCs, although with a different approach, i

  10. Insights into the October-November 2010 Gunung Merapi eruption (Central Java, Indonesia) from the stratigraphy, volume and characteristics of its pyroclastic deposits

    Science.gov (United States)

    Cronin, Shane J.; Lube, Gert; Dayudi, Devi S.; Sumarti, Sri; Subrandiyo, S.; Surono

    2013-07-01

    The 2010 eruption of Merapi was the second most deadly in the historic record of this volcano, claiming over 380 lives. By relating the observations of this eruption with detailed examination of deposit distribution, stratigraphy and sedimentology, a reconstruction of the properties of the pyroclastic density currents (PDCs) is presented, including the valley controlled block-and-ash flows (BAFs) and widespread, energetic pyroclastic surges. The distribution, volume and mobility characteristics of all types of PDC during the eruption sequence show evidence for levels of intensity unseen since the large-scale 1872 and 1930 eruption phases, especially during the climactic events of October 26 and November 5. Many tephra falls interbedded with PDC units show that most dome-collapse events occurred along with and between explosive vulcanian eruptions. The 2010 eruption produced very long-runout BAFs, reaching 16.1 km in the Kali Gendol on November 5. This runout could be explained by its large-volume (20 million m3), around 10 times that of previous Merapi BAFs during the last 130 years. Major avulsion of these dense BAFs to form overbank deposits became more common through the eruptive sequence as the valley was progressively filled with successive PDC deposits. Spreading avulsed BAFs were a particular hazard downstream of ~ 10 km where the landscape is less dissected. Less clear, however, is why pyroclastic surges extended up to 10 km from the vent on November 5 and > 6.4 km on October 26. These expanded much farther from BAF margins (~ 2 km) than ever seen before at Merapi. In one location they were decoupled from valley-centered BAFs with high momentum, traveling initially laterally across steep valley systems, before draining downslope. At this site, on the western side of the upper Gendol at around 3 km from source, surge decoupling was apparently exacerbated by upstream collision and deflection of high-flux, hot and gas-rich BAFs against the cliffs of Gunung

  11. Geological and geotechnical characterization of the debris avalanche and pyroclastic deposits of Cotopaxi Volcano (Ecuador). A contribute to instability-related hazard studies

    Science.gov (United States)

    Vezzoli, L.; Apuani, T.; Corazzato, C.; Uttini, A.

    2017-02-01

    The huge volcanic debris avalanche occurred at 4.5 ka is a major event in the evolution of the Cotopaxi volcano, Ecuador. The present volcanic hazard in the Cotopaxi region is related to lahars generated by volcanic eruptions and concurrent ice melting. This paper presents the geological and geotechnical field and laboratory characterization of the 4.5 ka Cotopaxi debris avalanche deposit and of the younger unconsolidated pyroclastic deposits, representing the probable source of future shallow landslides. The debris avalanche formed a deposit with a well-developed hummocky topography, and climbed a difference in height of about 260 m along the slopes of the adjacent Sincholagua volcano. The debris avalanche deposit includes four lithofacies (megablock, block, mixed, and sheared facies) that represent different flow regimes and degrees of substratum involvement. The facies distribution suggests that, in the proximal area, the debris avalanche slid predominantly confined to the valleys along the N and NE flank of the volcanic cone, emplacing a stack of megablocks. When the flow reached the break in slope at the base of the edifice, it became unconfined and spread laterally over most of the area of the Rio Pita valley. A dynamic block fragmentation and dilation occurred during the debris avalanche transport, emplacing the block facies. The incorporation of the older Chalupas Ignimbrite is responsible for the mixed facies and the sheared facies. Geotechnical results include a full-range grain size characterization, which enabled to make broader considerations on possible variability among the sampled facies. Consolidated drained triaxial compression tests, carried out on the fine fraction Failure surfaces are always well developed, indicating that the poorly consolidated pyroclastic cover could undergo failure leading to the formation of a gravity driven instability phenomena, like granular or debris flows, which are mainly controlled by the fine fraction. This work

  12. Geochemical discrimination of the geotectonic environment of basaltic-andesitic volcanic rocks associated with the Laochang polymetallic ore deposit at Lancang, Yunnan

    Institute of Scientific and Technical Information of China (English)

    GAO Jianguo

    2006-01-01

    The Laochang polymetallic ore deposit at Lancang is one of the well known ancient ore deposits associated with volcanic rocks in the Sanjiang (Tri-river) region of Southwest China. Volcanic rocks are dominated by alkali basalt and trachyte basalt. There has long been a controversy on the environment of formation of basalts. Some scholars hold that the basalts were formed in a continental environment, some thought they were formed in an oceanic environment and others considered that the basalts were emplaced in a back-arc basin. This study focuses on the geochemical characteristics of the basalts on the basis of their major elements, REEs and trace elements. At the same time, strongly incompatible elements such as Ta, Th and Hf and their ratios were used to differentiate the geotectonic settings of basalts. The results showed that the basalts in the region studied were formed in a continental rift environment.

  13. Compaction and gas loss in welded pyroclastic deposits as revealed by porosity, permeability, and electrical conductivity measurements of the Shevlin Park Tuff

    Science.gov (United States)

    Wright, Heather M.; Cashman, Katharine V.

    2014-01-01

    Pyroclastic flows produced by large volcanic eruptions commonly densify after emplacement. Processes of gas escape, compaction, and welding in pyroclastic-flow deposits are controlled by the physical and thermal properties of constituent material. Through measurements of matrix porosity, permeability, and electrical conductivity, we provide a framework for understanding the evolution of pore structure during these processes. Using data from the Shevlin Park Tuff in central Oregon, United States, and from the literature, we find that over a porosity range of 0%–70%, matrix permeability varies by almost 10 orders of magnitude (from 10–20 to 10–11 m2), with over three orders of magnitude variation at any given porosity. Part of the variation at a given porosity is due to permeability anisotropy, where oriented core samples indicate higher permeabilities parallel to foliation (horizontally) than perpendicular to foliation (vertically). This suggests that pore space is flattened during compaction, creating anisotropic crack-like networks, a geometry that is supported by electrical conductivity measurements. We find that the power law equation: k1 = 1.3 × 10–21 × ϕ5.2 provides the best approximation of dominant horizontal gas loss, where k1 = permeability, and ϕ = porosity. Application of Kozeny-Carman fluid-flow approximations suggests that permeability in the Shevlin Park Tuff is controlled by crack- or disk-like pore apertures with minimum widths of 0.3 and 7.5 μm. We find that matrix permeability limits compaction over short times, but deformation is then controlled by competition among cooling, compaction, water resorption, and permeable gas escape. These competing processes control the potential for development of overpressure (and secondary explosions) and the degree of welding in the deposit, processes that are applicable to viscous densification of volcanic deposits in general. Further, the general relationships among porosity, permeability, and

  14. Ground penetrating radar and terrestrial laser scanner surveys on deposits of dilute pyroclastic density current deposits: insights for dune bedform genesis

    Science.gov (United States)

    Rémi Dujardin, Jean; Amin Douillet, Guilhem; Abolghasem, Amir; Cordonnier, Benoit; Kueppers, Ulrich; Bano, Maksim; Dingwell, Donald B.

    2014-05-01

    Dune bedforms formed by dilute pyroclastic density currents (PDC) are often described or interpreted as antidunes and chute and pools. However, the interpretation remains essentially speculative and is not well understood. This is largely due to the seeming impossibility of in-situ measurements and experimental scaling, as well as the lack of recent, 3D exposures. Indeed, most dune bedform cross-stratifications from the dilute PDC record outcrop in 2D sections. The 2006 eruption of Tungurahua has produced well-developed bedforms that are well-exposed on the surface of the deposits with easy access. We performed a survey of these deposits combining ground penetrating radar (GPR) profiling with terrestrial laser scanning of the surface. The GPR survey was carried in dense arrays (from 10 to 25 cm spacing between profiles) over ca. 10 m long bedforms. GPR profiles were corrected for topography from photogrammetry data. An in-house software, RadLab (written in matlab), was used for common processing of individual profiles and 2D & 3D topographic migration. Each topography-corrected profile was then loaded into a seismic interpretation software, OpenDtect, for 3D visualization and interpretation. Most bedforms show high lateral stability that is independent of the cross-stratification pattern (that varies between stoss-aggrading bedsets, stoss-erosive bedsets and stoss-depositional lensoidal layers). Anecdotic bedforms have their profiles that evolve laterally (i.e. in a direction perpendicular to the flow direction). Cannibalization of two dune bedforms into a single one on one end of the profile can evolve into growth of a single bedform at the other lateral end. Also, lateral variation in the migration direction occurs, i.e. a single bedform can show upstream aggradation at one lateral end of the bedform, but show downstream migration at the other end. Some bedforms have great variations in their internal structure. Several episodes of growth and erosion can be

  15. Field-trip guide for exploring pyroclastic density current deposits from the May 18, 1980, eruption of Mount St. Helens, Washington

    Science.gov (United States)

    Brand, Brittany D.; Pollock, Nicholas; Sarocchi, Damiano; Dufek, Josef; Clynne, Michael A.

    2017-07-05

    Pyroclastic density currents (PDCs) are one of the most dangerous phenomena associated with explosive volcanism. To help constrain damage potential, a combination of field studies, laboratory experiments, and numerical modeling are used to establish conditions that influence PDC dynamics and depositional processes, including runout distance. The objective of this field trip is to explore field relations that may constrain PDCs at the time of emplacement.The PDC deposits from the May 18, 1980, eruption of Mount St. Helens are well exposed along the steep flanks (10–30° slopes) and across the pumice plain (5–12° slopes) as far as 8 km north of the volcano. The pumice plain deposits represent deposition from a series of concentrated PDCs and are primarily thick (3–12 m), massive, and poorly sorted. In contrast, the steep east-flank deposits are stratified to cross-stratified, suggesting deposition from PDCs where turbulence strongly influenced transport and depositional processes.The PDCs that descended the west flank were largely nondepositional; they maintained a higher flow energy and carrying capacity than PDCs funneled through the main breach, as evidenced by the higher concentration of large blocks in their deposits. The PDC from the west flank collided with PDCs funneled through the breach at various points along the pumice plain. Evidence for flow collision will be explored and debated throughout the field trip.Evidence for substrate erosion and entrainment is found (1) along the steep eastern flank of the volcano, which has a higher degree of rough, irregular topography relative to the west flanks where PDCs were likely nonerosive, (2) where PDCs encountered debris-avalanche hummocks across the pumice plain, and (3) where PDCs eroded and entrained material deposited by PDCs produced during earlier phases of the eruption. Two features interpreted as large-scale (tens of meters wide) levees and a large (~200 m wide) channel scour-and-fill feature

  16. Cretaceous basaltic phreatomagmatic volcanism in West Texas: Maar complex at Peña Mountain, Big Bend National Park

    Science.gov (United States)

    Befus, K. S.; Hanson, R. E.; Lehman, T. M.; Griffin, W. R.

    2008-06-01

    A structurally complex succession of basaltic pyroclastic deposits produced from overlapping phreatomagmatic volcanoes occurs within Upper Cretaceous floodplain deposits in the Aguja Formation in Big Bend National Park, West Texas. Together with similar basaltic deposits recently documented elsewhere in the Aguja Formation, these rocks provide evidence for an episode of phreatomagmatic volcanism that predates onset of arc magmatism in the region in the Paleogene. At Peña Mountain, the pyroclastic deposits are ≥ 70 m thick and consist dominantly of tabular beds of lapillistone and lapilli tuff containing angular to fluidal pyroclasts of altered sideromelane intermixed with abundant accidental terrigenous detritus derived from underlying Aguja sediments. Tephra characteristics indicate derivation from phreatomagmatic explosions involving fine-scale interaction between magma and sediment in the shallow subsurface. Deposition occurred by pyroclastic fall and base-surge processes in near-vent settings; most base-surge deposits lack tractional sedimentary structures and are inferred to have formed by suspension sedimentation from rapidly decelerating surges. Complexly deformed pyroclastic strata beneath a distinct truncation surface within the succession record construction and collapse of an initial volcano, followed by a shift in the location of the conduit and excavation of another maar crater into Aguja strata nearby. Preserved portions of the margin of this second crater are defined by a zone of intense soft-sediment disruption of pyroclastic and nonvolcanic strata. U-Pb isotopic analyses of zircon grains from three basaltic bombs in the succession reveal the presence of abundant xenocrysts, in some cases with ages > 1.0 Ga. The youngest concordant analyses for all three samples yield a weighted mean age of 76.9 ± 1.2 Ma, consistent with the presence of Late Campanian vertebrate fossils in the upper Aguja Formation. We infer that the volcanism is related to the

  17. Pyroclastic density currents associated with the 2008-2009 eruption of Chaitén Volcano (Chile): forest disturbances, deposits, and dynamics

    Science.gov (United States)

    Major, Jon J.; Pierson, Thomas C.; Hoblitt, Richard P.; Moreno, Hugo

    2013-01-01

    Explosive activity at Chaitén Volcano in May 2008 and subsequent dome collapses over the following nine months triggered multiple, small-volume pyroclastic density currents (PDCs). The explosive activity triggered PDCs to the north and northeast, which felled modest patches of forest as far as 2 km from the caldera rim. Felled trees pointing in the down-current direction dominate the disturbance zones. The PDC on the north flank of Chaitén left a decimeters-thick, bipartite deposit having a basal layer of poorly sorted, fines-depleted pumice-and-lithic coarse ash and lapilli, which transitions abruptly to fines-enriched pumice-and-lithic coarse ash. The deposit contains fragments of mostly uncharred organics near its base; vegetation protruding above the deposit is uncharred. The nature of the forest disturbance and deposit characteristics suggest the PDC was dilute, of relatively low temperature (-1. It was formed by directionally focused explosions throughout the volcano's prehistoric, intracaldera lava dome. Dilute, low-temperature PDCs that exited the caldera over a low point on the east-southeast caldera rim deposited meters-thick fill of stratified beds of pumice-and-lithic coarse ash and lapilli. They did not fell large trees more than a few hundred of meters from the caldera rim and were thus less energetic than those on the north and northeast flanks. They likely formed by partial collapses of the margins of vertical eruption columns. In the Chaitén River valley south of the volcano, several-meter-thick deposits of two block-and-ash flow (BAF) PDCs are preserved. Both have a coarse ash matrix that supports blocks and lapilli predominantly of lithic rhyolite dome rock, minor obsidian, and local bedrock. One deposit was emplaced by a BAF that traveled an undetermined distance downvalley between June and November 2008, apparently triggered by partial collapse of a newly effused lava dome on that started growing on 12 May. A second, and larger, BAF related

  18. A contribution to the hazards assessment at Copahue volcano (Argentina-Chile) by facies analysis of a recent pyroclastic density current deposit

    Science.gov (United States)

    Balbis, C.; Petrinovic, I. A.; Guzmán, S.

    2016-11-01

    We recognised and interpreted a recent pyroclastic density current (PDC) deposit at the Copahue volcano (Southern Andes), through a field survey and a sedimentological study. The relationships between the behaviour of the PDCs, the morphology of the Río Agrio valley and the eruptive dynamics were interpreted. We identified two lithofacies in the deposit that indicate variations in the eruptive dynamics: i) the opening of the conduit and the formation of a highly explosive eruption that formed a diluted PDC through the immediate collapse of the eruptive column; ii) a continued eruption which followed immediately and records the widening of the conduit, producing a dense PDC. The eruption occurred in 2000 CE, was phreatomagmatic (VEI ≤ 2), with a vesiculation level above 4000 m depth and fragmentation driven by the interaction of magma with an hydrothermal system at ca. 1500 m depth. As deduced from the comparison between the accessory lithics of this deposit and those of the 2012 CE eruption, the depth of onset of vesiculation and fragmentation level in this volcano is constant in depth. In order to reproduce the distribution pattern of this PDC's deposit and to simulate potential PDC's forming-processes, we made several computational modelling from "denser" to "more diluted" conditions. The latter fairly reproduces the distribution of the studied deposit and represents perhaps one of the most dangerous possible scenarios of the Copahue volcanic activity. PDCs occurrence has been considered in the last volcanic hazards map as a low probability process; evidences found in this contribution suggest instead to include them as more probable and thus very important for the hazards assessment of the Copahue volcano.

  19. Physical abrasion of mafic minerals and basalt grains: application to Martian aeolian deposits

    Science.gov (United States)

    Cornwall, Carin; Bandfield, Joshua L.; Titus, Timothy N.; Schreiber, B. C.; Montgomery, D.R.

    2015-01-01

    Sediment maturity, or the mineralogical and physical characterization of sediment deposits, has been used to locate sediment source, transport medium and distance, weathering processes, and paleoenvironments on Earth. Mature terrestrial sands are dominated by quartz, which is abundant in source lithologies on Earth and is physically and chemically stable under a wide range of conditions. Immature sands, such as those rich in feldspars or mafic minerals, are composed of grains that are easily physically weathered and highly susceptible to chemical weathering. On Mars, which is predominately mafic in composition, terrestrial standards of sediment maturity are not applicable. In addition, the martian climate today is cold, dry and sediments are likely to be heavily influenced by physical weathering rather than chemical weathering. Due to these large differences in weathering processes and composition, martian sediments require an alternate maturity index. Abrason tests have been conducted on a variety of mafic materials and results suggest that mature martian sediments may be composed of well sorted, well rounded, spherical basalt grains. In addition, any volcanic glass present is likely to persist in a mechanical weathering environment while chemically altered products are likely to be winnowed away. A modified sediment maturity index is proposed that can be used in future studies to constrain sediment source, paleoclimate, mechanisms for sediment production, and surface evolution. This maturity index may also provide details about erosional and sediment transport systems and preservation processes of layered deposits.

  20. Experimental evidence links volcanic particle characteristics to pyroclastic flow hazard

    Science.gov (United States)

    Dellino, Pierfrancesco; Büttner, Ralf; Dioguardi, Fabio; Doronzo, Domenico M.; La Volpe, Luigi; Mele, Daniela; Sonder, Ingo; Sulpizio, Roberto; Zimanowski, Bernd

    2010-06-01

    Pyroclastic flows represent the most hazardous events of explosive volcanism, one striking example being the famous historical eruption of Vesuvius that destroyed Pompeii (AD 79). Much of our knowledge of the mechanics of pyroclastic flows comes from theoretical models and numerical simulations. Valuable data are also stored in the geological record of past eruptions, including the particles contained in pyroclastic deposits, but the deposit characteristics are rarely used for quantifying the destructive potential of pyroclastic flows. By means of experiments, we validate a model that is based on data from pyroclastic deposits. The model allows the reconstruction of the current's fluid-dynamic behaviour. Model results are consistent with measured values of dynamic pressure in the experiments, and allow the quantification of the damage potential of pyroclastic flows.

  1. Impact of the AD 79 explosive eruption on Pompeii, I. Relations amongst the depositional mechanisms of the pyroclastic products, the framework of the buildings and the associated destructive events

    Science.gov (United States)

    Luongo, Giuseppe; Perrotta, Annamaria; Scarpati, Claudio

    2003-08-01

    A quantitative and qualitative evaluation of the damage caused by the products of explosive eruptions to buildings provides an excellent contribution to the understanding of the various eruptive processes during such dramatic events. To this end, the impact of the products of the two main phases (pumice fallout and pyroclastic density currents) of the Vesuvius AD 79 explosive eruption onto the Pompeii buildings has been evaluated. Based on different sources of data, such as photographs and documents referring to the archaeological excavations of Pompeii, the stratigraphy of the pyroclastic deposits, and in situ inspection of the damage suffered by the buildings, the present study has enabled the reconstruction of the events that occurred inside the city when the eruption was in progress. In particular, we present new data related to the C.J. Polibius' house, a large building located inside Pompeii. From a comparison of all of the above data sets, it has been possible to reconstruct, in considerable detail, the stratigraphy of the pyroclastic deposits accumulated in the city, to understand the direction of collapse of the destroyed walls, and to evaluate the stratigraphic level at which the walls collapsed. Finally, the distribution and style of the damage allow us to discuss how the emplacement mechanisms of the pyroclastic currents are influenced by their interaction with the urban centre. All the data suggest that both structure and shape of the town buildings affected the transport and deposition of the erupted products. For instance, sloping roofs 'drained' a huge amount of fall pumice into the 'impluvia' (a rectangular basin in the centre of the hall with the function to collect the rain water coming from a hole in the centre of the roof), thus producing anomalous deposit thicknesses. On the other hand, flat and low-sloping roofs collapsed under the weight of the pyroclastic material produced during the first phase of the eruption (pumice fall). In addition

  2. On the properties of the pyroclastic deposit in Fukushima prefecture as a raw material of teh micro shirasuballoons. Biryu shirasuballoon no genryo to shite no Fukushimakensan shirado no tekisei shiken

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, K. (Government Industrial Research Institute, Kyushu, Fukuoka (Japan)); Jinnai, K. (Kagoshima Prefectural Industrial Technology Center, Kagoshima (Japan))

    1991-11-01

    Properties of the pyroclastic deposit in Fukushima Prefecture, Japan were studied from the viewpoint as raw material of micro shirasuballoons. The pyroclastic deposit was composed of shirasu and natural glass like pearlite including crystalline minerals in some specimens. Weathered surfaces effective in thermal foaming were scarcely found in a grain size range over 10 {mu}m, and there was no effect of grain size on bulk density or grain density because of nearly no existence of pumice grains. Because there were much massive glass and less thin plane glass most suitable as raw material of micro shirasuballoons in the pyroclastic deposit, multi-foamed grains were probably formed by thermal foaming. Because specimens including only grains below 10 {mu}m in size were scarcely foamed, the least grain size suitable for the raw material seemed to be 10 {mu}m. The shirasuballoons recovered from specimens offered lower recovery rates in spite of both their sufficient densities and higher strengths. 5 refs., 13 figs., 6 tabs.

  3. Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska: Optimization using InSAR, FEMs, and an adaptive mesh algorithm

    Science.gov (United States)

    Masterlark, Timothy; Lu, Zhong; Rykhus, Russell P.

    2006-01-01

    Interferometric synthetic aperture radar (InSAR) imagery documents the consistent subsidence, during the interval 1992–1999, of a pyroclastic flow deposit (PFD) emplaced during the 1986 eruption of Augustine Volcano, Alaska. We construct finite element models (FEMs) that simulate thermoelastic contraction of the PFD to account for the observed subsidence. Three-dimensional problem domains of the FEMs include a thermoelastic PFD embedded in an elastic substrate. The thickness of the PFD is initially determined from the difference between post- and pre-eruption digital elevation models (DEMs). The initial excess temperature of the PFD at the time of deposition, 640 °C, is estimated from FEM predictions and an InSAR image via standard least-squares inverse methods. Although the FEM predicts the major features of the observed transient deformation, systematic prediction errors (RMSE = 2.2 cm) are most likely associated with errors in the a priori PFD thickness distribution estimated from the DEM differences. We combine an InSAR image, FEMs, and an adaptive mesh algorithm to iteratively optimize the geometry of the PFD with respect to a minimized misfit between the predicted thermoelastic deformation and observed deformation. Prediction errors from an FEM, which includes an optimized PFD geometry and the initial excess PFD temperature estimated from the least-squares analysis, are sub-millimeter (RMSE = 0.3 mm). The average thickness (9.3 m), maximum thickness (126 m), and volume (2.1 × 107m3) of the PFD, estimated using the adaptive mesh algorithm, are about twice as large as the respective estimations for the a priori PFD geometry. Sensitivity analyses suggest unrealistic PFD thickness distributions are required for initial excess PFD temperatures outside of the range 500–800 °C.

  4. Lunar Pyroclastic Eruptions: Basin Volcanism's Dying Gasps

    Science.gov (United States)

    Kramer, G. Y.; Nahm, A.; McGovern, P. J.; Kring, D. A.

    2011-12-01

    The relationship between mare volcanism and impact basins has long been recognized, although the degree of influence basin formation has on volcanism remains a point of contention. For example, did melting of magma sources result from thermal energy imparted by a basin-forming event? Did basin impacts initiate mantle overturn of the unstable LMO cumulate pile, causing dense ilmenite to sink and drag radioactive KREEPy material to provide the thermal energy to initiate melting of the mare sources? Did the dramatically altered stress states provide pathways ideally suited for magma ascent? The chemistry of sampled lunar volcanic glasses indicates that they experienced very little fractional crystallization during their ascent to the surface - they have pristine melt compositions. Volatile abundances, including recent measurements of OH [1,2] suggest that the mantle source of at least the OH-analyzed glasses have a water abundance of ~700 ppm - comparable to that of Earth's upper mantle. More recently, [3] showed that the abundance of OH and other volatiles measured in these glasses is positively correlated with trace element abundances, which is expected since water is incompatible in a magma. Volatile enrichment in a deep mantle source would lower the melting temperature and provide the thrust for magma ascent through 500 km of mantle and crust [4]. We are exploring the idea that such basin-related lunar pyroclastic volcanism may represent the last phase of basaltic volcanism in a given region. Remote sensing studies have shown volcanic glasses are fairly common, and often found along the perimeter of mare-filled basins [5]. Recent modeling of the stresses related to the basin-forming process [6,7] show that basin margins provide the ideal conduit for low-volume lunar pyroclastic volcanism (compared with the high output of mare volcanism). Schrödinger's basin floor is largely composed of a compositionally uniform impact breccia. The exceptions are two distinct and

  5. The Utilization of Remotely Sensed Data to Analyze the Estimated Volume of Pyroclastic Deposits and Morphological Changes Caused by the 2010-2015 Eruption of Sinabung Volcano, North Sumatra, Indonesia

    Science.gov (United States)

    Yulianto, Fajar; Suwarsono; Sofan, Parwati

    2016-08-01

    In this research, remotely sensed data has been used to estimate the volume of pyroclastic deposits and analyze morphological changes that have resulted from the eruption of Sinabung volcano. Topographic information was obtained from these data and used for rapid mapping to assist in the emergency response. Topographic information and change analyses (pre- and syn- eruption) were conducted using digital elevation models (DEMs) for the period 2010-2015. Advanced spaceborne thermal emission and reflection radiometer (ASTER) global digital elevation model (GDEM) data from 2009 were used to generate the initial DEMs for the condition prior to the eruption of 2010. Satellite pour l'observation de la terre 6 (SPOT 6) stereo images acquired on 21 June 2015 and were used to make a DEM for that time. The results show that the estimated total volume of lava and pyroclastic deposits, produced during the period 2010 to mid-2015 is approximately 2.8 × 108 m3. This estimated volume of pyroclastic deposits can be used to predict the magnitude of future secondary lahar hazards, which are also related to the capacity of rivers in the area. Morphological changes are illustrated using cross-sectional analysis of the deposits, which are currently deposited to the east, southeast and south of the volcano. Such analyses can also help in forecasting the direction of the future flow hazards. The remote sensing and analysis methods used at Sinabung can also be applied at other volcanoes and to assess the threats of other types of hazards such as landslides and land subsidence.

  6. Computer-assisted mapping of pyroclastic surges.

    Science.gov (United States)

    Malin, M C; Sheridan, M F

    1982-08-13

    Volcanic hazard maps of surge boundaries and deposit thickness can be created by using a simplified eruption model based on an "energy line" concept of pyroclastic surge and flow emplacement. Computer image-processing techniques may be used to combine three-dimensional representations of the energy relations of pyroclasts moving under the influence of gravity (defined by an "energy cone") with digital topographic models of volcanoes to generate theoretical hazard maps. The deposit boundary and thickness calculated for the 18 May 1980 eruption of Mount St. Helens are qualitatively similar to those actually observed.

  7. Explosive deep water basalt in the sumisu backarc rift.

    Science.gov (United States)

    Gill, J; Torssander, P; Lapierre, H; Taylor, R; Kaiho, K; Koyama, M; Kusakabe, M; Aitchison, J; Cisowski, S; Dadey, K; Fujioka, K; Klaus, A; Lovell, M; Marsaglia, K; Pezard, P; Taylor, B; Tazaki, K

    1990-06-08

    Eruption of 1-million-year-old tholeiitic basalt >1800 meters below sea level (>18 megapascals) in a backarc rift behind the Bonin arc produced a scoriaceous breccia similar in some respects to that formed during subaerial eruptions. Explosion of the magma is thought to have produced frothy agglutinate which welded either on the sea floor or in a submarine eruption column. The resulting 135-meter-thick pyroclastic deposit has paleomagnetic inclinations that are random at a scale of <2.5 meters. High magmatic water content, which is about 1.3 percent by weight after vesiculation, contributed to the explosivity.

  8. The eruption characteristics of the Tarim flood basalt

    OpenAIRE

    2012-01-01

    Integration of field investigation, regional stratigraphic comparison, remote sensing and image interpretation allow us to divide the Tarim Permian flood basalt province into three eruptive cycles listed by decreasing age; Kupukuziman flood basalt (KP), Felsic pyroclastic rocks (FP), Kaipaizileike flood basalt (KZ). KP features flood basalt and tuff; in the outcrop in Keping and Yingmaili areas, it can be differentiated into two units containing three thick layers of basaltic lava flows. Thes...

  9. Magmatic sulfide-rich nickel-copper deposits related to picrite and (or) tholeiitic basalt dike-sill complexes-A preliminary deposit model

    Science.gov (United States)

    Schulz, Klaus J.; Chandler, Val W.; Nicholson, Suzanne W.; Piatak, Nadine M.; Seal, Robert R., II; Woodruff, Laurel G.; Zientek, Michael L.

    2010-01-01

    Magmatic sulfide deposits containing nickel (Ni) and copper (Cu), with or without (?) platinum-group elements (PGEs), account for approximately 60 percent of the world's Ni production and are active exploration targets in the United States and elsewhere. On the basis of their principal metal production, magmatic sulfide deposits in mafic rocks can be divided into two major types: those that are sulfide-rich, typically with 10 to 90 percent sulfide minerals, and have economic value primarily because of their Ni and Cu contents; and those that are sulfide-poor, typically with 0.5 to 5 percent sulfide minerals, and are exploited principally for PGE. Because the purpose of this deposit model is to facilitate the assessment for undiscovered, potentially economic magmatic Ni-Cu?PGE sulfide deposits in the United States, it addresses only those deposits of economic significance that are likely to occur in the United States on the basis of known geology. Thus, this model focuses on deposits hosted by small- to medium-sized mafic and (or) ultramafic dikes and sills that are related to picrite and tholeiitic basalt magmatic systems generally emplaced in continental settings as a component of large igneous provinces (LIPs). World-class examples (those containing greater than 1 million tons Ni) of this deposit type include deposits at Noril'sk-Talnakh (Russia), Jinchuan (China), Pechenga (Russia), Voisey's Bay (Canada), and Kabanga (Tanzania). In the United States, this deposit type is represented by the Eagle deposit in northern Michigan, currently under development by Kennecott Minerals.

  10. Dynamics and style transition of a moderate, Vulcanian-driven eruption at Tungurahua (Ecuador) on February 2014: pyroclastic deposits and hazard considerations

    OpenAIRE

    Romero, Jorge Eduardo; Douillet, Guilhem Amin; Vallejo Vargas, Silvia; Bustillos, Jorge; Troncoso, Liliana; Díaz Alvarado, Juan; Ramón, Patricio

    2016-01-01

    The ongoing eruptive cycle of Tungurahua volcano (Ecuador) since 1999 has been characterized by over 15 paroxysmal phases interrupted by periods of relative calm. Those phases included Strombolians, Vulcanians and one Subplinian eruptions and they generated tephra fallouts, pyroclastic density currents (PDCs) and lava flows. The 01 February 2014 eruption occurred after 75 days of quiescence. Two days before the eruption, a gradual increase of seismicity associated with sporadic weak ash emiss...

  11. Reality and confusion in the recognition of post-depositional alterations and use-wear: an experimental approach on basalt tools

    Directory of Open Access Journals (Sweden)

    Lena Asryan

    2014-03-01

    Full Text Available While many experimental studies have been done on siliceous and metamorphic rocks for both use-wear and post depositional surface modification (PDSM events, little is known about such experiments on volcanic materials (other than obsidian, and on basalt in particular. Here we present the preliminary results of several experiments related to: a evidence for basalt use (e.g., butchery and fresh hide scraping and the subsequent characteristic use-wear patterns that can be seen; and b post-depositional surface modifications caused by bear (Ursidae trampling on experimental basalt flakes and subsequent use of these flakes for a tumbling experiment in a special tumbling machine.The results of these experiments were compared to better understand some surface modifications noted on the Middle to Upper Pleistocene lithic assemblages of the Azokh Cave site (Nagorno Karabagh, Lesser Caucasus.Although some aspects of both events (use-wear and PDSM remain to be studied in depth, the experiments have improved our understanding of the effects of use-wear and post-depositional trampling and tumbling on basalt lithic artefacts. In particular, it has allowed us to recognise mechanical alterations (e.g., cracks, striations, fractures, edge damage caused by trampling and tumbling and to note differences between these modifications and those caused by use. In particular, the experiments have shown that macroscopic modifications are rarely diagnostic, especially those observed after use. Microscopic wear features such as edge rounding, polish, abrasion and striations were the most evident types of alteration on basalt flakes, although occurring at different times and from different types of use. Distribution and orientation of alterations may be key in distinguishing use-wear from post-depositional alterations on basalt artefacts.

  12. Interrelations among pyroclastic surge, pyroclastic flow, and lahars in Smith Creek valley during first minutes of 18 May 1980 eruption of Mount St. Helens, USA

    Science.gov (United States)

    Brantley, S.R.; Waitt, R.B.

    1988-01-01

    A devastating pyroclastic surge and resultant lahars at Mount St. Helens on 18 May 1980 produced several catastrophic flowages into tributaries on the northeast volcano flank. The tributaries channeled the flows to Smith Creek valley, which lies within the area devastated by the surge but was unaffected by the great debris avalanche on the north flank. Stratigraphy shows that the pyroclastic surge preceded the lahars; there is no notable "wet" character to the surge deposits. Therefore the lahars must have originated as snowmelt, not as ejected water-saturated debris that segregated from the pyroclastic surge as has been inferred for other flanks of the volcano. In stratigraphic order the Smith Creek valley-floor materials comprise (1) a complex valley-bottom facies of the pyroclastic surge and a related pyroclastic flow, (2) an unusual hummocky diamict caused by complex mixing of lahars with the dry pyroclastic debris, and (3) deposits of secondary pyroclastic flows. These units are capped by silt containing accretionary lapilli, which began falling from a rapidly expanding mushroom-shaped cloud 20 minutes after the eruption's onset. The Smith Creek valley-bottom pyroclastic facies consists of (a) a weakly graded basal bed of fines-poor granular sand, the deposit of a low-concentration lithic pyroclastic surge, and (b) a bed of very poorly sorted pebble to cobble gravel inversely graded near its base, the deposit of a high-concentration lithic pyroclastic flow. The surge apparently segregated while crossing the steep headwater tributaries of Smith Creek; large fragments that settled from the turbulent surge formed a dense pyroclastic flow along the valley floor that lagged behind the front of the overland surge. The unusual hummocky diamict as thick as 15 m contains large lithic clasts supported by a tough, brown muddy sand matrix like that of lahar deposits upvalley. This unit contains irregular friable lenses and pods meters in diameter, blocks incorporated from

  13. Lead isotopic composition and lead source of the Tongchanghe basalt-type native copper-chalcocite deposit in Ninglang, western Yunnan, China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qian; ZHU Xiaoqing; ZHANG Zhengwei

    2006-01-01

    The Tongchanghe native copper-chalcocite deposit at Ninglang occurs in low-Ti basalts of western Yunnan, and the mode of fault-filling & metasomatism metallogenesis indicates that this deposit is of late-stage hydrothermal origin. This makes it more complicated to define the source of ore-forming materials. This paper introduces the Pb isotope data of Himalayan alkali-rich porphyries, regional Early-Middle Proterozoic metamorphic rock basement and various types of rocks of the mining district in western Yunnan with an attempt to constrain the origin of the Tongchanghe native copper-chalcocite deposit at Ninglang.The results showed that the ores are relatively homogeneous in Pb isotopic composition, implying a simple ore-forming material source. The three sets of Pb isotopic ratios in the Himalayan alkali-rich porphyries are all higher than those of the ores; the regional basement metamorphic rocks show a wide range of variations in Pb isotopic ratio, quite different from the isotopic composition of ore lead; the Pb isotopic composition of the Triassic sedimentary rocks and mudstone and siltstone interbeds in the Late Permian Heinishao Formation (corresponding to the forth cycle of basaltic eruption) in the mining district has the characteristics of radiogenic lead and is significantly different from the isotopic composition of ore lead; like the ores, the Emeishan basalts in the mining district and those regionally distributed possess the same Pb isotopic composition, showing a complete overlap with respect to their distribution range. From the above, the possibilities can be ruled out that the ore-forming materials of the Tongchanghe deposit were derived from the basement, a variety of Himalayan magmatic activities, etc. It is thereby defined that the ore-forming materials were derived largely from the Emeishan basalts. From the data available it is deduced that the native cupper-chalcocite-type metallogenesis that occurred in the Emeishan basalt-distributed area

  14. Platinum-group Elements Geochemistry of the Yangliuping Magmatic Ni-Cu-PGE Sulfide Deposit:Implications of Its Genetic Link with the Extrusive Basalts

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jianbin; CAO Zhimin; SONG Xieyan; AN Wei; LIU Ji

    2004-01-01

    Primitive mantle-normalized Platinum-group elements (PGE) concentration patterns for the Zhengziyanwo intrusion and Dashibao Formation basalts are of positive slope, similar to most of the world-class magmatic Ni-Cu-PGE sulfide deposits. Characters of this intrusion and its related ores and Dashibao Formation basalts are their negative Pt-anomaly and high concentration of Rh relative to Pt and Pd, facts being interpreted to be the results of crystallization and fractionation of Pt-alloys and spinel phase-free crystallization history for the magma, respectively. PGE parameters of the Dashibao Formation basalts are consistent with the general trend of those found for the Zhengziyanwo intrusion, and this might infer a genetic link between them.

  15. Effets thermique et hydrothermal de la coulée de basalte triasico-liasique sur les argiles du bassin d'Argana (Maroc)Thermal and hydrothermal effects of Triassic Liassic basalt flow deposition on clays (Agana Basin, Morocco)

    Science.gov (United States)

    Daoudi, Lahcen; Pot de Vin, Jean-Luc

    Thermal and hydrothermal effects of Triassic-Liassic basalt flow deposition on sedimentary series of the Argana Basin are responsible for major modifications in detrital clays, until 20 m in depth. It expressed by transformation of detrital smectite to corrensite and moreover to chlorite, and by increasing illite crystallinity. On the 2 m of sediments located immediately under the flow, magnesium-rich hydrothermal fluids have caused precipitation of new mineral phases. To cite this article: L. Daoudi, J.-L. Pot de Vin, C. R. Geoscience 334 (2002) 463-468.

  16. The flow structure of pyroclastic density currents: evidence from particle models and large-scale experiments

    Science.gov (United States)

    Dellino, Pierfrancesco; Büttner, Ralf; Dioguardi, Fabio; Doronzo, Domenico Maria; La Volpe, Luigi; Mele, Daniela; Sonder, Ingo; Sulpizio, Roberto; Zimanowski, Bernd

    2010-05-01

    Pyroclastic flows are ground hugging, hot, gas-particle flows. They represent the most hazardous events of explosive volcanism, one striking example being the famous historical eruption of Pompeii (AD 79) at Vesuvius. Much of our knowledge on the mechanics of pyroclastic flows comes from theoretical models and numerical simulations. Valuable data are also stored in the geological record of past eruptions, i.e. the particles contained in pyroclastic deposits, but they are rarely used for quantifying the destructive potential of pyroclastic flows. In this paper, by means of experiments, we validate a model that is based on data from pyroclastic deposits. It allows the reconstruction of the current's fluid-dynamic behaviour. We show that our model results in likely values of dynamic pressure and particle volumetric concentration, and allows quantifying the hazard potential of pyroclastic flows.

  17. Geochemistry, Petrology, and Provenance of Magnetite-Rich Ortaklar Cu Deposit Hosting Basalts from Koçali Complex, Gaziantep, Turkey

    Science.gov (United States)

    Yun, E.; Lee, I.; Kang, J.; Dönmez, C.; Yildirim, N.

    2015-12-01

    Magnetite-rich Cyprus type VMS deposit has been recently discovered from the Ortaklar-Gaziantep region within Koçali complex, SE Turkey. Magnetite rich sulfide ore bodies are in close contact with underlying footwall spilitic basalts. These basalts are part of Koçali mélange, which represents an accreted oceanic complex during closing of southern Neotethys. These extrusives are low-K, low alkali tholeiites with Ca rich, partially sericitized plagioclase subophitically enclosed by augite with disseminated Fe-Ti oxides and pyrite. Mineral crystallization sequence of plagioclase followed by augite and opaque is typical of MORB. Major and trace element analyses for least altered basalts based on LOI (1.5~3.6 wt%), Ce/Ce* (0.9~1.1) exhibit limited range of element abundances. Low Mg# (59~60) suggests that basalts were derived from moderately evolved magma with fractional crystallization. HFSE (Th, Nb, Hf, Zr) were used for tectonic discrimination and basalts were plotted within MORB end spectrum, near MORB-IAT boundary. N-MORB normalized La to Lu ranges from 0.4 to 0.9 times N-MORB with LREE depletion [(La/Sm)N = 0.58~0.67] and flat HREE [(Tb/Lu)N = 0.95~1.05]. Chondrite normalized REE patterns resemble those of N-MORB but characterized by severe LREE depletion [(La/Sm)CN = 0.35~0.45]. LREE depletion coupled with high Sm/Nd (0.36~0.43), high CaO/Na2O (5.0~6.2) and low Nb/Yb (0.23~0.39) suggest depleted N-MORB composition derived from the refractory mantle source. Analyzed basalts are similar to those found from other rift (Costa Rica Rift Hole 504b) and intra-transform fault (Siqueiros transform). Magnetite emplacement occurring close to the ore-host boundary and lack of pyrrhotite from hosting basalts imply an involvement of oxidized hydrothermal fluids. Basalts probably have formed by late stage, partial melting of the refractory mantle at low pressure, shallow depth, and H2O rich environment. Possible source of mantle heterogeneity can be identified by isotope

  18. Directed blasts and blast-generated pyroclastic density currents: a comparison of the Bezymianny 1956, Mount St Helens 1980, and Soufrière Hills, Montserrat 1997 eruptions and deposits

    Science.gov (United States)

    Belousov, Alexander; Voight, Barry; Belousova, Marina

    2007-01-01

    We compare eruptive dynamics, effects and deposits of the Bezymianny 1956 (BZ), Mount St Helens 1980 (MSH), and Soufrière Hills volcano, Montserrat 1997 (SHV) eruptions, the key events of which included powerful directed blasts. Each blast subsequently generated a high-energy stratified pyroclastic density current (PDC) with a high speed at onset. The blasts were triggered by rapid unloading of an extruding or intruding shallow magma body (lava dome and/or cryptodome) of andesitic or dacitic composition. The unloading was caused by sector failures of the volcanic edifices, with respective volumes for BZ, MSH, and SHV c. 0.5, 2.5, and 0.05 km3 . The blasts devastated approximately elliptical areas, axial directions of which coincided with the directions of sector failures. We separate the transient directed blast phenomenon into three main parts, the burst phase, the collapse phase, and the PDC phase. In the burst phase the pressurized mixture is driven by initial kinetic energy and expands rapidly into the atmosphere, with much of the expansion having an initially lateral component. The erupted material fails to mix with sufficient air to form a buoyant column, but in the collapse phase, falls beyond the source as an inclined fountain, and thereafter generates a PDC moving parallel to the ground surface. It is possible for the burst phase to comprise an overpressured jet, which requires injection of momentum from an orifice; however some exploding sources may have different geometry and a jet is not necessarily formed. A major unresolved question is whether the preponderance of strong damage observed in the volcanic blasts should be attributed to shock waves within an overpressured jet, or alternatively to dynamic pressures and shocks within the energetic collapse and PDC phases. Internal shock structures related to unsteady flow and compressibility effects can occur in each phase. We withhold judgment about published shock models as a primary explanation for the

  19. Directed blasts and blast-generated pyroclastic density currents: a comparison of the Bezymianny 1956, Mount St Helens 1980, and Soufrière Hills, Montserrat 1997 eruptions and deposits

    Science.gov (United States)

    Belousov, Alexander; Voight, Barry; Belousova, Marina

    2007-06-01

    We compare eruptive dynamics, effects and deposits of the Bezymianny 1956 (BZ), Mount St Helens 1980 (MSH), and Soufrière Hills volcano, Montserrat 1997 (SHV) eruptions, the key events of which included powerful directed blasts. Each blast subsequently generated a high-energy stratified pyroclastic density current (PDC) with a high speed at onset. The blasts were triggered by rapid unloading of an extruding or intruding shallow magma body (lava dome and/or cryptodome) of andesitic or dacitic composition. The unloading was caused by sector failures of the volcanic edifices, with respective volumes for BZ, MSH, and SHV c. 0.5, 2.5, and 0.05 km3. The blasts devastated approximately elliptical areas, axial directions of which coincided with the directions of sector failures. We separate the transient directed blast phenomenon into three main parts, the burst phase, the collapse phase, and the PDC phase. In the burst phase the pressurized mixture is driven by initial kinetic energy and expands rapidly into the atmosphere, with much of the expansion having an initially lateral component. The erupted material fails to mix with sufficient air to form a buoyant column, but in the collapse phase, falls beyond the source as an inclined fountain, and thereafter generates a PDC moving parallel to the ground surface. It is possible for the burst phase to comprise an overpressured jet, which requires injection of momentum from an orifice; however some exploding sources may have different geometry and a jet is not necessarily formed. A major unresolved question is whether the preponderance of strong damage observed in the volcanic blasts should be attributed to shock waves within an overpressured jet, or alternatively to dynamic pressures and shocks within the energetic collapse and PDC phases. Internal shock structures related to unsteady flow and compressibility effects can occur in each phase. We withhold judgment about published shock models as a primary explanation for the

  20. Dynamics and style transition of a moderate, Vulcanian-driven eruption at Tungurahua (Ecuador in February 2014: pyroclastic deposits and hazard considerations

    Directory of Open Access Journals (Sweden)

    J. E. Romero

    2017-06-01

    Full Text Available The ongoing eruptive cycle of Tungurahua volcano (Ecuador since 1999 has been characterised by over 15 paroxysmal phases interrupted by periods of relative calm. Those phases included one Subplinian as well as several Strombolian and Vulcanian eruptions and they generated tephra fallouts, pyroclastic density currents (PDCs and lava flows. The 1 February 2014 eruption occurred after 75 days of quiescence and only 2 days of pre-eruptive seismic crisis. Two short-lived Vulcanian explosions marked the onset of the paroxysmal phase, characterised by a 13.4 km eruptive column and the trigger of PDCs. After 40 min of paroxysm, the activity evolved into sporadic Strombolian explosions with discrete ash emissions and continued for several weeks. Both tephra fall and PDCs were studied for their dispersal, sedimentology, volume and eruption source parameters. At large scale, the tephra cloud dispersed toward the SSW. Based on the field data, two dispersal scenarios were developed forming either elliptical isopachs or proximally PDC-influenced isopachs. The minimum bulk tephra volumes are estimated to 4.55 × 106 m3, for an eruption size estimated at volcanic explosivity index (VEI 2–3. PDCs, although of small volume, descended by nine ravines of the NNW flanks down to the base of the edifice. The 1 February 2014 eruptions show a similar size to the late 1999 and August 2001 events, but with a higher intensity (I 9–10 and shorter duration. The Vulcanian eruptive mechanism is interpreted to be related to a steady magma ascent and the rise in over-pressure in a blocked conduit (plug and/or a depressurised solidification front. The transition to Strombolian style is well documented from the tephra fall componentry. In any of the interpretative scenarios, the short-lived precursors for such a major event as well as the unusual tephra dispersion pattern urge for renewed hazard considerations at Tungurahua.

  1. The Uwekahuna Ash Member of the Puna Basalt: product of violent phreatomagmatic eruptions at Kilauea volcano, Hawaii, between 2800 and 2100 14C years ago

    Science.gov (United States)

    Dzurisin, D.; Lockwood, J.P.; Casadevall, T.J.; Rubin, M.

    1995-01-01

    Kilauea volcano's reputation for relatively gentle effusive eruptions belies a violent geologic past, including several large phreatic and phreatomagmatic eruptions that are recorded by Holocene pyroclastic deposits which mantle Kilauea's summit area and the southeast flank of adjacent Mauna Loa volcano. The most widespread of these deposits is the Uwekahuna Ash Member, a basaltic surge and fall deposit emplaced during two or more eruptive episodes separated by a few decades to several centuries. It is infered that the eruptions which produced the Uwekahuna were driven by water interacting with a fluctuating magma column. The volume, extent and character of the Uwekahuna deposits underscore the hazards posed by relatively infrequent but potentially devastating explosive eruptions at Kilauea, as well as at other basaltic volcanoes. -from Authors

  2. Eruption of a major Holocene pyroclastic flow at Citlaltépetl volcano (Pico de Orizaba), México, 8.5 9.0 ka

    Science.gov (United States)

    Carrasco-Núñez, Gerardo; Rose, William I.

    1995-12-01

    Multiple volcanic eruptions occurred between 8500 and 9000 yr. B.P. from the central crater of Citlaltépetl Volcano generating a series of pyroclastic flows that formed a deposit with a total volume of about 0.26 km 3 (D.R.E.). The flows descended in all directions around the crater, but they were mostly controlled by topography and deposited in valleys or local topographic depressions up to about 30 km from vent. Although the flows were apparently emplaced without much violence, some features of the deposits reveal local turbulent conditions and an expanded fluidization that can be related to moderate flow velocities. The deposit has two members: the lower one consists of multiple flow units, and the upper one includes a single flow unit and a thin basal pumice-fall. Both members are lithologically similar and dominated by dense, andesitic scoriae with minor amounts of different pumice types (andesitic, dacitic, and banded), and lithics in a silty matrix. The eruption probably had a low-pressure 'boiling-over' mechanism and was possibly triggered by mixing of dacitic and andesitic magmas. Juvenile material in the pyroclastic-flow deposit is compositionally similar to that of Holocene lava flows at Citlaltépetl, which have apparently resulted from magma homogenization of mafic and silicic end members. Because the system is continuously injected with new basaltic-andesitic magma, a recurrence of explosive activity is possible in future eruptions.

  3. Geochemistry and petrology of the most recent deposits from Cotopaxi volcano, Northern Volcanic Zone, Ecuador.

    OpenAIRE

    2011-01-01

    Cotopaxi volcano is located in the Northern Volcanic Zone of the South American Andes. Pyroclastic deposits and lava flows from Cotopaxi comprise basaltic andesites, andesites and rhyolites that have erupted since 13 200 years BP. Nine rhyolite eruptions were produced in at least five separate events, punctuated by intermittent andesite eruptions. High La/Yb (>5) and 230Th excesses in the andesites are consistent with equilibration of magma with garnet-bearing lower crust or mantle, and numer...

  4. Evidence for biological activity in mineralization of secondary sulphate deposits in a basaltic environment: implications for the search for life in the Martian subsurface

    Energy Technology Data Exchange (ETDEWEB)

    C. Doc Richardson; Nancy W. Hinman; Jill R. Scott

    2013-10-01

    Evidence of microbial activity associated with mineralization of secondary Na-sulphate minerals (thenardite, mirabilite) in the basaltic subsurface of Craters of the Moon National Monument (COM), Idaho were examined by scanning electron microscopy, X-ray diffraction, laser desorption Fourier transform ion cyclotron resonance mass spectrometry (LD-FTICR-MS), Fourier transform infrared spectroscopy (FTIR) and isotope ratio mass spectrometry. Peaks suggestive of bio/organic compounds were observed in the secondary Na-sulphate deposits by LD-FTICR-MS. FTIR provided additional evidence for the presence of bio/organic compounds. Sulphur fractionation was explored to assist in determining if microbes may play a role in oxidizing sulphur. The presence of bio/organic compounds associated with Na-sulphate deposits, along with the necessity of oxidizing reduced sulphur to sulphate, suggests that biological activity may be involved in the formation of these secondary minerals. The secondary Na-sulphate minerals probably form from the overlying basalt through leached sodium ions and sulphate ions produced by bio-oxidation of Fe-sulphide minerals. Since the COM basalts are one of the most comparable terrestrial analogues for their Martian counterparts, the occurrence of biological activity in the formation of sulphate minerals at COM has direct implications for the search for life on Mars. In addition, the presence of caves on Mars suggests the importance of these environments as possible locations for growth and preservation of microbial activity. Therefore, understanding the physiochemical pathways of abiotic and biotic mineralization in the COM subsurface and similar basaltic settings has direct implications for the search for extinct or extant life on Mars.

  5. Acid fog Deposition of Crusts on Basaltic Tephra Deposits in the Sand Wash Region of Kilauea Volcano: A Possible Mechanism for Siliceous-Sulfatic Crusts on Mars

    Science.gov (United States)

    Schiffman, P.; Zierenberg, R.; Marks, N.; Bishop, J. L.

    2004-12-01

    Although the presence of sulfate minerals in martian outcrops may imply the prior existence of standing bodies of surface water, in terrestrial volcanic settings, sulfatic alteration may also occur above the water table within the vadose zone. On the summit of Kilauea volcano, sulfur dioxide, which is continuously emitted from Halemaumau crater and rapidly sequestered into sulfuric acid-rich aerosol entrained in the prevailing trade winds, is subsequently precipitated as acid-fog immediately downwind from the caldera in the Kau Desert. The characteristic pH of surface tephra deposits is < 4.0 in Sand Wash, a region of continuous, acidic aerosol fall-out immediately SW of the caldera. The upper portion of the Keanakakoi Ash tephra in Sand Wash, deposited in the late 18th century, has a ubiquitous, 0.1-0.2 mm-thick coating of amorphous silica. Conversely, vertical walls of unconsolidated tephra, exposed within small, dry gullies eroded into the ca. 3-4 m-thick Keanakakoi section at Sand Wash, are coated with ca. 0.5-1.0 mm-thick, mixed amorphous silica and jarosite-bearing crusts. Since these crusts are denuded from their outcrops during ephemeral, but probably annual flooding events in Sand Wash, we believe that they must accumulate rapidly. These crusts are apparently formed via an evaporative mechanism whereby acidic pore fluids, circulating in the upper few m's within the highly porous tephra, are wicked towards the walls of the gullies. Geochemical modeling of the crust-forming process implies that the sulfate formation via evaporation occurs subsequent to minimal interaction of acidic pore fluids with the basaltic tephra. This also suggests that the cycle from acid-fog fall-out to precipitation of the siliceous-sulfatic crusts must occur quite rapidly. Production of siliceous-sulfatic crusts via acid-fog alteration may also be occurring on Mars. The occurrence of evaporitic sulfate and silica at Sand Wash in Kilauea may serve as an example of how the jarosite

  6. Alteration of hydrovolcanic basaltic ash - Observations with visible and near-infrared spectrometry

    Science.gov (United States)

    Farrand, William H.; Singer, Robert B.

    1992-01-01

    Altered basaltic tephras from tuff rings and tuff cones across the Basin and Range were examined using visible and NIR (Vis/IR) reflectance spectrometry and a variety of other techniques. It was found that Vis/IR spectrometry is sensitive to subtle changes in the hydration and oxidation state of these tephras. In the tuffs examined, ferrous and ferric iron minerals produce one composite absorption feature rather than two resolvable bands. Different styles of alteration were noted between thinly bedded tuff ring deposits emplaced by high energy, largely dry, pyroclastic surge and massively bedded tuff cone deposits emplaced by wetter, lower energy pyroclastic flow. The former class of tephras become hydrated and only moderately oxidized with some limited development of dioctehedral smectite clay minerals and minimal palagomitization. The latter class of tephras are highly palagonitized which implies a high degree of hydration and oxidation. In the most of highly altered tephras, all the Fe(2+) that is initially in the volcanic glass is converted to Fe(3+) within nanophase and bulk ferric oxide phases in the palagonite. There is also more extensive development in tuff cone beds of zeolite and phyllosilicate minerals. The differences in reflectance spectra of altered basaltic tephras can be traced to initial differences in the water/magma ratio extant at the volcanic vent.

  7. Influence of particle density on flow behavior and deposit architecture of concentrated pyroclastic density currents over a break in slope: Insights from laboratory experiments

    Science.gov (United States)

    Rodriguez-Sedano, L. A.; Sarocchi, D.; Sulpizio, R.; Borselli, L.; Campos, G.; Moreno Chavez, G.

    2016-12-01

    Geological granular flows are highly complex, gravity-driven phenomena whose different behaviors depend on the mechanical properties, density and granulometric distributions of the constituent materials. Years of research have produced significant advances in understanding transport and deposition processes in granular flows. However, the role and effects of clast densities and density contrast in a granular flow are still not fully understood. In this paper we show the effect that pumice has on dry granular flows; specifically on flow velocity and longitudinal segregation of the deposits. Our work confirms, by experimental results, field observations on pumice/lithic segregation and longer pumice runout. We report results of velocity decay and deposit architecture for a granular flow passing over a break in slope (from 38° to 4° inclination). The 30 experimental runs were carried out in a five-meter long laboratory flume equipped with a series of sensors that include laser gates and high-speed cameras (400 fps). We used two polydisperse mixtures of dacitic lithics and rhyolitic pumice in varying amounts, with Weibull and Gaussian particle size distributions. The pumice/lithic ratio changes the flow response passing over a break in slope. This effect is particularly evident starting from 10% of pumice volume into the flow mixture, independently of its granulometric distribution. Runout relates to mass following a power law, with an exponent close 0.2. The experiments confirm that pumice segregation affects polydispersed mixtures, similarly to what has been observed in real field deposits, where density decoupling produces lithic-enriched proximal areas and pumice-enriched distal areas. The results obtained prove that the presence of low-density materials in a dense granular flow has a strong influence on its behavior.

  8. Spatial distribution of damage around faults in the Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah: A mechanical analog for faulting in pyroclastic deposits on Mars

    Science.gov (United States)

    Okubo, Chris H.

    2012-01-01

    Volcanic ash is thought to comprise a large fraction of the Martian equatorial layered deposits and much new insight into the process of faulting and related fluid flow in these deposits can be gained through the study of analogous terrestrial tuffs. This study identifies a set of fault-related processes that are pertinent to understanding the evolution of fault systems in fine-grained, poorly indurated volcanic ash by investigating exposures of faults in the Miocene-aged Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah. The porosity and granularity of the host rock are found to control the style of localized strain that occurs prior to and contemporaneous with faulting. Deformation bands occur in tuff that was porous and granular at the time of deformation, while fractures formed where the tuff lost its porous and granular nature due to silicic alteration. Non-localized deformation of the host rock is also prominent and occurs through compaction of void space, including crushing of pumice clasts. Significant off-fault damage of the host rock, resembling fault pulverization, is recognized adjacent to one analog fault and may reflect the strain rate dependence of the resulting fault zone architecture. These findings provide important new guidelines for future structural analyses and numerical modeling of faulting and subsurface fluid flow through volcanic ash deposits on Mars.

  9. Basalt microlapilli in deep sea sediments of Indian Ocean in the vicinity of Vityaz fracture zone

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Iyer, S.D.

    Two cores recovered from the flanks of Mid-India oceanic ridge in the vicinity of Vityaz fracture zone consist of discrete pyroclastic layers at various depths. These layers are composed of coarse-grained, angular basaltic microlapilli in which...

  10. Viewing inside Pyroclastic Flows - Large-scale Experiments on hot pyroclast-gas mixture flows

    Science.gov (United States)

    Breard, E. C.; Lube, G.; Cronin, S. J.; Jones, J.

    2014-12-01

    Pyroclastic density currents are the largest threat from volcanoes. Direct observations of natural flows are persistently prevented because of their violence and remain limited to broad estimates of bulk flow behaviour. The Pyroclastic Flow Generator - a large-scale experimental facility to synthesize hot gas-particle mixture flows scaled to pyroclastic flows and surges - allows investigating the physical processes behind PDC behaviour in safety. The ability to simulate natural eruption conditions and to view and measure inside the hot flows allows deriving validation and calibration data sets for existing numerical models, and to improve the constitutive relationships necessary for their effective use as powerful tools in hazard assessment. We here report on a systematic series of large-scale experiments on up to 30 ms-1 fast, 2-4.5 m thick, 20-35 m long flows of natural pyroclastic material and gas. We will show high-speed movies and non-invasive sensor data that detail the internal structure of the analogue pyroclastic flows. The experimental PDCs are synthesized by the controlled 'eruption column collapse' of variably diluted suspensions into an instrumented channel. Experiments show four flow phases: mixture acceleration and dilution during free fall; impact and lateral blasting; PDC runout; and co-ignimbrite cloud formation. The fully turbulent flows reach Reynolds number up to 107 and depositional facies similar to natural deposits. In the PDC runout phase, the shear flows develop a four-partite structure from top to base: a fully turbulent, strongly density-stratified ash cloud with average particle concentrations <<1vol%; a transient, turbulent dense suspension region with particle concentrations between 1 and 10 vol%; a non-turbulent, aerated and highly mobile dense underflows with particle concentrations between 40 and 50 vol%; and a vertically aggrading bed of static material. We characterise these regions and the exchanges of energy and momentum

  11. Geochemistry of metamorphosed basaltic and sedimentary rocks from the Smolník Cu-pyrite deposit (Gemeric Superunit, Western Carpathians: a reappraisal of older geochemical data

    Directory of Open Access Journals (Sweden)

    Peter Ivan

    2016-12-01

    Full Text Available Stratiform chalcopyrite-pyrite deposit of Smolník is located in the low-grade metamorphosed Early Palaeozoic volcano-sedimentary Gelnica Group. Various types of phyllites, mostly sericite and graphite-sericite phyllites with metadolerite bodies build up proximate vicinity of the deposit. The imminent host rocks of sulphide pods are chlorite phyllites with subordinate chlorite-sericite phyllites intercallations. Metadolerites previously interpreted as effusive rocks are probably subvolcanic in origin. Original igneous mineral association of clinopyroxene, plagioclase, ilmenite and probably also olivine were transformed to association of amphiboles, albite, clinozoisite/epidote, titanite ± calcite by metamorphic alteration. Composition of metadolerites is close to basaltic liquids although indices of some fractionation of plagioclase, olivine/chromspinelide or clinopyroxene exist. Trace element distribution points to their similarity to within-plate continental tholeiites (CT and probable relation to the beginning of rifting in the Lower Devonian time. Three possible sources of sedimentary material have been identified in the sedimentary host rocks of the Smolník deposit: (i basalts generated from enriched mantle reservoir; (ii less fractionated calc-alkaline volcanic rocks and (iii fractionated calc-alkaline rhyolites. An additional hydrothermal source for silica and iron is supposed for chlorite phyllites and allows classified them as metaexhalites. The sulphide ores were directly precipitated in the exhalite environment due to reaction hydrothermal solution with hydrogen sulphide produced by thermochemical reduction of the marine sulphate. Geochemical data on metamorphosed dolerites and sediments in combination to other geological characteristics of the Smolník deposit support its classification as the Besshi-type deposit.

  12. Evidence for voluminous bimodal pyroclastic volcanism during rifting of a Paleoproterozoic arc at Snow Lake, Manitoba

    National Research Council Canada - National Science Library

    Lafrance, Bruno; Rubingh, Kate E; Gibson, Harold L

    2017-01-01

    ...) assemblage of the Flin Flon belt. Stratigraphic correlation of volcanic strata of the MB sequence with strata of the thrust-bounded Chisel sequence indicates that distinctive, submarine, eruption-fed, pyroclastic flow deposits...

  13. Mare basalt genesis - Modeling trace elements and isotopic ratios

    Science.gov (United States)

    Binder, A. B.

    1985-11-01

    Various types of mare basalt data have been synthesized, leading to the production of an internally consistent model of the mare basalt source region and mare basalt genesis. The model accounts for the mineralogical, major oxide, compatible siderophile trace element, incompatible trace element, and isotopic characteristics of most of the mare basalt units and of all the pyroclastic glass units for which reliable data are available. Initial tests of the model show that it also reproduces the mineralogy and incompatible trace element characteristics of the complementary highland anorthosite suite of rocks and, in a general way, those of the lunar granite suite of rocks.

  14. Investigating the use of Pyroclastics for Palaeointensity Determinations

    Science.gov (United States)

    Paterson, G. A.; Muxworthy, A. R.; Roberts, A. P.; Mac Niocaill, C.

    2008-12-01

    Palaeointensity experiments are time consuming and prone to failure, making it difficult to obtain good data. This limits the global palaeointensity database, which has inadequate spatial and temporal resolution. Developing reliable yet efficient experimental techniques is important for improving data quality, as is expanding the range of materials to investigate. By characterizing and understanding the behaviour of different materials, such as lithic clasts found within pyroclastic flows, we can assess their potential usefulness as palaeomagnetic recorders. Pre-existing lithic fragments are reheated as they are incorporated into pyroclastic density currents (PDCs) and their subsequent deposits. This partially resets their magnetization to record the ambient field at the time of eruption. The explosive nature of volcanic eruptions associated with PDCs frequently results in a wide range of lithic fragments in such deposits and the high temperatures involved (up to ~1200°C) can allow acquisition of an entirely new magnetization. We have studied the pyroclastic deposits of four historic volcanoes: Láscar in the Chilean Andes, Colima in Mexico, Mount St. Helens, USA, and Vesuvius, Italy. At Láscar, the emplacement temperature of the deposits exceeds the Curie temperature of the magnetic minerals, which maximizes the potential temperature range for obtaining palaeointensity determinations. Triple heating palaeointensity experiments, with strict selection criteria, yield a mean palaeointensity of 24.3±2.1 μT (N=22), which is in good agreement with the expected value of 24 μT. This indicates that the method has promise. The use of multiple lithologies in a single palaeointensity determination also provides confidence that the result is not biased by alteration within one of the lithologies. Pyroclastics, however, still suffer from the problems associated with palaeointensity experiments on lava flows. Samples collected from Mount St. Helens show a high degree of

  15. Zinc, copper, and lead in mid-ocean ridge basalts and the source rock control on Zn/Pb in ocean-ridge hydrothermal deposits

    Science.gov (United States)

    Doe, B.R.

    1994-01-01

    The contents of Zn, Cu, and Pb in mid-ocean ridge basalts (MORB) and the MORB source-rock control on Zn/Pb in ocean-ridge hydrothermal deposits are examined. The values of Zn, Cu, and Pb for submarine mid-ocean ridge basalts (MORB) are, respectively (in ppm): average MORB-75, 75, and 0.7; West Valley, Juan de Fuca Ridge (JFR)-87, 64, and 0.5; southern JFR-120 and 0.5; and 21??N, East Pacific Rise (EPR)-73, 78, and 0.5. Values of Zn/Pb range from about 100-240 and Cu/ Pb from 100-156. In this study, Zn is found to correlate positively with TiO2 + FeO (mean square of weighted deviates, MSWD, of 1.6 for JFR basalt), and inversely with Mg number (MSWD of 3.5). Therefore, contrary to statements in the literature that Zn should be compatible in MORB, Zn is a mildly incompatible element and must be enriched in the glass phase relative to olivine as Zn does not fit into the other major phenocryst phase, plagioclase. In the source of MORB, Zn likely is most enriched in oxides: spinel, magnetite, and titanomagnetite. Copper generally does not correlate well with other elements in most MORB data examined. When differentiation is dominated by olivine, Cu has a tendency to behave incompatibly (e.g., at Mg numbers > 70), but, overall, Cu shows some tendency towards being a compatible element, particularly along the Mid-Atlantic Ridge, a behavior presumably due to separation of sulfides in which Cu (but not Zn) is markedly enriched. Copper thus may be in dispersed sulfides in the source of MORB. Ocean ridges provide important data on source-rock controls for sulfide deposits because, in sediment-starved ridges, much is known about the possible source rocks and mineralization is presently occurring. In contrast to Zn/Pb ~5 in continental hot Cl-rich brines, Zn/Pb in the hottest sediment-starved ridge black smoker hydrothermal fluids at 21 ??N, EPR is about 110, similar to local MORB (145), but Cu/Pb is closer to 30, possibly due to subsurface deposition of Cu. At the JFR, the best

  16. Variations in Pyroclast Porosity: The 2010 Gunung Merapi Eruption

    Science.gov (United States)

    Genareau, K. D.; Cronin, S. J.; Lube, G.

    2014-12-01

    The 2010 eruption of Gunung Merapi (Java, Indonesia) began with an explosion resulting from the rapid development of shallow conduit overpressure, which destabilized the pre-existing lava dome and generated large PDCs on 26 October. This was followed by rapid ascent and extrusion of a juvenile dome that also collapsed, generating the largest surges of the series on 5 November. Lava lapilli within the PDC deposits were analyzed using helium pycnometry to determine variations in pyroclast porosity during the transition from dome collapse to rapid dome regrowth and subsequent collapse. Lapilli were separated into pyroclasts derived from the earlier phase of dome growth from those derived from the later and more voluminous phase of dome growth. For all lapilli, regardless of eruptive phase, open porosity of the pyroclasts averages 0.19 (0.08). However, closed porosities of the lapilli are generally higher for the earlier phase, which were derived from deposits of the 26 October PDCs. Efficient degassing during both stages of dome growth produced similar open porosities in pyroclasts, but a higher closed porosity in the 26 October samples resulted from late-stage vesiculation of the residual melt during the initial explosion. This vesiculation event was triggered by the rapid development of shallow conduit overpressure, evidence of which is provided by secondary ion mass spectrometry (SIMS) depth profiling analyses of plagioclase phenocrysts from the ash-sized component of the PDC deposits. Phenocrysts from the earlier phase of dome growth show a build-up of Li in the groundmass glass (attached to crystal surfaces) due to a stage of protracted gas accumulation prior to the 26 October explosion. Conversely, phenocrysts from the later stage of dome growth reveal decreasing Li contents in the groundmass glass due to efficient volatile loss during magma ascent. Vesiculation of the residual melt during the initial explosion resulted in a higher closed porosity in pyroclasts

  17. Alkali Basalts From the Galatia Volcanic Complex, NW Central Anatolia, Turkey

    OpenAIRE

    Tankut, Ayla; GÜLEÇ, Nilgün

    2014-01-01

    Alkali basalts occur as small lava flows associated with the andesitic lava flows and pyroclastics of Early to Middle Miocene age which are the main constituents of the Galatia volcanic complex. The northern margin of the complex is bordered by the North Anatolian Fault wher eas the southern margin is surrounded by a continental sedimentary sequence which interfingers with the volcanics. New K-Ar age determinations of the basalts reveal that alkali basalts erupted at two differ ent periods ...

  18. Time-lapse characterization of hydrothermal seawater and microbial interactions with basaltic tephra at Surtsey Volcano

    Science.gov (United States)

    Jackson, M. D.; Gudmundsson, M. T.; Bach, W.; Cappelletti, P.; Coleman, N. J.; Ivarsson, M.; Jónasson, K.; Jørgensen, S. L.; Marteinsson, V.; McPhie, J.; Moore, J. G.; Nielson, D.; Rhodes, J. M.; Rispoli, C.; Schiffman, P.; Stefánsson, A.; Türke, A.; Vanorio, T.; Weisenberger, T. B.; White, J. D. L.; Zierenberg, R.; Zimanowski, B.

    2015-12-01

    A new International Continental Drilling Program (ICDP) project will drill through the 50-year-old edifice of Surtsey Volcano, the youngest of the Vestmannaeyjar Islands along the south coast of Iceland, to perform interdisciplinary time-lapse investigations of hydrothermal and microbial interactions with basaltic tephra. The volcano, created in 1963-1967 by submarine and subaerial basaltic eruptions, was first drilled in 1979. In October 2014, a workshop funded by the ICDP convened 24 scientists from 10 countries for 3 and a half days on Heimaey Island to develop scientific objectives, site the drill holes, and organize logistical support. Representatives of the Surtsey Research Society and Environment Agency of Iceland also participated. Scientific themes focus on further determinations of the structure and eruptive processes of the type locality of Surtseyan volcanism, descriptions of changes in fluid geochemistry and microbial colonization of the subterrestrial deposits since drilling 35 years ago, and monitoring the evolution of hydrothermal and biological processes within the tephra deposits far into the future through the installation of a Surtsey subsurface observatory. The tephra deposits provide a geologic analog for developing specialty concretes with pyroclastic rock and evaluating their long-term performance under diverse hydrothermal conditions. Abstracts of research projects are posted at http://surtsey.icdp-online.org.

  19. The grain-size distribution of pyroclasts: Primary fragmentation, conduit sorting or abrasion?

    Science.gov (United States)

    Kueppers, U.; Schauroth, J.; Taddeucci, J.

    2013-12-01

    Explosive volcanic eruptions expel a mixture of pyroclasts and lithics. Pyroclasts, fragments of the juvenile magma, record the state of the magma at fragmentation in terms of porosity and crystallinity. The grain size distribution of pyroclasts is generally considered to be a direct consequence of the conditions at magma fragmentation that is mainly driven by gas overpressure in bubbles, high shear rates, contact with external water or a combination of these factors. Stress exerted by any of these processes will lead to brittle fragmentation by overcoming the magma's relaxation timescale. As a consequence, most pyroclasts exhibit angular shapes. Upon magma fragmentation, the gas pyroclast mixture is accelerated upwards and eventually ejected from the vent. The total grain size distribution deposited is a function of fragmentation conditions and transport related sorting. Porous pyroclasts are very susceptible to abrasion by particle-particle or particle-conduit wall interaction. Accordingly, pyroclastic fall deposits with angular clasts should proof a low particle abrasion upon contact to other surfaces. In an attempt to constrain the degree of particle interaction during conduit flow, monomodal batches of washed pyroclasts have been accelerated upwards by rapid decompression and subsequently investigated for their grain size distribution. In our set-up, we used a vertical cylindrical tube without surface roughness as conduit. We varied grain size (0.125-0.25; 0.5-1; 1-2 mm), porosity (0; 10; 30 %), gas-particle ratio (10 and 40%), conduit length (10 and 28 cm) and conduit diameter (2.5 and 6 cm). All ejected particles were collected after settling at the base of a 3.3 m high tank and sieved at one sieve size below starting size (half-Φ). Grain size reduction showed a positive correlation with starting grain size, porosity and overpressure at the vent. Although milling in a volcanic conduit may take place, porous pyroclasts are very likely to be a primary product

  20. Mare Basaltic Magmatism: A View from the Sample Suite With and Without a Remote-Sensing Prospective

    Science.gov (United States)

    Shearer, C. K.; Papike, J. J.; Gaddis, L. R.

    1999-01-01

    sources for generating mare basalts, the relative depth of various mare basalt sources, and the early dynamics of the lunar mantle. Although remote optical and spectral observations of the lunar surface document the concentration of mare basalts on the nearside of the Moon our limited sampling of basalts does not define the overall distribution of mare basalt compositions. The relative distribution of high-Ti basalts should shed light on the asymmetry of LMO cumulates and refine or refute mare basalt models that require recycling of late, high-Ti cumulates into the deep lunar mantle. Lunar pyroclastic glasses have been identified at all of the Apollo sites, Based on samples, the compositional variation of these glasses is bimodal and their overall abundance is unknown. Understanding both their compositional diversity and distribution is critical to deciphering how these near-primary magmas were transported to the lunar surface from great depths and how they are related to crystalline mare basalts. Based on Clementine data and previous work, more than 100 lunar pyroclastic deposits have been proposed and potentially a large number consist of high-Ti glass beads. The existence of so many deposits that could consist of near-primary basaltic magmas implies that mechanisms for their transport to the surface are not extraordinary and that density contrasts between melts and surrounding mantle do not significantly impede their source segregation and movement, at high pressure, to the lunar surface. Age of mare basalt groups. While radiometric age dating of lunar mare basalts provides a precise means of dating individual samples, when it is combined with relative age relationships determined by remote sensing (e.g., crater counts) it becomes a method for reconstructing magmatism on a planetary scale. Two examples where this approach has provided useful information and will continue to bear fruit are the duration and early history of lunar volcanism and the relationship between

  1. Numerical models of Plinian eruption columns and pyroclastic flows

    Science.gov (United States)

    Valentine, Greg A.; Wohletz, Kenneth H.

    1989-02-01

    Numerical simulations of physical processes governing the large-scale dynamics of Plinian eruption columns reveal conditions contributing to column collapse and emplacement of pyroclastic flows. The simulations are based on numerical solution of the time-dependent, two-phase, compressible Navier-Stokes equations for jets in a gravitational field. This modeling effort is directed toward studying the steady discharge phase of eruptions in contrast to our previous models of the initial, unsteady blast phase. Analysis of 51 eruption models covers a wide range of vent exit pressures, inertial and buoyancy driving forces, and coupling of energy and momentum between gas and pyroclasts. Consideration of three dimensionless groups (Richardson and Rouse numbers and thermogravitational parameter) facilitates this analysis and defines conditions leading to column collapse. For eruptions with similar particle size characteristics, exit pressure ratios are also very important in determining column behavior; column behavior is much more sensitive to exit pressure ratio than to the density ratio between the column and the atmosphere. Model eruption columns with exit pressures exceeding atmospheric pressure have diamond-shaped patterns at their bases with internal dynamics that correspond closely to observations of overpressured jets in laboratory experiments. Collapsing fountains form pyroclastic flows that consist of low-concentration fronts, relatively thick heads, vortex development along the top surfaces, and rising clouds of buoyant ash. The presence of coarse-grained proximal deposits primarily reflects tephra size sorting within the eruption column before collapse, as opposed to that which occurs during lateral transport of the material in pyroclastic flows. The dynamics and particle behavior in the proximal zone around collapsing eruption columns is examined; the modeling indicates that flow within a few kilometers of a vent will be at its highest particle concentration

  2. Automated interpretation of nuclear and electrical well loggings for basalt characterization (case study from southern Syria).

    Science.gov (United States)

    Asfahani, J; Abdul Ghani, B

    2012-10-01

    Nuclear well logging, including natural gamma ray, density and neutron-porosity techniques are used with electrical well logging of long and short normal techniques in order to characterize the large extended basaltic areas in southern Syria. Four kinds of basalt have been identified: hard massive basalt, hard basalt, pyroclastic basalt and the alteration basalt products, clay, based on a statistical analysis approach with the threshold concept. The statistical conditions for such basalt characterization have been programmed in the present research to automatically interpret the well logging data for establishing and predicting the lithological cross-section of the studied well. A specific computer program has been written in Delphi for such purposes. The program is flexible and it can be used for other well logging applications by changing the statistical conditions and the well logging parameters. The program has been successfully tested on the Kodanah well logging data in southern Syria.

  3. Characterizing pyroclastic-flow interactions with snow and water using environmental magnetism at Augustine Volcano: Chapter 11 in The 2006 eruption of Augustine Volcano, Alaska

    Science.gov (United States)

    Beget, James E.; Power, John A.; Coombs, Michelle L.; Freymueller, Jeffrey T.

    2010-01-01

    In-place measurements of environmental magnetic susceptibility of pyroclastic flows, surges and lahars emplaced during the 2006 eruption of Augustine Volcano show that primary volume magnetic susceptibilities of pyroclastic materials decreased where the flows encountered water and steam. The Rocky Point pyroclastic flow, the largest flow of the eruption sequence, encountered a small pond near the north coast of Augustine Island where local interactions with water and steam caused susceptibilities to decrease from 1,084±128×10-5 SI to 615±114×10-5 SI. Ash produced during phreatic explosions and pyroclastic surges that crossed snow also produced deposits with reduced susceptibilities, while lahar deposits derived from pyroclastic flows showed even greater reductions in susceptibility (430±129×10-5 SI). The susceptibility reductions are probably largely attributable to oxidation of iron in magnetite and other minerals within the pyroclastic flows, although other physiochemical processes may play a role. Measurements of the magnetic properties of pyroclastic flows, surges, and lahar deposits can be a useful tool in understanding the processes that occur when pyroclastic flows encounter ice, snow, and water and interact with water and steam on the slopes of active volcanoes.

  4. Identifying Distinguishing Characteristics of Secondary Pyroclastic Density Currents

    Science.gov (United States)

    Isom, S. L.; Brand, B. D.

    2014-12-01

    Pyroclastic density currents (PDCs) are ground-hugging mixtures of volcanic particles and gas that travel down the slopes of erupting volcanoes. The combination of high velocities, high bulk densities (due to particles in the current) and high temperatures make PDCs the most dangerous and deadly hazard associated with explosive volcanism. Secondary explosive phenomenon associated with PDCs, such as inland-directed surges (e.g., Montserrat, 2003) and phreatic explosions (e.g., Mt St Helens 1980) can increase the area affected and duration of the hazard. However, little work has been done on distinguishing the deposits of secondary explosive phenomenon from primary phenomenon. Samples have been acquired from the 1980 Mt St Helens phreatic explosion crater deposits and the 2003 eruptive event at Montserrat where a PDC flowed into the ocean, causing an inland-directed surge (Edmonds and Herd, 2005. Geology 33.4:245-248). The samples will be analyzed via depositional characteristics, granulometry, componentry, microscopic analysis and scanning electron microscope imaging. We hypothesize that thermal cracking or vesicle distortion (e.g., compression or hindered expansion) may occur in hot pyroclasts that enter a body of water, leading to a difference between the ash textures of primary PDCs, phreatic surges and inland-directed surge deposits. Analyzing granulometry and componentry from parent flows and secondary flows may also reveal distinguishing characteristics that will allow us to constrain differences in segregation mechanisms of particles for each phenomenon. Determining distinguishing depositional characteristics of these secondary phenomena is important for assessing their occurrence during past eruptions and identifying conditions conducive to the formation of secondary explosions. This will result in the ability to make more accurate hazard maps for volcanoes prone to explosive activity.

  5. Magmatic-hydrothermal fluid interaction and mineralization in alkali-syenite nodules from the Breccia Museo pyroclastic deposit, Naples, Italy: Chapter 7 in Volcanism in the Campania Plain — Vesuvius, Campi Flegrei and Ignimbrites

    Science.gov (United States)

    Fedele, Luca; Tarzia, Maurizio; Belkin, Harvey E.; De Vivo, Benedetto; Lima, Annamaria; Lowenstern, Jacob

    2007-01-01

    The Breccia Museo, a pyroclastic flow that crops out in the Campi Flegrei volcanic complex (Naples, Italy), contains alkali-syenite (trachyte) nodules with enrichment in Cl and incompatible elements (e.g., U, Zr, Th, and rare-earth elements). Zircon was dated at ≈52 ka, by U-Th isotope systematics using a SHRIMP. Scanning electron microscope and electron microprobe analysis of the constituent phases have documented the mineralogical and textural evolution of the nodules of feldspar and mafic accumulations on the magma chamber margins. Detailed electron microprobe data are given for alkali and plagioclase feldspar, salite to ferrosalite clinopyroxene, pargasite, ferrogargasite, magnesio-hastingsite hornblende amphibole, biotite mica, Cl-rich scapolite, and a member (probable davyne-type) of the cancrinite group. Detailed whole rock, major and minor element data are also presented for selected nodules. A wide variety of common and uncommon accessory minerals were identified such as zircon, baddeleyite, zirconolite, pollucite, sodalite, titanite, monazite, cheralite, apatite, titanomagnetite and its alteration products, scheelite, ferberite, uraninite/thorianite, uranpyrochlore, thorite, pyrite, chalcopyrite, and galena. Scanning electron microscope analysis of opened fluid inclusions identified halite, sylvite, anhydrite, tungstates, carbonates, silicates, sulfides, and phosphates; most are probably daughter minerals. Microthermometric determinations on secondary fluid inclusions hosted by alkali feldspar define a temperature regime dominated by hypersaline aqueous fluids. Fluid-inclusion temperature data and mineral-pair geothermometers for coexisting feldspars and hornblende and plagioclase were used to construct a pressure-temperature scenario for the development and evolution of the nodules. We have compared the environment of porphyry copper formation and the petrogenetic environment constructed for the studied nodules. The suite of ore minerals observed in

  6. Interaction of pyroclastic density currents with human settlements: Evidence from ancient Pompeii

    Science.gov (United States)

    Gurioli, Lucia; Pareschi, M. Teresa; Zanella, Elena; Lanza, Roberto; Deluca, Enrico; Bisson, Marina

    2005-06-01

    Integrating field observations and rock-magnetic measurements, we report how a turbulent pyroclastic density current interacted with and moved through an urban area. The data are from the most energetic, turbulent pyroclastic density current of the A.D. 79 eruption of Vesuvius, Italy, which partially destroyed the Roman city of Pompeii. Our results show that the urban fabric was able to divide the lower portion of the current into several streams that followed the city walls and the intracity roads. Vortices, revealed by upstream particle orientations and decreases in deposit temperature, formed downflow of obstacles or inside cavities. Although these perturbations affected only the lower part of the current and were localized, they could represent, in certain cases, cooler zones within which chances of human survival are increased. Our integrated field data for pyroclastic density current temperature and flow direction, collected for the first time across an urban environment, enable verification of coupled thermodynamic numerical models and their hazard simulation abilities.

  7. Theoretical analysis of tsunami generation by pyroclastic flows

    Science.gov (United States)

    Watts, P.; Waythomas, C.F.

    2003-01-01

    Pyroclastic flows are a common product of explosive volcanism and have the potential to initiate tsunamis whenever thick, dense flows encounter bodies of water. We evaluate the process of tsunami generation by pyroclastic flow by decomposing the pyroclastic flow into two components, the dense underflow portion, which we term the pyroclastic debris flow, and the plume, which includes the surge and coignimbrite ash cloud parts of the flow. We consider five possible wave generation mechanisms. These mechanisms consist of steam explosion, pyroclastic debris flow, plume pressure, plume shear, and pressure impulse wave generation. Our theoretical analysis of tsunami generation by these mechanisms provides an estimate of tsunami features such as a characteristic wave amplitude and wavelength. We find that in most situations, tsunami generation is dominated by the pyroclastic debris flow component of a pyroclastic flow. This work presents information sufficient to construct tsunami sources for an arbitrary pyroclastic flow interacting with most bodies of water. Copyright 2003 by the American Geophysical Union.

  8. METALLOGENY OF THE GEM DEPOSITS IN BASALT IN BAISHAN AREA,JILIN PROVINCE%吉林白山地区玄武岩中宝石矿床成矿特征

    Institute of Scientific and Technical Information of China (English)

    陈景林; 邢彩霞

    2011-01-01

    白山市矿产资源丰富,宝石矿床种类繁多,具有十分重要的研究价值及经济意义.本文仅对碱性玄武岩中宝石矿床产出的构造背景及相关联的蓝宝石、橄榄石矿床的形成条件、特征及成矿规律进行探讨.%Baishan City is rich in mineral resources, with various kinds of gem deposits, which are importantly significant for scientific research and economic development. Based on the study of the regional structural background for the forming of the gemstone ores in alkali basalt, this paper discusses the forming conditions, characteristics and metallogenic regularities of related sapphire and olivine deposits.

  9. The Entrance of Pyroclastic Flows into the Sea

    Science.gov (United States)

    Freundt, A.

    2001-12-01

    Explosive volcanoes, especially in subduction-zone and ocean-island settings, can generate pyroclastic flows that enter the sea. Geologic constraints on the interaction mechanisms and hazards are poor since resulting deposits hardly survive coastal erosion. The entrance of hot pyroclastic flows into water has been observed experimentally by letting shooting granular flows of ignimbrite ash heated to up to 420oC run down a chute into a water-filled tank. Flows of relatively cool ash, less than 150oC, impulsively displace some near-shore water generating a tsunami wave and then separate into a fine-ash over-water surge formed near shore and the main, coarser and denser material penetrating the water surface to form a turbulent mixing zone which advances downstream as long as the granular flow is maintained. Pumice floats to the surface, lithics and coarse ash fall out onto the floor, but ash remaining in suspension forms a turbidity current flowing down the tank. At temperatures above 250oC, almost all ash is initially transported along the water surface, rather than immediately penetrating it. Transport over water is facilitated by steam explosions derived from mixing of some of the ash with water across the surface. Ash fountains throw dry ash forward before it contacts the water, triggering the next steam explosion farther away from shore where fountains collapse onto the water surface. Each time ash and heat are consumed by mixing; the distance to where explosions extend thus depends on initial mass flux and temperature. Most fine ash forms an ash-cloud surge travelling over water, loosing sediment plumes that unite on the tank floor to form a turbidity current. Tsunami waves generated by coastal impact appear to be additionally driven by surface-water displacement by massive ash-input from ash fountains. Grain size distribution is also critical in determining interaction processes. Moderately well sorted medium ash generates strong steam explosions and becomes

  10. Hydraulic jumps within pyroclastic density currents and their sedimentary record

    Science.gov (United States)

    Douillet, G.; Mueller, S.; Kueppers, U.; Dingwell, D. B.

    2013-12-01

    This contribution presents a complete and comprehensive formulation of the hydraulic jump phenomenon and reviews sedimentary structures that may be associated with them. Beginning from the general fluid phenomenon, we then focus on examples from pyroclastic density currents in order to infer dynamic parameters on the parent flows. A hydraulic jump is a fluid dynamics phenomenon that corresponds to the sudden increase of the thickness of a flow accompanied by a decrease of its velocity and/or density. A hydraulic jump is the expression of the transition of the flow from two different flow regimes: supercritical to subcritical. This entrains a change in the energy balance between kinetic energy and gravity potential energy. Recently, the terms of 'pneumatic jumps' have been used for similar phenomenon driven within a gas phase, and granular jumps for dense granular flows. It is thought that such strong changes in the flow conditions may leave characteristic structures in the sedimentary record. Indeed, the main variables influencing the sedimentation rate are the flow velocity, particle concentration and turbulence level, all of them strongly affected by a hydraulic jump. Structures deposited by hydraulic/pneumatic jumps have been called cyclic steps and chute and pool structures. Chute and pools represent the record of a single supercritical to subcritical transition, whereas cyclic steps are produced by stable trains of hydraulic jumps and subsequent re-accelerations. Pyroclastic density currents (PDCs) are gas and pyroclasts flows. As such, they can be subjected to granular and pneumatic jumps and their deposit have often been interpreted as containing records of jumps. Steep sided truncations covered by lensoidal layers have been interpreted as the record of internal jumps within density stratified flows. Fines-depleted breccias at breaks in slope are thought to result from the enhanced turbulence at a jump of the entire flow. Sudden increases in thickness of

  11. Pyroclastic flow hazard at Volcán Citlaltépetl

    Science.gov (United States)

    Sheridan, Michael F.; Hubbard, Bernard E.; Carrasco-Nunez, Gerardo; Siebe, Claus

    2004-01-01

    Volcán Citlaltépetl (Pico de Orizaba) with an elevation of 5,675 m is the highest volcano in North America. Its most recent catastrophic events involved the production of pyroclastic flows that erupted approximately 4,000, 8,500, and 13,000 years ago. The distribution of mapped deposits from these eruptions gives an approximate guide to the extent of products from potential future eruptions. Because the topography of this volcano is constantly changing computer simulations were made on the present topography using three computer algorithms: energy cone, FLOW2D, and FLOW3D. The Heim Coefficient (μ), used as a code parameter for frictional sliding in all our algorithms, is the ratio of the assumed drop in elevation (H) divided by the lateral extent of the mapped deposits (L). The viscosity parameter for the FLOW2D and FLOW3D codes was adjusted so that the paths of the flows mimicked those inferred from the mapped deposits. We modeled two categories of pyroclastic flows modeled for the level I and level II events. Level I pyroclastic flows correspond to small but more frequent block-and-ash flows that remain on the main cone. Level II flows correspond to more widespread flows from catastrophic eruptions with an approximate 4,000-year repose period. We developed hazard maps from simulations based on a National Imagery and Mapping Agency (NIMA) DTED-1 DEM with a 90 m grid and a vertical accuracy of ±30 m. Because realistic visualization is an important aid to understanding the risks related to volcanic hazards we present the DEM as modeled by FLOW3D. The model shows that the pyroclastic flows extend for much greater distances to the east of the volcano summit where the topographic relief is nearly 4,300 m. This study was used to plot hazard zones for pyroclastic flows in the official hazard map that was published recently.

  12. The origin of an unusual tuff ring of perlitic rhyolite pyroclasts: The last explosive phase of the Ramadas Volcanic Centre, Andean Puna, Salta, NW Argentina

    Science.gov (United States)

    Tait, M. A.; Cas, R. A. F.; Viramonte, J. G.

    2009-05-01

    A thick sequence of bedded pyroclastic deposits, comprised largely of crystal poor, partially flow-banded perlite fragments defines the remains of a tuff ring around the eastern margin of the Miocene Ramadas Volcanic Centre (RVC), Central Andes, NW Argentina. In numerous quarry exposures, planar bed-forms dominate, but low-angle cross-stratification, lensoidal truncations and lateral pinching and swelling of cm-dm scale bed-forms occur, consistent with pyroclastic surge as the dominant transport and depositional mechanism. Intercalated are mantling, very fine grained, well-sorted, mm-cm scale planar ash layers that represent deposition from pyroclastic fall out and are most likely the products of co-surge ash clouds. Also observed are thick m-scale, laterally continuous, poorly-sorted horizons that are interpreted as pyroclastic flow deposits. Grainsize variations within the > 70 m thick succession range from fine ash to coarse lapilli, with occasional large blocks reaching 20 cm. Clast vesicularities are typically very low. The sequence constitutes a rhyolitic tuff ring around the proximal margins of the RVC. Stratigraphic relationships indicate that the tuff ring was developed following cessation of the major plinian eruption phase of the RVC. A series of pyroclastic density currents and associated ash clouds is inferred to have resulted in the construction of the rhyolitic tuff ring, with deposition focussed on the eastern and southern margins of the central vent. The fine-grained nature of the deposits and low clast vesicularity are consistent with some degree of magma:water interaction during fragmentation. Pervasive perlitic fracturing of clasts found within the tuff deposits also indicates hydration and an extended, post-depositional hydration of the pyroclastic sequence, due to the influence of meteoric water, is likely to have occurred, with deposit permeability, clast specific surface and climate influential in facilitating additional textural

  13. The geology, structure and mineralisation of the Oyu Tolgoi porphyry copper-gold-molybdenum deposits, Mongolia:A review

    Institute of Scientific and Technical Information of China (English)

    T.M. Mike Porter

    2016-01-01

    The Oyu Tolgoi cluster of seven porphyry Cu-Au-Mo deposits in southern Mongolia, define a narrow, linear, 12 km long, almost continuously mineralised trend, which contains in excess of 42 Mt of Cu and 1850 t of Au, and is among the largest high grade porphyry Cu-Au deposits in the world. These deposits lie within the Gurvansayhan island-arc terrane, a fault bounded segment of the broader Silurian to Carboniferous Kazakh-Mongol arc, located towards the southern margin of the Central Asian Orogenic Belt, a collage of magmatic arcs that were periodically active from the late Neoproterozoic to Permo-Triassic, extending from the Urals Mountains to the Pacific Ocean. Mineralisation at Oyu Tolgoi is associated with multiple, overlapping, intrusions of late Devonian (w372 to 370 Ma) quartz-monzodiorite intruding Devonian (or older) juvenile, probably intra-oceanic arc-related, basaltic lavas and lesser volcaniclastic rocks, unconformably overlain by late Devonian (w370 Ma) basaltic to dacitic pyroclastic and volcano sedimentary rocks. These quartz-monzodiorite intrusions range from early-mineral porphyritic dykes, to larger, linear, syn-, late- and post-mineral dykes and stocks. Ore was deposited within syn-mineral quartz-monzodiorites, but is dominantly hosted by augite basalts and to a lesser degree by overlying dacitic pyroclastic rocks. Following ore deposition, an allochthonous plate of older Devonian (or pre-Devonian) rocks was overthrust and a post-ore biotite granodiorite intruded at w365 Ma. Mineralisation is characterised by varying, telescoped stages of intrusion and alteration. Early A-type quartz veined dykes were followed by Cu-Au mineralisation associated with potassic alteration, mainly K-feldspar in quartz-monzodiorite and biotite-magnetite in basaltic hosts. Downward reflux of cooled, late-magmatic hydrothermal fluid resulted in intense quartz-sericite retrograde alteration in the upper parts of the main syn-mineral intrusions, and an equivalent chlorite

  14. Tephra architecture, pyroclast texture and magma rheology of mafic, ash-dominated eruptions: the Violent Strombolian phase of the Pleistocene Croscat (NE Spain) eruption.

    Science.gov (United States)

    Cimarelli, C.; Di Traglia, F.; Vona, A.,; Taddeucci, J.

    2012-04-01

    A broad range of low- to mid-intensity explosive activity is dominated by the emission of ash-sized pyroclasts. Among this activity, Violent Strombolian phases characterize the climax of many mafic explosive eruptions. Such phases last months to years, and produce ash-charged plumes several kilometers in height, posing severe threats to inhabited areas. To tackle the dominant processes leading to ash formation during Violent Strombolian eruptions, we investigated the magma rheology and the field and textural features of products from the 11 ka Croscat basaltic complex scoria cone in the Quaternary Garrotxa Volcanic Field (GVF). Field, grain-size, chemical (XRF, FE-SEM and electron microprobe) and textural analyses of the Croscat pyroclastic succession outlined the following eruption evolution: activity at Croscat began with fissural, Hawaiian-type fountaining that rapidly shifted towards Strombolian style from a central vent. Later, a Violent Strombolian explosion included several stages, with different emitted volumes and deposit features indicative of differences within the same eruptive style: at first, quasi-sustained fire-fountaining with ash jet and plume produced a massive, reverse to normal graded, scoria deposit; later, a long lasting series of ash-explosions produced a laminated scoria deposit. The eruption ended with a lava flow breaching the western-side of the volcano. Scoria clasts from the Croscat succession ubiquitously show micrometer- to centimeter-sized, microlite-rich domains (MRD) intermingled with volumetrically dominant, microlite-poor domains (MPD). MRD magmas resided longer in a relatively cooler, degassed zone lining the conduit walls, while MPD ones travelled faster along the central, hotter streamline, the two interminging along the interface between the two velocity zones. The preservation of two distinct domains in the short time-scale of the eruption was favoured by their rheological contrast related to the different microlite

  15. Statistical factor analysis technique for characterizing basalt through interpreting nuclear and electrical well logging data (case study from Southern Syria).

    Science.gov (United States)

    Asfahani, Jamal

    2014-02-01

    Factor analysis technique is proposed in this research for interpreting the combination of nuclear well logging, including natural gamma ray, density and neutron-porosity, and the electrical well logging of long and short normal, in order to characterize the large extended basaltic areas in southern Syria. Kodana well logging data are used for testing and applying the proposed technique. The four resulting score logs enable to establish the lithological score cross-section of the studied well. The established cross-section clearly shows the distribution and the identification of four kinds of basalt which are hard massive basalt, hard basalt, pyroclastic basalt and the alteration basalt products, clay. The factor analysis technique is successfully applied on the Kodana well logging data in southern Syria, and can be used efficiently when several wells and huge well logging data with high number of variables are required to be interpreted.

  16. Basalt identification by interpreting nuclear and electrical well logging measurements using fuzzy technique (case study from southern Syria).

    Science.gov (United States)

    Asfahani, J; Abdul Ghani, B; Ahmad, Z

    2015-11-01

    Fuzzy analysis technique is proposed in this research for interpreting the combination of nuclear and electrical well logging data, which include natural gamma ray, density and neutron-porosity, while the electrical well logging include long and short normal. The main objective of this work is to describe, characterize and establish the lithology of the large extended basaltic areas in southern Syria. Kodana well logging measurements have been used and interpreted for testing and applying the proposed technique. The established lithological cross section shows the distribution and the identification of four kinds of basalt, which are hard massive basalt, hard basalt, pyroclastic basalt and the alteration basalt products, clay. The fuzzy analysis technique is successfully applied on the Kodana well logging data, and can be therefore utilized as a powerful tool for interpreting huge well logging data with higher number of variables required for lithological estimations.

  17. Post-Failure behaviour of pyroclastic debris flow

    Science.gov (United States)

    Scotto di Santolo, Anna; Pellegrino, Anna Maria; Evangelista, Aldo; Coussot, Philippe

    2010-05-01

    The Campania Region is covered by pyroclastic soils accumulated in the last tens of thousands of years as a result of volcanic activity of Campi Flegrei (Phlegrean Fields) and Somma-Vesuvio. These materials cover the slope of the hilly area of Naples and mountain sides of Appennino. Even if they present significant physical and mechanical differences from site to site, they are posing the same geotechnical problems: they are usually unsaturated and collapse due to the increase of water content after prolonged rains creating simple or complex type of landslides (translational or rotational sliding or falls that lead to debris flows). While the mechanical properties of natural soils are the object of a number of research works, the evolution of the material after failure is much less often studied. Typically the post failure behaviour of this material may be "solid-like" or "fluid-like", according to causes that are not well-known. The object of this presentation is the study of the rheological behaviour of the "fluid like" material mixtures with fluid mechanics tools. Three natural pyroclastic deposits were sampled and the soils were remixed with distilled water at different solid volume fractions. The behaviour of these mixtures was investigated like a fluid with a vane rotor rheometer and an inclined plane. The main results are that the rheological behaviour is strongly related to the solid volume concentration, but the transition between solid-like to fluid-like behaviour occurs in a small range of solid concentration slightly different for each material tested. In the fluid-like behaviour the material mixtures behave like a yield stress fluid and a classical Herschel-Bulkley model well represents the experimental data. Nevertheless a hysteresis effect, associated with instability of the material behaviour, is observed for the largest solid concentrations. In that case the material starts to flow abruptly beyond a critical stress and rapidly reaches a relatively

  18. Pyroclastic flows generated by gravitational instability of the 1996-97 lava dome of Soufriere Hills Volcano, Montserrat

    Science.gov (United States)

    Cole, P.D.; Calder, E.S.; Druitt, T.H.; Hoblitt, R.; Robertson, R.; Sparks, R.S.J.; Young, S.R.

    1998-01-01

    Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9 ?? 106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (surge component was enhanced during the larger sustained events. Periods of elevated pyroclastic flow productivity and sustained dome collapse events are linked to pulses of high magma extrusion rates.Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9??106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (surge component was enhanced during the larger sustained events. Periods of elevated dome pyroclastic flow productivity and sustained collapse events are linked to pulses of high magma extrusion rates.

  19. A two-layer depth-averaged model for both the dilute and the concentrated parts of pyroclastic currents

    Science.gov (United States)

    Kelfoun, Karim

    2017-06-01

    Pyroclastic currents are very destructive and their complex behavior makes the related hazards difficult to predict. A new numerical model has been developed to simulate the emplacement of both the concentrated and the dilute parts of pyroclastic currents using two coupled depth-averaged approaches. Interaction laws allow the concentrated current (pyroclastic flow) to generate a dilute current (pyroclastic surge) and, inversely, the dilute current to form a concentrated current or a deposit. The density of the concentrated current is assumed to be constant during emplacement, whereas the density of the dilute current changes depending on the particle supply from the concentrated current and the mass lost through sedimentation. The model is explored theoretically using simplified geometries as proxies for natural source conditions and topographies. It reproduces the relationships observed in the field between the surge genesis and the topography: the increase in surge production in constricted valleys, the decoupling between the concentrated and the dilute currents, and the formation of surge-derived concentrated flows. The strong nonlinear link between the surge genesis and the velocity of the concentrated flow beneath it could explain the sudden occurrence of powerful and destructive surges and the difficulty of predicting this occurrence. A companion paper compares the results of the model with the field data for the eruption of Merapi in 2010 and demonstrates that the approach is able to reproduce the natural emplacement of the concentrated and the dilute pyroclastic currents studied with good accuracy.

  20. Nature and composition of interbedded marine basaltic pumice in the ~52–50 Ma Vastan lignite sequence, western India: Implication for Early Eocene MORB volcanism offshore Arabian Sea

    Indian Academy of Sciences (India)

    Sarajit Sensarma; Hukam Singh; R S Rana; Debajyoti Paul; Ashok Sahni

    2017-03-01

    The recognition of pyroclasts preserved in sedimentary environments far from its source is uncommon. We here describe occurrences of several centimetres-thick discontinuous basaltic pumice lenses occurring within the Early Eocene Vastan lignite mine sedimentary sequence, western India at two different levels –one at ~5 m and the other at 10 m above a biostratigraphically constrained 52 Ma old marker level postdating the Deccan Volcanism. These sections have received global attention as they record mammalian and plant radiations. We infer the repetitive occurrence of pumice have been sourced from a ~52–50Ma MORB related to sea-floor spreading in the western Arabian Sea, most plausibly along the Carlsberg Ridge. Pyroclasts have skeletal plagioclase with horsetail morphologies ± pyroxene ± Fe–Ti oxide euhedral crystals, and typically comprise of circular polymodal (radii ≤10 to ≥30 μm), non-coalescing microvesicles (>40–60%). The pumice have undergone considerable syngenetic alteration during oceanic transport and post-burial digenesis, and are a composite mixture of Fe–Mn-rich clay and hydrated alteredbasaltic glass (palagonite). The Fe–Mn-rich clay is extremely low in SiO₂, Al₂ O₂, TiO₂ , MgO, alkalies and REE, but very high in Fe₂O₃, MnO, P, Ba, Sr contents, and palagonitization involved significant loss of SiO₂, Al₂O₃, MgO and variable gain in Fe₂O₃, TiO₂, Ni, V, Zr, Zn and REE. Bubble initiationto growth in the ascending basaltic magma (liquidus ~1200–1250◦C) may have occured in ~3 hr. Shortdistance transport, non-connected vesicles, deposition in inner shelf to more confined lagoonal condition in the Early Eocene and quick burial helped preservation of the pumice in Vastan. Early Eocene Arabian Sea volcanism thus might have been an additional source to marginal sediments along the passive margin of western India.

  1. Pre-breakup magmatism on the Vøring Margin: Insight from new sub-basalt imaging and results from Ocean Drilling Program Hole 642E

    Science.gov (United States)

    Abdelmalak, M. M.; Meyer, R.; Planke, S.; Faleide, J. I.; Gernigon, L.; Frieling, J.; Sluijs, A.; Reichart, G.-J.; Zastrozhnov, D.; Theissen-Krah, S.; Said, A.; Myklebust, R.

    2016-04-01

    Improvements in sub-basalt imaging combined with petrological and geochemical observations from the Ocean Drilling Program (ODP) Hole 642E core provide new constraints on the initial breakup processes at the Vøring Margin. New and reprocessed high-quality seismic data allow us to identify a new seismic facies unit which we define as the Lower Series Flows. This facies unit is seismically characterized by wavy to continuous subparallel reflections with an internal disrupted and hummocky shape. Drilled lithologies, which we correlate to this facies unit, have been interpreted as subaqueous flows extruding and intruding into wet sediments. Locally, the top boundary of this facies unit is defined as a negative in polarity reflection and referred as the K-Reflection. This reflection can be correlated with the spatial extent of pyroclastic deposits, emplaced during transitional shallow marine to subaerial volcanic activities during the rift to drift transition. The drilled Lower Series Flows consist of peraluminous, cordierite bearing peperitic basaltic andesitic to dacitic flows interbedded with thick volcano-sedimentary deposits and intruded sills. The peraluminous geochemistry combined with available C (from calcite which fills vesicles and fractures), Sr, Nd, and Pb isotopes data points toward upper crustal rock-mantle magma interactions with a significant contribution of organic carbon rich pelagic sedimentary material during crustal anatexis. From biostratigraphic analyses, Apectodinium augustum was found in the Lower Series Flows. This dinoflagellate cyst species is a marker for the Paleocene - Eocene Thermal Maximum (PETM). However, based on very high stable carbon isotope ratios of bulk organic matter we exclude that these strata represent the PETM. This implies that A. augustum was reworked into the early Eocene sediments of this facies unit. Crucially, this unit predates the breakup time of the Vøring Margin. Finally, a conceptual emplacement model for the

  2. PYROCLASTIC FLOW MODELING TO RECONSTRUCT A VOLCANIC EDIFICE IN PAIPA (BOYACÁ-COLOMBIA.

    Directory of Open Access Journals (Sweden)

    Rodríguez Óscar

    2004-06-01

    Full Text Available Pyroclastic deposits produced by the domes collapse (resurgence of a caldera collapse, at the west of the Honda Grande creek (Paipa, Boyacá-Colombia were related by INGEOMINAS. These deposits fill the valleys of Olitas, Calderitas and a creek at the south of the Alto de los Volcanes reaching distances near to 3 km from the focus between the Alto de los Volcanes and El Mirador Hill.The flows were modeled using 3D Software (Sheridan and Kover, 1996. A volcanic simulation was done obtaining the height and morphology of the volcanic edifice before the collapse during the last eruptive event.

  3. The 1982 eruptions of El Chichon volcano, Mexico (3): Physical properties of pyroclastic surges

    Science.gov (United States)

    Sigurdsson, H.; Carey, S. N.; Fisher, R. V.

    1987-04-01

    Two major pyroclastic surges generated during the 4 April 1982 eruption of El Chichon devastated an area of 153 km2 with a quasi-radial distribution around the volcano. The hot surge clouds carbonized wood throughout their extent and were too hot to allow accretionary lapilli formation by vapor condensation. Field evidence indicates voidage fraction of 0.99 in the surge cloud with extensive entrainment of air. Thermal calculations indicate that heat content of pyroclasts can heat entrained air and maintain high temperatures in the surge cloud. The dominant bed form of the surge deposits are sand waves shaped in dune forms with vertical form index of 10 20, characterized by stoss-side erosion and lee-side deposition of 1 10 cm reversely graded laminae. A systematic decrease in maximum lithic diameter with distance from source is accompanied by decrease in wavelength and amplitude. Modal analysis indicates fractionation of glass and pumice from the surge cloud relative to crystals, resulting in loss of at least 10% 25% of the cloud mass due to winnowing out of fines during surge emplacement. Greatest fractionation from the -1.0 0.0-∅ grain sizes reflects relatively lower pumice particle density in this range and segregation in the formative stages of the surge cloud. Extensive pumice rounding indicates abrasion during bed-load transport. Flow of pyroclastic debris in the turbulent surge cloud was by combination of bed-load and suspended-load transport. The surges are viewed as expanding pyroclastic gravity flows, which entrain and mix with air during transport. The balance between sedimentation at the base of the surge cloud and expansion due to entrainment of air contributed to low cloud density and internal turbulence, which persisted to the distal edge of the surge zone.

  4. Emplacement of pyroclastic flows during the 1998 1999 eruption of Volcán de Colima, México

    Science.gov (United States)

    Saucedo, R.; Macías, J. L.; Bursik, M. I.; Mora, J. C.; Gavilanes, J. C.; Cortes, A.

    2002-09-01

    After three years of quiescence, Volcán de Colima reawakened with increasing seismic and rock fall activity that reached its peak on November 20, 1998, when a new lava dome forced its way to the volcano's summit. The new lava rapidly reached the S-SW edge of the summit area, beginning the generation of Merapi-type pyroclastic flows that traveled down La Lumbre, and the El Cordoban Western and Eastern ravines, reaching distances of 3, 4.5, and 3 km, respectively. On December 1, 1998, the lava flow split into three fronts that in early 1999 had reached 2.8, 3.1, and 2.5 km in length, advancing down the El Cordoban ravines. The lava flow fronts disaggregated into blocks forming pyroclastic flows. One of the best examples occurred on December 10, 1998. As the lava flow ceased moving in early 1999, activity became more explosive. Strong blasts were recorded on February 10, May 10, and July 17, 1999. The last event developed a 10-km-high eruptive column from which a pyroclastic flow developed from the base, traveling 3.3 km SW from the summit into the San Antonio-Montegrande ravines. Regardless of the mechanism of pyroclastic-flow generation, each flow immediately segregated into a basal avalanche that moved as a granular flow and an upper ash cloud in which particles were sustained in turbulent suspension. When the basal avalanche lost velocity and eventually stopped, the upper ash cloud continued to move independently as a dilute pyroclastic flow that produced a massive pyroclastic-flow deposit and an upper dune-bedded surge deposit. The dilute pyroclastic flow scorched and toppled maguey plants and trees, and sandblasted vegetation in the direction of the flow. At the end of the dilute pyroclastic-flow path, the suspended particles lifted off in a cloud from which a terminal ash fall was deposited. The basal avalanche emplaced block-and-ash flow deposits (up to 8 m thick) that filled the main ravines and consisted of several flow units. Each flow unit was massive

  5. Stratigraphy and Characterization of Volcanic Deposits on the Northwestern Flanks of Mt. Makiling, Laguna, Philippines

    Science.gov (United States)

    Ybanez, R. L.; Bonus, A. A. B.; Judan, J. M.; Racoma, B. A.; Morante, K. A. M.; Balangue, M. I. R. D.

    2014-12-01

    Mt. Makiling is an inactive stratovolcano located in the province of Laguna. Semi-detailed geologic field mapping on the northwestern low-level flanks and apron of the volcano was conducted. Exposures reveal a volcanic terrain hosting a wide variety of volcanic rocks: lava flows, pyroclastic surges, pyroclastic flows, and tuff deposits. Stratigraphic logging of the volcanic deposits showed differences in occurrence of the deposit types as well as their characteristics. The pyroclastic flow deposits are found at the base of the column overlain by pyroclastic surges which were more common in the area. Capping the pyroclastic surges is a thin layer of tuffaceous units. Isolated deposits of lava flows of andesitic composition were mapped in the western flank of Mt. Makiling. These varying volcanic deposits are derived from different eruptive activities of Mt. Makiling, with at least three separate eruptive episodes indicated by the exposed deposits. Two separate explosive eruptions are marked by two different pyroclastic deposits, while an effusive episode, marked by andesitic lava flows, can also be identified. The pyroclastic surge deposit is uncharacteristically thick, around a hundred meters or more exposed, providing further questions as to the magnitude of past eruptions or the mechanism of pyroclastic material deposition around the volcano. Mt. Makiling, thus, has historically undergone different eruption types, but still releases generally the same material composition across varying deposits: intermediate or andesitic composition. This is consistent with the trend of Philippine volcanoes, and with the Macolod corridor which hosts this volcanic system.

  6. Swift snowmelt and floods (lahars) caused by great pyroclastic surge at Mount St Helens volcano, Washington, 18 May 1980

    Science.gov (United States)

    Waitt, R.B.

    1989-01-01

    The initial explosions at Mount St. Helens, Washington, on the moring of 18 May 1980 developed into a huge pyroclastic surge that generated catastrophic floods off the east and west flanks of the volcano. Near-source surge deposits on the east and west were lithic, sorted, lacking in accretionary lapilli and vesiculated ash, not plastered against upright obstacles, and hot enough to char wood - all attributes of dry pyroclastic surge. Material deposited at the surge base on steep slopes near the volcano transformed into high-concentration lithic pyroclastic flows whose deposits contain charred wood and other features indicating that these flows were hot and dry. Stratigraphy shows that even the tail of the surge had passed the east and west volcano flanks before the geomorphically distinct floods (lahars) arrived. This field evidence undermines hypotheses that the turbulent surge was itself wet and that its heavy components segregated out to transform directly into lahars. Nor is there evidence that meters-thick snow-slab avalanches intimately mixed with the surge to form the floods. The floods must have instead originated by swift snowmelt at the base of a hot and relatively dry turbulent surge. Impacting hot pyroclasts probably transferred downslope momentum to the snow surface and churned snow grains into the surge base. Melting snow and accumulating hot surge debris may have moved initially as thousands of small thin slushflows. As these flows removed the surface snow and pyroclasts, newly uncovered snow was partly melted by the turbulent surge base; this and accumulating hot surge debris in turn began flowing, a self-sustaining process feeding the initial flows. The flows thus grew swiftly over tens of seconds and united downslope into great slushy ejecta-laden sheetfloods. Gravity accelerated the floods to more than 100 km/h as they swept down and off the volcano flanks while the snow component melted to form great debris-rich floods (lahars) channeled into

  7. Transport properties of pyroclastic rocks from Montagne Pelée volcano (Martinique, Lesser Antilles)

    Science.gov (United States)

    Bernard, Marie-Lise; Zamora, Maria; GéRaud, Yves; Boudon, Georges

    2007-05-01

    The hydraulic and electrical properties of pyroclastic rocks have been investigated in laboratory on a representative sampling of Montagne Pelée (Martinique, France) deposits with renewed interest in geophysical applications. This sampling covers all the lithologic units of this volcano: lava dome and lava flows, pumices from ash-and-pumice fall and flow deposits, lava blocks from block-and-ash flow and Peléean "nuées ardentes" deposits, scoriae from scoria flow deposits. The connected porosity varies over a wide range from 3 to 62%. The unconnected porosity is important only on pumices where it can reach 15%. The permeability covers more than 5 orders of magnitude, ranging from 10-16 to 35 × 10-12 m2. The higher values are obtained on lava blocks and the scoriae, even if these rocks are less porous than the pumices. The formation factor ranges from 7 to 1139. The transport properties of these rocks are slightly correlated with porosity. This indicates that these properties are not only controlled by the connected porosity. To connect the transport properties to the textural characteristics of the pore network of pyroclastic rocks, different models, based on geometrical considerations or percolation theory, were tested. The pore access radius distribution and the tortuosity control the transport properties of pyroclastic rocks. Consequently, the models (electric and hydraulic) based on the concept of percolation (e.g., the models of Katz and Thompson), apply better than the equivalent channel model of Kozeny-Carman. In addition, the difference in transport properties observed on lava blocks and pumices confirms that the mechanisms of degassing and vesiculation are different for these two types of rock.

  8. Synthesizing large-scale pyroclastic flows: Experimental design, scaling, and first results from PELE

    Science.gov (United States)

    Lube, G.; Breard, E. C. P.; Cronin, S. J.; Jones, J.

    2015-03-01

    Pyroclastic flow eruption large-scale experiment (PELE) is a large-scale facility for experimental studies of pyroclastic density currents (PDCs). It is used to generate high-energy currents involving 500-6500 m3 natural volcanic material and air that achieve velocities of 7-30 m s-1, flow thicknesses of 2-4.5 m, and runouts of >35 m. The experimental PDCs are synthesized by a controlled "eruption column collapse" of ash-lapilli suspensions onto an instrumented channel. The first set of experiments are documented here and used to elucidate the main flow regimes that influence PDC dynamic structure. Four phases are identified: (1) mixture acceleration during eruption column collapse, (2) column-slope impact, (3) PDC generation, and (4) ash cloud diffusion. The currents produced are fully turbulent flows and scale well to natural PDCs including small to large scales of turbulent transport. PELE is capable of generating short, pulsed, and sustained currents over periods of several tens of seconds, and dilute surge-like PDCs through to highly concentrated pyroclastic flow-like currents. The surge-like variants develop a basal surge (1.5-3 m thick) with 100 to 10-4 vol % particles. Their deposits include stratified, massive, normally and reversely graded beds, lobate fronts, and laterally extensive veneer facies beyond channel margins.

  9. Effects of thermal quenching on the breakup of pyroclasts

    Science.gov (United States)

    Patel, A.; Manga, M.; Carey, R. J.; Degruyter, W.; Dufek, J.

    2012-12-01

    It is often assumed that magma fragments when it contacts water. Obsidian chips and glass spheres crack when quenched. Vesicular pyroclasts are made of similar glass, so thermal quenching may cause them to break more easily. We performed a set of experiments on air fall pumice from Medicine Lake, California. Density and texture of similar samples are described in Manga et al., Bull Volc 2010. We made "quenched" samples by heating natural pyroclasts to 600 °C, quenching them in water at 21 °C, drying them at 105 °C, and then cooling them to room temperature. We compare these samples with untreated air fall pumice from the same deposit, hereafter referred to as "regular" pumice. We tested whether quenched pumice would 1) shatter more easily in collisions and 2) abrade faster. Our collision experiment methods are described in Dufek et al., Nature Geoscience 2012. Our abrasion experiment methods are described in Manga et al., Bull Volc 2010. We also tested whether individual clasts lose mass upon quenching and whether they increase in effective wet density. Effective wet density is defined as underwater density of a clast when water occupies part of the pore space. Effective wet density, measured as a function of time after immersion, indicates the volume fraction of the pore space that becomes occupied by water. We compare effective wet density of individual clasts pre-quenching with effective wet density after having been quenched, thoroughly dried and then cooled to room temperature. An increase in effective wet density would suggest that bubble walls had been damaged during quenching, allowing water to occupy the pore space faster. We also compare pre-quenching and post-quenching textures using X-Ray Tomography (XRT) and SEM images. Results from collision experiments show no obvious difference between quenched pumice and regular pumice. Quenched pumice abraded more quickly than regular pumice. We find that 1 to 2 % of mass was lost during quenching. Effective

  10. Fractal theory modeling for interpreting nuclear and electrical well logging data and establishing lithological cross section in basaltic environment (case study from Southern Syria).

    Science.gov (United States)

    Asfahani, Jamal

    2017-05-01

    Fractal theory modeling technique is newly proposed in this research for interpreting the combination of nuclear well logging, including natural gamma ray, density and neutron-porosity, and the electrical well logging of long and short normal, for establishing the lithological cross section in basaltic environments. The logging data of Kodana well, localized in Southern Syria are used for testing and applying the proposed technique. The established cross section clearly shows the distribution and the identification of four kinds of basalt which are hard massive basalt, hard basalt, pyroclastic basalt and the alteration basalt products, clay. The concentration- Number (C-N) fractal modeling technique is successfully applied on the Kodana well logging data in southern Syria, and can be used efficiently when several wells with much well logging data with a high number of variables are required to be interpreted.

  11. Realizing life-scalable experimental pyroclastic density currents

    Science.gov (United States)

    Cronin, S. J.; Lube, G.; Breard, E.; Jones, J.; Valentine, G.; Freundt, A.; Hort, M. K.; Bursik, M. I.

    2013-12-01

    Pyroclastic Density Currents (PDCs) - the most deadly threat from volcanoes - are extremely hot, ground-hugging currents of rock fragments and gas that descend slopes at hundreds of kilometers per hour. These hostile flows are impossible to internally measure, thus volcanologists are persistently blocked in efforts to realistically forecast their internal mechanics and hazards. Attempts to fill this gap via laboratory-scale experiments continue to prove difficult, because they usually mismatch the dynamic and kinematic scaling of real-world flows by several orders of magnitude. In a multi-institutional effort, the first large-scale pyroclastic flow generator that can synthesize repeatable hot high-energy gas-particle mixture flows in safety has been commissioned in New Zealand. The final apparatus stands 15 m high, consisting of a tower/elevator system; an instrumented hopper that can hold >6000 kg (or 3.2 m3) of natural volcanic materials, which can be discharged at a range of controlled rates onto an instrumented, variably inclinable (6-25°) glass-sided chute for examining the vertical profiles of PDCs in motion. The use of rhyolitic pyroclastic material from the 1800 AD Taupo Eruption (with its natural grain-size, sorting and shape characteristics) and gas ensures natural coupling between the solids and fluid phases. PDC analogues with runout of >15 meters and flow depths of 1.5-6 meters are created by generating variably heated falling columns of natural volcanic particles (50-1300 kg/s), dispersed and aerated to controlled particle densities between 3 and 60 vol.% at the base of the elevated hopper. The descending columns rapidly generate high-velocity flows (up to 14 m/s) once impacting on the inclined channel, reproducing many features of natural flows, including segregation into dense and dilute regimes, progressive aggradational and en masse deposition of particles and the development of high internal gas-pore-pressures during flow. The PDC starting

  12. Quenching of steam-charged pumice: Implications for submarine pyroclastic volcanism

    Science.gov (United States)

    Allen, S. R.; Fiske, R. S.; Cashman, K. V.

    2008-09-01

    Huge quantities of silicic pumice have been deposited in intra-oceanic convergent margin settings throughout Earth's history. The association of submarine silicic calderas with thick proximal accumulations of pumice lapilli suggests that these pyroclasts were deposited as a direct result of submarine eruptions. Yet when first erupted, these highly vesicular, gas-filled clasts had densities significantly less than seawater. Experiments carried out 1-atm on heated pumice samples whose vesicles were charged with steam, the dominant component of magmatic volatiles show that buoyancy of freshly erupted submarine pumice is transient. Upon quenching, the phase change of steam-to-liquid water creates strong negative pore pressures within the pumice vesicles that accelerate the absorption of surrounding water, generating high-density pumice and promoting rapid clast sinking. Variations in the physical properties of steam with temperature and pressure have important implications for submarine pyroclastic eruptions. Firstly, highly vesicular pumice can be deposited on the seafloor at temperatures elevated significantly above ambient if they are erupted at sufficient depths to remain wholly submarine (> ˜ 200 m) and either the fluid in which they cool contains heated water and/or they only absorb sufficient water to sink. Secondly, the rapid increase in density of the eruption column caused by condensation and the transition from buoyant (gas-filled) to denser (water-saturated) pumice lapilli, together with turbulent mixing with the surrounding seawater favour collapse and transport of pyroclasts in water-supported gravity currents. Finally, this mixing of the ejecta with seawater and the ease of water ingestion into permeable pumice clasts suggest that water-supported transport mechanisms can operate as primary dispersal processes in explosive submarine eruptions.

  13. Correlation of eruptive products, Volcán Azufral, Colombia: Implications for rapid emplacement of domes and pyroclastic flow units

    Science.gov (United States)

    Williams, Matthew; Bursik, M. I.; Cortes, G. P.; Garcia, A. M.

    2017-07-01

    The eruptive history and morphology of Azufral Volcano, Colombia, is explored and analyzed to provide a more complete picture of past eruptions, as well as to infer what eruption styles may occur in the future. Through the use of principal component analysis on Fe-Ti oxides, domes can be correlated to the pyroclastic deposits, enabling the identification of a full eruptive sequence. The findings suggest that eruptive activity at Azufral Volcano is largely explosive, experiencing long periods of quiescence, punctuated by short periods of pyroclastic activity and volcanic debris avalanches. Geomorphology of the dome complex is reinterpreted to better understand the sequence of dome growth. This reinterpretation, along with geochemical analysis and comparison via PCA, allows for reclassification of a major deposit, originally thought to be a juvenile block-and-ash flow, as a volcanic debris avalanche.

  14. First Volcanological-Probabilistic Pyroclastic Density Current and Fallout Hazard Map for Campi Flegrei and Somma Vesuvius Volcanoes.

    Science.gov (United States)

    Mastrolorenzo, G.; Pappalardo, L.; Troise, C.; Panizza, A.; de Natale, G.

    2005-05-01

    Integrated volcanological-probabilistic approaches has been used in order to simulate pyroclastic density currents and fallout and produce hazard maps for Campi Flegrei and Somma Vesuvius areas. On the basis of the analyses of all types of pyroclastic flows, surges, secondary pyroclastic density currents and fallout events occurred in the volcanological history of the two volcanic areas and the evaluation of probability for each type of events, matrixs of input parameters for a numerical simulation have been performed. The multi-dimensional input matrixs include the main controlling parameters of the pyroclasts transport and deposition dispersion, as well as the set of possible eruptive vents used in the simulation program. Probabilistic hazard maps provide of each points of campanian area, the yearly probability to be interested by a given event with a given intensity and resulting demage. Probability of a few events in one thousand years are typical of most areas around the volcanoes whitin a range of ca 10 km, including Neaples. Results provide constrains for the emergency plans in Neapolitan area.

  15. Using 40Ar/39Ar ages of intercalated silicic tuffs to date flood basalts: Precise ages for Steens Basalt Member of the Columbia River Basalt Group

    Science.gov (United States)

    Mahood, Gail A.; Benson, Thomas R.

    2017-02-01

    To establish causality between flood basalt eruptions and extinction events and global environmental effects recorded by isotopic excursions in marine sediments, highly accurate and precise ages for the flood basalts are required. But flood basalts are intrinsically difficult to date. We illustrate how 40Ar/39Ar feldspar ages for silicic tuffs intercalated with and overlying sections of Steens Basalt, the earliest lavas of the Middle Miocene Columbia River Basalt Group in the northwestern United States, provide high-precision ages that, for the first time, make it possible to resolve age differences with stratigraphic position within a section of these flood lavas. The stratigraphically lowest rhyolitic tuff, a fall deposit, yielded an age of 16.592 ± ± 0.028 Ma (FCs = 28.02 Ma), and the uppermost, the alkali rhyolite ignimbrite Tuff of Oregon Canyon, is 16.468 ± ± 0.014 Ma. The argon and stratigraphic data indicate that Steens Basalt eruptions occurred from ∼16.64 to 16.43 Ma in the southern end of its distribution. We estimate that the Steens Mountain geomagnetic reversal occurred at 16.496 ± ± 0.028 Ma (±0.18 Ma total error). Our estimates of the timing for initiation of volcanism and volumetric eruptive rates do not seem to support volcanic forcing by the initial stages of Columbia River Basalt Group eruptions as an explanation for the abrupt warming and carbonate dissolution at the beginning of the Miocene Climatic Optimum.

  16. A Study of the Correlation Between Electrical Resistivity and Matric Suction for Unsaturated Ash-Fall Pyroclastic Soils in the Campania Region (Southern Italy)

    CERN Document Server

    De Vita, Pantaleone; Piegari, Ester

    2011-01-01

    In the territory of the Campania region (southern Italy), critical rainfall events periodically trigger dangerous fast slope movements involving ashy and pyroclastic soils originated by the explosive phases of the Mt. Somma-Vesuvius volcano and deposited along the surrounding mountain ranges. In this paper, an integration of engineering-geological and geophysical measurements is presented to characterize unsaturated pyroclastic samples collected in a test area on the Sarno Mountains (Salerno and Avellino provinces, Campania region). The laboratory analyses were aimed at defining both soil water retention and electrical resistivity curves versus water content. From the matching of the experimental data, a direct relationship between electrical resistivity and matric suction is retrieved for the investigated soil horizons typical of a ash-fall pyroclastic succession. The obtained relation turns out to be helpful in characterizing soils up to close saturation, which is a critical condition for the trigger of slo...

  17. Magnetic fabric and implications for pyroclastic flow and lahar emplacement, Albano maar, Italy

    Science.gov (United States)

    Porreca, M.; Mattei, M.; Giordano, G.; de Rita, D.; Funiciello, R.

    2003-05-01

    The Albano polygenetic maar is the youngest eruptive center of the quiescent Colli Albani volcano, located near the city of Rome. The most recent activity of the Albano maar extends from ˜23 ka into the Holocene and produced the small volume, basic, phreatomagmatic Peperino Albano (PA) ignimbrite, and, more recently, phreatomagmatic surge and lahar deposits related to the overspill of the Albano maar lake. We have performed an anisotropy of magnetic susceptibility (AMS) study, in order to define the relationships between the magnetic fabric and the flow mechanisms of the PA and of the phreatomagmatic deposits and lahars. AMS results indicate different transport and/or depositional systems for the veneer and valley pond facies in the PA ignimbrite and for the lahar deposits. AMS also demonstrates that flow directions are mainly controlled by the paleotopography. The paleotopographic control has been interpreted in terms of talweg sedimentation even at proximal locations where deposition occurs from dilute pyroclastic flows. Furthermore, AMS results clearly evidence a southward provenance for Holocene post-PA ignimbrite units, cropping out in the Ciampino plain, and confirm their origin from Albano maar lake overspill. We demonstrate that AMS is a reliable marker to determine paleoflow directions also in small volume phreatomagmatic ignimbrites and in syneruptive lahar deposits and can be successfully used to define their depositional systems.

  18. Clast comminution during pyroclastic density current transport: Mt St Helens

    Science.gov (United States)

    Dawson, B.; Brand, B. D.; Dufek, J.

    2011-12-01

    Volcanic clasts within pyroclastic density currents (PDCs) tend to be more rounded than those in fall deposits. This rounding reflects degrees of comminution during transport, which produces an increase in fine-grained ash with distance from source (Manga, M., Patel, A., Dufek., J. 2011. Bull Volcanol 73: 321-333). The amount of ash produced due to comminution can potentially affect runout distance, deposit sorting, the volume of ash lofted into the upper atmosphere, and increase internal pore pressure (e.g., Wohletz, K., Sheridan, M. F., Brown, W.K. 1989. J Geophy Res, 94, 15703-15721). For example, increased pore pressure has been shown to produce longer runout distances than non-comminuted PDC flows (e.g., Dufek, J., and M. Manga, 2008. J. Geophy Res, 113). We build on the work of Manga et al., (2011) by completing a pumice abrasion study for two well-exposed flow units from the May 18th, 1980 eruption of Mt St Helens (MSH). To quantify differences in comminution from source, sampling and the image analysis technique developed in Manga et al., 2010 was completed at distances proximal, medial, and distal from source. Within the units observed, data was taken from the base, middle, and pumice lobes within the outcrops. Our study is unique in that in addition to quantifying the degree of pumice rounding with distance from source, we also determine the possible range of ash sizes produced during comminution by analyzing bubble wall thickness of the pumice through petrographic and SEM analysis. The proportion of this ash size is then measured relative to the grain size of larger ash with distance from source. This allows us to correlate ash production with degree of rounding with distance from source, and determine the fraction of the fine ash produced due to comminution versus vent-fragmentation mechanisms. In addition we test the error in 2D analysis by completing a 3D image analysis of selected pumice samples using a Camsizer. We find that the roundness of PDC

  19. Sardinian basalt. An ancient georesource still en vougue

    Science.gov (United States)

    Careddu, Nicola; Grillo, Silvana Maria

    2017-04-01

    Commercially quarried Sardinian basalt was the result of extensive volcanic activity during the Pliocene and Pleistocene ages, following the opening of the Campidano plain and Tyrrhenian sea rift. Extensive areas of Sardinia have been modelled by large volumes of basalt and andesite rock. An example is provided by the 'Giare' tablelands and other large plateaus located in central Sardinia. Other basalt-rich areas exist in the Island. Sardinia is featured by a vast array of basalt monuments, dating back to the II-I millennium BC, bearing witness to the great workability, durability and resistance to weathering of the rock. The complex of circular defensive towers, known as "Su Nuraxi di Barumini" was included in the World Heritage List by Unesco in 1997. Basalt is currently produced locally to be used for architectural and ornamental purposes. It is obtained by quarrying stone deposits or mining huge boulders which are moved and sawn by means of mechanical machinery. Stone-working is carried out in plants located in various sites of the Island. The paper begins with an historical introduction and then focusses on the current state of the art of Sardinian basalt quarrying, processing and using. An analysis of the basalt market has been carried out.

  20. Petrology and Geochemistry of Jinlongdingzi Active Volcano—the Most Recent Basaltic Explosive Volcano at Longgang

    Institute of Scientific and Technical Information of China (English)

    樊祺诚; 随建立; 等

    2000-01-01

    The Jinlongdingzi active volcano erupted before 1600a,and it is the latest basaltic explosive volcano at Longgang Volcano.Its volcanic products include the Jinlongdingzi Volcanic cone(elevation 999.4m),the lava flow and the widely-spread volcanic pyroclastic sheet(sihai Pyroclastic Sheet),Jinlongdingzi volcanic rocks are trachybasalts with very similar REE patterns and incompatible element patterns,and their 87Sr/86Sr and 143Nd/144Nd ratios range from 0.704846 ot 0.704921 and from 0.512619 to 0.512646,respectively.It is revealed that the trachybasalt has the character of primary magma derived directly from mantle sources with very little evolution and crust contamination during its ascending.The younger mantle xenoliths demonstrate that the mantle source of the Jinlongdingzi Volcao is hydrous,with relatively low temperature.

  1. The Influence of Grain Size and Crystal Content on Rheology and Deformation of Pyroclastic Material

    Science.gov (United States)

    Paquereau-Lebti, P.; Robert, G.; Grunder, A. L.; Russell, K. J.

    2007-12-01

    Pyroclastic deposits undergo variable degrees of sintering, viscous deformation of particles and loss of pore space, which combine to produce the dramatic textural variations that define welded facies. We here investigate the effects of grain size and crystal content on the rheology and welding of pyroclastic material.Uniaxial deformation experiments were conducted using sintered cores of natural rhyolite ash under conditions consistent with welding. Experiments were done in the University of British Columbia Volcanology Deformation Rig (VDR). This apparatus is designed to run experiments relevant to volcanology, by supporting low-load, high temperature, deformation experiments (Quane et al., 2004). We ran experiments at constant displacement rate (2.5.10-6 m.s-1), under ambient water pressure ("Dry"), at temperatures of 850 and 900°C and to maximal strain of 50%. Grain-size effect was investigated using sintered cores from three different sieving fractions of Rattlesnake Tuff (RST, Eastern Oregon, USA) ash: fine ash (grain size 15% crystal content inhibited sintering in a sample that welded under the same experimental conditions when phenocryst depleted (phenocryst content around 1% in whole Rattlesnake Tuff ash). Reference: Quane, S.L., Russell, J.K., and Kennedy, L.A. (2004). A low-load, high-temperature deformation apparatus for volcanological studies. American mineralogist, 89, 873-877.

  2. Prediction of shear strength of unsaturated pyroclastic ashes from water retention curves

    Science.gov (United States)

    Comegna, Luca; Damiano, Emilia; Gargano, Rudy; Greco, Roberto; Palladino, Mario; Romano, Nunzio

    2017-04-01

    Pyroclastic deposits covering steep slopes, characteristic of large mountainous areas of Campania (southern Italy), are often affected by shallow landslides triggered by rainfall. The equilibrium of such deposits is in fact usually guaranteed by the contribution to soil shear strength offered by soil suction, which decreases when soil approaches saturation. More specifically, soil suction exerts a compressive stress on solid particles, which increases shear strength thanks to friction. In this study, the model of Lu et al. (2010), which assumes that the fraction of soil suction effectively transmitted to solid particles is proportional to the degree of saturation of the soil, and a recently proposed model, based on the assumption that suction is transmitted to soil solid particles only through their wet external surface (Greco and Gargano, 2015), are applied to predict soil suction stress of pyroclastic ashes from their water retention curve. This latter is modeled by means of the equation of van Genuchten (1980), as well as by means of the model of Romano et al. (2011), which assumes a bimodal distribution of pore dimensions. Experimental data of shear strength of pyroclastic ashes from various sites in Campania are compared with the values of shear strength predicted with the various tested models. The investigated soils are loose silty sands, characterized by a porosity larger than 0.7, friction angle ranging between 36° and 38°, and small or even null cohesion. In all cases, the best agreement between modeled and experimental shear strength is obtained by means of the model of Greco and Gargano, applied with the adoption of the bimodal water retention model of Romano et al. The obtained results highlight the importance of accurate modeling soil suction stress to correctly predict landslide triggering conditions in slopes covered with shallow unsaturated granular deposits. References Greco R, Gargano R. A novel equation for determining the suction stress of

  3. Juvenile pumice and pyroclastic obsidian reveal the eruptive conditions necessary for the stability of Plinian eruption of rhyolitic magma

    Science.gov (United States)

    Giachetti, T.; Shea, T.; Gonnermann, H. M.; McCann, K. A.; Hoxsie, E. C.

    2016-12-01

    Significant explosive activity generally precedes or coexists with the large effusion of rhyolitic lava (e.g., Mono Craters; Medicine Lake Volcano; Newberry; Chaitén; Cordón Caulle). Such explosive-to-effusive transitions and, ultimately, cessation of activity are commonly explained by the overall waning magma chamber pressure accompanying magma withdrawal, albeit modulated by magma outgassing. The tephra deposits of such explosive-to-effusive eruptions record the character of the transition - abrupt or gradual - as well as potential changes in eruptive conditions, such as magma composition, volatiles content, mass discharge rate, conduit size, magma outgassing. Results will be presented from a detailed study of both the gas-rich (pumice) and gas-poor (obsidian) juvenile pyroclasts produced during the Plinian phase of the 1060 CE Glass Mountain eruption of Medicine Lake Volcano, California. In the proximal deposits, a multitude of pumice-rich sections separated by layers rich in dense clasts suggests a pulsatory behavior of the explosive phase. Density measurements on 2,600 pumices show that the intermediate, most voluminous deposits have a near constant median porosity of 65%. However, rapid increase in porosity to 75-80% is observed at both the bottom and the top of the fallout deposits, suggestive of rapid variations in magma degassing. In contrast, a water content of pyroclastic obsidians of approximately 0.6 wt% does remain constant throughout the eruption, suggesting that the pyroclastic obsidians degassed up to a constant pressure of a few megapascals. Numerical modeling of eruptive magma ascent and degassing is used to provide constraints on eruption conditions.

  4. Slow-moving and far-travelled dense pyroclastic flows during the Peach Spring super-eruption

    Science.gov (United States)

    Roche, Olivier; Buesch, David C.; Valentine, Greg A.

    2016-01-01

    Explosive volcanic super-eruptions of several hundred cubic kilometres or more generate long run-out pyroclastic density currents the dynamics of which are poorly understood and controversial. Deposits of one such event in the southwestern USA, the 18.8 Ma Peach Spring Tuff, were formed by pyroclastic flows that travelled >170 km from the eruptive centre and entrained blocks up to ~70–90 cm diameter from the substrates along the flow paths. Here we combine these data with new experimental results to show that the flow’s base had high-particle concentration and relatively modest speeds of ~5–20 m s−1, fed by an eruption discharging magma at rates up to ~107–108 m3 s−1 for a minimum of 2.5–10 h. We conclude that sustained high-eruption discharge and long-lived high-pore pressure in dense granular dispersion can be more important than large initial velocity and turbulent transport with dilute suspension in promoting long pyroclastic flow distance.

  5. Insulation from basaltic stamp sand. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, F. D.

    1981-04-01

    A Midwest Appropriate Technology Grant was awarded to determine the technical and economic feasibility of producing mineral-fiber insulation directly from extensive deposits of basaltic sand produced during former mining and milling operations in the Keweenaw Peninsula region of Michigan's Upper Peninsula. The amounts of local basaltic sands available and representative chemical compositions were determined. The variation of viscosity with temperature and chemical composition was estimated. Samples were melted and either pulled or blown into fiber. In all cases fiber could be made with a reasonable tensile strength to ensure usefulness. It was concluded that it was technically feasible to produce fibers from basaltic stamp sands of the Upper Peninsula of Michigan. A technical feasibility study using published data, a cost and design analysis of a basalt fiber production plant, a market survey of fiber needs, and an economic analysis for investing in a basalt fiber venture was undertaken. These studies concluded that the local production of basaltic insulation was both feasible and economically reasonable. It was suggested that the plant be located in a region of greater population density with lower utility costs. A representative one-third of these studies is included as appendices A, B, C, and D.

  6. Nature and composition of interbedded marine basaltic pumice in the ˜52-50 Ma Vastan lignite sequence, western India: Implication for Early Eocene MORB volcanism offshore Arabian Sea

    Science.gov (United States)

    Sensarma, Sarajit; Singh, Hukam; Rana, R. S.; Paul, Debajyoti; Sahni, Ashok

    2017-03-01

    The recognition of pyroclasts preserved in sedimentary environments far from its source is uncommon. We here describe occurrences of several centimetres-thick discontinuous basaltic pumice lenses occurring within the Early Eocene Vastan lignite mine sedimentary sequence, western India at two different levels - one at ˜5 m and the other at 10 m above a biostratigraphically constrained 52 Ma old marker level postdating the Deccan Volcanism. These sections have received global attention as they record mammalian and plant radiations. We infer the repetitive occurrence of pumice have been sourced from a ˜52-50 Ma MORB related to sea-floor spreading in the western Arabian Sea, most plausibly along the Carlsberg Ridge. Pyroclasts have skeletal plagioclase with horsetail morphologies ± pyroxene ± Fe-Ti oxide euhedral crystals, and typically comprise of circular polymodal (radii ≤10 to ≥30 μm), non-coalescing microvesicles (>40-60%). The pumice have undergone considerable syngenetic alteration during oceanic transport and post-burial digenesis, and are a composite mixture of Fe-Mn-rich clay and hydrated altered basaltic glass (palagonite). The Fe-Mn-rich clay is extremely low in SiO 2, Al 2 O 3, TiO 2, MgO, alkalies and REE, but very high in Fe 2 O 3, MnO, P, Ba, Sr contents, and palagonitization involved significant loss of SiO 2, Al 2 O 3, MgO and variable gain in Fe 2 O 3, TiO 2, Ni, V, Zr, Zn and REE. Bubble initiation to growth in the ascending basaltic magma (liquidus ˜1200-1250 ∘C) may have occured in ˜3 hr. Short-distance transport, non-connected vesicles, deposition in inner shelf to more confined lagoonal condition in the Early Eocene and quick burial helped preservation of the pumice in Vastan. Early Eocene Arabian Sea volcanism thus might have been an additional source to marginal sediments along the passive margin of western India.

  7. Why Hexagonal Basalt Columns?

    Science.gov (United States)

    Hofmann, Martin; Anderssohn, Robert; Bahr, Hans-Achim; Weiß, Hans-Jürgen; Nellesen, Jens

    2015-10-09

    Basalt columns with their preferably hexagonal cross sections are a fascinating example of pattern formation by crack propagation. Junctions of three propagating crack faces rearrange such that the initial right angles between them tend to approach 120°, which enables the cracks to form a pattern of regular hexagons. To promote understanding of the path on which the ideal configuration can be reached, two periodically repeatable models are presented here involving linear elastic fracture mechanics and applying the principle of maximum energy release rate. They describe the evolution of the crack pattern as a transition from rectangular start configuration to the hexagonal pattern. This is done analytically and by means of three-dimensional finite element simulation. The latter technique reproduces the curved crack path involved in this transition.

  8. Flow Transformation in Pyroclastic Density Currents: Entrainment and Granular Dynamics during the 2006 eruption of Tungurahua

    Science.gov (United States)

    Dufek, J.; Benage, M. C.; Geist, D.; Harpp, K. S.

    2013-12-01

    Pyroclastic density currents are ground hugging flows composed of hot gases, fragments of juvenile magmatic material, and entrained clasts from the conduit or the edifice over which the flows have traveled. The interior of these flows are opaque to observation due to their large ash content, but recent investigations have highlighted that there are likely strong gradients in particle concentration and segregation of particle sizes in these particle-laden gravity currents. Pyroclastic density currents refer to a broad range of phenomena from dense flows in which the dynamics are dominated by frictional interaction between particles (dense granular flows), to gas fluidized flows, to dilute flows dominated by particle-gas turbulent interaction. However, abrupt flow transformation (e.g. from dense to dilute pyroclastic density currents) can arise due to energy exchange across multiple length scales and phases, and understanding these flow transformations is important in delineating the entrainment and erosion history of these flows, interpretations of their deposits, and in better understanding the hazards they present. During the 2006 eruption of Tungurahua, Ecuador numerous, dense pyroclastic density currents descended the volcano as result of boiling-over or low column collapse eruptions. The deposits of these flows typically have pronounced snouts and levees, and are often dominated by large, clasts (meter scale in some locations). There is an exceptional observational record of these flows and their deposits, permitting detailed field constraints of their dynamics. A particularly interesting set of flows occurred on Aug. 17, 2006 during the paroxysmal phase of the eruption that descended the slope of the volcano, filled in the river channel of the Chambo river, removing much of the larger clasts from the flow, and resulting in a dilute ';surge' that transported finer material across the channel and uphill forming dune features on the opposite bank of the river. We

  9. Pyroclastic flow hazard assessment at Somma-Vesuvius based on the geological record

    Science.gov (United States)

    Gurioli, L.; Sulpizio, R.; Cioni, R.; Sbrana, A.; Santacroce, R.; Luperini, W.; Andronico, D.

    2010-11-01

    During the past 22 ka of activity at Somma-Vesuvius, catastrophic pyroclastic density currents (PDCs) have been generated repeatedly. Examples are those that destroyed the towns of Pompeii and Ercolano in AD 79, as well as Torre del Greco and several circum-Vesuvian villages in AD 1631. Using new field data and data available from the literature, we delineate the area impacted by PDCs at Somma-Vesuvius to improve the related hazard assessment. We mainly focus on the dispersal, thickness, and extent of the PDC deposits generated during seven plinian and sub-plinian eruptions, namely, the Pomici di Base, Greenish Pumice, Pomici di Mercato, Pomici di Avellino, Pompeii Pumice, AD 472 Pollena, and AD 1631 eruptions. We present maps of the total thickness of the PDC deposits for each eruption. Five out of seven eruptions dispersed PDCs radially, sometimes showing a preferred direction controlled by the position of the vent and the paleotopography. Only the PDCs from AD 1631 eruption were influenced by the presence of the Mt Somma caldera wall which stopped their advance in a northerly direction. Most PDC deposits are located downslope of the pronounced break-in slope that marks the base of the Somma-Vesuvius cone. PDCs from the Pomici di Avellino and Pompeii Pumice eruptions have the most dispersed deposits (extending more than 20 km from the inferred vent). These deposits are relatively thin, normally graded, and stratified. In contrast, thick, massive, lithic-rich deposits are only dispersed within 7 to 8 km of the vent. Isopach maps and the deposit features reveal that PDC dispersal was strongly controlled by the intensity of the eruption (in terms of magma discharge rate), the position of the vent area with respect to the Mt Somma caldera wall, and the pre-existing topography. Facies characteristics of the PDC deposits appear to correlate with dispersal; the stratified facies are consistently dispersed more widely than the massive facies.

  10. Imogolite and allophane formed in saprolite of basalt on Maui, Hawaii

    Science.gov (United States)

    Wada, K.; Henmi, T.; Yoshinaga, N.; Patterson, S.H.

    1972-01-01

    Inorganic gel and allophane collected from basaltic saprolite on Maui, Hawaii, and studied by Patterson in 1964 were reexamined. The main constituent of the gel is imogolite, and gibbsite and allophane are the minor constituents. Electron and X-ray diffraction patterns, DTA curve, and an infrared spectrum of the gel are characteristic of imogolite. The allophane is virtually noncrystalline to X-rays but contains a small amount of imogolite in relatively short threads. High-resolution electron micrographs indicate differences in structural organization between allophane and imogolite and suggest crystallization of imogolite from allophane. The occurrence of imogolite as a weathering product has been reported in many localities from pyroclastic materials but not from massive rocks. Probably the exceptionally high rainfall, excellent subsurface permeability of the weathered material, and the low pH and high organic content of the leaching solution provide favorable conditions for formation of imogolite from basalt on Maui. ?? 1972.

  11. Modern analogues for Miocene to Pleistocene alkali basaltic phreatomagmatic fields in the Pannonian Basin: "soft-substrate" to "combined" aquifer controlled phreatomagmatism in intraplate volcanic fields Research Article

    Science.gov (United States)

    Németh, Károly; Cronin, Shane; Haller, Miguel; Brenna, Marco; Csillag, Gabor

    2010-09-01

    The Pannonian Basin (Central Europe) hosts numerous alkali basaltic volcanic fields in an area similar to 200 000 km2. These volcanic fields were formed in an approximate time span of 8 million years producing smallvolume volcanoes typically considered to be monogenetic. Polycyclic monogenetic volcanic complexes are also common in each field however. The original morphology of volcanic landforms, especially phreatomagmatic volcanoes, is commonly modified. by erosion, commonly aided by tectonic uplift. The phreatomagmatic volcanoes eroded to the level of their sub-surface architecture expose crater to conduit filling as well as diatreme facies of pyroclastic rock assemblages. Uncertainties due to the strong erosion influenced by tectonic uplifts, fast and broad climatic changes, vegetation cover variations, and rapidly changing fluvio-lacustrine events in the past 8 million years in the Pannonian Basin have created a need to reconstruct and visualise the paleoenvironment into which the monogenetic volcanoes erupted. Here phreatomagmatic volcanic fields of the Miocene to Pleistocene western Hungarian alkali basaltic province have been selected and compared with modern phreatomagmatic fields. It has been concluded that the Auckland Volcanic Field (AVF) in New Zealand could be viewed as a prime modern analogue for the western Hungarian phreatomagmatic fields by sharing similarities in their pyroclastic successions textures such as pyroclast morphology, type, juvenile particle ratio to accidental lithics. Beside the AVF two other, morphologically more modified volcanic fields (Pali Aike, Argentina and Jeju, Korea) show similar features to the western Hungarian examples, highlighting issues such as preservation potential of pyroclastic successions of phreatomagmatic volcanoes.

  12. Welding of pyroclastic conduit infill: A mechanism for cyclical explosive eruptions

    Science.gov (United States)

    Kolzenburg, S.; Russell, J. K.

    2014-07-01

    Vulcanian-style eruptions are small- to moderate-sized, singular to cyclical events commonly having volcanic explosivity indices of 1-3. They produce pyroclastic flows, disperse tephra over considerable areas, and can occur as precursors to larger (e.g., Plinian) eruptions. The fallout deposits of the 2360 B.P. eruption of Mount Meager, BC, Canada, contain bread-crusted blocks of welded breccia as accessory lithics. They display a range of compaction/welding intensity and provide a remarkable opportunity to constrain the nature and timescales of mechanical processes operating within explosive volcanic conduits during repose periods between eruptive cycles. We address the deformation and porosity/permeability reduction within natural pyroclastic deposits infilling volcanic conduits. We measure the porosity, permeability, and ultrasonic wave velocities for a suite of samples and quantify the strain recorded by pumice clasts. We explore the correlations between the physical properties and deformation fabric. Based on these correlations, we reconstruct the deformation history within the conduit, model the permeability reduction timescales, and outline the implications for the repressurization of the volcanic conduit. Our results highlight a profound directionality in the measured physical properties of these samples related to the deformation-induced fabric. Gas permeability varies drastically with increasing strain and decreasing porosity along the compaction direction of the fabric but varies little along the elongation direction of the fabric. The deformation fabric records a combination of compaction within the conduit and postcompaction stretching associated with subsequent eruption. Model timescales of these processes are in good agreement with repose periods of cyclic vulcanian eruptions.

  13. Generation of pyroclastic flows and surges by hot-rock avalanches from the dome of Mount St. Helens volcano, USA

    Science.gov (United States)

    Mellors, R.A.; Waitt, R.B.; Swanson, D.A.

    1988-01-01

    Several hot-rock avalanches have occurred during the growth of the composite dome of Mount St. Helens, Washington between 1980 and 1987. One of these occurred on 9 May 1986 and produced a fan-shaped avalanche deposit of juvenile dacite debris together with a more extensive pyroclastic-flow deposit. Laterally thinning deposits and abrasion and baking of wooden and plastic objects show that a hot ash-cloud surge swept beyond the limits of the pyroclastic flow. Plumes that rose 2-3 km above the dome and vitric ash that fell downwind of the volcano were also effects of this event, but no explosion occurred. All the facies observed originated from a single avalanche. Erosion and melting of craterfloor snow by the hot debris caused debris flows in the crater, and a small flood that carried juvenile and other clasts north of the crater. A second, broadly similar event occured in October 1986. Larger events of this nature could present a significant volcanic hazard. ?? 1988 Springer-Verlag.

  14. Combined effect of permeability and crystallization on the explosive eruption of basaltic magma

    Science.gov (United States)

    Moitra, P.; Gonnermann, H. M.; Houghton, B. F.; Crozier, J.

    2015-12-01

    Plinian eruptions are the most dangerous style of eruptive activity of basaltic magma. In this study, we focus on the two best studied Plinian eruptions of basaltic magma at Mt. Tarawera, New Zealand (1886 CE) and Mt. Etna, Italy (122 BCE). We measured and analyzed the porosity-permeability relationships of the pyroclasts from both eruptions. We then used numerical modeling to assess the relative importance of two competing processes during eruptive magma ascent, which are the syneruptive crystallization that increases viscosity, potentially increasing bubble overpressure, and the open-system degassing of the permeable magma that allows the pressurized gas to escape, potentially reducing bubble overpressure. We find that the onset of crystallization is likely to have occurred prior to the onset of magma percolation. The orders of magnitude increase in magma viscosity due to the nucleation and growth of microlites had the combined effect of rapidly increasing the decompression rate, due to viscous pressure losses associated with magma flow within the volcanic conduit, and decreasing the rates of bubble growth, thus building up large overpressures inside bubbles. Although measured permeabilities of the studied pyroclasts are 1-2 orders of magnitude higher than their silicic counterpart, our model results show that crystallization and subsequent increase in viscosity are likely to surpass the effect of open-system gas loss, thus increasing bubble overpressure, required for explosive magma fragmentation.

  15. Derivation of Apollo 14 High-Al Basalts at Discrete Times: Rb-Sr Isotopic Constraints

    Science.gov (United States)

    Hui. Hejiu; Neal, Clive, R.; Shih, Chi-Yu; Nyquist, Laurence E.

    2012-01-01

    Pristine Apollo 14 (A-14) high-Al basalts represent the oldest volcanic deposits returned from the Moon [1,2] and are relatively enriched in Al2O3 (>11 wt%) compared to other mare basalts (7-11 wt%). Literature Rb-Sr isotopic data suggest there are at least three different eruption episodes for the A-14 high-Al basalts spanning the age range approx.4.3 Ga to approx.3.95 Ga [1,3]. Therefore, the high-Al basalts may record lunar mantle evolution between the formation of lunar crust (approx.4.4 Ga) and the main basin-filling mare volcanism (basalts were originally classified into five compositional groups [5,6], and then regrouped into three with a possible fourth comprising 14072 based on the whole-rock incompatible trace element (ITE) ratios and Rb-Sr radiometric ages [7]. However, Rb-Sr ages of these basalts from different laboratories may not be consistent with each other because of the use of different 87Rb decay constants [8] and different isochron derivation methods over the last four decades. This study involved a literature search for Rb-Sr isotopic data previously reported for the high-Al basalts. With the re-calculated Rb-Sr radiometric ages, eruption episodes of A-14 high-Al basalts were determined, and their petrogenesis was investigated in light of the "new" Rb-Sr isotopic data and published trace element abundances of these basalts.

  16. Complex variations during a caldera-forming Plinian eruption, including precursor deposits, thick pumice fallout, co-ignimbrite breccias and climactic lag breccias: The 184 ka Lower Pumice 1 eruption sequence, Santorini, Greece

    Science.gov (United States)

    Simmons, J. M.; Cas, R. A. F.; Druitt, T. H.; Folkes, C. B.

    2016-09-01

    The 184 ka Lower Pumice 1 eruption sequence records a complex history of eruption behaviours denoted by two significant eruptive phases: (1) a minor precursor (LP1-Pc) and (2) a major Plinian phase (LP1-A, B, C). The precursor phase produced 13 small-volume pyroclastic fallout, surge and flow deposits, which record the transition from a dominantly magmatic to a phreatomagmatic eruptive style, and exhibit a normal (dacite to andesitic-dacite) to reverse (andesitic-dacite to dacite) compositional zonation of juvenile pyroclasts in the stratigraphy. Incipient bioturbation and variability in unit thickness and lithology reflect multiple time breaks and highlight the episodic nature of volcanism prior to the main Plinian eruption phase. The Plinian magmatic eruption phase is defined by three major stratigraphic divisions, including a basal pumice fallout deposit (LP1-A), an overlying valley-confined ignimbrite (LP1-B) and a compositionally zoned (rhyodacite to basaltic andesite) lithic-rich lag breccia (LP1-C), which caps the sequence. This sequence records the initial development of a buoyant convective eruption column and the transition to eruption column and catastrophic late-stage caldera collapse events. Similarities in pyroclast properties (i.e., chemistry, density), between the Plinian fallout (LP1-A) and pyroclastic flow (LP1-B) deposits, indicate that changes in magma properties exerted no influence on the dynamics and temporal evolution of the LP1 eruption. Conversely, lithic breccias at the base of the LP1-B ignimbrite suggest that the transition from a buoyant convective column to column collapse was facilitated by mechanical erosion of the conduit system and/or the initiation of caldera collapse, leading to vent widening, an increase in magma discharge rate and the increased incorporation of lithics into the eruption column, causing mass overload. Lithic-rich lag breccia deposits (LP1-C), which cap the eruption sequence, record incremental, high

  17. Pyroclastic eruptions from Axial caldera, Juan de Fuca Ridge, NE Pacific Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Helo, Christoph; Stix, John [Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, Quebec H3A 2A7 (Canada); Clague, Dave A [Monterey Bay Aquarium Research Institute 7700 Sandholdt Road, Moss Landing, CA 95039-9644 (United States)

    2008-10-01

    Unconsolidated volcaniclastic glass deposits on the flanks of Axial Seamount, a caldera system situated on the Juan de Fuca Ridge in the NE Pacific Ocean, demonstrate the occurrence of explosive events, in addition to effusive activity. The variety of produced glass fragments ranges from various angular forms to thin deep-sea limu o Pele, with dominantly moderately fractionated to occasionally primitive MOR basalt composition. A model involving the collapse of a magmatic foam layer may account for the observed spectrum of glass fragments.

  18. Multiphase Alkaline Basalts of Central Al-Haruj Al-Abyad of Libya: Petrological and Geochemical Aspects

    Directory of Open Access Journals (Sweden)

    Abdel-Aal M. Abdel-Karim

    2013-01-01

    Full Text Available Al-Haruj basalts that represent the largest volcanic province in Libya consist of four lava flow phases of varying thicknesses, extensions, and dating. Their eruption is generally controlled by the larger Afro-Arabian rift system. The flow phases range from olivine rich and/or olivine dolerites to olivine and/or normal basalts that consist mainly of variable olivine, clinopyroxene, plagioclase, and glass. Olivine, plagioclase, and clinopyroxene form abundant porphyritic crystals. In olivine-rich basalt and olivine basalt, these minerals occur as glomerophyric or seriate clusters of an individual mineral or group of minerals. Groundmass textures are variably intergranular, intersertal, vitrophyric, and flow. The pyroclastic, clastogenic flows and/or ejecta of the volcanic cones show porphyritic, vitrophric, pilotaxitic, and vesicular textures. They are classified into tholeiite, alkaline, and olivine basalts. Three main groups are recorded. Basalts of phase 1 are generated from tholeiitic to alkaline magma, while those of phases 3 and 4 are derived from alkaline magma. It is proposed that the tholeiitic basalts represent prerift stage magma generated by higher degree of partial melting (2.0–3.5% of garnet-peridotite asthenospheric mantle source, at shallow depth, whereas the dominant alkaline basalts may represent the rift stage magma formed by low degree of partial melting (0.7–1.5% and high fractionation of the same source, at greater depth in an intra-continental plate with OIB affinity. The melt generation could be also attributed to lithosphere extension associated with passive rise of variable enriched mantle.

  19. Bubble Growth in Lunar Basalts

    Science.gov (United States)

    Zhang, Y.

    2009-05-01

    Although Moon is usually said to be volatile-"free", lunar basalts are often vesicular with mm-size bubbles. The vesicular nature of the lunar basalts suggests that they contained some initial gas concentration. A recent publication estimated volatile concentrations in lunar basalts (Saal et al. 2008). This report investigates bubble growth on Moon and compares with that on Earth. Under conditions relevant to lunar basalts, bubble growth in a finite melt shell (i.e., growth of multiple regularly-spaced bubbles) is calculated following Proussevitch and Sahagian (1998) and Liu and Zhang (2000). Initial H2O content of 700 ppm (Saal et al. 2008) or lower is used and the effect of other volatiles (such as carbon dioxide, halogens, and sulfur) is ignored. H2O solubility at low pressures (Liu et al. 2005), concentration-dependent diffusivity in basalt (Zhang and Stolper 1991), and lunar basalt viscosity (Murase and McBirney 1970) are used. Because lunar atmospheric pressure is essentially zero, the confining pressure on bubbles is completely supplied by the overlying magma. Due to low H2O content in lunar basaltic melt (700 ppm H2O corresponds to a saturation pressure of 75 kPa), H2O bubbles only grow in the upper 16 m of a basalt flow or lake. A depth of 20 mm corresponds to a confining pressure of 100 Pa. Hence, vesicular lunar rocks come from very shallow depth. Some findings from the modeling are as follows. (a) Due to low confining pressure as well as low viscosity, even though volatile concentration is very low, bubble growth rate is extremely high, much higher than typical bubble growth rates in terrestrial melts. Hence, mm-size bubbles in lunar basalts are not strange. (b) Because the pertinent pressures are so low, bubble pressure due to surface tension plays a main role in lunar bubble growth, contrary to terrestrial cases. (c) Time scale to reach equilibrium bubble size increases as the confining pressure increases. References: (1) Liu Y, Zhang YX (2000) Earth

  20. Tracking Pyroclastic Flows at Soufrière Hills Volcano

    Science.gov (United States)

    Ripepe, Maurizio; De Angelis, Silvio; Lacanna, Giorgio; Poggi, Pasquale; Williams, Carlisle; Marchetti, Emanuele; Delle Donne, Dario; Ulivieri, Giacomo

    2009-07-01

    Explosive volcanic eruptions typically show a huge column of ash and debris ejected into the stratosphere, crackling with lightning. Yet equally hazardous are the fast moving avalanches of hot gas and rock that can rush down the volcano's flanks at speeds approaching 280 kilometers per hour. Called pyroclastic flows, these surges can reach temperatures of 400°C. Fast currents and hot temperatures can quickly overwhelm communities living in the shadow of volcanoes, such as what happened to Pompeii and Herculaneum after the 79 C.E. eruption of Italy's Mount Vesuvius or to Saint-Pierre after Martinique's Mount Pelée erupted in 1902.

  1. Field-trip guide to the vents, dikes, stratigraphy, and structure of the Columbia River Basalt Group, eastern Oregon and southeastern Washington

    Science.gov (United States)

    Camp, Victor E; Reidel, Stephen P.; Ross, Martin E.; Brown, Richard J.; Self, Stephen

    2017-06-22

    The Columbia River Basalt Group covers an area of more than 210,000 km2 with an estimated volume of 210,000 km3. As the youngest continental flood-basalt province on Earth (16.7–5.5 Ma), it is well preserved, with a coherent and detailed stratigraphy exposed in the deep canyonlands of eastern Oregon and southeastern Washington. The Columbia River flood-basalt province is often cited as a model for the study of similar provinces worldwide.This field-trip guide explores the main source region of the Columbia River Basalt Group and is written for trip participants attending the 2017 International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly in Portland, Oregon, USA. The first part of the guide provides an overview of the geologic features common in the Columbia River flood-basalt province and the stratigraphic terminology used in the Columbia River Basalt Group. The accompanying road log examines the stratigraphic evolution, eruption history, and structure of the province through a field examination of the lavas, dikes, and pyroclastic rocks of the Columbia River Basalt Group.

  2. Truncation planes from a dilute pyroclastic density current: field data and analogue experiments.

    Science.gov (United States)

    Douillet, Guilhem Amin; Gegg, Lukas; Mato, Celia; Kueppers, Ulrich; Dingwell, Donald B.

    2016-04-01

    Pyroclastic density currents (PDCs) are a catastrophic transport mode of ground hugging gas-particle mixtures associated with explosive volcanic eruptions. The extremely high sedimentation rates and turbulence levels of these particulate density currents can freeze and preserve dynamic phenomena that happen but are not recorded in other sedimentary environments. Several intriguing and unanticipated features have been identified in outcrops and reproduced via analogue experiments, with the potential to change our views on morphodynamics and particle motion. Three types of small-scale (ca. 10 cm) erosion structures were observed on the stoss side of dune bedforms in the field: 1) vertical erosion planes covered with stoss-aggrading, vertical lamination, 2) overturned laminations at the preserved limit of erosion planes and 3) loss of stratification at erosion planes. These features are interpreted to indicate rapidly evolving velocities, undeveloped boundary layers, and a diffuse zone rather than a sharp border defining the flow-bed interface. Most experimental work on particle motion and erosion from the literature has been accomplished under constant conditions and with planar particle beds. Here, in order to reproduce the field observations, short-lived air-jets generated with a compressor-gun were shot into stratified beds of coarse particles (300 μm) of low density (1000 kg/m3). These "eroding jets" were filmed with a high speed camera and the deposits were sectioned after the experiments. The three natural types of erosion characteristics were experimentally generated. Vertical erosion planes are produced by small-scale, relatively sustained jets. Overturned laminations are due to a fluidization-like behavior at the erosion front of short-lived, strong jets, demonstrating that the fluid's velocity profile penetrates into the deposit. Loss of lamination seems related to the nature of erosion onset in packages. Rather than providing simple answers, the dataset

  3. Pyroclastic Density Current Hazards in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Brand, B. D.; Gravley, D.; Clarke, A. B.; Bloomberg, S. H.

    2012-12-01

    The most dangerous phenomena associated with phreatomagmatic eruptions are dilute pyroclastic density currents (PDCs). These are turbulent, ground-hugging sediment gravity currents that travel radially away from the explosive center at up to 100 m/s. The Auckland Volcanic Field (AVF), New Zealand, consists of approximately 50 eruptive centers, at least 39 of which have had explosive phreatomagmatic behaviour. A primary concern for future AVF eruptions is the impact of dilute PDCs in and around the Auckland area. We combine field observations from the Maungataketake tuff ring, which has one of the best exposures of dilute PDC deposits in the AVF, with a quantitative model for flow of and sedimentation from a radially-spreading, steady-state, depth-averaged dilute PDC (modified from Bursik and Woods, 1996 Bull Volcanol 58:175-193). The model allows us to explore the depositional mechanisms, macroscale current dynamics, and potential impact on societal infrastructure of dilute PDCs from a future AVF eruption. The lower portion of the Maungataketake tuff ring pyroclastic deposits contains trunks, limbs and fragments of Podocarp trees (strength of the wood, we calculate that dynamic pressures (Pdyn) of 10-75 kPa are necessary to topple trees of this size and composition. Thus the two main criteria for model success based on the field evidence include (a) Pdyn must be >10 kPa nearer than 0.9 km to the vent, and 35 kPa can be expected within 3 km from source, ensuring complete destruction of the area; Pdyn > 15 kPa up to 5 km from source, resulting in heavy structural damage to most buildings and near destruction of weaker buildings; and Pdyn <10 kPa at ~6 km from source, resulting in severe damage to weaker structures at least up to this distance. This exercise illustrates our ability to combine field measurements with numerical techniques to explore controlling parameters of dilute PDC dynamics. These tools can be used to understand and estimate the damage potential and

  4. Strength of Concrete Containing Basalt Fibre

    Directory of Open Access Journals (Sweden)

    Parvez Imraan Ansari

    2015-04-01

    Full Text Available This paper presents the comparative study of effect of basalt fibre on compressive and split tensile strength of M40 grade concrete. The basalt fibre was mixed in concrete by (0.5%, 1%, and 1.5% of its total weight of cement in concrete. Results indicated that the strength increases with increase of basalt fibre content up to 1.0% beyond that there is a reduction in strength on increasing basalt fibre. The results show that the concrete specimen with 1.0% of basalt fibre gives better performance when it compared with 0.5%and 1.5% basalt fibre mix in concrete specimens.

  5. A fast, calibrated model for pyroclastic density currents kinematics and hazard

    Science.gov (United States)

    Esposti Ongaro, Tomaso; Orsucci, Simone; Cornolti, Fulvio

    2016-11-01

    Multiphase flow models represent valuable tools for the study of the complex, non-equilibrium dynamics of pyroclastic density currents. Particle sedimentation, flow stratification and rheological changes, depending on the flow regime, interaction with topographic obstacles, turbulent air entrainment, buoyancy reversal, and other complex features of pyroclastic currents can be simulated in two and three dimensions, by exploiting efficient numerical solvers and the improved computational capability of modern supercomputers. However, numerical simulations of polydisperse gas-particle mixtures are quite computationally expensive, so that their use in hazard assessment studies (where there is the need of evaluating the probability of hazardous actions over hundreds of possible scenarios) is still challenging. To this aim, a simplified integral (box) model can be used, under the appropriate hypotheses, to describe the kinematics of pyroclastic density currents over a flat topography, their scaling properties and their depositional features. In this work, multiphase flow simulations are used to evaluate integral model approximations, to calibrate its free parameters and to assess the influence of the input data on the results. Two-dimensional numerical simulations describe the generation and decoupling of a dense, basal layer (formed by progressive particle sedimentation) from the dilute transport system. In the Boussinesq regime (i.e., for solid mass fractions below about 0.1), the current Froude number (i.e., the ratio between the current inertia and buoyancy) does not strongly depend on initial conditions and it is consistent to that measured in laboratory experiments (i.e., between 1.05 and 1.2). For higher density ratios (solid mass fraction in the range 0.1-0.9) but still in a relatively dilute regime (particle volume fraction lower than 0.01), numerical simulations demonstrate that the box model is still applicable, but the Froude number depends on the reduced

  6. The 2010 Pyroclastic Density Currents of Merapi Volcano, Central Java, Indonesia

    Science.gov (United States)

    Charbonnier, Sylvain; Germa, Aurelie; Connor, Chuck; Connor, Laura; Dixon, Tim; Komorowski, Jean-Christophe; Gertisser, Ralf; Lavigne, Franck; Preece, Katie

    2013-04-01

    The 2010 pyroclastic density currents (PDC) at Merapi present a rare opportunity to collect a uniquely detailed dataset of the source, extent, lateral variations and impact of various PDC deposits on a densely populated area. Using traditional volcanological field-based methods and multi-temporal dataset of high-resolution satellite imagery, a total of 23 PDC events have been recognized, including 5 main channeled flows, 15 overbank flows derived from overspill and re-channelization of the main PDCs into adjacent tributaries and two main surge events. The 2010 PDC deposits covered an area of ~22.3 km2, unequally distributed between valley-filling (6.9%), overbank (22.4%) and ash-cloud surge deposits (71.7%). Their total estimated volume is ~36.3×106 m3, with ~50.2% of this volume accounting for valley-filling deposits, 39.3% for overbank deposits and 10.5% for ash-cloud surge deposits. The internal architecture and facies variations of the 2010 PDC deposit were investigated using data collected from 30 stratigraphic sections measured after one rainy season of erosion. The results show that complex, local-scale variations in flow dynamics and deposit architectures are apparent and that the main factors that control the propagation of the main flows and their potential hazards for overbanking were driven by: (1) the rapid emplacement of several voluminous PDCs, associated with the steady infilling of the receiving landscape after the two first phases of the eruption; (2) longitudinal changes in channel capacity following increased sinuosity in the valley and decreased containment space; and (3) the effects of varying generation mechanisms (gravitational dome collapse, vertical or lateral dome explosions and column-collapse) and source materials involved during individual PDC forming events. Integration of these data into numerical simulations of the 3-5 November channeled and overbank PDCs using two well-established geophysical mass flow models, Titan2D and Volcflow

  7. Lethal Thermal Impact at Periphery of Pyroclastic Surges: Evidences at Pompeii

    Science.gov (United States)

    Mastrolorenzo, Giuseppe; Petrone, Pierpaolo; Pappalardo, Lucia; Guarino, Fabio M.

    2010-01-01

    Background The evaluation of mortality of pyroclastic surges and flows (PDCs) produced by explosive eruptions is a major goal in risk assessment and mitigation, particularly in distal reaches of flows that are often heavily urbanized. Pompeii and the nearby archaeological sites preserve the most complete set of evidence of the 79 AD catastrophic eruption recording its effects on structures and people. Methodology/Principal Findings Here we investigate the causes of mortality in PDCs at Pompeii and surroundings on the bases of a multidisciplinary volcanological and bio-anthropological study. Field and laboratory study of the eruption products and victims merged with numerical simulations and experiments indicate that heat was the main cause of death of people, heretofore supposed to have died by ash suffocation. Our results show that exposure to at least 250°C hot surges at a distance of 10 kilometres from the vent was sufficient to cause instant death, even if people were sheltered within buildings. Despite the fact that impact force and exposure time to dusty gas declined toward PDCs periphery up to the survival conditions, lethal temperatures were maintained up to the PDCs extreme depositional limits. Conclusions/Significance This evidence indicates that the risk in flow marginal zones could be underestimated by simply assuming that very thin distal deposits, resulting from PDCs with poor total particle load, correspond to negligible effects. Therefore our findings are essential for hazard plans development and for actions aimed to risk mitigation at Vesuvius and other explosive volcanoes. PMID:20559555

  8. Lethal thermal impact at periphery of pyroclastic surges: evidences at Pompeii.

    Directory of Open Access Journals (Sweden)

    Giuseppe Mastrolorenzo

    Full Text Available BACKGROUND: The evaluation of mortality of pyroclastic surges and flows (PDCs produced by explosive eruptions is a major goal in risk assessment and mitigation, particularly in distal reaches of flows that are often heavily urbanized. Pompeii and the nearby archaeological sites preserve the most complete set of evidence of the 79 AD catastrophic eruption recording its effects on structures and people. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigate the causes of mortality in PDCs at Pompeii and surroundings on the bases of a multidisciplinary volcanological and bio-anthropological study. Field and laboratory study of the eruption products and victims merged with numerical simulations and experiments indicate that heat was the main cause of death of people, heretofore supposed to have died by ash suffocation. Our results show that exposure to at least 250 degrees C hot surges at a distance of 10 kilometres from the vent was sufficient to cause instant death, even if people were sheltered within buildings. Despite the fact that impact force and exposure time to dusty gas declined toward PDCs periphery up to the survival conditions, lethal temperatures were maintained up to the PDCs extreme depositional limits. CONCLUSIONS/SIGNIFICANCE: This evidence indicates that the risk in flow marginal zones could be underestimated by simply assuming that very thin distal deposits, resulting from PDCs with poor total particle load, correspond to negligible effects. Therefore our findings are essential for hazard plans development and for actions aimed to risk mitigation at Vesuvius and other explosive volcanoes.

  9. Lethal thermal impact at periphery of pyroclastic surges: evidences at Pompeii.

    Science.gov (United States)

    Mastrolorenzo, Giuseppe; Petrone, Pierpaolo; Pappalardo, Lucia; Guarino, Fabio M

    2010-06-15

    The evaluation of mortality of pyroclastic surges and flows (PDCs) produced by explosive eruptions is a major goal in risk assessment and mitigation, particularly in distal reaches of flows that are often heavily urbanized. Pompeii and the nearby archaeological sites preserve the most complete set of evidence of the 79 AD catastrophic eruption recording its effects on structures and people. Here we investigate the causes of mortality in PDCs at Pompeii and surroundings on the bases of a multidisciplinary volcanological and bio-anthropological study. Field and laboratory study of the eruption products and victims merged with numerical simulations and experiments indicate that heat was the main cause of death of people, heretofore supposed to have died by ash suffocation. Our results show that exposure to at least 250 degrees C hot surges at a distance of 10 kilometres from the vent was sufficient to cause instant death, even if people were sheltered within buildings. Despite the fact that impact force and exposure time to dusty gas declined toward PDCs periphery up to the survival conditions, lethal temperatures were maintained up to the PDCs extreme depositional limits. This evidence indicates that the risk in flow marginal zones could be underestimated by simply assuming that very thin distal deposits, resulting from PDCs with poor total particle load, correspond to negligible effects. Therefore our findings are essential for hazard plans development and for actions aimed to risk mitigation at Vesuvius and other explosive volcanoes.

  10. Reworked pyroclastic beds in the early Miocene of Patagonia: Reaction in response to high sediment supply during explosive volcanic events

    Science.gov (United States)

    Cuitiño, José I.; Scasso, Roberto A.

    2013-05-01

    Two meter-scale pyroclastic levels are interbedded within the early Miocene succession of the Estancia 25 de Mayo (Patagoniense transgression) and Santa Cruz formations in the foreland Austral (or Magallanes) Basin, Argentina. The Lower Pyroclastic Level (LPL) is a tabular body interbedded within offshore marine deposits, laterally continuous for 30 km and varying in thickness from few centimeters to around 4 m. Grain-size grades from coarse to extremely fine ash with upward-fining along with a northeastern-fining trends. Structureless fine to very fine tuffs dominate and rare parallel laminations are the only tractive sedimentary structures. The Upper Pyroclastic Level (UPL) lies within low energy fluvial deposits and is laterally discontinuous, and it is composed by lenticular bodies reaching a maximum of 15 m thick and 100 m wide, with a concave-up base and a plane top. Grain-size range is similar to the LPL but it coarsens upward. The lower portion of the UPL shows parallel lamination, current ripple lamination and mud drapes with large pumice lapilli and plant debris, whereas the upper portion shows parallel lamination and trough cross-stratification. Both pyroclastic levels are composed mainly of pumice grains and glass shards with minor proportions of quartz and plagioclase crystals and lithic fragments. The LPL shows no mixing with epiclastic material whereas the UPL shows an upward increase in epiclastic material, and an upward increment in the scale of cross-bedding. The large thickness in relation to the possible emission center and the content of plant debris of the LPL does not suggest a direct, submarine, ash-fallout origin. The LPL is interpreted as a deposit of hyperpycnal-flows generated at the coastal zone when tephra-laden rivers plunged into the ocean. Large amounts of well preserved plant debris support the hypothesis of a terrestrial source of the sediments. The UPL is entirely composed of tractive deposits, so an ash fallout origin is

  11. Explosive eruption of coal and basalt and the end-Permian mass extinction.

    Science.gov (United States)

    Ogden, Darcy E; Sleep, Norman H

    2012-01-03

    The end-Permian extinction decimated up to 95% of carbonate shell-bearing marine species and 80% of land animals. Isotopic excursions, dissolution of shallow marine carbonates, and the demise of carbonate shell-bearing organisms suggest global warming and ocean acidification. The temporal association of the extinction with the Siberia flood basalts at approximately 250 Ma is well known, and recent evidence suggests these flood basalts may have mobilized carbon in thick deposits of organic-rich sediments. Large isotopic excursions recorded in this period are potentially explained by rapid venting of coal-derived methane, which has primarily been attributed to metamorphism of coal by basaltic intrusion. However, recently discovered contemporaneous deposits of fly ash in northern Canada suggest large-scale combustion of coal as an additional mechanism for rapid release of carbon. This massive coal combustion may have resulted from explosive interaction with basalt sills of the Siberian Traps. Here we present physical analysis of explosive eruption of coal and basalt, demonstrating that it is a viable mechanism for global extinction. We describe and constrain the physics of this process including necessary magnitudes of basaltic intrusion, mixing and mobilization of coal and basalt, ascent to the surface, explosive combustion, and the atmospheric rise necessary for global distribution.

  12. GIS-based statistical mapping technique for block-and-ash pyroclastic flow and surge hazards

    Science.gov (United States)

    Widiwijayanti, C.; Voight, B.; Hidayat, D.; Schilling, S.

    2008-12-01

    Assessments of pyroclastic flow (PF) hazards are commonly based on mapping of PF and surge deposits and estimations of inundation limits, and/or computer models of varying degrees of sophistication. In volcanic crises a PF hazard map may be sorely needed, but limited time, exposures, or safety aspects may preclude fieldwork, and insufficient time or baseline data may be available for reliable dynamic simulations. We have developed a statistically constrained simulation model for block-and-ash PFs to estimate potential areas of inundation by adapting methodology from Iverson et al. (1998) for lahars. The predictive equations for block-and-ash PFs are calibrated with data from many volcanoes and given by A = (0.05-0.1)V2/3, B = (35-40)V2/3 , where A is cross-sectional area of inundation, B is planimetric area and V is deposit volume. The proportionality coefficients were obtained from regression analyses and comparison of simulations to mapped deposits. The method embeds the predictive equations in a GIS program coupled with DEM topography, using the LAHARZ program of Schilling (1998). Although the method is objective and reproducible, any PF hazard zone so computed should be considered as an approximate guide only, due to uncertainties on coefficients applicable to individual PFs, DEM details, and release volumes. Gradational nested hazard maps produced by these simulations reflect in a sense these uncertainties. The model does not explicitly consider dynamic behavior, which can be important. Surge impacts must be extended beyond PF hazard zones and we have explored several approaches to do this. The method has been used to supply PF hazard maps in two crises: Merapi 2006; and Montserrat 2006- 2007. We have also compared our hazard maps to actual recent PF deposits and to maps generated by several other model techniques.

  13. ASTER/AVHRR Data Hybridization to determine Pyroclastic Flow cooling curves

    Science.gov (United States)

    Reath, K. A.; Wright, R.; Ramsey, M. S.

    2014-12-01

    Shiveluch Volcano (Kamchatka, Russia) has been in a consistent state of eruption for the past 15 years. During this period different eruption styles have been documented including: sub-plinian events, dome growth and collapse, and subsequent debris flow deposits. For example, on June 25-26, 2009 a pyroclastic debris flow was emplaced and the eruption onset that produced it was recorded by a series of seismic events spanning several hours. However, due to cloud cover, visual confirmation of the exact emplacement time was obscured. Orbital remote sensing was able to image the deposit repeatedly over the subsequent months. ASTER is a high spatial resolution (90m), low temporal resolution (2 - 4 days at the poles, 16 days at the equator) thermal infrared (TIR) sensor on the NASA Terra satellite. AVHRR is a high temporal resolution (minutes to several hours), low spatial resolution (1km) spaceborne TIR sensor on a series of NOAA satellites. Combined, these sensors provide a unique opportunity to fuse high-spatial and high-temporal resolution data to better observe changes on the surface of the deposit over time. For example, ASTER data were used to determine the flow area and to provide several data points for average temperature while AVHRR data were used to increase the amount of data points. Through this method an accurate average cooling rate over a three month period was determined. This cooling curve was then examined to derive several features about the deposit that were previously unknown. The time of emplacement and period of time needed for negligible thermal output were first determined by extrapolating the cooling curve in time. The total amount of heat output and total flow volume of the deposit were also calculated. This volume was then compared to the volume of the dome to calculate the percentage of collapse. This method can be repeated for other flow deposits to determine if there is a consistent correlation between the dome growth rate, the average

  14. Mobility of pyroclastic flows and surges at the Soufriere Hills Volcano, Montserrat

    Science.gov (United States)

    Calder, E.S.; Cole, P.D.; Dade, W.B.; Druitt, T.H.; Hoblitt, R.P.; Huppert, H.E.; Ritchie, L.; Sparks, R.S.J.; Young, S.R.

    1999-01-01

    The Soufriere Hills Volcano on Montserrat has produced avalanche-like pyroclastic flows formed by collapse of the unstable lava dome or explosive activity. Pyroclastic flows associated with dome collapse generate overlying dilute surges which detach from and travel beyond their parent flows. The largest surges partially transform by rapid sedimentation into dense secondary pyroclastic flows that pose significant hazards to distal areas. Different kinds of pyroclastic density currents display contrasting mobilities indicated by ratios of total height of fall H, run-out distance L, area inundated A and volume transported V. Dome-collapse flow mobilities (characterised by either L/H or A/V 2/3) resemble those of terrestrial and extraterrestrial cold-rockfalls (Dade and Huppert, 1998). In contrast, fountain-fed pumice flows and fine-grained, secondary pyroclastic flows travel slower but, for comparable initial volumes and heights, can inundate greater areas.

  15. The diamicton at Deadman Pass, central Sierra Nevada, California: a residual lag and colluvial deposit, not a 3 Ma glacial till

    Science.gov (United States)

    Bailey, R.A.; Huber, N.K.; Curry, R.R.

    1990-01-01

    Evidence that the diamicton at Deadman Pass is not till includes the following: (1) distribution of the diamicton is limited to areas underlain by the distinctive clast-rich lower pyroclastic member of the quartz latite of San Joaquin Ridge, (2) clasts in the diamicton and in the lower pyroclastic member are identical, (3) clast lithologies in the diamicton reflect nearby sources, (4) glacial deposits are absent in well-exposed sections of the lower pyroclastic member, and (5) formation of diamicton from present-day weathering and mass wasting of outcrops of the lower pyroclastic member can be observed locally. -from Authors

  16. Radiation shielding concrete made of Basalt aggregates.

    Science.gov (United States)

    Alhajali, S; Yousef, S; Kanbour, M; Naoum, B

    2013-04-01

    In spite of the fact that Basalt is a widespread type of rock, there is very little available information on using it as aggregates for concrete radiation shielding. This paper investigates the possibility of using Basalt for the aforementioned purpose. The results have shown that Basalt could be used successfully for preparing radiation shielding concrete, but some attention should be paid to the choice of the suitable types of Basalt and for the neutron activation problem that could arise in the concrete shield.

  17. Shallow Miocene basaltic magma reservoirs in the Bahia de Los Angeles basin, Baja California, Mexico

    Science.gov (United States)

    Delgado-Argote, Luis A.; García-Abdeslem, Juan

    1999-01-01

    The basement in the Bahı´a de Los Angeles basin consists of Paleozoic metamorphic rocks and Cretaceous granitoids. The Neogene stratigraphy overlying the basement is formed, from the base to the top, by andesitic lava flows and plugs, sandstone and conglomeratic horizons, and Miocene pyroclastic flow units and basaltic flows. Basaltic dikes also intrude the whole section. To further define its structure, a detailed gravimetric survey was conducted across the basin about 1 km north of the Sierra Las Flores. In spite of the rough and lineal topography along the foothills of the Sierra La Libertad, we found no evidence for large-scale faulting. Gravity data indicates that the basin has a maximum depth of 120 m in the Valle Las Tinajas and averages 75 m along the gravimetric profile. High density bodies below the northern part of the Sierra Las Flores and Valle Las Tinajas are interpreted to be part of basaltic dikes. The intrusive body located north of the Sierra Las Flores is 2.5 km wide and its top is about 500 m deep. The lava flows of the top of the Sierra Las Flores, together with the distribution of basaltic activity north of this sierra, suggests that this intrusive body continues for 20 km along a NNW-trending strike. Between the sierras Las Flores and Las Animas, a 0.5-km-wide, 300-m-thick intrusive body is interpreted at a depth of about 100 m. This dike could be part of the basaltic activity of the Cerro Las Tinajas and the small mounds along the foothills of western Sierra Las Animas. The observed local normal faulting in the basin is inferred to be mostly associated with the emplacement of the shallow magma reservoirs below Las Flores and Las Tinajas.

  18. Quantitative mineralogical characterization of lunar high-Ti mare basalts and soils for oxygen production

    Science.gov (United States)

    Chambers, J. G.; Taylor, L. A.; Patchen, A.; McKay, D. S.

    1995-07-01

    Efficient lunar resource utilization requires accurate and quantitative evaluation of mineral and glass abundances, distribution, and extraction feasibility, especially for ilmenite. With this in mind, true modal analyses were performed on high-Ti mare basalts and soils with X ray/backscattered electron signal digital-imaging techniques, and these data indicate that (1) ilmenite concentrations are similar for basalts and immature-submature soils with similar TiO2 content; (2) ilmenite liberation of crushed mare basalts and immature-submature mare soils are comparable (i.e., both contain similar amounts of free ilmenite); and (3) because of impact melting and agglutination of primary minerals, mature mare soils contain less ilmenite (both free and attached). Modal analyses of magnetic separates of high-Ti mare basalts and soils show that (1) ilmenite was concentrated by a factor of >=3.3 and (2) soil ilmenite was concentrated to factors of 1.7-2.3. The lower soil ilmenite separation efficiency is attributed to Fe°-bearing agglutinitic glass and amorphous rinds adhered to soil particles. Mass yields of magnetically generated feedstocks were generally less than 5 wt.% in most cases. Calculation of oxygen yield (as released by hydrogen gas reduction of ilmenite) show that (1) beneficiated basalt will provide the most oxygen (8-10%), because of higher ilmenite concentration; (2) reduction of raw immature-submature mare soils and basalts will produce similar amounts of lunar liquid oxygen (LLOX) (2.1-3.1%) and (3) raw Fe-rich pyroclastic soil, 74220, will provide more oxygen (5.4%) than beneficiated high-Ti mare soils and half that of beneficiated high-Ti mare basalts. High-Ti mare soils are attractive resources for lunar liquid oxygen (LLOX) production because of their unconsolidated nature, high ilmenite abundance, and widespread occurrence. Energy-intensive excavation and comminution likely prohibits the basalt mining during early lunar occupation. Orange soils are

  19. Shaking of pyroclastic cones and the formation of granular flows on their flanks: Results from laboratory experiments

    Science.gov (United States)

    Cagnoli, B.; Romano, G. P.; Ventura, G.

    2015-11-01

    We have carried out laboratory experiments to study the generation of granular flows on the slopes of pyroclastic cones that are experiencing volcanic tremor or tectonic earthquakes. These experiments are inspired by the occurrence of granular flows on the flanks of Mount Vesuvius during its 1944 eruption. Our laboratory model consists of sand cones built around a vibrating tube which represents a volcanic conduit with erupting magma inside. A video camera allows the study of the granular flow inception, movement and deposition. Although the collapse of the entire cone is obtained at a specific resonance frequency, single granular flows can be generated by all the vibration frequencies (1-16 Hz) and all the vibration amplitudes (0.5-1.5 mm) that our experimental apparatus has allowed us to adopt. We believe that this is due to the fact that the energy threshold to trigger the flows is small in value. Therefore, if this is true in nature as well, shaken pyroclastic cones are always potentially dangerous because they can easily generate flows that can strike the surrounding areas.

  20. Insight from Laboratory Experiments on the Generation of Granular Flows on the Flanks of Vibrated Pyroclastic Cones

    Science.gov (United States)

    Cagnoli, B.; Romano, G. P.; Ventura, G.

    2015-12-01

    We have carried out laboratory experiments to study the generation of granular flows on the slopes of pyroclastic cones that are experiencing volcanic tremor or tectonic earthquakes. These experiments are inspired by the occurrence of granular flows on the flanks of Mount Vesuvius during its 1944 eruption. Our laboratory model consists of sand cones built around a vibrating tube which represents a volcanic conduit with erupting magma inside. A video camera allows the study of the granular flow inception, movement and deposition. Although the collapse of the entire cone is obtained at a specific resonance frequency, individual granular flows can be generated by all the vibration frequencies and all the vibration amplitudes that our experimental apparatus has allowed us to adopt. We believe that this is due to the fact that the energy threshold to generate the flows is small in value. Therefore, if this is true in nature as well, shaken pyroclastic cones are always potentially dangerous because they can easily generate flows that can strike the surrounding areas.

  1. Automated identification of basalt spectra in Clementine lunar data

    Science.gov (United States)

    Antonenko, I.; Osinski, G. R.

    2011-06-01

    The identification of fresh basalt spectra plays an important role in lunar stratigraphic studies; however, the process can be time consuming and labor intensive. Thus motivated, we developed an empirically derived algorithm for the automated identification of fresh basalt spectra from Clememtine UVVIS data. This algorithm has the following four parameters and limits: BC Ratio=3(R950-R900)/(R900-R750)0.003 and 0.1, where R750 represents the unnormalized reflectance of the 750 nm Clementine band, and so on. Algorithm results were found to be accurate to within an error of 4.5% with respect to visual classification, though olivine spectra may be under-represented. Overall, fresh basalts identified by the algorithm are consistent with expectations and previous work in the Mare Humorum area, though accuracy in other areas has not yet been tested. Great potential exists in using this algorithm for identifying craters that have excavated basalts, estimating the thickness of mare and cryptomare deposits, and other applications.

  2. Formation of obsidian pyroclasts by sintering of ash particles in the volcanic conduit

    Science.gov (United States)

    Gardner, James E.; Llewellin, Edward W.; Watkins, James M.; Befus, Kenneth S.

    2017-02-01

    The ranges in intensity and style of volcanic eruptions, from highly explosive Plinian eruptions to quiescent lava extrusions, depend on the style and efficiency of gas loss from ascending magma. Obsidian pyroclasts - small, glassy pieces of quenched magma found in some volcanic tephra beds - may preserve valuable information about magma degassing in their vesicle textures and volatile contents. Accurate interpretation of their textures and volatiles, however, requires understanding the mechanism of formation of the pyroclasts. Obsidian pyroclasts from the ca. 1325-1350 C.E. North Mono eruption of Mono Craters (CA, USA) were analyzed and found to have H2O and CO2 contents indicating that they were formed at pressures in the approximate range of 3-40 MPa. Many also contain domains with differing vesicle textures, separated by boundaries containing xenocrystic material, indicating that they are composed of smaller fragments that have sutured together. More than half of the pyroclasts analyzed contained small (∼10 μm), highly distorted vesicles, with multi-cuspate morphology, interpreted as the remnants of interstitial gas trapped amongst sintered fragments of melt/glass. Rounded vesicles are also common and are interpreted to result from surface tension-driven relaxation of the distorted vesicles. Calculated timescales of sintering and relaxation are consistent with timescales for pyroclast formation indicated by H2O re-equilibration within the heterogeneous pyroclasts. This sintering model for the origin of obsidian pyroclasts is further supported by the observation that spherical vesicles are found mainly in H2O-rich pyroclasts, and distorted vesicles mainly in H2O-poor pyroclasts. We conclude that obsidian pyroclasts generated during the North Mono eruption were formed by cycles of fragmentation, sintering/suturing, and relaxation, over a very wide range of depths within the conduit; we find no evidence to support pumice (foam) collapse as the formation

  3. Dynamical weakening of pyroclastic flows by mechanical vibrations

    Science.gov (United States)

    Valverde, Jose Manuel; Soria-Hoyo, Carlos; Roche, Olivier

    2017-06-01

    Dynamical weakening of dense granular flows plays a critical role on diverse geological events such as seismic faulting and landslides. A common feature of these processes is the development of fluid-solid relative flows that could lead to fluidization by hydrodynamic viscous stresses. Volcanic ash landslides (pyroclastic flows) are characterized by their high mobility often attributed to fluidization of the usually fine and/or low-density particles by their interaction with the entrapped gas. However, the physical mechanism that might drive sustained fluidization of these dense granular flows over extraordinarily long runout distances is elusive. The behavior of volcanic ash in a slowly rotating drum subjected to mechanical vibrations shown in this work suggests that fluid-particle relative oscillations in dense granular flows present in volcanic eruption events can promote pore gas pressure at reduced shear rates as to sustain fluidization.

  4. Strength of Concrete Containing Basalt Fibre

    OpenAIRE

    2015-01-01

    This paper presents the comparative study of effect of basalt fibre on compressive and split tensile strength of M40 grade concrete. The basalt fibre was mixed in concrete by (0.5%, 1%, and 1.5%) of its total weight of cement in concrete. Results indicated that the strength increases with increase of basalt fibre content up to 1.0% beyond that there is a reduction in strength on increasing basalt fibre. The results show that the concrete specimen with 1.0% of basalt fibre gives be...

  5. New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy)

    Science.gov (United States)

    de Vivo, B.; Rolandi, G.; Gans, P.B.; Calvert, A.; Bohrson, W.A.; Spera, F.J.; Belkin, H.E.

    2001-01-01

    The ∼ 150 km3 (DRE) trachytic Campanian Ignimbrite, which is situated north-west of Naples, Italy, is one of the largest eruptions in the Mediterranean region in the last 200 ky. Despite centuries of investigation, the age and eruptive history of the Campanian Ignimbrite is still debated, as is the chronology of other significant volcanic events of the Campanian Plain within the last 200–300 ky. New 40Ar/39Ar geochronology defines the age of the Campanian Ignimbrite at 39.28 ± 0.11 ka, about 2 ky older than the previous best estimate. Based on the distribution of the Campanian Ignimbrite and associated uppermost proximal lithic and polyclastic breccias, we suggest that the Campanian Ignimbrite magma was emitted from fissures activated along neotectonic Apennine faults rather than from ring fractures defining a Campi Flegrei caldera. Significantly, new volcanological, geochronological, and geochemical data distinguish previously unrecognized ignimbrite deposits in the Campanian Plain, accurately dated between 157 and 205 ka. These ages, coupled with a xenocrystic sanidine component > 315 ka, extend the volcanic history of this region by over 200 ky. Recent work also identifies a pyroclastic deposit, dated at 18.0 ka, outside of the topographic Campi Flegrei basin, expanding the spatial distribution of post-Campanian Ignimbrite deposits. These new discoveries emphasize the importance of continued investigation of the ages, distribution, volumes, and eruption dynamics of volcanic events associated with the Campanian Plain. Such information is critical for accurate assessment of the volcanic hazards associated with potentially large-volume explosive eruptions in close proximity to the densely populated Neapolitan region.

  6. Investigating the explosivity of shallow sub-aqueous basaltic eruptions

    Science.gov (United States)

    Murtagh, R.; White, J. D. L.

    2009-04-01

    Volcanic eruptions produce pyroclasts containing vesicles, clearly implying exsolution of volatiles from the magma has occurred. Our aim is to understand the textural characteristics of vesiculated clasts as a quantitative indicator of the eruptive behaviour of a volcano. Assessing water's role in volatile degassing and outgassing has been and is being well documented for terrestrial eruptions; the same cannot be said, however, for their shallow subaqueous counterparts. The eruptive behaviour of Surtseyan volcanoes, which include both subaqueous and subaerial phases (for example, the type-location Surtsey, Iceland in 1963) is under investigation here and for good reason. Volcanic eruptions during which water and basaltic magma come into contact appear to ignite violent eruptions of many of the small "monogenetic" volcanoes so abundant on Earth. A key problem remains that detailed conditions of water-magma interactions are not yet fully understood. Field samples obtained from exposed sequences deposited originally in a subaqueous environment allow for the necessary analysis of lapilli. With the aid of experimental data, mathematical modelling and terrestrial analogues the ambition is to unravel volatile degassing, ascent histories and fragmentation processes, allowing us ultimately to identify both the role water plays in the explosivity of shallow subaqueous eruptions, and the rise history of magma to the point of interaction. The first site, Pahvant Butte is located in southwest Utah, U.S. It is a well preserved tuff cone overlying a subaqueously deposited mound of glassy ash composed of sideromelane and tachylite. It was erupted under ~85m of water into Lake Bonneville approximately 15,300 years ago. Our focus is on samples collected from a well-bedded, broadly scoured coarse ash and lapilli lithofacies on the eastern flank of the edifice. Vesicularity indices span from 52.6% - 60.8%, with very broad vesicularity ranges, 20.6% - 81.0% for one extreme sample. The

  7. Pyroclast Tracking Velocimetry illuminates bomb ejection and explosion dynamics at Stromboli (Italy) and Yasur (Vanuatu) volcanoes

    Science.gov (United States)

    Gaudin, Damien; Taddeucci, Jacopo; Scarlato, Piergiorgio; Moroni, Monica; Freda, Carmela; Gaeta, Mario; Palladino, Danilo Mauro

    2014-07-01

    A new image processing technique—Pyroclast Tracking Velocimetry—was used to analyze a set of 30 high-speed videos of Strombolian explosions from different vents at Stromboli (Italy) and Yasur (Vanuatu) volcanoes. The studied explosions invariably appear to result from the concatenation of up to a hundred individual pyroclast ejection pulses. All these pulses share a common evolution over time, including (1) a non-linear decrease of the pyroclast ejection velocity, (2) an increasing spread of ejection angle, and (3) an increasing size of the ejected pyroclasts. These features reflect the dynamic burst of short-lived gas pockets, in which the rupture area enlarges while pressure differential decreases. We estimated depth of pyroclast release to be approximately 1 and 8 m below the surface at Stromboli and Yasur, respectively. In addition, explosions featuring more frequent pulses also have higher average ejection velocities and larger total masses of pyroclasts. These explosions release a larger overall amount of energy stored in the pressurized gas by a combination of more frequent and stronger ejection pulses. In this context, the associated kinetic energy per explosion, ranging 103-109 J appears to be a good proxy for the explosion magnitude. Differences in the pulse-defining parameters among the different vents suggest that this general process is modulated by geometrical factors in the shallow conduit, as well as magma-specific rheology. Indeed, the more viscous melt of Yasur, compared to Stromboli, is associated with larger vents producing fewer pulses but larger pyroclasts.

  8. The controls and consequences of substrate entrainment by pyroclastic density currents at Mount St Helens, Washington (USA)

    Science.gov (United States)

    Pollock, N. M.; Brand, B. D.; Roche, O.

    2016-10-01

    Evidence in the deposits from the May 18, 1980 eruption at Mount St Helens demonstrates that pyroclastic density currents (PDCs) produced during the afternoon of the eruption became intermittently erosive. Using detailed componentry and granulometry we constrain the sources for lithic blocks in the deposits and identify deposits from PDCs that became locally erosive. The componentry of the lithics in the fall deposits is used as a proxy for vent erosion and assumed to represent the starting componentry for PDCs prior to entrainment from any other source. We find little evidence in the PDC deposits nearest to the base of the volcano for entrainment from the steep flanks; however, significant evidence indicates that PDCs eroded into the debris avalanche hummocks, suggesting that entrainment is favored as PDCs interact with highly irregular topography. Evidence for locally entrained material downstream from debris avalanche hummocks decreases with height in the outcrop, suggesting that less entrainment occurs as local relief decreases and upstream topography is buried. The prevalence of lithofacies containing locally entrained material at the base of unit contacts and only 10s of meters downstream from debris avalanche hummocks suggests that the majority of entrainment occurs at or near the head of the current. Occasionally, entrained material is located high above unit contacts and deposited well after the initial head of the current is inferred to have passed, indicating that entrainment can occur during periods of non-deposition either from the semi-sustained body of the current or from a pulsating current. Additionally, self-channelization of PDCs, either by levee deposition or scouring into earlier PDC deposits, occurs independently of interaction with topographic obstacles and can affect carrying capacity and runout distance. While we begin to explore the mechanisms and effects of erosion on current dynamics, additional laboratory and numerical studies are

  9. Modelling submarine pyroclastic flows at the Soufrière Hills volcano, Montserrat

    Science.gov (United States)

    Hogg, A. J.; Goater, A.

    2011-12-01

    Submarine sedimentary flows are notoriously difficult to observe directly and interpreting their deposits to gain insight to the parent flows can be problematic. Pyroclastic flows from the Soufrière Hills volcano, Montserrat, which entered the ocean and deposited particles over the sea bed are a notable exception. In this case, from monitoring of the volcano, the mass of particulate released and the duration of the flow can be estimated accurately. Furthermore research cruises have imaged, cored the ocean bed and measured the distribution and composition of the deposit left by these flows over much of their runout. These observations therefore form a unique dataset in which both source conditions and final deposit are relatively well constrained. Mathematically modelling long runout sedimentary flows can also present several difficulties. Over these length and time scales, it is not feasible to simulate directly all of the fluid and particulate motions and so reduced models have been developed to capture the dominant processes and features of the flows. These have often been calibrated by laboratory scale experiments - but now with this data from the Soufrière Hills volcano, it is possible to compare model predictions with a natural scale event. Our model is based upon a shallow layer formulation, assuming hydrostatic balance in the vertical to leading order. The downslope motion of the sediment-laden fluid is driven by gravitational forces, associated with the density difference between the intruding and surrounding fluid. Particles settle out of the current to the underlying boundary, reducing the density difference, slowing the motion and forming the deposit. We develop a model that expresses conservation of fluid and particulate mass and a balance of streamwise momentum. This system of equations is integrated numerically to reveal the temporal and spatial evolution and asymptotic methods are used to reveal the dynamical controls on the runout. The theoretical

  10. Geologic factors contributing to landslide generation in a pyroclastic area: August 1998 Nishigo Village, Japan

    Science.gov (United States)

    Chigira, Masahiro

    2002-07-01

    Vertical contrasts in permeability, particularly where permeable surface materials overlie impermeable materials that prohibit the downward infiltration of groundwater, concentrate the groundwater and become an important focus of landslides that are triggered by intense rainfall. Just such a hydrogeological structure is present within the pyroclastics in Nishigo Village in Fukushima Prefecture, Japan, where intense rainfall of 1200 mm in 6 days generated more than 1000 landslides in August 1998. Three types of landslides occurred. The first type occurred along the edges of small plateaus, where horizontal beds of permeable ash, scoria, and pumice overlie impermeable mudflow deposits consisting of tuffaceous fines and andesite blocks, and massive, weakly consolidated ignimbrites. The rainfall on the plateaus infiltrated downward first, then laterally within the permeable beds, finally gushing out at the plateau edges and triggering landslides. The second type of landslide occurred where weathered tuff of the same ignimbrite was present with a slip surface at the base of the heavily weathered zone. Within this heavily weathered zone, the tuff exfoliated into thin weak plates running parallel to the slope surface. The third type of landslide involved failure of colluvium or ash that filled hollows. This type occurred as a result of subsurface erosion caused by the groundwater infiltrating the superficial beds above the impermeable tuff.

  11. Emplacement of pyroclastic density currents (PDCs) in a deep-sea environment: The Val d'Aveto Formation case (Northern Apennines, Italy)

    Science.gov (United States)

    Di Capua, Andrea; Groppelli, Gianluca

    2016-12-01

    The occurrence of PDC deposits in a foredeep basin sequence, named Val d'Aveto Formation (32-29 Ma, Northern Apennines, Italy), provides new information on the behavior of pyroclastic density currents entering the water. In this work, stratigraphic, petrographic and mineralogical features that characterize three pyroclastic deposits have been described and analyzed in the field (facies and lithological analysis on the blocky-size fraction) and in the laboratory (image analyses on the blocky-size detritus, optical analyses of the microtextures, mineralogical analyses through X-ray powder diffraction (XRPD) and scanning electron microscope with energy dispersive X-ray spectometry (SEM-EDS). The deposits are lapilli- to blocky-size, with a blocky-size fraction constituted of accidental detritus. In thin sections, their groundmass texture varies from porphyritic to eutaxitic where coarser particles become close each others. Growth rims have been also detected around plagioclase crystals. Pyrite habits and oxidation, and plagioclase albitization are consistent with hydrothermal temperature conditions of 200 °C. All these results have been compared with the information provided by modern examples of PDC deposits and laboratory experiments on the behavior of water/hot particles mixing. Grain-to-grain collision has been considered as the main flow mechanism that sustained and avoided the disaggregation of the PDCs entering the water.

  12. Icelandic basaltic geothermal field: A natural analog for nuclear waste isolation in basalt

    Energy Technology Data Exchange (ETDEWEB)

    Ulmer, G.C.; Grandstaff, D.E. (Temple Univ., Philadelphia, PA (USA). Dept. of Geology)

    1984-11-21

    Analog studies of Icelandic geothermal fields have shown that the design of nuclear waste repositories in basalt can benefit by comparison to the data base already available from the development of these geothermal fields. A high degree of similarity exists between these two systems: their petrology, groundwater geochemistry, mineral solubilities, hydrologic parameters, temperature ranges, water-rock redox equilibria, hydrothermal pH values, and secondary mineralogies all show considerable overlap in the range of values. The experimentally-simulated hydrothermal studies of the basaltic nuclear waste repository rocks have, at this time, produced a data base that receives a strong confirmation from the Icelandic analog. Furthermore, the Icelandic analog should eventually be employed to extrapolate into higher and lower temperatures, into longer time-base chemical comparisons, and into more realistic mineral deposition studies, than have been possible in the laboratory evaluations of the nuclear waste repository designs. This eventual use of the Icelandic analog will require cooperative work with the Icelandic Geological Survey. 46 refs., 4 figs., 2 tabs.

  13. Dune bedforms produced by dilute pyroclastic density currents from the August 2006 eruption of Tungurahua volcano, Ecuador.

    Science.gov (United States)

    Douillet, Guilhem Amin; Pacheco, Daniel Alejandro; Kueppers, Ulrich; Letort, Jean; Tsang-Hin-Sun, Ève; Bustillos, Jorge; Hall, Minard; Ramón, Patricio; Dingwell, Donald B

    A series of pyroclastic density currents were generated at Tungurahua volcano (Ecuador) during a period of heightened activity in August 2006. Dense pyroclastic flows were confined to valleys of the drainage network, while dilute pyroclastic density currents overflowed on interfluves where they deposited isolated bodies comprising dune bedforms of cross-stratified ash exposed on the surface. Here, the description, measurement, and classification of more than 300 dune bedforms are presented. Four types of dune bedforms are identified with respect to their shape, internal structure, and geometry (length, width, thickness, stoss and lee face angles, and stoss face length). (1) "Elongate dune bedforms" have smooth shapes and are longer (in the flow direction) than wide or thick. Internal stratification consists of stoss-constructional, thick lensoidal layers of massive and coarse-grained material, alternating with bedsets of fine laminae that deposit continuously on both stoss and lee sides forming aggrading structures with upstream migration of the crests. (2) "Transverse dune bedforms" show linear crests perpendicular to the flow direction, with equivalent lengths and widths. Internally, these bedforms exhibit finely stratified bedsets of aggrading ash laminae with upstream crest migration. Steep truncations of the bedsets are visible on the stoss side only. (3) "Lunate dune bedforms" display a barchanoidal shape and have stratification patterns similar to those of the transverse ones. Finally, (4) "two-dimensional dune bedforms" are much wider than long, exhibit linear crests and are organized into trains. Elongate dune bedforms are found exclusively in proximal deposition zones. Transverse, lunate, and two-dimensional dune bedforms are found in distal ash bodies. The type of dune bedform developed varies spatially within an ash body, transverse dune bedforms occurring primarily at the onset of deposition zones, transitioning to lunate dune bedforms in intermediate

  14. Runout distance and dynamic pressure of pyroclastic density currents: Evidence from 18 May 1980 blast surge of Mount St. Helens

    Science.gov (United States)

    Gardner, J. E.; Andrews, B. J.

    2016-12-01

    Pyroclastic density currents (flows and surges) are one of the most deadly hazards associated with volcanic eruptions. Understanding what controls how far such currents will travel, and how their dynamic pressure evolves, could help mitigate their hazards. The distance a ground hugging, pyroclastic density current travels is partly limited by when it reverses buoyancy and lifts off into the atmosphere. The 1980 blast surge of Mount St. Helens offers an example of a current seen to lift off. Before lofting, it had traveled up to 20 km and leveled more than 600 km3 of thick forest (the blowdown zone). The outer edge of the devastated area - where burned trees that were left standing (the singe zone) - is where the surge is thought to have lifted off. We recently examined deposits in the outer parts of the blowdown and in the singe zone at 32 sites. The important finding is that the laterally moving surge travelled into the singe zone, and hence the change in tree damage does not mark the run out distance of the ground hugging surge. Eyewitness accounts and impacts on trees and vehicles reveal that the surge consisted of a fast, dilute "overcurrent" and a slower "undercurrent", where most of the mass (and heat) was retained. Reasonable estimates for flow density and velocity show that dynamic pressure of the surge (i.e., its ability to topple trees) peaked near the base of the overcurrent. We propose that when the overcurrent began to lift off, the height of peak dynamic pressure rose above the trees and stopped toppling them. The slower undercurrent continued forward, burning trees but it lacked the dynamic pressure needed to topple them. Grain-size variations argue that it slowed from 30 m/s when it entered the singe zone to 3 m/s at the far end. Buoyancy reversal and liftoff are thus not preserved in the deposits where the surge lofted upwards.

  15. Volcán de Colima dome collapse of July, 2015 and associated pyroclastic density currents

    Science.gov (United States)

    Reyes-Dávila, Gabriel A.; Arámbula-Mendoza, Raúl; Espinasa-Pereña, Ramón; Pankhurst, Matthew J.; Navarro-Ochoa, Carlos; Savov, Ivan; Vargas-Bracamontes, Dulce M.; Cortés-Cortés, Abel; Gutiérrez-Martínez, Carlos; Valdés-González, Carlos; Domínguez-Reyes, Tonatiuh; González-Amezcua, Miguel; Martínez-Fierros, Alejandro; Ramírez-Vázquez, Carlos Ariel; Cárdenas-González, Lucio; Castañeda-Bastida, Elizabeth; Vázquez Espinoza de los Monteros, Diana M.; Nieto-Torres, Amiel; Campion, Robin; Courtois, Loic; Lee, Peter D.

    2016-06-01

    During July 10th-11th 2015, Volcán de Colima, Mexico, underwent its most intense eruptive phase since its Subplinian-Plinian 1913 AD eruption. Production of scoria coincident with elevated fumarolic activity and SO2 flux indicate a significant switch of upper-conduit dynamics compared with the preceding decades of dome building and vulcanian explosions. A marked increase in rockfall events and degassing activity was observed on the 8th and 9th of July. On the 10th at 20:16 h (Local time = UTM - 6 h) a partial collapse of the dome generated a series of pyroclastic density currents (PDCs) that lasted 52 min and reached 9.1 km to the south of the volcano. The PDCs were mostly channelized by the Montegrande and San Antonio ravines, and produced a deposit with an estimated volume of 2.4 × 106 m3. Nearly 16 h after the first collapse, a second and larger collapse occurred which lasted 1 h 47 min. This second collapse produced a series of PDCs along the same ravines, reaching a distance of 10.3 km. The total volume calculated for the PDCs of the second event is 8.0 × 106 m3. Including associated ashfall deposits, the two episodes produced a total of 14.2 × 106 m3 of fragmentary material. The collapses formed an amphitheater-shaped crater open towards the south. We propose that the dome collapse was triggered by arrival of gas-rich magma to the upper conduit, which then boiled-over and sustained the PDCs. A juvenile scoria sample selected from the second partial dome collapse contains hornblende, yet at an order of magnitude less abundant (0.2%) than that of 1913, and exhibits reaction rims, whereas the 1913 hornblende is unreacted. At present there is no compelling petrologic evidence for imminent end-cycle activity observed at Volcán de Colima.

  16. 3D Simulations of a Pyroclastic Surge as an Example of a Compressible Suspension Flow

    National Research Council Canada - National Science Library

    ISHIMINE, Yasuhiro

    2004-01-01

    .... As a conspicuous example of such a flow, we present three-dimensional numerical simulations of a pyroclastic surge, which spreads laterally over the ground surface during some volcanic eruptions...

  17. Lethal thermal impact at periphery of pyroclastic surges: evidences at Pompeii

    National Research Council Canada - National Science Library

    Mastrolorenzo, Giuseppe; Petrone, Pierpaolo; Pappalardo, Lucia; Guarino, Fabio M

    2010-01-01

    The evaluation of mortality of pyroclastic surges and flows (PDCs) produced by explosive eruptions is a major goal in risk assessment and mitigation, particularly in distal reaches of flows that are often heavily urbanized...

  18. Lethal Thermal Impact at Periphery of Pyroclastic Surges: Evidences at Pompeii: e11127

    National Research Council Canada - National Science Library

    Giuseppe Mastrolorenzo; Pierpaolo Petrone; Lucia Pappalardo; Fabio M Guarino

    2010-01-01

      Background The evaluation of mortality of pyroclastic surges and flows (PDCs) produced by explosive eruptions is a major goal in risk assessment and mitigation, particularly in distal reaches of flows that are often heavily urbanized...

  19. SMALL-VOLUME BASALTIC VOLCANOES: ERUPTIVE PRODUCTS AND PROCESSES, AND POST-ERUPTIVE GEOMORPHIC EVOLUTION IN CRATER FLAT (PLEISTOCENE), SOUTHERN NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    G.A. Valentine; F.V. Perry; D. Krier; G.N. Keating; R.E. Kelley; A.H. Cogbill

    2006-04-04

    Five Pleistocene basaltic volcanoes in Crater Flat (southern Nevada) demonstrate the complexity of eruption processes associated with small-volume basalts and the effects of initial emplacement characteristics on post-eruptive geomorphic evolution of the volcanic surfaces. The volcanoes record eruptive processes in their pyroclastic facies ranging from ''classical'' Strombolian mechanisms to, potentially, violent Strombolian mechanisms. Cone growth was accompanied, and sometimes disrupted, by effusion of lavas from the bases of cones. Pyroclastic cones were built upon a gently southward-sloping surface and were prone to failure of their down-slope (southern) flanks. Early lavas flowed primarily southward and, at Red and Black Cone volcanoes, carried abundant rafts of cone material on the tops of the flows. These resulting early lava fields eventually built platforms such that later flows erupted from the eastern (at Red Cone) and northern (at Black Cone) bases of the cones. Three major surface features--scoria cones, lava fields with abundant rafts of pyroclastic material, and lava fields with little or no pyroclastic material--experienced different post-eruptive surficial processes. Contrary to previous interpretations, we argue that the Pleistocene Crater Flat volcanoes are monogenetic, each having formed in a single eruptive episode lasting months to a few years, and with all eruptive products having emanated from the area of the volcanoes main cones rather than from scattered vents. Geochemical variations within the volcanoes must be interpreted within a monogenetic framework, which implies preservation of magma source heterogeneities through ascent and eruption of the magmas.

  20. Voluminous lava-like precursor to a major ash-flow tuff: Low-column pyroclastic eruption of the Pagosa Peak Dacite, San Juan volcanic field, Colorado

    Science.gov (United States)

    Bachmann, Olivier; Dungan, M.A.; Lipman, P.W.

    2000-01-01

    The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (~5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (>200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40-60%) of juvenile clasts (to 3-4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5-10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow-layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age. The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows. The inferred eruptive style may be in part related to synchronous disruption of the southern margin of the Fish Canyon magma chamber by block faulting. The Pagosa Peak eruptive sources are apparently buried in the southern La Garita caldera, where northerly extensions of observed syneruptive faults served as fissure vents. Cumulative vent cross-sections were large, leading to relatively low emission velocities for a given discharge rate. Many successive pyroclastic flows accumulated sufficiently rapidly to weld densely as a cooling unit up to 1000 m thick and to retain heat adequately to permit rheomorphic flow. Explosive potential of the magma may have been reduced by degassing during ascent through fissure conduits, leading to fracture-dominated magma fragmentation at low vesicularity. Subsequent collapse of the 75 x 35 km2 La Garita

  1. Sedimentological features of the surge emitted during the August, 2006 pyroclastic eruption at Tungurahua volcano (Ecuador)

    Science.gov (United States)

    Douillet, G.; Goldstein, F.; Lavallee, Y.; Hanson, J. B.; Kueppers, U.; Robin, C.; Ramon, P.

    2009-12-01

    Tungurahua volcano, Ecuador, is a stratovolcano, which began a new eruptive phase in 1999. Notable pyroclastic Density Currents (PDC) were generated in July (VEI 2) and August (VEI 3) 2006 and covered its N and W flanks. PDCs and associated lahars represent a major hazard for 20,000 inhabitants and an hydrological dam. The volcano has been monitored by the Instituto Geofisico of the Escuela Politécnica Nacional of Quito, since 1988. Field work carried out in 2009 provide information on the behavior of the fine-grained fraction of the PDC (i.e., surge) during transport and deposition. We mapped out the sedimentological characteristics of the deposits and distinguished three depositional environments: 1- The core of the deposit, up to several m in thickness, is confined to valleys and consists of poorly-sorted lapilli scoria and blocks (cm to m scale) and a small fraction of ash matrix. Ongoing analysis of the ash matrix will help to understand the link between the main PDC and the associated surge. 2- On ridges and outer margins of valleys, the deposits total a thickness of 10s to 100s cm and consist of fine- to coarse-grain ashes organized in cm-scale beds. Horizontal to cross bed laminations with 10-cm long wavelength prevail. They are typical of deposition under sustained high-energy current, which we associate with the flow of a surge. 3- In the distal part of surge deposits, we observe fine grained surge deposits with a thickness up to ca. 5 m. The characteristic structures are curved crested dunes, 10s of cm high and up to 10s of m long, with dip angles ranging from 15 to 35° and a strongly asymmetric shape. The steepest side tends to be the upslope face. Dunes show mainly a climbing structure, with beds cm in thickness, but some are more complicated, containing cut and fill structures, interpreted as late-stage pulses of energetic turbulence. No displacement dunes were observed in this area. Using the flow direction given by 100s of dunes, we provide

  2. The Use of Basalt, Basalt Fibers and Modified Graphite for Nuclear Waste Repository - 12150

    Energy Technology Data Exchange (ETDEWEB)

    Gulik, V.I. [Institute for Nuclear Research, pr. Nauky 47, Kyiv, 03680 (Ukraine); Biland, A.B. [HHK Technologies, 3535 Wilcreast Dr., Houston TX 77042 (United States)

    2012-07-01

    New materials enhancing the isolation of radioactive waste and spent nuclear fuel are continuously being developed.. Our research suggests that basalt-based materials, including basalt roving chopped basalt fiber strands, basalt composite rebar and materials based on modified graphite, could be used for enhancing radioactive waste isolation during the storage and disposal phases and maintaining it during a significant portion of the post-closure phase. The basalt vitrification process of nuclear waste is a viable alternative to glass vitrification. Basalt roving, chopped basalt fiber strands and basalt composite rebars can significantly increase the strength and safety characteristics of nuclear waste and spent nuclear fuel storages. Materials based on MG are optimal waterproofing materials for nuclear waste containers. (authors)

  3. Origin of the Grande Ronde Basalts, Columbia River Basalt Group

    Science.gov (United States)

    Durand, S. R.; Sen, G.; Reidel, S. P.

    2005-12-01

    The Columbia River basalts are generally thought to have formed by plume melting. Takahashi et al. (1998) suggested that the near-aphyric Grande Ronde Basalts (GR), which comprise ~63% of the CRBG, are essentially primary melts formed by nearly complete fusion of eclogite source rock in the plume and that such melting took place ~2.0 GPa. Durand and Sen (2002) examined phenocrysts and whole rock analyses and concluded that all the basalts are non-primary and, more importantly, that they underwent significant "processing" in shallow crustal magma chambers which erased their higher pressure geochemical signal, thus casting doubt on the validity of the eclogitic plume melting model. Here we report the results of our efforts to simulate the higher pressure histories of GR basalts using COMAGMAT and MELTS software. Our intent was to evaluate (1) whether such melts could be derived from primary melts formed by partial melting of a peridotite source as an alternative to the eclogite model, or if bulk melting of eclogite is required; and (2) at what pressure such primary melts could have been in equilibrium with the mantle. We carried out both forward and inverse modeling. In the forward models we chose different starting melt compositions, all produced in laboratory experiments, from peridotite vs. eclogitic sources. Our starting melts were produced by 6-17% partial melting of the peridotite KLB-1 (Hirose and Kushiro, 1993) and 18-40% melting of eclogites (77SL-582; CRB72-31; Keshav et al., 2004; Takahashi et al., 1998) at 1-3.0 GPa. In a second model, our starting melt composition was the most primitive GR lava with 6.5 wt. % MgO. We extrapolated a linear regression through the GR data to 8 wt. % MgO. We then assumed that such a melt was only olivine-equilibrated, and incrementally added olivine while maintaining equilibrium between olivine and melt using a Kd of 0.3, until a melt in equilibrium with the mantle olivine (Fo89) was found. This composition was fractionated

  4. Pyroclastic surges and flows from the 8-10 May 1997 explosive eruption of Bezymianny volcano, Kamchatka, Russia

    Science.gov (United States)

    Belousov, Alexander; Voight, Barry; Belousova, Marina; Petukhin, Anatoly

    2002-07-01

    The 8-10 May 1997 eruption of Bezymianny volcano began with extrusion of a crystallized plug from the vent in the upper part of the dome. Progressive gravitational collapses of the plug caused decompression of highly crystalline magma in the upper conduit, leading at 13:12 local time on 9 May to a powerful, vertical Vulcanian explosion. The dense pyroclastic mixture collapsed in boil-over style to generate a pyroclastic surge which was focused toward the southeast by the steep-walled, 1956 horseshoe-shaped crater. This surge, with a temperature 30 km2 with deposits as much as 30 cm thick and extending 7 km from the vent. The surge deposits comprised massive to vaguely laminated, gravelly sand (Md -1.2 to 3.7φ sorting 1.2 to 3φ) of poorly vesiculated andesite (mean density 1.82 g cm-3 vesicularity 30 vol% SiO2 content 58.0 wt%). The deposits, with a volume of 5-15×106 m3, became finer grained and better sorted with distance; the maximal diameter of juvenile clasts decreased from 46 to 4 cm. The transport and deposition of the surge over a snowy landscape generated extensive lahars which traveled >30 km. Immediately following the surge, semi-vesiculated block-and-ash flows were emplaced as far as 4.7 km from the vent. Over time the juvenile lava in clasts of these flows became progressively less crystallized, apparently more silicic (59.0 to 59.9 wt% SiO2) and more vesiculated (density 1.64 to 1.12 g cm-3 vesicularity 37 to 57 vol%). At this stage the eruption showed transitional behavior, with mass divided between collapsing fountain and buoyant column. The youngest pumice-and-ash flows were accompanied by a sustained sub-Plinian eruption column 14 km high, from which platy fallout clasts were deposited ( 59.7% SiO2; density 1.09 g cm-3 vesicularity 58 vol%). The explosive activity lasted about 37 min and produced a total of 0.026 km3 dense rock equivalent of magma, with an average discharge of 1.2×104 m3 s-1. A lava flow 200 m long terminated the eruption. The

  5. Basaltic cannibalism at Thrihnukagigur volcano, Iceland

    Science.gov (United States)

    Hudak, M. R.; Feineman, M. D.; La Femina, P. C.; Geirsson, H.

    2014-12-01

    Magmatic assimilation of felsic continental crust is a well-documented, relatively common phenomenon. The extent to which basaltic crust is assimilated by magmas, on the other hand, is not well known. Basaltic cannibalism, or the wholesale incorporation of basaltic crustal material into a basaltic magma, is thought to be uncommon because basalt requires more energy than higher silica rocks to melt. Basaltic materials that are unconsolidated, poorly crystalline, or palagonitized may be more easily ingested than fully crystallized massive basalt, thus allowing basaltic cannibalism to occur. Thrihnukagigur volcano, SW Iceland, offers a unique exposure of a buried cinder cone within its evacuated conduit, 100 m below the main vent. The unconsolidated tephra is cross-cut by a NNE-trending dike, which runs across the ceiling of this cave to a vent that produced lava and tephra during the ~4 Ka fissure eruption. Preliminary petrographic and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) analyses indicate that there are two populations of plagioclase present in the system - Population One is stubby (aspect ratio 2.1), subhedral to euhedral, and has much higher Ba/Sr ratios. Population One crystals are observed in the cinder cone, dike, and surface lavas, whereas Population Two crystals are observed only in the dike and surface lavas. This suggests that a magma crystallizing a single elongate population of plagioclase intruded the cinder cone and rapidly assimilated the tephra, incorporating the stubbier population of phenocrysts. This conceptual model for basaltic cannibalism is supported by field observations of large-scale erosion upward into the tephra, which is coated by magma flow-back indicating that magma was involved in the thermal etching. While the unique exposure at Thrihnukagigur makes it an exceptional place to investigate basaltic cannibalism, we suggest that it is not limited to this volcanic system. Rather it is a process that likely

  6. Conduit margin heating and deformation during the AD 1886 basaltic Plinian eruption at Tarawera volcano, New Zealand.

    Science.gov (United States)

    Schauroth, Jenny; Wadsworth, Fabian B; Kennedy, Ben; von Aulock, Felix W; Lavallée, Yan; Damby, David E; Vasseur, Jérémie; Scheu, Bettina; Dingwell, Donald B

    During explosive eruptions, a suspension of gas and pyroclasts rises rapidly within a conduit. Here, we have analysed textures preserved in the walls of a pyroclastic feeder dyke of the AD 1886 Tarawera basaltic Plinian fissure eruption. The samples examined consist of basaltic ash and scoria plastered onto a conduit wall of a coherent rhyolite dome and a welded rhyolitic dome breccia. We examine the textural evidence for the response of the wall material, built of ∼75 vol.% glass and ∼25 vol.% crystals (pore-free equivalent), to mass movement in the adjacent conduit. In the rhyolitic wall material, we quantify the orientation and aspect ratio of biotite crystals as strain markers of simple shear deformation, and interpret juxtaposed regions of vesiculation and vesicle collapse as evidence of conduit wall heating. Systematic changes occur close to the margin: (1) porosity is highly variable, with areas locally vesiculated or densified, (2) biotite crystals are oriented with their long axis parallel to the margin, (3) the biotites have greater aspect ratios close to the margin and (4) the biotite crystals are fractured. We interpret the biotite phenocryst deformation to result from crystal fracture, rotation and cleavage-parallel bookcase translation. These textural observations are inferred to indicate mechanical coupling between the hot gas-ash jet and the conduit wall and reheating of wall rock rhyolite. We couple these observations with a simple 1D conductive heating model to show what minimum temperature the conduit wall needs to reach in order to achieve a temperature above the glass transition throughout the texturally-defined deformed zone. We propose that conduit wall heating and resulting deformation influences conduit margin outgassing and may enhance the intensity of such large basaltic eruptions.

  7. Analysis of Heterogeneity in CO2, H2O and OH in Centimeter-Sized Obsidian Pyroclasts from Mono Craters, California

    Science.gov (United States)

    Conde, G. D.; Watkins, J. M.

    2014-12-01

    Volcanic tephra deposits typically contain inclusions or fragments of quenched melt that preserve pre-eruptive volatile concentrations within the volcanic conduit. The concentrations of CO2, H2O and OH in obsidian pyroclasts provide information on magma storage depths while gradients in these volatile species provide information on rates and mechanisms of gas loss (or gain) in magma during ascent. We are measuring CO2, H2O and OH profiles and area maps in six randomly selected pyroclastic obsidian clasts from Mono Craters, California using conventional Fourier Transform Infrared Spectroscopy (FTIR). Previous studies of these pyroclasts have focused on spot analyses of volatile concentrations within clast interiors, but our study targets clast rims, bubbles, flow bands, and texturally homogeneous regions of the clasts. The objective is to use the magnitude and spatial distribution of heterogeneities to assess the role of vapor fluxing and to determine timescales of magmatic processes such as bubble growth/resorption and mixing of magma from variable depths. The first clast that we have analyzed is relatively homogeneous in dissolved H2O and OH but exhibits millimeter-scale heterogeneities in dissolved CO2. The concentration of dissolved CO2 varies by a factor of two, ranging from 15 to 30 ppm with a patchy distribution throughout the clast. The patches of high CO2 concentration do not correspond to visible textures within the clast. Total water (H2Ot) varies from 1.5 to 1.7 wt% with higher water concentrations corresponding to darker regions of glass. The distribution of CO2 requires a mechanism for introducing millimeter-scale heterogeneity within minutes to hours prior to the eruption. Our interpretation is that obsidian pyroclasts are assembled during chaotic vertical mixing and thus sample a range of depths within the feeder system. This interpretation is consistent with previous inferences that resorption of bubbles within pyroclasts is caused by repeated

  8. Putative cryptoendolithic life in Devonian pillow basalt, Rheinisches Schiefergebirge, Germany.

    Science.gov (United States)

    Peckmann, J; Bach, W; Behrens, K; Reitner, J

    2008-03-01

    Middle Devonian (Givetian) pillow basalt and inter-pillow breccia from the Rheinisches Schiefergebirge in Germany were found to contain putative biogenic filaments that indicate that life once proliferated within these volcanic rocks. Mineralized filaments are found in carbonate amygdules (vesicles filled by carbonate cement) in the volcanic rock, where they started to form on the internal surface of the once water-filled vesicles. Biogenicity of the filaments is indicated by (1) their size and shape resembling modern microorganisms including a constant diameter along the length of curved filaments, (2) their independence of crystal faces or cleavage planes, (3) branching patterns reminiscent of modern microorganisms, and (4) their spatial clustering and preferential occurrence close to the margin of pillows and in the inter-pillow breccias. A time lag between the deposition of pillow basalt and the activity of endoliths is revealed by the sequence of carbonate cements filling the amygdules. The putative filamentous microorganisms thrived after the formation of early fibrous rim cement, but before later equant calcite spar filled most of the remaining porosity. Microbial clay authigenesis analogous to the encrustation of prokaryotes in modern iron-rich environments led to the preservation of filaments. The filaments predominantly consist of the clay minerals chamosite and illite. Having dwelled in water-filled vesicles, the Devonian basalt-hosted filaments apparently represent cryptoendoliths. This finding suggests that a previously unrecognized niche for life exists within volcanic rock.

  9. Magnetic fabrics of the Miocene ignimbrites from West-Cameroon: Implications for pyroclastic flow source and sedimentation

    Science.gov (United States)

    Gountié Dedzo, M.; Nédélec, A.; Nono, A.; Njanko, T.; Font, E.; Kamgang, P.; Njonfang, E.; Launeau, P.

    2011-06-01

    The Miocene ignimbrites of Mounts Bambouto and Bamenda located in the central part of Cameroon Volcanic Line are generally made of welded and non-welded massive lapilli tuff and lithic breccias. These discontinuous deposits cover a total area of 180 km 2 with thickness ranging from 25 to 200 m. The different facies contain several lithic fragments of mainly trachytic nature. The devitrified matrix of the welded ignimbrites is constituted by sanidine, anorthoclase, quartz, plagioclase, clinopyroxene, biotite, Fe-Ti oxides and devitrified fiammes. Anisotropy of magnetic susceptibility (AMS) is used to characterize magnetic fabrics and to provide an estimate of flow direction of each ignimbrite sheet. Magnetic mineralogy results from different flow units show that titanomagnetite, titanohematite, maghemite and goethite with grain size ranging from coarse MD to very fine SP are the main magnetic carriers of these ignimbrites. Inferred transport directions based on the AMS data and field indicators show that Bambouto caldera is the source of main pyroclastic deposits of Mount Bambouto. In southwestern Mount Bamenda, Santa-Mbu caldera or Bambouto caldera constituted the probable emission center of Mbengwi, Bamenda and Mbu ignimbrite sheets, whereas magnetic fabrics of Bambili, Sabga and Big Babanki ignimbrites demonstrate that these deposits were emitted from a northeastern source, namely Oku vent in Mount Oku. A small number of subvertical AMS fabrics correspond to rocks possibly modified by an elutriation process.

  10. Global Isotopic Signatures of Oceanic Island Basalts.

    Science.gov (United States)

    1991-08-01

    Appendix). Samples in the data set are mainly basalt. with some gabbros and trachybasalts, trachytes and other silica-rich rocks relative to basalt...Hart (1984) contoured world maps of OIB isotope data for his three DUPAL anomaly criteria [ASr> 40; A7/4 > 3; A8/4 > 401. These maps show a

  11. Hardness of basaltic glass-ceramics

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Estrup, Maja;

    2009-01-01

    The dependence of the hardness of basaltic glass-ceramics on their degree of crystallisation has been explored by means of differential scanning calorimetry, optical microscopy, x-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses were achieved...

  12. Hardness of basaltic glass-ceramics

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Estrup, Maja

    2009-01-01

    The dependence of the hardness of basaltic glass-ceramics on their degree of crystallisation has been explored by means of differential scanning calorimetry, optical microscopy, x-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses were achieved...

  13. Technical program plan, Basalt Waste Isolation Project

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-19

    The Basalt Waste Isolation Program covers all activities necessary to assess the feasibility and provide the technology needed to design and construct a nuclear waste repository in basalt. The program is divided into the following areas: program management; systems integration; scientific technology; near-surface test facility; and repository studies. The program is discussed in detail.

  14. The November 2002 Pyroclastic Flows at El Reventador, Ecuador: Computer Simulations Using the TITAN Thin-layer Code

    Science.gov (United States)

    Burkett, B.; Sheridan, M. F.

    2007-05-01

    On November 3, 2002, El Reventador volcano, located on the eastern flank of the Ecuadorian Andes, produced a sudden, violent eruption culminating in a 17km high column containing mostly steam and ash. Explosions in the initial phase created a summit crater while generating four lithic-rich andesitic pyroclastic flows. The longest of these flows traveled ESE out of the breached caldera, obliquely overriding the 200-400m southern caldera wall, reaching the Quijos River 8km distant. This flow crossed the major oil pipelines of Ecuador, displacing a pressurized crude oil pipeline more than 100m. The flows contained mostly lithic fragments with only minor juvenile pumice. The accompanying ash-cloud surge deposited a thin layer on top of the PF deposit, indicating an abundance of gas within the flow. The eruption came with practically no warning and yet had a large socio- economic impact for Ecuador. While the flows themselves resulted in no loss of life, the lack of significant precursor activity underscores the necessity for detailed pre-eruption knowledge of the potential hazards and risk zones around a particular volcano so as to be prepared in the event of such "surprise" eruptions. In conjunction with field mapping, computer models of volcanogenic flows can be used not only to identify risk zones but to understand the evolution of these flows. A new set of computer simulations using the TITAN (www.gmfg.buffalo.edu) thin-layer code allows a more complete exploration of important flow properties associated with this type of eruption. Realizations of this code simulate the path, extent, flow thickness, velocity, and momentum of the flows given the set of initial conditions (volume, starting location, flux hydrograph, internal friction, and basal friction). The TITAN code was used to simulate the four lithic-rich pyroclastic flows generated at the beginning of the 2002 eruption. Using field estimated volumes and starting positions of the PFs, simulations of the two

  15. Geochemical Characteristics and Tectonic Setting of the Laohushan Basalts, North Qilian Mountains

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Ordovician Laohushan ophiolite, located in the eastern partof the North Qilian Mountains, is mainly composed of meta-peridotites, gabbros and basalts alternating with sediments. The sediments are mainly turbidites, in cluding sandstones, siltstones, cherts etc. Major elements show that the basalts are subalkaline tholeiites and may be analogous to ocean-floor basalts. Except a few N-MORBs, most of the basalts are E-MORBs as indicated by incompatible element ratios such as (La/Ce)N, La/Sm, Ce/Zr, Zr/Y and Zr/Nb. Negative Nb anomaly is common but negative Zr, Hf and Ti anomalies are quite rare. Based on the geochemical characteristics, it is suggested that the Laohushan basalts were formed in a back-arc basin. eNd (t) of the basalts ranges between +3.0 and +8.9 and (87Sr/86Sr)i ranges between 0.7030 and 0.7060, indicating a depleted mantle source which was mixed with more or less enriched mantle components. Further more, the petrography of the sandstones and geochemistry of the cherts suggest that the sediments were deposited near a continental margin.

  16. Objective rapid delineation of areas at risk from block-and-ash pyroclastic flows and surges

    Science.gov (United States)

    Widiwijayanti, C.; Voight, B.; Hidayat, D.; Schilling, S. P.

    2009-08-01

    Assessments of pyroclastic flow (PF) hazards are commonly based on mapping of PF and surge deposits and estimations of inundation limits, and/or computer models of varying degrees of sophistication. In volcanic crises a PF hazard map may be sorely needed, but limited time, exposures, or safety aspects may preclude fieldwork, and insufficient time or baseline data may be available for reliable dynamic simulations. We have developed a statistically constrained simulation model for block-and-ash type PFs to estimate potential areas of inundation by adapting methodology from Iverson et al. (Geol Soc America Bull 110:972-984, 1998) for lahars. The predictive equations for block-and-ash PFs are calibrated with data from several volcanoes and given by A = (0.05 to 0.1) V 2/3, B = (35 to 40) V 2/3, where A is cross-sectional area of inundation, B is planimetric area and V is deposit volume. The proportionality coefficients were obtained from regression analyses and comparison of simulations to mapped deposits. The method embeds the predictive equations in a GIS program coupled with DEM topography, using the LAHARZ program of Schilling (1998). Although the method is objective and reproducible, any PF hazard zone so computed should be considered as an approximate guide only, due to uncertainties on the coefficients applicable to individual PFs, the authenticity of DEM details, and the volume of future collapses. The statistical uncertainty of the predictive equations, which imply a factor of two or more in predicting A or B for a specified V, is superposed on the uncertainty of forecasting V for the next PF to descend a particular valley. Multiple inundation zones, produced by simulations using a selected range of volumes, partly accommodate these uncertainties. The resulting maps show graphically that PF inundation potentials are highest nearest volcano sources and along valley thalwegs, and diminish with distance from source and lateral distance from thalweg. The model

  17. Objective rapid delineation of areas at risk from block-and-ash pyroclastic flows and surges

    Science.gov (United States)

    Widiwijayanti, C.; Voight, B.; Hidayat, D.; Schilling, S.P.

    2009-01-01

    Assessments of pyroclastic flow (PF) hazards are commonly based on mapping of PF and surge deposits and estimations of inundation limits, and/or computer models of varying degrees of sophistication. In volcanic crises a PF hazard map may be sorely needed, but limited time, exposures, or safety aspects may preclude fieldwork, and insufficient time or baseline data may be available for reliable dynamic simulations. We have developed a statistically constrained simulation model for block-and-ash type PFs to estimate potential areas of inundation by adapting methodology from Iverson et al. (Geol Soc America Bull 110:972-984, (1998) for lahars. The predictive equations for block-and-ash PFs are calibrated with data from several volcanoes and given by A = (0.05 to 0.1) V2/3, B = (35 to 40) V2/3, where A is cross-sectional area of inundation, B is planimetric area and V is deposit volume. The proportionality coefficients were obtained from regression analyses and comparison of simulations to mapped deposits. The method embeds the predictive equations in a GIS program coupled with DEM topography, using the LAHARZ program of Schilling (1998). Although the method is objective and reproducible, any PF hazard zone so computed should be considered as an approximate guide only, due to uncertainties on the coefficients applicable to individual PFs, the authenticity of DEM details, and the volume of future collapses. The statistical uncertainty of the predictive equations, which imply a factor of two or more in predicting A or B for a specified V, is superposed on the uncertainty of forecasting V for the next PF to descend a particular valley. Multiple inundation zones, produced by simulations using a selected range of volumes, partly accommodate these uncertainties. The resulting maps show graphically that PF inundation potentials are highest nearest volcano sources and along valley thalwegs, and diminish with distance from source and lateral distance from thalweg. The model does

  18. The stratigraphy, depositional processes, and environment of the late Pleistocene Polallie-period deposits at Mount Hood Volcano, Oregon, USA

    Science.gov (United States)

    Thouret, Jean-Claude

    2005-08-01

    The Polallie eruptive period of Mt. Hood, Oregon, is the last major episode of eruption and dome growth, before the late Holocene activity which was centered at Crater Rock. A volume of 4-8 km 3 of Polallie deposits forms an apron of ca. 60 km 2 on the east, northeast and southeast flanks. The Polallie deposits can be divided, stratigraphically, into four groups: Group I rockslide avalanche and pyroclastic-flow deposits; Group II debris-flow and pyroclastic-flow deposits that suggest some explosive activity and remobilization of pyroclastic debris in a glacial environment; Group III block-and-ash flow deposits that attest to summit dome growth; Group IV alternating debris-flow deposits, glacial sediments, and reworked pyroclastic-flow deposits that indicate a decrease in dome activity and an increase in erosion and transport. Group III clearly indicates frequent episodes of dome growth and collapse, whereas Groups II and IV imply increasing erosion and, conversely, decreasing volcanic activity. The Polallie period occurred in the late Pleistocene during and just after the last Alpine glaciation, which is named Evans Creek in the Cascade Range. According to four K-Ar age dates on lava flows interbedded with Polallie deposits and to published minimum 14C ages on tephra and soils overlying these deposits, the Polallie period had lasted 15,000-22,000 years between 28-34 ka and 12-13 ka. From stratigraphic subdivisions, sedimentary lithofacies and features and from the grain-size and geochemical data, we infer that the Polallie depositional record is a result of the interplay of several processes acting during a long-lasting period of dome growth and destruction. The growth of several domes near the present summit was intermittent, because each group of sediments encompasses primary (pyroclastic) and secondary (volcaniclastic and epiclastic) deposition. Direct deposition of primary material has occurred within intervals of erosion that have probably included meltwater

  19. Probabilistic volcanic hazard assessments of Pyroclastic Density Currents: ongoing practices and future perspectives

    Science.gov (United States)

    Tierz, Pablo; Sandri, Laura; Ramona Stefanescu, Elena; Patra, Abani; Marzocchi, Warner; Costa, Antonio; Sulpizio, Roberto

    2014-05-01

    Explosive volcanoes and, especially, Pyroclastic Density Currents (PDCs) pose an enormous threat to populations living in the surroundings of volcanic areas. Difficulties in the modeling of PDCs are related to (i) very complex and stochastic physical processes, intrinsic to their occurrence, and (ii) to a lack of knowledge about how these processes actually form and evolve. This means that there are deep uncertainties (namely, of aleatory nature due to point (i) above, and of epistemic nature due to point (ii) above) associated to the study and forecast of PDCs. Consequently, the assessment of their hazard is better described in terms of probabilistic approaches rather than by deterministic ones. What is actually done to assess probabilistic hazard from PDCs is to couple deterministic simulators with statistical techniques that can, eventually, supply probabilities and inform about the uncertainties involved. In this work, some examples of both PDC numerical simulators (Energy Cone and TITAN2D) and uncertainty quantification techniques (Monte Carlo sampling -MC-, Polynomial Chaos Quadrature -PCQ- and Bayesian Linear Emulation -BLE-) are presented, and their advantages, limitations and future potential are underlined. The key point in choosing a specific method leans on the balance between its related computational cost, the physical reliability of the simulator and the pursued target of the hazard analysis (type of PDCs considered, time-scale selected for the analysis, particular guidelines received from decision-making agencies, etc.). Although current numerical and statistical techniques have brought important advances in probabilistic volcanic hazard assessment from PDCs, some of them may be further applicable to more sophisticated simulators. In addition, forthcoming improvements could be focused on three main multidisciplinary directions: 1) Validate the simulators frequently used (through comparison with PDC deposits and other simulators), 2) Decrease

  20. New insights into the evolution of the magmatic system of a composite andesite volcano revealed by clasts from distal mass-flow deposits: Ruapehu volcano, New Zealand

    Science.gov (United States)

    Tost, M.; Price, R. C.; Cronin, S. J.; Smith, I. E. M.

    2016-05-01

    Stratovolcanoes characteristically build large composite edifices over long periods with stacked lavas intercalated with pyroclastic deposits. In most cases, only the most recent volcanic products are exposed on the flanks of the volcano, and consequently the search for deposits recording an older eruptive and magmatic history is typically focussed far from the cone, within distal tephra deposits. Clasts within lahar and debris avalanche deposits may also provide unique insights into the earliest eruptive and magmatic history of long-lived volcanoes, especially when widespread fallout is absent. Careful sampling and subsequent petrological and geochemical analyses of lava and pumice clasts from six distal mass-flow deposit sequences (hyperconcentrated flow, debris flows and debris avalanche deposits) from Mt. Ruapehu (New Zealand), combined with detailed stratigraphic studies and radiometric age dating, give new perspectives on the pre-50 ka magmatic system of this complex volcano. A conglomerate emplaced between 340 and 310 ka contains evidence for the oldest episode of Mt. Ruapehu volcanism, and unusually for the composite cone, pumice clasts from this unit contain amphibole-bearing xenoliths. Chemical and petrological data for these oldest Ruapehu clasts indicate that a deep (˜40 km) crustal storage system had already developed under Mt. Ruapehu before ˜340 ka. From the very earliest stages, evolution was largely controlled by magma mixing, along with decoupled assimilation and fractional crystallization within numerous isolated small-scale magma batches stored throughout the crust. From around 340 to 160 ka, there was a progressive shift towards more primitive compositions, suggesting that during this period large-scale replenishment events involving mantle-derived basaltic magmas occurred within the mid- to upper crustal storage system. Subsequent magmas became progressively more evolved due to decoupled fractional crystallization and assimilation processes

  1. Subseafloor basalts as fungal habitats

    Science.gov (United States)

    Ivarsson, M.

    2012-09-01

    The oceanic crust is believed to host the largest potential habitat for microbial life on Earth, yet, still we lack substantial information about the abundance, diversity, and consequence of its biosphere. The last two decades have involved major research accomplishments within this field and a change in view of the ocean crust and its potential to harbour life. Here fossilised fungal colonies in subseafloor basalts are reported from three different seamounts in the Pacific Ocean. The fungal colonies consist of various characteristic structures interpreted as fungal hyphae, fruit bodies and spores. The fungal hyphae are well preserved with morphological characteristics such as hyphal walls, septa, thallic conidiogenesis, and hyphal tips with hyphal vesicles within. The fruit bodies consist of large (∼50-200 µm in diameter) body-like structures with a defined outer membrane and an interior filled with calcite. The fruit bodies have at some stage been emptied of their contents of spores and filled by carbonate-forming fluids. A few fruit bodies not filled by calcite and with spores still within support this interpretation. Spore-like structures (ranging from a few µm to ∼20 µm in diameter) are also observed outside of the fruit bodies and in some cases concentrated to openings in the membrane of the fruit bodies. The hyphae, fruit bodies and spores are all closely associated with a crust lining the vein walls that probably represent a mineralized biofilm. The results support a fungal presence in deep subseafloor basalts and indicate that such habitats were vital between ∼81 and 48 Ma.

  2. Hydrological monitoring of a natural slope covered with loose granular pyroclastic deposits

    Science.gov (United States)

    Damiano, Emilia; Greco, Roberto; Guida, Andrea; Olivares, Lucio; Picarelli, Luciano

    2010-05-01

    Mountainous areas of Northern Campania, Southern Italy, are characterised by steep slopes covered with loose volcanic ashes, with very high porosity (ranging between 0.70 and 0.75), laying above a calcareous bedrock. Slope inclination is often larger than internal friction angle of such ashes (around 38°), thus equilibrium is assured by the contribution of apparent cohesion due to soil suction in unsaturated conditions. That is why, during intense and persistent rainfall events, when soil approaches saturation and consequently suction decreases, shallow landslides are frequently triggered. The physical characteristics of involved soils are such that landslides often evolve in form of debris flows, which cause huge damages to buildings and infrastructures and, in some cases, even casualties. Field hydrological monitoring is essential to develop reliable models of slope response to rainfall infiltration, allowing to define triggering conditions of landslides. An automatic monitoring station has been recently installed at the slope of Cervinara, 30 km East of Naples, where a catastrophic landslide occurred in December 1999. The station consists of a tipping bucket rain gauge, with a sensitivity to rainfall height of 0.2mm; four jet fill tensiometers, for the measurement of soil suction at the depths of 10cm, 40cm, 120cm and 160cm below ground surface; four time domain reflectometry probes of various lengths, connected through a multiplexer to a reflectometer, for the measurement of water content profile from ground surface up to a depth of 160cm. All the sensors are connected to a datalogger for the automatic acquisition at hourly frequency of experimental data. Acquired data are then stored into a magnetic memory which is periodically downloaded into a PC. The entire station is operated by a lithium battery connected to a solar panel. The first collected experimental data confirm the usefulness of simultaneous monitoring, at high temporal resolution, of rainfall height, soil suction and soil water content for a better understanding of slope infiltration processes.

  3. Erosion and entrainment of snow and ice by pyroclastic density currents: some outstanding questions (Invited)

    Science.gov (United States)

    Walder, J. S.

    2010-12-01

    A pyroclastic density current moving over snow is likely to transform to a lahar if the pyroclasts incorporate enough (melting) snow and meltwater to bring the bulk water content of the mixture to about 35% by volume. However, the processes by which such a mixture forms are still not well understood. Walder (Bull. Volcanol., v. 62, 2000) showed experimentally the existence of an erosion mechanism that functions even in the absence of relative shear motion between pyroclasts and snow substrate: a portion of the snow melted by a blanket of pyroclasts is vaporized; the flux of water vapor upward through the pyroclasts may be enough to fluidize the pyroclasts, which then convect, rapidly scour the snow substrate and transform into a slurry. But these experiments do not tell us how moving pyroclasts would erode snow, and simply releasing a hot grain flow over a snow surface in the lab gives misleading results owing to improper scaling of τ/σ , the ratio of the shear stress τ exerted by the pyroclastic flow to the shear strength σ of snow. There seems to be no way around this problem for experiments with actual snow. However, it may be possible to circumvent the scaling problem by replacing the snow substrate by a gas-fluidized particle bed: by varying the gas flux, the apparent shear strength of the particle bed can be varied. Such an investigation of erosional processes could be done at room temperature. Snow-avalanche studies (for example, Gauer and Issler, Ann. Glaciol. v. 38, 2003) may provide some insight into snow erosion by a pyroclastic density current. Snow is eroded at the base of a dense snow avalanche by abrasion, particle impacts, and—at the avalanche head—by plowing and a “blasting” mechanism associated with compression of the snowpack and expulsion of pore fluid (air). Erosion at the avalanche head seems to be particularly important. Similar processes are likely to occur when the over-riding flow comprises hot grains. The laboratory release of

  4. Repetitive mixing events and Holocene pyroclastic activity at Pico de Orizaba and Popocatepetl, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Cantagrel, J.M.; Gourgaud, A.; Robin, C.

    1984-01-01

    The Holocene volcanic activity which built up the present terminal cones of Pico de Orizaba and Popocatepetl in eastern Mexico, was characterized by repeated pyroclastic Saint-Vincent type eruptions. Radiocarbon data show that these paroxysmal events occurred at more or less regular intervals, and were followed by moderate activity producing ash and pumice falls and andesitic lava flows from the summit craters. Typical ash and scoria pyroclastic flows exhibit a heterogeneous composition given by the interaction of a dacitic component with a more basic andesitic one. Scoria bombs are characterized by banded to emulsified textures, mineralogical disequilibrium assemblages and linear chemical variations on element-element plots as exemplified by the Loma Grande flow at Pico. Periodic replenishments of the magmatic reservoir could be the major phenomenon that started mixing and consequently triggered the pyroclastic eruptions. 22 references.

  5. Repetitive mixing events and holocene pyroclastic activity at Pico de Orizaba and Popocatepetl (Mexico)

    Science.gov (United States)

    Cantagrel, J. M.; Gourgaud, A.; Robin, C.

    1984-12-01

    The Holocene volcanic activity which built up the present terminal cones of Pico de Orizaba and Popocatepetl in eastern Mexico, was characterized by repeated pyroclastic Saint-Vincent type eruptions. Radiocarbon data show that these paroxysmal events occurred at more or less regular intervals, and were followed by moderate activity producing ash and pumice falls and andesitic lava flows from the summit craters. Typical ash and scoria pyroclastic flows exhibit a heterogeneous composition given by the interaction of a dacitic component with a more basic andesitic one. Scoria bombs are characterized by banded to emulsified textures, mineralogical desequilibrium assemblages and linear chemical variations on element-element plots as exemplified by the Loma Grande flow at Pico. Periodic replenishments of the magmatic reservoir could be the major phenomenon that started mixing and consequently triggered the pyroclastic eruptions.

  6. Magmatic inclusions in rhyolites, contaminated basalts, and compositional zonation beneath the Coso volcanic field, California

    Science.gov (United States)

    Bacon, C.R.; Metz, J.

    1984-01-01

    Basaltic lava flows and high-silica rhyolite domes form the Pleistocene part of the Coso volcanic field in southeastern California. The distribution of vents maps the areal zonation inferred for the upper parts of the Coso magmatic system. Subalkalic basalts (Coso volcanic field contain sparse andesitic inclusions (55-61% SiO2). Pillow-like forms, intricate commingling and local diffusive mixing of andesite and rhyolite at contacts, concentric vesicle distribution, and crystal morphologies indicative of undercooling show that inclusions were incorporated in their rhyolitic hosts as blobs of magma. Inclusions were probably dispersed throughout small volumes of rhyolitic magma by convective (mechanical) mixing. Inclusion magma was formed by mixing (hybridization) at the interface between basaltic and rhyolitic magmas that coexisted in vertically zoned igneous systems. Relict phenocrysts and the bulk compositions of inclusions suggest that silicic endmembers were less differentiated than erupted high-silica rhyolite. Changes in inferred endmembers of magma mixtures with time suggest that the steepness of chemical gradients near the silicic/mafic interface in the zoned reservoir may have decreased as the system matured, although a high-silica rhyolitic cap persisted. The Coso example is an extreme case of large thermal and compositional contrast between inclusion and host magmas; lesser differences between intermediate composition magmas and inclusions lead to undercooling phenomena that suggest smaller ??T. Vertical compositional zonation in magma chambers has been documented through study of products of voluminous pyroclastic eruptions. Magmatic inclusions in volcanic rocks provide evidence for compositional zonation and mixing processes in igneous systems when only lava is erupted. ?? 1984 Springer-Verlag.

  7. Measurements, interpretation and climate change effects evaluation for pyroclastic bare soil evaporation

    Science.gov (United States)

    Rianna, G.; Pagano, L.; Mercogliano, P.; Montesarchio, M.

    2012-12-01

    A physical model has been designed to achieve the following goals: to mark out the main features of the soil-atmosphere interaction; to quantify the water and energy fluxes through the soil surface during several years; to monitor the trends of the main variables regulating the hydraulic and thermal conditions. It is constituted by a soil volume (about 1mc) exposed to weather forcing; it is instrumented at four depths by sensors for measuring suction, water content and temperature. Therefore, a station allows knowing the meteo variables (rainfall, wind velocity and direction, air temperature, air pressure and relative humidity) and the two directly measurable components of the energy balance at the soil surface (net radiation and soil heat flux). Under the soil specimen, three shear beam load cells measure the soil weight and, hence, because the soil particles weight can be assumed as constant, the sample water storage. As first attempt, the soil surface is kept bare to avoid the complications led by overlapping processes induced by vegetation (interception, transpiration). Since May 2010, the soil involved in testing is pyroclastic material (silty sand) representative of air fall deposits covering a large part of Campania (South Italy) and erupted in the last 10,000 years by different volcanic centres (Phlegrean fields, Vesuvius). Because of their genesis, these soils show peculiar features: high porosity, low weight of soil unit volume, high water retention capacity; they cause an unusual hydraulic behaviour, halfway between coarse and fine soils in terms of saturated hydraulic permeability and mean slope of soil-water characteristic curve. In turn, these elements induce, among other things, that the currently adopted predictive approaches to estimate, for example, infiltration and evaporation processes are not directly suitable for these soils as the available parameters, even for grain sizes comparable to those of pyroclastic soils, fail to reproduce the

  8. Assessment of correlation between geophysical and hydrogeological parameters of volcanic deposits at Bandama Caldera (Gran Canaria, Canary Islands, Spain)

    Science.gov (United States)

    Casas, Albert; Himi, Mahjoub; Estévez, Esmeralda; Lovera, Raúl; Sendrós, Alexandre; Palacios-Díaz, M. Pino; Tapias, Josefina C.; Cabrera, M. Carmen

    2015-04-01

    The characterization of the preferential areas of water infiltration through the vadose zone is of paramount importance to assess the pollution vulnerability of the underlying aquifers. Nevertheless, geometry and the hydraulic conductivity of each geological unit which constitute the unsaturated zone are difficult to study from traditional techniques (samples from trenches) and normally do not go beyond a meter depth from of the surface. On the other hand, boreholes are expensive and provide only local information not always representative of the whole unsaturated zone. For this reason, geophysical techniques and among them the electrical resistivity tomography method can be applicable in volcanic areas, where basaltic rocks, pyroclastic and volcanic ash-fall deposits have a wide range of values. In order to characterize the subsurface geology below the golf course of Bandama (Gran Canaria Island), irrigated with reclaimed wastewater, a detailed electrical resistivity tomography survey has been carried out. This technique has allowed to define the geometry of the existing geological formations by their high electrical resistivity contrast. Subsequently, in representative outcrops the value of resistivity of each of these lithologies has been measured and simultaneously undisturbed samples have been taken measuring the hydraulic conductivity in the laboratory. Finally a statistical correlation between both variables has been established for evaluating the vulnerability to groundwater pollution at different zones of the golf course.

  9. The zeolite deposits of Greece

    Science.gov (United States)

    Stamatakis, M.G.; Hall, A.; Hein, J.R.

    1996-01-01

    Zeolites are present in altered pyroclastic rocks at many localities in Greece, and large deposits of potential economic interest are present in three areas: (1) the Evros region of the province of Thrace in the north-eastern part of the Greek mainland; (2) the islands of Kimolos and Poliegos in the western Aegean; and (3) the island of Samos in the eastern Aegean Sea. The deposits in Thrace are of Eocene-Oligocene age and are rich in heulandite and/or clinoptilolite. Those of Kimolos and Poliegos are mainly Quaternary and are rich in mordenite. Those of Samos are Miocene, and are rich in clinoptilolite and/or analcime. The deposits in Thrace are believed to have formed in an open hydrological system by the action of meteoric water, and those of the western Aegean islands in a similar way but under conditions of high heat flow, whereas the deposits in Samos were formed in a saline-alkaline lake.

  10. Tephra deposits associated with a large lava dome collapse, Soufrière Hills Volcano, Montserrat, 12 15 July 2003

    Science.gov (United States)

    Edmonds, Marie; Herd, Richard A.; Strutt, Michael H.

    2006-05-01

    The 12-13 July 2003 dome collapse at Soufrière Hills Volcano, Montserrat, was the largest event of its kind during the eruption thus far (1995-2005), involving the removal of 210 million m 3 of the lava dome complex over 18 h. Less than 2% of the total volume of material involved in the dome collapse was deposited on land. A pyroclastic density current deposit alongshore and inland from the Tar River Fan was generated from a single blast originating at the shoreline. The blast was caused by the interaction of pyroclastic flows with seawater. We propose that at the peak of the lava dome collapse, a sharp increase in the volume flux of pyroclastic flows caused substantial displacement of seawater from the shoreline, followed by inrush of seawater when the flux decreased a few minutes later. The tsunami allowed penetration of seawater into the main body of the pyroclastic flow at the shoreline, which led to explosive fragmentation of pyroclastic blocks. Tephra fall deposits accumulated at a high rate on Montserrat, causing extensive damage to vegetation and buildings. Their stratigraphy recorded fallout from high co-pyroclastic flow clouds, from a vulcanian explosion cloud at the peak in collapse rate (caused by the fragmentation of degassed lava dome) and from four vulcanian explosion clouds after the dome collapse (caused by fragmentation of bubbly magma in the conduit). The total tephra fall volume is estimated at 10-20 million m 3.

  11. Basalt waste added to Portland cement

    Directory of Open Access Journals (Sweden)

    Thiago Melanda Mendes

    2016-08-01

    Full Text Available Portland cement is widely used as a building material and more than 4.3 billion tons were produced in 2014, with increasing environmental impacts by this industry, mainly through CO2 emissions and consumption of non-removable raw materials. Several by-products have been used as raw materials or fuels to reduce environmental impacts. Basaltic waste collected by filters was employed as a mineral mixture to Portland cement and two fractions were tested. The compression strength of mortars was measured after 7 days and Scanning Electron Microscopy (SEM and Electron Diffraction Scattering (EDS were carried out on Portland cement paste with the basaltic residue. Gains in compression strength were observed for mixtures containing 2.5 wt.% of basaltic residue. Hydration products observed on surface of basaltic particles show the nucleation effect of mineral mixtures. Clinker substitution by mineral mixtures reduces CO2 emission per ton of Portland cement.

  12. Naming Lunar Mare Basalts: Quo Vadimus Redux

    Science.gov (United States)

    Ryder, G.

    1999-01-01

    Nearly a decade ago, I noted that the nomenclature of lunar mare basalts was inconsistent, complicated, and arcane. I suggested that this reflected both the limitations of our understanding of the basalts, and the piecemeal progression made in lunar science by the nature of the Apollo missions. Although the word "classification" is commonly attached to various schemes of mare basalt nomenclature, there is still no classification of mare basalts that has any fundamental grounding. We remain basically at a classification of the first kind in the terms of Shand; that is, things have names. Quoting John Stuart Mill, Shand discussed classification of the second kind: "The ends of scientific classification are best answered when the objects are formed into groups respecting which a greater number of propositions can be made, and those propositions more important than could be made respecting any other groups into which the same things could be distributed." Here I repeat some of the main contents of my discussion from a decade ago, and add a further discussion based on events of the last decade. A necessary first step of sample studies that aims to understand lunar mare basalt processes is to associate samples with one another as members of the same igneous event, such as a single eruption lava flow, or differentiation event. This has been fairly successful, and discrete suites have been identified at all mare sites, members that are eruptively related to each other but not to members of other suites. These eruptive members have been given site-specific labels, e.g., Luna24 VLT, Apollo 11 hi-K, A12 olivine basalts, and Apollo 15 Green Glass C. This is classification of the first kind, but is not a useful classification of any other kind. At a minimum, a classification is inclusive (all objects have a place) and exclusive (all objects have only one place). The answer to "How should rocks be classified?" is far from trivial, for it demands a fundamental choice about nature

  13. Basaltic Soil of Gale Crater: Crystalline Component Compared to Martian Basalts and Meteorites

    Science.gov (United States)

    Treiman, A. H.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Schmidt, M.; Downs, R. T.; Stolper, E. M.; Blake, D. F.; Vaniman, D. T.; Achilles, C. N.; Chipera, S. J.; Bristow, T. F.; Crisp, J. A.; Farmer, J. A.; Morookian, J. M.; Morrison, S. M.; Rampe, E. B.; Sarrazin, P.; Yen, A. S.; Anderosn, R. C.; DesMarais, D. J.; Spanovich, N.

    2013-01-01

    A significant portion of the soil of the Rocknest dune is crystalline and is consistent with derivation from unweathered basalt. Minerals and their compositions are identified by X-ray diffraction (XRD) data from the CheMin instrument on MSL Curiosity. Basalt minerals in the soil include plagioclase, olivine, low- and high-calcium pyroxenes, magnetite, ilmenite, and quartz. The only minerals unlikely to have formed in an unaltered basalt are hematite and anhydrite. The mineral proportions and compositions of the Rocknest soil are nearly identical to those of the Adirondack-class basalts of Gusev Crater, Mars, inferred from their bulk composition as analyzed by the MER Spirit rover.

  14. Basalt: structural insight as a construction material

    Indian Academy of Sciences (India)

    SMRITI RAJ; V RAMESH KUMAR; B H BHARATH KUMAR; NAGESH R IYER

    2017-01-01

    The need for the development of novel and innovative materials is instrumental at every stage of societal improvements, leading to the overall development of a country. One such material of abundant source is basalt. The use of basalt in different forms like fibre, rod, grid and laminates has captured the interest of society from the 20th century onwards. Lately, basalt fibre has attracted attention as a possible construction material due to its properties such as high modulus of elasticity, high elastic strength, corrosion resistance, high-temperature resistance, extended operating temperature range and ease of handling. This paper explores the state of the art of basalt used in the construction industry with the overall layout of different subcategories of historical background starting from fibre development and different chemical and mechanical fibre properties to its applications in the field. Comparative studies have also been reported with respect to other high-strength fibre like glass, steel and carbon fibre based on different physical, chemical and mechanical properties. Along with these, a review hasbeen done on the usage of different basalt products like aggregate, rod, fibre, mesh, etc. in structural applications. The review also tends to identify critical constraints that restrain the implementation of basalt as a global construction material, thereby opening avenues of needed research. An insight on inconsistency reported in the literature with respect to the behaviour of basalt-fibre-reinforced composites is also expressed in this paper. The overall idea is to gain information and identify and prioritize research areas of the possible applications of basalt towards sustainable construction.

  15. Mineralogy of Yamato 983885 lunar polymict breccia with a KREEP basalt,a high-Al basalt, a very low-Ti basalt and Mg-rich rocks

    OpenAIRE

    2005-01-01

    Y983885 is a polymict regolith breccia with a KREEP basalt, Mg-rich troctolite/norite, a high-Al basalt, a very low-Ti basalt, a granulite originated from ferroan anorthosite, and Si, Na-rich impact spherules. An igneous KREEP basalt is first reported among lunar meteorites to date. The KREEP basalt is mineralogically distinct from Apollo KREEP basalts due to the lack of the typical Ca zoning from orthopyroxene to pigeonite, instead, the presence of the co-existing pigeonite/augite with chemi...

  16. Movement of coliform bacteria and nutrients in ground water flowing through basalt and sand aquifers.

    Science.gov (United States)

    Entry, J A; Farmer, N

    2001-01-01

    Large-scale deposition of animal manure can result in contamination of surface and ground water and in potential transfer of disease-causing enteric bacteria to animals or humans. We measured total coliform bacteria (TC), fecal coliform bacteria (FC), NO3, NH4, total P, and PO4 in ground water flowing from basalt and sand aquifers, in wells into basalt and sand aquifers, in irrigation water, and in river water. Samples were collected monthly for 1 yr. Total coliform and FC numbers were always higher in irrigation water than in ground water, indicating that soil and sediment filtered most of these bacteria before they entered the aquifers. Total coliform and FC numbers in ground water were generally higher in the faster flowing basalt aquifer than in the sand aquifer, indicating that the slower flow and finer grain size may filter more TC and FC bacteria from water. At least one coliform bacterium/100 mL of water was found in ground water from both basalt and sand aquifers, indicating that ground water pumped from these aquifers is not necessarily safe for human consumption according to the American Public Health Association and the USEPA. The NO3 concentrations were usually higher in water flowing from the sand aquifer than in water flowing from the basalt aquifer or in perched water tables in the basalt aquifer. The PO4 concentrations were usually higher in water flowing from the basalt aquifer than in water flowing from the sand aquifer. The main concern is fecal contamination of these aquifers and health consequences that may arise from human consumption.

  17. Alkali basalts and enclosed ultramafic xenoliths near Ushuaia, Tierra Del Fuego, Argentina.

    Science.gov (United States)

    Acevedo, Rogelio Daniel

    2016-01-01

    At the southernmost part of Tierra del Fuego a few outcrops and erratic boulders of alkali basaltic rocks with ultramafic enclaves have been studied. Alkali basalt plugs or pipes hitherto identified are scarce, and host rocks are constituted by slates that belong to Mesozoic deposition. The petrography, texture and composition of the basalt and xenoliths were investigated by petrographic microscope and electron microprobe analysis. Xenocrysts of amphibole and alkali feldspar, phenocrysts of nepheline, olivine, spinel, phlogopite and Fe-Ti minerals (10 %) and a diversity of xenoliths, mainly lherzolitic, pyroxenite and wehrlitic nodules (15 %), but also from metamorphic rocks provenance, are contained in the basalt groundmass (75 %). This finer-grained material is made up of laths or needles of plagioclase, pyroxene, opaque minerals, apatite and glass, with intersertal, hyalopilitic and pilotaxitic. Locally, rock has an even granoblastic texture. Former amygdules are filled by analcite, zeolites, sodalite and calcite. The normative classification, based on nepheline content, conclude that this rock is an alkali basalt. The chemical classification, considering immobile elements as Zr/TiO2 versus Nb/Y indicate an alkali basalt too and plots over the TAS diagram fall in the foidite (Na-rich or nephelinite) and basanite fields. The REE patterns are fractionated (La/Yb primitive mantle normalized is approximately 30). The K-Ar isotopic technique on individual macrocrysts gave ages of 146 ± 5 Ma (amphibole) and 127 ± 4 Ma (alkali feldspar); and K-Ar whole rock datum reported 8.3 ± 0.3 Ma. Nevertheless, fertile samples show geochemical features typical of deep derived material thus, based on the position in the actual tectonic setting, indicate that the basalt is older than its isotopic age.

  18. Basaltic scorias from Romania - complex building material us for concrete, glazing tiles, ceramic glazes, glass ceramics, mineral wool

    Energy Technology Data Exchange (ETDEWEB)

    Marica, S.; Cetean, V. [PROCEMA S.A., Bucharest (Romania)

    2002-07-01

    The most spectacular deposit of basaltic scoria from Romania is the Heghes Hill from Racos, locality situated in the central part of country. This deposit emerged as grains of various dimensions, as volcanic ash with specific porosity up to 30% and vacuolar basaltic rocks. All types of basaltic scorias have specific vacuolar appearance, red- brick or blackish - grey coloured, scoria textures and similar chemical composition with others basalts of the world. The physical and mechanical characteristics determined included the scorias in the Heghes Hill in the following categories : light rocks (2,98 g/ dmc), porous(11,04%), similar to expanded slag, slightly absorbing rocks (3,86%), with low compression strengths (1700 daN/cmp). Basaltic scoria from Heghes is a very good row material for the manufacture of concrete, for obtain decorative cutting tiles glazing with ceramic and basaltic glazes (up to 40%) varied the range of colours and for obtaining glass ceramic, mineral wool, crushing sand for road maintenance, heat -insulating bricks and shid -proof material. (orig.)

  19. Effect of antecedent-hydrological conditions on rainfall triggering of debris flows in ash-fall pyroclastic mantled slopes of Campania (southern Italy)

    Science.gov (United States)

    Napolitano, E.; Fusco, F; Baum, Rex L.; Godt, Jonathan W.; De Vita, P.

    2016-01-01

    Mountainous areas surrounding the Campanian Plain and the Somma-Vesuvius volcano (southern Italy) are among the most risky areas of Italy due to the repeated occurrence of rainfallinduced debris flows along ash-fall pyroclastic soil-mantled slopes. In this geomorphological framework, rainfall patterns, hydrological processes taking place within multi-layered ash-fall pyroclastic deposits and soil antecedent moisture status are the principal factors to be taken into account to assess triggering rainfall conditions and the related hazard. This paper presents the outcomes of an experimental study based on integrated analyses consisting of the reconstruction of physical models of landslides, in situ hydrological monitoring, and hydrological and slope stability modeling, carried out on four representative source areas of debris flows that occurred in May 1998 in the Sarno Mountain Range. The hydrological monitoring was carried out during 2011 using nests of tensiometers and Watermark pressure head sensors and also through a rainfall and air temperature recording station. Time series of measured pressure head were used to calibrate a hydrological numerical model of the pyroclastic soil mantle for 2011, which was re-run for a 12-year period beginning in 2000, given the availability of rainfall and air temperature monitoring data. Such an approach allowed us to reconstruct the regime of pressure head at a daily time scale for a long period, which is representative of about 11 hydrologic years with different meteorological conditions. Based on this simulated time series, average winter and summer hydrological conditions were chosen to carry out hydrological and stability modeling of sample slopes and to identify Intensity- Duration rainfall thresholds by a deterministic approach. Among principal results, the opposing winter and summer antecedent pressure head (soil moisture) conditions were found to exert a significant control on intensity and duration of rainfall

  20. Isotopic and elemental abundances of copper and zinc in lunar samples, Zagami, Pele’s hairs, and a terrestrial basalt

    Science.gov (United States)

    Herzog, G. F.; Moynier, F.; Albarède, F.; Berezhnoy, A. A.

    2009-10-01

    We used ICP-MS to measure the elemental concentrations and isotopic abundances of Cu and Zn in: nine Ti-rich lunar basalts (10017, 10022, 10024, 10057, 70215, 71055, 74255, 75055, and 75075); size-separated samples prepared by sieving of pyroclastic black glass 74001, orange glass 74022, and the lunar soils 15021, 15231, 70181, and 79221; a basalt from the Piton des Neiges volcano, Reunion Island; two samples of Pele's hairs from the Nyiragongo volcano, Democratic Republic of Congo, and the martian meteorite Zagami. The isotopic fractionation of zinc in lunar basalts and Zagami is mass dependent relative to a terrestrial standard (JMC 400882B). These and published results imply that lunar, terrestrial, meteoritic, and perhaps martian zinc all come from one or more reservoirs linked by mass-dependent fractionation processes. Relative to terrestrial basalts, Ti-rich lunar basalts are enriched in the heavier isotopes of Cu and Zn: we find for Ti-rich lunar basalts the following ranges and averages ±1 - σ (‰): δ 65Cu/ 63Cu ≡ δ 65Cu, 0.1-1.4, 0.5 ± 0.1‰ ( N = 7); δ 66Zn/ 64Zn ≡ δ 66Zn = 0.2-1.9, 1.2 ± 0.2‰ ( N = 8; 10017 excluded). For two terrestrial samples, we find δ 66Zn ˜ +0.3‰ and δ 65Cu ˜ 0‰, which are consistent with published values. The differences between the lunar basalts and terrestrial basalts could reflect minor, planetary-scale vaporization or igneous processes on the Moon. Data for size separates of the pyroclastic glasses 74001 and 74220 confirm the well-known surface correlation of Cu and Zn, but modeling calculations reveal no sharp differences between either the elemental ratios or the isotopic composition of grain interiors and exteriors. The absence of such differences indicates that the isotopic compositions for bulk samples are dominated by a light-isotope-rich surface component. Data for size separates of lunar soils also confirm the surface correlation of Cu and Zn, but an enrichment of heavy rather than light

  1. Inland-directed base surge generated by the explosive interaction of pyroclastic flows and seawater at Soufrière Hills volcano, Montserrat

    Science.gov (United States)

    Edmonds, Marie; Herd, Richard A.

    2005-01-01

    The largest and most intense lava-dome collapse during the eruption of Soufrière Hills volcano, Montserrat, 1995–2004, occurred 12–13 July 2003. The dome collapse involved around 200 × 106 m3 of material and was associated with a phenomenon previously unknown at this volcano. Large pyroclastic flows at the peak of the dome collapse interacted explosively with seawater at the mouth of the Tar River Valley and generated a hot, dry base surge that flowed 4 km inland and 300 m uphill. The surge was destructive to at least 25 m above the ground and it carbonized vegetation. The resulting two-layer deposits were as much as 0.9 m thick. Although the entire collapse lasted 18 h, the base surge greatly increased the land area affected by the dome collapse in a few minutes at the peak of the event, illustrating the complex nature of the interaction between pyroclastic flows and seawater.

  2. Late Permian basalts in the northwestern margin of the Emeishan Large Igneous Province: Implications for the origin of the Songpan-Ganzi terrane

    Science.gov (United States)

    Li, Hongbo; Zhang, Zhaochong; Santosh, M.; LÜ, Linsu; Han, Liu; Liu, Wei; Cheng, Zhiguo

    2016-07-01

    SHRIMP zircon U-Pb ages, geochemical and Sr-Nd isotopic data are reported for two types of basalts (Type I and Type II) from a Permian volcanic-pyroclastic succession in the Tubagou section, Baoxing area along the southeastern margin of the Songpan-Ganzi terrane (SGT) in the Sichuan province of SW China. Zircons from the uppermost basaltic flows yield crystallization age of 257.3 ± 2.0 Ma, which may represent the time of culmination the basaltic eruption. Type I shows alkaline affinity with εNd(t) values of + 2.4 to + 2.9, and is characterized by oceanic island basalt (OIB)-type light rare earth element (LREE) and trace-element patterns. In contrast, Type II rocks are tholeiitic, and close to initial rift tholeiite (IRT)-like REE and trace element patterns, and are relatively depleted in highly incompatible elements with slightly negative Nb-Ta anomaly. The εNd(t) values of Type II are between + 1.8 to + 2.2. The geochemical characteristics suggest the Type I has not been significantly crustally contaminated, whereas Type II maybe have experienced minor crustal contamination. Clinopyroxene crystallization temperature is ~ 80-120°C higher than that of the normal asthenospheric mantle, implying anomalous thermal input from mantle source and a possible plume-head origin for the Tubagou lava. The geochemical and isotopic fes, reflecting progressive lithosphere thinning probably through plume-lithosphere interaction. The spatial and temporal coincidence between the Dashibao basalt eruptions, reflecting progressive lithosphere thinning probably through plume-lithosphere interaction. The spatial and temporal coincidence between the Dashibao basalt eruption and continental rifting suggest that continental break-up and the opening of an extensional basin was probably related to the Late Permian Emeishan plume, which triggered the breakup between the SGT and the Yangtze craton.

  3. Sedimentology, eruptive mechanism and facies architecture of basaltic scoria cones from the Auckland Volcanic Field (New Zealand)

    Science.gov (United States)

    Kereszturi, Gábor; Németh, Károly

    2016-09-01

    Scoria cones are a common type of basaltic to andesitic small-volume volcanoes (e.g. 10- 1-10- 5 km3) that results from gas-bubble driven explosive eruptive styles. Although they are small in volume, they can produce complex eruptions, involving multiple eruptive styles. Eight scoria cones from the Quaternary Auckland Volcanic Field in New Zealand were selected to define the eruptive style variability from their volcanic facies architecture. The reconstruction of their eruptive and pyroclastic transport mechanisms was established on the basis of study of their volcanic sedimentology, stratigraphy, and measurement of their pyroclast density, porosity, Scanning Electron Microscopy, 2D particle morphology analysis and Visible and Near Visible Infrared Spectroscopy. Collection of these data allowed defining three end-member types of scoria cones inferred to be constructed from lava-fountaining, transitional fountaining and Strombolian type, and explosive Strombolian type. Using the physical and field-based characteristics of scoriaceous samples a simple generalised facies model of basaltic scoria cones for the AVF is developed that can be extended to other scoria cones elsewhere. The typical AVF scoria cone has an initial phreatomagmatic phases that might reduce the volume of magma available for subsequent scoria cone forming eruptions. This inferred to have the main reason to have decreased cone volumes recognised from Auckland in comparison to other volcanic fields evolved dominantly in dry eruptive condition (e.g. no external water influence). It suggests that such subtle eruptive style variations through a scoria cone evolution need to be integrated into the hazard assessment of a potentially active volcanic field such as that in Auckland.

  4. A depleted, not ideally chondritic bulk Earth: The explosive-volcanic basalt loss hypothesis

    Science.gov (United States)

    Warren, Paul H.

    2008-04-01

    It has long been customary to assume that in the bulk composition of the Earth, all refractory-lithophile elements (including major oxides Al 2O 3 and CaO, all of the REE, and the heat-producing elements Th and U) occur in chondritic, bulk solar system, proportion to one another. Recently, however, Nd-isotopic studies (most notably Boyet M. and Carlson R. W. (2006) A new geochemical model for the Earth's mantle inferred from 146Sm- 142Nd systematics. Earth Planet. Sci. Lett.250, 254-268) have suggested that at least the outer portion of the planet features a Nd/Sm ratio depleted to ˜0.93 times the chondritic ratio. The primary reaction to this type of evidence has been to invoke a "hidden" reservoir of enriched matter, sequestered into the deepest mantle as a consequence of primordial differentiation. I propose a hypothesis that potentially explains the evidence for Nd/Sm depletion in a very different way. Among the handful of major types of differentiated asteroidal meteorites, two (ureilites and aubrites) are ultramafic restites so consistently devoid of plagioclase that meteoriticists were once mystified as to how all the complementary plagioclase-rich matter (basalt) was lost. The explanation appears to be basalt loss by graphite-fueled explosive volcanism on roughly 100-km sized planetesimals; with the dispersiveness of the process dramatically enhanced, relative to terrestrial experience, because the pyroclastic gases expand into vacuous space (Wilson L. and Keil K. (1991) Consequences of explosive eruptions on small Solar System bodies: the case of the missing basalts on the aubrite parent body. Earth Planet. Sci. Lett.104, 505-512). By analogy with lunar pyroclastic products, the typical size of pyroclastic melt/glass droplets under these circumstances will be roughly 0.1 mm. Once separated from an asteroidal or planetesimal gravitational field, droplets of this size will generally spiral toward the Sun, rather than reaccrete, because drag forces such the

  5. Phase Equilibria Constraints on Relations of Ore-bearing Intrusionswith Flood Basalts in the Panxi Region, Southwestern China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhaochong; HAO Yanli; AI Yu; LI Ying; ZHAO Li

    2009-01-01

    There are two types of temporally and spatially associated intrusions within the Emeishan large igneous province (LIP); namely, small uitramafic subvolcanic sills that host magmatic Cu-Ni-Platinum Group Element (PGE)-bearing sulfide deposits and large mafic layered intrusions that host giant Ti-V magnetite deposits in the Panxi region. However, except for their coeval ages, the genetic relations between the ore-bearing intrusions and extrusive rocks are poorly understood. Phase equilibria analysis (Q-PI-OI-Opx-Cpx system) has been carried out to elucidate whether ore-bearing Panzhihua, Xinjie and Limahe intrusions are co-magmatic with the picrites and flood basalts (including high-Ti, low-Ti and alkali basalts), respectively. In this system, the parental magma can be classified as silica-undersaturated olivine basalt and silica-saturated tholeiite. The equivalents of the parental magma of the Xinjie and Limahe peridotites and picrites and iow-Ti basalts are silica-undersaturated, whereas the Limahe gabbro-diorites and high-Ti basalts are silica-saturated. In contrast, the Panzhihua intrusion appears to be alkali character. Phase equilibria relations clearly show that the magmas that formed the Panzhihua intrusion and high-Ti basalts cannot be co-magmatic as there is no way to derive one liquid from another by fractional crystallization. On the other hand, the Panzhihua intrusion appears to be related to Permian alkali intrusions in the region, but does not appear to be related to the alkali basalts recognized in the Longzhoushan lava stratigraphy. Comparably, the Limabe intrusion appears to be a genetic relation to the picrites, whereas the Xinjie intrusion may be genetically related to be low-Ti basaits. Additionally, the gabbro-diorites and peridotites of the Limahe intrusion are not co-magmatic, and the former appears to be derived liquid from high-Ti basalts.

  6. Peralkaline Rhyolite Achneliths with Evidence of Post-Emplacement Vesiculation at Aluto Volcano, Main Ethiopian Rift: What can these unusual pyroclasts tell us?

    Science.gov (United States)

    Calder, E.; Clarke, B. A.; Cortes, J. A.; Butler, I. B.; Yirgu, G.

    2016-12-01

    In peralkaline rhyolitic melts, Na+ and K+ combined with halogens act to disrupt silicate polymers reducing melt viscosity in comparison to other melts of equivalent silica content. As a result, such magmas are often associated with somewhat unusual deposits for which the associated eruptive behaviours are relatively poorly understood. We have discovered unusual globule-shaped clasts within an unconsolidated pyroclastic succession associated with a pumice cone at Aluto volcano in the Main Ethiopian Rift. The clasts are lapilli to ash sized, often have a droplet-like morphology and are characterised by a distinctive obsidian skin indicative of having been shaped by surface tension. We adopt Walker's term achneliths for these clasts. These achneliths however, unlike their mafic counterparts, are highly vesicular ( 78 vol %), and the glassy skin often shows a bread-crusted texture. Importantly, there is strong evidence for post-depositional, in-situ, inflation, including expanding against other clasts and in some cases fusing together. The unconsolidated nature of the deposit at Aluto means that these peralkaline achneliths are easily separated and investigated in 3D, providing an unprecedented opportunity to study their features in detail through the use of µCT, SEM and EPMA. Textural observations and preliminary 3D vesicle size distribution data suggest that surface tension is an important factor in shaping these clasts, and that vesiculation and degassing occurs over a prolonged period post-emplacement. MELTS model calculations on the EPMA analyses assuming dry conditions, suggest maximum liquidus temperatures of 1030 °C and minimum viscosities of 6 Log(poise). These observations have important implications for understanding the nature of late stage degassing, fragmentation and eruption style in peralkaline rhyolite systems as well as incipient welding in peralkaline pyroclastic units.

  7. Validation of TITAN2D flow model code for pyroclastic flows and debris avalanches at Soufrière Hills Volcano, Montserrat, BWI

    Science.gov (United States)

    Widiwijayanti, C.; Voight, B.; Hidayat, D.; Patra, A.; Pitman, E.

    2004-12-01

    Soufrière Hills Volcano (SHV), Montserrat, has experienced numerous episodes of dome collapses since 1996. They range from relatively small rockfalls to major dome collapses, several >10x106 m3, and one >100x106 m3 (Calder, Luckett, Sparks and Voight 2002; Voight et al. 2002). The hazard implications for such events are significant at both local and regional scales, and include pyroclastic surges, explosions, and tsunami. Problems arise in forecasting and hazards mitigation, particularly in zoning for populated areas. Determining the likely extent of flow deposits is important for hazard zonation. For this, detailed mapping (topography of source areas and paths, material properties, structure, track roughness and erosion) has an important role, giving clues on locations of future collapse and runout paths. Here we present an application of a numerical computation model of geophysical mass flow using the TITAN2D code (Patra et al. 2004; Pitman et al. 2004), to simulate dome collapses at SHV. The majority of collapse-type pyroclastic flows at SHV are consistent with an initiation by gravitational collapse of oversteepened flanks of the dome. If the gravity controls the energy for such processes, then the flow tracks can be predicted on the basis of topography, and friction influences runout. TITAN2D is written to simulate this type of volcanic flow, and the SHV database is used to validate the code and provide calibrated data on friction properties. The topographic DEM was successively updated by adding flow deposit thicknesses for previous collapses. Simulation results were compared to observed flow parameters, including flow path, deposit volume, duration, velocity, and runout distance of individual flows, providing calibration data on internal and bed friction, and demonstrating the validity and limitations of such modeling for practical volcanic hazard assessment.

  8. Age and whole rock glass compositions of proximal pyroclastics from the major explosive eruptions of Somma-Vesuvius: A review as a tool for distal tephrostratigraphy

    Science.gov (United States)

    Santacroce, Roberto; Cioni, Raffaello; Marianelli, Paola; Sbrana, Alessandro; Sulpizio, Roberto; Zanchetta, Giovanni; Donahue, Douglas J.; Joron, Jean Louis

    2008-10-01

    A review of compositional data of the major explosive eruptions of Vesuvius is presented, comparing compositions (major elements) of whole rock with glass shards from the proximal deposits, hopefully useful for long-distance correlation. A critical review of published and new geochronological data is also provided. All available 14C ages are calibrated to give calendar ages useful for the reconstruction of the volcanological evolution of the volcanic complex. The pyroclastic deposits of the four major Plinian eruptions (22,000 yr cal BP "Pomici di Base", 8900 yr cal BP "Mercato Pumice", 4300 yr cal BP "Avellino Pumice", and A.D. 79 "Pompeii Pumice") are widely dispersed and allow a four-folded, Plinian to Plinian, stratigraphic division: 1. B-M (between Pomici di Base and Mercato); 2. M-A (between Mercato and Avellino); 3. A-P (between Avellino and Pompeii); 4. P-XX (from the Pompeii Pumice to the last erupted products of the XXth century). Within each interval, the age, lithologic and compositional features of pyroclastic deposits of major eruptions, potentially useful for tephrostratigraphic purposes on distal areas, are briefly discussed. The Vesuvius rocks are mostly high Potassic products, widely variable in terms of their silica saturation. They form three groups, different for both composition and age: 1. slightly undersaturated, older than Mercato eruption; 2. mildly undersaturated, from Mercato to Pompeii eruptions; 3. highly undersaturated, younger than Pompeii eruption. For whole rock analyses, the peculiar variations in contents of some major and trace elements as well as different trends in element/element ratios, allow a clear, unequivocal, easy diagnosis of the group they belong. Glass analyses show large compositional overlap between different groups, but selected element vs. element plots are distinctive for the three groups. The comparative analysis of glass and whole rock major element compositions provides reliable geochemical criteria helping

  9. Merging field mapping and numerical simulation to interpret the lithofacies variations from unsteady pyroclastic density currents on uneven terrain: The case of La Fossa di Vulcano (Aeolian Islands, Italy)

    Science.gov (United States)

    Doronzo, Domenico M.; Dellino, Pierfrancesco; Sulpizio, Roberto; Lucchi, Federico

    2017-01-01

    In order to obtain results from computer simulations of explosive volcanic eruptions, one either needs a statistical approach to test a wide range of initial and boundary conditions, or needs using a well-constrained field case study via stratigraphy. Here we followed the second approach, using data obtained from field mapping of the Grotta dei Palizzi 2 pyroclastic deposits (Vulcano Island, Italy) as input for numerical modeling. This case study deals with impulsive phreatomagmatic explosions of La Fossa Cone that generated ash-rich pyroclastic density currents, interacting with the topographic high of the La Fossa Caldera rim. One of the simplifications in dealing with well-sorted ash (one particle size in the model) is to highlight the topographic effects on the same pyroclastic material in an unsteady current. We demonstrate that by merging field data with 3D numerical simulation results it is possible to see key details of the dynamical current-terrain interaction, and to interpret the lithofacies variations of the associated deposits as a function of topography-induced sedimentation (settling) rate. Results suggest that a value of the sedimentation rate lower than 5 kg/m2 s at the bed load can still be sheared by the overlying current, producing tractional structures (laminae) in the deposits. Instead, a sedimentation rate higher than that threshold can preclude the formation of tractional structures, producing thicker massive deposits. We think that the approach used in this study could be applied to other case studies (both for active and ancient volcanoes) to confirm or refine such threshold value of the sedimentation rate, which is to be considered as an upper value as for the limitations of the numerical model.

  10. Radionuclide reactions with groundwater and basalts from Columbia River basalt formations

    Energy Technology Data Exchange (ETDEWEB)

    Barney, G.S.

    1981-06-01

    Chemical reactions of radionuclides with geologic materials found in Columbia River basalt formations were studied. The objective was to determine the ability of these formations to retard radionuclide migration from a radioactive waste repository located in deep basalt. Reactions that can influence migration are precipitation, ion-exchange, complexation, and oxidation-reduction. These reactions were studied by measuring the effects of groundwater composition and redox potential (Eh) on radionuclide sorption on fresh basalt surfaces, a naturally altered basalt, and a sample of secondary minerals associated with a Columbia River basalt flow. In addition, radionuclide sorption isotherms were measured for these materials and reaction kinetics were determined. The radionuclides studied were /sup 137/Cs, /sup 85/Sr, /sup 75/Se, /sup 95m/Tc, /sup 237/Np, /sup 241/Am, /sup 226/Ra and /sup 237/Pu. The Freundlich equation accurately describes the isotherms when precipitation of radionuclides does not occur. In general, sorption increased in the order: basalt < altered basalt < secondary minerals. This increase in sorption corresponds to increasing surface area and cation exchange capacity. The Eh of the system had a large effect on technetium, plutonium, and neptunium sorption. Technetium(VII), Pu(VI), and Np(V) are reduced to Tc(IV), Pu(IV), and Np(IV), respectively, under Eh conditions expected in deep basalt formations. The kinetics of radionuclide sorption and basalt-groundwater reactions were observed over a period of 18 weeks. Most sorption reactions stabilized after about four weeks. Groundwater composition changed the least in contact with altered basalt. Contact with secondary minerals greatly increased Ca, K, and Mg concentrations in the groundwater.

  11. Can we identify source lithology of basalt?

    Science.gov (United States)

    Yang, Zong-Feng; Zhou, Jun-Hong

    2013-01-01

    The nature of source rocks of basaltic magmas plays a fundamental role in understanding the composition, structure and evolution of the solid earth. However, identification of source lithology of basalts remains uncertainty. Using a parameterization of multi-decadal melting experiments on a variety of peridotite and pyroxenite, we show here that a parameter called FC3MS value (FeO/CaO-3*MgO/SiO2, all in wt%) can identify most pyroxenite-derived basalts. The continental oceanic island basalt-like volcanic rocks (MgO>7.5%) (C-OIB) in eastern China and Mongolia are too high in the FC3MS value to be derived from peridotite source. The majority of the C-OIB in phase diagrams are equilibrium with garnet and clinopyroxene, indicating that garnet pyroxenite is the dominant source lithology. Our results demonstrate that many reputed evolved low magnesian C-OIBs in fact represent primary pyroxenite melts, suggesting that many previous geological and petrological interpretations of basalts based on the single peridotite model need to be reconsidered.

  12. Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 2. Pyroclastic density current invasion maps

    Science.gov (United States)

    Neri, Augusto; Bevilacqua, Andrea; Esposti Ongaro, Tomaso; Isaia, Roberto; Aspinall, Willy P.; Bisson, Marina; Flandoli, Franco; Baxter, Peter J.; Bertagnini, Antonella; Iannuzzi, Enrico; Orsucci, Simone; Pistolesi, Marco; Rosi, Mauro; Vitale, Stefano

    2015-04-01

    Campi Flegrei (CF) is an example of an active caldera containing densely populated settlements at very high risk of pyroclastic density currents (PDCs). We present here an innovative method for assessing background spatial PDC hazard in a caldera setting with probabilistic invasion maps conditional on the occurrence of an explosive event. The method encompasses the probabilistic assessment of potential vent opening positions, derived in the companion paper, combined with inferences about the spatial density distribution of PDC invasion areas from a simplified flow model, informed by reconstruction of deposits from eruptions in the last 15 ka. The flow model describes the PDC kinematics and accounts for main effects of topography on flow propagation. Structured expert elicitation is used to incorporate certain sources of epistemic uncertainty, and a Monte Carlo approach is adopted to produce a set of probabilistic hazard maps for the whole CF area. Our findings show that, in case of eruption, almost the entire caldera is exposed to invasion with a mean probability of at least 5%, with peaks greater than 50% in some central areas. Some areas outside the caldera are also exposed to this danger, with mean probabilities of invasion of the order of 5-10%. Our analysis suggests that these probability estimates have location-specific uncertainties which can be substantial. The results prove to be robust with respect to alternative elicitation models and allow the influence on hazard mapping of different sources of uncertainty, and of theoretical and numerical assumptions, to be quantified.

  13. Tsunami generation by pyroclastic flow during the 3500-year B.P. caldera-forming eruption of Aniakchak Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Neal, Christina A.

    1999-01-01

    A discontinuous pumiceous sand, a few centimeters to tens of centimeters thick, is located up to 15 m above mean high tide within Holocene peat along the northern Bristol Bay coastline of Alaska. The bed consists of fine-to-coarse, poorly to moderately well-sorted, pumice-bearing sand near the top of a 2-m-thick peat sequence. The sand bed contains rip-up clasts of peat and tephra and is unique in the peat sequence. Major element compositions of juvenile glass from the deposit and radiocarbon dating of enclosing peat support correlation of the pumiceous sand with the caldera-forming eruption of Aniakchak Volcano. The distribution of the sand and its sedimentary characteristics are consistent with emplacement by tsunami. The pumiceous sand most likely represents redeposition by tsunami of climactic fallout tephra and beach sand during the approximately 3.5 ka Aniakchak caldera-forming eruption on the Alaska Peninsula. We propose that a tsunami was generated by the sudden entrance of a rapidly moving, voluminous pyroclastic flow from Aniakchak into Bristol Bay. A seismic trigger for the tsunami is unlikely, because tectonic structures suitable for tsunami generation are present only south of the Alaska Peninsula. The pumiceous sand in coastal peat of northern Bristol Bay is the first documented geologic evidence of a tsunami initiated by a volcanic eruption in Alaska.

  14. Geology, Geochemistry and Genesis of the Hongshijing Gold Deposit in Ruoqiang,Xinjiang

    Institute of Scientific and Technical Information of China (English)

    肖惠良; 周济元; 王鹤年; 崔炳芳; 陈世忠

    2003-01-01

    The Hongshijing gold deposit, which occurs in the Middle and Late Carboniferousvolcanic and pyroclastic rocks, is of the brittle-ductile shear zone type controlled by a rift belt.The Hongshijing gold deposit is one controlled by a brittle shear zone located in the Late Paleo-zoic rift zone. The altered-rock type and quartz type orebodies are contained in the gold-bearingformation, which consists of basalt and tuffaceous sandstone. The major mineralizing stage is at267 -261 Ma and reiteration mineralizing stage at 220 -209 Ma. The ore minerals include py-rite, magnetite, copper, bornite, ferrohydrite, native gold, and the gangue minerals includequartz, sercite, calcite, Fe-dolomite, leucoxene, anorthose, biotite, baria, cajuelite, andagustite. The wall rock alteration associated with gold mineralization comprises silicification,carbonization, pyritization, sericitization and chloritization. The contents of gold are 2.4 × 10-9in the gold-bearing formation, 5.7 × 10-9 in the tuffaceous sandstone and 1.4 - 1.5 × 10 9 inthe basalt. Au is associated with Te, Se, Ni, Cu. Au = 74.331 × Te + 0. 0335 × Ni - 0.0211 ×Cu- 2. 650. Geochemical investigations revealed that the mineralizing materials came from thebasalt and tuffaceous sandstone in the gold-bearing formation. Under the action of ductile brittleshear structure, the gold-bearing formation was metamorphosed and altered, and the ore-formingmaterials activated, migrated and mineralized. The mineralizing fluid shows three mineralizingstages, with the characteristics of middle to low temperature (381 - 115℃ ) and middle to lowmass fractions of NaCl (2.18% -16.77% ). The fluid is of the Ca2+ -Mg2+ -Na+ -Cl- type andH2O-NaCl system. According to the data from hydrogen and oxygen isotopic composition (δD =- 114.6‰ - - 68.8‰, δ 18 OH2O = - 2.47‰ - 5.91‰), the conclusion can be drawn thatthe mineralizing fluid of the Hongshijing gold deposit was a kind of mixed hydrothermal solutioncomposed mainly of meteoric

  15. CO2 sequestration in basalts: laboratory measurements

    Science.gov (United States)

    Otheim, L. T.; Adam, L.; van Wijk, K.; McLing, T. L.; Podgorney, R. K.

    2010-12-01

    Geologic sequestration of CO2 is proposed as the only promising large-scale method to help reduce CO2 gas emission by its capture at large point sources and subsequent long-term storage in deep geologic formations. Reliable and cost-effective monitoring will be important aspect of ensuring geological sequestration is a safe, effective, and acceptable method for CO2 emissions mitigation. Once CO2 injection starts, seismic methods can be used to monitor the migration of the carbon dioxide plume. To calibrate changes in rock properties from field observations, we propose to first analyze changes in elastic properties on basalt cores. Carbon dioxide sequestration in basalt rocks results in fluid substitution and mixing of CO2 with water and rock mineralizations. Carbon dioxide sequestration in mafic rocks creates reactions such as Mg2SiO 4 + CaMgSi2O 6 + 4CO2 = Mg 3Ca(CO 3) 4 + 3SiO2 whereby primary silicate minerals within the basalt react with carbonic acid laden water to creating secondary carbonate minerals and silicates. Using time-lapse laboratory scale experiments, such as laser generated ultrasonic wave propagation; it is possible to observe small changes in the physical properties of a rock. We will show velocity and modulus measurements on three basalt core samples for different saturation. The ultimate goal of the project is to track seismic changes due to fluid substitution and mineralization. The porosity of our basalts ranges from 8% to 12%, and the P-wave velocity increases by 20% to 40% from dry to water saturated conditions. Petrographic analysis (CT-scans, thin sections, XRF, XRf) will aid in the characterization of the mineral structure in these basalts and its correlation to seismic properties changes resulting from fluid substitution and mineralization.

  16. Geology, ore facies and sulfur isotopes geochemistry of the Nudeh Besshi-type volcanogenic massive sulfide deposit, southwest Sabzevar basin, Iran

    Science.gov (United States)

    Maghfouri, Sajjad; Rastad, Ebrahim; Mousivand, Fardin; Lin, Ye; Zaw, Khin

    2016-08-01

    The southwest Sabzevar basin is placed in the southwestern part of a crustal domain known as the Sabzevar zone, at the north of Central Iranian microcontinent. This basin hosts abundant mineral deposits; particularly of the Mn exhalative and Cu-Zn volcanogenic massive sulfide (VMS) types. The evolution of this basin is governed by the Neo-tethys oceanic crust subduction beneath the Central Iranian microcontinent and by the resulting continental arc (Sanandaj-Sirjan) and back-arc (Sabzevar-Naien). This evolution followed two major sequences: (I) Lower Late Cretaceous Volcano-Sedimentary Sequence (LLCVSS), which is indicated by fine-grained siliciclastic sediments, gray basic coarse-grained different pyroclastic rocks and bimodal volcanism. During this stage, tuff-hosted stratiform, exhalative Mn deposits (Nudeh, Benesbourd, Ferizy and Goft), oxide Cu deposits (Garab and Ferizy) and Cu-Zn VMS (Nudeh, Chun and Lala) deposits formed. (II) Upper Late Cretaceous Sedimentary Dominated Sequence (ULCSS), including pelagic limestone, marly tuff, silty limestone and marl with minor andesitic tuff rocks. The economically most important Mn (Zakeri and Cheshmeh-sefid) deposits of Sabzevar zone occur within the marly tuff of this sequence. The Nudeh Cu-Zn volcanogenic massive sulfide (VMS) deposit is situated in the LLCVSS. The host-rock of deposits consists of alkali olivine basalt flow and tuffaceous silty sandstone. Mineralization occurs as stratiform blanket-like and tabular orebodies. Based on ore body structure, mineralogy, and ore fabric, we recognize three different ore facies in the Nudeh deposit: (1) a stringer zone, consisting of a discordant mineralization of sulfides forming a stockwork of sulfide-bearing quartz veins cutting the footwall volcano-sedimentary rocks; (2) a massive ore, consisting of massive replacement pyrite, chalcopyrite, sphalerite and Friedrichite with magnetite; (3) bedded ore, with laminated to disseminated pyrite, and chalcopyrite

  17. Are eruptions from linear fissures and caldera ring dykes more likely to produce pyroclastic flows?

    Science.gov (United States)

    Jessop, D. E.; Gilchrist, J.; Jellinek, A. M.; Roche, O.

    2016-11-01

    Turbulent volcanic jets are produced by highly-energetic explosive eruptions and may form buoyant plumes that rise many tens of kilometres into the atmosphere to form umbrella clouds or collapse to generate ground-hugging pyroclastic flows. Ash injected into the atmosphere can be transported for many hundreds of kilometres with the potential to affect climate, disrupt global air travel and cause respiratory health problems. Pyroclastic flows, by contrast, are potentially catastrophic to populations and infrastructure close to the volcano. Key to which of these two behaviours will occur is the extent to which the mechanical entrainment and mixing of ambient air into the jet by large (entraining) eddies forming the jet edge changes the density of the air-ash mixture: low entrainment rates lead to pyroclastic flows and high entrainment rates give rise to buoyant plumes. Recent experiments on particle-laden (multi-phase) volcanic jets from flared and straight-sided circular openings suggest that the likelihood for buoyant plumes will depend strongly on the shape and internal geometry of the vent region. This newly recognised sensitivity of the fate of volcanic jets to the structure of the vent is a consequence of a complex dynamic coupling between the jet and entrained solid particles, an effect that has generally been overlooked in previous studies. Building on this work, here we use an extensive series of experiments on multi-phase turbulent jets from analogue linear fissures and annular ring fractures to explore whether the restrictive vent geometry during cataclysmic caldera-forming (CCF) eruptions will ultimately lead a relatively greater frequency of pyroclastic flows than eruptions from circular vents on stratovolcanoes. Our results, understood through scaling analyses and a one-dimensional theoretical model, show that entrainment is enhanced where particle motions contribute angular momentum to entraining eddies. However, because the size of the entraining

  18. Paroxysmal dome explosion during the Merapi 2010 eruption: Processes and facies relationships of associated high-energy pyroclastic density currents

    Science.gov (United States)

    Komorowski, Jean-Christophe; Jenkins, Susanna; Baxter, Peter J.; Picquout, Adrien; Lavigne, Franck; Charbonnier, Sylvain; Gertisser, Ralf; Preece, Katie; Cholik, Noer; Budi-Santoso, Agus; Surono

    2013-07-01

    An 11-minute sequence of laterally-directed explosions and retrogressive collapses on 5 November 2010 at Merapi (Indonesia) destroyed a rapidly-growing dome and generated high-energy pyroclastic density currents (PDCs) spreading over 22 km2 with a runout of 8.4 km while contemporaneous co-genetic valley-confined PDCs reached 15.5 km. This event formed Stage 4 of the multi-stage 2010 eruption, the most intense eruptive episode at Merapi since 1872. The deposits and the widespread devastating impact of associated high-energy PDCs on trees and buildings show striking similarities with those from historical volcanic blasts (Montagne Pelée, Martinique, Bezymianny, Russia, Mount St. Helens, USA, Soufrière Hills, Montserrat). We provide data from stratigraphic and sedimentologic analyses of 62 sections of the first unequivocal blast-like deposits in Merapi's recent history. We used high resolution satellite imagery to map eruptive units and flow direction from the pattern of extensive tree blowdown. The stratigraphy of Stage 4 consists of three depositional units (U0, U1, U2) that we correlate to the second, third and fourth explosions of the seismic record. Both U1 and U2 show a bi-partite layer stratigraphy consisting each of a lower L1 layer and an upper L2 layer. The lower L1 layer is typically very coarse-grained, fines-poor, poorly-sorted and massive, and was deposited by the erosive waxing flow head. The overlying L2 layer is much finer grained, fines-rich, moderately to well-sorted, with laminar to wavy stratification. L2 was deposited from the waning upper part and wake of the PDC. Field observations indicate that PDC height reached ~ 330 m with an internal velocity of ~ 100 m s- 1 within 3 km from the source. The summit's geometry and the terrain morphology formed by a major transversal ridge and a funneling deep canyon strongly focused PDC mass towards a major constriction, thereby limiting the loss of kinetic energy. This favored elevated PDC velocities and

  19. 塔里木溢流玄武岩的喷发特征%The eruption characteristics of the Tarim flood basalt

    Institute of Scientific and Technical Information of China (English)

    上官时迈; 田伟; 徐义刚; 关平; 潘路

    2012-01-01

    通过对柯坪地区二叠系野外火山岩露头剖面和英买力、哈拉哈塘井区二叠系火山岩钻井剖面的对比,将塔里木早二叠世溢流玄武岩划分为三个旋回,从老到新依次是:库普库兹满溢流玄武岩旋回(KP),长英质火山碎屑岩旋回(FP)和开派兹雷克溢流玄武岩旋回(KZ).KP旋回以巨厚溢流玄武岩夹凝灰岩为特征,在柯坪露头区和英买力井区均可划分出三层巨厚玄武质熔岩流,至哈拉哈塘井区减少为一层玄武岩流,但长英质火山碎屑岩和熔岩厚度增加.FP旋回在柯坪露头区自下而上包括空落相凝灰岩,熔结凝灰岩,再沉积火山碎屑岩和正常碎屑岩夹火山灰层,该层可与英买力及哈拉哈塘井区的凝灰岩层对比,表明在塔北存在一期面积广泛的长英质火山喷发.KZ旋回以溢流玄武岩为主,在开派兹雷克剖面识别出四期喷发共8层溢流玄武岩和一期安山质玄武岩,每期喷发之间夹少量碎屑岩,但未见长英质火山碎屑岩夹层,该特征与英买力和哈拉哈塘井区的火山层序组合不同,而与塔中溢流玄武岩类似.三个火山旋回的划分表明塔里木大火成岩省经历了“基性溢流玄武岩-酸性火山碎屑岩-基性溢流玄武岩”的演变过程,与Afro-Arabian溢流玄武岩省相似,可进行对比研究.%Integration of field investigation, regional stran'graphic comparison, remote sensing and image interpretation allow us to divide the Tarim Permian flood basalt province into three eruptive cycles listed by decreasing age: Kupukuziman flood basalt ( KP), Felsic pyroclastic rocks (FP), Kaipaizileike flood basalt ( KZ). KP features flood basalt and tuff; in the outcrop in Keping and Yingmaili areas, it can be differentiated into two units containing three thick layers of basaltic lava flows. These three layers decrease to one layer of basaltic lava flow in the Halahatang area; however, felsic pyroclastic rocks and lava layer thicknesses

  20. Petrography of basalts from the Carlsberg ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Iyer, S.D.

    Petrographic characteristics of basalts collected from a segment of the Carlsberg Ridge (lat. 3 degrees 35'N to 3 degrees 41'N; long. 64 degrees 05'E to 64 degrees 09'E) show typical pillow lava zonations with variable concentrations of plagioclase...

  1. Site identification presentation: Basalt Waste Isolation Project

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    The final step in the site identification process for the Basalt Waste Isolation Project is described. The candidate sites are identified. The site identification methodology is presented. The general objectives which must be met in selecting the final site are listed. Considerations used in the screening process are also listed. Summary tables of the guidelines used are included. (DMC)

  2. Obsidian Pyroclasts: Where Do They Come From and What Can They Tell Us?

    Science.gov (United States)

    Watkins, J. M.; Gardner, J. E.; Befus, K.

    2016-12-01

    Models for how volcanic gases behave during volcanic eruptions are constructed from measurements of volatiles (δD, H2O and CO2) in melt that has been quenched to glass. Volatile measurements on obsidian pyroclasts from Mono Craters, California, have been central to the development of open- versus closed-system and equilibrium versus non-equilibrium degassing models, and these models have been applied to the interpretation of volatile data from volcanic centers worldwide. Even for the well-studied Mono Craters system, however, there are several different degassing models that are compatible with existing data, and the origin of the vesicle-poor obsidian pyroclasts (upon which the degassing models have been built) remains ambiguous. To better establish the link between the volatiles in the pyroclasts and volcanic eruption processes, we combine textural analysis with area maps of CO2 and H2O. We show that obsidian pyroclasts are heterogeneous with respect to dissolved CO2 and H2O, and that many clasts have multiple textural and chemical domains that are sutured together. The observations suggest that clasts are assembled from non-equilibrated juvenile melt and ash during repeated melt fracturing and healing, ash sintering, and shearing along conduit margins. Melt fracturing promotes gas extraction from magma, whereas healing promotes gas resorption and glass densification. Some of the clasts have bands or patches of elevated CO2 associated with cuspate vesicles, which are evidence for CO2-rich vapor fluxing through the magmatic system. Collectively, the data support a model of open-system, non-equilibrium degassing with intermittent regassing caused by increases in pressure and exposure to different vapor compositions.

  3. Coatings on Atacama Desert Basalt: A Possible Analog for Coatings on Gusev Plains Basalt

    Science.gov (United States)

    Sutter, B.; Golden, D. C.; Amundson, R.; Chong-Diaz, G.; Ming, D. W.

    2007-01-01

    Surface coatings on Gusev Plains basalt have been observed and may contain hematite and nanophase Fe-oxides along with enrichments in P, S, Cl, and K relative to the underlying rock. The Gusev coatings may be derived from the dissolution of adhering soil and/or parent rock along with the addition of S and Cl from outside sources. Transient water for dissolution could be sourced from melting snow during periods of high obliquity, acid fog, and/or ground water (Haskin et al., 2005). Coatings on basalt in the hyper-arid (less than 2mm y(sup -1)) Atacama Desert may assist in understanding the chemistry, mineralogy and formation mechanisms of the Gusev basalt coatings. The Atacama Desert climate is proposed to be analogous to a paleo-Mars climate that was characterized by limited aqueous activity when the Gusev coatings could have formed. The objectives of this work are to (i) determine the chemical nature and extent of surface coatings on Atacama Desert basalt, and (ii) assess coating formation mechanisms in the Atacama Desert. Preliminary backscattered electron imaging of Atacama basalt thin-sections indicated that the coatings are as thick as 20 m. The boundary between the coating and the basalt labradorite, ilmenite, and augite grains was abrupt indicating that the basalt minerals underwent no chemical dissolution. The Atacama coatings have been added to the basalt instead of being derived from basalt chemical weathering. Semi-quantitative energy dispersive spectroscopy shows the coatings to be chemically homogeneous. The coating is depleted in Ca (0.9 wt% CaO) and enriched in K (1.3 wt.% K2O) and Si (69.1 wt.% SiO2) relative to the augite and labradorite grains. A dust source enriched in Si (e.g., poorly crystalline silica) and K and depleted in Ca appears to have been added to the basalt surface. Unlike the Gusev coatings, no P, S, and Cl enrichment was observed. However, Fe (3.2 wt.% FeO) was present in the Atacama coatings suggesting the present of Fe

  4. Dynamics of pyroclastic density currents: Conditions that promote substrate erosion and self-channelization - Mount St Helens, Washington (USA)

    Science.gov (United States)

    Brand, Brittany D.; Mackaman-Lofland, Chelsea; Pollock, Nicholas M.; Bendaña, Sylvana; Dawson, Blaine; Wichgers, Pamela

    2014-04-01

    The May 18th, 1980 eruption of Mount St. Helens (MSH) produced multiple pyroclastic density currents (PDCs), burying the area north of the volcano under 10s of meters of deposits. Detailed measurements of recently exposed strata from these PDCs provide substantial insight into the dynamics of concentrated currents including inferences on particle-particle interactions, current mobility due to sedimentation fluidization and internal pore pressure, particle support mechanisms, the influence of surface roughness and the conditions that promote substrate erosion and self-channelization. Four primary flow units are identified along the extensive drainage system north of the volcano. Each flow unit has intricate vertical and lateral facies changes and complex cross-cutting relationships away from source. Each flow unit is an accumulation from an unsteady but locally sustained PDC or an amalgamation of several PDC pulses. The PDCs associated with Units I and II likely occurred during the pre-climactic, waxing phase of the eruption. These currents flowed around and filled in the hummocky topography, leaving the massive to diffusely-stratified deposits of Units I and II. The deposits of both Units I and II are generally more massive in low lying areas and more stratified in areas of high surface roughness, suggesting that surface roughness enhanced basal shear stress within the flow boundary. Units III and IV are associated with the climactic phase of the eruption, which produced the most voluminous and wide-spread PDCs. Both flow units are characteristically massive and enriched in vent-derived lithic blocks. These currents flowed over and around the debris avalanche deposits, as evidenced by the erosion of blocks from the hummocks. Unit III is massive, poorly sorted, and shows little to no evidence of elutriation or segregation of lithics and pumice, suggesting a highly concentrated current where size-density segregation was suppressed. Unit IV shows similar depositional

  5. H 2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes

    Science.gov (United States)

    Sisson, T. W.; Layne, G. D.

    1993-06-01

    Total dissolved H 2O and major element abundances were measured in basalt and basaltic andesite glass inclusions in olivine phenocrysts from Quaternary eruptions of four subduction-related volcanoes to test the hypothesis that low-MgO high-alumina basalts contain high H 2O at depth [1] and to reveal any petrogenetically significant correlations between arc basalt compositions and H 2O contents. Total dissolved H 2O (combined molecular H 2O and OH groups) measured by ion microprobe in mafic glass inclusions from the 1974 eruption of Fuego, Guatemala, reaches 6.2 wt.%. Dissolved H 2O contents decrease in more evolved Fuego glasses. Correlations of H 2O with MgO, Na 2O, K 2O, S and Cl indicate that aqueous fluid exsolution during magma ascent forced crystallization and differentiation of residual liquids. Low-K 2O magnesian high-alumina basalt glass inclusions from the 3 ka eruption of Black Crater (Medicine Lake volcano, California) have low H 2O contents, near 0.2 wt.%, which are consistent with the MORB-like character of these and other primitive lavas of the Medicine Lake region. Basalt and basaltic andesite glass inclusions from Copco Cone and Goosenest volcano on the Cascade volcanic front north of Mt. Shasta have H 2O contents of up to 3.3 wt.%. The range of H 2O contents in Cascade mafic magmas is too large to have resulted solely from enrichment by crystallization and indicates the participation of an H 2O-rich component in magma generation or crustal-level modification. Whereas fluid-absent melting of amphibole-bearing peridotite can account for the H 2O in most mafic arc liquids, the very high H 2O/alkali ratios of the 1974 Fuego eruptives suggest that an aqueous fluid was involved in the generation of Fuego basalts.

  6. Geochemical Study of Rare Earth Elements on Four Attapulgite Clay Deposits in Jiangsu and Anhui Provinces, China

    Institute of Scientific and Technical Information of China (English)

    陈天虎; 徐晓春; 鲁安怀; 岳书仓; 汪家权; 彭书传

    2003-01-01

    This paper discussed in detail about the REE component and the characteristics of the different kinds of attapulgite clay ores as well as basalts, weathered basalts in four localities of attapulgite clay deposits of Jiangsu and Anhui Provinces of China. It is concluded that the half-weathered basalts have not distinct REE fractionation and strong weathered basalts have HREE loss in the process of the basalts weathered to form smectite group minerals. And the lateritic montmorillonite clays that formed from the basalts weathering have a distinct Ce positive anomaly, a little MREE loss and LREE and HREE renew enrichment. That reflects the particular oxidation condition in the Earth's surface and the adsorption of the colloid solution of the lake water in the basin of the continent in the time of the clays formed. The attapulgite clays produced by the reaction between basalts with lake water in the original place of the basin have same REE characteristics as that of the basalts and the weathered basalts. This shows that REE does not transfer heavily in the progressive chemical weathering process. The sedimentary attapulgite clays have also a similar REE component and characteristic parameters to the basalts and the weathered basalts, and have a distinct Eu negative anomaly and a big value of LREE/HREE, which shows that the sedimentary clay came from the weathered basalts, and REE partitioning patterns characters of the clays are controlled by the residual material of the weathered basalts.

  7. Al-tobermorite in Pyroclastic Rock-Seawater Environments: 1963-1967 Surtsey Tephra and 2000-year-old Roman Baianus Sinus Harbor Concrete

    Science.gov (United States)

    Jackson, M. D.; Moore, J. G.; Wenk, H.; Monteiro, P. J.

    2012-12-01

    Interaction of basaltic tephra from the 1963-1967 Surtsey eruptions in Iceland with 70-150 °C seawater produced authigenic zeolites and Al-tobermorite, a layered calcium-aluminum-silicate-hydrate mineral that holds promise as a cementitious binder for environmentally-friendly concretes and concrete encapsulations of hazardous wastes, but has never been recognized in conventional portland cement concretes. A Roman concrete breakwater, or pilae, constructed of lime and Campi Flegrei pyroclastic rock in the 14-26°C seawater of Pozzuoli Bay (Baianus Sinus) in first century BCE, however, developed Al-tobermorite in relict lime clasts, Neapolitan Yellow Tuff pumice fragments, and voids, forming about 5-10 volume% of the pozzolanic mortar. A thermal model of the 10m2 by 6m tall pilae indicates that exothermic hydration of portlandite and poorly-crystalline calcium-aluminum-silicate-hydrate (C-A-S-H) cementitious binder produced maximum adiabatic temperatures 12.7, and high Al3+mobility in a system infused with silicon, aluminum, sodium and potassium from the alkali-rich Flegrean ash, with sulfate and chloride from seawater acting as possible mineralizers. Synchrotron-radiation soft X-ray microscopy and NMR studies indicate that Baianus Sinus Al-tobermorite has a double-silicate-chain structure with aluminum substitution for silicon in tetrahedral chain and branching sites, and a large 11.44(3) Å interlayer spacing. The bulk modulus measured from high pressure synchroton X-ray diffraction experiments, 54.7±5.5 GPa, is ~20 GPa greater than modern C-A-S-H. Na2O and K2O at 0.3-1.2 weight% partially balance Al3+ substitution for Si4+ in both the Surtsey and Baianus Sinus crystals. Sulphate and chloride from seawater were sequestered in anhydrite and gypsum in Surtsey tephra, and in discrete ettringite and hydrocalumite microstructures in the concrete. Laboratory syntheses of Al-tobermorite at 80-240 °C with amorphous silica, alumina, and zeolites — similar to alkali

  8. Simulation and Experimental Determination of Technological Liquid Molding Parameters of Tubing Basalt Insulation

    Directory of Open Access Journals (Sweden)

    Yu. V. Badanina

    2015-01-01

    Full Text Available The article is dedicated to one of the most important and urgent tasks in mechanical engineering development - the creation of low-density and environmentally-friendly thermoinsulation from available cheap basalt fibers for products to operate at temperatures up to 700°C.One of the most effective applications of such thermo-insulation is to develop and provide highly porous coatings from short basalt fibers by liquid filtration for tubing (T to supply superheated up to 420° C steam under pressure of 35 MPa in the deep layers with severe highviscosity oil. Tubing with the short low-density basalt insulation can be used for a greater depth than the vacuum-insulated tubing, which are also called "thermo-cases", and do not fully meet business needs for long-term reliability of oil vacuum tubes, too large mass per unit length of their design and, as a consequence, the impossibility to use such pipes for deep wells.The aim of the work is to simulate a liquid filtration process of short fibers and determine technological parameters of producing thermal insulation coatings of tubing pipes from basalt fibers and mineral binder shaped as cylinders and cylindrical shells. The paper proposes a mathematical model of free filtration deposition of short fibers from liquid slurry, which describes dynamics of creating thermal insulation products and allows us to determine the rational parameters of their manufacturing process. It shows methods to improve the products quality while forming the thermal insulation by filtration through additional vacuum deposition of a filtrate chamber and the final prepressing of sediment layer, giving dimensions and shape to the final product.The paper defines a prescription hydro mass composition. It shows that to increase the compressive strength of highly fibrous rings and cylindrical shells it is necessary to use based on oxide А12O3 5-7% by weight mineral binder, which fixes basalt fibers in places of their contacts. It

  9. Variations in eruptive style and depositional processes of Neoproterozoic terrestrial volcano-sedimentary successions in the Hamid area, North Eastern Desert, Egypt

    Science.gov (United States)

    Khalaf, Ezz El Din Abdel Hakim

    2013-07-01

    Two contrasting Neoproterozoic volcano-sedimentary successions of ca. 600 m thickness were recognized in the Hamid area, Northeastern Desert, Egypt. A lower Hamid succession consists of alluvial sediments, coherent lava flows, pyroclastic fall and flow deposits. An upper Hamid succession includes deposits from pyroclastic density currents, sills, and dykes. Sedimentological studies at different scales in the Hamid area show a very complex interaction of fluvial, eruptive, and gravitational processes in time and space and thus provided meaningful insights into the evolution of the rift sedimentary environments and the identification of different stages of effusive activity, explosive activity, and relative quiescence, determining syn-eruptive and inter-eruptive rock units. The volcano-sedimentary deposits of the study area can be ascribed to 14 facies and 7 facies associations: (1) basin-border alluvial fan, (2) mixed sandy fluvial braid plain, (3) bed-load-dominated ephemeral lake, (4) lava flows and volcaniclastics, (5) pyroclastic fall deposits, (6) phreatomagmatic volcanic deposits, and (7) pyroclastic density current deposits. These systems are in part coeval and in part succeed each other, forming five phases of basin evolution: (i) an opening phase including alluvial fan and valley flooding together with a lacustrine period, (ii) a phase of effusive and explosive volcanism (pulsatory phase), (iii) a phase of predominant explosive and deposition from base surges (collapsing phase), and (iv) a phase of caldera eruption and ignimbrite-forming processes (climactic phase). The facies architectures record a change in volcanic activity from mainly phreatomagmatic eruptions, producing large volumes of lava flows and pyroclastics (pulsatory and collapsing phase), to highly explosive, pumice-rich plinian-type pyroclastic density current deposits (climactic phase). Hamid area is a small-volume volcano, however, its magma compositions, eruption styles, and inter

  10. Dynamics of pyroclastic density currents: Conditions that promote substrate erosion and self-channelization - Mount St Helens, Washington (Invited)

    Science.gov (United States)

    Brand, B. D.; Pollock, N. M.; Mackaman-Lofland, C. A.; Bendana, S.

    2013-12-01

    The May 18th, 1980 eruption of Mount St. Helens (MSH) produced multiple pyroclastic density currents (PDCs), burying the area north of the volcano under 10s of meters of deposits. Detailed measurements of recently exposed strata from these PDCs provide substantial insight into the dynamics of concentrated currents including inferences on particle-particle interactions, current mobility due to sedimentation fluidization and internal pore pressure, particle support mechanisms, the influence of surface roughness and the conditions that promote substrate erosion and self-channelization. Four primary flow units are identified along the extensive drainage system north of the volcano. The PDCs associated with Units I and II likely occurred during the pre-climactic, waxing phase of the eruption. These currents flowed around and filled in the hummocky topography left behind by the earlier debris avalanche, leaving the massive to diffusely-stratified deposits of Units I and II. The deposits of both Units I and II are generally massive in low lying areas and stratified in areas of high surface roughness, suggesting that surface roughness enhanced basal shear stress within the flow boundary. Units III and IV are associated with the climactic phase of the eruption, which produced the most voluminous and wide-spread PDCs. Both flow units are characteristically massive and enriched in vent-derived lithic blocks. However, an increase in the proportion and size of lithic blocks is found (1) downstream of debris avalanche hummocks, suggesting the PDCs flowed over and around debris avalanche hummocks and were energetic enough to locally entrain accidental lithics from the hummocks and transport them tens of meters downstream, and (2) within large channels cut by later PDCs into earlier PDC deposits, suggesting self-channelization of the flows increased the carrying capacity of the subsequent channelized currents. Unit III is massive, poorly sorted, and shows little to no evidence of

  11. Additive Construction using Basalt Regolith Fines

    Science.gov (United States)

    Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Lippitt, Thomas C.; Mantovani, James G.; Nugent, Matthew W.; Townsend, Ivan I.

    2014-01-01

    Planetary surfaces are often covered in regolith (crushed rock), whose geologic origin is largely basalt. The lunar surface is made of small-particulate regolith and areas of boulders located in the vicinity of craters. Regolith composition also varies with location, reflecting the local bedrock geology and the nature and efficiency of the micrometeorite-impact processes. In the lowland mare areas (suitable for habitation), the regolith is composed of small granules (20 - 100 microns average size) of mare basalt and volcanic glass. Impacting micrometeorites may cause local melting, and the formation of larger glassy particles, and this regolith may contain 10-80% glass. Studies of lunar regolith are traditionally conducted with lunar regolith simulant (reconstructed soil with compositions patterned after the lunar samples returned by Apollo). The NASA Kennedy Space Center (KSC) Granular Mechanics & Regolith Operations (GMRO) lab has identified a low fidelity but economical geo-technical simulant designated as Black Point-1 (BP-1). It was found at the site of the Arizona Desert Research and Technology Studies (RATS) analog field test site at the Black Point lava flow in adjacent basalt quarry spoil mounds. This paper summarizes activities at KSC regarding the utilization of BP-1 basalt regolith and comparative work with lunar basalt simulant JSC-1A as a building material for robotic additive construction of large structures. In an effort to reduce the import or in-situ fabrication of binder additives, we focused this work on in-situ processing of regolith for construction in a single-step process after its excavation. High-temperature melting of regolith involves techniques used in glassmaking and casting (with melts of lower density and higher viscosity than those of metals), producing basaltic glass with high durability and low abrasive wear. Most Lunar simulants melt at temperatures above 1100 C, although melt processing of terrestrial regolith at 1500 C is not

  12. Geochemistry of apollo 15 basalt 15555 and soil 15531.

    Science.gov (United States)

    Schnetzler, C C; Philpotts, J A; Nava, D F; Schuhmann, S; Thomas, H H

    1972-01-28

    Major and trace element concentrations have been determined by atomic absorption spectrophotometry, colorimetry, and isotope dilution in Apollo 15 mare basalt 15555 from the Hadley Rille area; trace element concentrations have also been determined in plagioclase and pyroxene separates from basalt 15555 and in soil 15531 from the same area. Basalt 15555 most closely resembles in composition the Apollo 12 olivine-rich basalts. The concentrations of lithium, potassium, rubidium, barium, rare-earth elements, and zirconium in basalt 15555 are the lowest, and the negative europium anomaly is the smallest, reported for lunar basalts; this basalt might be the least differentiated material yet returned from the moon. Crystallization and removal of about 6 percent of plagioclase similar to that contained in the basalt would account for the observed europium anomaly; if plagioclase is not on the liquidus of this basalt, a multistage origin is indicated. Mineral data indicate that plagioclase and pyroxene approached quasi-equilibrium. Most of the chemical differences between basalt 15555 and soil 15531 would be accounted for if the soil were a mixture of 88 percent basalt, 6 percent KREEP (a component, identified in other Apollo soils, rich in potassium, rare-earth elements, and phosphorus) and 6 percent plagioclase (anorthosite?).

  13. Microbial Diversity in the Columbia River Basalt Group and the Context for Life in Subsurface Basalts

    Science.gov (United States)

    Lavalleur, H. J.; Smith, A.; Fisk, M. R.; Colwell, F. S.

    2012-12-01

    Large igneous provinces constitute a sizable volume of porous and fractured materials in the Earth's crust and many of these environments exist within the boundaries of survival for subsurface life. The results of microbiological studies of basalts and other igneous materials in subsurface settings hint at the types of microbes that dwell in these environments. We investigated the microbes in aquifers in the Columbia River Basalt Group (CRBG) and also considered the microbial communities in subsurface basalts more broadly to determine if there are recurrent themes in the types of microbes and the nature of diversity present in these geological systems. Bacteria and Archaea collected from five intervals in the CRBG were examined using high-throughput DNA sequencing directed at the 16S rRNA genes. The highest bacterial biomass and the highest bacterial diversity were observed in the deepest samples (>1018 meters below land surface) whereas the highest archaeal diversity was detected in the shallowest samples (Actinobacteria dominated the aquifers. These findings are generally consistent with earlier cultivation- and clone library-based studies performed on microbes from the CRBG and the Snake River Plain aquifer. Microbes associated with marine basalts are similar to those found in terrestrial settings and include Proteobacteria, Firmicutes, candidate division bacterium OP1, Euryarchaeota, and Crenarchaeota. Based on 16S rRNA sequence similarities to known microbes, both basaltic regions have taxa with representative physiologies likely to include hydrogen oxidation, iron and sulfur metabolism, acetogenesis, and hydrocarbon metabolism. Research on the microbiology of basalt rich provinces on the planet has informed our understanding of biogeochemical cycling where igneous rocks dominate. The knowledge gained in these investigations also promotes our ability to verify the remediation of contaminants and the sequestration of carbon in basalts.

  14. Structural relaxation in annealed hyperquenched basaltic glasses

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Mauro, John C.; Potuzak, M.

    2012-01-01

    The enthalpy relaxation behavior of hyperquenched (HQ) and annealed hyperquenched (AHQ) basaltic glass is investigated through calorimetric measurements. The results reveal a common onset temperature of the glass transition for all the HQ and AHQ glasses under study, indicating that the primary r...... relaxation is activated at the same temperature regardless of the initial departure from equilibrium. The analysis of secondary relaxation at different annealing temperatures provides insights into the enthalpy recovery of HQ glasses.......The enthalpy relaxation behavior of hyperquenched (HQ) and annealed hyperquenched (AHQ) basaltic glass is investigated through calorimetric measurements. The results reveal a common onset temperature of the glass transition for all the HQ and AHQ glasses under study, indicating that the primary...

  15. The relationship between weathering and welding degree of pyroclastic rocks in the Kilistra ancient city, Konya (Central Anatolia, Turkey)

    Science.gov (United States)

    Bozdaǧ, Ali; Bayram, A. Ferat; İnce, İsmail; Asan, Kürşad

    2016-11-01

    Pyroclastic rocks used in both historical and modern structures are inevitably exposed to various weathering processes, leading to damage and destruction of them. To reduce the effects of weathering caused by various atmospheric effects, geologists need to know what processes are more effective and how they affect rock bodies. In this study, our aim is to show the relationship between the weathering and welding degree of pyroclastic rocks, sampled around the Ancient City of Kilistra in Konya (Central Anatolia, Turkey). For this purpose, we conducted field trips, and used petrographic and laboratory techniques such as, physico-mechanical tests and accelerated weathering tests (i.e., Freeze-Thaw, F-T; Wetting-Drying, W-D and Salt Crystallization, SC). Pyroclastic rocks around Kilistra ancient city comprise two different sub-units: the unwelded, lower pyroclastic unit (LPU) and the welded, upper pyroclastic unit (UPU). Following cycles of F-T and SC tests, we observed an increase in porosity values, but a decrease in uniaxial compressive strength values, which was more evident in unwelded-LPU samples. Also, the significant macroscopic textural changes occurred in LPU samples, linked to their unwelded nature. However, physico-mechanical features of both LPU and UPU samples were not significantly changed after W-D tests. Altogether, our findings show that welding degree is one of the main factors controlling weathering and physico-mechanical properties of pyroclastic rocks, and also F-T and SC are more effective processes than W-D on weathering. Accordingly, our approach here could be used to protect the endangered historical structures carved into pyroclastic rocks around the world.

  16. Nanoparticulate mineral matter from basalt dust wastes.

    Science.gov (United States)

    Dalmora, Adilson C; Ramos, Claudete G; Querol, Xavier; Kautzmann, Rubens M; Oliveira, Marcos L S; Taffarel, Silvio R; Moreno, Teresa; Silva, Luis F O

    2016-02-01

    Ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been the subject of some concern recently around the world for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the mining district of Nova Prata in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3 and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition we have identified a number of trace metals such as Cd, Cu, Cr, Zn that are preferentially concentrated into the finer, inhalable, dust fraction and could so present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in typical BDW samples highlights the need to develop cleaning procedures to minimise exposure to these natural fertilizing basalt dust wastes and is thus of direct relevance to both the industrial sector of basalt mining and to agriculture in the region.

  17. Technical program plan, Basalt Waste Isolation Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    The Basalt Waste Isolation Project (BWIP) program as administered by the DOE's Richland Operations Office and Rockwell Hanford Operations is described. The objectives, scope and scientific technologies are discussed. The work breakdown structure of the project includes: project management and support, systems integration, geosciences, hydrology, engineered barriers, test facility design and construction, engineering testing, repository studies, and schedules. The budget of the program including operating and capital cost control is also included. (DC)

  18. Making rhyolite in a basalt crucible

    Science.gov (United States)

    Eichelberger, John

    2016-04-01

    Iceland has long attracted the attention of those concerned with the origin of rhyolitic magmas and indeed of granitic continental crust, because it presents no alternative for such magmas other than deriving them from a basaltic source. Hydrothermally altered basalt has been identified as the progenitor. The fact that rhyolite erupts as pure liquid requires a process of melt-crustal separation that is highly efficient despite the high viscosity of rhyolite melt. Volcanoes in Iceland are foci of basaltic magma injection along the divergent plate boundary. Repeated injection produces remelting, digestion, and sometimes expulsion or lateral withdrawal of material resulting in a caldera, a "crucible" holding down-dropped and interlayered lava flows, tephras, and injected sills. Once melting of this charge begins, a great deal of heat is absorbed in the phase change. Just 1% change in crystallinity per degree gives a melt-present body an effective heat capacity >5 times the subsolidus case. Temperature is thus buffered at the solidus and melt composition at rhyolite. Basalt inputs are episodic ("fires") so likely the resulting generation of rhyolite by melting is too. If frequent enough to offset cooling between events, rhyolite melt extractions will accumulate as a rhyolite magma reservoir rather than as discrete crystallized sills. Evidently, such magma bodies can survive multiple firings without themselves erupting, as the 1875 eruption of Askja Caldera of 0.3 km3 of rhyolite equilibrated at 2-km depth without previous leakage over a ten-millennium period and the surprise discovery of rhyolite magma at 2-km depth in Krafla suggest. Water is required for melting; otherwise melting cannot begin at a temperature lower than that of the heat source. Because the solubility of water in melt is pressure-dependent and almost zero at surface pressure, there must be a minimum depth at which basalt-induced melting can occur and a rhyolite reservoir sustained. In practice, the

  19. Monitoring and behavior of unsaturated volcanic pyroclastic in the Metropolitan Area of San Salvador, El Salvador.

    Science.gov (United States)

    Chávez, José Alexander; Landaverde, José; Landaverde, Reynaldo López; Tejnecký, Václav

    2016-01-01

    Field monitoring and laboratory results are presented for an unsaturated volcanic pyroclastic. The pyroclastic belongs to the latest plinian eruption of the Ilopango Caldera in the Metropolitan Area of San Salvador, and is constantly affected by intense erosion, collapse, slab failure, sand/silt/debris flowslide and debris avalanche during the rainy season or earthquakes. Being the flowslides more common but with smaller volume. During the research, preliminary results of rain threshold were obtained of flowslides, this was recorded with the TMS3 (a moisture sensor device using time domain transmission) installed in some slopes. TMS3 has been used before in biology, ecology and soil sciences, and for the first time was used for engineering geology in this research. This device uses electromagnetic waves to obtain moisture content of the soil and a calibration curve is necessary. With the behavior observed during this project is possible to conclude that not only climatic factors as rain quantity, temperature and evaporation are important into landslide susceptibility but also information of suction-moisture content, seepage, topography, weathering, ground deformation, vibrations, cracks, vegetation/roots and the presence of crust covering the surface are necessary to research in each site. Results of the field monitoring indicates that the presence of biological soil crusts a complex mosaic of soil, green algae, lichens, mosses, micro-fungi, cyanobacteria and other bacteria covering the slopes surface can protect somehow the steep slopes reducing the runoff process and mass wasting processes. The results obtained during the assessment will help explaining the mass wasting problems occurring in some pyroclastic soils and its possible use in mitigation works and early warning system.

  20. Investigating pyroclast ejection dynamics using shock-tube experiments: temperature, grain size and vent geometry effects.

    Science.gov (United States)

    Cigala, V.; Kueppers, U.; Dingwell, D. B.

    2015-12-01

    Explosive volcanic eruptions eject large quantities of gas and particles into the atmosphere. The portion directly above the vent commonly shows characteristics of underexpanded jets. Understanding the factors that influence the initial pyroclast ejection dynamics is necessary in order to better assess the resulting near- and far-field hazards. Field observations are often insufficient for the characterization of volcanic explosions due to lack of safe access to such environments. Fortunately, their dynamics can be simulated in the laboratory where experiments are performed under controlled conditions. We ejected loose natural particles from a shock-tube while controlling temperature (25˚ and 500˚C), overpressure (15MPa), starting grain size distribution (1-2 mm, 0.5-1 mm and 0.125-0.250 mm), sample-to-vent distance and vent geometry. For each explosion we quantified the velocity of individual particles, the jet spreading angle and the production of fines. Further, we varied the setup to allow for different sample-to-gas ratios and deployed four different vent geometries: 1) cylindrical, 2) funnel with a flaring of 30˚, 3) funnel with a flaring of 15˚ and 4) nozzle. The results showed maximum particle velocities up to 296 m/s, gas spreading angles varying from 21˚ to 37˚ and particle spreading angles from 3˚ to 40˚. Moreover we observed dynamically evolving ejection characteristics and variations in the production of fines during the course of individual experiments. Our experiments mechanistically mimic the process of pyroclast ejection. Thus the capability for constraining the effects of input parameters (fragmentation conditions) and conduit/vent geometry on ballistic pyroclastic plumes has been clearly established. These data obtained in the presence of well-documented conduit and vent conditions, should greatly enhance our ability to numerically model explosive ejecta in nature.

  1. A minimum UPb age for Siberian flood-basalt volcanism

    Science.gov (United States)

    Kamo, S. L.; Czamanske, G. K.; Krogh, T. E.

    1996-09-01

    Establishing an accurate and precise age for Siberian flood-basalt volcanism is of great importance in evaluating causes for the unequaled mass extinction of flora and fauna at the Permian-Triassic boundary. We report a new, minimum UPb age obtained from zircon and baddeleyite from the mineralized Noril'sk I intrusion that cuts the lower third of this rapidly deposited, 3500-m-thick volcanic sequence near Noril'sk. This 251.2 ± 0.3 (2σ) Ma age is within analytical error of the SHRIMP UPb age for zircon from the Permian-Triassic boundary at Meishan, South China [251.1 ± 3.6 Ma (2σ)], and confirms Siberian basaltic volcanism as a possible contributor to the mass extinction.

  2. A minimum U-Pb age for Siberian flood-basalt volcanism

    Science.gov (United States)

    Kamo, S.L.; Czamanske, G.K.; Krogh, T.E.

    1996-01-01

    Establishing an accurate and precise age for Siberian flood-basalt volcanism is of great importance in evaluating causes for the unequaled mass extinction of flora and fauna at the Permian-Triassic boundary. We report a new, minimum U-Pb age obtained from zircon and baddeleyite from the mineralized Noril'sk I intrusion that cuts the lower third of this rapidly deposited, 3500-m-thick volcanic sequence near Noril'sk. This 251.2 ?? 0.3 (2??) Ma age is within analytical error of the SHRIMP U-Pb age for zircon from the Permian-Triassic boundary at Meishan, South China [251.1 ?? 3.6 Ma (2??)], and confirms Siberian basaltic volcanism as a possible contributor to the mass extinction.

  3. Depositional and welding processes in low aspect ratio ignimbrites: examples from the Sulcis Volcanic District(Sardinia, Italy)

    OpenAIRE

    Mulas, Maurizio

    2013-01-01

    The rheomorphic, high-grade, welded ignimbrites are a special type of pyroclastic density current (PDC) deposits usually associated with high intensity volcanic explosive activity (VEI >4). They are characterized by a high variability of physical features and sedimentological structures that may testify different emplacement mechanisms from a PDC and a different response to topography during and after the end of the depositional processes. When the temperatures of the deposits are higher than...

  4. Effect of Miocene basaltic volcanism in Shanwang (Shandong Province, China) on environmental changes

    Institute of Scientific and Technical Information of China (English)

    GUO; ZhengFu; LIU; JiaQi; CHEN; XiaoYu

    2007-01-01

    Miocene (16-10 Ma) basalts, together with significantly well-preserved fossils (including animal and plant fossils) in the contemporaneously tephra-rich Maar sediments, are located in Shanwang volcanic region, Shandong Province, China. Distribution area of the basaltic eruption products is about 240 km2. Detailed field observations indicate that most of basaltic rocks are fissure eruptive products and some are central eruptives constrained by linear faults. The well-preserved fossils in the lacustrine deposits have been considered to be a result of mass mortalities. Based on physically volcanologic modeling results, eruption column of the basaltic fissure activities in the Shanwang volcanic region is estimated to have entered the stratosphere. Petrographic observations indicate that the basalts have porphyritic textures with phenocrysts of olivine, pyroxene, plagioclase feldspar and alkali feldspar setting in groundmass of plagioclase feldspar, alkali feldspar, quartz, apatite and glass. Based on observations of tephra, tuff and tuffites collected in the Maar sediments of the Shanwang area, we determined major element oxide concentrations and volatile composition of melt inclusions in phenocrysts and matrix glasses by electron microprobe analysis. Volatile (including S, Cl, F and H2O) concentrations erupted into the stratosphere were estimated by comparing pre- and post-eruptive volatile concentrations. Our determination results show that contents of S, Cl, F and H2O emitted into the stratosphere were 0.18%-0.24%, 0.03%-0.05%, 0.03%-0.05% and 0.4%-0.6%, respectively, which was characterized by high-S contents erupted. Amounts of volatiles emitted in the Shanwang volcanic region are much higher than those in eruptions which had a substantial effect on climate and environment. According to the compositions and amounts of the volatiles erupted from the Miocene basaltic volcanism in Shanwang, we propose a hypothesis that volatile-rich basaltic volcanism could result in

  5. Tracking in Real-Time Pyroclastic Flows at Soufriere Hills Volcano, Montserrat, by infrasonic array.

    Science.gov (United States)

    Ripepe, M.; de Angelis, S.; Lacanna, G.; Poggi, P.; Williams, C.

    2008-12-01

    Active volcanoes produce infrasonic airwaves, which provide valuable insight into the eruption dynamics and the level of volcanic activity. On open conduit volcanoes, infrasound can be used to monitor the gas overpressure in the magma and the degassing rate of active volcanic vents. On volcanoes characterized by dome growth, infrasound can also be generated by non-explosive sources related to dome collapses and pyroclastic flows. In March 2008, the Department of Earth Science (DST) of Firenze (Italy) in cooperation with Montserrat Volcano Observatory (MVO) has installed a small-aperture infrasonic array at a distance of ~3000 m from the dome of the Soufriere Hill Volcano (SHV). The array has an aperture of 200 m and a "star" geometry, with 3 satellite stations at 100 m distance from the receiving central station. Each element of the array is linked to the receiver station by fiber optics cable, and the signal is acquired with a resolution of 16 bits at a rate of 50 samples/sec. The data collected by the array are sent via a radio modem link to the MVO offices, on Montserrat, where they are archived and processed in real-time. Real-time location of infrasonic events are obtained and displayed on computer monitors for use in monitoring of volcanic activity. After a period of very low levels of activity, starting from the end of May 2008, SHV has produced several small explosions without any short-term precursory sign. Some of these events have generated ash plumes reaching up to a few thousands of meters above the sea level, and were accompanied by moderate-to-large size pyroclastic flows that descended the western flanks of the volcanic edifice. The array was able to detect and locate in real-time the clear infrasound associated both with the explosions and the pyroclastic flows. In the latter case, the array estimated the speed and the direction of the flux revealing the presence of several pulses within the same flow. The variable azimuth of the signal during the

  6. Titanium dioxide in pyroclastic layers from volcanoes in the cascade range

    Science.gov (United States)

    Czamanske, G.K.; Porter, S.C.

    1965-01-01

    Rapid determinations of titanium dioxide have been made by x-ray emission techniques to evaluate the potentiality of using the TiO2 content of samples for checking field correlations and assisting in identification of pyroclastic units from Cascade volcanoes. Preliminary data suggest that the two most wide-spread units have characteristic ranges of TiO2 content and that other, less extensive layers have ranges which, though characteristic, often overlap the ranges of the more widespread layers. Relative to fresh samples, weathered samples from B and C soil horizons are enriched in TiO 2.

  7. Complex subvolcanic magma plumbing system of an alkali basaltic maar-diatreme volcano (Elie Ness, Fife, Scotland)

    Science.gov (United States)

    Gernon, T. M.; Upton, B. G. J.; Ugra, R.; Yücel, C.; Taylor, R. N.; Elliott, H.

    2016-11-01

    Alkali basaltic diatremes such as Elie Ness (Fife, Scotland) expose a range of volcanic lithofacies that points to a complex, multi-stage emplacement history. Here, basanites contain phenocrysts including pyrope garnet and sub-calcic augites from depths of 60 km. Volcanic rocks from all units, pyroclastic and hypabyssal, are characterised by rare earth element (REE) patterns that show continuous enrichment from heavy REE (HREE) to light REE (LREE), and high Zr/Y that are consistent with retention of garnet in the mantle source during melting of peridotite in a garnet lherzolite facies. Erupted garnets are euhedral and unresorbed, signifying rapid ascent through the lithosphere. The magmas also transported abundant pyroxenitic clasts, cognate with the basanite host, from shallower depths ( 35-40 km). These clasts exhibit wide variation in texture, mode and mineralogy, consistent with growth from a range of compositionally diverse melts. Further, clinopyroxene phenocrysts from both the hypabyssal and pyroclastic units exhibit a very wide compositional range, indicative of polybaric fractionation and magma mixing. This is attributed to stalling of earlier magmas in the lower crust - principally from 22 to 28 km - as indicated by pyroxene thermobarometry. Many clinopyroxenes display chemical zoning profiles, occasionally with mantles and rims of higher magnesium number (Mg#) suggesting the magmas were mobilised by juvenile basanite magma. The tuffs also contain alkali feldspar megacrysts together with Fe-clinopyroxene, zircon and related salic xenoliths, of the 'anorthoclasite suite' - inferred to have crystallised at upper mantle to lower crustal depths from salic magma in advance of the mafic host magmas. Despite evidence for entrainment of heterogeneous crystal mushes, the rapidly ascending melts experienced negligible crustal contamination. The complex association of phenocrysts, megacrysts and autoliths at Elie Ness indicates thorough mixing in a dynamic system

  8. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    primitive basalts and trachybasalts but also more evolved samples from the retroarc region and the larger volcanoes Payún Matrú and Payún Liso are presented. The samples cover a broad range of compositions from intraplate lavas similar to ocean island basalts to arc andesites. A common feature found...... Pleistocene times. These basalts mark the end of a period of shallow subduction of the Nazca slab beneath the Payenia province and volcanism in the Nevado volcanic field apparently followed the downwarping slab in a north-northwest direction ending in the Northern Segment. The northern Payenia basalts...... the literature. The Nevado basalts have been modelled by 4-10 % melting of a primitive mantle added 1-5 % upper continental crust. In the southern Payenia province, intraplate basalts dominate. The samples from the Payún Matrú and Río Colorado volcanic fields are apparently unaffected by the subducting slab...

  9. FOAM CONCRETE REINFORCEMENT BY BASALT FIBRES

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2012-10-01

    Full Text Available The authors demonstrate that the foam concrete performance can be improved by dispersed reinforcement, including methods that involve basalt fibres. They address the results of the foam concrete modeling technology and assess the importance of technology-related parameters. Reinforcement efficiency criteria are also provided in the article. Dispersed reinforcement improves the plasticity of the concrete mix and reduces the settlement crack formation rate. Conventional reinforcement that involves metal laths and rods demonstrates its limited application in the production of concrete used for thermal insulation and structural purposes. Dispersed reinforcement is preferable. This technology contemplates the infusion of fibres into porous mixes. Metal, polymeric, basalt and glass fibres are used as reinforcing components. It has been identified that products reinforced by polypropylene fibres demonstrate substantial abradability and deformability rates even under the influence of minor tensile stresses due to the low adhesion strength of polypropylene in the cement matrix. The objective of the research was to develop the type of polypropylene of D500 grade that would demonstrate the operating properties similar to those of Hebel and Ytong polypropylenes. Dispersed reinforcement was performed by the basalt fibre. This project contemplates an autoclave-free technology to optimize the consumption of electricity. Dispersed reinforcement is aimed at the reduction of the block settlement in the course of hardening at early stages of their operation, the improvement of their strength and other operating properties. Reduction in the humidity rate of the mix is based on the plasticizing properties of fibres, as well as the application of the dry mineralization method. Selection of optimal parameters of the process-related technology was performed with the help of G-BAT-2011 Software, developed at Moscow State University of Civil Engineering. The authors also

  10. Mihi Breccia: A stack of lacustrine sediments and subaqueous pyroclastic flows within the Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Downs, Drew

    2016-01-01

    The Taupo Volcanic Zone (TVZ), New Zealand, encompasses a wide variety of arc-related strata, although most of its small-volume (non-caldera-forming) eruptions are poorly-exposed and extensively hydrothermally altered. The Mihi Breccia is a stratigraphic sequence consisting of interbedded rhyolitic pyroclastic flows and lacustrine sediments with eruption ages of 281 ± 18 to at least 239 ± 6 ka (uncertainties at 2σ). In contrast to other small-volume rhyolitic eruptions within the TVZ, Mihi Breccia is relatively well-exposed within the Paeroa fault block, and contains minimal hydrothermal alteration. Pyroclastic flow characteristics and textures including: 1) breadcrusted juvenile clasts, 2) lack of welding, 3) abundant ash-rich matrix, 4) lack of fiamme and eutaxitic textures, 5) lack of thermal oxidation colors, 6) lack of cooling joints, 7) exclusive lacustrine sediment lithic clasts, and 8) interbedding with lacustrine sediments, all indicating that Mihi Breccia strata originated in a paleo-lake system. This ephemeral paleo-lake system is inferred to have lasted for > 50 kyr (based on Mihi Breccia age constraints), and referred to as Huka Lake. Mihi Breccia pyroclastic flow juvenile clast geochemistry and petrography correspond with similar-aged (264 ± 8, 263 ± 10, and 247 ± 4 ka) intra-caldera rhyolite domes filling the Reporoa caldera (source of the 281 ± 81 Kaingaroa Formation ignimbrite). These exposed intra-caldera rhyolite domes (as well as geophysically inferred subsurface domes) are proposed to be source vents for the Mihi Breccia pyroclastic flows. Soft-sediment deformation associated with Mihi Breccia strata indicate either seismic shock, rapid sediment loading during pyroclastic flow emplacement, or both. Thus, the Mihi Breccia reflects a prolonged series of subaqueous rhyolite dome building and associated pyroclastic flows, accompanied by seismic activity, emplaced into a large paleo-lake system within the TVZ.

  11. Mihi Breccia: A stack of lacustrine sediments and subaqueous pyroclastic flows within the Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Downs, Drew T.

    2016-11-01

    The Taupo Volcanic Zone (TVZ), New Zealand, encompasses a wide variety of arc-related strata, although most of its small-volume (non-caldera-forming) eruptions are poorly-exposed and extensively hydrothermally altered. The Mihi Breccia is a stratigraphic sequence consisting of interbedded rhyolitic pyroclastic flows and lacustrine sediments with eruption ages of 281 ± 18 to at least 239 ± 6 ka (uncertainties at 2σ). In contrast to other small-volume rhyolitic eruptions within the TVZ, Mihi Breccia is relatively well-exposed within the Paeroa fault block, and contains minimal hydrothermal alteration. Pyroclastic flow characteristics and textures include: 1) prismatically jointed juvenile clasts, 2) lack of welding, 3) abundant ash-rich matrix, 4) lack of fiamme and eutaxitic textures, 5) lack of thermal oxidation colors, 6) lack of cooling joints, 7) exclusive lacustrine sediment lithic clasts, and 8) interbedding with lacustrine sediments, all indicating that Mihi Breccia strata originated in a paleo-lake system. This ephemeral paleo-lake system is inferred to have lasted for > 50 kyr (based on Mihi Breccia age constraints), and referred to as Huka Lake. Mihi Breccia pyroclastic flow juvenile clast geochemistry and petrography correspond with similar-aged (264 ± 8, 263 ± 10, and 247 ± 4 ka) intra-caldera rhyolite domes filling the Reporoa caldera (source of the 281 ka Kaingaroa Formation ignimbrite). These exposed intra-caldera rhyolite domes (as well as geophysically inferred subsurface domes) are proposed to be source vents for the Mihi Breccia pyroclastic flows. Soft-sediment deformation associated with Mihi Breccia strata indicates either seismic shock, rapid sediment loading during pyroclastic flow emplacement, or both. Thus, the Mihi Breccia reflects a prolonged series of subaqueous rhyolite dome building and associated pyroclastic flows, accompanied by seismic activity, emplaced into a large paleo-lake system within the TVZ.

  12. Influence of topsoil of pyroclastic origin on microbial contamination of groundwater in fractured carbonate aquifers

    Science.gov (United States)

    Naclerio, Gino; Petrella, Emma; Nerone, Valentina; Allocca, Vincenzo; de Vita, Pantaleone; Celico, Fulvio

    2008-09-01

    The aim of the research was to analyse the influence of a topsoil of pyroclastic origin on microbial contamination of groundwater in a carbonate aquifer and verify the reliability of thermotolerant coliforms and fecal enterococci as bacterial indicators. The research was carried out through hydrogeological and microbiological monitoring at an experimental field site in Italy during two hydrologic years and through column tests in a laboratory. The taxonomic classification of fecal indicators detected in spring water samples was performed using API20 galleries. Fecal enterococci were also identified by means of 16S rRNA gene sequencing. The topsoil of pyroclastic origin significantly retains both thermotolerant coliforms and fecal enterococci. Results of column tests carried out in soil blocks collected randomly within the test site suggest that Escherichia coli was more retained than Enterococcus faecalis, even though this difference is statistically significant in only two out of six soil samples. Thus, a non-uniform difference in retention is expected at field scale. This suggestion is in agreement with the results of the microbiological monitoring. In fact, fecal enterococci were a more reliable indicator than thermotolerant coliforms for detecting contamination at both seasonal springs of the aquifer system, while no significant differences were observed at the perennial spring.

  13. Archaeomagnetic results from mural paintings and pyroclastic rocks in Pompeii and Herculaneum

    Science.gov (United States)

    Zanella, E.; Gurioli, L.; Chiari, G.; Ciarallo, A.; Cioni, R.; De Carolis, E.; Lanza, R.

    2000-03-01

    This work investigates the magnetic remanence associated with red pigments from murals at Pompeii and compares their directions to those of the pyroclastic rocks from the Vesuvius AD 79 eruption. The remanence of the murals is shown, using X-ray analyses, to be carried by haematite. Murals in Thermae Stabianae, known to have been painted a few years before AD 79, yield an archaeomagnetic direction ( D=1.2°, I=58.0°; α95=5.5°) indistinguishable from that of a nearby kiln ( D=358.0°, I=59.1°; α95=1.7°) ( Evans and Mareschal, 1989) probably last used immediately prior to the eruption. The directions are also consistent with those of fine-grained pyroclastic rocks from the eruption ( D=351.2°, I=57.9°; α95=3.4°) and lithic and tile fragments embedded within them ( D=358.5°, I=60.4°; α95=8.5°). Other paintings of the 1st century AD yield similar directions, with a lower statistical definition. This study shows that murals can retain their remanent magnetization for centuries and demonstrates the viability in principle of pictorial remanence as an archaeomagnetic tool.

  14. Quantifying glassy and crystalline basalt partitioning in the oceanic crust

    Science.gov (United States)

    Moore, Rachael; Ménez, Bénédicte

    2016-04-01

    The upper layers of the oceanic crust are predominately basaltic rock, some of which hosts microbial life. Current studies of microbial life within the ocean crust mainly focus on the sedimentary rock fraction, or those organisms found within glassy basalts while the potential habitability of crystalline basalts are poorly explored. Recently, there has been recognition that microbial life develops within fractures and grain boundaries of crystalline basalts, therefore estimations of total biomass within the oceanic crust may be largely under evaluated. A deeper understanding of the bulk composition and fractionation of rocks within the oceanic crust is required before more accurate estimations of biomass can be made. To augment our understanding of glassy and crystalline basalts within the oceanic crust we created two end-member models describing basalt fractionation: a pillow basalt with massive, or sheet, flows crust and a pillow basalt with sheeted dike crust. Using known measurements of massive flow thickness, dike thickness, chilled margin thickness, pillow lava size, and pillow lava glass thickness, we have calculated the percentage of glassy versus crystalline basalts within the oceanic crust for each model. These models aid our understanding of textural fractionation within the oceanic crust, and can be applied with bioenergetics models to better constrain deep biomass estimates.

  15. Microbial colonization and alteration of basaltic glass

    Science.gov (United States)

    Einen, J.; Kruber, C.; Øvreås, L.; Thorseth, I. H.; Torsvik, T.

    2006-03-01

    Microorganisms have been reported to be associated with the alteration of the glassy margin of seafloor pillow basalts (Thorseth et al., 2001, 2003; Lysnes et al., 2004). The amount of iron and other biological important elements present in basalts and the vast abundance of basaltic glass in the earth's crust, make glass alteration an important process in global element cycling. To gain further insight into microbial communities associated with glass alteration, five microcosm experiments mimicking seafloor conditions were inoculated with seafloor basalt and incubated for one year. Mineral precipitations, microbial attachment to the glass and glass alteration were visualized by scanning electron microscopy (SEM), and the bacterial community composition was fingerprinted by PCR and denaturing gradient gel electrophoresis (DGGE) in combination with sequencing. SEM analysis revealed a microbial community with low morphological diversity of mainly biofilm associated and prosthecate microorganisms. Approximately 30 nm thick alteration rims developed on the glass in all microcosms after one year of incubation; this however was also seen in non inoculated controls. Calcium carbonate precipitates showed parallel, columnar and filamentous crystallization habits in the microcosms as well as in the sterile controls. DGGE analysis showed an alteration in bacterial community profiles in the five different microcosms, as a response to the different energy and redox regimes and time. In all microcosms a reduction in number of DGGE bands, in combination with an increase in cell abundance were recorded during the experiment. Sequence analysis showed that the microcosms were dominated by four groups of organisms with phylogenetic affiliation to four taxa: The Rhodospirillaceae, a family containing phototrophic marine organisms, in which some members are capable of heterotrophic growth in darkness and N2 fixation; the family Hyphomicrobiaceae, a group of prosthecate oligotrophic

  16. Microbial colonization and alteration of basaltic glass

    Directory of Open Access Journals (Sweden)

    J. Einen

    2006-03-01

    Full Text Available Microorganisms have been reported to be associated with the alteration of the glassy margin of seafloor pillow basalts (Thorseth et al., 2001, 2003; Lysnes et al., 2004. The amount of iron and other biological important elements present in basalts and the vast abundance of basaltic glass in the earth's crust, make glass alteration an important process in global element cycling. To gain further insight into microbial communities associated with glass alteration, five microcosm experiments mimicking seafloor conditions were inoculated with seafloor basalt and incubated for one year. Mineral precipitations, microbial attachment to the glass and glass alteration were visualized by scanning electron microscopy (SEM, and the bacterial community composition was fingerprinted by PCR and denaturing gradient gel electrophoresis (DGGE in combination with sequencing. SEM analysis revealed a microbial community with low morphological diversity of mainly biofilm associated and prosthecate microorganisms. Approximately 30 nm thick alteration rims developed on the glass in all microcosms after one year of incubation; this however was also seen in non inoculated controls. Calcium carbonate precipitates showed parallel, columnar and filamentous crystallization habits in the microcosms as well as in the sterile controls. DGGE analysis showed an alteration in bacterial community profiles in the five different microcosms, as a response to the different energy and redox regimes and time. In all microcosms a reduction in number of DGGE bands, in combination with an increase in cell abundance were recorded during the experiment. Sequence analysis showed that the microcosms were dominated by four groups of organisms with phylogenetic affiliation to four taxa: The Rhodospirillaceae, a family containing phototrophic marine organisms, in which some members are capable of heterotrophic growth in darkness and N2 fixation; the family Hyphomicrobiaceae, a group

  17. East Mariana Basin tholeiites: Cretaceous intraplate basalts or rift basalts related to the Ontong Java plume?

    Science.gov (United States)

    Castillo, P.R.; Pringle, M.S.; Carlson, R.W.

    1994-01-01

    Studies of seafloor magnetic anomaly patterns suggest the presence of Jurassic oceanic crust in a large area in the western Pacific that includes the East Mariana, Nauru and Pigafetta Basins. Sampling of the igneous crust in this area by the Deep Sea Drilling Program (DSDP) and the Ocean Drilling Program (ODP) allows direct evaluation of the age and petrogenesis of this crust. ODP Leg 129 drilled a 51 m sequence of basalt pillows and massive flows in the central East Mariana Basin. 40Ar 39Ar ages determined in this study for two Leg 129 basalts average 114.6 ?? 3.2 Ma. This age is in agreement with the Albian-late Aptian paleontologic age of the overlying sediments, but is distinctively younger than the Jurassic age predicted by magnetic anomaly patterns in the basin. Compositionally, the East Mariana Basin basalts are uniformly low-K tholeiites that are depleted in highly incompatible elements compared to moderately incompatible ones, which is typical of mid-ocean ridge basalts (MORB) erupted near hotspots. The Sr, Nd and Pb isotopic compositions of the tholeiites ( 87Sr 86Srinit = 0.70360-0.70374; 143Nd 144Ndinit = 0.512769-0.512790; 206Pb 204Pbmeas = 18.355-18.386) also overlap with some Indian Ocean Ridge MORB, although they are distinct from the isotopic compositions of Jurassic basalts drilled in the Pigafetta Basin, the oldest Pacific MORB. The isotopic compositions of the East Mariana Basin tholeiites are also similar to those of intraplate basalts, and in particular, to the isotopic signature of basalts from the nearby Ontong Java and Manihiki Plateaus. The East Mariana Basin tholeiites also share many petrologic and isotopic characteristics with the oceanic basement drilled in the Nauru Basin at DSDP Site 462. In addition, the new 110.8 ?? 1.0 Ma 40Ar 39Ar age for two flows from the bottom of Site 462 in the Nauru Basin is indistinguishable from the age of the East Mariana Basin flows. Thus, while magnetic anomaly patterns predict that the igneous

  18. Crystal Stratigraphy of Two Basalts from Apollo 16: Unique Crystallization of Picritic Basalt 606063,10-16 and Very-Low-Titanium Basalt 65703,9-13

    Science.gov (United States)

    Donohue, P. H.; Neal, C. R.; Stevens, R. E.; Zeigler, R. A.

    2014-01-01

    A geochemical survey of Apollo 16 regolith fragments found five basaltic samples from among hundreds of 2-4 mm regolith fragments of the Apollo 16 site. These included a high-Ti vitrophyric basalt (60603,10-16) and one very-low-titanium (VLT) crystalline basalt (65703,9-13). Apollo 16 was the only highlands sample return mission distant from the maria (approx. 200 km). Identification of basaltic samples at the site not from the ancient regolith breccia indicates input of material via lateral transport by post-basin impacts. The presence of basaltic rocklets and glass at the site is not unprecedented and is required to satisfy mass-balance constraints of regolith compositions. However, preliminary characterization of olivine and plagioclase crystal size distributions indicated the sample textures were distinct from other known mare basalts, and instead had affinities to impact melt textures. Impact melt textures can appear qualitatively similar to pristine basalts, and quantitative analysis is required to distinguish between the two in thin section. The crystal stratigraphy method is a powerful tool in studying of igneous systems, utilizing geochemical analyses across minerals and textural analyses of phases. In particular, trace element signatures can aid in determining the ultimate origin of these samples and variations document subtle changes occurring during their petrogenesis.

  19. Cumulate xenoliths from St. Vincent, Lesser Antilles Island Arc: a window into upper crustal differentiation of mantle-derived basalts

    Science.gov (United States)

    Tollan, P. M. E.; Bindeman, I.; Blundy, J. D.

    2012-02-01

    within the crust, lowering MgO and Cr2O3 and raising Al2O3 and CaO of residual melt due to suppression of plagioclase. Low density, hydrous basaltic and basaltic andesite melts then ascend rapidly through the crust, stalling at shallow depth upon water saturation where crystallisation of the chemically distinct cumulus phases observed in this study can occur. Deposited crystals armour the shallow magma chamber where oxygen isotope equilibration between minerals is slowly approached, before remobilisation and entrainment by later injections of magma.

  20. Preparation of basalt-based glass ceramics

    Directory of Open Access Journals (Sweden)

    MIHOVIL LOGAR

    2003-06-01

    Full Text Available Local and conventional raw materials–massive basalt from the Vrelo locality on Kopaonik mountain–have been used as starting materials to test their suitability for the production of glass-ceramics. Crystallization phenomena of glasses of the fused basalt rocks were studied by X-ray phase analysis, optical microscopy and other techniques. Various heat treatments were used, and their influences, on controlling the microstructures and properties of the products were studied with the aim of developing high strength glass-ceramic materials. Diopside CaMg(SiO32 and hypersthene ((Mg,FeSiO3 were identifies as the crystalline phases. The final products contained considerable amounts of a glassy phase. The crystalline size was in range of 8–480 mm with plate or needle shape. Microhardness, crashing strength and wears resistence of the glass-ceramics ranged from 6.5–7.5, from 2000–6300 kg/cm2 and from 0.1–0.2 g/cm, respectively.

  1. Fluvial response to sudden input of pyroclastic sediments during the 2008-2009 eruption of the Chaitén Volcano (Chile): The role of logjams

    Science.gov (United States)

    Umazano, Aldo M.; Melchor, Ricardo N.; Bedatou, Emilio; Bellosi, Eduardo S.; Krause, Javier M.

    2014-10-01

    The rhyolitic Plinian eruption of the Chilean Chaitén Volcano, initiated on May 2, 2008, suddenly introduced abundant pyroclastic sediments in the Blanco River catchment area, which experienced important modifications. Before May 2, the river was characterised by gravelly and moderate to low-sinuosity channels crossing a vegetated and locally urbanised (Chaitén City) floodplain. This river, limited by steep and densely forested highlands, was connected with the Pacific Ocean via a tidally-influenced delta plain. After heavy rains in May 11-20, the river discharge increased and triggered several responses including logjam formation and breakage, crevassing, avulsion (and channel abandonment), changes in the pattern and dimensions of channels, and construction of a new delta plain area. In this context, the goals of this contribution were: i) to document the sedimentological processes within a detailed geomorphic framework and ii) to understand the influence of logjams on fluvial dynamics. Upstream of the logjam zone, the deposits are mostly composed of ash and lapilli with abundant palaeovolcanic (epiclastic) sediments, which were produced by dilute currents and debris flows. Downstream of the logjam zone, deposits are composed by ash and lapilli, both pumice-rich and lacking important participation of older (epiclastic) sediments. The abandoned and filled palaeochannel, and the proximal part of crevasse splays experienced transient dilute flows with variable sediment concentration and, subordinately, hyperconcentrated flows. The distal sectors of crevasse splays mostly record settling from suspension. At the delta plain, tephra transported by the Blanco River was mixed with older sediments by tide and wave action (dilute flows). We conclude that immediately after eruption, both geomorphic and sedimentary processes of the river were mainly controlled by a combination of high availability of incoherent pyroclastic sediments on steep slopes, abundant rains, large

  2. Characteristics of terrestrial basaltic rock populations: Implications for Mars lander and rover science and safety

    Science.gov (United States)

    Craddock, Robert A.; Golombek, Matthew P.

    2016-08-01

    We analyzed the morphometry of basaltic rock populations that have been emplaced or affected by a variety of geologic processes, including explosive volcanic eruptions (as a proxy for impact cratering), catastrophic flooding, frost shattering, salt weathering, alluvial deposition, and chemical weathering. Morphometric indices for these rock populations were compared to an unmodified population of rocks that had broken off a solidified lava flow to understand how different geologic processes change rock shape. We found that a majority of rocks have an sphericity described as either a disc or sphere in the Zingg classification system and posit that this is a function of cooling fractures in the basalt (Zingg [1935] Schweiz. Miner. Petrogr. Mitt., 15, 39-140). Angularity (roundness) is the most diagnostic morphometric index, but the Corey Shape Factor (CSF), Oblate-Prolate Index (OPI) and deviation from compactness (D) also sometimes distinguished weathering processes. Comparison of our results to prior analyses of rock populations found at the Mars Pathfinder, Spirit, and Curiosity landing sites support previous conclusions. The observation that the size-frequency distribution of terrestrial rock populations follow exponential functions similar to lander and orbital measurements of rocks on Mars, which is expected from fracture and fragmentation theory, indicates that these distributions are being dominantly controlled by the initial fracture and fragmentation of the basalt.

  3. Solubility of water in lunar basalt at low pH2O

    Science.gov (United States)

    Newcombe, M. E.; Brett, A.; Beckett, J. R.; Baker, M. B.; Newman, S.; Guan, Y.; Eiler, J. M.; Stolper, E. M.

    2017-03-01

    We report the solubility of water in Apollo 15 basaltic "Yellow Glass" and an iron-free basaltic analog composition at 1 atm and 1350 °C. We equilibrated melts in a 1-atm furnace with flowing H2/CO2 gas mixtures that spanned ∼8 orders of magnitude in fO2 (from three orders of magnitude more reducing than the iron-wüstite buffer, IW-3.0, to IW+4.8) and ∼4 orders of magnitude in pH2/pH2O (from 0.003 to 24). Based on Fourier transform infrared spectroscopy (FTIR), our quenched experimental glasses contain 69-425 ppm total water (by weight). Our results demonstrate that under the conditions of our experiments: (1) hydroxyl is the only H-bearing species detected by FTIR; (2) the solubility of water is proportional to the square root of pH2O in the furnace atmosphere and is independent of fO2 and pH2/pH2O; (3) the solubility of water is very similar in both melt compositions; (4) the concentration of H2 in our iron-free experiments is ppm, even at oxygen fugacities as low as IW-2.3 and pH2/pH2O as high as 11; (5) Secondary ion mass spectrometry (SIMS) analyses of water in iron-rich glasses equilibrated under variable fO2 conditions may be strongly influenced by matrix effects, even when the concentration of water in the glasses is low; and (6) Our results can be used to constrain the entrapment pressure of lunar melt inclusions and the partial pressures of water and molecular hydrogen in the carrier gas of the lunar pyroclastic glass beads. We find that the most water-rich melt inclusion of Hauri et al. (2011) would be in equilibrium with a vapor with pH2O ∼ 3 bar and pH2 ∼ 8 bar. We constrain the partial pressures of water and molecular hydrogen in the carrier gas of the lunar pyroclastic glass beads to be 0.0005 bar and 0.0011 bar respectively. We calculate that batch degassing of lunar magmas containing initial volatile contents of 1200 ppm H2O (dissolved primarily as hydroxyl) and 4-64 ppm C would produce enough vapor to reach the critical vapor volume

  4. A new look at mobility metrics for pyroclastic density currents: collection, interpretation, and use

    Science.gov (United States)

    Ogburn, S. E.; Lopes, D.; Calder, E. S.

    2012-12-01

    Mitigation of risk associated with pyroclastic density currents (PDCs) depends upon accurate forecasting of possible flow paths, often using empirical models that rely on mobility metrics or the stochastic application of computational flow models. Mobility metrics often inform computational models, sometimes as direct model inputs (e.g. energy cone model), or as estimates for input parameters (e.g. basal friction parameter in TITAN2D). These mobility metrics are often compiled from PDCs at many volcanoes, generalized to reveal empirical constants, or sampled for use in probabilistic models. In practice, however, there are often inconsistencies in how mobility metrics have been collected, reported, and used. For instance, the runout of PDCs often varies depending on the method used (e.g. manually measured from a paper map, automated using GIS software); and the distance traveled by the center of mass of PDCs is rarely reported due to the difficulty in locating it. This work reexamines the way we measure, report, and analyze PDC mobility metrics. Several metrics, such as the Heim coefficient (height dropped/runout, H/L) and the proportionality of inundated area to volume (A∝V2/3) have been used successfully with PDC data (Sparks 1976; Nairn and Self 1977; Sheridan 1979; Hayashi and Self 1992; Calder et al. 1999; Widiwijayanti et al. 2008) in addition to the non-volcanic flows they were originally developed for. Other mobility metrics have been investigated by the debris avalanche community but have not yet been extensively applied to pyroclastic flows (e.g. the initial aspect ratio of collapsing pile). We investigate the relative merits and suitability of contrasting mobility metrics for different types of PDCs (e.g. dome-collapse pyroclastic flows, ash-cloud surges, pumice flows), and indicate certain circumstances under which each model performs optimally. We show that these metrics can be used (with varying success) to predict the runout of a PDC of given volume

  5. Het Zevengebergte als supergroeve. Drachenfels, Stenzelberger, Wolkenburger en basalt

    NARCIS (Netherlands)

    Nijland, T.G.

    2015-01-01

    Vanuit Nederlands perspectief kan het Zevengebergte aan de Rijn tegenover Bonn als één grote groeve worden beschouwd. In de middeleeuwen leverde het gebied de bekende Drachenfels trachiet. In de 19e eeuw stichten Nederlanders de Basalt AG in Linz om aan de grote vraag naar basalt voor waterbouwkundi

  6. On Linear Relationships between Trace Elements in Oceanic Basalts

    Institute of Scientific and Technical Information of China (English)

    万渝生

    1991-01-01

    On the basis of the batch melting model*,the author explains the linear relationships between the elements which are often recognized in oceanic basalts,has established mathematic models,discusses some relevant questions,and finally gives an example to show how to apply the method to research on basalts.

  7. Use of basaltic waste as red ceramic raw material

    Directory of Open Access Journals (Sweden)

    T. M. Mendes

    Full Text Available Abstract Nowadays, environmental codes restrict the emission of particulate matters, which result in these residues being collected by plant filters. This basaltic waste came from construction aggregate plants located in the Metropolitan Region of Londrina (State of Paraná, Brazil. Initially, the basaltic waste was submitted to sieving (< 75 μm and the powder obtained was characterized in terms of density and particle size distribution. The plasticity of ceramic mass containing 0%, 10%, 20%, 30%, 40% and 50% of basaltic waste was measured by Atterberg method. The chemical composition of ceramic formulations containing 0% and 20% of basaltic waste was determined by X-ray fluorescence. The prismatic samples were molded by extrusion and fired at 850 °C. The specimens were also tested to determine density, water absorption, drying and firing shrinkages, flexural strength, and Young's modulus. Microstructure evaluation was conducted by scanning electron microscopy, X-ray diffraction, and mercury intrusion porosimetry. Basaltic powder has similar physical and chemical characteristics when compared to other raw materials, and contributes to ceramic processing by reducing drying and firing shrinkage. Mechanical performance of mixtures containing basaltic powder is equivalent to mixtures without waste. Microstructural aspects such as pore size distribution were modified by basaltic powder; albite phase related to basaltic powder was identified by X-ray diffraction.

  8. Hydrothermal interactions of cesium and strontium phases from spent unreprocessed fuel with basalt phases and basalts

    Energy Technology Data Exchange (ETDEWEB)

    Komarneni, S.; Scheetz, B.E.; McCarthy, G.J.; Coons, W.E.

    1980-03-01

    This investigation is a segment of an extensive research program aimed at investigating the feasibility of long-term, subsurface storage of commercial nuclear waste. Specifically, it is anticipated that the waste will be housed in a repository mined from the basalt formations which lie beneath the Hanford Site. The elements monitored during the present experiments were Cs and Sr. These two elements represent significant biohazards if released from a repository and are the major heat producing radionuclides present in commercial radioactive waste. Several Cs phases and/or solutions were reacted with either isolated basalt phases or bulk-rock basalt, and the resulting solids and solutions were analyzed. The hydrothermal reactivity of SrZrO/sub 3/, which is believed to be a probable host for Sr in SFE was investigated. While so far no evidence exists which indicates that Sr is present in a water soluble phase in spent fuel elements (SFE), detailed investigation of a potential hazard is warranted. This investigation has determined that some Cs compounds likely to be stable components of spent fuel (i.e., CsOH, Cs/sub 2/MoO/sub 4/, Cs/sub 2/U/sub 2/O/sub 7/) have significant hydrothermal solubilities. These solubilities are greatly decreased in the presence of basalt and/or basalt minerals. The decrease in the amount of Cs in solution results from reactions which form pollucite and/or CsAlSiO/sub 4/, with the production of pollucite exceeding that of CsAlSiO/sub 4/. Dissolution of ..beta..-Cs/sub 2/U/sub 2/O/sub 7/ implies solubilizing a uranium species to an undetermined extent. The production of schoepite (UO/sub 3/.3H/sub 2/O) during some experiments containing basalt phases, indicates a tendency to oxidize U/sup 4 +/ to U/sup 6 +/. When diopside (nominally CaMgSi/sub 2/O/sub 6/) and ..beta..-Cs/sub 2/U/sub 2/O/sub 7/ were hydrothermally reacted, at 300/sup 0/C both UO/sub 2/ and UO/sub 3/.3H/sub 2/O were produced. Results of experiments on SrZrO/sub 3/ show it to be

  9. Coseismic Pit Crater, Normal Fault, and Extensional Fissure Formation in Unconsolidated Sediment and Basalt in Northern Iceland

    Science.gov (United States)

    Ferrill, D. A.; Wyrick, D. Y.; Smart, K. J.

    2008-12-01

    Two rifting-related seismic events in 1975 and 1978 along the Mid-Atlantic Ridge near the northern coast of Iceland produced an array of surface deformation features in Holocene basalt flows and overlying unconsolidated sediments. New field mapping and aerial photograph interpretation is coupled with analysis of maps of seismic activity and level-line survey results to constrain the timing, style, and magnitude of this deformation. Fault scarps and fissures in basalts can be traced laterally down a gentle northward dip projecting into unconsolidated braided stream deposits, providing an impressive view of the deformation style in the two contrasting mechanical layers. We report on detailed field mapping of two of these laterally traceable structures conducted in the summer of 2008 and analysis of a suite of aerial photographs from 1958 to 1998. Map-scale structures in the basalts with little or no sedimentary cover include (i) fault scarps, (ii) fissures, and (iii) locally-developed gentle dip away from the related normal fault. Dilation of faults and extension fractures in the basalt has led to rock toppling and rock fall causing widening of fissures. Wedging of toppled rock blocks at the tops of fissures has locally produced keystone arches and bridges across the tops of open fissures. Different stages in the progression of fissure formation and collapse, including (i) fissure, (ii) widened fissure with cavern, (iii) localized collapse pit, and (iv) elongate collapsed fissure, can be observed over along-strike distances of 10's of meters. Where unconsolidated sand and gravel deposits >3 m thick cover the basalts (200 m to the north along strike) structural geomorphologic features are dominated by (i) grabens, (ii) pit craters, and (iii) elongate troughs. Graben-bounding normal faults cutting the sedimentary cover in many cases have displacements >1 m. Pit craters have cone to bowl shapes, commonly occur within grabens, and have depths up to 2.8 m. The mapped

  10. Littoral blasts: Pumice-water heat transfer and the conditions for steam explosions when pyroclastic flows enter the ocean

    Science.gov (United States)

    Dufek, J.; Manga, M.; Staedter, M.

    2007-11-01

    Steam explosions, or littoral blasts, generated when pyroclastic flows interact with seawater may be a common, although rarely documented, phenomena. The development of steam explosions rather than passive steam production is related to the rate of thermal energy transfer from hot pyroclasts to water. We conduct a series of laboratory experiments to quantify the heat transfer and steam production rates when hot pyroclasts encounter water. Hot pumice (>200°C) rapidly ingests water while remaining at the surface, producing measurable amounts of steam during the process. Approximately 10% of the thermal energy of the pumice particles is partitioned into the production of steam, and smaller particles have greater steam production rates. The laboratory experiments are used to develop a subgrid model for steam production that can be incorporated into a multiphase numerical framework. We use this model to study the critical steam production rates required to initiate explosive events. For conditions typical of many pyroclastic flows, particles smaller than ˜1-5 mm are required to initiate a littoral blast. A second set of two-dimensional numerical simulations is conducted to simulate the 12-13 July Soufrière Hills dome collapse event that reached the sea. The simulations predict that the focus of the blast is likely generated several hundred meters offshore and although the landward directed base surge is primarily dry (water vapor), the area immediately above the blast is steam-rich and may be a likely site for the production of accretionary lapilli.

  11. A prediction model for uniaxial compressive strength of deteriorated pyroclastic rocks due to freeze-thaw cycle

    Science.gov (United States)

    İnce, İsmail; Fener, Mustafa

    2016-08-01

    Either directly or indirectly, building stone is exposed to diverse atmospheric interactions depending on the seasonal conditions. Due to those interactions, objects of historic and cultural heritage, as well as modern buildings, partially or completely deteriorate. Among processes involved in rock deterioration, the freeze-thaw (F-T) cycle is one of the most important. Even though pyroclastic rocks have been used as building stone worldwide due to their easy workability, they are the building stone most affected by the F-T cycle. A historical region in Central Anatolia, Turkey, Cappadoia encompasses exceptional natural wonders characterized by fairy chimneys and unique historical and cultural heritage. Human-created caves, places of worship and houses have been dug into the pyroclastic rocks, which have in turn been used in architectural construction as building stone. Using 10 pyroclastic rock samples collected from Cappadocia, we determined the rock's index-mechanical properties to develop a statistical model for estimating percentage loss of uniaxial compressive strength a critical parameter of F-T cycle's important value. We used dry density (ρd), ultrasonic velocity (Vp), point load strengths (IS(50)), and slake-durability test indexes (Id4) values of unweathered rocks in our model, which is highly reliable (R2 = 0.84) for predetermination of percentage loss of uniaxial compressive strengths of pyroclastic rocks without requiring any F-T tests.

  12. Pyroclast/snow interactions and thermally driven slurry formation. Part 2: Experiments and theoretical extension to polydisperse tephra

    Science.gov (United States)

    Walder, J.S.

    2000-01-01

    Erosion of snow by pyroclastic flows and surges presumably involves mechanical scour, but there may be thermally driven phenomena involved as well. To investigate this possibility, layers of hot (up to 400??C), uniformly sized, fine- to medium-grained sand were emplaced vertically onto finely shaved ice ('snow'); thus there was no relative shear motion between sand and snow and no purely mechanical scour. In some cases large vapor bubbles, commonly more than 10 mm across, rose through the sand layer, burst at the surface, and caused complete convective overturn of the sand, which then scoured and mixed with snow and transformed into a slurry. In other cases no bubbling occurred and the sand passively melted its way downward into the snow as a wetting front moved upward into the sand. A continuum of behaviors between these two cases was observed. Vigorous bubbling and convection were generally favored by high temperature, small grain size, and small layer thickness. A physically based theory of heat- and mass transfer at the pyroclast/snow interface, developed in Part 1 of this paper, does a good job of explaining the observations as a manifestation of unstable vapor-driven fluidization. The theory, when extrapolated to the behavior of actual, poorly sorted pyroclastic flow sediments, leads to the prediction that the observed 'thermal-scour' phenomenon should also occur for many real pyroclastic flows passing over snow. 'Thermal scour' is therefore likely to be involved in the generation of lahars.

  13. Deposition of rheomorphic ignimbrite D (Mogán Formation), Gran Canaria, Canary Islands, Spain

    Science.gov (United States)

    Kobberger, Gustav; Schmincke, Hans-Ulrich

    Rheomorphic ignimbrite D (13.4Ma, Upper Mogán Formation on Gran Canaria), a multiple flow-single cooling unit, is divided into four major structural zones that differ in fabric and finite strain of deformed pyroclasts. Their structural characteristics indicate contrasting deformation mechanisms during rheomorphic flow. The zones are: (a) a basal zone (vitrophyre) with pure uniaxial flattening perpendicular to the foliation; (b) an overlying shear zone characterized by asymmetric fabrics and a significantly higher finite strain, with an ellipsoid geometry similar to stretched oblate bodies; (c) a central zone with a finite strain geometry similar to that of the underlying shear zone but without evidence of a rotational strain component; and (d) a slightly deformed to non-deformed top zone where the almost random orientation of subspherical pyroclasts suggests preservation of original, syn-depositional clast shapes. Rheomorphic flow in D is the result of syn- to post-depositional remobilization of a hot pyroclastic flow as shown by kinematic modeling based on: (a) the overall vertical structural zonation suggested by finite strain and fabric analysis; (b) the relation of shear sense to topography; (c) the interrelationship of the calculated vertical cooling progression at the base of the flow (formation of vitrophyre) and the related vertical changes in strain geometry; (d) the complex lithification history; and (e) the consequent mechanisms of deformational flow. Rheomorphic flow was caused by load pressure due to an increase in the vertical accumulation of pyroclastic material on a slope of generally 6-8°. We suggest that every level of newly deposited pyroclastic flow material of D first passed through a welding process that was dominated by compaction (pure flattening) before rheomorphic deformation started.

  14. [Determination of Total Iron and Fe2+ in Basalt].

    Science.gov (United States)

    Liu, Jian-xun; Chen, Mei-rong; Jian, Zheng-guo; Wu, Gang; Wu, Zhi-shen

    2015-08-01

    Basalt is the raw material of basalt fiber. The content of FeO and Fe2O3 has a great impact on the properties of basalt fibers. ICP-OES and dichromate method were used to test total Fe and Fe(2+) in basalt. Suitable instrument parameters and analysis lines of Fe were chosen for ICP-OES. The relative standard deviation (RSD) of ICP-OES is 2.2%, and the recovery is in the range of 98%~101%. The method shows simple, rapid and highly accurate for determination of total Fe and Fe(2+) in basalt. The RSD of ICP-OES and dichromate method is 0.42% and 1.4%, respectively.

  15. Origin of High-Alumina Basalt, Andesite, and Dacite Magmas.

    Science.gov (United States)

    Hamilton, W

    1964-10-30

    The typical volcanic rocks of most island arcs and eugeosynclines, and of some continental environments, are basalt, andesite, and dacite, of high alumina content. The high-alumina basalt differs from tholeiitic basalt primarily in having a greater content of the components of calcic plagioclase. Laboratory data indicate that in the upper mantle, below the level at which the basaltic component of mantle rock is transformed by pressure to eclogite or pyroxenite, the entire basaltic portion probably is melted within a narrow temperature range, but that above the level of that transformation plagioclase is melted selectively before pyroxene over a wide temperature range. The broad spectrum of high-alumina magmas may represent widely varying degrees of partial melting above the transformation level, whereas narrow-spectrum tholeiite magma may represent more complete melting beneath it.

  16. Impact of Diluted Pyroclastic Density Currents on Distal Settlements: A Case Study From the Bronze Age Eruption of Avellino, Somma-Vesuvius, Italy

    Science.gov (United States)

    di Vito, M. A.; Zanella, E.; Gurioli, L.; Lanza, R.; Sulpizio, R.; Evdokia, T.; Laforgia, E.

    2006-12-01

    During the ancient Bronze Age (Palma Campania Facies) a violent plinian eruption, known as the Avellino eruption, occurred at the Somma-Vesuvius, Italy. The eruption was characterised by two main phases: plinian and phreatomagmatic, respectively. The plinian phase dispersed fallout products across the Italian peninsula in a NE direction, while the phreatomagmatic one generated dilute, turbulent pyroclastic density currents (PDCs). The latter phase impacted the plain NNW of Vesuvius, from Naples to Nola, extending tens of kilometers from the volcano. This territory was densely occupied by human settlements. These currents emplaced dune-bedded and thinly stratified deposits that reached a maximum thickness of 8-10 m in the vent area located in the western sector of the edifice. These deposits thin with distance downstream across the northwestern plain, reaching a maximum runout of up to 25 km. The onset of the phreatomagmatic phase of the eruption, during which highly efficient magma-water interaction triggered highly energetic PDCs is marked by lithic rich, fine grained ash deposits. Across the northwestern and northeastern sectors several human settlements were covered by these deposits. Volcanological field investigations integrated with a detailed facies analysis revealed that the presence of village huts (of wood and straw) affected the distribution and accumulation of these dilute PDCs. A multidisciplinary approach was applied to constrain a number of parameters for the PDCs cropping out in the excavated villages. These include PDC temperature (from the Thermal Remnant Magnetization of the lithics and pottery fragments found within the deposits) and the flow directions (from the magnetic fabric of the fine matrix). These data show that the currents, even if diluted and distal, were still hot, with temperatures of at-least 240-280 °C. The first PDC was able to engulf the village, entering huts, as well as to being locally diverted by these structures. Small

  17. Computer Mapping of Pyroclastic Flow Inundation Probability: Application to the August 2006 Flows at Tungurahua, Ecuador

    Science.gov (United States)

    Sheridan, M. F.; Patra, A.; Dalbey, K.; Stinton, A.; Hall, M.

    2007-05-01

    In the summer of 2006 Tungurahua produced its most intense pyroclastic activity since the current eruptive cycle began in October 1999. In mid-July and again in mid-August more than 20 pyroclastic flows descended ravines on the north to west flanks of the volcano causing at least five deaths and destroying property and livestock. These PFs reached the Chambo River at the base of the volcano and temporarily dammed it. The flows passed over the major Ambato-Baños highway and came within 2.5 km from the popular El Salado hot springs near the town of Banos (ca. 20,000 inhabitants). These August 16 pyroclastic flows provide a good data base for calibrating models used in hazard mapping. Titan2D is a computational code for volcanic block and ash flows and rock avalanches of various types and scales. It forms the core of the new Titan environment for volcanic hazards analysis that can integrate modeling, high-performance computing, database management, visualization, and collaborative environments to a very sophisticated level. Titan provides a solution to mapping problems by providing a probabilistic calculation of inundation depth that takes into account many of the critical uncertainties using a PCQ methodology to reduce computation time. We used TITAN to map potential inundation areas for future block-and-ash flows at Tungurahua, Ecuador. First the DEM was modified to fill the crater with a tiled plane to avoid back filling of the simulated flows. For each PCQ analysis we started with a 360° uniform distribution of initial direction of flow, a flux footprint with a 50 m radius and an initial velocity of velocity of 50 m s-1. Flux rates started at their maximum value and decreased linearly to zero over time; flux durations ranged between 1 and 5 minutes with duration being linear in volume. Then we used a flux footprint with a 50 m radius and an initial velocity of velocity of 50 m s-1. Flux rates started from their maximum value and decreased linearly to zero over

  18. Fractal analysis of experimentally generated pyroclasts: A tool for volcanic hazard assessment

    Science.gov (United States)

    Perugini, Diego; Kueppers, Ulrich

    2012-06-01

    Rapid decompression experiments on natural volcanic rocks mimick explosive eruptions. Fragment size distributions (FSD) of such experimentally generated pyroclasts are investigated using fractal geometry. The fractal dimension of fragmentation, D, of FSD is measured for samples from Unzen (Japan) and Popocatépetl (Mexico) volcanoes. Results show that: (i) FSD are fractal and can be quantified by measuring D values; (ii) D increases linearly with potential energy for fragmentation (PEF) and, thus, with increasing applied pressure; (iii) the rate of increase of D with PEF depends on open porosity: the higher the open porosity, the lower the increase of D with PEF; (iv) at comparable open porosity, samples display a similar behavior for any rock composition. The method proposed here has the potential to become a standard routine to estimate eruptive energy of past and recent eruptions using values of D and open porosity, providing an important step towards volcanic hazard assessment.

  19. Human survival in volcanic eruptions: Thermal injuries in pyroclastic surges, their causes, prognosis and emergency management.

    Science.gov (United States)

    Baxter, Peter J; Jenkins, Susanna; Seswandhana, Rosadi; Komorowski, Jean-Christophe; Dunn, Ken; Purser, David; Voight, Barry; Shelley, Ian

    2017-08-01

    This study of burns patients from two eruptions of Merapi volcano, Java, in 1994 and 2010, is the first detailed analysis to be reported of thermal injuries in a large series of hospitalised victims of pyroclastic surges, one of the most devastating phenomena in explosive eruptions. Emergency planners in volcanic crises in populated areas have to integrate the health sector into disaster management and be aware of the nature of the surge impacts and the types of burns victims to be expected in a worst scenario, potentially in numbers and in severity that would overwhelm normal treatment facilities. In our series, 106 patients from the two eruptions were treated in the same major hospital in Yogyakarta and a third of these survived. Seventy-eight per cent were admitted with over 40% TBSA (total body surface area) burns and around 80% of patients were suspected of having at least some degree of inhalation injury as well. Thirty five patients suffered over 80% TBSA burns and only one of these survived. Crucially, 45% of patients were in the 40-79% TBSA range, with most suspected of suffering from inhalation injury, for whom survival was most dependent on the hospital treatment they received. After reviewing the evidence from recent major eruptions and outlining the thermal hazards of surges, we relate the type and severity of the injuries of these patients to the temperatures and dynamics of the pyroclastic surges, as derived from the environmental impacts and associated eruption processes evaluated in our field surveys and interviews conducted by our multi-disciplinary team. Effective warnings, adequate evacuation measures, and political will are all essential in volcanic crises in populated areas to prevent future catastrophes on this scale. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  20. From hot rocks to glowing avalanches: Numerical modelling of gravity-induced pyroclastic density currents and hazard maps at the Stromboli volcano (Italy)

    Science.gov (United States)

    Salvatici, Teresa; Di Roberto, Alessio; Di Traglia, Federico; Bisson, Marina; Morelli, Stefano; Fidolini, Francesco; Bertagnini, Antonella; Pompilio, Massimo; Hungr, Oldrich; Casagli, Nicola

    2016-11-01

    Gravity-induced pyroclastic density currents (PDCs) can be produced by the collapse of volcanic crater rims or due to the gravitational instability of materials deposited in proximal areas during explosive activity. These types of PDCs, which are also known as "glowing avalanches", have been directly observed, and their deposits have been widely identified on the flanks of several volcanoes that are fed by mafic to intermediate magmas. In this research, the suitability of landslide numerical models for simulating gravity-induced PDCs to provide hazard assessments was tested. This work also presents the results of a back-analysis of three events that occurred in 1906, 1930 and 1944 at the Stromboli volcano by applying a depth-averaged 3D numerical code named DAN-3D. The model assumes a frictional internal rheology and a variable basal rheology (i.e., frictional, Voellmy and plastic). The numerical modelling was able to reproduce the gravity-induced PDCs' extension and deposit thicknesses to an order of magnitude of that reported in the literature. The best results when compared with field data were obtained using a Voellmy model with a frictional coefficient of f = 0.19 and a turbulence parameter ξ = 1000 m s- 1. The results highlight the suitability of this numerical code, which is generally used for landslides, to reproduce the destructive potential of these events in volcanic environments and to obtain information on hazards connected with explosive-related, mass-wasting phenomena in Stromboli Island and at volcanic systems characterized by similar phenomena.

  1. Structural iron (II of basaltic glass as an energy source for Zetaproteobacteria in an abyssal plain environment, off the Mid Atlantic Ridge

    Directory of Open Access Journals (Sweden)

    Pauline Audrey Henri

    2016-01-01

    Full Text Available To explore the capability of basaltic glass to support the growth of chemosynthetic microorganisms, complementary in situ and in vitro colonization experiments were performed. Microbial colonizers containing synthetic tholeitic basaltic glasses, either enriched in reduced or oxidized iron, were deployed off-axis from the Mid Atlantic Ridge on surface sediments of the abyssal plain (35°N; 29°W. In situ microbial colonization was assessed by sequencing of the 16S rRNA gene and basaltic glass alteration was characterized using Scanning Electron Microscopy, micro-X-ray Absorption Near Edge Structure at the Fe-K-edge and Raman microspectroscopy. The colonized surface of the reduced basaltic glass was covered by a rind of alteration made of iron-oxides trapped in a palagonite-like structure with thicknesses up to 150 µm. The relative abundance of the associated microbial community was dominated (39% of all reads by a single operational taxonomic unit (OTU that shared 92% identity with the iron-oxidizer Mariprofundus ferrooxydans PV-1. Conversely, the oxidized basaltic glass showed the absence of iron-oxides enriched surface deposits and correspondingly there was a lack of known iron-oxidizing bacteria in the inventoried diversity. In vitro, a similar reduced basaltic glass was incubated in artificial seawater with a pure culture of the iron-oxidizing M. ferrooxydans DIS-1 for 2 weeks, without any additional nutrients or minerals. Confocal Laser Scanning Microscopy revealed that the glass surface was covered by twisted stalks characteristic of this iron-oxidizing Zetaproteobacteria. This result supported findings of the in situ experiments indicating that the Fe(II present in the basalt was the energy source for the growth of representatives of Zetaproteobacteria in both the abyssal plain and the in vitro experiment. In accordance, the surface alteration rind observed on the reduced basaltic glass incubated in situ could at least partly result from

  2. The volcanic-sedimentary sequence of the Lousal deposit, Iberian Pyrite Belt (Portugal)

    Science.gov (United States)

    Rosa, Carlos; Rosa, Diogo; Matos, Joao; Relvas, Jorge

    2010-05-01

    The Iberian Pyrite Belt (IPB) is a massive sulfide province that is located in the south of Portugal and Spain, and hosts more than 90 massive sulfide deposits that amount to more than 1850 million metric tonnes of sulfide ore (Tornos, 2006). The ore deposits size, vary from ~1Mt to >100Mt (e.g. Neves Corvo and Aljustrel in Portugal, and Rio Tinto and Tharsis in Spain). The ore deposits are hosted by a submarine sedimentary and volcanic, felsic dominated, succession that constitutes the Upper Devonian to Lower Carboniferous Volcanic and Sedimentary Complex (VSC). The VSC ranges in thickness from approximately 600 to 1300 m (Tornos 2006). The VSC overlies the Phyllite-Quartzite Group (PQ) (Upper Devonian, base unknown) and is overlain by the Baixo Alentejo Flysch Group (Lower to Upper Carboniferous). The Lousal massive sulfide deposit is located in the western part of the IPB and occurs mostly interbedded with black mudstone. The VSC sequence at Lousal mine consists of a mudstone and quartzite sequence (PQ Group) in the lower part of the succession, over which a thick sequence of rhyolitic lavas (>300 m) occurs. Above the rhyolitic lavas there is a thick sequence of black and grey mudstone that hosts the massive sulfide ore bodies, and a rhyolitic sill. The upper part of the VSC sequence consists of a thick mudstone interval that hosts two thick basaltic units, locally with pillows. The rhyolites have small coherent cores, locally with flow bands, that grade to surrounding massive clastic intervals, with large lateral extent. The clasts show jigsaw-fit arrangement in many places and have planar or curviplanar margins and locally are perlitic at the margin. The top contact of these units is in most locations not exposed, which makes difficult to interpret the mode of emplacement. However, the thick clastic intervals, above described, are in accordance with quenching of volcanic glass with abundant water and therefore indicate that quenching of the rhyolites was the

  3. Study on lithogeochemistry of Middle Jurassic basalts from southern China represented by the Fankeng basalts from Yongding of Fujian Province

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Jincheng; JIANG; Shaoyong; WANG; Xiaolei; YANG; Jinghong; ZHANG; Mengqun

    2006-01-01

    There exists an E-W trending Middle Jurassic volcanic zone in southern China. The Fankeng basalts in the Yongding basin of Fujian Province are considered to be a typical example. The Fankeng basalts have TiO2 contents in the range of 1.92%-3.21%. They are classified as high-Ti basalts. They also have higher total Fe (averaging FeO*= 11.09%). The Middle Jurassic Fankeng basalts from southwestern Fujian have obvious distinctive lithogeochemical features from early Cretaceous basalts from southeastern coast of China. They have higher HFSE, such as Th, Nb, Ta, Zr and Ti. Their element ratios related with HFSE, such as Zr/Ba, La/Nb, La/Ta ,Zr/Y, Ti/Y, Ba/Nb, K/Ti and Rb/Zr are similar to those of OIB. The most samples have εNd(T) of -0.70-0.24, which are near chondrite. Some samples have higher εNd(T) of 1.87-3.55.Therefore, these basaltic magmas might be derived from depleted asthenospheric mantle. The lithogeochemical characteristics of the Fankeng basalts may be caused by interaction between asthenosphere and lithosphere at the time. The (Early-)Middle Jurassic basalts and gabbros from southeastern Hunan, southern Jiangxi and northern Guangdong provinces show similar geochemical features to those of the Fankeng basalts from the Yongding of Fujian. Occurrence of these OIB-type basalts in the area may be regarded as the petrological mark of upwelling of asthenosphere at the time. Upwelling of asthenosphere has led to tectonic extension and the formation of rifted basin in the area.

  4. Pliocene Basaltic Volcanism in The East Anatolia Region (EAR), Turkey

    Science.gov (United States)

    Oyan, Vural; Özdemir, Yavuz; Keskin, Mehmet

    2016-04-01

    East Anatolia Region (EAR) is one of the high Plateau which is occurred with north-south compressional regime formed depending on continent-continent collision between Eurasia and Arabia plates (Şengör and Kidd, 1979). Recent studies have revealed that last oceanic lithosphere in the EAR have completely depleted to 20 million years ago based on fission track ages (Okay et al. 2010). Our initial studies suggest that extensively volcanic activity in the EAR peaked in the Pliocene and continued in the same productivity throughout Quaternary. Voluminous basaltic lava plateaus and basaltic lavas from local eruption centers occurred as a result of high production level of volcanism during the Pliocene time interval. In order to better understand the spatial and temporal variations in Pliocene basaltic volcanism and to reveal isotopic composition, age and petrologic evolution of the basaltic volcanism, we have started to study basaltic volcanism in the East Anatolia within the framework of a TUBITAK project (project number:113Y406). Petrologic and geochemical studies carried out on the Pliocene basaltic lavas indicate the presence of subduction component in the mantle source, changing the character of basaltic volcanism from alkaline to subalkaline and increasing the amount of spinel peridotitic melts (contributions of lithospheric mantle?) in the mantle source between 5.5-3.5 Ma. FC, AFC and EC-AFC modelings reveal that the while basaltic lavas were no or slightly influenced by crustal contamination and fractional crystallization, to more evolved lavas such as bazaltictrachyandesite, basalticandesite, trachybasalt might have been important processes. Results of our melting models and isotopic analysis data (Sr, Nd, Pb, Hf, 18O) indicate that the Pliocene basaltic rocks were derived from both shallow and deep mantle sources with different melting degrees ranging between 0.1 - 4 %. The percentage of spinel seems to have increased in the mantle source of the basaltic

  5. High water content in primitive continental flood basalts

    Science.gov (United States)

    Xia, Qun-Ke; Bi, Yao; Li, Pei; Tian, Wei; Wei, Xun; Chen, Han-Lin

    2016-01-01

    As the main constituent of large igneous provinces, the generation of continental flood basalts (CFB) that are characterized by huge eruption volume (>105 km3) within short time span (basaltic melts and the partition coefficient of H2O between cpx and basaltic melt. The arc-like H2O content (4.82 ± 1.00 wt.%) provides the first clear evidence that H2O plays an important role in the generation of CFB. PMID:27143196

  6. Mineral chemistry of Pangidi basalt flows from Andhra Pradesh

    Indian Academy of Sciences (India)

    P V Nageswara Rao; P C Swaroop; Syed Karimulla

    2012-04-01

    This paper elucidates the compositional studies on clinopyroxene, plagioclase, titaniferous magnetite and ilmenite of basalts of Pangidi area to understand the geothermometry and oxybarometry conditions. Petrographic evidence and anorthite content (up to 85%) of plagioclase and temperature estimates of clinopyroxene indicate that the clinopyroxene is crystallized later than or together with plagioclase. The higher An content indicates that the parent magma is tholeiitic composition. The equilibration temperatures of clinopyroxene (1110–1190°C) and titaniferous magnetite and ilmenite coexisting mineral phases (1063–1103°C) are almost similar in lower basalt flow and it is higher for clinopyroxene (900–1110°C) when compared to titaniferous magnetite and ilmenite coexisting mineral phases (748–898°C) in middle and upper basalt flows. From this it can be inferred that the clinopyroxene is crystallized earlier than Fe–Ti oxide phases reequilibration, which indicates that the clinopyroxene temperature is the approximate eruption temperature of the present lava flows. The wide range of temperatures (900–1190°C) attained by clinopyroxene may point out that the equilibration of clinopyroxene crystals initiated from depth till closer to the surface before the melt erupted. Pangidi basalts follow the QFM buffer curve which indicates the more evolved tholeiitic composition. This suggests the parent tholeiitic magma suffered limited fractionation at high temperature under increasing oxygen fugacity in lower basalt flow and more fractionation at medium to lower temperatures under decreasing oxygen fugacity conditions during cooling of middle and upper basalt flows. The variation of oxygen fugacity indicates the oxidizing conditions for lower basalt flow (9.48–10.3) and extremely reducing conditions for middle (12.1–15.5) and upper basalt (12.4–15.54) flows prevailed at the time of cooling. Temperature vs. (FeO+Fe2O3)/(FeO+Fe2O3+MgO) data plots for present

  7. New physical characterization of the Fontana Lapilli basaltic Plinian eruption, Nicaragua

    Science.gov (United States)

    Costantini, L.; Bonadonna, C.; Houghton, B. F.; Wehrmann, H.

    2009-04-01

    The Fontana Lapilli deposit was erupted in the late Pleistocene from a vent, or multiple vents, located near Masaya volcano (Nicaragua) and is the product of one of the largest basaltic Plinian eruptions studied so far. This eruption evolved from an initial sequence of fluctuating fountain-like events and moderately explosive pulses to a sustained Plinian episode depositing fall beds of highly vesicular basaltic-andesite scoria (SiO2 > 53 wt%). Samples show unimodal grain size distribution and a moderate sorting that are uniform in time. The juvenile component predominates (> 96 wt%) and consists of vesicular clasts with both sub-angular and fluidal, elongated shapes. We obtain a maximum plume height of 32 km and an associated mass eruption rate of 1.4 × 108 kg s-1 for the Plinian phase. Estimates of erupted volume are strongly sensitive to the technique used for the calculation and to the distribution of field data. Our best estimate for the erupted volume of the majority of the climactic Plinian phase is between 2.9 and 3.8 km3 and was obtained by applying a power-law fitting technique with different integration limits. The estimated eruption duration varies between 4 and 6 h. Marine-core data confirm that the tephra thinning is better fitted by a power-law than by an exponential trend.

  8. Magnetic Anisotropic Susceptibility Studies on Impact Structures in the Serra Geral Basalt, Paraná Basin, Brazil

    Science.gov (United States)

    Crosta, A. P.; MacDonald, W. D.

    2009-12-01

    Studies of magnetic properties of shocked basalt are underway for two impact craters in the 132 Ma Serra Geral basalt of southern Brazil: the Vista Alegre crater (25.95°S, 41.69°W) in the state of Paraná, with a diameter of 12.4 km, and the Vargeão crater (26.81°S, 52.17°W) in Santa Catarina, of 9.5 km. Shatter cones and quartz planar deformation features (pdfs) have been found at both structures. Uplifted crater rims and external ejecta deposits have been removed by erosion at both craters. The interior of the Vista Alegre crater contains ejecta fallback deposits, typically reworked and weathered, and basalts of the crater floor are poorly exposed. In contrast, shocked basalts are exposed across the interior of the Vargeão structure, ejecta fallback deposits have been removed by erosion, and a central domal uplift of quartzose strata from beneath the basalt is found. Discounting the possibility of differential erosion rates, these differences might suggest that the Vargeão is the older of the two structures. Laboratory experiments elsewhere have suggested that major axes of the ellipse of anisotropic susceptibility (K1 major; K3 minor) could be aligned with the direction of propagation of the shockwave accompanying impact processes. Insufficient exposures exist at Vista Alegre to test this hypothesis. Oriented samples along a NNW-trending diametral profile across the better exposed Vargeão structure did not show a radial alignment of either K1 or K3 relative to the centre of that structure. In general, the mean susceptibility at Vargeão is lower towards the center; the degree of anisotropy is low (Pj<1.01), and the highest degree of anisotropy is in basalts adjacent to the central uplift. The shape factor (T) varies considerably (-0.5 (prolate) to +0.7 (oblate)); most magnetofabrics are oblate. Only 3 of 16 sites are prolate, and those are near the crater margin. K3 (minimum) axes are mainly steep, with a mean direction steep and slightly north of the

  9. Revisiting the Jurassic Geomagnetic Reversal recorded in the Lesotho Basalt (Southern Africa)

    CERN Document Server

    Prévot, M; Thompson, J; Faynot, L; Perrin, M; Camps, P; Prevot, Michel; Roberts, Neil; Thompson, John; Faynot, Liliane; Perrin, Mireille; Camps, Pierre

    2003-01-01

    We carried out a detailed and continuous paleomagnetic sampling of the reversed to normal geomagnetic transition recorded by some 60 consecutive flow units near the base of the Lesotho Basalt (183  1 Ma). After alternating field or thermal cleaning the directions of remanence are generally well clustered within flow units. In contrast, the thermal instability of the samples did not allow to obtain reliable paleointensity determinations. The geomagnetic transition is incompletely recorded due to a gap in volcanic activity attested both by eolian deposits and a large angular distance between the field directions of the flows underlying or overlying these deposits. The transition path is noticeably different from that reported in the pioneer work of van Zijl et al. (1962). The most transitional Virtual Geomagnetic Poles are observed after the volcanic hiatus. Once continents are replaced in their relative position 180 Ma ago, the post-hiatus VGP cluster over Russia. However, two successive rebounds f...

  10. Calcium Sulfate in Atacama Desert Basalt: A Possible Analog for Bright Material in Adirondack Basalt, Gusev Crater

    Science.gov (United States)

    Sutter, B.; Golden, D. C.; Amundson, R.; Chong-Diaz, G.; Ming, D. W.

    2007-01-01

    The Atacama Desert in northern Chile is one of the driest deserts on Earth (basalt parent material observed white material in the interior vesicles of surface basalt. This is strikingly similar to the bright-white material present in veins and vesicles of the Adirondack basalt rocks at Gusev Crater which are presumed to consist of S, Cl, and/or Br. The abundance of soil gypsum/anhydrite in the area of the Atacama basalt suggested that the white material consisted of calcium sulfate (Ca-SO4) which was later confirmed by SEM/EDS analysis. This work examines the Ca-SO4 of Atacama basalt in an effort to provide insight into the possible nature of the bright material in the Adirondack basalt of Gusev Crater. The objectives of this work are to (i) discuss variations in Ca-SO4 crystal morphology in the vesicles and (ii) examine the Ca-SO4 interaction(s) with the basalt interior.

  11. Spreading and collapse of big basaltic volcanoes

    Science.gov (United States)

    Puglisi, Giuseppe; Bonforte, Alessandro; Guglielmino, Francesco; Peltier, Aline; Poland, Michael

    2016-04-01

    Among the different types of volcanoes, basaltic ones usually form the most voluminous edifices. Because volcanoes are growing on a pre-existing landscape, the geologic and structural framework of the basement (and earlier volcanic landforms) influences the stress regime, seismicity, and volcanic activity. Conversely, the masses of these volcanoes introduce a morphological anomaly that affects neighboring areas. Growth of a volcano disturbs the tectonic framework of the region, clamps and unclamps existing faults (some of which may be reactivated by the new stress field), and deforms the substratum. A volcano's weight on its basement can trigger edifice spreading and collapse that can affect populated areas even at significant distance. Volcano instability can also be driven by slow tectonic deformation and magmatic intrusion. The manifestations of instability span a range of temporal and spatial scales, ranging from slow creep on individual faults to large earthquakes affecting a broad area. In the frame of MED-SVU project, our work aims to investigate the relation between basement setting and volcanic activity and stability at three Supersite volcanoes: Etna (Sicily, Italy), Kilauea (Island of Hawaii, USA) and Piton de la Fournaise (La Reunion Island, France). These volcanoes host frequent eruptive activity (effusive and explosive) and share common features indicating lateral spreading and collapse, yet they are characterized by different morphologies, dimensions, and tectonic frameworks. For instance, the basaltic ocean island volcanoes of Kilauea and Piton de la Fournaise are near the active ends of long hotspot chains while Mt. Etna has developed at junction along a convergent margin between the African and Eurasian plates and a passive margin separating the oceanic Ionian crust from the African continental crust. Magma supply and plate velocity also differ in the three settings, as to the sizes of the edifices and the extents of their rift zones. These

  12. Eruption processes and deposit characteristics at the monogenetic Mt. Gambier Volcanic Complex, SE Australia: implications for alternating magmatic and phreatomagmatic activity

    Science.gov (United States)

    van Otterloo, Jozua; Cas, Raymond A. F.; Sheard, Malcolm J.

    2013-08-01

    The ˜5 ka Mt. Gambier Volcanic Complex in the Newer Volcanics Province, Australia is an extremely complex monogenetic, volcanic system that preserves at least 14 eruption points aligned along a fissure system. The complex stratigraphy can be subdivided into six main facies that record alternations between magmatic and phreatomagmatic eruption styles in a random manner. The facies are (1) coherent to vesicular fragmental alkali basalt (effusive/Hawaiian spatter and lava flows); (2) massive scoriaceous fine lapilli with coarse ash (Strombolian fallout); (3) bedded scoriaceous fine lapilli tuff (violent Strombolian fallout); (4) thin-medium bedded, undulating very fine lapilli in coarse ash (dry phreatomagmatic surge-modified fallout); (5) palagonite-altered, cross-bedded, medium lapilli to fine ash (wet phreatomagmatic base surges); and (6) massive, palagonite-altered, very poorly sorted tuff breccia and lapilli tuff (phreato-Vulcanian pyroclastic flows). Since most deposits are lithified, to quantify the grain size distributions (GSDs), image analysis was performed. The facies are distinct based on their GSDs and the fine ash to coarse+fine ash ratios. These provide insights into the fragmentation intensities and water-magma interaction efficiencies for each facies. The eruption chronology indicates a random spatial and temporal sequence of occurrence of eruption styles, except for a "magmatic horizon" of effusive activity occurring at both ends of the volcanic complex simultaneously. The eruption foci are located along NW-SE trending lineaments, indicating that the complex was fed by multiple dykes following the subsurface structures related to the Tartwaup Fault System. Possible factors causing vent migration along these dykes and changes in eruption styles include differences in magma ascent rates, viscosity, crystallinity, degassing and magma discharge rate, as well as hydrological parameters.

  13. Grain shape of basaltic ash populations: implications for fragmentation

    Science.gov (United States)

    Schmith, Johanne; Höskuldsson, Ármann; Holm, Paul Martin

    2017-02-01

    Here, we introduce a new quantitative method to produce grain shape data of bulk samples of volcanic ash, and we correlate the bulk average grain shape with magma fragmentation mechanisms. The method is based on automatic shape analysis of 2D projection ash grains in the size range 125-63 μm. Loose bulk samples from the deposits of six different basaltic eruptions were analyzed, and 20,000 shape measurements for each were obtained within 45 min using the Particle Insight™ dynamic shape analyzer (PIdsa). We used principal component analysis on a reference grain dataset to show that circularity, rectangularity, form factor, and elongation best discriminate between the grain shapes when combined. The grain population data show that the studied eruptive environments produce nearly the same range of grain shapes, although to different extents. Our new shape index (the regularity index (RI)) places an eruption on a spectrum between phreatomagmatic and dry magmatic fragmentation. Almost vesicle-free Surtseyan ash has an RI of 0.207 ± 0.002 (2σ), whereas vesiculated Hawaiian ash has an RI of 0.134 ± 0.001 (2σ). These two samples define the end-member RI, while two subglacial, one lacustrine, and another submarine ash sample show intermediate RIs of 0.168 ± 0.002 (2σ), 0.175 ± 0.002 (2σ), 0.187 ± 0.002 (2σ), and 0.191 ± 0.002 (2σ), respectively. The systematic change in RI between wet and dry eruptions suggests that the RI can be used to assess the relative roles of magmatic vs. phreatomagmatic fragmentation. We infer that both magmatic and phreatomagmatic fragmentation processes played a role in the subglacial eruptions.

  14. Hazard of pyroclastic density currents at the Campi Flegrei Caldera (Southern Italy) as deduced from the combined use of facies architecture, physical modeling and statistics of the impact parameters

    Science.gov (United States)

    Mele, D.; Dioguardi, F.; Dellino, P.; Isaia, R.; Sulpizio, R.; Braia, G.

    2015-06-01

    Pyroclastic density currents of the recent eruptions at Campi Flegrei Caldera (CFC - Southern Italy) have been studied with the aim of assessing the potential impact of similar events in the future. Eruptions of different scales have been investigated by means of the combined use of facies architecture, laboratory analysis and physical modeling. Both in the small (Averno 2) and intermediate (Astroni) scales, facies analysis indicates that deposits result from the emplacement of pyroclastic density currents like base-surge, formed by multiple closely-timed impulses of phreatomagmatic origin. In the large-scale event (Agnano-Monte Spina), the facies architecture suggests that the currents started as concentrated flows near the vent, as originating from the collapse of a dense eruptive column, and evolved laterally into expanded flows by the propagation of the basal shear current. Laboratory analyses on samples from the main layers of deposits allowed obtaining the input data for the PYFLOW code, which was used for reconstructing the flow dynamic characteristics of the currents. The expected damage is discussed in terms of the probability density function of dynamic pressure and particle volumetric concentration. In this way, the range of potential impact that similar pyroclastic density currents could cause to buildings, infrastructures and population is defined. In the large-scale event, the dynamic pressure ranges from 9.38 to 1.00 kPa (integrating the basal 10 m of the current) at distances of 1.5 and 4.0 km from the vent, respectively. The values are highly influenced by the local topography. In the intermediate-scale event, the dynamic pressure ranges from 2.43 to 0.26 kPa at distances of 1.1 and 1.4 km from the vent, respectively. In the small scale event, the dynamic pressure ranges from 1.49 to 0.39 kPa at distances of 0.5 and 1.1 km from the vent, respectively. The particle volumetric concentration at a height of 2 m within the current is always lower than 0

  15. Two new basaltic asteroids in the Outer Main Belt

    CERN Document Server

    Duffard, R

    2007-01-01

    The identification of other basaltic objects in the asteroid belt is mandatory to explain the diversity in the collection of basaltic meteorites. This diversity requires more than one differentiated parent body, a fact that is consistent with the diversity of differentiated parent bodies implied by the iron meteorites. Based on a list of previously identified candidate basaltic (V-type) asteroids, two asteroids in the outer main belt, (7472) Kumakiri and (10537) 1991 RY16, were spectroscopically observed during an observational run in Calar Alto Observatory, Spain. We confirm the V-type character of these two asteroids that, together with (1459) Magnya, become the only known traces of basaltic found in the outer main belt up to now. We also demonstrate that the searching for candidate V-type asteroids using a photometric survey, like the Sloan Digital Sky Survey, produces reliable results.

  16. Mineralogy of Silica Polymorphs in Basaltic Clasts in Eucrites

    Science.gov (United States)

    Ono, H.; Takenouchi, A.; Mikouchi, T.

    2016-08-01

    We analyzed silica polymorphs in basaltic clasts in Y-75011, Pasamonte and Stannern eucrites. Cristobalite and quartz have been found, which suggests wide occurrence of hydrothermal activity throughout the crust of Vesta.

  17. Alteration of basaltic glasses from the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.

    Textural, mineralogical and compositional characteristics of basaltic glasses from the Central Indian Ocean show them to be altered to varying extents through their interaction with the seawater, resulting in the formation of palagonite. The major...

  18. A note on incipient spilitisation of central Indian basin basalts

    Digital Repository Service at National Institute of Oceanography (India)

    Karisiddaiah, S.M.; Iyer, S.D.

    Rocks dredged in the vicinity of the 79 degrees E fracture zone, in the Central Indian Basin, are sub-alkaline basalts, which are regarded as precursors to spilites. The minerals identified are mainly albitic plagioclase, augite, olivine, and less...

  19. Acid weathering of basalt and basaltic glass: 2. Effects of microscopic alteration textures on spectral properties

    Science.gov (United States)

    Smith, Rebecca J.; Horgan, Briony H. N.; Mann, Paul; Cloutis, Edward A.; Christensen, Philip R.

    2017-01-01

    Acid alteration has long been proposed for the Martian surface, and so it is important to understand how the resulting alteration textures affect surface spectra. Two basaltic materials of varying crystallinity were altered in two different H2SO4 solutions (pH 1 and pH 3) for 220 days. The unaltered and altered samples were studied in the visible and near infrared (VNIR) and thermal infrared (TIR), and select samples were chosen for scanning electron microscopy analysis. Materials altered in pH 3 solutions showed little to no physical alteration, and their spectral signatures changed very little. In contrast, all materials altered in pH 1 acid displayed silica-rich alteration textures, and the morphology differed based on starting material crystallinity. The more crystalline material displayed extensive alteration reaching into the sample interiors and had weaker silica spectral features. The glass sample developed alteration layers tens of microns thick, exhibiting amorphous silica-rich spectral features that completely obscured the substrate. Thus, the strong absorption coefficient of silica effectively decreases the penetration depth of TIR spectral measurements, causing silica abundances to be grossly overestimated in remote sensing data. Additionally, glass samples with silica layers exhibited distinct concave up blue spectral slopes in the VNIR. Spectra from the northern lowland plains of Mars are modeled with high abundances of amorphous silica and exhibit concave up blue spectral slopes and are thus consistent with acid altered basaltic glass. Therefore, we conclude that large regions of the Martian surface may have formed through the interaction of basaltic glass with strongly acidic fluids.

  20. Hafnium isotope variations in oceanic basalts

    Science.gov (United States)

    Patchett, P. J.; Tatsumoto, M.

    1980-01-01

    Hafnium isotope ratios generated by the beta(-) decay of Lu-176 are investigated in volcanic rocks derived from the suboceanic mantle. Hf-176/Hf-177 and Lu/Hf ratios were determined to precisions of 0.01-0.04% and 0.5%, respectively, by routine, low-blank chemistry. The Hf-176/Hf-177 ratio is found to be positively correlated with the Nd-143/Nd-144 ratio and negatively correlated with the Sr-87/Sr-86 and Pb-206/Pb-204 ratios, and to increase southwards along the Iceland-Reykjanes ridge traverse. An approximate bulk earth Hf-176/Hf-177 ratio of 0.28295 is inferred from the bulk earth Nd-143/Nd-144 ratio, which requires a bulk earth Lu/Hf ratio of 0.25, similar to the Juvinas eucrite. Midocean ridge basalts are shown to account for 60% of the range of Hf isotope ratios, and it is suggested that Lu-Hf fractionation is decoupled from Sm-Nd and Rb-Sr fractionation in very trace-element-depleted source regions as a result of partial melting.

  1. Damage to structures by pyroclastic flows and surges, inferred from nuclear weapons effects

    Science.gov (United States)

    Valentine, Greg A.

    1998-12-01

    In order to define the risk from explosive eruptions, one must constrain both the probability of explosive events and the effects, or consequences, of those events. This paper focuses on the effects of pyroclastic flows and surges (here termed `pyroclastic density currents', or PDCs) on buildings, infrastructure elements, and to some extent on vehicles. PDCs impart a lateral force to such structures in the form of dynamic pressure, which depends on the bulk density of the PDC (which in turn depends mainly on particle concentration) and its velocity. For reasonable ranges of particle concentration (10 -3 to 0.5) and velocities (10 to 300 m/s), dynamic pressure on the upstream face of a structure ranges from ˜0.1 kPa to 10 4 kPa. Lateral loads ranging up to about 100 kPa were produced during nuclear weapons tests in the 1940s and 1950s that were designed to study the effects of such loading on a variety of structures for civil defense and emergency response purposes in the event of nuclear war. Although considerable simplifications are involved, the data from these weapon tests provide useful analog information for understanding the effects of PDCs. I reviewed data from the nuclear tests, describing the expected damage from different loadings. Tables are provided that define the response of different structural elements (e.g., windows, framing, walls) and whole structures to loading in probabilistic terms, which in principle account for variations in construction quality, orientation, and other factors. Finally, damage documented from historical eruptions at Mt. Lamington (1951), Herculaneum (AD 79 Vesuvius eruption), and St. Pierre (1902 Mt. Pelee eruption) is reviewed. Damage patterns, combined with estimates of velocity, provide an independent estimate of particle concentration in the PDCs. Details of structural damage should be recorded and mapped around future eruptions in order to help refine this aspect of consequence analysis. Another fruitful approach would

  2. Basalt: Biologic Analog Science Associated with Lava Terrains

    Science.gov (United States)

    Lim, D. S. S.; Abercromby, A.; Kobs-Nawotniak, S. E.; Kobayashi, L.; Hughes, S. S.; Chappell, S.; Bramall, N. E.; Deans, M. C.; Heldmann, J. L.; Downs, M.; Cockell, C. S.; Stevens, A. H.; Caldwell, B.; Hoffman, J.; Vadhavk, N.; Marquez, J.; Miller, M.; Squyres, S. W.; Lees, D. S.; Fong, T.; Cohen, T.; Smith, T.; Lee, G.; Frank, J.; Colaprete, A.

    2015-12-01

    This presentation will provide an overview of the BASALT (Biologic Analog Science Associated with Lava Terrains) program. BASALT research addresses Science, Science Operations, and Technology. Specifically, BASALT is focused on the investigation of terrestrial volcanic terrains and their habitability as analog environments for early and present-day Mars. Our scientific fieldwork is conducted under simulated Mars mission constraints to evaluate strategically selected concepts of operations (ConOps) and capabilities with respect to their anticipated value for the joint human and robotic exploration of Mars. a) Science: The BASALT science program is focused on understanding habitability conditions of early and present-day Mars in two relevant Mars-analog locations (the Southwest Rift Zone (SWRZ) and the East Rift Zone (ERZ) flows on the Big Island of Hawai'i and the eastern Snake River Plain (ESRP) in Idaho) to characterize and compare the physical and geochemical conditions of life in these environments and to learn how to seek, identify, and characterize life and life-related chemistry in basaltic environments representing these two epochs of martian history. b) Science Operations: The BASALT team will conduct real (non-simulated) biological and geological science at two high-fidelity Mars analogs, all within simulated Mars mission conditions (including communication latencies and bandwidth constraints) that are based on current architectural assumptions for Mars exploration missions. We will identify which human-robotic ConOps and supporting capabilities enable science return and discovery. c) Technology: BASALT will incorporate and evaluate technologies in to our field operations that are directly relevant to conducting the scientific investigations regarding life and life-related chemistry in Mars-analogous terrestrial environments. BASALT technologies include the use of mobile science platforms, extravehicular informatics, display technologies, communication

  3. Mechanical and morphological properties of basalt filled polymer matrix composites

    OpenAIRE

    2009-01-01

    Purpose: The aim of this work is to study the effect of basalt on physical, mechanical and morphological of the injection molded LDPE.Design/methodology/approach: In this study, the effect of basalt was investigated as a filler material in polymer matrix composite (PMC) and low density polyethylene (LDPE) was chosen as a matrix material.Findings: A variety of mechanical tests were performed on the resultant composites which has appropriate compositions. Tensile, flexu...

  4. Radiolytic Hydrogen Production in the Subseafloor Basaltic Aquifer.

    Science.gov (United States)

    Dzaugis, Mary E; Spivack, Arthur J; Dunlea, Ann G; Murray, Richard W; D'Hondt, Steven

    2016-01-01

    Hydrogen (H2) is produced in geological settings by dissociation of water due to radiation from radioactive decay of naturally occurring uranium ((238)U, (235)U), thorium ((232)Th) and potassium ((40)K). To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we use radionuclide concentrations of 43 basalt samples from IODP Expedition 329 to calculate radiolytic H2 production rates in basement fractures. The samples are from three sites with very different basement ages and a wide range of alteration types. U, Th, and K concentrations vary by up to an order of magnitude from sample to sample at each site. Comparison of our samples to each other and to the results of previous studies of unaltered East Pacific Rise basalt suggests that significant variations in radionuclide concentrations are due to differences in initial (unaltered basalt) concentrations (which can vary between eruptive events) and post-emplacement alteration. However, there is no clear relationship between alteration type and calculated radiolytic yields. Local maxima in U, Th, and K produce hotspots of H2 production, causing calculated radiolytic rates to differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production, where microfractures are hotspots for radiolytic H2 production. For example, H2 production rates normalized to water volume are 190 times higher in 1 μm wide fractures than in fractures that are 10 cm wide. To assess the importance of water radiolysis for microbial communities in subseafloor basaltic aquifers, we compare electron transfer rates from radiolysis to rates from iron oxidation in subseafloor basalt. Radiolysis appears likely to be a more important electron donor source than iron oxidation in old (>10 Ma) basement basalt. Radiolytic H2 production in the volume of water adjacent to a square cm of the most radioactive SPG basalt may support as

  5. Radiolytic Hydrogen Production in the Subseafloor Basaltic Aquifer

    Science.gov (United States)

    Dzaugis, Mary E.; Spivack, Arthur J.; Dunlea, Ann G.; Murray, Richard W.; D’Hondt, Steven

    2016-01-01

    Hydrogen (H2) is produced in geological settings by dissociation of water due to radiation from radioactive decay of naturally occurring uranium (238U, 235U), thorium (232Th) and potassium (40K). To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we use radionuclide concentrations of 43 basalt samples from IODP Expedition 329 to calculate radiolytic H2 production rates in basement fractures. The samples are from three sites with very different basement ages and a wide range of alteration types. U, Th, and K concentrations vary by up to an order of magnitude from sample to sample at each site. Comparison of our samples to each other and to the results of previous studies of unaltered East Pacific Rise basalt suggests that significant variations in radionuclide concentrations are due to differences in initial (unaltered basalt) concentrations (which can vary between eruptive events) and post-emplacement alteration. However, there is no clear relationship between alteration type and calculated radiolytic yields. Local maxima in U, Th, and K produce hotspots of H2 production, causing calculated radiolytic rates to differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production, where microfractures are hotspots for radiolytic H2 production. For example, H2 production rates normalized to water volume are 190 times higher in 1 μm wide fractures than in fractures that are 10 cm wide. To assess the importance of water radiolysis for microbial communities in subseafloor basaltic aquifers, we compare electron transfer rates from radiolysis to rates from iron oxidation in subseafloor basalt. Radiolysis appears likely to be a more important electron donor source than iron oxidation in old (>10 Ma) basement basalt. Radiolytic H2 production in the volume of water adjacent to a square cm of the most radioactive SPG basalt may support as many as

  6. Genesis of highland basalt breccias - A view from 66095

    Science.gov (United States)

    Garrison, J. R., Jr.; Taylor, L. A.

    1980-01-01

    Electron microprobe and defocused beam analyses of the lunar highland breccia sample 66095 show it consists of a fine-grained subophitic matrix containing a variety of mineral and lithic clasts, such as intergranular and cataclastic ANT, shocked and unshocked plagioclase, and basalts. Consideration of the chemistries of both matrix and clasts provides a basis for a qualitative three-component mixing model consisting of an ANT plutonic complex, a Fra Mauro basalt, and minor meteoric material.

  7. Radiolytic hydrogen production in the subseafloor basaltic aquifer

    Directory of Open Access Journals (Sweden)

    Mary E Dzaugis

    2016-02-01

    Full Text Available Hydrogen (H2 is produced in geological settings by dissociation of water due to radiation from radioactive decay of naturally occurring uranium (238U, 235U, thorium (232Th and potassium (40K. To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we use radionuclide concentrations of 43 basalt samples from IODP Expedition 329 to calculate radiolytic H2 production rates in basement fractures. The samples are from three sites with very different basement ages and a wide range of alteration types. U, Th and K concentrations vary by up to an order of magnitude from sample to sample at each site. Comparison of our samples to each other and to the results of previous studies of unaltered East Pacific Rise basalt suggests that significant variations in radionuclide concentrations are due to differences in initial (unaltered basalt concentrations (which can vary between eruptive events and post-emplacement alteration. In our samples, there is no clear relationship between alteration type and calculated radiolytic yields. Local maxima in U, Th, and K produce hotspots of H2 production, causing calculated radiolytic rates to differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production, where microfractures are hotspots for radiolytic H2 production. For example, H2 production rates normalized to water volume are 190 times higher in 1 μm wide fractures than in fractures that are 10 cm wide. To assess the importance of water radiolysis for microbial communities in subseafloor basaltic aquifers, we compare electron transfer rates from radiolysis to rates from iron oxidation in subseafloor basalt. Radiolysis appears likely to be a more important electron donor source than iron oxidation in old (>10 Ma basement basalt. Radiolytic H2 production in the volume of water adjacent to a square cm of the most radioactive SPG basalt may

  8. Determination of Trace and Volatile Element Abundance Systematics of Lunar Pyroclastic Glasses 74220 and 15426 Using LA-ICP-MS

    Science.gov (United States)

    McIntosh, E. Carrie; Porrachia, Magali; McCubbin, Francis M.; Day, James M. D.

    2017-01-01

    Since their recognition as pyroclastic glasses generated by volcanic fire fountaining on the Moon, 74220 and 15426 have garnered significant scientific interest. Early studies recognized that the glasses were particularly enriched in volatile elements on their surfaces. More recently, detailed analyses of the interiors of the glasses, as well as of melt inclusions within olivine grains associated with the 74220 glass beads, have determined high H2O, F, Cl and S contents. Such elevated volatile contents seem at odds with evidence from moderately volatile elements (MVE), such as Zn and K, for a volatile- depleted Moon. In this study, we present initial results from an analytical campaign to study trace element abundances within the pyroclastic glass beads. We report trace element data determined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for 15426 and 74220.

  9. Testing the Origins of Basalt Fragments fro Apollo 16

    Science.gov (United States)

    Donohue, P. H.; Stevens, R. E.; Neal, C. R.; Zeigler, R. A.

    2013-01-01

    Several 2-4 mm regolith fragments of basalt from the Apollo 16 site were recently described by [1]. These included a high-Ti vitrophyric basalts (60603,10-16) and one very-low-titanium (VLT) crystalline basalt (65703,9-13). As Apollo 16 was the only highlands sample return mission distant from the maria, identification of basaltic samples at the site indicates input from remote sites via impact processes [1]. However, distinguishing between impact melt and pristine basalt can be notoriously difficult and requires significant sample material [2-6]. The crystal stratigraphy method utilizes essentially non-destructive methods to make these distinctions [7,8]. Crystal stratigraphy combines quantitative petrography in the form of crystal size distributions (CSDs) coupled with mineral geochemistry to reveal the petrogenetic history of samples. The classic CSD plot of crystal size versus population density can reveal insights on growth/cooling rates, residence times, and magma history which in turn can be used to evaluate basaltic vs impact melt origin [7-9]. Electron microprobe (EMP) and laser ablation (LA)-ICP-MS analyses of mineral phases complement textural investigations. Trace element variations document subtle changes occurring during the formation of the samples, and are key in the interpretation and preservation of this rare lunar sample collection.

  10. Geochemical characterization of oceanic basalts using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Iyer Sridhar D

    2009-12-01

    Full Text Available Abstract The geochemical discriminate diagrams help to distinguish the volcanics recovered from different tectonic settings but these diagrams tend to group the ocean floor basalts (OFB under one class i.e., as mid-oceanic ridge basalts (MORB. Hence, a method is specifically needed to identify the OFB as normal (N-MORB, enriched (E-MORB and ocean island basalts (OIB. We have applied Artificial Neural Network (ANN technique as a supervised Learning Vector Quantisation (LVQ to identify the inherent geochemical signatures present in the Central Indian Ocean Basin (CIOB basalts. A range of N-MORB, E-MORB and OIB dataset was used for training and testing of the network. Although the identification of the characters as N-MORB, E-MORB and OIB is completely dependent upon the training data set for the LVQ, but to a significant extent this method is found to be successful in identifying the characters within the CIOB basalts. The study helped to geochemically delineate the CIOB basalts as N-MORB with perceptible imprints of E-MORB and OIB characteristics in the form of moderately enriched rare earth and incompatible elements. Apart from the fact that the magmatic processes are difficult to be deciphered, the architecture performs satisfactorily.

  11. Geochemical characterization of oceanic basalts using Artificial Neural Network.

    Science.gov (United States)

    Das, Pranab; Iyer, Sridhar D

    2009-12-23

    The geochemical discriminate diagrams help to distinguish the volcanics recovered from different tectonic settings but these diagrams tend to group the ocean floor basalts (OFB) under one class i.e., as mid-oceanic ridge basalts (MORB). Hence, a method is specifically needed to identify the OFB as normal (N-MORB), enriched (E-MORB) and ocean island basalts (OIB). We have applied Artificial Neural Network (ANN) technique as a supervised Learning Vector Quantisation (LVQ) to identify the inherent geochemical signatures present in the Central Indian Ocean Basin (CIOB) basalts. A range of N-MORB, E-MORB and OIB dataset was used for training and testing of the network. Although the identification of the characters as N-MORB, E-MORB and OIB is completely dependent upon the training data set for the LVQ, but to a significant extent this method is found to be successful in identifying the characters within the CIOB basalts. The study helped to geochemically delineate the CIOB basalts as N-MORB with perceptible imprints of E-MORB and OIB characteristics in the form of moderately enriched rare earth and incompatible elements. Apart from the fact that the magmatic processes are difficult to be deciphered, the architecture performs satisfactorily.

  12. The Distribution of Basaltic Asteroids in the Main Belt

    CERN Document Server

    Moskovitz, Nicholas A; Gaidos, Eric; Willman, Mark; Nesvorny, David; Fevig, Ronald; Ivezic, Zeljko

    2008-01-01

    We present the observational results of a survey designed to target and detect asteroids whose colors are similar to those of Vesta family members and thus may be considered as candidates for having a basaltic composition. Fifty basaltic candidates were selected with orbital elements that lie outside of the Vesta dynamical family. Optical and near-infrared spectra were used to assign a taxonomic type to 11 of the 50 candidates. Ten of these were spectroscopically confirmed as V-type asteroids, suggesting that most of the candidates are basaltic and can be used to constrain the distribution of basaltic material in the Main Belt. Using our catalog of V-type candidates and the success rate of the survey, we calculate unbiased size-frequency and semi-major axis distributions of V-type asteroids. These distributions, in addition to an estimate for the total mass of basaltic material, suggest that Vesta was the predominant contributor to the basaltic asteroid inventory of the Main Belt, however scattered planetesim...

  13. Earth's evolving subcontinental lithospheric mantle: inferences from LIP continental flood basalt geochemistry

    Science.gov (United States)

    Greenough, John D.; McDivitt, Jordan A.

    2017-06-01

    Archean and Proterozoic subcontinental lithospheric mantle (SLM) is compared using 83 similarly incompatible element ratios (SIER; minimally affected by % melting or differentiation, e.g., Rb/Ba, Nb/Pb, Ti/Y) for >3700 basalts from ten continental flood basalt (CFB) provinces representing nine large igneous provinces (LIPs). Nine transition metals (TM; Fe, Mn, Sc, V, Cr, Co, Ni, Cu, Zn) in 102 primitive basalts (Mg# = 0.69-0.72) from nine provinces yield additional SLM information. An iterative evaluation of SIER values indicates that, regardless of age, CFB transecting Archean lithosphere are enriched in Rb, K, Pb, Th and heavy REE(?); whereas P, Ti, Nb, Ta and light REE(?) are higher in Proterozoic-and-younger SLM sources. This suggests efficient transfer of alkali metals and Pb to the continental lithosphere perhaps in association with melting of subducted ocean floor to form Archean tonalite-trondhjemite-granodiorite terranes. Titanium, Nb and Ta were not efficiently transferred, perhaps due to the stabilization of oxide phases (e.g., rutile or ilmenite) in down-going Archean slabs. CFB transecting Archean lithosphere have EM1-like SIER that are more extreme than seen in oceanic island basalts (OIB) suggesting an Archean SLM origin for OIB-enriched mantle 1 (EM1). In contrast, OIB high U/Pb (HIMU) sources have more extreme SIER than seen in CFB provinces. HIMU may represent subduction-processed ocean floor recycled directly to the convecting mantle, but to avoid convective homogenization and produce its unique Pb isotopic signature may require long-term isolation and incubation in SLM. Based on all TM, CFB transecting Proterozoic lithosphere are distinct from those cutting Archean lithosphere. There is a tendency for lower Sc, Cr, Ni and Cu, and higher Zn, in the sources for Archean-cutting CFB and EM1 OIB, than Proterozoic-cutting CFB and HIMU OIB. All CFB have SiO2 (pressure proxy)-Nb/Y (% melting proxy) relationships supporting low pressure, high % melting

  14. Regional framework and geology of iron oxide-apatite-rare earth element and iron oxide-copper-gold deposits of the Mesoproterozoic St. Francois Mountains Terrane, southeast Missouri

    Science.gov (United States)

    Day, Warren C.; Slack, John F.; Ayuso, Robert A.; Seeger, Cheryl M.

    2016-01-01

    This paper provides an overview on the genesis of Mesoproterozoic igneous rocks and associated iron oxide ± apatite (IOA) ± rare earth element, iron oxide-copper-gold (IOCG), and iron-rich sedimentary deposits in the St. Francois Mountains terrane of southeast Missouri, USA. The St. Francois Mountains terrane lies along the southeastern margin of Laurentia as part of the eastern granite-rhyolite province. The province formed during two major pulses of igneous activity: (1) an older early Mesoproterozoic (ca. 1.50–1.44 Ga) episode of volcanism and granite plutonism, and (2) a younger middle Mesoproterozoic (ca. 1.33–1.30 Ga) episode of bimodal gabbro and granite plutonism. The volcanic rocks are predominantly high-silica rhyolite pyroclastic flows, volcanogenic breccias, and associated volcanogenic sediments with lesser amounts of basaltic to andesitic volcanic and associated subvolcanic intrusive rocks. The iron oxide deposits are all hosted in the early Mesoproterozoic volcanic and volcaniclastic sequences. Previous studies have characterized the St. Francois Mountains terrane as a classic, A-type within-plate granitic terrane. However, our new whole-rock geochemical data indicate that the felsic volcanic rocks are effusive derivatives from multicomponent source types, having compositional similarities to A-type within-plate granites as well as to S- and I-type granites generated in an arc setting. In addition, the volcanic-hosted IOA and IOCG deposits occur within bimodal volcanic sequences, some of which have volcanic arc geochemical affinities, suggesting an extensional tectonic setting during volcanism prior to emplacement of the ore-forming systems.The Missouri iron orebodies are magmatic-related hydrothermal deposits that, when considered in aggregate, display a vertical zonation from high-temperature, magmatic ± hydrothermal IOA deposits emplaced at moderate depths (~1–2 km), to magnetite-dominant IOA veins and IOCG deposits emplaced at shallow

  15. Evaluation of the impact of the 2010 pyroclastic density currents at Merapi volcano from high-resolution satellite imagery, field investigations and numerical simulations

    Science.gov (United States)

    Charbonnier, S. J.; Germa, A.; Connor, C. B.; Gertisser, R.; Preece, K.; Komorowski, J.-C.; Lavigne, F.; Dixon, T.; Connor, L.

    2013-07-01

    The 2010 pyroclastic density currents (PDC) at Merapi have presented a rare opportunity to collect a uniquely detailed dataset of the source, extent, lateral variations and impact of various PDC deposits on a densely populated area. Using traditional volcanological field-based methods and a multi-temporal dataset of high-resolution satellite imagery, a total of 23 PDC events have been recognized, including 5 main channeled flows, 15 overbank flows derived from overspill and re-channelization of the main PDCs into adjacent tributaries and two main surge events. The 2010 PDC deposits covered an area of ~ 22.3 km2, unequally distributed between valley-filling (6.9%), overbank (22.4%) and surge and associated fallout deposits (71.7%). Their total estimated non-DRE volume is ~ 36.3 × 106 m3, with 50.2% of this volume accounting for valley-filling deposits, 39.3% for overbank deposits and 10.5% for surge and associated fallout deposits. More than 70% of the total volume was deposited during the third eruptive phase (4-5 November), and only 16.6%, 11.5% and 0.9% during the first (26-29 October), second (30 October - 3 November) and fourth phase (6-23 November), respectively. The internal architecture and lithofacies variations of the 2010 PDC deposits were investigated using data collected from 30 stratigraphic sections measured after one rainy season of erosion. The results show that complex, local-scale variations in flow dynamics and deposit architectures are apparent and that the major factors controlling the propagation of the main flows and their potential hazards for overbanking were driven by: (1) the rapid emplacement of several voluminous PDCs, associated with the steady infilling of the receiving landscape after the two first phases of the eruption; (2) longitudinal changes in channel capacity following increased sinuosity in the valley and decreased containment space; and (3) the effects of varying source mechanisms (gravitational dome collapse, vertical or

  16. Supercritical sheetflood deposits on the volcaniclastic alluvial fan: the Cretaceous upper Daeri Member, Wido Island, Korea

    Science.gov (United States)

    Gul Hwang, In; Gihm, Yong Sik; Kim, Min Cheol

    2016-04-01

    The upper Daeri Member is composed of subaerial primary and resedimented pyroclastic deposits. The upper Daeri Member accumulated under influence of tectonic subsidence, and the basin was divided into four blocks (Block 1 to 4) by intrabasinal normal faults (Fault A to C). Vertical separation of Fault B is estimated about 250 m and provided sufficient accommodation space on Block 3 with intrabasinal physiographic relief, resulting in conformable stacking of the upper Daeri Member on a volcaniclastic alluvial fan. The welded pumiceous lapilli tuff (primary one) was deposited by a pyroclastic density current during an explosive volcanic eruption. After the eruption, the resedimented pyroclastic deposits were deposited by episodic sediment gravity flows and are intercalated with the reddish, homogeneous mudstones. In Block 3 the resedimented pyroclastic deposits show an abrupt decrease in ten largest lithic clasts from within 3 km away from Fault B, reflecting rapid waning of parental sediment gravity flows. A wavy bedded lapilli tuff is one of the lithofacies of the resedimented pyroclastic deposits. The wavy bedded lapilli tuff is composed of symmetrical or nearly-symmetrical, wavy stratifications, forming undulatory bed geometry. The wavy stratifications are recognized by distinctive alternations of few cm to 10 cm thick, lapilli-rich and ash-rich layers. Beds of the wavy bedded lapilli tuff are 0.1 to 2 m thick (estimated in crests) and range in wavelength 1.3 m to 12 m (ave. 8 m). Both amplitude and wavelength gradually decrease away from Fault B. The wavy bedded lapilli tuff can laterally be traced over 90 m. Based on undulatory bed geometry and wavy stratifications, the wavy bedded lapilli tuff is interpreted as antidune bedforms, formed by supercritical sheetfloods. The symmetrical or nearly symmetrical wavy stratifications are due to maintenance of stationary state of standing waves of the sheetfloods. A down current decrease in both wavelength and thickness

  17. A study of stability analysis of pyroclastic covers based on electrical resistivity measurements

    CERN Document Server

    Di Maio, Rosa

    2011-01-01

    Usually, the degree of stability of a slope is quantified by the Factor of Safety whose values depend on physical and mechanical soil properties analyzed on samples of much reduced sizes or referring to very small soil volumes around porous probes. To overcome the limit of punctual information, we propose a semi-empirical approach based on the use of geophysical methods and the employment of a geophysical Factor of Safety recently introduced by the authors in terms of local resistivities and slope angles. In this paper, we show an application of our proposal on a test area of about 2000 m2 on Sarno Mountains (Campania Region - Southern Italy), where shallow landslides involving pyroclastic soils periodically occur triggered by critical rainfall events. Starting from two resistivity tomography surveys performed on the test area in autumn and spring, we obtained maps of the geophysical Factor of Safety at different depths for the two seasons. We also estimated the values of the Factor of Safety by using the inf...

  18. Near-UV Transmittance of Basalt Dust as an Analog of the Martian Regolith: Implications for Sensor Calibration and Astrobiology

    Directory of Open Access Journals (Sweden)

    J. Martínez-Frías

    2006-06-01

    Full Text Available The Martian regolith is exposed to solar irradiation in the near-UV (200-390 nm.Basalt is one of the main components of the dust on Mars surface. The near-UV irradiationof basalt dust on Mars is simulated experimentally in order to determine the transmittance asa function of the mass and thickness of the dust. This data can serve to quantify theabsorption of dust deposited on sensors aiming to measure the UV intensity on Marssurface. The minimum thickness of the dust that corresponds to near-zero-transmittance inthe near-UV is measured. Hypothetical Martian microorganisms living on the dusty regolithat deeper layers would be preserved from the damaging solar UV irradiation.

  19. A glimpse into Augustine volcano's pre-glacial past: Insight from a massive rhyolite deposit

    Science.gov (United States)

    Nadeau, P. A.; Webster, J. D.; Mandeville, C. W.; Goldoff, B. A.; Shimizu, N.; Monteleone, B. D.

    2013-12-01

    Augustine is a very high threat island volcano located on the west side of Cook Inlet, Alaska, and is the most historically active volcano in the region. As a result, Augustine has been almost wholly resurfaced by deposits from the last ~2000 years BP and little is known about older activity. Erosive pyroclastic flows associated with the 2006 eruption of Augustine created new exposures within the drainage of Augustine Creek, to the southwest of the summit. Among the newly exposed deposits is a >30 m-thick coarse pumice fall unit, which underlies ~8 m of glacial till. The lower 6 m of the deposit contain lithics 1-2 cm in diameter, while the upper 25 m of the fall are lithic-poor but contain pumice blocks up to 2 m in diameter. The majority of the unit is white pumice, with ~10% volume percent denser gray banded pumices. Yellowed, slightly weathered pumices are found at the base of the section. A similar deposit was also found on the north side of the island and may represent the same eruptive unit. Samples from the newly-discovered unit include slightly rounded and weathered pumice from the base of the unit (yellow pumice), a large fragment from near the deposit top (white pumice), and gray, banded pumice (flow-banded pumice), also from near the top of the unit. Plagioclase, orthopyroxene, amphibole, quartz, Fe-Ti oxides, and minor apatite comprise the phenocryst assemblage. Amphiboles in the white and flow-banded pumices are split into two distinct populations: a low-Al, high-Mg cummingtonite population and a high-Al population that ranges from magnesio-hornblende to ferri-tschermakite. Yellow pumices contain only cummingtonite. Analyses of melt inclusions in each of the main phenocryst phases indicate mostly rhyolitic melt compositions with water, carbon dioxide, and sulfur contents comparable to, and chlorine contents slightly lower than, more recent (Augustine melt inclusions. A single olivine and a single clinopyroxene, both from the white pumice sample, and

  20. Geomechanical rock properties of a basaltic volcano

    Directory of Open Access Journals (Sweden)

    Lauren N Schaefer

    2015-06-01

    Full Text Available In volcanic regions, reliable estimates of mechanical properties for specific volcanic events such as cyclic inflation-deflation cycles by magmatic intrusions, thermal stressing, and high temperatures are crucial for building accurate models of volcanic phenomena. This study focuses on the challenge of characterizing volcanic materials for the numerical analyses of such events. To do this, we evaluated the physical (porosity, permeability and mechanical (strength properties of basaltic rocks at Pacaya Volcano (Guatemala through a variety of laboratory experiments, including: room temperature, high temperature (935 °C, and cyclically-loaded uniaxial compressive strength tests on as-collected and thermally-treated rock samples. Knowledge of the material response to such varied stressing conditions is necessary to analyze potential hazards at Pacaya, whose persistent activity has led to 13 evacuations of towns near the volcano since 1987. The rocks show a non-linear relationship between permeability and porosity, which relates to the importance of the crack network connecting the vesicles in these rocks. Here we show that strength not only decreases with porosity and permeability, but also with prolonged stressing (i.e., at lower strain rates and upon cooling. Complimentary tests in which cyclic episodes of thermal or load stressing showed no systematic weakening of the material on the scale of our experiments. Most importantly, we show the extremely heterogeneous nature of volcanic edifices that arise from differences in porosity and permeability of the local lithologies, the limited lateral extent of lava flows, and the scars of previous collapse events. Input of these process-specific rock behaviors into slope stability and deformation models can change the resultant hazard analysis. We anticipate that an increased parameterization of rock properties will improve mitigation power.

  1. Basalt Waste Isolation Project Reclamation Support Project:

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C.A.; Rickard, W.H. Jr.; Cadoret, N.A.

    1992-06-01

    The Basalt Waste Isolation Project (BWIP) Reclamation Support Project began in the spring of 1988 by categorizing sites distributed during operations of the BWIP into those requiring revegetation and those to be abandoned or transferred to other programs. The Pacific Northwest Laboratory's role in this project was to develop plans for reestablishing native vegetation on the first category of sites, to monitor the implementation of these plans, to evaluate the effectiveness of these efforts, and to identify remediation methods where necessary. The Reclamation Support Project focused on three major areas: geologic hydrologic boreholes, the Exploratory Shaft Facility (ESF), and the Near-Surface Test Facility (NSTF). A number of BWIP reclamation sites seeded between 1989 and 1990 were found to be far below reclamation objectives. These sites were remediated in 1991 using various seedbed treatments designed to rectify problems with water-holding capacity, herbicide activity, surficial crust formation, and nutrient imbalances. Remediation was conducted during November and early December 1991. Sites were examined on a monthly basis thereafter to evaluate plant growth responses to these treatments. At all remediation sites early plant growth responses to these treatments. At all remediation sites, early plant growth far exceeded any previously obtained using other methods and seedbed treatments. Seeded plants did best where amendments consisted of soil-plus-compost or fertilizer-only. Vegetation growth on Gable Mountain was less than that found on other areas nearby, but this difference is attributed primarily to the site's altitude and north-facing orientation.

  2. Space-Time-Isotopic Trends of Snake River Plain Basalts

    Science.gov (United States)

    Jean, M. M.; Hanan, B. B.; Shervais, J. W.

    2010-12-01

    The Snake River Plain (SRP) volcanic province is an 800 km track of basalt extending from the Owyhee Plateau to its current terminus, the Yellowstone Plateau. It is one of several late-Tertiary magmatic terranes that also include the Cascades magmatic arc, the Columbia River basalts, and the Oregon Plateau basalts; all of which are adjacent to the Basin and Range Province extensional system (Hughes and McCurry, 2002). This province represents the track of the Yellowstone plume and consists of basalt that is compositionally similar to ocean-island basalt. This basalt overlies a series of rhyolitic eruptive centers (overlapping caldera complexes, ignimbrites, and caldera-filling eruptions) that signal the arrival of the plume head (Christiansen, 2001) and herald the onset of plume-related rhyolitic and basaltic volcanism (Pierce et al., 2002). Observed within the SRP are two basalt types: the dominant low-K olivine tholeiites and less common high-K alkaline basalts. We report new Sr-, Nd-, and Pb-isotopic analyses of these two basalt types from all three SRP provinces: eastern, central, and western. Low-K tholeiites are enriched in 143Nd/144Nd and 86Sr/87Sr and forms a quasi-linear array in Pb-isotope space, along with Craters of the Moon and eastern SRP basalts. High-K lavas are found largely in the western plain, and have a uniquely different isotopic signature. They are depleted in 143Nd/144Nd and 86Sr/87Sr, relative to the low-K tholeiites, and plot closer to the BSE component of Zindler and Hart (1986). They also share the same Pb-isotopic space with high-K basalts from Smith Prairie (Boise River Group 2 of Vetter and Shervais, 1992). One low-K tholeiite - Eureka North, plots with these high alkali basalts. Mass balance models have demonstrated an increasing plume component from the Yellowstone caldera in the east to the craton edge in the west. The lavas analyzed in this study conform remarkably to this model. The mass fraction of plume component in western

  3. Is vent location an important factor in the assessment of pyroclastic flow hazard from sub-Plinian events at Vesuvius?

    Science.gov (United States)

    Marianelli, P.; Esposti Ongaro, T.; Neri, A.; Cavazzoni, C.; Erbacci, G.

    2009-04-01

    Reconstructions of vent location of past sub-Plinian (and Plinian) eruptions of Vesuvius show a significant spatial variability of the vent inside the caldera area. Moreover, it is likely that the exact location of the vent of a future explosive event of that type at Vesuvius will be unknown until the onset of the event itself. Nevertheless, to our knowledge, no studies exist that analyse the influence of vent location on the simulated eruptive scenarios. This omission could be particularly critical for the assessment of pyroclastic flow (or pyroclastic density current, PDC) hazard due to the specific morphology of the Somma-Vesuvius complex. In this work, we present new numerical simulations of column collapse and pyroclastic density current scenarios at Vesuvius by using the transient 3D multiphase flow code PDAC (Esposti Ongaro et al., Parallel Computing, 33, 2007). Simulations have been carried out by assuming three different locations of the vent within the caldera area: the first is in Valle del Gigante, between Mt. Somma ridge and the present Gran Cono, the second is in Piano delle Ginestre, to the west of the Gran Cono, while the third one is in Valle dell'Inferno, in the south-eastern direction with respect to the Gran Cono. Source conditions for all cases refer to a sub-Plinian event and to both partial and nearly-total collapse of the eruptive column. Simulation results clearly show the first-order effect of vent location on the propagation directions of PDCs and the areal distribution of pyroclasts, owing to the complex interaction of the flow with the proximal volcano morphology. Comparisons with simulations assuming a central vent located in the position of Gran Cono clearly show the different roles of Mt. Somma, Gran Cono, along with mean slope and channelling effects as a function of the assumed vent location. Estimates of the areas invaded by the flows are presented, although the definition of their runout is particularly difficult due to the

  4. Elastic laboratory measurements and modeling of saturated basalts

    Science.gov (United States)

    Adam, Ludmila; Otheim, Thomas

    2013-03-01

    Understanding the elastic behavior of basalt is important to seismically monitor volcanoes, subsea basalts, and carbon sequestration in basalt. We estimate the elastic properties of basalt samples from the Snake River Plain, Idaho, at ultrasonic (0.8 MHz) and seismic (2-300 Hz) frequencies. To test the sensitivity of seismic waves to the fluid content in the pore structure, measurements are performed at three saturation conditions: saturated with liquid CO2, water, and dry. When CO2 replaces water, the P-wave velocity drops, on average, by 10%. Vesicles and cracks, observed in the rock microstructure, control the relaxation of pore-fluid pressures in the rock as a wave propagates. The bulk and shear moduli of basalts saturated with liquid CO2 are not frequency dependent, suggesting that fluid pore pressures are in equilibrium between 2 Hz and 0.8 MHz. However, when samples are water saturated, the bulk modulus of the rock is frequency dependent. Modeling with Gassmann's equations predicts the measured saturated rock bulk modulus for all fluids for frequencies below 20 Hz but underpredicts the water-saturated basalt bulk modulus for frequencies greater than 20 Hz. The most likely reason is that the pore-fluid pressures are unrelaxed. Instead, the ultrasonic frequency rock moduli are modeled with high-frequency elastic theories of squirt flow and Kuster-Toksöz (KT). Although KT's model is based on idealized pore shapes, a combination of spheres (vesicles) and penny-shaped cracks (fractures) interpreted and quantified from petrographical data predicts the ultrasonic dry and saturated rock moduli for the measured basalts.

  5. Basalt here, basalt there: Constraining the basaltic nature of eight Vp-type asteroids in the inner and outer main asteroid belt

    Science.gov (United States)

    Hardersen, Paul Scott; Reddy, Vishnu

    2016-10-01

    The distribution and abundance of basaltic material in the main asteroid belt has multiple implications that impact our understanding of the physical and thermal conditions that existed in the inner solar system during the formation epoch about 4.6 Gyr ago. Subjects impacted by a more accurate basaltic asteroid inventory include the efficacy of current inner solar system heating model predictions (Al-26 and T Tauri induction heating), the existence of differentiated parent bodies other than (4) Vesta, the dispersion efficiency of Vestoids by YORP forces, and the predictive ability of the V-taxonomy in predicting a basaltic surface composition. This work reports on a continuation of an effort to better constrain the basaltic asteroid population in the main asteroid belt with the goal of observing about 650 Vp-type asteroids. This work focuses on two populations: a) those Vp-classified asteroids (Carvano et al., 2010) in the spatial vicinity of (4) Vesta (candidate Vestoids) in the inner main belt, and b) Vp-classified asteroids in the outer main belt beyond 2.5 AU. Thus far, 23 Vp-type asteroids and candidate Vestoids have been observed and analyzed, which are all strongly suggestive of a basaltic surface composition (Hardersen et al., 2014, 2015, 2016 (in preparation)). However, unpublished work is beginning to show that the Vp taxonomic class is less accurate in its ability to identify basaltic surface compositions in outer-belt Vp-type asteroids. We report here on an additional set of Vp-type asteroids that were observed at the NASA Infrared Telescope Facility (IRTF) in December 2015 and January 2016. All observations were obtained with the SpeX spectrograph in prism mode with spectral range from 0.7 to 2.5 microns. They include (4900) Maymelou, (7302) 1993 CQ, (9064) Johndavies, (9531) Jean-Luc, (11341) Babbage, (17480) 1991 PE10, (20171) 1996 WC2, and (25849) 2000 ET107. We present average near-infrared (NIR) reflectance spectra of each asteroid, determine the

  6. Constraints on eruption dynamics of basaltic explosive activity derived from chemical and microtextural study: The example of the Fontana Lapilli Plinian eruption, Nicaragua

    Science.gov (United States)

    Costantini, L.; Houghton, B. F.; Bonadonna, C.

    2010-01-01

    The Fontana Lapilli deposit is one of very few examples of basaltic Plinian eruptions discovered so far. Juvenile clasts have uniform chemical composition and moderate ranges of density and bulk vesicularity. However, clast populations include two textural varieties which are microlite-poor and microlite-rich respectively. These two clast types have the same clast density range, making a distinction impossible on that base alone. The high bubble number density (˜ 10 7 cm - 3 ) and small bubble population of the Fontana clasts suggest that the magma underwent coupled degassing following rapid decompression and fast ascent rate, leading to non-equilibrium degassing with continuous nucleation as it is common for silicic analogues. The Fontana products have lower microlite contents (10-60 vol.%) with respect to the other documented basaltic Plinian eruptions suggesting that the brittle fragmentation, implied for the other basaltic Plinian deposits, does not apply to the Fontana products and another fragmentation mechanism led the basaltic magma to erupt in a Plinian fashion.

  7. Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    B.P. McGrail; E. C. Sullivan; F. A. Spane; D. H. Bacon; G. Hund; P. D. Thorne; C. J. Thompson; S. P. Reidel; F. S. Colwell

    2009-12-01

    The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling of Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow

  8. Volatiles and the tempo of flood basalt magmatism

    Science.gov (United States)

    Black, Benjamin A.; Manga, Michael

    2017-01-01

    Individual flood basalt lavas often exceed 103 km3 in volume, and many such lavas erupt during emplacement of flood basalt provinces. The large volume of individual flood basalt lavas implies correspondingly large magma reservoirs within or at the base of the crust. To erupt, some fraction of this magma must become buoyant and overpressure must be sufficient to encourage failure and dike propagation. The overpressure associated with a new injection of magma is inversely proportional to the total reservoir volume, and as a large magma body heats the surrounding rocks thermally activated creep will relax isotropic overpressure more rapidly. Here, we examine the viability of buoyancy overpressure as a trigger for continental flood basalt eruptions. We employ a new one-dimensional model that combines volatile exsolution, bubble growth and rise, assimilation, and permeable fluid escape from Moho-depth and crustal chambers. We investigate the temporal evolution of degassing and the eruptibility of magmas using the Siberian Traps flood basalts as a test case. We suggest that the volatile inventory set during mantle melting and redistributed via bubble motion controls ascent of magma into and through the crust, thereby regulating the tempo of flood basalt magmatism. Volatile-rich melts from low degrees of partial melting of the mantle are buoyant and erupt to the surface with little staging or crustal interaction. Melts with moderate volatile budgets accumulate in large, mostly molten magma chambers at the Moho or in the lower crust. These large magma bodies may remain buoyant and poised to erupt-triggered by volatile-rich recharge or external stresses-for ∼106 yr. If and when such chambers fail, enormous volumes of magma can ascend into the upper crust, staging at shallow levels and initiating substantial assimilation that contributes to pulses of large-volume flood basalt eruption. Our model further predicts that the Siberian Traps may have released 1019-1020 g of CO2

  9. Petrogenesis of Late Cenozoic basaltic rocks from southern Vietnam

    Science.gov (United States)

    An, A.-Rim; Choi, Sung Hi; Yu, Yongjae; Lee, Der-Chuen

    2017-02-01

    Major and trace element concentrations, and Sr-Nd-Hf-Pb isotopic compositions of Late Cenozoic (4.1 to 13.8 Ma) basaltic rocks from southern Vietnam have been determined to understand the nature of their mantle source. The volcanic rocks are composed of tholeiite basalt, alkaline basanite, trachybasalt, basaltic trachyandesite, and trachyandesite. The alkaline rocks show light rare earth element (LREE) enrichment, with (La/Yb)N = 10.3-29.8. The tholeiite basalts are distinguished by much lower values (8.8-9.5) of (La/Yb)N. On a primitive mantle-normalized trace element distribution diagram, they show oceanic island basalt (OIB)-like large-ion lithophile element enrichment without high field strength element depletion. However, some samples exhibit positive anomalies in K and Pb and negative anomalies in Sm, suggesting K-rich residual amphibole in the source. The samples contain Sr (87Sr/86Sr = 0.703794-0.704672), Nd (ɛNd = + 1.7-5.7), Hf (ɛHf = + 4.0-10.9), and Pb (206Pb/204Pb = 18.23-18.75; 207Pb/204Pb = 15.53-15.59; 208Pb/204Pb = 38.32-38.88) isotopes, plotting among OIBs, with depleted mid-ocean ridge basalt mantle-enriched mantle type 2 (DMM-EM2) characteristics. There are no discernible isotopic differences between tholeiite and the alkaline series, reflecting the same source. The Nd and Hf isotopic compositions are coupled, and plot along the mantle-crust array, ruling out the possibility of lithospheric mantle in the source. Plots of NiO against the Fo numbers of olivines from the basaltic rocks are within the range of Hainan and Hawaiian basalt olivines, implying that hybrid pyroxenite is present in the source. Also note that the estimated primary melt compositions fall within the experimental field defined by partial melting of silica-poor eclogite and peridotite. The effective melting pressure (Pf) and melting temperature (T) of the primary melts are Pf = 29.6-32.8 kbar and T = 1470-1480 °C. We suggest that Vietnamese basaltic rocks may be produced by

  10. Convective Regimes in Crystallizing Basaltic Magma Chambers

    Science.gov (United States)

    Gilbert, A. J.; Neufeld, J. A.; Holness, M. B.

    2015-12-01

    Cooling through the chamber walls drives crystallisation in crustal magma chambers, resulting in a cumulate pile on the floor and mushy regions at the walls and roof. The liquid in many magma chambers, either the bulk magma or the interstitial liquid in the mushy regions, may convect, driven either thermally, due to cooling, or compositionally, due to fractional crystallization. We have constructed a regime diagram of the possible convective modes in a system containing a basal mushy layer. These modes depend on the large-scale buoyancy forcing characterised by a global Rayleigh number and the proportion of the chamber height constituting the basal mushy region. We have tested this regime diagram using an analogue experimental system composed of a fluid layer overlying a pile of almost neutrally buoyant inert particles. Convection in this system is driven thermally, simulating magma convection above and within a porous cumulate pile. We observe a range of possible convective regimes, enabling us to produce a regime diagram. In addition to modes characterised by convection of the bulk and interstitial fluid, we also observe a series of regimes where the crystal pile is mobilised by fluid motions. These regimes feature saltation and scouring of the crystal pile by convection in the bulk fluid at moderate Rayleigh numbers, and large crystal-rich fountains at high Rayleigh numbers. For even larger Rayleigh numbers the entire crystal pile is mobilised in what we call the snowglobe regime. The observed mobilisation regimes may be applicable to basaltic magma chambers. Plagioclase in basal cumulates crystallised from a dense magma may be a result of crystal mobilisation from a plagioclase-rich roof mush. Compositional convection within such a mush could result in disaggregation, enabling the buoyant plagioclase to be entrained in relatively dense descending liquid plumes and brought to the floor. The phenocryst load in porphyritic lavas is often interpreted as a

  11. Effect of carbon nanotube addition on the wear behavior of basalt/epoxy woven composites.

    Science.gov (United States)

    Kim, M T; Rhee, K Y; Lee, B H; Kim, C J

    2013-08-01

    The effect of acid-treated carbon nanotube (CNT) addition on the wear and dynamic mechanical thermal properties of basalt/epoxy woven composites was investigated in this study. Basalt/CNT/epoxy composites were fabricated by impregnating woven basalt fibers into epoxy resin mixed with 1 wt% CNTs which were acid-treated. Wear and DMA (dynamic mechanical analyzer) tests were performed on basalt/epoxy composites and basalt/CNT/epoxy composites. The results showed that the addition of the acid-treated CNTs improved the wear properties of basalt/epoxy woven composites. Specifically, the friction coefficient of the basalt/epoxy composite was stabilized in the range of 0.5-0.6 while it fell in the range of 0.3-0.4 for basalt/CNT/epoxy composites. The wear volume loss of the basalt/CNT/epoxy composites was approximately 68% lower than that of the basalt/epoxy composites. The results also showed that the glass transition temperature of basalt/CNT/epoxy composites was higher than that of basalt/epoxy composites. The improvement of wear properties of basalt/epoxy composites by the addition of acid-treated CNTs was caused by the homogeneous load transfer between basalt fibers and epoxy matrix due to the reinforcement of CNTs.

  12. An ancient recipe for flood-basalt genesis.

    Science.gov (United States)

    Jackson, Matthew G; Carlson, Richard W

    2011-07-27

    Large outpourings of basaltic lava have punctuated geological time, but the mechanisms responsible for the generation of such extraordinary volumes of melt are not well known. Recent geochemical evidence suggests that an early-formed reservoir may have survived in the Earth's mantle for about 4.5 billion years (ref. 2), and melts of this reservoir contributed to the flood basalt emplaced on Baffin Island about 60 million years ago. However, the volume of this ancient mantle domain and whether it has contributed to other flood basalts is not known. Here we show that basalts from the largest volcanic event in geologic history--the Ontong Java plateau--also exhibit the isotopic and trace element signatures proposed for the early-Earth reservoir. Together with the Ontong Java plateau, we suggest that six of the largest volcanic events that erupted in the past 250 million years derive from the oldest terrestrial mantle reservoir. The association of these large volcanic events with an ancient primitive mantle source suggests that its unique geochemical characteristics--it is both hotter (it has greater abundances of the radioactive heat-producing elements) and more fertile than depleted mantle reservoirs-may strongly affect the generation of flood basalts.

  13. Similar Microbial Communities Found on Two Distant Seafloor Basalts.

    Science.gov (United States)

    Singer, Esther; Chong, Lauren S; Heidelberg, John F; Edwards, Katrina J

    2015-01-01

    The oceanic crust forms two thirds of the Earth's surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present the first comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lō'ihi Seamount, Hawai'i, and the East Pacific Rise (EPR; 9°N). Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from Lō'ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy.

  14. Similar microbial communities found on two distant seafloor basalts

    Science.gov (United States)

    Singer, E.; Chong, L. S.; Heidelberg, J. F.; Edwards, K. J.

    2016-12-01

    The oceanic crust forms two thirds of the Earth's surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present a comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lō'ihi Seamount, Hawai'i, and the East Pacific Rise (EPR) (9°N). Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from Lō'ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy.

  15. The eruption, pyroclastic flow behaviour, and caldera in-filling processes of the extremely large volume (> 1290 km3), intra- to extra-caldera, Permian Ora (Ignimbrite) Formation, Southern Alps, Italy

    Science.gov (United States)

    Willcock, M. A. W.; Cas, R. A. F.; Giordano, G.; Morelli, C.

    2013-09-01

    The Permian Ora Formation (277-274 Ma) preserves the products of the Ora caldera 'super-eruption', Northern Italy. The stratigraphic architecture of the exceptionally well preserved intra-caldera succession provides evidence for caldera collapse at the onset of the eruption, a multiple discharge point, fissure eruption style, and progressive, incremental caldera in-filling by numerous pyroclastic flow pulses within the caldera. The ignimbrites of the Ora Formation are voluminous (> 1290 km3), crystal-rich (~ 25 to 55%), and ubiquitously welded. The Ora Formation has been divided into four members (a-d), which also define the principal eruption phases. The eruption proceeded in four main stages: (1) early caldera collapse and vent opening, producing locally distributed, basal co-ignimbrite lithic breccia (member a); (2) vent clearing, which produced the eutaxitic, lithic-rich ignimbrite and minor thin ground and ash-cloud surge deposits (member b); (3) waxing and steady eruption, which produced the dominant eutaxitic, coarse-crystal-rich ignimbrite, with local lithic-rich and fine-crystal-rich ignimbrite and minor surge deposits (member c); and (4) waning eruption, recorded by the eutaxitic, fine-crystal-rich ignimbrite, with local lithic-rich ignimbrite deposits (member d).

  16. Consideration notes on the critical rainfall threshold to predict the triggering of pyroclastic flows

    Science.gov (United States)

    Scotto di Santolo, A.

    2009-04-01

    This paper reports the results of a theoretical analysis carried out designed to evaluate meteoric events that can be defined as critical since they are capable of triggering landslides in partially saturated pyroclastic soils. The study refers to analyses of the pyroclastic covers in the area of Campania, Italy, which is often affected by complex phenomena that begin as rotational or translational slide or fall and evolve into rapid landslides as earth-flows (debris or mud as function of grain size distributions). The prediction of triggering factors is of extreme importance for the implementation of civic protection schemes, given the dynamic features that characterize these phenomena during their evolution. The study highlights the fact that it is impossible to define the criticality of a meteoric event by means of empiric laws that correlate the mean intensity of rainfall and the "mean" duration of the event. However, it is possible to identify the criticality of a meteoric event in partially saturated soils, by means of a more complex approach which is physically conditioned. The rainfall is critical if it is capable of causing the rainwater to filter into the subsoil into "weak" layers where there is an increase in the specific volume with a significant reduction of the suction and resistance to the shear of the terrain (Fredlund et al., 78). This study focuses exclusively on seepage, regardless of the resistance of the soil, by analyzing, among various aspects, the phenomenon using a simplified subsoil model. For this study, it is assumed that the rainfall is critical when it is capable of saturating the soil cover for a predefined summit thickness Zc. For the purposes of this study, value Zc could be given an arbitrary value. This has been assumed to be 1m, considering that the experimental evidence has shown that rapid flows, at least when triggered, prove to be superficial. The other hypotheses are: • 1D infiltration, • Rigid solid skeleton;

  17. Thermal Conductivity of Pyroclastic Soil ( Pozzolana) from the Environs of Rome

    Science.gov (United States)

    McCombie, M. L.; Tarnawski, V. R.; Bovesecchi, G.; Coppa, P.; Leong, W. H.

    2017-02-01

    The paper reveals the experimental procedure and thermo-physical characteristics of a coarse pyroclastic soil ( Pozzolana), from the neighborhoods of Rome, Italy. The tested samples are comprised of 70.7 % sand, 25.9 % silt, and 3.4 % clay. Their mineral composition contained 38 % pyroxene, 33 % analcime, 20 % leucite, 6 % illite/muscovite, 3 % magnetite, and no quartz content was noted. The effective thermal conductivity of minerals was assessed to be about 2.14 W{\\cdot } m^{-1}{\\cdot } K^{-1}. A transient thermal probe method was applied to measure the thermal conductivity (λ ) over a full range of the degree of saturation (Sr), at two porosities ( n) of 0.44 and 0.50, and at room temperature of about 25°C. The λ data obtained were consistent between tests and showed an increasing trend with increasing Sr and decreasing n. At full saturation (Sr=1), a nearly quintuple λ increase was observed with respect to full dryness (Sr=0). In general, the measured data closely followed the natural trend of λ versus Sr exhibited by published data at room temperature for other unsaturated soils and sands. The measured λ data had an average root-mean-squared error (RMSE) of 0.007 W{\\cdot } m^{-1}{\\cdot } K^{-1} and 0.008 W{\\cdot } m^{-1}{\\cdot } K^{-1} for n of 0.50 and 0.44, respectively, as well as an average relative standard deviation of the mean at the 95 % confidence level (RSDM_{0.95}) of 2.21 % and 2.72 % for n of 0.50 and 0.44, respectively.

  18. Mobilization of manganese by basalt associated Mn(II)-oxidizing bacteria from the Indian Ridge System.

    Science.gov (United States)

    Sujith, P P; Mourya, B S; Krishnamurthi, S; Meena, R M; Loka Bharathi, P A

    2014-01-01

    The Indian Ridge System basalt bearing Mn-oxide coatings had todorokite as the major and birnesite as the minor mineral. We posit that microorganisms associated with these basalts participate in the oxidation of Mn and contribute to mineral deposition. We also hypothesized that, the Mn-oxidizing microbes may respond reversibly to pulses of fresh organic carbon introduced into the water column by mobilizing the Mn in Mn-oxides. To test these two hypotheses, we enumerated the number of Mn-oxidizers and -reducers and carried out studies on the mobilization of Mn by microbial communities associated with basalt. In medium containing 100 μM Mn(2+), 10(3) colony forming units (CFU) were recovered with undetectable number of reducers on Mn-oxide amended medium, suggesting that the community was more oxidative. Experiments were then conducted with basalt fragments at 4±2 °C in the presence 'G(+)' and absence 'G(-)' of glucose (0.1%). Controls included set-ups, some of which were poisoned with 15 mM azide and the others of which were heat-killed. The mobilization of Mn in the presence of glucose was 1.76 μg g(-1) d(-1) and in the absence, it was 0.17 μg g(-1) d(-1) after 150 d. Mn mobilization with and without added glucose was 13 and 4 times greater than the corresponding azide treated controls. However, rates in 'G(+)' were 16 times and 'G(-)' 24 times more than the respective heat killed controls. The corresponding total counts in the presence of added glucose increased from 1.63×10(6) to 6.71×10(7) cells g(-1) and from 1.41×10(7) to 3.52×10(7) cells g(-1) in its absence. Thus, the addition of glucose as a proxy for organic carbon changed the community's response from Mn(II)-oxidizing to Mn(IV)-reducing activity. The results confirm the participation of Mn oxidizing bacteria in the mobilization of Mn. Identification of culturable bacteria by 16S rRNA gene analysis showed taxonomic affiliations to Bacillus, Exiguobacterium, Staphylococcus, Brevibacterium and

  19. Controls on volcanism at intraplate basaltic volcanic fields

    Science.gov (United States)

    van den Hove, Jackson C.; Van Otterloo, Jozua; Betts, Peter G.; Ailleres, Laurent; Cas, Ray A. F.

    2017-02-01

    A broad range of controlling mechanisms is described for intraplate basaltic volcanic fields (IBVFs) in the literature. These correspond with those relating to shallow tectonic processes and to deep mantle plumes. Accurate measurement of the physical parameters of intraplate volcanism is fundamental to gain an understanding of the controlling factors that influence the scale and location of a specific IBVF. Detailed volume and geochronology data are required for this; however, these are not available for many IBVFs. In this study the primary controls on magma genesis and transportation are established for the Pliocene-Recent Newer Volcanics Province (NVP) of south-eastern Australia as a case-study for one of such IBVF. The NVP is a large and spatio-temporally complex IBVF that has been described as either being related to a deep mantle plume, or upper mantle and crustal processes. We use innovative high resolution aeromagnetic and 3D modelling analysis, constrained by well-log data, to calculate its dimensions, volume and long-term eruptive flux. Our estimates suggest volcanic deposits cover an area of 23,100 ± 530 km2 and have a preserved dense rock equivalent of erupted volcanics of least 680 km3, and may have been as large as 900 km3. The long-term mean eruptive flux of the NVP is estimated between 0.15 and 0.20 km3/ka, which is relatively high compared with other IBVFs. Our comparison with other IBVFs shows eruptive fluxes vary up to two orders of magnitude within individual fields. Most examples where a range of eruptive flux is available for an IBVF show a correlation between eruptive flux and the rate of local tectonic processes, suggesting tectonic control. Limited age dating of the NVP has been used to suggest there were pulses in its eruptive flux, which are not resolvable using current data. These changes in eruptive flux are not directly relatable to the rate of any interpreted tectonic driver such as edge-driven convection. However, the NVP and other

  20. Basalt Thickness in Mare Humorum: New Method and Results

    Science.gov (United States)

    Budney, C. J.; Lucey, P. G.

    1996-03-01

    Basalt thicknesses in mare basins have been determined using assumptio