WorldWideScience

Sample records for basaltic lava flows

  1. Similarities in basalt and rhyolite lava flow emplacement processes

    Science.gov (United States)

    Magnall, Nathan; James, Mike; Tuffen, Hugh; Vye-Brown, Charlotte

    2016-04-01

    Here we use field observations of rhyolite and basalt lava flows to show similarities in flow processes that span compositionally diverse lava flows. The eruption, and subsequent emplacement, of rhyolite lava flows is currently poorly understood due to the infrequency with which rhyolite eruptions occur. In contrast, the emplacement of basaltic lava flows are much better understood due to very frequent eruptions at locations such as Mt Etna and Hawaii. The 2011-2012 eruption of Cordón Caulle in Chile enabled the first scientific observations of the emplacement of an extensive rhyolite lava flow. The 30 to 100 m thick flow infilled a topographic depression with a negligible slope angle (0 - 7°). The flow split into two main channels; the southern flow advanced 4 km while the northern flow advanced 3 km before stalling. Once the flow stalled the channels inflated and secondary flows or breakouts formed from the flow front and margins. This cooling rather than volume-limited flow behaviour is common in basaltic lava flows but had never been observed in rhyolite lava flows. We draw on fieldwork conducted at Cordón Caulle and at Mt Etna to compare the emplacement of rhyolite and basaltic flows. The fieldwork identified emplacement features that are present in both lavas, such as inflation, breakouts from the flow font and margins, and squeeze-ups on the flow surfaces. In the case of Cordón Caulle, upon extrusion of a breakout it inflates due to a combination of continued lava supply and vesicle growth. This growth leads to fracturing and breakup of the breakout surface, and in some cases a large central fracture tens of metres deep forms. In contrast, breakouts from basaltic lava flows have a greater range of morphologies depending on the properties of the material in the flows core. In the case of Mt Etna, a range of breakout morphologies are observed including: toothpaste breakouts, flows topped with bladed lava as well as breakouts of pahoehoe or a'a lava. This

  2. Morphology and dynamics of inflated subaqueous basaltic lava flows

    Science.gov (United States)

    Deschamps, Anne; Grigné, Cécile; Le Saout, Morgane; Soule, Samuel Adam; Allemand, Pascal; Van Vliet-Lanoe, Brigitte; Floc'h, France

    2014-06-01

    eruptions onto low slopes, basaltic Pahoehoe lava can form thin lobes that progressively coalesce and inflate to many times their original thickness, due to a steady injection of magma beneath brittle and viscoelastic layers of cooled lava that develop sufficient strength to retain the flow. Inflated lava flows forming tumuli and pressure ridges have been reported in different kinds of environments, such as at contemporary subaerial Hawaiian-type volcanoes in Hawaii, La Réunion and Iceland, in continental environments (states of Oregon, Idaho, Washington), and in the deep sea at Juan de Fuca Ridge, the Galapagos spreading center, and at the East Pacific Rise (this study). These lava have all undergone inflation processes, yet they display highly contrasting morphologies that correlate with their depositional environment, the most striking difference being the presence of water. Lava that have inflated in subaerial environments display inflation structures with morphologies that significantly differ from subaqueous lava emplaced in the deep sea, lakes, and rivers. Their height is 2-3 times smaller and their length being 10-15 times shorter. Based on heat diffusion equation, we demonstrate that more efficient cooling of a lava flow in water leads to the rapid development of thicker (by 25%) cooled layer at the flow surface, which has greater yield strength to counteract its internal hydrostatic pressure than in subaerial environments, thus limiting lava breakouts to form new lobes, hence promoting inflation. Buoyancy also increases the ability of a lava to inflate by 60%. Together, these differences can account for the observed variations in the thickness and extent of subaerial and subaqueous inflated lava flows.

  3. Basaltic Lava Flow vs. Welded Basaltic Ignimbrite: Determining the Depositional Nature of a Volcanic Flow in the Akaroa Volcanic Complex

    Science.gov (United States)

    Sexton, E. A.; Hampton, S.

    2014-12-01

    Welded basaltic ignimbrites are one of the rarest forms of ignimbrites found on Earth and can often have characteristics that are indistinguishable from those of basaltic lava flows. This study evaluates a basaltic volcanic flow in a coastal cliff sequence in Raupo Bay, Akaroa Volcanic Complex, Banks Peninsula, New Zealand. The Raupo Bay coastal cliff sequence is comprised of 4 units, termed L1, L2, L3, and A, capped by loess. L1 and L2 are basaltic lavas, L3 proximal scoria deposits, which thin inland, and Unit A, a flow with unusual characteristics, which is the focus of this study. Field mapping, sampling, geochemical analysis and petrology were utilized to characterize units. Further detailed structural analysis of Unit A was completed, to determine the nature of the basal contact, variations in welding throughout the unit and the relationship of the layer to the underlying topography. From these analyses it was found: Unit A is thickest in a paleo-valley and thins and mantles higher topography, welding in the unit increases downwards forming topographic controlled columnar jointing, the top of the unit is brecciated and grades into the lower welded/jointed portion, the basal contact is sharp overlying a regional airfall deposit, the unit has a notably distinct geochemical composition from the underlying stratigraphic units, Unit A contains flattened and sheared scoria clasts, has aligned bubbles, and lava lithics. Further thin section analysis of Unit A identified flattened clast boundaries and microlite rimming around phenocrysts. In comparing these features to previous studies on basaltic lavas and ignimbrites it is hypothesized that Unit A is a welded basaltic ignimbrite that was channelized by paleo-topography on the outer flanks of the Akaroa Volcanic Complex. This study furthers the characterization of basaltic ignimbrites and is the first to recognize basaltic ignimbrites within the Akaroa Volcanic Complex.

  4. Numerical simulation of basaltic lava flows in the Auckland Volcanic Field, New Zealand—implication for volcanic hazard assessment

    OpenAIRE

    Kereszturi, G.; Volcanic Risk Solutions, Institute of Agriculture and Environment, Massey University, New Zealand; Cappello, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Ganci, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Procter, J.; Volcanic Risk Solutions, Institute of Agriculture and Environment, Massey University, New Zealand; Németh, K.; Volcanic Risk Solutions, Institute of Agriculture and Environment, Massey University, New Zealand; Del Negro, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Cronin, S. J.; Volcanic Risk Solutions, Institute of Agriculture and Environment, Massey University, New Zealand

    2014-01-01

    Monogenetic volcanic fields, such as the Auckland Volcanic Field (AVF), New Zealand, are common on the Earth’s surface and are typically dominated by basaltic lava flows up to 10 s of km long. In monogenetic volcanic fields located in close proximity to human population and infrastructure, lava flows are a significant threat. In this study, lava flow emplacement conditions for some basaltic eruptions of the AVF were reconstructed using the thermo-rheological MAGFLOW model. Eight existi...

  5. Investigating lava-substrate interactions through flow experiments with syrup, wax, and molten basalt

    Science.gov (United States)

    Rumpf, M. E.; Lev, E.

    2015-12-01

    Among the many factors influencing the complex process of lava flow emplacement, the interaction with the substrate onto which flow is emplaced plays a central role. Lava flows are rarely emplaced onto smooth or regular surfaces. For example, at Kīlauea Volcano, Hawai'i, lava flows regularly flow over solid rock, vegetation, basaltic or silica sand, and man-made materials, including asphalt and concrete. In situ studies of lava-substrate interactions are inherently difficult, and often dangerous, to carry-out, requiring the design of controllable laboratory experiments. We investigate the effects of substrate grain size, cohesion, and roughness on flow mobility and morphology through a series of flow experiments using analog materials and molten basalt. We have developed a series of experiments that allow for adjustable substrate parameters and analyze their effects on lava flow emplacement. The first set of experiments are performed at the Fluids Mechanics Laboratory at the Lamont-Doherty Earth Observatory and focus on two analog materials: polyethylene glycol (PEG), a commercially available wax, and corn syrup. The fluids were each extruded onto a series of scaled substrate beds to replicate the emplacement of lava in a natural environment. Preliminary experiments demonstrated that irregular topography, particularly topography with a height amplitude similar to that of the flow itself, can affect flow morphology, width, and velocity by acting as local barriers or culverts to the fluid. This is expected from observations of fluid flow in natural environments. A follow-up set of experiments will be conducted in Fall 2015 at the Syracuse University (SU) Lava Project Lab. In this set, we will pour molten basalt directly onto a series of substrates representing natural environments found on the Earth and other rocky bodies in the Solar System. These experiments will allow for analysis of the effects of basaltic composition and high temperatures on lava-substrate heat

  6. Radar observations of basaltic lava flows, Craters of the Moon, Idaho

    Science.gov (United States)

    Greeley, Ronald; Martel, Linda

    1988-01-01

    Radar images of Craters of the Moon, Idaho were used to study the backscatter characteristics of basaltic lava flows of predominantly pahoehoe textures and to determine the ability to detct fissure vents. Four images were obtained: X-band HH, X-band HV, L-band HH, and L-band HV. Hummocky pahoehoe flows were found to have strong backscatter in all four of these images. Aa lava flows showed the greatest variation in backscatter intensities, due to an increase in multiple scattering at the L-band scale. Eruptive fissures are detectable in the radar images by virtue of associated parallel spatter ramparts which have diagnostic, strong backscatter in the X-band images that are in contrast to the weak backscatter of the surrounding shelly pahoehoe lava. The importance of look direction in the use of radar images to characterize terrains is emphasized.

  7. Emplacement history and inflation evidence of a long basaltic lava flow located in Southern Payenia Volcanic Province, Argentina

    Science.gov (United States)

    Bernardi, Mauro I.; Bertotto, Gustavo W.; Jalowitzki, Tiago L. R.; Orihashi, Yuji; Ponce, Alexis D.

    2015-02-01

    The El Corcovo lava flow, from the Huanul shield volcano in the southern Mendoza province (central-western Argentina) traveled a distance of 70 km and covered a minimum area of ~ 415 km2. The flow emplacement was controlled both by extrinsic (e.g., topography) and intrinsic (e.g., lava supply rate, lava physicochemical characteristics) factors. The distal portion of the lava flow reached the Colorado River Valley, in La Pampa Province, where it spread and then was confined by earlier river channels. Cross-sections through the flow surveyed at several localities show two vesicular layers surrounding a dense central section, where vesicles are absent or clustered in sheet-shaped and cylindrical-shaped structures. Lavas of the El Corcovo flow are alkaline basalts with low values of viscosity. The morphological and structural characteristics of the flow and the presence of landforms associated with lava accumulation are the evidence of inflation. This process involved the formation of a tabular sheet flow up to 4 m of thick with a large areal extent in the proximal sectors, while at terminal sectors frontal lobes reached inflation values up to 10 m. The numerous swelling structures present at these portions of the flow suggest the movement of lava in lava tubes. We propose that this aspect and the low viscosity of the lava allowed the flow travel to a great distance on a gentle slope relief.

  8. Impact of Environmental Factors on the Spectral Characteristics of Lava Surfaces: Field Spectrometry of Basaltic Lava Flows on Tenerife, Canary Islands, Spain

    Directory of Open Access Journals (Sweden)

    Long Li

    2015-12-01

    Full Text Available We report on spectral reflectance measurements of basaltic lava flows on Tenerife Island, Spain. Lava flow surfaces of different ages, surface roughness and elevations were systematically measured using a field spectroradiometer operating in the range of 350–2500 nm. Surface roughness, oxidation and lichen coverage were documented at each measured site. Spectral properties vary with age and morphology of lava. Pre-historical lavas with no biological coverage show a prominent increase in spectral reflectance in the 400–760 nm range and a decrease in the 2140–2210 nm range. Pāhoehoe surfaces have higher reflectance values than ʻaʻā ones and attain a maximum reflectance at wavelengths < 760 nm. Lichen-covered lavas are characterized by multiple lichen-related absorption and reflection features. We demonstrate that oxidation and lichen growth are two major factors controlling spectra of Tenerife lava surfaces and, therefore, propose an oxidation index and a lichen index to quantify surface alterations of lava flows: (1 the oxidation index is based on the increase of the slope of the spectral profile from blue to red as the field-observed oxidation level strengthens; and (2 the lichen index is based on the spectral reflectance in the 1660–1725 nm range, which proves to be highly correlated with lichen coverage documented in the field. The two spectral indices are applied to Landsat ETM+ and Hyperion imagery of the study area for mapping oxidation and lichen coverage on lava surfaces, respectively. Hyperion is shown to be capable of discriminating different volcanic surfaces, i.e., tephra vs. lava and oxidized lava vs. lichen-covered lava. Our study highlights the value of field spectroscopic measurements to aid interpretation of lava flow characterization using satellite images and of the effects of environmental factors on lava surface evolution over time, and, therefore, has the potential to contribute to the mapping as well as dating

  9. Radar Observations of Fissure-fed Basaltic Lava Flows, Craters of the Moon, Idaho

    Science.gov (United States)

    Martel, L.; Greeley, R.

    1985-01-01

    Changes in surface roughness of lava flows, estimated from dual polarization, synthetic aperture, X and L band side-looking airborne radar images, were tested as a means of locating fissure vent areas. If lava textures proess from smooth, near-vent shelly pahoehoe to hummocky pahoehoe to aa with distance from fissure vents, then radr images of the lava flows would show a progression from dark to brighter tones due to the flows' increasing radar back-scatter.

  10. A new model for the emplacement of Columbia River basalts as large, inflated pahoehoe lava flow fields

    Science.gov (United States)

    Self, S.; Thordarson, Th.; Keszthelyi, L.; Walker, G.P.L.; Hon, K.; Murphy, M.T.; Long, P.; Finnemore, S.

    1996-01-01

    Extensive flows of the Columbia River Basalt (CRB) Group in Washington, Oregon, and Idaho are dominantly inflated compound pahoehoe sheet lavas. Early studies recognized that CRB lavas are compound pahoehoe flows, with textures suggesting low flow velocities, but it was thought that the great thickness and extent of the major flows required very rapid emplacement as turbulent floods of lava over a period of days or weeks. However, small volume ( pahoehoe flows on Kilauea, Hawai'i, demonstrate that such flows can thicken by at least an order of magnitude through gradual inflation and the same mechanism has been proposed for larger (10-20 km3) pahoehoe flows in Iceland. The vertical distribution of vesicles and other morphologic features within CRB lava flows indicate that they grew similarly by inflation. Small pahoehoe lobes at the base and top of many CRB pahoehoe lava flows indicate emplacement in a gradual, piecemeal manner rather than as a single flood. We propose that each thick CRB sheet flow was active for months to years and that each group of flows produced by a single eruption (a flow field) was emplaced slowly over many years. Copyright 1996 by the American Geophysical Union.

  11. Vertical AMS variation within basalt flow profiles from the Xitle volcano (Mexico) as indicator of heterogeneous strain in lava flows

    Science.gov (United States)

    Caballero-Miranda, C. I.; Alva-Valdivia, L. M.; González-Rangel, J. A.; Gogitchaishvili, A.; Urrutia-Fucugauchi, J.; Kontny, A.

    2016-02-01

    The within-flow vertical variation of anisotropy of the magnetic susceptibility (AMS) of three basaltic flow profiles from the Xitle volcano were investigated in relation to the lava flow-induced shear strain. Rock magnetic properties and opaque microscopy studies have shown that the magnetic mineralogy is dominated by Ti-poor magnetite with subtle vertical variations in grain size distribution: PSD grains dominate in a thin bottommost zone, and from base to top from PSD-MD to PSD-SD grains are found. The vertical variation of AMS principal direction patterns permitted identification of two to three main lava zones, some subdivided into subzones. The lower zone is very similar in all profiles with the magnetic foliation dipping toward the flow source, whereas the upper zone has magnetic foliation dipping toward the flow direction or alternates between dipping against and toward the flow direction. The K1 (maximum AMS axis) directions tend to be mostly parallel to the flow direction in both zones. The middle zone shows AMS axes diverging among profiles. We present heterogeneous strain ellipse distribution models for different flow velocities assuming similar viscosity to explain the AMS directions and related parameters of each zone. Irregular vertical foliations and transverse to flow lineation of a few samples at the bottommost and topmost part of profiles suggest SD inverse fabric, levels of intense friction, or degassing effects in AMS orientations.

  12. Very long pahoehoe inflated basaltic lava flows in the Payenia volcanic province (Mendoza and la Pampa, Argentina

    Directory of Open Access Journals (Sweden)

    Giorgio Pasquarè

    2008-03-01

    Full Text Available Extremely long basaltic lava flows are here presented and described. The flows originated from the great, polygenetic, fissural Payen Volcanic Complex, in the Andean back-arc volcanic province of Payenia in Argentina. The lava flows outpoured during the Late Quaternary from the summit rift of a shield volcano representing the first volcanic centre of this complex. One of these flows presents an individual tongue-like shape with a length of 181 km and therefore is the longest known individual Quaternary lava flow on Earth. Leaving the flanks of the volcano this flow reached the Salado river valley at La Pampa and, in its distal portion, maintained its narrow and straight shape without any topographic control over a flat alluvial plain. It has a hawaiite composition with low phenocryst content of prevailing olivine and minor plagioclase. Rare Earth element patterns are typical of Na-alkaline basalts, but incompatible trace element patterns and Sr -Nd isotope ratios, suggest a geodynamic setting transitional to the orogenic one. The flow advanced following the thermally efficient "inflation" mechanism, as demonstrated by a peculiar association of well developed morphological, structural and textural features. The temperature of 1130-1160°C and the viscosity of 3-73 Pa*s, calculated by petrochemical data, may be considered, together with a very low cooling rate and a sustained and long lasting effusion rate, the main causes of the extremely long transport system of this flow. Both the extreme length of the flow and the partial lack of topographic control may provide new constraints on the physics of large inflated flows, which constitute the largest volcanic provinces on Earth and probably also on the terrestrial planets.

  13. Textural and rheological evolution of basalt flowing down a lava channel

    Science.gov (United States)

    Robert, Bénédicte; Harris, Andrew; Gurioli, Lucia; Médard, Etienne; Sehlke, Alexander; Whittington, Alan

    2014-06-01

    The Muliwai a Pele lava channel was emplaced during the final stage of Mauna Ulu's 1969-1974 eruption (Kilauea, Hawaii). The event was fountain-fed and lasted for around 50 h, during which time a channelized flow system developed, in which a 6-km channel fed a zone of dispersed flow that extended a further 2.6 km. The channel was surrounded by initial rubble levees of 'a'a, capped by overflow units of limited extent. We sampled the uppermost overflow unit every 250 m down the entire channel length, collecting, and analyzing 27 air-quenched samples. Bulk chemistry, density and textural analyses were carried out on the sample interior, and glass chemistry and microlite crystallization analyses were completed on the quenched crust. Thermal and rheological parameters (cooling, crystallization rate, viscosity, and yield strength) were also calculated. Results show that all parameters experience a change around 4.5 km from the vent. At this point, there is a lava surface transition from pahoehoe to 'a'a. Lava density, microlite content, viscosity, and yield strength all increase down channel, but vesicle content and lava temperature decrease. Cooling rates were 6.7 °C/km, with crystallization rates increasing from 0.03 Фc/km proximally, to 0.14 Фc/km distally. Modeling of the channel was carried out using the FLOWGO thermo-rheological model and allowed fits for temperature, microlite content, and channel width when run using a three-phase viscosity model based on a temperature-dependent viscosity relation derived for this lava. The down flow velocity profile suggests an initial velocity of 27 m/s, declining to 1 m/s at the end of the channel. Down-channel, lava underwent cooling that induced crystallization, causing both the lava viscosity and yield strength to increase. Moreover, lava underwent degassing and a subsequent vesicularity decrease. This aided in increasing viscosity, with the subsequent increase in shearing promoting a transition to 'a'a.

  14. Petrography, age, and paleomagnetism of basalt lava flows in coreholes Well 80, NRF 89-04, NRF 89-05, and ICPP 123, Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lanphere, M.A.; Champion, D.E. [Geological Survey, Menlo Park, CA (United States); Kuntz, M.A. [Geological Survey, Denver, CO (United States)

    1993-12-31

    The petrography, age, and paleomagnetism were determined on basalt from 23 lava flows comprising about 1200 feet of core from four coreholes in the Idaho National Engineering Laboratory (ML). The four coreholes are located in the southwestern part of the INEL. Paleomagnetic measurements were made on 192 samples of basalt, and K-Ar ages were measured on 19 basalt samples. All of the samples have normal magnetic polarity and were erupted during the Brunhes Normal Polarity Epoch. Basalt lava flows in ICPP 123 can be satisfactorily correlated with lava flows in the previously studied corehole at Site E, but correlations cannot be made with confidence between ICPP 123 and the other three coreholes studied in this investigation.

  15. A brief comparison of lava flows from the Deccan Volcanic Province and the Columbia-Oregon Plateau Flood Basalts: Implications for models of flood basalt emplacement

    Indian Academy of Sciences (India)

    Ninad Bondre; Raymond A Duraiswami; Gauri Dole

    2004-12-01

    The nature and style of emplacement of Continental Flood Basalt (CFB) lava flows has been a atter of great interest as well as considerable controversy in the recent past. However, even a cursory review of published literature reveals that the Columbia River Basalt Group (CRBG) and Hawaiian volcanoes provide most of the data relevant to this topic. It is interesting to note, however, that the CRBG lava flows and their palaeotopographic control is atypical of other CFB provinces in the world. In this paper, we first present a short overview of important studies pertaining to the emplacement of flood basalt flows. We then briefly review the morphology of lava flows from the Deccan Volcanic Province (DVP) and the Columbia-Oregon Plateau flood basalts. The review underscores the existence of significant variations in lava flow morphology between different provinces, and even within the same province. It is quite likely that there were more than one way of emplacing the voluminous and extensive CFB lava flows. We argue that the establishment of general models of emplacement must be based on a comprehensive documentation of lava flow morphology from all CFB provinces.

  16. Lava flows and volcanic landforms

    Science.gov (United States)

    Tarquini, Simone

    2016-04-01

    Lava flows constitute a large portion of the edifice of basaltic volcanoes. The substantial difference existing between the emplacement dynamics of different basaltic lava flows suggests a relation between the dominant flow dynamic and the overall shape of the ensuing volcano. Starting from the seminal works of Walker (1971, 1973) it is proposed that the rate of heat dissipation per unit volume of lava can be the founding principium at the roots of the emplacement dynamics of lava flows. Within the general framework of the thermodynamics of irreversible processes, a conceptual model is presented, in which the dynamic of lava flows can evolve in a linear or in a nonlinear regime on the basis of the constraint active on the system: a low constraint promotes a linear dynamic (i.e. fluctuations are damped), a high constraint a nonlinear one (i.e. fluctuations are enhanced). Two cases are considered as end-members for a linear and a nonlinear dynamic in lava flows: the typical "Hawaiian" sheet flow and the classic "Etnean" channelized flow (respectively). In lava flows, the active constraint is directly proportional to the slope of the topography and to the thermal conductivity and thermal capacity of the surrounding environment, and is inversely proportional to the lava viscosity and to the supply rate. The constraint indicates the distance from the equilibrium conditions of the system, and determines the rate of heat dissipation per unit volume. In subaerial flows, the heat dissipated during the emplacement is well approximated by the heat lost through radiation, which can be retrieved through remote-sensing techniques and can be used to correlate dynamic and dissipation. The model presented recombines previously unrelated concepts regarding the dynamics and the thermal regimes observed in different lava flows, providing a global consistent picture. References Walker GPL (1971) Compound and simple lava flows and flood basalts. Bull Volcanol 35:579-590 Walker GPL (1973

  17. Geochemistry of the Palitana flood basalt sequence and the Eastern Saurashtra dykes, Deccan Traps: clues to petrogenesis, dyke-flow relationships, and regional lava stratigraphy

    Science.gov (United States)

    Sheth, Hetu C.; Zellmer, Georg F.; Kshirsagar, Pooja V.; Cucciniello, Ciro

    2013-04-01

    Recent studies of large mafic dyke swarms in the Deccan Traps flood basalt province, India, indicate that some of the correlative lava flows reached several hundred kilometers in length. Here we present field, petrographic, mineral chemical, and whole-rock geochemical (including Sr-Nd isotopic) data on the Palitana lava sequence and nearby dykes in the Saurashtra region of the northwestern Deccan Traps. These rocks are moderately evolved, many with low-Ti-Nb characteristics. We infer that most dykes are notably (and systematically) less contaminated by ancient continental crust than the Palitana flows, but four dykes are equally or significantly more contaminated, with some of the most extreme Sr-Nd isotopic compositions seen in the entire Deccan Traps (initial ɛNd is as low as -18.0). A Bhimashankar-type and a Poladpur-type dyke are present several hundred kilometers from the type section of these magma types in the Western Ghats escarpment. We find no geochemical correlations between the Palitana sequence and three subsurface sequences in NE Saurashtra containing abundant picritic rocks, surface lavas previously studied from Saurashtra, or the Western Ghats sequence. Intriguingly, the Eastern Saurashtra dykes cannot have been feeders to any of these lava sequences. Feeder dykes of these sequences may be located in southwestern or central Saurashtra, or in the Dhule-Nandurbar-Dediapada areas across the Gulf of Cambay, 200-300 km east of Palitana. Our results indicate polycentric flood basalt eruptions not only on the scale of the Deccan Traps province, but also within the Saurashtra region itself.

  18. Basalt: Biologic Analog Science Associated with Lava Terrains

    Science.gov (United States)

    Lim, D. S. S.; Abercromby, A.; Kobs-Nawotniak, S. E.; Kobayashi, L.; Hughes, S. S.; Chappell, S.; Bramall, N. E.; Deans, M. C.; Heldmann, J. L.; Downs, M.; Cockell, C. S.; Stevens, A. H.; Caldwell, B.; Hoffman, J.; Vadhavk, N.; Marquez, J.; Miller, M.; Squyres, S. W.; Lees, D. S.; Fong, T.; Cohen, T.; Smith, T.; Lee, G.; Frank, J.; Colaprete, A.

    2015-12-01

    This presentation will provide an overview of the BASALT (Biologic Analog Science Associated with Lava Terrains) program. BASALT research addresses Science, Science Operations, and Technology. Specifically, BASALT is focused on the investigation of terrestrial volcanic terrains and their habitability as analog environments for early and present-day Mars. Our scientific fieldwork is conducted under simulated Mars mission constraints to evaluate strategically selected concepts of operations (ConOps) and capabilities with respect to their anticipated value for the joint human and robotic exploration of Mars. a) Science: The BASALT science program is focused on understanding habitability conditions of early and present-day Mars in two relevant Mars-analog locations (the Southwest Rift Zone (SWRZ) and the East Rift Zone (ERZ) flows on the Big Island of Hawai'i and the eastern Snake River Plain (ESRP) in Idaho) to characterize and compare the physical and geochemical conditions of life in these environments and to learn how to seek, identify, and characterize life and life-related chemistry in basaltic environments representing these two epochs of martian history. b) Science Operations: The BASALT team will conduct real (non-simulated) biological and geological science at two high-fidelity Mars analogs, all within simulated Mars mission conditions (including communication latencies and bandwidth constraints) that are based on current architectural assumptions for Mars exploration missions. We will identify which human-robotic ConOps and supporting capabilities enable science return and discovery. c) Technology: BASALT will incorporate and evaluate technologies in to our field operations that are directly relevant to conducting the scientific investigations regarding life and life-related chemistry in Mars-analogous terrestrial environments. BASALT technologies include the use of mobile science platforms, extravehicular informatics, display technologies, communication

  19. Lava flows are fractals

    Science.gov (United States)

    Bruno, B. C.; Taylor, G. J.; Rowland, S. K.; Lucey, P. G.; Self, S.

    1992-01-01

    Results are presented of a preliminary investigation of the fractal nature of the plan-view shapes of lava flows in Hawaii (based on field measurements and aerial photographs), as well as in Idaho and the Galapagos Islands (using aerial photographs only). The shapes of the lava flow margins are found to be fractals: lava flow shape is scale-invariant. This observation suggests that nonlinear forces are operating in them because nonlinear systems frequently produce fractals. A'a and pahoehoe flows can be distinguished by their fractal dimensions (D). The majority of the a'a flows measured have D between 1.05 and 1.09, whereas the pahoehoe flows generally have higher D (1.14-1.23). The analysis is extended to other planetary bodies by measuring flows from orbital images of Venus, Mars, and the moon. All are fractal and have D consistent with the range of terrestrial a'a and have D consistent with the range of terrestrial a'a and pahoehoe values.

  20. Very long pahoehoe inflated basaltic lava flows in the Payenia volcanic province (Mendoza and la Pampa, Argentina Flujos de lava basáltica pahoehoe muy extendidos en la provincia volcánica Payenia (Mendoza y La Pampa, Argentina

    Directory of Open Access Journals (Sweden)

    Giorgio Pasquarè

    2008-03-01

    Full Text Available Extremely long basaltic lava flows are here presented and described. The flows originated from the great, polygenetic, fissural Payen Volcanic Complex, in the Andean back-arc volcanic province of Payenia in Argentina. The lava flows outpoured during the Late Quaternary from the summit rift of a shield volcano representing the first volcanic centre of this complex. One of these flows presents an individual tongue-like shape with a length of 181 km and therefore is the longest known individual Quaternary lava flow on Earth. Leaving the flanks of the volcano this flow reached the Salado river valley at La Pampa and, in its distal portion, maintained its narrow and straight shape without any topographic control over a flat alluvial plain. It has a hawaiite composition with low phenocryst content of prevailing olivine and minor plagioclase. Rare Earth element patterns are typical of Na-alkaline basalts, but incompatible trace element patterns and Sr -Nd isotope ratios, suggest a geodynamic setting transitional to the orogenic one. The flow advanced following the thermally efficient "inflation" mechanism, as demonstrated by a peculiar association of well developed morphological, structural and textural features. The temperature of 1130-1160°C and the viscosity of 3-73 Pa*s, calculated by petrochemical data, may be considered, together with a very low cooling rate and a sustained and long lasting effusion rate, the main causes of the extremely long transport system of this flow. Both the extreme length of the flow and the partial lack of topographic control may provide new constraints on the physics of large inflated flows, which constitute the largest volcanic provinces on Earth and probably also on the terrestrial planets.En este trabajo se presentan y describen flujos de lava extremadamente largos. Estos flujos se originaron en el complejo volcánico fisural Payen, dentro de la provincia volcánica Payenia en el retroarco andino. Los flujos de lava

  1. Stratigraphical framework of basaltic lavas in Torres Syncline main valley, southern Parana-Etendeka Volcanic Province

    Science.gov (United States)

    Rossetti, Lucas M.; Lima, Evandro F.; Waichel, Breno L.; Scherer, Claiton M.; Barreto, Carla J.

    2014-12-01

    The Paraná-Etendeka Volcanic Province records the volcanism of the Early Cretaceous that precedes the fragmentation of the South-Gondwana supercontinent. Traditionally, investigations of these rocks prioritized the acquisition of geochemical and isotopic data, considering the volcanic stack as a monotonous succession of tabular flows. Torres Syncline is a tectonic structure located in southern Brazil and where the Parana-Etendeka basalts are well preserved. This work provides a detailed analysis of lithofacies and facies architecture, integrated to petrographic and geochemical data. We identified seven distinct lithofacies grouped into four facies associations related to different flow morphologies. The basaltic lava flows in the area can be divided into two contrasting units: Unit I - pahoehoe flow fields; and Unit II - simple rubbly flows. The first unit is build up by innumerous pahoehoe lava flows that cover the sandstones of Botucatu Formation. These flows occur as sheet pahoehoe, compound pahoehoe, and ponded lavas morphologies. Compound lavas are olivine-phyric basalts with intergranular pyroxenes. In ponded lavas and cores of sheet flows coarse plagioclase-phyric basalts are common. The first pahoehoe lavas are more primitive with higher contents of MgO. The emplacement of compound pahoehoe flows is related to low volume eruptions, while sheet lavas were emplaced during sustained eruptions. In contrast, Unit II is formed by thick simple rubbly lavas, characterized by a massive core and a brecciated/rubbly top. Petrographically these flows are characterized by plagioclase-phyric to aphyric basalts with high density of plagioclase crystals in the matrix. Chemically they are more differentiated lavas, and the emplacement is related to sustained high effusion rate eruptions. Both units are low TiO2 and have geochemical characteristics of Gramado magma type. The Torres Syncline main valley has a similar evolution when compared to other Large Igneous Provinces

  2. Lava Flows On Ascraeus Mons Volcano

    Science.gov (United States)

    1998-01-01

    margins of the lava flow cool and harden, but the interior remains hot and continues to flow down-hill. Eventually, the eruption stops and the lava inside the tube cools, contracts, and hardens, leaving behind a tube (basically, a long narrow cave).(3) Rough elevated surface. The rough, pitted, and elevated surface across the bottom half of the image is a lava flow. The margins of this feature are somewhat lobate in form, and the entire feature is elevated above its surroundings, indicating that it was the last lava flow to pour through this region.Putting it All Together: Aa and Pahoehoe Lava Flows: Shield volcanoes such as Ascraeus Mons form from relatively fluid lavas. Shield volcanoes on Earth include the well-known Islands of Hawai'i. The kind of lava that is fluid enough to make shield volcanoes is called basalt. This is an iron- and magnesium-rich silicate lava that, when cooled, is usually black or very dark brown.Basalt lava flows come in two main varieties: Aa and Pahoehoe. These are Hawai'ian names. 'Aa' (pronounced 'ah-ah') lava flows have very rough, jumbly surfaces, and they usually lack lava tubes. 'Aa' lava flow surfaces are very rough to walk on-- thus the term 'aa' probably refers to the sound a person might make when walking on a cooled/solidified aa flow in bare feet!'Pahoehoe' (pronounced 'pa-hoy-hoy') is a term that means 'ropey'. The surfaces of pahoehoe lava flows are generally very smooth and billowy. Sometimes they have a ropy texture like melted taffy or caramel. Pahoehoe flows very commonly contain lava tubes.The rough-surfaced flow across the lower half of the MOC image is interpreted to be an 'aa' lava flow, and the smoother surface with a sinuous channel running down its center is interpreted to be a 'pahoehoe' lava flow. Both would indicate that the lavas on Ascraeus Mons, at least at this location, are probably composed of basalt.More Picture Information: This MOC picture is a subframe of image #26705, centered approximately at 11.5o

  3. Benchmarking computational fluid dynamics models for lava flow simulation

    Science.gov (United States)

    Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi

    2016-04-01

    Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, and COMSOL. Using the new benchmark scenarios defined in Cordonnier et al. (Geol Soc SP, 2015) as a guide, we model viscous, cooling, and solidifying flows over horizontal and sloping surfaces, topographic obstacles, and digital elevation models of natural topography. We compare model results to analytical theory, analogue and molten basalt experiments, and measurements from natural lava flows. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We can apply these models to reconstruct past lava flows in Hawai'i and Saudi Arabia using parameters assembled from morphology, textural analysis, and eruption observations as natural test cases. Our study highlights the strengths and weaknesses of each code, including accuracy and computational costs, and provides insights regarding code selection.

  4. Pahoehoe-a‧a transitions in the lava flow fields of the western Deccan Traps, India-implications for emplacement dynamics, flood basalt architecture and volcanic stratigraphy

    Science.gov (United States)

    Duraiswami, Raymond A.; Gadpallu, Purva; Shaikh, Tahira N.; Cardin, Neha

    2014-04-01

    Unlike pahoehoe, documentation of true a‧a lavas from a modern volcanological perspective is a relatively recent phenomenon in the Deccan Trap (e.g. Brown et al., 2011, Bull. Volcanol. 73(6): 737-752) as most lava flows previously considered to be a‧a (e.g. GSI, 1998) have been shown to be transitional (e.g. Rajarao et al., 1978, Geol. Soc. India Mem. 43: 401-414; Duraiswami et al., 2008 J. Volcanol. Geothermal. Res. 177: 822-836). In this paper we demonstrate the co-existence of autobrecciation products such as slabby pahoehoe, rubbly pahoehoe and a‧a in scattered outcrops within the dominantly pahoehoe flow fields. Although volumetrically low in number, the pattern of occurrence of the brecciating lobes alongside intact ones suggests that these might have formed in individual lobes along marginal branches and terminal parts of compound flow fields. Complete transitions from typical pahoehoe to 'a‧a lava flow morphologies are seen on length scales of 100-1000 m within road and sea-cliff sections near Uruli and Rajpuri. We consider the complex interplay between local increase in the lava supply rates due to storage or temporary stoppage, local increase in paleo-slope, rapid cooling and localized increase in the strain rates especially in the middle and terminal parts of the compound flow field responsible for the transitional morphologies. Such transitions are seen in the Thakurwadi-, Bushe- and Poladpur Formation in the western Deccan Traps. These are similar to pahoehoe-a‧a transitions seen in Cenozoic long lava flows (Undara ˜160 km, Toomba ˜120 km, Kinrara ˜55 km) from north Queensland, Australia and Recent (1859) eruption of Mauna Loa, Hawaii (a‧a lava flow ˜51 km) suggesting that flow fields with transitional tendencies cannot travel great lengths despite strong channelisation. If these observations are true, then it arguably limits long distance flow of Deccan Traps lavas to Rajahmundry suggesting polycentric eruptions at ˜65 Ma in

  5. Lava flows composition of the Daedalia Planum

    Science.gov (United States)

    Carli, Cristian; Giacomini, Lorenza; Sgavetti, Maria; Massironi, Matteo

    2010-05-01

    Daedalia Planum is a large lava plain, consisting of more than 1500 km lava flows emplaced over an almost flat terrain in the south-east area of Arsia Mons. The morphology of this region has been studied by Giacomini et al. (Planet.SpaceSci., 2009) and revealed the presence of various features indicative of inflation mechanisms. Thirteen morphologic units have been delineated and the stratigraphic relationships among these units have been established by the authors. Several compositional data indicate that most of the Mars surface appears to consist of tholeiitic basalts where rocks previously identified as andesite may be basaltic rocks coated with alteration rinds (McSween et al., Science, 2009). Some primitive alkaline olivine-rich basaltic rocks have been also recognized by rover exploration (McSween et al., J.Geophys.Res., 2006). The visible and near-infrared reflectance spectra contain electronic absorptions characteristic of mafic minerals including pyroxenes and olivine. These minerals, together with plagioclase, are the major components of lava's rocks. We have analyzed data acquired by the OMEGA orbiter spectrometer of the Mars Express mission. Several OMEGA's images have been studied collecting sets of spectra from each of the thirteen geological units. The spectra indicate a relatively uniform composition of the lavas, characterized by two wide absorption bands (I and II) at about 1000 and 2000 nm, respectively. These spectral features are diagnostic of the presence of pyroxenes, and the continuum removed spectra permit us to recognize the presence of two different pyroxenes . The precise minima positions of band I, between 950 and 1000 nm, and of band II, between 1800 and 2000 nm, suggest the presence in this region of low calcium and subcalcium clinopyroxene, like pigeonite and augite, with variable relative abundances. The presence of these types of pyroxenes suggests a tholeiitic composition of the Daedalia Planum long lava flows, in agreement with

  6. Lava tubes from the Paraná-Etendeka Continental Flood Basalt Province: Morphology and importance to emplacement models

    Science.gov (United States)

    Waichel, Breno L.; Tratz, Eliza B.; Pietrobelli, Gisele; Jerram, Dougal A.; Calixto, Geovane R.; Bacha, Rafael R.; Tomazzolli, Edison R.; da Silva, Wellington B.

    2013-12-01

    Lava tubes are a common feature in active volcanic areas around the world. They are related to pahoehoe and 'a'ā lava flow fields, that are predominantly basaltic, and form as the most efficient mechanism to transport lava in insulated fedder pathways. Continental Flood Basalt Provinces (CFBs) are thick volcanic sequences of predominantly basaltic lava flows and flow fields, which cover huge areas and are often related to continental breakup. The proposed emplacement model for CFB's is synonymous with the inflation processes observed in modern active flows. Although pahoehoe and 'a'ā lava flows are recognized in CFB's provinces, good examples of lava tubes, pipes or tube systems are rarely reported. Lava feeder systems (tube/pipes) are a common feature of modern pahoehoe flow systems so it would be expected to find good examples in CFB's provinces formed by the same emplacement processes. Here we describe the morphology of two lava tube systems discovered in the Paraná CFB Province in Southern Brazil. Comparisons are made with active systems and the importance of CFB lava tube systems, and their recognition in the rock record, are discussed in the context of the current emplacement model.

  7. Lava crusts and flow dynamics

    Science.gov (United States)

    Kilburn, C. R. J.

    1993-01-01

    Lava flows can be considered as hot viscous cores within thinner, solidified crusts. Interaction between crust and core determines a flow's morphological and dynamical evolution. When the lava core dominates, flow advance approaches a steady state. When crusts are the limiting factor, advance is more irregular. These two conditions can be distinguished by a timescale ratio comparing rates of core deformation and crustal formation. Aa and budding pahoehoe lavas are used as examples of core- and crustal-dominated flows, respectively. A simple model describes the transition between pahoehoe and aa flow in terms of lava discharge rate, underlying slope, and either the thickness or velocity of the flow front. The model shows that aa morphologies are characterized by higher discharge rates and frontal velocities and yields good quantitative agreement with empirical relations distinguishing pahoehoe and aa emplacement on Hawaii.

  8. Paleomagnetism of Basaltic Lava Flows in Coreholes ICPP 213, ICPP-214, ICPP-215, and USGS 128 Near the Vadose Zone Research Park, Idaho Nuclear Technology and Engineering Center, Idaho National Engineering and Environmental Laboratory, Idaho

    Science.gov (United States)

    Champion, Duane E.; Herman, Theodore C.

    2003-01-01

    A paleomagnetic study was conducted on basalt from 41 lava flows represented in about 2,300 ft of core from coreholes ICPP-213, ICPP-214, ICPP-215, and USGS 128. These wells are in the area of the Idaho Nuclear Technology and Engineering Center (INTEC) Vadose Zone Research Park within the Idaho National Engineering and Environmental Laboratory (INEEL). Paleomagnetic measurements were made on 508 samples from the four coreholes, which are compared to each other, and to surface outcrop paleomagnetic data. In general, subhorizontal lines of correlation exist between sediment layers and between basalt layers in the area of the new percolation ponds. Some of the basalt flows and flow sequences are strongly correlative at different depth intervals and represent important stratigraphic unifying elements. Some units pinch out, or thicken or thin even over short separation distances of about 1,500 ft. A more distant correlation of more than 1 mile to corehole USGS 128 is possible for several of the basalt flows, but at greater depth. This is probably due to the broad subsidence of the eastern Snake River Plain centered along its topographic axis located to the south of INEEL. This study shows this most clearly in the oldest portions of the cored sections that have differentially subsided the greatest amount.

  9. Lava Flows On Ascraeus Mons Volcano

    Science.gov (United States)

    1998-01-01

    margins of the lava flow cool and harden, but the interior remains hot and continues to flow down-hill. Eventually, the eruption stops and the lava inside the tube cools, contracts, and hardens, leaving behind a tube (basically, a long narrow cave).(3) Rough elevated surface. The rough, pitted, and elevated surface across the bottom half of the image is a lava flow. The margins of this feature are somewhat lobate in form, and the entire feature is elevated above its surroundings, indicating that it was the last lava flow to pour through this region.Putting it All Together: Aa and Pahoehoe Lava Flows: Shield volcanoes such as Ascraeus Mons form from relatively fluid lavas. Shield volcanoes on Earth include the well-known Islands of Hawai'i. The kind of lava that is fluid enough to make shield volcanoes is called basalt. This is an iron- and magnesium-rich silicate lava that, when cooled, is usually black or very dark brown.Basalt lava flows come in two main varieties: Aa and Pahoehoe. These are Hawai'ian names. 'Aa' (pronounced 'ah-ah') lava flows have very rough, jumbly surfaces, and they usually lack lava tubes. 'Aa' lava flow surfaces are very rough to walk on-- thus the term 'aa' probably refers to the sound a person might make when walking on a cooled/solidified aa flow in bare feet!'Pahoehoe' (pronounced 'pa-hoy-hoy') is a term that means 'ropey'. The surfaces of pahoehoe lava flows are generally very smooth and billowy. Sometimes they have a ropy texture like melted taffy or caramel. Pahoehoe flows very commonly contain lava tubes.The rough-surfaced flow across the lower half of the MOC image is interpreted to be an 'aa' lava flow, and the smoother surface with a sinuous channel running down its center is interpreted to be a 'pahoehoe

  10. Lava Flows of Daedalia Planum

    Science.gov (United States)

    2002-01-01

    [figure removed for brevity, see original site] This THEMIS image captures a portion of several lava flows in Daedalia Planum southwest of the Arsia Mons shield volcano. Textures characteristic of the variable surface roughness associated with different lava flows in this region are easily seen. The lobate edges of the flows are distinctive, and permit the discrimination of many overlapping individual flows. The surfaces of some flows look wrinkly and ropy, probably indicating a relatively fluid type of lava flow referred to as pahoehoe. The surface textures of lava flows can thus sometimes be used for comparative purposes to infer lava viscosity and effusion rates. Numerous parallel curved ridges are visible on the upper surfaces of some of the lava flows. These ridges make the flow surface look somewhat ropy, and at smaller scales this flow might be referred to as pahoehoe, however, these features are probably better referred to as pressure ridges. Pressure ridges form on the surface of a lava flow when the upper part of the flow is exposed to air, cooling it, but the insulated much warmer interior of the flow continues to move down slope (and more material is pushed forward from behind), causing the surface to compress and pile up like a rug.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa

  11. Lava Flows in Eastern Tharsis

    Science.gov (United States)

    2002-01-01

    (Released 31 May 2002) This image may at first appear somewhat bland -- there is little contrast in the surface materials due to dust cover, and there are few impact craters -- but there are some very interesting geologic features here. The great Tharsis volcanoes have produced vast fields of lava flows, such as those shown in this image, to the east of Tharsis Tholus. The flows in this image have moved from west to east, down the regional topographic slope. The lobate edges of the flows are distinctive, and permit the discrimination of many overlapping individual flows that may represent tens, hundreds, thousands, or even millions of years worth of volcanic activity (overlapping relationships are especially evident at the bottom of the image). Viewed at full resolution, the image reveals interesting patterns and textures on the top surfaces of these flows. In particular, at the top of the image, there are numerous parallel curved ridges visible on the upper surfaces of the lava flows. These ridges make the flow surface look somewhat ropy, and at smaller scales this flow might be referred to as pahoehoe, indicative of a relatively fluid type of lava flow. At the scales observed here, however, these features are probably better referred to as pressure ridges. Pressure ridges form on the surface of a lava flow when the upper part of the flow is exposed to air, freezing it, but the insulated unfrozen interior of the flow continues to move down slope (and more material is pushed forward from behind), causing the surface to compress and pile up like a rug. Rough-looking flows with less distinct (more random) patterns on their surfaces may be flows that are more like terrestrial a'a flows, which are distinguished from pahoehoe flows by their higher viscosities and effusion rates. Near the center of the image there is an east-west trending, smooth-floored depression. The somewhat continuous width of this depression suggests that it is not simply formed by the edges of two

  12. Intracanyon basalt lavas of the Debed River (northern Armenia), part of a Pliocene-Pleistocene continental flood basalt province in the South Caucasus

    Science.gov (United States)

    Sheth, Hetu; Meliksetian, Khachatur; Gevorgyan, Hripsime; Israyelyan, Arsen; Navasardyan, Gevorg

    2015-03-01

    Late Pliocene to Early Pleistocene (~ 3.25-2.05 Ma), 200-400 m thick basalt lavas outcrop in the South Caucasus region, including the Kars-Erzurum Plateau (northeastern Turkey), the Javakheti Plateau (Georgia-Armenia), and the Lori Plateau (northern Armenia). These fissure-fed, rapidly erupted fluid lavas filled pre-existing river valleys over many tens of kilometres. The basalts exposed in the Debed River canyon, northern Armenia, are ~ 200 m thick and of three morphological types: (1) basal pillow basalts and hyaloclastites, overlain by (2) columnar-jointed pahoehoe sheet flows, in turn overlain by (3) slabby pahoehoe and rubbly pahoehoe flows. The lower and middle lavas show evidence for damming of river drainage, like many lavas of the Columbia River flood basalt province, Scotland, Ireland, and Iceland. There is also evidence for syn-volcanic faulting of the early lavas. Related basalts also outcrop in the Gegham Uplands and the Hrazdan River basin in Armenia. This 3.25-2.05 Ma South Caucasus basalt province, covering parts of Turkey, Georgia and Armenia, has an estimated areal extent of ~ 15,000 km2 and volume of ~ 2250 km3. Because its main geological features are remarkably like those of many continental flood basalt (CFB) provinces, we consider it a true, albeit small, CFB province. It is the smallest and youngest CFB in the world. An analogue closely similar in major features is the Late Miocene Altos de Jalisco CFB province in the western Trans-Mexican Volcanic Belt. Both provinces formed during lithospheric pull-apart and transtensional faulting. Their broader significance is in showing flood basalt size distribution to be a continuum without natural breaks, with implications for geodynamic models.

  13. Transition of basaltic lava from pahoehoe to aa, Kilauea Volcano, Hawaii: Field observations and key factors

    Science.gov (United States)

    Peterson, D.W.; Tilling, R.I.

    1980-01-01

    Nearly all Hawaiian basaltic lava erupts as pahoehoe, and some changes to aa during flowage and cooling; factors governing the transition involve certain critical relations between viscosity and rate of shear strain. If the lava slows, cools, and stops in direct response to concomitant increase in viscosity before these critical relations are reached, it remains pahoehoe. But, if flow mechanics (flow rate, flow dimensions, slope, momentum, etc.) impel the lava to continue to move and deform even after it has become highly viscous, the critical relations may be reached and the lava changes to aa. Typical modes of transition from pahoehoe to aa include: (1) spontaneous formation of relatively stiff clots in parts of the flowing lava where shear rate is highest; these clots grow into discrete, rough, sticky masses to which the remaining fluid lava incrementally adheres; (2) fragmentation and immersion of solid or semi-solid surface crusts of pahoehoe by roiling movements of the flow, forming cores of discrete, tacky masses; (3) sudden renewed movement of lava stored and cooled within surface reservoirs to form clots. The masses, fragments, and clots in these transition modes are characterized by spinose, granulated surfaces; as flow movement continues, the masses and fragments aggregate, fracture, and grind together, completing the transition to aa. Observations show that the critical relation between viscosity and rate of shear strain is inverse: if viscosity is low, a high rate of shear is required to begin the transition to aa; conversely, if viscosity is high, a much lower rate of shear will induce the transition. These relations can be demonstrated qualitatively with simple graphs, which can be used to examine the flow history of any selected finite lava element by tracing the path represented by its changing viscosity and shear rate. A broad, diffuse "transition threshold zone" in these graphs portrays the inverse critical relation between viscosity and shear

  14. Lava Flows around Olympus Mons

    Science.gov (United States)

    2002-01-01

    [figure removed for brevity, see original site] At first glance, this image of lava flows around the large scarp of Olympus Mons shows little contrast in surface materials due to dust cover, but a closer look reveals textures characteristic of the variable surface roughness associated with different lava flows in this region. The lobate edges of the flows are distinctive, and permit the discrimination of many overlapping individual flows. On small scales, the surfaces of some flows look wrinkly and ropy, indicating a relatively fluid type of lava flow referred to as pahoehoe. Other surfaces appear more rough and broken, and might be referred to as a'a flows, which have higher viscosities and effusion rates compared to pahoehoe flows. The surface textures of lava flows can thus sometimes be used for comparative purposes to infer lava viscosity and effusion rates. There is also a bright streak in the wind shadow of the impact crater in the lower left of the image where dust that settles onto the surface is not easily scoured away.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the

  15. Hanford basalt flow mineralogy

    International Nuclear Information System (INIS)

    Mineralogy of the core samples from five core wells was examined in some detail. The primary mineralogy study included an optical examination of polished mounts, photomicrographs, chemical analyses of feldspars, pyroxenes, metallic oxides and microcrystalline groundmasses and determination from the chemical analyses of the varieties of feldspars, pyroxenes and metallic oxides. From the primary mineralogy data, a firm understanding of the average Hanford basalt flow primary mineralogy emerged. The average primary feldspar was a laboradorite, the average pyroxene was an augite and the average metallic oxide was a solid solution of ilmenite and magnetite. Secondary mineralization consisted of vug filling and joint coating, chiefly with a nontronite-beidellite clay, several zeolites, quartz, calcite, and opal. Specific flow units also were examined to determine the possibility of using the mineralogy to trace flows between core wells. These included units of the Pomona, the Umatilla and a high chromium flow just below the Huntzinger. In the Umatilla, or high barium flow, the compositional variation of the feldspars was unique in range. The pyroxenes in the Pomona were relatively highly zoned and accumulated chromium. The high chromium flow contained chromium spinels that graded in chromium content into simple magnetites very low in chromium content. A study of the statistical relationships of flow unit chemical constituents showed that flow unit constituents could be roughly correlated between wells. The probable cause of the correlation was on-going physical-chemical changes in the source magma

  16. Rheology of lava flows on Mercury: an experimental study

    Science.gov (United States)

    Sehlke, A.; Whittington, A. G.

    2014-12-01

    The morphology of lava flows is controlled by the physical properties of the lava and its effusion rates, as well as environmental influences such as surface medium, slope and ambient temperature and pressure conditions. The important rheological properties of lavas include viscosity (η) and yield strength (σy), strongly dependent on temperature (T), composition (X), crystal fraction (φc) and vesicularity (φb). The crystal fraction typically increases as temperature decreases, and also influences the residual liquid composition. The rheological behavior of multi-phase lava flows is expressed as different flow morphologies, for example basalt flows transition from smooth pahoehoe to blocky `a`a at higher viscosities and/or strain rates. We have previously quantified the rheological conditions of this transition for Hawaiian basalts, but lavas on Mercury are very different in composition and expected crystallization history. Here we determine experimentally the temperature and rheological conditions of the pahoehoe-`a`a transition for two likely Mercury lava compositions using concentric cylinder viscometry. We detect first crystals at 1302 ºC for an enstatite basalt and 1317 ºC for a basaltic komatiite composition representative of the northern volcanic plains (NVP). In both cases, we observe a transition from Newtonian to pseudo-plastic response at crystal fractions > 10 vol%. Between 30 to 40 vol%, a yield strength (τ0) around 26±6 and 110±6 Pa develops, classifying the two-phase suspensions as Herschel-Bulkley fluids. The measured increase in apparent viscosity (ηapp) ranges from 10 Pa s to 104 Pa s. This change in rheological properties occurs only in a temperature range up to 100 ºC below the liquidus. By analogy with the rheological conditions of the pahoehoe-`a`a transition for Hawaiian basalts, we can relate the data for Mercury to lava flow surface morphology as shown in Figure 1, where the onset of the transition threshold zone (TTZ) for the

  17. Pressure grouting of fractured basalt flows

    International Nuclear Information System (INIS)

    This report describes a field trial of pressure grouting in basalt and presents the results of subsequent coring and permeability measurements. The trial shows that hydraulic conductivity of fractured basalt bedrock can be significantly reduced by pressure injection of cementitious materials. The effectiveness of the pressure grout procedure was evaluated by measuring the change in the hydraulic conductivity of the bedrock. The extent of grout penetration was determined by analyzing postgrout injection drilling chips for the presence of a tracer in the grout and also by examining cores of the treated basalt. Downhole radar mapping indicated major lava flow patterns and follow water movement during a surface infiltration test. A site called Box Canyon, which is northwest of the Idaho National Engineering Laboratory (INEL), was chosen for the study because its surface outcrop geology is similar to the underlying bedrock fracture system at the INEL's Radioactive Waste Management Complex (RWMC)

  18. Paleomagnetic correlation of surface and subsurface basaltic lava flows and flow groups in the southern part of the Idaho National Laboratory, Idaho, with paleomagnetic data tables for drill cores

    Science.gov (United States)

    Champion, Duane E.; Hodges, Mary K.V.; Davis, Linda C.; Lanphere, Marvin A.

    2011-01-01

    Paleomagnetic inclination and polarity studies have been conducted on thousands of subcore samples from 51 coreholes located at and near the Idaho National Laboratory. These studies are used to paleomagnetically characterize and correlate successive stratigraphic intervals in each corehole to similar depth intervals in adjacent coreholes. Paleomagnetic results from 83 surface paleomagnetic sites, within and near the INL, are used to correlate these buried lava flow groups to basaltic shield volcanoes still exposed on the surface of the eastern Snake River Plain. Sample handling and demagnetization protocols are described as well as the paleomagnetic data averaging process. Paleomagnetic inclination comparisons between coreholes located only kilometers apart show comparable stratigraphic successions of mean inclination values over tens of meters of depth. At greater distance between coreholes, comparable correlation of mean inclination values is less consistent because flow groups may be missing or additional flow groups may be present and found at different depth intervals. Two shallow intersecting cross-sections, A-A- and B-B- (oriented southwest-northeast and northwest-southeast, respectively), drawn through southwest Idaho National Laboratory coreholes show the corehole to corehole or surface to corehole correlations derived from the paleomagnetic inclination data. From stratigraphic top to bottom, key results included the (1) Quaking Aspen Butte flow group, which erupted from Quaking Aspen Butte southwest of the Idaho National Laboratory, flowed northeast, and has been found in the subsurface in corehole USGS 132; (2) Vent 5206 flow group, which erupted near the southwestern border of the Idaho National Laboratory, flowed north and east, and has been found in the subsurface in coreholes USGS 132, USGS 129, USGS 131, USGS 127, USGS 130, USGS 128, and STF-AQ-01; and (3) Mid Butte flow group, which erupted north of U.S. Highway 20, flowed northwest, and has been

  19. Episodic soil succession on basaltic lava fields in a cool, dry environment

    Science.gov (United States)

    Vaughan, K.L.; McDaniel, P.A.; Phillips, W.M.

    2011-01-01

    Holocene- to late Pleistocene-aged lava flows at Craters of the Moon National Monument and Preserve provide an ideal setting to examine the early stages of soil formation under cool, dry conditions. Transects were used to characterize the amount and nature of soil cover on across basaltic lava flows ranging in age from 2.1 to 18.4 ka. Results indicate that on flows <13 ka, very shallow organic soils (Folists in Soil Taxonomy) are the dominant soil type, providing an areal coverage of up to ∼25%. On flows ≥13.9 ka, deeper mineral soils including Entisols, Aridisols, and Mollisols become dominant and the areal extent increases to ≥95% on flows older than 18.4 ka. These data suggest there are two distinct pedogenic pathways associated with lava flows of the region. The first pathway is illustrated by the younger flows, where Folists dominate. In the absence of a major source of loess, relatively little mineral material accumulates and soils provide only minor coverage of the lava flows. Our results indicate that this pathway of soil development has not changed appreciably over the past ∼10 ka. The second pedogenic pathway is illustrated by the flows older than 13.9 ka. These flows have been subject to deposition of large quantities of loess during and after the last regional glaciation, resulting in almost complete coverage. Subsequent pedogenesis has given rise to Aridisols and Mollisols with calcic and cambic horizons and mollic epipedons. This research highlights the importance of regional climate change on the evolution of Craters of the Moon soilscapes.

  20. The Giant Lavas of Kalkarindji: rubbly pāhoehoe lava in an ancient continental flood basalt province

    OpenAIRE

    Marshall, Peter E.; Widdowson, Mike; Murphy, David T.

    2016-01-01

    The Kalkarindji continental flood basalt province of northern Australia erupted in the mid Cambrian (c. 511-505 Ma). It now consists of scattered basaltic lava fields, the most extensive being the Antrim Plateau Volcanics (APV) - a semi-continuous outcrop (c. 50,000 km2) reaching a maximum thickness of 1.1 km. Cropping out predominately in the SW of the APV, close to the top of the basalt succession, lies the Blackfella Rockhole Member (BRM). Originally described as ‘basaltic agglomerate’ the...

  1. Lava Flows Cooling: The initial hypothesis

    Science.gov (United States)

    Cordonnier, B.; Self, S.; Manga, M.

    2013-12-01

    Many cooling models of lava have one precondition: an instantaneous-thick layer emplacement with a spatially uniform temperature, often as high as the effusion temperature. The cooling is then mostly controlled by conduction and is a function of the thermal parameters and dimensions of the lava flow (most important being thickness). However, many lavas, especially pahoehoe and compound lavas, are not directly emplaced with an established lava thickness but, rather, inflate from their core or result from piling-up of several layers, respectively. In both cases, this leads initially to thin fast-cooling lavas in which the final emplacement temperature may differ strongly from the initial temperature of the liquid lava feeding the flow. Here we investigate both the behavior of inflating flows and superposition layering of lava. With a modified Peclet Number (Pe), where the velocity has been replaced by the inflation rate, we identify the conditions where lavas lose the most of their thermal energy before the final thickness is reached. For a given growth rate, inflating flows are hotter than those that grow through superposition. In the latter case, temperature depends not only with Pe, but also on the discrete lava-layer thickness. A clear quantification of the energy loss during these processes has been established and demonstrates the impact of each of them on the temperature of emplacement. Apart from this simple point, our study raises the question of lava-flow morphology. The two processes described, despite having opposite thermal effects, may be coupled during a single eruptive event. When a lava reaches its emplacement temperature and stops, then the pressing material uphill starts to bifurcate, turn around or superpose the previously emplaced layer. Our Peclet number could be again modified to consider the traditional emplacement condition of a Graetz number of 300. Beyond this point, the inflating process turns into a superposing process and the conditions

  2. Taylor instability in rhyolite lava flows

    Science.gov (United States)

    Baum, B. A.; Krantz, W. B.; Fink, J. H.; Dickinson, R. E.

    1989-01-01

    A refined Taylor instability model is developed to describe the surface morphology of rhyolite lava flows. The effect of the downslope flow of the lava on the structures resulting from the Taylor instability mechanism is considered. Squire's (1933) transformation is developed for this flow in order to extend the results to three-dimensional modes. This permits assessing why ridges thought to arise from the Taylor instability mechanism are preferentially oriented transverse to the direction of lava flow. Measured diapir and ridge spacings for the Little and Big Glass Mountain rhyolite flows in northern California are used in conjunction with the model in order to explore the implications of the Taylor instability for flow emplacement. The model suggests additional lava flow features that can be measured in order to test whether the Taylor instability mechanism has influenced the flows surface morphology.

  3. The formation of vesicular cylinders in pahoehoe lava flows

    Science.gov (United States)

    Fowler, A. C.; Rust, Alison C.; Vynnycky, M.

    2015-01-01

    Vertical cylinders of bubble-enriched, chemically evolved volcanic rock are found in many inflated pahoehoe lava flows. We provide a putative theoretical explanation for their formation, based on a description of a crystallising three-phase (liquid, solid, gas) crystal pile in which the water-saturated silicate melt exsolves steam and becomes more silica-rich as it crystallises anhydrous minerals. These cylinders resemble pipes that form in solidifying binary alloys as a result of sufficiently vigorous porous medium convection within the mush. A convection model with the addition of gas bubbles that provide the buoyancy source indicates that the effective Rayleigh number is too low for convection to occur in the mush of a basalt lava flow. However, the formation of gas bubbles during crystallisation means that the base state includes fluid migration up through the crystal mush even without convection. Stability considerations suggest that it is plausible to form a positive feedback where increased local porosity causes increased upwards fluid flow, which brings more silicic melt up and lowers the liquidus temperature, promoting locally higher porosity. Numerical solutions show that there are steady solutions in which cylinders form, and we conclude that this model provides a viable explanation for vesicular cylinder formation in inflated basalt lava flows.

  4. Field and experimental constraints on the rheology of arc basaltic lavas: the January 2014 Eruption of Pacaya (Guatemala)

    Science.gov (United States)

    Soldati, A.; Sehlke, A.; Chigna, G.; Whittington, A.

    2016-06-01

    We estimated the rheology of an active basaltic lava flow in the field, and compared it with experimental measurements carried out in the laboratory. In the field we mapped, sampled, and recorded videos of the 2014 flow on the southern flank of Pacaya, Guatemala. Velocimetry data extracted from videos allowed us to determine that lava traveled at ˜2.8 m/s on the steep ˜45° slope 50 m from the vent, while 550 m further downflow it was moving at only ˜0.3 m/s on a ˜4° slope. Estimates of effective viscosity based on Jeffreys' equation increased from ˜7600 Pa s near the vent to ˜28,000 Pa s downflow. In the laboratory, we measured the viscosity of a representative lava composition using a concentric cylinder viscometer, at five different temperatures between 1234 and 1199 °C, with crystallinity increasing from 0.1 to 40 vol%. The rheological data were best fit by power law equations, with the flow index decreasing as crystal fraction increased, and no detectable yield strength. Although field-based estimates are based on lava characterized by a lower temperature, higher crystal and bubble fraction, and with a more complex petrographic texture, field estimates and laboratory measurements are mutually consistent and both indicate shear-thinning behavior. The complementary field and laboratory data sets allowed us to isolate the effects of different factors in determining the rheological evolution of the 2014 Pacaya flows. We assess the contributions of cooling, crystallization, and changing ground slope to the 3.7-fold increase in effective viscosity observed in the field over 550 m, and conclude that decreasing slope is the single most important factor over that distance. It follows that the complex relations between slope, flow velocity, and non-Newtonian lava rheology need to be incorporated into models of lava flow emplacement.

  5. Lava flow hazard at Fogo Volcano, Cabo Verde, before and after the 2014-2015 eruption

    Science.gov (United States)

    Richter, Nicole; Favalli, Massimiliano; de Zeeuw-van Dalfsen, Elske; Fornaciai, Alessandro; da Silva Fernandes, Rui Manuel; Pérez, Nemesio M.; Levy, Judith; Silva Victória, Sónia; Walter, Thomas R.

    2016-08-01

    observations will be important for the next eruption of Fogo Volcano and have implications for future lava flow crises and disaster response efforts at basaltic volcanoes elsewhere in the world.

  6. New Insights to the Mid Miocene Calc-alkaline Lavas of the Strawberry Volcanics, NE Oregon Surrounded by the Coeval Tholeiitic Columbia River Basalt Province

    Science.gov (United States)

    Steiner, A. R.; Streck, M. J.

    2013-12-01

    The Strawberry Volcanics (SV) of NE Oregon were distributed over 3,400 km2 during the mid-Miocene and comprise a diverse volcanic suite, which span the range of compositions from basalt to rhyolite. The predominant composition of this volcanic suite is calc-alkaline (CA) basaltic andesite and andesite, although tholeiitic (TH) lavas of basalt to andesite occur as well. The coeval flood basalts of the Columbia River province surround the SV. Here we will discuss new ages and geochemical data, and present a new geologic map and stratigraphy of the SV. The SV are emplaced on top of pre-Tertiary accreted terranes of the Blue Mountain Province, Mesozoic plutonic rocks, and older Tertiary volcanic rocks thought to be mostly Oligocene of age. Massive rhyolites (~300 m thick) are exposed mainly along the western flank and underlie the intermediate composition lavas. In the southern portion of this study area, alkali basaltic lavas, thought to be late Miocene to early Pliocene in age, erupted and overlie the SV. In addition, several regional ignimbrites reach into the area. The 9.7 Ma Devine Canyon Tuff and the 7.1 Ma Rattlesnake Tuff also overlie the SV. The 15.9-15.4 Ma Dinner Creek Tuff is mid-Miocene, and clear stratigraphic relationships are found in areas where the tuff is intercalated between thick SV lava flows. All of the basalts of the SV are TH and are dominated by phenocryst-poor (≤2%) lithologies. These basalts have an ophitic texture dominated by plagioclase, clinopyroxene and olivine (often weathered to iddingsite). Basalts and basaltic andesites have olivine Fo #'s ranging from 44 at the rims (where weathered to iddingsite) and as high as 88 at cores. Pyroxene Mg #'s range from 65 to 85. Andesites of the SV are sub-alkaline, and like the basalts, are exceedingly phenocryst-poor (≤3%) with microphenocrysts of plagioclase and lesser pyroxene and olivine, which occasionally occur as crystal clots of ~1-3 mm instead of single crystals. In addition, minimal

  7. Quantifying the effect of rheology on plan-view shapes of lava flows

    Science.gov (United States)

    Bruno, B. C.; Taylor, G. J.; Lopes-Gautier, R. M. C.

    1993-01-01

    This study aims at quantifying the effect of rheology on the plan-view shapes of lava flows. Plan-view shapes of lava flows are important because they reflect the processes governing flow emplacement and may provide insight into lava flow rheology and dynamics. In our earlier investigation, it was reported that plan-view shapes of tholeite basalts are fractal, having a characteristic shape regardless of scale. It was also found one could use the fractal dimension (a parameter which quantifies flow margin convolution) to distinguish between the two major types of basalts: a'a and pahoehoe. Encouraged by these earlier results, a similar method for use on silicic flows are being developed and our preliminary work is presented.

  8. Fire, Lava Flows, and Human Evolution

    Science.gov (United States)

    Medler, M. J.

    2015-12-01

    Richard Wrangham and others argue that cooked food has been obligate for our ancestors since the time of Homo erectus. This hypothesis provides a particularly compelling explanation for the smaller mouths and teeth, shorter intestines, and larger brains that separate us from other hominins. However, natural ignitions are infrequent and it is unclear how earlier hominins may have adapted to cooked food and fire before they developed the necessary intelligence to make or control fire. To address this conundrum, we present cartographical evidence that the massive and long lasting lava flows in the African Rift could have provided our ancestors with episodic access to heat and fire as the front edges of these flows formed ephemeral pockets of heat and ignition and other geothermal features. For the last several million years major lava flows have been infilling the African Rift. After major eruptions there were likely more slowly advancing lava fronts creating small areas with very specific adaptive pressures and opportunities for small isolated groups of hominins. Some of these episodes of isolation may have extended for millennia allowing these groups of early hominins to develop the adaptations Wrangham links to fire and cooked food. To examine the potential veracity of this proposal, we developed a series of maps that overlay the locations of prominent hominin dig sites with contemporaneous lava flows. These maps indicate that many important developments in hominin evolution were occurring in rough spatial and temporal proximity to active lava flows. These maps indicate it is worth considering that over the last several million years small isolated populations of hominins may have experienced unique adaptive conditions while living near the front edges of these slowly advancing lava flows.

  9. Temperature measurements in carbonatite lava lakes and flows from oldoinyo lengai, Tanzania.

    Science.gov (United States)

    Krafft, M; Keller, J

    1989-07-14

    The petrogenesis of carbonatites has important implications for mantle processes and for the magmatic evolution of mantle melts rich in carbon dioxide. Oldoinyo Lengai, Tanzania, is the only active carbonatite volcano on Earth. Its highly alkalic, sodium-rich lava, although different in composition from the more common calcium-rich carbonatites, provides the opportunity for observations of the physical characteristics of carbonatite melts. Temperature measurements on active carbonatitic lava flows and from carbonatitic lava lakes were carried out during a period of effusive activity in June 1988. Temperatures ranged from 491 degrees to 519 degrees C. The highest temperature, measured from a carbonatitic lava lake, was 544 degrees C. These temperatures are several hundred degrees lower than measurements from any silicate lava. At the observed temperatures, the carbonatite melt had lower viscosities than the most fluid basaltic lavas. The unusually low magmatic temperatures were confirmed with 1-atmosphere melting experiments on natural samples. PMID:17787875

  10. Mineral chemistry of Pangidi basalt flows from Andhra Pradesh

    Indian Academy of Sciences (India)

    P V Nageswara Rao; P C Swaroop; Syed Karimulla

    2012-04-01

    This paper elucidates the compositional studies on clinopyroxene, plagioclase, titaniferous magnetite and ilmenite of basalts of Pangidi area to understand the geothermometry and oxybarometry conditions. Petrographic evidence and anorthite content (up to 85%) of plagioclase and temperature estimates of clinopyroxene indicate that the clinopyroxene is crystallized later than or together with plagioclase. The higher An content indicates that the parent magma is tholeiitic composition. The equilibration temperatures of clinopyroxene (1110–1190°C) and titaniferous magnetite and ilmenite coexisting mineral phases (1063–1103°C) are almost similar in lower basalt flow and it is higher for clinopyroxene (900–1110°C) when compared to titaniferous magnetite and ilmenite coexisting mineral phases (748–898°C) in middle and upper basalt flows. From this it can be inferred that the clinopyroxene is crystallized earlier than Fe–Ti oxide phases reequilibration, which indicates that the clinopyroxene temperature is the approximate eruption temperature of the present lava flows. The wide range of temperatures (900–1190°C) attained by clinopyroxene may point out that the equilibration of clinopyroxene crystals initiated from depth till closer to the surface before the melt erupted. Pangidi basalts follow the QFM buffer curve which indicates the more evolved tholeiitic composition. This suggests the parent tholeiitic magma suffered limited fractionation at high temperature under increasing oxygen fugacity in lower basalt flow and more fractionation at medium to lower temperatures under decreasing oxygen fugacity conditions during cooling of middle and upper basalt flows. The variation of oxygen fugacity indicates the oxidizing conditions for lower basalt flow (9.48–10.3) and extremely reducing conditions for middle (12.1–15.5) and upper basalt (12.4–15.54) flows prevailed at the time of cooling. Temperature vs. (FeO+Fe2O3)/(FeO+Fe2O3+MgO) data plots for present

  11. Emplacement of lava flow fields: Application of terrestrial studies to Alba Patera, Mars

    International Nuclear Information System (INIS)

    Morphological data are at present the major source of information for extraterrestrial lavas. Effusion conditions must therefore be inferred from the final shapes of flow fields, generally using terrestrial lavas as analogues and so presupposing similar emplacement regimes on Earth and other planets. Studies of terrestrial lavas suggest that the overall development of flow fields is systematic and that a general, normalized relation can be established linking the final dimensions of a flow field (specifically, average thickness and the ratio of maximum width to maximum length) to underlying slope and eruption duration, independent of explicit knowledge of discharge rate, gravitational acceleration, lava density, and rheology. This relation is applied to lavas on the Martian volcano Alba Patera, on which two distinct planimetric types of lava flow fields are identified, and eruption durations, average discharge rates, and average velocities are obtained. Imposing the constraint of a terrestrial emplacement regime, the model yields internally consistent results for subliquidus lavas and suggests that, at least for basaltic-basaltic andesitic compositions, the essential conditions of eruption may have been similar to those currently observed on Earth

  12. Voluminous submarine lava flows from Hawaiian volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, R.T.; Moore, J.G.; Lipman, P.W.; Belderson, R.H.

    1988-05-01

    The GLORIA long-range sonar imaging system has revealed fields of large lava flows in the Hawaiian Trough east and south of Hawaii in water as deep as 5.5 km. Flows in the most extensive field (110 km long) have erupted from the deep submarine segment of Kilauea's east rift zone. Other flows have been erupted from Loihi and Mauna Loa. This discovery confirms a suspicion, long held from subaerial studies, that voluminous submarine flows are erupted from Hawaiian volcanoes, and it supports an inference that summit calderas repeatedly collapse and fill at intervals of centuries to millenia owing to voluminous eruptions. These extensive flows differ greatly in form from pillow lavas found previously along shallower segments of the rift zones; therefore, revision of concepts of volcano stratigraphy and structure may be required.

  13. Depleted basaltic lavas from the proto-Iceland plume, Central East Greenland

    DEFF Research Database (Denmark)

    Waight, Tod Earle; Baker, Joel A.

    2012-01-01

    New geochemical and isotopic data are presented for volumetrically minor, depleted low-Ti basalts that occur in the Plateau Basalt succession of central East Greenland (CEG), formed during the initial stages of opening of the North Atlantic at 55 Ma. The basalts have MORB-like geochemistry (e...... contamination (isotopic composition (ca. 1% lower for 206Pb/204Pb and 0.1% higher for 87Sr/86Sr depending on the contaminant). Negative ¿Nb suggests a MORB affinity for the low-Ti magmas, however they are distinguished from.......g. depleted LREE) and are distinct from the high-Ti lavas that dominate the sequence. REE geochemistry implies derivation from a source more depleted than the typical MORB source, and suggests polybaric melting and contributions from both spinel and garnet facies mantle. The low-Ti basalts have Sr...

  14. Statistical Distribution of Inflation on Lava Flows: Analysis of Flow Surfaces on Earth and Mars

    Science.gov (United States)

    Glazel, L. S.; Anderson, S. W.; Stofan, E. R.; Baloga, S.

    2003-01-01

    -dominated terrestrial flows can be identified. Since tumuli form by the injection of lava beneath a crust, the distribution of tumuli on a flow should represent the distribution of thermally preferred pathways beneath the surface of the crust. That distribution of thermally preferred pathways may be a function of the evolution of a basaltic lava flow. As a longer-lived flow evolves, initially broad thermally preferred pathways would evolve to narrower, more well-defined tube-like pathways. The final flow morphology clearly preserves the growth of the flow over time, with inflation features indicating pathways that were not necessarily contemporaneously active. Here, we test using statistical analysis whether this final flow morphology produces distinct distributions that can be used to readily determine the distribution of thermally preferred pathways beneath the surface of the crust.

  15. Rheology of lava flows on Mercury: An analog experimental study

    Science.gov (United States)

    Sehlke, A.; Whittington, A. G.

    2015-11-01

    We experimentally determined the rheological evolution of three basaltic analog compositions appropriate to Mercury's surface, during cooling, and crystallization. Investigated compositions are an enstatite basalt, and two magnesian basalts representing the compositional end-members of the northern volcanic plains with 0.19 wt % (NVP) and 6.26 wt % Na2O (NVP-Na). The viscosity-strain rate dependence of lava was quantified using concentric cylinder viscometry. We measured the viscosities of the crystal-free liquids from 1600°C down to the first detection of crystals. Liquidus temperatures of the three compositions studied are around 1360°C, and all three compositions are more viscous than Hawaiian basalt at the same temperature. The onset of pseudoplastic behavior was observed at crystal fractions ~0.05 to 0.10, which is consistent with previous studies on mafic lavas. We show that all lavas develop detectable yield strengths at crystal fractions around 0.20, beyond which the two-phase suspensions are better described as Herschel-Bulkley fluids. By analogy with the viscosity-strain rate conditions at which the pahoehoe to `a`a transition occurs in Kilauea basalt, this transition is predicted to occur at ~1260 ± 10°C for the enstatite basalt, at ~1285 ± 20°C for the NVP, and at ~1240 ± 40°C for the NVP-Na lavas. Our results indicate that Mercury lavas are broadly similar to terrestrial ones, which suggests that the extensive smooth lava plains of Mercury could be due to large effusion rates (flood basalts) and not to unusually fluid lavas.

  16. Martian lavas: Three complementary remote sensing techniques to derive flow properties

    Science.gov (United States)

    Lopes-Gautier, R.; Bruno, B. C.; Taylor, G. J.; Rowland, S.; Kilburn, C. R. J.

    1993-01-01

    Several remote sensing techniques have been developed to determine various properties of lava flows. We are currently focusing on three such techniques to interpret Martian lava flows on Alba Patera, which are based on measurements of distal flow lobe widths which can be used to infer silica content; convolution of flow margins which can distinguish between pahoehoe and a'a types of basaltic flows; final flow field dimensions which can be combined with ground slope to derive effusion duration and average effusion rate. These methods are extremely complementary and together provide a more significant and complete understanding of extra-terrestrial lava flows. However, each of these techniques have specific and distinct data requirements.

  17. Modeling steam pressure under martian lava flows

    Science.gov (United States)

    Dundas, Colin M.; Keszthelyi, Laszlo P.

    2013-01-01

    Rootless cones on Mars are a valuable indicator of past interactions between lava and water. However, the details of the lava–water interactions are not fully understood, limiting the ability to use these features to infer new information about past water on Mars. We have developed a model for the pressurization of a dry layer of porous regolith by melting and boiling ground ice in the shallow subsurface. This model builds on previous models of lava cooling and melting of subsurface ice. We find that for reasonable regolith properties and ice depths of decimeters, explosive pressures can be reached. However, the energy stored within such lags is insufficient to excavate thick flows unless they draw steam from a broader region than the local eruption site. These results indicate that lag pressurization can drive rootless cone formation under favorable circumstances, but in other instances molten fuel–coolant interactions are probably required. We use the model results to consider a range of scenarios for rootless cone formation in Athabasca Valles. Pressure buildup by melting and boiling ice under a desiccated lag is possible in some locations, consistent with the expected distribution of ice implanted from atmospheric water vapor. However, it is uncertain whether such ice has existed in the vicinity of Athabasca Valles in recent history. Plausible alternative sources include surface snow or an aqueous flood shortly before the emplacement of the lava flow.

  18. Late Holocene lava flow morphotypes of northern Harrat Rahat, Kingdom of Saudi Arabia: Implications for the description of continental lava fields

    Science.gov (United States)

    Murcia, H.; Németh, K.; Moufti, M. R.; Lindsay, J. M.; El-Masry, N.; Cronin, S. J.; Qaddah, A.; Smith, I. E. M.

    2014-04-01

    A "lava morphotype" refers to the recognizable and distinctive characteristics of the surface morphology of a lava flow after solidification, used in a similar way to a sedimentary facies. This classification method is explored on an example volcanic field in the Kingdom of Saudi Arabia, where copious lava outpourings may represent an important transition between monogenetic and flood basalt fields. Here, young and well-preserved mafic lava fields display a wide range of surface morphologies. We focussed on four post-4500 yrs. BP lava flow fields in northern Harrat Rahat (pahoehoe, Platy-, Cauliflower-, and Rubbly-a'a, and Blocky morphotypes. Morphotypes reflect the intrinsic parameters of: composition, temperature, crystallinity and volatile-content/vesicularity; along with external influences, such as: emission mechanism, effusion rate, topography and slope control of flow velocity. One morphotype can transition to another in individual flow-units or lobes and they may dominate zones. Not all morphotypes were found in a single lava flow field. Pahoehoe morphotypes are related to the simple mechanical disaggregation of the crust, whereas a'a morphotypes are related to the transitional emergence and subsequent transitional disappearance of clinker. Blocky morphotypes result from fracturing and auto-brecciation. A'a morphotypes (i.e. platy-, cauliflower-, rubbly-a'a) dominate the lava flow field surfaces in northern Harrat Rahat, which suggests that core-dominated flows were predominant during flow movement. Lava structures are well-developed and well-preserved and some may be related to some morphotypes. Down-flow changes exhibit key illustrative and easy recognizable features in the lava flow fields and might provide insights into real-time monitoring of future flows in this region.

  19. Geochemistry and genesis of behind-arc basaltic lavas from eastern Nicaragua

    Science.gov (United States)

    Janoušek, V.; Erban, V.; Holub, F. V.; Magna, T.; Bellon, H.; Mlčoch, B.; Wiechert, U.; Rapprich, V.

    2010-05-01

    The petrology and chemistry of the Behind the Volcanic Front (BVF) lavas from eastern mainland Nicaragua and the adjacent Great Corn Island in the Caribbean Sea illustrate the complex nature of sources and processes operating in such a tectonic setting. The older, Early Miocene (˜ 17 Ma) group of low-Ti ( 1.5%) lavas, rich in other HFSE as well, are represented both by alkaline (Quaternary trachybasalts: Volcán Azul and Kukra Hill) and subalkaline (basalts-basaltic andesites: Late Miocene, ˜ 11 Ma Great Corn Island and Quaternary, Pearl Lagoon) volcanic rocks. The Late Miocene and Quaternary high-Ti BVF lavas probably represent small-volume decompression melts of a source similar to that of the OIB-like magmas, most likely upwelling asthenosphere having a strong Galápagos mantle imprint. The positive Sr-Nd isotopic correlation indicates an interaction between this OIB component and a depleted lithospheric mantle modified by a subduction-related influx of Sr and, to a lesser extent, other hydrous fluid-mobile elements. However, the rocks show no recognizable influence of the modern subduction. The feeble trace-element (e.g., slightly elevated Ba, K, and Sr at some localities) and a more pronounced Sr-Li isotopic subduction-related signal stems most likely from the Miocene convergence episode. Subduction of the Galápagos hot-spot tracks in Costa Rica produces magmas that can be readily recognized by their elevated Sr isotopic ratios due to seafloor alteration; the Nd isotopic signature remains unaffected. Such a component with relatively unradiogenic Nd and radiogenic Sr is required in the source of the modern volcanic front lavas but is not needed to explain the variation in the studied BVF dataset. Terrains with multiepisodic subduction history should be considered with caution, as the lavas generated by decompression melting of the asthenospheric source in the back-arc region may bear a geochemical imprint of the fossil and not the modern subduction component

  20. Observations on basaltic lava streams in tubes from Kilauea Volcano, island of Hawai'i

    Science.gov (United States)

    Kauahikaua, J.; Cashman, K.V.; Mattox, T.N.; Christina, Heliker C.; Hon, K.A.; Mangan, M.T.; Thornber, C.R.

    1998-01-01

    From 1986 to 1997, the Pu'u 'O'o-Kupaianaha eruption of Kilauea produced a vast pahoehoe flow field fed by lava tubes that extended 10-12 km from vents on the volcano's east rift zone to the ocean. Within a kilometer of the vent, tubes were as much as 20 m high and 10-25 m wide. On steep slopes (4-10??) a little farther away from the vent, some tubes formed by roofing over of lava channels. Lava streams were typically 1-2 m deep flowing within a tube that here was typically 5 m high and 3 m wide. On the coastal plain (<1??), tubes within inflated sheet flows were completely filled, typically 1-2 m high, and several tens of meters wide. Tubes develop as a flow's crust grows on the top, bottom, and sides of the tubes, restricting the size of the fluid core. The tubes start out with nearly elliptical cross-sectional shapes, many times wider than high. Broad, flat sheet flows evolve into elongate tumuli with an axial crack as the flanks of the original flow were progressively buried by breakouts. Temperature measurements and the presence of stalactites in active tubes confirmed that the tube walls were above the solidus and subject to melting. Sometimes, the tubes began downcutting. Progressive downcutting was frequently observed through skylights; a rate of 10 cm/d was measured at one skylight for nearly 2 months.

  1. Viscous flow behavior of tholeiitic and alkaline Fe-rich martian basalts

    Science.gov (United States)

    Chevrel, Magdalena Oryaëlle; Baratoux, David; Hess, Kai-Uwe; Dingwell, Donald B.

    2014-01-01

    The chemical compositions of martian basalts are enriched in iron with respect to terrestrial basalts. Their rheology is poorly known and liquids of this chemical composition have not been experimentally investigated. Here, we determine the viscosity of five synthetic silicate liquids having compositions representative of the diversity of martian volcanic rocks including primary martian mantle melts and alkali basalts. The concentric cylinder method has been employed between 1500 °C and the respective liquidus temperatures of these liquids. The viscosity near the glass transition has been derived from calorimetric measurements of the glass transition. Although some glass heterogeneity limits the accuracy of the data near the glass transition, it was nevertheless possible to determine the parameters of the non-Arrhenian temperature-dependence of viscosity over a wide temperature range (1500 °C to the glass transition temperature). At superliquidus conditions, the martian basalt viscosities are as low as those of the Fe-Ti-rich lunar basalts, similar to the lowest viscosities recorded for terrestrial ferrobasalts, and 0.5 to 1 order of magnitude lower than terrestrial tholeiitic basalts. Comparison with empirical models reveals that Giordano et al. (2008) offers the best approximation, whereas the model proposed by Hui and Zhang (2007) is inappropriate for the compositions considered. The slightly lower viscosities exhibited by the melts produced by low degree of mantle partial melting versus melts produced at high degree of mantle partial melting (likely corresponding to the early history of Mars), is not deemed sufficient to lead to viscosity variations large enough to produce an overall shift of martian lava flow morphologies over time. Rather, the details of the crystallization sequence (and in particular the ability of some of these magmas to form spinifex texture) is proposed to be a dominant effect on the viscosity during martian lava flow emplacement and

  2. Constraining Eruptive Conditions From Lava Flow Morphometry: A Case Study With Field Evidence

    Science.gov (United States)

    Bowles, Z. R.; Clarke, A.; Greeley, R.

    2007-12-01

    Volcanism is widely recognized as one of the primary factors affecting the surfaces of solid planets and satellites throughout the solar system. Basaltic lava is thought to be the most common composition based on observed features typical of basaltic eruptions found on Earth. Lava flows are one of the most easily recognizable landforms on planetary surfaces and their features may provide information about eruption dynamics, lava rheology, and potential hazards. More recently, researchers have taken a multi-faceted approach to combine remote sensing, field observations and quantitative modeling to constrain volcanic activity on Earth and other planets. Here we test a number of published models, including empirically derived relationships from Mt. Etna and Kilauea, models derived from laboratory experiments, and theoretical models previously applied to remote sensing of planetary surfaces, against well-documented eruptions from the literature and field observations. We find that the Graetz (Hulme and Felder, 1977, Phil.Trans., 285, 227 - 234) method for estimating effusion rates compares favorably with published eruption data, while, on the other hand, inverting lava flow length prediction models to estimate effusion rates leads to several orders of magnitude in error. The Graetz method also better constrains eruption duration. Simple radial spreading laws predict Hawaiian lava flow lengths quite well, as do using the thickness of the lava flow front and chilled crust. There was no observed difference between results from models thought to be exclusive to aa or pahoehoe flow fields. Interpreting historic conditions should therefore follow simple relationships to observable morphologies no matter the composition or surface texture. We have applied the most robust models to understand the eruptive conditions and lava rheology of the Batamote Mountains near Ajo, AZ, an eroded shield volcano in southern Arizona. We find effusion rates on the order of 100 - 200 cubic

  3. Lava flow texture LiDAR signatures

    Science.gov (United States)

    Whelley, P.; Garry, W. B.; Scheidt, S. P.; Irwin, R. P., III; Fox, J.; Bleacher, J. E.; Hamilton, C. W.

    2014-12-01

    High-resolution point clouds and digital elevation models (DEMs) are used to investigate lava textures on the Big Island of Hawaii. An experienced geologist can distinguish fresh or degraded lava textures (e.g., blocky, a'a and pahoehoe) visually in the field. Lava texture depends significantly on eruption conditions, and it is therefore instructive, if accurately determined. In places where field investigations are prohibitive (e.g., Mercury, Venus, the Moon, Mars, Io and remote regions on Earth) lava texture must be assessed from remote sensing data. A reliable method for differentiating lava textures in remote sensing data remains elusive. We present preliminary results comparing properties of lava textures observed in airborne and terrestrial Light Detection and Ranging (LiDAR) data. Airborne data, in this study, were collected in 2011 by Airborne 1 Corporation and have a ~1m point spacing. The authors collected the terrestrial data during a May 2014 field season. The terrestrial scans have a heterogeneous point density. Points close to the scanner are 1 mm apart while 200 m in the distance points are 10 cm apart. Both platforms offer advantages and disadvantages beyond the differences in scale. Terrestrial scans are a quantitative representation of what a geologist sees "on the ground". Airborne scans are a point of view routinely imaged by other remote sensing tools, and can therefore be quickly compared to complimentary data sets (e.g., spectral scans or image data). Preliminary results indicate that LiDAR-derived surface roughness, from both platforms, is useful for differentiating lava textures, but at different spatial scales. As all lava types are quite rough, it is not simply roughness that is the most advantageous parameter; rather patterns in surface roughness can be used to differentiate lava surfaces of varied textures. This work will lead to faster and more reliable volcanic mapping efforts for planetary exploration as well as terrestrial

  4. Numerical simulation of lava flows: Applications to the terrestrial planets

    Science.gov (United States)

    Zimbelman, James R.; Campbell, Bruce A.; Kousoum, Juliana; Lampkin, Derrick J.

    1993-03-01

    Lava flows are the visible expression of the extrusion of volcanic materials on a variety of planetary surfaces. A computer program described by Ishihara et al. appears to be well suited for application to different environments, and we have undertaken tests to evaluate their approach. Our results are somewhat mixed; the program does reproduce reasonable lava flow behavior in many situations, but we have encountered some conditions common to planetary environments for which the current program is inadequate. Here we present our initial efforts to identify the 'parameter space' for reasonable numerical simulations of lava flows.

  5. Simulation of inflated pahoehoe lava flows

    Science.gov (United States)

    Glaze, Lori S.; Baloga, Stephen M.

    2013-04-01

    A new stochastic model simulates late-stage pahoehoe lobes where random processes dominate emplacement. The model prescribes probabilistic rules for determining where and when parcels of lava move within the lobe. Unlike a classical Brownian motion random walk, the model allows individual parcels to remain dormant, but fluid, for multiple time steps. The randomness of parcel volume transfers within the lobe interior as well as at the margins qualitatively reflects inflation processes observed in the field. The fraction of inflated volume to total volume increases with the total volume, with greater than 75% of the lobe volume contributed through inflation for typical lobes. The influence on planform shape and topographic cross-sectional profiles of total volume, source area and shape, topographic confinement, and sequential breakouts at the lobe margins, are all explored with the stochastic model. Each of these factors influences the overall lobe thickness and width. The model provides a means for assessing the relative importance of these processes through comparisons with field data. For the first time, Gaussian and parabolic functions are quantitatively fit to field measurements of pahoehoe lobes. Both functional forms provide adequate description of the cross-sectional flow shapes. When comparing simulated lobes to field data, sequential breakouts at the lobe margins are found to be an important process controlling the final topographic distribution of observed pahoehoe lobes.

  6. Petrogenesis of Rinjani Post-1257-Caldera-Forming-Eruption Lava Flows

    Directory of Open Access Journals (Sweden)

    Heryadi Rachmat

    2016-08-01

    Full Text Available After the catastrophic 1257 caldera-forming eruption, a new chapter of Old Rinjani volcanic activity beganwith the appearance of Rombongan and Barujari Volcanoes within the caldera. However, no published petrogeneticstudy focuses mainly on these products. The Rombongan eruption in 1944 and Barujari eruptions in pre-1944, 1966,1994, 2004, and 2009 produced basaltic andesite pyroclastic materials and lava flows. A total of thirty-one sampleswere analyzed, including six samples for each period of eruption except from 2004 (only one sample. The sampleswere used for petrography, whole-rock geochemistry, and trace and rare earth element analyses. The Rombonganand Barujari lavas are composed of calc-alkaline and high K calc-alkaline porphyritic basaltic andesite. The magmashows narrow variation of SiO2 content that implies small changes during its generation. The magma that formedRombongan and Barujari lavas is island-arc alkaline basalt. Generally, data show that the rocks are enriched in LargeIon Lithophile Elements (LILE: K, Rb, Ba, Sr, and Ba and depleted in High Field Strength Elements (HFSE: Y, Ti,and Nb which are typically a suite from a subduction zone. The pattern shows a medium enrichment in Light REEand relatively depleted in Heavy REE. The processes are dominantly controlled by fractional crystallization andmagma mixing. All of the Barujari and Rombongan lavas would have been produced by the same source of magmawith little variation in composition caused by host rock filter process. New flux of magma would likely have occurredfrom pre-1944 until 2009 period that indicates slightly decrease and increase of SiO2 content. The Rombongan andBarujari lava generations show an arc magma differentiation trend.

  7. Validating Cellular Automata Lava Flow Emplacement Algorithms with Standard Benchmarks

    Science.gov (United States)

    Richardson, J. A.; Connor, L.; Charbonnier, S. J.; Connor, C.; Gallant, E.

    2015-12-01

    A major existing need in assessing lava flow simulators is a common set of validation benchmark tests. We propose three levels of benchmarks which test model output against increasingly complex standards. First, imulated lava flows should be morphologically identical, given changes in parameter space that should be inconsequential, such as slope direction. Second, lava flows simulated in simple parameter spaces can be tested against analytical solutions or empirical relationships seen in Bingham fluids. For instance, a lava flow simulated on a flat surface should produce a circular outline. Third, lava flows simulated over real world topography can be compared to recent real world lava flows, such as those at Tolbachik, Russia, and Fogo, Cape Verde. Success or failure of emplacement algorithms in these validation benchmarks can be determined using a Bayesian approach, which directly tests the ability of an emplacement algorithm to correctly forecast lava inundation. Here we focus on two posterior metrics, P(A|B) and P(¬A|¬B), which describe the positive and negative predictive value of flow algorithms. This is an improvement on less direct statistics such as model sensitivity and the Jaccard fitness coefficient. We have performed these validation benchmarks on a new, modular lava flow emplacement simulator that we have developed. This simulator, which we call MOLASSES, follows a Cellular Automata (CA) method. The code is developed in several interchangeable modules, which enables quick modification of the distribution algorithm from cell locations to their neighbors. By assessing several different distribution schemes with the benchmark tests, we have improved the performance of MOLASSES to correctly match early stages of the 2012-3 Tolbachik Flow, Kamchakta Russia, to 80%. We also can evaluate model performance given uncertain input parameters using a Monte Carlo setup. This illuminates sensitivity to model uncertainty.

  8. Stochastic modeling of a lava-flow aquifer system

    Science.gov (United States)

    Cronkite-Ratcliff, Collin; Phelps, Geoffrey A.

    2014-01-01

    This report describes preliminary three-dimensional geostatistical modeling of a lava-flow aquifer system using a multiple-point geostatistical model. The purpose of this study is to provide a proof-of-concept for this modeling approach. An example of the method is demonstrated using a subset of borehole geologic data and aquifer test data from a portion of the Calico Hills Formation, a lava-flow aquifer system that partially underlies Pahute Mesa, Nevada. Groundwater movement in this aquifer system is assumed to be controlled by the spatial distribution of two geologic units—rhyolite lava flows and zeolitized tuffs. The configuration of subsurface lava flows and tuffs is largely unknown because of limited data. The spatial configuration of the lava flows and tuffs is modeled by using a multiple-point geostatistical simulation algorithm that generates a large number of alternative realizations, each honoring the available geologic data and drawn from a geologic conceptual model of the lava-flow aquifer system as represented by a training image. In order to demonstrate how results from the geostatistical model could be analyzed in terms of available hydrologic data, a numerical simulation of part of an aquifer test was applied to the realizations of the geostatistical model.

  9. The Influence of Slope Breaks on Lava Flow Surface Disruption

    Science.gov (United States)

    Glaze, Lori S.; Baloga, Stephen M.; Fagents, Sarah A.; Wright, Robert

    2014-01-01

    Changes in the underlying slope of a lava flow impart a significant fraction of rotational energy beyond the slope break. The eddies, circulation and vortices caused by this rotational energy can disrupt the flow surface, having a significant impact on heat loss and thus the distance the flow can travel. A basic mechanics model is used to compute the rotational energy caused by a slope change. The gain in rotational energy is deposited into an eddy of radius R whose energy is dissipated as it travels downstream. A model of eddy friction with the ambient lava is used to compute the time-rate of energy dissipation. The key parameter of the dissipation rate is shown to be rho R(sup 2/)mu, where ? is the lava density and mu is the viscosity, which can vary by orders of magnitude for different flows. The potential spatial disruption of the lava flow surface is investigated by introducing steady-state models for the main flow beyond the steepening slope break. One model applies to slow-moving flows with both gravity and pressure as the driving forces. The other model applies to fast-moving, low-viscosity, turbulent flows. These models provide the flow velocity that establishes the downstream transport distance of disrupting eddies before they dissipate. The potential influence of slope breaks is discussed in connection with field studies of lava flows from the 1801 Hualalai and 1823 Keaiwa Kilauea, Hawaii, and 2004 Etna eruptions.

  10. InSAR observations of ground surface deformation and lava flow emplacement at Pacaya volcano, Guatemala

    Science.gov (United States)

    Schaefer, L. N.; Lu, Z.; Oommen, T.

    2015-12-01

    Pacaya volcano is a persistently active basaltic cone complex located in the Central American Volcanic Arc in Guatemala. In May, 2010, violent VEI-3 eruptions caused significant topographic changes to the edifice, including the dispersion of ~20 cm of tephra and ash on the cone, the emplacement of a ~5.4 km long lava flow, and 3 m of co-eruptive movement of the southwest flank. For this study, Interferometric Synthetic Aperture Radar (InSAR) images (interferograms) processed from both spaceborne Advanced Land Observing Satellite (ALOS) and aerial Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data were used to measure post-eruptive deformation events. Interferograms suggest four distinct deformation processes after the May 2010 eruption: (1) magma intrusion near the vents of the 2010 lava flow; (2) subsidence of the 2010 lava flow; (3) slow deflation of an elongated magma source near the summit, and; (4) settlement of the material involved in the co-eruptive slope movement. Our results provide insights into Pacaya's complex magmatic plumbing system and the postemplacement behavior of lava flows. The detection of several different deformation events emphasizes the utility of measuring volcanic deformation using high-resolution remote sensing techniques with broad spatial coverage.

  11. Influence of cooling on lava-flow dynamics

    Science.gov (United States)

    Stasiuk, Mark V.; Jaupart, Claude; Stephen, R.; Sparks, J.

    1993-04-01

    Experiments have been carried out to determine the effects of cooling on the flow of fluids with strongly temperature dependent viscosity. Radial viscous-gravity currents of warm glucose syrup were erupted at constant rate into a flat tank filled with a cold aqueous solution. Cold, viscous fluid accumulates at the leading edge, altering the flow shape and thickness and slowing the spreading. The flows attain constant internal temperature distributions and bulk viscosities. The value of the bulk viscosity depends on the Péclet number, which reflects the advective and diffusive heat transport properties of the flow, the flow skin viscosity, which reflects cooling, and the eruption viscosity. Our results explain why most lava flows have bulk viscosities much higher than the lava eruption viscosity. The results can be applied to understanding dynamic lava features such as flow-front thickening, front avalanches, and welded basal breccias.

  12. Lavas from Active Boninite and Very Recent Basalt Eruptions at Two Submarine NE Lau Basin Sites

    Science.gov (United States)

    Rubin, K. H.; Embley, R. W.; Clague, D. A.; Resing, J. A.; Michael, P. J.; Keller, N. S.; Baker, E. T.

    2009-12-01

    Very young submarine lava flows were discovered at two sites in the NE Lau Basin during a May 2009 NSF-NOAA expedition. The multidisciplinary rapid response expedition was organized to investigate these sites based on chemical and physical water column signatures observed during a NOAA-led regional study in Nov. 2008. An active eruption was discovered and observed for 5 days in May 2009 at W. Mata volcano, just behind the northernmost segment of the Tofua arc. The ongoing eruption produced extrusive and pyroclastic deposits from multiple vents near the 1200m depth summit of the volcano. Lavas were sampled from the summit and volcano flanks using the ROV Jason II. The samples indicate that W. Mata is currently erupting orthopyroxene-clinopyroxene-olivine porphyritic boninite magmas, which is also the predominant rock composition elsewhere on the seamount. The youngest lavas are very fresh, highly vesicular (up to ~30%) and occur as predominantly pillow and lobate forms, sometimes mantled by very young pyroclastic deposits and/or thin chemical coatings of presumed microbial and/or inorganic origin. The coatings and pyroclast apron make it difficult to map the extent of the youngest deposits by visual indicators alone, so we are currently dating 7 well-distributed samples from the W. Mata summit by 210Po-210Pb chronology. Very preliminary age results indicate that samples collected near the active vents are ridge axis, transitional to pillows in distal locations. Very preliminary 210Po-210Pb data on 5 NELSC lavas suggest the eruption occurred over at least a few months, with significant chemical heterogeneity (e.g., ~1 wt% MgO variation), and with highly enriched compositions (e.g., Th=3.3 ppm, Th/U >3.8). 210Po activity in 3 samples suggest a Nov 2008 eruption, consistent with interpretations from water column physical and chemical characteristics measured in Nov. 2008. 210Po in 2 other lavas suggest early 2009 and mid 2008 eruptions, respectively. Some young lavas

  13. Fractal analysis: A new remote sensing tool for lava flows

    Science.gov (United States)

    Bruno, B. C.; Taylor, G. J.; Rowland, S. K.; Lucey, P. G.; Self, S.

    1992-01-01

    Many important quantitative parameters have been developed that relate to the rheology and eruption and emplacement mechanics of lavas. This research centers on developing additional, unique parameters, namely the fractal properties of lava flows, to add to this matrix of properties. There are several methods of calculating the fractal dimension of a lava flow margin. We use the 'structured walk' or 'divider' method. In this method, we measure the length of a given lava flow margin by walking rods of different lengths along the margin. Since smaller rod lengths transverse more smaller-scaled features in the flow margin, the apparent length of the flow outline will increase as the length of the measuring rod decreases. By plotting the apparent length of the flow outline as a function of the length of the measuring rod on a log-log plot, fractal behavior can be determined. A linear trend on a log-log plot indicates that the data are fractal. The fractal dimension can then be calculated from the slope of the linear least squares fit line to the data. We use this 'structured walk' method to calculate the fractal dimension of many lava flows using a wide range of rod lengths, from 1/8 to 16 meters, in field studies of the Hawaiian islands. We also use this method to calculate fractal dimensions from aerial photographs of lava flows, using lengths ranging from 20 meters to over 2 kilometers. Finally, we applied this method to orbital images of extraterrestrial lava flows on Venus, Mars, and the Moon, using rod lengths up to 60 kilometers.

  14. REMOTE SENSING IN NORTHERN ARIZONA: S. P. CINDER CONE AND LAVA FLOW.

    Science.gov (United States)

    Schaber, Gerald C.; Kozak, R.C.; Burns, Barbara A.; Bartels, K.I.

    1984-01-01

    The objective of this poster paper is to present a site-specific atlas showing a wide variety of remote sensing data sets collected for the area of S. P. Mountain and lava flow (basaltic-andesite) in north-central Arizona. The data set to be displayed includes a number of radar images, representing three wavelength regions (1-, 3- and 25-cm), multiple incidence angles, look directions, and polarization combinations, in addition to thermal infrared scanner imagery, multispectral scanner imagery, aerial and ground photography, micro- and macro topography, and four-frequency, multipolarization radar scatterometer spectra. The expression of different surface units on the S. P. lava flow are effectively displayed on the ERIM four-channel images by the registration and combination of the four bands. Multi-color imagery of band combinations demonstrate the information content of multi-channel SAR imagery as well as the suitability of extending data manipulation methods developed for Landsat data to SAR data.

  15. 40Ar-39Ar age of a lava flow from the Bhimashankar Formation, Giravali Ghat, Deccan Traps

    Indian Academy of Sciences (India)

    Kanchan Pande; S K Pattanayak; K V Subbarao; P Navaneethakrishnan; T R Venkatesan

    2004-12-01

    We report here a 40Ar-39Ar age of 66.0 ± 0.9Ma (2 ) for a reversely magnetised tholeiitic lava flow from the Bhimashankar Formation (Fm.), Giravali Ghat, western Deccan province, India. This age is consistent with the view that the 1.8–2km thick bottom part of the exposed basalt flow sequence in the Western Ghats was extruded very close to 67.4 Ma.

  16. Lava Flow Lengths and Historic Eruptive Parameters: Implications for the Volcanic History of the Batamote Mountains, Ajo, Arizona

    Science.gov (United States)

    Bowles, Z. R.; Clarke, A.; Greeley, R.

    2006-12-01

    Lava flow lengths and morphology depend on (1) initial viscocity, (2) rate of effusion, (3) total volume of lava extruded, (4) duration of extrusion, (5) slope of underlying surface, (6) topography, (7) rate of cooling, (8) formation of crust, and (9) other special circumstances such as ponding and flowing into water. Lava flow lengths and assumptions on lava type contain all the information needed to make educated constraints on the eruptive history of a particular volcano. By no means is this a definitive claim of eruptive histories based on present day observations, but an approximation of what might have occurred may be obtained. Lava flow lengths were measured in the Batamote Mountains in Ajo, Arizona and it was determined that this 18 million year old shield volcano erupted with effusion rates of 5 to 10 cubic meters per second, volumes of 0.00001 cubic kilometers, eruption durations on the order of days, lava yield strengths of 5000 Pa, and flow thicknesses of approximately 3 to 6 meters. These calculations add to the body of knowledge covering Arizona historical volcanism and related Basin and Range extension, but conflict with observations of basaltic volcanic fields in this region.

  17. Geochemistry and stratigraphic correlation of basalt lavas beneath the Idaho Chemical Processing Plant, Idaho National Engineering Laboratory

    Science.gov (United States)

    Reed, M.F.; Bartholomay, R.C.; Hughes, S.S.

    1997-01-01

    Thirty-nine samples of basaltic core were collected from wells 121 and 123, located approximately 1.8 km apart north and south of the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Samples were collected from depths ranging from 15 to 221 m below land surface for the purpose of establishing stratigraphic correlations between these two wells. Elemental analyses indicate that the basalts consist of three principal chemical types. Two of these types are each represented by a single basalt flow in each well. The third chemical type is represented by many basalt flows and includes a broad range of chemical compositions that is distinguished from the other two types. Basalt flows within the third type were identified by hierarchical K-cluster analysis of 14 representative elements: Fe, Ca, K, Na, Sc, Co, La, Ce, Sm, Eu, Yb, Hf, Ta, and Th. Cluster analyses indicate correlations of basalt flows between wells 121 and 123 at depths of approximately 38-40 m, 125-128 m, 131-137 m, 149-158 m, and 183-198 m. Probable correlations also are indicated for at least seven other depth intervals. Basalt flows in several depth intervals do not correlate on the basis of chemical compositions, thus reflecting possible flow margins in the sequence between the wells. Multi-element chemical data provide a useful method for determining stratigraphic correlations of basalt in the upper 1-2 km of the eastern Snake River Plain.

  18. Eruption of Alkaline Basalts Prior to the Calc-alkaline Lavas of Mt. Cleveland Volcano, Aleutian Arc, Alaska

    Science.gov (United States)

    Bridges, D. L.; Nicolaysen, K. P.

    2005-12-01

    Mt. Cleveland is a 1,730 m stratovolcano, located on Chuginadak Island, that has erupted at least 23 times historically, with the latest occurring in August 2005. Major, trace, and REE analyses of 63 samples from Mt. Cleveland, including 8 from proximal cinder cones and 4 from andesitic domes on the lower flanks, identify two distinct lava suites. Modern Cleveland (MC) basalts to dacites (50.5-66.7 wt.% SiO2) exhibit a calc-alkaline differentiation trend. Major element trends suggest crystal fractionation of plagioclase +/- ortho- and clinopyroxene in MC lavas and olivine in cinder cone deposits. Resorption textures on plagioclase and olivine phenocrysts and multiple populations of plagioclase predominate throughout the MC suite suggesting magma mixing is a major process at Cleveland. Frothy white xenoliths of plagioclase + quartz + biotite are encased in glass and erupted as small pumiceous fragments in 2001. The partial resorption of the xenocrysts indicates assimilation is also an active crustal process at Cleveland. MC trace element spider diagrams exhibit a typical arc pattern in which HFS elements including Nb are depleted, and Pb and LIL elements are enriched. Th/La, Sm/La, and Sr, Nd, Pb, and Hf isotopic ratios indicate both a North Pacific MORB and a sediment component in the source of modern Cleveland lavas, consistent with sediment flux estimates of 90 to 95 m3/m/yr and an updip sediment thickness of 1300 to 1400 meters. Average 206Pb/204Pb, 207Pb/204Pb, 87Sr/86Sr, and 143Nd/144Nd values for the calc-alkaline suite are 18.93, 15.58, 0.70345, and 0.51303 respectively. The second suite consists of 3 olivine-rich, mildly alkaline basalts (48.5-49.4 wt.% SiO2), of older stratigraphic position than MC lavas representing deposits from an older phase of activity (ancestral Cleveland, AC). La/Yb, Sr/Y, and Th/Nb ratios indicate lower degrees of partial melting, relative to MC lavas, and suggests presence of garnet in the source region. The AC lavas, however, are

  19. Loss of volatiles during fountaining and flowage of basaltic lava at Kilauea Volcano, Hawaii

    Science.gov (United States)

    Swanson, Donald A.; Fabbi, Brent P.

    1973-01-01

    The amount of water and sulfur in pumice erupted during periods of vigorous activity during the 1969-71 Mauna Ulu eruption varied inversely with fountain height because of degassing during the fountaining. The pumice lost about 0.05 wt percent water and 0.003 wt percent sulfur during fountaining to heights of 400-540 m. Analyses suggest that the initial volatile content of Mauna Ulu lava was greater immediately preceding periods of high fountaining than during weak activity between those periods or after the last high fountains on December 30, 1969. Water and sulfur were systematically depleted during nearly isothermal flowage in lava tubes. Rapidly quenched samples of dipped melt show losses of about 0.03-0.04 wt percent water and 0.007-0.008 wt percent sulfur during flowage for several hours through a distance of 12 km. Glassy skins on cooled pahoehoe flows contain about 0.002-0.003 wt percent less sulfur than quenched melt at comparable distances from the vent, because of continued degassing under natural cooling conditions. Chlorine shows similar but less well defined trends. Pumice erupted in high fountains becomes more strongly oxidized than the parent magma, because of mixing with air while still at high temperatures.

  20. Lava Flow Emplacement Processes and Eruptive Characteristics of the Ontong Java Plateau: Inferences from High-Precision Glass Analysis

    Science.gov (United States)

    Trowbridge, S. R.; Michael, P. J.

    2015-12-01

    High-precision major and volatile element analyses were performed on natural basaltic glass from ODP Leg 192 Sites 1185 and 1187 of the Ontong Java Plateau (OJP) as a way to correlate lava flows within and between ODP drill sites. The ultimate goal is to estimate the dimensions, emplacement style, and eruption characteristics of the high-MgO Kroenke-type lavas: the youngest known flows at the two sites. The 122-Ma Ontong Java Plateau is the largest known magmatic event in Earth's history, yet little is known of the emplacement style (e.g. flow dimensions and durations) of OJP lavas due to its submarine nature and burial beneath hundreds of meters of sediment. Basalt samples were recovered from 110- and 130-m thick core sections from Sites 1185B and 1187A, respectively. Total Kroenke-type lava thickness is 125 m at 1185B and >136 m at 1187. Site 1187A is located 146 km north of Site 1185B and lies ≈50 m shallower than Site 1187. Remarkably, all of the glass compositions from both sites fall on a common liquid line of descent, suggesting that all lavas were the product of a single eruption from a common magma chamber. The range of MgO compositions reflects a 20ºC range in temperature, representing ~1.9% crystallization of olivine + spinel. Using measured phenocryst abundance, we examine whether this crystallization occurred within the magma chamber or during long transport of lavas on the seafloor. More primitive lavas are present in the upper 30 m of Site 1185B (average of ~9.54 wt. % MgO), overlying more fractionated lavas (average of ~9.06 wt. % MgO). Lavas from Site 1187A bridge the gap between the high- and low-MgO groups of 1185B. In contrast to MORB, OJP glasses have no vesicles, suggesting they remained liquid for much longer during flow. Paleoeruption depths calculated from H2O and CO2 contents of glasses show no systematic variation with depth in Core 1185B, and range from ~2130-2650 mbsl, while Site 1187 shows deeper eruption depths of ~2410-3040 mbsl

  1. Numerical modeling of fluid flow with rafts: An application to lava flows

    Science.gov (United States)

    Tsepelev, Igor; Ismail-Zadeh, Alik; Melnik, Oleg; Korotkii, Alexander

    2016-07-01

    Although volcanic lava flows do not significantly affect the life of people, its hazard is not negligible as hot lava kills vegetation, destroys infrastructure, and may trigger a flood due to melting of snow/ice. The lava flow hazard can be reduced if the flow patterns are known, and the complexity of the flow with debris is analyzed to assist in disaster risk mitigation. In this paper we develop three-dimensional numerical models of a gravitational flow of multi-phase fluid with rafts (mimicking rigid lava-crust fragments) on a horizontal and topographic surfaces to explore the dynamics and the interaction of lava flows. We have obtained various flow patterns and spatial distribution of rafts depending on conditions at the surface of fluid spreading, obstacles on the way of a fluid flow, raft landing scenarios, and the size of rafts. Furthermore, we analyze two numerical models related to specific lava flows: (i) a model of fluid flow with rafts inside an inclined channel, and (ii) a model of fluid flow from a single vent on an artificial topography, when the fluid density, its viscosity, and the effusion rate vary with time. Although the studied models do not account for lava solidification, crust formation, and its rupture, the results of the modeling may be used for understanding of flows with breccias before a significant lava cooling.

  2. The Hawaiian Volcano Observatory's current approach to forecasting lava flow hazards (Invited)

    Science.gov (United States)

    Kauahikaua, J. P.

    2013-12-01

    Hawaiian Volcanoes are best known for their frequent basaltic eruptions, which typically start with fast-moving channelized `a`a flows fed by high eruptions rates. If the flows continue, they generally transition into pahoehoe flows, fed by lower eruption rates, after a few days to weeks. Kilauea Volcano's ongoing eruption illustrates this--since 1986, effusion at Kilauea has mostly produced pahoehoe. The current state of lava flow simulation is quite advanced, but the simplicity of the models mean that they are most appropriately used during the first, most vigorous, days to weeks of an eruption - during the effusion of `a`a flows. Colleagues at INGV in Catania have shown decisively that MAGFLOW simulations utilizing satellite-derived eruption rates can be effective at estimating hazards during the initial periods of an eruption crisis. However, the algorithms do not simulate the complexity of pahoehoe flows. Forecasts of lava flow hazards are the most common form of volcanic hazard assessments made in Hawai`i. Communications with emergency managers over the last decade have relied on simple steepest-descent line maps, coupled with empirical lava flow advance rate information, to portray the imminence of lava flow hazard to nearby communities. Lavasheds, calculated as watersheds, are used as a broader context for the future flow paths and to advise on the utility of diversion efforts, should they be contemplated. The key is to communicate the uncertainty of any approach used to formulate a forecast and, if the forecast uses simple tools, these communications can be fairly straightforward. The calculation of steepest-descent paths and lavasheds relies on the accuracy of the digital elevation model (DEM) used, so the choice of DEM is critical. In Hawai`i, the best choice is not the most recent but is a 1980s-vintage 10-m DEM--more recent LIDAR and satellite radar DEM are referenced to the ellipsoid and include vegetation effects. On low-slope terrain, steepest

  3. Analysis of inflated submarine and sub-lacustrine Pahoehoe lava flows using high-resolution bathymetric and lidar data

    Science.gov (United States)

    Deschamps, A.; Soule, S. A.; Le Saout, M.; Allemand, P.

    2012-12-01

    The summit of the East Pacific Rise (EPR), 16°N, is investigated based -among others- on high-resolution bathymetry acquired using the AUV Aster-X, and photos and videos collected using the submersible Nautile (Ifremer). HR bathymetry reveals submarine tumuli and inflated smooth lava flows at the summit of the ridge, emplaced on sub-horizontal terrains. They are primarily composed of jumbled and lobate flows with occurrences of sheet flows, and pillows close to the flow margins. They are 5 to 15 meters -high, and their surface ranges 0.2 to 1.5 km2. Their surface is either planar or depressed, likely due to lava drainback during eruption. At their margins, planar slabs of lava, few meters wide, slope down from the top of the flow, at angles ranging 40 to 80°. A series of cracks, 0,5 to 1.5 m deep, separate the horizontal surface of the flow from their inclined flanks. These cracks parallel the sinuous edges of the flows, suggesting the flow flanks tilted outward. Tumuli are also observed. Some of these smooth flows form 80 to 750 m -long sinuous ridges, suggesting the existence of lava tubes. Their morphology indicates that these flows experienced inflationary emplacement styles, but at a much larger scale than Pahoehoe lavas in Hawaii and La Réunion Island. In these two islands, indeed, inflation structures are typically less than 2 meters high and only several tens of meters in length at maximum, suggesting that their mechanism of emplacement and inflation is significantly different. Conversely, we observe comparable inflation flows in Iceland and in Idaho and Oregon, also emplaced onto sub-horizontal terrains. We use high-resolution aerial photographs and lidar data to investigate their morphology. In the Eastern Snake River Plain (ESRP), quaternary basaltic plains volcanism produced monogenetic coalescent shields, and phreatomagmatic basaltic eruptions that are directly related to proximity of magmatism to the Snake River or Pleistocene lakes. For example

  4. Analysis of inflated submarine and sub-lacustrine Pahoehoe lava flows using high-resolution bathymetric and lidar data (Invited)

    Science.gov (United States)

    Deschamps, A.; Van Vliet-Lanoe, B.; Soule, S. A.; Allemand, P.; Le Saout, M.; Delacourt, C.

    2013-12-01

    The summit of the East Pacific Rise (EPR), 16°N, is investigated based -among others- on high-resolution bathymetry acquired using the AUV Aster-X, and photos and videos collected using the submersible Nautile (Ifremer). HR bathymetry reveals submarine tumuli and inflated smooth lava flows at the summit of the ridge, emplaced on sub-horizontal terrains. They are primarily composed of jumbled and lobate flows with occurrences of sheet flows, and pillows close to the flow margins. They are 5 to 15 meters -high, and their surface ranges 0.2 to 1.5 km2. Their surface is either planar or depressed, likely due to lava topographic downdraining during eruption. At their margins, planar slabs of lava, few meters wide, slope down from the top of the flow, at angles ranging 40 to 80°. A series of cracks, 0,5 to 1.5 m deep, separate the horizontal surface of the flow from their inclined flanks. These cracks parallel the sinuous edges of the flows, suggesting the flow flanks tilted outward. Tumuli are also observed. Some of these smooth flows form 80 to 750 m -long sinuous ridges, suggesting the existence of lava tubes. Their morphology indicates that these flows experienced inflationary emplacement styles, but at a much larger scale than Pahoehoe lavas in Hawaii and La Réunion Islands. In these two islands, indeed, inflation structures are typically less than 2 meters high and only several tens of meters in length at maximum, suggesting that their mechanism of emplacement and inflation is significantly different. Conversely, we observe comparable inflation flows in Iceland and in Idaho and Oregon, also emplaced onto sub-horizontal terrains. We use high-resolution aerial photographs and lidar data to investigate their morphology. In the Eastern Snake River Plain (ESRP), quaternary basaltic plains volcanism produced monogenetic coalescent shields, and phreatomagmatic basaltic eruptions that are directly related to proximity of magmatism to the Snake River or Pleistocene lakes

  5. Tracing volatile loss during the eruption of individual flood basalt flows in the Columbia River Flood Basalt Province

    Science.gov (United States)

    Burton, K. W.; Vye, C.; Gannoun, A.; Self, S.

    2010-12-01

    Continental flood basalt (CFB) volcanism is characterised by the repeated eruption of huge batches of magma, producing enormous basalt provinces (105-106 km3) over relatively brief intervals of time, and delivering large masses of volcanic gas to the atmosphere. The release of gases and aerosols during CFB volcanism is thought to have had a significant impact on the atmosphere, ocean chemistry and climate [1-3]. The key factors influencing atmospheric chemistry and the environmental impact of CFB eruptions are the timing, mechanism and duration of volatile release during individual eruptions, but for the most part such information remains poorly known. The 187Re-187Os isotope system offers a highly sensitive tracer of the evolution of melt chemistry, and of the timing and mechanism of volatile release. This is partly because the contrasting behaviour of Re and Os during melting results in the extreme fractionation of parent/daughter (Re/Os) isotope ratios, thus magmatic phases can yield precise chronological information, and crustal rocks develop highly radiogenic isotope compositions that can be readily traced if assimilated [4]. Partly also because Re behaves as a highly volatile element during sub-aerial volcanism [5]. This study presents 187Re-187Os isotope data for rocks and minerals from two flows in the Columbia River Flood Basalt Group, one of the youngest flood basalt provinces that formed over a 2 million year interval in the Mid-Miocene. The 2,660 km3 Sand Hollow flow field displays small major and trace element variations, both laterally and vertically across the flow, indicative of fractional crystallisation, but the elemental data cannot be used to distinguish source variations and/or crustal contamination. However, Os isotopes indicate systematic crustal contamination over the timescale of an individual eruption, where the earliest formed lavas show the greatest degree of contamination. Isotope and elemental data for phenocryst phases from the 40

  6. Surface Structures of Hawaiian Lavas

    Science.gov (United States)

    Rowland, S. K.; Walker, G. P. L.

    1985-01-01

    Surface and internal lava structures can be valid indicators of lava viscosity and rheology, provided that care is taken to identify and eliminate structures which are strain-rate-dependent. Here, a spectrum of types among Hawaiian basaltic flows is found ranging from pahoehoe to a'a, that are interpreted as marking a progression in lava viscosity and a change in rheology. The most fluid type in this spectrum is normal pahoehoe that has a smooth but commonly wrinkled or folded (ropy) surface. The next type, distinctly more viscous and probably non-Newtonian in rheology, is spiny pahoehoe which is characterized by a spinose surface and an absence of ropy structures. Preliminary studies on the long lavas of Mauna Loa indicated, perhaps surprisingly, that there is no clear-cut correlation of lava length with type in this spectrum of lavas, indicating that viscosity/yield strength of the basaltic lavas per se are not the primary controls determining flow length. Flowage of the lava through lava tubes, while it may help to account for the long flow distance of some lavas, is not a generally applicable explanation for long flow length.

  7. Petrogenesis of eocene lava flows from the chagai arc, Balochistan, Pakistan and its tectonic implications

    International Nuclear Information System (INIS)

    The Eocene Lava flows occur in the northwestern part of an EW trending subduction related-magmatic belt known as Chagai arc in the Western part of Pakistan. The volcanism in this arc was initiated during the Late Cretaceous, which intermittently continued up to the Quaternary period. In the regional geotectonic context this arc belongs to the Tethyan convergence zone and was believed to have formed due to the northward subduction of Arabian oceanic plate below the southern margin of Afghan micro plate and hence considered as an Andean type arc. Although Bocene volcaniclastic rock occurs throughout the Chagai arc but the lava flows only crop out in a NW-SE elongated (1 km x 6 kIn) area in the northwestern part of the Chagai arc. These lava flows are represented by two discrete cycles of eruptions found towards the top of the lower pyroclastic sequence of Saindak Formation of Ecocene age. The older flow is about 100 m thick and extends for 2 km whereas the younger flow is 700 metre thick and extends for more than 6 km. The lava flows are mainly represented by amigdaloidal basaltic-andesites (55.50- 54.53 wt. % SiO/sub 2/) and andesites (57.40-62.79 wt. % SiO/sub 2/) with minor basalt (51.88 wt. % SiO/sub 2/) and dacite (67.81 wt. % SiO/sub 2/). The main textures exhibited by these flows are hypocrystalline, porphyritic, cummulophyric, vitrophyric and sub pilotaxitic. Large phenocrysts ( < 1 mm - 4mm) of plagioclase (An-38-58) and pyroxene are embedded in a micro to criptocrystalline groundmass having the same minerals with devitrified volcanic glass. The phenocrysts groundmass ratio is 35:65. Apatite, hematite, ilmenite and magnetite are common accessory mineral. Petrochemical studies reveal that these volcanics belong to medium to low K-calc- alkaline series. They have low Mg = (39-50), and higher FeO (total)/MgO (1.81-2.78) ratios, which suggest that parent magma of these rock suites was not directly derived from a partially melted mantle source but fractionated in

  8. Degassing dynamics of basaltic lava lake at a top-ranking volatile emitter: Ambrym volcano, Vanuatu arc

    Science.gov (United States)

    Allard, Patrick; Burton, Mike; Sawyer, Georgina; Bani, Philipson

    2016-08-01

    Persistent lava lakes are rare on Earth and provide volcanologists with a remarkable opportunity to directly investigate magma dynamics and degassing at the open air. Ambrym volcano, in Vanuatu, is one of the very few basaltic arc volcanoes displaying such an activity and voluminous gas emission, but whose study has long remained hampered by challenging accessibility. Here we report the first high temporal resolution (every 5 s) measurements of vigorous lava lake degassing inside its 300 m deep Benbow crater using OP-FTIR spectroscopy. Our results reveal a highly dynamic degassing pattern involving (i) recurrent (100-200 s) short-period oscillations of the volcanic gas composition and temperature, correlating with pulsated gas emission and sourced in the upper part of the lava lake, (ii) a continuous long period (∼8 min) modulation probably due to the influx of fresh magma at the bottom of the lake, and (iii) discrete CO2 spike events occurring in coincidence with the sequential bursting of meter-sized bubbles, which indicates the separate ascent of large gas bubbles or slugs in a feeder conduit with estimated diameter of 6 ± 1 m. This complex degassing pattern, measured with unprecedented detail and involving both coupled and decoupled magma-gas ascent over short time scales, markedly differs from that of quieter lava lakes at Erebus and Kilauea. It can be accounted for by a modest size of Benbow lava lake and its very high basalt supply rate (∼20 m3 s-1), favouring its rapid overturn and renewal. We verify a typical basaltic arc signature for Ambrym volcanic gas and, based on contemporaneous SO2 flux measurements, we evaluate huge emission rates of 160 Gg d-1 of H2O, ∼10 Gg d-1 of CO2 and ∼8 Gg d-1 of total acid gas (SO2, HCl and HF) during medium activity of the volcano in 2008. Such rates make Ambrym one of the three most powerful volcanic gas emitters at global scale, whose atmospheric impact at local and regional scale may be considerable.

  9. Basic Paleomagnetism: Some old and new Lessons From Icelandic Lava Flows

    Science.gov (United States)

    Kristjansson, L.

    2008-05-01

    In the history of paleomagnetic research, sequences of stably-magnetized undisturbed lava flows have been among the best sources of reliable consistent information about the behavior of the geomagnetic field through time. Such sequences occur in scattered locations around the world, not all offering favorable sampling conditions. Iceland's basalt lavas cover more or less continuously the last 15 million years. In the last two million years or so, eruptions here often took place under water or ice, causing stratigraphic complexities. The older subaerially erupted lavas which are on average 10 m thick and separated by thin clastic sediments, form quite regular and accessible series. The lava pile is gently tilted, generally towards the active volcanic zone. Research on these lavas in the 1950's to 1970's, especially by J. Hospers, T. Sigurgeirsson, R.L. Wilson and N.D. Watkins, contributed to several steps in the development of paleomagnetic methods and understanding of variations in the geomagnetic field. Their contributions concerned for instance statistical concepts, stratigraphic correlation, alternating-field demagnetization, the discovery of transitional directions, stability of remanence in lavas, and delineation of short reversal events. As in some of the projects of Wilson and Watkins, subsequent research by the present author has mostly been done in collaboration with geologists interested in mapping composite sections (of order 300 lava flows) through parts of the lava pile. Preference has been given to locations with little hydrothermal alteration or tectonic movements. These sections are pieced together from hillside profiles partly overlapping in age, commonly with 20-60 successive flows in each profile. Single-polarity zones which have very variable thicknesses but on average 15-20 flows, are often useful in correlation; for this however, distances between profiles should be 2-3 km or less rather than, say, 5-10 km. The stratigraphic mapping projects

  10. Melt fractionation during pāhoehoe flow lobe emplacement, Heiðin há lava, SW Iceland

    Science.gov (United States)

    Nikkola, Paavo; Thordarson, Thorvaldur

    2016-04-01

    Melt segregations are vesicular formations of evolved melts generated by in situ closed system fractionation of a host lava. Although they are common in p¯a hoehoe flows, pillow basalts, lava lakes and shallow intrusions, their development is not fully understood. In addition, as the melt segregations are often confined to the scale of a single outcrop, they can be seen as an easily approachable analogue to the crystal-melt fractionation processes generating evolved magmas in the Earth's crust. An eight meter high p¯a hoehoe flow lobe in Heiðin há lava, SW Iceland, was sampled in order to understand the development of the elaborate segregation structures within. The sampled outcrop is a cross-section of a typical Icelandic p¯a hoehoe lava, belonging to a large post-glacial lava shield on Reykjanes Peninsula. The lava core is striped by melt segregations in the form of vertical vesicle cylinders 1-7 cm in diameter, which feed horizontal vesicle sheets higher up in the upper lava core and lower crust. Whole-rock major and trace element results for the 20 samples from the Heiðin há lava reveal a homogenous olivine tholeiitic host lava intersected by segregations of varying composition. The vesicle cylinders in the flow core are only mildly differentiated, but the segregated melt evolves upwards to horizontal vesicle sheets, from which some have experienced an additional enrichment possibly by a gas filter-pressing of the residual liquid in the horizontal sheet. The most evolved segregations are extremely Fe-rich with 19.5 % FeOtot in comparison to the average of 12.4 % FeOtot in the host lava. Consequently, MgO drops from the host lava's 9.5 % to 4.4 % in the segregation sheets. In addition, segregations are enriched by a factor of ˜2-2.5 in TiO2, K2O, P2O5 and incompatible elements Zr, Nb, Y and V. As a consequence of the closed system behavior, geochemical trends are evident between the host lava, vesicle cylinders, and vesicle sheets of different types.

  11. Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992-2003: Magma supply dynamics and postemplacement lava flow deformation

    Science.gov (United States)

    Lu, Zhiming; Masterlark, Timothy; Dzurisin, D.

    2005-01-01

    Okmok volcano, located in the central Aleutian arc, Alaska, is a dominantly basaltic complex topped with a 10-km-wide caldera that formed circa 2.05 ka. Okmok erupted several times during the 20th century, most recently in 1997; eruptions in 1945, 1958, and 1997 produced lava flows within the caldera. We used 80 interferometric synthetic aperture radar (InSAR) images (interferograms) to study transient deformation of the volcano before, during, and after the 1997 eruption. Point source models suggest that a magma reservoir at a depth of 3.2 km below sea level, located beneath the center of the caldera and about 5 km northeast of the 1997 vent, is responsible for observed volcano-wide deformation. The preeruption uplift rate decreased from about 10 cm yr-1 during 1992-1993 to 2 ??? 3 cm yr-1 during 1993-1995 and then to about -1 ??? -2 cm yr-1 during 1995-1996. The posteruption inflation rate generally decreased with time during 1997-2001, but increased significantly during 2001-2003. By the summer of 2003, 30 ??? 60% of the magma volume lost from the reservoir in the 1997 eruption had been replenished. Interferograms for periods before the 1997 eruption indicate consistent subsidence of the surface of the 1958 lava flows, most likely due to thermal contraction. Interferograms for periods after the eruption suggest at least four distinct deformation processes: (1) volcano-wide inflation due to replenishment of the shallow magma reservoir, (2) subsidence of the 1997 lava flows, most likely due to thermal contraction, (3) deformation of the 1958 lava flows due to loading by the 1997 flows, and (4) continuing subsidence of 1958 lava flows buried beneath 1997 flows. Our results provide insights into the postemplacement behavior of lava flows and have cautionary implications for the interpretation of inflation patterns at active volcanoes.

  12. Geology of the Tyrrhenus Mons Lava Flow Field, Mars

    Science.gov (United States)

    Crown, David A.; Mest, Scott C.

    2014-11-01

    The ancient, eroded Martian volcano Tyrrhenus Mons exhibits a central caldera complex, layered flank deposits dissected by radial valleys, and a 1000+ km-long flow field extending to the southwest toward Hellas Planitia. Past studies suggested an early phase of volcanism dominated by large explosive eruptions followed by subsequent effusive activity at the summit and to the southwest. As part of a new geologic mapping study of northeast Hellas, we are examining the volcanic landforms and geologic evolution of the Tyrrhenus Mons flow field, including the timing and nature of fluvial activity and effects on volcanic units. New digital geologic mapping incorporates THEMIS IR (100 m/pixel) and CTX (5 m/pixel) images as well as constraints from MOLA topography.Mapping results to-date include delineation of the boundaries of the flow field, identification and mapping of volcanic and erosional channels within the flow field, and mapping and analysis of lava flow lobes. THEMIS IR and CTX images allow improved discrimination of the numerous flow lobes that are observed in the flow field, including refinement of the margins of previously known flows and identification of additional and smaller lobes. A prominent sinuous rille extending from Tyrrhenus Mons’ summit caldera is a major feature that supplied lava to the flow field. Smaller volcanic channels are common throughout the flow field; some occur in segments along crests of local topographic highs and may delineate lava tubes. In addition to volcanic channels, the flow field surface is characterized by several types of erosional channels, including wide troughs with scour marks, elongate sinuous channels, and discontinuous chains of elongate pits and troughs. High-resolution images reveal the widespread and significant effects of fluvial activity in the region, and further mapping studies will examine spatial and temporal interactions between volcanism and fluvial processes.

  13. MOLA Constraints on Lava Flow Rheologies

    Science.gov (United States)

    Glaze, L. S.; Stofan, E. R.; Baloga, S. M.; McColley, S.; Sakimoto, S.; Mitchell, D.

    2002-01-01

    MOLA data allow us to distinguish the nature of a viscosity change in the presence of degassing. For a 35 km flow in Elysium we conclude that the viscosity increased exponentially at least 50 times, compared to only 10 times if no degassing occurs. Additional information is contained in the original extended abstract.

  14. Location and extent of recently active lava flows on the eastern flank of Idunn Mons on Venus

    Science.gov (United States)

    D'Incecco, Piero; Mueller, Nils; Helbert, Joern; D'Amore, Mario

    2016-10-01

    The eastern flank of Idunn Mons, Imdr Regio's single large volcano, was identified in VIRTIS data as one of the regions with relatively high values of thermal emissivity at 1 μm wavelength. Our study intends to identify location and extent of the sources of such anomalies, thus the lava flows responsible for the relatively high emissivity observed by VIRTIS over the eastern flank of Idunn Mons. We perform a simulation iterating the geologic mapping made over Magellan radar images of the same area with modeling of the blurring caused by the scattering of the 1 μm radiation in the atmosphere. At every iteration, we map the lava flow units in the surroundings of Idunn Mons and we assign each unit an assumed value of emissivity. We observed a good match between the mapped flows and the clusters resulting from the consistency of the mapped lava flows through the ISO clustering analysis. We tested eight different configurations, calculating the total RMS error compared to VIRTIS observations. The best-fit configuration is that where we assigned high values of emissivity to the flank lava flows. Results also show a correlation between the ISO clustering analysis and the best-fit configuration. We reconstructed the post-eruption stratigraphy of the eastern flank of Idunn Mons, displaying the three flank lava flows units likely responsible for the relatively high 1 μm emissivity anomalies observed by VIRTIS. The average microwave emissivity provides a further evidence of the basaltic composition of the mapped lava flows.

  15. Numerical simulation of lava flow using a GPU SPH model

    Directory of Open Access Journals (Sweden)

    Eugenio Rustico

    2011-12-01

    Full Text Available A smoothed particle hydrodynamics (SPH method for lava-flow modeling was implemented on a graphical processing unit (GPU using the compute unified device architecture (CUDA developed by NVIDIA. This resulted in speed-ups of up to two orders of magnitude. The three-dimensional model can simulate lava flow on a real topography with free-surface, non-Newtonian fluids, and with phase change. The entire SPH code has three main components, neighbor list construction, force computation, and integration of the equation of motion, and it is computed on the GPU, fully exploiting the computational power. The simulation speed achieved is one to two orders of magnitude faster than the equivalent central processing unit (CPU code. This GPU implementation of SPH allows high resolution SPH modeling in hours and days, rather than in weeks and months, on inexpensive and readily available hardware.

  16. Lithofacies analysis of basic lava flows of the Paraná igneous province in the south hinge of Torres Syncline, Southern Brazil

    Science.gov (United States)

    Barreto, Carla Joana Santos; de Lima, Evandro Fernandes; Scherer, Claiton Marlon; Rossetti, Lucas de Magalhães May

    2014-09-01

    The Paraná igneous province records the volcanism of the earlier Cretaceous that preceded the fragmentation of the Gondwana supercontinent. Historically, investigations of these rocks prioritized the acquisition of geochemical and isotopic data, considering the volcanic pile as a monotonous succession of tabular flows. This work provides a detailed analysis of the emplacement conditions of these basic volcanic rocks, applying the facies analysis method integrated to petrographic and geochemical data. The Torres Syncline is a NW-SE tectonic structure, located in southern Brazil, where a thick sequence of the Paraná-Etendeka volcanic rocks is well preserved. This study was performed in the south hinge of the syncline, where the basaltic lava flows are divided into three lithofacies associations: early compound pahoehoe, early simple pahoehoe and late simple rubbly. The first lavas that erupted were more primitive compound pahoehoe flow fields composed of olivine basalts with higher MgO contents and covered the sandstones of the Botucatu Formation. The emplacement of compound pahoehoe flow fields is possibly related to intermittent low effusion rates, whereas the emplacement of simple pahoehoe is related to sustained low effusion rates with continuous supply. The thick simple rubbly lavas are associated with high effusion rates and were formed during the main phase of volcanism in the area. The absence of paleosoils between the lavas and lithofacies associations suggests that the successive emplacement of the lava flows occurred in a relatively short time gap. Geochemically, the lithofacies associations are low-TiO2 and belong to Gramado magma type. The lavas of the south hinge of the Torres Syncline have a similar evolution when compared to other Continental Basaltic Provinces with earlier compound flows at the base and thicker simple flows in the upper portions.

  17. Experimental study of the surface thermal signature of gravity currents: application to the assessment of lava flow effusion rate

    Science.gov (United States)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2011-12-01

    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flows advance and its velocity. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the heat flux lost by the lava at its surface and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger power radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., Bull. Volc. 2007) is currently used to estimate lava flow rate from satellite surveys yielding the surface temperatures and area of the lava flow field. However, this approach is derived from a static thermal budget of the lava flow and does not explicitly model the time-evolution of the surface thermal signal. Here we propose laboratory experiments and theoretical studies of the cooling of a viscous axisymmetric gravity current fed at constant flux rate. We first consider the isoviscous case, for which the spreading is well-know. The experiments using silicon oil and the theoretical model both reveal the establishment of a steady surface thermal structure after a transient time. The steady state is a balance between surface cooling and heat advection in the flow. The radiated heat flux in the steady regime, a few days for a basaltic lava flow, depends mainly on the effusion rate rather than on the viscosity. In this regime, one thermal survey of the radiated power could provide a consistent estimate of the flow rate if the external cooling conditions (wind) are reasonably well constrained. We continue to investigate the relationship between the thermal radiated heat flux and the effusion rate by using in the experiments fluids with temperature-dependent viscosity (glucose syrup) or undergoing solidification while cooling (PEG wax). We observe a

  18. Lava flow hazard modeling during the 2014-2015 Fogo eruption, Cape Verde

    Science.gov (United States)

    Cappello, Annalisa; Ganci, Gaetana; Calvari, Sonia; Pérez, Nemesio M.; Hernández, Pedro A.; Silva, Sónia V.; Cabral, Jeremias; Del Negro, Ciro

    2016-04-01

    Satellite remote sensing techniques and lava flow forecasting models have been combined to enable a rapid response during effusive crises at poorly monitored volcanoes. Here we used the HOTSAT satellite thermal monitoring system and the MAGFLOW lava flow emplacement model to forecast lava flow hazards during the 2014-2015 Fogo eruption. In many ways this was one of the major effusive eruption crises of recent years, since the lava flows actually invaded populated areas. Combining satellite data and modeling allowed mapping of the probable evolution of lava flow fields while the eruption was ongoing and rapidly gaining as much relevant information as possible. HOTSAT was used to promptly analyze MODIS and SEVIRI data to output hot spot location, lava thermal flux, and effusion rate estimation. This output was used to drive the MAGFLOW simulations of lava flow paths and to continuously update flow simulations. We also show how Landsat 8 OLI and EO-1 ALI images complement the field observations for tracking the flow front position through time and adding considerable data on lava flow advancement to validate the results of numerical simulations. The integration of satellite data and modeling offers great promise in providing a unified and efficient system for global assessment and real-time response to effusive eruptions, including (i) the current state of the effusive activity, (ii) the probable evolution of the lava flow field, and (iii) the potential impact of lava flows.

  19. Detection of high-silica lava flows and lava morphology at the Alarcon Rise, Gulf of California, Mexico using automated classification of the morphological-compositional relationship in AUV multibeam bathymetry and sonar backscatter

    Science.gov (United States)

    Maschmeyer, C.; White, S. M.; Dreyer, B. M.; Clague, D. A.

    2015-12-01

    An automated compositional classification by adaptive neuro-fuzzy inference system (ANFIS) was developed to study volcanic processes that create high-silica lava at oceanic ridges. The objective of this research is to determine the existence of a relationship between lava morphology and composition. Researchers from the Monterey Bay Aquarium Research Institute (MBARI) recorded morphologic observations and collected samples for geochemical analysis during ROV dives at the Alarcon Rise in 2012 and 2015. The Alarcon Rise is a unique spreading ridge environment where composition ranges from basaltic to rhyolitic, making it an ideal location to examine the compositional-morphologic relationship of lava flows. Preliminary interpretation of field data indicates that high-silica lavas are typically associated with 3-5 m, blocky pillows at the heavily faulted north end of the Alarcon. Visual analysis of multibeam bathymetry and side-scan sonar backscatter from MBARI AUV D. Allen B. and gridded at 1 m suggests that lava flow morphology (pillow, lobate, sheet) can be distinguished by seafloor roughness. Bathymetric products used by ANFIS to quantify the morphologic-compositional relationship were slope, aspect, and bathymetric position index (BPI, a measure of local height relative to the adjacent terrain). Sonar backscatter intensity is influenced by surface roughness and previously used to distinguish lava morphology. Gray-level co-occurrence matrices (GLCM) were applied to backscatter to create edge-detection filters that recognized faults and fissures. Input data are slope, aspect, bathymetric value, BPI at 100 m scale, BPI at 500 m scale, backscatter intensity, and the first principle component of backscatter GLCM. After lava morphology was classified on the Alarcon Rise map, another classification was completed to detect locations of high-silica lava. Application of an expert classifier like ANFIS to distinguish lava composition may become an important tool in oceanic

  20. Extensive young dacite lava flows between boninite and BABB in a backarc setting: NE Lau Basin

    Science.gov (United States)

    Embley, R. W.; Rubin, K. H.

    2015-12-01

    Several hundred square kilometers of young dacite lava flows mapped by their high acoustic backscatter erupted in several batches in proximity to boninite and back-arc basin basalt (BABB) in the NE Lau Basin, the world's fastest opening back-arc region and a site proposed as a modern analogue in some ophiolite models. Where sampled, these lavas are aphyric, glassy dacites and are not associated with andesite extrusives (commonly observed elsewhere). Several flow fields occur on the flank of the large silicic Niuatahi seamount. Two of the largest lava fields and several smaller ones (~220 km2) erupted as far as 60 km north of Niuatahi. Their occurrence is likely controlled by crustal fractures from the long-term extension in this rear-arc region. Determining thickness of these flows is problematic, but relief of 30-100 m on flow fronts and in collapsed areas yields volume estimates as high as ~7-18 km3 for the northern group. The mean silica content of the largest and best sampled dacite flow field (LL-B) is 65.6 ±0.2%, a remarkably consistent composition for such an extensive flow (~140 km2). Camera tows show lower viscosity flow forms, including many anastomatosing pillow tubes and ropey surfaces, as well as endogenous domes, ridges and lobes (some with "crease-like" extrusion ridges, and inflated lobes with extrusion structures). An enigmatic 2 x 1.5 km, 30-m deep collapse depression could mark an eruption center for the LL-B flow field. Low viscosity flow morphologies on portions of LL-B and a nearby smaller flow field implies high effusion rates during some phases of the eruption(s), which in turn implies some combination of higher than normal liquidus temperature and high water content. Submarine dacite flows have been described in ancient sequences from the Archaean through the Miocene but this is the first modern occurrence of large volume submarine dacite flows. The volume of these young dacite flows implies the presence of large differentiated melt

  1. A new simulation approach for modeling inflated pahoehoe lava flows

    Science.gov (United States)

    Baloga, S. M.; Glaze, L. S.; Hamilton, C.

    2013-12-01

    Pahoehoe lavas are recognized as an important landform on Earth, Mars and Io. Observations of such flows on Earth indicate that when flow rates are very low and emplacement occurs on very low slopes, the process is dominated by random effects. Existing models for lobate a`a lava flows that assume viscous fluid flow on an inclined plane are not appropriate for dealing with the numerous random factors present in pahoehoe emplacement. We present a new model that incorporates a simulation approach to quantifying the influence of random and ambient factors on the evolving three-dimensional shape and morphology of pahoehoe lobes. To simulate pahoehoe lava emplacement, we consider the movement of small parcels of lava with a volume equal to the size of a typical toe (70 x 70 x 20 cm3). The model develops a set of probabilistic rules for determining the location and direction of movement for each parcel. Unlike the classical random walk of Brownian motion, many parcels may remain dormant, but fluid, for multiple time steps. The net effect of this approach is that parcels tend to accumulate preferentially within the lobe producing cross-sectional topographic profiles with a medial ridge. The randomness of parcel volume transfers within the lobe interior as well as at the margins qualitatively reflects inflation processes observed in the field. This new model predicts that greater than 75% of pahoehoe lobe volume is contributed through inflation for typical lobes. The influences on planform shape and topographic cross-sectional profiles of total volume, source area and shape, topographic confinement, and sequential breakouts at the lobe margins, have been explored with the stochastic model. The model provides a means for assessing the relative importance of these processes through comparisons with field data. A major conclusion of this work is that sequential breakouts at the lobe margins are an important process controlling the final topographic distribution of observed

  2. Enriched continental flood basalts from depleted mantle melts: modeling the lithospheric contamination of Karoo lavas from Antarctica

    Science.gov (United States)

    Heinonen, Jussi S.; Luttinen, Arto V.; Bohrson, Wendy A.

    2016-01-01

    Continental flood basalts (CFBs) represent large-scale melting events in the Earth's upper mantle and show considerable geochemical heterogeneity that is typically linked to substantial contribution from underlying continental lithosphere. Large-scale partial melting of the cold subcontinental lithospheric mantle and the large amounts of crustal contamination suggested by traditional binary mixing or assimilation-fractional crystallization models are difficult to reconcile with the thermal and compositional characteristics of continental lithosphere, however. The well-exposed CFBs of Vestfjella, western Dronning Maud Land, Antarctica, belong to the Jurassic Karoo large igneous province and provide a prime locality to quantify mass contributions of lithospheric and sublithospheric sources for two reasons: (1) recently discovered CFB dikes show isotopic characteristics akin to mid-ocean ridge basalts, and thus help to constrain asthenospheric parental melt compositions and (2) the well-exposed basaltic lavas have been divided into four different geochemical magma types that exhibit considerable trace element and radiogenic isotope heterogeneity (e.g., initial ɛ Nd from -16 to +2 at 180 Ma). We simulate the geochemical evolution of Vestfjella CFBs using (1) energy-constrained assimilation-fractional crystallization equations that account for heating and partial melting of crustal wall rock and (2) assimilation-fractional crystallization equations for lithospheric mantle contamination by using highly alkaline continental volcanic rocks (i.e., partial melts of mantle lithosphere) as contaminants. Calculations indicate that the different magma types can be produced by just minor (1-15 wt%) contamination of asthenospheric parental magmas by melts from variable lithospheric reservoirs. Our models imply that the role of continental lithosphere as a CFB source component or contaminant may have been overestimated in many cases. Thus, CFBs may represent major juvenile crustal

  3. RIS4E at Kilauea's December 1974 Flow: Lava Flow Texture LiDAR Signatures

    Science.gov (United States)

    Whelley, P.; Garry, W. B.; Scheidt, S. P.; Bleacher, J. E.; Hamilton, C.

    2015-12-01

    High-resolution point clouds and digital terrain models (DTMs) are used to investigate lava textures on the Big Island of Hawaii. Lava texture (e.g., ´áā and pāhoehoe) depends significantly on eruption conditions, and it is therefore instructive, if accurately determined. In places where field investigations are prohibitive (e.g., on other planets and remote regions of Earth) lava texture must be assessed from remote sensing data. A reliable method for doing so remains elusive. The December 1974 flow from Kilauea, in the Kau desert, presents an excellent field site to develop techniques for identifying lava texture. The eruption is young and the textures are well preserved. We present results comparing properties of lava textures observed in Terrestrial Laser Scanning (TLS) data. The authors collected the TLS data during May 2014 and June 2015 field seasons. Scans are a quantitative representation of what a geologist, or robotic system, sees "on the ground" and provides "ground truth" for airborne or orbital remote sensing analysis by enabling key parameters of lava morphology to be quantified. While individual scans have a heterogeneous point density, multiple scans are merged such that sub-cm lava textures can be quantified. Results indicate that TLS-derived surface roughness (i.e., de-trended RMS roughness) is useful for differentiating lava textures and assists volcanologic interpretations. As many lava types are quite rough, it is not simply roughness that is the most advantageous parameter for differentiating lava textures; rather co-occurrence patterns in surface roughness are used. Gradually forming textures (e.g., pāhoehoe) are elevated in statistics that measure smoothness (e.g., homogeneity) while lava with disrupted crusts (e.g., slabby and platy flow) have more random distributions of roughness (i.e., high entropy). A similar technique will be used to analyze high-resolution DTMs of martian lava flows using High Resolution Imaging Science

  4. DOWNFLOW code and LIDAR technology for lava flow analysis and hazard assessment at Mount Etna

    Directory of Open Access Journals (Sweden)

    Alessandro Fornaciai

    2011-12-01

    Full Text Available The use of a lava-flow simulation (DOWNFLOW probabilistic code and airborne light detection and ranging (LIDAR technology are combined to analyze the emplacement of compound lava flow fields at Mount Etna (Sicily, Italy. The goal was to assess the hazard posed by lava flows. The LIDAR-derived time series acquired during the 2006 Mount Etna eruption records the changing topography of an active lava-flow field. These short-time-interval, high-resolution topographic surveys provide a detailed quantitative picture of the topographic changes. The results highlight how the flow field evolves as a number of narrow (5-15 m wide disjointed flow units that are fed simultaneously by uneven lava pulses that advance within formed channels. These flow units have widely ranging advance velocities (3-90 m/h. Overflows, bifurcations and braiding are also clearly displayed. In such a complex scenario, the suitability of deterministic codes for lava-flow simulation can be hampered by the fundamental difficulty of measuring the flow parameters (e.g. the lava discharge rate, or the lava viscosity of a single flow unit. However, the DOWNFLOW probabilistic code approaches this point statistically and needs no direct knowledge of flow parameters. DOWNFLOW intrinsically accounts for complexities and perturbations of lava flows by randomly varying the pre-eruption topography. This DOWNFLOW code is systematically applied here over Mount Etna, to derive a lava-flow hazard map based on: (i the topography of the volcano; (ii the probability density function for vent opening; and (iii a law for the expected lava-flow length for all of the computational vents considered. Changes in the hazard due to the recent morphological evolution of Mount Etna have also been addressed.

  5. NVP melt/magma viscosity: insight on Mercury lava flows

    Science.gov (United States)

    Rossi, Stefano; Morgavi, Daniele; Namur, Olivier; Vetere, Francesco; Perugini, Diego; Mancinelli, Paolo; Pauselli, Cristina

    2016-04-01

    After more than four years of orbiting Mercury, NASA's MESSENGER spacecraft came to an end in late April 2015. MESSENGER has provided many new and surprising results. This session will again highlight the latest results on Mercury based on MESSENGER observations or updated modelling. The session will further address instrument calibration and science performance both retrospective on MESSENGER and on the ESA/JAXA BepiColombo mission. Papers covering additional themes related to Mercury are also welcomed. Please be aware that this session will be held as a PICO session. This will allow an intensive exchange of expertise and experience between the individual instruments and mission. NVP melt/magma viscosity: insight on Mercury lava flows S. Rossi1, D. Morgavi1, O. Namur2, D. Perugini1, F.Vetere1, P. Mancinelli1 and C. Pauselli1 1 Dipartimento di Fisica e Geologia, Università di Perugia, piazza Università 1, 06123 Perugia, Italy 2 Uni Hannover Institut für Mineralogie, Leibniz Universität Hannover, Callinstraβe 3, 30167 Hannover, Germany In this contribution we report new measurements of viscosity of synthetic komatitic melts, used the behaviour of silicate melts erupted at the surface of Mercury. Composition of Mercurian surface magmas was calculated using the most recent maps produced from MESSENGER XRS data (Weider et al., 2015). We focused on the northern hemisphere (Northern Volcanic Province, NVP, the largest lava flow on Mercury and possibly in the Solar System) for which the spatial resolution of MESSENGER measurements is high and individual maps of Mg/Si, Ca/Si, Al/Si and S/Si were combined. The experimental starting material contains high Na2O content (≈7 wt.%) that strongly influences viscosity. High temperature viscosity measurements were carried out at 1 atm using a concentric cylinder apparatus equipped with an Anton Paar RheolabQC viscometer head at the Department of Physics and Geology (PVRG_lab) at the University of Perugia (Perugia, Italy

  6. Three-phase flow dynamics in the lava lakes at Mount Erebus, Antarctica

    Science.gov (United States)

    Qin, Z.; Suckale, J.

    2015-12-01

    Long-lived, persistently active lava lakes expose the top of a convecting magma column to direct observation and offer a unique window into the cryptic magmatic plumbing system at depth. In this paper, we focus on the lava lake at Mount Erebus, a large intraplate stratovolcano at Ross Island, Antarctica, to gain new insights into the multi-phase interactions between gas bubbles, crystals and magmatic liquid in basaltic volcanoes. Early studies of magmatic convection have considered multi-phase magmas as perfectly homogeneous mixtures. The high proportion of erupted gas relative to magma, however, suggests that gas separates from the flow and drives eruptive activity. Similarly, the large size (up to 10cm) of the megacrysts that make up 97% of the crystal cargo at Erebus begs the question whether these crystals are likely to remain entrained and how crystal segregation in the lava lakes and conduit alters eruptive behavior. We study the multiphase behavior of magmatic convection at Mount Erebus through two dimensional numerical simulations. Our model was developed with Mount Erebus in mind, but we argue that it could also serve as a virtual laboratory for studying multiphase flow in other basaltic systems. To accurately capture the deformability, breakup and coalescence of large gas bubbles, we track the gas-liquid interfaces with level-set functions. The crystal phase is incorporated using distributed Lagrange multipliers. We discretize the multiphase Stokes and energy equation through an iterative finite difference method that captures the potentially discontinuous jumps in the pressure, stresses, density and viscosity through a Ghost-Fluid approach. We have benchmarked and validated our numerical approach against analytical results and laboratory experiments. We synthesize observations of thermal flux, seismic behavior, geodesy and geochemistry to deduce constraints on the mass flux, conduit dimensions, reservoir size, and crystal growth as a basis for our

  7. Lava Flow Hazard Modeling during the 2014-2015 Fogo eruption, Cape Verde

    Science.gov (United States)

    Del Negro, C.; Cappello, A.; Ganci, G.; Calvari, S.; Perez, N. M.; Hernandez Perez, P. A.; Victoria, S. S.; Cabral, J.

    2015-12-01

    Satellite remote sensing techniques and lava flow forecasting models have been combined to allow an ensemble response during effusive crises at poorly monitored volcanoes. Here, we use the HOTSAT volcano hot spot detection system that works with satellite thermal infrared data and the MAGFLOW lava flow emplacement model that considers the way in which effusion rate changes during an eruption, to forecast lava flow hazards during the 2014-2015 Fogo eruption. In many ways this was one of the major effusive eruption crises of recent years, since the lava flows actually invaded populated areas. HOTSAT is used to promptly analyze MODIS and SEVIRI data to output hot spot location, lava thermal flux, and effusion rate estimation. We use this output to drive the MAGFLOW simulations of lava flow paths and to update continuously flow simulations. Satellite-derived TADR estimates can be obtained in real time and lava flow simulations of several days of eruption can be calculated in a few minutes, thus making such a combined approach of paramount importance to provide timely forecasts of the areas that a lava flow could possibly inundate. In addition, such forecasting scenarios can be continuously updated in response to changes in the eruptive activity as detected by satellite imagery. We also show how Landsat-8 OLI and EO-1 ALI images complement the field observations for tracking the flow front position through time, and add considerable data on lava flow advancement to validate the results of numerical simulations. Our results thus demonstrate how the combination of satellite remote sensing and lava flow modeling can be effectively used during eruptive crises to produce realistic lava flow hazard scenarios and for assisting local authorities in making decisions during a volcanic eruption.

  8. Possible lava tube system in a hummocky lava flow at Daund, western Deccan Volcanic Province, India

    Indian Academy of Sciences (India)

    Raymond A Duraiswami; Ninad R Bondre; Gauri Dole

    2004-12-01

    A hummocky flow characterised by the presence of toes, lobes, tumuli and possible lava tube system is exposed near Daund, western Deccan Volcanic Province, India. The lava tube system is exposed as several exhumed outcrops and is composed of complex branching and discontinuous segments. The roof of the lava tube has collapsed but original lava tube walls and fragments of the tube roof are seen at numerous places along the tube. At some places the tube walls exhibit a single layer of lava lining, whereas, at other places it shows an additional layer characterised by smooth surface and polygonal cracks. The presence of a branching and meandering lava tube system in the Daund flow, which represents the terminal parts of Thakurwadi Formation, shows that the hummocky flow developed at a low local volumetric flow rate. This tube system developed in the thinner parts of the flow sequence; and tumuli developed in areas where the tube clogged temporarily in the sluggish flow.

  9. Lava-flow characterization at Pisgah Volcanic Field, California, with multiparameter imaging radar

    Science.gov (United States)

    Gaddis, L.R.

    1992-01-01

    Multi-incidence-angle (in the 25?? to 55?? range) radar data aquired by the NASA/JPL Airborne Synthetic Aperture Radar (AIRSAR) at three wavelengths simultaneously and displayed at three polarizations are examined for their utility in characterizing lava flows at Pisgah volcanic field, California. Pisgah lava flows were erupted in three phases; flow textures consist of hummocky pahoehoe, smooth pahoehoe, and aa (with and without thin sedimentary cover). Backscatter data shown as a function of relative age of Pisgah flows indicate that dating of lava flows on the basis of average radar backscatter may yield ambiguous results if primary flow textures and modification processes are not well understood. -from Author

  10. Exploring Inflated Pahohoe Lava Flow Morphologies and the Effects of Cooling Using a New Simulation Approach

    Science.gov (United States)

    Glaze, L. S.; Baloga, S. M.

    2014-01-01

    Pahoehoe lavas are recognized as an important landform on Earth, Mars and Io. Observations of such flows on Earth (e.g., Figure 1) indicate that the emplacement process is dominated by random effects. Existing models for lobate a`a lava flows that assume viscous fluid flow on an inclined plane are not appropriate for dealing with the numerous random factors present in pahoehoe emplacement. Thus, interpretation of emplacement conditions for pahoehoe lava flows on Mars requires fundamentally different models. A new model that implements a simulation approach has recently been developed that allows exploration of a variety of key influences on pahoehoe lobe emplacement (e.g., source shape, confinement, slope). One important factor that has an impact on the final topographic shape and morphology of a pahoehoe lobe is the volumetric flow rate of lava, where cooling of lava on the lobe surface influences the likelihood of subsequent breakouts.

  11. SHARAD Constrains on Lava Flow Properties at Southeastern Utopia Planitia

    Science.gov (United States)

    Nunes, D. C.

    2012-12-01

    with the middle to upper range of permittivities for basalt, and, therefore, porosity does not dominate the volume of the lobate flow, and supports the morphologic interpretation of the flow and geologic history of this area offered by Russell and Head [2003] and Tanaka et al. [2003]. Russell P. S. and Head J. W. [2003] JGR, 108, 5064. Tanaka K. L. et al. [2005], USGS Sci. Invest. Maps, 2888. Werner S. C. et al. [2011], PSS, 59, 1143-1165.

  12. Discriminating lava flows of different age within Nyamuragira's volcanic field using spectral mixture analysis

    Science.gov (United States)

    Li, Long; Canters, Frank; Solana, Carmen; Ma, Weiwei; Chen, Longqian; Kervyn, Matthieu

    2015-08-01

    In this study, linear spectral mixture analysis (LSMA) is used to characterize the spectral heterogeneity of lava flows from Nyamuragira volcano, Democratic Republic of Congo, where vegetation and lava are the two main land covers. In order to estimate fractions of vegetation and lava through satellite remote sensing, we made use of 30 m resolution Landsat Enhanced Thematic Mapper Plus (ETM+) and Advanced Land Imager (ALI) imagery. 2 m Pleiades data was used for validation. From the results, we conclude that (1) LSMA is capable of characterizing volcanic fields and discriminating between different types of lava surfaces; (2) three lava endmembers can be identified as lava of old, intermediate and young age, corresponding to different stages in lichen growth and chemical weathering; (3) a strong relationship is observed between vegetation fraction and lava age, where vegetation at Nyamuragira starts to significantly colonize lava flows ∼15 years after eruption and occupies over 50% of the lava surfaces ∼40 years after eruption. Our study demonstrates the capability of spectral unmixing to characterize lava surfaces and vegetation colonization over time, which is particularly useful for poorly known volcanoes or those not accessible for physical or political reasons.

  13. Incorporation of seawater into mid-ocean ridge lava flows during emplacement

    Science.gov (United States)

    Soule, S. Adam; Fornari, Daniel J.; Perfit, Michael R.; Ridley, W. Ian; Reed, Mark H.; Cann, Johnson R.

    2006-12-01

    Evidence for the interaction between seawater and lava during emplacement on the deep seafloor can be observed in solidified flows at a variety of scales including rapid quenching of their outer crusts and the formation of lava pillars through the body of the flow. Recently, an additional interaction, incorporation of heated seawater (vapor) into the body of a flow, has been proposed. Large voids and vesicles beneath the surface crusts of mid-ocean ridge crest lobate and sheet lava flows and lava drips found within those cavities have been cited as evidence for this interaction. The voids resulting from this interaction contribute to the high porosity of the shallow ocean crust and play an important role in crustal permeability and hydrothermal circulation at mid-ocean ridges, and thus it is important to understand their origin. We analyze lava samples from the fast-spreading East Pacific Rise and intermediate-spreading Galapagos Spreading Center to characterize this process, identify the source of the vapor, and investigate the implications this would have on submarine lava flow dynamics. We find that lava samples that have interacted with a vapor have a zone of increased vesicularity on the underside of the lava crust and a coating of precipitate minerals ( i.e., crystal fringe) that are distinct in form and composition from those crystallized from the melt. We use thermochemical modeling to simulate the reaction between the lava and a vapor and find that only with seawater can we reproduce the phase assemblage we observe within the crystal fringes present in the samples. Model results suggest that large-scale contamination of the lava by mass exchange with the vapor is unlikely, but we observe local enrichment of the lava in Cl resulting from the incorporation of a brine phase separated from the seawater. We suggest that high eruption rates are necessary for seawater incorporation to occur, but the mechanism by which seawater enters the flow has yet to be

  14. New insights into eruptive activity and lava flow hazard at Nyamulagira volcano, D.R.C., from a new GIS-based lava flow map

    Science.gov (United States)

    Smets, B.; Kervyn, M.; Kervyn, F.; D'Oreye, N.; Wauthier, C.

    2010-12-01

    Nyamulagira, located in the western branch of the East African Rift (EAR), is Africa’s most active volcano with one eruption every 2 - 4 years. A map of Nyamulagira lava flows was produced during the 1960’s by Thonnard et al. (1965). This map, which results from the mosaicking of several aerial photographs, contains locally some geographic inaccuracies. The photo-interpretation also led in places to the discrimination of lava units not corresponding to any flow boundaries in the field. Finally, 19 eruptions occurred since this first edition, which causes it to be outdated and of limited use to document the recent eruptive history. Recently, Smets et al. (2010) have produced a new map of lava flows using a combination of optical and radar satellite imagery. This map is GIS-based and can be quickly updated during/after each eruption. Using the new lava flow map of Nyamulagira and a compilation of bibliographic/field information of the last 31 eruptions, the evolution of eruptive activity since the early 1900’s was reconstructed and the volume of erupted lava estimated for each eruption from 1938 to 2010. The spatio-temporal evolution of eruptive activity suggests a strong control from the rift tectonics but also from inherited basement structures on the location, the fissure orientation and the relative lava volume for the successive eruptions. The time lapse after each eruption is strongly correlated with the erupted volume of lava. The 1938-40 eruption is a key event in the volcano recent history, as the corresponding caldera collapse led to an increase of flank eruptions. Nyamulagira flank eruptions systematically destroy large areas of the protected forest of the Virunga National Park, a UNESCO World Heritage in danger since 1994. The lava flows from distal eruptions or from exceptionally high effusion rate or volume events also threaten local population, mainly south of the main edifice near Lake Kivu.

  15. Rheology and Morphology of a Trachybasaltic Lava Flow: a Case Study from the Cima Volcanic Field (CA)

    Science.gov (United States)

    Soldati, A.; Beem, J. R.; Robertson, T.; Gomez, F. G.; Whittington, A. G.

    2015-12-01

    Subliquidus rheology of a trachybasaltic lava was measured in the laboratory for the first time. Field observations of the parent flow focused on surface morphology characterization, which was later quantified in terms of surface roughness. The studied lava flow was emitted during the Holocene by a monogenetic cinder cone in the Cima Volcanic Field (CA). Surface morphology transitions from smooth pahoehoe ropes near the vent to jagged `a`a blocks over the majority of the flow. A variety of 2 m2 outcrops were photographed using a hand-held DSLR camera, and their surface texture was reconstructed with photogrammetry. The roughness of each outcrop, effectively described by the standard deviation between the real photogrammetric point cloud and the best-fitting surface, was quantified at different spatial scales, ranging from 0.5 cm to 200 m. We found that the roughness of the flow increases linearly as spatial resolution decreases, with a slope break corresponding to the average size of the outcrop lava blocks. The rheology of Cima lavas was determined by concentric cylinder viscometry in the 1220 °C to 1160 °C temperature range. The obtained rheological flow curves indicate a Bingham rheology, with clearly detected yield strength ranging from 25 Pa at the higher temperatures up to 650 Pa at the lower temperatures. Plagioclase crystallization begins at 1170 °C, likely playing a key role in promoting yield strength escalation. Viscosity increases by one order of magnitude (from 94 to 1116 Pa·s) over the 60 °C span of cooling considered, remaining consistently lower than most basaltic melts due to the high alkali content (6 wt%). The rheological and morphological results are being integrated, in order to assess if it is possible to identify the rheological fingerprint of the active flow on the preserved flow morphology. The composition-dependence of the morphological pahoehoe to `a`a transition in a rheological map is being assessed by comparing our results to

  16. Determination of thermal/dynamic characteristics of lava flow from surface thermal measurements

    Science.gov (United States)

    Ismail-Zadeh, Alik; Melnik, Oleg; Korotkii, Alexander; Tsepelev, Igor; Kovtunov, Dmitry

    2016-04-01

    Rapid development of ground based thermal cameras, drones and satellite data allows getting repeated thermal images of the surface of the lava flow. Available instrumentation allows getting a large amount of data during a single lava flow eruption. These data require development of appropriate quantitative techniques to link subsurface dynamics with observations. We present a new approach to assimilation of thermal measurements at lava's surface to the bottom of the lava flow to determine lava's thermal and dynamic characteristics. Mathematically this problem is reduced to solving an inverse boundary problem. Namely, using known conditions at one part of the model boundary we determine the missing condition at the remaining part of the boundary. Using an adjoint method we develop a numerical approach to the mathematical problem based on the determination of the missing boundary condition and lava flow characteristics. Numerical results show that in the case of smooth input data lava temperature and velocity can be determined with a high accuracy. A noise imposed on the smooth input data results in a less accurate solution, but still acceptable below some noise level. The proposed approach to assimilate measured data brings an opportunity to estimate thermal budget of the lava flow.

  17. Late Holocene lava flow morphotypes of the northern Harrat Rahat, Kingdom of Saudi Arabia: implications for the description of continental lava fields

    Science.gov (United States)

    Murcia, H. F.; Nemeth, K.; Moufti, R.; Lindsay, J. M.; El-Masry, N.; Cronin, S. J.; Qaddah, A.; Smith, I. E.

    2013-12-01

    Lava morphotype refers to the surface morphology of a lava flow after solidification. In Saudi Arabia, young and well-preserved mafic lava fields (Harrats) display a wide range of these morphotypes. This study examines those exhibited by four of the post-4500 yrs. BP lava fields in the northern Harrat Rahat (pahoehoe, Platy, Cauliflower, Rubbly-a'a, and Blocky. These may be related to the shear strain and/or apparent viscosity of the lava flows formed from typical pahoehoe (pure or Hawaiian-pahoehoe, or sheet-pahoehoe). The well-preserved lava fields in Harrat Rahat allow the development of a more expanded classification scheme than has been traditionally applied. In addition to the whole-rock composition, these morphotypes may be indicators of other properties such as vesicularity, crystallization, effusion mechanism, as well as significant along-flow variations in topography and lava thickness and temperature that modify the rheology. The linearity of transitions between morphotypes observed in the lava fields suggest that real time forecasting of the evolution of lava flows might be possible.

  18. Lava flow surface textures - SIR-B radar image texture, field observations, and terrain measurements

    Science.gov (United States)

    Gaddis, Lisa R.; Mouginis-Mark, Peter J.; Hayashi, Joan N.

    1990-01-01

    SIR-B images, field observations, and small-scale (cm) terrain measurements are used to study lave flow surface textures related to emplacement processes of a single Hawaiian lava flow. Although smooth pahoehoe textures are poorly characterized on the SIR-B data, rougher pahoehoe types and the a'a flow portion show image textures attributed to spatial variations in surface roughness. Field observations of six distinct lava flow textural units are described and used to interpret modes of emplacement. The radar smooth/rough boundary between pahoehoe and a'a occurs at a vertical relief of about 10 cm on this lava flow. While direct observation and measurement most readily yield information related to lava eruption and emplacement processes, analyses of remote sensing data such as those acquired by imaging radars and altimeters can provide a means of quantifying surface texture, identifying the size and distribution of flow components, and delineating textural unit boundaries.

  19. The Fe-rich clay microsystems in basalt-komatiite lavas: importance of Fe-smectites for pre-biotic molecule catalysis during the Hadean eon.

    Science.gov (United States)

    Meunier, Alain; Petit, Sabine; Cockell, Charles S; El Albani, Abderrazzak; Beaufort, Daniel

    2010-06-01

    During the Hadean to early Archean period (4.5-3.5 Ga), the surface of the Earth's crust was predominantly composed of basalt and komatiite lavas. The conditions imposed by the chemical composition of these rocks favoured the crystallization of Fe-Mg clays rather than that of Al-rich ones (montmorillonite). Fe-Mg clays were formed inside chemical microsystems through sea weathering or hydrothermal alteration, and for the most part, through post-magmatic processes. Indeed, at the end of the cooling stage, Fe-Mg clays precipitated directly from the residual liquid which concentrated in the voids remaining in the crystal framework of the mafic-ultramafic lavas. Nontronite-celadonite and chlorite-saponite covered all the solid surfaces (crystals, glass) and are associated with tiny pyroxene and apatite crystals forming the so-called "mesostasis". The mesostasis was scattered in the lava body as micro-settings tens of micrometres wide. Thus, every square metre of basalt or komatiite rocks was punctuated by myriads of clay-rich patches, each of them potentially behaving as a single chemical reactor which could concentrate the organics diluted in the ocean water. Considering the high catalytic potentiality of clays, and particularly those of the Fe-rich ones (electron exchangers), it is probable that large parts of the surface of the young Earth participated in the synthesis of prebiotic molecules during the Hadean to early Archean period through innumerable clay-rich micro-settings in the massive parts and the altered surfaces of komatiite and basaltic lavas. This leads us to suggest that Fe,Mg-clays should be preferred to Al-rich ones (montmorillonite) to conduct experiments for the synthesis and the polymerisation of prebiotic molecules.

  20. Lava flow identification and ageing by means of LiDAR intensity: the Mt. Etna case

    OpenAIRE

    Mazzarini, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia; Pareschi, M. T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia; Favalli, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia; Isola, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia; Tarquini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia; Boschi, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italia

    2006-01-01

    An application of LiDAR (Light Detection and Ranging) intensity for the identification and mapping of different lava flows from the Mt. Etna (Italy) active volcano is described. In September 2004 an airborne LiDAR survey was flown over summit sectors of Mt. Etna. The information derived from LiDAR intensity values was used to compare the lava flows with respect to their age of emplacement. Analysed lava flows vary in age between those dating prior to AD 1610 and those active du...

  1. Geochemical Stratigraphy of Southern Parana' Lava Piles

    Science.gov (United States)

    Marzoli, A.; De Min, A.; Marques, L. S.; Nardy, A.; Chiaradia, M.

    2015-12-01

    Basaltic lava flows of the Paranà Large Igneous Province exhibit significant regional and stratigraphic geochemical variations. While the most notable difference concerns the dominance of low-Ti (TiO2 Esmeralda low-Ti basalts (these latter being present both towards the base and the top of the sequence) in Paranà State, while in Santa Caterina State Gramado flows are interlayered with Urubici-type high-Ti basalts. The interlayering of distinct basaltic magma type requires near-synchronous eruption of chemically strongly different magma types generated from clearly heterogeneous mantle sources and erupted through separated magma plumbing systems, without apparent interaction (mixing) among the distinct basalts. In conclusion, the relative timing of low- and high-Ti magma types seems to be much more complicated than previously thought, as for example Esmeralda or Pitanga basalts, previously considered as quite late and postdating Gramado basalts, are indeed synchronous with them.

  2. Fractionation of the platinum-group elments and Re during crystallization of basalt in Kilauea Iki Lava Lake, Hawaii

    Science.gov (United States)

    Pitcher, L.; Helz, R.T.; Walker, R.J.; Piccoli, P.

    2009-01-01

    Kilauea Iki lava lake formed during the 1959 summit eruption of Kilauea Volcano, then crystallized and differentiated over a period of 35??years. It offers an opportunity to evaluate the fractionation behavior of trace elements in a uniquely well-documented basaltic system. A suite of 14 core samples recovered from 1967 to 1981 has been analyzed for 5 platinum-group elements (PGE: Ir, Os, Ru, Pt, Pd), plus Re. These samples have MgO ranging from 2.4 to 26.9??wt.%, with temperatures prior to quench ranging from 1140????C to ambient (110????C). Five eruption samples were also analyzed. Osmium and Ru concentrations vary by nearly four orders of magnitude (0.0006-1.40??ppb for Os and 0.0006-2.01??ppb for Ru) and are positively correlated with MgO content. These elements behaved compatibly during crystallization, mostly likely being concentrated in trace phases (alloy or sulfide) present in olivine phenocrysts or included chromite. Iridium also correlates positively with MgO, although less strongly than Os and Ru. The somewhat poorer correlation for Ir, compared with Os and Ru, may reflect variable loss of Ir as volatile IrF6 in some of the most magnesian samples. Rhenium is negatively correlated with MgO, behaving as an incompatible trace element. Its behavior in the lava lake is complicated by apparent volatile loss of Re, as suggested by a decrease in Re concentration with time of quenching for lake samples vs. eruption samples. Platinum and Pd concentrations are negatively, albeit weakly, correlated with MgO, so these elements were modestly incompatible during crystallization of the major silicate phases. Palladium contents peaked before precipitation of immiscible sulfide liquid, however, and decline sharply in the most differentiated samples. In contrast, Pt appears to have been unaffected by sulfide precipitation. Microprobe data confirm that Pd entered the sulfide liquid before Re, and that Pt is not strongly chalcophile in this system. Occasional high Pt values

  3. Basalt features observed in outcrops, cores, borehole video imagery and geophysical logs, and basalt hydrogeologic study at the Idaho National Engineering Laboratory, Eastern Idaho

    International Nuclear Information System (INIS)

    A study was undertaken to examine permeable zones identified in boreholes open to the underlying basalt and to describe the vertical cross flows present in the boreholes. To understand the permeable zones in the boreholes detailed descriptions and measurements of three outcrops in the Snake River Plain, three cores at the Idaho Chemical Processing Plant (ICPP) at the INEL, and over fifty borehole TV logs from the INEL were carried out. Based on the observations made on the three outcrops an idealized basalt lava flow model was generated that used a set of nomenclature that would be standard for the basalt lava flows studied. An upper vesicular zone, a sometimes absent columnar zone, central zone, and lower vesicular zone make up the basalt lava flow model. The overall distinction between the different zones are based on the vesicle shape size, vesicularity, and fractures present. The results of the studies also indicated that the basalt lava flows at the INEL are distal to medial facies pahoehoe lava flows with close fitting contacts. The most permeable zones identified in these basalts are fractured vesiculated portions of the top of the lava flow, the columnar areas, and basalt-flow contacts in order of importance. This was determined from impeller flowmeter logging at the INEL. Having this information a detailed stratigraphy of individual basalt lava flows and the corresponding permeable units were generated. From this it was concluded that groundwater flow at the ICPP prefers to travel along thin basalt lava flows or flow-units. Flow direction and velocity of intrawell flows detected by flowmeter is controlled by a nearby pumping well

  4. Basalt features observed in outcrops, cores, borehole video imagery and geophysical logs, and basalt hydrogeologic study at the Idaho National Engineering Laboratory, Eastern Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Bennecke, W.M.

    1996-10-01

    A study was undertaken to examine permeable zones identified in boreholes open to the underlying basalt and to describe the vertical cross flows present in the boreholes. To understand the permeable zones in the boreholes detailed descriptions and measurements of three outcrops in the Snake River Plain, three cores at the Idaho Chemical Processing Plant (ICPP) at the INEL, and over fifty borehole TV logs from the INEL were carried out. Based on the observations made on the three outcrops an idealized basalt lava flow model was generated that used a set of nomenclature that would be standard for the basalt lava flows studied. An upper vesicular zone, a sometimes absent columnar zone, central zone, and lower vesicular zone make up the basalt lava flow model. The overall distinction between the different zones are based on the vesicle shape size, vesicularity, and fractures present. The results of the studies also indicated that the basalt lava flows at the INEL are distal to medial facies pahoehoe lava flows with close fitting contacts. The most permeable zones identified in these basalts are fractured vesiculated portions of the top of the lava flow, the columnar areas, and basalt-flow contacts in order of importance. This was determined from impeller flowmeter logging at the INEL. Having this information a detailed stratigraphy of individual basalt lava flows and the corresponding permeable units were generated. From this it was concluded that groundwater flow at the ICPP prefers to travel along thin basalt lava flows or flow-units. Flow direction and velocity of intrawell flows detected by flowmeter is controlled by a nearby pumping well.

  5. The cooling rates of pahoehoe flows: The importance of lava porosity

    Science.gov (United States)

    Jones, Alun C.

    1993-01-01

    Many theoretical models have been put forward to account for the cooling history of a lava flow; however, only limited detailed field data exist to validate these models. To accurately model the cooling of lava flows, data are required, not only on the heat loss mechanisms, but also on the surface skin development and the causes of differing cooling rates. This paper argues that the cause of such variations in the cooling rates are attributed, primarily, to the vesicle content and degassing history of the lava.

  6. Analysis of Active Lava Flows on Kilauea Volcano, Hawaii, Using SIR-C Radar Correlation Measurements

    Science.gov (United States)

    Zebker, H. A.; Rosen, P.; Hensley, S.; Mouginis-Mark, P. J.

    1995-01-01

    Precise eruption rates of active pahoehoe lava flows on Kilauea volcano, Hawaii, have been determined using spaceborne radar data acquired by the Space Shuttle Imaging Radar-C (SIR-C). Measurement of the rate of lava flow advance, and the determination of the volume of new material erupted in a given period of time, are among the most important observations that can be made when studying a volcano.

  7. Retrospective validation of a lava-flow hazard map for Mount Etna volcano

    Directory of Open Access Journals (Sweden)

    Ciro Del Negro

    2011-12-01

    Full Text Available This report presents a retrospective methodology to validate a long-term hazard map related to lava-flow invasion at Mount Etna, the most active volcano in Europe. A lava-flow hazard map provides the probability that a specific point will be affected by potential destructive volcanic processes over the time period considered. We constructed this lava-flow hazard map for Mount Etna volcano through the identification of the emission regions with the highest probabilities of eruptive vents and through characterization of the event types for the numerical simulations and the computation of the eruptive probabilities. Numerical simulations of lava-flow paths were carried out using the MAGFLOW cellular automata model. To validate the methodology developed, a hazard map was built by considering only the eruptions that occurred at Mount Etna before 1981. On the basis of the probability of coverage by lava flows, the map was divided into ten classes, and two fitting scores were calculated to measure the overlap between the hazard classes and the actual shapes of the lava flows that occurred after 1981.

  8. Magma discharge and lava flow field growth in the Nornahraun/Bardarbunga eruption Iceland.

    Science.gov (United States)

    Hoskuldsson, Armann; Jónsdóttir, Ingibjörg; Riishus, Morten S.; Pedersen, Gro B. M.; Gudmundsson, Magnus T.; Thordarson, Torvaldur; Drouin, Vincent; Futurevolc IES field work Team

    2015-04-01

    Bardarbunga volcano was reactivated by an intense seismic swarm on 16/8 2014. The seismic swarm originating at the central volcano propagated north out into the associated fissure swarm during following days. As it reached the outwash plains of Jokulsa a fjollum a subaerial eruption began. Three eruptions have taken place on the outwash plane in the event, on the 29/8, 31/8 to present and on 5/9. In this presentation we discuss the second eruption that began on the 31/8 and how we do approach magma discharge parameters by combination of field observation and satellite photogrammetry. The eruption took place at the northern end of the eruptive fissure from AD 1797 and the lava was expelled out onto to relatively flat outwash plains of the glacial river Jokulsa a Fjollum thus access to eruptive products was relatively easy. It was clear from the first moments of the eruption that it had a high initial effusion rate, with lava covering the sandur plains at the rate of 25-30 m2/s. Within the first week the lava flow had covered more than 18 km2. That amounts to an average effusion rate between 195 to 280 m3/s. On the 11/9 the lava flow had grown to 25 km2, at that time effusion rate was between 140 to 247 m3/s, The lava stopped advancing and started to grow sideways and inflating. This reoccurred on the 26/9 and 12/10, with clockwise horizontal stacking of lobes to the south. From mid-November the lava growth has been controlled by tube-fed lava streams, at first generating breakouts close to the vent area and then during the last week before Christmas breaking out at the far NE end of the lava flow. As the eruption proceeded effusion rate gradually decreased and at the time of writing it is down to 9 to 76 m3/s. For assessment of areal extent of the lava field a combination of ground gps tracking and satellite photogrammetry was used. However one of the main challenges in the monitoring of the eruption was to obtain volumetric effusion rates. In the beginning of the

  9. Computer vision: automating DEM generation of active lava flows and domes from photos

    Science.gov (United States)

    James, M. R.; Varley, N. R.; Tuffen, H.

    2012-12-01

    ón-Caulle, images of the active lava flow were taken on foot from a ridge overlooking the flow. To assess the evolution of the flow front, two DEMs were derived from collections of ~400 images taken on different days. To scale and geo-reference the data, one image sequence was accompanied by simultaneous collection of a GPS track using a consumer handheld GPS unit; no control points were used. The second survey was then scaled and georeferenced to the first, using features identifiable in both image sets, giving an RMS error of ~0.22 m. DEM comparison then allows advance rates and mechanisms to be identified, and comparisons drawn with emplacement processes of basaltic flows. In both case studies, the SfM-MVS approach allowed DEM generation when access or lack of dedicated surveying equipment and expertise prevented standard techniques from being deployed.olima dome 2011: 3D point cloud data

  10. Fractal Variation with Changing Line Length: A Potential Problem for Planetary Lava Flow Identification

    Science.gov (United States)

    Hudson, Richard K.; Anderson, Steven W.; McColley, Shawn; Fink, Jonathan H.

    2004-01-01

    Fractals are objects that are generally self similar at all scales. Coastlines, mountains, river systems, planetary orbits and some mathematical objects are all examples of fractals. Bruno et al. used the structured walk model of Richardson to establish that lava flows are fractals and that lava flow morphology could be determined by looking at the fractal dimension of flow margins. They determined that Hawaiian a.a flows have fractal dimensions that range from 1.05 to 1.09 and that the pahoehoe lava flows have a fractal dimension from 1.13 to 1.23. We have analyzed a number of natural and simulated lava flow margins and find that the fractal dimension varies according to the number and length of rod lengths used in the structured walk method. The potential variation we find in our analyses is sufficiently large so that unambiguous determination of lava flow morphology is problematic for some flows. We suggest that the structured walk method can provide meaningful fractal dimensions if rod lengths employed in the analysis provide a best-fit residual of greater than 0.98, as opposed to the 0.95 cutoff used in previous studies. We also find that the use of more than 4 rod lengths per analysis also reduces ambiguity in the results.

  11. Influence of basal slip on the propagation and cooling of lava flows

    Science.gov (United States)

    Melnik, Oleg; Vedeneeva, Elena; Utkin, Ivan

    2015-04-01

    A thin layer approximation is used for studying of viscous gravity currents on the horizontal topography from a point source. The main difference from a self-similar solution obtained in Huppert (1982) is the account for partial slip of lava on the ground surface. We assume that the slip velocity is proportional to the tangential stress in some positive power. This condition is widely used in polymer science and for the flows on superhydrophobic surfaces. This condition is also applicable for lava flows because of a large roughness of volcanic terrains and the presence of unconsolidated material (ash, lapilli). The system of Stokes equations was reduced to a non-linear parabolic differential equation. Its solution was found both numerically and by a reduction to an ODE that describes similarity solution. In the latter case there is a dependence between lava mass growth rate and the power exponent in the friction law. It was shown that the presence of basal slip allows much faster propagation of lava flows in comparison with no-slip condition at the ground surface. Analytical solutions were proved by a good comparison with fully 2D axisymmetric finite volume simulations. Based on the velocity field obtained from a thin layer theory the heat budget of a lava flow was studied for the case of constant lava viscosity. Heat equation was solved in the lava domain with no flux condition at the bottom, radiative and convective fluxes at the free surface and the influx of a fresh magma from a point source. It was shown that due to a strong difference in the velocity profile the distribution of the temperature inside the lava flow is different in the cases of no-slip and partial slip conditions.

  12. 256 Shades of Grey: Dating young lava flows using high-resolution sidescan imagery from the Kolbeinsey Ridge

    Science.gov (United States)

    Yeo, I. A.; Rothenbeck, M.; Devey, C. W.

    2013-12-01

    We present high-resolution (1 m) sidescan data from the slow-spreading (1.8 cm/yr) Kolbeinsey Ridge between 71°45'N and 70°30'N collected using an Edgetech 2200-MP 120 kHz sidescan sonar. Comparing the sound intensity between flat, heavily sedimented, off-axis areas and flat, brightly reflective, on-axis lava flows yields a difference of 20 - 30 dB and therefore a detection depth for basaltic lava flows of 30 - 60 cm of sediment burial at a grazing angle of 30 degrees. The single sensor does not allow for the extraction of phase bathymetry from the sidescan, however hummocks covered by the surveys were characterized by relatively flat summits (as seen in profiles extracted from the AUV depth and altitude measurements), and so summit regions could be considered comparable to flatter areas of seafloor. As volcanic hummocks are likely to be monogenetic edifices, sediment thicknesses extracted for the summits should be equivalent to those for the whole edifice. Using only flat areas also removes the problems of sediment slumping downslope. Ground truthing of actual sediment thicknesses will be carried out on cruises in November/December 2013 and September/October 2014 and will open up the potential for in-cruise estimation of the actual ages of young volcanic features covered by sidescan surveys, where good estimates of sedimentation rates are available.

  13. Post-emplacement cooling and contraction of lava flows: InSAR observations and thermal model for lava fields at Hekla volcano, Iceland

    Science.gov (United States)

    Wittmann, Werner; Dumont, Stephanie; Lavallee, Yan; Sigmundsson, Freysteinn

    2016-04-01

    Gradual post-emplacement subsidence of lava flows has been observed at various volcanoes, e.g. Okmok volcano in Alaska, Kilauea volcano on Hawaii and Etna volcano on Sicily. In Iceland, this effect has been observed at Krafla volcano and Hekla volcano. The latter was chosen as a case study for investigating subsidence mechanisms, specifically thermal contraction. Effects like gravitational loading, clast repacking or creeping of a hot and liquid core can contribute to subsidence of emplaced lava flows, but thermal contraction is considered being a crucial effect. The extent to which it contributes to lava flow subsidence is investigated by mapping the relative movement of emplaced lava flows and flow substrate, and modeling the observed signal. The slow vegetation in Iceland is advantageous for Interferometric Synthetic Aperture Radar (InSAR) and offers great coherence over long periods after lava emplacement, expanding beyond the outlines of lava flows. Due to this reason, InSAR observations over volcanoes in Iceland have taken place for more than 20 years. By combining InSAR tracks from ERS, Envisat and Cosmo-SkyMed satellites we gain six time series with a total of 99 interferograms. Making use of the high spatial resolution, a temporal trend of vertical lava movements was investigated over a course of over 23 years over the 1991 lava flow of Hekla volcano, Iceland. From these time series, temporal trends of accumulated subsidence and subsidence velocities were determined in line of sight of the satellites. However, the deformation signal of lava fields after emplacement is vertically dominated. Subsidence on this lava field is still ongoing and subsidence rates vary from 14.8 mm/year in 1995 to about 1.0 mm/year in 2014. Fitting a simple exponential function suggests a exponential decay constant of 5.95 years. Additionally, a one-dimensional, semi-analytical model was fitted to these data. While subsidence due to phase change is calculated analytically

  14. Surface degassing and modifications to vesicle size distributions in active basalt flows

    Science.gov (United States)

    Cashman, K.V.; Mangan, M.T.; Newman, S.

    1994-01-01

    The character of the vesicle population in lava flows includes several measurable parameters that may provide important constraints on lava flow dynamics and rheology. Interpretation of vesicle size distributions (VSDs), however, requires an understanding of vesiculation processes in feeder conduits, and of post-eruption modifications to VSDs during transport and emplacement. To this end we collected samples from active basalt flows at Kilauea Volcano: (1) near the effusive Kupaianaha vent; (2) through skylights in the approximately isothermal Wahaula and Kamoamoa tube systems transporting lava to the coast; (3) from surface breakouts at different locations along the lava tubes; and (4) from different locations in a single breakout from a lava tube 1 km from the 51 vent at Pu'u 'O'o. Near-vent samples are characterized by VSDs that show exponentially decreasing numbers of vesicles with increasing vesicle size. These size distributions suggest that nucleation and growth of bubbles were continuous during ascent in the conduit, with minor associated bubble coalescence resulting from differential bubble rise. The entire vesicle population can be attributed to shallow exsolution of H2O-dominated gases at rates consistent with those predicted by simple diffusion models. Measurements of H2O, CO2 and S in the matrix glass show that the melt equilibrated rapidly at atmospheric pressure. Down-tube samples maintain similar VSD forms but show a progressive decrease in both overall vesicularity and mean vesicle size. We attribute this change to open system, "passive" rise and escape of larger bubbles to the surface. Such gas loss from the tube system results in the output of 1.2 ?? 106 g/day SO2, an output representing an addition of approximately 1% to overall volatile budget calculations. A steady increase in bubble number density with downstream distance is best explained by continued bubble nucleation at rates of 7-8/cm3s. Rates are ???25% of those estimated from the vent

  15. Preliminary analyses of SIB-B radar data for recent Hawaii lava flows

    Science.gov (United States)

    Kaupp, V. H.; Derryberry, B. A.; Macdonald, H. C.; Gaddis, L. R.; Mouginis-Mark, P. J.

    1986-01-01

    The Shuttle Imaging Radar (SIR-B) experiment acquired two L-band (23 cm wavelength) radar images (at about 28 and 48 deg incidence angles) over the Kilauea Volcano area of southeastern Hawaii. Geologic analysis of these data indicates that, although aa lava flows and pyroclastic deposits can be discriminated, pahoehoe lava flows are not readily distinguished from surrounding low return materials. Preliminary analysis of data extracted from isolated flows indicates that flow type (i.e., aa or pahoehoe) and relative age can be determined from their basic statistics and illumination angle.

  16. Sensibility analysis of VORIS lava-flow simulations: application to Nyamulagira volcano, Democratic Republic of Congo

    Directory of Open Access Journals (Sweden)

    A. M. Syavulisembo

    2015-03-01

    Full Text Available Assessment and management of volcanic risk are important scientific, economic, and political issues, especially in densely populated areas threatened by volcanoes. The Virunga area in the Democratic Republic of Congo, with over 1 million inhabitants, has to cope permanently with the threat posed by the active Nyamulagira and Nyiragongo volcanoes. During the past century, Nyamulagira erupted at intervals of 1–4 years – mostly in the form of lava flows – at least 30 times. Its summit and flank eruptions lasted for periods of a few days up to more than two years, and produced lava flows sometimes reaching distances of over 20 km from the volcano, thereby affecting very large areas and having a serious impact on the region of Virunga. In order to identify a useful tool for lava flow hazard assessment at the Goma Volcano Observatory (GVO, we tested VORIS 2.0.1 (Felpeto et al., 2007, a freely available software (http://www.gvb-csic.es based on a probabilistic model that considers topography as the main parameter controlling lava flow propagation. We tested different Digital Elevation Models (DEM – SRTM1, SRTM3, and ASTER GDEM – to analyze the sensibility of the input parameters of VORIS 2.0.1 in simulation of recent historical lava-flow for which the pre-eruption topography is known. The results obtained show that VORIS 2.0.1 is a quick, easy-to-use tool for simulating lava-flow eruptions and replicates to a high degree of accuracy the eruptions tested. In practice, these results will be used by GVO to calibrate VORIS model for lava flow path forecasting during new eruptions, hence contributing to a better volcanic crisis management.

  17. Sensibility analysis of VORIS lava-flow simulations: application to Nyamulagira volcano, Democratic Republic of Congo

    Science.gov (United States)

    Syavulisembo, A. M.; Havenith, H.-B.; Smets, B.; d'Oreye, N.; Marti, J.

    2015-03-01

    Assessment and management of volcanic risk are important scientific, economic, and political issues, especially in densely populated areas threatened by volcanoes. The Virunga area in the Democratic Republic of Congo, with over 1 million inhabitants, has to cope permanently with the threat posed by the active Nyamulagira and Nyiragongo volcanoes. During the past century, Nyamulagira erupted at intervals of 1-4 years - mostly in the form of lava flows - at least 30 times. Its summit and flank eruptions lasted for periods of a few days up to more than two years, and produced lava flows sometimes reaching distances of over 20 km from the volcano, thereby affecting very large areas and having a serious impact on the region of Virunga. In order to identify a useful tool for lava flow hazard assessment at the Goma Volcano Observatory (GVO), we tested VORIS 2.0.1 (Felpeto et al., 2007), a freely available software (http://www.gvb-csic.es) based on a probabilistic model that considers topography as the main parameter controlling lava flow propagation. We tested different Digital Elevation Models (DEM) - SRTM1, SRTM3, and ASTER GDEM - to analyze the sensibility of the input parameters of VORIS 2.0.1 in simulation of recent historical lava-flow for which the pre-eruption topography is known. The results obtained show that VORIS 2.0.1 is a quick, easy-to-use tool for simulating lava-flow eruptions and replicates to a high degree of accuracy the eruptions tested. In practice, these results will be used by GVO to calibrate VORIS model for lava flow path forecasting during new eruptions, hence contributing to a better volcanic crisis management.

  18. Evolution of an active lava flow field using a multitemporal LIDAR acquisition

    OpenAIRE

    Favalli, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia; Fornaciai, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia; Mazzarini, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia; Harris, A.; Clermont Université, Université Blaise Pascal, Laboratoire Magmas et Volcans, Clermont‐Ferrand, France; Neri, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Behncke, B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Pareschi, M. T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia; Tarquini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia; Boschi, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italia

    2010-01-01

    Application of light detection and ranging (LIDAR) technology in volcanology has 7 developed rapidly over the past few years, being extremely useful for the generation 8 of high‐spatial‐resolution digital elevation models and for mapping eruption products. 9 However, LIDAR can also be used to yield detailed information about the dynamics of 10 lava movement, emplacement processes occuring across an active lava flow field, and the 11 volumes involved. Here we present the results...

  19. Effect of Levee and Channel Structures on Long Lava Flow Emplacement: Martian Examples from THEMIS and MOLA Data

    Science.gov (United States)

    Peitersen, M. N.; Zimbelman, J. R.; Christensen, P. R.; Bare, C.

    2003-01-01

    Long lava flows (discrete flow units with lengths exceeding 50 km) are easily identified features found on many planetary surfaces. An ongoing investigation is being conducted into the origin of these flows. Here, we limit our attention to long lava flows which show evidence of channel-like structures.

  20. Shatter Complex Formation in the Twin Craters Lava Flow, Zuni-Bandera Field, New Mexico

    Science.gov (United States)

    von Meerscheidt, H. C.; Bleacher, J. E.; Brand, B. D.; deWet, A.; Samuels, R.; Hamilton, C.; Garry, W. B.; Bandfield, J. L.

    2013-12-01

    Lava channels, tubes and sheets are transport structures that deliver flowing lava to a flow front. The type of structure can vary within a flow field and evolve throughout an eruption. The 18.0 × 1.0 ka Twin Craters lava flow in the Zuni-Bandera lava field provides a unique opportunity to study morphological changes of a lava flow partly attributable to interaction with a topographic obstacle. Facies mapping and airborne image analysis were performed on an area of the Twin Craters flow that includes a network of channels, lava tubes, shatter features, and disrupted pahoehoe flows surrounding a 45 m tall limestone bluff. The bluff is 1000 m long (oriented perpendicular to flow.) The general flow characteristics upstream from the bluff include smooth, lobate pahoehoe flows and a >2.5 km long lava tube (see Samuels et al., this meeting.) Emplacement characteristics change abruptly where the flow encountered the bluff, to include many localized areas of disrupted pahoehoe and several pahoehoe-floored depressions. Each depression is fully or partly surrounded by a raised rim of blocky material up to 4 m higher than the surrounding terrain. The rim is composed of 0.05 - 4 m diameter blocks, some of which form a breccia that is welded by lava, and some of which exhibit original flow textures. The rim-depression features are interpreted as shatter rings based on morphological similarity to those described by Orr (2011.Bul Volcanol.73.335-346) in Hawai';i. Orr suggests that shatter rings develop when fluctuations in the lava supply rate over-pressurize the tube, causing the tube roof to repeatedly uplift and subside. A rim of shattered blocks and breccias remains surrounding the sunken tube roof after the final lava withdraws from the system. One of these depressions in the Twin Craters flow is 240 m wide and includes six mounds of shattered material equal in height to the surrounding undisturbed terrain. Several mounds have depressed centers floored with rubbly pahoehoe

  1. Laboratory Experiments to Investigate Breakout and Bifurcation of Lava Flows on Mars

    Science.gov (United States)

    Miyamoto, H.; Zimbelman, J. R.; Tokunaga, T.; Tosaka, H.

    2001-05-01

    Mars Orbiter Camera (MOC) images show that many lava flows on Mars have morphologies quite similar to aa lava flows. Such flows often have many lobes and branches that overlap each other, making a compound flow unit. These features cannot be explained by any simple flow model because longer effusion duration will simply make the flow longer, although actual lavas often will bifurcate to make additonal flow units. Similarly, formation of a lava tube is difficult to predict by a model that does not contain preset conditions for their formation. Treatment of the surface crust is very important to the flow morphology, especially for effusion over a long duration. To understand the effect of a crust on flow morphology, paraffin wax is especially useful in laboratory experiments. In our experiments, a flow on a constant slope typically progresses with a constant width at first. Then, the flow front cools to form a crust, which inhibits the progress of the flow. At that time, the flow sometimes becomes sinuous or ceases its movement. With a sufficient flux after that, uplift of thickness (inflation) can occur. Uplift sometimes attains a sufficient thickening to produce a breakout at the side of the flow, bifurcating to form a new cooling unit. Bifurcated flows do not always follow the main flow (some branches moved several cm away from the initial flow). The bifurcations continue to develop into a complicated flow field, given a sufficiently long duration of effusion. Although the movement of the flow with a surface crust is difficult to predict, our simple analysis suggests that the maximum thickness attained by the inflation (by fluid continuing to enter a stopped flow) before a breakout can occur is roughly estimated by a balance between the overpressure and the crust tensile strength. The maximum extent of a bifurcated flow after a breakout can probably be constrained, which will be a significant goal for future modeling of compound flows.

  2. Deriving Lava Eruption Temperatures on Io Using Lava Tube Skylights

    Science.gov (United States)

    Davies, A. G.; Keszthelyi, L. P.; McEwen, A. S.

    2015-12-01

    The eruption temperature of Io's silicate lavas constrains Io's interior state and composition [1] but reliably measuring this temperature remotely is a challenge that has not yet been met. Previously, we established that eruption processes that expose large areas at the highest temperatures, such as roiling lava lakes or lava fountains, are suitable targets for this task [2]. In this study we investigate the thermal emission from lava tube skylights for basaltic and ultramafic composition lavas. Tube-fed lava flows are known on Io so skylights could be common. Unlike the surfaces of lava flows, lava lakes, and lava fountains which all cool very rapidly, skylights have steady thermal emission on a scale of days to months. The thermal emission from such a target, measured at multiple visible and NIR wavelengths, can provide a highly accurate diagnostic of eruption temperature. However, the small size of skylights means that close flybys of Io are necessary, requiring a dedicated Io mission [3]. We have modelled the thermal emission spectrum for different skylight sizes, lava flow stream velocities, end-member lava compositions, and skylight radiation shape factors, determining the flow surface cooling rates. We calculate the resulting thermal emission spectrum as a function of viewing angle. From the resulting 0.7:0.9 μm ratios, we see a clear distinction between basaltic and ultramafic compositions for skylights smaller than 20 m across, even if sub-pixel. If the skylight is not resolved, observations distributed over weeks that show a stationary and steady hot spot allow the presence of a skylight to be confidently inferred. This inference allows subsequent refining of observation design to improve viewing geometry of the target. Our analysis will be further refined as accurate high-temperature short-wavelength emissivity values become available [4]. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to

  3. On the relationship between age of lava flows and radar backscattering

    Science.gov (United States)

    Blom, R. G.; Cooley, P.; Schenck, L. R.

    1986-01-01

    The observation that older lava flows have lower backscatter in radar images is assessed with multiwavelength/polarization scatterometer data with incidence angles from 15 to 50 deg. Backscatter decreases over time because surface roughness decreases due to infilling with dust and mechanical weathering of the rocks. Pahoehoe lavas in the Snake River Plain with ages of 2.1, 7,4, and 12.0 K yr are best separated with 2.25 cm wavelength data. Blocky obsidian flows at Medicine Lake Highland and Newberry Volcano with ages of 0.9, 1.1 and 1.4 K yr are best separated with 6.3 cm wavelength data. Two Pleistocene flows at the Snake River Plain are best separated with 19.0 cm wavelength data. Incidence angles from 20 to 35 deg are best. These data indicate it may be possible to separate lava flows into eruptive periods using calibrated multiwavelength radar backscatter data.

  4. The Origin of Ina: Evidence for Inflated Lava Flows on the Moon

    Science.gov (United States)

    Garry, W. B.; Robinson, M. S.; Zimbelman, J. R.; Bleacher, J. E.; Hawke, B. R.; Crumpler, L. S.; Braden, S. E.; Sato, H.

    2012-01-01

    Ina is an enigmatic volcanic feature on the Moon known for its irregularly shaped mounds, the origin of which has been debated since the Apollo Missions. Three main units are observed on the floor of the depression (2.9 km across, < or =64 m deep) located at the summit of a low-shield volcano: irregularly shaped mounds up to 20 m tall, a lower unit 1 to 5 m in relief that surrounds the mounds, and blocky material. Analyses of Lunar Reconnaissance Orbiter Camera images and topography show that features in Ina are morphologically similar to terrestrial inflated lava flows. Comparison of these unusual lunar mounds and possible terrestrial analogs leads us to hypothesize that features in Ina were formed through lava flow inflation processes. While the source of the lava remains unclear, this new model suggests that as the mounds inflated, breakouts along their margins served as sources for surface flows that created the lower morphologic unit. Over time, mass wasting of both morphologic units has exposed fresh surfaces observed in the blocky unit. Ina is different than the terrestrial analogs presented in this study in that the lunar features formed within a depression, no vent sources are observed, and no cracks are observed on the mounds. However, lava flow inflation processes explain many of the morphologic relationships observed in Ina and are proposed to be analogous with inflated lava flows on Earth.

  5. Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea volcano, Hawaii

    Science.gov (United States)

    Hon, K.; Kauahikaua, J.; Denlinger, R.; Mackay, K.

    1994-01-01

    Inflated pahoehoe sheet flows have a distinctive horizontal upper surface, which can be several hundred meters across, and are bounded to steep monoclinal uplifts. The inflated sheet flows studied ranged from 1 to 5 m in thickness, but initially propagated as thin sheets of fluid pahoehoe lava, generally 20-30 cm thick. The morphology of the lava as flow advanced is described. Inflated sheet flows from Kilauea and Mauna Loa are morphologically similar to some thick Icelandic and submarine sheet flows, suggesting a similar mechanism of emplacement. -from Authors

  6. The effect of particle size on the rheology of liquid-solid mixtures with application to lava flows: Results from analogue experiments

    Science.gov (United States)

    Gaudio, P.; Ventura, G.; Taddeucci, J.

    2013-08-01

    We investigate the effect of crystal size on the rheology of basaltic magmas by means of a rheometer and suspensions of silicon oil with natural magmatic crystals of variable size (from 63 to 0.5 mm) and volume fraction ϕ (from 0.03 to 0.6). At constant ϕ, finer suspensions display higher viscosities than coarser ones. Shear thinning (flow index n 0.1-0.2 and is more pronounced (stronger departure from the Newtonian behavior) in finer suspensions. Maximum packing and average crystal size displays a nonlinear, positive correlation, while yield stress develops at ϕ > 0.2-0.3 irrespective of the crystal size. We incorporate our results into physical models for flow of lava and show that, with respect to lava flows containing coarser crystals, those with smaller crystals are expected to: 1) flow at lower velocity, 2) have a lower velocity gradient, and 3) be more prone to develop a region of plug flow. Our experimental results explain the observation that phenocryst-bearing and microlite-bearing lavas at Etna volcano (Italy) show smooth pahoehoe and rough aa' surfaces, respectively.

  7. Volatile abundances and oxygen isotopes in basaltic to dacitic lavas on mid-ocean ridges: The role of assimilation at spreading centers

    Science.gov (United States)

    Wanless, V.D.; Perfit, M.R.; Ridley, W.I.; Wallace, P.J.; Grimes, Craig B.; Klein, E.M.

    2011-01-01

    Most geochemical variability in MOR basalts is consistent with low- to moderate-pressure fractional crystallization of various mantle-derived parental melts. However, our geochemical data from MOR high-silica glasses, including new volatile and oxygen isotope data, suggest that assimilation of altered crustal material plays a significant role in the petrogenesis of dacites and may be important in the formation of basaltic lavas at MOR in general. MOR high-silica andesites and dacites from diverse areas show remarkably similar major element trends, incompatible trace element enrichments, and isotopic signatures suggesting similar processes control their chemistry. In particular, very high Cl and elevated H2O concentrations and relatively light oxygen isotope ratios (~ 5.8‰ vs. expected values of ~ 6.8‰) in fresh dacite glasses can be explained by contamination of magmas from a component of ocean crust altered by hydrothermal fluids. Crystallization of silicate phases and Fe-oxides causes an increase in δ18O in residual magma, but assimilation of material initially altered at high temperatures results in lower δ18O values. The observed geochemical signatures can be explained by extreme fractional crystallization of a MOR basalt parent combined with partial melting and assimilation (AFC) of amphibole-bearing altered oceanic crust. The MOR dacitic lavas do not appear to be simply the extrusive equivalent of oceanic plagiogranites. The combination of partial melting and assimilation produces a distinct geochemical signature that includes higher incompatible trace element abundances and distinct trace element ratios relative to those observed in plagiogranites.

  8. A laboratory investigation into the effects of slope on lava flow morphology

    Science.gov (United States)

    Gregg, Tracy K. P.; Fink, Jonathan H.

    2000-03-01

    In an attempt to model the effect of slope on the dynamics of lava flow emplacement, four distinct morphologies were repeatedly produced in a series of laboratory simulations where polyethylene glycol (PEG) was extruded at a constant rate beneath cold sucrose solution onto a uniform slope which could be varied from 1° through 60°. The lowest extrusion rates and slopes, and highest cooling rates, produced flows that rapidly crusted over and advanced through bulbous toes, or pillows (similar to subaerial "toey" pahoehoe flows and to submarine pillowed flows). As extrusion rate and slope increased, and cooling rate decreased, pillowed flows gave way to rifted flows (linear zones of liquid wax separated by plates of solid crust, similar to what is observed on the surface of convecting lava lakes), then to folded flows with surface crusts buckled transversely to the flow direction, and, at the highest extrusion rates and slopes, and lowest cooling rates, to leveed flows, which solidified only at their margins. A dimensionless parameter, Ψ, primarily controlled by effusion rate, cooling rate and flow viscosity, quantifies these flow types. Increasing the underlying slope up to 30° allows the liquid wax to advance further before solidifying, with an effect similar to that of increasing the effusion rate. For example, conditions that produce rifted flows on a 10° slope result in folded flows on a 30° slope. For underlying slopes of 40°, however, this trend reverses, slightly owing to increased gravitational forces relative to the strength of the solid wax. Because of its significant influence on heat advection and the disruption of a solid crust, slope must be incorporated into any quantitative attempt to correlate eruption parameters and lava flow morphologies. These experiments and subsequent scaling incorporate key physical parameters of both an extrusion and its environment, allowing their results to be used to interpret lava flow morphologies on land, on the

  9. Uncertainty quantification in satellite-driven modeling to forecast lava flow hazards

    Science.gov (United States)

    Ganci, Gaetana; Bilotta, Giuseppe; Cappello, Annalisa; Herault, Alexis; Zago, Vito; Del Negro, Ciro

    2016-04-01

    Over the last decades satellite-based remote sensing and data processing techniques have proved well suited to complement field observations to provide timely event detection for volcanic effusive events, as well as extraction of parameters allowing lava flow tracking. In parallel with this, physics-based models for lava flow simulations have improved enormously and are now capable of fast, accurate simulations, which are increasingly driven by, or validated using, satellite-derived parameters such as lava flow discharge rates. Together, these capabilities represent a prompt strategy with immediate applications to the real time monitoring and hazard assessment of effusive eruptions, but two important key issues still need to be addressed, to improve its effectiveness: (i) the provision of source term parameters and their uncertainties, (ii) how uncertainties in source terms propagate into the model outputs. We here address these topics considering uncertainties in satellite-derived products obtained by the HOTSAT thermal monitoring system (e.g. hotspot pixels, radiant heat flux, effusion rate) and evaluating how these uncertainties affect lava flow hazard scenarios by inputting them into the MAGFLOW physics-based model for lava flow simulations. Particular attention is given to topography and cloud effect on satellite-derived products as well as to the frequency of their acquisitions (GEO vs LEO). We also investigate how the DEM resolution impact final scenarios from both the numerical and physical points of view. To evaluate these effects, three different kinds of well documented eruptions occurred at Mt Etna are taken into account: a short-lived paroxysmal event, i.e. the 11-13 Jan 2011 lava fountain, a long lasting eruption, i.e. the 2008-2009 eruption, and a short effusive event, i.e. the 14-24 July 2006 eruption.

  10. Cooling rate of an active Hawaiian lava flow from nighttime spectroradiometer measurements

    Science.gov (United States)

    Flynn, Luke P.; Mouginis-Mark, Peter J.

    1992-01-01

    A narrow-band spectroradiometer has been used to make nighttime measurements of the Phase 50 eruption of Pu'u O'o, on the East Rift Zone of Kilauea Volcano, Hawaii. On February 19, 1992, a GER spectroradiometer was used to determine the cooling rate of an active lava flow. This instrument collects 12-bit data between 0.35 to 3.0 microns at a spectral resolution of 1-5 nm. Thirteen spectra of a single area on a pahoehoe flow field were collected over a 59 minute period (21:27-22:26 HST) from which the cooling of the lava surface has been investigated. A two-component thermal mixing model (Flynn, 1992) applied to data for the flow immediately on emplacement gave a best-fit crustal temperature of 768 C, a hot component at 1150 C, and a hot radiating area of 3.6 percent of the total area. Over a 52-minute period (within the time interval between flow resurfacings) the lava flow crust cooled by 358 to 410 C at a rate that was as high as 15 C/min. The observations have significance both for satellite observations of active volcanoes and for numerical models of the cooling of lava flows during their emplacement.

  11. Investigation of Layered Lunar Mare Lava flows through LROC Imagery and Terrestrial Analogs

    Science.gov (United States)

    Needham, H.; Rumpf, M.; Sarah, F.

    2013-12-01

    High resolution images of the lunar surface have revealed layered deposits in the walls of impact craters and pit craters in the lunar maria, which are interpreted to be sequences of stacked lava flows. The goal of our research is to establish quantitative constraints and uncertainties on the thicknesses of individual flow units comprising the layered outcrops, in order to model the cooling history of lunar lava flows. The underlying motivation for this project is to identify locations hosting intercalated units of lava flows and paleoregoliths, which may preserve snapshots of the ancient solar wind and other extra-lunar particles, thereby providing potential sampling localities for future missions to the lunar surface. Our approach involves mapping layered outcrops using high-resolution imagery acquired by the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC), with constraints on flow unit dimensions provided by Lunar Orbiter Laser Altimeter (LOLA) data. We have measured thicknesses of ~ 2 to > 20 m. However, there is considerable uncertainty in the definition of contacts between adjacent units, primarily because talus commonly obscures contacts and/or prevents lateral tracing of the flow units. In addition, flows may have thicknesses or geomorphological complexity at scales approaching the limit of resolution of the data, which hampers distinguishing one unit from another. To address these issues, we have undertaken a terrestrial analog study using World View 2 satellite imagery of layered lava sequences on Oahu, Hawaii. These data have a resolution comparable to LROC NAC images of 0.5 m. The layered lava sequences are first analyzed in ArcGIS to obtain an initial estimate of the number and thicknesses of flow units identified in the images. We next visit the outcrops in the field to perform detailed measurements of the individual units. We have discovered that the number of flow units identified in the remote sensing data is fewer compared to

  12. Real-time satellite monitoring of Nornahraun lava flow NE Iceland

    Science.gov (United States)

    Jónsdóttir, Ingibjörg; Þórðarson, Þorvaldur; Höskuldsson, Ármann; Davis, Ashley; Schneider, David; Wright, Robert; Kestay, Laszlo; Hamilton, Christopher; Harris, Andrew; Coppola, Diego; Tumi Guðmundsson, Magnús; Durig, Tobias; Pedersen, Gro; Drouin, Vincent; Höskuldsson, Friðrik; Símonarson, Hreggviður; Örn Arnarson, Gunnar; Örn Einarsson, Magnús; Riishuus, Morten

    2015-04-01

    An effusive eruption started in Holuhraun, NE Iceland, on 31 August 2014, producing the Nornahraun lava flow field which had, by the beginning of 2015, covered over 83 km2. Throughout this event, various satellite images have been analyzed to monitor the development, active areas and map the lava extent in close collaboration with the field group, which involved regular exchange of direct observations and satellite based data for ground truthing and suggesting possible sites for lava sampling. From the beginning, satellite images in low geometric but high temporal resolution (NOAA AVHRR, MODIS) were used to monitor main regions of activity and position new vents to within 1km accuracy. As they became available, multispectral images in higher resolution (LANDSAT 8, LANDSAT 7, ASTER, EO-1 ALI) were used to map the lava channels, study lava structures and classify regions of varying activity. Hyper spectral sensors (EO-1 HYPERION), though with limited area coverage, have given a good indication of vent and lava temperature and effusion rates. All available radar imagery (SENTINEL-1, RADARSAT, COSMO SKYMED, TERRASAR X) have been used for studying lava extent, landscape and roughness. The Icelandic Coast Guard has, on a number of occasions, provided high resolution radar and thermal images from reconnaissance flights. These data sources compliment each other well and have improved analysis of events. Whilst classical TIR channels were utilized to map the temperature history of the lava, SWIR and NIR channels caught regions of highest temperature, allowing an estimate of the most active lava channels and even indicating potential changes in channel structure. Combining thermal images and radar images took this prediction a step further, improving interpretation of both image types and studying the difference between open and closed lava channels. Efforts are underway of comparing different methods of estimating magma discharge and improving the process for use in real

  13. Cooling of a channeled lava flow with non-Newtonian rheology: crust formation and surface radiance

    Directory of Open Access Journals (Sweden)

    Stefano Santini

    2011-12-01

    Full Text Available We present here the results from dynamical and thermal models that describe a channeled lava flow as it cools by radiation. In particular, the effects of power-law rheology and of the presence of bends in the flow are considered, as well as the formation of surface crust and lava tubes. On the basis of the thermal models, we analyze the assumptions implicit in the currently used formulae for evaluation of lava flow rates from satellite thermal imagery. Assuming a steady flow down an inclined rectangular channel, we solve numerically the equation of motion by the finite-volume method and a classical iterative solution. Our results show that the use of power-law rheology results in relevant differences in the average velocity and volume flow rate with respect to Newtonian rheology. Crust formation is strongly influenced by power-law rheology; in particular, the growth rate and the velocity profile inside the channel are strongly modified. In addition, channel curvature affects the flow dynamics and surface morphology. The size and shape of surface solid plates are controlled by competition between the shear stress and the crust yield strength: the degree of crust cover of the channel is studied as a function of the curvature. Simple formulae are currently used to relate the lava flow rate to the energy radiated by the lava flow as inferred from satellite thermal imagery. Such formulae are based on a specific model, and consequently, their validity is subject to the model assumptions. An analysis of these assumptions reveals that the current use of such formulae is not consistent with the model.

  14. Physical properties of lava flows on the southwest flank of Tyrrhena Patera, Mars

    Science.gov (United States)

    Crown, David A.; Porter, Tracy K.; Greeley, Ronald

    1991-01-01

    Tyrrhena Patera (TP) (22 degrees S, 253.5 degrees W), a large, low-relief volcano located in the ancient southern highlands of Mars, is one of four highland paterae thought to be structurally associated with the Hellas basin. The highland paterae are Hesperian in age and among the oldest central vent volcanoes on Mars. The morphology and distribution of units in the eroded shield of TP are consistent with the emplacement of pyroclastic flows. A large flank unit extending from TP to the SW contains well-defined lava flow lobes and leveed channels. This flank unit is the first definitive evidence of effusive volcanic activity associated with the highland paterae and may include the best preserved lava flows observed in the Southern Hemisphere of Mars. Flank flow unit averages, channelized flow, flow thickness, and yield strength estimates are discussed. Analysis suggests the temporal evolution of Martian magmas.

  15. A rock- and paleomagnetic study of a Holocene lava flow in Central Mexico

    NARCIS (Netherlands)

    Vlag, P.; Alva-Valdivia, L.; Boer, C.B. de; Gonzalez, S.; Urrutia-Fucugauchi, J.

    2002-01-01

    Magnetic measurements of the Tres Cruces lava flow (ca. 8500 years BP, Central Mexico) show the presence of two remanence carriers, a Ti-rich titanomagnetite with a Curie temperature between 350 and 400 °C and a Ti-poor magnetite with a Curie temperature close to 580°C. Magnetic changes after heatin

  16. Perception of Lava Flow Hazards and Risk at Mauna Loa and Hualalai Volcanoes, Kona, Hawaii

    Science.gov (United States)

    Gregg, C. E.; Houghton, B. F.; Johnston, D. M.; Paton, D.; Swanson, D. A.

    2001-12-01

    The island of Hawaii is composed of five sub-aerially exposed volcanoes, three of which have been active since 1801 (Kilauea, Mauna Loa, Hualalai). Hawaii has the fastest population growth in the state and the local economy in the Kona districts (i.e., western portion of the island) is driven by tourism. Kona is directly vulnerable to future lava flows from Mauna Loa and Hualalai volcanoes, as well as indirectly from the effects of lava flows elsewhere that may sever the few roads that connect Kona to other vital areas on the island. A number of factors such as steep slopes, high volume eruptions, and high effusion rates, combine to mean that lava flows from Hualalai and Mauna Loa can be fast-moving and hence unusually hazardous. The proximity of lifelines and structures to potential eruptive sources exacerbates societies' risk to future lava flows. Approximately \\$2.3 billion has been invested on the flanks of Mauna Loa since its last eruption in 1984 (Trusdell 1995). An equivalent figure has not yet been determined for Hualalai, but an international airport, several large resort complexes, and Kailua-Kona, the second largest town on the island, are down-slope and within 15km of potential eruptive Hualalai vents. Public and perhaps official understanding of specific lava flow hazards and the perceptions of risk from renewed volcanism at each volcano are proportional to the time lapsed since the most recent eruption that impacted Kona, rather than a quantitative assessment of risk that takes into account recent growth patterns. Lava flows from Mauna Loa and Hualalai last directly impacted upon Kona during the notorious 1950 and circa 1801 eruptions, respectively. Various non-profit organizations; local, state and federal government entities; and academic institutions have disseminated natural hazard information in Kona but despite the intuitive appeal that increased hazard understanding and risk perception results in increased hazard adjustment adoption, this

  17. Tracking lava flow emplacement on the east rift zone of Kilauea, Hawai’i with synthetic aperture radar (SAR) coherence

    Science.gov (United States)

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-01-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu‘u ‘Ō‘ō-Kupaianaha eruption at Kīlauea, Hawai‘i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  18. Numerical experiments on the dynamics of channelised lava flows at Mount Cameroon volcano with the FLOWGO thermo-rheological model

    Science.gov (United States)

    Wantim, M. N.; Kervyn, M.; Ernst, G. G. J.; del Marmol, M. A.; Suh, C. E.; Jacobs, P.

    2013-03-01

    As for many other effusive volcanoes, Mount Cameroon (MC) is a volcano for which only limited information exists on lava flow properties and emplacement dynamics for recent eruptions. This study provides new quantitative constraints for rheological and dynamic characteristics of lava flow effusion for the 1982 and 2000 eruptive events, used to calibrate the FLOWGO thermo-rheological model for these lava flows. The FLOWGO 1-D physical model is used to simulate down-flow evolution of the geometry and rheology of channel-contained cooling-limited lava flows. Morphometric data from historical lava flows were acquired from the field, e.g. channel geometry, levee and background slope, in order to estimate lava yield strength, velocity and effusion rate. Lava density and viscosity were also estimated from compositional data and laboratory methods. To account for uncertainty in the input rheological and geometrical data, three end-member scenarios were used to bracket the potential range in lava channel initial dimension, initial lava temperature and phenocryst content. For each of these scenarios, two crustal growth models were used: one assuming strong insulation due to lava flow surface crusting, the other a much lower crusting rate. Twelve numerical simulations were made per flow and the results were compared against the channel geometry, microlite content, yield strength and viscosity estimates from field and laboratory investigations. Best-fit models where obtained for both the 1982 and 2000 lava flows using a low rate of surface crusting, high initial temperature and low phenocryst content. Model-predicted lengths were within 5% of the actual lengths. Modelled mean effusion rates for the 1982 (52-64 m3 s- 1) and 2000 (10 m3 s- 1) flows closely matched field data derived estimations (26-68 and 9.5 m3 s- 1 respectively). FLOWGO model results are highly sensitive to initial channel dimensions, phenocryst content and the FLOWGO model is unable to reproduce the observed

  19. Communicating Science to Officials and People at Risk During a Slow-Motion Lava Flow Crisis

    Science.gov (United States)

    Neal, C. A.; Babb, J.; Brantley, S.; Kauahikaua, J. P.

    2015-12-01

    From June 2014 through March 2015, Kīlauea Volcano's Púu ´Ō´ō vent on the East Rift Zone produced a tube-fed pāhoehoe lava flow -the "June 27th flow" - that extended 20 km downslope. Within 2 months of onset, flow trajectory towards populated areas in the Puna District caused much concern. The USGS Hawaiian Volcano Observatory (HVO) issued a news release of increased hazard on August 22 and began participating in public meetings organized by Hawai`i County Mayor and Civil Defense two days later. On September 4, HVO upgraded the volcano alert level to WARNING based on an increased potential for lava to reach homes and infrastructure. Ultimately, direct impacts were modest: lava destroyed one unoccupied home and one utility pole, crossed a rural roadway, and partially inundated a waste transfer station, a cemetery, and agricultural land. Anticipation that lava could reach Pāhoa Village and cross the only major access highway, however, caused significant disruption. HVO scientists employed numerous methods to communicate science and hazard information to officials and the at-risk public: daily (or more frequent) written updates of the lava activity, flow front locations and advance rates; frequent updates of web-hosted maps and images; use of the 'lines of steepest descent' method to indicate likely lava flow paths; consistent participation in well-attended community meetings; bi-weekly briefings to County, State, and Federal officials; correspondence with the public via email and recorded phone messages; participation in press conferences and congressional briefings; and weekly newspaper articles (Volcano Watch). Communication lessons both learned and reinforced include: (1) direct, frequent interaction between scientists and officials and at-risk public builds critical trust and understanding; (2) images, maps, and presentations must be tailored to audience needs; (3) many people are unfamiliar with maps (oblique aerial photographs were more effective); (4

  20. Propagation style controls lava-snow interactions

    Science.gov (United States)

    Edwards, B. R.; Belousov, A.; Belousova, M.

    2014-12-01

    Understanding interactions between volcanic eruptions and the cryosphere (a.k.a. glaciovolcanism) is important for climate reconstructions as well as for hazard mitigation at ice-clad volcanoes. Here we present unique field observations of interactions between snowpack and advancing basaltic lava flows during the 2012-13 eruption at Tolbachik volcano, Kamchatka, Russia. Our observations show that lava-snow heat transfer is slow, and that styles of lava propagation control snowpack responses. ‧A‧a and sheet lava flows advance in a rolling caterpillar-track motion on top of the rigid, snowpack substrate with minor lava-snow interaction. In contrast, pahoehoe lava propagates by inflation of lobes beneath/inside the snowpack, producing rigorous lava-snow interaction via meltwater percolation down into the incandescent lava causing production of voluminous steam, rapid surface cooling and thermal shock fragmentation. The textures produced by pahoehoe-snowpack interactions are distinctive and, where observed at other sites, can be used to infer syn-eruption seasonality and climatic conditions.

  1. Inflation Features of the Distal Pahoehoe Portion of the 1859 Mauna Loa Flow, Hawaii; Implications for Evaluating Planetary Lava Flows

    Science.gov (United States)

    Zimbelman, J. R.; Garry, W. B.; Bleacher, Jacob E.; Crumpler, L S.

    2011-01-01

    The 1859 eruption of Mauna Loa, Hawaii, resulted in the longest subaerial lava flow on the Big Island. Detailed descriptions were made of the eruption both from ships and following hikes by groups of observers; the first three weeks of the eruption produced an `a`a flow that reached the ocean, and the following 10 months produced a pahoehoe flow that also eventually reached the ocean. The distal portion of the 1859 pahoehoe flow component includes many distinctive features indicative of flow inflation. Field work was conducted on the distal 1859 pahoehoe flow during 2/09 and 3/10, which allowed us to document several inflation features, in or-der evaluate how well inflated landforms might be detected in remote sensing data of lava flows on other planets.

  2. The importance of solid-phase distribution on the oral bioaccessibility of Ni and Cr in soils overlying Palaeogene basalt lavas, Northern Ireland.

    Science.gov (United States)

    Cox, Siobhan F; Chelliah, Merlyn C M; McKinley, Jennifer M; Palmer, Sherry; Ofterdinger, Ulrich; Young, Michael E; Cave, Mark R; Wragg, Joanna

    2013-10-01

    Potentially toxic elements (PTEs) including nickel and chromium are often present in soils overlying basalt at concentrations above regulatory guidance values due to the presence of these elements in underlying geology. Oral bioaccessibility testing allows the risk posed by PTEs to human health to be assessed; however, bioaccessibility is controlled by factors including mineralogy, particle size, solid-phase speciation and encapsulation. X-ray diffraction was used to characterise the mineralogy of 12 soil samples overlying Palaeogene basalt lavas in Northern Ireland, and non-specific sequential extraction coupled with chemometric analysis was used to determine the distribution of elements amongst soil components in 3 of these samples. The data obtained were related to total concentration and oral bioaccessible concentration to determine whether a relationship exists between the overall concentrations of PTEs, their bioaccessibility and the soils mineralogy and geochemistry. Gastric phase bioaccessible fraction (BAF %) ranged from 0.4 to 5.4 % for chromium in soils overlying basalt and bioaccessible and total chromium concentrations are positively correlated. In contrast, the range of gastric phase BAF for nickel was greater (1.4-43.8 %), while no significant correlation was observed between bioaccessible and total nickel concentrations. However, nickel BAF was inversely correlated with total concentration. Solid-phase fractionation information showed that bioaccessible nickel was associated with calcium carbonate, aluminium oxide, iron oxide and clay-related components, while bioaccessible chromium was associated with clay-related components. This suggests that weathering significantly affects nickel bioaccessibility, but does not have the same effect on the bioaccessibility of chromium.

  3. Flood lavas on Earth, Io and Mars

    Science.gov (United States)

    Keszthelyi, L.; Self, S.; Thordarson, T.

    2006-01-01

    Flood lavas are major geological features on all the major rocky planetary bodies. They provide important insight into the dynamics and chemistry of the interior of these bodies. On the Earth, they appear to be associated with major and mass extinction events. It is therefore not surprising that there has been significant research on flood lavas in recent years. Initial models suggested eruption durations of days and volumetric fluxes of order 107 m3 s-1 with flows moving as turbulent floods. However, our understanding of how lava flows can be emplaced under an insulating crust was revolutionized by the observations of actively inflating pahoehoe flows in Hawaii. These new ideas led to the hypothesis that flood lavas were emplaced over many years with eruption rates of the order of 104 m3 s-1. The field evidence indicates that flood lava flows in the Columbia River Basalts, Deccan Traps, Etendeka lavas, and the Kerguelen Plateau were emplaced as inflated pahoehoe sheet flows. This was reinforced by the observation of active lava flows of ??? 100 km length on Io being formed as tube-fed flow fed by moderate eruption rates (102-103 m3 s-1). More recently it has been found that some flood lavas are also emplaced in a more rapid manner. New high-resolution images from Mars revealed 'platy-ridged' flood lava flows, named after the large rafted plates and ridges formed by compression of the flow top. A search for appropriate terrestrial analogues found an excellent example in Iceland: the 1783-1784 Laki Flow Field. The brecciated Laki flow top consists of pieces of pahoehoe, not aa clinker, leading us to call this 'rubbly pahoehoe'. Similar flows have been found in the Columbia River Basalts and the Kerguelen Plateau. We hypothesize that these flows form with a thick, insulating, but mobile crust, which is disrupted when surges in the erupted flux are too large to maintain the normal pahoehoe mode of emplacement Flood lavas emplaced in this manner could have

  4. Geomagnetic field intensity determination from Pleistocene trachytic lava flows in Jeju Geopark

    Science.gov (United States)

    Jeong, Doohee; Yu, Yongjae; Liu, Qingsong; Jiang, Zhaoxia; Koh, Gi Won; Koh, Dong-Chan

    2014-03-01

    A composite of 28 trachytic lava flows were recovered from the Jeju Geopark Drilling Project (JGDP) in Jeju Geopark, one of the new seven wonders of Nature declared by UNESCO in 2011. Each trachytic lava flow has a tendency to increase in magnetic grain size from the rapidly cooled brecciated margin and vesicle streaked zone downward into the massive crystalline flow interiors. The brecciated margin and vesicle streaked zone of individual trachytic lava flow contains exclusively fine-grained magnetite as inclusions in plagioclase. High-fidelity paleointensity determinations were obtained from 26 (out of 224 examined) samples from JGDP cores. Temporal variation of virtual axial dipole moments (VADMs) calculated from the absolute paleointensity estimates follows the trend of sint-800 data for the interval from ˜80 to ˜360 ka. High VADM from flow 21 possibly represents real intensity peak, as previously recognized high VADM in Japan at ˜336 ka, in Trans-Mexican volcanism ˜339, and in Hawaii ˜340-350 ka. Perhaps such a strong magnetic intensity near ˜325-350 ka might be smoothed out in relative paleointensity records.

  5. Comparison of Natural Dams from Lava Flows and Landslides on the Owyhee River, Oregon

    Science.gov (United States)

    Ely, L. L.; Brossy, C. C.; Othus, S. M.; Orem, C.; Fenton, C.; House, P. K.; O'Connor, J. E.; Safran, E. B.

    2008-12-01

    Numerous large lava flows and mass movements have temporarily dammed the Owyhee River in southeastern Oregon at various temporal and spatial scales. These channel-encroaching events potentially play a significant role in creating and maintaining the geomorphic features of river canyons in uplifted volcanic terranes that compose a significant part of the western U.S. Abundant landslides and lava flows have the capacity to inhibit incision by altering channel slope, width, and bed character, and burying valley- bottom bedrock under exogenous material; or promote incision by generating cataclysmic floods through natural dam failures. The natural dams vary in their source, morphology, longevity and process of removal, which in turn affects the extent and duration of their impact on the river. The 3 most recent lava flows filled the channel 10-75 m deep and flowed up to 26 kilometers downvalley, creating long, low dams that were subject to gradual, rather than catastrophic, removal. In the last 125 ka, the Saddle Butte and West Crater lava dams created reservoirs into which 10-30 meters of silt and sand were deposited. The river overtopped the dams and in most reaches eventually cut a new channel through the adjacent, less resistant bedrock buttresses. Terraces at several elevations downstream and upstream of the West Crater dam indicate periods of episodic incision ranging from 0.28 to 1.7 mm/yr., based on 3He exposure ages on strath surfaces and boulder-rich fluvial deposits. In contrast to the lava dams, outburst flood deposits associated with landslide dams are common along the river. The mechanisms of failure are related to the geologic setting, and include rotational slump complexes, cantilevered blocks and block slides, and massive earthflows. Most large-scale mass movements occur in reaches where the Owyhee canyon incises through stacks of interbedded fluviolacustrine sediments capped with lava flows. The frequently observed association of landslides and flood

  6. Structural and temporal requirements for geomagnetic field reversal deduced from lava flows.

    Science.gov (United States)

    Singer, Brad S; Hoffman, Kenneth A; Coe, Robert S; Brown, Laurie L; Jicha, Brian R; Pringle, Malcolm S; Chauvin, Annick

    2005-03-31

    Reversals of the Earth's magnetic field reflect changes in the geodynamo--flow within the outer core--that generates the field. Constraining core processes or mantle properties that induce or modulate reversals requires knowing the timing and morphology of field changes that precede and accompany these reversals. But the short duration of transitional field states and fragmentary nature of even the best palaeomagnetic records make it difficult to provide a timeline for the reversal process. 40Ar/39Ar dating of lavas on Tahiti, long thought to record the primary part of the most recent 'Matuyama-Brunhes' reversal, gives an age of 795 +/- 7 kyr, indistinguishable from that of lavas in Chile and La Palma that record a transition in the Earth's magnetic field, but older than the accepted age for the reversal. Only the 'transitional' lavas on Maui and one from La Palma (dated at 776 +/- 2 kyr), agree with the astronomical age for the reversal. Here we propose that the older lavas record the onset of a geodynamo process, which only on occasion would result in polarity change. This initial instability, associated with the first of two decreases in field intensity, began approximately 18 kyr before the actual polarity switch. These data support the claim that complete reversals require a significant period for magnetic flux to escape from the solid inner core and sufficiently weaken its stabilizing effect. PMID:15800621

  7. Petrochemistry and origin of basalt breccia from Ban Sap Sawat area, Wichian Buri, Phetchabun, central Thailand

    Directory of Open Access Journals (Sweden)

    Phisit Limtrakun

    2013-08-01

    Full Text Available Thailand is usually considered to be controlled by escape tectonics associated with India-Asia collision during theLate Cenozoic, and basaltic volcanism took place in this extensional period. This volcanism generated both subaqueous andsubaerial lava flows with tholeiitic to alkalic basaltic magma. The subaqueous eruptions represented by the studied WichianBuri basalts, Ban Sap Sawat in particular, are constituted by two main types of volcanic lithofacies, including lava flows andbasalt breccias. The lava flows are commonly porphyritic with olivine and plagioclase phenocrysts and microphenocrysts,and are uncommonly seriate textured. The basalt breccias are strongly vitrophyric texture with olivine and plagioclasephenocrysts and microphenocrysts. Chemical analyses indicate that both lava flows and basalt breccias have similar geochemical compositions, signifying that they were solidified from the same magma. Their chondrite normalized REE patternsand N-MORB normalized patterns are closely analogous to the Early to Middle Miocene tholeiites from central Sinkhote-Alinand Sakhalin, northeastern margin of the Eurasian continent which were erupted in a continental rift environment. The originfor the Wichian Buri basalts show similarity of lava flows and basalt breccias, in terms of petrography and chemical compositions, signifying that they have been formed from the same continental within-plate, transitional tholeiitic magma.

  8. Petrogenesis of Late Cretaceous lava flows from a Ceno-Tethyan island arc: The Raskoh arc, Balochistan, Pakistan

    Science.gov (United States)

    Siddiqui, Rehanul Haq; Qasim Jan, M.; Asif Khan, M.

    2012-10-01

    The Raskoh arc is about 250 km long, 40 km wide and trends in an ENE direction. The oldest rock unit in the Raskoh arc is an accretionary complex (Early to Late Jurassic), which is followed in age by Kuchakki Volcanic Group, the most wide spread unit of the Raskoh arc. The Volcanic Group is mainly composed of basaltic to andesitic lava flows and volcaniclastics, including agglomerate, volcanic conglomerate, breccia and tuff, with subordinate shale, sandstone, limestone and chert. The flows generally form 3-15 m thick lenticular bodies but rarely reach up to 300 m. They are mainly basaltic-andesites with minor basalts and andesites. The main textures exhibited by these rocks are hypocrystalline porphyritic, subcumulophyric and intergranular. The phenocrysts comprise mainly plagioclase (An30-54 in Nok Chah and An56-64 in Bunap). They are embedded in a micro-cryptocrystalline groundmass having the same minerals. Apatite, magnetite, titanomagnetite and hematite occur as accessory minerals. Major, trace and rare earth elements suggest that the volcanics are oceanic island arc tholeiites. Their low Mg # (42-56) and higher FeO (total)/MgO (1.24-2.67) ratios indicate that the parent magma of these rocks was not directly derived from a mantle source but fractionated in an upper level magma chamber. The trace element patterns show enrichment in LILE and depletion in HFSE relative to N-MORB. Their primordial mantle-normalized trace element patterns show marked negative Nb anomalies with positive spikes on K, Ba and Sr which confirm their island arc signatures. Slightly depleted LREE to flat chondrite normalized REE patterns further support this interpretation. The Zr versus Zr/Y and Cr versus Y studies show that their parent magma was generated by 20-30% melting of a depleted mantle source. The trace elements ratios including Zr/Y (1.73-3.10), Ti/Zr (81.59-101.83), Ti/V (12.39-30.34), La/YbN (0.74-2.69), Ta/Yb (0.02-0.05) and Th/Yb (0.11-0.75) of the volcanics are more

  9. Basaltic cannibalism at Thrihnukagigur volcano, Iceland

    Science.gov (United States)

    Hudak, M. R.; Feineman, M. D.; La Femina, P. C.; Geirsson, H.

    2014-12-01

    Magmatic assimilation of felsic continental crust is a well-documented, relatively common phenomenon. The extent to which basaltic crust is assimilated by magmas, on the other hand, is not well known. Basaltic cannibalism, or the wholesale incorporation of basaltic crustal material into a basaltic magma, is thought to be uncommon because basalt requires more energy than higher silica rocks to melt. Basaltic materials that are unconsolidated, poorly crystalline, or palagonitized may be more easily ingested than fully crystallized massive basalt, thus allowing basaltic cannibalism to occur. Thrihnukagigur volcano, SW Iceland, offers a unique exposure of a buried cinder cone within its evacuated conduit, 100 m below the main vent. The unconsolidated tephra is cross-cut by a NNE-trending dike, which runs across the ceiling of this cave to a vent that produced lava and tephra during the ~4 Ka fissure eruption. Preliminary petrographic and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) analyses indicate that there are two populations of plagioclase present in the system - Population One is stubby (aspect ratio 2.1), subhedral to euhedral, and has much higher Ba/Sr ratios. Population One crystals are observed in the cinder cone, dike, and surface lavas, whereas Population Two crystals are observed only in the dike and surface lavas. This suggests that a magma crystallizing a single elongate population of plagioclase intruded the cinder cone and rapidly assimilated the tephra, incorporating the stubbier population of phenocrysts. This conceptual model for basaltic cannibalism is supported by field observations of large-scale erosion upward into the tephra, which is coated by magma flow-back indicating that magma was involved in the thermal etching. While the unique exposure at Thrihnukagigur makes it an exceptional place to investigate basaltic cannibalism, we suggest that it is not limited to this volcanic system. Rather it is a process that likely

  10. Recent advances in the GPUSPH model for the thermal and rheological evolution of lava flows

    Science.gov (United States)

    Zago, Vito; Bilotta, Giuseppe; Cappello, Annalisa; Dalrymple, Robert A.; Fortuna, Luigi; Ganci, Gaetana; Herault, Alexis; Del Negro, Ciro

    2016-04-01

    GPUSPH is a fully three-dimensional model for the simulation of the thermal and rheological evolution of lava flows that relies on the Smoothed Particle Hydrodynamics (SPH) numerical method. Thanks to the Lagrangian, meshless nature of SPH, the model incorporates a more complete physical description of the emplacement process and rheology of lava that considers the free surface, the irregular boundaries represented by the topography, the solidification fronts and the non-Newtonian rheology. Because of the very high degree of parallelism, GPUSPH is implemented very efficiently on high-performance graphics processing units (GPUs) employing the Compute Unified Device Architecture (CUDA), a parallel programming language developed by NVIDIA for GPU computing. GPUSPH follows the very general Herschel-Bulkley rheological model, which encompasses Newtonian, power-law and Bingham flow behaviour and can thus be used to explore in detail the impact of rheology on the behaviour of lava flows and on their emplacement. We present here the first validation tests of the GPUSPH model against well known analytical problems, considering the different rheological models, heat exchanges by thermal conduction and radiation, and providing the relative error estimates.

  11. Evaluation of basalt flows as a waste isolation medium

    International Nuclear Information System (INIS)

    The Basalt Waste Isolation Program within Rockwell Hanford Operations has the responsibility of conducting studies to determine the feasibility of using the basalt formations, which are in the Pacific Northwest and the Hanford Site, as a site for terminal storage of commercial nuclear waste. This program is divided into systems integration, geology, hydrology, engineered barrier studies, engineering testing, and the construction of a near-surface test facility. Brief descriptions of each task are presented

  12. Dendritic lava flows, landslides and terraces around the central Azores islands

    Science.gov (United States)

    Tempera, F.; Mitchell, N. C.; Schmitt, T.; Isidro, E.; Cardigos, F.; Figueiredo, J.; Nunes, J.

    2004-12-01

    Surveying around volcanic ocean islands with sonars has recovered important information on giant landslides, faults and primary volcanic features, but efforts so far have largely been unable to image shallow water coastal areas because of vessel safety. Here we report surveying with a Reson 8160 multibeam sonar aboard a shallow draft research vessel, R/V Arquipelago, which enabled us to survey to less than 10 m water depth around the coasts of Faial, Pico and Sao Jorge islands of the Azores. The data cover coasts that have been growing volcanically, some during historical times. Where the coast has a finite abrasion shelf, the new data show that lava reaching the shore can breach the surf zone and develop a variety of submarine lava structures on the shelf. Many are dendritic in plan-view and some with transverse ribbing similar to pahoehoe flows on land but much larger scale. A variety of divergent flow paths are clearly indicated in the data. Some flows cross the shelf and descend the upper slope beyond the shelf break, providing evidence that a component of growth of the submarine island can include subaerially-originating lava as inferred from sulphur contents in submarine lava dredged from around Hawai'i. Where the abrasion shelf is very narrow or absent, the upper slope of the island contains abundant shallow landslides in the new unstable and steep volcanic material. The data show a variety of other interesting features, such as terraces, volcanic cones, collapse structures, tumuli, faults associated with the Azores plate boundary and sedimentary bedforms produced by interaction of oceanic currents with the island topography and from turbidity currents descending island slopes.

  13. Thermal models for basaltic volcanism on Io

    Science.gov (United States)

    Keszthelyil, L.; McEwen, A.

    1997-01-01

    We present a new model for the thermal emissions from active basaltic eruptions on Io. While our methodology shares many similarities with previous work, it is significantly different in that (1) it uses a field tested cooling model and (2) the model is more applicable to pahoehoe flows and lava lakes than fountain-fed, channelized, 'a'a flows. This model demonstrates the large effect lava porosity has on the surface cooling rate (with denser flows cooling more slowly) and provides a preliminary tool for examining some of the hot spots on Io. The model infrared signature of a basaltic eruption is largely controlled by a single parameter, ??, the average survival time for a lava surface. During an active eruption surfaces are quickly covered or otherwise destroyed and typical values of ?? for a basaltic eruption are expected to be on the order of 10 seconds to 10 minutes. Our model suggests that the Galileo SSI eclipse data are consistent with moderately active to quiescent basaltic lava lakes but are not diagnostic of such activity. Copyright 1997 by the American Geophysical Union.

  14. Lava Flow Hazard Assessment at Fogo Volcano, Cape Verde on the Base of Combined Terrestrial Laser Scanner and Photogrammetric Data

    Science.gov (United States)

    Richter, N.; Favalli, M.; De Zeeuw van Dalfsen, E.; Fornaciai, A.; Fernandes, R. M. S.; Perez, N. M.; Levy, J.; Victoria, S. S.; Walter, T. R.

    2015-12-01

    On November 23, 2014, after almost 20 years of dormancy, a major Hawaiian- to Strombolian-type eruption started at Fogo Volcano, Cape Verde. The eruption was very similar in style to previous eruptions and occurred from a vent at the western flank of the Pico do Fogo stratocone (2829 m). During this eruption, about 200 residential buildings and a significant portion of agricultural land were destroyed by lava flows. Also, the only road was blocked by lava, impeding evacuation and emergency response. As future eruptions could follow a similar pattern, and reconstruction of buildings and infrastructure has commenced, a detailed analysis of the pre- and post-eruptive topography, as well as a comprehensive lava flow hazard and risk assessment are needed. During a field campaign in January 2015, we collected Terrestrial Laser Scanner (TLS) and photogrammetric data. We construct a Digital Elevation Model (DEM) from almost 165 million TLS data points, covering 87.7 % of the new lava flows and most of the Chã das Caldeiras. We use the photogrammetric data and the Structure from Motion (SfM) method to cover the remaining 12.3 % of the affected area. By combining the TLS and SfM datasets, we construct an updated and high-quality DEM, including details on the lava flow morphology and the 2014/2015 eruptive vent. We estimate the total erupted lava volume and area by subtracting a pre-eruptive from the post-eruptive DEM. Based on this dataset, we are able to assess the lava flow hazard by simulating possible lava flow paths using the DOWNFLOW probabilistic code. We use a pre-eruptive DEM to reconstruct the flow paths of the 2014/2015 eruption. The new post-eruptive DEM is used to forecast possible future lava flow paths. We combine the hazard map with information on existing infrastructure (i.e. roads and settlements) in order to estimate the lava flow risk. As a final result we provide up-to-date lava flow hazard and risk maps for Fogo Volcano, Cape Verde.

  15. Nature and extent of lava-flow aquifers beneath Pahute Mesa, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Prothro, L.B.; Drellack, S.L. Jr.

    1997-09-01

    Work is currently underway within the Underground Test Area subproject of the US Department of Energy/Nevada Operations Office Environmental Restoration Program to develop corrective action plans in support of the overall corrective action strategy for the Nevada Test Site as established in the Federal Facility Agreement and Consent Order (FFACO, 1996). A closure plan is currently being developed for Pahute Mesa, which has been identified in the FFACO as consisting of the Western and Central Pahute Mesa Corrective Action Units. Part of this effort requires that hydrogeologic data be compiled for inclusion in a regional model that will be used to predict a contaminant boundary for these Corrective Action Units. Hydrogeologic maps have been prepared for use in the model to define the nature and extent of aquifers and confining units that might influence the flow of contaminated groundwater from underground nuclear tests conducted at Pahute Mesa. Much of the groundwater flow beneath Pahute Mesa occurs within lava-flow aquifers. An understanding of the distribution and hydraulic character of these important hydrogeologic units is necessary to accurately model groundwater flow beneath Pahute Mesa. This report summarizes the results of a study by Bechtel Nevada geologists to better define the hydrogeology of lava-flow aquifers at Pahute Mesa. The purpose of this study was twofold: (1) aid in the development of the hydrostratigraphic framework for Pahute Mesa, and (2) provide information on the distribution and hydraulic character of lava-flow aquifers beneath Pahute Mesa for more accurate computer modeling of the Western and Central Pahute Mesa Corrective Action Units.

  16. Simulation of substrate erosion and sulphate assimilation by Martian low-viscosity lava flows: implications for the genesis of precious metal-rich sulphide mineralisation on Mars

    Science.gov (United States)

    Baumgartner, Raphael; Baratoux, David; Gaillard, Fabrice; Fiorentini, Marco

    2016-04-01

    On Earth, high temperature mafic to ultramafic lava flows, such as komatiites and ferropicrites of the Archean and Proterozic eons, can be hosts to Ni-Cu-PGE sulphide mineralisation. Mechanical/thermo-mechanical erosion and assimilation of sulphur-rich crustal rocks is ascribed as the principal mechanism that leads to sulphide supersaturation, batch segregation and subsequent accumulation of metal-enriched magmatic sulphides (e.g., Bekker et al., Science, 2009). In order to investigate the likelihood of the occurrence of similar sulphide mineralisation in extraterrestrial magmatic systems, we numerically modelled erosion and assimilation during the turbulent emplacement of Martian lavas, some of which display chemical and rheological analogies with terrestrial komatiites and ferropicrites, on a variety of consolidated sedimentary sulphate-rich substrates. The modelling approach relies on the integration of i) mathematical lava erosion models for turbulent flows (Williams et al., J. Geophys. Res., 1998), ii) thermodynamic volatile degassing models (Gaillard et al., Space Sci. Rev., 2013), and iii) formulations on the stability of sulphides (Fortin et al., Geochim. Cosmochim. Acta, 2015). A series of scenarios are examined in which various Martian mafic to ultramafic mantle-derived melts emplace over, and assimilate consolidated sulphate-rich substrates, such as the sedimentary lithologies (i.e., conglomerates, sandstones and mudstones) recently discovered at the Gale Crater landing site. Our modellings show that lavas emplacing over consolidated sedimentary substrate rather than stiff basaltic crust, are governed by relatively high cooling and substrate erosion rates. The rapid assimilation of sulphate, which serves as a strongly oxidising agent, could result in dramatic sulphur loss due to increased volatile degassing rates at fO2 ≳QFM-1. This effect is further enhanced with increased temperature. Nevertheless, sulphide supersaturation in the way of sulphate

  17. Combined use of visible, reflected infrared, and thermal infrared images for mapping Hawaiian lava flows

    Science.gov (United States)

    Abrams, Michael; Abbott, Elsa; Kahle, Anne

    1991-01-01

    The weathering of Hawaiian basalts is accompanied by chemical and physical changes of the surfaces. These changes have been mapped using remote sensing data from the visible and reflected infrared and thermal infrared wavelength regions. They are related to the physical breakdown of surface chill coats, the development and erosion of silica coatings, the oxidation of mafic minerals, and the development of vegetation cover. These effects show systematic behavior with age and can be mapped using the image data and related to relative ages of pahoehoe and aa flows. The thermal data are sensitive to silica rind development and fine structure of the scene; the reflectance data show the degree of oxidation and differentiate vegetation from aa and cinders. Together, data from the two wavelength regions show more than either separately. The combined data potentially provide a powerful tool for mapping basalt flows in arid to semiarid volcanic environments.

  18. The Role of Late-Cenozoic Lava Flows in the Evolution of the Owyhee River Canyon, Oregon

    Science.gov (United States)

    Brossy, C. C.; House, P. K.; Ely, L. L.; O'Connor, J. E.; Safran, E. B.; Bondre, N.; Champion, D. E.; Grant, G.

    2008-12-01

    Over the last 2 Ma, at least six lava flows entered the canyon of the Owyhee River in southeastern Oregon, dramatically and repeatedly altering the river's course and profile. A combination of geochronologic, geochemical, and paleomagnetic analyses accompanied by extensive field mapping shows that these lava flows erupted from upland vents 10s of km from the river, entered the canyon via tributary or rim, and formed blockages sufficient to create lakes. Thick deltas of pillow lavas and rising passage zones in the head of the dams and subaerial lavas downstream of the dam indicate effective damming. The presence of fine grained laminated sediments deposited in the lakes suggests the dams were fairly long lived. Pending OSL dates and ongoing field study of these sediments will shed light on the nature and duration of dam construction and removal. Lava-water interaction during dam construction was extensive, and thick pillow lava deltas are common. In contrast to rivers in other locations, we did not find evidence of pyroclastics such as cinders associated with the dams. The three oldest intracanyon lava flows: the lower undivided Bogus lavas (>1.92 ± 0.22 Ma), the Bogus Rim (1.92 ± 0.22 Ma), and the Greeley Bar lavas (>780 ka), all record the filling of a wide, deep canyon, damming of the Owyhee River, and creation of extensive lakes at elevations 230 to 310 m above the modern river. The three younger lava flows, the Clarks Butte (248 ± 45 ka), the Saddle Butte (~125 ka), and the West Crater (60-90 ka), record the occurrence of similar events but in a narrower, deeper canyon similar to the modern one. Overall, this array of late Cenozoic intracanyon lava flows provides key insights into the long-term incision history of the canyon, possibly including the effect of integration with the Snake River, and supports a model of long-term, regional landscape evolution that is strongly linked to lava-water interactions.

  19. The eruption in Holuhraun, NE Iceland 2014-2015: Real-time monitoring and influence of landscape on lava flow

    Science.gov (United States)

    Jónsdóttir, Ingibjörg; Höskuldsson, Ármann; Thordarson, Thor; Bartolini, Stefania; Becerril, Laura; Marti Molist, Joan; Þorvaldsson, Skúli; Björnsson, Daði; Höskuldsson, Friðrik

    2016-04-01

    The largest eruption in Iceland since the Laki 1783-84 event began in Holuhraun, NE Iceland, on 31 August 2014, producing a lava flow field which, by the end of the eruption on February 27th 2015, covered 84,5 km2 with volume of 1,44 km3. Throughout the event, various satellite images (NOAA AVHRR, MODIS, SUOMI NPP VIIRS, ASTER, LANDSAT7&8, EO-1 ALI & HYPERION, RADARSAT-2, SENTINEL-1, COSMO SKYMED, TERRASAR X) were analysed to monitor the development of activity, identify active flow fronts and channels, and map the lava extent in close collaboration with the on-site field group. Aerial photographs and radar images from the Icelandic Coast Guard Dash 8 aircraft supported this effort. By the end of 2015, Loftmyndir ehf had produced a detailed 3D model of the lava using aerial photographs from 2013 and 2015. The importance of carrying out real-time monitoring of a volcanic eruption is: i) to locate sites of elevated temperature that may be registering new areas of activity within the lava or opening of vents or fissures. ii) To establish and verify timing of events at the vents and within the lava. iii) To identify potential volcanic hazard that can be caused by lava movements, eruption-induced flash flooding, tephra fallout or gas pollution. iv) to provide up-to-date regional information to field groups concerning safety as well as to locate sites for sampling lava, tephra and polluted water. v) to produce quantitative information on magma discharge and lava flow advance, map the lava extent, document the flow morphology and plume/tephra dispersal. During the eruption, these efforts supported mapping of the extent of the lava every 3-4 days on average underpinning the time series of magma discharge calculations. Digitial elevation models from before and after the event, combined with the real-time data series, supports detailed analysis of how landscape affects lava flow in a flat terrain (plane, development of ponds where the lava blocked previous river channels.

  20. Cerberus Fossae and Elysium Planitia Lavas, Mars: Source Vents, Flow Rates, Edifice Styles and Water Interactions

    Science.gov (United States)

    Sakimoto, S. E. H.; Gregg, T. K. P.

    2004-01-01

    The Cerberus Fossae and Elysium Planitia regions have been suggested as some of the youngest martian surfaces since the Viking mission, although there was doubt whether the origins were predominantly volcanic or fluvial. The Mars Global Surveyor and Mars Odyssey Missions have shown that the region is certainly young in terms of the topographic preservation and the youthful crater counts (e.g. in the tens to a few hundred million yrs.). Numerous authors have shown that fluvial and volcanic features share common flow paths and vent systems, and that there is evidence for some interaction between the lava flows and underlying volatiles as well as the use by lavas and water of the same vent system. Given the youthful age and possible water-volcanism interaction environment, we'd like constraints on water and volcanic flux rates and interactions. Here, we model ranges of volcanic flow rates where we can well-constrain them, and consider the modest flow rate results results in context with local eruption styles, and track vent locations, edifice volumes, and flow sources and data.

  1. High-resolution AUV mapping and lava flow ages at Axial Seamount

    Science.gov (United States)

    Clague, D. A.; Paduan, J. B.; Dreyer, B. M.; Caress, D. W.; Martin, J.

    2011-12-01

    Mapping along mid-ocean ridges, as on land, requires identification of flow boundaries and sequence, and ages of some flows to understand eruption history. Multibeam sonars on autonomous underwater vehicles (AUV) now generate 1-m resolution maps that resolve lava pillars, internal flow structures and boundaries, and lava flow emplacement sequences using crosscutting relations and abundance of fissures. MBARI has now mapped the summit caldera floor and rims and the upper south rift zone on Axial Seamount on the Juan de Fuca Ridge. With the advent of the high-resolution bathymetry and the ability to observe flow contacts to determine superposition using ROVs and submersibles, the missing component has been determining absolute ages of the flows. We used the MBARI ROV Doc Ricketts to collect short push cores (<30 cm) of the thin sediment nestled between pillow lava lobes and sieve and then hand-pick planktic foraminifera from the base of the cores to date by AMS 14C. Ages of planktic foraminifera are marine-calibrated in years before present, and provide minimum ages for the underlying flows, as there is probably some basal sediment that is not recovered. 14C ages have been determined for 10 cores near the summit of Axial Seamount and for 6 from the lowermost south rift. Ages of nearby samples commonly yield statistically identical ages, and 2 cores near the center of the caldera had multiple layers dated. These ages systematically increase with depth, indicating that redistribution of sediment by bottom currents does not significantly affect the stratigraphy. We will expand these collections in summer 2011. The coring is accompanied by collection of flow samples for chemistry and video observations to confirm contact locations and flow superposition inferred from the mapping data. Six ages from the lowermost part of the south rift of Axial Seamount include samples on a cone with deep summit crater that is ~16,580 aBP and on 5 flows between 950 and 1510 aBP. Two

  2. Lunar Lava Tube Sensing

    Science.gov (United States)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  3. Emplacement dynamics and lava field evolution of the flood basalt eruption at Holuhraun, Iceland: Observations from field and remote sensing data

    Science.gov (United States)

    Pedersen, Gro; Höskuldsson, Armann; Riishuus, Morten S.; Jónsdóttir, Ingibjörg; Thórdarson, Thorvaldur; Dürig, Tobias; Gudmundsson, Magnus T.; Durmont, Stephanie

    2016-04-01

    The Holuhraun eruption (Aug 2014- Feb 2015) is the largest effusive eruption in Iceland since the Laki eruption in 1783-84, with an estimated lava volume of ~1.6 km3 covering an area of ~83 km2. The eruption provides an unprecedented opportunity to study i) lava morphologies and their emplacement styles, ii) Morphological transitions iii) the transition from open to closed lava pathways and iv) the implication of lava pond formation. This study is based on three different categories of data; field data, airborne data and satellite data. The field data include tracking of the lava advancement by Global Positioning System (GPS) measurements and georeferenced GoPro cameras allowing classification of the lava margin morphology. Furthermore, video footage on-site documented lava emplacement. Complimentary observations have been provided from aircraft platforms and by satellite data. Of particular importance for lava morphology observations are 1-12 m/pixel airborne Synthetic Aperture Radar (SAR) images (x-band), as well as SAR data from TerraSAR-X and COSMO-SkyMed satellites. The Holuhraun lava field comprises a continuum of morphologies from pāhoehoe to 'a'ā, which have varied temporally and spatially. Shelly pāhoehoe lava was the first morphology to be observed (08-29). Spatially, this lava type was not widely distributed, but was emplaced throughout the eruption close to the vent area and the lava channels. Slabby pāhoehoe lava was initially observed the 08-31 and was observed throughout most of the eruption during the high-lava-flux phase of new lava lobe emplacement. 'A'ā lavas were the dominating morphology the first three months of the eruption and was first observed 09-01 like Rubbly pāhoehoe lava. Finally, Spiny pāhoehoe lava was first observed the 09-05 as a few marginal outbreaks along the fairly inactive parts of the 'a'ā lava lobe. However, throughout the eruption this morphology became more important and from mid-November/beginning of December the

  4. Movement of coliform bacteria and nutrients in ground water flowing through basalt and sand aquifers.

    Science.gov (United States)

    Entry, J A; Farmer, N

    2001-01-01

    Large-scale deposition of animal manure can result in contamination of surface and ground water and in potential transfer of disease-causing enteric bacteria to animals or humans. We measured total coliform bacteria (TC), fecal coliform bacteria (FC), NO3, NH4, total P, and PO4 in ground water flowing from basalt and sand aquifers, in wells into basalt and sand aquifers, in irrigation water, and in river water. Samples were collected monthly for 1 yr. Total coliform and FC numbers were always higher in irrigation water than in ground water, indicating that soil and sediment filtered most of these bacteria before they entered the aquifers. Total coliform and FC numbers in ground water were generally higher in the faster flowing basalt aquifer than in the sand aquifer, indicating that the slower flow and finer grain size may filter more TC and FC bacteria from water. At least one coliform bacterium/100 mL of water was found in ground water from both basalt and sand aquifers, indicating that ground water pumped from these aquifers is not necessarily safe for human consumption according to the American Public Health Association and the USEPA. The NO3 concentrations were usually higher in water flowing from the sand aquifer than in water flowing from the basalt aquifer or in perched water tables in the basalt aquifer. The PO4 concentrations were usually higher in water flowing from the basalt aquifer than in water flowing from the sand aquifer. The main concern is fecal contamination of these aquifers and health consequences that may arise from human consumption.

  5. The Taylor Creek Rhyolite of New Mexico: a rapidly emplaced field of lava domes and flows

    Science.gov (United States)

    Duffield, Wendell A.; Dalrymple, G. Brent

    1990-08-01

    The Tertiary Taylor Creek Rhyolite of southwest New Mexico comprises at least 20 lava domes and flows. Each of the lavas was erupted from its own vent, and the vents are distributed throughout a 20 km by 50 km area. The volume of the rhyolite and genetically associated pyroclastic deposits is at least 100 km3 (denserock equivalent). The rhyolite contains 15% 35% quartz, sanidine, plagioclase, ±biotite, ±hornblende phenocrysts. Quartz and sanidine account for about 98% of the phenocrysts and are present in roughly equal amounts. With rare exceptions, the groundmass consists of intergrowths of fine-grained silica and alkali feldspar. Whole-rock major-element composition varies little, and the rhyolite is metaluminous to weakly peraluminous; mean SiO2 content is about 77.5±0.3%. Similarly, major-element compositions of the two feldsparphenocryst species also are nearly constant. However, whole-rock concentrations of some trace-elements vary as much as several hundred percent. Initial radiometric age determinations, all K-Ar and fission track, suggest that the rhyolite lava field grew during a period of at least 2 m.y. Subsequent 40Ar/39Ar ages indicate that the period of growth was no more than 100 000 years. The time-space-composition relations thus suggest that the Taylor Creek Rhyolite was erupted from a single magma reservoir whose average width was at least 30 km, comparable in size to several penecontemporaneous nearby calderas. However, this rhyolite apparently is not related to a caldera structure. Possibly, the Taylor Creek Phyolite magma body never became sufficiently volatile rich to produce a large-volume pyroclastic eruption and associated caldera collapse, but instead leaked repeatedly to feed many relatively small domes and flows. The new 40Ar/39Ar ages do not resolve preexisting unknown relative-age relations among the domes and flows of the lava field. Nonetheless, the indicated geologically brief period during which Taylor Creek Rhyolite magma was

  6. Magnetic properties and paleointensities as function of depth in a Hawaiian lava flow

    Science.gov (United States)

    de Groot, Lennart V.; Dekkers, Mark J.; Visscher, Martijn; ter Maat, Geertje W.

    2014-04-01

    outcome of paleointensity experiments largely depends on the rock-magnetic properties of the samples. To assess the relation between volcanic emplacement processes and rock-magnetic properties, we sampled a vertical transect in a ˜6 m thick inflated lava flow at Hawaii, emplaced in ˜588 AD. Its rock-magnetic properties vary as function of distance from the flow top; the observations can be correlated to the typical cooling rate profile for such a flow. The top and to a lesser extent the bottom parts of the flow cooled faster and reveal a composition of ˜TM60 in which the magnetic remanence is carried by fine-grained titanomagnetites, relatively rich in titanium, with associated low Curie and unblocking temperatures. The titanomagnetite in the slower cooled central part of the flow is unmixed into the magnetite and ülvospinel end-members as evidenced by scanning electron microscope observation. The remanence is carried by coarse-grained magnetite lamella (˜TM0) with high Curie and unblocking temperatures. The calibrated pseudo-Thellier results that can be accepted yield an average paleointensity of 44.1 ± 2.4 μT. This is in good agreement with the paleointensity results obtained using the thermal IZZI-Thellier technique (41.6 ± 7.4 μT) and a recently proposed record for Hawaii. We therefore suggest that the chance of obtaining a reliable paleointensity from a particular cooling unit can be increased by sampling lavas at multiple levels at different distances from the top of the flow combined with careful preliminary testing of the rock-magnetic properties.

  7. Quantifying glassy and crystalline basalt partitioning in the oceanic crust

    Science.gov (United States)

    Moore, Rachael; Ménez, Bénédicte

    2016-04-01

    The upper layers of the oceanic crust are predominately basaltic rock, some of which hosts microbial life. Current studies of microbial life within the ocean crust mainly focus on the sedimentary rock fraction, or those organisms found within glassy basalts while the potential habitability of crystalline basalts are poorly explored. Recently, there has been recognition that microbial life develops within fractures and grain boundaries of crystalline basalts, therefore estimations of total biomass within the oceanic crust may be largely under evaluated. A deeper understanding of the bulk composition and fractionation of rocks within the oceanic crust is required before more accurate estimations of biomass can be made. To augment our understanding of glassy and crystalline basalts within the oceanic crust we created two end-member models describing basalt fractionation: a pillow basalt with massive, or sheet, flows crust and a pillow basalt with sheeted dike crust. Using known measurements of massive flow thickness, dike thickness, chilled margin thickness, pillow lava size, and pillow lava glass thickness, we have calculated the percentage of glassy versus crystalline basalts within the oceanic crust for each model. These models aid our understanding of textural fractionation within the oceanic crust, and can be applied with bioenergetics models to better constrain deep biomass estimates.

  8. Lava Flow Ages and Geologic Mapping on Mid-ocean Ridges

    Science.gov (United States)

    Clague, D. A.; Paduan, J. B.; Dreyer, B. M.; Caress, D. W.

    2010-12-01

    Geologic mapping of mid-ocean ridges has been hindered by a lack of high-resolution bathymetry and age data. Autonomous underwater vehicles (AUV) with multibeam sonars now produce maps with 1-m resolution. MBARI has collected data since 2006 along the Juan de Fuca and Gorda Ridges, including the 1998 eruptions in summit caldera and upper south rift zone on Axial Seamount, the 1993 and 1982-1991 eruptions on the CoAxial segment, the 1986 pillow mounds and “young sheet flow” on the north Cleft segment, the 1996 eruption on the North Gorda segment, and part of the Endeavour Ridge. The 1-m data allows identification of flow internal structure, boundaries, and emplacement sequences using superposition and abundance of fissures. Geologic maps of young volcanoes on land are constructed using the same principles, constrained by observations of flow contacts and 14C age dates on charcoal from beneath flow margins. In the deep sea, we collect sediment on top of the flows that contains planktic and benthic foraminifera that can be dated using AMS 14C dating. We sampled sediment on flows from the Axial, CoAxial, and North Cleft areas using 30-cm long pushcores deployed from remotely operated vehicles (ROVs). The coring is done with collection of flow samples for chemistry and video observations to confirm contact locations and flow superposition. Cores are inserted until they hit the underlying lava and can be recovered between pillow lobes when the sediment is >~10 cm thick. We recover the basal 1 cm of sediment, sieve to recover foraminifera, and hand-pick for 14C dating. The North Gorda neovolcanic zone at ~3150 m lacks carbonate sediment and therefore ages. Ages of planktic foraminifera are marine calibrated in years before present (aBP). Benthic foraminifera are calibrated against planktic foraminifera from 5 samples. 14C ages obtained from basal sediment from over 40 sites represent minimum ages as there is probably a small amount of unrecovered basal sediment. Ages

  9. Thermal infrared observations of lava flows during the 1984 Mauna Loa eruption

    Science.gov (United States)

    Pieri, D. C.; Gillespie, R.; Kahle, A. B.; Kahle, J.; Baloga, S. M.

    1985-04-01

    Thermal infrared videotape images of the flowing lava streams and the vent areas at 10.6 microns were made, as well as some broadband images in the 8 to 12 micron range (for gas plume detection). These data were calibrated with on-site hand-held radiometer measurements, in-flow thermocouple measurements, and with later laboratory kiln measurements. Infrared video data are useful in quantitatively assessing the pattern and mode of flow thermal losses, particularly with regard to radiative losses from established/incipient floating crust. The general cooling of the flows downstream was readily apparent. Upper reaches of the active flow exhibited nearly crust-free main channels, radiating at about 700 to 800 degrees C. Below about the 7500 foot level (about 8 km from the vent) the flows formed nearly continuous crust and tended to spread, become less well-defined and founder due to a reduction in slope. Nevertheless, in thermal IR observations, the surface trace of the active subsurface channel was visible, radiating at about 500 to 700 degrees C. At the active flow front, most solid crust radiated at temperatures less than 500 to 600 degrees C, however bright high temperature interiors (approximately 900 to 1000 degrees C) were clearly visible though evolving fissures.

  10. Age discrimination among basalt flows using digitally enhanced LANDSAT imagery. [Saudi Arabia

    Science.gov (United States)

    Blodget, H. W.; Brown, G. F.

    1984-01-01

    Digitally enhanced LANDSAT MSS data were used to discriminate among basalt flows of historical to Tertiary age, at a test site in Northwestern Saudi Arabia. Spectral signatures compared favorably with a field-defined classification that permits discrimination among five groups of basalt flows on the basis of geomorphic criteria. Characteristics that contributed to age definition include: surface texture, weathering, color, drainage evolution, and khabrah development. The inherent gradation in the evolution of geomorphic parameters, however, makes visual extrapolation between areas subjective. Therefore, incorporation of spectrally-derived volcanic units into the mapping process should produce more quantitatively consistent age groupings.

  11. Map Showing Lava Inundation Zones for Mauna Loa, Hawaii

    Science.gov (United States)

    Trusdell, F.A.; Graves, P.; Tincher, C.R.

    2002-01-01

    Introduction The Island of Hawaii is composed of five coalesced basaltic volcanoes. Lava flows constitute the greatest volcanic hazard from these volcanoes. This report is concerned with lava flow hazards on Mauna Loa, the largest of the island shield volcanoes. Hilo lies 58 km from the summit of Mauna Loa, the Kona coast 33 km, and the southernmost point of the island 61 km. Hawaiian volcanoes erupt two morphologically distinct types of lava, aa and pahoehoe. The surfaces of pahoehoe flows are rather smooth and undulating. Pahoehoe flows are commonly fed by lava tubes, which are well insulated, lava-filled conduits contained within the flows. The surfaces of aa flows are extremely rough and composed of lava fragments. Aa flows usually form lava channels rather than lava tubes. In Hawaii, lava flows are known to reach distances of 50 km or more. The flows usually advance slowly enough that people can escape from their paths. Anything overwhelmed by a flow will be damaged or destroyed by burial, crushing, or ignition. Mauna Loa makes up 51 percent of the surface area of the Island of Hawaii. Geologic mapping shows that lava flows have covered more than 40 percent of the surface every 1,000 years. Since written descriptions of its activity began in A.D. 1832, Mauna Loa has erupted 33 times. Some eruptions begin with only brief seismic unrest, whereas others start several months to a year following increased seismic activity. Once underway, the eruptions can produce lava flows that reach the sea in less than 24 hours, severing roads and utilities. For example, the 1950 flows from the southwest rift zone reached the ocean in approximately three hours. The two longest flows of Mauna Loa are pahoehoe flows from the 50-kilometer-long 1859 and the 48-kilometer-long 1880-81 eruptions. Mauna Loa will undoubtedly erupt again. When it does, the first critical question that must be answered is: Which areas are threatened with inundation? Once the threatened areas are

  12. Monitoring Inflation and Emplacement During the 2014-2015 Kilauea Lava Flow With an Unmanned Aerial Vehicle

    Science.gov (United States)

    Perroy, R. L.; Turner, N.; Hon, K. A.; Rasgado, V.

    2015-12-01

    Unmanned aerial vehicles (UAVs) provide a powerful new tool for collecting high resolution on-demand spatial data over volcanic eruptions and other active geomorphic processes. These data can be used to improve hazard forecasts and emergency response efforts, and also allow users to economically and safely observe and quantify lava flow inflation and emplacement on spatially and temporally useful scales. We used a small fixed-wing UAV with a modified point-and-shoot camera to repeatedly map the active front of the 2014-2015 Kīlauea lava flow over a one-month period in late 2014, at times with a two-hour repeat interval. An additional subsequent flight was added in July, 2015. We used the imagery from these flights to generate a time-series of 5-cm resolution RGB and near-infrared orthoimagery mosaics and associated digital surface models using structure from motion. Survey-grade positional control was provided by ground control points with differential GPS. Two topographic transects were repeatedly surveyed across the flow surface, contemporaneously with UAV flights, to independently confirm topographic changes observed in the UAV-derived surface models. Vertical errors were generally 10 cm. Inside our 50 hectare study site, the flow advanced at a rate of 0.47 hectares/day during the first three weeks of observations before abruptly stalling out 4 m. New outbreak areas, both on the existing flow surface and along the flow margins, were readily mapped across the study area. We detected sinuous growing inflation ridges within the flow surface that correlated with subsequent outbreaks of new lava, suggesting that repeat UAV flights can provide a means of better predicting pahoehoe lava flow behavior over flat or uneven topography. Our results show that UAVs can generate accurate and digital surface models quickly and inexpensively over rapidly changing active pahoehoe lava flows.

  13. Controls on lava-snow interactions from propogation styles during the 2012-13 Tolbachik eruption

    Science.gov (United States)

    Edwards, Benjamin; Belousov, Alexander; Belousov, Marina

    2014-05-01

    Knowledge of how volcanism interacts with hydrosphere/cryosphere is critical for understanding the functioning and evolution of the Earth, establishing volcanism-climate linkages, and estimations of related hazards. Until now, no special studies have been focused on interactions between snowpack and advancing incandescent lava during volcanic eruptions, even though snow is the most widely distributed form of solid H2O on the planet. It was thought a priori that snow might melt rapidly in front of active lava flows producing vigorous floods. Here we present results of unique field observations made in the snowpack in front of advancing basaltic lava flows during the 2012-13 eruption at Tolbachik volcano, Kamchatka, Russia. Our observations in the first time demonstrate that in reality heat transfer through lava/snow boundary occurs relatively slowly, so that melting of the majority of the snow pack occurs over the span of several hours-days after emplacement of the lava flows, producing only local and sporadic meltwater floods. Two fundamentally different styles of lava propagation result in two strikingly different responses of snowpack: i) 'a'a lava advancing in a rolling caterpillar-track motion propagates on top of snowpack; the melt water accumulates in (saturates) the layer of snow buried underneath the lava flow and does not interact notably with the lava material, and ii) pahoehoe lava advancing as inflating lobes propagates beneath/inside snowpack, locally generating slowly growing 'snow-domes'; the melt water precipitates down into incandescent lava producing chilling and local thermal shock/quench fragmentation (minor hyaloclastite production). Our observations show that lava-snow interactions can vary significantly depending on styles of flow front advance. Lava flows emplaced over areas covered with snow bear features that can be distinguished in old stratigraphic sequences and used for paleoclimatic reconstructions on Earth, Mars and other planets.

  14. High-Resolution AUV Mapping Reveals Structural Details of Submarine Inflated Lava Flows

    Science.gov (United States)

    Paduan, J.; Clague, D. A.; Caress, D. W.; Thomas, H.; Thompson, D.; Conlin, D.

    2009-12-01

    The MBARI mapping AUV D. Allan B. has now been used to map volcanic terrain at mid-ocean ridges, back-arc spreading centers, and seamounts. These include the summit caldera and upper south rift zone at Axial Volcano, the summit of Davidson Seamount, the Endeavour hydrothermal fields, the Northeast Lau Spreading Center and West Mata Volcano, and, most recently, the CoAxial, North Cleft and North Gorda historic eruption sites on the Juan de Fuca and Gorda Ridges. ROV and submersible dives at most of these sites have provided groundtruth for the textures and features revealed in the roughly 1-m resolution maps. A prominent feature in the maps from four of the sites are inflated flows that did not deflate or drain. These resemble subaerial tumuli but differ in being located on level terrain, apparently atop or very near eruptive vents instead of being in the distal portions of flows. The largest inflated flow at Axial Volcano is on the caldera floor. The main part is 500 by 300 m, and up to 30 m high, with a lobe that extends another 750 m in a sinuous path. It and two nearby, medium-sized inflated flows were first described from sidescan imagery and a submersible dive by Appelgate and Embley (Bull. Volcanol., 54, 447-458, 1992). The AUV maps show clearly the smooth, gently domed relief of the large inflated flow and its sinuous shape on the seafloor, the medium-sized nearby inflated flows, and several additional smaller ones. Particularly striking is a network of 4 to 10 m deep cracks along the crest of each inflation. The cracks occur 30 to 50 m from the margins on all sides of the wider parts of the inflated flows, and become medial cracks along the entire length of the narrow parts, which are nearly triangular in cross-section. An inflation pit 35 m in diameter has a depth equal to the surrounding lava fields. ROV Doc Ricketts dove on these flows in August 2009 and photographed the deeply cracked, uplifted, once flat-lying lineated and ropy sheet flows that form

  15. Using Lava Tube Skylights To Derive Lava Eruption Temperatures on Io

    Science.gov (United States)

    Davies, Ashley Gerard; Keszthelyi, Laszlo P.; McEwen, Alfred S.

    2015-11-01

    The eruption temperature of Io’s silicate lavas constrains Io’s interior state and composition [1]. We have examined the theoretical thermal emission from lava tube skylights above basaltic and ultramafic lava channels. Assuming that tube-fed lava flows are common on Io, skylights could also be common. Skylights present steady thermal emission on a scale of days to months. We find that the thermal emission from such a target, measured at multiple visible and NIR wavelengths, can provide a highly accurate diagnostic of eruption temperature. However, the small size of skylights means that close flybys of Io are necessary, requiring a dedicated Io mission [2]. Observations would ideally be at night or in eclipse. We have modelled the thermal emission spectrum for different skylight sizes, lava flow stream velocities, end-member lava compositions, and skylight radiation shape factors, determining the resulting flow surface cooling rates. We calculate the resulting thermal emission spectrum as a function of viewing geometry. From the resulting 0.7:0.9 μm ratios, we see a clear distinction between basaltic and ultramafic compositions for skylights smaller than 20 m across, even if sub-pixel. Our analysis will be further refined as accurate high-temperature short-wavelength emissivity values become available [3]. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. We thank the NASA OPR Program for support. References: [1] Keszthelyi et al. (2007) Icarus 192, 491-502 [2] McEwen et al. (2015) The Io Volcano Observer (IVO) LPSC-46 abstract 1627 [3] Ramsey and Harris (2015) IAVCEI-2015, Prague, Cz. Rep., abstract IUGG-3519.

  16. Field-based description of rhyolite lava flows of the Calico Hills Formation, Nevada National Security Site, Nevada

    Science.gov (United States)

    Sweetkind, Donald S.; Bova, Shiera C.

    2015-01-01

    Contaminants introduced into the subsurface of Pahute Mesa, Nevada National Security Site, by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas at Pahute Mesa and into the accessible environment is greatest by groundwater transport through fractured volcanic rocks. The 12.9 Ma (mega-annums, million years) Calico Hills Formation, which consists of a mixture of rhyolite lava flows and intercalated nonwelded and bedded tuff and pyroclastic flow deposits, occurs in two areas of the Nevada National Security Site. One area is north of the Rainier Mesa caldera, buried beneath Pahute Mesa, and serves as a heterogeneous volcanic-rock aquifer but is only available to study through drilling and is not described in this report. A second accumulation of the formation is south of the Rainier Mesa caldera and is exposed in outcrop along the western boundary of the Nevada National Security Site at the Calico Hills near Yucca Mountain. These outcrops expose in three dimensions an interlayered sequence of tuff and lava flows similar to those intercepted in the subsurface beneath Pahute Mesa. Field description and geologic mapping of these exposures described lithostratigraphic variations within lava flows and assisted in, or at least corroborated, conceptualization of the rhyolite lava-bearing parts of the formation.

  17. Applications of MGS MOC and MOLA Data to Lava Flows: Investigations of Rheology, Topographic Influences and Tectonic Effects

    Science.gov (United States)

    Glaze, Lori S.

    2004-01-01

    Proxemy Research had a grant from NASA to perform scientific research using Mars Global Surveyor (MGS) data to study lava flows on Mars. Here we summarize the scientific progress and accomplishments of this grant. Scientific publications and abstracts of presentations are indicated in the final section.

  18. Asthenosphere-lithosphere interactions in Western Saudi Arabia: Inferences from 3He/4He in xenoliths and lava flows from Harrat Hutaymah

    Science.gov (United States)

    Konrad, Kevin; Graham, David W.; Thornber, Carl R.; Duncan, Robert A.; Kent, Adam J. R.; Al-Amri, Abdullah M.

    2016-04-01

    Extensive volcanic fields on the western Arabian Plate have erupted intermittently over the last 30 Ma following emplacement of the Afar flood basalts in Ethiopia. In an effort to better understand the origin of this volcanism in western Saudi Arabia, we analyzed 3He/4He, and He, CO2 and trace element concentrations in minerals separated from xenoliths and lava flows from Harrat Hutaymah, supplemented with reconnaissance He isotope data from several other volcanic fields (Harrat Al Birk, Harrat Al Kishb and Harrat Ithnayn). Harrat Hutaymah is young (earth element signature. 3He/4He values of ~ 6.8 RA are also commonly found in spinel lherzolites from harrats Ithnayn, Al Birk, and from Zabargad Island in the Red Sea. Olivine from non-xenolith-bearing lava flows at Hutaymah spans the He isotope range of the xenoliths. The lower 3He/4He in the anhydrous spinel lherzolites appears to be tied to remnant Proterozoic lithosphere prior to metasomatic fluid overprinting. Elevated 3He/4He in the western harrats has been observed only at Rahat (up to 11.8 RA; Murcia et al., 2013), a volcanic field situated above thinned lithosphere beneath the Makkah-Medinah-Nafud volcanic lineament. Previous work established that spinel lherzolites at Hutaymah are sourced near the lithosphere-asthenosphere boundary (LAB), while other xenolith types there are derived from shallower depths within the lithosphere itself (Thornber, 1992). Helium isotopes are consistent with melts originating near the LAB beneath many of the Arabian harrats, and any magma derived from the Afar mantle plume currently appears to be of minor importance.

  19. Direct observation of a submarine volcanic eruption from a sea-floor instrument caught in a lava flow.

    Science.gov (United States)

    Fox, C G; Chadwick, W W; Embley, R W

    2001-08-16

    Our understanding of submarine volcanic eruptions has improved substantially in the past decade owing to the recent ability to remotely detect such events and to then respond rapidly with synoptic surveys and sampling at the eruption site. But these data are necessarily limited to observations after the event. In contrast, the 1998 eruption of Axial volcano on the Juan de Fuca ridge was monitored by in situ sea-floor instruments. One of these instruments, which measured bottom pressure as a proxy for vertical deformation of the sea floor, was overrun and entrapped by the 1998 lava flow. The instrument survived-being insulated from the molten lava by the solidified crust-and was later recovered. The data serendipitously recorded by this instrument reveal the duration, character and effusion rate of a sheet flow eruption on a mid-ocean ridge, and document over three metres of lava-flow inflation and subsequent drain-back. After the brief two-hour eruption, the instrument also measured gradual subsidence of 1.4 metres over the next several days, reflecting deflation of the entire volcano summit as magma moved into the adjacent rift zone. These findings are consistent with our understanding of submarine lava effusion, as previously inferred from seafloor observations, terrestrial analogues, and laboratory simulations. PMID:11507638

  20. Mono Lake or Laschamp geomagnetic event recorded from lava flows in Amsterdam Island (southeastern Indian Ocean)

    CERN Document Server

    Carvallo, C; Ruffet, G; Henry, B I; Poidras, T; Carvallo, Claire; Camps, Pierre; Ruffet, Gilles; Henry, Bernard; Proxy, Thierry Poidras

    2003-01-01

    We report a survey carried out on basalt flows from Amsterdam Island in order to check the presence of intermediate directions interpreted to belong to a geomagnetic field excursion within the Brunhes epoch, completing this paleomagnetic record with paleointensity determinations and radiometric dating. The directional results corroborate the findings by Watkins and Nougier (1973) : normal polarity is found for two units and an intermediate direction, with associated VGPs close to the equator, for the other two units. A notable result is that these volcanic rocks are well suited for absolute paleointensity determinations. Fifty percent of the samples yields reliable intensity values with high quality factors. An original element of this study is that we made use of the PTRM-tail test of Shcherbakova et al. (2000) to help in the interpretation of the paleointensity measurements. Doing thus, only the high temperature intervals, beyond 400 degres C, were retained to obtain the most reliable estimate of the streng...

  1. Bringing the Volcano to the Students: The Syracuse University LAVA Project

    Science.gov (United States)

    Karson, J.; Wysocki, B.; Kissane, M. T.

    2011-12-01

    A collaborative effort between the Department of Earth Sciences and Sculpture Department at Syracuse University has resulted in the facility to make natural-scale lava flows in a laboratory environment for K-university students and the general public. Using a large, gas-fired, furnace with a tilting crucible, basaltic gravel is heated at temperatures of 1100° to 1300°C resulting in up to 800 lbs of homogeneous, basaltic lava. Lava is poured over a variety of surfaces including rock slab, wet or dry sand, ice and dry ice. A ceramic funnel permits pouring into and under water. Differing set-ups provide analogs for a wide range of terrestrial, marine, and extraterrestrial lava flows. Composition is held constant, but varying key parameters such as temperature, pouring (effusion) rate, and slope result in different flow morphologies including ropey to toey pahoehoe, inflated flows, channelized flows with levees, and hyaloclastites. Typical flows are 2-4 m long and class experiences. Students and instructors from K-12 classes as well as university classes are spectators and active participants in the lava flow events, commonly proposing experiments before or during flows. Lava flows are incorporated into labs for Earth Science classes and also used for artistic creations in the Sculpture program. Although students have access to still images and video of natural lava flows from active volcanoes, there is no substitute for "being there" and experiencing the spectacle of viscous, incandescent orange, lava flowing over the surface in a blast of heat. Grabbing student attention in this environment opens the door to discussions ranging from the nature of Earth materials (solid vs. liquid, rock vs glass, viscous vs brittle, etc.) to major planetary processes.

  2. The 2014-2015 Pāhoa lava flow crisis at Kīlauea Volcano, Hawai‘i: Disaster avoided and lessons learned

    Science.gov (United States)

    Poland, Michael; Orr, Tim; Kauahikaua, James P.; Brantley, Steven R.; Babb, Janet; Patrick, Matthew R.; Neal, Christina; Anderson, Kyle R.; Antolik, Loren; Burgess, Matthew K.; Elias, Tamar; Fuke, Steven; Fukunaga, Pauline; Johanson, Ingrid; Kagimoto, Marian; Kamibayashi, Kevan P.; Lee, Lopaka; Miklius, Asta; Million, William; Moniz, Cyril J.; Okubo, Paul G.; Sutton, Andrew; Takahashi, T. Jane; Thelen, Weston A.; Tollett, Willam; Trusdell, Frank A.

    2016-01-01

    Lava flow crises are nothing new on the Island of Hawai‘i, where their destructive force has been demonstrated repeatedly over the past several hundred years. The 2014–2015 Pāhoa lava flow crisis, however, was unique in terms of its societal impact and volcanological characteristics. Despite low effusion rates, a long-lived lava flow whose extent reached 20 km (the longest at Kīlauea Volcano in the past several hundred years) was poised for months to impact thousands of people, although direct impacts were ultimately minor (thus far). Careful observation of the flow reaffirmed and expanded knowledge of the processes associated with pāhoehoe emplacement, including the direct correlation between summit pressurization and flow advance, the influence of existing geologic structures on flow pathways, and the possible relationship between effusion rate and flow length. Communicating uncertainty associated with lava flow hazards was a challenge throughout the crisis, but online distribution of information and direct contact with residents proved to be effective strategies for keeping the public informed and educated about flow progress and how lava flows work (including forecasting limitations). Volcanological and sociological lessons will be important for inevitable future lava flow crises in Hawai‘i and, potentially, elsewhere in the world.

  3. Surface exposure dating of Holocene basalt flows and cinder cones in the Kula volcanic field (western Turkey) using cosmogenic 3He and 10Be

    Science.gov (United States)

    Heineke, Caroline; Niedermann, Samuel; Hetzel, Ralf; Akal, Cüneyt

    2015-04-01

    The Kula volcanic field is the youngest volcanic province in western Anatolia and covers an area of about 600 km2 around the town Kula (Richardson-Bunbury, 1996). Its alkali basalts formed by melting of an isotopically depleted mantle in a region of long-lived continental extension and asthenospheric upwelling (Prelevic et al., 2012). Based on morphological criteria and 40Ar/39Ar dating, four phases of Quaternary activity have been distinguished in the Kula volcanic field (Richardson-Bunbury, 1996; Westaway et al., 2006). The youngest lava flows are thought to be Holocene in age, but so far only one sample from this group was dated by 40Ar/39Ar at 7±2 ka (Westaway et al., 2006). In this study, we analysed cosmogenic 3He in olivine phenocrysts from three basalt flows and one cinder cone to resolve the Holocene history of volcanic eruptions in more detail. In addition, we applied 10Be exposure dating to two quartz-bearing xenoliths found at the surface of one flow and at the top of one cinder cone. The exposure ages fall in the range between ~500 and ~3000 years, demonstrating that the youngest volcanic activity is Late Holocene in age and therefore distinctly younger than previously envisaged. Our results show that the Late Holocene lava flows are not coeval but formed over a period of a few thousand years. We conclude that surface exposure dating of very young volcanic rocks provides a powerful alternative to 40Ar/39Ar dating. References Prelevic, D., Akal, C. Foley, S.F., Romer, R.L., Stracke, A. and van den Bogaard, P. (2012). Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: the case of southwestern Anatolia, Turkey. Journal of Petrology, 53, 1019-1055. Richardson-Bunbury, J.M. (1996). The Kula Volcanic Field, western Turkey: the development of a Holocene alkali basalt province and the adjacent normal-faulting graben. Geological Magazine, 133, 275-283. Westaway, R., Guillou, H., Yurtmen, S., Beck, A

  4. Gusev Rocks Solidified from Lava (False Color)

    Science.gov (United States)

    2006-01-01

    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin. Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy. The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks. As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography to identify rocks and

  5. Gusev Rocks Solidified from Lava (3-D)

    Science.gov (United States)

    2006-01-01

    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin. Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy. The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks. As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography to identify rocks and

  6. Emplacement of subaerial pahoehoe lava sheet flows into water: 1990 Kūpaianaha flow of Kilauea volcano at Kaimū Bay, Hawai`i

    Science.gov (United States)

    Umino, Susumu; Nonaka, Miyuki; Kauahikaua, James P.

    2006-01-01

    Episode 48 of the ongoing eruption of Kilauea, Hawai`i, began in July 1986 and continuously extruded lava for the next 5.5 years from a low shield, Kūpaianaha. The flows in March 1990 headed for Kalapana and inundated the entire town under 15–25 m of lava by the end of August. As the flows advanced eastward, they entered into Kaimū Bay, replacing it with a plain of lava that extends 300 m beyond the original shoreline. The focus of our study is the period from August 1 to October 31, 1990, when the lava buried almost 406,820 m2 of the 5-m deep bay. When lava encountered the sea, it flowed along the shoreline as a narrow primary lobe up to 400 m long and 100 m wide, which in turn inflated to a thickness of 5–6 m. The flow direction of the primary lobes was controlled by the submerged delta below the lavas and by damming up lavas fed at low extrusion rates. Breakout flows through circumferential and axial inflation cracks on the inflating primary lobes formed smaller secondary lobes, burying the lows between the primary lobes and hiding their original outlines. Inflated flow lobes eventually ruptured at proximal and/or distal ends as well as mid-points between the two ends, feeding new primary lobes which were emplaced along and on the shore side of the previously inflated lobes. The flow lobes mapped with the aid of aerial photographs were correlated with daily observations of the growing flow field, and 30 primary flow lobes were dated. Excluding the two repose periods that intervened while the bay was filled, enlargement of the flow field took place at a rate of 2,440–22,640 square meters per day in the bay. Lobe thickness was estimated to be up to 11 m on the basis of cross sections of selected lobes measured using optical measurement tools, measuring tape and hand level. The total flow-lobe volume added in the bay during August 1–October 31 was approximately 3.95 million m3, giving an average supply rate of 0.86 m3/s.

  7. Geology of the Sabie River Basalt Formation in the Southern Kruger National Park

    Directory of Open Access Journals (Sweden)

    R.J. Sweeney

    1986-12-01

    Full Text Available The Sabie River Basalt Formation (SRBF in the central Lebombo is a virtually continuous sequence of basaltic lavas some 2 500 m thick that was erupted 200 - 179 Ma ago. Flows are dominantly pahoehoe in character and vary from 2 m to 20 m in thickness. Dolerite dykes cross-cutting the basalt sequence probably represent feeders to this considerable volcanic event. Volcanological features observed within the SRBF are described. Two chemically distinct basaltic magma types are recognised, the simultaneous eruption of which presents an intriguing geochemical problem as to their origins.

  8. Climate Throughout Geologic Time Was Cooled by Sequences of Explosive Volcanic Eruptions Forming Aerosols That Reflect and Scatter Ultraviolet Solar Radiation and Warmed by Relatively Continuous Extrusion of Basaltic Lava that Depletes Ozone, Allowing More Solar Ultraviolet Radiation to Reach Earth

    Science.gov (United States)

    Ward, P. L.

    2015-12-01

    Active volcanoes of all sizes and eruptive styles, emit chlorine and bromine gases observed to deplete ozone. Effusive, basaltic volcanic eruptions, typical in Hawaii and Iceland, extrude large lava flows, depleting ozone and causing global warming. Major explosive volcanoes also deplete ozone with the same emissions, causing winter warming, but in addition eject megatons of water and sulfur dioxide into the lower stratosphere where they form sulfuric-acid aerosols whose particles grow large enough to reflect and scatter ultraviolet sunlight, causing net global cooling for a few years. The relative amounts of explosive and effusive volcanism are determined by the configuration of tectonic plates moving around Earth's surface. Detailed studies of climate change throughout geologic history, and since 1965, are not well explained by greenhouse-gas theory, but are explained quite clearly at OzoneDepletionTheory.info. Ozone concentrations vary substantially by the minute and show close relationships to weather system highs and lows (as pointed out by Dobson in the 1920s), to the height of the tropopause, and to the strength and location of polar vortices and jet streams. Integrating the effects of volcanism on ozone concentrations and the effects of ozone concentrations on synoptic weather patterns should improve weather forecasting. For example, the volcano Bárðarbunga, in central Iceland, extruded 85 km2 of basaltic lava between August 29, 2014, and February 28, 2015, having a profound effect on weather. Most surprising, more than a week before the March 4 eruption of Eyjafjallajökull in 2010, substantial amounts of ozone were released in the vicinity of the volcano precisely when surface deformation showed that magma first began moving up from sills below 4 km depth. Ozone similarly appears to have been emitted 3.5 months before the Pinatubo eruption in 1991. Readily available daily maps of ozone concentrations may allow early warning of an imminent volcanic

  9. Studies of vesicle distribution patterns in Hawaiian lavas

    Science.gov (United States)

    Walker, George P. L.

    1987-01-01

    Basaltic lava flows are generally vesicular, and the broader facts relating to vesicle distribution have long been established; few studies have yet been made with a view to determining how and when vesicles form in the cooling history of the lava, explaining vesicle shape and size distribution, and gaining enough understanding to employ vesicles as a geological tool. Various avenues of approach exist by which one may seek to gain a better understanding of these ubiquitous structures and make a start towards developing a general theory, and three such avenues have recently been explored. One avenue involves the study of pipe vesicles; these are a well known feature of lava flows and are narrow pipes which occur near the base of many pahoehoe flow units. Another avenue of approach is that presented by the distinctive spongy pahoehoe facies of lava that is common in distal locations on Hawaiian volcanoes. A third avenue of approach is that of the study of gas blisters in lava. Gas blisters are voids, which can be as much as tens of meters wide, where the lava split along a vesicle-rich layer and the roof up-arched by gas pressure. These three avenues are briefly discussed.

  10. Multiple subduction imprints in the mantle below Italy detected in a single lava flow

    Science.gov (United States)

    Nikogosian, Igor; Ersoy, Özlem; Whitehouse, Martin; Mason, Paul R. D.; de Hoog, Jan C. M.; Wortel, Rinus; van Bergen, Manfred J.

    2016-09-01

    Post-collisional magmatism reflects the regional subduction history prior to collision but the link between the two is complex and often poorly understood. The collision of continents along a convergent plate boundary commonly marks the onset of a variety of transitional geodynamic processes. Typical responses include delamination of subducting lithosphere, crustal thickening in the overriding plate, slab detachment and asthenospheric upwelling, or the complete termination of convergence. A prominent example is the Western-Central Mediterranean, where the ongoing slow convergence of Africa and Europe (Eurasia) has been accommodated by a variety of spreading and subduction systems that dispersed remnants of subducted lithosphere into the mantle, creating a compositionally wide spectrum of magmatism. Using lead isotope compositions of a set of melt inclusions in magmatic olivine crystals we detect exceptional heterogeneity in the mantle domain below Central Italy, which we attribute to the presence of continental material, introduced initially by Alpine and subsequently by Apennine subduction. We show that superimposed subduction imprints of a mantle source can be tapped during a melting episode millions of years later, and are recorded in a single lava flow.

  11. Morphology and structure of the 1999 lava flows at Mount Cameroon Volcano (West Africa) and their bearings on the emplacement dynamics of volume-limited flows

    OpenAIRE

    Suh, C Emmanuel; Stansfield, SA; Sparks, RSJ; Njome, MS; Wantim, Mabel Nechia; Ernst, Gerald

    2011-01-01

    The morphology and structure of the 1999 lava flows at Mount Cameroon volcano are documented and discussed in relation to local and source dynamics. Structures are analysed qualitatively and more detailed arguments are developed on the processes of levee formation and systematic links between flow dynamics and levee-channel interface geometry. The flows have clear channels bordered by four main types of levees: initial, accretionary, rubble and overflow levees. Thermally immature pahoehoe lav...

  12. Magnetic properties and paleointensities as function of depth in a Hawai'ian lava flow

    Science.gov (United States)

    Dekkers, M. J.; de Groot, L. V.; ter Maat, G. W.

    2013-12-01

    The outcome of paleointensity experiments largely depends on the rock-magnetic properties of the samples. To assess the relation between volcanic emplacement processes and rock-magnetic properties we sampled a vertical transect in a ~6 m thick inflated lava flow at Hawai'i, with an age of 588 (558 - 640) AD (Rubin et al., 1987, recalibrated with INTCAL.09). This profile was sampled at sixteen levels in the flow; at six of these levels up to twelve samples were taken horizontally to have sufficient sample material for paleointensity experiments. Samples from all levels were rock magnetically characterized by determining hysteresis loops and FORC (first-order-reversal-curve) diagrams, and the low-field susceptibility, all at room temperature. To test for thermochemical alteration the temperature dependence of the low-field susceptibility and magnetization was determined. Overall, rock magnetic properties appear to vary as function of distance from the top; the observations can be correlated to the typical cooling rate profile for such a flow. The solidified crust under which the flow continued to flow during emplacement is ~1.8 m thick. Its rock-magnetic properties - notably the low-field susceptibility and the coercivity ratio - are more variable than those of the inflated part underneath. FORC diagrams indicate a fair portion of very small superparamagnetic particles in the top and to a lesser extent the bottom parts of the flow. In line with their faster cooling the dominant titanomagnetite composition is ~TM60 with associated low Curie and unblocking temperatures. The titanomagnetite in the slower cooled central part of the flow is unmixed into the magnetite (~TM0) and ülvospinel end-members; the remanence has therefore high Curie and unblocking temperatures. FORC diagrams and hysteresis parameters indicate larger pseudo-single-domain particles. We performed both IZZI-Thellier and calibrated pseudo-Thellier (AGU Fall 2012 contribution GP43A-1122, submitted

  13. Lead isotopic systematics for native copper-chalcocite mineralization in basaltic lavas of the Emeishan large igneous province, SW China:Implications for the source of copper

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qian; WANG Dapeng; ZHU Xiaoqing; ZHANG Zhengwei; ZHU Chaohui

    2009-01-01

    The Emeishan continental flood basalt, which is widespread in Yunnan, Guizhou and Sichuan provinces of Southwest China, is the volcanic product of a Permian mantle plume, and native copper-chalcocite mineralization associated with the basalt is very common in the border area of Yunnan and Guizhou provinces. The mineralization occurred in the tuff intercalation and terrestrial sedimentary rock intercalation which were formed during the main period of basalt eruption. The orebodies are controlled by the stratigraphic position and faults. Metal ore minerals in the ores are mainly native copper, chalcocite and tenorite, with small amounts of chalcopyrite, bomite, pyrite and malachite, and sometimes with large amounts of bitumen, carbon and plant debris. Several decades of ore deposits are distributed in the neighboring areas of the two provinces, while most of them are small-scale deposits or only ore occurrences. By comparing the lead isotopic composition of the ores with that of the wall-rocks, cover and basement rocks of various periods, the source of copper in this type of ore deposits was studied in this paper. The results showed that: (1) The Pb isotopic composition of the ores from ten deposits is absolutely different from that of sili-ceous-argillaceus rocks of the Upper Permian Xuanwei Formation, limestones of the Lower Permian Series and Carboniferous, Cambrian sandstone-shale and recta-sedimentary rock and dolomite from the upper part of the Meso-Proterozoic Kunyang Group, This indicates that ore lead was derived neither from the cover rock nor from the basement rocks; (2) Although the Neo-Proterozoic Siman dolomite and silicalite, and dolomite in the lower part of the Kunyang Group are similar in Pb isotopic composition to the ores, lead and copper contents in these rocks are very low and they have not made great contributions to copper mineralization; (3) The ores have the same Pb iso-topic composition as the basalt, the latter being enriched in copper

  14. Reconstructing lava flow emplacement processes at the hot spot-affected Galápagos Spreading Center, 95°W and 92°W

    Science.gov (United States)

    McClinton, Tim; White, Scott M.; Colman, Alice; Sinton, John M.

    2013-08-01

    Volcanic eruptions at mid-ocean ridges (MORs) control the permeability, internal structure, and architecture of oceanic crust, thus establishing the foundation for the evolution of the ocean basins. To better understand the emplacement of submarine lava flows at MORs, we have integrated submersible-based geologic mapping with remote sensing techniques to characterize the lava flow morphology within previously mapped lava flow fields produced during single eruptive episodes at the Galápagos Spreading Center (GSC). Detailed attributes describing the surface geometry and texture of the lava flows have been extracted from high-resolution sonar data and combined with georeferenced visual observations from submersible dives and camera tows; based on signatures contained in these data, a fuzzy logic-based classification algorithm categorized lava flow morphology as pillows, lobates, or sheets. The resulting digital thematic maps offer an unprecedented view of GSC lava morphology, collectively covering 77 km2 of ridge axis terrain at a resolution of 2 m × 2 m. Error assessments with independent visual reference data indicate approximately 90% agreement, comparable to subaerial classification studies. The digital lava morphology maps enable quantitative, spatially comprehensive measurements of the abundance and distribution of lava morphologies over large areas of seafloor and within individual eruptive units. A comparison of lava flow fields mapped at lower- and higher-magma-supply settings (95° and 92°W, respectively) indicates that effusion rates increase along with magma supply and independent of spreading rate at the GSC, although a complete range of eruptive behavior exists at each setting.

  15. Flow-by-flow chemical stratigraphy and evolution of thirteen Serra Geral Group basalt flows from Vista Alegre, southernmost Brazil

    Directory of Open Access Journals (Sweden)

    Viter M Pinto

    2011-06-01

    Full Text Available The geochemical characterization of thirteen Serra Geral Group flows in the Vista Alegre region (RS-SC, southern Brazil, displays the homogeneous basaltic composition near 50 wt.% SiO2. Each of the five basal flows (Pitanga-type, high-Ti/Y ~600, TiO2 > 3 wt.% and eight upper flows (Paranapanema-type, medium Ti/Y ~400, TiO2 > 2 wt.% can be identified from their chemical composition; sets of flows have parallel variation in chemical composition. The flow-by-flowcorrelation in four sections shows the horizontal position of the flows in three profiles and an approximately 200-m downdrop of the Itapiranga block with respect to the Frederico Westphalen block. The world-class amethyst geode mineralization and the systematic presence of native copper in the basalts make the correlation of great geological and economic significance.A caracterização geoquímica de treze derrames do Grupo Serra Geral na região de Vista Alegre (RS e SC, sul do Brasil, exibe uma composição basáltica homogênea próxima a 50% de SiO2. Os cinco derrames basais são classificados quimicamente como tipo Pitanga (alto Ti/Y ~600 e TiO2 > 3 em peso percentual, os demais oito derrames possuem médio Ti/Y ~400 com TiO2 ~2.5 em peso percentual, sendo classificados como magma tipo Paranapanema. Cada derrame pode ser identificado através de sua composição química e correlacionado, com variação paralela entre os perfis estudados. A correlação derrame a derrame nos quatro perfis demonstra uma posição horizontal em três perfis e um rejeito vertical de aproximadamente 200 m do bloco Itapiranga em relação ao bloco Frederico Westphalen. A presença de jazidas de ametista em geodos e a sistemática ocorrência de cobre nativo nos basaltos da região tornam a correlação de grande significado geológico e econômico.

  16. Melt migration in basalt columns driven by crystallization-induced pressure gradients.

    Science.gov (United States)

    Mattsson, Hannes B; Caricchi, Luca; Almqvist, Bjarne S G; Caddick, Mark J; Bosshard, Sonja A; Hetényi, György; Hirt, Ann M

    2011-01-01

    The structure of columnar-jointed lava flows and intrusions has fascinated people for centuries and numerous hypotheses on the mechanisms of formation of columnar jointing have been proposed. In cross-section, weakly developed semicircular internal structures are a near ubiquitous feature of basalt columns. Here we propose a melt-migration model, driven by crystallization and a coeval specific volume decrease inside cooling and solidifying columns, which can explain the observed macroscopic features in columnar-jointed basalts. We study basalts from Hrepphólar (Iceland), combining macroscopic observations, detailed petrography, thermodynamic and rheological modelling of crystallization sequences, and Anisotropy of Magnetic Susceptibility (AMS) of late crystallizing phases (that is, titanomagnetite). These are all consistent with our proposed model, which also suggests that melt-migration features are more likely to develop in certain evolved basaltic lava flows (with early saturation of titanomagnetite), and that the redistribution of melt within individual columns can modify cooling processes.

  17. Preliminary assessment for the use of VORIS as a tool for rapid lava flow simulation at Goma Volcano Observatory, Democratic Republic of the Congo

    Science.gov (United States)

    Syavulisembo, A. M.; Havenith, H.-B.; Smets, B.; d'Oreye, N.; Marti, J.

    2015-10-01

    Assessment and management of volcanic risk are important scientific, economic, and political issues, especially in densely populated areas threatened by volcanoes. The Virunga volcanic province in the Democratic Republic of the Congo, with over 1 million inhabitants, has to cope permanently with the threat posed by the active Nyamulagira and Nyiragongo volcanoes. During the past century, Nyamulagira erupted at intervals of 1-4 years - mostly in the form of lava flows - at least 30 times. Its summit and flank eruptions lasted for periods of a few days up to more than 2 years, and produced lava flows sometimes reaching distances of over 20 km from the volcano. Though most of the lava flows did not reach urban areas, only impacting the forests of the endangered Virunga National Park, some of them related to distal flank eruptions affected villages and roads. In order to identify a useful tool for lava flow hazard assessment at Goma Volcano Observatory (GVO), we tested VORIS 2.0.1 (Felpeto et al., 2007), a freely available software (http://www.gvb-csic.es) based on a probabilistic model that considers topography as the main parameter controlling the lava flow propagation. We tested different parameters and digital elevation models (DEM) - SRTM1, SRTM3, and ASTER GDEM - to evaluate the sensitivity of the models to changes in input parameters of VORIS 2.0.1. Simulations were tested against the known lava flows and topography from the 2010 Nyamulagira eruption. The results obtained show that VORIS 2.0.1 is a quick, easy-to-use tool for simulating lava-flow eruptions and replicates to a high degree of accuracy the eruptions tested when input parameters are appropriately chosen. In practice, these results will be used by GVO to calibrate VORIS for lava flow path forecasting during new eruptions, hence contributing to a better volcanic crisis management.

  18. Satellite Measurements of Lava Extrusion Rate at Volcán Reventador, Ecuador

    Science.gov (United States)

    Arnold, D. W. D.; Biggs, J.; Ebmeier, S. K.; Vallejo Vargas, S.; Naranjo, M. F.

    2015-12-01

    The extrusion rate of lava at active volcanoes provides a principle control on the style of eruptive behavior and the extent of lava flows, while also providing information about magma supply to the volcano. Measurements of extrusion rate at active volcanoes are therefore important for assessing hazard, and improving understanding of volcanic systems. Volcán Reventador is an asymmetric stratovolcano in the Cordillera Real of Ecuador. The largest historically observed eruption at Reventador in 2002 has been followed by several periods of eruptive activity. Eruptions are characterised by effusion of andesitic to basaltic-andesitic lava flows, and Vulcanian explosions. The ongoing eruption at Reventador therefor provides an excellent target for investigating the link between effusion rate, explosivity, and lava flow behaviour. Satellite InSAR provides regular observations of the volcano, even during night or periods of cloud cover. We use a dataset of Radarsat-2 and TanDEM-X imagery, with intervals of 11 to 192 days, over the period 2011 to 2014 to measure the extent, thickness and volume of new lava flows at Reventador. We use radar amplitude and inteferometric coherence to map 25 individual lava flows, as well as pyroclastic deposits and changes in lava dome morphology. We observe 43 Mm3 of deposits over a three year period, giving an average effusion rate of 0.5 m3s-1. We do not observe any ground deformation due to magmatic sources at Reventador, therefore variations in lava effusion rate can be interpreted as changes in the magma supply to the volcano. We investigate the link between variations in effusion rate and the length, area, thickness, and aspect ratio of lava flows, and the explosive-effusive transition. We also characterise the relationship between lava flow age, thickness, and subsidence rate.

  19. Identification of Columbia River basalt flows from deep cores in the Pasco Basin based on trace element abundances

    Energy Technology Data Exchange (ETDEWEB)

    Fruchter, J.S.; Rancitelli, L.A.

    1976-03-31

    Samples of basalt from three deep core holes drilled in the Pasco Basin, Washington (DDH-3, DH-4, DH-5) were analyzed by instrumental neutron activation (INAA) for up to fifteen trace and major elements. These analyses were used to assign each basalt flow to one of a series of previously defined chemical types of the Columbia River Basalt Group. All of the flows except the two flows at the bottom of well DDH-3 were clearly assignable to one of the defined chemical types. These two flows apparently represent new, as yet undefined chemical types. Average values and standard deviations for compositions of each of the chemical types found in the three wells are presented along with two-element variation diagrams for the geochemically important pair La-Cr, La-Fe, La-Th and La-Sc. The assignment of the flows to known chemical types accomplished in this study was very helpful in relating the basalts in the core holes to stratigraphically defined basalt flows in surface sections. A correlation diagram relating the flows in the core holes to one another on the basis of chemical type is presented.

  20. The Effects of Heterogeneity in Magma Water Concentration on the Development of Flow Banding and Spherulites in Rhyolitic Lava

    Energy Technology Data Exchange (ETDEWEB)

    Seaman, S.; Dyar, D; Marinkovic, N

    2009-01-01

    This study focuses on the origin of flow-banded rhyolites that consist of compositionally similar darker and lighter flow bands of contrasting texture and color. Infrared radiation was used to obtain Fourier transform infrared (FTIR) spectra from which water concentrations were calculated, and to map variations in water concentrations across zones of spherulites and glass from the 23 million year old Sycamore Canyon lava flow of southern Arizona. Lighter-colored, thicker flow bands consist of gray glass, fine-grained quartz, and large (1.0 to 1.5 mm) spherulites. Darker-colored, thinner flow bands consist of orange glass and smaller (0.1 to 0.2 mm) spherulites. The centers of both large and small spherulites are occupied by either (1) a quartz or sanidine crystal, (2) a granophyric intergrowth, or (3) a vesicle. Mapping of water concentration (dominantly OH- in glass and OH- and H2O in sanidine crystals) illustrates fluctuating water availability during quenching of the host melt. Textures of large spherulites in the lighter (gray) bands in some cases indicate complex quenching histories that suggest that local water concentration controlled the generation of glass versus crystals. Small spherulites in darker (orange) bands have only one generation of radiating crystal growth. Both the glass surrounding spherulites, and the crystals in the spherulites contain more water in the gray flow bands than in the orange flow bands. Flow banding in the Sycamore Canyon lava flow may have originated by the stretching of a magma that contained pre-existing zones (vesicles or proto-vesicles) of contrasting water concentration, as the magma flowed in the conduit and on the surface. Variation in the original water concentration in the alternating layers is interpreted to have resulted in differences in undercooling textures in spherulites in the lighter compared to the darker flow bands.

  1. Hawaii Volcanism: Lava Forms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Over the last several million years the Hawaiian Islands have been built of successive lava flows. They are the most recent additions in a long line of volcanoes...

  2. Effect of Dissolved Organic Matter on Basalt Weathering Rates under Flow Conditions

    Science.gov (United States)

    Dontsova, K.; Steefel, C. I.; Chorover, J. D.

    2009-12-01

    Rock weathering is an important aspect of soil formation that is tightly coupled to the progressive colonization of grain surfaces by microorganisms and plant tissue, both of which are associated with the exudation of complexing ligands and reducing equivalents that are incorporated into dissolved organic matter. As part of a larger hillslope experimental study being designed for Biosphere 2 (Oracle, AZ), we seek to determine how the presence and concentration of dissolved organic matter affects the incongruent dissolution rates of basaltic tuff. Saturated flow column experiments are being conducted using plant-derived soluble organic matter solutions of variable concentrations, and comparisons are being made to experiments conducted with malic acid, a low-molecular weight organic acid commonly exuded into the rhizosphere. Dissolved organic matter was extracted from Ponderosa Pine forest floor and was characterized for aqueous geochemical parameters (pH, EC, ion balance, DOC/TN) and also for DOC composition (UV-Vis, FTIR spectroscopy). Column effluents are being analyzed for major and trace cations, anions, silica and organic solutes. Dissolution rates of primary minerals and precipitation rates of secondary phases will be estimated by fitting the data to a numerical reactive transport model, CrunchFlow2007. At the end of the fluid flow experiment, column materials will be analyzed for biogeochemical composition to detect preferential dissolution of specific phases, the precipitation of new ones, and to monitor the associated formation of biofilms. The influence of organic solutions on weathering patterns of basalt will be discussed.

  3. Asthenosphere–lithosphere interactions in Western Saudi Arabia: Inferences from 3He/4He in xenoliths and lava flows from Harrat Hutaymah

    Science.gov (United States)

    Konrad, Kevin;; Graham, David W; Thornber, Carl; Duncan, Robert A; Kent, Adam J.R.; Al-Amri, Abdulla

    2016-01-01

    Extensive volcanic fields on the western Arabian Plate have erupted intermittently over the last 30 Ma following emplacement of the Afar flood basalts in Ethiopia. In an effort to better understand the origin of this volcanism in western Saudi Arabia, we analyzed3He/4He, and He, CO2 and trace element concentrations in minerals separated from xenoliths and lava flows from Harrat Hutaymah, supplemented with reconnaissance He isotope data from several other volcanic fields (Harrat Al Birk, Harrat Al Kishb and Harrat Ithnayn). Harrat Hutaymah is young (< 850 ka) and the northeasternmost of the volcanic fields. There is a remarkable homogeneity of 3He/4He trapped within most xenoliths, with a weighted mean of 7.54 ± 0.03 RA (2σ, n = 20). This homogeneity occurs over at least eight different xenolith types (including spinel lherzolite, amphibole clinopyroxenite, olivine websterite, clinopyroxenite and garnet websterite), and encompasses ten different volcanic centers within an area of ~ 2500 km2. The homogeneity is caused by volatile equilibration between the xenoliths and fluids derived from their host magma, as fluid inclusions are annealed during the infiltration of vapor-saturated magmas along crystalline grain boundaries. The notable exceptions are the anhydrous spinel lherzolites, which have a lower weighted mean 3He/4He of 6.8 ± 0.3 RA (2σ, n = 2), contain lower concentrations of trapped He, and have a distinctly depleted light rare earth element signature. 3He/4He values of ~ 6.8 RA are also commonly found in spinel lherzolites from harrats Ithnayn, Al Birk, and from Zabargad Island in the Red Sea. Olivine from non-xenolith-bearing lava flows at Hutaymah spans the He isotope range of the xenoliths. The lower 3He/4He in the anhydrous spinel lherzolites appears to be tied to remnant Proterozoic lithosphere prior to metasomatic fluid overprinting.

  4. Differences in Landsat TM derived lava flow thermal structures during summit and flank eruption at Mount Etna

    Science.gov (United States)

    Lombardo, V.; Buongiorno, M. F.; Pieri, D.; Merucci, L.

    2004-06-01

    The simultaneous solution of the Planck equation (the so-called "dual-band" technique) for two shortwave infrared Landsat Thematic Mapper (TM) bands allows an estimate of the fractional area of the hottest part of an active flow and the temperature of the cooler crust. Here, the dual-band method has been applied to a time series of Mount Etna eruptions. The frequency distribution of the fractional area of the hottest component reveals specific differences between summit and flank lava flows. The shape of the density function shows a trend consistent with a Gaussian distribution and suggests a relationship between the moments of the distribution and the emplacement environment. Because flow composition of Etnean lavas generally remains constant during the duration of their emplacement, it appears that the shape of any particular frequency distribution is probably related to fluid mechanical aspects of flow emplacement that affect flow velocity and flow heat loss and thus the rate of formation of the surface crust. These factors include the influence of topographical features such as changes in slope gradient, changes in volume effusion rate, and progressive downflow increases in bulk or effective viscosity. A form of the general theoretical solution for the 'dual-band' system, which illustrates the relationship between radiance in TM bands 5 and 7, corresponding to hot fractional area and crust temperature, is presented. Generally speaking, it appears that for a given flow at any point in time, larger fractional areas of exposed hot material are correlated with higher temperatures and that, while the overall shape of that distribution is common for the flows studied, its amplitude and slope reflect individual flow rheological regimes.

  5. Eruption and emplacement of flood basalt. An example from the large-volume Teepee Butte Member, Columbia River Basalt Group

    Energy Technology Data Exchange (ETDEWEB)

    Reidel, S.P. (Washington State Univ., Pullman (United States)); Tolan, T.L. (Portland State Univ., OR (United States))

    1992-12-01

    Flows of the Teepee Butte Member, Grande Ronde Basalt, issued from a vent system in southeastern Washington, northeastern Oregon, and western Idaho. Three distinct basalt flows were erupted: the Limekiln Rapids flow, the Joseph Creek flow, and the Pruitt Draw flow. Together these mappable flows cover more than 52,000 km[sup 2] and have a volume exceeding 5,000 km[sup 3]. A portion of the vent system for the Joseph Creek flow is exposed in cross section in Joseph Canyon, Washington; it is one of the best preserved Columbia River Basalt Group vent complexes known. The vent complex is about 1 km in cross section, 30 m high, and composed of deposits characteristic of Hawaiian-type volcanism. The vent is asymmetrical; the eastern rampart consists of intercalated pyroclastic deposits and thin pahoehoe flows; the western rampart is composed wholly of pahoehoe flows. Flows of the Teepee Butte Member are compositionally homogeneous and were emplaced as sheet flows, each having several local flow units. Our study supports the importance of linear vent systems and the westward Palouse Slope, along with the large-volume lava flows, in controlling the distribution of Columbia River Basalt Group flows. Other factors, including the number of active fissure segments and topography, modified the shape of the flows and the number of flow units. 45 refs., 19 figs., 2 tabs.

  6. Learning to Characterize Submarine Lava Flow Morphology at Seamounts and Spreading Centers using High Definition Video and Photomosaics

    Science.gov (United States)

    Fundis, A. T.; Sautter, L. R.; Kelley, D. S.; Delaney, J. R.; Kerr-Riess, M.; Denny, A. R.; Elend, M.

    2010-12-01

    In August, 2010 the UW ENLIGHTEN ’10 expedition provided ~140 hours of seafloor HD video footage at Axial Seamount, the most magmatically robust submarine volcano on the Juan de Fuca Ridge. During this expedition, direct imagery from an Insite Pacific HD camera mounted on the ROV Jason 2 was used to classify broad expanses of seafloor where high power (8 kw) and high bandwidth (10 Gb/s) fiber optic cable will be laid as part of the Regional Scale Nodes (RSN) component of the NSF funded Ocean Observatories Initiative. The cable will provide power and two-way, real-time communication to an array of >20 sensors deployed at the summit of the volcano and at active sites of hydrothermal venting to investigate how active processes within the volcano and at seafloor hot springs within the caldera are connected. In addition to HD imagery, over 10,000 overlapping photographs from a down-looking still camera were merged and co-registered to create high resolution photomosaics of two areas within Axial’s caldera. Thousands of additional images were taken to characterize the seafloor along proposed cable routes, allowing optimal routes to be planned well in advance of deployment. Lowest risk areas included those free of large collapse basins, steep flow fronts and fissures. Characterizing the modes of lava distribution across the seafloor is crucial to understanding the construction history of the upper oceanic crust at mid-ocean ridges. In part, reconstruction of crustal development and eruptive histories can be inferred from surface flow morphologies, which provide insights into lava emplacement dynamics and effusion rates of past eruptions. An online resource is under development that will educate students about lava flow morphologies through the use of HD video and still photographs. The objective of the LavaFlow exercise is to map out a proposed cable route across the Axial Seamount caldera. Students are first trained in appropriate terminology and background content

  7. Geologic mapping on the deep seafloor: Reconstructing lava flow emplacement and eruptive history at the Galápagos Spreading Center

    Science.gov (United States)

    McClinton, J. T.; White, S.; Colman, A.; Sinton, J. M.; Bowles, J. A.

    2012-12-01

    The deep seafloor imposes significant difficulties on data collection that require the integration of multiple data sets and the implementation of unconventional geologic mapping techniques. We combine visual mapping of geological contacts by submersible with lava flow morphology maps and relative and absolute age constraints to create a spatiotemporal framework for examining submarine lava flow emplacement at the intermediate-spreading, hotspot-affected Galápagos Spreading Center (GSC). We mapped 18 lava flow fields, interpreted to be separate eruptive episodes, within two study areas at the GSC using visual observations of superposition, surface preservation and sediment cover from submersible and towed camera surveys, augmented by high-resolution sonar surveys and sample petrology [Colman et al., Effects of variable magma supply on mid-ocean ridge eruptions: Constraints from mapped lava flow fields along the Galápagos Spreading Center; 2012 G3]. We also mapped the lava flow morphology within the majority of these eruptive units using an automated, machine-learning classification method [McClinton et al., Neuro-fuzzy classification of submarine lava flow morphology; 2012 PE&RS]. The method combines detailed geometric, acoustic, and textural attributes derived from high-resolution sonar data with visual observations and a machine-learning algorithm to classify submarine lava flow morphology as pillows, lobates, or sheets. The resulting lava morphology maps are a valuable tool for interpreting patterns in the emplacement of submarine lava flows at a mid-ocean ridge (MOR). Within our study area at 92°W, where the GSC has a relatively high magma supply, high effusion rate sheet and lobate lavas are more abundant in the oldest mapped eruptive units, while the most recent eruptions mostly consist of low effusion rate pillow lavas. The older eruptions (roughly 400yrs BP by paleomagnetic intensity) extend up to 1km off axis via prominent channels and tubes, while the

  8. Simulating the lava flow formed during the 2014-2015 Holuhraun eruption (Bardarbunga volcanic system, Iceland) by using the new F-L probabilistic code

    Science.gov (United States)

    Tarquini, Simone; de'Michieli Vitturi, Mattia; Jensen, Esther H.; Barsotti, Sara; Pedersen, Gro B. M.; Coppola, Diego

    2015-04-01

    The 2014-2015 fissure eruption in Holuhraun started when a new code (named F-L) was being developed. The availability of several digital Elevation Models of the area inundated by the lava and the availability of continuously updated maps of the flow (collected in the field and through remote sensing imagery) provided an excellent opportunity for testing and calibrating the new code against an evolving flow field. Remote sensing data also provided a constrain on the effusion rate. Existing numerical codes for the simulation of lava flow emplacement are based either on the solution of some simplification of the physical governing equations of this phenomenon (the so-called "deterministic codes" - e.g. Hidaka et al. 2005; Crisci et al. 2010), or, instead, on the evidence that lava flows tend to follow the steepest descent path from the vent downhill (the so-called "probabilistic codes" - e.g. Favalli et al. 2005). F-L is a new code for the simulation of lava flows, which rests on an approach similar to the one introduced by Glaze and Baloga (2013), and can be ascribed to the "probabilistic family" of lava flow simulation codes. Nevertheless, in contrast with other probabilistic codes (e.g. Favalli et al. 2005), this code explicitly tackles not only the direction of expansion of the growing flow and the area covered, but also the volume of the emplaced lava over time, and hence the supply rate. As a result, this approach bridges the stochastic point of view of a plain probabilistic code with one of the most critical among the input parameters considered by deterministic codes, which is the effusion rate during the course of an eruption. As such, a similar code, in principle, can tackle several aspects which were previously not addressed within the probabilistic approach, which are: (i) the 3D morphology of the flow field (i.e. thickness), (ii) the implications of the effusion rate in the growth of the flow field, and (iii) the evolution of the lava coverage over time

  9. Subsidence of Puna, Hawaii inferred from sulfur content of drilled lava flows

    Science.gov (United States)

    Moore, J.G.; Thomas, D.M.

    1988-01-01

    Sulfur was analyzed in more than 200 lava samples from five drill holes located on the east rift zone of Kilauea volcano on the island of Hawaii. The sulfur content is a gage of whether lava was erupted subaerially (low sulfur) or erupted subaqueously (high sulfur). Despite considerable variation, sulfur is generally low (less than 0.025%) in the upper part of the holes, begins to increase at a depth of 250-320 m below sea level, and generally reaches a high level (greater than 0.1%) indicative of steady submarine eruption at 330-450 m below sea level. Assuming that the island is subsiding at 2.4 mm/yr, an analysis of these data indicates that part of the variation in sulfur concentration results from past eustatic oscillation of sea level, and that the volcano (at the drill hole site) finally emerged for the last time about 98 ka. The long-term average rate of lava accumulation is roughly 4.4 mm/yr, and upward growth of the volcano at the drill hole area is about 2 mm/yr in excess of subsidence. ?? 1988.

  10. Simulation of cooling and pressure effects on inflated pahoehoe lava flows

    Science.gov (United States)

    Glaze, Lori S.; Baloga, Stephen M.

    2016-01-01

    Pahoehoe lobes are often emplaced by the advance of discrete toes accompanied by inflation of the lobe surface. Many random effects complicate modeling lobe emplacement, such as the location and orientation of toe breakouts, their dimensions, mechanical strength of the crust, microtopography, and a host of other factors. Models that treat the movement of lava parcels as a random walk have explained some of the overall features of emplacement. However, cooling of the surface and internal pressurization of the fluid interior have not been modeled. This work reports lobe simulations that explicitly incorporate (1) cooling of surface lava parcels, (2) the propensity of breakouts to occur at warmer margins that are mechanically weaker than cooler ones, and (3) the influence of internal pressurization associated with inflation. The surface temperature is interpreted as a surrogate for the mechanic strength of the crust at each location and is used to determine the probability of a lava parcel transfer from that location. When only surface temperature is considered, the morphology and dimensions of simulated lobes are indistinguishable from equiprobable simulations. However, inflation within a lobe transmits pressure to all connected fluid locations with the warmer margins being most susceptible to breakouts and expansion. Simulations accounting for internal pressurization feature morphologies and dimensions that are dramatically different from the equiprobable and temperature-dependent models. Even on flat subsurfaces the pressure-dependent model produces elongate lobes with distinct directionality. Observables such as topographic profiles, aspect ratios, and maximum extents should be readily distinguishable in the field.

  11. Mapping the vegetation colonization on recent lava flows using spectral unmixing of moderate spatial resolution satellite images: Nyamuragira volcano, D. R. Congo

    Science.gov (United States)

    Li, Long; Kervyn, Matthieu; Canters, Frank

    2014-05-01

    In volcanic areas, vegetation colonizes recently erupted lava flows and expands over time. The fraction of vegetation is therefore likely to provide information on lava flows' age. Individual lava flows are usually not well resolved on satellite imagery due to the coarse spatial resolution: one pixel on the imagery is a mixture of mainly lava and vegetation. In order to solve the mixed pixel problem, many different methods have been proposed among which linear spectral unmixing is the most widely-used. It assumes that the reflectance of the mixed pixel is the sum of the reflectance of each pure end members multiplied by their proportion in the pixel. It has been frequently used in urban area studies, but no efforts have yet been made to apply it to volcanic areas. Here, we demonstrate the application of linear spectral unmixing for the lava flows of Nyamuragira volcano, in the Virunga Volcanic province. Nyamuragira is an active volcano, emitting over 30 lava flows in the last 100 years. The limited access to the volcano due to social unrest in D. R. Congo justifies the value of remote sensing techniques. This shield volcano is exposed to tropical climate and thus vegetation colonizes lava flows rapidly. An EO-1 ALI image (Advanced land imager mounted on Earth Observing -1 Satellite) acquired over Nyamuragira on January 3, 2012 at spatial resolution of 30 m was processed with minimum noise fraction transform and end member extraction, and spectrally unmixed by linear mixture modelling technique into two types of lava, and one or two types of vegetation. The three end member model is better in terms of the RMSE and the expected spatial distribution of end members. A 2 m resolution Pleiades image acquired on January 21, 2013 and partly overlapping with the ALI image was taken as the reference image for validation. It was first classified using a supervised pixel-based classification technique and then compared to the proportion image derived from the ALI image

  12. Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities.

    Science.gov (United States)

    Campbell, Barbara J; Polson, Shawn W; Zeigler Allen, Lisa; Williamson, Shannon J; Lee, Charles K; Wommack, K Eric; Cary, S Craig

    2013-01-01

    Hydrothermal vents differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from vents at a basalt-based hydrothermal system along the East Pacific Rise (EPR) and a sediment-based hydrothermal system, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea hydrothermal environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea systems. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and hydrothermal system type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct hydrothermal diffuse flow environments.

  13. Groundmass Crystallinities of Proximal and Distal Lavas from Cinder Cone, Lassen Volcanic Field

    Science.gov (United States)

    Szymanski, M. E.; Teasdale, R.

    2015-12-01

    Cinder Cone is located in the northeast corner of Lassen Volcanic Center, approximately 35 km southeast of Old Station, California. The area consists of a cinder cone constructed of loose scoria, lava flows and a 13-16 km diameter ash deposit. According to radiocarbon ages from trees affected by the lava flows and paleomagnetic data, Cinder Cone erupted in about 1650 AD (1). The youngest products of the Cinder Cone eruption are two Fantastic Lava Beds flows which are basaltic andesite and andesite with olivine (1). Samples were collected along the longest flow from Cinder Cone, the Fantastic Lava Beds Flow 2 (4.5 km) at approximately 0.5 km interval. The samples contain olivine, plagioclase and clinopyroxene phenocrysts in fine grained groundmass with varying vesicularity. Quartz xenocrysts also occur. SEM-Back Scatter Electron images are used to map and quantify groundmass crystallinities along the length of the Fantastic Lava Beds flow 2 and of tephra units. The average area of groundmass plagioclase crystals increases along the length of the lava flow from 94.7 to 292.6 μm2. The number of groundmass plagioclase crystals per area (μm2) decreases from 0.0045 to 0.0018 from proximal to distal samples. Crystals also become blockier in distal samples along the lava flow. The larger number of crystals per area in near vent samples establishes a baseline from which we interpret crystal growth and nucleation to have occurred in the flow channel. Increasing crystal size and a decrease in the number of crystals per area indicates growth dominated nucleation during cooling and crystallization in the flow channel. Relative cooling rates along the length of the flow from proximal to distal samples can be inferred based on groundmass crystallinities, distance travelled and estimates of flow and crystallization rates. (1) Muffler and Clynne, 2015.

  14. Volcanological aspects of the northwest region of Paraná continental flood basalts (Brazil)

    Science.gov (United States)

    Braz Machado, F.; Reis Viana Rocha-Júnior, E.; Soares Marques, L.; Ranalli Nardy, A. J.

    2015-02-01

    There has been little research on volcanological aspects of Paraná continental flood basalts (PCFBs), and all investigations have mainly been concentrated on the internal portions of the lava flows. Thus, this study describes for the first time morphological aspects of lava flows and structural characteristics caused by lava-sediment interaction in the northwestern PCFB province (NW-PCFB). Early Cretaceous (134 to 132 Ma) tholeiitic rocks of the PCFB were emplaced on a large intracratonic Paleozoic sedimentary basin (Paraná Basin), mainly covering dry eolian sandstones (Botucatu Formation). As this sedimentary unit is overlain by the basic lava flows of the PCFB, the interaction of lavas and unconsolidated sediments resulted in the generation of fluidal peperites. This aspect is significant because it shows that restricted wet environments should have existed in the Botucatu desert. The peperite zones of the NW-PCFB are associated with compound pahoehoe-type (P-type) flows and are always related to the first volcanic pulses. These flows have dispersed vesicles and sand-filled cracks in their base and top borders, as well as the presence of interlayered sandstones with irregular contacts and varied thicknesses. It is remarkable that, to the best of current knowledge, only in this area of the whole PCFB did the volcanic activity start with low-Ti basalt flows of Ribeira type (TiO2 < 2.3 wt%), which are scarce in the province.

  15. Permeameter studies of water flow through cement and clay borehole seals in granite, basalt and tuff

    Energy Technology Data Exchange (ETDEWEB)

    South, D.L.; Daemen, J.J.K.

    1986-10-01

    Boreholes near a repository must be sealed to prevent rapid migration of radionuclide-contaminated water to the accessible environment. The objective of this research is to assess the performance of borehole seals under laboratory conditions, particularly with regard to varying stress fields. Flow through a sealed borehole is compared with flow through intact rock. Cement or bentonite seals have been tested in granite, basalt, and welded tuff. The main conclusion is that under laboratory conditions, existing commercial materials can form high quality seals. Triaxial stress changes about a borehole do not significantly affect seal performance if the rock is stiffer than the seal. Temperature but especially moisture variations (drying) significantly degrade the quality of cement seals. Performance partially recovers upon resaturation. A skillfully sealed borehole may be as impermeable as the host rock. Analysis of the influence of relative seal-rock permeabilities shows that a plug with permeability one order of magnitude greater than that of the rock results in a flow increase through the hole and surrounding rock of only 1-1/2 times compared to the undisturbed rock. Since a borehole is only a small part of the total rock mass, the total effect is even less pronounced. The simplest and most effective way to decrease flow through a rock-seal system is to increase the seal length, assuming it can be guaranteed that no dominant by-pass flowpath through the rock exists.

  16. What is controlling spectral reflectance of lava flows? First results of a field spectrometric survey of volcanic surfaces on Tenerife Island

    Science.gov (United States)

    Li, Long; Kervyn, Matthieu; Solana, Carmen; Canters, Frank

    2014-05-01

    Space-based remote sensing techniques have demonstrated their great value in volcanic studies thanks to their synoptic spatial coverage and the repeated acquisitions. On satellite images, volcanic surfaces display a wide range of colors, and therefore contrasted reflectance spectra. Understanding the factors controlling the spectral reflectance of volcanic materials at different wavelength is essential to mapping volcanic areas. Detailed investigation into spectra of volcanic materials are, however, restricted due to the trade-off between spatial and spectral resolution of space-based sensors, such as Hyperion imagery that allows resolving 220 spectral bands ranging from 400 to 2500 nm with a spatial resolution of 30 meters. In order to better understand reflectance of volcanic materials, especially lava, a field campaign was launched in Tenerife Island, Spain in November 2013 with an ASD FieldSpec 3 to document the reflectance spectra of historical mafic lava flow surfaces. 20 specific lava and lapilli surfaces, with contrasted age, surface roughness, weathering condition and vegetation coverage were characterized, using a systematic recording method documenting the spectra's variability within a 15×15 m2 area. Results show that all the volcanic materials have great differences in spectral reflectance. Among them, lava's reflectance is low but still slightly higher than that of lapilli. Comparison of rough and smooth lava surfaces on the same lava flow suggests that roughness tends to increase the reflectance of lava surfaces. Also, vegetation and lichen alter lava's reflectance in some spectral regions, especially through a rise in the near infrared part of the spectrum. It is therefore suggested that reflectance spectra of lava evolve over time due to weathering processes, such as chemical alteration and growth of lichen and moss. In addition, it is possible to compare field measurements with spectra derived from Hyperion imagery, resulting in a strong match

  17. Variations of magnetic properties in thin lava flow profiles: Implications for the recording of the Laschamp Excursion

    Science.gov (United States)

    Vérard, Christian; Leonhardt, Roman; Winklhofer, Michael; Fabian, Karl

    2012-06-01

    Two blocks have been cut in two lava flows from the Skalamaelifell Hill (Iceland) known to have recorded the Laschamp magnetic excursion (40.4 ± 2.0 ka). Detailed sampling and analyses have revealed multiple magnetic components. The high temperature/coercivity component corresponds to the primary magnetisation, with corresponding pole position close to the equator in the Pacific Ocean (φ = 251.90°/λ = -06.49°; dp = 0.74°/dm = 2.12°) and palaeo-intensity determinations below 5 μT. The different VGPs, however, vary in relation with the position of samples in the profiles. It could not be firmly established whether this distribution is associated with a change in the Earth magnetic field during lava cooling. In any case, variations are related with zones in the profiles marked, in particular, by the presence of vesicles. Moreover, the other components are interpreted to be linked with alteration inside the rocks, caused by interactions between vesicles content and the surrounding matrix. Secondary component, however, is interpreted as recording an excursional magnetic field, and should be of greater consideration in studies of Earth magnetic field excursions or reversals.

  18. Long-distance lava correlation in the Paraná volcanic province along the Serra Geral cuesta, southeastern Brazil

    Science.gov (United States)

    Hartmann, L. A.; Arena, K. R.; Duarte, S. K.; Pertille, J.

    2013-09-01

    The capability of determining the flow-by-flow stratigraphy and the long-distance correlation of lava flows in large continental volcanic provinces leads to a considerable advance in the understanding of processes related to generation and evolution of the lavas. The Paraná volcanic province is exposed along the Serra Geral cuesta of southern Brazil in a steeply inclined, 1,000-m-high section starting 40-m above sea level. Each of the 10-20 pahoehoe flows and rhyodacite flow units has a unique chemical composition. Integrated with field stratigraphy and gamma-spectrometric measurements, this leads to the establishment of the correct stratigraphic sequence in each of three different vertical sections. The number of flows integrating the three serras is 26 ("serra" is a mountain range in Portuguese). Each serra has basaltic andesites at the base, whereas rhyodacites are intercalated with basaltic andesites at the top. Three basaltic andesite flows and one rhyodacite flow unit are correlated between Serra Umbu and Serra Boa Vista (10 km). In the Serra Faxinal, a thick (170 m) sill at the base correlates with flow 13F, whereas a dike-sill in the Graxaim quarry (24 km distance) correlates with flow 3F. One basaltic andesite and two rhyodacite flow units correlate between Serra Faxinal and Serra Umbu (50 km). The results are most significant for the understanding of large tracts of continental volcanic provinces with use of common geochemical and gamma-spectrometric techniques.

  19. Extracting accurate temperatures of molten basalts from non-contact thermal infrared radiance data

    Science.gov (United States)

    Fontanella, N. R.; Ramsey, M. S.; Lee, R.

    2013-12-01

    The eruptive and emplacement temperature of a lava flow relates important information on parameters such as the composition, rheology, and emplacement processes. It can also serve as a critical input into flow cooling and propagation models used for hazard prediction. One of the most common ways to determine temperatures of active lava flows is to use non-contact thermal infrared (TIR) measurements, either from ground-based radiometers and cameras or air and space-based remote sensing instruments. These temperature measurements assume a fixed value for the lava emissivity in order to solve the Planck Equation for temperature. The research presented here examines the possibility of variable emissivity in a material's molten state and the effect it has on deriving accurate surface temperature. Emplacement of a pahoehoe lava lobe at Kilauea volcano, Hawaii was captured with high spatial resolution/high frame rate TIR video in order to study this phenomenon. The data show the appearance of molten lava at a breakout point until it cools to form a glassy crust that begins to fold. Emissivity was adjusted sequentially along linear transects from a starting value of 1.0 to lower values until the TIR temperature matched the known temperature measured with a thermocouple. Below an emissivity of ~0.89, temperatures of the molten lava rose above the known lava temperature. This value suggests a decrease in emissivity with a change of state and is likely due to changes in the atomic bond structure of the melt. We have also recently completed the first ever calibrated laboratory-based emissivity measurements of molten basalts, and these high spectral resolution data confirm the field-based estimates. In contrast to rhyolites, basalts appear to display a less dramatic change between their glassy and molten spectra due to their higher melting and glass transition temperatures and the quick formation time of the crust. Therefore, the change in emissivity for molten rhyolite could

  20. Gusev Rocks Solidified from Lava (Approximate True Color)

    Science.gov (United States)

    2006-01-01

    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin. Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy. The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks. As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography to identify rocks and

  1. Using submarine lava pillars to record mid-ocean ridge eruption dynamics

    Science.gov (United States)

    Gregg, Tracy K.P.; Fornari, Daniel J.; Perfit, Michael R.; Ridley, W. Ian; Kurz, Mark D.

    2000-01-01

    Submarine lava pillars are hollow, glass-lined, basaltic cylinders that occur at the axis of the mid-ocean ridge, and within the summit calderas of some seamounts. Typically, pillars are ~1-20 m tall and 0.25-2.0 m in diameter, with subhorizontal to horizontal glassy selvages on their exterior walls. Lava pillars form gradually during a single eruption, and are composed of lava emplaced at the eruption onset as well as the last lava remaining after the lava pond has drained. On the deep sea floor, the surface of a basaltic lava flow quenches to glass within 1 s, thereby preserving information about eruption dynamics, as well as chemical and physical properties of lava within a single eruption. Investigation of different lava pillars collected from a single eruption allows us to distinguish surficial lava-pond or lava-lake geochemical processes from those operating in the magma chamber. Morphologic, major-element, petrographic and helium analyses were performed on portions of three lava pillars formed during the April 1991 eruption near 9°50'N at the axis of the East Pacific Rise. Modeling results indicate that the collected portions of pillars formed in ~2-5 h, suggesting a total eruption duration of ~8-20 h. These values are consistent with observed homogeneity in the glass helium concentrations and helium diffusion rates. Major-element compositions of most pillar glasses are homogeneous and identical to the 1991 flow, but slight chemical variations measured in the outermost portions of some pillars may reflect post-eruptive processes rather than those occurring in subaxial magma bodies. Because lava pillars are common at mid-ocean ridges (MORs), the concepts and techniques we present here may have important application to the study of MOR eruptions, thereby providing a basis for quantitative comparisons of volcanic eruptions in geographically and tectonically diverse settings. More research is needed to thoroughly test the hypotheses presented here. (C) 2000

  2. A sinuous tumulus over an active lava tube at Kīlauea Volcano: evolution, analogs, and hazard forecasts

    Science.gov (United States)

    Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.

    2015-01-01

    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Kīlauea Volcano's (Hawai'i, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flow's emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kīlauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kīlauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kīlauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai'i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.

  3. Pomona Member of the Columbia River Basalt Group: an intracanyon flow in the Columbia River Gorge, Oregon.

    Science.gov (United States)

    Anderson, J.L.

    1980-01-01

    The Pomona Member of the Saddle Mountains Basalt (Columbia River Basalt Group) occurs as an intracanyon flow greater than 75m (250ft) thick along the S side of the Columbia River Gorge between Mitchell Point and Shellrock Mountain, Oregon. Best exposures are at Mitchell Point, where this flow caps more than 70m (230ft) of cobble conglomerate that partially fills a canyon cut into flows of the underlying Frenchman Springs Member. These exposures provide a necessary link between outcrops of the Pomona Member in the Columbia Plateau and western Washington. Post-Frenchman Springs, pre-Pomona canyon cutting implies deformation in the ancestral Cascade Range between about 14.5 and 12Ma ago.-Author

  4. Predicting the impact of lava flows at Mount Etna by an innovative method based on Cellular Automata: Applications regarding land-use and civil defence planning

    Science.gov (United States)

    Crisci, G. M.; Avolio, M. V.; D'Ambrosio, D.; di Gregorio, S.; Lupiano, G. V.; Rongo, R.; Spataro, W.; Benhcke, B.; Neri, M.

    2009-04-01

    Forecasting the time, character and impact of future eruptions is difficult at volcanoes with complex eruptive behaviour, such as Mount Etna, where eruptions occur from the summit and on the flanks, affecting areas distant from each other. Modern efforts for hazard evaluation and contingency planning in volcanic areas draw heavily on hazard maps and numerical simulations. The computational model here applied belongs to the SCIARA family of lava flow simulation models. In the specific case this is the SCIARA-fv release, which is considered to give the most accurate and efficient performance, given the extent (567 km2) of the study area and the great number of simulations to be carried out. The model is based on the Cellular Automata computational paradigm and, specifically, on the Macroscopic Cellular Automata approach for the modelling of spatially extended dynamic systems2. This work addresses the problem of compiling high-detailed susceptibility maps with an elaborate approach in the numerical simulation of Etnean lava flows, based on the results of 39,300 simulations of flows erupted from a grid of 393 hypothetical vents in the eastern sector of Etna. This sector was chosen because it is densely populated and frequently affected by flank eruptions. Besides the definition of general susceptibility maps, the availability of a large number of lava flows of different eruption types, magnitudes and locations simulated for this study allows the instantaneous extraction of various scenarios on demand. For instance, in a Civil Defence oriented application, it is possible to identify all source areas of lava flows capable of affecting a given area of interest, such as a town or a major infrastructure. Indeed, this application is rapidly accomplished by querying the simulation database, by selecting the lava flows that affect the area of interest and by circumscribing their sources. Eventually, a specific category of simulation is dedicated to the assessment of protective

  5. Paleomagnetic correlation and ages of basalt flow groups in coreholes at and near the Naval Reactors Facility, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Champion, Duane E.; Davis, Linda C.; Hodges, Mary K.V.; Lanphere, Marvin A.

    2013-01-01

    Paleomagnetic inclination and polarity studies were conducted on subcore samples from eight coreholes located at and near the Naval Reactors Facility (NRF), Idaho National Laboratory (INL). These studies were used to characterize and to correlate successive stratigraphic basalt flow groups in each corehole to basalt flow groups with similar paleomagnetic inclinations in adjacent coreholes. Results were used to extend the subsurface geologic framework at the INL previously derived from paleomagnetic data for south INL coreholes. Geologic framework studies are used in conceptual and numerical models of groundwater flow and contaminant transport. Sample handling and demagnetization protocols are described, as well as the paleomagnetic data averaging process. Paleomagnetic inclination comparisons among NRF coreholes show comparable stratigraphic successions of mean inclination values over tens to hundreds of meters of depth. Corehole USGS 133 is more than 5 kilometers from the nearest NRF area corehole, and the mean inclination values of basalt flow groups in that corehole are somewhat less consistent than with NRF area basalt flow groups. Some basalt flow groups in USGS 133 are missing, additional basalt flow groups are present, or the basalt flow groups are at depths different from those of NRF area coreholes. Age experiments on young, low potassium olivine tholeiite basalts may yield inconclusive results; paleomagnetic and stratigraphic data were used to choose the most reasonable ages. Results of age experiments using conventional potassium argon and argon-40/argon-39 protocols indicate that the youngest and uppermost basalt flow group in the NRF area is 303 ± 30 ka and that the oldest and deepest basalt flow group analyzed is 884 ± 53 ka. A south to north line of cross-section drawn through the NRF coreholes shows corehole-to-corehole basalt flow group correlations derived from the paleomagnetic inclination data. From stratigraphic top to bottom, key results

  6. Conceptual Model of the Geometry and Physics of Water Flow in a Fractured Basalt Vadose Zone: Box Canyon Site, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Doughty, Christine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Steiger, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Long, Jane C.S. [Univ. of Nevada, Reno, NV (US). Mackay School of Mines; Wood, Tom [Parsons Engineering, Inc., Idaho Falls, ID (United States); Jacobsen, Janet [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lore, Jason [Stanford Univ., CA (United States); Zawislanski, Peter T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1999-03-01

    A conceptual model of the geometry and physics of water flow in a fractured basalt vadose zone was developed based on the results of lithological studies and a series of ponded infiltration tests conducted at the Box Canyon site near the Idaho National Engineering and Environmental Laboratory (INEEL) in Idaho. The infiltration tests included one two-week test in 1996, three two-day tests in 1997, and one four-day test in 1997. For the various tests, initial infiltration rates ranged from 4.1 cm/day to 17.7 cm/day and then decreased with time, presumably due to mechanical or microbiological clogging of fractures and vesicularbasalt in the near-surface zone, as well as the effect of entrapped air. The subsurface moisture redistribution was monitored with tensiometers, neutron logging, time domain reflectrometry and ground penetrating radar. A conservative tracer, potassium bromide, was added to the pond water at a concentration of 3 g/L to monitor water flow with electrical resistivity probes and water sampling. Analysis of the data showed evidence of preferential flow rather than the propagation of a uniform wetting front. We propose a conceptual model describing the saturation-desaturation behavior of the basalt, in which rapid preferential flow through vertical column-bounding fractures occurs from the surface to the base of the basalt flow. After the rapid wetting of column-bounding fractures, a gradual wetting of other fractures and the basalt matrix occurs. Fractures that are saturated early in the tests may become desaturated thereafter, which we attribute to the redistribution of water between fractures and matrix. Lateral movement of water was also observed within a horizontal central fracture zone and rubble zone, which could have important implications for contaminant accumulation at contaminated sites.

  7. K-Ar dating of lavas from Zao volcano, North-eastern Japan

    International Nuclear Information System (INIS)

    The K-Ar age was determined for the lava samples collected in North Zao, Central Zao and South Zao Volcanoes, and compared with the volcano stratigraphy and rock magnetism. Except a few cases, the K-Ar age was compatible with the stratigraphic and magnetic data. From the K-Ar age and geological data, the growth history of the Zao Volcano group was deduced as follows. In Central Zao Volcano, the first stage of volcanism started about 1 Ma ago. In the second stage of activity, there were many lava flows distinguished both in the K-Ar age ranging from 0.32 to 0.12 Ma and in the geological succession. The voluminous effusion of andesitic lavas in this stage formed most part of the volcanoes. This is in contrast to Ryuzan Volcano which was action from 0.94 to 1.13 Ma ago, accompanied by the effusion of tholeititic basalt and andesite lavas, and has been dormant since then. The age of 0.01 Ma of Furikosawa lava indicates that the third stage of volcanism involved a lava flow. The K-Ar age which was corrected for the mass fractionation was in agreement with the volcano stratigraphic data. The peak comparison method enables to measure the age and to check the mass fractionation by analyzing Ar with only one sample, and the error of determining radiogenic Ar in a young rock with large atomospheric Ar contamination is small. (Kako, I.)

  8. Morphology and development of pahoehoe flow-lobe tumuli and associated features from a monogenetic basaltic volcanic field, Bahariya Depression, Western Desert, Egypt

    Science.gov (United States)

    Khalaf, Ezz El Din Abdel Hakim; Hammed, Mohamed Saleh

    2016-01-01

    The dimensions, landforms, and structural characteristics of pahoehoe flow-lobe tumuli from Bahariya Depression are collectively reported here for the first time. The flow-lobe tumuli documented here characterize hummocky flow surfaces. These tumuli are characterized by low, dome-like mounds, lava-inflation clefts, and squeeze ups. Flow-lobe tumuli are of various shapes and sizes, which are affected by the mechanism of inflation because they formed in response to the increase of pressure within the flow when the flow's crust becomes thicker. The tumuli often appear isolated or in small groups in the middle sectors of the lava flows, whereas in the distal sectors they form large concentration, suggesting the presence of complex lava tubes inside of the flow. Tumuli exhibited by El Bahariya lava flows are between 3.0 and 50 m in length and up to 5.0 m in height with lenticular geometry in aerial view. The flow emplacement of flow-lobe tumuli is controlled by variations in local characteristics such as nature of the substrate, flow orientation, slope, interferrence with other lobes, and rate of lava supply. Their presence generally towards the terminal ends of flow fields suggests that they seldom form over the clogged portions of distributary tubes or pathways. Thus, localized inflations that formed over blockages in major lava tubes result in formation of flow-lobe tumuli. The three-tiered (crust-core-basal zone) internal structure of the flow-lobe tumuli, resembling the typical distribution of vesicles in P-type lobes, confirms emplacement by the mechanism of inflation. All the available data show that the morphology and emplacement mechanism of the studied flow-lobe tumuli may be analogous to similar features preserved within topographically confined areas of the Hawaiian and Deccan hummocky lava flows. Considering the age of the studied volcanic fields (˜22 Ma) it is most probable that the structures described here may be amongst the oldest recognized examples

  9. The Effect of Lava Texture on LiDAR Attributes and Full Waveform

    Science.gov (United States)

    Anderson, S. W.; Finnegan, D. C.; LeWinter, A.

    2013-12-01

    The distribution of glassy, vesicular, and crystalline textures on lava flow and dome surfaces provides insights regarding the physical and chemical processes occurring during emplacement. For silicic flows, these textures may reflect variations in the volatile content of lava upon eruption. To assess the efficacy of texture detection with our terrestrial full waveform LiDAR system capable of measuring ~125,000 topographic points/second, we analyzed attribute and full waveform data from a variety of lava textures displayed on recent rhyolitic obsidian flows of the Inyo Dome chain (California) and pahoehoe and aa flows at Kilauea volcano (Hawaii). We find that attributes such as intensity, amplitude and deviation of the returned 1550nm laser pulse fall into discrete ranges associated with glassy, pumiceous and crystalline textures on both the rhyolitic and basaltic surfaces. This enables detection of vesicularity at ranges in excess of 500 m, making LiDAR a useful tool for remotely determining lava texture. Scan times using our Riegl VZ1000 and VZ400 systems require only minutes, allowing for repeated scans over a short time period, and processing times are <1 hour. We have also analyzed the full digitized waveforms of LiDAR pulses returned from these surfaces, and find that they also have unique signatures related to texture. We therefore suggest that LiDAR can provide reliable information on lava texture during eruption, aiding in the interpretation of eruption hazards from increasing volatile contents.

  10. Phenocryst fragments in rhyolitic lavas and lava domes

    Science.gov (United States)

    Allen, S. R.; McPhie, J.

    2003-08-01

    Although rhyolitic lavas and lava domes are characterised by evenly porphyritic textures, not all the phenocrysts are whole euhedra. We undertook image analysis of 46 rhyolitic lava and lava dome samples to determine the abundance and shape of quartz and feldspar phenocryst fragments. Phenocryst fragments were identified in nearly all samples. On average, fragments amount to ˜5% of the total phenocryst population, or ˜0.5 modal%. The abundance of fragments in lavas and lava domes is not related to the groundmass texture (whether vesicular, flow banded, massive, glassy or crystalline), nor to distance from source. Fragments are, however, more abundant in samples with higher phenocryst contents. The phenocryst fragments in rhyolitic lavas and lava domes are mainly medium to large (0.5-3.5 mm), almost euhedral crystals with only a small portion removed, or chunky, equant, subhedral fragments, and occur in near-jigsaw-fit or clast-rotated pairs or groups. The fragments probably formed in response to decompression of large melt inclusions. Shear during laminar flow then dismembered the phenocrysts; continued laminar shear separated and rotated the fragments. Fractures probably formed preferentially along weaknesses in the phenocrysts, such as zones of melt inclusions, cleavage planes and twin composition planes. Rare splintery fragments are also present, especially within devitrified domains. Splinters are attributed to comminution of solid lava adjacent to fractures that were later healed. For comparison, we measured crystal abundance in a further 12 rhyolite samples that include block and ash flow deposits and ignimbrite. Phenocryst fragments within clasts in the block and ash flow samples showed similar shapes and abundances to those fragments within the lava and lava domes. Crystal fragments are much more abundant in ignimbrite (exceeding 67% of the crystal population) however, and dominated by small, equant, anhedral chunks or splinters. The larger crystals in

  11. Precaldera lavas of the southeast San Juan Volcanic Field: Parent magmas and crustal interactions

    Science.gov (United States)

    Colucci, M. T.; Dungan, M. A.; Ferguson, K. M.; Lipman, P. W.; Moorbath, S.

    1991-07-01

    Early intermediate composition volcanic rocks of the Oligocene (circa 34-29 Ma) southeast San Juan volcanic field, southern Colorado, comprise the Conejos Formation. Conejos lavas include both high-K calc-alkaline and alkaline magma series (54-69% SiO2) ranging in composition from basaltic andesite (basaltic trachyandesite) to dacite (trachydacite). The subsequent Platoro caldera complex (29-27 Ma) was superimposed on a cluster of broadly precursory Conejos stratocones. Precaldera volcanism occurred in three pulses corresponding to three time-stratigraphic members: (1) the Horseshoe Mountain member, (2) the Rock Creek member, and (3) the Willow Mountain member. Each member exhibits distinctive phenocryst modes and incompatible trace element contents. Horseshoe Mountain lavas (hornblende-phyric) have relatively low alkali and incompatible element abundances, Rock Creek lavas (anhydrous phenocrysts) and ash-flow tuffs have the highest abundances, and Willow Mountain lavas (diverse mineralogy) are intermediate. All Conejos lavas exhibit low ratios of lead (206Pb/204Pb = 17.5 to 18.2) and neodymium (ɛNd = -8 to -4) isotopes and high 87Sr/86Sr (0.7045 to 0.7056) compared to depleted asthenospheric mantle. These values lie between those of likely mantle compositions and the isotopic composition of Proterozoic crust of the southern Rocky Mountains. Mafic lavas of the Horseshoe Mountain member have the lowest Pb and Nd isotope ratios among Conejos members but trend toward higher isotopic values with increasing degrees of differentiation. Compositions within the Rock Creek series trend toward higher Pb and lower Nd isotope ratios with increasing SiO2. Willow mountain volcanic sequences define diverse chemical-isotopic correlations. We interpret the chemical and isotopic differences observed between mafic lavas of each member to reflect derivation from compositionally distinct mantle derived parent magmas that have experienced extensive deep level crustal contamination

  12. Recovery of datable charcoal beneath young lavas: lessons from Hawaii.

    Science.gov (United States)

    Lockwood, J.P.; Lipman, P.W.

    1980-01-01

    Field studies in Hawaii aimed at providing a radiocarbon-based chronology of prehistoric eruptive activity have led to a good understanding of the processes that govern the formation and preservation of charcoal beneath basaltic lava flows. Charcoal formation is a rate-dependent process controlled primarily by temperature and duration of heating, as well as by moisture content, density, and size of original woody material. Charcoal will form wherever wood buried by lava is raised to sufficiently high temperatures, but owing to the availability of oxygen it is commonly burned to ash soon after formation. Wherever oxygen circulation is sufficiently restricted, charcoal will be preserved, but where atmospheric oxygen circulates freely, charcoal will only be preserved at a lower temperature, below that required for charcoal ignition or catalytic oxidation. These factors cause carbonized wood, especially that derived from living roots, to be commonly preserved beneath all parts of pahoehoe flows (where oxygen circulation is restricted), but only under margins of aa. Practical guidelines are given for the recovery of datable charcoal beneath pahoehoe and aa. Although based on Hawaiian basaltic flows, the guidelines should be applicable to other areas. -Authors

  13. Estimation of lava flow field volumes and volumetric effusion rates from airborne radar profiling and other data: Monitoring of the Nornahraun (Holuhraun) 2014/15 eruption in Iceland

    Science.gov (United States)

    Dürig, Tobias; Gudmundsson, Magnús; Högnadóttir, Thordís; Jónsdóttir, Ingibjörg; Gudbjörnsson, Snaebjörn; Lárusson, Örnólfur; Höskuldsson, Ármann; Thordarson, Thorvaldur; Riishuus, Morten; Magnússon, Eyjólfur

    2015-04-01

    Monitoring of lava-producing eruptions involves systematic measurement of flow field volumes, which in turn can be used to obtain average magma discharge over the period of observation. However, given inaccessibility to the interior parts of active lava fields, remote sensing techniques must be applied. Several satellite platforms provide data that can be geo-referenced, allowing area estimation. However, unless sterographic or tandem satellite data are available, the determination of thicknesses is non-trivial. The ongoing eruption ('Nornaeldar')at Dyngjusandurin the Icelandic highlands offers an opportunity to monitor the temporal and spatial evolution of a typical Icelandic lava flow field. The mode of emplacementis complex and includesboth horizontal and vertical stacking, inflation of lobes and topographic inversions. Due to the large extent of the flow field (>83 km2 on 5 Jan 2015, and still growing) and its considerable local variation in thickness (30 m) and surface roughness, obtaining robust quantification of lava thicknesses is very challenging,despite the lava is being emplaced onto a low-relief sandur plain. Creative methods have been implemented to obtain as reliable observation as possible into the third dimension: Next to areal extent measurements from satellites and maps generated with airborne synthetic-aperture radar (SAR), lava thickness profiles are regularly obtained by low-level flights with a fixed-wing aircraft that is equipped with a ground clearance radar coupled witha submeter DGPS,a system originally designed for monitoring surface changes of glaciers above geothermally active areas.The resulting radar profile data are supplemented by analyses of aerial photos and complemented by results from an array of ground based thickness measurement methods. The initial results indicate that average effusion ratewas ~200 m3/s in the first weeks of the eruption (end August, early September) but declined to 50-100 m3/s in November to December period

  14. Experimental constraints on the rheology and mechanical properties of lava erupted in the Holuhraun area during the 2014 rifting event at Bárðarbunga, Iceland

    Science.gov (United States)

    Lavallee, Yan; Kendrick, Jackie; Wall, Richard; von Aulock, Felix; Kennedy, Ben; Sigmundsson, Freysteinn

    2015-04-01

    A fissure eruption began at Holuhraun on 16 August 2014, following magma drainage from the Bárðarbunga volcanic system (Iceland). Extrusion initiated as fire fountaining along a segment of the fracture and rapidly localised to a series of small, aligned cones containing a lava lake that over spilled at both ends, feeding a large lava field. The lava composition and flow behaviour put some constraints on its rheology and mechanical properties. The lava erupted is a nearly aphyric basalt containing approximately 2-3% plagioclase with traces of olivine and pyroxene in a quenched groundmass composed of glass and 20-25% microlites. The transition from fire fountaining to lava flow leads to lava with variable vesicularities; pyroclasts expelled during fire fountaining reach up to 80% vesicles whilst the lava contain up to 45% vesicles. Textures in the lava vary from a'a to slabby pahoehoe, and flow thicknesses from several meters to few centimetres. Tension gashes, crease structures and shear zones in the upper lava carapace reveal the importance of both compressive and tensional stresses. In addition, occasional frictional marks at the base of the lava flow as well as bulldozing of sediments along the flow hint at the importance of frictional properties of the rocks during lava flow. Flow properties, textures and failure modes are strongly dependent on the material properties as well as the local conditions of stress and temperature. Here we expand our field observation with preliminary high-temperature experimental data on the rheological and mechanical properties of the erupted lava. Dilatometric measurements are used to constrain the thermal expansion coefficient of the lava important to constrain the dynamics of cooling of the flow. Micropenetration is further employed to determine the viscosity of the melt at super-liquidus temperature, which is compared to the temperature-dependence of viscosity as constrained by geochemistry. Lastly, uniaxial compression and

  15. Evidence for a new geomagnetic reversal from lava flows in Idaho: discussion of short polarity reversals in the Brunhes and late Matuyama Polarity Chrons

    Science.gov (United States)

    Champion, D.E.; Lanphere, M.A.; Kuntz, M.A.

    1988-01-01

    K-Ar ages and paleomagnetic data for basalt samples from a new core hole (site E) at the Idaho National Engineering Laboratory (INEL) indicate that the age of the reversed polarity event recorded in Snake River Plain lavas is older than 465 ?? 50 ka (1000 years before present) reported previously by Champion et al. (1981). A review of data documenting short reversal records from volcanic and sedimentary rocks shows that there is evidence for eight polarity subchrons in the Brunhes and two besides the Jaramillo in the late Matuyama. These 10 short subchrons begin to indicate the many short events that Cox (1968) hypothesized must exist if polarity interval lengths have a Poisson distribution. The mean sustained polarity interval length since late Matuyama Chron time is 90 000 years. The similarity of this number with the 105-year period of the Earth's orbital eccentricity suggests anew that linkage between geomagnetic, paleoclimatic, and possible underlying Earth orbital parameters should be evaluated. -from Authors

  16. Rodingitization and carbonization processes in Triassic ultramafic cumulates and lavas, Othris Mt, Central Greece

    Science.gov (United States)

    Koutsovitis, Petros; Magganas, Andreas; Economou, Georgios

    2016-04-01

    A Triassic magmatic sequence from the south Othris region is comprised of early stage basaltic pillow lavas, as well as late stage ultramafic rocks, lava flows, high-Mg doleritic dykes and pyroclastic tuffs. The ultramafic rocks include slightly serpentinized wehrlites and lavas consisting of cumulate olivine, variably textured clinopyroxene (cumulate, quench, hollow, skeletal or blade shaped), magnesiohornblende, tremolite, phlogopite, spinel, chlorite, garnet, serpentine, calcite and devitrified glass[1]. Part of their secondary mineralogy developed due to percolation of metasomatic fluids during rodingitization and carbonization processes. In ultramafic rocks from Agia Marina and Mili, rodingitization was rather penetratively and expressed with crystallization of hydrogarnets, accompanied by secondary diopside and chlorite. Hydrogarnets are characterized by their low Ti-contents (recycling thermal carbonated seawater, leached from the rifted Triassic platform carbonates. References. [1] Koutsovitis, Magganas, Ntaflos 2012: Lithos 144-145, 177-193; [2] Koutsovitis, Magganas, Pomonis, Ntaflos 2013: Lithos 172-173, 139-157.

  17. Littoral hydrovolcanic explosions: a case study of lava seawater interaction at Kilauea Volcano

    Science.gov (United States)

    Mattox, Tari N.; Mangan, Margaret T.

    1997-01-01

    A variety of hydrovolcanic explosions may occur as basaltic lava flows into the ocean. Observations and measurements were made during a two-year span of unusually explosive littoral activity as tube-fed pahoehoe from Kilauea Volcano inundated the southeast coastline of the island of Hawai`i. Our observations suggest that explosive interactions require high entrance fluxes (≥4 m 3/s) and are most often initiated by collapse of a developing lava delta. Two types of interactions were observed. "Open mixing" of lava and seawater occurred when delta collapse exposed the mouth of a severed lava tube or incandescent fault scarp to wave action. The ensuing explosions produced unconsolidated deposits of glassy lava fragments or lithic debris. Interactions under "confined mixing" conditions occurred when a lava tube situated at or below sea level fractured. Explosions ruptured the roof of the tube and produced circular mounds of welded spatter. We estimate a water/rock mass ratio of 0.15 for the most common type of littoral explosion and a kinetic energy release of 0.07-1.3 kJ/kg for the range of events witnessed.

  18. Littoral hydrovolcanic explosions: A case study of lava-seawater interaction at Kilauea Volcano

    Science.gov (United States)

    Mattox, T.N.; Mangan, M.T.

    1997-01-01

    A variety of hydrovolcanic explosions may occur as basaltic lava flows into the ocean. Observations and measurements were made during a two-year span of unusually explosive littoral activity as tube-fed pahoehoe from Kilauea Volcano inundated the southeast coastline of the island of Hawai'i. Our observations suggest that explosive interactions require high entrance fluxes (??? 4 m3/s) and are most often initiated by collapse of a developing lava delta. Two types of interactions were observed. "Open mixing" of lava and seawater occurred when delta collapse exposed the mouth of a severed lava tube or incandescent fault scarp to wave action. The ensuing explosions produced unconsolidated deposits of glassy lava fragments or lithic debris. Interactions under "confined mixing" conditions occurred when a lava tube situated at or below sea level fractured. Explosions ruptured the roof of the tube and produced circular mounds of welded spatter. We estimate a water/rock mass ratio of 0.15 for the most common type of littoral explosion and a kinetic energy release of 0.07-1.3 kJ/kg for the range of events witnessed.

  19. Basaltic Magma-Water Interaction on Earth: Recognition Criteria To Aid Planetary Mapping on Mars (Invited)

    Science.gov (United States)

    Skilling, I. P.; Graettinger, A. H.; Mercurio, E.; McGarvie, D.; Edwards, B. R.

    2013-12-01

    The interaction of basaltic magma with frozen/liquid water or wet sediment is a very common process on Earth, resulting in a wide array of explosively and non-explosively generated products at the micron to kilometre scale. A variety of products and edifices on Mars have also been interpreted as having formed by such interaction, but with the exception of rootless cones, such interpretations are rarely unequivocal. This talk focuses on terrestrial process recognition criteria at a scale, orientation (vertical) and erosion level that is relevant to Mars geological mapping. In this context, we emphasise intrusions with peperite margins and wide hydrothermal haloes, steep margins of ice-contact lava flows, subaerial-subaqueous lava delta transitions, lava domains with distinctive water-cooled jointing, edifices that are dominated by slumped and rotated beds, and the presence of surrounding fluvial deposits and erosion. The most common products of magma-water interaction on Earth are subaqueously emplaced lava flows, which are dominated by pillow lavas. Though pillows are not easy to distinguish from subaerial pahoehoe toes at the resolution of most remote imagery, they are commonly associated with distinctively jointed lava domains, which are usually on a larger scale, including areas of water-cooled jointing (curvicolumnar, blocky etc), lava-filled tubes, which often display radial jointing, and steep talus deposits of joint-block breccia. Subaqueous basaltic lavas emplaced in an ice-confined environment may also display near-vertical ice-contact margins, draped by curtains of elongate pillows or cavities formed from melting of included ice-blocks. Subaerial lava flows that transition into water also develop large-scale foreset-bedding close to the angle of repose, which should be easily visible, at least in oblique imagery. As the majority of the Martian surface is more deeply eroded than most areas of terrestrial basaltic volcanism, it is important to discuss

  20. The eruptive history of the Tequila volcanic field, western Mexico: ages, volumes, and relative proportions of lava types

    Science.gov (United States)

    Lewis-Kenedi, Catherine B.; Lange, Rebecca A.; Hall, Chris M.; Delgado-Granados, Hugo

    2005-06-01

    The eruptive history of the Tequila volcanic field (1600 km2) in the western Trans-Mexican Volcanic Belt is based on 40Ar/39Ar chronology and volume estimates for eruptive units younger than 1 Ma. Ages are reported for 49 volcanic units, including Volcán Tequila (an andesitic stratovolcano) and peripheral domes, flows, and scoria cones. Volumes of volcanic units ≤1 Ma were obtained with the aid of field mapping, ortho aerial photographs, digital elevation models (DEMs), and ArcGIS software. Between 1120 and 200 kyrs ago, a bimodal distribution of rhyolite (~35 km3) and high-Ti basalt (~39 km3) dominated the volcanic field. Between 685 and 225 kyrs ago, less than 3 km3 of andesite and dacite erupted from more than 15 isolated vents; these lavas are crystal-poor and show little evidence of storage in an upper crustal chamber. Approximately 200 kyr ago, ~31 km3 of andesite erupted to form the stratocone of Volcán Tequila. The phenocryst assemblage of these lavas suggests storage within a chamber at ~2 3 km depth. After a hiatus of ~110 kyrs, ~15 km3 of andesite erupted along the W and SE flanks of Volcán Tequila at ~90 ka, most likely from a second, discrete magma chamber located at ~5 6 km depth. The youngest volcanic feature (~60 ka) is the small andesitic volcano Cerro Tomasillo (~2 km3). Over the last 1 Myr, a total of 128±22 km3 of lava erupted in the Tequila volcanic field, leading to an average eruption rate of ~0.13 km3/kyr. This volume erupted over ~1600 km2, leading to an average lava accumulation rate of ~8 cm/kyr. The relative proportions of lava types are ~22 43% basalt, ~0.4 1% basaltic andesite, ~29 54% andesite, ~2 3% dacite, and ~18 40% rhyolite. On the basis of eruptive sequence, proportions of lava types, phenocryst assemblages, textures, and chemical composition, the lavas do not reflect the differentiation of a single (or only a few) parental liquids in a long-lived magma chamber. The rhyolites are geochemically diverse and were likely

  1. An analysis of Apollo lunar soil samples 12070,889, 12030,187, and 12070,891: Basaltic diversity at the Apollo 12 landing site and implications for classification of small-sized lunar samples

    Science.gov (United States)

    Alexander, Louise; Snape, Joshua F.; Joy, Katherine H.; Downes, Hilary; Crawford, Ian A.

    2016-09-01

    Lunar mare basalts provide insights into the compositional diversity of the Moon's interior. Basalt fragments from the lunar regolith can potentially sample lava flows from regions of the Moon not previously visited, thus, increasing our understanding of lunar geological evolution. As part of a study of basaltic diversity at the Apollo 12 landing site, detailed petrological and geochemical data are provided here for 13 basaltic chips. In addition to bulk chemistry, we have analyzed the major, minor, and trace element chemistry of mineral phases which highlight differences between basalt groups. Where samples contain olivine, the equilibrium parent melt magnesium number (Mg#; atomic Mg/[Mg + Fe]) can be calculated to estimate parent melt composition. Ilmenite and plagioclase chemistry can also determine differences between basalt groups. We conclude that samples of approximately 1-2 mm in size can be categorized provided that appropriate mineral phases (olivine, plagioclase, and ilmenite) are present. Where samples are fine-grained (grain size basalts. Of the fragments analyzed here, three are found to belong to each of the previously identified olivine and ilmenite basalt suites, four to the pigeonite basalt suite, one is an olivine cumulate, and two could not be categorized because of their coarse grain sizes and lack of appropriate mineral phases. Our approach introduces methods that can be used to investigate small sample sizes (i.e., fines) from future sample return missions to investigate lava flow diversity and petrological significance.

  2. The mode of emplacement of Neogene flood basalts in eastern Iceland: Facies architecture and structure of simple aphyric basalt groups

    Science.gov (United States)

    Óskarsson, Birgir V.; Riishuus, Morten S.

    2014-12-01

    Simple flows (tabular) in the Neogene flood basalt sections of Iceland are described and their mode of emplacement assessed. The flows belong to three aphyric basalt groups: the Kumlafell group, the Hólmatindur group and the Hjálmadalur group. The groups can be traced over 50 km and originate in the Breiðdalur-Thingmuli volcanic zone. The groups have flow fields that display mixed volcanic facies architecture and can be classified after dominating type morphology. The Kumlafell and the Hólmatindur groups have predominantly simple flows of pāhoehoe and rubbly pāhoehoe morphologies with minor compound or lobate pāhoehoe flows. The Hjálmadalur group has simple flows of rubbly pāhoehoe, but also includes minor compound or lobate flows of rubble and 'a'ā. Simple flows are most common in the distal and medial areas from the vents, while more lobate flows in proximal areas. The simple flows are formed by extensive sheet lobes that are several kilometers long with plane-parallel contacts, some reaching thicknesses of ~ 40 m (aspect ratios inflation structures. Their internal structure consists generally of a simple upper vesicular crust, a dense core and a thin basal vesicular zone. The brecciated flow-top is formed by clinker and crustal rubble, the clinker often welded or agglutinated. The simple flows erupted from seemingly short-lived fissures and have the characteristics of cooling-limited flows. We estimate the effusion rates to be ~ 105 m3/s for the simple flows of the Kumlafell and Hólmatindur groups and ~ 104 m3/s for the Hjálmadalur group. The longest flows advanced 15-20 km from the fissures, with lava streams of fast propagating flows inducing tearing and brecciation of the chilled crust. Compound or lobate areas appear to reflect areas of low effusion rates or the interaction of the lava with topographic barriers or wetlands, resulting in chaotic flowage. Slowing lobes with brecciated flow-tops developed into 'a'ā flows. The groups interdigitated

  3. Constraining the onset of flood volcanism in Isle of Skye Lava Field, British Paleogene Volcanic Province

    Science.gov (United States)

    Angkasa, Syahreza; Jerram, Dougal. A.; Svensen, Henrik; Millet, John M.; Taylor, Ross; Planke, Sverre

    2016-04-01

    In order to constrain eruption styles at the onset of flood volcanism, field observations were undertaken on basal sections of the Isle of Skye Lava Field, British Paleogene Volcanic Province. This study investigates three specific sections; Camus Ban, Neist Point and Soay Sound which sample a large area about 1500 km2 and can be used to help explain the variability in palaeo-environments at the onset of flood volcanism. Petrological analysis is coupled with petrophysical lab data and photogrammetry data to create detailed facies models for the different styles of initiating flood basalt volcanism. Photogrammetry is used to create Ortho-rectified 3D models which, along with photomontage images, allow detailed geological observations to be mapped spatially. Petrographic analyses are combined with petrophysical lab data to identify key textural variation, mineral compositions and physical properties of the volcanic rocks emplaced during the initial eruptions. Volcanism initiated with effusive eruptions in either subaerial or subaqueous environments resulting in tuff/hyaloclastite materials or lava flow facies lying directly on the older Mesozoic strata. Volcanic facies indicative of lava-water interactions vary significantly in thickness between different sections suggesting a strong accommodation space control on the style of volcanism. Camus Ban shows hyaloclastite deposits with a thickness of 25m, whereas the Soay Sound area has tuffaceous sediments of under 0.1m in thickness. Subaerial lavas overly these variable deposits in all studied areas. The flood basalt eruptions took place in mixed wet and dry environments with some significant locally developed water bodies (e.g. Camus Ban). More explosive eruptions were promoted in some cases by interaction of lavas with these water bodies and possibly by local interaction with water - saturated sediments. We record key examples of how palaeotopography imparts a primary control on the style of volcanism during the

  4. Inverse modeling of Central American lavas: old lithospheric and young asthenospheric heterogeneities

    Science.gov (United States)

    Feigenson, M.; Gazel, E.; Carr, M. J.

    2009-12-01

    In recent years, there have been a number of models proposed to account for the OIB-like geochemical characteristics of lavas from central Costa Rica. The source for most basalts of the Central American volcanic front (ranging from Guatemala to northern Costa Rica) is dominantly DM (depleted MORB-source mantle) fluxed by subduction-derived fluids. In contrast, central Costa Rican basalts display striking isotopic similarities to the Galapagos hotspot. How the Galapagos signature is introduced into the Central American source is at the heart of the conflicting theories. Several models incorporate asthenospheric flow of this enriched mantle, either around the Central American arc via South America, or through a slab window, which may have opened about 5 my ago beneath central Costa Rica. Alternatively, passage of the Caribbean plate over the Galapagos hotspot may have left veins of unerupted melt within the sub-Caribbean lithosphere. These veins may be preferentially tapped during later superimposed arc volcanism. Although these models yield identical isotopic systematics, it may be possible to distinguish between them by a geochemical technique that can indicate the presence of garnet in the source region. This method, developed by Hofmann and coworkers in the 1980s, is termed inverse modeling, and uses the variation of REEs in lavas to assess the relative importance of garnet vs. clinopyroxene during partial melting. We have applied this method to new REE data from back arc lavas throughout Central America, and preliminary results indicate that garnet is not present in their sources. In contrast, direct slab melts (adakites) from Central America, as well as volcanic front lavas and alkaline basalt (with minimal slab signature) from central Costa Rica and Panama, require a source with garnet. Therefore, enriched mantle in the back arc is likely stored in the shallow lithosphere rather than introduced through asthenospheric flow. Enriched material in the volcanic

  5. A field investigation of the basaltic ring structures of the Channeled Scabland and the relevance to Mars

    Science.gov (United States)

    Kestay, Laszlo P.; Jaeger, Windy L.

    2015-01-01

    The basaltic ring structure (BRS) is a class of peculiar features only reported in the Channeled Scabland of eastern Washington State. They have been suggested to be good analogs, however, for some circular features on Mars. BRSs are found where Pleistocene floods scoured the Columbia River Basin, stripping off the uppermost part of the Miocene Columbia River Basalt Group and exposing structures that were previously embedded in the lava. The “Odessa Craters,” near Odessa, WA, are 50–500-m-wide BRSs that are comprised of discontinuous, concentric outcrops of subvertically-jointed basalt and autointrusive dikes. Detailed field investigation of the Odessa Craters in planform and a cross-sectional exposure of a similar structure above Banks Lake, WA, lead us to propose that BRSs formed by concurrent phreatovolcanism and lava flow inflation. In this model, phreatovolcanic (a.k.a., “rootless”) cones formed on a relatively thin, active lava flow; the lava flow inflated around the cones, locally inverting topography; tensile stresses caused concentric fracturing of the lava crust; lava from within the molten interior of the flow exploited the fractures and buried the phreatovolcanic cones; and subsequent erosive floods excavated the structures. Another population of BRSs near Tokio Station, WA, consists of single-ringed, raised-rimmed structures that are smaller and more randomly distributed than the Odessa Craters. We find evidence for a phreatovolcanic component to the origin as well, and hypothesize that they are either flood-eroded phreatovolcanic cones or Odessa Crater-like BRSs. This work indicates that BRSs are not good analogs to the features on Mars because the martian features are found on the uneroded surfaces. Despite this, the now superseded concepts for BRS formation are useful for understanding the formation of the martian features.

  6. Development of lava tubes in the light of observations at Mauna Ulu, Kilauea Volcano, Hawaii

    Science.gov (United States)

    Peterson, D.W.; Holcomb, R.T.; Tilling, R.I.; Christiansen, R.L.

    1994-01-01

    conclude, therefore, that the tendency of active pahoehoe flows to form lava tubes is a significant factor in producing the common shield morphology of basaltic volcanoes. ?? 1994 Springer-Verlag.

  7. Satellite-Based Thermophysical Analysis of Volcaniclastic Deposits: A Terrestrial Analog for Mantled Lava Flows on Mars

    Directory of Open Access Journals (Sweden)

    Mark A. Price

    2016-02-01

    example. Accurate identification of non-mantled lava surfaces within an apparently well-mantled flow field on either planet provides locations to extract important mineralogical constraints on the individual flows using TIR data.

  8. Enhanced crystal fabric analysis of a lava flow sample by neutron texture diffraction: A case study from the Castello d'Ischia dome

    Science.gov (United States)

    Walter, Jens M.; Iezzi, Gianluca; Albertini, Gianni; Gunter, Mickey E.; Piochi, Monica; Ventura, Guido; Jansen, Ekkehard; Fiori, Fabrizio

    2013-01-01

    The crystal fabric of a lava has been analyzed for the first time by neutron texture diffraction. In this study we quantitatively investigate the crystallographic preferred orientation of feldspars in the Castello d'Ischia (Ischia Island, Italy) trachytic exogenous dome. The crystallographic preferred orientation was measured with the monochromatic neutron texture diffractometer SV7 at the Forschungszentrum Jülich in Germany and a Rietveld refinement was applied to the sum diffraction pattern. The complementary thin section analysis showed that the three-dimensional crystal shape and the corresponding shape preferred orientation are in agreement with the quantitative orientation distributions of the neutron texture data. The (0k0) crystallographic planes of the feldspars are roughly parallel to the local flow bands, whereas the other corresponding pole figures show that a pivotal rotation of the anorthoclase and sanidine crystals was active during the emplacement of this lava dome. In combination with scanning electron microscopy investigations, electron probe microanalysis, XRF, and X-ray diffraction, the Rietveld refinement of the neutron diffraction data indicates a slow cooling dynamic on the order of several months during their crystallization under subaerial conditions. Results attained here demonstrate that neutron texture diffraction is a powerful tool that can be applied to lava flows.

  9. Energy and Carbon Flow: Comparing ultramafic- and basalt-hosted vents

    Science.gov (United States)

    Perner, M.; Bach, W.; Seifert, R.; Strauss, H.; Laroche, J.

    2010-12-01

    In deep-sea vent habitats hydrothermal fluids provide the grounds for life by supplying reduced inorganic compounds (e.g. H2, sulfide). Chemolithoautotrophs can oxidize these substrates hereby yielding energy, which can then be used to fuel autotrophic CO2 fixation. Depending on the type of host rocks (and the degree of admixed ambient seawater) the availability of inorganic electron donors can vary considerably. While in ultramafic-hosted vents H2 levels are high and H2-oxidizing metabolisms are thought to dominate, in basalt-hosted vents, H2 is much lower and microbial sulfide oxidation is considered to prevail [1, 2]. We have investigated the effect of H2 and sulfide availability on the microbial community of distinct H2-rich and H2-poor vent sites along the Mid-Atlantic Ridge. Hydrothermally influenced samples were collected from the H2-rich ultramafic-hosted Logatchev field (15°N) and the comparatively H2-poor basalt-hosted vents from 5°S and 9°S. We conducted catabolic energy calculations to estimate the potential of various electron donors to function as microbial energy sources. We performed incubation experiments with hydrothermal fluids amended with H2 or sulfide and radioactively labelled bicarbonate and determined H2 and sulfide consumption and carbon incorporation rates. We constructed metagenomic libraries for sequence-based screening of genes encoding key enzymes for H2 uptake (NiFe uptake hydrogenases, group 1), sulfide oxidation (sulfide quinone oxidoreductase, sqr) and CO2 fixation pathways (RubisCOs of the Calvin cycle [CBB] and beta-subunit of the ATP citrate lyase of the reductive tricarboxylic acid cycle [rTCA]). We evaluated parts of the metagenomes from basalt-hosted sites by pyrosequencing. Based on our incubation experiments - under the conditions applied - we could not confirm that generally H2 consumption rates and biomass syntheses in fluids derived from ultramafic-hosted locations are significantly enhanced over those from basalt

  10. Influence of Geological and Geomorphological Characteristics on Groundwater Occurrence in Deccan Basalt Hard Rock Area of Tawarja river Sub-Basin Latur, Maharashtra, India

    Directory of Open Access Journals (Sweden)

    Babar

    2012-04-01

    Full Text Available The entire study area is covered by Deccan basalt formations comprising nearly horizontal lava flows of late Cretaceous to early Eocene. There are eight flows of lava found in the area and these flows have been considered to be a result of fissure type lava eruption. The types of basaltic flows occurring in the area are simple basalt (aa type and vesicular-amygdaloidal (Compound pahoehoe type basalt flow and also red bole beds (Tachylitic bands are observed in the exposures, quarries and well sections. The drainage pattern varies from dendritic to sub-dendritic and sub-parallel. The bifurcation ratio is moderate (3.00 to 4.67 and the lower values of drainage density (1.77 km/km2 and stream frequency (1.74 streams/km2 indicates the region is of permeable subsoil strata of the basin. Morphometric attributes like form factor (0.85, circularity ratio (0.37 and elongation ratio (0.63 reflects the early mature stage of erosional development. The groundwater occurrence with reference to hydrogeological and geomorphological characters of the sub-basin is discussed. The groundwater occurrence is good productive in the geomorphic surfaces like moderately dissected plateau and pediplains, moderate in highly dissected plateau and lateritic uplands and poor in denudational hills.

  11. Understanding heat and groundwater flow through continental flood basalt provinces: insights gained from alternative models of permeability/depth relationships for the Columbia Plateau, USA

    Science.gov (United States)

    Burns, Erick R.; Williams, Colin F.; Ingebritsen, Steven E.; Voss, Clifford I.; Spane, Frank A.; DeAngelo, Jacob

    2015-01-01

    Heat-flow mapping of the western USA has identified an apparent low-heat-flow anomaly coincident with the Columbia Plateau Regional Aquifer System, a thick sequence of basalt aquifers within the Columbia River Basalt Group (CRBG). A heat and mass transport model (SUTRA) was used to evaluate the potential impact of groundwater flow on heat flow along two different regional groundwater flow paths. Limited in situ permeability (k) data from the CRBG are compatible with a steep permeability decrease (approximately 3.5 orders of magnitude) at 600–900 m depth and approximately 40°C. Numerical simulations incorporating this permeability decrease demonstrate that regional groundwater flow can explain lower-than-expected heat flow in these highly anisotropic (kx/kz ~ 104) continental flood basalts. Simulation results indicate that the abrupt reduction in permeability at approximately 600 m depth results in an equivalently abrupt transition from a shallow region where heat flow is affected by groundwater flow to a deeper region of conduction-dominated heat flow. Most existing heat-flow measurements within the CRBG are from shallower than 600 m depth or near regional groundwater discharge zones, so that heat-flow maps generated using these data are likely influenced by groundwater flow. Substantial k decreases at similar temperatures have also been observed in the volcanic rocks of the adjacent Cascade Range volcanic arc and at Kilauea Volcano, Hawaii, where they result from low-temperature hydrothermal alteration.

  12. Understanding heat and groundwater flow through continental flood basalt provinces: insights gained from alternative models of permeability/depth relationships for the Columbia Plateau, USA

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Erick R.; Williams, Colin F.; Ingebritsen, Steven E.; Voss, Clifford I.; Spane, Frank A.; DeAngelo, Jacob

    2015-02-01

    Heat-flow mapping of the western USA has identified an apparent low-heat-flow anomaly coincident with the Columbia Plateau Regional Aquifer System, a thick sequence of basalt aquifers within the Columbia River Basalt Group (CRBG). A heat and mass transport model (SUTRA) was used to evaluate the potential impact of groundwater flow on heat flow along two different regional groundwater flow paths. Limited in situ permeability (k) data from the CRBG are compatible with a steep permeability decrease (approximately 3.5 orders of magnitude) at 600–900 m depth and approximately 40°C. Numerical simulations incorporating this permeability decrease demonstrate that regional groundwater flow can explain lower-than-expected heat flow in these highly anisotropic (kx/kz ~ 104) continental flood basalts. Simulation results indicate that the abrupt reduction in permeability at approximately 600 m depth results in an equivalently abrupt transition from a shallow region where heat flow is affected by groundwater flow to a deeper region of conduction-dominated heat flow. Most existing heat-flow measurements within the CRBG are from shallower than 600 m depth or near regional groundwater discharge zones, so that heat-flow maps generated using these data are likely influenced by groundwater flow. Substantial k decreases at similar temperatures have also been observed in the volcanic rocks of the adjacent Cascade Range volcanic arc and at Kilauea Volcano, Hawaii, where they result from low-temperature hydrothermal alteration.

  13. Discrete Fracture Network Modeling and Simulation of Subsurface Transport for the Topopah Springs and Lava Flow Aquifers at Pahute Mesa, FY 15 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kwicklis, Edward Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harrod, Jeremy Ashcraft [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    This progress report for fiscal year 2015 (FY15) describes the development of discrete fracture network (DFN) models for Pahute Mesa. DFN models will be used to upscale parameters for simulations of subsurface flow and transport in fractured media in Pahute Mesa. The research focuses on modeling of groundwater flow and contaminant transport using DFNs generated according to fracture characteristics observed in the Topopah Spring Aquifer (TSA) and the Lava Flow Aquifer (LFA). This work will improve the representation of radionuclide transport processes in large-scale, regulatory-focused models with a view to reduce pessimistic bounding approximations and provide more realistic contaminant boundary calculations that can be used to describe the future extent of contaminated groundwater. Our goal is to refine a modeling approach that can translate parameters to larger-scale models that account for local-scale flow and transport processes, which tend to attenuate migration.

  14. Age and petrology of alkalic postshield and rejuvenated-stage lava from Kauai, Hawaii

    Science.gov (United States)

    Clague, D.A.; Dalrymple, G.B.

    1988-01-01

    At the top of the Waimea Canyon Basalt on the island of Kauai, rare flows of alkalic postshield-stage hawaiite and mugearite overlie tholeiitic flows of the shield stage. These postshield-stage flows are 3.92 Ma and provide a younger limit for the age of the tholeiitic shield stage. The younger Koloa Volcanics consist of widespread alkalic rejuvenated-stage flows and vents of alkalic basalt, basanite, nephelinite, and nepheline melilitite that erupted between 3.65 and 0.52 Ma. All the flows older than 1.7 Ma occur in the west-northwestern half of the island and all the flows younger than 1.5 Ma occur in the east-southeastern half. The lithologies have no spatial or chronological pattern. The flows of the Koloa Volcanics are near-primary magmas generated by variable small degrees of partial melting of a compositionally heterogeneous garnet-bearing source that has about two-thirds the concentration of P2O5, rare-earth elements, and Sr of the source of the Honolulu Volcanics on the island of Oahu. The same lithology in the Koloa and Honolulu Volcanics is generated by similar degrees of partial melting of distinct source compositions. The lavas of the Koloa Volcanics can be generated by as little as 3 percent to as much as 17 percent partial melting for nepheline melilitite through alkalic basalt, respectively. Phases that remain in the residue of the Honolulu Volcanics, such as rutile and phlogopite, are exhausted during formation of the Koloa Volcanics at all but the smallest degrees of partial melting. The mantle source for Kauai lava becomes systematically more depleted in 87Sr/86Sr as the volcano evolves from the tholeiitic shield stage to the alkalic postshield stage to the alkalic rejuvenated stage: at the same time, the lavas become systematically more enriched in incompatible trace elements. On a shorter timescale, the lavas of the Koloa Volcanics display the same compositional trends, but at a lower rate of change. The source characteristics of the Koloa

  15. Lava Lakes in Io's Paterae

    Science.gov (United States)

    Radebaugh, J.; McEwen, A. S.; Milazzo, M.; Davies, A. G.; Keszthelyi, L. P.; Geissler, P.

    2002-05-01

    lava lakes. The presence of giant lava lakes within these large paterae (up to 200 km diameter) has implications for the transfer of internal heat to the surface, as the paterae require direct links to comparably large, well supplied magma chambers (Harris et al., 1999, JGR, 104, 7117-7136) in order to maintain their vigorous activity over the observed timescales of tens of years. In addition, if much of Io's heat flow is restricted to these large lava lakes, then Io's resurfacing may be extremely spatially confined.

  16. Facies architecture of the Etjo Sandstone Formation and its interaction with the Basal Etendeka Flood Basalts of northwest Namibia: implications for offshore prospectivity

    Energy Technology Data Exchange (ETDEWEB)

    Jerram, D.A. [Institut fur Geologie, Universitat Wuerzburg (Germany); University of Durham (United Kingdom). Dept. of Geological Sciences; Mountney, N. [University of Liverpool (United Kingdom). Dept. of Earth Sciences; Stollhofen, H. [Institut fur Geologie, Universitat Wuerzburg (Germany)

    1999-07-01

    The Basal Etendeka Flood Basalt stratigraphy in the Huab Basin of northwest Namibia comprises a series of lava flows interleaved with aeolian sandstone bodies of the Etjo Sandstone Formation. The sandstone units are characterized by three main types: (1) the major erg - a mixed aeolian and fluvian facies up to 150 m thick ; (2) minor ergs - aeolian facies which occur directly above the first volcanic units and are up to 60 m thick; (3) isolated bodies - multidune, single dune and lava topography infills. A variety of bypass surfaces identified by sand-filled cracks and sediment - lava breccias occur on lava top surfaces. Preserved ripples and pahoehoe lava imprints indicate that the aeolian sand dunes were actively migrating during basalt emplacement. Observations recorded in the Basal Etendeka Flood Basalts which may be of relevance to offshore hydrocarbon exploration include: a major-minor erg relationship resulting in large sandbodies up to 60 m thick which occur directly after the first volcanic units; the occurrence of sand-filled fissures up to 36 m in depth which would greatly influence connectivity in an offshore setting; the identification of bypass surfaces as marker horizons which may laterally correlate with isolated sandbodies.

  17. Stratigraphy of amethyst geode-bearing lavas and fault-block structures of the Entre Rios mining district, Paraná volcanic province, southern Brazil

    Directory of Open Access Journals (Sweden)

    LÉO A. HARTMANN

    2014-03-01

    Full Text Available The Entre Rios mining district produces a large volume of amethyst geodes in underground mines and is part of the world class deposits in the Paraná volcanic province of South America. Two producing basalt flows are numbered 4 and 5 in the lava stratigraphy. A total of seven basalt flows and one rhyodacite flow are present in the district. At the base of the stratigraphy, beginning at the Chapecó river bed, two basalt flows are Esmeralda, low-Ti type. The third flow in the sequence is a rhyodacite, Chapecó type, Guarapuava subtype. Above the rhyodacite flow, four basalt flows are Pitanga, high-Ti type including the two mineralized flows; only the topmost basalt in the stratigraphy is a Paranapanema, intermediate-Ti type. Each individual flow is uniquely identified from its geochemical and gamma-spectrometric properties. The study of several sections in the district allowed for the identification of a fault-block structure. Blocks are elongated NW and the block on the west side of the fault was downthrown. This important structural characterization of the mining district will have significant consequences in the search for new amethyst geode deposits and in the understanding of the evolution of the Paraná volcanic province.

  18. King's Bowl Pit Crater, Lava Field and Eruptive Fissure, Idaho - A Multipurpose Volcanic Planetary Analog

    Science.gov (United States)

    Hughes, S. S.; Garry, B.; Kobs-Nawotniak, S. E.; Sears, D. W. G.; Borg, C.; Elphic, R. C.; Haberle, C. W.; Kobayashi, L.; Lim, D. S. S.; Sears, H.; Skok, J. R.; Heldmann, J. L.

    2014-12-01

    King's Bowl (KB) and its associated eruptive fissure and lava field on the eastern Snake River Plain, is being investigated by the NASA SSERVI FINESSE (Field Investigations to Enable Solar System Science and Exploration) team as a planetary analog to similar pits on the Moon, Mars and Vesta. The 2,220 ± 100 BP basaltic eruption in Craters of the Moon National Monument and Preserve represents early stages of low shield growth, which was aborted when magma supply was cut off. Compared to mature shields, KB is miniscule, with ~0.02 km3 of lava over ~3 km2, yet the ~6 km long series of fissures, cracks and pits are well-preserved for analog studies of volcanic processes. The termination of eruption was likely related to proximity of the 2,270 ± 50 BP eruption of the much larger Wapi lava field (~5.5 km3 over 325 km2 area) on the same rift. Our investigation extends early work by R. Greeley and colleagues, focusing on imagery, compositional variations, ejecta distribution, dGPS profiles and LiDAR scans of features related to: (1) fissure eruptions - spatter ramparts, cones, feeder dikes, extension cracks; (2) lava lake formation - surface morphology, squeeze-ups, slab pahoehoe lava mounds, lava drain-back, flow lobe overlaps; and (3) phreatic steam blasts - explosion pits, ejecta blankets of ash and blocks. Preliminary results indicate multiple fissure eruptions and growth of a basin-filled lava lake up to ~ 10 m thick with outflow sheet lava flows. Remnant mounds of original lake crust reveal an early high lava lake level, which subsided as much as 5 m as the molten interior drained back into the fissure system. Rapid loss of magma supply led to the collapse of fissure walls allowing groundwater influx that triggered multiple steam blasts along at least 500 m. Early blasts occurred while lake magma pressure was still high enough to produce squeeze-ups when penetrated by ejecta blocks. The King's Bowl pit crater exemplifies processes of a small, but highly energetic

  19. Mineral resources of the Devil's Garden Lava Bed, Squaw Ridge Lava Bed, and Four Craters Lava Bed Wilderness Study Areas, Lake County, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Keith, W.J.; King, H.D.; Gettings, M.E. (Geological Survey, Reston, VA (USA)); Johnson, F.L. (US Bureau of Mines (US))

    1988-01-01

    The Devel's Garden lava Bed, Squaw Ridge Lava Bed, and Four Craters Lava Bed Wilderness Study Areas include approximately 70,940 acres and are underlain entirely by Pleistocene or Holocene lava flows and associated sediments. There is no evidence of hydrothermal alteration in the study areas. No resources were identified in the study areas, but there is low potential for perlite resources in the southern part of the Devil's Garden Lava Bed and the northern half of the Squaw Ridge Lava Bed areas. All three study areas have low potential for geothermal resources and for oil and gas resources.

  20. Effets thermique et hydrothermal de la coulée de basalte triasico-liasique sur les argiles du bassin d'Argana (Maroc)Thermal and hydrothermal effects of Triassic Liassic basalt flow deposition on clays (Agana Basin, Morocco)

    Science.gov (United States)

    Daoudi, Lahcen; Pot de Vin, Jean-Luc

    Thermal and hydrothermal effects of Triassic-Liassic basalt flow deposition on sedimentary series of the Argana Basin are responsible for major modifications in detrital clays, until 20 m in depth. It expressed by transformation of detrital smectite to corrensite and moreover to chlorite, and by increasing illite crystallinity. On the 2 m of sediments located immediately under the flow, magnesium-rich hydrothermal fluids have caused precipitation of new mineral phases. To cite this article: L. Daoudi, J.-L. Pot de Vin, C. R. Geoscience 334 (2002) 463-468.

  1. Aspects of a conceptual groundwater flow model of the Serra Geral basalt aquifer (Sao Paulo, Brazil) from physical and structural geology data

    Science.gov (United States)

    Fernandes, Amélia J.; Maldaner, Carlos H.; Negri, Francisco; Rouleau, Alain; Wahnfried, Ingo D.

    2016-08-01

    A preliminary conceptual model of groundwater flow was developed for the Serra Geral fractured basalt aquifer in order to assess the recharge to the underlying sandstone Guarani Aquifer System, one of the main aquifer systems in Brazil, which supplies water to millions of people. Detailed geological investigations included macroscopic description of the basalt flow units and the underlying sandstone. Petrographic and chemical analyzes were conducted on rock samples from outcrops and from five drilled boreholes. Detailed fracture surveys were accomplished at outcrops to characterize fracture sets and their potential to transmit water in the current tectonic context. Four basalt flows were identified in the Ribeirao Preto area and were named B1, B2, B3 and B4 (from oldest to youngest). The cooling process in flow B3 led to the generation of large sub-horizontal fractures at the contacts B2/B3 and B3-C/B3-E, which are the most transmissive structures. Groundwater flow in the basalt appears to be of the stratabound type because fractures, in general, do not propagate through the basalt vesicular layers, which behave as a regional hydraulic barrier for the vertical groundwater flow. However, it is proposed that the localized, continuous and closely spaced subvertical tectonic fractures, the only features that have the potential to crosscut the vesicular layers and the intertrappe sediments, can vertically connect the sub-horizontal transmissive fractures. Weathering and water seepage, observed in rock exposures, indicate that subvertical NE-trending fractures would be the most transmissive in the Ribeirao Preto area.

  2. The effect of particle size on the rheology of liquid-solid mixtures with application to lava flows: Results from analogue experiments

    OpenAIRE

    Del Gaudio, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Ventura, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Taddeucci, J.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia

    2013-01-01

    We investigate the effect of crystal size on the rheology of basaltic magmas by means of a rheometer and suspensions of silicon oil with natural magmatic crystals of variable size (from 63 to 0.5 mm) and volume fraction fi (from 0.03 to 0.6). At constant fi, finer suspensions display higher viscosities than coarser ones. Shear thinning (flow index n 0.1–0.2 and is more pronounced (stronger departure from the Newtonian behavior) in finer suspensions. Maximum pac...

  3. A frozen record of density-driven crustal overturn in lava lakes: The example of Kilauea Iki 1959

    Science.gov (United States)

    Stovall, W.K.; Houghton, B.F.; Harris, A.J.L.; Swanson, D.A.

    2009-01-01

    Lava lakes are found at basaltic volcanoes on Earth and other planetary bodies. Density-driven crustal foundering leading to surface renewal occurs repeatedly throughout the life of a lava lake. This process has been observed and described in a qualitative sense, but due to dangerous conditions, no data has been acquired to evaluate the densities of the units involved. Kilauea Iki pit crater in Hawai'i houses a lava lake erupted during a 2 month period in 1959. Part of the surface of the Kilauea Iki lake now preserves the frozen record of a final, incomplete, crustal-overturn cycle. We mapped this region and sampled portions of the foundering crust, as well as overriding and underlying lava, to constrain the density of the units involved in the overturn process. Overturn is driven by the advance of a flow front of fresh, low-density lava over an older, higher density surface crust. The advance of the front causes the older crust to break up, founder, and dive downwards into the lake to expose new, hot, low-density lava. We find density differences of 200 to 740 kg/m3 between the foundering crust and over-riding and under-lying lava respectively. In this case, crustal overturn is driven by large density differences between the foundering and resurfacing units. These differences lead, inevitably, to frequent crustal renewal: simple density differences between the surface crust and underlying lake lava make the upper layers of the lake highly unstable. ?? Springer-Verlag 2008.

  4. Experimental Parameters for Wax Modeling of the Deccan Traps Flood Basalt Province

    Science.gov (United States)

    Rader, E. L.; Vanderkluysen, L.; Clarke, A. B.

    2015-12-01

    The Deccan Traps consist of ~1,000,000 km3 of predominantly tholeiitic basaltic lava flows, which cover the western Indian subcontinent. Their eruption occurred over a ~1-3 million year period overlapping with the Cretaceous-Paleogene (K-Pg) boundary and, hence, has been implicated in one of the most significant extinction events in the history of the planet. The extent of environmental impacts caused by flood basalt eruptions is thought to be related, in part, to the amount, species, and timescales of volcanic gases released. Therefore, constraining the effusion rate of Deccan Traps lava flows is fundamental to understanding the K-Pg extinction event. Previous field and experimental work with polyethylene glycol (PEG) wax has shown that effusion rate is a primary factor controlling flow morphology. While sinuous flows and lava domes have been successfully recreated with PEG wax, the two most common morphologies seen in the Deccan Traps (compound and inflated sheet lobes) have not. We used heated PEG-400 wax injected into a tank of chilled water with a peristaltic pump to form experimental eruptions with high flow rate and low viscosity to replicate inflated flow lobes, and low flow rate with higher viscosity for compound flows. Unlike previous experiments, flow rate was varied during a single experiment to examine the effect on flow morphology. The Psi value is used as a scaling parameter to estimate effusion rates for compound and 'simple' inflated flows in the Deccan Traps. When combined with field work for volume estimates of the two flow types, these experiments will provide the best constraint on eruption rates to date.

  5. Shallow Miocene basaltic magma reservoirs in the Bahia de Los Angeles basin, Baja California, Mexico

    Science.gov (United States)

    Delgado-Argote, Luis A.; García-Abdeslem, Juan

    1999-01-01

    The basement in the Bahı´a de Los Angeles basin consists of Paleozoic metamorphic rocks and Cretaceous granitoids. The Neogene stratigraphy overlying the basement is formed, from the base to the top, by andesitic lava flows and plugs, sandstone and conglomeratic horizons, and Miocene pyroclastic flow units and basaltic flows. Basaltic dikes also intrude the whole section. To further define its structure, a detailed gravimetric survey was conducted across the basin about 1 km north of the Sierra Las Flores. In spite of the rough and lineal topography along the foothills of the Sierra La Libertad, we found no evidence for large-scale faulting. Gravity data indicates that the basin has a maximum depth of 120 m in the Valle Las Tinajas and averages 75 m along the gravimetric profile. High density bodies below the northern part of the Sierra Las Flores and Valle Las Tinajas are interpreted to be part of basaltic dikes. The intrusive body located north of the Sierra Las Flores is 2.5 km wide and its top is about 500 m deep. The lava flows of the top of the Sierra Las Flores, together with the distribution of basaltic activity north of this sierra, suggests that this intrusive body continues for 20 km along a NNW-trending strike. Between the sierras Las Flores and Las Animas, a 0.5-km-wide, 300-m-thick intrusive body is interpreted at a depth of about 100 m. This dike could be part of the basaltic activity of the Cerro Las Tinajas and the small mounds along the foothills of western Sierra Las Animas. The observed local normal faulting in the basin is inferred to be mostly associated with the emplacement of the shallow magma reservoirs below Las Flores and Las Tinajas.

  6. New argon-argon (40Ar/39Ar) radiometric age dates from selected subsurface basalt flows at the Idaho National Laboratory, Idaho

    Science.gov (United States)

    Hodges, Mary K.; Turrin, Brent D.; Champion, Duane E.; Swisher, Carl C.

    2015-01-01

    In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, collected samples for 12 new argon-argon radiometric ages from eastern Snake River Plain olivine tholeiite basalt flows in the subsurface at the Idaho National Laboratory. The core samples were collected from flows that had previously published paleomagnetic data. Samples were sent to Rutgers University for argon-argon radiometric dating analyses.

  7. Formation of Hematite fine crystals by hydrothermal alteration of synthetic Martian basalt, static and fluid flow experiments

    Science.gov (United States)

    Kobayashi, K.; Isobe, H.

    2011-12-01

    Exploration made by Martian rovers and probes provided enormous information on the composition of the Martian surface materials. Origin and formation processes of the Martian surface materials should be various depending on topography and history of the Martian crust. Especially, iron minerals in the Martian soil should have essential role to characterize surface environment of the "red planet". In the present study, experimental reproduction of the Martian soil was carried out by hydrothermal alteration of the synthetic iron-rich basaltic rock. Experimental conditions for temperature and fluid composition followed Isobe and Yoshizawa (2010). Static alteration experiments are carried out at 100 °C and 150 °C, and mass ratio of the starting material to the pH1.0 sulfuric acid solution is 1:50. Run durations are 1, 2, 4 or 8 weeks. Appropriate mass of dry ice was sealed in the experimental vessels to expel atmospheric oxygen with CO2. For the static experiments, powdered starting materials were charged in PFA vial to keep textures of the run products. For the fluid flow experiments, we constructed closed loop with Teflon tube inclined approximately 45°. One of the vertical tube is charged with crushed synthetic basalt and heated approximately 150°C by aluminum block with ribbon heater. Surlfuric acid solution flows through the tube from bottom to top and cooled at the end of the aluminum block. Cooled solution returns to the bottom of the heated tube through another vertical tube without heating block. In the static condition run products, characteristic iron mineral particles are formed for 100°C and 150°C concordant with Isobe and Yoshizawa (2010). These iron minerals distributed not only inside the starting material powder but also on the surface of the reaction vessel and the PFA vial in the reactive solution. The surface of the reaction vessel shows orange and reddish color on 100°C and 150°C run products, respectively. By SEM observation, dissolution of

  8. 腾冲打鹰山、马鞍山、黑空山熔岩流动方式%LAVA FLOW STYLES IN DAYINGSHAN,MAANSHAN AND HEIKONGSHAN IN TENGCHONG VOLCANIC FIELD

    Institute of Scientific and Technical Information of China (English)

    赵勇伟; 樊祺诚; 李霓; 刘贵; 张柳毅

    2012-01-01

    Based on detailed field investigation, three lava flow styles are identified in the Dayingshan, Maanshan and Heikongshan in the volcanic field of Tengchong: pipe flow, inflated flow and laminar flow. Lava flows of Dayingshan are characterized by pipe flow. Heat lost gradually increased from the core to the edge of the flow pipe, resulting in lava consolidating gradually from the surface to the core. Lava of Maanshan is dominated by plane pahoehoe inflated by aa. The lava,in high temperature,was inflated into the lava tunnel as liquid-gas mixing phase, which generated aa. Heikongshan is featured by typical aa lava flow in the proximal phase and middle phase from the vent. The high-temperature plastic lava carried breccias on its top when advancing in a state of laminar flow,forming typical aa lava flow sections with breccias on the top and bottom and dense lava in the middle. Tn the distal phase,the lava flow formed numerous strip-shaped uplifts of breccias.%对腾冲打鹰山、马鞍山和黑空山的熔岩流进行详细地质勘察,发现存在3类熔岩流动方式:管状流动、“底侵”式流动和层状流动.管状流动出现于打鹰山熔岩中.熔岩管道中的温度由核心向表层递减,当表层冷却固结时,管道中的塑性熔岩继续前进,最终由表及里逐渐固结.马鞍山火山熔岩为渣状熔岩“底侵”结壳熔岩流动.结壳熔岩由表层向底部增生,早期熔岩固结形成结壳熔岩,晚期高温气液混合相的熔岩注入结壳熔岩之下的通道,最终固结形成渣状熔岩.黑空山熔岩为渣状熔岩层状流动.熔岩流顶部自碎形成的渣块在底部塑性致密熔岩的驼动下流动,在火口近源和中源形成顶部和底部都是角砾的渣状熔岩,在熔岩流的远端尽头,形成垂直于熔岩流动方向的条带状隆起.

  9. 40Ar/39Ar geochronology of subaerial lava flows of Barren Island volcano and the deep crust beneath the Andaman Island Arc, Burma Microplate

    Science.gov (United States)

    Ray, Jyotiranjan S.; Pande, Kanchan; Bhutani, Rajneesh

    2015-06-01

    Little was known about the nature and origin of the deep crust beneath the Andaman Island Arc in spite of the fact that it formed part of the highly active Indonesian volcanic arc system, one of the important continental crust forming regions in Southeast Asia. This arc, formed as a result of subduction of the Indian Plate beneath the Burma Microplate (a sliver of the Eurasian Plate), contains only one active subaerial magmatic center, Barren Island volcano, whose evolutional timeline had remained uncertain. In this work, we present results of the first successful attempt to date crustal xenoliths and their host lava flows from the island, by incremental heating 40Ar/39Ar method, in an attempt to understand the evolutionary histories of the volcano and its basement. Based on concordant plateau and isochron ages, we establish that the oldest subaerial lava flows of the volcano are 1.58 ± 0.04 (2σ) Ma, and some of the plagioclase xenocrysts have been derived from crustal rocks of 106 ± 3 (2σ) Ma. Mineralogy (anorthite + Cr-rich diopside + minor olivine) and isotopic compositions (87Sr/86Sr 7.0) of xenoliths not only indicate their derivation from a lower (oceanic) crustal olivine gabbro but also suggest a genetic relationship between the arc crust and the ophiolitic basement of the Andaman accretionary prism. We speculate that the basements of the forearc and volcanic arc of the Andaman subduction zone belong to a single continuous unit that was once attached to the western margin of the Eurasian Plate.

  10. Absolute paleointensity determinations by using of conventional double-heating and multispecimen approaches on a Pliocene lava flow sequence from the Lesser Caucasus

    Science.gov (United States)

    Goguitchaichvili, Avto; Caccavari, Ana; Calvo-Rathert, Manuel; Morales, Juan; Solano, Miguel Cervantes; Vashakidze, Goga; Huaiyu, He; Vegas, Néstor

    2016-08-01

    We report 28 successful Thellier type absolute geomagnetic paleointensity determinations from a Pleistocene lava sequence composed of 39 successive flows in the Djavakheti Highland (Lesser Caucasus, Georgia). Additionally, multispecimen technique provided the estimation of geomagnetic field strength for 12 independent cooling units. Paleointensity studies were performed using both Thellier type double heating and multispecimen techniques. Samples selection was mainly based on uni-vectorial remanent magnetization, thermal stability and domain size of the samples. Flow-mean Thellier paleointensity values range from 16.3 ± 5.2 to 71.0 ± 0.3 μT, while intensities obtained using multispecimen approach vary from17.2 ± 2.3 to 69.3 ± 7.9 μT. One of the flows is located near a possible discontinuity in the sequence and yields a rather low Thellier absolute intensity (16.3 ± 5.2) suggesting a transitional regime and the onset of the Matuyama-Olduvai polarity transition, which does not appear on the directional record. Multispecimen paleointensities from the same flow, however, yield higher, close to present day values which makes untenable the hypothesis of occurrence of transitional field. Thus the whole sequence was emplaced in a short time between the Olduvai chron and 1.73 ± 0.03 Ma, as suggested by available radiometric and paleomagnetic data (Caccavari et al., 2014).

  11. Bacterial Diversity of Young Seafloor Basalts: A Potential Role for Microorganisms in Ocean Crust Weathering

    Science.gov (United States)

    Santelli, C. M.; Edgcomb, V.; Bach, W.; Edwards, K.

    2005-12-01

    A growing number of studies indicate that microbial communities exist within the oceanic crust on mid-ocean ridge flanks. Young ocean crust that is exposed at the seafloor or in the shallow subseafloor interacts directly with low-temperature, oxygenated fluids and undergoes alteration. The free energy associated with oxidation of reduced species in the basalt could potentially be used by microbial communities for growth. Basaltic rock habitats at and below the seafloor, however, remain poorly studied with respect to the physiological and phylogenetic diversity of microbial communities that may be supported by oxidative weathering reactions. In this study, we have investigated the diversity of microorganisms living on or within basaltic crust at the seafloor, and the changes in these microbial communities with increasing oxidative rock alteration. Seafloor lavas representing various flow morphologies, alteration states, and ages (up to 20 kyrs) were collected from the East Pacific Rise between 9°28'N and 9°50'N. Total community DNA was extracted and bacterial 16S rRNA was amplified by PCR. Clone libraries were constructed and sequenced for phylogenetic analyses. To assess the overall extent of basalt alteration and quantify cell abundance in relation to surfacial weathering products, a combination of confocal laser scanning microscopy and scanning electron microscopy was used on natural, unprocessed samples. Phylogenetic and microscopic analyses indicate that diverse, yet distinct populations of bacteria inhabit different lavas, and these microbial communities shift with changes in basalt alteration state. A general trend from metal and sulfur-oxidizing autotrophic communities towards metal- and sulfur-reducing populations correlates with apparent increasing accumulation of weathering products (oxides, clays, etc.). These results provide insight into phylogenetic population trends among bacterial communities harbored in basalt during ocean crust weathering.

  12. The mode of emplacement of Neogene flood basalts in Eastern Iceland: Facies architecture and structure of the Hólmar and Grjótá olivine basalt groups

    Science.gov (United States)

    Óskarsson, Birgir V.; Riishuus, Morten S.

    2013-11-01

    Hólmar and Grjótá are two stratigraphically distinct transitional alkaline olivine basalt lava groups within the westward-dipping Neogene flood basalts of eastern Iceland. The Hólmar olivine basalt group, separated from the overlying Grjótá olivine basalt group by only a few tholeiite flows, can be traced over 80 km north-south, with thicknesses varying from ~ 250 m where thickest to ~ 30 m where thinnest. The Grjótá group can be traced over 50 km also north-south, reaching thicknesses of ~ 250 m and thinning down-dip to ~ 10 m. In contrast to other groups in eastern Iceland that thicken down-dip, the studied olivine basalt groups thicken up-dip. The groups filled topographic confinements and formed aprons around central volcanoes. We have estimated the minimum volumes to be ~ 119 km3 for Hólmar and ~ 86 km3 for Grjótá. Scoria cones are found in the Hólmar group, and two thick olivine dolerite sills cross-cut the Hólmar group and probably belong to the plumbing system that fed the Grjótá group. The architecture of the lava groups are near identical. The architecture is compound, with lobes stacked horizontally and vertically, varying from 1-15 m thick and 2-200 m long, but do also encompass a number of thicker (15-20 m) and more extensive (> 1 km long) lava lobe in the stacks. Filled lava tubes are commonly observed within the lava flows. The constituent lobes of the flows are often directly emplaced or welded together, suggesting rapid buildup, but are also found interbedded with redbeds and thicker tuff deposits, and occasionally preserve tree molds. The internal structure follows the characteristics for lava lobe morphology in general, with an upper vesicular crust forming half to one third of the total thickness, a massive core with abundant vesicle cylinders, and a thin basal vesicular crust. Flow tops are of the pahoehoe type, seldom found with scoria or clinker. Inflation structures such as tumuli and inflation clefts were identified in the

  13. Multiphase Alkaline Basalts of Central Al-Haruj Al-Abyad of Libya: Petrological and Geochemical Aspects

    Directory of Open Access Journals (Sweden)

    Abdel-Aal M. Abdel-Karim

    2013-01-01

    Full Text Available Al-Haruj basalts that represent the largest volcanic province in Libya consist of four lava flow phases of varying thicknesses, extensions, and dating. Their eruption is generally controlled by the larger Afro-Arabian rift system. The flow phases range from olivine rich and/or olivine dolerites to olivine and/or normal basalts that consist mainly of variable olivine, clinopyroxene, plagioclase, and glass. Olivine, plagioclase, and clinopyroxene form abundant porphyritic crystals. In olivine-rich basalt and olivine basalt, these minerals occur as glomerophyric or seriate clusters of an individual mineral or group of minerals. Groundmass textures are variably intergranular, intersertal, vitrophyric, and flow. The pyroclastic, clastogenic flows and/or ejecta of the volcanic cones show porphyritic, vitrophric, pilotaxitic, and vesicular textures. They are classified into tholeiite, alkaline, and olivine basalts. Three main groups are recorded. Basalts of phase 1 are generated from tholeiitic to alkaline magma, while those of phases 3 and 4 are derived from alkaline magma. It is proposed that the tholeiitic basalts represent prerift stage magma generated by higher degree of partial melting (2.0–3.5% of garnet-peridotite asthenospheric mantle source, at shallow depth, whereas the dominant alkaline basalts may represent the rift stage magma formed by low degree of partial melting (0.7–1.5% and high fractionation of the same source, at greater depth in an intra-continental plate with OIB affinity. The melt generation could be also attributed to lithosphere extension associated with passive rise of variable enriched mantle.

  14. Isotopic and trace element constraints on the petrogenesis of lavas from the Mount Adams volcanic field, Washington

    Science.gov (United States)

    Jicha, B.R.; Hart, G.L.; Johnson, C.M.; Hildreth, W.; Beard, B.L.; Shirey, S.B.; Valley, J.W.

    2009-01-01

    Strontium, Nd, Pb, Hf, Os, and O isotope compositions for 30 Quaternary lava flows from the Mount Adams stratovolcano and its basaltic periphery in the Cascade arc, southern Washington, USA indicate a major component from intraplate mantle sources, a relatively small subduction component, and interaction with young mafic crust at depth. Major- and trace-element patterns for Mount Adams lavas are distinct from the rear-arc Simcoe volcanic field and other nearby volcanic centers in the Cascade arc such as Mount St. Helens. Radiogenic isotope (Sr, Nd, Pb, and Hf) compositions do not correlate with geochemical indicators of slab-fluids such as (Sr/P)n and Ba/Nb. Mass-balance modeling calculations, coupled with trace-element and isotopic data, indicate that although the mantle source for the calc-alkaline Adams basalts has been modified with a fluid derived from subducted sediment, the extent of modification is significantly less than what is documented in the southern Cascades. The isotopic and trace-element compositions of most Mount Adams lavas require the presence of enriched and depleted mantle sources, and based on volume-weighted chemical and isotopic compositions for Mount Adams lavas through time, an intraplate mantle source contributed the major magmatic mass of the system. Generation of basaltic andesites to dacites at Mount Adams occurred by assimilation and fractional crystallization in the lower crust, but wholesale crustal melting did not occur. Most lavas have Tb/Yb ratios that are significantly higher than those of MORB, which is consistent with partial melting of the mantle in the presence of residual garnet. ??18O values for olivine phenocrysts in Mount Adams lavas are within the range of typical upper mantle peridotites, precluding involvement of upper crustal sedimentary material or accreted terrane during magma ascent. The restricted Nd and Hf isotope compositions of Mount Adams lavas indicate that these isotope systems are insensitive to crustal

  15. Isotopic and trace element constraints on the petrogenesis of lavas from the Mount Adams volcanic field, Washington

    Science.gov (United States)

    Jicha, Brian R.; Hart, Garret L.; Johnson, Clark M.; Hildreth, Wes; Beard, Brian L.; Shirey, Steven B.; Valley, John W.

    2009-02-01

    Strontium, Nd, Pb, Hf, Os, and O isotope compositions for 30 Quaternary lava flows from the Mount Adams stratovolcano and its basaltic periphery in the Cascade arc, southern Washington, USA indicate a major component from intraplate mantle sources, a relatively small subduction component, and interaction with young mafic crust at depth. Major- and trace-element patterns for Mount Adams lavas are distinct from the rear-arc Simcoe volcanic field and other nearby volcanic centers in the Cascade arc such as Mount St. Helens. Radiogenic isotope (Sr, Nd, Pb, and Hf) compositions do not correlate with geochemical indicators of slab-fluids such as (Sr/P) n and Ba/Nb. Mass-balance modeling calculations, coupled with trace-element and isotopic data, indicate that although the mantle source for the calc-alkaline Adams basalts has been modified with a fluid derived from subducted sediment, the extent of modification is significantly less than what is documented in the southern Cascades. The isotopic and trace-element compositions of most Mount Adams lavas require the presence of enriched and depleted mantle sources, and based on volume-weighted chemical and isotopic compositions for Mount Adams lavas through time, an intraplate mantle source contributed the major magmatic mass of the system. Generation of basaltic andesites to dacites at Mount Adams occurred by assimilation and fractional crystallization in the lower crust, but wholesale crustal melting did not occur. Most lavas have Tb/Yb ratios that are significantly higher than those of MORB, which is consistent with partial melting of the mantle in the presence of residual garnet. δ 18O values for olivine phenocrysts in Mount Adams lavas are within the range of typical upper mantle peridotites, precluding involvement of upper crustal sedimentary material or accreted terrane during magma ascent. The restricted Nd and Hf isotope compositions of Mount Adams lavas indicate that these isotope systems are insensitive to crustal

  16. Siderophile and chalcophile metal variations in Tertiary picrites and basalts from West Greenland with implications for the sulphide saturation history of continental flood basalt magmas

    Science.gov (United States)

    Keays, Reid R.; Lightfoot, Peter C.

    2007-04-01

    much more severe than that of the West Greenland contaminated basalts. Moreover, the volumes of the contaminated and metal-depleted volcanic rocks in West Greenland pale is significant when compared to the Nadezhdinsky Formation; local centers rarely contain more than 15 thin flows with a combined thickness of <50 m and more typically 10-20 m, so the volume of the eruptive portions of each system is probably two orders of magnitude smaller than the Nadezhdinsky edifice. The West Greenland centres are juxtaposed along fault zones that appear to be linked to the subsidence of the Tertiary delta, and so emplacement along N-S structures appears to be a principal control on the distribution of lavas and feeder intrusions. This leads us to suggest that the Greenland system is small and segregation of sulphide took place at high levels in the crust, whereas at Noril’sk, the saturation event took place at depth with subsequent emplacement of sulphide-bearing magmas into high levels of the crust. As a consequence, it may be unreasonable to expect that the West Greenland flood basalts experienced mineralizing processes on the scale of the Noril’sk system.

  17. 基性熔岩火山地层单元类型、特征及其储层意义%Types, characteristics and reservoir significance of basic lava flow units

    Institute of Scientific and Technical Information of China (English)

    衣健; 唐华风; 王璞珺; 高有峰; 赵然磊

    2016-01-01

    Based on profile measurements, the observation of the core samples, the interpretation of detection logging and seismic profiles, three typical fields and wells in Songliao Basin were chosen, and the types, the characteristics and the stacking patterns of the volcanic units were studied. The results show that the basic lava volcanic units can be formed by the diagenesis of solidification with cooling, and can be divided into four types according to their external morphology:the braid lava flow units, the fan-like lava flow units, the tabular lava flow units, and the tube lava flow units. The first three of these lava flow units are formed by the lava effusion on the ground, and the tube lava flow units are formed by the lava flowing along the buried tube underground. The internal structure of the lava flow units can be characterized by the vesicular zones. The braid lava flow units are divided into three parts:the rich vesicular zone on the tope, the spare vesicular zone in the middle, and the base vesicular zone at the base. The fan-like lava flow units have an autoclastic breccia zone on the rich vesicular zone, and a thin dense zone under the spare vesicular zone. The tabular lava flow units have a thick dense zone under the spare vesicular zone. The tube lava flow consists of a loop columnar zone in the outer ring and an autoclastic breccia core. The volcanostratigraphy is built by the stacking of volcanic units, and the spatial and temporal distribution of the lithology, and facies and reservoir are directly controlled by the shape and stacking patterns of lava flow units, and make up three distribution modes of reservoirs: the layered, the quasi layered and the mixed-lenticular. Thus this study may provide theoretic foundation for the final target attempt to define the fine characterization of the volcanostratigraphy using outcrop, well and seismic data.%为了探索基性熔岩的火山地层单元类型、特征与叠置关系,精选中国东北3个具

  18. Contrasting Sr isotope ratios in plagioclase from different formations of the mid-Miocene Columbia River Basalt Group

    Science.gov (United States)

    Starkel, W. A.; Wolff, J.; Eckberg, A.; Ramos, F.

    2008-12-01

    Many early Columbia River Basalt flows of the Steens and Imnaha Formations are characterized by abundant, texturally complex, coarse plagioclase phenocrysts. In Imnaha lavas, the feldspars typically have more radiogenic 87Sr/86Sr than whole rock and matrix, and may exhibit complex isotopic zoning that is not correlated with An content. Imnaha plagioclase grains are interpreted as variably-contaminated crystals produced when high-crystallinity mid-crustal basaltic intrusions exchanged interstitial melt with adjacent partly-melted crustal rock; this isotopically variable debris was then remobilized by subsequent intrusion of mantle-derived basalt and brought to the surface as an isotopically heterogeneous mixture. In contrast, plagioclase grains in the texturally very similar Steens lavas are isotopically near-homogeneous and 87Sr/86Sr is not significantly displaced from that of the bulk rock. This is consistent with magma- crust interaction at low degrees of crustal melting during the early stages of the Columbia River flood basalt episode, where Steens and Imnaha lavas were erupted from distinct magma systems hosted by different types of crust that exerted different degrees of isotopic leverage on the mantle-derived magmas [1]. Thermal input to the Steens system declined at the same time as the Imnaha magmatic flux increased to ultimately produce the huge outpouring of Grande Ronde lavas, which are mixtures of mantle- and crust-derived liquids, the latter produced during high degrees of crustal melting during the time of peak magmatic flux. [1] Wolff et al. (2008) Nature Geoscience 1, 177-180.

  19. An analysis of Apollo lunar soil samples 12070,889, 12030,187, and 12070,891: Basaltic diversity at the Apollo 12 landing site and implications for classification of small-sized lunar samples

    Science.gov (United States)

    Alexander, Louise; Snape, Joshua F.; Joy, Katherine H.; Downes, Hilary; Crawford, Ian A.

    2016-07-01

    Lunar mare basalts provide insights into the compositional diversity of the Moon's interior. Basalt fragments from the lunar regolith can potentially sample lava flows from regions of the Moon not previously visited, thus, increasing our understanding of lunar geological evolution. As part of a study of basaltic diversity at the Apollo 12 landing site, detailed petrological and geochemical data are provided here for 13 basaltic chips. In addition to bulk chemistry, we have analyzed the major, minor, and trace element chemistry of mineral phases which highlight differences between basalt groups. Where samples contain olivine, the equilibrium parent melt magnesium number (Mg#; atomic Mg/[Mg + Fe]) can be calculated to estimate parent melt composition. Ilmenite and plagioclase chemistry can also determine differences between basalt groups. We conclude that samples of approximately 1-2 mm in size can be categorized provided that appropriate mineral phases (olivine, plagioclase, and ilmenite) are present. Where samples are fine-grained (grain size fines) from future sample return missions to investigate lava flow diversity and petrological significance.

  20. The Jurassic-Cretaceous basaltic magmatism of the Oued El-Abid syncline (High Atlas, Morocco): Physical volcanology, geochemistry and geodynamic implications

    Science.gov (United States)

    Bensalah, Mohamed Khalil; Youbi, Nasrrddine; Mata, João; Madeira, José; Martins, Línia; El Hachimi, Hind; Bertrand, Hervé; Marzoli, Andrea; Bellieni, Giuliano; Doblas, Miguel; Font, Eric; Medina, Fida; Mahmoudi, Abdelkader; Beraâouz, El Hassane; Miranda, Rui; Verati, Chrystèle; De Min, Angelo; Ben Abbou, Mohamed; Zayane, Rachid

    2013-05-01

    Basaltic lava flows, dykes and sills, interbedded within red clastic continental sedimentary sequences (the so called "Couches Rouges") are widespread in the Oued El-Abid syncline. They represent the best candidates to study the Jurassic-Cretaceous magmatism in the Moroccan High Atlas. The volcanic successions were formed during two pulses of volcanic activity, represented by the Middle to Upper Jurassic basaltic sequence B1 (1-4 eruptions) and the Lower Cretaceous basaltic sequence B2 (three eruptions). Whether belonging to the B1 or B2, the lava flows present morphology and internal structures typical of inflated pahoehoe. Our geochemical data show that, at least for Jurassic magmatism, the dykes, and sills cannot be considered as strictly representing the feeders of the sampled lava flows. The Middle to Upper Jurassic pulse is moderately alkaline in character, while the Lower Cretaceous one is transitional. Crustal contamination plays a minor role in the petrogenesis of these magmas, which were generated by variable partial melting degrees of a garnet-bearing mantle source. Magmatism location was controlled by pre-existing Hercynian fault systems reactivated during a Middle to Upper Jurassic-Cretaceous rifting event. The associated lithospheric stretching induced melting, by adiabatic decompression, of enriched low-solidus infra-lithospheric domains.

  1. Eruption styles of Quaternary basalt in the southern Sierra Nevada Kern Plateau recorded in outcrop and mineral-scale stratigraphies

    Science.gov (United States)

    Browne, B. L.; Becerra, R. A.

    2015-12-01

    The Kern River Plateau in the southern Sierra Nevada contains Quaternary basalt (~0.1 km3) and rhyolite (~2 km3) that ascended through ~30 km of Mesozoic granitic crust. Basaltic vents include from oldest to youngest: Little Whitney Cone, Tunnel and South Fork Cones, and unglaciated Groundhog Cone. Little Whitney Cone is a 120-m-high pile of olivine-CPX-phyric scoria overlying two columnar jointed lava flows extending to the south and east. Tunnel Cone formed through a Hawaiian style eruption along a 400-m-long north-south trending fissure that excavated at least three 25-65-m-wide craters. Crater walls up to 12 meters high are composed of plagioclase-olivine-phyric spatter-fed flows that dip radially away from the crater center and crumble to form steep unconsolidated flanks. South Fork Cone is a 170-m-tall pile of plagioclase-olivine-phyric scoria that formed as a result of Strombolian to violent Strombolian eruptions. It overlies the South Fork Cone lava, the largest lava flow of the Kern Plateau (~0.05 km3), which flowed 7.5 km west into the Kern River Canyon. Scoria and ash fall deposits originating from South Fork Cone are found up to 2 km from the vent. Groundhog Cone is a 140-m-tall cinder and spatter cone breached on the north flank by a 0.03 km3 lava flow that partially buried the South Fork Cone lava and extends 5 km west to Kern River Canyon. Trends in mineral assemblage, texture, composition, and xenocryst abundance exist as a function of eruption style. Scoria and spatter deposits typically have (1) elevated olivine/plagioclase ratios, (2) oscillatory zoned (An63-An72) plagioclase phenocrysts surrounded by unzoned rims and (3) abundant xenocrysts, where up to 20% of plagioclase >200 micron diameter in some samples are granitoid xenocrysts with resorbed and/or reacted textures overprinted by abrupt compositional changes. In contrast, lava flow samples have (1) reduced olivine/plagioclase ratios and (2) plagioclase aggregates with oscillatory zoned

  2. Pliocene Basaltic Volcanism in The East Anatolia Region (EAR), Turkey

    Science.gov (United States)

    Oyan, Vural; Özdemir, Yavuz; Keskin, Mehmet

    2016-04-01

    East Anatolia Region (EAR) is one of the high Plateau which is occurred with north-south compressional regime formed depending on continent-continent collision between Eurasia and Arabia plates (Şengör and Kidd, 1979). Recent studies have revealed that last oceanic lithosphere in the EAR have completely depleted to 20 million years ago based on fission track ages (Okay et al. 2010). Our initial studies suggest that extensively volcanic activity in the EAR peaked in the Pliocene and continued in the same productivity throughout Quaternary. Voluminous basaltic lava plateaus and basaltic lavas from local eruption centers occurred as a result of high production level of volcanism during the Pliocene time interval. In order to better understand the spatial and temporal variations in Pliocene basaltic volcanism and to reveal isotopic composition, age and petrologic evolution of the basaltic volcanism, we have started to study basaltic volcanism in the East Anatolia within the framework of a TUBITAK project (project number:113Y406). Petrologic and geochemical studies carried out on the Pliocene basaltic lavas indicate the presence of subduction component in the mantle source, changing the character of basaltic volcanism from alkaline to subalkaline and increasing the amount of spinel peridotitic melts (contributions of lithospheric mantle?) in the mantle source between 5.5-3.5 Ma. FC, AFC and EC-AFC modelings reveal that the while basaltic lavas were no or slightly influenced by crustal contamination and fractional crystallization, to more evolved lavas such as bazaltictrachyandesite, basalticandesite, trachybasalt might have been important processes. Results of our melting models and isotopic analysis data (Sr, Nd, Pb, Hf, 18O) indicate that the Pliocene basaltic rocks were derived from both shallow and deep mantle sources with different melting degrees ranging between 0.1 - 4 %. The percentage of spinel seems to have increased in the mantle source of the basaltic

  3. Paleomagnetism and Rock Magnetic Properties from Quaternary Lavas and Tuffs of the Yellowstone Plateau Volcanic Field

    Science.gov (United States)

    Harlan, S. S.; Morgan, L. A.

    2008-12-01

    We report paleomagnetic and rock magnetic from rhyolite lava flows, ignimbrites, and basalt flows associated with the Yellowstone Caldera, within and surrounding Yellowstone National Park. These data were collected in order to understand sources of magnetic variations observed in high resolution aeromagnetic data reported by Finn and Morgan (2002), and to better understand the evolution of the Yellowstone magmatic system. Most paleomagnetic samples are from volcanic rocks of the third eruptive cycle (1.2 Ma to 0.070 Ma), including the ca. 0.640 Ma Lava Creek Tuff, postcaldera rhyolite flows, and contemporaneous marginal or post-caldera basalt flows. Magnetic intensities for samples ranged from 0.12 A/m to 5.9 A/m, with volume susceptibilities of 2.14x10-4 to 1.45x10-3 SI; Q ratios range from 0.67 to 23.8. As expected, most sites yield well-defined paleomagnetic directions of north declination and moderate positive inclination consistent with remanence acquisition during the Brunhes polarity chron. However, a few sites from older units such as the rhyolites of the Harlequin Lake (0.839 ± 0.007 Ma) and Lewis Canyon (0.853 ± 0.008 Ma) flows, and the basalts from the Junction Butte flow (at Tower Falls, 2.16 ± 0.04 Ma) and Hepburn Mesa (2.2 Ma) yield reverse polarity magnetizations (40Ar/39Ar dates from Obradovich, 1992, and Harlan, unpublished (Hepburn Mesa flow)). Rock magnetic behavior, including high coercivities during AF demagnetization, high laboratory unblocking temperatures, and susceptibility vs. temperature determinations indicate that remanence in the rhyolitic samples is carried by a combination of single or pseudo-single domain magnetite and/or hematite; in the basalt flows magnetite and high-Ti titanomagnetite carrys the remanence. Paleomagnetic results from 46 sites in 27 separate flows yields a grand mean direction with a declination of 356.9° and inclination of 61.9° (k = 35.2, α95 = 4.8°). VGPs calculated from the site-mean directions yield a

  4. Holocene Flows of the Cima Volcanic Field, Mojave Desert, Part 2: Flow Rheology from Laboratory Measurements

    Science.gov (United States)

    Robertson, T.; Whittington, A. G.; Soldati, A.; Sehlke, A.; Beem, J. R.; Gomez, F. G.

    2014-12-01

    Lava flow morphology is often utilized as an indicator of rheological behavior during flow emplacement. Rheological behavior can be characterized by the viscosity and yield strength of lava, which in turn are dependent on physical and chemical properties including crystallinity, vesicularity, and bulk composition. We are studying the rheology of a basaltic lava flow from a monogenetic Holocene cinder cone in the Cima lava field (Mojave Desert, California). The flow is roughly 2.5 km long and up to 700m wide, with a well-developed central channel along much of its length. Samples were collected along seven different traverses across the flow, along with real-time kinematic (RTK) GPS profiles to allow levee heights and slopes to be measured. Surface textures change from pahoehoe ropes near the vent to predominantly jagged `a`a blocks over the majority of the flow, including all levees and the toe. Chemically the lava shows little variation, plotting on the trachybasalt-basanite boundary on the total alkali-silica diagram. Mineralogically the lava is dominated by plagioclase, clinopyroxene and olivine phenocrysts, with abundant flow-aligned plagioclase microcrystals. The total crystal fraction is ~50% near the vent, with higher percentages in the distal portion of the flow. Vesicularity varies between ~10 and more than ~60%. Levees are ~10-15m high with slopes typically ~25-35˚, suggesting a yield strength at final emplacement of ~150,000 Pa. The effective emplacement temperature and yield strength of lava samples will be determined using the parallel-plate technique. We will test the hypothesis that these physical and rheological properties of the lava during final emplacement correlate with spatial patterns in flow morphology, such as average slope and levee width, which have been determined using remote sensing observations (Beem et al. 2014).

  5. A Plagioclase Ultraphyric Basalt group in the Neogene flood basalt piles of eastern Iceland: Volcanic architecture and mode of emplacement

    Science.gov (United States)

    Oskarsson, B. V.; Riishuus, M. S.

    2013-12-01

    3D photogrammetry in conjunction with ground mapping was applied in order to assess the architecture of a Plagioclase Ultraphyric Basalt (PUB) group in eastern Iceland, namely the Grænavatn group. The ~10 Myr old group is exposed in steep glacially carved fjords and can be traced over 60 km along strike. Two feeder dikes have been found and show that the group erupted along the trend of the dike swarm associated with the Breiddalur central volcano. The group has 9--14 flows where thickest, and thins to about 3--4 flows up-dip to the east within the distance of 15-20 km from the source. We have estimated the volume of the group to exceed 40 km3. The flows have mixed architecture of simple and compound morphology. The flow lobes have thicknesses from 1--24 m and many reach lengths over 1000 m. The surface morphology varies from rubbly to scoriaceous, but is dominantly of pahoehoe style. The internal structure of the lava flows is well preserved and the flows display abundant vesicle cylinders. The modal percentage of An-rich plagioclase macrocrysts varies from 25--50 % and they are in the range of 5--30 mm. The aspect ratio of the group and the nature of the flows indicate fissure-fed eruptions. A thick flow found at the base of the group in various locations seems to record the largest eruption episode in the formation of the group. This phase is also the most abundant in macrocryst. An asymmetric buildup is seen in one location and may have characterized the general buildup of the group. The general morphology of the lava flows suggests low viscous behavior, at odds with the high crystal content. Petrographic observations and mineral chemistry shows that the plagioclase macrocrysts are very calcic (An80-85) and in disequilibrium with the groundmass and plagioclases therein (An50-70). Thus the apparent lava rheology and emplacement of the PUBs was likely achieved due to fast ascent of the magma through the crust and transfer of heat from the primitive macrocrysts

  6. A preliminary assessment of the regional dispersivity of selected basalt flows at the Hanford Site, Washington, U.S.A.

    Science.gov (United States)

    Lavenue, A. M.; Domenico, P. A.

    1986-06-01

    Dispersivity is one of the hydraulic parameters that controls the distribution in groundwater of chemical constituents migrating from a source region. Therefore, knowledge of the range of dispersivity values along likely flow paths from proposed high-level nuclear waste repositories is important for assessing how well a site will perform in limiting releases of radionuclides to the environment. A primary reason why dispersivity has not been analyzed with regional-scale data is the general lack of suitable environmental tracers that have been in the hydrologic environment for long periods of time. Such tracers could normally result from some natural event, perhaps disruptive, that may have transpired in the geologic past. Such an event may have occurred at the U.S. Department of Energy Hanford Site in the State of Washington, resulting in a chemical enclave of regional proportions. A preliminary interpretation is that the enclave occurs immediately down-gradient from a hydraulic barrier, possibly a fault, which may have placed deeper formations in hydraulic connection with the upper basalts. With this hypothesized source for constituents making up the enclave, the observed concentrations are employed in a preliminary attempt to assess the regional dispersivity. This is the single conceptual model being tested in this paper. The mathematical method employed assumes that the concentration data conform to what would be expected of a perfectly symmetrical enclave, and part of the problem deals with identifying that symmetry. The results obtained are quite reasonable when compared to the range in dispersivities determined in laboratory, tracer, and model-scale studies.

  7. An analysis of Apollo lunar soil samples 12070,889, 12030,187, and 12070,891: Basaltic diversity at the Apollo 12 landing site and implications for classification of small-sized lunar samples

    Science.gov (United States)

    Alexander, Louise; Snape, Joshua F.; Joy, Katherine H.; Downes, Hilary; Crawford, Ian A.

    2016-09-01

    Lunar mare basalts provide insights into the compositional diversity of the Moon's interior. Basalt fragments from the lunar regolith can potentially sample lava flows from regions of the Moon not previously visited, thus, increasing our understanding of lunar geological evolution. As part of a study of basaltic diversity at the Apollo 12 landing site, detailed petrological and geochemical data are provided here for 13 basaltic chips. In addition to bulk chemistry, we have analyzed the major, minor, and trace element chemistry of mineral phases which highlight differences between basalt groups. Where samples contain olivine, the equilibrium parent melt magnesium number (Mg#; atomic Mg/[Mg + Fe]) can be calculated to estimate parent melt composition. Ilmenite and plagioclase chemistry can also determine differences between basalt groups. We conclude that samples of approximately 1-2 mm in size can be categorized provided that appropriate mineral phases (olivine, plagioclase, and ilmenite) are present. Where samples are fine-grained (grain size <0.3 mm), a "paired samples t-test" can provide a statistical comparison between a particular sample and known lunar basalts. Of the fragments analyzed here, three are found to belong to each of the previously identified olivine and ilmenite basalt suites, four to the pigeonite basalt suite, one is an olivine cumulate, and two could not be categorized because of their coarse grain sizes and lack of appropriate mineral phases. Our approach introduces methods that can be used to investigate small sample sizes (i.e., fines) from future sample return missions to investigate lava flow diversity and petrological significance.

  8. Bacterial diversity and successional patterns during biofilm formation on freshly exposed basalt surfaces at diffuse-flow deep-sea vents.

    Science.gov (United States)

    Gulmann, Lara K; Beaulieu, Stace E; Shank, Timothy M; Ding, Kang; Seyfried, William E; Sievert, Stefan M

    2015-01-01

    Many deep-sea hydrothermal vent systems are regularly impacted by volcanic eruptions, leaving fresh basalt where abundant animal and microbial communities once thrived. After an eruption, microbial biofilms are often the first visible evidence of biotic re-colonization. The present study is the first to investigate microbial colonization of newly exposed basalt surfaces in the context of vent fluid chemistry over an extended period of time (4-293 days) by deploying basalt blocks within an established diffuse-flow vent at the 9°50' N vent field on the East Pacific Rise. Additionally, samples obtained after a recent eruption at the same vent field allowed for comparison between experimental results and those from natural microbial re-colonization. Over 9 months, the community changed from being composed almost exclusively of Epsilonproteobacteria to a more diverse assemblage, corresponding with a potential expansion of metabolic capabilities. The process of biofilm formation appears to generate similar surface-associated communities within and across sites by selecting for a subset of fluid-associated microbes, via species sorting. Furthermore, the high incidence of shared operational taxonomic units over time and across different vent sites suggests that the microbial communities colonizing new surfaces at diffuse-flow vent sites might follow a predictable successional pattern.

  9. Effect of melt composition and crystal content on flow morphology along the Alarcón Rise, Mexico

    Science.gov (United States)

    Martin, J. F.; Lieberg-Clark, P.; Clague, D. A.; Caress, D. W.; Portner, R. A.; Paduan, J. B.; Dreyer, B. M.

    2012-12-01

    Differences in submarine lava flow morphology have been related to differences in eruption rate; low eruption rates form pillow-flow morphologies whereas high eruption rates form sheet-flow morphologies. Eruption rate is likely controlled by dike intrusion width, exsolved bubble content of the magma, viscosity of the magma, or some combination these three properties. Samples and observations from a 2012 expedition to the Alarcón Rise, Mexico, are used to evaluate the potential control of viscosity due to melt composition and crystal content on observed flow morphologies and associated eruption rates. A 1-m resolution multibeam survey, covering the entire 50 km length of the neovolcanic zone, was completed using the MBARI Mapping AUV. Based on the high-resolution bathymetry, two basic flow morphologies could be distinguished: pillow flows, comprising ~ 40 % of the rise, and sheet flows, comprising the remaining ~ 60 %. A series of dives using the ROVs Doc Ricketts in 2012 and Tiburon in 2003 visually confirmed pillow flows, lobate flows, sheet flows, and jumbled sheet flows at the sampled sites. Over 150 lava samples collected during the dives, spanning the entire length of the rise were analyzed for major-element chemistry, crystal content, and corresponding flow morphology. Lavas selected for this analysis ranged from basalt to basaltic-andesite (100 pa s, only pillow lavas are generated. The majority (> 80 %) of sampled pillow lavas are plagioclase-phyric to ultraphyric whereas the majority of lobate and sheet flow lavas are aphyric. Crystal fractions in the pillow lavas are as high as 30-40%, resulting in magma viscosities ~ 5-15 times the melt viscosities. The majority of pillow lavas (~77%) have magma viscosities > 100 pa s. Only ~ 25 % of lobate and sheet flow lavas have magma viscosities > 100 pa s. Many of the phyric lobate and sheet flow samples show evidence of strong flow segregation of crystals to the outer surface of the flow, resulting in samples

  10. Photogrammetric and Global Positioning System Measurements of Active Pahoehoe Lava Lobe Emplacement on Kilauea, Hawaii

    Science.gov (United States)

    Hamilton, Christopher W.; Glaze, Lori S.; James, Mike R.; Baloga, Stephen M.; Fagents, Sarah A.

    2012-01-01

    Basalt is the most common rock type on the surface of terrestrial bodies throughout the solar system and -- by total volume and areal coverage -- pahoehoe flows are the most abundant form of basaltic lava in subaerial and submarine environments on Earth. A detailed understanding of pahoehoe emplacement processes is necessary for developing accurate models of flow field development, assessing hazards associated with active lava flows, and interpreting the significance of lava flow morphology on Earth and other planetary bodies. Here, we examine the active emplacement of pahoehoe lobes along the margins of the Hook Flow from Pu'u 'O'o on Kilauea, Hawaii. Topographic data were acquired between 21 and 23 February 2006 using stereo-imaging and differential global positing system (DGPS) measurements. During this time, the average discharge rate for the Hook Flow was 0.01-0.05 cubic m/s. Using stereogrammetric point clouds and interpolated digital terrain models (DTMs), active flow fronts were digitized at 1 minute intervals. These areal spreading maps show that the lava lobe grew by a series of breakouts tha t broadly fit into two categories: narrow (0.2-0.6 m-wide) toes that grew preferentially down-slope, and broad (1.4-3.5 m-wide) breakouts that formed along the sides of the lobe, nearly perpendicular to the down-flow axis. These lobes inflated to half of their final thickness within approx 5 minutes, with a rate of inflation that generally deceased with time. Through a combination of down-slope and cross-slope breakouts, lobes developed a parabolic cross-sectional shape within tens of minutes. We also observed that while the average local discharge rate for the lobe was generally constant at 0.0064 +/- 0.0019 cubic m/s, there was a 2 to 6 fold increase in the areal coverage rate every 4.1 +/- 0.6 minutes. We attribute this periodicity to the time required for the dynamic pressurization of the liquid core of the lava lobe to exceed the cooling-induced strength of the

  11. Lava thicknesses: Implications for rheological and crustal development

    Science.gov (United States)

    Kilburn, C. R. J.; Lopes, R. M. C.

    1988-01-01

    The morphology of a lava flow is strongly influenced by its rheological structure. The rheological structure is, in turn, dependent on numerous factors including: (1) bulk composition, (2) crystallingity, (3) vesicularity, and (4) crustal development. Identifying which of the latter factors are most significant, and hence most readily investigated by remote-sensing techniques, is necessary to clarify short-term objectives and expectations from the study of Martian lava flows. Insights into the rheological controls on flow morphology are provided by variations in thickness of undrained lava streams on Etna and Vesuvius, Southern Italy. Both pahoehoe and aa lavas were studied.

  12. Eruptive and tectonic history of the Endeavour Segment, Juan de Fuca Ridge, based on AUV mapping data and lava flow ages

    Science.gov (United States)

    Clague, David. A.; Dreyer, Brian M.; Paduan, Jennifer B.; Martin, Julie F.; Caress, David W.; Gill, James B.; Kelley, Deborah S.; Thomas, Hans; Portner, Ryan A.; Delaney, John R.; Guilderson, Thomas P.; McGann, Mary L.

    2014-08-01

    bathymetric surveys from autonomous underwater vehicles ABE and D. Allan B. were merged to create a coregistered map of 71.7 km2 of the Endeavour Segment of the Juan de Fuca Ridge. Radiocarbon dating of foraminifera in cores from three dives of remotely operated vehicle Doc Ricketts provide minimum eruption ages for 40 lava flows that are combined with the bathymetric data to outline the eruptive and tectonic history. The ages range from Modern to 10,700 marine-calibrated years before present (yr BP). During a robust magmatic phase from >10,700 yr BP to ˜4300 yr BP, flows erupted from an axial high and many flowed >5 km down the flanks; some partly buried adjacent valleys. Axial magma chambers (AMCs) may have been wider than today to supply dike intrusions over a 2 km wide axial zone. Summit Seamount formed by ˜4770 yr BP and was subsequently dismembered during a period of extension with little volcanism starting ˜4300 yr BP. This tectonic phase with only rare volcanic eruptions lasted until ˜2300 yr BP and may have resulted in near-solidification of the AMCs. The axial graben formed by crustal extension during this period of low magmatic activity. Infrequent eruptions occurred on the flanks between 2620-1760 yr BP and within the axial graben since ˜1750 yr BP. This most recent phase of limited volcanic and intense hydrothermal activity that began ˜2300 yr BP defines a hydrothermal phase of ridge development that coincides with the present-day 1 km wide AMCs and overlying hydrothermal vent fields.

  13. Eruptive and tectonic history of the Endeavour Segment, Juan de Fuca Ridge, based on AUV mapping data and lava flow ages

    Science.gov (United States)

    Clague, David A.; Dreyer, Brian M; Paduan, Jennifer B; Martin, Julie F; Caress, David W; Gillespie, James B.; Kelley, Deborah S; Thomas, Hans; Portner, Ryan A; Delaney, John R; Guilderson, Thomas P.; McGann, Mary L.

    2016-01-01

    High-resolution bathymetric surveys from autonomous underwater vehicles ABE and D. Allan B. were merged to create a coregistered map of 71.7 km2 of the Endeavour Segment of the Juan de Fuca Ridge. Radiocarbon dating of foraminifera in cores from three dives of remotely operated vehicle Doc Ricketts provide minimum eruption ages for 40 lava flows that are combined with the bathymetric data to outline the eruptive and tectonic history. The ages range from Modern to 10,700 marine-calibrated years before present (yr BP). During a robust magmatic phase from >10,700 yr BP to ~4300 yr BP, flows erupted from an axial high and many flowed >5 km down the flanks; some partly buried adjacent valleys. Axial magma chambers (AMCs) may have been wider than today to supply dike intrusions over a 2 km wide axial zone. Summit Seamount formed by ~4770 yr BP and was subsequently dismembered during a period of extension with little volcanism starting ~4300 yr BP. This tectonic phase with only rare volcanic eruptions lasted until ~2300 yr BP and may have resulted in near-solidification of the AMCs. The axial graben formed by crustal extension during this period of low magmatic activity. Infrequent eruptions occurred on the flanks between 2620–1760 yr BP and within the axial graben since ~1750 yr BP. This most recent phase of limited volcanic and intense hydrothermal activity that began ~2300 yr BP defines a hydrothermal phase of ridge development that coincides with the present-day 1 km wide AMCs and overlying hydrothermal vent fields.

  14. Nornahraun lava morphology and mode of emplacement

    Science.gov (United States)

    Pedersen, Gro B. M.; Höskuldsson, Armann; Riishuus, Morten S.; Jónsdóttir, Ingibjörg; Gudmundsson, Magnús T.; Sigmundsson, Freysteinn; Óskarsson, Birgir V.; Drouin, Vincent; Gallagher, Catherine; Askew, Rob; Moreland, William M.; Dürig, Tobias; Dumont, Stephanie; Þórdarson, Þór

    2015-04-01

    The ongoing Nornahraun eruption is the largest effusive eruption in Iceland since the Laki eruption in 1783-84, with an estimated lava volume of ~1.15 km3 covering an area of ~83.4 km2 (as of 5 JAN 2015). The eruption provides an unprecedented opportunity to study i) lava morphologies and their emplacement styles, ii) the transition from from open to closed lava pathways and iii) lava pond formation. Tracking of the lava advancement and morphology has been performed by GPS and GoPro cameras installed in 4×4 vehicles as well as video footage. Complimentary observations have been provided from aircraft platforms and by satellite data. Of particular importance for lava morphology observations are 1-12 m/pixel airborne SAR images (x-band). The Nornahraun flow field comprises a continuum of morphologies from pāhoehoe to 'a'ā, which have varied tem-porally and spatially. At the onset of the eruption 31 AUG, lava flows advanced rapidly (400-800 m/hr) from the 1.5 km long fissure as large slabby pāhoehoe [1-3] sheet lobes, 100-500 m wide and 0.3-1 m thick at the flow fronts. By 1 SEPT, the flows began channeling towards the NE constrained by the older Holuhraun I lava field and the to-pography of flood plain itself. A central open channel developed, feeding a 1-2 km wide active 'a'ā frontal lobe that advanced 1-2 km/day. In addition to its own caterpillar motion, the frontal lobe advanced in a series of 30-50 m long breakouts, predominantly slabby and rubbly pāhoehoe [4,5]. These breakouts had initial velocities of 10-30 m/hr and reached their full length within tens of minutes and subsequently inflated over hours. With the continuous advancement of the 'a'ā flow front, the breakouts were incorporated into the 'a'ā flow fronts and seldom preserved. At the margins of the frontal lava lobe, the breakouts were more sporadic, but predominantly rubbly pāhoehoe and slabby pāhoehoe, as at the flow front. The lava flow advanced ENE into Jökulsá á Fjöllum on 7 SEPT

  15. Scientific results from the deepened Lopra-1 borehole, Faroe Islands: Mineralogical and thermodynamic constraints on Palaeogene palaeotemperature conditions during low-grade metamorphism of basaltic lavas recovered from the Lopra-1/1A deep hole, Faroe Islands

    Directory of Open Access Journals (Sweden)

    Glassley, William E.

    2006-07-01

    Full Text Available The sequene of secondary minerals that are reported for the Lopra-1/1A well records progressive zeolite facies to prehnite–pumpellyite-facies mineral progressions consistent with those of other wellstudied hydrothermally altered rock sequences. Detailed comparison of the calc–silicate (zeolites and prehnite mineral distributions of the Lopra-1/1A sequence with those from other regions indicates that this sequence exhibits consistently longer down-hole intervals for secondary mineral species than reported elsewhere. When compared to measured down-hole temperatures reported in other hydrothermally altered regions, the results suggest that the Lopra-1/1A mineral progression formed under conditions typical of low temperature hydrothermal systems that form shortly after eruption of thick basaltic piles. Maximum temperatures achieved at the 3500 m level of the well were at or below 200°C. The implied geothermal gradient was less than 50°C/km. An analysis of prehnite – fluid composition relationships was also conducted in order to determine if results compatible with the paragenetic sequence study could be obtained from thermodynamic constraints. In this case, thelimiting temperature for prehnite formation in equilibrium with albite–quartz–calcite–laumontite (the mineral assemblage at the bottom of the hole was determined for a range of fluid compositions.The resulting calculations suggest temperatures of formation of prehnite in the range of 140°C to 205°C, a conclusion which is broadly consistent with those reached from study of the parageneticrelationships. Comparison of these results with other studies of palaeogeothermal gradients of the North Atlantic margins suggests a consistent pattern in which relatively low geothermal gradientspersisted in the Palaeogene rift basin.

  16. Mapping Planetary Volcanic Deposits: Identifying Vents and Distingushing between Effects of Eruption Conditions and Local Lava Storage and Release on Flow Field Morphology

    Science.gov (United States)

    Bleacher, J. E.; Eppler, D. B.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Hurwitz, D. M.; Whitson, P.; Janoiko, B.

    2014-01-01

    Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts [1-3]. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone.

  17. Bimodal magmatism, basaltic volcanic styles, tectonics, and geomorphic processes of the eastern Snake River Plain, Idaho

    Science.gov (United States)

    Hughes, S.S.; Smith, R.P.; Hackett, W.R.; McCurry, M.; Anderson, S.R.; Ferdock, G.C.

    1997-01-01

    Geology presented in this field guide covers a wide spectrum of internal and surficial processes of the eastern Snake River Plain, one of the largest components of the combined late Cenozoic igneous provinces of the western United States. Focus is on widespread Quaternary basaltic plains volcanism that produced coalescent shields and complex eruptive centers that yielded compositionally evolved magmas. The guide is constructed in several parts beginning with discussion sections that provide an overview of the geology followed by road directions, with explanations, for specific locations. The geology overview briefly summarizes the collective knowledge gained, and petrologic implications made, over the past few decades. The field guide covers plains volcanism, lava flow emplacement, basaltic shield growth, phreatomagmatic eruptions, and complex and evolved eruptive centers. Locations and explanations are also provided for the hydrogeology, groundwater contamination, and environmental issues such as range fires and cataclysmic floods associated with the region.

  18. Volcanic succession and feeder systems of acidic lava-domes of Serra Geral Formation in São Marcos-Antônio Prado region, South Brazil

    Directory of Open Access Journals (Sweden)

    Evandro Fernandes de Lima

    2012-08-01

    Full Text Available In the São Marcos (RS and Antonio Prado (RS, the Serra Geral Formation exposes at the base basalts of pahoehoe type, coveredby basalts of the ´a´ā type. The first succession was generated by a low rate of eruption in a closed flow system allowed the flow toreach distances > 100 km of the source.T he ´a´ā lava flow types were generated by higher rates of eruption andt ransported in openchannels where rapid cooling prevented long distances from the source to be reached. The two types of basalts are low-TiO2 tholeiiticand the morphology of flows is not related to variations in SiO2 and MgO contents. Above these rock types outcrop acidic volcanicrocks geochemically of Caxias Group (Palmas Subgroup. Dimension stones extraction exposed the inner portions of the acidicfeeder dikes with vertical magmatic foliations. The lava domes have exogenous characteristics and horizontal foliations. We proposea model for the generation of domes involving the diapirically rise of acids magmas that become vesicular and more viscous, thatstop near the surface. New magmatic pulses extracted “pieces” of the vesicular fraction generating autobreccias in the conduit andvertical structures that extend laterally toward the surface organizing the lava domes with vitrophyres in the base and in the top, witha thin massive phaneritic core. Magmatic textures of the domes are typical of effusive units and the identification of the feeder dykesin the area allows the understanding of the emplacement process of acidic flows in the Serra Geral Formation.

  19. Submarine lava flow emplacement and faulting in the axial valley of two morphologically distinct spreading segments of the Mariana back-arc basin from Wadatsumi side-scan sonar images

    OpenAIRE

    Asada, Miho; Deschamps, Anne; FUJIWARA, Toshiya; Nakamura, Yasuyuki

    2007-01-01

    International audience High-resolution, deep-tow side-scan sonar data were collected over two distinct spreading segments in the central part of the Mariana back-arc basin. These data allow mapping of small fissures and faults and the distinguishing of hummocky from smooth lava flows. Using these data, we observe spatial variations in seafloor deformation and volcanic activity within each segment, and also significant differences in the degree of tectonic deformation between the two segmen...

  20. Geochemistry of quaternary shoshonitic lavas related to the Calama-Olacapato-El Toro Lineament, NW Argentina

    Science.gov (United States)

    Schreiber, U.; Schwab, K.

    Along the NW/SE-trending Calama-Olacapato-El Toro Lineament, Cenozoic volcanics occur far to the east of the main volcanic chain of the Central Andes. The petrochemical data of Quaternary shoshonitic lava flows of Cerro San Gerónimo and Cerro Negro de Chorrillos, situated on this lineament, are discussed in comparison with the data of presumably late Tertiary lavas and pyroclastics of the same area. The presence of foids and high temperature quartz crystals rimmed by pyroxene in the study samples indicates magma mixing. The REE patterns of the shoshonites are steep, with LREE enrichment up to 200 times that of chondritic values. This points to garnet as a constituent mineral in the residual phase during magma generation. The influence of fractionation of plagioclase can be ignored. The petrochemical data point to a basanitic alkali basaltic primordial magma. It is suggested that this magma could pass the very thick crust (>60km) along the deep-reaching Calama-Olacapato-El Toro Lineament. On the way up the magma was contaminated by mixing of up to 25% with a silicic magma to produce the shoshonitic lavas.

  1. Making rhyolite in a basalt crucible

    Science.gov (United States)

    Eichelberger, John

    2016-04-01

    Iceland has long attracted the attention of those concerned with the origin of rhyolitic magmas and indeed of granitic continental crust, because it presents no alternative for such magmas other than deriving them from a basaltic source. Hydrothermally altered basalt has been identified as the progenitor. The fact that rhyolite erupts as pure liquid requires a process of melt-crustal separation that is highly efficient despite the high viscosity of rhyolite melt. Volcanoes in Iceland are foci of basaltic magma injection along the divergent plate boundary. Repeated injection produces remelting, digestion, and sometimes expulsion or lateral withdrawal of material resulting in a caldera, a "crucible" holding down-dropped and interlayered lava flows, tephras, and injected sills. Once melting of this charge begins, a great deal of heat is absorbed in the phase change. Just 1% change in crystallinity per degree gives a melt-present body an effective heat capacity >5 times the subsolidus case. Temperature is thus buffered at the solidus and melt composition at rhyolite. Basalt inputs are episodic ("fires") so likely the resulting generation of rhyolite by melting is too. If frequent enough to offset cooling between events, rhyolite melt extractions will accumulate as a rhyolite magma reservoir rather than as discrete crystallized sills. Evidently, such magma bodies can survive multiple firings without themselves erupting, as the 1875 eruption of Askja Caldera of 0.3 km3 of rhyolite equilibrated at 2-km depth without previous leakage over a ten-millennium period and the surprise discovery of rhyolite magma at 2-km depth in Krafla suggest. Water is required for melting; otherwise melting cannot begin at a temperature lower than that of the heat source. Because the solubility of water in melt is pressure-dependent and almost zero at surface pressure, there must be a minimum depth at which basalt-induced melting can occur and a rhyolite reservoir sustained. In practice, the

  2. Age and petrology of the Kalaupapa Basalt, Molokai, Hawaii ( geochemistry, Sr isotopes).

    Science.gov (United States)

    Clague, D.A.

    1982-01-01

    The post-erosional Kalaupapa Basalt on East Molokai, Hawaii, erupted between 0.34 and 0.57 million years ago to form the Kalaupapa Peninsula. The Kalaupapa Basalt ranges in composition from basanite to lava transitional between alkalic and tholeiitic basalt. Rare-earth and other trace-element abundances suggest that the Kalaupapa Basalt could be generated by 11-17% partial melting of a light-REE-enriched source like that from which the post-erosional lavas of the Honolulu Group on Oahu were generated by 2-11% melting. The 87Sr/86Sr ratios of the lavas range from 0.70320 to 0.70332, suggesting that the variation in composition mainly reflects variation in the melting process rather than heterogeneity of sources. The length of the period of volcanic quiescence that preceded eruption of post-erosional lavas in the Hawaiian Islands decreased as volcanism progressed from Kauai toward Kilauea. - Authors

  3. Shallow outgassing changes disrupt steady lava lake activity, Kilauea Volcano

    Science.gov (United States)

    Patrick, M. R.; Orr, T. R.; Swanson, D. A.; Lev, E.

    2015-12-01

    Persistent lava lakes are a testament to sustained magma supply and outgassing in basaltic systems, and the surface activity of lava lakes has been used to infer processes in the underlying magmatic system. At Kilauea Volcano, Hawai`i, the lava lake in Halema`uma`u Crater has been closely studied for several years with webcam imagery, geophysical, petrological and gas emission techniques. The lava lake in Halema`uma`u is now the second largest on Earth, and provides an unprecedented opportunity for detailed observations of lava lake outgassing processes. We observe that steady activity is characterized by continuous southward motion of the lake's surface and slow changes in lava level, seismic tremor and gas emissions. This normal, steady activity can be abruptly interrupted by the appearance of spattering - sometimes triggered by rockfalls - on the lake surface, which abruptly shifts the lake surface motion, lava level and gas emissions to a more variable, unstable regime. The lake commonly alternates between this a) normal, steady activity and b) unstable behavior several times per day. The spattering represents outgassing of shallowly accumulated gas in the lake. Therefore, although steady lava lake behavior at Halema`uma`u may be deeply driven by upwelling of magma, we argue that the sporadic interruptions to this behavior are the result of shallow processes occurring near the lake surface. These observations provide a cautionary note that some lava lake behavior is not representative of deep-seated processes. This behavior also highlights the complex and dynamic nature of lava lake activity.

  4. Age of the youngest Palaeogene flood basalts in East Greenland

    DEFF Research Database (Denmark)

    Heilmann-Clausen, C.; Piasecki, Stefan; Abrahamsen, Niels;

    2008-01-01

    Intra-basaltic sediments 50 m below the top of the Paleogene lava succession at Kap Dalton, East Greenland, contain dinoflagellate cysts of late Ypresian-earliest Lutetian age, while sediments immediately above the lavas contain an assemblage of early Lutetian age. Combined with paleomagnetic...... results, this constrains the termination of the East Greenland Paleogene Igneous Province to the Early-Middle Eocene transition (nannoplankton chronozones NP13-NP14/earliest NP15). This is 6-8 Ma younger than according to previous biostratigraphic age assignments. The new data show that flood basalt...

  5. Paleomagnetism and dating of a thick lava pile in the Permian Bakaly formation of eastern Kazakhstan: Regularities and singularities of the paleomagnetic record in thick lava series

    Science.gov (United States)

    Bazhenov, Mikhail L.; Van der Voo, Rob; Menzo, Zachary; Dominguez, Ada R.; Meert, Joseph G.; Levashova, Natalia M.

    2016-04-01

    Paleomagnetic results on thick lava series are among the most important sources of information on the characteristics of ancient geomagnetic fields. Most paleo-secular variation data from lavas (PSVL) are of late Cenozoic age. There are far fewer results from lavas older than 5 Ma. The Central Asia Orogenic Belt that occupies several million square kilometers in Asia is probably the world's largest area of Paleozoic volcanism and is thus an attractive target for PSVL studies. We studied a ca. 1700 m thick lava pile in eastern Kazakhstan of Early Permian age. Magmatic zircons, successfully separated from an acid flow in this predominantly basaltic sequence, yielded an Early Permian age of 286.3 ± 3.5 Ma. Oriented samples were collected from 125 flows, resulting in 88 acceptable quality flow-means (n ⩾ 4 samples, radius of confidence circle α95 ⩽ 15°) of the high-temperature magnetization component. The uniformly reversed component is pre-tilting and arguably of a primary origin. The overall mean direction has a declination = 242.0° and an inclination = -56.2° (k = 71.5, α95 = 1.8°; N = 88 sites; pole at 44.1°N, 160.6°E, A95 = 2.2°). Our pole agrees well with the Early Permian reference data for Baltica, in accord with the radiometric age of the lava pile and geological views on evolution of the western part of the Central Asia Orogenic Belt. The new Early Permian result indicates a comparatively low level of secular variation especially when compared to PSVL data from intervals with frequent reversals. Still, the overall scatter of dispersion estimates that are used as proxies for SV magnitudes, elongation values and elongation orientations for PSVL data is high and cannot be fitted into any particular field model with fixed parameters. Both observed values and numerical simulations indicate that the main cause for the scatter of form parameters (elongation values and elongation orientations) is the too small size of collections. Dispersion estimates

  6. SMALL-VOLUME BASALTIC VOLCANOES: ERUPTIVE PRODUCTS AND PROCESSES, AND POST-ERUPTIVE GEOMORPHIC EVOLUTION IN CRATER FLAT (PLEISTOCENE), SOUTHERN NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    G.A. Valentine; F.V. Perry; D. Krier; G.N. Keating; R.E. Kelley; A.H. Cogbill

    2006-04-04

    Five Pleistocene basaltic volcanoes in Crater Flat (southern Nevada) demonstrate the complexity of eruption processes associated with small-volume basalts and the effects of initial emplacement characteristics on post-eruptive geomorphic evolution of the volcanic surfaces. The volcanoes record eruptive processes in their pyroclastic facies ranging from ''classical'' Strombolian mechanisms to, potentially, violent Strombolian mechanisms. Cone growth was accompanied, and sometimes disrupted, by effusion of lavas from the bases of cones. Pyroclastic cones were built upon a gently southward-sloping surface and were prone to failure of their down-slope (southern) flanks. Early lavas flowed primarily southward and, at Red and Black Cone volcanoes, carried abundant rafts of cone material on the tops of the flows. These resulting early lava fields eventually built platforms such that later flows erupted from the eastern (at Red Cone) and northern (at Black Cone) bases of the cones. Three major surface features--scoria cones, lava fields with abundant rafts of pyroclastic material, and lava fields with little or no pyroclastic material--experienced different post-eruptive surficial processes. Contrary to previous interpretations, we argue that the Pleistocene Crater Flat volcanoes are monogenetic, each having formed in a single eruptive episode lasting months to a few years, and with all eruptive products having emanated from the area of the volcanoes main cones rather than from scattered vents. Geochemical variations within the volcanoes must be interpreted within a monogenetic framework, which implies preservation of magma source heterogeneities through ascent and eruption of the magmas.

  7. Secondary Sulfate Mineralization and Basaltic Chemistry of Craters of the Moon National Monument, Idaho: Potential Martian Analog

    Energy Technology Data Exchange (ETDEWEB)

    C. Doc Richardson; Nancy W. Hinman; Lindsay J. McHenry; J. Michelle Kotler; Jill R. Scott

    2012-05-01

    Secondary deposits associated with the basaltic caves of Craters of the Moon National Monument (COM) in southern Idaho were examined using X-ray powder diffraction, X-ray fluorescence spectrometry, Fourier transform infrared spectrometry, and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The secondary mineral assemblages are dominated by Na-sulfate minerals (thenardite, mirabilite) with a small fraction of the deposits containing minor concentrations of Na-carbonate minerals. The assemblages are found as white, efflorescent deposits in small cavities along the cave walls and ceilings and as localized mounds on the cave floors. Formation of the deposits is likely due to direct and indirect physiochemical leaching of meteoritic water through the overlying basalts. Whole rock data from the overlying basaltic flows are characterized by their extremely high iron concentrations, making them good analogs for martian basalts. Understanding the physiochemical pathways leading to secondary mineralization at COM is also important because lava tubes and basaltic caves are present on Mars. The ability of FTICR-MS to consistently and accurately identify mineral species within these heterogeneous mineral assemblages proves its validity as a valuable technique for the direct fingerprinting of mineral species by deductive reasoning or by comparison with reference spectra.

  8. Paleomagnetic correlation of basalt flows in selected coreholes near the Advanced Test Reactor Complex, the Idaho Nuclear Technology and Engineering Center, and along the southern boundary, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Hodges, Mary K.V.; Champion, Duane E.

    2016-10-03

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, used paleomagnetic data from 18 coreholes to construct three cross sections of subsurface basalt flows in the southern part of the Idaho National Laboratory (INL). These cross sections, containing descriptions of the subsurface horizontal and vertical distribution of basalt flows and sediment layers, will be used in geological studies, and to construct numerical models of groundwater flow and contaminant transport.Subsurface cross sections were used to correlate surface vents to their subsurface flows intersected by coreholes, to correlate subsurface flows between coreholes, and to identify possible subsurface vent locations of subsurface flows. Correlations were identified by average paleomagnetic inclinations of flows, and depth from land surface in coreholes, normalized to the North American Datum of 1927. Paleomagnetic data were combined, in some cases, with other data, such as radiometric ages of flows. Possible vent locations of buried basalt flows were identified by determining the location of the maximum thickness of flows penetrated by more than one corehole.Flows from the surface volcanic vents Quaking Aspen Butte, Vent 5206, Mid Butte, Lavatoo Butte, Crater Butte, Pond Butte, Vent 5350, Vent 5252, Tin Cup Butte, Vent 4959, Vent 5119, and AEC Butte are found in coreholes, and were correlated to the surface vents by matching their paleomagnetic inclinations, and in some cases, their stratigraphic positions.Some subsurface basalt flows that do not correlate to surface vents, do correlate over several coreholes, and may correlate to buried vents. Subsurface flows which correlate across several coreholes, but not to a surface vent include the D3 flow, the Big Lost flow, the CFA buried vent flow, the Early, Middle, and Late Basal Brunhes flows, the South Late Matuyama flow, the Matuyama flow, and the Jaramillo flow. The location of vents buried in the subsurface by younger basalt

  9. Quickly erupted volcanic sections of the Steens Basalt, Columbia River Basalt Group: Secular variation, tectonic rotation, and the Steens Mountain reversal

    Science.gov (United States)

    Jarboe, N.A.; Coe, R.S.; Renne, P.R.; Glen, J.M.G.; Mankinen, E.A.

    2008-01-01

    The Steens Basalt, now considered part of the Columbia River Basalt Group (CRBG), contains the earliest eruptions of this magmatic episode. Lava flows of the Steens Basalt cover about 50,000 km2 of the Oregon Plateau in sections up to 1000 m thick. The large number of continuously exposed, quickly erupted lava flows (some sections contain over 200 flows) allows for small loops in the magnetic field direction paths to be detected. For volcanic rocks, this detail and fidelity are rarely found outside of the Holocene and yield estimates of eruption durations at our four sections of ??2.5 ka for 260 m at Pueblo Mountains, 0.5 to 1.5 ka for 190 m at Summit Springs, 1-3 ka for 170 m at North Mickey, and ??3 ka for 160 m at Guano Rim. That only one reversal of the geomagnetic field occurred during the eruption of the Steens Basalt (the Steens reversal at approximately 16.6 Ma) is supported by comparing 40Ar/39Ar ages and magnetic polarities to the geomagnetic polarity timescale. At Summit Springs two 40Ar/39Ar ages from normal polarity flows (16.72 ?? ?? 0.29 Ma (16.61) and 16.92 ?? ?? 0.52 Ma (16.82); ?? ?? equals 2s error) place their eruptions after the Steens reversal, while at Pueblo Mountains an 40Ar/39Ar age of 16.72 ?? ?? 0.21 Ma (16.61) from a reverse polarity flow places its eruption before the Steens reversal. Paleomagnetic field directions yielded 50 nontransitional directional-group poles which, combined with 26 from Steens Mountain, provide a paleomagnetic pole for the Oregon Plateau of 85.7??N, 318.4??E, K = 15.1, A95 = 4.3. Comparison of this new pole with a reference pole derived from CRBG flows from eastern Washington and a synthetic reference pole for North America derived from global data implies relative clockwise rotation of the Oregon Plateau of 7.4 ?? 5.0?? or 14.5 ?? 5.4??, respectively, probably due to northward decreasing extension of the basin and range. ?? 2008 by the American Geophysical Union.

  10. Characterization of reference Umtanum and Cohassett basalt

    Energy Technology Data Exchange (ETDEWEB)

    Allen, C.C.; Johnston, R.G.; Strope, M.B.

    1985-02-01

    The Basalt Waste Isolation Project (BWIP) Materials Testing Group (MTG) provides large quantities of reference basalt for testing waste package materials under repository conditions, site sorption characteristics and other experimental purposes. This document describes the reference rock materials currently used in testing, namely entablature and colonnade basalt from the Umtanum and Cohassett flows. The data include sampling locations, bulk chemical composition, modal percentages of major phases, and the chemical and mineralogical compositions of these phases. 8 refs., 17 figs., 15 tabs.

  11. Hydrothermal conditions and resaturation times in underground openings for a nuclear waste repository in the Umtanum flow at the Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    Numerical simulation techniques have been used to study heat flow and pore fluid migration in the near field of storage tunnels and canister storage holes in a proposed high-level nuclear waste repository in the Umtanum Basalt at the Basalt Waste Isolation Project site at Hanford, Washington. Particular emphasis was placed on evaluating boiling conditions in the host rock. Sensitivity studies were performed to determine the influence of variations in critical site-specific parameters which are not presently accurately known. The results indicate that, even when rather extreme values are assumed for key hydrothermal parameters, the volume of rock dried by boiling of pore fluids is negligible compared to the volume of excavated openings. The time required for saturation of backfilling materials is thus controlled by the volume of the mined excavations. When realistic values for the parameters of the natural and man-made systems are used resaturation is predicted to occur within less than two years after backfilling is placed. The approximations used in the analyses, and their limitations, are discussed in the body of the report. Recommendations are made for additional studies of the thermohydrological behavior of a high-level nuclear waste repository. 31 references, 76 figures, 7 tables

  12. A comparative Study of Circulation Patterns at Active Lava Lakes

    Science.gov (United States)

    Lev, Einat; Oppenheimer, Clive; Spampinato, Letizia; Hernandez, Pedro; Unglert, Kathi

    2016-04-01

    Lava lakes present a rare opportunity to study magma dynamics in a large scaled-up "crucible" and provide a unique natural laboratory to ground-truth dynamic models of magma circulation. The persistence of lava lakes allows for long-term observations of flow dynamics and of lava properties, especially compared to surface lava flows. There are currently five persistent lava lakes in the world: Halemaumau in Kilauea (Hawaii, USA), Erta Ale (Ethiopia), Nyiragongo (Congo), Erebus (Antarctica), and Villarica (Chile). Marum and Benbow craters of Ambrym volcano (Vanuatu) and Masaya (Nicaragua) have often hosted lava lakes as well. We use visible-light and thermal infrared time-lapse and video footage collected at all above lakes (except Villarica, where the lake is difficult to observe), and compare the circulation patterns recorded. We calculate lake surface motion from the footage using the optical flow method (Lev et al., 2012) to produce 2D velocity fields. We mined both the surface temperature field and the surface velocity field for patterns using machine learning techniques such as "self-organizing maps (SOMs)" and "principle component analysis (PCA)". We use automatic detection technique to study the configuration of crustal plates at the lakes' surface. We find striking differences among the lakes, in flow direction, flow speed, frequency of changes in flow direction and speed, location and consistency of upwelling and downwelling, and crustal plate configuration. We relate the differences to lake size, shallow conduit geometry, lava viscosity, crystal and gas content, and crust integrity.

  13. 3-D reconstructions of subsurface Pleistocene basalt flows from paleomagnetic inclination data and 40Ar/39Ar ages in the southern part of the Idaho National Laboratory (INL), Idaho (USA)

    Science.gov (United States)

    Hodges, Mary K.; Champion, Duane E.; Turrin, B.D.; Swisher, C. C.

    2012-01-01

    The U. S. Geological Survey, in cooperation with the U.S. Department of Energy, is mapping the distribution of basalt flows and sedimentary interbeds at the Idaho National Laboratory in three dimensions to provide data for refining numerical models of groundwater flow and contaminant transport in the eastern Snake River Plain aquifer. Paleomagnetic inclination and polarity data from basalt samples from 47 coreholes are being used to create a three-dimensional (3-D) model of the subsurface of the southern part of the INL. Surface and sub-surface basalt flows can be identified in individual cores and traced in three dimensions on the surface and in the subsurface for distances of more than 20 km using a combination of paleomagnetic, stratigraphic, and 40Ar/39Ar data. Eastern Snake River Plain olivine tholeiite basalts have K2O contents of 0.2 to 1.0 weight per cent. In spite of the low-K content, high-precision 40Ar/39Ar ages were obtained by applying a protocol that employs short irradiation times (minimizing interferences from Ca derived 36Ar), frequent measurement of various size atmospheric Ar pipettes to monitor and correct for temporal variation, and signal size dependent nonlinearity in spectrometer mass bias, resulting in age dates with resolution generally between 2 to 10% of the age. 3-D models of subsurface basalt flows are being used to: (1) Estimate eruption volumes; (2) locate the approximate vent areas and extent of sub-surface flows; and (3) Help locate high and low transmissivity zones. Results indicate that large basalt eruptions (>3 km3) occurred at and near the Central Facilities Area between 637 ka and 360 ka; at and near the Radioactive Waste Management Complex before 540 ka; and north of the Naval Reactors Facility at about 580 ka. Since about 360 ka, large basalt flows have erupted along the Arco-Big Southern Butte Volcanic Rift Zone and the Axial Volcanic Zone, and flowed northerly towards the Central Facilities Area. Basalt eruptions shifted

  14. Origins and implications of zigzag rift patterns on lava lakes

    Science.gov (United States)

    Karlstrom, Leif; Manga, Michael

    2006-06-01

    The distinctive rift patterns observed on newly formed lava lakes are very likely a product of interaction between heat transfer (cooling of lava) and deformation of the solid crust in response to applied stresses. One common pattern consists of symmetric "zigzag" rifts separating spreading plates. Zigzags can be characterized by two measurable parameters: an amplitude A, and an angle θ between segments that make up the zigzags. Similar patterns are observed in analog wax experiments in which molten wax acts as cooling and solidifying lava. We perform a series of these wax experiments to find the relationship between θ, A, and the cooling rate. We develop a model to explain the observed relationships: θ is determined by a balance of spreading and solidification speeds; the amplitude A is limited by the thickness of the solid wax crust. Theoretical predictions agree well with experimental data; this enables us to scale the model to basaltic lava lakes. If zigzag rifts are observed on the surface of lava lakes, and if physical properties of the lava crust can be measured or inferred by other means, measurements of θ and A make it possible to calculate crust-spreading velocity and crust thickness.

  15. The foaming of lavas

    Science.gov (United States)

    Okeefe, J. A.; Walton, W.

    1976-01-01

    Foaming is of great practical and theoretical significance for volcanic processes on the earth, the moon, and perhaps the meteorite parent bodies. The theory of foams agrees with steelmaking experience to indicate that their presence depends on the existence of solutes in the lavas which reduce the surface tension, and are not saturated. These solutes concentrate at the surface, and are called surfactants. The surfactant responsible for the formation of volcanic ash was not identified; it appears to be related to the oxygen partial pressure above the lava. This fact may explain why lunar and meteoritic melts are not observed to foam. Experimental studies are needed to clarify the process.

  16. Orthopyroxene fractionation in the Grande Ronde Basalt--Columbia River Basalt group

    International Nuclear Information System (INIS)

    Six orthopyroxenes were microprobed; five orthopyroxenes were from the Grande Ronde Basalt, and one was from the Buford flow of the Saddle Mountains Basalt. The orthopyroxenes are primarily bronzite in composition, but some analyses show that hypersthene is present. The reaction rims of all analyzed orthopyroxene crystals are pigeonite, while the groundmass pyroxene is both augite and pigeonite. Preliminary results from the least-squares linear modeling of the Grande Ronde Basalt indicate orthopyroxene is a necessary phase for mass balancing between flow compositions. Three models were tried in order to determine if selected mineral phases could be used to model the chemical compositions of the flows. These models suggest that orthopyroxene and plagioclase are phases common to the Grande Ronde Basalt. The similarity of orthopyroxene and plagioclase occurrences suggests that they are important intratelluric phases of the Grande Ronde Basalt which reacted out when the basaltic liquids were erupted at the surface

  17. Volcanism on Mercury (dikes, lava flows, pyroclastics): Crust/mantle density contrasts, the evolution of compressive stress and the presence of mantle volatiles

    Science.gov (United States)

    Wilson, L.; Head, J. W., III

    2008-09-01

    Background. There is great uncertainty about the internal structure of Mercury and the composition of the mantle [e.g., 1, 2]. The high mean density of the body suggests that it may have lost parts of its crust and mantle in a giant impact at some stage after most of its initial accretion was sufficiently complete that at least partial separation of a core had occurred. It is the uncertainty about the timing of the giant impact, and hence the physico-chemical state of proto-Mercury at the time that it occurred, that leads to difficulties in predicting the interior structure and mantle composition. However, it seems reasonable to assume that the Mercury we see today has some combination of a relatively low-density crust and a relatively highdensity mantle; uncertainty remains about the presence and types of volatiles [2]. The second uncertainty is the nature of the surface plains units, specifically, are these lava flows and pyroclastics erupted from the interior, or impact-reworked earlier crust [3-5] (Figs. 1-2)? The detection of candidate pyroclastic deposits [4] has very important implications for mantle volatiles. Furthermore, whatever the surface composition, the presence of planet-wide systems of wrinkle ridges and thrust faults implies that a compressive crustal stress regime became dominant at some stage in the planet's history [3, 6]. If the plains units are indeed lava flows, then the fact that the products of the compressive regime deform many plains units suggests that the development of the compressive stresses may have played a vital role in determining when and if surface eruptions of mantle-derived magmas could occur. This would be analogous to the way in which the change with time from extensional to compressive global stresses in the lithosphere of the Moon influenced the viability of erupting magmas from deep mantle sources [7-9]. Analysis: To investigate the relationship between lithospheric stresses and magma eruption conditions [e.g., 9-11] we

  18. LAVA Applications to Open Rotors

    Science.gov (United States)

    Kiris, Cetin C.; Housman, Jeff; Barad, Mike; Brehm, Christoph

    2015-01-01

    Outline: LAVA (Launch Ascent Vehicle Aerodynamics); Introduction; Acoustics Related Applications; LAVA Applications to Open Rotor; Structured Overset Grids; Cartesian Grid with Immersed Boundary; High Speed Case; High Speed Case with Plate Low Speed Case.

  19. Variable Sources and Differentiation of Lavas from the Copahue-Caviahue Eruptive Complex, Neuquen Argentina

    Science.gov (United States)

    Todd, E.; Ort, M. H.

    2012-12-01

    Caldera collapse (˜180 km2) associated with a large Pliocene pyroclastic eruption and subsequent glacial erosion exposed an extensive and complex cross-section of pre-caldera volcanic history (at least 5 My) at the Copahue-Caviahue Eruptive Center (CCEC) in the Andean Southern Volcanic Zone (SVZ) of Argentina. Lava flows in wall exposures range from olivine-rich basaltic andesite to trachyte, are typically horizontal, vary in abundance and thickness at different wall exposures, and rarely correlate with flows in adjacent sections, although some lava and pyroclastic deposits from adjacent sections are similar in petrography, mineral assemblage, and geochemistry. Bulk-rock geochemical and isotopic data indicate at least two distinct primary melt types contributed to pre-caldera CCEC volcanism, and their differentiates produced a high-K and a low-K series. Incompatible element and isotope systematics suggest they are not related by differentiation of a common parental melt, and less-evolved examples of both types occur throughout the pre-caldera stratigraphic section, suggesting long-lived recharge of the local system by variably-sourced magmas. Petrographic and mineral chemistry evidence indicates that mixing of dissimilar magma types produced compositionally intermediate magmas. The location of the CCEC, rear of the volcanic front (VF), yet trenchward of regional backarc basin (BAB) volcanism, is reflected by the composition of CCEC lavas, which are transitional between local VF and BAB types. Thus, contrasting low- and high-K CCEC magmas in the SVZ rear-arc may reflect local focusing of VF-like (low-K) and BAB-like (high-K) melts.

  20. Timescales and mechanisms of formation of amorphous silica coatings on fresh basalts at Kīlauea Volcano, Hawai'i

    Science.gov (United States)

    Chemtob, Steven M.; Rossman, George R.

    2014-10-01

    Young basalts from Kīlauea Volcano, Hawai'i, frequently feature opaque surface coatings, 1-80 μm thick, composed of amorphous silica and Fe-Ti oxides. These coatings are the product of interaction of the basaltic surface with volcanically-derived acidic fluids. Previous workers have identified these coatings in a variety of contexts on Hawai'i, but the timescales of coating development, coating growth rates, and factors controlling lateral coating heterogeneity were largely unconstrained. We sampled and analyzed young lava flows (of varying ages, from hours to ~ 40 years) along Kīlauea's southwest and east rift zones to characterize variation in silica coating properties across the landscape. Coating thickness varies as a function of flow age, flow surface type, and proximity to acid sources like local fissure vents and regional plumes emitted from Kīlauea Caldera and Pu'u Ō'ō. Silica coatings that form in immediate proximity to acid sources are more chemically pure than those forming in higher pH environments, which contain significant Al and Fe. Incipient siliceous alteration was observed on basalt surfaces as young as 8 days old, but periods of a year or more are required to develop contiguous coatings with obvious opaque coloration. Inferred coating growth rates vary with environmental conditions but were typically 1-5 μm/year. Coatings form preferentially on flow surfaces with glassy outer layers, such as spatter ramparts, volcanic bombs, and dense pahoehoe breakouts, due to glass strain weakening during cooling. Microtextural evidence suggests that the silica coatings form both by in situ dissolution-reprecipitation and by deposition of silica mobilized in solution. Thin films of water, acidified by contact with volcanic vapors, dissolved near-surface basalt, then precipitated amorphous silica in place, mobilizing more soluble cations. Additional silica was transported to and deposited on the surface by silica-bearing altering fluids derived from the

  1. A large submarine sand-rubble flow on kilauea volcano, hawaii

    Science.gov (United States)

    Fornari, D.J.; Moore, J.G.; Calk, L.

    1979-01-01

    Papa'u seamount on the south submarine slope of Kilauea volcano is a large landslide about 19 km long, 6 km wide, and up to 1 km thick with a volume of about 39 km3. Dredge hauls, remote camera photographs, and submersible observations indicate that it is composed primarily of unconsolidated angular glassy basalt sand with scattered basalt blocks up to 1 m in size; no lava flows were seen. Sulfur contents of basalt glass from several places on the sand-rubble flow and nearby areas are low (volcano disintegrated when they entered the sea. The current eruptive output of the volcano suggests that the material in the submarine sand-rubble flow represents about 6000 years of accumulation, and that the flow event occurred several thousand years ago. ?? 1979.

  2. Surface Textures and Features Indicative of Endogenous Growth at the McCartys Flow Field, NM, as an Analog to Martian Volcanic Plains

    Science.gov (United States)

    Bleacher, Jacob E.; Crumpler, L. S.; Garry, W. B.; Zimbelman, J. R.; Self, S.; Aubele, J. C.

    2012-01-01

    Basaltic lavas typically form channels or tubes, which are recognized on the Earth and Mars. Although largely unrecognized in the planetary community, terrestrial inflated sheet flows also display morphologies that share many commonalities with lava plains on Mars. The McCartys lava flow field is among the youngest (approx.3000 yrs) basaltic flows in the continental United States. The southwest sections of the flow displays smooth, flat-topped plateaus with irregularly shaped pits and hummocky inter-plateau units that form a polygonal surface. Plateaus are typically elongate in map view, up to 20 m high and display lineations within the glassy crust. Lineated surfaces occasionally display small pahoehoe lava and not a a lava. Depressions are often the result of non-inflation and can be clearly identified by lateral squeeze-outs along the pit walls that form when the rising crust exposes the still liquid core of the sheet. The plains of Tharsis and Elysium, Mars, display many analogous features

  3. The scarcity of mappable flow lobes on the lunar maria - Unique morphology of the Imbrium flows

    Science.gov (United States)

    Schaber, G. G.; Boyce, J. M.; Moore, H. J.

    1976-01-01

    Unique features of Imbrium lava flows are their thickness (10-30 + m) and lengths (up to 400 km for phase-III, and up to 600 km for phase-II) when compared along later Imbrium and Eratosthenian units. They are distinct by virtue of their inferred short-lived (on the order of days) and extremely rapid rates of effusion. It is shown that there are numerous other basalt eruptives within the young blue western maria. The emplacement of these flows was by complex multilayering and intertonguing of individual flow units with thicknesses less than 10 m. They are generally restricted to the near vicinity of multiple vent sources.

  4. The First Paleomagnetic data from the Cambrian basalts of Henrietta Island (De Long Archipelago, Arctic Ocean)

    Science.gov (United States)

    Metelkin, D. V.; Zhdanova, A.; Vernikovskiy, V. A.; Matushkin, N. Y.

    2015-12-01

    Henrietta Island in De Long archipelago (East-Siberian sea) still remains poorly studied geologically but last investigations show that its volcano-sedimentary sequences can help reconstruct tectonic evolution of East Russian Arctic in Early Paleozoic stage. The deposits lying on Precambrian basements are deformed to varying degrees and intruded by mafic dykes.The study was carried out on two basaltic lava flows whose 40Ar/39Ar age is 520.6±9.5 Ma. Previously the age of these basalts was assumed Cretaceous. According to available data the underlaying sediments contain zircons with Cambrian and Ordovician ages but all boundaries between these basalts and other strata are tectonic. So we suppose the age of basalts as Middle Cambrian but more precise geochronological data are required. All magnetic measurements were performed at the Laboratory of Geodynamics and Paleomagnetism of Institute of Petroleum Geology and Geophysics (Novosibirsk). Basalt samples has relatively high magnetic susceptibility values varying from 5x10-4 to 180x10-4SI units. NRM values range is from 3 to 170 mA/m. Petromagnetic parameters including also coercive characteristics point at the good potentially preserving primary magnetization. Stepwise thermal demagnetization permits to isolate characteristic components of magnetization and calculate mean directions in two lava flows: 1. Ds=294.3°, Is=29.1°, K=81.1, α95=5.1; 2. Ds=301.0°, Is=28.3°, K=34.4, α95=7.9). The mean paleomagnetic pole has coordinates: Plat=20.9°, Plong = 42.6°, dp/dm=14.3/7.9. Paleolatitude was defined as 15.3° but the question of the hemisphere for De Long Islands is open yet. In case of south hemisphere in Middle Cambrian according to available paleomagnetic data De Long islands could be placed close to Taimyr margin of Siberia and in case of northern hemisphere they may be located near south (in present-day coordinates) margin of Siberia. The work was supported by grant RFBR 14-05-31399 and Russian Research Fund

  5. Age and Duration of the Paraná-Etendeka Flood Basalts and Related Plumbing System

    Science.gov (United States)

    Renne, P. R.

    2015-12-01

    The Paraná-Etendeka Igneous Province (PEIP) comprises a large volume sequence of continental flood basalts presently distributed assymetrically between South America (mainly southern Brazil but also parts of Uruguay, Paraguay and Argentina) and southwestern Africa (Namibia, Angola), following opening of the South Atlantic ocean. The PEIP is dominated by tholeiitic basalts to basaltic andesites, with subordinate silicic rocks spanning the dacite-trachyte-rhyolite fields, which occur as lava flows, sills and dike swarms as well as intrusive complexes closely related to the eruptive rocks. The PEIP has long been subject of 40Ar/39Ar geochronologic and paleomagnetic studies which led to conclude its rapid formation near the Hauterivian stage (~133 Ma) with onward progression to Barremian from the intrusive equivalents exposed northwards. Two decades after publication of the first 40Ar/39Ar ages for the Paraná flood basalts (Renne et al., 1992) we report here an updated study of the age and duration of this magmatic event. We calibrated a set of sixty published and new results to the calibration of Renne et al. (2011), which indicates an inception age of the volcanism now estimated at 135 ± 1 Ma, before the initiation of sea floor spreading. Lava extrusion progressed over ~2 Ma from south to north. A protracted duration of ~10 Ma inferred by Stewart et al. (1996) for PEIP volcanism is clearly incorrect, as also concluded by Thiede and Vasconcelos (2010). Low-Ti mafic magmas prevailed during the earlier stages followed over time by enhanced dominance of their silicic equivalents. Eruption of the high-Ti (mafic and silicic) magmas initiated simultaneously ~0.5 m.y. later, continuing up to ~133 Ma with injection of the Ponta Grossa dyke swarm. Despite several paleomagnetic polarity intervals recorded by the lava piles in the southern (> 27°S) and central (latitudes of ~24-27°S) domains of the Brazilian PEIP, the paleomagnetic data show small dispersion in agreement

  6. Magmatic inclusions in rhyolites, contaminated basalts, and compositional zonation beneath the Coso volcanic field, California

    Science.gov (United States)

    Bacon, C.R.; Metz, J.

    1984-01-01

    Basaltic lava flows and high-silica rhyolite domes form the Pleistocene part of the Coso volcanic field in southeastern California. The distribution of vents maps the areal zonation inferred for the upper parts of the Coso magmatic system. Subalkalic basalts (Coso volcanic field contain sparse andesitic inclusions (55-61% SiO2). Pillow-like forms, intricate commingling and local diffusive mixing of andesite and rhyolite at contacts, concentric vesicle distribution, and crystal morphologies indicative of undercooling show that inclusions were incorporated in their rhyolitic hosts as blobs of magma. Inclusions were probably dispersed throughout small volumes of rhyolitic magma by convective (mechanical) mixing. Inclusion magma was formed by mixing (hybridization) at the interface between basaltic and rhyolitic magmas that coexisted in vertically zoned igneous systems. Relict phenocrysts and the bulk compositions of inclusions suggest that silicic endmembers were less differentiated than erupted high-silica rhyolite. Changes in inferred endmembers of magma mixtures with time suggest that the steepness of chemical gradients near the silicic/mafic interface in the zoned reservoir may have decreased as the system matured, although a high-silica rhyolitic cap persisted. The Coso example is an extreme case of large thermal and compositional contrast between inclusion and host magmas; lesser differences between intermediate composition magmas and inclusions lead to undercooling phenomena that suggest smaller ??T. Vertical compositional zonation in magma chambers has been documented through study of products of voluminous pyroclastic eruptions. Magmatic inclusions in volcanic rocks provide evidence for compositional zonation and mixing processes in igneous systems when only lava is erupted. ?? 1984 Springer-Verlag.

  7. Observations on lava, snowpack and their interactions during the 2012-13 Tolbachik eruption, Klyuchevskoy Group, Kamchatka, Russia

    Science.gov (United States)

    Edwards, Benjamin R.; Belousov, Alexander; Belousova, Marina; Melnikov, Dmitry

    2015-12-01

    Observations made during January and April 2013 show that interactions between lava flows and snowpack during the 2012-13 Tolbachik fissure eruption in Kamchatka, Russia, were controlled by different styles of emplacement and flow velocities. `A`a lava flows and sheet lava flows generally moved on top of the snowpack with few immediate signs of interaction besides localized steaming. However, lavas melted through underlying snowpack 1-4 m thick within 12 to 24 h, and melt water flowed episodically from the beneath flows. Pahoehoe lava lobes had lower velocities and locally moved beneath/within the snowpack; even there the snow melting was limited. Snowpack responses were physical, including compressional buckling and doming, and thermal, including partial and complete melting. Maximum lava temperatures were up to 1355 K (1082 °C; type K thermal probes), and maximum measured meltwater temperatures were 335 K (62.7 °C). Theoretical estimates for rates of rapid (e.g., radiative) and slower (conductive) snowmelt are consistent with field observations showing that lava advance was fast enough for `a`a and sheet flows to move on top of the snowpack. At least two styles of physical interactions between lava flows and snowpack observed at Tolbachik have not been previously reported: migration of lava flows beneath the snowpack, and localized phreatomagmatic explosions caused by snowpack failure beneath lava. The distinctive morphologies of sub-snowpack lava flows have a high preservation potential and can be used to document snowpack emplacement during eruptions.

  8. Characteristics of terrestrial basaltic rock populations: Implications for Mars lander and rover science and safety

    Science.gov (United States)

    Craddock, Robert A.; Golombek, Matthew P.

    2016-08-01

    We analyzed the morphometry of basaltic rock populations that have been emplaced or affected by a variety of geologic processes, including explosive volcanic eruptions (as a proxy for impact cratering), catastrophic flooding, frost shattering, salt weathering, alluvial deposition, and chemical weathering. Morphometric indices for these rock populations were compared to an unmodified population of rocks that had broken off a solidified lava flow to understand how different geologic processes change rock shape. We found that a majority of rocks have an sphericity described as either a disc or sphere in the Zingg classification system and posit that this is a function of cooling fractures in the basalt (Zingg [1935] Schweiz. Miner. Petrogr. Mitt., 15, 39-140). Angularity (roundness) is the most diagnostic morphometric index, but the Corey Shape Factor (CSF), Oblate-Prolate Index (OPI) and deviation from compactness (D) also sometimes distinguished weathering processes. Comparison of our results to prior analyses of rock populations found at the Mars Pathfinder, Spirit, and Curiosity landing sites support previous conclusions. The observation that the size-frequency distribution of terrestrial rock populations follow exponential functions similar to lander and orbital measurements of rocks on Mars, which is expected from fracture and fragmentation theory, indicates that these distributions are being dominantly controlled by the initial fracture and fragmentation of the basalt.

  9. Bubble Growth in Lunar Basalts

    Science.gov (United States)

    Zhang, Y.

    2009-05-01

    Although Moon is usually said to be volatile-"free", lunar basalts are often vesicular with mm-size bubbles. The vesicular nature of the lunar basalts suggests that they contained some initial gas concentration. A recent publication estimated volatile concentrations in lunar basalts (Saal et al. 2008). This report investigates bubble growth on Moon and compares with that on Earth. Under conditions relevant to lunar basalts, bubble growth in a finite melt shell (i.e., growth of multiple regularly-spaced bubbles) is calculated following Proussevitch and Sahagian (1998) and Liu and Zhang (2000). Initial H2O content of 700 ppm (Saal et al. 2008) or lower is used and the effect of other volatiles (such as carbon dioxide, halogens, and sulfur) is ignored. H2O solubility at low pressures (Liu et al. 2005), concentration-dependent diffusivity in basalt (Zhang and Stolper 1991), and lunar basalt viscosity (Murase and McBirney 1970) are used. Because lunar atmospheric pressure is essentially zero, the confining pressure on bubbles is completely supplied by the overlying magma. Due to low H2O content in lunar basaltic melt (700 ppm H2O corresponds to a saturation pressure of 75 kPa), H2O bubbles only grow in the upper 16 m of a basalt flow or lake. A depth of 20 mm corresponds to a confining pressure of 100 Pa. Hence, vesicular lunar rocks come from very shallow depth. Some findings from the modeling are as follows. (a) Due to low confining pressure as well as low viscosity, even though volatile concentration is very low, bubble growth rate is extremely high, much higher than typical bubble growth rates in terrestrial melts. Hence, mm-size bubbles in lunar basalts are not strange. (b) Because the pertinent pressures are so low, bubble pressure due to surface tension plays a main role in lunar bubble growth, contrary to terrestrial cases. (c) Time scale to reach equilibrium bubble size increases as the confining pressure increases. References: (1) Liu Y, Zhang YX (2000) Earth

  10. An Overview of Recent Observations on Lava-H2Ointeractions

    Science.gov (United States)

    Edwards, B. R.

    2014-12-01

    Lava flows can be sensitive recorders of their environments of formation (e.g., pillow lava). However, while deposits formed during interactions between lava and frozen water are increasing critical for constraining paleoclimate reconstructions on Earth and Mars, those interactions are subtle and complex. Fortunately, recent observations made during eruptions (2010 Fimmvorduhals/Eyjafjallajokull, Iceland; 2012-13 Tolbachik, Russia; 2013 Veniaminof, Alaska), during large-scale experiments (Syracuse Lava Lab), and on ancient deposits are shedding new light on these complexities. To understand these observations, it is critical to constrain the nature (porosity, permeability, ability to deform) of the boundary between the lava and the substrate. When lava travels directly on top of non-permeable ice, meltwater is produced rapidly enough to significantly accelerate lava movement (e.g., 'hydroplaning' or 'Leidenfrost effect'). The lack of surface permeability also facilitates ingestion of steam into the base of the lava for several minutes on the scale of experiments (dm); anomalously large gas cavities are also present in modern and ancient lava flow deposits inferred to have formed in water/ice-rich environments. When lava is emplaced directly on snow, the permeability of the substrate controls meltwater accumulation, which can facilitate/hinder heat transfer but can also weaken the substrate. Finally, the presence of basal lava flow breccia ('a'a flows) or an earlier erupted tephra blanket at the lava-H2O boundary acts to significantly slow heat transfer. The speed of lava emplacement may also be important. The lavas emplaced during most of the eruptions above were not able to cover a large enough area to quickly generate significant volumes of meltwater. However, at the high discharge rates for the first few days of the Tolbachik eruption (~400 m3 s-1), effusion onto a less permeable surface (e.g., ice instead of snow) could generate significant volumes of meltwater.

  11. H 2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes

    Science.gov (United States)

    Sisson, T. W.; Layne, G. D.

    1993-06-01

    Total dissolved H 2O and major element abundances were measured in basalt and basaltic andesite glass inclusions in olivine phenocrysts from Quaternary eruptions of four subduction-related volcanoes to test the hypothesis that low-MgO high-alumina basalts contain high H 2O at depth [1] and to reveal any petrogenetically significant correlations between arc basalt compositions and H 2O contents. Total dissolved H 2O (combined molecular H 2O and OH groups) measured by ion microprobe in mafic glass inclusions from the 1974 eruption of Fuego, Guatemala, reaches 6.2 wt.%. Dissolved H 2O contents decrease in more evolved Fuego glasses. Correlations of H 2O with MgO, Na 2O, K 2O, S and Cl indicate that aqueous fluid exsolution during magma ascent forced crystallization and differentiation of residual liquids. Low-K 2O magnesian high-alumina basalt glass inclusions from the 3 ka eruption of Black Crater (Medicine Lake volcano, California) have low H 2O contents, near 0.2 wt.%, which are consistent with the MORB-like character of these and other primitive lavas of the Medicine Lake region. Basalt and basaltic andesite glass inclusions from Copco Cone and Goosenest volcano on the Cascade volcanic front north of Mt. Shasta have H 2O contents of up to 3.3 wt.%. The range of H 2O contents in Cascade mafic magmas is too large to have resulted solely from enrichment by crystallization and indicates the participation of an H 2O-rich component in magma generation or crustal-level modification. Whereas fluid-absent melting of amphibole-bearing peridotite can account for the H 2O in most mafic arc liquids, the very high H 2O/alkali ratios of the 1974 Fuego eruptives suggest that an aqueous fluid was involved in the generation of Fuego basalts.

  12. High-Ti type N-MORB parentage of basalts from the south Andaman ophiolite suite, India

    Indian Academy of Sciences (India)

    Rajesh K Srivastava; R Chandra; Anant Shastry

    2004-12-01

    A complete dismembered sequence of ophiolite is well exposed in the south Andaman region that mainly comprises ultramafic cumulates, serpentinite mafic plutonic and dyke rocks, pillow lava, radiolarian chert, and plagiogranite. Pillow lavas of basaltic composition occupy a major part of the Andaman ophiolite suite (AOS). These basalts are well exposed all along the east coast of southern part of the south AOS. Although these basalts are altered due to low-grade metamorphism and late hydrothermal processes, their igneous textures are still preserved. These basalts are mostly either aphyric or phyric in nature. Aphyric type exhibits intersertal or variolitic textures, whereas phyric variety shows porphyritic or sub-ophitic textures. The content of alkalies and silica classify these basalts as sub-alkaline basalts and alkaline basalts. A few samples show basaltic andesite, trachybasalt, or basanitic chemical composition. High-field strength element (HFSE) geochemistry suggests that studied basalt samples are probably derived from similar parental magmas. Al2O3/TiO2 and CaO/TiO2 ratios classify these basalts as high-Ti type basalt. On the basis of these ratios and many discriminant functions and diagrams, it is suggested that the studied basalts, associated with Andaman ophiolite suite, were derived from magma similar to N-MORB and emplaced in the mid-oceanic ridge tectonic setting.

  13. Paleomagnetism and geochronology of the Pliocene-Pleistocene lavas in Iceland

    NARCIS (Netherlands)

    McDougall, Ian; Wensink, H.

    1966-01-01

    Potassium-argon dates are reported on five basalt samples from the Pliocene-Pleistocene sequence of lavas in the Jökuldalur area, northeastern Iceland. These dates confirm the correlations previously made with the geological time scale by means of paleomagnetic stratigraphy. The R1 and N2 polarity e

  14. Diversion of lava during the 1983 eruption of Mount Etna

    Science.gov (United States)

    Lockwood, J.P.; Romano, R.

    1985-01-01

    Mankind's first known attempt to divert a lava flow was in 1669, when a flow from Mount Etna volcano threatened the Sicilian city of Catania. This attempt was largely unsuccessful, in part due to opposition by citizens of another town, Paterno. Attempts to divert lava flows from Mauna Loa Volcano on the island of Hawaii by aerial bombing were made in 1935 and 1942, with no signifcant effects. Earthen bariers were hurriedly constructed in attempts to divert flows from Kilauea Volcano, Hawaii in 1955 and 1960, again with little success.

  15. A multi-disciplinary study of deformation of the basaltic cover over fine-grained valley fills: a case study from Eastern Sardinia, Italy

    Science.gov (United States)

    Deiana, Rita; Dieni, Iginio; Massari, Francesco; Perri, Maria Teresa; Rossi, Matteo; Brovelli, Alessandro

    2016-06-01

    The Pliocene to Early Pleistocene volcanic activity which generated the basaltic plateau of the Orosei-Dorgali area in Eastern Sardinia led to the disruption of the local hydrographic network by damming some tracts of the fluvial valleys incised in the granite basement. This resulted in the formation of lacustrine basins, whose fine-grained fills were partly interfingered and eventually covered by younger lava flows. In the SW part of the plateau, close to the Galtellì village, a number of unknown depressions, locally named "Paules," were formed. In order to reconstruct their subsurface structure, two electrical resistivity tomography surveys were carried out across these depressions. The geophysical results, which demonstrate the existence of a disrupted layered system, were used to build a numerical geomechanical model that suggest the depressions originated by local collapses of the basaltic cover due to the compaction of the underlying fine-grained valley fills.

  16. Geology and petrology of the basalts of Crater Flat: applications to volcanic risk assessment for the Nevada Nuclear Waste Storage investigations

    International Nuclear Information System (INIS)

    Volcanic hazard studies of the south-central Great Basin, Nevada, are being conducted for the Nevada Nuclear Waste Storage Investigations. This report presents the results of field and petrologic studies of the basalts of Crater Flat, a sequence of Pliocene to Quaternary-age volcanic centers located near the southwestern part of the Nevada Test Site. Crater Flat is one of several basaltic fields constituting a north-northeast-trending volcanic belt of Late Cenozoic age extending from southern Death Valley, California, through the Nevada Test Site region to central Nevada. The basalts of Crater Flat are divided into three distinct volcanic cycles. The cycles are characterized by eruption of basalt magma of hawaiite composition that formed cinder cone clusters and associated lava flows. Total volume of erupted magma for respective cycles is given. The basalts of Crater Flat are sparsely to moderately porphyritic; the major phenocryst phase is olivine, with lesser amounts of plagioclase, clinopyroxene, and rare amphibole. The consistent recurrence of evolved hawaiite magmas in all three cycles points to crystal fractionation from more primitive magmas at depth. A possible major transition in mantle source regions through time may be indicated by a transition from normal to Rb-depleted, Sr-enriched hawaiites in the younger basaltic cycles. The recurrence of small volumes of hawaiite magma at Crater Flat supports assumptions required for probability modeling of future volcanic activity and provides a basis for estimating the effects of volcanic disruption of a repository site in the southwestern Nevada Test Site region. Preliminary data suggest that successive basalt cycles at Crater Flat may be of decreasing volume but recurring more frequently

  17. Petrology and Geochemistry of Jinlongdingzi Active Volcano—the Most Recent Basaltic Explosive Volcano at Longgang

    Institute of Scientific and Technical Information of China (English)

    樊祺诚; 随建立; 等

    2000-01-01

    The Jinlongdingzi active volcano erupted before 1600a,and it is the latest basaltic explosive volcano at Longgang Volcano.Its volcanic products include the Jinlongdingzi Volcanic cone(elevation 999.4m),the lava flow and the widely-spread volcanic pyroclastic sheet(sihai Pyroclastic Sheet),Jinlongdingzi volcanic rocks are trachybasalts with very similar REE patterns and incompatible element patterns,and their 87Sr/86Sr and 143Nd/144Nd ratios range from 0.704846 ot 0.704921 and from 0.512619 to 0.512646,respectively.It is revealed that the trachybasalt has the character of primary magma derived directly from mantle sources with very little evolution and crust contamination during its ascending.The younger mantle xenoliths demonstrate that the mantle source of the Jinlongdingzi Volcao is hydrous,with relatively low temperature.

  18. Dissolution of Olivine, Siderite, and Basalt at 80 Deg C in 0.1 M H2SO4 in a Flow Through Process: Insights into Acidic Weathering on Mars

    Science.gov (United States)

    Golden, D. C.; Ming, D. W.; Hausrath, E. M.; Morris, R. V.; Niles, P. B.; Achilles, C. N.; Ross, D. K.; Cooper, B. L.; Gonzalex, C. P.; Mertzman, S. A.

    2012-01-01

    The occurrence of jarosite, other sulfates (e.g., Mg-and Ca-sulfates), and hematite along with silicic-lastic materials in outcrops of sedimentary materials at Meridiani Planum (MP) and detection of silica rich deposits in Gusev crater, Mars, are strong indicators of local acidic aqueous processes [1,2,3,4,5]. The formation of sediments at Meridiani Planum may have involved the evaporation of fluids derived from acid weathering of Martian basalts and subsequent diagenesis [6,7]. Also, our previous work on acid weathering of basaltic materials in a closed hydro-thermal system was focused on the mineralogy of the acid weathering products including the formation of jarosite and gray hematite spherules [8,9,10]. The object of this re-search is to extend our earlier qualitative work on acidic weathering of rocks to determine acidic dissolution rates of Mars analog basaltic materials at 80 C using a flow-thru reactor. We also characterized residual phases, including poorly crystalline or amorphous phases and precipitates, that remained after the treatments of olivine, siderite, and basalt which represent likely MP source rocks. This study is a stepping stone for a future simulation of the formation of MP rocks under a range of T and P.

  19. Overview of the 2012-13 basaltic fissure eruption of Tolbachik, Kamchatka, Russia

    Science.gov (United States)

    Belousov, Alexander; Belousova, Marina; Edwards, Benjamin; Volynetz, Anna; Melnikov, Dmitry; Senyukov, Sergey

    2014-05-01

    On 27 November 2012 a short-lived swarm of shallow (cinder cone. While explosive activity was rather mild, initial discharge of lava was very high (up to 400 m3/s) and by the end of December 'a'a lava flows had travelled up to 17 km from the vent. SiO2 concentrations for the plagioclase-phyric lava were 54 wt.%, but then decreased to 52 wt.%. In January 2013 lava was transported through a system of lava tubes 1 km long and up to 5 m wide. From tube exit points it propagated in the form of channelized lava streams (velocities 1-3 m/s; discharge rates 30-50 m3/s); on lower slopes of the volcano it propagated mostly as 'a'a flows. Lava channels were frequently dammed by floating clinker and accretionary lava balls, which caused flooding of proximal areas by ropy/shelly/slabby pahoehoe lavas. Locally small volumes of lava were extruded through the upper surfaces and lateral levees of 'a'a lava to form very slowly inflating entrail pahoehoe lava lobes. Starting in mid-February the average intensity of the eruption gradually declined, with sporadic bursts in February and April. By May discharge rates of lava had decreased to approximately 15 m3/s and most of lava started to flow as entrail pahoehoe. By the beginning of June the volume of erupted products (dominantly lavas) reached 0.52km3. The effusion of lava continued until the end of August, when the lava lake in the crater of the active cinder cone became inactive. Weak strombolian outbursts from 1-3 small vents on the bottom of the crater continued until September 5, 2013. Total volume of the erupted products reached approximately 0.7 km3, which is ~0.3 km3 less than estimates for the total eruptive volume from the previous eruption at Tolbachik in 1975-76.

  20. Vapor segregation and loss in basaltic melts

    Science.gov (United States)

    Edmonds, M.; Gerlach, T.M.

    2007-01-01

    Measurements of volcanic gases at Pu'u'O??'o??, Kilauea Volcano, Hawai'i, reveal distinct degassing regimes with respect to vapor segregation and loss during effusive activity in 2004-2005. Three styles of vapor loss are distinguished by the chemical character of the emitted volcanic gases, measured by open path Fourier transform infrared spectroscopy: 1 persistent continuous gas emission, 2 gas piston events, and 3 lava spattering. Persistent continuous gas emission is associated with magma ascent and degassing beneath the crater vents, then eruption of the degassed magma from flank vents. Gas piston events are the result of static gas accumulation at depths of 400-900 m beneath Pu'u'O??'o??. A CO2-rich gas slug travels up the conduit at a few meters per second, displacing magma as it expands. Lava spattering occurs due to dynamic bubble coalescence in a column of relatively stagnant magma. The Large gas bubbles are H2O rich and are generated by open-system degassing at depths of segregation in basaltic melts, but their implications differ. Accumulation and segregation of CO2-rich vapor at depth does not deplete the melt of H2O (required to drive lava fountains near to the surface) and therefore gas piston events can occur interspersed with lava fountaining activity. Lava spattering, however, efficiently strips H2O-rich vapor from magma beneath the crater vents; the magma must then erupt effusively from vents on the flank of the cone. ?? 2007 The Geological Society of America.

  1. Basaltic rocks analyzed by the Spirit Rover in Gusev Crater

    Science.gov (United States)

    McSween, H. Y.; Arvidson, R. E.; Bell, J. F., III; Blaney, D.; Cabrol, N. A.; Christensen, P. R.; Clark, B. C.; Crisp, J. A.; Crumpler, L. S.; DesMarais, D. J.; Farmer, J. D.; Gellert, R.; Ghosh, A.; Gorevan, S.; Graff, T.; Grant, J.; Haskin, L. A.; Herkenhoff, K. E.; Johnson, J. R.; Jolliff, B. L.; Klingelhoefer, G.; Morris, R. V.; Yen, A.

    2004-01-01

    The Spirit landing site in Gusev Crater on Mars contains dark, fine-grained, vesicular rocks interpreted as lavas. Pancam and Mini-Thermal Emission Spectrometer (Mini-TES) spectra suggest that all of these rocks are similar but have variable coatings and dust mantles. Magnified images of brushed and abraded rock surfaces show alteration rinds and veins. Rock interiors contain Particle X-ray Spectrometer are consistent with picritic basalts, containing normative olivine, pyroxenes, plagioclase, and accessory FeTi oxides. Mossbauer, Pancam, and Mini-TES spectra confirm the presence of olivine, magnetite, and probably pyroxene. These basalts extend the known range of rock compositions composing the martian crust.

  2. Thermal and Dynamic Properties of Volcanic Lava Inferred from Measurements on its Surface

    Science.gov (United States)

    Ismail-Zadeh, A.; Korotkii, A.; Kovtunov, D.; Tsepelev, I.; Melnik, O. E.

    2015-12-01

    Modern remote sensing technologies allow for detecting the absolute temperature at the surface of volcanic lava, and the heat flow could be then inferred from the Stefan-Boltzmann law. Is it possible to use these surface thermal data to constrain the thermal and dynamic conditions inside the lava? We propose a quantitative approach to reconstruct temperature and velocity in the steady-state volcanic lava flow from thermal observations at its surface. This problem is reduced to a combination of the direct and inverse problems of mass- and heat transport. Namely, using known conditions at the lava surface we determine the missing condition at the bottom of lava (the inverse problem) and then search for the physical properties of lava - temperature and flow velocity - inside the lava (the direct problem). Assuming that the lava rheology and the thermal conductivity are temperature-dependent, we determine the flow characteristics in the model domain using an adjoint method. We show that in the case of smooth input data (observations) the lava temperature and the flow velocity can be reconstructed with a high accuracy. The noise imposed on the smooth input data results in a less accurate solution, but still acceptable below some noise level.

  3. Geologic Mapping and Paired Geochemical-Paleomagnetic Sampling of Reference Sections in the Grande Ronde Basalt: An Example from the Bingen Section, Columbia River Gorge, Washington

    Science.gov (United States)

    Sawlan, M.; Hagstrum, J. T.; Wells, R. E.

    2011-12-01

    We have completed comprehensive geochemical (GC) and paleomagnetic (PM) sampling of individual lava flows from eight reference stratigraphic sections in the Grande Ronde Basalt (GRB), Columbia River Basalt Group [Hagstrum et al., 2009, GSA Ann. Mtg, Portland (abst); Hagstrum et al., 2010, AGU Fall Mtg, San Francisco (abst)]. These sections, distributed across the Columbia Plateau and eastern Columbia River Gorge, contain as many as 30 flows, are up to 670 m thick, span upper magneto-stratigraphic zones R2 and N2, and, in some locations, also contain one or more N1 flows. In concert with GC and PM sampling, we have carried out detailed geologic mapping of these sections, typically at a scale of 1:3,000 to 1:5,000, using GPS, digital imagery from the National Aerial Imagery Program (NAIP), and compilation in GIS. GRB member and informal unit names of Reidel et al. [1989, GSA Sp. Paper 239] generally have been adopted, although two new units are identified and named within the N2 zone. Notably, a distinctive PM direction for intercalated lavas of several lower N2 units indicates coeval eruption of compositionally distinct units; this result contrasts with the scenario of serial stratigraphic succession of GRB units proposed by Reidel et al. [1989]. Our objectives in the mapping include: Confirming the integrity of the stratigraphic sequences by documenting flow contacts and intraflow horizons (changes in joint patterns or vesicularity); assessing fault displacements; and, establishing precisely located samples in geologic context such that selected sites can be unambiguously reoccupied. A geologic map and GC-PM data for the Bingen section, along the north side of the Columbia River, are presented as an example of our GRB reference section mapping and sampling. One of our thicker sections (670 m) along which 30 flows are mapped, the Bingen section spans 7 km along WA State Hwy 14, from near the Hood River Bridge ESE to Locke Lake. This section cuts obliquely through a

  4. Thermophysical properties of the Lipari lavas (Southern Tyrrhenian Sea

    Directory of Open Access Journals (Sweden)

    D. Russo

    1997-06-01

    Full Text Available Results of thermophysical investigations into the lavas of the island of Lipari (Southern Tyrrhenian Sea are presented. Samples selected for laboratory measurements belong to four main magmatic cycles, which produced basaltic-andesitic, andesitic and rhyolitic lavas. The wet-bulk density and the thermal conductivity measured on 69 specimens range from 1900 to 2760 kg m-3 and from 1.02 to 2.88 W m-1 K-1, respectively. Porosity is never negligible and its influence on density is maximum in rhyolites of the third cycle. The thermal conductivity is also influenced by the amount of glass. Rhyolitic obsidians show values lower than other rhyolites, although the latter rocks have a larger average porosity. The radioactive heat production determined on 36 specimens varies with the rock type, depending on the amount of U, Th and K. In basic lavas of the first cycle its value is 0.95°± 0.30 mW m-3, while in rhyolites of the fourth cycle it attains 6.68°±0.61 mW m-3. A comparison between results of g-ray spectrometry and X-ray fluorescence points out that the assumption of equilibrium in the decay series of the isotopic elements seems fulfilled. The information obtained is useful not only for the interpretation of geophysical surveys but also for the understanding of the geochemical characteristics of lavas.

  5. Lava lake level as a gauge of magma reservoir pressure and eruptive hazard

    Science.gov (United States)

    Patrick, Matthew R.; Anderson, Kyle R.; Poland, Michael P.; Orr, Tim R.; Swanson, Donald A.

    2015-01-01

    Forecasting volcanic activity relies fundamentally on tracking magma pressure through the use of proxies, such as ground surface deformation and earthquake rates. Lava lakes at open-vent basaltic volcanoes provide a window into the uppermost magma system for gauging reservoir pressure changes more directly. At Kīlauea Volcano (Hawaiʻi, USA) the surface height of the summit lava lake in Halemaʻumaʻu Crater fluctuates with surface deformation over short (hours to days) and long (weeks to months) time scales. This correlation implies that the lake behaves as a simple piezometer of the subsurface magma reservoir. Changes in lava level and summit deformation scale with (and shortly precede) changes in eruption rate from Kīlauea's East Rift Zone, indicating that summit lava level can be used for short-term forecasting of rift zone activity and associated hazards at Kīlauea.

  6. Thermal anomaly at the Earth's surface associated with a lava tube

    Science.gov (United States)

    Piombo, Antonello; Di Bari, Marco; Tallarico, Andrea; Dragoni, Michele

    2016-10-01

    Lava tubes are frequently encountered in volcanic areas. The formation of lava tubes has strong implications on the volcanic hazard during effusive eruptions. The thermal dissipation of lava flowing in a tube is reduced in respect to the lava flowing in an open channel so the lava may threaten areas that would not be reached by flows in open channels: for this reason it is important to detect the presence of lava tubes. In this work we propose a model to detect the presence and the characteristics of lava tubes by their thermal footprint at the surface. We model numerically the temperature distribution and the heat flow, both in the steady and the transient state, and we take into account the principal thermal effects due to the presence of an active lava tube, i.e. the conduction to the ground and the atmosphere, the convection and the radiation in the atmosphere. We assume that lava fluid is at high temperature, in motion inside a sloping tube under the gravity force. The thermal profile across the tube direction, in particular the width of the temperature curve, allows to evaluate the depth of the tube. The values of maximum temperature and of tube depth allow to estimate the area of the tube section. The shape of the temperature curve and its asymmetry can give information about the geometry of the tube. If we observe volcanic areas at different times by thermal cameras, we can detect anomalies and evaluate their causes during an eruption; in particular, we can evaluate whether they are due to active lava flows or not and what is their state. For lava tubes, we can connect thermal anomalies with lava tube position, characteristics and state.

  7. Constraints on Determining the Eruption Style and Composition of Terrestrial Lavas from Space

    Science.gov (United States)

    Wright, Robert; Glaze, Lori; Baloga, Stephen M.

    2011-01-01

    The surface temperatures of active lavas relate to cooling rates, chemistry, and eruption style. We analyzed 61 hyperspectral satellite images acquired by the National Aeronautics and Space Administration s Earth Observing-1 (EO-1) Hyperion imaging spectrometer to document the surface temperature distributions of active lavas erupted at 13 volcanoes. Images were selected to encompass the range of common lava eruption styles, specifically, lava fountains, flows, lakes, and domes. Our results reveal temperature distributions for terrestrial lavas that correlate with composition (i.e., a statistically significant difference in the highest temperatures retrieved for mafic lavas and intermediate and felsic lavas) and eruption style. Maximum temperatures observed for mafi c lavas are approx.200 C higher than for intermediate and felsic lavas. All eruption styles exhibit a low-temperature mode at approx.300 C; lava fountains and 'a' a flows also exhibit a higher-temperature mode at approx.700 C. The observed differences between the temperatures are consistent with the contrasting rates at which the lava surfaces are thermally renewed. Eruption styles that allow persistent and pervasive thermal renewal of the lava surface (e.g., fractured crusts on channel-fed 'a' a flows) exhibit a bimodal temperature distribution; eruption styles that do not (e.g., the continuous skin of pahoehoe lavas) exhibit a single mode. We conclude that insights into composition and eruption style can only be gained remotely by analyzing a large spatio-temporal sample of data. This has implications for determining composition and eruption style at the Jovian moon Io, for which no in situ validation is available.

  8. Hydrothermal alteration and diagenesis of terrestrial lacustrine pillow basalts: Coordination of hyperspectral imaging with laboratory measurements

    Science.gov (United States)

    Greenberger, Rebecca N; Mustard, John F; Cloutis, Edward A; Mann, Paul; Wilson, Janette H.; Flemming, Roberta L; Robertson, Kevin; Salvatore, Mark R; Edwards, Christopher

    2015-01-01

    We investigate an outcrop of ∼187 Ma lacustrine pillow basalts of the Talcott Formation exposed in Meriden, Connecticut, USA, focusing on coordinated analyses of one pillow lava to characterize the aqueous history of these basalts in the Hartford Basin. This work uses a suite of multidisciplinary measurements, including hyperspectral imaging, other spectroscopic techniques, and chemical and mineralogical analyses, from the microscopic scale up to the scale of an outcrop.

  9. Geomagnetic field intensity and inclination records from the Hawaiian long basaltic cores: geomagnetic implications

    Science.gov (United States)

    Laj, C. E.; Kissel, C.; Davies, C.; Gubbins, D.

    2009-12-01

    In the long basaltic cores drilled in the Big Island of Hawaii, the sub-horizontal orientation of the flows and their regular accumulation with time, which makes the continuity in time almost comparable with sediments, provides an excellent opportunity to obtain a detailed record of the absolute intensity and inclination of the geomagnetic field from a sequence of lava flows. Here, we report new paleointensity (Thellier and Thellier) and inclination determinations obtained from the analysis of 370 samples from 130 flows in the subaerial part of HSDP2. These new results are combined with previous results obtained from the other long basaltic cores in Hawaii (HSDP1, SOH4 and SOH1) all selected using a set of stringent paleointensity selection criteria (PICRIT-03). In a first step the Sharp and Renne age model was used for correlation of the records. In a second step correlation was refined using some characteristic features of the paleomagnetic records themselves (HSDP 1 and HSDP 2 in particular), which led to a slight modification of the Sharp and Renne age model. The age model was further improved by correlation with the sedimentary SINT-800 record. The results are consistent between these independent records, over the different time intervals where they overlap. This allows construction of the first accurate lava record of absolute intensity and inclination at Hawaii which overlap for almost 75% of this time interval these different records overlap, the results are very consistent and allow to construct an accurate lava record of absolute geomagnetic field intensity and inclination at Hawaii for the last 420 kyr based on at least two independent records over almost. The VADM undergoes large oscillations between about 3 and 16 10^22 A.m*2 with an average values of about 8 10^22 A m^2. When the values corresponding to recognized excursional periods are omitted, the inclination is on the average 29.6°, i.e. about 6° shallower than the GAD value. These results will

  10. Complex Formation History of Highly Evolved Basaltic Shergottite, Zagami

    Science.gov (United States)

    Niihara, T.; Misawa, K.; Mikouchi, T.; Nyquist, L. E.; Park, J.; Hirata, D.

    2012-01-01

    Zagami, a basaltic shergottite, contains several kinds of lithologies such as Normal Zagami consisting of Fine-grained (FG) and Coarse-grained (CG), Dark Mottled lithology (DML), and Olivine-rich late-stage melt pocket (DN). Treiman and Sutton concluded that Zagami (Normal Zagami) is a fractional crystallization product from a single magma. It has been suggested that there were two igneous stages (deep magma chamber and shallow magma chamber or surface lava flow) on the basis of chemical zoning features of pyroxenes which have homogeneous Mg-rich cores and FeO, CaO zoning at the rims. Nyquist et al. reported that FG has a different initial Sr isotopic ratio than CG and DML, and suggested the possibility of magma mixing on Mars. Here we report new results of petrology and mineralogy for DML and the Olivine-rich lithology (we do not use DN here), the most evolved lithology in this rock, to understand the relationship among lithologies and reveal Zagami s formation history

  11. Reactive transport models for mineral CO2 storage in basaltic rocks

    Science.gov (United States)

    Aradottir, E. S.; Sonnenthal, E. L.; Bjornsson, G.; Jonsson, H.

    2010-12-01

    CO2 mineral storage in basalts may provide a long lasting, thermodynamically stable and environmentally benign solution to reduce anthropogenic CO2 in the atmosphere. We present here development of reactive transport models of this process with focus on the CarbFix experiment at Hellisheidi geothermal power plant in Iceland. There, up to 2.2 tons/year of purified CO2 of volcanic origin will be dissolved in water and injected at intermediate depths (400-800 m) into relatively fresh basaltic lava. Plans call for a full-scale injection if the experiment is successful. Reactive transport modeling is an important factor in the CarbFix project, providing tools to predict and optimize long-term management of the injection site as well as to quantify the amount of CO2 that has the potential of being mineralized. TOUGHREACT and iTOUGH2 are used to develop reactive fluid flow models that simulate hydrology and mineral alteration associated with injecting dissolved CO2 into basalts. The mineral reactions database in TOUGHREACT has been revised and extended, providing an internally consistent database suitable for mineral reactions of interest for this study. A multiple interacting continua (MINC) dissolution model was developed to simulate the long and short-term dissolution of basaltic glass taking into account dissolution kinetics, leached layer formation and diffusion-limited dissolution rates. Our main focus has been on developing a three dimensional field model of the injection site at Hellisheidi. Hydrological parameters of the model were calibrated using iTOUGH2 to simulate tracer tests that have been ongoing since 2007. Modeling results indicate groundwater velocity in the reservoir to be significantly lower than expected. The slow groundwater velocity may necessitate increasing groundwater flow by producing downstream wells at low rates after CO2 injection has started. The three dimensional numerical model has proven to be a valuable tool in simulating different

  12. Eruptive Process, Geochemical Variation, and Weathering Controls on the Hyperspectral Reflectance Properties of the Blue Dragon Lava Flow, Craters of the Moon National Monument

    Science.gov (United States)

    Poplawski, J.; Chadwick, D. J.

    2010-12-01

    About 60 eruptive events have occurred at the Craters of the Moon volcanic field (Idaho, US), ranging in age from 15 to 2 ka. The Blue Dragon flow is one of the youngest, a large (280 sq. km) hawaiite flow which erupted from a dike-fed central rift zone, the Great Rift. Airborne Visible Infrared Imaging Spectrometer (AVIRIS) hyperspectral imagery (224-bands, 0.4 to 2.5 micron spectral range, and 15.3 m spatial resolution) shows at least five distinct regions within the Blue Dragon flow that exhibit different spectral reflectance properties. Field observations show these regions to be associated with different eruptive phases of the flow, and in some cases, different flow morphologies (e.g. aa, and ropey, sheet, and hummocky pahoehoe). Airborne Synthetic Aperture Radar (AIRSAR) imagery of the study area also shows average roughness variability among the different spectral regions. We performed petrographic and laboratory spectral analyses on samples from each spectral region to investigate variation in primary surface properties and the effects of weathering and lichen growth on surface reflectance. We also analyzed bulk major elements for several samples from each spectral region to investigate a possible connection between the observed spectral variability and chemical variability in the Blue Dragon eruption over time. Analyses using hydrologic flow accumulation and solar irradiance models provide further information about the effects of post-eruptive processes on spectral reflectance of the flow.

  13. Origin of the Grande Ronde Basalts, Columbia River Basalt Group

    Science.gov (United States)

    Durand, S. R.; Sen, G.; Reidel, S. P.

    2005-12-01

    The Columbia River basalts are generally thought to have formed by plume melting. Takahashi et al. (1998) suggested that the near-aphyric Grande Ronde Basalts (GR), which comprise ~63% of the CRBG, are essentially primary melts formed by nearly complete fusion of eclogite source rock in the plume and that such melting took place ~2.0 GPa. Durand and Sen (2002) examined phenocrysts and whole rock analyses and concluded that all the basalts are non-primary and, more importantly, that they underwent significant "processing" in shallow crustal magma chambers which erased their higher pressure geochemical signal, thus casting doubt on the validity of the eclogitic plume melting model. Here we report the results of our efforts to simulate the higher pressure histories of GR basalts using COMAGMAT and MELTS software. Our intent was to evaluate (1) whether such melts could be derived from primary melts formed by partial melting of a peridotite source as an alternative to the eclogite model, or if bulk melting of eclogite is required; and (2) at what pressure such primary melts could have been in equilibrium with the mantle. We carried out both forward and inverse modeling. In the forward models we chose different starting melt compositions, all produced in laboratory experiments, from peridotite vs. eclogitic sources. Our starting melts were produced by 6-17% partial melting of the peridotite KLB-1 (Hirose and Kushiro, 1993) and 18-40% melting of eclogites (77SL-582; CRB72-31; Keshav et al., 2004; Takahashi et al., 1998) at 1-3.0 GPa. In a second model, our starting melt composition was the most primitive GR lava with 6.5 wt. % MgO. We extrapolated a linear regression through the GR data to 8 wt. % MgO. We then assumed that such a melt was only olivine-equilibrated, and incrementally added olivine while maintaining equilibrium between olivine and melt using a Kd of 0.3, until a melt in equilibrium with the mantle olivine (Fo89) was found. This composition was fractionated

  14. Late Permian basalts in the northwestern margin of the Emeishan Large Igneous Province: Implications for the origin of the Songpan-Ganzi terrane

    Science.gov (United States)

    Li, Hongbo; Zhang, Zhaochong; Santosh, M.; LÜ, Linsu; Han, Liu; Liu, Wei; Cheng, Zhiguo

    2016-07-01

    SHRIMP zircon U-Pb ages, geochemical and Sr-Nd isotopic data are reported for two types of basalts (Type I and Type II) from a Permian volcanic-pyroclastic succession in the Tubagou section, Baoxing area along the southeastern margin of the Songpan-Ganzi terrane (SGT) in the Sichuan province of SW China. Zircons from the uppermost basaltic flows yield crystallization age of 257.3 ± 2.0 Ma, which may represent the time of culmination the basaltic eruption. Type I shows alkaline affinity with εNd(t) values of + 2.4 to + 2.9, and is characterized by oceanic island basalt (OIB)-type light rare earth element (LREE) and trace-element patterns. In contrast, Type II rocks are tholeiitic, and close to initial rift tholeiite (IRT)-like REE and trace element patterns, and are relatively depleted in highly incompatible elements with slightly negative Nb-Ta anomaly. The εNd(t) values of Type II are between + 1.8 to + 2.2. The geochemical characteristics suggest the Type I has not been significantly crustally contaminated, whereas Type II maybe have experienced minor crustal contamination. Clinopyroxene crystallization temperature is ~ 80-120°C higher than that of the normal asthenospheric mantle, implying anomalous thermal input from mantle source and a possible plume-head origin for the Tubagou lava. The geochemical and isotopic fes, reflecting progressive lithosphere thinning probably through plume-lithosphere interaction. The spatial and temporal coincidence between the Dashibao basalt eruptions, reflecting progressive lithosphere thinning probably through plume-lithosphere interaction. The spatial and temporal coincidence between the Dashibao basalt eruption and continental rifting suggest that continental break-up and the opening of an extensional basin was probably related to the Late Permian Emeishan plume, which triggered the breakup between the SGT and the Yangtze craton.

  15. New Petrologic and Geochemical Insights into Differentiation Processes Required to Produce the Lower Steens Basalt, Columbia River Basalt Province, SE Oregon

    Science.gov (United States)

    Moore, N. E.; Lytle, K.; Bohrson, W. A.; Grunder, A.

    2015-12-01

    The Steens Basalt (~16.7 Ma) of SE Oregon is the oldest member and contains the most mafic compositions of the Columbia River Flood Basalt (CRB) event. The lower Steens lavas are more mafic and incompatible element poor than upper Steens flows, which are less magnesian, mildly alkalic, richer in incompatible elements, and mainly basaltic andesites, much like the CRB proper. At Steens Mountain, the lower Steens are thickest and comprise 35-40 mainly compound flows with modest soil development between, suggesting a period of slower effusion rate transitioning to high effusion rates as represented by stratigraphically higher flows that make up the prominent cliffs of the range. Stronger soil development between the uppermost flows implies a waning effusion rate. Whole rock major element data define two distinct trends in the lower Steens; the first has increasing Al2O3 with decreasing MgO at relatively low FeO, whereas the second exhibits increasing Al2O3 with decreasing MgO until an inflection point (~8 wt.% MgO), at which both Al2O3 and MgO decrease. Plagioclase mode is not coupled with Al2O3. MELTS closed system fractionation models across a range of pressures cannot reproduce these trends, suggesting open-system processes were at work. Olivine is homogeneous in some flows (~Fo80-78), but heterogeneous in others (~Fo84-62). Fo range does not correlate with whole rock MgO; two different flows with >10 wt.% MgO have Fo85-70 and Fo84-82. Plagioclase composition is restricted within and between flows (~An75-60). All these data suggest lower Steens magmas underwent large amounts of crystal fractionation and recharge with modest assimilation. Some assimilation requires an aluminous contaminant other than simple plagioclase accumulation. During other periods, magma mixing must have been efficient. Magma Chamber Simulator modeling will provide quantitative estimates for the roles of fractionation, recharge and assimilation in the lower Steens magma system.

  16. Mylitta Fluctus, Venus - Rift-related, centralized volcanism and the emplacement of large-volume flow units

    Science.gov (United States)

    Roberts, Kari M.; Guest, John E.; Head, James W.; Lancaster, Michael G.

    1992-01-01

    The flow morphology, stratigraphy, and evoluton of Mylitta Fluctus, a massive lava flow field on Venus, is characterized, and the link between its origin and the local tectonics is examined. The regional setting of the flow field is reviewed. A model for the stratigraphy and emplacement history of Mylitta is developed, flow morphology is discussed, and some preliminary estimates of effusion rates and eruption durations that may have characterized its emplacement are presented. The origin of Mylitta is discussed in relation to local rifting and possible hotspot activity, and the emplacement of Mylitta is compared to the origin of terrestrial flood basalts.

  17. Long term low latitude and high elevation cosmogenic 3He production rate inferred from a 107 ka-old lava flow in northern Chile; 22°S-3400 m a.s.l.

    Science.gov (United States)

    Delunel, Romain; Blard, Pierre-Henri; Martin, Léo C. P.; Nomade, Sébastien; Schlunegger, Fritz

    2016-07-01

    Available geological calibration sites used to estimate the rate at which cosmogenic 3He is produced at the Earth's surface are mostly clustered in medium to high latitudes. Moreover, most of them have exposure histories shorter than tens of thousands of years. This lack of sites prevents a qualitative assessment of available production models used to convert cosmogenic 3He concentrations into exposure ages and/or denudation rates. It thus limits our ability to take into account the atmospheric, geomagnetic and solar modulation conditions that might have affected the production of cosmogenic nuclides in the past for longer exposure histories and in low latitude regions. We present the cosmogenic 3He production rate inferred from a new geological calibration site located in northern Chile. Five samples were collected on the surface of the largest and best-preserved lava flow of the San Pedro volcano (21.934°S-68.510°W-3390 m a.s.l.), which displays pristine crease-structure features. 40Ar/39Ar dating yields a reliable plateau age of 107 ± 12 ka for the eruption of this lava flow. Eight pyroxene aliquots separated from the surface samples yield a weighted average cosmogenic 3He concentration of 99.3 ± 1.2 Mat g-1 from which a local cosmogenic 3He production rate of 928 ± 101 at g-1 yr-1 is calculated. The local production rate is then scaled to a sea level high latitude (SLHL) reference position using different combinations of geographic spatialization schemes, atmosphere models and geomagnetic field reconstructions, yielding SLHL production rates between 103 ± 11 and 130 ± 14 at g-1 yr-1 consistent with the most recent estimates available from the literature. Finally, we use the same scaling frameworks to re-evaluate the mean global-scale cosmogenic 3He production rate in olivine and pyroxene minerals at 120 ± 16 at g-1 yr-1 from the compilation of previously published calibration datasets.

  18. Preliminary feasibility study on storage of radioactive wastes in Columbia River basalts. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    ,

    1976-11-01

    Volume II comprises four appendices: analytical data and sample locations for basalt flow type localities; Analytical data and sample locations for measured field sections in Yakima basalts; core hole lithology and analytical data; and geophysical logs. (LK)

  19. Space-Time-Isotopic Trends of Snake River Plain Basalts

    Science.gov (United States)

    Jean, M. M.; Hanan, B. B.; Shervais, J. W.

    2010-12-01

    The Snake River Plain (SRP) volcanic province is an 800 km track of basalt extending from the Owyhee Plateau to its current terminus, the Yellowstone Plateau. It is one of several late-Tertiary magmatic terranes that also include the Cascades magmatic arc, the Columbia River basalts, and the Oregon Plateau basalts; all of which are adjacent to the Basin and Range Province extensional system (Hughes and McCurry, 2002). This province represents the track of the Yellowstone plume and consists of basalt that is compositionally similar to ocean-island basalt. This basalt overlies a series of rhyolitic eruptive centers (overlapping caldera complexes, ignimbrites, and caldera-filling eruptions) that signal the arrival of the plume head (Christiansen, 2001) and herald the onset of plume-related rhyolitic and basaltic volcanism (Pierce et al., 2002). Observed within the SRP are two basalt types: the dominant low-K olivine tholeiites and less common high-K alkaline basalts. We report new Sr-, Nd-, and Pb-isotopic analyses of these two basalt types from all three SRP provinces: eastern, central, and western. Low-K tholeiites are enriched in 143Nd/144Nd and 86Sr/87Sr and forms a quasi-linear array in Pb-isotope space, along with Craters of the Moon and eastern SRP basalts. High-K lavas are found largely in the western plain, and have a uniquely different isotopic signature. They are depleted in 143Nd/144Nd and 86Sr/87Sr, relative to the low-K tholeiites, and plot closer to the BSE component of Zindler and Hart (1986). They also share the same Pb-isotopic space with high-K basalts from Smith Prairie (Boise River Group 2 of Vetter and Shervais, 1992). One low-K tholeiite - Eureka North, plots with these high alkali basalts. Mass balance models have demonstrated an increasing plume component from the Yellowstone caldera in the east to the craton edge in the west. The lavas analyzed in this study conform remarkably to this model. The mass fraction of plume component in western

  20. Strawberry Rhyolites, Oregon: Northwestern extent of mid-Miocene flood basalt related rhyolites of the Pacific Northwest

    Science.gov (United States)

    Steiner, A. R.; Streck, M. J.

    2011-12-01

    Rhyolitic volcanism associated with the Columbia River-Steens flood basalts of the Pacific Northwest has traditionally been viewed to be centered at McDermitt caldera near the Oregon-Nevada border starting at ~16.5 Ma. In recent years, more rhyolitic centers along this latitude with ages between 16.5-15.5 Ma have been identified and associated with the inception of the Yellowstone hotspot. However the footprint of plume-head related rhyolites becomes much larger when silicic centers of mid-Miocene age in eastern Oregon are included extending the distribution of such rhyolites to areas near the towns of Baker City and John Day ~250 km north of McDermitt. This study addresses one of these rhyolitic centers that was virtually unknown and that constitutes the northwestern extent of mid-Miocene rhyolites. Rhyolites are centered ~40 km SSW of John Day and are considered part of the Strawberry Volcanic Field (SVF), which consists of a diverse group of volcanic rocks ranging from basalt to rhyolite with abundant intermediate compositions. One existing age date of 17.3 Ma ± 0.36 (Robyn, 1977) - if confirmed by our ongoing study - places these rhyolites at the very onset of plume-head related rhyolites. Strawberry rhyolitic lavas are most voluminous in the southwestern portion of the SVF covering approximately 500 km2 between Bear and Logan Valley. The rhyolitic lavas tend to be phenocryst-poor (<3%) and range from obsidian to devitrified flow banded rhyolites. The major phenocryst phases include plagioclase, quartz, and occasional biotite. Field evidence suggests that the aphyric high-silica rhyolite lavas (~77 wt. % SiO2) erupted first, followed by rhyolite lava flows with increasing phenocryst proportions and decreasing SiO2 (70 wt. %). Lastly, phenocryst-rich dacite lava erupted on top, capping the rhyolite. There is no evidence of significant time gaps between lavas flows, suggesting eruption in short succession. Rhyolites from the SVF are high-K, calc-alkaline lavas

  1. Radionuclide reactions with groundwater and basalts from Columbia River basalt formations

    International Nuclear Information System (INIS)

    Chemical reactions of radionuclides with geologic materials found in Columbia River basalt formations were studied. The objective was to determine the ability of these formations to retard radionuclide migration from a radioactive waste repository located in deep basalt. Reactions that can influence migration are precipitation, ion-exchange, complexation, and oxidation-reduction. These reactions were studied by measuring the effects of groundwater composition and redox potential (Eh) on radionuclide sorption on fresh basalt surfaces, a naturally altered basalt, and a sample of secondary minerals associated with a Columbia River basalt flow. In addition, radionuclide sorption isotherms were measured for these materials and reaction kinetics were determined. The radionuclides studied were 137Cs, 85Sr, 75Se, /sup 95m/Tc, 237Np, 241Am, 226Ra and 237Pu. The Freundlich equation accurately describes the isotherms when precipitation of radionuclides does not occur. In general, sorption increased in the order: basalt < altered basalt < secondary minerals. This increase in sorption corresponds to increasing surface area and cation exchange capacity. The Eh of the system had a large effect on technetium, plutonium, and neptunium sorption. Technetium(VII), Pu(VI), and Np(V) are reduced to Tc(IV), Pu(IV), and Np(IV), respectively, under Eh conditions expected in deep basalt formations. The kinetics of radionuclide sorption and basalt-groundwater reactions were observed over a period of 18 weeks. Most sorption reactions stabilized after about four weeks. Groundwater composition changed the least in contact with altered basalt. Contact with secondary minerals greatly increased Ca, K, and Mg concentrations in the groundwater

  2. Lava and Life: New investigations into the Carson Volcanics, lower Kimberley Basin, north Western Australia

    Science.gov (United States)

    Orth, Karin; Phillips, Chris; Hollis, Julie

    2014-05-01

    The Carson Volcanics are the only volcanic unit in the Paleoproterozoic Kimberley Basin and are part of a poorly studied Large Igneous Province (LIP) that was active at 1790 Ma. New work focussing on this LIP in 2012 and 2013 involved helicopter-supported traverses and sampling of the Carson Volcanics in remote areas near Kalumburu in far north Western Australia's Kimberley region. The succession is widespread and flat lying to gently dipping. It consists of three to six basalt units with intercalated sandstone and siltstone. The basalts are 20-40 m thick, but can be traced up to 60 km along strike. The basalt can be massive or amygdaloidal and commonly display polygonal to subhorizontal and rare vertical columnar jointing. Features of the basalt include ropy lava tops and basal pipe vesicles consistent with pahoehoe lavas. The intercalated cross-bedded quartzofeldspathic sandstone and siltstone vary in thickness up to 40 m and can be traced up to 40 km along strike. Peperite is common and indicates interaction between wet, unconsolidated sediment and hot lava. Stromatolitic chert at the top of the formation represents the oldest life found within the Kimberley region. Mud cracks evident in the sedimentary rocks, and stromatolites suggest an emergent broad tidal flat environment. The volcanics were extruded onto a wide marginal margin setting subject to frequent flooding events. Thickening of the volcanic succession south and the palaeocurrents in the underlying King Leopold Sandstone and the overlying Warton Sandstone suggest that this shelf sloped to the south. The type of basalt and the basalt morphology indicate a low slope gradient of about 1°.

  3. Robust 24 ± 6 ka 40Ar/39Ar age of a low-potassium tholeiitic basalt in the Lassen region of NE California

    Science.gov (United States)

    Turrin, Brent D.; Muffler, L. J. Patrick; Clynne, Michael A.; Champion, Duane E.

    2007-01-01

    40Ar/39Ar ages on the Hat Creek Basalt (HCB) and stratigraphically related lava flows show that latest Pleistocene tholeiitic basalt with very low K2O can be dated reliably. The HCB underlies ∼ 15 ka glacial gravel and overlies four andesite and basaltic andesite lava flows that yield 40Ar/39Ar ages of 38 ± 7 ka (Cinder Butte; 1.65% K2O), 46 ± 7 ka (Sugarloaf Peak; 1.85% K2O), 67 ± 4 ka (Little Potato Butte; 1.42% K2O) and 77 ± 11 ka (Potato Butte; 1.62% K2O). Given these firm age brackets, we then dated the HCB directly. One sample (0.19% K2O) clearly failed the criteria for plateau-age interpretation, but the inverse isochron age of 26 ± 6 ka is seductively appealing. A second sample (0.17% K2O) yielded concordant plateau, integrated (total fusion), and inverse isochron ages of 26 ± 18, 30 ± 20 and 24 ± 6 ka, all within the time bracket determined by stratigraphic relations; the inverse isochron age of 24 ± 6 ka is preferred. As with all isotopically determined ages, confidence in the results is significantly enhanced when additional constraints imposed by other isotopic ages within a stratigraphic context are taken into account.

  4. Emplacement and erosive effects of the south Kasei Valles lava on Mars

    Science.gov (United States)

    Dundas, Colin M.; Keszthelyi, Laszlo P.

    2014-01-01

    Although it has generally been accepted that the Martian outflow channels were carved by floods of water, observations of large channels on Venus and Mercury demonstrate that lava flows can cause substantial erosion. Recent observations of large lava flows within outflow channels on Mars have revived discussion of the hypothesis that the Martian channels are also produced by lava. An excellent example is found in south Kasei Valles (SKV), where the most recent major event was emplacement of a large lava flow. Calculations using high-resolution Digital Terrain Models (DTMs) demonstrate that this flow was locally turbulent, similar to a previously described flood lava flow in Athabasca Valles. The modeled peak local flux of approximately 106 m3 s−1 was approximately an order of magnitude lower than that in Athabasca, which may be due to distance from the vent. Fluxes close to 107 m3 s−1 are estimated in some reaches but these values are probably records of local surges caused by a dam-breach event within the flow. The SKV lava was locally erosive and likely caused significant (kilometer-scale) headwall retreat at several cataracts with tens to hundreds of meters of relief. However, in other places the net effect of the flow was unambiguously aggradational, and these are more representative of most of the flow. The larger outflow channels have lengths of thousands of kilometers and incision of a kilometer or more. Therefore, lava flows comparable to the SKV flow did not carve the major Martian outflow channels, although the SKV flow was among the largest and highest-flux lava flows known in the Solar System.

  5. A preliminary analysis of lunar extra-mare basalts - Distribution, compositions, ages, volumes, and eruption styles

    Science.gov (United States)

    Whitford-Stark, J. L.

    1982-01-01

    Extra-mare basalts occupy 8.5% of the lunar basalt area and comprise 1% of the total mare basalt volume. They are preferentially located where the crust is thin and topographically low. In terms of age, eruption style, and composition they are as variable as the mare basalts. In some instances extrusion in extra-mare craters was preceded by floor-fracturing whereas in other cases it apparently was not. The volume of lava erupted may have been controlled more by the volume of magma produced than by hydrostatic effects. A minimum of nearly 1300 separate basalt eruptions is indicated; the true value could be nearer 30,000 separate eruptions.

  6. Geochemical and Sr-Nd-Pb Isotopic Insights of the Low-Ti basalts from Paraná-Etendeka Igneous Province, Southern Brazil: Constraints on Petrogenesis and the Role of Crustal Contamination

    Science.gov (United States)

    Raposo, I.; Barreto, C. J.; Lima, E. F. D.; Lafon, J. M.; Sommer, C. A.; Waichel, B. L.

    2015-12-01

    The south hinge of the Torres Syncline in southernmost Brazil hosts a volcanic succession of pahoehoe and rubbly Gramado-type lavas belonging to the ~132 Ma Paraná-Etendeka Igneous Province. We employ local-scale stratigraphy in three distinct profiles (Santa Cruz do Sul-Herveiras, Morro da Cruz and Lajeado geologic sections) as guidelines for geochemical and Sr-Nd-Pb isotope studies in order to discuss the petrogenesis of lava flows in a single magma type and to quantitatively evaluate the role of crustal contamination and the potential contaminants involved. In all profiles, the lava flows exhibit compositions ranging from basalt to andesite with tholeiitic affinity. The compositional and isotopic variations are not systematic according to stratigraphy, implying that the magma chamber could have undergone periodic replenishments or distinct magma pulses through time or multiple plumbling systems may have existed. The andesites (SiO2 55-58 wt.%) with ponded pahoehoe morphology represent evolved melts at early stages of volcanism with strong susceptibility to crustal contamination as they established pathways to the surface. The olivine basalts (SiO2 47-50 wt.%) and basaltic andesites (SiO2 51-56 wt.%) showing compound morphology and simple pahoehoe morphology, respectively, could be explained by longer time residence of liquids in the crust with higher degrees of crustal assimilation than the ponded pahoehoe lavas. The basaltic andesites (SiO2 52-56 wt. %) with rubbly morphology are related to late differentiation process in shallow magma chambers. Crustal assimilation process accounts for the high initial 87Sr/86Sr ratios at 0.707798-0.715751, very low ɛNd between -8.36 and -5.41, high 206Pb/204Pb ratios at 18.424-18.865, with intermediate 207Pb/204Pb and 208Pb/204Pb ratios at 15.649-15.710 and 38.618-39.369, respectively. The isotopic variations require assimilation of both Paleoproterozoic and Neoproterozoic contaminants at variable degrees.

  7. An ancient recipe for flood-basalt genesis.

    Science.gov (United States)

    Jackson, Matthew G; Carlson, Richard W

    2011-07-27

    Large outpourings of basaltic lava have punctuated geological time, but the mechanisms responsible for the generation of such extraordinary volumes of melt are not well known. Recent geochemical evidence suggests that an early-formed reservoir may have survived in the Earth's mantle for about 4.5 billion years (ref. 2), and melts of this reservoir contributed to the flood basalt emplaced on Baffin Island about 60 million years ago. However, the volume of this ancient mantle domain and whether it has contributed to other flood basalts is not known. Here we show that basalts from the largest volcanic event in geologic history--the Ontong Java plateau--also exhibit the isotopic and trace element signatures proposed for the early-Earth reservoir. Together with the Ontong Java plateau, we suggest that six of the largest volcanic events that erupted in the past 250 million years derive from the oldest terrestrial mantle reservoir. The association of these large volcanic events with an ancient primitive mantle source suggests that its unique geochemical characteristics--it is both hotter (it has greater abundances of the radioactive heat-producing elements) and more fertile than depleted mantle reservoirs-may strongly affect the generation of flood basalts.

  8. Gabbroic xenoliths in alkaline lavas in the region of Sanganguey Volcano, Nayarit, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Giosa, T.A.; Nelson, S.A.

    1985-01-01

    Gabbroic xenoliths occur in alkaline cinder cones and lava flows erupted from vents along five parallel lines trending through the calc-alkaline volcano, Sanganguey in the northwestern portion of the Mexican Volcanic Belt. The xenoliths consist of varying proportions of olivine, clinopyroxene, orthopyroxene, and plagioclase. The complete lack of hydrous phases indicates that the gabbros crystallized under conditions of low PH/sub 2/O. Many xenoliths show textures indicative of a cumulate origin and others exhibit recrystallization indicative of subsolidus reactions prior to incorporation in the host liquids. Reaction between xenolithic minerals and host liquids are also observed. The range of Mg numbers calculated for liquids that would have been in equilibrium with olivines in the xenoliths suggests that these olivines crystallized from magmas such as those represented by either calc-alkaline basaltic andesites and andesites or the more evolved alkalic rocks which occur throughout the area. Crystal fractionation models show that the xenoliths may be related to such magmas. The fact that xenoliths occur most commonly in the alkaline rocks suggests that alkaline magmas rise to the surface more rapidly than the more chemically evolved calc-alkaline and alkaline magmas. Alternatively the lack of xenoliths in the more evolved magmas produced by high level crystal fractionation may indicate that the xenoliths are derived from zones below that from which the differentiated magmas begin their final ascent to the surface.

  9. 塔里木溢流玄武岩的喷发特征%The eruption characteristics of the Tarim flood basalt

    Institute of Scientific and Technical Information of China (English)

    上官时迈; 田伟; 徐义刚; 关平; 潘路

    2012-01-01

    通过对柯坪地区二叠系野外火山岩露头剖面和英买力、哈拉哈塘井区二叠系火山岩钻井剖面的对比,将塔里木早二叠世溢流玄武岩划分为三个旋回,从老到新依次是:库普库兹满溢流玄武岩旋回(KP),长英质火山碎屑岩旋回(FP)和开派兹雷克溢流玄武岩旋回(KZ).KP旋回以巨厚溢流玄武岩夹凝灰岩为特征,在柯坪露头区和英买力井区均可划分出三层巨厚玄武质熔岩流,至哈拉哈塘井区减少为一层玄武岩流,但长英质火山碎屑岩和熔岩厚度增加.FP旋回在柯坪露头区自下而上包括空落相凝灰岩,熔结凝灰岩,再沉积火山碎屑岩和正常碎屑岩夹火山灰层,该层可与英买力及哈拉哈塘井区的凝灰岩层对比,表明在塔北存在一期面积广泛的长英质火山喷发.KZ旋回以溢流玄武岩为主,在开派兹雷克剖面识别出四期喷发共8层溢流玄武岩和一期安山质玄武岩,每期喷发之间夹少量碎屑岩,但未见长英质火山碎屑岩夹层,该特征与英买力和哈拉哈塘井区的火山层序组合不同,而与塔中溢流玄武岩类似.三个火山旋回的划分表明塔里木大火成岩省经历了“基性溢流玄武岩-酸性火山碎屑岩-基性溢流玄武岩”的演变过程,与Afro-Arabian溢流玄武岩省相似,可进行对比研究.%Integration of field investigation, regional stran'graphic comparison, remote sensing and image interpretation allow us to divide the Tarim Permian flood basalt province into three eruptive cycles listed by decreasing age: Kupukuziman flood basalt ( KP), Felsic pyroclastic rocks (FP), Kaipaizileike flood basalt ( KZ). KP features flood basalt and tuff; in the outcrop in Keping and Yingmaili areas, it can be differentiated into two units containing three thick layers of basaltic lava flows. These three layers decrease to one layer of basaltic lava flow in the Halahatang area; however, felsic pyroclastic rocks and lava layer thicknesses

  10. A network of lava tubes as the origin of Labyrinthus Noctis and Valles Marineris on Mars

    Science.gov (United States)

    Leone, Giovanni

    2014-05-01

    The role of lava tube networks and lava channels is reassessed as the primordial stage of the volcano-erosional processes that formed the Labyrinthus Noctis-Valles Marineris system instead of a tectonic origin. The combined use of CTX, CRISM, HiRISE imagery, and MOLA profiles has provided valuable insight in the evolution of pit chains into fossae first and then chasmata later due to mass wasting processes caused by the erosional effect of the lava flows that draped Valles Marineris and other outflow channels. Although a quantitative evaluation of eruption rates is difficult even with digital terrain models (DTMs) because of the mixing between new flows and paleoflows, a comparison with Elysium and other Tharsis outflow channels suggests that the availability of lava supply is correlated to their widths. The images of ubiquitous lava flows rather than sporadic light-toned deposits strengthen the role of lava over that of water in the erosional processes that formed Labyrinthus Noctis and carved Valles Marineris like many other outflow channel on Mars. The erosional evolution of the outflow channels shows an increasing trend of age and a decreasing trend of depth from the sources on Tharsis to the mouths at Chryse Planitia. This finding, coupled with the observation of lava flows mantling Chryse Planitia, may have profound implications for the water inventories thought to have filled the lowlands with an ocean.

  11. The origin of tubular lava stalactites and other related forms

    OpenAIRE

    Kevin Allred; Carlene Allred

    1998-01-01

    Tubular lava stalactites are often found in lava tubes. Field observations, sample analysis, and comparative studies indicate that these are segregations extruded during cooling from partially crystallized lava al about 1,070 - 1,000 °C. Retrograde boiling (gas pressure) within the lava provides a mechanism to expel the interstitial liquid. In addition to tubular lava stalactites, a variety of other lava features can also result, such as lava helictites, lava coralloids, barnacle-like stretch...

  12. Petrology, geochemistry, and age of low-Ti mare-basalt meteorite Northeast Africa 003-A: A possible member of the Apollo 15 mare basaltic suite

    Science.gov (United States)

    Haloda, Jakub; Týcová, Patricie; Korotev, Randy L.; Fernandes, Vera A.; Burgess, Ray; Thöni, Martin; Jelenc, Monika; Jakeš, Petr; Gabzdyl, Pavel; Košler, Jan

    2009-06-01

    C/h) suggest that the parent melt of NEA 003-A crystallized in the lower part of a lava flow containing cumulate olivine (˜10%) and was probably derived from more primitive picritic magma by fractional crystallization processes. Sm-Nd dating yields an age of 3.09 ± 0.06 Ga which corresponds to the period of lower Eratosthenian lunar volcanic activity, and the near-chondritic ɛNd value of -0.4 ± 0.3 indicates that the meteorite could be derived from a slightly enriched mantle source similar to the Apollo 15 green glasses. Ar-Ar step release results are inconsistent with Sm-Nd ages suggesting that NEA 003-A was exposed to one or more impact events. The most extensive event took place at 1.8 Ga and the shock intensity was likely between 28 and 45 GPa. The absence of solar Ar suggests that NEA 003-A has not been directly exposed at the lunar surface but the cosmic ray exposure age of 209 ± 6 Ma suggests that NEA 003-A resided in the upper regolith for part of its history.

  13. Petrogenesis of intraplate lavas from isolated volcanoes in the Pacific : implications for the origin of the enriched mantle source of OIB

    OpenAIRE

    Tian, Liyan

    2011-01-01

    Years of studies show that most of the ocean island basalts (OIB) that comprise the bulk of prominent linear volcanic chains are geochemically different from mid-ocean ridge basalts (MORB). However, the cause of the geochemical differences between OIB and MORB as well as the origin of geochemical enrichment and heterogeneity in OIB are highly controversial. Volcanic glasses and lavas with OIB-like composition from isolated intraplate volcanoes in the northern Lau Basin in the southwestern Pac...

  14. Deformation of poorly consolidated sediment during shallow emplacement of a basalt sill, Coso Range, California

    Science.gov (United States)

    Duffield, W.A.; Bacon, C.R.; Delaney, P.T.

    1986-01-01

    A 150-m-long, wedge-shaped unit of folded and faulted marly siltstone crops out between undeformed sedimentary rocks on the north flank of the Coso Range, California. The several-meter-thick blunt end of this wedge abuts the north margin of a basaltic sill of comparable thickness. Chaotically deformed siltstone crops out locally at the margin of this sill, and at one locality breccia pipes about one meter in diameter crosscut the sill. The sill extends about 1 km south up the paleoslope, where it merges through continuous outcrop with a lava flow that in turn extends 1.4 km to a vent area marked by more than 100 m of agglutinate and scoria. Apparently, lava extruded at this vent flowed onto unconsolidated sediments, burrowed into them, and fed a sill at about 40 m depth within the sedimentary sequence. The sill initially propagated by wedging between sedimentary beds, but eventually began to push some beds ahead of itself, forming a remarkable train of folds in the process. The sediments apparently were wet at the time of sill emplacement, because hydrothermal alteration is common near the contact between the two rock types and because the breccia pipes that crosscut the sill apparently resulted from phreatic explosions of pore water heated at the base of the cooling sill. Comparison of deformation of the host material at the Coso locality with that reportedly caused by emplacement of sills elsewhere indicates that the character of deformation differs greatly among the various localities. The specific response of host material depends upon such parameters as initial properties of magma and host material, rate of sill growth and attendant rate of strain of host material, and depth of sill emplacement. Some properties may change considerably during an intrusive-deformational episode, thus complicating accurate reconstruction of such an event. ?? 1986 Springer-Verlag.

  15. Helium isotope characteristics of Andean geothermal fluids and lavas

    Science.gov (United States)

    Hilton, D. R.; Hammerschmidt, K.; Teufel, S.; Friedrichsen, H.

    1993-12-01

    The first comprehensive helium isotope survey of the Andes is reported here. We have sampled geothermal fluids and phyric lava flows from the Southern (svz) and Central (cvz) Volcanic Zones, the volcanically active Puna region and the Precordillera, Salta Basin, Longitudinal Valley and the aseismic region between the two volcanic zones. Although the active areas are characterized by significant differences in crustal age and thickness, the svz, cvz and Puna are characterized by a wide and overlapping range in He-3/He-4 ratios (for fluids and phenocrysts) from predominantly radiogenic values to close to the Mid-Ocean Ridge Basalt (MORB) ratio. The measured ranges in He-3/He-4 ratios (R) (reported normalised to the air He-3/He-4 -- R(sub A)) are: svz (0.18 less than R/R(sub A) less than 6.9); cvz (0.82 less than R/R(sub A) less than 6.0); and Puna (1.8 less than R/R(sub A) less than 5.4). Modification of magmatic He-3/He-4 ratios by water/rock interactions (fluids) or post-eruptive grow-in of radiogenic He-4 or preferential diffusive loss of He-3 (phenocrysts) is considered unlikely; this means that the wide range reflects the helium isotope characteristics of magma bodies in the Andean crust. The mechanism controlling the He-3/He-4 ratios appears to be a mixing between mantle (MORB-like) helium and a radiogenic helium component derived from radioactive decay within the magma (magma aging) and/or interaction with He-4-rich country rock: a process expected to be influenced by pre-eruptive degassing of the mantle component. Assimilation of lower crust is also capable of modifying He-3/He-4 ratios, albeit to a much lesser extent. However, it is possible that the highest measured values in each zone were established by the addition of lower crustal radiogenic helium to MORB helium. In this case, the higher 'base level' ratios of the svz would reflect the younger crustal structure of this region. In contrast to helium, there is no overlap in the Sr or Pb isotope

  16. Palaeointensities from Pliocene lava sequences in Iceland: emphasis on the problem of Arai plot with two linear segments

    Science.gov (United States)

    Tanaka, Hidefumi; Yamamoto, Yuhji

    2016-05-01

    Palaeointensity experiments were carried out to a sample collection from two sections of basalt lava flow sequences of Pliocene age in north central Iceland (Chron C2An) to further refine the knowledge of the behaviour of the palaeomagnetic field. Selection of samples was mainly based on their stability of remanence to thermal demagnetization as well as good reversibility in variations of magnetic susceptibility and saturation magnetization with temperature, which would indicate the presence of magnetite as a product of deuteric oxidation of titanomagnetite. Among 167 lava flows from two sections, 44 flows were selected for the Königsberger-Thellier-Thellier experiment in vacuum. In spite of careful pre-selection of samples, an Arai plot with two linear segments, or a concave-up appearance, was often encountered during the experiments. This non-ideal behaviour was probably caused by an irreversible change in the domain state of the magnetic grains of the pseudo-single-domain (PSD) range. This is assumed because an ideal linear plot was obtained in the second run of the palaeointensity experiment in which a laboratory thermoremanence acquired after the final step of the first run was used as a natural remanence. This experiment was conducted on six selected samples, and no clear difference between the magnetic grains of the experimented and pristine sister samples was found by scanning electron microscope and hysteresis measurements, that is, no occurrence of notable chemical/mineralogical alteration, suggesting that no change in the grain size distribution had occurred. Hence, the two-segment Arai plot was not caused by the reversible multidomain/PSD effect in which the curvature of the Arai plot is dependent on the grain size. Considering that the irreversible change in domain state must have affected data points at not only high temperatures but also low temperatures, fv ≥ 0.5 was adopted as one of the acceptance criteria where fv is a vectorially defined

  17. Signatures of the source for the Emeishan flood basalts in the Ertan area: Pb isotope evidence

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Emeishan flood basalts can be divided into high-Ti (HT) basalt (Ti/Y>500) and low-Ti (LT) basalt (Ti/Y<500). Sr, Nd isotopic characteristics of the lavas indicate that the LT- and the HT-type magmas originated from distinct mantle sources and parental magmas. The LT-type magma was derived from a shallower lithospheric mantle, whereas the HT-type magma was derived from a deeper mantle source that may be possibly a mantle plume. However, few studies on the Emeishan flood basalts involved their Pb isotopes, especially the Ertan basalts. In this paper, the authors investigated basalt samples from the Ertan area in terms of Pb isotopes, in order to constrain the source of the Emeishan flood basalts. The ratios of 206Pb/204Pb (18.31-18.41), 207Pb/204Pb (15.55-15.56) and 208Pb/204Pb (38.81-38.94) are significantly higher than those of the depleted mantle, just lying between EM I and EM II. This indicates that the Emeishan HT basalts (in the Ertan area) are the result of mixing of EMI end-member and EMII end-member.

  18. Lava effusion rate definition and measurement--A review

    Science.gov (United States)

    Calvari, Sonia; Dehn, Jonathan; Harris, A.

    2007-01-01

    Measurement of effusion rate is a primary objective for studies that model lava flow and magma system dynamics, as well as for monitoring efforts during on-going eruptions. However, its exact definition remains a source of confusion, and problems occur when comparing volume flux values that are averaged over different time periods or spatial scales, or measured using different approaches. Thus our aims are to: (1) define effusion rate terminology; and (2) assess the various measurement methods and their results. We first distinguish between instantaneous effusion rate, and time-averaged discharge rate. Eruption rate is next defined as the total volume of lava emplaced since the beginning of the eruption divided by the time since the eruption began. The ultimate extension of this is mean output rate, this being the final volume of erupted lava divided by total eruption duration. Whether these values are total values, i.e. the flux feeding all flow units across the entire flow field, or local, i.e. the flux feeding a single active unit within a flow field across which many units are active, also needs to be specified. No approach is without its problems, and all can have large error (up to ∼50%). However, good agreement between diverse approaches shows that reliable estimates can be made if each approach is applied carefully and takes into account the caveats we detail here. There are three important factors to consider and state when measuring, giving or using an effusion rate. First, the time-period over which the value was averaged; second, whether the measurement applies to the entire active flow field, or a single lava flow within that field; and third, the measurement technique and its accompanying assumptions.

  19. Topographic and Stochastic Influences on Pahoehoe Lava Lobe Emplacement

    Science.gov (United States)

    Hamilton, Christopher W.; Glaze, Lori S.; James, Mike R.; Baloga, Stephen M.

    2013-01-01

    A detailed understanding of pahoehoe emplacement is necessary for developing accurate models of flow field development, assessing hazards, and interpreting the significance of lava morphology on Earth and other planetary surfaces. Active pahoehoe lobes on Kilauea Volcano, Hawaii, were examined on 21-26 February 2006 using oblique time-series stereo-photogrammetry and differential global positioning system (DGPS) measurements. During this time, the local discharge rate for peripheral lava lobes was generally constant at 0.0061 +/- 0.0019 m3/s, but the areal coverage rate of the lobes exhibited a periodic increase every 4.13 +/- 0.64 minutes. This periodicity is attributed to the time required for the pressure within the liquid lava core to exceed the cooling induced strength of its margins. The pahoehoe flow advanced through a series of down slope and cross-slope breakouts, which began as approximately 0.2 m-thick units (i.e., toes) that coalesced and inflated to become approximately meter-thick lobes. The lobes were thickest above the lowest points of the initial topography and above shallow to reverse facing slopes, defined relative to the local flow direction. The flow path was typically controlled by high-standing topography, with the zone directly adjacent to the final lobe margin having an average relief that was a few centimeters higher than the lava inundated region. This suggests that toe-scale topography can, at least temporarily, exert strong controls on pahoehoe flow paths by impeding the lateral spreading of the lobe. Observed cycles of enhanced areal spreading and inflated lobe morphology are also explored using a model that considers the statistical likelihood of sequential breakouts from active flow margins and the effects of topographic barriers.

  20. Preliminary paragenetic interpretation of the Quaternary topaz rhyolite lava domes of the Blackfoot volcanic field, southeastern Idaho

    Science.gov (United States)

    Lochridge, W. K., Jr.; McCurry, M. O.; Goldsby, R.

    2015-12-01

    The Quaternary topaz rhyolite lava domes of the bimodal, basalt-dominated Blackfoot volcanic field (BVF), SE Idaho occur in three clusters. We refer to these as the China Hat lava dome field (southernmost; ~ 57 ka), and the 1.4 to 1.5 Ma Sheep Island and White Mountain (northernmost) lava dome fields. The rhyolites and surrounding, more voluminous basalt lavas closely resemble coeval Quaternary rocks erupted to the north along the Eastern Snake River Plain segment of the Yellowstone-Snake River Plain volcanic track. However rhyolites in BVF are distinguished by having more evolved Sr- and Nd-isotopic ratios, as well as having phenocryst assemblages that includes hydrous phases (biotite and hornblende), thorite, and vapor-phase topaz. This study seeks to improve our understanding of the unique conditions of magma evolution that led to these differences. We focus on textural features of major and accessory phenocrysts as a basis for inferring paragenesis for rhyolites from the China Hat lava dome field. Preliminary work indicates that there are three sequentially formed populations of textures among magmatic phases: 1. population of anhedral quartz and plagioclase; 2. population of euhedral grains that includes quartz, sandine, plagioclase, biotite, hornblende, Fe-Ti oxides, zircon and apatite; 3. boxy cellular (skeletal?) sanidine and quartz. We speculate that the first population are resorbed antecrysts, the second formed prior to eruption as autocrysts (at or near equilibrium?), and the third formed soon before or during eruption.

  1. Village environs as source of nitrate contamination in groundwater: a case study in basaltic geo-environment in central India.

    Science.gov (United States)

    Reddy, D V; Nagabhushanam, P; Peters, Edward

    2011-03-01

    Nitrate is one of the common contaminants in the present day groundwaters resulting from increased population associated with poor sanitary conditions in the habitat area and increased agricultural activity. The hydrochemical measurements on water samples from a virgin watershed, situated in the basaltic geo-environment, have become necessary as the groundwater is the only source of drinking water for the villagers of the area. High preferential recharge conditions prevail in the area due to fractures in the solid basaltic lava flows. Instead of dilution due to fresh recharge, the post-monsoon hydrochemical concentrations in the groundwater are observed to have increased probably due to fast migration of pollutants to the aquifer through preferential recharge. As a result, the deep aquifer waters are more contaminated with hazardous nitrate than the shallow waters. Further, the village environ wells are more polluted with nitrate than the agriculture areas which could be attributed to the unhygienic sanitary conditions and livestock waste dump pits in the villages. This study suggests proper management of the sewage system and creation of suitable dump yard for the livestock and household waste to minimize the level of nitrate pollution in the well waters of village environs.

  2. Insights into the dynamics of the Nyiragongo lava lake level

    Science.gov (United States)

    Smets, Benoît; d'Oreye, Nicolas; Geirsson, Halldor; Kervyn, Matthieu; Kervyn, François

    2016-04-01

    Nyiragongo volcano, in North Kivu, Democratic Republic of Congo, is among the most active volcanoes in Africa and on Earth. Since the first European observations in the late 19th Century, its eruptive activity mostly concentrated into its main crater, with the presence of a persistent lava lake from at least 1928 to 1977 and since 2002. The size, shape and elevation of this lava lake have evolved through time, modifying the topography of the main crater. In January 1977 and 2002, the uppermost magmatic system of Nyiragongo, including the lava lake, was drained during flank eruptions. These flank events caused major disasters, mostly due to the exceptionally fast-moving lava flows and the presence of a dense population living at foot of this volcano. Despite a large scientific interest and societal concern, the study of the eruptive activity of Nyiragongo remains limited by climate and vegetation conditions that, most of the time, limit use of satellite remote sensing techniques, and recurrent armed conflicts in the Kivu region, which sometimes prevent field access to the main crater. Here we focus on the dynamics of the Nyiragongo lava lake level and its relationship with the volcanic plumbing system by describing the historical and recent lava lake activity and presenting new quantitative observations using close-range photogrammetry, a Stereographic Time-Lapse Camera (STLC) system and high-resolution satellite SAR and InSAR remote sensing. Results highlight that, contrary to the interpretation found in some recent publications, the lava lake drainages appear to be the consequence and not the cause of the 1977 and 2002 flank eruptions. Two types of short-term lava lake level variations are observed. The first one corresponds to cyclic metre-scale variations attributed to gas piston activity. The STLC data recorded in September 2011 show hour-scale gas piston cycles reaching up to 3.8 m, which are interpreted to be related to gas accumulation and release in the

  3. Comparison of Inflation Processes at the 1859 Mauna Loa Flow, HI, and the McCartys Flow Field, NM

    Science.gov (United States)

    Bleacher, Jacob E.; Garry, W. Brent; Zimbelman, James R.; Crumpler, Larry S.

    2012-01-01

    Basaltic lavas typically form channels or tubes during flow emplacement. However, the importance of sheet flow in the development of basalt ic terrains received recognition over the last 15 years. George Walke r?s research on the 1859 Mauna Loa Flow was published posthumously in 2009. In this paper he discusses the concept of endogenous growth, or inflation, for the distal portion of this otherwise channeldominated lava flow. We used this work as a guide when visiting the 1859 flow to help us better interpret the inflation history of the McCartys flow field in NM. Both well preserved flows display similar clues about the process of inflation. The McCartys lava flow field is among the you ngest (approx.3000 yrs) basaltic lava flows in the continental United States. It was emplaced over slopes of inflation occurred. Although older than the 1859 flow, the McCartys is located in an arid environ ment and is among the most pristine examples of sheet flow morphologies. At the meter scale the flow surface typically forms smooth, undula ting swales that create a polygonal terrain. The literature for simil ar features includes multiple explanatory hypotheses, original breakouts from adjacent lobes, or inflation related upwarping of crust or sa gging along fractures that enable gas release. It is not clear which of these processes is responsible for polygonal terrains, and it is po ssible that one explanation is not the sole cause of this morphology between all inflated flows. Often, these smooth surfaces within an inflated sheet display lineated surfaces and occasional squeeze-ups alon g swale contacts. We interpret the lineations to preserve original fl ow direction and have begun mapping these orientations to better interpret the emplacement history. At the scale of 10s to 100s of meters t he flow comprises multiple topographic plateaus and depressions. Some depressions display level floors with surfaces as described above, while some are bowl shaped with floors covered in

  4. Joint inversion of 3-D seismic, gravimetric and magnetotelluric data for sub-basalt imaging in the Faroe-Shetland Basin

    Science.gov (United States)

    Heincke, B.; Moorkamp, M.; Jegen, M.; Hobbs, R. W.

    2012-12-01

    collected along parallel lines by a shipborne gradiometer and the marine MT data set is composed of 41 stations that are distributed over the whole investigation area. Logging results from a borehole located in the central part of the investigation area enable us to derive parameter relationships between seismic velocities, resistivities and densities that are adequately describe the rock property behaviors of both the basaltic lava flows and sedimentary layers in this region. In addition, a 3-D reflection seismic survey covering the central part allows us to incorporate the top of basalt and other features as constraints in the joint inversions and to evaluate the quality of the final results. Literature: D. Colombo, M. Mantovani, S. Hallinan, M. Virgilio, 2008. Sub-basalt depth imaging using simultaneous joint inversion of seismic and electromagnetic (MT) data: a CRB field study. SEG Expanded Abstract, Las Vegas, USA, 2674-2678. M. Jordan, J. Ebbing, M. Brönner, J. Kamm , Z. Du, P. Eliasson, 2012. Joint Inversion for Improved Sub-salt and Sub-basalt Imaging with Application to the More Margin. EAGE Expanded Abstracts, Copenhagen, DK. M. Moorkamp, B. Heincke, M. Jegen, A.W.Roberts, R.W. Hobbs, 2011. A framework for 3-D joint inversion of MT, gravity and seismic refraction data. Geophysical Journal International, 184, 477-493.

  5. The diversity and abundance of bacteria inhabiting seafloor lavas positively correlate with rock alteration.

    Science.gov (United States)

    Santelli, Cara M; Edgcomb, Virginia P; Bach, Wolfgang; Edwards, Katrina J

    2009-01-01

    Young, basaltic ocean crust exposed near mid-ocean ridge spreading centers present a spatially extensive environment that may be exploited by epi- and endolithic microbes in the deep sea. Geochemical energy released during basalt alteration reactions can theoretically support chemosynthesis, contributing to a trophic base for the ocean crust biome. To examine associations between endolithic microorganisms and basalt alteration processes, we compare the phylogenetic diversity, abundance and community structure of bacteria existing in several young, seafloor lavas from the East Pacific Rise at approximately 9 degrees N that are variably affected by oxidative seawater alteration. The results of 16S rRNA gene analyses and real-time, quantitative polymerase chain reaction measurements show that the abundance of prokaryotic communities, dominated by the bacterial domain, positively correlates with the extent of rock alteration--the oldest, most altered basalt harbours the greatest microbial biomass. The bacterial community overlap, structure and species richness relative to alteration state is less explicit, but broadly corresponds to sample characteristics (type of alteration products and general alteration state). Phylogenetic analyses suggest that the basalt biome may contribute to the geochemical cycling of Fe, S, Mn, C and N in the deep sea. PMID:18783382

  6. Iron solid-phase differentiation along a redox gradient in basaltic soils

    Science.gov (United States)

    Thompson, Aaron; Rancourt, Denis G.; Chadwick, Oliver A.; Chorover, Jon

    2011-01-01

    Iron compounds in soil are multifunctional, providing physical structure, ion sorption sites, catalytic reaction-centers, and a sink for respiratory electrons. Basaltic soils contain large quantities of iron that reside in different mineral and organic phases depending on their age and redox status. We investigated changes in soil iron concentration and its solid-phase speciation across a single-aged (400 ky) lava flow subjected to a gradient in precipitation (2200-4200 mm yr -1) and hence redox history. With increasing rainfall and decreasing Eh, total Fe decreased from about 25% to temperature. The continuum extended from well-ordered microcrystalline goethite through nanocrystalline Fe III-(oxy)hydroxides to a nano Fe III-(oxy)hydroxide phase of extremely low crystallinity. Magnetic susceptibility was correlated ( R2 = 0.77) with Fe III-oxide concentration, consistent with a contribution of maghemite to the otherwise hematite dominated Fe-oxide fraction. The Fe III-(oxy)hydroxide fraction of total Fe decreased with increasing rainfall and was replaced by corresponding increase in the organic/silicate Fe III fraction. The crystallinity of the Fe III-(oxy)hydroxides also decreased with increasing rainfall and leaching, with the most disordered members of the crystallinity continuum, the nano Fe III-(oxy)hydroxides, gaining proportional abundance in the wetter sites. This finding runs counter to the conventional kinetic expectation of preferential removal of the most disordered minerals in a reductive dissolution-dominated environment. We suggest the persistence of highly disordered Fe phases reflects the dynamic redox conditions of these upland soils in which periods of anoxia are marked by high water-throughput and Fe 2+(aq) removal, while periodic Fe oxidation events occur in the presence of high concentrations of organic matter. Our 57Fe Mössbauer study shows basalt-derived nano-scale Fe III phases are more disordered than current synthetic analogs and have

  7. Lead and strontium isotopic evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field, California

    Science.gov (United States)

    Bacon, C.R.; Kurasawa, H.; Delevaux, M.H.; Kistler, R.W.; Doe, B.R.

    1984-01-01

    The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs. ?? 1984 Springer-Verlag.

  8. Permo-Triassic hypabyssal mafic intrusions and associated tholeiitic basalts of the Kolyuchinskaya Guba, Chukotka (NE Russia): Significance for interregional correlations

    Science.gov (United States)

    Ledneva, G. V.; Pease, V. L.; Sokolov, S. D.

    2008-12-01

    In order to test tectonic hypotheses regarding the evolution of the Arctic Alaska-Chukotka microplate prior to the opening of the Amerasian basin, we investigated rocks exposed near Kolyuchinskaya Guba, eastern Chukotka. Hypabyssal mafic rocks and associated basaltic flows enclose terrigenous sediments, minor cherts and limestones in pillow interstices. The hypabyssal mafic rock yields a U-Pb zircon age of 252+/-4 Ma and indicates intrusion of basic magma at the Permo-Triassic boundary, contemporaneous with voluminous magmatism of the Siberian large igneous province (LIP). The lava flows and hypabyssal mafic rocks of the Kolyuchinskaya Guba region have major and trace element compositions identical the tholeiitic flood basalts of the main plateau stage of the Siberian LIP. They are strongly differentiated, the result of high-pressure equilibrium crystallization of a low-Ti/Y tholeiitic melt, and contaminated. The compositional variations in these rocks, however, neither proves nor disproves a correlation between the Permo-Triassic tholeiitic flood basalts of eastern Chukotka and the Siberian LIP. Thus, two alternative geodynamic interpretations are possible: 1) The hypabyssal mafic rocks and associated tholeiitic flows crystallized from a plume-derived melt; 2) The rocks are not related to plume activity, consequently eastern Chukotka was probably part of a passive rifted or extensional continental margin in the Permo-Triassic. Nonetheless, we prefer the first of these two possibilities. Funding for this work is gratefully acknowledged from the Swedish Polar Research Secretariat ("Beringia-2005"), the Swedish Research Council, the Russian Foundation for Basic Research (grant No 08-05-00547), Leading Scientific School (NSH-3172.2008.5) and ONZ RAS. Thanks are also extended to M.J. Whitehouse and the Nordsim facility - the Nordsim facility is funded by the research councils of Denmark, Norway, Sweden, the Geological Survey of Finland, and the Swedish Museum of

  9. Glass and Mineral Chemistry of Northern Central Indian Ridge Basalts: Compositional Diversity and Petrogenetic Significance

    Institute of Scientific and Technical Information of China (English)

    Dwijesh RAY; Ranadip BANERJEE; Sridhar D IYER; Basavaraju BASAVALINGU; Subir MUKHOPADHYAY

    2009-01-01

    The glass and mineral chemistry of basalts examined from the northern central Indian ridge (NCIR) provides an insight into magma genesis around the vicinity of two transform faults: Vityaz (VT) and Vema (VM). The studied mid-ocean ridge basalts (MORBs) from the outer ridge flank (VT area) and a near-ridge seamount (VM area) reveal that they are moderately phyric plagioclase basalts composed of plagioclase (phenocryst [An_(60-90)] and groundmass [An_(35-79)]), olivine (FO_(81-88)), diopside (Wo_(45-51), En_(25-37), Fs_(14-24)), and titanomagnetite (FeO_t~63.75 wt% and TiO_2 ~22.69 wt%). The whole-rock composition of these basalts has similar Mg# [mole Mg/mole(Mg+Fe~(2+)] (VT basalt: ~0.56-0.58; VM basalt: ~0.57), but differ in their total alkali content (VT basalt: ~2.65; VM basalt: ~3.24). The bulk composition of the magma was gradually depleted in MgO and enriched in FeO_t, TiO_2, P_2O_5, and Na_2O with progressive fractionation, the basalts were gradually enriched in Y and Zr and depleted in Ni and Cr. In addition, the ΣREE of magma also increased with fractionation, without any change in the (La/ Yb)_N value. Glass from the VM seamount shows more fractionated characters (Mg#: 0.56-0.57) compared to the outer ridge flank lava of the VT area (Mg#: 0.63-0.65). This study concludes that present basalts experienced low-pressure crystallization at a relatively shallow depth. The geochemical changes in the NCIR magmas resulted from fractional crystallization at a shallow depth. As a consequence, spinel was the first mineral to crystallize at a pressure 10 kbar, followed by Fe-rich olivine at <10 kbar pressure.

  10. Emplacement of the youngest flood lava on Mars: A short, turbulent story

    Science.gov (United States)

    Jaeger, W.L.; Keszthelyi, L.P.; Skinner, J.A.; Milazzo, M.P.; McEwen, A.S.; Titus, T.N.; Rosiek, M.R.; Galuszka, D.M.; Howington-Kraus, E.; Kirk, R.L.

    2010-01-01

    Recently acquired data from the High Resolution Imaging Science Experiment (HiRISE), Context (CTX) imager, and Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft were used to investigate the emplacement of the youngest flood-lava flow on Mars. Careful mapping finds that the Athabasca Valles flood lava is the product of a single eruption, and it covers 250,000 km2 of western Elysium Planitia with an estimated 5000-7500 km3 of mafic or ultramafic lava. Calculations utilizing topographic data enhanced with MRO observations to refine the dimensions of the channel system show that this flood lava was emplaced turbulently over a period of only a few to several weeks. This is the first well-documented example of a turbulently emplaced flood lava anywhere in the Solar System. However, MRO data suggest that this same process may have operated in a number of martian channel systems. The magnitude and dynamics of these lava floods are similar to the aqueous floods that are generally believed to have eroded the channels, raising the intriguing possibility that mechanical erosion by lava could have played a role in their incision. ?? 2009.

  11. Biological Alteration of Basaltic Glass With Altered Composition and Oxidation States

    Science.gov (United States)

    Bailey, B. E.; Staudigel, H.; Templeton, A.; Tebo, B. M.; Ryerson, F.; Plank, T.; Schroder, C.; Klingelhoefer, G.

    2004-12-01

    The ocean crust is an extreme and oligotrophic environment and yet recent studies have shown that reactions between oceanic crust and seawater are capable of supporting microbial life. We are specifically targeting volcanic glass as a source of energy and nutrients necessary to support endolithic microbial communities. A significant amount of chemical energy is available from the process of iron oxidation and our goal is to determine the ability of microorganisms to use Fe(II) as an energy source as well as liberate other essential nutrients from the host rock. In addition, microbes may oxidize Mn or use phosphate from glass. To explore the dependency of microbial life on these nutrients and energy sources, we produce basaltic glasses with varying Fe oxidation states and relative abundance of iron, manganese and phosphate and introduce them to microbial isolates and consortia both in the laboratory and in deep-ocean environments. The natural exposure experiments occur in a variety of settings including hydrothermal vents and cold deep seawater (Loihi Seamount), brines (Mediterranean), and basaltic flows at spreading ridges (EPR), when possible on submarine lava flows of recent and known age. Upon collection of the exposure experiments, we compare basalt colonizing microbial communities on our synthetic glasses with the in situ glass communities through a large culturing effort and molecular (t-RFLP) studies. So far we have produced a number of enrichment cultures and isolated several iron-oxidizing and manganese-oxidizing bacteria that were used to inoculate glasses in the laboratory. Laboratory experiments concentrate on biofilm formation and dissolution of the colonized glasses. Continued collection of exposure experiments on a yearly time-scale provides valuable information regarding spatial and temporal variations in microbial community diversity and structure. We have also analyzed the authigenic reaction products of seafloor, microbially mediated alteration

  12. Open-path FTIR spectroscopy of magma degassing processes during eight lava fountains on Mount Etna

    Science.gov (United States)

    La Spina, Alessandro; Burton, Mike; Allard, Patrick; Alparone, Salvatore; Murè, Filippo

    2016-04-01

    In June-July 2001 a series of 16 discrete lava fountain paroxysms occurred at the Southeast summit crater (SEC) of Mount Etna, preceding a 28-day long violent flank eruption. Each paroxysm was preceded by lava effusion, growing seismic tremor and a crescendo of Strombolian explosive activity culminating into powerful lava fountaining up to 500m in height. During 8 of these 16 events we could measure the chemical composition of the magmatic gas phase (H2O, CO2, SO2, HCl, HF and CO), using open-path Fourier transform infrared (OP-FTIR) spectrometry at ˜1-2km distance from SEC and absorption spectra of the radiation emitted by hot lava fragments. We show that each fountaining episode was characterized by increasingly CO2-rich gas release, with CO2/SO2and CO2/HCl ratios peaking in coincidence with maxima in seismic tremor and fountain height, whilst the SO2/HCl ratio showed a weak inverse relationship with respect to eruption intensity. Moreover, peak values in both CO2/SO2ratio and seismic tremor amplitude for each paroxysm were found to increase linearly in proportion with the repose interval (2-6 days) between lava fountains. These observations, together with a model of volatile degassing at Etna, support the following driving process. Prior to and during the June-July 2001 lava fountain sequence, the shallow (˜2km) magma reservoir feeding SEC received an increasing influx of deeply derived carbon dioxide, likely promoted by the deep ascent of volatile-rich primitive basalt that produced the subsequent flank eruption. This CO2-rich gas supply led to gas accumulation and overpressure in SEC reservoir, generating a bubble foam layer whose periodical collapse powered the successive fountaining events. The anti-correlation between SO2/HCl and eruption intensity is best explained by enhanced syn-eruptive degassing of chlorine from finer particles produced during more intense magma fragmentation.

  13. Decreasing Magmatic Footprints of Individual Volcanos in a Waning Basaltic Field

    Energy Technology Data Exchange (ETDEWEB)

    G.A> Valentine; F.V. Perry

    2006-06-06

    The distribution and characteristics of individual basaltic volcanoes in the waning Southwestern Nevada Volcanic Field provide insight into the changing physical nature of magmatism and the controls on volcano location. During Pliocene-Pleistocene times the volumes of individual volcanoes have decreased by more than one order of magnitude, as have fissure lengths and inferred lava effusion rates. Eruptions evolved from Hawaiian-style eruptions with extensive lavas to eruptions characterized by small pulses of lava and Strombolian to violent Strombolian mechanisms. These trends indicate progressively decreasing partial melting and length scales, or magmatic footprints, of mantle source zones for individual volcanoes. The location of each volcano is determined by the location of its magmatic footprint at depth, and only by shallow structural and topographic features that are within that footprint. The locations of future volcanoes in a waning system are less likely to be determined by large-scale topography or structures than were older, larger volume volcanoes.

  14. Flood basalt hosted palaeosols:Potential palaeoclimatic indicators of global climate change

    Institute of Scientific and Technical Information of China (English)

    M.R.G. Sayyed

    2014-01-01

    Since continental sediments (in addition to the marine geological record) offer important means of deciphering environmental changes, the sediments hosted by the successive flows of the continental flood basalt provinces of the world should be treasure houses in gathering the palaeoclimatic data. Palaeosols developed on top of basalt flows are potentially ideal for palaeoenvironmental reconstructions because it is easy to determine their protolith geochemistry and also they define a definite time interval. The present paper summarizes the nature of the basalt-hosted palaeosols formed on the flood basalts provinces from different parts of the globe having different ages.

  15. Ages, rare-earth element enrichment, and petrogenesis of tholeiitic and alkalic basalts from Kahoolawe Island, Hawaii

    Science.gov (United States)

    Fodor, R.V.; Frey, F.A.; Bauer, G.R.; Clague, D.A.

    1992-01-01

    Kahoolawe Island, Hawaii (18??11 km), is a basaltic shield volcano with caldera-filling lavas, seven identified postshield vents, and at least two occurrences of apparent rejuvenated-stage eruptive. We examined 42 samples that represent all stages of Kahoolawe volcano stratigraphy for their petrography, whole-rock major-and trace-element contents, mineral compositions, and K-Ar ages. The two oldest shield samples have an average age of 1.34??0.08 Ma, and fo