WorldWideScience

Sample records for basalt volcanic field

  1. The Auckland Volcanic Field - a basaltic field showing random behavior?

    Science.gov (United States)

    Le Corvec, N.; Rowland, J. V.; Lindsay, J. M.

    2012-04-01

    Basaltic monogenetic volcanism is a worldwide phenomenon typically producing fields of volcanic centers that increase in number with time. The process of field growth is not constant but punctuated by single eruptions, flare-ups and hiatuses. The development of a volcanic field involves physical processes that occur in the mantle, where batches of basaltic magma originate, and within the intervening lithosphere through which magma is transferred to the surface. The spatial and temporal distribution of volcanic centers within such volcanic fields results from, and thus may provide insights to, these physical processes (e.g., magma production, tectonic controls), thereby aiding in our understanding of a volcanic field's future development. The Auckland Volcanic Field (AVF), which lies in the most populated area of New Zealand, comprises 50 volcanic centers and produced its last eruption ~600 years ago. A recent study has provided a relative chronology of the entire sequence of eruptions, which is here used together with the spatial distribution of volcanic centers to investigate the evolution of the field in time and space. Two methods were used: 1) the Poisson Nearest Neighbor (PNN) analysis which evaluates the spatial distribution of a natural population over the spatial distribution of a statistical random model, the Poisson model; and 2) the Voronoi analysis which evaluates the spatial characteristics of each volcanic center by dividing a region (i.e., the volcanic field) into a set of polygons. The results of the PNN analysis show that the temporal evolution of the spatial distribution of the volcanic centers within the AVF follows the Poisson model, therefore they cannot be used to extrapolate the future evolution of the volcanic field. The preliminary results of the Voronoi analysis show in combination with the geochemical signatures from some volcanic centers a possible zonation within the source region, and/or the magmas may be variably affected on their way

  2. Quaternary basaltic volcanism in the Golden Trout Volcanic Field, southern Sierra Nevada, California

    Science.gov (United States)

    Browne, Brandon L.; Becerra, Raul; Campbell, Colin; Saleen, Phillip; Wille, Frank R.

    2017-09-01

    The Golden Trout Volcanic Field (GTVF) produced the only Quaternary eruptions of mafic magma within the southern Sierra Nevada block. Approximately 38 × 106 m3 of basalt, trachy-basalt, basaltic trachy-andesite, and basaltic andesite (50.1-56.1% SiO2, 1.1-1.9% K2O, and 5.4-9.1% MgO) was erupted from four vents within a 10 km2 portion of the GTVF, which also includes rhyolite domes that are not considered in this study. The vents include, from oldest to youngest: Little Whitney Cone, South Fork Cone, Tunnel Cone, and unglaciated Groundhog Cone. Little Whitney Cone is a 120 m-high pile of olivine-CPX-phyric scoria produced during a Strombolian-style eruption overlying two columnar jointed lava flows. Tunnel Cone formed through a Hawaiian-style eruption along a 400 m-long north-south trending fissure that excavated at least three 25-65 m-wide craters. Crater walls up to 12 m high are composed of plagioclase-olivine-phyric spatter-fed flows that dip radially away from the crater center and crumble to form Tunnel Cone's steep unconsolidated flanks. South Fork Cone is a 170 m-high pile of plagioclase-olivine-phyric scoria that formed during Strombolian to violent Strombolian eruptions. South Fork Cone overlies the South Fork Cone lava, a 9.5 km-long flow ( 12 × 106 km3) that reached the Kern River Canyon to the west. Scoria and airfall deposits originating from South Fork Cone are located up to 2 km from the vent. Groundhog Cone is a 140 m-tall cinder and spatter cone breached on the north flank by a 13 × 106 m3 lava flow that partially buried the South Fork Cone lava and extends 7.5 km west to Kern River Canyon. Incompatible trace element concentrations and ratios show vent-specific trends but are unsystematic when plotted in terms of all mafic GTVF vents, implying that GTVF basalts were derived from a lithospheric mantle source and ascended through thick granitic Sierra Nevada crust as discrete batches that underwent different degrees of crustal contamination

  3. Simulating the development of basaltic volcanic fields for long-term hazard assessment

    Science.gov (United States)

    Connor, C.; Connor, L.; Germa, A.; Richardson, J. A.; Molisee, D. D.

    2017-12-01

    An important application of lava flow simulation is to model topography and surface geology in volcanic terrains with the goal of improving hazard assessments. We use a lava flow simulator, MOLASSES, coupled with codes modeling vent distribution, tephra dispersion and erosion to simulate the development of the surface geology and topography of basaltic volcanic fields. The simulation workflow begins by modeling the potential distribution of vents as a stochastic process using kernel density estimation, informed by geophysical models of the crust. Scoria cone dimensions, lava flow volume and thickness are then used to model multi-vent structures, breached scoria cones, and spatter cones. Tephra2, a tephra dispersion simulator is used to model medial deposition of tephra. MOLASSES is a cellular automata code that forecasts the dimensions of lava flows erupted at a point source on a digital elevation model. Lava and tephra are accumulated to construct topography, updating digital elevation models of the terrain. This topography is modified by erosion using the diffusion-advection equation and variable diffusivity for tephra, spatter and lava. Output from the simulator shows how the map geology of volcanic fields depends on vent density, volume of eruptive products, and the recurrence rate of volcanic activity. The potential for vent burial, which potentially biases hazard models, depends strongly on these factors. The erosion of scoria cones with time depends on vent density, and the likelihood of the scoria cone being re-surfaced by tephra fallout from younger adjacent cones. Our results suggest that quantitative treatment of geologic maps of volcanic fields using computer simulation will improve our understanding of the development of these basaltic volcanic fields and long-term hazard models.

  4. Eruption recurrence rates in terrestrial basaltic fields determined from tephra records in maar sediments: exemplified by the Auckland Volcanic Field

    Science.gov (United States)

    Shane, P. A.

    2009-12-01

    Long-term eruption recurrence rates in monogenetic basaltic volcanic fields are difficult to assess because of low eruption frequencies, but are important because of the spread of human infrastructure into such fields. Auckland City, New Zealand, is built on the Auckland Volcanic Field, a young (volcanoes some 220-270 km to the south were used as age constraints. The basalt tephra layers reveal a pattern of activity not evident from the temporal-spatial distribution of volcanic landforms. Twenty-four basalt tephra layers over the last 80 kyrs represent an average frequency of one per 3.5 kyrs. Recurrence times vary from volcanoes across the field revealed by paleomagnetic and isotopic ages. In contrast, the field has been relative quiet during the last 20 kyrs, punctuated by the construction of a shield volcano at 0.7 ka. Thus, the surface manifestation of magmatism varies greatly with time, complicating long-term volcanic hazard forecasting. Determining the cause of the spatial-temporal patterns in volcanism across the field is a major future objective.

  5. Magmatic inclusions in rhyolites, contaminated basalts, and compositional zonation beneath the Coso volcanic field, California

    Science.gov (United States)

    Bacon, C.R.; Metz, J.

    1984-01-01

    Basaltic lava flows and high-silica rhyolite domes form the Pleistocene part of the Coso volcanic field in southeastern California. The distribution of vents maps the areal zonation inferred for the upper parts of the Coso magmatic system. Subalkalic basalts (Coso volcanic field contain sparse andesitic inclusions (55-61% SiO2). Pillow-like forms, intricate commingling and local diffusive mixing of andesite and rhyolite at contacts, concentric vesicle distribution, and crystal morphologies indicative of undercooling show that inclusions were incorporated in their rhyolitic hosts as blobs of magma. Inclusions were probably dispersed throughout small volumes of rhyolitic magma by convective (mechanical) mixing. Inclusion magma was formed by mixing (hybridization) at the interface between basaltic and rhyolitic magmas that coexisted in vertically zoned igneous systems. Relict phenocrysts and the bulk compositions of inclusions suggest that silicic endmembers were less differentiated than erupted high-silica rhyolite. Changes in inferred endmembers of magma mixtures with time suggest that the steepness of chemical gradients near the silicic/mafic interface in the zoned reservoir may have decreased as the system matured, although a high-silica rhyolitic cap persisted. The Coso example is an extreme case of large thermal and compositional contrast between inclusion and host magmas; lesser differences between intermediate composition magmas and inclusions lead to undercooling phenomena that suggest smaller ??T. Vertical compositional zonation in magma chambers has been documented through study of products of voluminous pyroclastic eruptions. Magmatic inclusions in volcanic rocks provide evidence for compositional zonation and mixing processes in igneous systems when only lava is erupted. ?? 1984 Springer-Verlag.

  6. Rangitoto Volcano Drilling Project: Life of a Small 'Monogenetic' Basaltic Shield in the Auckland Volcanic Field

    Science.gov (United States)

    Shane, P. A. R.; Linnell, T.; Lindsay, J. M.; Smith, I. E.; Augustinus, P. M.; Cronin, S. J.

    2014-12-01

    Rangitoto is a small basaltic shield volcano representing the most recent and most voluminous episode of volcanism in the Auckland Volcanic Field, New Zealand. Auckland City is built on the field, and hence, Rangitoto's importance in hazard-risk modelling. The symmetrical edifice, ~6 km wide and 260 m high, has volume of 1.78 km3. It comprises summit scoria cones and a lava field. However, the lack of deep erosion dissection has prevented the development of an eruptive stratigraphy. Previous studies suggested construction in a relatively short interval at 550-500 yrs BP. However, microscopic tephra have been interpreted as evidence of intermittent activity from 1498 +/- 140 to 504 +/- 6 yrs BP, a longevity of 1000 years. A 150-m-deep hole was drilled through the edifice in February 2014 to obtain a continuous core record. The result is an unparalleled stratigraphy of the evolution of a small shield volcano. The upper 128 m of core comprises at least 27 lava flows with thicknesses in the range 0.3-15 m, representing the main shield-building phase. Underlying marine sediments are interbedded with 8 m of pyroclastic lapilli, and a thin lava flow, representing the explosive phreatomagmatic birth of the volcano. Preliminary geochemical analyses reveal suite of relatively uniform transitional basalts (MgO = 8.1 to 9.7 wt %). However, 4 compositional groups are distinguished that were erupted in sequential order. High-MgO magmas were erupted first, followed by a two more heterogeneous groups displaying differentiation trends with time. Finally, distinct low-MgO basalts were erupted. Each magma type appears to represent a new magma batch. The core places the magma types in a time series, which can be correlated to the surface lava field. Hence, allowing a geometrical reconstruction of the shield growth. Additional petrologic investigations are providing insight to magmatic ascent processes, while radiocarbon and paleomagnetic secular variation studies will reveal the

  7. Field-trip guide to Columbia River flood basalts, associated rhyolites, and diverse post-plume volcanism in eastern Oregon

    Science.gov (United States)

    Ferns, Mark L.; Streck, Martin J.; McClaughry, Jason D.

    2017-08-09

    The Miocene Columbia River Basalt Group (CRBG) is the youngest and best preserved continental flood basalt province on Earth, linked in space and time with a compositionally diverse succession of volcanic rocks that partially record the apparent emergence and passage of the Yellowstone plume head through eastern Oregon during the late Cenozoic. This compositionally diverse suite of volcanic rocks are considered part of the La Grande-Owyhee eruptive axis (LOEA), an approximately 300-kilometer-long (185 mile), north-northwest-trending, middle Miocene to Pliocene volcanic belt located along the eastern margin of the Columbia River flood basalt province. Volcanic rocks erupted from and preserved within the LOEA form an important regional stratigraphic link between the (1) flood basalt-dominated Columbia Plateau on the north, (2) bimodal basalt-rhyolite vent complexes of the Owyhee Plateau on the south, (3) bimodal basalt-rhyolite and time-transgressive rhyolitic volcanic fields of the Snake River Plain-Yellowstone Plateau, and (4) the High Lava Plains of central Oregon.This field-trip guide describes a 4-day geologic excursion that will explore the stratigraphic and geochemical relationships among mafic rocks of the Columbia River Basalt Group and coeval and compositionally diverse volcanic rocks associated with the early “Yellowstone track” and High Lava Plains in eastern Oregon. Beginning in Portland, the Day 1 log traverses the Columbia River gorge eastward to Baker City, focusing on prominent outcrops that reveal a distal succession of laterally extensive, large-volume tholeiitic flood lavas of the Grande Ronde, Wanapum, and Saddle Mountains Basalt formations of the CRBG. These “great flows” are typical of the well-studied flood basalt-dominated Columbia Plateau, where interbedded silicic and calc-alkaline lavas are conspicuously absent. The latter part of Day 1 will highlight exposures of middle to late Miocene silicic ash-flow tuffs, rhyolite domes, and

  8. Lithofacies characteristics of diatreme deposits: Examples from a basaltic volcanic field of SW Sardinia (Italy)

    Science.gov (United States)

    Mundula, F.; Cioni, R.; Funedda, A.; Leone, F.

    2013-04-01

    A deeply eroded diatreme field, consisting in several, decametric-sized, vertical, mainly clastic volcanic bodies of basaltic composition is described for the first time in the Variscan basement of SW Sardinia. The recognition and description of four different lithofacies in these diatremes allowed discussion of the role of the different processes which control magma eruption and conduit infilling, and making general inferences about diatremes. The studied diatremes have a cross-sectional shape from elliptical to sub-triangular, and are slightly elongated nearly parallel to the main foliation of the intruded meta-sedimentary rocks. Foliation of host rocks is locally reoriented or folded close to the contact with the diatremes, suggesting that magma possibly rose to the surface through fissures oriented nearly parallel to host rock foliation. Textural features of the volcanic bodies show many analogies with kimberlitic diatremes, despite the difference in petrography and composition. Juvenile lapilli are mainly made by ghosts of mafic phenocrysts (olivine and clinopyroxene) set in a groundmass formed by plagioclase microlites immersed in a cryptocrystalline, chlorite-rich matrix. The four lithofacies were described mainly based on the shape and physical features of the clasts and textural anisotropy: a globular, juvenile-rich, lapilli tuff facies (GJLt); an angular, juvenile-rich, lapilli tuff facies (AJLt); a lithic-rich, lapilli tuff facies LiRLt), and a coherent, lava-like facies (COH). All the clastic lithofacies are generally well sorted and typically lack a fine-grained matrix. Juvenile fragments are lapilli sized and from equant to oblate in axial ratio, and from rounded-globular to very angular in shape. Conversely, lithic clasts are largely variable in shape and size, and are mainly represented by basement-derived clasts. The absence of bedding, the scarcity of the coherent facies and the dominance of clast supported, structureless, volcaniclastic facies

  9. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    in basalts from all the studied volcanic fields in Payenia is signs of lower crustal contamination indicating assimilation of, in some cases, large amounts of trace element depleted, mafic, plagioclase-bearing rocks. The northern Payenia is dominated by backarc basalts erupted between late Pliocene to late...... are isotopically similar to the Andean Southern Volcanic Zone arc rocks and their mantle source possibly resembled the source of South Atlantic N-MORB prior to addition of fluids and melts from the subduction channel. However, it must have been more enriched than the estimates of depleted upper mantle from...

  10. Modern analogues for Miocene to Pleistocene alkali basaltic phreatomagmatic fields in the Pannonian Basin: "soft-substrate" to "combined" aquifer controlled phreatomagmatism in intraplate volcanic fields Research Article

    Science.gov (United States)

    Németh, Károly; Cronin, Shane; Haller, Miguel; Brenna, Marco; Csillag, Gabor

    2010-09-01

    The Pannonian Basin (Central Europe) hosts numerous alkali basaltic volcanic fields in an area similar to 200 000 km2. These volcanic fields were formed in an approximate time span of 8 million years producing smallvolume volcanoes typically considered to be monogenetic. Polycyclic monogenetic volcanic complexes are also common in each field however. The original morphology of volcanic landforms, especially phreatomagmatic volcanoes, is commonly modified. by erosion, commonly aided by tectonic uplift. The phreatomagmatic volcanoes eroded to the level of their sub-surface architecture expose crater to conduit filling as well as diatreme facies of pyroclastic rock assemblages. Uncertainties due to the strong erosion influenced by tectonic uplifts, fast and broad climatic changes, vegetation cover variations, and rapidly changing fluvio-lacustrine events in the past 8 million years in the Pannonian Basin have created a need to reconstruct and visualise the paleoenvironment into which the monogenetic volcanoes erupted. Here phreatomagmatic volcanic fields of the Miocene to Pleistocene western Hungarian alkali basaltic province have been selected and compared with modern phreatomagmatic fields. It has been concluded that the Auckland Volcanic Field (AVF) in New Zealand could be viewed as a prime modern analogue for the western Hungarian phreatomagmatic fields by sharing similarities in their pyroclastic successions textures such as pyroclast morphology, type, juvenile particle ratio to accidental lithics. Beside the AVF two other, morphologically more modified volcanic fields (Pali Aike, Argentina and Jeju, Korea) show similar features to the western Hungarian examples, highlighting issues such as preservation potential of pyroclastic successions of phreatomagmatic volcanoes.

  11. Sedimentology, eruptive mechanism and facies architecture of basaltic scoria cones from the Auckland Volcanic Field (New Zealand)

    Science.gov (United States)

    Kereszturi, Gábor; Németh, Károly

    2016-09-01

    Scoria cones are a common type of basaltic to andesitic small-volume volcanoes (e.g. 10- 1-10- 5 km3) that results from gas-bubble driven explosive eruptive styles. Although they are small in volume, they can produce complex eruptions, involving multiple eruptive styles. Eight scoria cones from the Quaternary Auckland Volcanic Field in New Zealand were selected to define the eruptive style variability from their volcanic facies architecture. The reconstruction of their eruptive and pyroclastic transport mechanisms was established on the basis of study of their volcanic sedimentology, stratigraphy, and measurement of their pyroclast density, porosity, Scanning Electron Microscopy, 2D particle morphology analysis and Visible and Near Visible Infrared Spectroscopy. Collection of these data allowed defining three end-member types of scoria cones inferred to be constructed from lava-fountaining, transitional fountaining and Strombolian type, and explosive Strombolian type. Using the physical and field-based characteristics of scoriaceous samples a simple generalised facies model of basaltic scoria cones for the AVF is developed that can be extended to other scoria cones elsewhere. The typical AVF scoria cone has an initial phreatomagmatic phases that might reduce the volume of magma available for subsequent scoria cone forming eruptions. This inferred to have the main reason to have decreased cone volumes recognised from Auckland in comparison to other volcanic fields evolved dominantly in dry eruptive condition (e.g. no external water influence). It suggests that such subtle eruptive style variations through a scoria cone evolution need to be integrated into the hazard assessment of a potentially active volcanic field such as that in Auckland.

  12. Basaltic volcanic episodes of the Yucca Mountain region

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M.

    1990-03-01

    The purpose of this paper is to summarize briefly the distribution and geologic characteristics of basaltic volcanism in the Yucca Mountain region during the last 10--12 Ma. This interval largely postdates the major period of silicic volcanism and coincides with and postdates the timing of major extensional faulting in the region. Field and geochronologic data for the basaltic rocks define two distinct episodes. The patterns in the volume and spatial distribution of these basaltic volcanic episodes in the central and southern part of the SNVF are used as a basis for forecasting potential future volcanic activity in vicinity of Yucca Mountain. 33 refs., 2 figs.

  13. Trace Element Geochemistry of Basaltic Tephra in Maar Cores; Implications for Centre Correlation, Field Evolution, and Mantle Source Characteristics of the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Hopkins, J. L.; Leonard, G.; Timm, C.; Wilson, C. J. N.; Neil, H.; Millet, M. A.

    2014-12-01

    Establishing volcanic hazard and risk management strategies hinges on a detailed understanding of the type, timing and tephra dispersal of past eruptions. In order to unravel the pyroclastic eruption history of a volcanic field, genetic links between the deposits and eruption source centre need to be established. The Auckland Volcanic Field (AVF; New Zealand) has been active for ca. 200 kyr and comprises ca. 53 individual centres covering an area of ca. 360km2. These centres show a range of sizes and eruptive styles from maar craters and tuff rings, to scoria cones and lava flows consistent with both phreatomagmatic and magmatic eruptions. Superimposition of the metropolitan area of Auckland (ca. 1.4 million inhabitants) on the volcanic field makes it critically important to assess the characteristics of the volcanic activity, on which to base assessment and management of the consequent hazards. Here we present a geochemical approach for correlating tephra deposits to their source centres. To acquire the most complete stratigraphic record of pyroclastic events, maar crater cores from different locations, covering various depths and thus ages across the field were selected. Magnetic susceptibility and x-ray density scanning of the cores was used to identify the basaltic tephra horizons, which were sampled and in-situ analysis of individual shards undertaken for major and trace elements using EPMA and LA-ICP-MS techniques, respectively. Our results show that tephra shard trace element ratios are comparable and complementary to the AVF whole rock database. The use of specific trace element ratios (e.g. Gd/Yb vs. Zr/Yb) allows us to fingerprint and cross correlate tephra horizons between cores and, when coupled with newly acquired 40Ar-39Ar age dating and eruption size estimates, correlate horizons to their source centres. This integrated style of study can provide valuable information to help volcanic hazard management and forecasting, and mitigation of related risks.

  14. Dynamics of melting beneath a small-scale basaltic system: a U-Th-Ra study from Rangitoto volcano, Auckland volcanic field, New Zealand

    Science.gov (United States)

    McGee, Lucy E.; Beier, Christoph; Smith, Ian E. M.; Turner, Simon P.

    2011-09-01

    The Auckland volcanic field is a Quaternary monogenetic basaltic field of 50 volcanoes. Rangitoto is the most recent of these at ~500 year BP and may mark a change in the behaviour of the field as it is the largest by an order of magnitude and is unusual in that it erupted magmas of alkalic then subalkalic basaltic composition in discrete events separated by ≤50 years. Major and trace element geochemistry together with Sr-Nd and U-Th-Ra isotopes provides the basis for modelling the melting conditions that brought about the eruption of two chemically different lavas with very little spatial or temporal change. Sr-Nd isotopes suggest that the source for both eruptions is similar with a slight degree of heterogeneity. The basalts show high 230Th-excess compared with comparable continental volcanic fields. We show that the alkalic basalts give evidence for lower degrees of partial melting, higher amounts of residual garnet, a longer melting column and lower melting and upwelling rates compared with the subalkalic basalts. The low upwelling rates (0.1-1.5 cm/year) modelled for both magmas do not suggest a plume or major upwelling in the mantle region beneath Auckland; therefore, we suggest localised convection due to relict movement from the active subduction system situated 400 km to the southeast. A higher porosity for the initial alkalic basalt is based on 226Ra-excesses, suggesting movement of melt by two different porosities: the initial melt travelling in fast high porosity channels from greater depths preserving a high 230Th-excess and the subsequent subalkalic magma travelling from a shallower depth through lower porosity diffuse channels preserving a high 226Ra-excess; this creates a negative array in (226Ra/230Th) versus (230Th/238U) space previously only seen in mid ocean ridge Basalt data. This mechanism suggests the Auckland volcanic field may operate by the presence of discrete melt batches that are able to move at different depths and speeds giving the

  15. Thermobarometry of Whangarei volcanic field lavas, New Zealand: Constraints on plumbing systems of small monogenetic basalt volcanoes

    Science.gov (United States)

    Shane, Phil; Coote, Alisha

    2018-04-01

    The intra-plate, basaltic Whangarei volcanic field (WVF) is a little-studied cluster of Quaternary monogenetic volcanoes in northern New Zealand. Clinopyroxene-melt equilibria provides an insight to the ascent and storage of the magmas that is not evident from whole-rock-scale geochemistry. Basalts from two of the younger volcanoes contain a population of equilibrium and disequilibrium clinopyroxene phenocrysts. Many of the crystals are resorbed, and are characterised by diffuse, patchy zoning, and low MgO (Mg#70-80) and Cr2O3 contents. Such crystals also occur as relic cores in other phenocrysts. These grew in a magma that was more evolved than that of the host rock composition. Equilibrium clinopyroxenes are enriched in MgO (Mg#83-88) and Cr2O3 ( 0.4-0.9 wt%), and occur as reverse-zoned crystals, and rim/mantle overgrowths on relic cores of other crystals. These crystals and rim/mantles zones nucleated in magma with a composition similar to that of the host rock. The textural relationships demonstrate that a mafic magma intruded a more silicic resident magma, resulting in crystal-exchange and entrainment of antecrysts. Clinopyroxene-melt equilibria indicate that the crystallisation occurred at temperatures in the range 1135-1195 °C, and pressures in the range 290-680 MPa. The dominant pressure mode (400-550 MPa) equates to depths of about 15-19 km which coincides with a present-day body of partial melt in the crust. Higher pressures indicated by subordinate crystal populations indicate staged ascent and crystallisation above the Moho ( 26 km depth). Thus, the magmatic system is envisaged as a crystal mush column through the lower and mid crust. Such crystallisation histories are perhaps not expected in low flux, monogenetic magma systems, and reflect the importance of the crustal density structure beneath the volcanoes. Future activity could be preceded by seismic events in the lower crust as the magmas intrude localised crystal mush bodies.

  16. Surface exposure dating of Holocene basalt flows and cinder cones in the Kula volcanic field (western Turkey) using cosmogenic 3He and 10Be

    Science.gov (United States)

    Heineke, Caroline; Niedermann, Samuel; Hetzel, Ralf; Akal, Cüneyt

    2015-04-01

    The Kula volcanic field is the youngest volcanic province in western Anatolia and covers an area of about 600 km2 around the town Kula (Richardson-Bunbury, 1996). Its alkali basalts formed by melting of an isotopically depleted mantle in a region of long-lived continental extension and asthenospheric upwelling (Prelevic et al., 2012). Based on morphological criteria and 40Ar/39Ar dating, four phases of Quaternary activity have been distinguished in the Kula volcanic field (Richardson-Bunbury, 1996; Westaway et al., 2006). The youngest lava flows are thought to be Holocene in age, but so far only one sample from this group was dated by 40Ar/39Ar at 7±2 ka (Westaway et al., 2006). In this study, we analysed cosmogenic 3He in olivine phenocrysts from three basalt flows and one cinder cone to resolve the Holocene history of volcanic eruptions in more detail. In addition, we applied 10Be exposure dating to two quartz-bearing xenoliths found at the surface of one flow and at the top of one cinder cone. The exposure ages fall in the range between ~500 and ~3000 years, demonstrating that the youngest volcanic activity is Late Holocene in age and therefore distinctly younger than previously envisaged. Our results show that the Late Holocene lava flows are not coeval but formed over a period of a few thousand years. We conclude that surface exposure dating of very young volcanic rocks provides a powerful alternative to 40Ar/39Ar dating. References Prelevic, D., Akal, C. Foley, S.F., Romer, R.L., Stracke, A. and van den Bogaard, P. (2012). Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: the case of southwestern Anatolia, Turkey. Journal of Petrology, 53, 1019-1055. Richardson-Bunbury, J.M. (1996). The Kula Volcanic Field, western Turkey: the development of a Holocene alkali basalt province and the adjacent normal-faulting graben. Geological Magazine, 133, 275-283. Westaway, R., Guillou, H., Yurtmen, S., Beck, A

  17. Tools and techniques for developing tephra stratigraphies in lake cores: A case study from the basaltic Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Hopkins, Jenni L.; Millet, Marc-Alban; Timm, Christian; Wilson, Colin J. N.; Leonard, Graham S.; Palin, J. Michael; Neil, Helen

    2015-09-01

    Probabilistic hazard forecasting for a volcanic region relies on understanding and reconstructing the eruptive record (derived potentially from proximal as well as distal volcanoes). Tephrostratigraphy is commonly used as a reconstructive tool by cross-correlating tephra deposits to create a stratigraphic framework that can be used to assess magnitude-frequency relationships for eruptive histories. When applied to widespread rhyolitic deposits, tephra identifications and correlations have been successful; however, the identification and correlation of basaltic tephras are more problematic. Here, using tephras in drill cores from six maars in the Auckland Volcanic Field (AVF), New Zealand, we show how X-ray density scanning coupled with magnetic susceptibility analysis can be used to accurately and reliably identify basaltic glass shard-bearing horizons in lacustrine sediments and which, when combined with the major and trace element signatures of the tephras, can be used to distinguish primary from reworked layers. After reliably identifying primary vs. reworked basaltic horizons within the cores, we detail an improved method for cross-core correlation based on stratigraphy and geochemical fingerprinting. We present major and trace element data for individual glass shards from 57 separate basaltic horizons identified within the cores. Our results suggest that in cases where major element compositions (SiO2, CaO, Al2O3, FeO, MgO) do not provide unambiguous correlations, trace elements (e.g. La, Gd, Yb, Zr, Nb, Nd) and trace element ratios (e.g. [La/Yb]N, [Gd/Yb]N, [Zr/Yb]N) are successful in improving the compositional distinction between the AVF basaltic tephra horizons, thereby allowing an improved eruptive history of the AVF to be reconstructed.

  18. Thermal models for basaltic volcanism on Io

    Science.gov (United States)

    Keszthelyil, L.; McEwen, A.

    1997-01-01

    We present a new model for the thermal emissions from active basaltic eruptions on Io. While our methodology shares many similarities with previous work, it is significantly different in that (1) it uses a field tested cooling model and (2) the model is more applicable to pahoehoe flows and lava lakes than fountain-fed, channelized, 'a'a flows. This model demonstrates the large effect lava porosity has on the surface cooling rate (with denser flows cooling more slowly) and provides a preliminary tool for examining some of the hot spots on Io. The model infrared signature of a basaltic eruption is largely controlled by a single parameter, ??, the average survival time for a lava surface. During an active eruption surfaces are quickly covered or otherwise destroyed and typical values of ?? for a basaltic eruption are expected to be on the order of 10 seconds to 10 minutes. Our model suggests that the Galileo SSI eclipse data are consistent with moderately active to quiescent basaltic lava lakes but are not diagnostic of such activity. Copyright 1997 by the American Geophysical Union.

  19. Lead and strontium isotopic evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field, California

    Science.gov (United States)

    Bacon, C.R.; Kurasawa, H.; Delevaux, M.H.; Kistler, R.W.; Doe, B.R.

    1984-01-01

    The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs. ?? 1984 Springer-Verlag.

  20. High-precision 40Ar/39Ar dating of Quaternary basalts from Auckland Volcanic Field, New Zealand, with implications for eruption rates and paleomagnetic correlations

    Science.gov (United States)

    Leonard, Graham S.; Calvert, Andrew T.; Hopkins, Jenni L.; Wilson, Colin J. N.; Smid, Elaine R.; Lindsay, Jan M.; Champion, Duane E.

    2017-09-01

    The Auckland Volcanic Field (AVF), which last erupted ca. 550 years ago, is a late Quaternary monogenetic basaltic volcanic field (ca. 500 km2) in the northern North Island of New Zealand. Prior to this study only 12 out of the 53 identified eruptive centres of the AVF had been reliably dated. Careful sample preparation and 40Ar/39Ar analysis has increased the number of well-dated centres in the AVF to 35. The high precision of the results is attributed to selection of fresh, non-vesicular, non-glassy samples from lava flow interiors. Sample selection was coupled with separation techniques that targeted only the groundmass of samples with 10 μm wide, coupled with ten-increment furnace step-heating of large quantities (up to 200 mg) of material. The overall AVF age data indicate an onset at 193.2 ± 2.8 ka, an apparent six-eruption flare-up from 30 to 34 ka, and a ≤ 10 kyr hiatus between the latest and second-to-latest eruptions. Such non-uniformity shows that averaging the number of eruptions over the life-span of the AVF to yield a mean eruption rate is overly simplistic. Together with large variations in eruption volumes, and the large sizes and unusual chemistry within the latest eruptions (Rangitoto 1 and Rangitoto 2), our results illuminate a complex episodic eruption history. In particular, the rate of volcanism in AVF has increased since 60 ka, suggesting that the field is still in its infancy. Multiple centres with unusual paleomagnetic inclination and declination orientations are confirmed to fit into a number of geomagnetic excursions, with five identified in the Mono Lake, two within the Laschamp, one within the post-Blake or Blake, and two possibly within the Hilina Pali.

  1. Flood basalt volcanism on the Moon and Mars

    International Nuclear Information System (INIS)

    Benes, K.

    1979-01-01

    Comparative studies of the surfaces of the terrestrial planets reveal that processes of flood basalt volcanism were common to all of them, irrespective of their stages of evolution either primitive, intermediate or progressive. On the Moon manifestations of flood basalt volcanism have been recognized in basins (maria); on the planet Mars both in basins (planitiae) and in higher topographic (continental) levels. The mare-epoch of the less developed planets led to significant changes in their relief and in the crustal structure. Examples of volcanic flows from the lunar and martian surface are introduced. Some crustal uplifts on Mars can be interpreted in terms of Van Bemmelen's undations. (Auth.)

  2. Basalt Fiber for Volcanic Slag Lightweight Aggregate Concrete Research on the Impact of Performance

    Science.gov (United States)

    Xiao, Li-guang; Li, Gen-zhuang

    2018-03-01

    In order to study the effect of basalt fiber on the mechanical properties and durability of volcanic slag lightweight aggregate concrete, the experimental study on the flexural strength, compressive strength and freeze-thaw resistance of volcanic slag concrete with different basalt fiber content were carried out, the basalt fiber was surface treated with NaOH and water glass, the results show that the surface treatment of basalt fiber can significantly improve the mechanical properties, durability and other properties of volcanic slag lightweight aggregate concrete.

  3. A Comparison of Palaeointensity Results Obtained Using the Microwave Technique and LTD- DHT Shaw Method on Basalts From the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Hill, M. J.; Cassidy, J.

    2007-12-01

    Samples from five monogenetic volcanoes in the Quaternary Auckland volcanic field that record the same geomagnetic excursion have been investigated using the microwave palaeointensity technique. Both the perpendicular applied field method and Coe version of the Thellier technique were carried out, with sister sub samples being run in many cases to check for consistency. The experiments were performed using the Liverpool microwave systems operating at 14 GHz. A total of 58 samples gave results ranging from 1 to 24 μT with the mean palaeointensity per volcano ranging from 7 to 17 μT. Mochizuki et al (2006 Phys. Earth Planet. Int., 154, 168-179) previously studied samples from three of the five volcanoes using the LTD-DHT Shaw palaeointensity method. Their results from 17 samples showed greater consistency both between and within volcanoes. Possible reasons for the differences between results from the microwave method and LTD-DHT Shaw method will be discussed. Despite the differences, both overall mean palaeointensities are statistically indistinguishable and show that the geomagnetic dipole moment was reduced to about 2 x 1022 Am2 for this Auckland excursion.

  4. The petrology and geochemistry of high cascade volcanics in southern Washington: Mount Saint Helens volcano and the Indian Heaven basalt field

    Science.gov (United States)

    Smith, D. R.

    1984-06-01

    Mount St. Helens volcano (Washington, USA) was characterized by four eruptive periods during the last 2200 years. Eruptive products include a wide spectrum of rock types including basaltic to andesitic lavas, andesitic to dacitic pyroclastic flows and tephra, and dacite domes. The major and trace element compositions of some andesites and dacites are broadly consistent with their derivation from a basaltic andesite parental magma by fractional crystallization processes involving the observed phenocryst assemblages. However, the strontium and oxygen isotopic compositions of representative samples of the Mount St. Helens suite indicate that closed system processes cannot explain the isotopic variations. The isotopic ratios are positively correlated with one another and with bulk composition (SiO2, Mg number, etc.). The isotopic variations and trace element data support an origin of some intermediate and silicic rock types by combined processes of assimilation and fractional crystallization.

  5. Stratigraphical framework of basaltic lavas in Torres Syncline main valley, southern Parana-Etendeka Volcanic Province

    Science.gov (United States)

    Rossetti, Lucas M.; Lima, Evandro F.; Waichel, Breno L.; Scherer, Claiton M.; Barreto, Carla J.

    2014-12-01

    The Paraná-Etendeka Volcanic Province records the volcanism of the Early Cretaceous that precedes the fragmentation of the South-Gondwana supercontinent. Traditionally, investigations of these rocks prioritized the acquisition of geochemical and isotopic data, considering the volcanic stack as a monotonous succession of tabular flows. Torres Syncline is a tectonic structure located in southern Brazil and where the Parana-Etendeka basalts are well preserved. This work provides a detailed analysis of lithofacies and facies architecture, integrated to petrographic and geochemical data. We identified seven distinct lithofacies grouped into four facies associations related to different flow morphologies. The basaltic lava flows in the area can be divided into two contrasting units: Unit I - pahoehoe flow fields; and Unit II - simple rubbly flows. The first unit is build up by innumerous pahoehoe lava flows that cover the sandstones of Botucatu Formation. These flows occur as sheet pahoehoe, compound pahoehoe, and ponded lavas morphologies. Compound lavas are olivine-phyric basalts with intergranular pyroxenes. In ponded lavas and cores of sheet flows coarse plagioclase-phyric basalts are common. The first pahoehoe lavas are more primitive with higher contents of MgO. The emplacement of compound pahoehoe flows is related to low volume eruptions, while sheet lavas were emplaced during sustained eruptions. In contrast, Unit II is formed by thick simple rubbly lavas, characterized by a massive core and a brecciated/rubbly top. Petrographically these flows are characterized by plagioclase-phyric to aphyric basalts with high density of plagioclase crystals in the matrix. Chemically they are more differentiated lavas, and the emplacement is related to sustained high effusion rate eruptions. Both units are low TiO2 and have geochemical characteristics of Gramado magma type. The Torres Syncline main valley has a similar evolution when compared to other Large Igneous Provinces

  6. Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and minimum constraints on basalt influx to the lower crust

    Science.gov (United States)

    Guffanti, M.; Clynne, M.A.; Muffler, L.J.P.

    1996-01-01

    We have analyzed the heat and mass demands of a petrologic model of basaltdriven magmatic evolution in which variously fractionated mafic magmas mix with silicic partial melts of the lower crust. We have formulated steady state heat budgets for two volcanically distinct areas in the Lassen region: the large, late Quaternary, intermediate to silicic Lassen volcanic center and the nearby, coeval, less evolved Caribou volcanic field. At Caribou volcanic field, heat provided by cooling and fractional crystallization of 52 km3 of basalt is more than sufficient to produce 10 km3 of rhyolitic melt by partial melting of lower crust. Net heat added by basalt intrusion at Caribou volcanic field is equivalent to an increase in lower crustal heat flow of ???7 mW m-2, indicating that the field is not a major crustal thermal anomaly. Addition of cumulates from fractionation is offset by removal of erupted partial melts. A minimum basalt influx of 0.3 km3 (km2 Ma)-1 is needed to supply Caribou volcanic field. Our methodology does not fully account for an influx of basalt that remains in the crust as derivative intrusives. On the basis of comparison to deep heat flow, the input of basalt could be ???3 to 7 times the amount we calculate. At Lassen volcanic center, at least 203 km3 of mantle-derived basalt is needed to produce 141 km3 of partial melt and drive the volcanic system. Partial melting mobilizes lower crustal material, augmenting the magmatic volume available for eruption at Lassen volcanic center; thus the erupted volume of 215 km3 exceeds the calculated basalt input of 203 km3. The minimum basalt input of 1.6 km3 (km2 Ma)-1 is >5 times the minimum influx to the Caribou volcanic field. Basalt influx high enough to sustain considerable partial melting, coupled with locally high extension rate, is a crucial factor in development of Lassen volcanic center; in contrast. Caribou volcanic field has failed to develop into a large silicic center primarily because basalt supply

  7. Constructing the volcanic architecture of Kalkarindji, an ancient flood basalt province, using a multidisciplinary approach

    Science.gov (United States)

    Marshall, P.; Widdowson, M.; Kelley, S. P.; Mac Niocaill, C.; Murphy, D. T.

    2014-12-01

    The Kalkarindji Continental Flood Basalt Province (CFBP) is the oldest igneous province in the Phanerozoic. Erupted in the mid-Cambrian (505-510 Ma) [1], it is estimated volumes of lava up to 1.5 x 105 km3could have been erupted, making this similar in size to the better known Columbia River Basalts, USA. Relatively little is known about the province, due in part to its remote location, though large swathes remain well preserved (c. 50,000 km2). This study, based on rigorous field investigations, utilises 4 different analytical techniques to construct a volcanic architecture for the Kalkarindji basalts, drawing together these complimentary datasets to generate a series of detailed stratigraphies from around the province. Mineralogy and petrography form the basis while geochemical data aides in defining lava flow stratigraphies and distinguishing individual flow packages in disparate locations around the province. 40Ar/39Ar dating of key stratigraphic marker horizons support stratigraphical correlation across the province whilst the use of palaeomagnetism and magnetostratigraphy has allowed for correlation on a broader scale. Indications from this study point towards an unusual eruption among CFBPs in the Phanerozoic; a lack of tumescence, immediate subsidence of the lava pile following cessation of eruption; and, in the main sub-province, we map a simple volcanic structure thinning to the east from a single source. 1. L. M. Glass, D. Phillips, (2006). Geology. 34, 461-464.

  8. Maar-diatreme volcanism relating to the pyroclastic sequence of a newly discovered high-alumina basalt in the Maroa Volcanic Centre, Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Kósik, S.; Németh, K.; Procter, J. N.; Zellmer, G. F.

    2017-07-01

    Diatreme sequences have previously been described from drill holes within the Taupo Volcanic Zone. The newly discovered Te Hukui Basalt exhibits deep excavation of country rocks that do not appear elsewhere at the surface. The basalt is characterized by proximal deposition of pyroclastic deposits relating to phreatomagmatism. The geochemical composition classifies these rocks as high-alumina basalts. They erupted along the Orakeikorako Fault at the same location where rhyolitic activity of Puketerata occurred at a later point in time. The petrological characteristics of the basalts indicate the mixing of mafic melt with crystalline mush relating to more evolved magmas. The new basaltic occurrence supports frequent mafic recharge of shallow magma reservoirs, inducing basaltic eruptions, in this case the mafic magma intruding into highly crystallized mush zones. This may explain why basaltic eruptions mostly occur on the edge of the central extensional part of the Taupo Volcanic Zone.

  9. Volcanic rocks of the eastern and northern parts of the San Francisco volcanic field, Arizona

    Science.gov (United States)

    Moore, Richard B.; Wolfe, Edward W.; Ulrich, George E.

    1976-01-01

    The eastern and northern parts of the San Francisco volcanic field, between San Francisco Mountain and the Little Colorado River, contain about 175 cinder cones, many with one or more associated lava flows, and one center of silicic volcanism, O'Leary Peak. Basaltic flows and cones are divided into five groups, primarily on the bases of stratigraphic and physiographic relations, degree of weathering and erosion, K-Ar and tree-ring age determinations, and, in part, chemical and petrographic data:

  10. Investigating the Formation and Subsurface Structure of a Large Water-Filled Basaltic Maar Volcano Using Constrained Potential Field Modelling, Lake Purrumbete Maar, Newer Volcanics Province.

    Science.gov (United States)

    van den Hove, J. C.; Ailleres, L.; Betts, P. G.; Cas, R. A. F.

    2014-12-01

    Lake Purrumbete Maar of the Newer Volcanics Province, south-eastern Australia is one of the largest maar volcanoes in the world with a near circular crater up to 2800 m in diameter and hosting a 45 m deep crater lake. Surrounding tephra ring deposits are comprised of cross-bedded fine ash and lapilli-ash deposits typical of efficient subsurface phreatomagmatic eruptive activity. Erupted accessory lithics suggest subsurface phreatomagmatic activity occurred to a depth no greater than 250 m, whilst irregular clast shapes and peperitic textures observed in marl lithics suggest the host rock was poorly consolidated during eruptive activity. To further understand factors controlling Lake Purrumbete Maars immense size, high resolution lake and land-based gravity and magnetic data were collected for use in forward modelling of the subsurface architecture associated with the maar. Collection of gravity data presented a unique challenge due to the nature of measuring small changes in gravitational forces (structure, consistent with maars hosted within poorly consolidated sediments. 2.5-D forward models were used to produce a 3-D reference model for property and geometry inversions, to test and optimise the modelled features. Inversions suggest the major vents likely occur to a greater depth than 240 m as suggested in the initial reference model.

  11. Sensitivity to volcanic field boundary

    Science.gov (United States)

    Runge, Melody; Bebbington, Mark; Cronin, Shane; Lindsay, Jan; Rashad Moufti, Mohammed

    2016-04-01

    Volcanic hazard analyses are desirable where there is potential for future volcanic activity to affect a proximal population. This is frequently the case for volcanic fields (regions of distributed volcanism) where low eruption rates, fertile soil, and attractive landscapes draw populations to live close by. Forecasting future activity in volcanic fields almost invariably uses spatial or spatio-temporal point processes with model selection and development based on exploratory analyses of previous eruption data. For identifiability reasons, spatio-temporal processes, and practically also spatial processes, the definition of a spatial region is required to which volcanism is confined. However, due to the complex and predominantly unknown sub-surface processes driving volcanic eruptions, definition of a region based solely on geological information is currently impossible. Thus, the current approach is to fit a shape to the known previous eruption sites. The class of boundary shape is an unavoidable subjective decision taken by the forecaster that is often overlooked during subsequent analysis of results. This study shows the substantial effect that this choice may have on even the simplest exploratory methods for hazard forecasting, illustrated using four commonly used exploratory statistical methods and two very different regions: the Auckland Volcanic Field, New Zealand, and Harrat Rahat, Kingdom of Saudi Arabia. For Harrat Rahat, sensitivity of results to boundary definition is substantial. For the Auckland Volcanic Field, the range of options resulted in similar shapes, nevertheless, some of the statistical tests still showed substantial variation in results. This work highlights the fact that when carrying out any hazard analysis on volcanic fields, it is vital to specify how the volcanic field boundary has been defined, assess the sensitivity of boundary choice, and to carry these assumptions and related uncertainties through to estimates of future activity and

  12. How `Monogenetic' is the Auckland Volcanic Field?

    Science.gov (United States)

    Spargo, S. R.; Smith, I. E.; Wilson, C. J.

    2007-05-01

    The Auckland Field is the youngest basaltic intraplate volcanic field in New Zealand; it is located about 350-400 km behind the present day active convergent plate boundary. The field contains about 50 recognised late Pleistocene to Holocene eruptive centres generated by the rise and eruption of very small volume (mainly less than 0.35 km3) batches of magma. The field covers approximately 100 km2 of the Auckland urban area and has been termed monogenetic, implying that individual centres erupt single magma batches during brief eruptive periods. Detailed studies of individual centres reveal significant compositional diversity. The following trends are recognised: 1). Single trends from early evolved to later less evolved compositions representing deep near source fractionation of a single magma batch generated in the garnet peridotite stability field (e.g. Crater Hill about 29 ka, 0.1 km3), this is demonstrably monogenetic behaviour. 2). Multiple compositional trends in magmas from a single eruption event signifying the sequential rise and fractionation of magma batches generated from different sources (3-8 percent melt of a garnet peridotite source at depths of about 80-50 km and 5-12 percent melt of spinel peridotite at depths about 50- 22km), for example Pupuke (about 250 ka, 0.1 km3) this is polygenetic behaviour. 3). Multiple compositional trends in temporarily discrete eruption events from the same centre (Rangitoto, 8 to 700 a, 2.3 km3) this is also polygenetic behaviour. The chemical diversity observed within these three volcanic centres, representing the life span of the Auckland Volcanic Field, questions how well we actually understand this very common type of global volcanism. The range of compositions observed in individual centres of the Auckland Volcanic Field reflects the interplay of melting and fractionation processes at different depths in the mantle and calls into question the use of the term monogenetic to describe them.

  13. Geochemistry of the Potassic Basalts from the Bufumbira Volcanic ...

    African Journals Online (AJOL)

    The various basalts are low in SiO2 wt %, Al2O3 wt % and Na2O wt % but high in MgO wt %, TiO2 wt %, CaO wt %, K2O wt % with K2O/Na2O = 1.08 to 2.07. These are potassic belonging to the kamafugite series. Plots discriminate two geochemical trends corresponding to the picritic and clinopyroxene rich basalts.

  14. Geology and petrology of the basalts of Crater Flat: applications to volcanic risk assessment for the Nevada Nuclear Waste Storage investigations

    International Nuclear Information System (INIS)

    Vaniman, D.; Crowe, B.

    1981-06-01

    Volcanic hazard studies of the south-central Great Basin, Nevada, are being conducted for the Nevada Nuclear Waste Storage Investigations. This report presents the results of field and petrologic studies of the basalts of Crater Flat, a sequence of Pliocene to Quaternary-age volcanic centers located near the southwestern part of the Nevada Test Site. Crater Flat is one of several basaltic fields constituting a north-northeast-trending volcanic belt of Late Cenozoic age extending from southern Death Valley, California, through the Nevada Test Site region to central Nevada. The basalts of Crater Flat are divided into three distinct volcanic cycles. The cycles are characterized by eruption of basalt magma of hawaiite composition that formed cinder cone clusters and associated lava flows. Total volume of erupted magma for respective cycles is given. The basalts of Crater Flat are sparsely to moderately porphyritic; the major phenocryst phase is olivine, with lesser amounts of plagioclase, clinopyroxene, and rare amphibole. The consistent recurrence of evolved hawaiite magmas in all three cycles points to crystal fractionation from more primitive magmas at depth. A possible major transition in mantle source regions through time may be indicated by a transition from normal to Rb-depleted, Sr-enriched hawaiites in the younger basaltic cycles. The recurrence of small volumes of hawaiite magma at Crater Flat supports assumptions required for probability modeling of future volcanic activity and provides a basis for estimating the effects of volcanic disruption of a repository site in the southwestern Nevada Test Site region. Preliminary data suggest that successive basalt cycles at Crater Flat may be of decreasing volume but recurring more frequently

  15. The Valle de Bravo Volcanic Field. A monogenetic field in the central front of the Mexican Volcanic Belt

    Science.gov (United States)

    Aguirre-Diaz, G. J.; Jaimes-Viera, M. D.; Nieto-Obreg¢n, J.; Lozano-Santacruz, R.

    2003-12-01

    The Valle de Bravo volcanic field, VBVF, is located in the central-southern front of the Mexican Volcanic Belt just to the southwest of Nevado de Toluca volcano. The VBVF covers 3,703 square Km and includes at least 122 cinder cones, 1 shield volcano, several domes, and the 2 volcanic complexes of Zitacuaro and Villa de Allende. Morphometric parameters calibrated with isotopic ages of the volcanic products indicate four groups or units for the VBVF, Pliocene domes and lava flows, undifferentiated Pleistocene lava flows,> 40 Ka cones and lavas, 40 to 25 Ka cones and lavas, 25 to 10 Ka cones and lavas, and < 10 Ka cones and lavas. Whole-rock chemistry shows that all products of the VBVF range from basaltic andesites to dacites. No basalts were found, in spite of many units are olivine-rich and large some with large weight percent contents of MgO, 1 to 9. There is the possibility that some or all of the olivines in some samples could be xenocrysts. Some andesites are high in Sr, 1000 to 1800 ppm, that correlates with relatively high values of Ba, Cr, Ni, Cu, CaO and MgO. Y and Nb have the typical low values for orogenic rocks. The only shield volcano of the VBVF has a base of 9 Km, and its composition is practically the average composition of the whole field. Stratigraphycally, it is one of the earlier events of the VBVF. Compared with other volcanic fields of the Mexican Volcanic Belt, it lacks basalts and alkalic rocks. All volcanism of this field is calcalkaline

  16. Very recent and wide-spread basaltic volcanism on Mars

    Czech Academy of Sciences Publication Activity Database

    Hauber, E.; Brož, Petr; Jagert, F.; Jodlowski, P.; Platz, T.

    2011-01-01

    Roč. 38, č. 10 (2011), L10201/1-L10201/5 ISSN 0094-8276 Institutional research plan: CEZ:AV0Z30120515 Keywords : volcanism * Mars * Tharsis Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 3.792, year: 2011

  17. Sources of Quaternary volcanism in the Itasy and Ankaratra volcanic fields, Madagascar

    Science.gov (United States)

    Rasoazanamparany, C.; Widom, E.; Kuentz, D. C.; Raharimahefa, T.; Rakotondrazafy, F. M. A.; Rakotondravelo, K. M.

    2017-12-01

    We present new major and trace element and Sr, Nd, Pb and Os isotope data for Quaternary basaltic lavas and tephra from the Itasy and Ankaratra volcanic fields, representing the most recent volcanism in Madagascar. Mafic magmas from Itasy and Ankaratra exhibit significant inter- and intra-volcanic field geochemical heterogeneity. The Itasy eruptive products range in composition from foidite to phonotephrite whereas Ankaratra lavas range from basanite to trachybasalts. Trace element signatures of samples from both volcanic fields are very similar to those of ocean island basalts (OIB), with significant enrichment in Nb and Ta, depletion in Rb, Cs, and K, and relatively high Nb/U and Ce/Pb. However, the Itasy volcanic rocks show enrichment relative to those of Ankaratra in most incompatible elements, indicative of a more enriched source and/or lower degrees of partial melting. Significant inter- and intra-volcanic field heterogeneity is also observed in Sr, Nd, Pb and Os isotope signatures. The Itasy volcanic rocks generally have less radiogenic Sr and Nd isotopic ratios but more radiogenic Pb isotopic signatures than the Ankaratra volcanic field. Together, the Itasy and Ankaratra volcanic rocks form a well-defined negative correlation in Sr vs. Pb isotopes that could be attributed to lithospheric contamination or variable degrees of mixing between distinct mantle sources. However, the lack of correlation between isotopes and indices of crustal contamination (e.g. MgO and Nb/U) are inconsistent with shallow lithospheric contamination, and instead suggest mixing between compositionally distinct mantle sources. Furthermore, although Sr-Pb isotope systematics are apparently consistent with mixing between two different sources, distinct trends in Sr vs. Nd isotopes displayed by samples from Itasy and Ankaratra, respectively, argue for more complex source mixing involving three or more sources. The current data demonstrate that although the Itasy and Ankaratra volcanic

  18. Geochemistry and petrogenesis of basaltic rocks from the Develidağ volcanic complex, Central Anatolia, Turkey

    Science.gov (United States)

    Kürkcüoglu, Biltan

    2010-01-01

    The Develidağ volcanic zone (DVZ) is a part of the Middle Miocene-Quaternary Cappadocian Volcanic Province (CVP) in central Anatolia. The DVZ is located at the eastern side of the Plio-Quaternary Sultansazlığı pull-apart basin, that opened along the Ecemiş left-lateral strike-slip fault. Towards the south, the volcanic rocks of the DVZ overlie the Paleozoic metamorphic rocks of the Taurus range. Regional stratigraphic studies indicate that volcanic rocks of the DVZ crop out in a ˜N-S trending rectangular-shaped exposure in the middle of which Middle Miocene andesitic rocks are found surrounded by Upper Miocene basaltic rocks. The purpose of this paper is to present basic geochemical data for the DVZ rocks and discuss possible processes of magma generation. The Develidağ basalts are characterized by low LILE (Rb, K, Ba, Th) and high HFSE (Nb,Zr,Hf,Y) contents, whereas the andesites generally have high LILE and HFSE values except for Nb and Zr. Variable abundances of Pb (3.11-12.09 ppm) and U (0.36-2.64 ppm) are associated with high Ba content within the rock suites. Although low Nb/La (0.6-0.7) and relatively high Ba/Nb ratios indicate crustal involvement for the basalts, high Zr/Ba (0.5), Zr/Hf (42-47) and Th/U (3.13-4.69) values imply contributions from an asthenospheric source component. Furthermore, the high Zr/Hf values (>36) are the diagnostic feature of metasomatized mantle (Dupuy et al., 1992; Rudnick et al., 1993). Moreover, multi-element patterns show that Develidağ basalts have similar trace element signatures to those of the US Cascades tholeiites. The ratios of Zr/Hf, Zr/Ba, Nb/Th and Sr/Ce indicate that basaltic rocks are derived from a MORB-like mantle, and calculated melting model reflects generation from a spinel peridotite source (3-4% melting), but the combined effects of melting and assimilation and fractional crystallization (AFC) processes seem to be partially responsible for the relatively evolved rocks. Typical tholeiitic

  19. Magma mixing in the San Francisco Volcanic Field, AZ

    Science.gov (United States)

    Bloomfield, Anne L.; Arculus, Richard J.

    1989-08-01

    A wide variety of rock types are present in the O'Leary Peak and Strawberry Crater volcanics of the Pliocene to Recent San Francisco Volcanic Field (SFVF), AZ. The O'Leary Peak flows range from andesite to rhyolite (56 72 wt % SiO2) and the Strawberry Crater flows range from basalt to dacite (49 64 wt % SiO2). Our interpretation of the chemical data is that both magma mixing and crustal melting are important in the genesis of the intermediate composition lavas of both suites. Observed chemical variations in major and trace elements can be modeled as binary mixtures between a crustal melt similar to the O'Leary dome rhyolite and two different mafic end-members. The mafic end-member of the Strawberry suite may be a primary mantle-derived melt. Similar basalts have also been erupted from many other vents in the SFVF. In the O'Leary Peak suite, the mafic end-member is an evolved (low Mg/(Mg+ Fe)) basalt that is chemically distinct from the Strawberry Crater and other vent basalts as it is richer in total Fe, TiO2, Al2O3, MnO, Na2O, K2O, and Zr and poorer in MgO, CaO, P2O5, Ni, Sc, Cr, and V. The derivative basalt probably results from fractional crystallization of the more primitive, vent basalt type of magma. This evolved basalt occurs as xenolithic (but originally magmatic) inclusions in the O'Leary domes and andesite porphyry flow. The most mafic xenolith may represent melt that mixed with the O'Leary dome rhyolite resulting in andesite preserved as other xenoliths, a pyroclastic unit (Qoap), porphyry flow (Qoaf) and dacite (Darton Dome) magmas. Thermal constraints on the capacity of a melt to assimilate (and melt) a volume of solid material require that melt mixing and not assimilation has produced the observed intermediate lavas at both Strawberry Crater and O'Leary Peak. Textures, petrography, and mineral chemistry support the magma mixing model. Some of the inclusions have quenched rims where in contact with the host. The intermediate rocks, including the

  20. Age, distance, and geochemical evolution within a monogenetic volcanic field: Analyzing patterns in the Auckland Volcanic Field eruption sequence

    Science.gov (United States)

    Corvec, Nicolas Le; Bebbington, Mark S.; Lindsay, Jan M.; McGee, Lucy E.

    2013-09-01

    The Auckland Volcanic Field (AVF) is a young active monogenetic basaltic field, which contains ˜50 volcanoes scattered across the Auckland metropolitan area. Understanding the temporal, spatial, and chemical evolution of the AVF during the last c.a. 250 ka is crucial in order to forecast a future eruption. Recent studies have provided new age constraints and potential temporal sequences of the past eruptions within the AVF. We use this information to study how the spatial distribution of the volcanic centers evolves with time, and how the chemical composition of the erupted magmas evolves with time and space. We seek to develop a methodology which compares successive eruptions to describe the link between geochemical and spatiotemporal evolution of volcanic centers within a monogenetic volcanic field. This methodology is tested with the present day data of the AVF. The Poisson nearest neighbor analysis shows that the spatial behavior of the field has been constant overtime, with the spatial distribution of the volcanic centers fitting the Poisson model within the significance levels. The results of the meta-analysis show the existence of correlations between the chemical composition of the erupted magmas and distance, volume, and time. The apparent randomness of the spatiotemporal evolution of the volcanic centers observed at the surface is probably influenced by the activity of the source. The methodology developed in this study can be used to identify possible relationships between composition trends and volume, time and/or distance to the behavior of the source, for successive eruptions of the AVF.

  1. geochemistry of the potassic basalts from the bufumbira volcanic

    African Journals Online (AJOL)

    Mgina

    1987, Link et al. 2010) and part of Birunga field in Rwanda and the. Democratic Republic of Congo (Vollmer and Norry 1983 a, b; Demant et al. 1994,. Rogers et al. 1998, Platz et al. 2004,. Rosenthal et al. 2009) have been thoroughly investigated for upper mantle metasomatism as the responsible process for producing the.

  2. Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism

    Science.gov (United States)

    van de Schootbrugge, B.; Quan, T. M.; Lindström, S.; Püttmann, W.; Heunisch, C.; Pross, J.; Fiebig, J.; Petschick, R.; Röhling, H.-G.; Richoz, S.; Rosenthal, Y.; Falkowski, P. G.

    2009-08-01

    One of the five largest mass extinctions of the past 600million years occurred at the boundary of the Triassic and Jurassic periods, 201.6million years ago. The loss of marine biodiversity at the time has been linked to extreme greenhouse warming, triggered by the release of carbon dioxide from flood basalt volcanism in the central Atlantic Ocean. In contrast, the biotic turnover in terrestrial ecosystems is not well understood, and cannot be readily reconciled with the effects of massive volcanism. Here we present pollen, spore and geochemical analyses across the Triassic/Jurassic boundary from three drill cores from Germany and Sweden. We show that gymnosperm forests in northwest Europe were transiently replaced by fern and fern-associated vegetation, a pioneer assemblage commonly found in disturbed ecosystems. The Triassic/Jurassic boundary is also marked by an enrichment of polycyclic aromatic hydrocarbons, which, in the absence of charcoal peaks, we interpret as an indication of incomplete combustion of organic matter by ascending flood basalt lava. We conclude that the terrestrial vegetation shift is so severe and wide ranging that it is unlikely to have been triggered by greenhouse warming alone. Instead, we suggest that the release of pollutants such as sulphur dioxide and toxic compounds such as the polycyclic aromatic hydrocarbons may have contributed to the extinction.

  3. A Larger Volcanic Field About Yucca Mountain: New Geochemical Data From the Death Valley Volcanic Field, Inyo County California

    Science.gov (United States)

    Tibbetts, A. K.; Smith, E. I.

    2008-12-01

    Volcanism is an important issue for the characterization of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. Due to recent legal decisions that now require DOE to evaluate hazards over both 10,000 year and 1,000,000 year compliance periods, the definition of the area of interest for calculation of disruption probability and a knowledge of the volcanic process have become more important. New geochemical data for the Death Valley volcanic field in the Greenwater Range in Inyo County, California indicate that the Death Valley field and the volcanoes about Yucca Mountain are parts of the same volcanic field. The Death Valley field is just 35 km south of Yucca Mountain and only 20 km south of buried volcanoes in the Amargosa Valley. Trace elements for both areas show a negative Nb anomaly, but differ in that Death Valley basalt has lower La (70 vs. 130 ppm). Isotopic ratios are remarkably similar and strongly support a link between the Death Valley and Yucca Mountain areas. The isotope ranges for Death Valley are -11.88 to -3.26, 0.706322 to 0.707600, 17.725 to 18.509, 15.512 to 15.587, and 38.237 to 38.854 for epsilon Nd, 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb respectively. Crater Flat isotope ranges are -13.17 to -5.48, 0.706221 to 0.707851, 18.066 to 18.706, 15.488 to 15.564, and 38.143 to 38.709 for epsilon Nd, 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb respectively. Depth of melting calculated using the Fe-Na geobarometer indicates that basalt magma was generated at depths of 135-138 km beneath Death Valley and 115-133 km for Crater Flat indicating asthenospheric melting for both areas. Combining the Death Valley and Yucca Mountain areas into a single volcanic field increases the area of interest for probability calculations by over 1/3 and increases the number of volcanic events by 23. The increased size of the volcanic field and number of volcanoes may result in an increase in the probability of disruption of the

  4. Geophysical expression of caldera related volcanism, structures and mineralization in the McDermitt volcanic field

    Science.gov (United States)

    Rytuba, J. J.; Blakely, R. J.; Moring, B.; Miller, R.

    2013-12-01

    The High Rock, Lake Owyhee, and McDermitt volcanic fields, consisting of regionally extensive ash flow tuffs and associated calderas, developed in NW Nevada and SE Oregon following eruption of the ca. 16.7 Ma Steens flood basalt. The first ash flow, the Tuff of Oregon Canyon, erupted from the McDermitt volcanic field at 16.5Ma. It is chemically zoned from peralkaline rhyolite to dacite with trace element ratios that distinguish it from other ash flow tuffs. The source caldera, based on tuff distribution, thickness, and size of lithic fragments, is in the area in which the McDermitt caldera (16.3 Ma) subsequently formed. Gravity and magnetic anomalies are associated with some but not all of the calderas. The White Horse caldera (15.6 Ma), the youngest caldera in the McDermitt volcanic field has the best geophysical expression, with both aeromagnetic and gravity lows coinciding with the caldera. Detailed aeromagnetic and gravity surveys of the McDermitt caldera, combined with geology and radiometric surveys, provides insight into the complexities of caldera collapse, resurgence, post collapse volcanism, and hydrothermal mineralization. The McDermitt caldera is among the most mineralized calderas in the world, whereas other calderas in these three Mid Miocene volcanic fields do not contain important hydrothermal ore deposits, despite having similar age and chemistry. The McDermitt caldera is host to Hg, U, and Li deposits and potentially significant resources of Ga, Sb, and REE. The geophysical data indicate that post-caldera collapse intrusions were important in formation of the hydrothermal systems. An aeromagnetic low along the E caldera margin reflects an intrusion at a depth of 2 km associated with the near-surface McDermitt-hot-spring-type Hg-Sb deposit, and the deeper level, high-sulfidation Ga-REE occurrence. The Li deposits on the W side of the caldera are associated with a series of low amplitude, small diameter aeromagnetic anomalies that form a continuous

  5. The `Strawberry Volcanic Field' of Northeastern Oregon: Another Piece of the CRB Puzzle?

    Science.gov (United States)

    Steiner, A. R.; Streck, M. J.

    2010-12-01

    The Mid to Late Miocene Strawberry Volcanics field (SVF) located along the southern margin of the John Day valley of NE Oregon, comprise a diverse group of volcanic rocks ranging from basalt to rhyolite. The main outcrop area of the SVF (3,400 km2) is bordered by units from the Columbia River Basalt Group (CRBG), with the main CRB units to the north, the Picture Gorge Basalt to the east and Steens Basalt to the south. The geographic position and age of the Strawberry Volcanics make a genetic relationship to CRB volcanism likely, yet little is known about this diverse volcanic field. This research aims at refining the stratigraphic and age relationships as well as the petrology and geochemistry of magmas associated with the SVF. Previous investigations (e.g. Robyn, 1977) found that the SVF was active between 20 to 10 Ma with the main pulse largely being coeval with the 15 Ma CRBG eruptions. Lavas and tuffs from the SVF are calc-alkaline with low FeO*/MgO (~ 2.56 wt. %), high Al2O3 (~ 16.4 wt. %), low TiO2 (~ 1.12 wt.%), and span the entire compositional range from basalt to rhyolite (47-78 wt. % SiO2) with andesite as the dominant lithology. Basaltic lavas from the SVF have compositional affinities to earlier Steens Basalt, and some trace element concentrations and ratios are indistinguishable from those of CRBG lavas (e.g. Zr, Ba, Sr, and Ce/Y). Andesites are calc-alkaline, but contrary to typical arc (orogenic) andesites, SVF andesites are exceedingly phenocryst poor (Strawberry Volcanics are largely the product of hot-spot related basaltic magmas interacting with the continental crust. The range in compositions from calc-alkaline andesite to rhyolite may be attributed to the hybridization of mantle-derived and crustal melts, with the more evolved compositions reflecting greater proportions of crustally derived material and/or higher degrees of differentiation. Furthermore, since the earliest SVF eruption is 3 Ma older than the proposed onset of the CRBG (~ 17 Ma

  6. Geological and petrological study of Rangitoto Island, Auckland Volcanic Field(MEMORIAL VOLUME TO THE LATE PROFESSOR TERUHIKO SAMESHIMA)

    OpenAIRE

    Sano, Takeshi

    1994-01-01

    Rangitoto Island is the largest and youngest volcano in the Auckland Volcanic Field, New Zealand. It is the only volcano that produced tholeiitic basalt. All the others are alkali basalt or basanite. Sixteen young lava flows overlying the older lava flows were mapped on the basis of aerophotographs and field observations. Thirteen samples from 12 lavas from among 17 lava flows ( 16 young + one old) were analyzed in order to investigate the variation of chemical compositions of the source magm...

  7. Soil CO2 flux baseline in an urban monogenetic volcanic field: the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Mazot, Agnès; Smid, Elaine R.; Schwendenmann, Luitgard; Delgado-Granados, Hugo; Lindsay, Jan

    2013-11-01

    The Auckland Volcanic Field (AVF) is a dormant monogenetic basaltic field located in Auckland, New Zealand. Though soil gas CO2 fluxes are routinely used to monitor volcanic regions, there have been no published studies of soil CO2 flux or soil gas CO2 concentrations in the AVF to date or many other monogenetic fields worldwide. We measured soil gas CO2 fluxes and soil gas CO2 concentrations in 2010 and 2012 in varying settings, seasons, and times of day to establish a baseline soil CO2 flux and to determine the major sources of and controlling influences on Auckland's soil CO2 flux. Soil CO2 flux measurements varied from 0 to 203 g m-2 day-1, with an average of 27.1 g m-2 day-1. Higher fluxes were attributed to varying land use properties (e.g., landfill). Using a graphical statistical approach, two populations of CO2 fluxes were identified. Isotope analyses of δ13CO2 confirmed that the source of CO2 in the AVF is biogenic with no volcanic component. These data may be used to assist with eruption forecasting in the event of precursory activity in the AVF, and highlight the importance of knowing land use history when assessing soil gas CO2 fluxes in urban environments.

  8. Waning Miocene subduction and arc volcanism in Baja California: the San Luis Gonzaga volcanic field

    Science.gov (United States)

    Martín, Arturo; Fletcher, John M.; López-Martínez, Margarita; Mendoza-Borunda, Ramón

    2000-03-01

    Subduction of the Guadalupe-Magdalena microplate beneath Baja California ended in the middle Miocene, and the last volcanic events in the frontal arc extinguished along the present-day eastern margin of the Baja California peninsula. The San Luis Gonzaga area in the north-central Gulf coast contains one of the younger arc-related volcanic centers in northern Baja California. The volcanic succession contains three sequences. The basal sequence (Group 1) is composed of stratified pyroclastic deposits, up to 500 m thick, and subordinate lava flows. The near-vent facies crop out in tilted fault blocks along the present shoreline, whereas the distal facies are exposed across ˜12 km toward the west and includes epiclastic deposits and at least three ash flow tuffs. This sequence is internally concordant and overlies smooth paleosurface developed on granitic basement, and pinches out across the Gulf escarpment. The Potrero Andesite (Group 2) is a series of dacite to basaltic-andesite lava flows from a shield volcano located ˜15 km west of today's coastline; similar source vents also occurs further south of the San Luis Gonzaga area. A sequence of dacite domes (Group 3) intrudes the near-vent facies of Group 1 and contains subordinate volcanic breccia and minor lava flows that overlie Group 1 sequence. Cross-cutting relationships and the abundance of volcanic breccia associated with the domes suggest that these domes were emplaced as semi-rigid intrusions (spines) with low explosive activity. The San Luis Gonzaga volcanic suite ranges in composition from basaltic andesite to dacite with predominant plagioclase and pyroxene and variable amounts of hornblende. Trace-element patterns indicate calc-alkaline to mildly alkaline magmas with high Ba and low Nb contents. Incompatible-element ratios and mineralogical characteristics suggest different magma batches and/or different amount of crustal assimilation for the three sequences that produced contrasting eruptive styles. A

  9. Icelandic basaltic geothermal field: A natural analog for nuclear waste isolation in basalt

    International Nuclear Information System (INIS)

    Ulmer, G.C.; Grandstaff, D.E.

    1984-01-01

    Analog studies of Icelandic geothermal fields have shown that the design of nuclear waste repositories in basalt can benefit by comparison to the data base already available from the development of these geothermal fields. A high degree of similarity exists between these two systems: their petrology, groundwater geochemistry, mineral solubilities, hydrologic parameters, temperature ranges, water-rock redox equilibria, hydrothermal pH values, and secondary mineralogies all show considerable overlap in the range of values. The experimentally-simulated hydrothermal studies of the basaltic nuclear waste repository rocks have, at this time, produced a data base that receives a strong confirmation from the Icelandic analog. Furthermore, the Icelandic analog should eventually be employed to extrapolate into higher and lower temperatures, into longer time-base chemical comparisons, and into more realistic mineral deposition studies, than have been possible in the laboratory evaluations of the nuclear waste repository designs. This eventual use of the Icelandic analog will require cooperative work with the Icelandic Geological Survey. 46 refs., 4 figs., 2 tabs

  10. Polygenetic magmatism in a monogenetic field: an isotopic investigation from the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    McGee, L.; Beier, C.; Smith, I. E.; Turner, S.

    2009-12-01

    The Auckland Volcanic Field is a Quaternary monogenetic basaltic field of about 50 eruption centres, which have erupted ~4 km3 of magma during the past ~250,000yrs. 2 km3 of this magma has been from Rangitoto Island - the most recent centre (~600yrs BP) - which erupted in two discrete stages ~50 years apart - an intriguing feature for a so-called monogenetic field. Interestingly, the two eruptions produced lavas of different compositions, alkali basalt as the first eruption, and a far more voluminous tholeiite eruption as the second. Trace elements, as well as new U-Th-Ra and Sr-Nd isotopes are used to model the processes which have led to the eruption of two distinct compositions within a small-volume centre, over a short time interval. Rare earth element patterns indicate that both the alkalic and tholeiitic basalts formed in the presence of residual garnet although the amount is higher for the alkali basalt. Differences in degree of melting are also inferred with the alkali basalt requiring a smaller degree than the tholeiite: 2% and 6% respectively. Major elements are used in modelling formation depths and pressures with the alkali basalts requiring a somewhat deeper source than the tholeiites, corresponding well with the larger amount of garnet in the alkali basalt source as modelled by trace elements. (87Sr/86Sr), (143Nd/144Nd) and (238U/232Th) from both eruptions showed the source to have something of a different ‘flavour’ for the two rock types, indicating that the mantle underlying Auckland may be heterogeneous and possibly layered. The constraints from major and trace element data are combined with the U-Th-Ra isotope data to provide an estimate of the melting rates, inferred upwelling rate and conduit length. Higher 230Th-excesses are found in the alkali basalts than the tholeiites, suggesting a longer conduit and/or slower upwelling for the former. Dynamic melting calculations and likely source parameters for the two lavas indicate that the alkali

  11. Spectroscopy of olivine basalts using FieldSpec and ASTER data: A ...

    Indian Academy of Sciences (India)

    It also evaluates band ratios and fusion techniques for mapping purposes using ASTER data. Several volcanic episodes occurred during Early- to Late-. Cretaceous are recorded in the study area. Early-Cretaceous olivine basalts are highly carbonated. Late-. Cretaceous eruptions took place throughout several volcanic ...

  12. Historical volcanic eruptions in the Canary Islands, tephra composition, and insights into the crystal cargo of basaltic magmas

    Science.gov (United States)

    Longpre, M. A.; Muller, J.; Beaudry, P.; Andronikides, A.; Felpeto, A.

    2017-12-01

    Since the 16th century, at least 13 volcanic eruptions have occurred in the Canary Islands that formed monogenetic cinder cones and lava flow fields: 2 on Lanzarote, 4 on Tenerife, 6 on La Palma, and 1 on the submarine flank of El Hierro. Here we present a comprehensive new dataset of tephra composition for all 13 eruptions, comprising major and trace element data for bulk rocks and matrix glasses, as well as vesicularity and crystallinity measurements. In addition, we compile available volcanological and petrological information for specific eruptions, including estimates of lava flow area and volume. All lapilli samples show a vesicularity of 40-50 vol% and a vesicle-free crystallinity (crystals ≥ 250 µm) of 5-15 vol%. Modal mineralogy varies significantly between samples, typically consisting of olivine ± clinopyroxene ± Fe-Ti oxide ± plagioclase ± amphibole in different proportions. All but 2 tephras have basanite-tephrite bulk rock compositions. Lapilli from vents of the AD 1730-1736 Timanfaya eruption, Lanzarote, largely are basaltic, whereas the AD 1798 Chahorra eruption, Tenerife, produced phonotephrite tephra. These results are in agreement with published bulk lava flow data. Unsurprisingly, glass compositions are more evolved than bulk rocks and MgOglass is weakly positively correlated to MgObulk (MgOglass = 0.30*MgObulk + 2.11, R2 = 0.54). Both bulk rocks and glasses show strikingly similar multi-element diagram patterns, with strong enrichment relative to the bulk-silicate Earth and marked positive Nb and Ta and negative Pb anomalies — typical for ocean island basalts. Glass/bulk rock elemental ratios reveal systematic differences between samples that relate to their mineralogy; for example, Lanzarote tephras that lack significant clinopyroxene and Fe-Ti oxide crystals have higher Scglass/Scbulk and Vglass/Vbulk than Tenerife, La Palma and El Hierro samples that typically contain these minerals. Among all elements, K and P display the greatest

  13. Magnetism of a red soil core derived from basalt, northern Hainan Island, China: Volcanic ash versus pedogenesis

    Science.gov (United States)

    Liu, Zhifeng; Ma, Jinlong; Wei, Gangjian; Liu, Qingsong; Jiang, Zhaoxia; Ding, Xing; Peng, Shasha; Zeng, Ti; Ouyang, Tingping

    2017-03-01

    Similar to loess-paleosol sequences in northwestern China, terrestrial sedimentary sequences (red soils) in southern China also provide sensitive Quaternary records of subtropical/tropical paleoclimate and paleoenvironment. Compared with red clay sequences originated from eolian dust, red soils derived from bedrock have received little attention. In this study, a long core of red soil derived from weathered basalt in northern Hainan Island, China, was systematically investigated by using detailed magnetic measurements and rare earth element analyses. The results show that an extremely strong magnetic zone with a maximum magnetic susceptibility (>10 × 10-5 m3 kg-1) is interbedded in the middle of the core profile. This layer contains a significant amount of superparamagnetic magnetite/maghemite particles that primarily originated from volcanic ash, with secondary contributions from pedogenesis. The former has an average grain size of 19 nm with a normal distribution of volume, and the latter has a much wider grain size distribution. The presence of volcanic ash within the red soil indicates that these Quaternary basalts were not formed by continuous volcanic eruptions. Moreover, the magnetic enhancement patterns differ between the upper and lower zones. The upper zone is more magnetically enhanced and experienced higher precipitation and temperature than the lower zone. Discrimination of superparamagnetic particles originating from pedogenic processes and volcanic ash thus provides a sound theoretical base for accurate interpretation of magnetism in red soils in this region.

  14. Geologic map of the Simcoe Mountains Volcanic Field, main central segment, Yakama Nation, Washington

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy

    2015-01-01

    Mountainous parts of the Yakama Nation lands in south-central Washington are mostly covered by basaltic lava flows and cinder cones that make up the Simcoe Mountains volcanic field. The accompanying geologic map of the central part of the volcanic field has been produced by the U.S. Geological Survey (USGS) on behalf of the Water Resources Program of the Yakama Nation. The volcanic terrain stretches continuously from Mount Adams eastward as far as Satus Pass and Mill Creek Guard Station. Most of the many hills and buttes are volcanic cones where cinders and spatter piled up around erupting vents while lava flows spread downslope. All of these small volcanoes are now extinct, and, even during their active lifetimes, most of them erupted for no more than a few years. On the Yakama Nation lands, the only large long-lived volcano capable of erupting again in the future is Mount Adams, on the western boundary.

  15. Spectroscopy of olivine basalts using FieldSpec and ASTER data: A ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 7. Spectroscopy of olivine basalts using FieldSpec and ASTER data: ... Fresh olivine basalt (group A) is characterized by low flat spectral profile with overall low reflectance values (~20%). Spectral profile of altered olivine basalt (group B) shows moderate ...

  16. Relationship Between Low-Velocity S-wave Anomalies, Asthenospheric Dynamics and Basaltic Volcanism in the Intraplate Setting of the Basin and Range, USA

    Science.gov (United States)

    Tibbetts, A. K.; Smith, E. I.; Conrad, C. P.; Lee, C.; Plank, T.; Yang, Y.

    2009-12-01

    Pliocene to Recent intraplate mafic volcanic rocks of the Basin and Range Province mostly formed by asthenospheric melting, as determined from calculated melting temperatures ranging from 1249-1521 degrees C. Here asthenosphere is defined by mantle rheology and temperature and not by geochemistry. The duration of melting in a volcanic field may be related to the size and shape of pockets of low velocity asthenosphere moving under the areas of volcanism. Seismic S-wave velocity profiles constrained by ambient noise and earthquake tomography of the mantle (Yang et al., 2008) show low velocity pockets, which may correspond to higher temperatures and/or higher water contents. The lack of wider scale volcanism in the Basin and Range despite large scale anomalies indicates that the anomalies are not the only cause of melting. The observed smaller scale magmatism can be explained by circulatory flow driven by the small scale structure of the anomalies causing localized melting within the anomalies. By applying an asthenospheric shear flow velocity of 0 cm/yr at the base of the lithosphere and 5 cm/yr east at depth (Silver & Holt 2002, Conrad et al., 2007), the distance the mantle has moved since the time of volcanism can be calculated for basalts of known age. Past positions of low-velocity anomalies in the asthenosphere combined with depths and temperatures of melting calculated using the silica-liquid geobarometer (Lee et al., 2009) were used to determine if a low velocity anomaly existed under an area of volcanism at the depth of melting and time of eruption. The data constraints used for calculating depths and temperatures of melting are dry, MgO > 7.5 wt.%, SiO2 > 44 wt.%, and Fe as 90% Fe2+. Depths and temperatures of melting were calculated for San Francisco in AZ; Amboy, Pisgah, Death Valley, Coso, Big Pine, Cima, Long Valley, in CA; Crater Flat, Lunar Crater, Reveille in NV; and Black Rock, Hurricane, Snow Canyon, UT; and others all of which have known ages. Ages

  17. Architecture and emplacement of flood basalt flow fields: case studies from the Columbia River Basalt Group, NW USA

    Science.gov (United States)

    Vye-Brown, C.; Self, S.; Barry, T. L.

    2013-03-01

    The physical features and morphologies of collections of lava bodies emplaced during single eruptions (known as flow fields) can be used to understand flood basalt emplacement mechanisms. Characteristics and internal features of lava lobes and whole flow field morphologies result from the forward propagation, radial spread, and cooling of individual lobes and are used as a tool to understand the architecture of extensive flood basalt lavas. The features of three flood basalt flow fields from the Columbia River Basalt Group are presented, including the Palouse Falls flow field, a small (8,890 km2, ˜190 km3) unit by common flood basalt proportions, and visualized in three dimensions. The architecture of the Palouse Falls flow field is compared to the complex Ginkgo and more extensive Sand Hollow flow fields to investigate the degree to which simple emplacement models represent the style, as well as the spatial and temporal developments, of flow fields. Evidence from each flow field supports emplacement by inflation as the predominant mechanism producing thick lobes. Inflation enables existing lobes to transmit lava to form new lobes, thus extending the advance and spread of lava flow fields. Minimum emplacement timescales calculated for each flow field are 19.3 years for Palouse Falls, 8.3 years for Ginkgo, and 16.9 years for Sand Hollow. Simple flow fields can be traced from vent to distal areas and an emplacement sequence visualized, but those with multiple-layered lobes present a degree of complexity that make lava pathways and emplacement sequences more difficult to identify.

  18. Decreasing Magmatic Footprints of Individual Volcanos in a Waning Basaltic Field

    Energy Technology Data Exchange (ETDEWEB)

    G.A> Valentine; F.V. Perry

    2006-06-06

    The distribution and characteristics of individual basaltic volcanoes in the waning Southwestern Nevada Volcanic Field provide insight into the changing physical nature of magmatism and the controls on volcano location. During Pliocene-Pleistocene times the volumes of individual volcanoes have decreased by more than one order of magnitude, as have fissure lengths and inferred lava effusion rates. Eruptions evolved from Hawaiian-style eruptions with extensive lavas to eruptions characterized by small pulses of lava and Strombolian to violent Strombolian mechanisms. These trends indicate progressively decreasing partial melting and length scales, or magmatic footprints, of mantle source zones for individual volcanoes. The location of each volcano is determined by the location of its magmatic footprint at depth, and only by shallow structural and topographic features that are within that footprint. The locations of future volcanoes in a waning system are less likely to be determined by large-scale topography or structures than were older, larger volume volcanoes.

  19. Oxygen buffering of Kilauea volcanic gases and the oxygen fugacity of Kilauea basalt

    Science.gov (United States)

    Gerlach, T.M.

    1993-01-01

    challenges the common assumption that volcanic gases are released from lava in a state of chemical equilibrium and then continue equilibrating homogeneously with falling temperature until reaction rates are unable to keep pace with cooling. No evidence is found, moreover, that certain gas species are kinetically more responsive and able to equilibrate down to lower temperatures than those of the last gas/lava oxygen exchange. Homogeneous reaction rates in the gas phase are apparently slow compared to the time it took for the gases to move from the last site of gas/lava equilibration to the site of collection. An earlier set of data for higher temperature CO2-rich Type I volcanic gases, which come from sustained summit lava lake eruptions supplied by magma that experienced substantially shorter periods of crustal storage, shows fO2 buffering by oxygen transfer up to 1185??C. Oxygen fugacity measurements in drill holes into ponded lava flows suggest that buffering by oxygen transfer may control the fO2 of residual gases down to several hundred degrees below the solidus in the early stages of cooling. Although the details of the fO2 buffering mechanisms for oxygen transfer are unknown, the fact that fO2 buffering is effective from molten to subsolidus conditions suggests that the reaction mechanisms must change with cooling as the reactants change from predominantly melt, to melt plus crystals, to glass plus crystals. Mass balance calculations suggest that redox reactions between the gas and ferrous/ferric iron in the lava are plausible mechanisms for the oxygen transfer and that the fO2 of the gases is buffered by sliding ferrous/ferric equilibria in the erupting lavas. Contrary to expectations based on models predicting the oxidation of basalt by H2 and CO escape during crustal storage, CO2-rich Type I gases and CO2-poor Type II gases have identical oxygen fugacities despite greatly different crustal storage and degassing histories. Volcanic gas data give a tightly co

  20. K-Ar ages, paleomagnetism, and geochemistry of the South Auckland volcanic field, North Island, New Zealand

    International Nuclear Information System (INIS)

    Briggs, R.M.; Okada, T.; Itaya, T.; Shibuya, H.; Smith, I.E.M.

    1994-01-01

    The South Auckland volcanic field is one of the Pliocene-Quaternary intraplate basaltic fields in northern North Island. It consists of at least 97 monogenetic volcanic centres covering an area of c. 300 km 2 , 38 km south of Auckland. Fifty-nine of the volcanic centres are characterised by mainly magmatic or effusive activity that constructed scoria cones and lava flows, while 38 are mainly phreatomagmatic or explosive that produced tuff rings and maars. Rock types consist of basanites, hawaiites, nepheline hawaiites, transitional basalts, and ol-tholeiitic basalts, with relatively minor amounts of nephelinites, alkali basalts, Q-tholeiitic basalts, and nepheline mugearites. Forty-three new K-Ar ages are presented, which range from 0.51 to 1.59 Ma, and show two peaks of activity at 0.6 and 1.3 Ma. Paleomagnetic determinations at 26 selected sites agree well with the paleomagnetic reversal time scale and support the K-Ar age data. Age data from each of the volcanic fields of Okete, Ngatutura, South Auckland, and Auckland, which constitute the Auckland intraplate basaltic province, show that they have developed within a time span of 0.3-1.1 Ma. After activity ceased in any particular field, a new field then developed 35-38 km to the north. These consistent time/space patterns indicate the possibility of a mantle source migrating northwards at c. 5 cm/yr. There is no correlation of rock composition with time, which is consistent with observations in the Northland intraplate province, but is not consistent with the formerly invoked rising diapir model. (author). 30 refs., 8 figs., 3 tabs

  1. The Western Arabian intracontinental volcanic fields as a potential UNESCO World Heritage site

    Science.gov (United States)

    Németh, Károly; Moufti, Mohammed R.

    2017-04-01

    UNESCO promotes conservation of the geological and geomoprhological heritage through promotion of protection of these sites and development of educational programs under the umbrella of geoparks among the most globally significant ones labelled as UNESCO Global Geoparks. UNESCO also maintains a call to list those natural sites that provide universal outstanding values to demonstrate geological features or their relevance to our understanding the evolution of Earth. Volcanoes currently got a surge in nomination to be UNESCO World Heritage sites. Volcanic fields in the contrary fell in a grey area of nominations as they represents the most common manifestation of volcanism on Earth hence they are difficult to view as having outstanding universal values. A nearly 2500-km long 300-km wide region of dispersed volcanoes located in the Western Arabian Penninsula mostly in the Kingdom of Saudi Arabia form a near-continuous location that carries universal outstanding value as one of the most representative manifestation of dispersed intracontinental volcanism on Earth to be nominated as an UNESCO World Heritage site. The volcanic fields formed in the last 20 Ma along the Red Sea as group of simple basaltic to more mature and long-lived basalt to trachyte-to-rhyolite volcanic fields each carries high geoheritage values. While these volcanic fields are dominated by scoria and spatter cones and transitional lava fields, there are phreatomagmatic volcanoes among them such as maars and tuff rings. Phreatomagmatism is more evident in association with small volcanic edifices that were fed by primitive magmas, while phreatomagmatic influences during the course of a larger volume eruption are also known in association with the silicic eruptive centres in the harrats of Rahat, Kishb and Khaybar. Three of the volcanic fields are clearly bimodal and host small-volume relatively short-lived lava domes and associated block-and-ash fans providing a unique volcanic landscape commonly not

  2. A micro-scale investigation of melt production and extraction in the upper mantle based on silicate melt pockets in ultramafic xenoliths from the Bakony-Balaton Highland Volcanic Field (Western Hungary)

    DEFF Research Database (Denmark)

    Bali, Eniko; Zanetti, A.; Szabo, C.

    2008-01-01

    Mantle xenoliths in Neogene alkali basalts of the Bakony-Balaton Highland Volcanic Field (Western Hungary) frequently have melt pockets that contain silicate minerals, glass, and often carbonate globules. Textural, geochemical and thermobarometric data indicate that the melt pockets formed...

  3. Petrologic evaluation of Pliocene basaltic volcanism in Eastern Anatolian region, Turkey: Evidence for mixing of melts derived from both shallow and deep mantle sources

    Science.gov (United States)

    Oyan, Vural; Özdemir, Yavuz; Keskin, Mehmet; Güleç, Nilgün

    2017-04-01

    Collision-related Neogene volcanism in the Eastern Anatolia region (EAR) began after the continent-continent collision between the Arabia and the Eurasia plates, and spreads in a wide zone from the Erzurum-Kars Plateau in the northeast to the Karacadaǧ in the south. Volcanic activity in the EAR started 15 Ma ago (Middle Miocene) in the south of the region. Voluminous basaltic lavas from local eruption centers formed basaltic lava plateaus and volcanic cones as a result of high production level of volcanism during the Pliocene time interval. Our dating results (Ar-Ar and K-Ar) indicate that age of this Late Miocene-Pliocene magmatic activity range between 6 and 3.5 Ma. Volcanic products contain alkaline and subalkaline lavas, ranging in composition from basalts to andesites and trachyandesites. Our EC-AFC and AFC modeling, based on trace element and Sr, Nd, Pb isotopic compositions, suggests about 2-7 % crustal contamination in the evolved andesites and trachyandesites. MORB and primitive mantle normalized patterns of the lavas and isotopic compositions imply that alkaline and subalkaline basalts erupted in Pliocene time interval in the EAR could have been derived from a mantle source that had previously been enriched by a clear subduction component. A partial melting model was conducted to evaluate partial melting processes in the mantle source of the Pliocene basalts. Our melting model calculations suggest that basaltic melts in the EAR could have been produced by melting of mantle sources containing spinel, garnet and amphibole with melting degree in the range of 0.7-7%. The products of mixing of these derivative melts are the Pliocene basaltic lavas of the Eastern Anatolian Region.

  4. The Carrán-Los Venados volcanic field and its relationship with coeval and nearby polygenetic volcanism in an intra-arc setting

    Science.gov (United States)

    Bucchi, Francisco; Lara, Luis E.; Gutiérrez, Francisco

    2015-12-01

    Understanding the relationship between monogenetic and polygenetic volcanism has been a long-standing goal in volcanology, especially in cases where these two styles of volcanism are coeval and geographically adjacent. We studied the Carrán-Los Venados (CLV) volcanic field and made comparisons with published data on CLV's polygenetic neighbor Puyehue-Cordón Caulle (PCC) in the Southern Andean arc, using quantitative tools and recent numerical simulations of magma reservoir formation. CLV is a basaltic to basaltic andesitic volcanic field composed of 65 post-glacial scoria cones and maars and a 1-km-high Pleistocene stratovolcano, whereas PCC is a basaltic to rhyolitic composite volcano. Our results point to three main differences between CLV and PCC: (1) the CLV magmas differentiate at low-crustal reservoirs, followed by rapid ascent to the surface, while the PCC magmas stagnate and differentiate in lower- and upper-crustal reservoirs; (2) CLV is elongated in the NE direction while PCC is elongated in the NW direction. Under the current stress field (N60°E σHmax), these two volcanic alignments correspond, respectively, to local extensional and compressive deformation zones within the arc; and (3), the post-glacial CLV magma flux was estimated to be 3.1 ± 1.0 km3/ky, which is similar to the average magma flux estimated for PCC; however, the PCC magma flux is estimated at approximately twice this value during peak eruptive periods (5.5 ± 1.1 km3/ky). Based on numerical simulations, CLV is in a limit situation to create and sustain a mush-type upper-crustal reservoir containing highly crystalline magma, which is however not eruptible. The PCC volcanic system would have been able to create a stable reservoir containing eruptible silicic magma during periods of peak magma flux. We postulate that monogenetic volcanism occurs at CLV due to both low magma flux and an extensional/transtensional regime that favors rapid magma rise without storage and differentiation in

  5. Field-trip guides to selected volcanoes and volcanic landscapes of the western United States

    Science.gov (United States)

    ,

    2017-06-23

    The North American Cordillera is home to a greater diversity of volcanic provinces than any comparably sized region in the world. The interplay between changing plate-margin interactions, tectonic complexity, intra-crustal magma differentiation, and mantle melting have resulted in a wealth of volcanic landscapes.  Field trips in this guide book collection (published as USGS Scientific Investigations Report 2017–5022) visit many of these landscapes, including (1) active subduction-related arc volcanoes in the Cascade Range; (2) flood basalts of the Columbia Plateau; (3) bimodal volcanism of the Snake River Plain-Yellowstone volcanic system; (4) some of the world’s largest known ignimbrites from southern Utah, central Colorado, and northern Nevada; (5) extension-related volcanism in the Rio Grande Rift and Basin and Range Province; and (6) the eastern Sierra Nevada featuring Long Valley Caldera and the iconic Bishop Tuff.  Some of the field trips focus on volcanic eruptive and emplacement processes, calling attention to the fact that the western United States provides opportunities to examine a wide range of volcanological phenomena at many scales.The 2017 Scientific Assembly of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) in Portland, Oregon, was the impetus to update field guides for many of the volcanoes in the Cascades Arc, as well as publish new guides for numerous volcanic provinces and features of the North American Cordillera. This collection of guidebooks summarizes decades of advances in understanding of magmatic and tectonic processes of volcanic western North America. These field guides are intended for future generations of scientists and the general public as introductions to these fascinating areas; the hope is that the general public will be enticed toward further exploration and that scientists will pursue further field-based research.

  6. Extensional Volcanism of the Taos Plateau Volcanic Field, Northern Rio Grande Rift, USA: New Insights from Geologic Mapping, 40Ar/39Ar Geochronology, Geochemistry and Geophysical Modeling

    Science.gov (United States)

    Thompson, R. A.; Turner, K. J.; Cosca, M. A.; Drenth, B.; Grauch, V. J. S.

    2016-12-01

    The Pliocene Taos Plateau Volcanic Field (TPVF) is the largest volcanic field of the Rio Grande rift. Deposits of the TPVF are distributed across 4500 km2 in the southern part of the 11,500 km2 San Luis Valley in southern Colorado and northern New Mexico constituting a major component of the structural San Luis Basin (SLB) fill. Exposed deposit thicknesses range from a few meters near the distal termini of basaltic lava flows to 240 m in the Rio Grande gorge near Taos, NM. New geologic mapping and 100 high-resolution 40Ar/39Ar age determinations help identify a complex distribution of >50 exposed eruptive centers ranging in composition from basalt to rhyolite. Total eruptive volume, estimated from geologic map relations, geophysical modeling of basin geometry and subsurface distribution of basaltic deposits, are approximately 300 km3; comprising 66% Servilleta Basalt (tholeiite), 3% mildly alkaline trachybasalt & trachyandesite, 12% olivine andesite, 17% dacite, and Guadalupe Mountain/Cerro Negro, 3.9 Ma Ute Mountain, and 3 Ma San Antonio Mountain) reach elevations of 3300 m, 770 m above the valley floor each spatially and temporally associated with fault-bounded sub-basins superposed on the broader structural SLB. Locally, coeval Pliocene fault-slip rates are 2.5 times the long-term rates determined for the SLB confirming the temporal association of local intrabasin extensional faulting and eruptive centers.

  7. Paleoproterozoic arc basalt-boninite-high magnesian andesite-Nb enriched basalt association from the Malangtoli volcanic suite, Singhbhum Craton, eastern India: Geochemical record for subduction initiation to arc maturation continuum

    Science.gov (United States)

    Rajanikanta Singh, M.; Manikyamba, C.; Ganguly, Sohini; Ray, Jyotisankar; Santosh, M.; Dhanakumar Singh, Th.; Chandan Kumar, B.

    2017-02-01

    The Singhbhum Craton of eastern India preserves distinct signatures of ultramafic-mafic-intermediate-felsic magmatism of diverse geodynamic affiliations spanning from Paleo-Mesoarchean to Proterozoic. Here we investigate the 2.25 Ga Malangtoli volcanic rocks that are predominantly clinopyroxene- and plagioclase-phyric, calc-alkaline in nature, display basalt-basaltic andesite compositions, and preserve geochemical signatures of subduction zone magmatism. Major, trace and rare earth element characteristics classify the Malangtoli volcanic rocks as arc basalts, boninites, high magnesian andesites (HMA) and Nb enriched basalts (NEB). The typical LILE enriched-HFSE depleted geochemical attributes of the arc basalts corroborate a subduction-related origin. The boninitic rocks have high Mg# (0.8), MgO (>25 wt.%), Ni and Cr contents, high Al2O3/TiO2 (>20), Zr/Hf and (La/Sm)N (>1) ratios with low (Gd/Yb)N (54 wt.%), MgO (>6 wt.%), Mg# (0.47) with elevated Cr, Co, Ni and Th contents, depleted (Nb/Th)N, (Nb/La)N, high (Th/La)N and La/Yb (Y with low Sr/Y. The NEBs have higher Nb contents (6.3-24 ppm), lower magnitude of negative Nb anomalies with high (Nb/Th)pm = 0.28-0.59 and (Nb/La)pm = 0.40-0.69 and Nb/U = 2.8-34.4 compared to normal arc basalts [Nb = generation of NEB. Thus, the arc basalt-boninite-HMA-NEB association from Malangtoli volcanic suite in Singhbhum Craton preserves the signature of a complete spectrum of Paleoproterozoic active convergent margin processes spanning from subduction initiation to arc maturation.

  8. Basalt models for the Mars penetrator mission: Geology of the Amboy Lava Field, California

    Science.gov (United States)

    Greeley, R.; Bunch, T. E.

    1976-01-01

    Amboy lava field (San Bernardino County, California) is a Holocene basalt flow selected as a test site for potential Mars Penetrators. A discussion is presented of (1) the general relations of basalt flow features and textures to styles of eruptions on earth, (2) the types of basalt flows likely to be encountered on Mars and the rationale for selection of the Amboy lava field as a test site, (3) the general geology of the Amboy lava field, and (4) detailed descriptions of the target sites at Amboy lava field.

  9. Assessment of the potential respiratory hazard of volcanic ash from future Icelandic eruptions: A study of archived basaltic to rhyolitic ash samples

    Science.gov (United States)

    Damby, David; Horwell, Claire J.; Larsen, Gudrun; Thordarson, Thorvaldur; Tomatis, Maura; Fubini, Bice; Donaldson, Ken

    2017-01-01

    BackgroundThe eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011), Iceland, triggered immediate, international consideration of the respiratory health hazard of inhaling volcanic ash, and prompted the need to estimate the potential hazard posed by future eruptions of Iceland’s volcanoes to Icelandic and Northern European populations. MethodsA physicochemical characterization and toxicological assessment was conducted on a suite of archived ash samples spanning the spectrum of past eruptions (basaltic to rhyolitic magmatic composition) of Icelandic volcanoes following a protocol specifically designed by the International Volcanic Health Hazard Network. ResultsIcelandic ash can be of a respirable size (up to 11.3 vol.% ambient PM concentrations. This particularly applies to highly explosive silicic eruptions, but can also hold true for explosive basaltic eruptions or discrete events associated with basaltic fissure eruptions.

  10. New Insights to the Mid Miocene Calc-alkaline Lavas of the Strawberry Volcanics, NE Oregon Surrounded by the Coeval Tholeiitic Columbia River Basalt Province

    Science.gov (United States)

    Steiner, A. R.; Streck, M. J.

    2013-12-01

    The Strawberry Volcanics (SV) of NE Oregon were distributed over 3,400 km2 during the mid-Miocene and comprise a diverse volcanic suite, which span the range of compositions from basalt to rhyolite. The predominant composition of this volcanic suite is calc-alkaline (CA) basaltic andesite and andesite, although tholeiitic (TH) lavas of basalt to andesite occur as well. The coeval flood basalts of the Columbia River province surround the SV. Here we will discuss new ages and geochemical data, and present a new geologic map and stratigraphy of the SV. The SV are emplaced on top of pre-Tertiary accreted terranes of the Blue Mountain Province, Mesozoic plutonic rocks, and older Tertiary volcanic rocks thought to be mostly Oligocene of age. Massive rhyolites (~300 m thick) are exposed mainly along the western flank and underlie the intermediate composition lavas. In the southern portion of this study area, alkali basaltic lavas, thought to be late Miocene to early Pliocene in age, erupted and overlie the SV. In addition, several regional ignimbrites reach into the area. The 9.7 Ma Devine Canyon Tuff and the 7.1 Ma Rattlesnake Tuff also overlie the SV. The 15.9-15.4 Ma Dinner Creek Tuff is mid-Miocene, and clear stratigraphic relationships are found in areas where the tuff is intercalated between thick SV lava flows. All of the basalts of the SV are TH and are dominated by phenocryst-poor (≤2%) lithologies. These basalts have an ophitic texture dominated by plagioclase, clinopyroxene and olivine (often weathered to iddingsite). Basalts and basaltic andesites have olivine Fo #'s ranging from 44 at the rims (where weathered to iddingsite) and as high as 88 at cores. Pyroxene Mg #'s range from 65 to 85. Andesites of the SV are sub-alkaline, and like the basalts, are exceedingly phenocryst-poor (≤3%) with microphenocrysts of plagioclase and lesser pyroxene and olivine, which occasionally occur as crystal clots of ~1-3 mm instead of single crystals. In addition, minimal

  11. Investigating the Mantle Source of the Lunar Crater Volcanic Field, Nevada: Evidence of a Thermal Plume?

    Science.gov (United States)

    Lee, J. W.; Roden, M.

    2016-12-01

    The Easy Chair Crater (ECC), located within the Lunar Crater Volcanic Field (LCVF) in central Nevada is particularly interesting because of the unusually high equilibrium temperatures and strain recorded by the mantle-derived xenoliths at LCVF1. In addition, a gravity and elevation anomaly suggests the possibility of an underlying thermal plume in the region2. In order to determine if the rocks at ECC are geochemically similar to rocks from other plume-related regions, we analyzed melt inclusions and olivine phenocrysts collected from basalts near the crater. Chlorine amounts in melt inclusions were normalized to the highly incompatible K to produce a ratio that is insensitive to crystallization within or along the walls of the inclusion3. Because Cl is implicated in lithosphere recycling, the Cl/K ratio can be used to differentiate magmatic source components. Initial results (Fig. 1) indicate that basalts from ECC are geochemically more similar to ocean island basalts than to MORB or arc basalts. Elemental ratios in olivine phenocrysts from basaltic magmas can be used to determine the petrology of the source rock for particular silicate melts. In turn, petrology of mantle sources is thought to correlate with source nature (e.g., plume versus upper mantle)4. Specifically, Ni and Mn amounts were evaluated in order to determine if magma sources were pyroxenite-rich. Preliminary calculations of the wt. fraction of pyroxenite in the source of ECC basalts ranged from 0.13 to 0.68 indicating the possibility of a significant amount of pyroxenite in the magmatic source which would be expected if a plume was present beneath LCVF. References:1Smith, D. (2000) JGR 105: 16769; 2Saltus, R.W. & Thompson, G.A. (1995) Tectonics 14:1235; 3Patiño Douce, A.E. & Roden, M.F. (2006) Geochim Cosmochim Acta 70: 3173; 4Gurenko et al. (2010) Contrib Mineral Petrol 159: 689

  12. Hf Isotope Evidence for Subducted Basalt and Sediment Contributions to the Eastern Trans-Mexican Volcanic Belt

    Science.gov (United States)

    Cai, Y.; Tuena, A. G.; Capra, L.; Straub, S. M.; Goldstein, S. L.; Langmuir, C. H.

    2005-12-01

    Magmas generated at thick crust continental arcs often have enriched continental crust-like trace element patterns and Pb-Sr-Nd isotope ratios that are intermediate to both upper mantle and crustal compositions. Thus it is difficult to distinguish between contributions from (a) the subducted basalt and the upper mantle wedge, and (b) subducted sediment and the continental crust. These issues have been the focus of major controversy. Here we show evidence for subduction contributions to lavas in a classic thick crust environment. In Eastern Trans-Mexican Volcanic Belt, the upper continental crust is 30 km to 45 km thick. However, primitive mafic lavas erupt on many sites across the arc. We have analyzed the subducting sediments as represented by DSDP 487, located seaward of the trench, where the lower third of the sediment column has strongly hydrothermal pelagic features and the upper two-thirds is composed of terrigenous sediments. The pelagic sediments have distinctive features that could be used to identify a subduction component in the volcanics, including high REE/Hf, negative Ce anomalies, and Nd-Hf isotopes that lie on the "seawater array" and offset from the "mantle-crust" array. We have focused on a unique series of lavas from volcano Nevado de Toluca, located southwest of Mexico City. These lavas show negative Ce anomalies coupled with low REE/Hf and Zr/Nd ratios. Hf-Nd isotope ratios show a shallow trend compared to the mantle-crust array, consistent with a pelagic component. In addition, Hf isotopes show a striking positive correlation with Ce anomalies that trend toward the pelagic sediment compositions. These and other observations provide clear evidence for a component from subducted sediment in the lavas. In addition, there is a negative correlation of Lu/Hf and Hf isotopes that requires a mixing endmember with MORB-like Hf isotope ratios but with lower than MORB Lu/Hf. This indicates a melt from eclogitic subducted basalt. Compared to other

  13. Rocky 7 prototype Mars rover field geology experiments 1. Lavic Lake and sunshine volcanic field, California

    Science.gov (United States)

    Arvidson, R. E.; Acton, C.; Blaney, D.; Bowman, J.; Kim, S.; Klingelhofer, G.; Marshall, J.; Niebur, C.; Plescia, J.; Saunders, R.S.; Ulmer, C.T.

    1998-01-01

    Experiments with the Rocky 7 rover were performed in the Mojave Desert to better understand how to conduct rover-based, long-distance (kilometers) geological traverses on Mars. The rover was equipped with stereo imaging systems for remote sensing science and hazard avoidance and 57Fe Mo??ssbauer and nuclear magnetic resonance spectrometers for in situ determination of mineralogy of unprepared rock and soil surfaces. Laboratory data were also obtained using the spectrometers and an X ray diffraction (XRD)/XRF instrument for unprepared samples collected from the rover sites. Simulated orbital and descent image data assembled for the test sites were found to be critical for assessing the geologic setting, formulating hypotheses to be tested with rover observations, planning traverses, locating the rover, and providing a regional context for interpretation of rover-based observations. Analyses of remote sensing and in situ observations acquired by the rover confirmed inferences made from orbital and simulated descent images that the Sunshine Volcanic Field is composed of basalt flows. Rover data confirmed the idea that Lavic Lake is a recharge playa and that an alluvial fan composed of sediments with felsic compositions has prograded onto the playa. Rover-based discoveries include the inference that the basalt flows are mantled with aeolian sediment and covered with a dense pavement of varnished basalt cobbles. Results demonstrate that the combination of rover remote sensing and in situ analytical observations will significantly increase our understanding of Mars and provide key connecting links between orbital and descent data and analyses of returned samples. Copyright 1998 by the American Geophysical Union.

  14. 3-D high-speed imaging of volcanic bomb trajectory in basaltic explosive eruptions

    Science.gov (United States)

    Gaudin, D.; Taddeucci, J; Houghton, Bruce F.; Orr, Tim R.; Andronico, D.; Del Bello, E.; Kueppers, U.; Ricci, T.; Scarlato, P.

    2016-01-01

    Imaging, in general, and high speed imaging in particular are important emerging tools for the study of explosive volcanic eruptions. However, traditional 2-D video observations cannot measure volcanic ejecta motion toward and away from the camera, strongly hindering our capability to fully determine crucial hazard-related parameters such as explosion directionality and pyroclasts' absolute velocity. In this paper, we use up to three synchronized high-speed cameras to reconstruct pyroclasts trajectories in three dimensions. Classical stereographic techniques are adapted to overcome the difficult observation conditions of active volcanic vents, including the large number of overlapping pyroclasts which may change shape in flight, variable lighting and clouding conditions, and lack of direct access to the target. In particular, we use a laser rangefinder to measure the geometry of the filming setup and manually track pyroclasts on the videos. This method reduces uncertainties to 10° in azimuth and dip angle of the pyroclasts, and down to 20% in the absolute velocity estimation. We demonstrate the potential of this approach by three examples: the development of an explosion at Stromboli, a bubble burst at Halema'uma'u lava lake, and an in-flight collision between two bombs at Stromboli.

  15. Geologic and geophysical investigations of the Zuni-Bandera volcanic field, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ander, M.E.; Heiken, G.; Eichelberger, J.; Laughlin, A.W.; Huestis, S.

    1981-05-01

    A positive, northeast-trending gravity anomaly, 90 km long and 30 km wide, extends southwest from the Zuni uplift, New Mexico. The Zuni-Bandera volcanic field, an alignment of 74 basaltic vents, is parallel to the eastern edge of the anomaly. Lavas display a bimodal distribution of tholeiitic and alkalic compositions, and were erupted over a period from 4 Myr to present. A residual gravity profile taken perpendicular to the major axis of the anomaly was analyzed using linear programming and ideal body theory to obtain bounds on the density contrast, depth, and minimum thickness of the gravity body. Two-dimensionality was assumed. The limiting case where the anomalous body reaches the surface gives 0.1 g/cm/sup 3/ as the greatest lower bound on the maximum density contrast. If 0.4 g/cm/sup 3/ is taken as the geologically reasonable upper limit on the maximum density contrast, the least upper bound on the depth of burial is 3.5 km and minimum thickness is 2 km. A shallow mafic intrusion, emplaced sometime before Laramide deformation, is proposed to account for the positive gravity anomaly. Analysis of a magnetotelluric survey suggests that the intrusion is not due to recent basaltic magma associated with the Zuni-Bandera volcanic field. This large basement structure has controlled the development of the volcanic field; vent orientations have changed somewhat through time, but the trend of the volcanic chain followed the edge of the basement structure. It has also exhibited some control on deformation of the sedimentary section.

  16. Origin and formation of neck in a basin landform: Examples from the Camargo volcanic field, Chihuahua (México)

    Science.gov (United States)

    Aranda-Gómez, José Jorge; Housh, Todd B.; Luhr, James F.; Noyola-Medrano, Cristina; Rojas-Beltrán, Marco Antonio

    2010-11-01

    The term "neck in a basin" (NIB) landform is proposed for volcanic structures characterized by nearly circular to elliptical open basins, located near the headwater of small streams or drainages, which contain small volcanic necks and/or erosion remnants of one (or more) cinder cones. NIB landforms are typically 400-1000 m in diameter and 30-100 m deep and are invariably surrounded by steep walls cut into one or more basaltic lava flows. NIB landforms lack evidence for a primary volcanogenic origin through either collapse or youthful eruptive activity. In the Pliocene portion (4 - 2 Ma) of the Plio-Quaternary Camargo volcanic field of Chihuahua (México), they are relatively numerous and are best developed at the margins of a gently sloping (3-5°) basaltic lava plateau and near major fault scarps. Mature NIB landforms have ring-like circular drainage patterns and central elevations marked by small volcanic necks and associated radial dikes intruded into basaltic scoria-fall and /or agglutinate deposits. We interpret NIB landforms to be erosional in origin. They develop where a cinder cone is surrounded by one or more sheet-like lava flows from one or more separate subsequent vents. Once eruptive activity ceases at the younger volcano(es), fluvial erosion gradually produces a ring-like drainage pattern along the contact between the lava and the older cinder cone. As a response to a marked contrast in resistance to erosion between lava flows and unconsolidated or poorly lithified pyroclastic deposits, the older cinder cone is preferentially eroded. In this manner, a ring-shaped, steep sided erosional basin, preformed by the scoria cone, is produced; eventually fluvial erosion exposes the central neck and dikes. The volume, relief, and age of the volcanic field are key factors in the formation and preservation of a NIB landform. They form in volcanic fields where lava emissions are sufficiently vigorous to engulf earlier cinder cones. Relief and associated high rates

  17. Lunar Mare Basalts as Analogues for Martian Volcanic Compositions: Evidence from Visible, Near-IR, and Thermal Emission Spectroscopy

    Science.gov (United States)

    Graff, T. G.; Morris, R. V.; Christensen, P. R.

    2003-01-01

    The lunar mare basalts potentially provide a unique sample suite for understanding the nature of basalts on the martian surface. Our current knowledge of the mineralogical and chemical composition of the basaltic material on Mars comes from studies of the basaltic martian meteorites and from orbital and surface remote sensing observations. Petrographic observations of basaltic martian meteorites (e.g., Shergotty, Zagami, and EETA79001) show that the dominant phases are pyroxene (primarily pigeonite and augite), maskelynite (a diaplectic glass formed from plagioclase by shock), and olivine [1,2]. Pigeonite, a low calcium pyroxene, is generally not found in abundance in terrestrial basalts, but does often occur on the Moon [3]. Lunar samples thus provide a means to examine a variety of pigeonite-rich basalts that also have bulk elemental compositions (particularly low-Ti Apollo 15 mare basalts) that are comparable to basaltic SNC meteorites [4,5]. Furthermore, lunar basalts may be mineralogically better suited as analogues of the martian surface basalts than the basaltic martian meteorites because the plagioclase feldspar in the basaltic Martian meteorites, but not in the lunar surface basalts, is largely present as maskelynite [1,2]. Analysis of lunar mare basalts my also lead to additional endmember spectra for spectral libraries. This is particularly important analysis of martian thermal emission spectra, because the spectral library apparently contains a single pigeonite spectrum derived from a synthetic sample [6].

  18. Geochemical dissection of a monogenetic eruption: Motukorea Volcano, the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    McGee, L. E.; Millet, M.; Smith, I. E.; Nemeth, K.; Lindsay, J. M.

    2012-12-01

    Compositional variation through basaltic monogenetic eruptive sequences provides a unique window into the processes and source heterogeneity of small-scale magmatic systems. A well-exposed, continuous sequence on Motukorea volcano in the Auckland Volcanic Field, New Zealand, consists of an early tuff ring, scoriaceous deposits and late lava flows which allow the evolution of the eruption to be studied at very high resolution. The deposits show a spectrum of basaltic compositions from Mg# 60 nephelinite (early tuff ring) to Mg# 70 alkalic basalt (lava). Within each main eruptive phase (i.e. tuff, scoria and lava) very little variation is observed in major element chemistry, suggesting that fractional crystallisation has a limited effect. Systematic changes in trace element chemistry, however, are significant through the sequence (for example, Sr, Zr and Th concentrations double between the tuff and lava units). High abundances of incompatible elements in the tuff unit compared to the lavas are consistent with changes in composition being due to an increase in the degree of melting as the eruption progressed. Variation in Pb-isotopic compositions up-sequence indicates subtle changes in mantle source. We suggest that the sequence at Motukorea captures the progressive exhaustion of eclogite domains within a garnet-peridotite matrix. This is seen in the initial eruption of higher 207Pb/204Pb, nephelinitic material followed by the eruption of lower 207Pb/204Pb alkalic basalt. This chemical change coincides with a switch in the mode of eruption, with larger degrees of partial melting terminating the phreatomagmatic phase and giving rise to the later, more effusive eruption. This detailed study shows that small volcanic sequences are far more complex than the term 'monogenetic' implies.

  19. Origin of the volcanic rocks erupted in the eastern Manus Basin: Basaltic andesite-andesite-dacite associations

    Science.gov (United States)

    Ma, Yao; Zeng, Zhigang; Chen, Shuai; Yin, Xuebo; Wang, Xiaoyuan

    2017-06-01

    There has been much recent interest in the origin of intermediate lava and several hypotheses are: 1) direct melting of the mantle under water-saturated conditions, 2) partial melting of altered crust, 3) fractional crystallization of parent magma, and 4) magma mixing of mafic magmas with dacitic/rhyolitic magmas. Volcanic rocks series ranging from basaltic andesite to dacite (SiO2 ranges from 53.8 to 63.0 wt.%) from the eastern Manus Basin were detected for major and trace element compositions to understand their origin. Low H2O contents, positive correlations of La-SiO2 and Yb-SiO2, oxygen isotope data and the indistinct change of trace element concentrations in oscillatory zoning of plagioclase phenocrysts rule out the models in which silicic lava results from direct melting of hydrous mantle, partial melting of altered oceanic crust or gabbros, and magma mixing, respectively. Besides, the geochemical data of whole rock and melt inclusions indicate that fractional crystallization plays a dominant role in generating the intermediate lava with subduction features.

  20. Anomalous Geologic Setting of the Spencer-High Point Volcanic Field, Eastern Snake River Plain, Idaho

    Science.gov (United States)

    Iwahashi, G. S.; Hughes, S. S.

    2006-12-01

    The Spencer-High Point (SHP) volcanic field comprises an ~1700 sq km mafic volcanic rift zone located near Yellowstone in the eastern Snake River Plain (ESRP). SHP lava flows are both similar to and distinct from typical olivine tholeiite lavas of the ESRP. SHP has unique physical volcanic features characterized by numerous cinder cones and short lava flows; whereas, spatter ramparts, fissures and longer flows dominate in other ESRP regions. Topography and aerial photos indicate that vents are generally aligned northwest- southeast, which is sub-parallel to adjacent Basin and Range faults in much of the ESRP. Yet individual vents and other structural elements in SHP where Basin and Range, ESRP and thrust-faulted mountain belts all intersect, are elongated in a more east-west direction. Distinct structural control is manifested in an overall southward slope over the entire volcanic field. Short lava flows tend to flow north or south off of a central topographically higher zone of overlapping lava flows and smaller vents. Several smaller vents appear to be parasitic cones adjacent to larger eruptive centers. Contrary to these relations, preliminary geochemical data by Leeman (1982) and Kuntz et al. (1992) suggest SHP lavas are typical ESRP olivine tholeiite basalts, which notably have coarsely diktytaxitic texture. The central and eastern sections of the SHP field contain lavas with large (3-8cm), clear, euhedral plagioclase phenocrysts but without diktytaxitic texture. Lava flows in the central and eastern sections of SHP volcanic field are pahoehoe. These also contain crustal xenoliths implying a prolonged crustal history. Geochemical whole rock and microprobe analyses are currently being processed for petrogenetic history.

  1. New insights into the origin of the bimodal volcanism in the middle Okinawa Trough: not a basalt-rhyolite differentiation process

    Science.gov (United States)

    Zhang, Yuxiang; Zeng, Zhigang; Chen, Shuai; Wang, Xiaoyuan; Yin, Xuebo

    2017-04-01

    In the middle Okinawa Trough (MOT), rhyolites have been typically considered as products of crystallization differentiation of basaltic magma as a feature of bimodal volcanism. However, the evidence is insufficient. This paper compared chemical trends of volcanic rocks from the MOT with fractional crystallization simulation models and experimental results and utilized trace element modeling combined with Rayleigh fractionation calculations to re-examine fractional crystallization processes in generating rhyolites. Both qualitative and quantitative studies indicate that andesites, rather than rhyolites, originate by fractional crystallization from basalts in the MOT. Furthermore, we established two batch-melting models for the MOT rhyolites and proposed that type 1 rhyolites are produced by remelting of andesites with amphiboles in the residue, while type 2 rhyolites are derived from remelting of andesites without residual amphiboles. It is difficult to produce melts with a SiO2 content ranging from 62% to 68% either by magmatic differentiation from basalts or by remelting of andesites, and this difficulty might help account for the compositional gap (Daly gap) for bimodal volcanism in the Okinawa Trough.

  2. Constraining the Origin of Basaltic Volcanic Rocks Observed by Opportunity Along the Rim of Endeavour Crater

    Science.gov (United States)

    Bouchard, M. C.; Jolliff, B. L.; Farrand, W. H.; Mittlefehldt, D. W.

    2017-01-01

    The Mars Exploration Rover (MER) Opportunity continues its exploration along the rim of Endeavour Crater. While the primary focus for investigation has been to seek evidence of aqueous alteration, Opportunity has observed a variety of rock types, including some that are hard and relatively unaltered. These rocks tend to occur most commonly as "float rocks" or "erratics" where the geologic setting does not clearly reveal their origin. Along the rim of Endeavour crater (Fig. 1), such rocks, commonly noted in Panoramic Camera (Pancam) left eye composites as "blue rocks", are abundant components of some of the Endeavour crater rim deposits, scree slopes, and colluvium deposits. In this abstract, we examine the similarity of several of these rocks analyzed using Opportunity's Alpha Particle X-Ray Spectrometer (APXS), images and color from the Pancam, and textures observed with the Microscopic Imager (MI. At issue is the blue rocks origin; are they impact melt or volcanic, what is their age relative to Endeavour crater, and how they are related to each other?

  3. The Auckland volcanic field, New Zealand: Geophysical evidence for structural and spatio-temporal relationships

    Science.gov (United States)

    Cassidy, John; Locke, Corinne A.

    2010-08-01

    Geophysical data from the monogenetic Auckland volcanic field reveal complex structural and spatio-temporal relationships at different scales. The volcanic field is coincident with regional magnetic and gravity anomalies that mark a major crustal suture and with a discontinuity marking a significant structural asperity. Here, the linear regional magnetic anomaly splays into a wide band of NNW-trending lineaments, arising from serpentinised shear zones in the upper crust, that matches the extent of the volcanic field and that may reflect a region of crustal weakness creating preferential permeability. However, there appears to be no simple correlation between the locations of individual vents and these lineaments that might delineate more shallow structural controls with this orientation, probably as a consequence of other structural influences. High-resolution aeromagnetic data over the volcanic field show that the volcanoes have a wide range of magnetic signatures indicating a variability of subsurface structure. Scoria cone volcanoes typically have strong anomalies (up to several 100 nT) whilst tuff-ring volcanoes typically have weak anomalies (less than 50 nT), though the surface geology is not always an indicator of the nature and extent of the subsurface deposits. Both cone and tuff-ring volcanoes in the Auckland field appear to be underlain by subsurface bowl-shaped bodies of basalt, implying that their eruption histories commonly involve lava ponding into early excavated craters. The present geophysical data give no evidence for subsurface dyke-like structures or for substantial near-surface volumes of basaltic rocks where there are no known eruption centres or buried flows. Aeromagnetic and palaeomagnetic data suggest that a number of adjacent vents with an implied structural linkage may be contemporaneous, though other examples occur where vents of clearly different ages exploit the same apparent structure. A unique feature of the Auckland field is that at

  4. Field-trip guide to a volcanic transect of the Pacific Northwest

    Science.gov (United States)

    Geist, Dennis; Wolff, John; Harpp, Karen

    2017-08-01

    The Pacific Northwest region of the United States provides world-class and historically important examples of a wide variety of volcanic features. This guide is designed to give a broad overview of the region’s diverse volcanism rather than focusing on the results of detailed studies; the reader should consult the reference list for more detailed information on each of the sites, and we have done our best to recognize previous field trip leaders who have written the pioneering guides. This trip derives from one offered as a component of the joint University of Idaho- Washington State University volcanology class taught from 1995 through 2014, and it borrows in theme from the classic field guide of Johnston and Donnelly-Nolan (1981). For readers interested in using this field guide as an educational tool, we have included an appendix with supplemental references to resources that provide useful background information on relevant topics, as well as a few suggestions for field-based exercises that could be useful when bringing students to these locations in the future. The 4-day trip begins with an examination of lava flow structures of the Columbia River Basalt, enormous lava fields that were emplaced during one of the largest eruptive episodes in Earth’s recent history. On the second day, the trip turns to the High Lava Plains, a bimodal volcanic province that transgressed from southeast to northwest from the Miocene through the Holocene, at the northern margin of the Basin and Range Province. This volcanic field provides excellent examples of welded ignimbrite, silicic lavas and domes, monogenetic basaltic lava fields, and hydrovolcanic features. The third day is devoted to a circumnavigation of Crater Lake, the result of one of the world’s best-documented caldera-forming eruptions. The caldera walls also expose the anatomy of Mount Mazama, a stratovolcano of the Cascade Range. The last day is spent at Newberry Volcano, a back-arc shield volcano topped by a

  5. Imaging subsurface density structure in Luynnier volcanic field, Saudi Arabia, using 3D gravity inversion technique

    Science.gov (United States)

    Aboud, Essam; El-shrief, Adel; Alqahtani, Faisal; Mogren, Saad

    2017-04-01

    On 19 May, 2009, an earthquake of magnitude (M=5.4) shocked the most volcanically active recent basaltic fields, Luynnier volcanic field, northwestern Saudi Arabia. This event was the largest recorded one since long time ago. Government evacuated the surrounding residents around the epicenter for over 3 months away from any future volcanic activity. The seismic event caused damages to buildings in the village around the epicenter and resulted in surface fissure trending in NNW-SSE direction with about 8 km length. Seismologists from Saudi Geological Survey (SGS) worked out on locating the epicenter and the cause of this earthquake. They collected seismic data from Saudi Geological Surveys Station Network as well as installed broadband seismic stations around the region of the earthquake. They finally concluded that the main cause of the M=5.4 event is dike intrusion at depth of about 5 km (not reached to the surface). In the present work, we carried out detailed ground/airborne gravity survey around the surficial fissure to image the subsurface volcanic structure where about 380 gravity stations were recorded covering the main fissure in an area of 600 km2. Gravity data was analyzed using CET edge detection tools and 3D inversion technique. The results revealed that, there is a magma chamber/body beneath the surface at 5-20 km depth and the main reason for the M=5.4 earthquake is tectonic settings of the Red Sea. Additionally, the area is characterized by set of faults trending in NW direction, parallel to the Red Sea, and most of the volcanic cones were located on faults/contacts implying that, they are structurally controlled. The 8-km surficial crack is extended SE underneath the surface.

  6. Magmatic infiltration and melting in the lower crust and upper mantle beneath the Cima volcanic field, California

    Science.gov (United States)

    Wilshire, H.G.; McGuire, A.V.

    1996-01-01

    Xenoliths of lower crustal and upper mantle rocks from the Cima volcanic field (CVF) commonly contain glass pockets, veins, and planar trains of glass and/or fluid inclusions in primary minerals. Glass pockets occupy spaces formerly occupied by primary minerals of the host rocks, but there is a general lack of correspondence between the composition of the glass and that of the replaced primary minerals. The melting is considered to have been induced by infiltration of basaltic magma and differentiates of basaltic magma from complex conduits formed by hydraulic fracturing of the mantle and crustal rocks, and to have occurred during the episode of CVF magmatism between ???7.5 Ma and present. Variable compositions of quenched melts resulted from mixing of introduced melts and products of melting of primary minerals, reaction with primary minerals, partial crystallization, and fractionation resulting from melt and volatile expulsion upon entrainment of the xenoliths. High silica melts (> ??? 60% SiO2) may result by mixing introduced melts with siliceous melts produced by reaction of orthopyroxene. Other quenched melt compositions range from those comparable to the host basalts to those with intermediate Si compositions and elevated Al, alkalis, Ti, P, and S; groundmass compositions of CVF basalts are consistent with infiltration of fractionates of those basalts, but near-solidus melting may also contribute to formation of glass with intermediate silica contents with infiltration only of volatile constituents.

  7. Primitive magmas at five Cascade volcanic fields: Melts from hot, heterogeneous sub-arc mantle

    Science.gov (United States)

    Bacon, C.R.; Bruggman, P.E.; Christiansen, R.L.; Clynne, M.A.; Donnelly-Nolan, J. M.; Hildreth, W.

    1997-01-01

    Major and trace element concentrations, including REE by isotope dilution, and Sr, Nd, Pb, and O isotope ratios have been determined for 38 mafic lavas from the Mount Adams, Crater Lake, Mount Shasta, Medicine Lake, and Lassen volcanic fields, in the Cascade arc, northwestern part of the United States. Many of the samples have a high Mg# [100Mg/(Mg + FeT) > 60] and Ni content (>140 ppm) such that we consider them to be primitive. We recognize three end-member primitive magma groups in the Cascades, characterized mainly by their trace-element and alkali-metal abundances: (1) High-alumina olivine tholeiite (HAOT) has trace element abundances similar to N-MORB, except for slightly elevated LILE, and has Eu/Eu* > 1. (2) Arc basalt and basaltic andesite have notably higher LILE contents, generally have higher SiO2 contents, are more oxidized, and have higher Cr for a given Ni abundance than HAOT. These lavas show relative depletion in HFSE, have lower HREE and higher LREE than HAOT, and have smaller Eu/Eu* (0.94-1.06). (3) Alkali basalt from the Simcoe volcanic field east of Mount Adams represents the third end-member, which contributes an intraplate geochemical signature to magma compositions. Notable geochemical features among the volcanic fields are: (1) Mount Adams rocks are richest in Fe and most incompatible elements including HFSE; (2) the most incompatible-element depleted lavas occur at Medicine Lake; (3) all centers have relatively primitive lavas with high LILE/HFSE ratios but only the Mount Adams, Lassen, and Medicine Lake volcanic fields also have relatively primitive rocks with an intraplate geochemical signature; (4) there is a tendency for increasing 87Sr/86Sr, 207Pb/204Pb, and ??18O and decreasing 206Pb/204Pb and 143Nd/144Nd from north to south. The three end-member Cascade magma types reflect contributions from three mantle components: depleted sub-arc mantle modestly enriched in LILE during ancient subduction; a modern, hydrous subduction component

  8. Submarine basaltic fountain eruptions in a back-arc basin during the opening of the Japan Sea

    Science.gov (United States)

    Hosoi, Jun; Amano, Kazuo

    2017-11-01

    Basaltic rock generated during the middle Miocene opening of the Japan Sea, is widely distributed on the back-arc side of the Japanese archipelago. Few studies have investigated on submarine volcanism related to opening of the Japan Sea. The present study aimed to reconstruct details of the subaqueous volcanism that formed the back-arc basin basalts (BABB) during this event, and to discuss the relationship between volcanism and the tectonics of back-arc opening, using facies analyses based on field investigation. The study area of the southern Dewa Hills contains well-exposed basalt related to the opening of the Japan Sea. Five types of basaltic rock facies are recognized: (1) coherent basalt, (2) massive platy basalt, (3) jigsaw-fit monomictic basaltic breccia, (4) massive or stratified coarse monomictic basaltic breccia with fluidal clasts, and (5) massive or stratified fine monomictic basaltic breccia. The basaltic rocks are mainly hyaloclastite. Based on facies distributions, we infer that volcanism occurred along fissures developed mainly at the center of the study area. Given that the rocks contain many fluidal clasts, submarine lava fountaining is inferred to have been the dominant eruption style. The basaltic rocks are interpreted as the products of back-arc volcanism that occurred by tensional stress related to opening of the Japan Sea, which drove strong tectonic subsidence and active lava fountain volcanism.

  9. The Lathrop Wells volcanic center: Status of field and geochronology studies

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Morley, R. [Los Alamos National Lab., Las Vegas, NV (United States); Wells, S. [California Univ., Riverside, CA (United States); Geissman, J.; McDonald, E.; McFadden, L.; Perry, F. [New Mexico Univ., Albuquerque, NM (United States); Murrell, M.; Poths, J. [Los Alamos National Lab., NM (United States); Forman, S. [Ohio State Univ., Columbus, OH (United States)

    1993-03-01

    The Lathrop Wells volcanic center is located 20 km south of the potential Yucca Mountain site, at the south end of the Yucca Mountain range. It has long been recognized as the youngest basalt center in the region. However, determination of the age and eruptive history of the center has proven problematic. The purpose of this paper is to describe the status of field and geochronology studies of the Lathrop Wells center. Our perspective is that it is critical to assess all possible methods for obtaining cross-checking data to resolve chronology and field problems. It is equally important to consider application of the range of chronology methods available in Quaternary geologic research. Such an approach seeks to increase the confidence in data interpretations through obtaining convergence among separate isotopic, radiogenic, and age-correlated methods. Finally, the assumptions, strengths, and weaknesses of each dating method need to be carefully described to facilitate an impartial evaluation of results.

  10. The Lathrop Wells volcanic center: Status of field and geochronology studies

    International Nuclear Information System (INIS)

    Crowe, B.; Morley, R.; Wells, S.; Geissman, J.; McDonald, E.; McFadden, L.; Perry, F.; Murrell, M.; Poths, J.; Forman, S.

    1993-01-01

    The Lathrop Wells volcanic center is located 20 km south of the potential Yucca Mountain site, at the south end of the Yucca Mountain range. It has long been recognized as the youngest basalt center in the region. However, determination of the age and eruptive history of the center has proven problematic. The purpose of this paper is to describe the status of field and geochronology studies of the Lathrop Wells center. Our perspective is that it is critical to assess all possible methods for obtaining cross-checking data to resolve chronology and field problems. It is equally important to consider application of the range of chronology methods available in Quaternary geologic research. Such an approach seeks to increase the confidence in data interpretations through obtaining convergence among separate isotopic, radiogenic, and age-correlated methods. Finally, the assumptions, strengths, and weaknesses of each dating method need to be carefully described to facilitate an impartial evaluation of results

  11. Spectroscopy of olivine basalts using FieldSpec and ASTER data: A ...

    Indian Academy of Sciences (India)

    It lies midway between Kom Umbo city. (Nile Valley) and Abu Ghosoun port (Red Sea coast). Several authors dealt with remote sensing,. Keywords. FieldSpec data; olivine basalts; ASTER data; band ratios; brovey–HSV techniques. J. Earth Syst. Sci. 124, No. 7, October 2015, pp. 1475–1486 c Indian Academy of Sciences.

  12. Clustering and Hazard Estimation in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Cronin, S. J.; Bebbington, M. S.

    2009-12-01

    The Auckland Volcanic Field (AVF) with its 49 eruptive centres formed over the last c. 250 ka presents several unique challenges to our understanding of distributed volcanic field construction and evolution. Due to the youth of the field, high-resolution stratigraphy of eruption centres and ash-fall sequences is possible, allowing time-breaks, soil and peat formation between eruption units to be identified. Radiocarbon dating of sediments between volcanic deposits shows that at least five of the centres have erupted on more than one occasion, with time breaks of 50-100 years between episodes. In addition, paleomagnetic and ash fall evidence implies that there has been strong clustering of eruption events over time, with a specific “flare-up” event involving over possibly up to 19 eruptions occurring between 35-25 ka, in spatially disparate locations. An additional complicating factor is that the only centre that shows any major evidence for evolution out of standard alkali basaltic compositions is also the youngest and largest in volume by several orders of magnitude. All of these features of the AVF, along with relatively poor age-control for many of the vents make spatio-temporal hazard forecasting for the field based on assumptions of past behaviour extremely difficult. Any relationships that take volumetric considerations into account are particularly difficult, since any trend analysis produces unreasonably large future eruptions. The most reasonable model is spatial, via eruption location. We have re-examined the age progression of eruptive events in the AVF, incorporating the most reliable sources of age and stratigraphic data, including developing new correlations between ashfall records in cores and likely vent locations via a probabilistic model of tephra dispersal. A Monte Carlo procedure using the age-progression, stratigraphy and dating constraints can then randomly reproduce likely orderings of events in the field. These were fitted by a

  13. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations

    International Nuclear Information System (INIS)

    Crowe, B.M.; Vaniman, D.T.; Carr, W.J.

    1983-03-01

    Volcanism studies of the Nevada Test Site (NTS) region are concerned with hazards of future volcanism with respect to underground disposal of high-level radioactive waste. The hazards of silicic volcanism are judged to be negligible; hazards of basaltic volcanism are judged through research approaches combining hazard appraisal and risk assessment. The NTS region is cut obliquely by a N-NE trending belt of volcanism. This belt developed about 8 Myr ago following cessation of silicic volcanism and contemporaneous with migration of basaltic activity toward the southwest margin of the Great Basin. Two types of fields are present in the belt: (1) large-volume, long-lived basalt and local rhyolite fields with numerous eruptive centers and (2) small-volume fields formed by scattered basaltic scoria cones. Late Cenozoic basalts of the NTS region belong to the second field type. Monogenetic basalt centers of this region were formed mostly by Strombolian eruptions; Surtseyean activity has been recognized at three centers. Geochemically, the basalts of the NTS region are classified as straddle A-type basalts of the alkalic suite. Petrological studies indicate a volumetric dominance of evolved hawaiite magmas. Trace- and rare-earth-element abundances of younger basalt ( - 8 to 10 - 10 as calculated for a 1-yr period. Potential disruptive and dispersal effects of magmatic penetration of a repository are controlled primarily by the geometry of basalt feeder systems, the mechanism of waste incorporation in magma, and Strombolian eruption processes

  14. Petrology of lower crustal and upper mantle xenoliths from the Cima Volcanic Field, California

    Science.gov (United States)

    Wilshire, H.G.; McGuire, A.V.; Noller, J.S.; Turrin, B.D.

    1991-01-01

    Basaltic rocks of the Cima Volcanic Field in the southern Basin and Range province contain abundant gabbro, pyroxenite, and peridotite xenoliths. Composite xenoliths containing two or more rock types show that upper-mantle spinel peridotite was enriched by multiple dike intrusions in at least three episodes; the mantle was further enriched by intergranular and shear-zone melt infiltration in at least two episodes. Because of their high densities, the gabbros and pyroxenites can occupy the zone immediately above the present Moho (modeled on seismic data as 10-13 km thick, with Vp 6.8 km/s) only if their seismic velocities are reduced by the joints, partial melts, and fluid inclusions that occur in them. Alternatively, these xenoliths may have been derived entirely from beneath the Moho, in which case the Moho is not the local crust-mantle boundary. -from Authors

  15. A Tale of Two Olivines: Magma Ascent in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Smid, E. R.; McGee, L. E.; Smith, I. E.; Lindsay, J. M.

    2013-12-01

    The Auckland Volcanic Field (AVF) is a nephelinitic to subalkali basaltic monogenetic field centered on the city of Auckland, New Zealand. Lavas are olivine-phyric, and the deposits of several volcanoes in the field contain olivine crystals with chrome spinel (Cr-spinel) inclusions. Microprobe analyses show at least two populations of olivine, categorised by their Mg# and their spinel inclusion compositions: the first has olivines that are euhedral, have compositions slightly less forsteritic than expected for whole rock Mg#, and have Cr-spinel inclusions with relatively low Cr2O3 contents of ~20%. These are interpreted as antecrysts inherited from the mantle source that yielded their host magma. The second population is characterised by olivines that are sub- to euhedral, are significantly more forsteritic than expected from their host whole rock Mg#, and have Cr-spinel inclusons with relatively high Cr2O3 contents of ~50%. These are interpreted as xenocrysts. The composition of these high Cr2O3 spinels very closely resembles the composition of spinels within olivines in dunite sampled from the Dun Mountain Ophiolite on the South Island of New Zealand. The northward extension of the Dun Mountain complex beneath the North Island is defined by the Junction Magnetic Anomaly, marking a crustal terrane boundary that underlies the Auckland Volcanic Field. These data indicate that the magmas that have risen to produce the volcanoes of the Auckland Volcanic Field have carried crystals from an underlying ultramafic crust as well as from their asthenospheric source. Euhedral olivine crystals which do not contain Cr-spinel are also present in AVF lavas and these are interpreted as true phenocrysts that crystallised directly from their host magmas. The lack of reaction textures at crystal margins suggests rapid ascent rates. A crustal origin for the xenocrysts not only has large implications for ascent rate modelling of olivines, but also for the crustal structure of the

  16. Occurrence of an unknown Atlantic eruption in the Chaîne des Puys volcanic field (Massif Central, France)

    Science.gov (United States)

    Jouannic, G.; Walter-Simonnet, A. V.; Bossuet, G.; Cubizolle, H.; Boivin, P.; Devidal, J. L.; Oberlin, C.

    2014-08-01

    A volcanic ash layer, called MF1, was recently identified in Holocene sediments from the Gourgon and Molhiac peat bogs (Monts du Forez, French Massif Central). This ash layer consists of colorless shards with a heterogeneous trachytic to rhyolitic composition. The trace elements analyzed by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) attest to a local origin. Radiocarbon dating of peat samples taken within and below the ash layer indicates the best age at 6339 ± 61 cal yr BP, i.e. an age contemporaneous with the volcanic activity of Montchal, Montcineyre and Pavin volcanoes from the Chaîne des Puys volcanic field. These volcanoes are characterized by basaltic and trachytic products, thus the rhyolitic composition of MF1 tephra suggests that it is likely originated from an unknown eruption. These results again confirm the interest of studying the distal volcanic ash fallouts in order to establish or specify records of past eruptions of volcanic fields. Identification of this new tephra layer also provides an additional tephrochronological marker for Eastern French Massif Central.

  17. Spatio-volumetric hazard estimation in the Auckland volcanic field

    Science.gov (United States)

    Bebbington, Mark S.

    2015-05-01

    The idea of a volcanic field `boundary' is prevalent in the literature, but ill-defined at best. We use the elliptically constrained vents in the Auckland Volcanic Field to examine how spatial intensity models can be tested to assess whether they are consistent with such features. A means of modifying the anisotropic Gaussian kernel density estimate to reflect the existence of a `hard' boundary is then suggested, and the result shown to reproduce the observed elliptical distribution. A new idea, that of a spatio-volumetric model, is introduced as being more relevant to hazard in a monogenetic volcanic field than the spatiotemporal hazard model due to the low temporal rates in volcanic fields. Significant dependencies between the locations and erupted volumes of the observed centres are deduced, and expressed in the form of a spatially-varying probability density. In the future, larger volumes are to be expected in the `gaps' between existing centres, with the location of the greatest forecast volume lying in the shipping channel between Rangitoto and Castor Bay. The results argue for tectonic control over location and magmatic control over erupted volume. The spatio-volumetric model is consistent with the hypothesis of a flat elliptical area in the mantle where tensional stresses, related to the local tectonics and geology, allow decompressional melting.

  18. Field Validation of Supercritical CO 2 Reactivity with Basalts

    Energy Technology Data Exchange (ETDEWEB)

    McGrail, B. Peter; Schaef, Herbert T.; Spane, Frank A.; Cliff, John B.; Qafoku, Odeta; Horner, Jake A.; Thompson, Christopher J.; Owen, Antoinette T.; Sullivan, Charlotte E.

    2017-01-10

    Continued global use of fossil fuels places a premium on developing technology solutions to minimize increases in atmospheric CO2 levels. CO2 storage in reactive basalts might be one of these solutions by permanently converting injected gaseous CO2 into solid carbonates. Herein we report results from a field demonstration where ~1000 MT of CO2 was injected into a natural basalt formation in Eastern Washington State. Following two years of post-injection monitoring, cores were obtained from within the injection zone and subjected to detailed physical and chemical analysis. Nodules found in vesicles throughout the cores were identified as the carbonate mineral, ankerite Ca[Fe, Mg, Mn](CO3)2. Carbon isotope analysis showed the nodules are chemically distinct as compared with natural carbonates present in the basalt and clear correlation with the isotopic signature of the injected CO2. These findings provide field validation of rapid mineralization rates observed from years of laboratory testing with basalts.

  19. Petrologic insights into basaltic volcanism at historically active Hawaiian volcanoes: Chapter 6 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Helz, Rosalind L.; Clague, David A.; Sisson, Thomas W.; Thornber, Carl R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Study of the petrology of Hawaiian volcanoes, in particular the historically active volcanoes on the Island of Hawai‘i, has long been of worldwide scientific interest. When Dr. Thomas A. Jaggar, Jr., established the Hawaiian Volcano Observatory (HVO) in 1912, detailed observations on basaltic activity at Kīlauea and Mauna Loa volcanoes increased dramatically. The period from 1912 to 1958 saw a gradual increase in the collection and analysis of samples from the historical eruptions of Kīlauea and Mauna Loa and development of the concepts needed to evaluate them. In a classic 1955 paper, Howard Powers introduced the concepts of magnesia variation diagrams, to display basaltic compositions, and olivine-control lines, to distinguish between possibly comagmatic and clearly distinct basaltic lineages. In particular, he and others recognized that Kīlauea and Mauna Loa basalts must have different sources.

  20. Explosive Volcanic Activity at Extreme Depths: Evidence from the Charles Darwin Volcanic Field, Cape Verdes

    Science.gov (United States)

    Kwasnitschka, T.; Devey, C. W.; Hansteen, T. H.; Freundt, A.; Kutterolf, S.

    2013-12-01

    Volcanic eruptions on the deep sea floor have traditionally been assumed to be non-explosive as the high-pressure environment should greatly inhibit steam-driven explosions. Nevertheless, occasional evidence both from (generally slow-) spreading axes and intraplate seamounts has hinted at explosive activity at large water depths. Here we present evidence from a submarine field of volcanic cones and pit craters called Charles Darwin Volcanic Field located at about 3600 m depth on the lower southwestern slope of the Cape Verdean Island of Santo Antão. We examined two of these submarine volcanic edifices (Tambor and Kolá), each featuring a pit crater of 1 km diameter, using photogrammetric reconstructions derived from ROV-based imaging followed by 3D quantification using a novel remote sensing workflow, aided by sampling. The measured and calculated parameters of physical volcanology derived from the 3D model allow us, for the first time, to make quantitative statements about volcanic processes on the deep seafloor similar to those generated from land-based field observations. Tambor cone, which is 2500 m wide and 250 m high, consists of dense, probably monogenetic medium to coarse-grained volcaniclastic and pyroclastic rocks that are highly fragmented, probably as a result of thermal and viscous granulation upon contact with seawater during several consecutive cycles of activity. Tangential joints in the outcrops indicate subsidence of the crater floor after primary emplacement. Kolá crater, which is 1000 m wide and 160 m deep, appears to have been excavated in the surrounding seafloor and shows stepwise sagging features interpreted as ring fractures on the inner flanks. Lithologically, it is made up of a complicated succession of highly fragmented deposits, including spheroidal juvenile lapilli, likely formed by spray granulation. It resembles a maar-type deposit found on land. The eruption apparently entrained blocks of MORB-type gabbroic country rocks with

  1. Cenozoic volcanic rocks of Saudi Arabia

    Science.gov (United States)

    Coleman, R.G.; Gregory, R.T.; Brown, G.F.

    2016-01-01

    The Cenozoic volcanic rocks of Saudi Arabia cover about 90,000 km2, one of the largest areas of alkali olivine basalt in the world. These volcanic rocks are in 13 separate fields near the eastern coast of the Red Sea and in the western Arabian Peninsula highlands from Syria southward to the Yemen Arab Republic.

  2. Gravity and magnetic investigation of maar volcanoes, Auckland volcanic field, New Zealand

    Science.gov (United States)

    Cassidy, John; France, Sian J.; Locke, Corinne A.

    2007-01-01

    Detailed gravity and aeromagnetic data over maars in the Auckland volcanic field reveal contrasting anomalies, even where surface geology is similar. Pukaki and Pukekiwiriki, almost identical maars marked by sediment-filled craters and tuff rings, have gravity and magnetic anomalies of - 6 g.u. and 20 nT, and 8 g.u. and 160 nT, respectively. The Domain and Waitomokia maars, with similar tuff rings but each with a small central scoria cone, have gravity and magnetic anomalies of 32 g.u. and 300 nT, and 21 g.u. and 310 nT, respectively. These differences in geophysical expression are attributed to varying volumes of dense, magnetic basalt in the form of shallow bowl-shaped bodies up to several hundreds of metres in diameter and up to 140 m thick beneath the maar centres. These bodies are interpreted as solidified magma that ponded into early-formed phreatomagmatic explosion craters. Where magma supply was limited relative to groundwater availability, no residual subsurface basalt occurs (as at Pukaki); continued magma supply, but limited groundwater, resulted in ponding (e.g. at Pukekiwiriki) and eventually the building of a scoria cone (as at Domain and Waitomokia). There is no evidence in these geophysical data for diatreme structures below the maars or for shallow and/or extensive feeder dykes associated with these maars. If diatreme structures do occur, their lack of geophysical signature must be a consequence of either their small geophysical contrast with host Miocene sediments and/or masking by the stronger anomalies associated with the subsurface basalt. In addition, any magma conduits appear to be confined centrally beneath the maars, at least to shallow depths (upper 100 m).

  3. Magma evolution and ascent at the Craters of the Moon and neighboring volcanic fields, southern Idaho, USA: implications for the evolution of polygenetic and monogenetic volcanic fields

    Science.gov (United States)

    Putirka, Keith D.; Kuntz, Mel A.; Unruh, Daniel M.; Vaid, Nitin

    2009-01-01

    The evolution of polygenetic and monogenetic volcanic fields must reflect differences in magma processing during ascent. To assess their evolution we use thermobarometry and geochemistry to evaluate ascent paths for neighboring, nearly coeval volcanic fields in the Snake River Plain, in south-central Idaho, derived from (1) dominantly Holocene polygenetic evolved lavas from the Craters of the Moon lava field (COME) and (2) Quaternary non-evolved, olivine tholeiites (NEOT) from nearby monogenetic volcanic fields. These data show that NEOT have high magmatic temperatures (1205 + or - 27 degrees C) and a narrow temperature range (50 degrees C). Prolonged storage of COME magmas allows them to evolve to higher 87Sr/86Sr and SiO2, and lower MgO and 143Nd/144Nd. Most importantly, ascent paths control evolution: NEOT often erupt near the axis of the plain where high-flux (Yellowstone-related), pre-Holocene magmatic activity replaces granitic middle crust with basaltic sills, resulting in a net increase in NEOT magma buoyancy. COME flows erupt off-axis, where felsic crustal lithologies sometimes remain intact, providing a barrier to ascent and a source for crustal contamination. A three-stage ascent process explains the entire range of erupted compositions. Stage 1 (40-20 km): picrites are transported to the middle crust, undergoing partial crystallization of olivine + or - clinopyroxene. COME magmas pass through unarmored conduits and assimilate 1% or less of ancient gabbroic crust having high Sr and 87Sr/86Sr and low SiO2. Stage 2 (20-10 km): magmas are stored within the middle crust, and evolve to moderate MgO (10%). NEOT magmas, reaching 10% MgO, are positively buoyant and migrate through the middle crust. COME magmas remain negatively buoyant and so crystallize further and assimilate middle crust. Stage 3 (15-0 km): final ascent and eruption occurs when volatile contents, increased by differentiation, are sufficient (1-2 wt % H2O) to provide magma buoyancy through the

  4. Compositional and Microtextural Analysis of Basaltic Feedstock Materials Used for the 2010 ISRU Field Tests, Mauna Kea, Hawaii

    Science.gov (United States)

    Marin, N.; Farmer, J. D.; Zacny, K.; Sellar, R. G.; Nunez, J.

    2011-12-01

    This study seeks to understand variations in composition and texture of basaltic pyroclastic materials used in the 2010 International Lunar Surface Operation-In-Situ Resource Utilization Analogue Test (ILSO-ISRU) held on the slopes of Mauna Kea Volcano, Hawaii (1). The quantity and quality of resources delivered by ISRU depends upon the nature of the materials processed (2). We obtained a one-meter deep auger cuttings sample of a basaltic regolith at the primary site for feed stock materials being mined for the ISRU field test. The auger sample was subdivided into six, ~16 cm depth increments and each interval was sampled and characterized in the field using the Multispectral Microscopic Imager (MMI; 3) and a portable X-ray Diffractometer (Terra, InXitu Instruments, Inc.). Splits from each sampled interval were returned to the lab and analyzed using more definitive methods, including high resolution Powder X-ray Diffraction and Thermal Infrared (TIR) spectroscopy. The mineralogy and microtexture (grain size, sorting, roundness and sphericity) of the auger samples were determined using petrographic point count measurements obtained from grain-mount thin sections. NIH Image J (http://rsb.info.nih.gov/ij/) was applied to digital images of thin sections to document changes in particle size with depth. Results from TIR showed a general predominance of volcanic glass, along with plagioclase, olivine, and clinopyroxene. In addition, thin section and XRPD analyses showed a down core increase in the abundance of hydrated iron oxides (as in situ weathering products). Quantitative point count analyses confirmed the abundance of volcanic glass in samples, but also revealed olivine and pyroxene to be minor components, that decreased in abundance with depth. Furthermore, point count and XRD analyses showed a decrease in magnetite and ilmenite with depth, accompanied by an increase in Fe3+phases, including hematite and ferrihydrite. Image J particle analysis showed that the

  5. Influences on the variability of eruption sequences and style transitions in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Kereszturi, Gábor; Németh, Károly; Cronin, Shane J.; Procter, Jonathan; Agustín-Flores, Javier

    2014-10-01

    Monogenetic basaltic volcanism is characterised by a complex array of eruptive behaviours, reflecting spatial and temporal variability of the magmatic properties (e.g. composition, eruptive volume, magma flux) as well as environmental factors at the vent site (e.g. availability of water, country rock geology, faulting). These combine to produce changes in eruption style over brief periods (minutes to days) in many eruption episodes. Monogenetic eruptions in some volcanic fields often start with a phreatomagmatic vent-opening phase that later transforms into "dry" magmatic explosive or effusive activity, with a strong variation in the duration and importance of this first phase. Such an eruption sequence pattern occurred in 83% of the known eruption in the 0.25 My-old Auckland Volcanic Field (AVF), New Zealand. In this investigation, the eruptive volumes were compared with the sequences of eruption styles preserved in the pyroclastic record at each volcano of the AVF, as well as environmental influencing factors, such as distribution and thickness of water-saturated semi- to unconsolidated sediments, topographic position, distances from known fault lines. The AVF showed that there is no correlation between ejecta ring volumes and environmental influencing factors that is valid for the entire AVF. In contrary, using a set of comparisons of single volcanoes with well-known and documented sequences, resultant eruption sequences could be explained by predominant patterns of the environment in which these volcanoes were erupted. Based on the spatial variability of these environmental factors, a first-order susceptibility hazard map was constructed for the AVF that forecasts areas of largest likelihood for phreatomagmatic eruptions by overlaying topographical and shallow geological information. Combining detailed phase-by-phase breakdowns of eruptive volumes and the event sequences of the AVF, along with the new susceptibility map, more realistic eruption scenarios can be

  6. Longevity of a small shield volcano revealed by crypto-tephra studies (Rangitoto volcano, New Zealand): Change in eruptive behavior of a basaltic field

    Science.gov (United States)

    Shane, Phil; Gehrels, Maria; Zawalna-Geer, Aleksandra; Augustinus, Paul; Lindsay, Jan; Chaillou, Isabelle

    2013-05-01

    The life-span of small volcanoes in terrestrial basaltic fields, commonly considered 'monogenetic', can be difficult to assess due to a paucity of datable materials capable of providing a 102-103-year age resolution. We have used microscopic tephra layers (crypto-tephra) in lake sediments to determine the longevity of Rangitoto volcano, a small shield that represents the most recent volcanism in the Auckland Volcanic Field (AVF), New Zealand. Previous studies suggested construction in a relatively short interval at ~ 550-500 cal yrs BP. In contrast, the tephra record shows evidence of intermittent activity from 1498 ± 140 to (at least) 504 ± 6 cal yrs BP, a longevity of ~ 1000 years. Rangitoto volcano is thought to represent about half the magma erupted in the 250-ka-history of AVF. Thus, the AVF has experienced a dramatic shift to prolonged and voluminous central-vent volcanism in its most recent history. This demonstrates the difficulty in determining time-erupted volume relationships in such fields. Previous AVF hazard-risk modeling based on isolated, short-lived (< 1 year) phenomena at sites that have not experienced activity needs to be revisited in light of the new Rangitoto chronology.

  7. Calbuco Volcano and minor eruptive centers distributed along the Liquiñe-Ofqui Fault Zone, Chile (41° 42° S): contrasting origin of andesitic and basaltic magma in the Southern Volcanic Zone of the Andes

    Science.gov (United States)

    López-Escobar, L.; Parada, M. A.; Hickey-Vargas, R.; Frey, F. A.; Kempton, P. D.; Moreno, H.

    1995-04-01

    Calbuco volcano is a Late Pleistocene-Holocene composite stratovolcano located at 41°20' S, in the southern region of the Southern Volcanic Zone of the Andes (SSVZ; 37° 46° S). In contrast to basalt and basaltic andesite, which are the dominant lava types on the volcanic front from 37° to 42° S, Calbuco lavas are porphyritic andesites which contain a wide variety of crustal xenoliths. They have SiO2 contents in the 55 60% range, and have comparatively low K2O, Rb, Ba, Th and LREF abundances relative to other SSVZ centers. Incompatible element abundance ratios are similar to those of most SSVZ volcanics, but 87Sr/86Sr and 143Nd/144Nd are respectively higher and lower than those of adjacent volcanic centers. Basalts from nearby Osorno stratovolcano, 25 km to the northeast, are similar to other basaltic SSVZ volcanoes. However, basalts from several minor eruptive centers (MEC), located east of Calbuco and Osorno volcano along the Liquiñe-Ofqui fault zone (LOFZ), are enriched in Ba, Nb, Th and LREE, and have higher La/Yb and lower Ba/La, K/La and Rb/La. 87Sr/86Sr and 143Nd/144Nd in MEC basalts are respectively lower and higher than those of Osorno and Calbuco lavas. We suggest that MEC basalts were produced by lower extents of mantle melting than basalts from Osorno and other SSVZ stratovolcanoes, probably as a result of lower water content in the source of MEC basalts. Calbuco andesites formed from basaltic parents similar to Osorno basalts, by moderate pressure crystallization of a hornblende-bearing assemblage accompanied by crustal assimilation. Hornblende stability in the Calbuco andesites was promoted by the assimilation of hydrous metasedimentary crustal rocks, which are also an appropriate endmember for isotopic trends, together with magma storage at mid-crustal depths. The unique characteristics of Calbuco volcano, i.e. the stability of hornblende at andesitic SiO2 contents, low 143Nd/144Nd and high 87Sr/86Sr, and abundant crustal xenoliths, provide

  8. Remote Sensing and GIS as Tools for Identifying Risk for Phreatomagmatic Eruptions in the Bishoftu Volcanic Field, Ethiopia

    Science.gov (United States)

    Pennington, H. G.; Graettinger, A.

    2017-12-01

    Bishoftu is a fast-growing town in the Oromia region of Ethiopia, located 47 km southeast of the nation's capital, Addis Ababa. It is situated atop a monogenetic basaltic volcanic field, called the Bishoftu Volcanic Field (BVF), which is composed of maar craters, scoria cones, lava flows, and rhyolite domes. Although not well dated, the morphology and archeological evidence have been used to infer a Holocene age, indicating that the community is exposed to continued volcanic risk. The presence of phreatomagmatic constructs in particular indicates that the hazards are not only vent-localized, but may have far reaching impacts. Hazard mapping is an essential tool for evaluating and communicating risks. This study presents the results of GIS analyses of proximal and distal syn-eruptive hazards associated with phreatomagmatic eruptions in the BVF. A digitized infrastructure map based on a SPOT 6 satellite image is used to identify the areas at risk from eruption scenarios. Parameters such as wind direction, vent location, and explosion energy are varied for hazard simulations to quantify the area impacted by different eruption scenarios. Proximal syn-eruptive hazards include tephra fall, base pyroclastic surges, and ballistic bombs. Distal hazards include predominantly ash fall. Eruption scenarios are simulated using Eject and Plumeria models as well as similar case studies from other urban volcanic fields. Within 5 km of the volcanic field center, more than 30 km2 of residential and commercial/industrial infrastructure will be damaged by proximal syn-eruptive hazards, in addition to 34 km2 of agricultural land, 291 km of roads, more than 10 km of railway, an airport, and two health centers. Within 100 km of the volcanic field center, ash fall will affect 3946 km2 of agricultural land, 179 km2 of residential land, and 28 km2 of commercial/industrial land. Approximately 2700 km of roads and railways, 553 km of waterways, an airport, and 14 health centers are located

  9. Increased thyroid cancer incidence in a basaltic volcanic area is associated with non-anthropogenic pollution and biocontamination.

    Science.gov (United States)

    Malandrino, Pasqualino; Russo, Marco; Ronchi, Anna; Minoia, Claudio; Cataldo, Daniela; Regalbuto, Concetto; Giordano, Carla; Attard, Marco; Squatrito, Sebastiano; Trimarchi, Francesco; Vigneri, Riccardo

    2016-08-01

    The increased thyroid cancer incidence in volcanic areas suggests an environmental effect of volcanic-originated carcinogens. To address this problem, we evaluated environmental pollution and biocontamination in a volcanic area of Sicily with increased thyroid cancer incidence. Thyroid cancer epidemiology was obtained from the Sicilian Regional Registry for Thyroid Cancer. Twenty-seven trace elements were measured by quadrupole mass spectrometry in the drinking water and lichens (to characterize environmental pollution) and in the urine of residents (to identify biocontamination) in the Mt. Etna volcanic area and in adjacent control areas. Thyroid cancer incidence was 18.5 and 9.6/10(5) inhabitants in the volcanic and the control areas, respectively. The increase was exclusively due to the papillary histotype. Compared with control areas, in the volcanic area many trace elements were increased in both drinking water and lichens, indicating both water and atmospheric pollution. Differences were greater for water. Additionally, in the urine of the residents of the volcanic area, the average levels of many trace elements were significantly increased, with values higher two-fold or more than in residents of the control area: cadmium (×2.1), mercury (×2.6), manganese (×3.0), palladium (×9.0), thallium (×2.0), uranium (×2.0), vanadium (×8.0), and tungsten (×2.4). Urine concentrations were significantly correlated with values in water but not in lichens. Our findings reveal a complex non-anthropogenic biocontamination with many trace elements in residents of an active volcanic area where thyroid cancer incidence is increased. The possible carcinogenic effect of these chemicals on the thyroid and other tissues cannot be excluded and should be investigated.

  10. The Hawaiian Volcano Observatory: a natural laboratory for studying basaltic volcanism: Chapter 1 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Tilling, Robert I.; Kauahikaua, James P.; Brantley, Steven R.; Neal, Christina A.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    In the beginning of the 20th century, geologist Thomas A. Jaggar, Jr., argued that, to fully understand volcanic and associated hazards, the expeditionary mode of studying eruptions only after they occurred was inadequate. Instead, he fervently advocated the use of permanent observatories to record and measure volcanic phenomena—at and below the surface—before, during, and after eruptions to obtain the basic scientific information needed to protect people and property from volcanic hazards. With the crucial early help of American volcanologist Frank Alvord Perret and the Hawaiian business community, the Hawaiian Volcano Observatory (HVO) was established in 1912, and Jaggar’s vision became reality. From its inception, HVO’s mission has centered on several goals: (1) measuring and documenting the seismic, eruptive, and geodetic processes of active Hawaiian volcanoes (principally Kīlauea and Mauna Loa); (2) geological mapping and dating of deposits to reconstruct volcanic histories, understand island evolution, and determine eruptive frequencies and volcanic hazards; (3) systematically collecting eruptive products, including gases, for laboratory analysis; and (4) widely disseminating observatory-acquired data and analysis, reports, and hazard warnings to the global scientific community, emergency-management authorities, news media, and the public. The long-term focus on these goals by HVO scientists, in collaboration with investigators from many other organizations, continues to fulfill Jaggar’s career-long vision of reducing risks from volcanic and earthquake hazards across the globe.

  11. Optimal likelihood-based matching of volcanic sources and deposits in the Auckland Volcanic Field

    Science.gov (United States)

    Kawabata, Emily; Bebbington, Mark S.; Cronin, Shane J.; Wang, Ting

    2016-09-01

    In monogenetic volcanic fields, where each eruption forms a new volcano, focusing and migration of activity over time is a very real possibility. In order for hazard estimates to reflect future, rather than past, behavior, it is vital to assemble as much reliable age data as possible on past eruptions. Multiple swamp/lake records have been extracted from the Auckland Volcanic Field, underlying the 1.4 million-population city of Auckland. We examine here the problem of matching these dated deposits to the volcanoes that produced them. The simplest issue is separation in time, which is handled by simulating prior volcano age sequences from direct dates where known, thinned via ordering constraints between the volcanoes. The subproblem of varying deposition thicknesses (which may be zero) at five locations of known distance and azimuth is quantified using a statistical attenuation model for the volcanic ash thickness. These elements are combined with other constraints, from widespread fingerprinted ash layers that separate eruptions and time-censoring of the records, into a likelihood that was optimized via linear programming. A second linear program was used to optimize over the Monte-Carlo simulated set of prior age profiles to determine the best overall match and consequent volcano age assignments. Considering all 20 matches, and the multiple factors of age, direction, and size/distance simultaneously, results in some non-intuitive assignments which would not be produced by single factor analyses. Compared with earlier work, the results provide better age control on a number of smaller centers such as Little Rangitoto, Otuataua, Taylors Hill, Wiri Mountain, Green Hill, Otara Hill, Hampton Park and Mt Cambria. Spatio-temporal hazard estimates are updated on the basis of the new ordering, which suggest that the scale of the 'flare-up' around 30 ka, while still highly significant, was less than previously thought.

  12. 39Ar/40Ar Chronology and Volumes of Eruptive Products Over the Last 1 Myr in the Tequila Volcanic Field, Jalisco, Mexico

    Science.gov (United States)

    Lewis-Kenedi, C. B.; Lange, R. A.; Hall, C. M.; Delgado-Granados, H.

    2002-12-01

    The Tequila volcanic field, located within the western Trans-Mexican arc, covers an area of 1036 km2 and includes a central, andesitic stratocone, Volc\\­_{a}n Tequila, as well as cinder cones, domes, and fissure-fed flows. Sixty-nine high precision 39Ar-40Ar dates reveal that major activity in the Tequila volcanic field began at approximately 1 Ma. From 1 Ma to 200 ka, rhyolite (> 73 wt. % SiO2) and alkali basalt (­š 51 wt. % SiO2) were the only compositions erupted in significant volumes (29 +/- 5.7 km3 and 12 +/- 1.2 km3, respectively). At approximately 200 ka, the andesite comprising Volc\\­_{a}n Tequila erupted within 30-40 kyr, producing a volume of 30 +/- 2.0 km3. Additional andesitic flows (11 +/- 1.4 km3) erupted to the northwest and southeast of the stratocone between 140 and 20 ka. The total volume of dacite that erupted at the Tequila volcanic field is small (1.3 +/- 0.03 km3) and occurred largely (88%) within the last 70 kyrs. Unlike the andesites and dacites, the basalts and rhyolites did not erupt within narrow time intervals, but extruded over the entire last 1 Myr, producing a total volume of 12.6 +/- 1.2 km3 and 32 +/- 6.1 km3, respectively. This detailed eruptive history, combined with the observed phenocryst assemblages (0-10 vol. %) in the small-volume andesite, dacite, and alkali basalt flows, suggest that they were erupted directly from the lower (or middle) crust, without prior storage in an upper crustal chamber. In contrast, the voluminous burst of andesitic volcanism that produced the phenocryst-rich (35-45 vol. %) lavas of Volc\\­_{a}n Tequila was likely fed from a short-lived (­š 40 kyrs) upper crustal chamber. This scenario is supported by the complex, disequilibrium textures seen in the phenocryst assemblage of the Volc\\­_{a}n Tequila lavas, indicative of magma mingling within an upper crustal chamber (Wallace and Carmichael, 1994). The total volume of erupted material at the Tequila volcanic field is 89 +/- 12 km3, of which

  13. The Relative Rates of Secondary Hydration in Basalt and Rhyolite, and the use of δD as a Paleoclimate Indicator: Implications for Paleoenvironmental and Volcanic Degassing Studies

    Science.gov (United States)

    Seligman, A. N.; Bindeman, I. N.

    2014-12-01

    The δD-H2O correlation is important for volcanic degassing and secondary hydration trends. We utilize the caibration of the TC/EA - MAT 253 continuous flow system, which permits us to analyze wt.% H2O and its δD extracted from 1-8 mg of glass with as little as 0.1 wt% H2O. Tephra that has been secondarily hydrated with meteoric water is widely used as a paleoenvironmental tool, but the rate of secondary hydration, the relative amounts of primary magmatic (degassed) and secondary meteoric water, and the retention of primary and secondary δD values are not well understood. To quantify these processes, we use a natural experiment involving dated Holocene tepha in Kamchatka and Oregon. Our research illustrates the drastic difference in hydration rates between silicic (hydrated after ~1.5 ka) and mafic tephra, which is not hydrated in the Holocene (similar to results for submarine volcanic glasses), and andesitic tephra with intermediate degrees of hydration. The 0.05-7.3 ka basaltic scoria from Klyuchevskoy volcano retains ≤0.45 wt.% primary magmatic H2O, with δD values from -99 to -121 ‰. Four other 0.05-7.6 ka basaltic tephra units from Kamchatka with 65 wt.% have higher (1.5 -3.4) wt.% H2O and δD values between -115 - -160 ‰. We interpret the lower δD values and higher water contents (opposite of the magmatic degassing trend) to be a characteristic of secondary hydration in regions of higher latitude such as Kamchatka and Oregon. We are also investigating 7.7 ka Mt. Mazama tephra in Oregon that are known to be fully hydrated and cover nearly 5000 km2 northeast of Crater Lake and range in elevation from ~1.3-1.9 km to understand the δD and δ18O details of the hydrated water's correspondence with local Holocene meteoric waters. In the future, we plan to use a combination of δD in mid-high latitude precipitation to delineate δD-H2O hydration trends to better understand the distinction between primary magmatic and secondary meteoric water in volcanic

  14. Basaltic cannibalism at Thrihnukagigur volcano, Iceland

    Science.gov (United States)

    Hudak, M. R.; Feineman, M. D.; La Femina, P. C.; Geirsson, H.

    2014-12-01

    Magmatic assimilation of felsic continental crust is a well-documented, relatively common phenomenon. The extent to which basaltic crust is assimilated by magmas, on the other hand, is not well known. Basaltic cannibalism, or the wholesale incorporation of basaltic crustal material into a basaltic magma, is thought to be uncommon because basalt requires more energy than higher silica rocks to melt. Basaltic materials that are unconsolidated, poorly crystalline, or palagonitized may be more easily ingested than fully crystallized massive basalt, thus allowing basaltic cannibalism to occur. Thrihnukagigur volcano, SW Iceland, offers a unique exposure of a buried cinder cone within its evacuated conduit, 100 m below the main vent. The unconsolidated tephra is cross-cut by a NNE-trending dike, which runs across the ceiling of this cave to a vent that produced lava and tephra during the ~4 Ka fissure eruption. Preliminary petrographic and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) analyses indicate that there are two populations of plagioclase present in the system - Population One is stubby (aspect ratio 2.1), subhedral to euhedral, and has much higher Ba/Sr ratios. Population One crystals are observed in the cinder cone, dike, and surface lavas, whereas Population Two crystals are observed only in the dike and surface lavas. This suggests that a magma crystallizing a single elongate population of plagioclase intruded the cinder cone and rapidly assimilated the tephra, incorporating the stubbier population of phenocrysts. This conceptual model for basaltic cannibalism is supported by field observations of large-scale erosion upward into the tephra, which is coated by magma flow-back indicating that magma was involved in the thermal etching. While the unique exposure at Thrihnukagigur makes it an exceptional place to investigate basaltic cannibalism, we suggest that it is not limited to this volcanic system. Rather it is a process that likely

  15. Combining probabilistic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Sandri, Laura; Jolly, Gill; Lindsay, Jan; Howe, Tracy; Marzocchi, Warner

    2010-05-01

    One of the main challenges of modern volcanology is to provide the public with robust and useful information for decision-making in land-use planning and in emergency management. From the scientific point of view, this translates into reliable and quantitative long- and short-term volcanic hazard assessment and eruption forecasting. Because of the complexity in characterizing volcanic events, and of the natural variability of volcanic processes, a probabilistic approach is more suitable than deterministic modeling. In recent years, two probabilistic codes have been developed for quantitative short- and long-term eruption forecasting (BET_EF) and volcanic hazard assessment (BET_VH). Both of them are based on a Bayesian Event Tree, in which volcanic events are seen as a chain of logical steps of increasing detail. At each node of the tree, the probability is computed by taking into account different sources of information, such as geological and volcanological models, past occurrences, expert opinion and numerical modeling of volcanic phenomena. Since it is a Bayesian tool, the output probability is not a single number, but a probability distribution accounting for aleatory and epistemic uncertainty. In this study, we apply BET_VH in order to quantify the long-term volcanic hazard due to base surge invasion in the region around Auckland, New Zealand's most populous city. Here, small basaltic eruptions from monogenetic cones pose a considerable risk to the city in case of phreatomagmatic activity: evidence for base surges are not uncommon in deposits from past events. Currently, we are particularly focussing on the scenario simulated during Exercise Ruaumoko, a national disaster exercise based on the build-up to an eruption in the Auckland Volcanic Field. Based on recent papers by Marzocchi and Woo, we suggest a possible quantitative strategy to link probabilistic scientific output and Boolean decision making. It is based on cost-benefit analysis, in which all costs

  16. A model for calculating eruptive volumes for monogenetic volcanoes — Implication for the Quaternary Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Kereszturi, Gábor; Németh, Károly; Cronin, Shane J.; Agustín-Flores, Javier; Smith, Ian E. M.; Lindsay, Jan

    2013-10-01

    Monogenetic basaltic volcanism is characterised by a complex array of behaviours in the spatial distribution of magma output and also temporal variability in magma flux and eruptive frequency. Investigating this in detail is hindered by the difficulty in evaluating ages of volcanic events as well as volumes erupted in each volcano. Eruptive volumes are an important input parameter for volcanic hazard assessment and may control eruptive scenarios, especially transitions between explosive and effusive behaviour and the length of eruptions. Erosion, superposition and lack of exposure limit the accuracy of volume determination, even for very young volcanoes. In this study, a systematic volume estimation model is developed and applied to the Auckland Volcanic Field in New Zealand. In this model, a basaltic monogenetic volcano is categorised in six parts. Subsurface portions of volcanoes, such as diatremes beneath phreatomagmatic volcanoes, or crater infills, are approximated by geometrical considerations, based on exposed analogue volcanoes. Positive volcanic landforms, such as scoria/spatter cones, tephras rings and lava flow, were defined by using a Light Detection and Ranging (LiDAR) survey-based Digital Surface Model (DSM). Finally, the distal tephra associated with explosive eruptions was approximated using published relationships that relate original crater size to ejecta volumes. Considering only those parts with high reliability, the overall magma output (converted to Dense Rock Equivalent) for the post-250 ka active Auckland Volcanic Field in New Zealand is a minimum of 1.704 km3. This is made up of 1.329 km3 in lava flows, 0.067 km3 in phreatomagmatic crater lava infills, 0.090 km3 within tephra/tuff rings, 0.112 km3 inside crater lava infills, and 0.104 km3 within scoria cones. Using the minimum eruptive volumes, the spatial and temporal magma fluxes are estimated at 0.005 km3/km2 and 0.007 km3/ka. The temporal-volumetric evolution of Auckland is

  17. La Purísima volcanic field, Baja California Sur (Mexico): Miocene to Quaternary volcanism related to subduction and opening of an asthenospheric window

    Science.gov (United States)

    Bellon, Hervé; Aguillón-Robles, Alfredo; Calmus, Thierry; Maury, René C.; Bourgois, Jacques; Cotten, Joseph

    2006-04-01

    Geological mapping and geochemical analyses combined with 40K- 40Ar ages for lavas from the Late Miocene to Quaternary La Purísima volcanic field (Baja California Sur) provide evidence for five volcanic events. These, in turn, may reflect plate interactions in the region. The oldest event (event 1), prior to 11 Ma, corresponds to the emission of normal to K-rich calc-alkaline lavas, exposed as large mesas in the eastern part of the studied area and as pyroclastic breccias and volcaniclastic sediments to the west. It is associated with the end of the Comondú arc activity resulting from subduction of the Farallon and Guadalupe plates. Between 10.6 and 8.8 Ma (event 2), magnesian andesites and tholeiites were emplaced. At 5.5 Ma (event 3) and 2.5 Ma (event 4) small volumes of magnesian andesites erupted in the central and southern parts of the volcanic field. Finally, between 1.2 Ma and Holocene (event 5), numerous basaltic and magnesian andesitic fissural and central emissions resulted in the formation of strombolian cones and associated lava flows, mainly distributed within a NNW-SSE trending graben located SE of the town of La Purísima. Magmatic events 2 to 5 occurred well after the supposed end of the subduction event. Their geochemical characteristics are still typical of subduction-modified sources and possibly indicate partial melting of hot slab and formation of an asthenospheric window due to a slab rupture event which followed ridge-trench collision, prior to the continental breakup of the Gulf of California extensional province.

  18. Multi-criteria correlation of tephra deposits to source centres applied in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Hopkins, Jenni L.; Wilson, Colin J. N.; Millet, Marc-Alban; Leonard, Graham S.; Timm, Christian; McGee, Lucy E.; Smith, Ian E. M.; Smith, Euan G. C.

    2017-07-01

    Linking tephras back to their source centre(s) in volcanic fields is crucial not only to reconstruct the eruptive history of the volcanic field but also to understand tephra dispersal patterns and thus the potential hazards posed by a future eruption. Here we present a multi-disciplinary approach to correlate distal basaltic tephra deposits from the Auckland Volcanic Field (AVF) to their source centres using proximal whole-rock geochemical signatures. In order to achieve these correlations, major and trace element tephra-derived glass compositions are compared with published and newly obtained whole-rock geochemical data for the entire field. The results show that incompatible trace element ratios (e.g. (Gd/Yb)N, (La/Yb)N, (Zr/Yb)N) vary widely across the AVF (e.g. (La/Yb)N = 5 to 40) but show a more restricted range within samples from a single volcanic centre (e.g. (La/Yb)N = 5 to 10). These ratios are also the least affected by fractional crystallisation and are therefore the most appropriate geochemical tools for correlation between tephra and whole-rock samples. However, findings for the AVF suggest that each volcanic centre does not have a unique geochemical signature in the field as a whole, thus preventing unambiguous correlation of tephras to source centre using geochemistry alone. A number of additional criteria are therefore combined to further constrain the source centres of the distal tephras including age, eruption scale, and location (of centres, and sites where tephra were sampled). The combination of tephrostratigraphy, 40Ar/39Ar dating and morphostratigraphic constraints allow, for the first time, the relative and absolute ordering of 48 of 53 volcanic centres of the Auckland Volcanic Field to be resolved. Eruption frequencies are shown to vary between 0.13 and 1.5 eruptions/kyr and repose periods between individual eruptions vary from <0.1 to 13 kyr, with 23 of the 48 centres shown to have pre-eruptive repose periods of <1000 years. No spatial

  19. Phreatic explosions during basaltic fissure eruptions: Kings Bowl lava field, Snake River Plain, USA

    Science.gov (United States)

    Hughes, Scott S.; Kobs Nawotniak, Shannon E.; Sears, Derek W. G.; Borg, Christian; Garry, William Brent; Christiansen, Eric H.; Haberle, Christopher W.; Lim, Darlene S. S.; Heldmann, Jennifer L.

    2018-02-01

    Physical and compositional measurements are made at the 7 km-long ( 2200 years B.P.) Kings Bowl basaltic fissure system and surrounding lava field in order to further understand the interaction of fissure-fed lavas with phreatic explosive events. These assessments are intended to elucidate the cause and potential for hazards associated with phreatic phases that occur during basaltic fissure eruptions. In the present paper we focus on a general understanding of the geological history of the site. We utilize geospatial analysis of lava surfaces, lithologic and geochemical signatures of lava flows and explosively ejected blocks, and surveys via ground observation and remote sensing. Lithologic and geochemical signatures readily distinguish between Kings Bowl and underlying pre-Kings Bowl lava flows, both of which comprise phreatic ejecta from the Kings Bowl fissure. These basalt types, as well as neighboring lava flows from the contemporaneous Wapi lava field and the older Inferno Chasm vent and outflow channel, fall compositionally within the framework of eastern Snake River Plain olivine tholeiites. Total volume of lava in the Kings Bowl field is estimated to be 0.0125 km3, compared to a previous estimate of 0.005 km3. The main (central) lava lake lost a total of 0.0018 km3 of magma by either drain-back into the fissure system or breakout flows from breached levees. Phreatic explosions along the Kings Bowl fissure system occurred after magma supply was cut off, leading to fissure evacuation, and were triggered by magma withdrawal. The fissure system produced multiple phreatic explosions and the main pit is accompanied by others that occur as subordinate pits and linear blast corridors along the fissure. The drop in magma supply and the concomitant influx of groundwater were necessary processes that led to the formation of Kings Bowl and other pits along the fissure. A conceptual model is presented that has relevance to the broader range of low-volume, monogenetic

  20. Landsat 5 TM images and DEM in lithologic mapping of Payen Volcanic Field (Mendoza Province, Argentina)

    International Nuclear Information System (INIS)

    Fornaciai, A.; Bisson, M.; Mazzarini, F.; Del Carlo, P.; Pasquare, G.

    2009-01-01

    Satellite image such as Landsat 5 TM scene provides excellent representation of Earth and synoptic view of large geographic areas in different band combination. Landsat TM images allow automatic and semi-automatic classification of land cover, nevertheless the software frequently may some difficulties in distinguishing between similar radiometric surfaces. In this case, the use of Digital Elevation Model (DEM) can be an important tool to identify different surface covers. In this study, several False Color Composite (FCC) of Landsat 5 TM Image, DEM and the respective draped image of them, were used to delineate lithological boundaries and tectonic features of regional significance of the Paven Volcanic Field (PVF). PFV is a Quaternary fissural structure belonging to the black-arc extensional areas of the Andes in the Mendoza Province (Argentina) characterized by many composite basaltic lava flow fields. The necessity to identify different lava flows with the same composition, and then with same spectral features, allows to highlight the improvement of synergic use of TM images and shaded DEM in the visual interpretation. Information obtained from Satellite data and DEM have been compared with previous geological maps and transferred into a topographical base map. Based on these data a new lithological map at 1:100.000 scale has been presented [it

  1. Petrogenesis of basaltic volcanic rocks from the Pribilof Islands, Alaska, by melting of metasomatically enriched depleted lithosphere, crystallization differentiation, and magma mixing

    Science.gov (United States)

    Chang, J.M.; Feeley, T.C.; Deraps, M.R.

    2009-01-01

    The Pribilof Islands, Alaska, are located in the Bering Sea in a continental intraplate setting. In this study we examine the petrology and geochemistry of volcanic rocks from St. Paul (0??54-0??003 Ma) and St. George (2??8-1??4 Ma) Islands, the two largest Pribilof Islands. Rocks from St. George can be divided into three groups: group 1 is a high-MgO, low-SiO. 2 suite composed primarily of basanites; group 2 is a high-MgO, high-SiO 2 suite consisting predominantly of alkali basalts; group 3 is an intermediate- to low-MgO suite that includes plagioclase-phyric subalkali basalts and hawaiites. Major and trace element geochemistry suggests that groups 1 and 2 formed by small-degree partial melting of amphibole-bearing to amphibole-free garnet peridotite. Group 1 rocks were the earliest melts produced from the most hydrous parts of the mantle, as they show the strongest geochemical signature of amphibole in their source. The suite of rocks from St. Paul ranges from 14??4 to 4??2 wt % MgO at relatively constant SiO 2 contents (43??1-47??3 wt %). The most primitive St. Paul rocks are modeled as mixtures between magmas with compositions similar to groups 1 and 2 from St. George Island, which subsequently fractionated olivine, clinopyroxene, and spinel to form more evolved rocks. Plagioclase-phyric group 3 rocks from St. George are modeled as mixtures between an evolved melt similar to the evolved magmas on St. Paul and a fractionated group 2 end-member from St. George. Mantle potential temperatures estimated for primitive basanites and alkali basalts are ???1400??C and are similar to those of mid-ocean ridge basalts (MORB). Similarly, 87Sr/. 86Sr and 143Nd/. 144Nd values for all rocks are MORB-like, in the range of 0??702704-0??703035 and 0??513026-0??513109, respectively. 208Pb/. 204Pb vs 206Pb/. 204Pb values lie near the MORB end-member but show a linear trend towards HIMU (high time-integrated 238U/. 204Pb). Despite isotopic similarities to MORB, many of the major and

  2. From "Volcanic Field" to "Volcanic Province": A Continuum of Spatial-Clustered Structures With Geological Significance or a Matter of Academic Snobbism?

    Science.gov (United States)

    Canon-Tapia, E.

    2017-12-01

    "Volcanic Field" is a term commonly used to describe a group of small, monogenetic and dominantly basaltic volcanoes, but that often includes groups of mixed monogenetic and polygenetic edifices. Besides ambiguities on the type of edifice that should be considered to form a VF, there is a lack of agreement concerning the number of volcanoes required to define a VF (ranging from five to over 1000), it is uncertain if the area covered by the volcanoes forming a VF must have a minimum number of volcanoes/unit area, or if the distance between adjacent structures needs to have a specific length. Furthermore, in many cases it is uncertain whether some area is occupied by two adjacent fields or if it is occupied by two subgroups belonging to a unique field. On the other hand, in analogy with the official definition of a geologic province, a "Volcanic Province" can be defined as a large region or area characterized by similar volcanic features, or by a history differing significantly from that of adjacent areas. Because neither the dimensions of the region nor the characteristics of the features to be used as reference are specified, there is an inherent ambiguity in this definition, which in some cases might become the source of unnecessary confusion. This work presents a review of the various ambiguities that remain unaddressed on the definition of a VF, and that bear some connection with the definition of VPs in general, with special interest in intraplate settings. It is shown that questions such as a) how many volcanoes are required to form a VF and b) when two "neighbor" volcanoes should not be considered to be part of the same field, can be adequately addressed by adopting the techniques of cluster analysis. Other parameters might not be as easy to address including aspects related to total volume of magma erupted, overall composition of the erupted products and age spans of activity and intermediate gaps. Based on the evidence presented, it is shown that there is a

  3. 1992-93 Results of geomorphological and field studies Volcanic Studies Program, Yucca Mountain Project

    International Nuclear Information System (INIS)

    Wells, S.G.

    1993-10-01

    Field mapping and stratigraphic studies were completed of the Black Tank volcanic center, which represents the southwestern most eruptive center in the Cima volcanic field of California. The results of this mapping are presented. Contacts between volcanic units and geomorphic features were field checked, incorporating data from eight field trenches as well as several exposures along Black Tank Wash. Within each of the eight trenches, logs were measured and stratigraphic sections were described. These data indicate that three, temporally separate volcanic eruptions occurred at the Black Tank center. The field evidence for significant time breaks between each stratigraphic unit is the presence of soil and pavement-bounded unconformities

  4. A geologic and anthropogenic journey from the Precambrian to the new energy economy through the San Juan volcanic field

    Science.gov (United States)

    Yager, Douglas B.; Burchell,; Johnson, Raymond H.

    2010-01-01

    The San Juan volcanic field comprises 25,000 km2 of intermediate composition mid-Tertiary volcanic rocks and dacitic to rhyolitic calderas including the San Juan–Uncompahgre and La Garita caldera-forming super-volcanoes. The region is famous for the geological, ecological, hydrological, archeological, and climatological diversity. These characteristics supported ancestral Puebloan populations. The area is also important for its mineral wealth that once fueled local economic vitality. Today, mitigating and/or investigating the impacts of mining and establishing the region as a climate base station are the focuses of ongoing research. Studies include advanced water treatment, the acid neutralizing capacity (ANC) of propylitic bedrock for use in mine-lands cleanup, and the use of soil amendments including biochar from beetle-kill pines. Biochar aids soil productivity and revegetation by incorporation into soils to improve moisture retention, reduce erosion, and support the natural terrestrial carbon sequestration (NTS) potential of volcanic soils to help offset atmospheric CO2 emissions. This field trip will examine the volcano-tectonic and cultural history of the San Juan volcanic field as well as its geologic structures, economic mineral deposits and impacts, recent mitigation measures, and associated climate research. Field trip stops will include a visit to (1) the Summitville Superfund site to explore quartz alunite-Au mineralization, and associated alteration and new water-quality mitigation strategies; (2) the historic Creede epithermal-polymetallic–vein district with remarkably preserved resurgent calderas, keystone-graben, and moat sediments; (3) the historic mining town of Silverton located in the nested San Juan–Silverton caldera complex that exhibits base-metal Au-Ag mineralization; and (4) the site of ANC and NTS studies. En route back to Denver, we will traverse Grand Mesa, a high NTS area with Neogene basalt-derived soils and will enjoy a soak

  5. Evidence for intense hydrothermal alteration associated with flood basalt volcanism during the birth of the Azores Plateau

    Science.gov (United States)

    Bach, W.; Busch, A.; Genske, F. S.; Beier, C.; Krumm, S.

    2017-12-01

    A stratigraphic section comprising >1000 m of upper crust in the Princess Alice Bank (PAB) of the western Azores Plateau was sampled during RV Meteor cruise M128 in July of 2016, using the ROV MARUM Quest 4000m. Twenty-two samples were recovered between 2484 and 1439 m water depth from the southfacing footwall of the Master fault bounding a prominent NW-SE striking rift zone within the PAB. Our geochemical and petrographic results show that virtually all samples are pervasively altered. The deeper part of the section (up to 1750 m water depth) was altered under greenschist-facies conditions to assemblages that include epidote, chlorite, albite, titanite, and actinolite. These rocks show 87Sr/86Sr values between 0.7036 and 0.7050. The topmost section was altered under lower metamorphic grades to chlorite/smectite-quartz-anatase. These rocks show severe losses of Ca and Sr, and gains in Mg, Li, and B, with 87Sr/86Sr ratios as high as 0.708. These geochemical signatures indicate an intensity of hydrothermal exchange between seawater and crust that is unmatched by any in situ section of upper ocean crust sampled by ocean drilling to date. Oxygen isotope data for epidote-calcite veins indicate temperatures of 250-300°C. Later quartz gives about 200°C. The implications of the intense hydrothermal alteration for crust-seawater exchange budgets can be evaluated in the light of the geological evolution of the PAB. Based on immobile element ratios of whole rocks and REE characteristics of relict clinopyroxene in the only incompletely altered sample, an E-type MORB primary composition of the basalts can be reconstructed. Our data suggest that the degrees of mantle melting were much higher than during extrusion of the <4 Ma old alkali-basalts recovered from the top of PAB (Beier et al., 2015, doi:10.1130/2015.2511(02)), and even higher than modern MORB at the adjacent mid-Atlantic Ridge. These results lead us to suggest that the deeper sections of the PAB formed during the

  6. Sills of the San Rafael Volcanic Field, Utah

    Science.gov (United States)

    Gallant, E.; Connor, C.; Connor, L.; Richardson, J. A.; Wetmore, P. H.

    2014-12-01

    Substantial populations, such as Mexico City, Auckland, and Portland, are built within or near monogenetic fields, so it is important to understand both eruption precursors and magma plumbing systems in such areas. Directly observing the plumbing systems of this rarely witnessed eruption style provides valuable insight into the nature of magmatic transport and storage within the shallow crust, as well as the associated monogenetic eruptive processes. Within the San Rafael Desert of Central Utah is an exposed Pliocene complex of approximately 2000 mapped dikes, 12 sills, and 60 conduits eroded to a depth of 800 m below the paleosurface. A combination of airborne LiDAR (ALS), provided by NCALM, and terrestrial LiDAR (TLS) surveys are used to map the dip of 5 major sills within a 35 sq km area. The ALS provides a 1 m aerial resolution of exposed volcanic features and the TLS gives vertical measurements to cm accuracy. From these data we determine that the 5-25 m thick sills in this area dip approximately 1 to 6 degrees. Field observations show that steps in sills and related fabrics indicate flow direction in sills during emplacement and that sills normally propagate down dip in the Entrada sandstone host rock away from apparent feeder dikes and conduits. Some sills have foundered roofs, especially near conduits, suggesting that nearly neutrally buoyant magmas emplaced into sills along bed partings in the Entrada, differentiated, and in some cases flowed back into conduits. By volume, at 800 m depth in the San Rafael, nearly all igneous rock (approximately 90 percent) is located in sills rather than in dikes or conduits. These observations are consistent with geochemical models that suggest differentiation in shallow sills explains geochemical trends observed in single monogenetic volcanoes in some active fields. Deformation associated with sill inflation and deflation may be a significant precursor to eruptive activity in monogenetic volcanic fields.

  7. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations. Volume II

    International Nuclear Information System (INIS)

    Crowe, B.M.; Wohletz, K.H.; Vaniman, D.T.; Gladney, E.; Bower, N.

    1986-01-01

    Volcanic hazard investigations during FY 1984 focused on five topics: the emplacement mechanism of shallow basalt intrusions, geochemical trends through time for volcanic fields of the Death Valley-Pancake Range volcanic zone, the possibility of bimodal basalt-rhyolite volcanism, the age and process of enrichment for incompatible elements in young basalts of the Nevada Test Site (NTS) region, and the possibility of hydrovolcanic activity. The stress regime of Yucca Mountain may favor formation of shallow basalt intrusions. However, combined field and drill-hole studies suggest shallow basalt intrusions are rare in the geologic record of the southern Great Basin. The geochemical patterns of basaltic volcanism through time in the NTS region provide no evidence for evolution toward a large-volume volcanic field or increases in future rates of volcanism. Existing data are consistent with a declining volcanic system comparable to the late stages of the southern Death Valley volcanic field. The hazards of bimodal volcanism in this area are judged to be low. The source of a 6-Myr pumice discovered in alluvial deposits of Crater Flat has not been found. Geochemical studies show that the enrichment of trace elements in the younger rift basalts must be related to an enrichment of their mantle source rocks. This geochemical enrichment event, which may have been metasomatic alteration, predates the basalts of the silicic episode and is, therefore, not a young event. Studies of crater dimensions of hydrovolcanic landforms indicate that the worst case scenario (exhumation of a repository at Yucca Mountain by hydrovolcanic explosions) is unlikely. Theoretical models of melt-water vapor explosions, particularly the thermal detonation model, suggest hydrovolcanic explosion are possible at Yucca Mountain. 80 refs., 21 figs., 5 tabs

  8. Geochemical study of young basalts in East Azerbaijan (Northwest of Iran

    Directory of Open Access Journals (Sweden)

    Nasir Amel

    2016-12-01

    Full Text Available The young basalts in East Azerbaijan are placed in West Alborz – Azerbaijan zone. Volcanic activities have extended from the Pliocene to the Quaternary by eruption from fracture systems and faults. Rocks under study are olivine-basalt and trachybasalts. The main minerals are olivine, pyroxene, plagioclase set in glassy or microcrystalline matrix and olivine are present as phenocryst. The textures in the studied rocks are mainly hyaloporphyric, hyalomicrolitic and porphyritic. Trace elements and rare earth elements on spider diagrams have high LREE/HREE ratio. Rare earth elements on diagram display negative slope indicating alkaline nature for the basalts under study. As it may be observed, on tectonic diagrams, the Marand basalts are placed on Island Arc basalt (IAB field, whereas the Ahar, Heris, Kalaibar and Miyaneh basalts are classified as Ocean Island Basalts (OIB and finally the basalts of Sohrol area are plotted on continental rift Basalt (CRB field. The Marand and Sohrol basalts were likely originated from lithospheric - astenospheric mantle with 2 to 5 % partial melting whereas, the Ahar, Heris and Kalaibar basalts having same source experienced 1-2% partial melting rate and the Miyaneh basalts possibly produced from lithospheric mantle with 10-20% partial melting rate pointing to shallow depth of mantle and the higher rate of melting. Based on tectonic setting diagrams, all the rocks studied are plotted in post collisional environments.

  9. Crystallisation condition of the Quaternary basanites of volcanic centre Black Rock, monogenetic field Lunar Crater

    Science.gov (United States)

    Turova, Mariia; Plechov, Pavel; Scherbakov, Vasily; Larin, Nikolay

    2017-04-01

    The Lunar Crater volcanic field is located in a tension zone Basin and Range Province (USA). This tension is connected with dives oceanic plate under the continental plate [1]. Lunar Crater consists of flows basalt, basanite, trachybasalt has a different age [2]. In this work we investigate the youngest rock - basanite. The basanite is highly crystalline consisting of about megacrysts (3-10 cm) 30-60 wt% phenocrysts ( 800-1500 µm) and microphenocrysts (100-800 µm) and 40-60% microlites (Mathematical, Physical and Engineering Sciences. - 1981. - T. 300. - №. 1454. - C. 407-434. 2. Wood, X., and Keinle, Y., 1990, Volcanoes of North America: Cambridge,United Kingdom, Cambridge University Press, 354 p. 3. Nimis P. Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems //Contributions to Mineralogy and Petrology. - 1999. - T. 135. - №. 1. - C. 62-74. 4. Ballhaus C., Berry R. F., Green D. H. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle //Contributions to Mineralogy and Petrology. - 1991. - T. 107. - №. 1. - C. 27-40.

  10. Closer look at lunar volcanism

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Heiken, G.; Taylor, G.J.

    1984-01-01

    Although the American Apollo and Soviet Luna missions concentrated on mare basalt samples, major questions remain about lunar volcanism. Lunar field work will be indispensable for resolving the scientific questions about ages, compositions, and eruption processes of lunar volcanism. From a utilitarian standpoint, a better knowledge of lunar volcanism will also yield profitable returns in lunar base construction (e.g., exploitation of rille or lava-tube structures) and in access to materials such as volatile elements, pure glass, or ilmenite for lunar industry

  11. Multiple rhyolite magmas and basalt injection in the 17.7 ka Rerewhakaaitu eruption episode from Tarawera volcanic complex, New Zealand

    Science.gov (United States)

    Shane, Phil; Martin, S. B.; Smith, V. C.; Beggs, K. F.; Darragh, M. B.; Cole, J. W.; Nairn, I. A.

    2007-07-01

    The 17.7 ka Rerewhakaaitu eruption episode (volume ˜ 5 km 3 DRE rhyolite magma) was the second of five major episodes that have built the Tarawera volcanic complex in the Okataina Volcanic Centre over the past 22 kyr. The Rerewhakaaitu episode produced a widespread tephra fall deposit, associated proximal pyroclastic flow deposits, and voluminous rhyolite lava extrusions. Two different rhyolite magmas (T1 and T2) were simultaneously erupted from the main vent area throughout much of the eruption episode. T1 magma was a crystal-poor orthopyroxene-hornblende rhyolite that is highly evolved (whole rock SiO 2 = 77 wt.%), with a moderate temperature (˜ 760 °C, based on Fe-Ti oxides). T2 is a crystal-rich biotite-hornblende rhyolite that is less evolved (SiO 2 = 75 wt.%), with a Fe-Ti oxide temperature of ˜ 700 °C. Ejecta from the simultaneous and sequential eruption of these two magmas include some pumice clasts with mixed (hybrid) and mingled glass compositions and crystal populations. A third rhyolite magma (T3) was extruded from another vent 3 km distant to form an apparently contemporaneous lava dome. T3 was the least evolved (SiO 2 = 74 wt.%) and hottest (˜ 820 °C) of the three magmas. Saturation pressures calculated using dissolved H 2O and CO 2 contents of melt inclusions in quartz crystals indicate that T2 magma stagnated and crystallised at about 12 km depth, while small quartz crystals in T1 magma grew during ascent through ˜ 8 km depths. Some T1 and T2 rhyolite clasts contain vesicular brown blebs with widely variable (andesite to rhyolite) glass compositions, accompanied by olivine, clinopyroxene and calcic plagioclase crystals that are interpreted as xenocrysts derived from injected basalt. Temperatures over 1000 °C estimated from pyroxene phase equilibria in these clasts reflect intrusion of the more mafic magma, which is now identified as the priming and triggering mechanism for three of the four post-22 ka Tarawera rhyolite eruption episodes

  12. Large phreatomagmatic vent complex at Coombs Hills, Antarctica: Wet, explosive initiation of flood basalt volcanism in the Ferrar-Karoo LIP

    Science.gov (United States)

    McClintock, Murray; White, James D. L.

    2006-01-01

    The Mawson Formation and correlatives in the Transantarctic Mountains and South Africa record an early eruption episode related to the onset of Ferrar-Karoo flood basalt volcanism. Mawson Formation rocks at Coombs Hills comprise mainly (≥80% vol) structureless tuff breccia and coarse lapilli tuff cut by irregular dikes and sills, within a large vent complex (>30 km2). Quenched juvenile fragments of generally low but variable vesicularity, accretionary lapilli and country rock clasts within vent-fill, and pyroclastic density current deposits point to explosive interaction of basalt with groundwater in porous country rock and wet vent filling debris. Metre-scale dikes and pods of coherent basalt in places merge imperceptibly into peperite and then into surrounding breccia. Steeply dipping to sub-vertical depositional contacts juxtapose volcaniclastic rocks of contrasting componentry and grainsize. These sub-vertical tuff breccia zones are inferred to have formed when jets of debris + steam + water passed through unconsolidated vent-filling deposits. These jets of debris may have sometimes breached the surface to form subaerial tephra jets which fed subaerial pyroclastic density currents and fall deposits. Others, however, probably died out within vent fill before reaching the surface, allowing mixing and recycling of clasts which never reached the atmosphere. Most of the ejecta that did escape the debris-filled vents was rapidly recycled as vents broadened via lateral quarrying of country rock and bedded pyroclastic vent-rim deposits, which collapsed along the margins into individual vents. The unstratified, poorly sorted deposits comprising most of the complex are capped by tuff, lapilli tuff and tuff breccia beds inferred to have been deposited on the floor of the vent complex by pyroclastic density currents. Development of the extensive Coombs Hills vent-complex involved interaction of large volumes of magma and water. We infer that recycling of water, as well

  13. The roles of fractional crystallization, magma mixing, crystal mush remobilization and volatile-melt interactions in the genesis of a young basalt-peralkaline rhyolite suite, the greater Olkaria volcanic complex, Kenya Rift valley

    Science.gov (United States)

    Macdonald, R.; Belkin, H.E.; Fitton, J.G.; Rogers, N.W.; Nejbert, K.; Tindle, A.G.; Marshall, A.S.

    2008-01-01

    The Greater Olkaria Volcanic Complex is a young (???20 ka) multi-centred lava and dome field dominated by the eruption of peralkaline rhyolites. Basaltic and trachytic magmas have been erupted peripherally to the complex and also form, with mugearites and benmoreites, an extensive suite of magmatic inclusions in the rhyolites. The eruptive rocks commonly represent mixed magmas and the magmatic inclusions are themselves two-, three- or four-component mixes. All rock types may carry xenocrysts of alkali feldspar, and less commonly plagioclase, derived from magma mixing and by remobilization of crystal mushes and/or plutonic rocks. Xenoliths in the range gabbro-syenite are common in the lavas and magmatic inclusions, the more salic varieties sometimes containing silicic glass representing partial melts and ranging in composition from anorthite ?? corundum- to acmite-normative. The peralkaline varieties are broadly similar, in major element terms, to the eruptive peralkaline rhyolites. The basalt-trachyte suite formed by a combination of fractional crystallization, magma mixing and resorption of earlier-formed crystals. Matrix glass in metaluminous trachytes has a peralkaline rhyolitic composition, indicating that the eruptive rhyolites may have formed by fractional crystallization of trachyte. Anomalous trace element enrichments (e.g. ??? 2000 ppm Y in a benmoreite) and negative Ce anomalies may have resulted from various Na- and K-enriched fluids evolving from melts of intermediate composition and either being lost from the system or enriched in other parts of the reservoirs. A small group of nepheline-normative, usually peralkaline, magmatic inclusions was formed by fluid transfer between peralkaline rhyolitic and benmoreitic magmas. The plumbing system of the complex consists of several independent reservoirs and conduits, repeatedly recharged by batches of mafic magma, with ubiquitous magma mixing. ?? The Author 2008. Published by Oxford University Press. All

  14. Olivine-hosted Melt Inclusions: Insights into Highly Explosive Basaltic Volcanism from Alkali-rich Magma at Sunset Crater, AZ

    Science.gov (United States)

    Allison, C. M.; Roggensack, K.; Clarke, A. B.

    2017-12-01

    Sunset Crater volcano, an alkali basalt scoria cone in northern Arizona, erupted ca. 1085 AD, producing a large tephra blanket through sub-Plinian activity during its most explosive period. Primary melt inclusions (MIs) in free olivine crystals from the tephra were analyzed to study magma characteristics and storage conditions. We compare MIs from the early-erupted Strombolian deposit to those of sub-Plinian units to identify magma properties related to eruptive style. All MIs are faceted and closely similar in composition exhibiting minor post entrapment crystallization (3-15%). MIs are relatively dry (0.5-1.5 wt% H2O) but CO2-rich (1,200-3000 ppm). Most MIs contain >1 wt% H2O and >2,000 ppm CO2. MI vapor bubbles are ubiquitous in Sunset Crater samples ranging in size from 1 to 10 vol% of the MI in typical samples or 3 vol% on average. However, based on MI shrinkage caused by the decrease of olivine and melt densities with lower temperatures, only bubbles smaller than 3 vol% can result from post-entrapment cooling alone. We conclude that larger MI bubbles likely include volume contributions from pre-entrapment vapor. Raman spectroscopy, calibrated with synthetic CO2 inclusions, shows that the bubbles contain CO2 vapor and carbonate crystals have been observed on the bubble walls. Total MI CO2 contents, representing dissolved CO2 plus vapor bubble (if less than 3 vol% in size), range up to 4500 ppm. If no size constraint is applied to the vapor bubbles, the maximum total CO2 content (dissolved + vapor) reaches 6,500 ppm. These volatile abundances exceed the current experimental data on volatile solubility in alkali basalts. Fluid-saturated H2O-CO2 solubility experiments at 1200 °C between 400 and 600 MPa were conducted on the bulk Sunset Crater composition to account for the enhanced CO2 solubility of alkali-rich magma and accurately constrain solubility. This experimental data and the resulting calibrated thermodynamic model, indicates that MIs record depths up

  15. Morphometric characterization of monogenetic volcanic cones of the Chichinautzin and Michoacán-Guanajuato monogenetic volcanic fields in Mexico

    Science.gov (United States)

    Zarazua-Carbajal, Maria Cristina; De la Cruz-Reyna, Servando; Mendoza-Rosas, Ana Teresa

    2014-05-01

    Morphometric characterization of volcanic edifices is one of the main approaches providing information about a volcano eruptive history, whether it has one or more eruptive vents or if it had any sector collapses. It also provides essential information about the physical processes that modify their shapes during periods of quietness, and quite significantly, about the volcanoes' ages. In the case of monogenetic activity, a volcanic field can be characterized by the size and slope distributions, and other cone's morphometric parameter distributions that may provide valuable information about the temporal evolution of the volcanic field. The increasingly available high-resolution digital elevation models and the continuously developing computer tools have allowed a faster development and more detailed morphometric characterization techniques. We present here a methodology to readily obtain diverse volcanic cone shape parameters from the contour curves such as mean slope, slope distribution, dimensions of the cone and crater, crater location within the cone, orientation of the cone's principal axis, eccentricity, and other morphological features using an analysis algorithm that we developed, programmed in Python and ArcPy. Preliminary results from the implementation of this methodology to the Chichinautzin and Michoacán-Guanajuato monogenetic volcanic fields in Mexico have permitted a preliminary estimation of the age distribution of some of the cones with an acceptable correlation with the available radiometric ages. A large part of the Chichinautzin region DEM was obtained from a LIDAR survey by the Mexican National Institute of Statistics and Geography (INEGI).

  16. Near Field Observations of Seismicity in Volcanic Environments: A Read-Made Field Laboratory

    Science.gov (United States)

    Bean, C. J.; Thun, J.; Eibl, E. P. S.; Benson, P. M.; Rowley, P.; Lokmer, I.; Cauchie, L.

    2017-12-01

    Volcanic environments experience periods of rapid stress fluctuations and consequent seismicity. This volcano seismicity is diverse in character, spanning the range from discrete high frequency events through low-frequency earthquakes and tremor. The inter-relationships between these events appear to be controlled by edifice rheology, stress state and the presence of fluids (which help modulate the stress field). In general volcanoes are accessible to instrumentation, allowing near-field access to the seismicity at play. Here we present results from a range of field, numerical and laboratory experiments that demonstrate the controls that rheology and strain rate play on seismicity type. In particular we demonstrate the role played by internal friction angles on the initiation and evolution of seismicity, in dry weak-compliant volcanic materials. Furthermore we show the importance of near field observation in constraining details of the seismic source, in a meso-scale field setting.

  17. Emplacement history and inflation evidence of a long basaltic lava flow located in Southern Payenia Volcanic Province, Argentina

    Science.gov (United States)

    Bernardi, Mauro I.; Bertotto, Gustavo W.; Jalowitzki, Tiago L. R.; Orihashi, Yuji; Ponce, Alexis D.

    2015-02-01

    The El Corcovo lava flow, from the Huanul shield volcano in the southern Mendoza province (central-western Argentina) traveled a distance of 70 km and covered a minimum area of ~ 415 km2. The flow emplacement was controlled both by extrinsic (e.g., topography) and intrinsic (e.g., lava supply rate, lava physicochemical characteristics) factors. The distal portion of the lava flow reached the Colorado River Valley, in La Pampa Province, where it spread and then was confined by earlier river channels. Cross-sections through the flow surveyed at several localities show two vesicular layers surrounding a dense central section, where vesicles are absent or clustered in sheet-shaped and cylindrical-shaped structures. Lavas of the El Corcovo flow are alkaline basalts with low values of viscosity. The morphological and structural characteristics of the flow and the presence of landforms associated with lava accumulation are the evidence of inflation. This process involved the formation of a tabular sheet flow up to 4 m of thick with a large areal extent in the proximal sectors, while at terminal sectors frontal lobes reached inflation values up to 10 m. The numerous swelling structures present at these portions of the flow suggest the movement of lava in lava tubes. We propose that this aspect and the low viscosity of the lava allowed the flow travel to a great distance on a gentle slope relief.

  18. Constraining volcanic inflation at Three Sisters Volcanic Field in Oregon, USA, through microgravity and deformation modeling

    Science.gov (United States)

    Zurek, Jeffrey; William-Jones, Glyn; Johnson, Dan; Eggers, Al

    2012-10-01

    Microgravity data were collected between 2002 and 2009 at the Three Sisters Volcanic Complex, Oregon, to investigate the causes of an ongoing deformation event west of South Sister volcano. Three different conceptual models have been proposed as the causal mechanism for the deformation event: (1) hydraulic uplift due to continual injection of magma at depth, (2) pressurization of hydrothermal systems and (3) viscoelastic response to an initial pressurization at depth. The gravitational effect of continual magma injection was modeled to be 20 to 33 μGal at the center of the deformation field with volumes based on previous deformation studies. The gravity time series, however, did not detect a mass increase suggesting that a viscoelactic response of the crust is the most likely cause for the deformation from 2002 to 2009. The crust, deeper than 3 km, in the Three Sisters region was modeled as a Maxwell viscoelastic material and the results suggest a dynamic viscosity between 1018 to 5 × 1019 Pa s. This low crustal viscosity suggests that magma emplacement or stall depth is controlled by density and not the brittle ductile transition zone. Furthermore, these crustal properties and the observed geochemical composition gaps at Three Sisters can be best explained by different melt sources and limited magma mixing rather than fractional crystallization. More generally, low intrusion rates, low crustal viscosity, and multiple melt sources could also explain the whole rock compositional gaps observed at other arc volcanoes.

  19. A field trip guide to the petrology of Quaternary volcanism on the Yellowstone Plateau

    Science.gov (United States)

    Vazquez, Jorge A.; Stelten, Mark; Bindeman, Ilya N.; Cooper, Kari

    2017-12-19

    The Yellowstone Plateau is one of the largest manifestations of silicic volcanism on Earth, and marks the youngest focus of magmatism associated with the Yellowstone Hot Spot. The earliest products of Yellowstone Hot Spot volcanism are from ~17 million years ago, but may be as old as ~32 Ma, and include contemporaneous eruption of voluminous mafic and silicic magmas, which are mostly located in the region of northwestern Nevada and southeastern Oregon. Since 17 Ma, the main locus of Yellowstone Hot Spot volcanism has migrated northeastward producing numerous silicic caldera complexes that generally remain active for ~2–4 million years, with the present-day focus being the Yellowstone Plateau. Northeastward migration of volcanism associated with the Yellowstone Hot Spot resulted in the formation of the Snake River Plain, a low relief physiographic feature extending ~750 kilometers from northern Nevada to eastern Idaho. Most of the silicic volcanic centers along the Snake River Plain have been inundated by younger basalt volcanism, but many of their ignimbrites and lava flows are exposed in the extended regions at the margins of the Snake River Plain. 

  20. Geothermal Fields on the Volcanic Axis of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Mercado, S.; Gonzalez, A.

    1980-12-16

    At present in Mexico, geothermal energy is receiving a great impulse due to the excellent results obtained in the Cerro Prieto geothermal field, in which a geothermoelectric plant is operated. This plant has four units of 37.5 MW each, with a total capacity of 150 MW, and under program 470 MW more by 1984. The Government Institution, Comisi6n Federal de Electricidad, is in charge of the exploration and exploitation of geothermal fields as well as construction and operation of power plants in Mexico. By this time CFE has an extensive program of exploration in the central part of Mexico, in the Eje Neovolcdnico. In this area, several fields with hydrothermal alteration are under exploration, like the Michoac6n geothermal area, where Los Azufres geothermal field is being developed. Seventeen wells have been drilled and twelve of them presented excellent results, including two dry steam wells. In other areas, such as Arar6, Cuitzeo, San Agustln del Maiz,Ixtldn de Los Hervores and Los Negritos, geological, geophysical and geochemical explorations have been accomplished, including shallow well drilling with good results. Another main geothermal area is in the State of Jalisco with an extension of 5,000 m2, where La Primavera geothermal field shows a lot of volcanic domes and has an intensive hydrothermal activity. Deep wells have been drilled, one of them with a bottom temperature of 29OOC. Other fields in this area, like San Narcos, Hervores de La Vega, La Soledad, Villa Corona, etc., have a good geothermal potential. A new geothermal area has been explored recently in the eastern part of the country named Los Humeros, Puebla. In this area studies are being made and there are plans for well drilling exploration by the beginning of 1981. Like this one, there are many other areas in the country in which 300 hydrothermal alteration zones are been classified and 100 of them are considered economically exploitable.

  1. Wave field decomposition of volcanic tremor at Pacaya Volcano, Guatemala

    Science.gov (United States)

    Lanza, F.; Waite, G. P.; Kenyon, L. M.

    2013-12-01

    A dense, small-aperture array of 12 short-period seismometers was deployed on the west flank of Pacaya volcano (Guatemala) and operated for 14 days in January 2011. The data were used to investigate the properties of the volcanic tremor wave field at the volcano. Volcanic tremor has been proven to be a powerful tool for eruption forecasting, therefore, identifying its source locations may shed new light on the dynamics of the volcano system. A preliminary spectral analysis highlights that most of the seismic energy is associated with six narrow spectral peaks between 1 and 6 Hz. After taking topography into account, we performed frequency-slowness analyses using the MUSIC algorithm and the semblance technique with the aim to define and locate the different components contributing to the wave field. Results show a complex wave field, with possibly multiple sources. We identify peaks at frequencies < 2 Hz as being related to anthropogenic sources coming from the N- NW direction where the geothermal plant and San Vincente Pacaya village are located. Azimuth measurements indicate that the 3 Hz signal propagates from the SE direction and it has been attributed to the new vent on the southeast flank of Pacaya Volcano. However, the presence of secondary peaks with azimuths of ˜ 200°, 150° and 70° seems to suggest either nonvolcanic sources or perhaps the presence of structural heterogeneities that produce strong scattered waves. At higher frequencies, results show effects of array aliasing, and therefore have not been considered in this study. The dispersive properties of the wave field have been investigated using the Spatial Auto-Correlation Method (SPAC). The dispersion characteristics of Rayleigh waves have been then inverted to find a shallow velocity model beneath the array, which shows a range of velocities from about 0.3 km/s to 2 km/s, in agreement with slowness values of the frequency bands considered. In detail, apparent velocities of 1-2 km/s dominate at

  2. Rheological evolution of planetary basalts during cooling and crystallization

    Science.gov (United States)

    Sehlke, Alexander

    Basaltic lavas cover large portions of the surface of the Earth and other planets and moons. Planetary basalts are compositionally different from terrestrial basalts, and show a variety of unique large-scale lava flow morphologies unobserved on Earth. They are usually assumed to be much more fluid than basalts on Earth, such as Hawaiian basalt, but their rheology is largely unknown. I synthesized several synthetic silicate melts representing igneous rock compositions of Mars, Mercury, the Moon, Io and Vesta. I measured their viscosity, as well as several terrestrial lavas including Hawaiian basalt, by concentric cylinder and parallel plate viscometry. Planetary melts cover a wide range of viscosity at their liquidus, overlapping with terrestrial basaltic melts. I derived a new viscosity model that is based on the Adam-Gibbs theory of structural relaxation, predicting these viscosities much more accurately than previously published viscosity models. During crystallization, the rheological behavior changes from Newtonian to pseudoplastic. Combining rheology experiments with field observations, the rheological conditions of the pahoehoe to `a`a morphological transition for Hawaiian basalt were determined in strain rate-viscosity space. This transition occurs at temperatures around 1185+/-15°C. For Mercurian lavas, this transition is predicted to occur at higher temperatures around 1250+/-30°C. We find that the rheology of these lavas is broadly similar to terrestrial ones, suggesting that the large smooth volcanic plains observed on Mercury's northern hemisphere are due to flood basalt volcanism rather than unusually fluid lavas. We also show that KREEP lavas, a type of basalt associated with sinuous rilles on the lunar surface, is more likely to form rilles through levee construction, as the high and rapidly increasing viscosity prohibits sufficient thermo-mechanical erosion.

  3. Geochemistry of the late Holocene rocks from the Tolbachik volcanic field, Kamchatka: Quantitative modelling of subduction-related open magmatic systems

    Science.gov (United States)

    Portnyagin, Maxim; Duggen, Svend; Hauff, Folkmar; Mironov, Nikita; Bindeman, Ilya; Thirlwall, Matthew; Hoernle, Kaj

    2015-12-01

    We present new major and trace element, high-precision Sr-Nd-Pb (double spike), and O-isotope data for the whole range of rocks from the Holocene Tolbachik volcanic field in the Central Kamchatka Depression (CKD). The Tolbachik rocks range from high-Mg basalts to low-Mg basaltic trachyandesites. The rocks considered in this paper represent mostly Late Holocene eruptions (using tephrochronological dating), including historic ones in 1941, 1975-1976 and 2012-2013. Major compositional features of the Tolbachik volcanic rocks include the prolonged predominance of one erupted magma type, close association of middle-K primitive and high-K evolved rocks, large variations in incompatible element abundances and ratios but narrow range in isotopic composition. We quantify the conditions of the Tolbachik magma origin and evolution and revise previously proposed models. We conclude that all Tolbachik rocks are genetically related by crystal fractionation of medium-K primary magmas with only a small range in trace element and isotope composition. The primary Tolbachik magmas contain 14 wt.% of MgO and 4% wt.% of H2O and originated by partial melting ( 6%) of moderately depleted mantle peridotite with Indian-MORB-type isotopic composition at temperature of 1250 °C and pressure of 2 GPa. The melting of the mantle wedge was triggered by slab-derived hydrous melts formed at 2.8 GPa and 725 °C from a mixture of sediments and MORB- and Meiji-type altered oceanic crust. The primary magmas experienced a complex open-system evolution termed Recharge-Evacuation-Fractional Crystallization (REFC). First the original primary magmas underwent open-system crystal fractionation combined with periodic recharge of the magma chamber with more primitive magma, followed by mixing of both magma types, further fractionation and finally eruption. Evolved high-K basalts, which predominate in the Tolbachik field, and basaltic trachyandesites erupted in 2012-2013 approach steady-state REFC liquid

  4. Sr, Nd and Pb isotope and geochemical data from the Quaternary Nevado de Toluca volcano, a source of recent adakitic magmatism, and the Tenango Volcanic Field, Mexico

    Science.gov (United States)

    Martínez-Serrano, Raymundo G.; Schaaf, Peter; Solís-Pichardo, Gabriela; Hernández-Bernal, Ma. del Sol; Hernández-Treviño, Teodoro; Julio Morales-Contreras, Juan; Macías, José Luis

    2004-11-01

    Volcanic activity at Nevado de Toluca (NT) volcano began 2.6 Ma ago with the emission of andesitic lavas, but over the past 40 ka, eruptions have produced mainly lava flows and pyroclastic deposits of predominantly orthopyroxene-hornblende dacitic composition. In the nearby Tenango Volcanic Field (TVF) pyroclastic products and lava flows ranging in composition from basaltic andesite to andesite were erupted at most of 40 monogenetic volcanic centers and were coeval with the last stages of NT. All volcanic rocks in the study area are characterized by a calc-alkaline affinity that is consistent with a subduction setting. Relatively high concentrations of Sr (>460 ppm) coupled with low Y (45 km) that underlies the volcanoes of the study area, the geochemical and isotopic patterns of these rocks indicate low interaction with this crust. NT volcano was constructed at the intersection of three fault systems, and it seems that the Plio-Quaternary E-W system played an important role in the ascent and storage of magmas during the recent volcanic activity in the two regions. Chemical and textural features of orthopyroxene, amphibole and Fe-Ti oxides from NT suggest that crystallization of magmas occurred at polybaric conditions, confirming the rapid upwelling of magmas.

  5. Amplified hazard of small-volume monogenetic eruptions due to environmental controls, Orakei Basin, Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Németh, Károly; Cronin, Shane J.; Smith, Ian E. M.; Agustin Flores, Javier

    2012-11-01

    Orakei maar and tuff ring in the Auckland Volcanic Field is an example of a basaltic volcano in which the style and impacts of the eruption of a small volume of magma were modulated by a fine balance between magma flux and groundwater availability. These conditions were optimised by the pre-85 ka eruption being hosted in a zone of fractured and variably permeable Plio-Pleistocene mudstones and sandstones. Orakei maar represents an end-member in the spectrum of short-lived basaltic volcanoes, where substrate conditions rather than the magmatic volatile content was the dominant factor controlling explosivity and eruption styles. The eruption excavated a crater ≫80 m deep that was subsequently filled by slumped crater wall material, followed by lacustrine and marine sediments. The explosion crater may have been less than 800 m in diameter, but wall collapse and wave erosion has left a 1,000-m-diameter roughly circular basin. A tuff ring around part of the maar comprises dominantly base surge deposits, along with subordinate fall units. Grain size, texture and shape characteristics indicate a strong influence of magma-water and magma-mud interactions that controlled explosivity throughout the eruption, but also an ongoing secondary role of magmatic gas-driven expansion and fragmentation. The tuff contains >70 % of material recycled from the underlying Plio-Pliestocene sediments, which is strongly predominant in the >2 ϕ fraction. The magmatic clasts are evolved alkali basalt, consistent with the eruption of a very small batch of magma. The environmental impact of this eruption was disproportionally large, when considering the low volume of magma involved (DRE Auckland City, destroying an area of ~3 km2 by crater formation and base surge impact. An equivalent scenario for the same magma conditions without groundwater interaction would yield a scoria/spatter cone with a diameter of 400-550 m, destroying less than a tenth of the area affected by the Orakei event.

  6. The timing and origin of pre- and post-caldera volcanism associated with the Mesa Falls Tuff, Yellowstone Plateau volcanic field

    Science.gov (United States)

    Stelten, Mark E.; Champion, Duane E.; Kuntz, Mel A.

    2018-01-01

    We present new sanidine 40Ar/39Ar ages and paleomagnetic data for pre- and post-caldera rhyolites from the second volcanic cycle of the Yellowstone Plateau volcanic field, which culminated in the caldera-forming eruption of the Mesa Falls Tuff at ca. 1.3 Ma. These data allow for a detailed reconstruction of the eruptive history of the second volcanic cycle and provide new insights into the petrogenesis of rhyolite domes and flows erupted during this time period. 40Ar/39Ar age data for the biotite-bearing Bishop Mountain flow demonstrate that it erupted approximately 150 kyr prior to the Mesa Falls Tuff. Integrating 40Ar/39Ar ages and paleomagnetic data for the post-caldera Island Park rhyolite domes suggests that these five crystal-rich rhyolites erupted over a centuries-long time interval at 1.2905 ± 0.0020 Ma (2σ). The biotite-bearing Moonshine Mountain rhyolite dome was originally thought to be the downfaulted vent dome for the pre-caldera Bishop Mountain flow due to their similar petrographic and oxygen isotope characteristics, but new 40Ar/39Ar dating suggest that it erupted near contemporaneously with the Island Park rhyolite domes at 1.2931 ± 0.0018 Ma (2σ) and is a post-caldera eruption. Despite their similar eruption ages, the Island Park rhyolite domes and the Moonshine Mountain dome are chemically and petrographically distinct and are not derived from the same source. Integrating these new data with field relations and existing geochemical data, we present a petrogenetic model for the formation of the post-Mesa Falls Tuff rhyolites. Renewed influx of basaltic and/or silicic recharge magma into the crust at 1.2905 ± 0.0020 Ma led to [1] the formation of the Island Park rhyolite domes from the source region that earlier produced the Mesa Falls Tuff and [2] the formation of Moonshine Mountain dome from the source region that earlier produced the biotite-bearing Bishop Mountain flow. These magmas were stored in the crust for less than a few thousand

  7. Pre-eruptive volatile and erupted gas phase characterization of the 2014 basalt of Bárðarbunga volcanic system, Iceland.

    Science.gov (United States)

    Haddadi, Baptiste; Moune, Séverine; Sigmarsson, Olgeir; Gauthier, Pierre-Jean; Gouhier, Mathieu

    2015-04-01

    The 2014 Holuhraun eruption on the Bárðarbunga Volcanic System is the largest fissure eruption in Iceland since the 1783 Laki eruption. The eruption started end of August 2014 and has been characterized by large emission of SO2 into the atmosphere. It provides a rare opportunity to study in details magmatic and degassing processes during a large-volume fissure eruption. In order to characterize the pre-eruptive magmatic composition and to assess the plume chemistry at the eruption site, lava and tephra were sampled together with the eruption plume. The basalt composition is olivine tholeiite with MgO close to 7 wt%. It is phenocryst-poor with plagioclase as the dominant mineral phase but olivine and clinopyroxene are also present together with sulphide globules composed principally of pyrite and chalcopyrite. The volatile (S, Cl and F) and major element concentrations were measured by the electron microprobe in melt inclusions (MIs) trapped in plagioclase and clinopyroxene and groundmass glass. The MIs composition ranges from fairly primitive basaltic compositions (MgO: 9.03 wt%) down to evolved qz-tholeiites (MgO: 5.57 wt%), with estimated pre-eruptive S concentrations of 1500 ppm. Tephra groundmass glass contains 400 ppm S, whereas Cl and F concentrations are respectively slightly lower and indistinguishable from those in the MIs. This implies limited exsolution of halogens but 75% of the initial sulphur content. Relatively to their total iron content, MIs are sulphur saturated, and their oxygen fugacity close to the FMQ buffer. The difference between the estimated initial volatile concentrations measured in the MIs and in the tephra groundmass (i.e. the so-called petrological method) yields 7.2 Mt SO2, limited HCl and no HF atmospheric mass loading from the Holuhraun 2014 eruption. The SO2/HCl molar ratio of the gas phase, calculated from the MIs, is 13 and 14, respectively, using average and estimated pre-eruptive S and Cl concentrations in the MIs. Filter

  8. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A. [Los Alamos National Lab., NM (United States); Wells, S. [Univ. of California, Riverside, CA (United States); Bowker, L.; Finnegan, K. [Univ. of Nevada, Las Vegas, NV (United States); Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.

  9. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A.; Wells, S.; Bowker, L.; Finnegan, K.; Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report

  10. A case study from Wadi Natash volcanic

    Indian Academy of Sciences (India)

    This paper aims at revealing the spectral characteristics of the olivine basalts exposed at Wadi Natash area, Egypt, using FieldSpec spectroradiometer. It also evaluates band ratios and fusion techniques for mapping purposes using ASTER data. Several volcanic episodes occurred during Early- to Late-Cretaceous are ...

  11. Petrological, magnetic and chemical properties of basalt dredged from an abyssal hill in the North-east pacific

    Science.gov (United States)

    Luyendyk, B.P.; Engel, C.G.

    1969-01-01

    OVER the years, samples of basalt from the oceanic crust have been taken mainly from seamounts, fracture zones and ridge and rise crests1-6, and rarely from the vast fields of abyssal hills which cover a large part of the deep-sea floor. The basalt sampled from the deeper regions of the oceanic crust (for example, on fault scarps) is a distinct variety of tholeiitic basalt, while alkali basalt is restricted to the volcanic edifices4. Oceanic tholeiitic basalt differs from alkali basalt and continental tholeiite chiefly in having a relatively low percentage of K2O (0.2 weight per cent)4. Some authors have speculated that this type of tholeiitic basalt is the major extrusion from the upper mantle and constitutes the predominant rock type in the upper oceanic crust. ?? 1969 Nature Publishing Group.

  12. Pleistocene high-silica rhyolites of the Coso volcanic field, Inyo County, California.

    Science.gov (United States)

    Bacon, C.R.; Macdonald, R.; Smith, R.L.; Baedecker, P.A.

    1981-01-01

    The high-silica rhyolite domes and lava flows of the bimodal Pleistocene part of the Coso volcanic field provide an example of the early stages of evolution of a silicic magmatic system of substantial size and longevity. Major and trace element compositions are consistent with derivation from somewhat less silicic parental material by liquid state differentiation processes in compositionally and thermally zoned magmatic systems. Seven chemically homogeneous eruptive groups can be distinguished on the basis of trace element and K/Ar data. The oldest two groups are volumetrically minor and geochemically distinct from the younger groups, all five of which appear to have evolved from the same magmatic system. Erupted volume-time relations suggest that small amounts of magma were bled from the top of a silicic reservoir at a nearly constant long-term rate over the last 0.24Ma. The interval of repose between eruptions appears to be proportional to the volume of the preceding eruptive group. This relationship suggests that eruptions take place when some parameter which increases at a constant rate reaches a critical value; this parameter may be extensional strain accumulated in roof rocks. Extension of the lithosphere favors intrusion of basalt into the crust, attendant partial melting, and maintenance of a long-lived silicic magmatic system. The Coso silicic system may contain a few hundred cubic kilometers of magma. The Coso magmatic system may eventually have the potential for producing voluminous pyroclastic eruptions if the safety valve provided by rapid crustal extension becomes inadequate to 1) defuse the system through episodic removal of volatile-rich magma from its top and 2) prohibit migration of the reservoir to a shallow crustal level.-from Authors

  13. Residence, resorption and recycling of zircons in Devils Kitchen rhyolite, Coso Volcanic Field, California

    Science.gov (United States)

    Miller, J.S.; Wooden, J.L.

    2004-01-01

    Zircons from the Devils Kitchen rhyolite in the Pleistocene Coso Volcanic field, California have been analyzed by in situ Pb/U ion microprobe (SHRIMP-RG) and by detailed cathodoluminescence imaging. The zircons yield common-Pb-corrected and disequilibrium-corrected 206Pb/238U ages that predate a previously reported K-Ar sanidine age by up to 200 kyr, and the range of ages exhibited by the zircons is also approximately 200 kyr. Cathodoluminescence imaging indicates that zircons formed in contrasting environments. Most zircons are euhedral, and a majority of the zircons are weakly zoned, but many also have anhedral, embayed cores, with euhedral overgrowths and multiple internal surfaces that are truncated by later crystal zones. Concentrations of U and Th vary by two orders of magnitude within the zircon population, and by 10-20 times between zones within some zircon crystals, indicating that zircons were transferred between contrasting chemical environments. A zircon saturation temperature of ???750??C overlaps within error a previously reported phenocryst equilibration temperature of 740 ?? 25??C. Textures in zircons indicative of repeated dissolution and subsequent regrowth are probably caused by punctuated heating by mafic magma input into rhyolite. The overall span of ages and large variation in U and Th concentrations, combined with calculated zircon saturation temperatures and resorption times, are most compatible with crystallization in magma bodies that were emplaced piecemeal in the crust at Coso over 200 kyr prior to eruption, and that were periodically rejuvenated or melted by subsequent basaltic injections. ?? Oxford University Press 2004; all rights reserved.

  14. The inception and progression of melting in a monogenetic eruption: Motukorea Volcano, the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    McGee, Lucy E.; Millet, Marc-Alban; Smith, Ian E. M.; Németh, Károly; Lindsay, Jan M.

    2012-12-01

    Compositional variation through basaltic monogenetic eruptive sequences provides a unique view into the processes and source heterogeneity of small-scale magmatic systems. A well-exposed, continuous sequence on Motukorea volcano in the Auckland Volcanic Field, New Zealand, consists of an early tuff ring, scoriaceous deposits and late lava flows which allow the evolution of the eruption to be studied at very high resolution. The deposits show a spectrum of basaltic compositions from Mg# 60 nephelinite (early tuff ring) to Mg# 70 alkalic basalt (lava). Within the deposits of each main eruptive phase (i.e. tuff, scoria and lava) very little variation is observed in major element chemistry, suggesting that fractional crystallisation has a limited effect. Systematic changes in trace element chemistry, however, are significant through the sequence. The major and trace element features observed through the sequence are inferred to be primarily due to the mixing of two magma batches, with a two-fold increase in the degree of melting between these. Variation in Pb-isotopic compositions up-sequence indicates subtle changes in mantle source with samples representing the start of the eruption displaying higher 207Pb/204Pb than the latter parts of the eruption. This chemical change coincides with a switch in the mode of eruption, with the arrival at the surface of magmas produced by larger degrees of partial melting resulting in the beginning of a more effusive eruption phase. The silica-undersaturated, high total alkali, low Al2O3 and higher 207Pb/204Pb nature of the samples from the tuff units suggests that these samples were produced by melting of relatively young eclogite domains. The lower 207Pb/204Pb, higher silica, lower total alkali nature of the samples from the scoria and lava reflects the exhaustion of these domains and the resultant melting of the surrounding garnet-peridotite matrix. This detailed study shows that the petrogenesis of small volcanic centres may be

  15. What are volcanic passive margins? A discussion based on seismic and field examples

    Science.gov (United States)

    Zalan, Pedro

    2014-05-01

    Volcanic or magma-rich passive margins are continental margins whose underlying rift basins, developed during the stretching and thinning phases that affected the continental crust before breakup, are totally or predominantly filled by volcanic and volcanic-derived rocks. The type of magma is usually fissural tholeiitic basalts, eventually bi-modal basaltic-rhyolitic. This is in strong contrast with the definition of sedimentary or magma-poor passive margins, whose rift basins are predominantly filled with sedimentary rocks. As the name states, magma-poor margins may display a certain amount of magmatism, but which is clearly secondary with respect to the dominant sedimentary nature of the syn-rift filling. These are two end-members in the classification of passive margins, and as such, transitional members represented by passive margins displaying characteristics of both extremes are recognizable. The significant difference in the nature of the syn-rift strata gives rise to strikingly different seismic facies in seismic sections that cross the entire width of passive margins, allowing a relatively easy visual distinction between the end-members, as well as of the transitional members. Typical growth volcanic strata dip seawards and fill grabens controlled by landward dipping listric faults, giving rise to the well known laterally accreted wedges of seaward-dipping reflectors (SDR). The amount of magmatism in volcanic margins is so high that it impacts a large area surrounding the continental margin, thus, also easing the recognition of this end-member through the analysis of the neighboring surface geology. Volcanic margins are characterized by Large Igneous Provinces (LIPs) that present pre-rift (lava deltas, tabular lava flows, trap-stage), syn-rift (seaward-dipping growth strata, extrusive centers, SDR-stage) and post-rift (volcanos, punctual lava flows) magmatism. Breakup of the continental crust takes place at the climax of the SDR-stage. Volcanism is

  16. Osmium isotope variations accompanying the eruption of a single lava flow field in the Columbia River Flood Basalt Province

    Science.gov (United States)

    Vye-Brown, C.; Gannoun, A.; Barry, T. L.; Self, S.; Burton, K. W.

    2013-04-01

    Geochemical interpretations of continental flood basalts usually assume that individual lava flows represent compositionally homogenous and rapidly erupted products of large well-mixed magma reservoirs. However, inflated pāhoehoe lavas may develop over considerable periods of time and preserve chemical variations that can be temporally linked through flow formation to eruption sequence thus providing an understanding of magma evolution over the timescale of a single eruption. This study presents comprehensive major, trace element and Re-Os isotope data for a single eruption that formed the 2660 km3 Sand Hollow flow field in the Columbia River Basalt Province, USA. Major and trace element variations accompanying flow emplacement (e.g. MgO 3.09-4.55 wt%, Ni 17.5-25.6 ppm) are consistent with fractional crystallisation, but other petrogenetic processes or variable sources cannot be distinguished. However, there is a systematic shift in the initial 187Os/188Os isotope composition of the magma (age corrected to 15.27 Ma), from 0.174 (lava core) to 1.444 (lava crust) within a single 35 m thick sheet lobe. Lava crust values are more radiogenic than any known mantle source, consistent with previous data indicating that neither an enriched reservoir nor the sub-continental lithospheric mantle are likely to have sourced these basalts. Rather, these data indicate that lavas emplaced during the earliest stages of eruption have higher degrees of crustal contamination. These results highlight the limitations of applying chemostratigraphic correlation across continental flood basalt provinces, the use of single data points to define melt sources and magmatic processes, and the dangers of using conventional isochron techniques in such basalt sequences for absolute chronology.

  17. King's Bowl Pit Crater, Lava Field and Eruptive Fissure, Idaho - A Multipurpose Volcanic Planetary Analog

    Science.gov (United States)

    Hughes, S. S.; Garry, B.; Kobs-Nawotniak, S. E.; Sears, D. W. G.; Borg, C.; Elphic, R. C.; Haberle, C. W.; Kobayashi, L.; Lim, D. S. S.; Sears, H.; Skok, J. R.; Heldmann, J. L.

    2014-12-01

    King's Bowl (KB) and its associated eruptive fissure and lava field on the eastern Snake River Plain, is being investigated by the NASA SSERVI FINESSE (Field Investigations to Enable Solar System Science and Exploration) team as a planetary analog to similar pits on the Moon, Mars and Vesta. The 2,220 ± 100 BP basaltic eruption in Craters of the Moon National Monument and Preserve represents early stages of low shield growth, which was aborted when magma supply was cut off. Compared to mature shields, KB is miniscule, with ~0.02 km3 of lava over ~3 km2, yet the ~6 km long series of fissures, cracks and pits are well-preserved for analog studies of volcanic processes. The termination of eruption was likely related to proximity of the 2,270 ± 50 BP eruption of the much larger Wapi lava field (~5.5 km3 over 325 km2 area) on the same rift. Our investigation extends early work by R. Greeley and colleagues, focusing on imagery, compositional variations, ejecta distribution, dGPS profiles and LiDAR scans of features related to: (1) fissure eruptions - spatter ramparts, cones, feeder dikes, extension cracks; (2) lava lake formation - surface morphology, squeeze-ups, slab pahoehoe lava mounds, lava drain-back, flow lobe overlaps; and (3) phreatic steam blasts - explosion pits, ejecta blankets of ash and blocks. Preliminary results indicate multiple fissure eruptions and growth of a basin-filled lava lake up to ~ 10 m thick with outflow sheet lava flows. Remnant mounds of original lake crust reveal an early high lava lake level, which subsided as much as 5 m as the molten interior drained back into the fissure system. Rapid loss of magma supply led to the collapse of fissure walls allowing groundwater influx that triggered multiple steam blasts along at least 500 m. Early blasts occurred while lake magma pressure was still high enough to produce squeeze-ups when penetrated by ejecta blocks. The King's Bowl pit crater exemplifies processes of a small, but highly energetic

  18. Development of a risk assessment tool for volcanic urban environments: RiskScape and the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Deligne, N. I.; Leonard, G.; King, A.; Wilson, G.; Wilson, T.; Lindsay, J. M.

    2013-12-01

    Auckland city, home to a third of New Zealand's population, is situated on top of the Auckland Volcanic Field (AVF), which last erupted roughly 500 years ago. Since 2008, the Determining Volcanic Risk in Auckland (DEVORA) program has investigated the geologic context of the AVF, improved timing constraints of past eruptions, explored possible tempo-spatial-volume eruption trends, and identified likely styles and hazards of future eruptions. DEVORA is now moving into development of risk and societal models for Auckland. The volcanic module of RiskScape, a multi-hazard risk assessment tool developed by Crown Research Institutes GNS Science and NIWA, will be expanded and used to model risk and impact to the built environment and population caused by a future AVF eruption. RiskScape models casualties, damage and disruption caused by various hazards, the resulting reduced functionality of assets, and associated clean up costs. A strength of RiskScape is that the effect of various mitigation strategies can be explored by strengthening asset attributes and examining resulting changes in the output risk evaluation. We present our framework for building a volcano hazard exposure module for RiskScape along with our approach for assessing asset vulnerability through the development of fragility functions. We also present the framework for engagement with regional Auckland stakeholders, including representatives of local and regional governments and utility companies, to identify complementary needs to ensure that final risk products are relevant and useable by end users.

  19. The Impact of Space Flight on Survival and Interaction of Cupriavidus metallidurans CH34 with Basalt, a Volcanic Moon Analog Rock

    Directory of Open Access Journals (Sweden)

    Natalie Leys

    2017-04-01

    Full Text Available Microbe-mineral interactions have become of interest for space exploration as microorganisms could be used to biomine from extra-terrestrial material and extract elements useful as micronutrients in life support systems. This research aimed to identify the impact of space flight on the long-term survival of Cupriavidus metallidurans CH34 in mineral water and the interaction with basalt, a lunar-type rock in preparation for the ESA spaceflight experiment, BIOROCK. Therefore, C. metallidurans CH34 cells were suspended in mineral water supplemented with or without crushed basalt and send for 3 months on board the Russian FOTON-M4 capsule. Long-term storage had a significant impact on cell physiology and energy status (by flow cytometry analysis, plate count and intracellular ATP measurements as 60% of cells stored on ground lost their cell membrane potential, only 17% were still active, average ATP levels per cell were significantly lower and cultivability dropped to 1%. The cells stored in the presence of basalt and exposed to space flight conditions during storage however showed less dramatic changes in physiology, with only 16% of the cells lost their cell membrane potential and 24% were still active, leading to a higher cultivability (50% and indicating a general positive effect of basalt and space flight on survival. Microbe-mineral interactions and biofilm formation was altered by spaceflight as less biofilm was formed on the basalt during flight conditions. Leaching from basalt also changed (measured with ICP-OES, showing that cells release more copper from basalt and the presence of cells also impacted iron and magnesium concentration irrespective of the presence of basalt. The flight conditions thus could counteract some of the detrimental effects observed after the 3 month storage conditions.

  20. Monogenetic volcanic hazards and assessment

    Science.gov (United States)

    Connor, C.; Connor, L. J.; Richardson, J. A.

    2012-12-01

    Many of the Earth's major cities are build on the products of monogenetic volcanic eruptions and within geologically active basaltic volcanic fields. These cities include Mexico City (Mexico), Auckland (New Zealand), Melbourne (Australia), and Portland (USA) to name a few. Volcanic hazards in these areas are complex, and involve the potential formation of new volcanic vents and associated hazards, such as lava flows, tephra fallout, and ballistic hazards. Hazard assessment is complicated by the low recurrence rate of volcanism in most volcanic fields. We have developed a two-stage process for probabilistic modeling monogenetic volcanic hazards. The first step is an estimation of the possible locations of future eruptive vents based on kernel density estimation and recurrence rate of volcanism using Monte Carlo simulation and accounting for uncertainties in age determinations. The second step is convolution of this spatial density / recurrence rate model with hazard codes for modeling lava inundation, tephra fallout, and ballistic impacts. A methodology is presented using this two-stage approach to estimate lava flow hazard in several monogenetic volcanic fields, including at a nuclear power plant site near the Shamiram Plateau, a Quaternary volcanic field in Armenia. The location of possible future vents is determined by estimating spatial density from a distribution of 18 mapped vents using a 2-D elliptical Gaussian kernel function. The SAMSE method, a modified asymptotic mean squared error approach, uses the distribution of known eruptive vents to optimally determine a smoothing bandwidth for the Gaussian kernel function. The result is a probability map of vent density. A large random sample (N=10000) of vent locations is drawn from this probability map. For each randomly sampled vent location, a lava flow inundation model is executed. Lava flow input parameters (volume and average thickness) are determined from distributions fit to field observations of the low

  1. Field-trip guide to the vents, dikes, stratigraphy, and structure of the Columbia River Basalt Group, eastern Oregon and southeastern Washington

    Science.gov (United States)

    Camp, Victor E; Reidel, Stephen P.; Ross, Martin E.; Brown, Richard J.; Self, Stephen

    2017-06-22

    The Columbia River Basalt Group covers an area of more than 210,000 km2 with an estimated volume of 210,000 km3. As the youngest continental flood-basalt province on Earth (16.7–5.5 Ma), it is well preserved, with a coherent and detailed stratigraphy exposed in the deep canyonlands of eastern Oregon and southeastern Washington. The Columbia River flood-basalt province is often cited as a model for the study of similar provinces worldwide.This field-trip guide explores the main source region of the Columbia River Basalt Group and is written for trip participants attending the 2017 International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly in Portland, Oregon, USA. The first part of the guide provides an overview of the geologic features common in the Columbia River flood-basalt province and the stratigraphic terminology used in the Columbia River Basalt Group. The accompanying road log examines the stratigraphic evolution, eruption history, and structure of the province through a field examination of the lavas, dikes, and pyroclastic rocks of the Columbia River Basalt Group.

  2. Dissolution and secondary mineral precipitation in basalts due to reactions with carbonic acid

    Science.gov (United States)

    Kanakiya, Shreya; Adam, Ludmila; Esteban, Lionel; Rowe, Michael C.; Shane, Phil

    2017-06-01

    One of the leading hydrothermal alteration processes in volcanic environments is when rock-forming minerals with high concentrations of iron, magnesium, and calcium react with CO2 and water to form carbonate minerals. This is used to the advantage of geologic sequestration of anthropogenic CO2. Here we experimentally investigate how mineral carbonation processes alter the rock microstructure due to CO2-water-rock interactions. In order to characterize these changes, CO2-water-rock alteration in Auckland Volcanic Field young basalts (less than 0.3 Ma) is studied before and after a 140 day reaction period. We investigate how whole core basalts with similar geochemistry but different porosity, permeability, pore geometry, and volcanic glass content alter due to CO2-water-rock reactions. Ankerite and aluminosilicate minerals precipitate as secondary phases in the pore space. However, rock dissolution mechanisms are found to dominate this secondary mineral precipitation resulting in an increase in porosity and decrease in rigidity of all samples. The basalt with the highest initial porosity and volcanic glass volume shows the most secondary mineral precipitation. At the same time, this sample exhibits the greatest increase in porosity and permeability, and a decrease in rock rigidity post reaction. For the measured samples, we observe a correlation between volcanic glass volume and rock porosity increase due to rock-fluid reactions. We believe this study can help understand the dynamic rock-fluid interactions when monitoring field scale CO2 sequestration projects in basalts.

  3. Phreatomagmatic eruptions through unconsolidated coastal plain sequences, Maungataketake, Auckland Volcanic Field (New Zealand)

    Science.gov (United States)

    Agustín-Flores, Javier; Németh, Károly; Cronin, Shane J.; Lindsay, Jan M.; Kereszturi, Gábor; Brand, Brittany D.; Smith, Ian E. M.

    2014-04-01

    Maungataketake is a monogenetic basaltic volcano formed at ~ 85-89 ka in the southern part of the Auckland Volcanic Field (AVF), New Zealand. It comprises a basal 1100-m diameter tuff ring, with a central scoria/spatter cone and lava flows. The tuff ring was formed under hydrogeological and geographic conditions very similar to the present. The tuff records numerous density stratified, wet base surges that radiated outward up to 1 km, decelerating rapidly and becoming less turbulent with distance. The pyroclastic units dominantly comprise fine-grained expelled grains from various sedimentary deposits beneath the volcano mixed with a minor component of juvenile pyroclasts (~ 35 vol.%). Subtle lateral changes relate to deceleration with distance and vertical transformations are minor, pointing to stable explosion depths and conditions, with gradual transitions between units and no evidence for eruptive pauses. This volcano formed within and on ~ 60 m-thick Plio/Pleistocene, poorly consolidated, highly permeable shelly sands and silts (Kaawa Formation) capped by near-impermeable, water-saturated muds (Tauranga Group). These sediments rest on moderately consolidated Miocene-aged permeable turbiditic sandstones and siltstones (Waitemata Group). Magma-water fuelled thermohydraulic explosions remained in the shallow sedimentary layers, excavating fine-grained sediments without brittle fragmentation required. On the whole, the resulting cool, wet pyroclastic density currents were of low energy. The unconsolidated shallow sediments deformed to accommodate rapidly rising magma, leading to development of complex sill-like bodies and a range of magma-water contact conditions at any time. The weak saturated sediments were also readily liquefied to provide an enduring supply of water and fine sediment to the explosion loci. Changes in magma flux and/or subsequent stabilisation of the conduit area by a lava ring-barrier led to ensuing Strombolian and fire-fountaining eruption

  4. Geologic field-trip guide to the volcanic and hydrothermal landscape of the Yellowstone Plateau

    Science.gov (United States)

    Morgan Morzel, Lisa Ann; Shanks, W. C. Pat; Lowenstern, Jacob B.; Farrell, Jamie M.; Robinson, Joel E.

    2017-11-20

    Yellowstone National Park, a nearly 9,000 km2 (~3,468 mi2) area, was preserved in 1872 as the world’s first national park for its unique, extraordinary, and magnificent natural features. Rimmed by a crescent of older mountainous terrain, Yellowstone National Park has at its core the Quaternary Yellowstone Plateau, an undulating landscape shaped by forces of late Cenozoic explosive and effusive volcanism, on-going tectonism, glaciation, and hydrothermal activity. The Yellowstone Caldera is the centerpiece of the Yellowstone Plateau. The Yellowstone Plateau lies at the most northeastern front of the 17-Ma Yellowstone hot spot track, one of the few places on Earth where time-transgressive processes on continental crust can be observed in the volcanic and tectonic (faulting and uplift) record at the rate and direction predicted by plate motion. Over six days, this field trip presents an intensive overview into volcanism, tectonism, and hydrothermal activity on the Yellowstone Plateau (fig. 1). Field stops are linked directly to conceptual models related to monitoring of the various volcanic, geochemical, hydrothermal, and tectonic aspects of the greater Yellowstone system. Recent interest in young and possible future volcanism at Yellowstone as well as new discoveries and synthesis of previous studies, (for example, tomographic, deformation, gas, aeromagnetic, bathymetric, and seismic surveys), provide a framework in which to discuss volcanic, hydrothermal, and seismic activity in this dynamic region.

  5. Compound maar crater and co-eruptive scoria cone in the Lunar Crater Volcanic Field (Nevada, USA)

    Science.gov (United States)

    Amin, Jamal; Valentine, Greg A.

    2017-06-01

    Bea's Crater (Lunar Crater Volcanic Field, Nevada, USA) consists of two coalesced maar craters with diameters of 440 m and 1050 m, combined with a co-eruptive scoria cone that straddles the northeast rim of the larger crater. The two craters and the cone form an alignment that parallels many local and regional structures such as normal faults, and is interpreted to represent the orientation of the feeder dyke near the surface. The maar formed among a dense cluster of scoria cones; the cone-cluster topography resulted in crater rim that has a variable elevation. These older cones are composed of variably welded agglomerate and scoria with differing competence that subsequently affected the shape of Bea's Crater. Tephra ring deposits associated with phreatomagmatic maar-forming eruptions are rich in basaltic lithics derived from clasts, consistent with ejection from relatively shallow explosions although a diatreme might extend to deeper levels beneath the maar. Interbedding of deposits on the northeastern cone and in the tephra ring record variations in the magmatic volatile driven and phreatomagmatic eruption styles in both space and time along a feeder dike.

  6. A field investigation of the basaltic ring structures of the Channeled Scabland and the relevance to Mars

    Science.gov (United States)

    Kestay, Laszlo P.; Jaeger, Windy L.

    2015-01-01

    The basaltic ring structure (BRS) is a class of peculiar features only reported in the Channeled Scabland of eastern Washington State. They have been suggested to be good analogs, however, for some circular features on Mars. BRSs are found where Pleistocene floods scoured the Columbia River Basin, stripping off the uppermost part of the Miocene Columbia River Basalt Group and exposing structures that were previously embedded in the lava. The “Odessa Craters,” near Odessa, WA, are 50–500-m-wide BRSs that are comprised of discontinuous, concentric outcrops of subvertically-jointed basalt and autointrusive dikes. Detailed field investigation of the Odessa Craters in planform and a cross-sectional exposure of a similar structure above Banks Lake, WA, lead us to propose that BRSs formed by concurrent phreatovolcanism and lava flow inflation. In this model, phreatovolcanic (a.k.a., “rootless”) cones formed on a relatively thin, active lava flow; the lava flow inflated around the cones, locally inverting topography; tensile stresses caused concentric fracturing of the lava crust; lava from within the molten interior of the flow exploited the fractures and buried the phreatovolcanic cones; and subsequent erosive floods excavated the structures. Another population of BRSs near Tokio Station, WA, consists of single-ringed, raised-rimmed structures that are smaller and more randomly distributed than the Odessa Craters. We find evidence for a phreatovolcanic component to the origin as well, and hypothesize that they are either flood-eroded phreatovolcanic cones or Odessa Crater-like BRSs. This work indicates that BRSs are not good analogs to the features on Mars because the martian features are found on the uneroded surfaces. Despite this, the now superseded concepts for BRS formation are useful for understanding the formation of the martian features.

  7. Hydrothermal uranium vein deposits in Marysvale volcanic field, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, J.D.; Cunningham, C.G.; Steven, T.A.; Rye, R.O.; Romberger, S.B.

    1984-07-01

    Hydrothermal uranium veins are exposed over a 300 m (980 ft) vertical range in mines of the Central Mining area, near Marysvale, Utah. They cut 23 Ma quartz monzonite, 21 Ma granite, and 19 Ma rhyolite ash-flow tuff. The veins formed 18-19 Ma, in an area 1 km (0.6 mi) across, above the center of a composite magma chamber at least 12 x 6 km across that fed a sequence of 21-14 Ma hypabyssal granitic stocks, and rhyolitic lava flows, ash-flow tuffs, and volcanic domes. Intrusive pressure uplifted and fractured the roof; molybdenite-bearing, uranium-rich glassy dikes were intruded; and a breccia pipe and uranium-bearing veins were formed. The veins appear to have been deposited near the surface above a concealed rhyolite stock, where they filled high-angle fault zones and flat-lying to concave-downward pull-apart fractures. Low pH and fO/sub 2/ hydrothermal fluids at temperatures near 200/sup 0/ C (392/sup 0/ F) permeated the fractured rocks; these fluids were rich in fluorine and potassium, and contained uranium as uranous-fluoride complexes. Fluid-wall rock interaction increased fluid pH, causing precipitation of uranium minerals. At the deepest exposed levels, wall rocks were altered to kaolinite and sericite, and uraninite, coffinite, jordisite, fluorite, molybdenite, quartz, and pyrite (with delta/sup 34/S near zero per mil) were deposited. The fluids were progressively oxidized higher in the system; iron in the wall rocks was oxidized to hematite, and sooty uraninite and umohoite were deposited.

  8. Field-trip guide to mafic volcanism of the Cascade Range in Central Oregon—A volcanic, tectonic, hydrologic, and geomorphic journey

    Science.gov (United States)

    Deligne, Natalia I.; Mckay, Daniele; Conrey, Richard M.; Grant, Gordon E.; Johnson, Emily R.; O'Connor, Jim; Sweeney, Kristin

    2017-08-16

    The Cascade Range in central Oregon has been shaped by tectonics, volcanism, and hydrology, as well as geomorphic forces that include glaciations. As a result of the rich interplay between these forces, mafic volcanism here can have surprising manifestations, which include relatively large tephra footprints and extensive lava flows, as well as water shortages, transportation and agricultural disruption, and forest fires. Although the focus of this multidisciplinary field trip will be on mafic volcanism, we will also look at the hydrology, geomorphology, and ecology of the area, and we will examine how these elements both influence and are influenced by mafic volcanism. We will see mafic volcanic rocks at the Sand Mountain volcanic field and in the Santiam Pass area, at McKenzie Pass, and in the southern Bend region. In addition, this field trip will occur during a total solar eclipse, the first one visible in the United States in more than 25 years (and the first seen in the conterminous United States in more than 37 years).The Cascade Range is the result of subduction of the Juan de Fuca plate underneath the North American plate. This north-south-trending volcanic mountain range is immediately downwind of the Pacific Ocean, a huge source of moisture. As moisture is blown eastward from the Pacific on prevailing winds, it encounters the Cascade Range in Oregon, and the resulting orographic lift and corresponding rain shadow is one of the strongest precipitation gradients in the conterminous United States. We will see how the products of the volcanoes in the central Oregon Cascades have had a profound influence on groundwater flow and, thus, on the distribution of Pacific moisture. We will also see the influence that mafic volcanism has had on landscape evolution, vegetation development, and general hydrology.

  9. Measurements and Slope Analyses of Quaternary Cinder Cones, Camargo Volcanic Field, Chihuahua, Mexico

    Science.gov (United States)

    Gallegos, M. I.; Espejel-Garcia, V. V.

    2012-12-01

    The Camargo volcanic field (CVF) covers ~3000 km2 and is located in the southeast part of the state of Chihuahua, within the Basin and Range province. The CVF represents the largest mafic alkali volcanic field in northern Mexico. Over a 300 cinder cones have been recognized in the Camargo volcanic field. Volcanic activity ranges from 4.7 to 0.09 Ma revealed by 40Ar/39Ar dating methods. Previous studies say that there is a close relationship between the cinder cone slope angle, due to mechanical weathering, and age. This technique is considered a reliable age indicator, especially in arid climates, such as occur in the CVF. Data were acquired with digital topographic maps (DRG) and digital elevation models (DEM) overlapped in the Global Mapper software. For each cone, the average radius (r) was calculated from six measurements, the height (h) is the difference between peak elevation and the altitude of the contour used to close the radius, and the slope angle was calculated using the equation Θ = tan-1(h/r). The slope angles of 30 cinder cones were calculated showing angles ranging from 4 to 15 degrees. A diffusion model, displayed by an exponential relationship between slope angle and age, places the ages of these 30 cones from 215 to 82 ka, within the range marked by radiometric methods. Future work include the analysis of more cinder cones to cover the whole CVF, and contribute to the validation of this technique.

  10. Isotopic and trace element compositions of upper mantle and lower crustal xenoliths, Cima volcanic field, California: Implications for evolution of the subcontinental lithospheric mantle

    Science.gov (United States)

    Mukasa, S.B.; Wilshire, H.G.

    1997-01-01

    Ultramafic and mafic xenoliths from the Cima volcanic field, southern California, provide evidence of episodic modification of the upper mantle and underplating of the crust beneath a portion of the southern Basin and Range province. The upper mantle xenoliths include spinel peridotite and anhydrous and hydrous pyroxenite, some cut by igneous-textured pyroxenite-gabbro veins and dikes and some by veins of amphibole ?? plagioclase. Igneous-textured pyroxenites and gabbros like the dike rocks also occur abundantly as isolated xenoliths inferred to represent underplated crust. Mineral and whole rock trace element compositions among and within the different groups of xenoliths are highly variable, reflecting multiple processes that include magma-mantle wall rock reactions, episodic intrusion and it filtration of basaltic melts of varied sources into the mantle wall rock, and fractionation. Nd, Sr, and Pb isotopic compositions mostly of clinopyroxene and plagioclase mineral separates show distinct differences between mantle xenoliths (??Nd = -5.7 to +3.4; 87Sr/86Sr = 0.7051 - 0.7073; 206Pb/204Pb = 19.045 - 19.195) and the igneous-textured xenoliths (??Nd = +7.7 to +11.7; 87Sr/86Sr = 0.7027 - 0.7036 with one carbonate-affected outlier at 0.7054; and 206Pb/204Pb = 18.751 - 19.068), so that they cannot be related. The igneous-textured pyroxenites and gabbros are similar in their isotopic compositions to the host basaltic rocks, which have ??Nd of+5.1 to +9.3; 87Sr/86Sr of 0.7028 - 0.7050, and 206Pb/204Pb of 18.685 - 21.050. The igneous-textured pyroxenites and gabbros are therefore inferred to be related to the host rocks as earlier cogenetic intrusions in the mantle and in the lower crust. Two samples of peridotite, one modally metasomatized by amphibole and the other by plagioclase, have isotopic compositions intermediate between the igneous-textured xenoliths and the mantle rock, suggesting mixing, but also derivation of the metasomatizing magmas from two separate and

  11. Geochemical characteristics of the Jos-Plateau Basalts, North ...

    African Journals Online (AJOL)

    The Jos Plateau basalts, present Zr/Nb ratios (2.4-3.0) comparable to those of the alkali basalts of the lower Benue valley, and of the Cameroon volcanic line, suggesting that they were possibly derived from the same mantle source. Keywords: Jos Plateau, alkali basalt, mantle, partial melting, incompatible elements.

  12. Additive Construction using Basalt Regolith Fines

    Science.gov (United States)

    Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Lippitt, Thomas C.; Mantovani, James G.; Nugent, Matthew W.; Townsend, Ivan I.

    2014-01-01

    Planetary surfaces are often covered in regolith (crushed rock), whose geologic origin is largely basalt. The lunar surface is made of small-particulate regolith and areas of boulders located in the vicinity of craters. Regolith composition also varies with location, reflecting the local bedrock geology and the nature and efficiency of the micrometeorite-impact processes. In the lowland mare areas (suitable for habitation), the regolith is composed of small granules (20 - 100 microns average size) of mare basalt and volcanic glass. Impacting micrometeorites may cause local melting, and the formation of larger glassy particles, and this regolith may contain 10-80% glass. Studies of lunar regolith are traditionally conducted with lunar regolith simulant (reconstructed soil with compositions patterned after the lunar samples returned by Apollo). The NASA Kennedy Space Center (KSC) Granular Mechanics & Regolith Operations (GMRO) lab has identified a low fidelity but economical geo-technical simulant designated as Black Point-1 (BP-1). It was found at the site of the Arizona Desert Research and Technology Studies (RATS) analog field test site at the Black Point lava flow in adjacent basalt quarry spoil mounds. This paper summarizes activities at KSC regarding the utilization of BP-1 basalt regolith and comparative work with lunar basalt simulant JSC-1A as a building material for robotic additive construction of large structures. In an effort to reduce the import or in-situ fabrication of binder additives, we focused this work on in-situ processing of regolith for construction in a single-step process after its excavation. High-temperature melting of regolith involves techniques used in glassmaking and casting (with melts of lower density and higher viscosity than those of metals), producing basaltic glass with high durability and low abrasive wear. Most Lunar simulants melt at temperatures above 1100 C, although melt processing of terrestrial regolith at 1500 C is not

  13. Nature and composition of interbedded marine basaltic pumice in the ˜52-50 Ma Vastan lignite sequence, western India: Implication for Early Eocene MORB volcanism offshore Arabian Sea

    Science.gov (United States)

    Sensarma, Sarajit; Singh, Hukam; Rana, R. S.; Paul, Debajyoti; Sahni, Ashok

    2017-03-01

    The recognition of pyroclasts preserved in sedimentary environments far from its source is uncommon. We here describe occurrences of several centimetres-thick discontinuous basaltic pumice lenses occurring within the Early Eocene Vastan lignite mine sedimentary sequence, western India at two different levels - one at ˜5 m and the other at 10 m above a biostratigraphically constrained 52 Ma old marker level postdating the Deccan Volcanism. These sections have received global attention as they record mammalian and plant radiations. We infer the repetitive occurrence of pumice have been sourced from a ˜52-50 Ma MORB related to sea-floor spreading in the western Arabian Sea, most plausibly along the Carlsberg Ridge. Pyroclasts have skeletal plagioclase with horsetail morphologies ± pyroxene ± Fe-Ti oxide euhedral crystals, and typically comprise of circular polymodal (radii ≤10 to ≥30 μm), non-coalescing microvesicles (>40-60%). The pumice have undergone considerable syngenetic alteration during oceanic transport and post-burial digenesis, and are a composite mixture of Fe-Mn-rich clay and hydrated altered basaltic glass (palagonite). The Fe-Mn-rich clay is extremely low in SiO 2, Al 2 O 3, TiO 2, MgO, alkalies and REE, but very high in Fe 2 O 3, MnO, P, Ba, Sr contents, and palagonitization involved significant loss of SiO 2, Al 2 O 3, MgO and variable gain in Fe 2 O 3, TiO 2, Ni, V, Zr, Zn and REE. Bubble initiation to growth in the ascending basaltic magma (liquidus ˜1200-1250 ∘C) may have occured in ˜3 hr. Short-distance transport, non-connected vesicles, deposition in inner shelf to more confined lagoonal condition in the Early Eocene and quick burial helped preservation of the pumice in Vastan. Early Eocene Arabian Sea volcanism thus might have been an additional source to marginal sediments along the passive margin of western India.

  14. Metallogenic hydrothermal solution system of post volcanic magma in Xiangshan ore field

    International Nuclear Information System (INIS)

    Xu Hengli; Shao Fei; Zou Maoqin

    2009-01-01

    This paper has systematically described uranium metallogenic characteristics of Xiangshan ore field.Sources of metallogenic materials are discussed in different temporal and spatial scale. Combining with background analysis of metallogenic tectonic-magmatic-geodynamics, formation and evolution of metallogenic hydrothermal solution system in Xiangshan volcanic basin are studied. Metallogenic hydrothermal solution system in Xiangshan ore field is considered as the objective product of systematic evolution of hydrothermal solution in post volcanic magma constrained by regional tectonic environment. In time scale, metallogenic hydrothermal solution system developed for about 50 Ma, but its active spaces varied in different time domains. So temporal and spatial distribution of uranium mineralization is constrained. Further exploration for the ore field is also suggested in this paper. (authors)

  15. Emplacement Dynamics and Timescale of a Holocene Flow from the Cima Volcanic Field (CA): Insights from Rheology and Morphology

    Science.gov (United States)

    Soldati, A.; Beem, J. R.; Gomez, F.; Huntley, J. W.; Robertson, T.; Whittington, A. G.

    2017-12-01

    We present a rheological and morphological study of a Holocene lava flow emitted by a monogenetic cinder cone in the Cima Volcanic Field, eastern California. By combining field observations and experimental results, we reconstructed the few weeks-long emplacement timeline of the Cima flow. Sample textural analyses revealed that the near-vent portion of the flow is significantly more crystalline (fxtal=0.95±0.04) than the main flow body (fxtal=0.66±0.11), which reveals a multi-stage emplacement history. Airborne photogrammetry data were used to generate a digital elevation model, which allowed us to estimate the flow volume. The rheology of Cima lavas was determined experimentally by concentric cylinder viscometry between 1550 °C and 1160 °C, including the first subliquidus rheology measurements for a continental intraplate trachybasaltic lava. The experimentally determined effective viscosity increases from 54 Pa·s to 1,361 Pa·s during cooling from the liquidus ( 1230 ˚C) to 1160 ˚C, where crystal fraction is 0.11. Flow curves fitted to measurements at different strain rates indicate a Herschel-Bulkley rheological behavior, combining shear-thinning with a yield strength negligible at the higher measured temperatures but increasing up to 357±41 Pa at 1160˚C. The lava viscosity over this range is still lower than most basaltic melts, due to the high alkali content of Cima lavas ( 6 wt% Na2O+K2O). We determined that the morphological pahoehoe to `a'ā transition of this trachybasalt occurs at a temperature of 1160±10 ˚C, similar to that observed for Hawaiian tholeiitic lavas, but at higher apparent viscosity values. Monogenetic volcanism in the Western United States is typically characterized by low effusion rates and eruption on sub-horizontal desert plains. Under these low strain-rate conditions, the pahoehoe to `a'ā transition is likely to occur abruptly upon minimal cooling, i.e. very close to the vent, but lava tubes may transport fluid lava to flow

  16. Magma mixing in the Yellowstone Plateau Volcanic Field brought to light by X-ray microtomography and chemical analysis

    Science.gov (United States)

    Morgavi, Daniele; Arzilli, Fabio; Pritchard, Chad; Perugini, Diego; Mancini, Lucia; Larson, Peter; Dingwell, Donald Bruce

    2015-04-01

    The Yellowstone Plateau Volcanic Field (YVF) hosts at least four mixed magma complexes (Wilcox, 1944; Christiansen et al. 2007; Pritchard et al., 2013). We focus on the well-exposed Grizzly Lake complex. The main evidence of mixing in igneous rocks is commonly found as textural heterogeneities, such as i) flow structures, ii) magmatic enclaves and iii) physico-chemical disequilibria in melt and crystals (e.g. Perugini and Poli, 2012). From the geochemical and mineralogical point of view, quantitative and qualitative analyses of chemical and textural heterogeneity in mixed rocks highlights the important role of mixing dynamics in producing geochemical complexities and heterogeneities (Kratzmann et al., 2009). Zoned crystals and complex mineralogical associations are also considered, in many cases, evidence for mixing (e.g., Murphy at al., 1998; Couch et al., 2001). The generation of such textures implies the development of large contact interfaces between interacting melts/solids through which chemical and crystals exchanges are strongly amplified, leading to highly variable degrees of homogenization depending on differing element mobility (e.g. Perugini et al., 2006; 2008; De Campos et al., 2011; Perugini et al., 2012; Perugini and Poli, 2012; Morgavi et al., 2013a, b, c). Despite the abundant literature regarding magma mixing processes, only a few studies are focused on describing and quantifying the inter-relationship between the morphological texture of mixing patterns and the geochemical variability in mixed rhyolitic and basaltic complexes. (Freundt and Schmincke 1992; Morgavi et al., 2013 a, b, c;). Here, we combine two analytical techniques; X-ray computed microtomography and microprobe analysis to study the texture and chemistry of mixed rocks. Since mixed rocks of Grizzly Lake in the YVF had a very complex history and evolution, a significant amount of chemical measurements were needed to characterize the phases. In addition, X-ray microtomography was

  17. Towards real-time eruption forecasting in the Auckland Volcanic Field: application of BET_EF during the New Zealand National Disaster Exercise `Ruaumoko'

    Science.gov (United States)

    Lindsay, Jan; Marzocchi, Warner; Jolly, Gill; Constantinescu, Robert; Selva, Jacopo; Sandri, Laura

    2010-03-01

    The Auckland Volcanic Field (AVF) is a young basaltic field that lies beneath the urban area of Auckland, New Zealand’s largest city. Over the past 250,000 years the AVF has produced at least 49 basaltic centers; the last eruption was only 600 years ago. In recognition of the high risk associated with a possible future eruption in Auckland, the New Zealand government ran Exercise Ruaumoko in March 2008, a test of New Zealand’s nation-wide preparedness for responding to a major disaster resulting from a volcanic eruption in Auckland City. The exercise scenario was developed in secret, and covered the period of precursory activity up until the eruption. During Exercise Ruaumoko we adapted a recently developed statistical code for eruption forecasting, namely BET_EF (Bayesian Event Tree for Eruption Forecasting), to independently track the unrest evolution and to forecast the most likely onset time, location and style of the initial phase of the simulated eruption. The code was set up before the start of the exercise by entering reliable information on the past history of the AVF as well as the monitoring signals expected in the event of magmatic unrest and an impending eruption. The average probabilities calculated by BET_EF during Exercise Ruaumoko corresponded well to the probabilities subjectively (and independently) estimated by the advising scientists (differences of few percentage units), and provided a sound forecast of the timing (before the event, the eruption probability reached 90%) and location of the eruption. This application of BET_EF to a volcanic field that has experienced no historical activity and for which otherwise limited prior information is available shows its versatility and potential usefulness as a tool to aid decision-making for a wide range of volcano types. Our near real-time application of BET_EF during Exercise Ruaumoko highlighted its potential to clarify and possibly optimize decision-making procedures in a future AVF eruption

  18. Moessbauer Studies of Volhynian Basalts

    International Nuclear Information System (INIS)

    Bakun-Czubarow, N.; Milczarski, J.; Galazka-Friedman, J.; Szlachta, K.; Forder, S.

    2011-01-01

    The Volhynian basalts studied belong to the effusive-tuffogenic Volhynian Series (Slawatycze Series in Poland), being the large Ediacaran continental igneous province, that covers an area of 200 000 km 2 in the western margin of East European Craton. The series is underlain by the Cryogenian terrigenous Polesie Series with doleritic sills and dikes. The Volhynian Series consists of the rock beds belonging to the three volcanic cycles with different ratios of flood basalts to pyroclastics. The aim of the study was recognition of primary and secondary Fe-bearing minerals, particularly Fe- and Fe-Ti oxides as well as determination of iron oxidation state, that is an important tool in the search for native copper deposits in these rocks. For Moessbauer studies the following rock samples were chosen: the Polesie Series dolerites, the Volhynian Series basalts from the Ukrainian quarries and drill-holes, e.g. from the Volodymir Volhynskaya drilling hole; the Slawatycze Series basalts from Kaplonosy drill-hole in Poland. In the Kaplonosy basalts the content of magnetite decreases with depth, which may be caused by magma differentiation due to fractional crystallization, when Mg content decreases as Ti and Fe - increases in basic magma. In the Kaplonosy basalts the Fe 2+ /Fe 3+ ratio increases with depth, which points to the increase of iron oxidation with the progress of basaltic magma differentiation. (authors)

  19. Episodic soil succession on basaltic lava fields in a cool, dry environment

    Science.gov (United States)

    Vaughan, K.L.; McDaniel, P.A.; Phillips, W.M.

    2011-01-01

    Holocene- to late Pleistocene-aged lava flows at Craters of the Moon National Monument and Preserve provide an ideal setting to examine the early stages of soil formation under cool, dry conditions. Transects were used to characterize the amount and nature of soil cover on across basaltic lava flows ranging in age from 2.1 to 18.4 ka. Results indicate that on flows soils (Folists in Soil Taxonomy) are the dominant soil type, providing an areal coverage of up to ∼25%. On flows ≥13.9 ka, deeper mineral soils including Entisols, Aridisols, and Mollisols become dominant and the areal extent increases to ≥95% on flows older than 18.4 ka. These data suggest there are two distinct pedogenic pathways associated with lava flows of the region. The first pathway is illustrated by the younger flows, where Folists dominate. In the absence of a major source of loess, relatively little mineral material accumulates and soils provide only minor coverage of the lava flows. Our results indicate that this pathway of soil development has not changed appreciably over the past ∼10 ka. The second pedogenic pathway is illustrated by the flows older than 13.9 ka. These flows have been subject to deposition of large quantities of loess during and after the last regional glaciation, resulting in almost complete coverage. Subsequent pedogenesis has given rise to Aridisols and Mollisols with calcic and cambic horizons and mollic epipedons. This research highlights the importance of regional climate change on the evolution of Craters of the Moon soilscapes.

  20. Transition of basaltic lava from pahoehoe to aa, Kilauea Volcano, Hawaii: Field observations and key factors

    Science.gov (United States)

    Peterson, Donald W.; Tilling, Robert I.

    1980-01-01

    Nearly all Hawaiian basaltic lava erupts as pahoehoe, and some changes to aa during flowage and cooling; factors governing the transition involve certain critical relations between viscosity and rate of shear strain. If the lava slows, cools, and stops in direct response to concomitant increase in viscosity before these critical relations are reached, it remains pahoehoe. But, if flow mechanics (flow rate, flow dimensions, slope, momentum, etc.) impel the lava to continue to move and deform even after it has become highly viscous, the critical relations may be reached and the lava changes to aa.Typical modes of transition from pahoehoe to aa include: (1) spontaneous formation of relatively stiff clots in parts of the flowing lava where shear rate is highest; these clots grow into discrete, rough, sticky masses to which the remaining fluid lava incrementally adheres; (2) fragmentation and immersion of solid or semi-solid surface crusts of pahoehoe by roiling movements of the flow, forming cores of discrete, tacky masses; (3) sudden renewed movement of lava stored and cooled within surface reservoirs to form clots. The masses, fragments, and clots in these transition modes are characterized by spinose, granulated surfaces; as flow movement continues, the masses and fragments aggregate, fracture, and grind together, completing the transition to aa.Observations show that the critical relation between viscosity and rate of shear strain is inverse: if viscosity is low, a high rate of shear is required to begin the transition to aa; conversely, if viscosity is high, a much lower rate of shear will induce the transition. These relations can be demonstrated qualitatively with simple graphs, which can be used to examine the flow history of any selected finite lava element by tracing the path represented by its changing viscosity and shear rate. A broad, diffuse “transition threshold zone” in these graphs portrays the inverse critical relation between viscosity and shear

  1. The Lathrop Wells volcanic center: Status of field and geochronology studies

    International Nuclear Information System (INIS)

    Crowe, B.; Morley, R.; Wells, S.; Geissman, J.; McDonald, E.; McFadden, L.; Perry, F.; Murrell, M.; Poths, J.; Forman, S.

    1992-01-01

    The purpose of this paper is to describe the status of field and geochronology studies of the Lathrop Wells volcanic center. Our perspective is that it is critical to assess all possible methods for obtaining cross-checking data to resolve chronology and field problems. It is equally important to consider application of the range of chronology methods available in Quaternary geologic research. Such an approach seeks to increase the confidence in data interpretations through obtaining convergence among separate isotopic, radiogenic, and age-correlated methods. Finally, the assumptions, strengths, and weaknesses of each dating method need to be carefully described to facilitate an impartial evaluation of results. The paper is divided into two parts. The first part describes the status of continuing field studies for the volcanic center for this area south of Yucca Mountain, Nevada. The second part presents an overview of the preliminary results of ongoing chronology studies and their constraints on the age and stratigraphy of the Lathrop Wells volcanic center. Along with the chronology data, the assumptions, strengths, and limitations of each methods are discussed

  2. Geology, geochronology, and paleogeography of the southern Sonoma volcanic field and adjacent areas, northern San Francisco Bay region, California

    Science.gov (United States)

    Wagner, David L.; Saucedo, George J.; Clahan, Kevin B.; Fleck, Robert J.; Langenheim, Victoria E.; McLaughlin, Robert J.; Sarna-Wojcicki, Andrei M.; Allen, James R.; Deino, Alan L.

    2011-01-01

    Recent geologic mapping in the northern San Francisco Bay region (California, USA) supported by radiometric dating and tephrochronologic correlations, provides insights into the framework geology, stratigraphy, tectonic evolution, and geologic history of this part of the San Andreas transform plate boundary. There are 25 new and existing radiometric dates that define three temporally distinct volcanic packages along the north margin of San Pablo Bay, i.e., the Burdell Mountain Volcanics (11.1 Ma), the Tolay Volcanics (ca. 10–8 Ma), and the Sonoma Volcanics (ca. 8–2.5 Ma). The Burdell Mountain and the Tolay Volcanics are allochthonous, having been displaced from the Quien Sabe Volcanics and the Berkeley Hills Volcanics, respectively. Two samples from a core of the Tolay Volcanics taken from the Murphy #1 well in the Petaluma oilfield yielded ages of 8.99 ± 0.06 and 9.13 ± 0.06 Ma, demonstrating that volcanic rocks exposed along Tolay Creek near Sears Point previously thought to be a separate unit, the Donnell Ranch volcanics, are part of the Tolay Volcanics. Other new dates reported herein show that volcanic rocks in the Meacham Hill area and extending southwest to the Burdell Mountain fault are also part of the Tolay Volcanics. In the Sonoma volcanic field, strongly bimodal volcanic sequences are intercalated with sediments. In the Mayacmas Mountains a belt of eruptive centers youngs to the north. The youngest of these volcanic centers at Sugarloaf Ridge, which lithologically, chemically, and temporally matches the Napa Valley eruptive center, was apparently displaced 30 km to the northwest by movement along the Carneros and West Napa faults. The older parts of the Sonoma Volcanics have been displaced at least 28 km along the Rodgers Creek fault since ca. 7 Ma. The Petaluma Formation also youngs to the north along the Rodgers Creek–Hayward fault and the Bennett Valley fault. The Petaluma basin formed as part of the Contra Costa basin in the Late Miocene and

  3. Hainan mantle plume produced late Cenozoic basaltic rocks in Thailand, Southeast Asia.

    Science.gov (United States)

    Yan, Quanshu; Shi, Xuefa; Metcalfe, Ian; Liu, Shengfa; Xu, Taoyu; Kornkanitnan, Narumol; Sirichaiseth, Thanyapat; Yuan, Long; Zhang, Ying; Zhang, Hui

    2018-02-08

    Intraplate volcanism initiated shortly after the cessation of Cenozoic seafloor spreading in the South China Sea (SCS) region, but the full extent of its influence on the Indochina block has not been well constrained. Here we present major and trace element data and Sr-Nd-Pb-Hf isotope ratios of late Cenozoic basaltic lavas from the Khorat plateau and some volcanic centers in the Paleozoic Sukhothai arc terrane in Thailand. These volcanic rocks are mainly trachybasalts and basaltic trachyandesites. Trace element patterns and Sr-Nd-Pb-Hf isotopic compositions show that these alkaline volcanic lavas exhibit oceanic island basalt (OIB)-like characteristics with enrichments in both large-ion lithophile elements (LILE) and high field strength elements (HFSEs). Their mantle source is a mixture between a depleted Indian MORB-type mantle and an enriched mantle type 2 (EMII). We suggest that the post-spreading intraplate volcanism in the SCS region was induced by a Hainan mantle plume which spread westwards to the Paleozoic Sukhothai arc terrane.

  4. Petrological and Geochemical characterization of central Chihuahua basalts: a possible local sign of rifting activity

    Science.gov (United States)

    Espejel-Garcia, V. V.; Garcia-Rascon, M.; Villalobos-Aragon, A.; Morton-Bermea, O.

    2012-12-01

    The central part of the mexican state, Chihuahua, is the oriental border of the Sierra Madre Occidental (silicic large igneous province), which consist of series of ignimbrites divided into two volcanic groups of andesites and rhyolites. In the central region of Chihuahua, the volcanic rocks are now part of the Basin and Range, allowing the presence of mafic rocks in the lower areas. The study area is located approximately 200 km to the NW of Chihuahua city near to La Guajolota town, in the Namiquipa County. There are at least 5 outcrops of basalts to the west of the road, named Puerto de Lopez, Malpaises, El Tascate, Quebrada Honda, and Carrizalio, respectively. These outcrops have only been previously described by the Mexican Geologic Survey (SGM) as thin basaltic flows, with vesicles filled with quartz, and phenocrystals of labradorite, andesine, oligoclase and olivine. Petrologically, the basalts present different textures, from small phenocrysts of plagioclase in a very fine matrix to large, zoned and sometimes broken phenocrysts of plagioclase in a coarser matrix. All samples have olivine in an advanced state of alteration, iddingsite. The geochemical analyses report that these basaltic flows contain characteristics of rift basalts. The rocks have a normative olivine values from 5.78 to 27.26 and nepheline values from 0 to 2.34. In the TAS diagram the samples straddle the join between basalt and trachy-basalt, reflecting a high K2O content. The Mg# average is 0.297, a value that suggests that the basalts do not come from a primitive magma. The basalts have high values of Ba (945-1334 ppm), Cu (54-147 ppm), and Zn (123-615 ppm). The contents of Rb (23-57 ppm), Sr (659-810 ppm), Y (26-33 ppm), Zr (148-217 ppm) and Cr (79-98 ppm) are characteristics of rift basalts. Using discrimination diagrams, the basalts plot in the field of within plate, supporting the rifting origin. Outcrops of other basalts, at about 80 to 100 km to the east of the study area, Lomas El

  5. The 40Ar/39Ar age record and geodynamic significance of Indo-Madagascar and Deccan flood basalt volcanism in the Sarnu-Dandali alkaline complex, Rajasthan, northwestern India

    Science.gov (United States)

    Vijayan, Anjali; Pande, Kanchan; Sheth, Hetu; Kant Sharma, Kamal

    2017-04-01

    The Sarnu-Dandali alkaline complex in Rajasthan, northwestern India, is considered to represent early, pre-tholeiite magmatism in the Deccan Traps continental flood basalt (CFB) province, based on a single 40Ar/39Ar age of 68.57 Ma. Rhyolites found in the complex are considered to be 750 Ma Malani basement. Our new 40Ar/39Ar ages of 88.9-86.8 Ma (for syenites, nephelinite, phonolite and rhyolite) and 66.3 ± 0.4 Ma (2σ, melanephelinite) provide clear evidence that whereas the Sarnu-Dandali complex has Deccan-age components, it is dominantly an older (by ˜20 million years) alkaline complex, with rhyolites included. Sarnu-Dandali is thus an alkaline igneous center active at least twice in the Late Cretaceous, and also much before as suggested by a basalt flow underlying the Early Cretaceous Sarnu Sandstone. The 89-86 Ma 40Ar/39Ar ages fully overlap with those for the Indo-Madagascar CFB province formed during continental break-up between India (plus Seychelles) and Madagascar. Recent 40Ar/39Ar work has shown polychronous emplacement (over ≥ 45 million years) of the Mundwara alkaline complex in Rajasthan, 100 km from Sarnu-Dandali, and 84-80 Ma ages obtained from Mundwara also arguably represent late stages of the Indo-Madagascar CFB volcanism. Remnants of the Indo-Madagascar CFB province are known from several localities in southern India but hitherto unknown from northwestern India 2000 km away. Additional equivalents buried under the vast Deccan Traps are highly likely. We relate the Sarnu-Dandali and Mundwara complexes to decompression melting of ancient, subduction-fluxed, enriched mantle lithosphere due to periodic lithospheric extension during much of the Cretaceous, and hundreds of kilometers inland from the India-Madagascar and India-Seychelles rifted margins.

  6. Experimental investigation of the reaction between corundum xenocrysts and alkaline basaltic host magma: Constraints on magma residence times of basalt-hosted sapphires

    Science.gov (United States)

    Baldwin, L. C.; Ballhaus, C.

    2018-03-01

    Megacrystic sapphires (Fe-Ti-rich corundum) of up to 5 cm in size are well known from alkaline mafic rocks from intra-continental rift-related magmatic fields. There is no doubt that these sapphires represent xenocrysts that were trapped from their original lithology by ascending basaltic magmas carrying them to the Earth's surface. Most studies about basalt-hosted sapphires address the question about the origin of the sapphires, but there is hardly any information available about the time the sapphires resided inside the carrier melt. Sapphires are in reaction relationship with basalt and produce spinel coronas at the sapphire-basalt interface, spatially separating the mutually incompatible phases from one another. Assuming isothermal and isobaric conditions of spinel rim formation, the rim-thickness should be a function of the reaction time with the basaltic melt. In this paper, we report time-series experiments aimed at investigating the kinetics of spinel rim formation due to igneous corrosion of corundum. Therefore, we reacted corundum fragments with alkaline basalt powder at 1250 °C and 1GPa, using a Piston Cylinder Apparatus. The width of the spinel rim was used to estimate a residence time. Extrapolating the experimentally derived reaction rates to the thickness of natural spinel rims as described from the Siebengebirge Volcanic Field, Germany, and from Changle, China, we estimated residence times in the order of a few weeks to months.

  7. Subsurface fluid distribution and possible seismic precursory signal at the Salse di Nirano mud volcanic field, Italy

    OpenAIRE

    Lupi, Matteo; Suski Ricci, Barbara; Kenkel, Johannes; Ricci, Tullio; Fuchs, Florian; Miller, Stephen A.; Kemna, Andreas

    2016-01-01

    Mud volcanoes are geological systems often characterized by elevated fluid pressures at depth deviating from hydrostatic conditions. This near-critical state makes mud volcanoes particularly sensitive to external forcing induced by natural or man-made perturbations. We used the Nirano mud volcanic field as a natural laboratory to test pre- and post-seismic effects generated by distant earthquakes. We first characterized the subsurface structure of the Nirano mud volcanic field with a geoelect...

  8. Cambrian intermediate-mafic magmatism along the Laurentian margin: Evidence for flood basalt volcanism from well cuttings in the Southern Oklahoma Aulacogen (U.S.A.)

    Science.gov (United States)

    Brueseke, Matthew E.; Hobbs, Jasper M.; Bulen, Casey L.; Mertzman, Stanley A.; Puckett, Robert E.; Walker, J. Douglas; Feldman, Josh

    2016-09-01

    The Southern Oklahoma Aulocogen (SOA) stretches from southern Oklahoma through the Texas panhandle and into Colorado and New Mexico, and contains mafic through silicic magmatism related to the opening of the Iapetus Ocean during the early Cambrian. Cambrian magmatic products are best exposed in the Wichita Mountains (Oklahoma), where they have been extensively studied. However, their ultimate derivation is still somewhat contentious and centers on two very different models: SOA magmatism has been suggested to occur via [1] continental rifting (with or without mantle plume emplacement) or [2] transform-fault related magmatism (e.g., leaky strike-slip faults). Within the SOA, the subsurface in and adjacent to the Arbuckle Mountains in southern Oklahoma contains thick sequences of mafic to intermediate lavas, intrusive bodies, and phreatomagmatic deposits interlayered with thick, extensive rhyolite lavas, thin localized tuffs, and lesser silicic intrusive bodies. These materials were first described in the Arbuckle Mountains region by a 1982 drill test (Hamilton Brothers Turner Falls well) and the best available age constraints from SOA Arbuckle Mountains eruptive products are 535 to 540 Ma. Well cuttings of the mafic through intermediate units were collected from that well and six others and samples from all but the Turner Falls and Morton wells are the focus of this study. Samples analyzed from the wells are dominantly subalkaline, tholeiitic, and range from basalt to andesite. Their overall bulk major and trace element chemistry, normative mineralogy, and Srsbnd Nd isotope ratios are similar to magmas erupted/emplaced in flood basalt provinces. When compared with intrusive mafic rocks that crop out in the Wichita Mountains, the SOA well cuttings are geochemically most similar to the Roosevelt Gabbros. New geochemical and isotope data presented in this study, when coupled with recent geophysical work in the SOA and the coeval relationship with rhyolites, indicates

  9. Emplacement dynamics and timescale of a Holocene flow from the Cima Volcanic Field (CA): Insights from rheology and morphology

    Science.gov (United States)

    Soldati, Arianna; Beem, Jordon; Gomez, Francisco; Huntley, John Warren; Robertson, Timothy; Whittington, Alan

    2017-11-01

    We present a rheological and morphological study of a Holocene lava flow emitted by a monogenetic cinder cone in the Cima Volcanic Field, eastern California. Our field observations focused on surface morphology, which transitions from smooth core extrusions near the vent to jagged 'a'ā blocks over the majority of the flow, and on channel and levée dimensions. We collected airborne photogrammetry data and used it to generate a digital elevation model. From this, the total flow volume was estimated and surface roughness was quantified in terms of standard deviation of the real surface (5 cm resolution) from the software-generated 1 m-average plane. Sample textural analyses revealed that the near-vent portion of the flow is significantly more crystalline (ϕxtal = 0.95 ± 0.04) than the main flow body (ϕxtal = 0.66 ± 0.11). The rheology of Cima lavas was determined experimentally by concentric cylinder viscometry between 1550 °C and 1160 °C, including the first subliquidus rheology measurements for a continental intraplate trachybasaltic lava. The experimentally determined effective viscosity increases from 54 Pa·s to 1361 Pa·s during cooling from the liquidus ( 1230 °C) to 1160 °C, where crystal fraction is 0.11. The lava viscosity over this range is still lower than most basaltic melts, due to the high alkali content of Cima lavas ( 6 wt% Na2O + K2O). Monte Carlo simulations were used to account for and propagate experimental uncertainties, and to determine which rheological model (Bingham, power law, or Herschel-Bulkley) provides the best-fit of the obtained rheological data. Results suggest that Bingham and Herschel-Bulkley models are statistically indistinguishable from each other, and that both fit the data better than a power law model. By combining field observations and experimental results, we reconstructed the eruption temperature and few days-long emplacement history of the Cima flow.

  10. Volcanic Hazard Education through Virtual Field studies of Vesuvius and Laki Volcanoes

    Science.gov (United States)

    Carey, S.; Sigurdsson, H.

    2011-12-01

    Volcanic eruptions pose significant hazards to human populations and have the potential to cause significant economic impacts as shown by the recent ash-producing eruptions in Iceland. Demonstrating both the local and global impact of eruptions is important for developing an appreciation of the scale of hazards associated with volcanic activity. In order to address this need, Web-based virtual field exercises at Vesuvius volcano in Italy and Laki volcano in Iceland have been developed as curriculum enhancements for undergraduate geology classes. The exercises are built upon previous research by the authors dealing with the 79 AD explosive eruption of Vesuvius and the 1783 lava flow eruption of Laki. Quicktime virtual reality images (QTVR), video clips, user-controlled Flash animations and interactive measurement tools are used to allow students to explore archeological and geological sites, collect field data in an electronic field notebook, and construct hypotheses about the impacts of the eruptions on the local and global environment. The QTVR images provide 360o views of key sites where students can observe volcanic deposits and formations in the context of a defined field area. Video sequences from recent explosive and effusive eruptions of Carribean and Hawaiian volcanoes are used to illustrate specific styles of eruptive activity, such as ash fallout, pyroclastic flows and surges, lava flows and their effects on the surrounding environment. The exercises use an inquiry-based approach to build critical relationships between volcanic processes and the deposits that they produce in the geologic record. A primary objective of the exercises is to simulate the role of a field volcanologist who collects information from the field and reconstructs the sequence of eruptive processes based on specific features of the deposits. Testing of the Vesuvius and Laki exercises in undergraduate classes from a broad spectrum of educational institutions shows a preference for the

  11. Assessing spatio-temporal eruption forecasts in a monogenetic volcanic field

    Science.gov (United States)

    Bebbington, Mark S.

    2013-02-01

    Many spatio-temporal models have been proposed for forecasting the location and timing of the next eruption in a monogenetic volcanic field. These have almost invariably been fitted retrospectively. That is, the model has been tuned to all of the data, and hence an assessment of the goodness of fit has not been carried out on independent data. The low rate of eruptions in monogenetic fields means that there is not the opportunity to carry out a purely prospective test, as thousands of years would be required to accumulate the necessary data. This leaves open the possibility of a retrospective sequential test, where the parameters are calculated only on the basis of prior events and the resulting forecast compared statistically with the location and time of the next eruption. In general, events in volcanic fields are not dated with sufficient accuracy and precision to pursue this line of investigation; An exception is the Auckland Volcanic Field (New Zealand), consisting of c. 50 centers formed during the last c. 250 kyr, for which an age-order model exists in the form of a Monte Carlo sampling algorithm, facilitating repeated sequential testing. I examine a suite of spatial, temporal and spatio-temporal hazard models, comparing the degree of fit, and attempt to draw lessons from how and where each model is particularly successful or unsuccessful. A relatively simple (independent) combination of a renewal model (temporal term) and a spatially uniform ellipse (spatial term) performs as well as any other model. Both avoid over fitting the data, and hence large errors, when the spatio-temporal occurrence pattern changes.

  12. Sequential eruption of alkaline and sub-alkaline magmas from a small monogenetic volcano in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Needham, A. J.; Lindsay, J. M.; Smith, I. E. M.; Augustinus, P.; Shane, P. A.

    2011-04-01

    Rangitoto Volcano is the youngest and largest eruptive centre in the monogenetic intraplate Auckland Volcanic Field (AVF). The stratigraphy of Rangitoto pyroclastic deposits that have been preserved in swamps on nearby Motutapu Island and in Lake Pupuke on the mainland reveals that the volcano erupted twice; radiocarbon dating of 10 samples from the two tephra units in the swamps indicates eruption ages of 553 ± 7 and 504 ± 5 Cal years BP, for the lower and upper tephra layers, respectively. Geochemistry of the lava field and various scoria cones on Rangitoto Island itself reveals two distinct compositional groups: an alkaline olivine basalt group (that correlates geochemically with the lower tephra layer) and a group that is sub-alkaline and transitional to tholeiite (that correlates geochemically with the upper tephra layer). Based on this data, we infer that, following a phreatomagmatic vent-clearing phase, the early magmatic eruption of Rangitoto Volcano was Strombolian in character and produced an alkaline olivine basalt scoria cone and an associated thick ash deposit on nearby Motutapu Island. This was followed by a time gap of up to several decades, after which a second eruptive phase built the current summit scoria cone together with an encircling lava field. We suggest this later, sub-alkaline eruptive period was associated with the deposition of the thin upper tephra layer on Motutapu Island. The two suites of Rangitoto samples are chemically quite distinct, and each is associated with a distinct parental composition. Trace element modelling indicates the alkaline and sub-alkaline parental melts could have been derived by ~ 1 and 6 wt.% partial melting of an anhydrous garnet peridotite source at ~ 80 and 65 km depth, respectively. The compositional range within each suite is similar, and can be explained by mainly olivine together with minor clinopyroxene fractionation within a relatively simple conduit system in which mixing and mingling were not

  13. The Maars of the Tuxtla Volcanic Field: the Example of 'laguna Pizatal'

    Science.gov (United States)

    Espindola, J.; Zamora-Camacho, A.; Hernandez-Cardona, A.; Alvarez del Castillo, E.; Godinez, M.

    2013-12-01

    Los Tuxtlas Volcanic Field (TVF), also known as Los Tuxtlas massif, is a structure of volcanic rocks rising conspicuously in the south-central part of the coastal plains of eastern Mexico. The TVF seems related to the upper cretaceous magmatism of the NW part of the Gulf's margin (e.g. San Carlos and Sierra de Tamaulipas alkaline complexes) rather than to the nearby Mexican Volcanic Belt. The volcanism in this field began in late Miocene and has continued in historical times, The TVF is composed of 4 large volcanoes (San Martin Tuxtla, San Martin Pajapan, Santa Marta, Cerro El Vigia), at least 365 volcanic cones and 43 maars. In this poster we present the distribution of the maars, their size and depths. These maars span from a few hundred km to almost 1 km in average diameter, and a few meters to several tens of meters in depth; most of them filled with lakes. As an example on the nature of these structures we present our results of the ongoing study of 'Laguna Pizatal or Pisatal' (18° 33'N, 95° 16.4'W, 428 masl) located some 3 km from the village of Reforma, on the western side of San Martin Tuxtla volcano. Laguna Pisatal is a maar some 500 meters in radius and a depth about 40 meters from the surrounding ground level. It is covered by a lake 200 m2 in extent fed by a spring discharging on its western side. We examined a succession of 15 layers on the margins of the maar, these layers are blast deposits of different sizes interbedded by surge deposits. Most of the contacts between layers are irregular; which suggests scouring during deposition of the upper beds. This in turn suggests that the layers were deposited in a rapid series of explosions, which mixed juvenile material with fragments of the preexisting bedrock. We were unable to find the extent of these deposits since the surrounding areas are nowadays sugar cane plantations and the lake has overspilled in several occassions.

  14. Geology of the Mohon Mountain volcanic field, Yavapai and Mohave Counties, Arizona: a preliminary report

    International Nuclear Information System (INIS)

    Simmons, A.M.; King, J.S.

    1987-01-01

    Field mapping has produced a preliminary picture of Mohon Mountain as a composite volcano, in which pyroclastic ash and larger tephra erupted alternately with flows of rhyodacite and dacite. An analog study which uses imagery of lunar and Martian features will compare the overall shape of the vent complex, including its breached southern flank and satellite vents, to similar landforms found on Mars and the Moon which are believed to have formed similar processes. Ash flow sheets were hypothesized to comprise the outer slopes of Olympus Mons suggesting that explosive eruptions which are more volatile-rich than those which produce basalt flows are not confined to terrestrial settings but may also be found on bodies such as Mars, which have a thicker crust and deeper magma source in the mantle. The analog study will explore further evidence for explosive eruptions on Mars and the Moon

  15. High-Ti type N-MORB parentage of basalts from the south Andaman ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    basalts as sub-alkaline basalts and alkaline basalts. A few samples show basaltic andesite, trachy- basalt, or basanitic chemical composition. High-field strength element (HFSE) geochemistry sug- gests that studied basalt samples are probably derived from similar parental magmas. Al2O3/TiO2 and CaO/TiO2 ratios classify ...

  16. Xenoliths from Bunyaruguru volcanic field: Some insights into lithology of East African Rift upper mantle

    Science.gov (United States)

    Muravyeva, N. S.; Senin, V. G.

    2018-01-01

    The mineral composition of mantle xenoliths from kamafugites of the Bunyaruguru volcanic field has been determined. The major and some trace elements (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, Cr, Ni, Ba, Sr, La, Ce, Nd, Nb) has been analyzed in olivine, clinopyroxene, phlogopite, Cr-spinel, titanomagnetite, perovskite and carbonates of xenoliths and their host lavas. Bunyaruguru is one of three (Katwe-Kikorongo, Fort Portal and Bunyaruguru) volcanic fields included in the Toro-Ankole province located on the North end of the West Branch of the East African Rift. The xenoliths from three craters within the Bunyaruguru volcanic field revealed the different character of metasomatic alteration, reflecting the heterogeneity of the mantle on the kilometer scale. The most unusual finding was composite glimmerite-wehrlite xenolith from the crater Kazimiro, which contains the fresh primary high-Mg olivine with inclusions of Cr-spinel that had not been previously identified in this area. The different composition of phenocryst and xenolith minerals indicates that the studied xenoliths are not сumulus of enclosing magma, but the composition of xenoliths characterizes the lithology of the upper mantle of the area. The carbonate melt inclusions in olivine Fo90 demonstrate the existence of primary carbonatitic magmas in Bunyaruguru upper mantle. The results of texture and chemical investigation of the xenolith minerals indicate the time sequence of metasomatic alteration of Bunyaruguru upper mantle: MARID metasomatism at the first stage followed by carbonate metasomatism. The abundances of REE in perovskites from kamafugite are 2-4 times higher than similar values for xenolith. Therefore the kamafugite magma was been generated from a more enriched mantle source than the source of the xenoliths. The evaluation of P-T conditions formation of clinopyroxene xenolith revealed the range of pressure 20-65 kbar and the temperatures range 830-1040 °C. The pressure of clinopyroxene phenocryst

  17. Earth's Largest Terrestrial Landslide (The Markagunt Gravity Slide of Southwest Utah): Insights from the Catastrophic Collapse of a Volcanic Field

    Science.gov (United States)

    Hacker, D. B.; Biek, R. F.; Rowley, P. D.

    2015-12-01

    The newly discovered Miocene Markagunt gravity slide (MGS; Utah, USA) represents the largest volcanic landslide structure on Earth. Recent geologic mapping of the MGS indicates that it was a large contiguous volcanic sheet of allochthonous andesitic mudflow breccias and lava flows, volcaniclastic rocks, and intertonguing regional ash-flow tuffs that blanketed an area of at least 5000 km2 with an estimated volume of ~3000 km3. From its breakaway zone in the Tushar and Mineral Mountains to its southern limits, the MGS is over 95 km long and at least 65 km wide. The MGS consists of four distinct structural segments: 1) a high-angle breakaway segment, 2) a bedding-plane segment, ~60 km long and ~65 km wide, typically located within the volcaniclastic Eocene-Oligocene Brian Head Formation, 3) a ramp segment ~1-2 km wide where the slide cuts upsection, and 4) a former land surface segment where the upper-plate moved at least 35 km over the Miocene landscape. The presence of basal and lateral cataclastic breccias, clastic dikes, jigsaw puzzle fracturing, internal shears, pseudotachylytes, and the overall geometry of the MGS show that it represents a single catastrophic emplacement event. The MGS represents gravitationally induced collapse of the southwest sector of the Oligocene to Miocene Marysvale volcanic field. We suggest that continuous growth of the Marysvale volcanic field, loading more volcanic rocks on a structurally weak Brian Head basement, created conditions necessary for gravity sliding. In addition, inflation of the volcanic pile due to multiple magmatic intrusions tilted the strata gently southward, inducing lateral spreading of the sub-volcanic rocks prior to failure. Although similar smaller-scale failures have been recognized from individual volcanoes, the MGS represents a new class of low frequency but high impact hazards associated with catastrophic sector collapse of large volcanic fields containing multiple volcanoes. The relationship of the MGS to

  18. An assessment of the alignments of vents based on geostatistical analysis in the Auckland Volcanic Field, New Zealand

    OpenAIRE

    Von Veh, Mark W.; Németh, Károly

    2011-01-01

    The city of Auckland lies on an active volcanic field. Emergency planning to manage risk associated with future volcanic activity is complicated by the uncertainty associated with the likely location of the next event. Linear alignments of vents indicate that locations of these features are controlled by areas of weakness in the subjacent crust. A dominant north-easterly strike for these areas is identified from an analysis of nearest-neighbour directions of identified vents. The Hough Transf...

  19. Constraints on the origin and evolution of magmas in the Payún Matrú Volcanic Field, Quaternary Andean back-arc of western Argentina

    DEFF Research Database (Denmark)

    Hernadno, I R; Aragón, E; Frei, Robert

    2014-01-01

    The Payún Matrú Volcanic Field (Pleistocene–Holocene) is located in the Andean back-arc of the Southern Volcanic Zone, western Argentina, and is contemporaneous with the Andean volcanic arc at the same latitude. It includes two polygenetic, mostly trachytic volcanoes: Payún Matrú (with a summit c...

  20. Gold-silver mining districts, alteration zones, and paleolandforms in the Miocene Bodie Hills Volcanic Field, California and Nevada

    Science.gov (United States)

    Vikre, Peter G.; John, David A.; du Bray, Edward A.; Fleck, Robert J.

    2015-09-25

    The Bodie Hills is a ~40 by ~30 kilometer volcanic field that straddles the California-Nevada state boundary between Mono Lake and the East Walker River. Three precious metal mining districts and nine alteration zones are delineated in Tertiary-Quaternary volcanic and Mesozoic granitic and metamorphic rocks that comprise the volcanic field. Cumulative production from the mining districts, Bodie, Aurora, and Masonic, is 3.4 million ounces of gold and 28 million ounces of silver. Small amounts of mercury were produced from the Potato Peak, Paramount-Bald Peak, and Cinnabar Canyon-US 395 alteration zones; a native sulfur resource in the Cinnabar Canyon-US 395 alteration zone has been identified by drilling. There are no known mineral resources in the other six alteration zones, Red Wash-East Walker River, East Brawley Peak, Sawtooth Ridge, Aurora Canyon, Four Corners, and Spring Peak. The mining districts and alteration zones formed between 13.4 and 8.1 Ma in predominantly ~15–9 Ma volcanic rocks of the Bodie Hills volcanic field. Ages of hydrothermal minerals in the districts and zones are the same as, or somewhat younger than, the ages of volcanic host rocks.

  1. Investigating the consequences of urban volcanism using a scenario approach I: Development and application of a hypothetical eruption in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Deligne, Natalia I.; Fitzgerald, Rebecca H.; Blake, Daniel M.; Davies, Alistair J.; Hayes, Josh L.; Stewart, Carol; Wilson, Grant; Wilson, Thomas M.; Castelino, Renella; Kennedy, Ben M.; Muspratt, Scott; Woods, Richard

    2017-04-01

    What happens when a city has a volcanic eruption within its boundaries? To explore the consequences of this rare but potentially catastrophic combination, we develop a detailed multi-hazard scenario of an Auckland Volcanic Field (AVF) eruption; the AVF underlies New Zealand's largest city, Auckland. We start with an existing AVF unrest scenario sequence and develop it through a month-long hypothetical eruption based on geologic investigations of the AVF and historic similar eruptions from around the world. We devise a credible eruption sequence and include all volcanic hazards that could occur in an AVF eruption. In consultation with Civil Defence and Emergency Management staff, we create a series of evacuation maps for before, during, and after the hypothetical eruption sequence. Our result is a versatile scenario with many possible applications, developed further in companion papers that explore eruption consequences on transportation and water networks. However, here we illustrate one application: evaluating the consequences of an eruption on electricity service provision. In a collaborative approach between scientists and electricity service providers, we evaluate the impact of the hypothetical eruption to electricity generation, transmission, and distribution infrastructure. We then evaluate how the impacted network functions, accounting for network adaptations (e.g., diverting power away from evacuated areas), site access, and restoration factors. We present a series of regional maps showing areas with full service, rolling outages, and no power as a result of the eruption. This illustrative example demonstrates how a detailed scenario can be used to further understand the ramifications of urban volcanism on local and regional populations, and highlights the importance of looking beyond damage to explore the consequences of volcanism.

  2. Martian volcanism: A review

    International Nuclear Information System (INIS)

    Carr, M.H.

    1987-01-01

    Martian volcanism is reviewed. It is emphasized that lava plains constitute the major type of effusive flow, and can be differentiated by morphologic characteristics. Shield volcanoes, domes, and patera constitute the major constructional landforms, and recent work has suggested that explosive activity and resulting pyroclastic deposits may have been involved with formation of some of the small shields. Analysis of morphology, presumed composition, and spectroscopic data all indicate that Martian volcanism was dominantly basaltic in composition

  3. The 2007 and 2014 eruptions of Stromboli at match: monitoring the potential occurrence of effusion-driven basaltic paroxysmal explosions from a volcanic CO2 flux perspective

    Science.gov (United States)

    Liuzzo, Marco; Aiuppa, Alessandro; Salerno, Giuseppe; Burton, Mike; Federico, Cinzia; Caltabiano, Tommaso; Giudice, Gaetano; Giuffrida, Giovanni

    2015-04-01

    The recent effusive unrests of Stromboli occurred in 2002 and 2007 were both punctuated by short-lived, violent paroxysmal explosions generated from the volcano's summit craters. When effusive activity recently resumed on Stromboli, on 6 August 2014, much concern was raised therefore on whether or not a paroxysm would have occurred again. The occurrence of these potentially hazardous events has stimulated research toward understanding the mechanisms through which effusive eruptions can perturb the volcano's plumbing system, to eventually trigger a paroxysm. The anomalously large CO2 gas emissions measured prior to the 15 March 2007 paroxysmal explosion of Stromboli [1] have first demonstrated the chance to predict days in advance the effusive-to-explosive transition. Here 2007 and 2014 volcanic CO2 flux records have been compared for exploring causes/conditions that had not triggered any paroxysm event in the 2014 case. We show that the 2007 and 2014 datasets shared both similarities and remarkable differences. The pre-eruptive trends of CO2 and SO2 flux emissions were strikingly similar in both 2007 and 2014, indicating similar conditions within the plumbing system prior to onset of both effusive crises. In both events, the CO2 flux substantially accelerated (relative to the pre-eruptive mean flux) after onset of the effusion. However, this CO2 flux acceleration was a factor 3 lower in 2014 than in 2007, and the excess CO2 flux (the fraction of CO2 not associated with the shallowly emplaced/erupted magma, and therefore contributed by the deep magmatic system) never returned to the very high levels observed prior to the 15 March 2007 paroxysm. We conclude therefore that, although similar quantities of magma were effusively erupted in 2007 and 2014, the deep magmatic system was far less perturbed in the most recent case. We speculate that the rate at which the deep magmatic system is decompressed, rather than the level of de-compression itself, determine if the deep

  4. CO2 diffuse emission from maar lake: An example in Changbai volcanic field, NE China

    Science.gov (United States)

    Sun, Yutao; Guo, Zhengfu; Liu, Jiaqi; Du, Jianguo

    2018-01-01

    Numerous maars and monogenetic volcanic cones are distributed in northeast China, which are related to westward deep subduction of the Pacific Ocean lithosphere, comprising a significant part of the "Pacific Ring of Fire". It is well known that diffuse CO2 emissions from monogenetic volcanoes, including wet (e.g., maar lake) and dry degassing systems (e.g., soil diffuse emission, fault degassing, etc.), may contribute to budget of globally nature-derived greenhouse gases. However, their relationship between wet (e.g., maar lake) and concomitant dry degassing systems (e.g., soil diffuse emission, fault degassing, etc.) related to monogenetic volcanic field is poorly understood. Yuanchi maar, one of the typical monogenetic volcanic systems, is located on the eastern flank of Tianchi caldera in Changbai volcanic field of northeast China, which displays all of three forms of CO2 degassing including the maar lake, soil micro-seepage and fault degassing. Measurements of efflux of CO2 diffusion from the Yuanchi maar system (YMS) indicate that the average values of CO2 emissions from soil micro-seepage, fault degassing and water-air interface diffusion are 24.3 ± 23.3 g m- 2 d- 1, 39.2 ± 22.4 g m- 2 d- 1 and 2.4 ± 1.1 g m- 2 d- 1, respectively. The minimum output of CO2 diffuse emission from the YMS to the atmosphere is about 176.1 ± 88.3 ton/yr, of which 80.4% results from the dry degassing system. Degassing from the fault contributes to the most of CO2 emissions in all of the three forms of degassing in the YMS. Contributions of mantle, crust, air and organic CO2 to the soil gas are 0.01-0.10%, 10-20%, 32-36% and 48-54%, respectively, which are quantitatively constrained by a He-C isotope coupling calculation model. We propose that CO2 exsolves from the upper mantle melting beneath the Tianchi caldera, which migrates to the crustal magma chamber and further transports to the surface of YMS along the deep fault system. During the transportation processes, the emission

  5. Influences of quaternary climatic changes on processes of soil development on desert loess deposits of the Cima volcanic field, California

    Science.gov (United States)

    McFadden, L.D.; Wells, S.G.; Dohrenwend, J.C.

    1986-01-01

    Soils formed in loess are evidence of both relict and buried landscapes developed on Pliocene-to-latest Pleistocene basalt flows of the Cima volcanic field in the eastern Mojave Desert, California. The characteristics of these soils change systematically and as functions of the age and surface morphology of the lava flow. Four distinct phases of soil development are recognized: phase 1 - weakly developed soils on flows less than 0.18 M.y. old; phase 2 - strongly developed soils with thick argillic horizons on 0.18 - 0.7 M.y. old flows; phase 3 - strongly developed soils with truncated argillic horizons massively impregnated by carbonate on 0.7 to 1.1 M.y. old flows; and phase 4 - degraded soils with petrocalcic rubble on Pliocene flows. A critical aspect of the development of stage 1 soils is the evolution of a vesicular A horizon which profoundly affects the infiltration characteristics of the loess parent materials. Laboratory studies show that secondary gypsum and possibly other salt accumulation probably occurred during the period of phase 1 soil development. Slight reddening of the interiors of peds from vesicular-A horizons of phase 1 soils and presence of weakly developed B horizons indicates a slight degree of in situ chemical alteration. However, clay and Fe oxide contents of these soils show that these constituents, as well as carbonates and soluble salts, are incorporated as eolian dust. In contrast to phase 1 soils, chemical and mineralogical analysis of argillic horizons of phase 2 soils indicate proportionally greater degrees of in-situ chemical alteration. These data, the abundant clay films, and the strong reddening in the thick argillic horizons suggest that phase 2 and phase 3 soils formed during long periods of time and periodically were subjected to leaching regimes more intense than those that now exist. Flow-age data and soil-stratigraphic evidence also indicate that several major loess-deposition events occurred during the past ??? 1.0 M

  6. Magnetic Properties of Mantle Xenoliths and Evidence of Localized Modification of the Mantle Beneath the Rio Puerco Volcanic Field, New Mexico

    Science.gov (United States)

    Callahan, C. N.; Geissman, J. W.; Selverstone, J.; Brearley, A. J.

    2005-12-01

    Little is known about the magnetic petrology and processes that affect the magnetization of the upper mantle. Petrologic and geochemical studies of a suite of xenoliths from the Rio Puerco volcanic necks (RPVN), west-central New Mexico, show that pyroxenites (PYX) have a metasomatic origin, as a result of interaction between spinel lherzolites (SL) and basaltic and carbonatitic melt or fluid. This study demonstrates that magnetic properties of these mantle xenoliths can characterize localized mantle modification events and heterogeneity in mantle oxidation states. In situ, oriented PYXs carry a well-defined post-emplacement, cooling-related remanence (typical NRM of 0.23 A/m) defined by progressive thermal and AF demagnetization. Thermal demagnetization of SL and PYX remove >90% of the magnetization by 580°C and IRM acquisition curves reach saturation by 0.3T, indicating a dominance by magnetite in both rock types. SL and PYX have relatively small concentrations (~0.01%) of magnetite (bulk susceptibility of 10-4 to 10-5 SI vol). SLs generally contain multi-domain magnetite (mean destructive fields of NRM between 20 to 40 mT), whereas PYXs are dominated by single domain magnetite (MDFs between 20 to 70 mT). The magnetic properties of SLs and PYXs are a reflection of phases formed in the mantle and not from basalt-xenolith interaction en route to the surface. In addition, the differences in magnetic properties give insight into how melt infiltration modifies the magnetization of mantle xenoliths. In comparison to other SLs, red-colored SLs found only at Cerro de Santa Rosa, one of the RPVN, contain hematite and relatively low-coercivity magnetite. Complete thermal unblocking of a high coercivity phase occurs at 680°C and a medium to low-coercivity fraction at 580°C. Textural evidence suggests that alteration involved oxidation in the mantle, prior to transport of these xenoliths to the surface in the host basalt. TEM analyses reveal micron-sized needles of

  7. Volcano-sedimentary characteristics in the Abu Treifiya Basin, Cairo-Suez District, Egypt: Example of dynamics and fluidization over sedimentary and volcaniclastic beds by emplacement of syn-volcanic basaltic rocks

    Science.gov (United States)

    Khalaf, E. A.; Abdel Motelib, A.; Hammed, M. S.; El Manawi, A. H.

    2015-12-01

    This paper describes the Neogene lava-sediment mingling from the Abu Treifiya Basin, Cairo-Suez district, Egypt. The lava-sediment interactions as peperites have been identified for the first time at the study area and can be used as paleoenvironmental indicators. The identification of peperite reflects contemporaneous time relationship between volcanism and sedimentation and this finding is of primary importance to address the evolutional reconstruction of the Abu Treifiya Basin. Characterization of the facies architecture and textural framework of peperites was carried out through detailed description and interpretation of their outcrops. The peperites and sedimentary rocks are up to 350 m thick and form a distinct stratigraphic framework of diverse lithology that is widespread over several kilometers at the study area. Lateral and vertical facies of the peperites vary from sediment intercalated with the extrusive/intrusive basaltic rocks forming peperitic breccias to lava-sediment contacts at a large to small scales, respectively. Peperites encompass five main facies types ascribed to: (i) carbonate sediments-hosted fluidal and blocky peperites, (ii) lava flow-hosted blocky peperites, (iii) volcaniclastics-hosted fluidal and blocky peperites, (iv) sandstone/siltstone rocks-hosted blocky peperites, and (iv) debris-flows-hosted blocky peperites. Soft sediment deformation structures, vesiculated sediments, sediments filled-vesicles, and fractures in lava flows indicate that lava flows mingled with unconsolidated wet sediments. All the peperites in this study could be described as blocky or fluidal, but mixtures of different clast shapes occur regardless of the host sediment. The presence of fluidal and blocky juvenile clasts elucidates different eruptive styles, reflecting a ductile and brittle fragmentation. The gradual variation from fluidal to blocky peperite texture, producing the vertical grading is affected by influencing factors, e.g., the viscosity, magma

  8. Absolute palaeointensity study of the Mono Lake excursion recorded by New Zealand basalts

    Science.gov (United States)

    Cassidy, John; Hill, Mimi J.

    2009-02-01

    One of the geomagnetic excursions recorded in basalts of the Auckland volcanic field, New Zealand, has recently been correlated unequivocally with the Mono Lake excursion, making it the only confirmed record from the southern hemisphere. This record is also exceptional in occurring in five separate monogenetic basaltic volcanoes. Absolute palaeointensity determinations using the microwave technique, based on a comprehensive suite of samples of the Auckland basalts recording the excursion, show that the geomagnetic field in New Zealand at the time of the Mono Lake excursion was reduced to about 14 μT i.e. to 30% of its normal value. This result confirms previous estimates based on more limited sampling. In addition, it provides a comparison of the microwave and LDT-DHT Shaw methods of measuring palaeointensity, which give results that are statistically indistinguishable. The palaeointensities determined from the five different volcanoes are also indistinguishable, though the palaeodirection data suggest that a very small segment of the VGP path may have been recorded. This study confirms the reliability of palaeointensity and palaeodirection determinations from these particular New Zealand basalts, which together with their definitive 40Ar/ 39Ar ages, establishes this record of the Mono Lake excursion as one of the best documented. Consequently, there is significant potential in searching for records of this excursion elsewhere in the Pacific region for use as a stratigraphic marker in studies of recent volcanism and palaeoclimate reconstructions.

  9. Reconstruction of eroded monogenic Strombolian cones of Miocene age: A case study on character of volcanic activity of the Jičín Volcanic Field (NE Bohemia) and subsequent erosional rates estimation

    Czech Academy of Sciences Publication Activity Database

    Rapprich, V.; Cajz, Vladimír; Košťák, M.; Pécskay, Z.; Řídkošil, T.; Raška, P.; Radoň, M.

    2007-01-01

    Roč. 52, 3-4 (2007), s. 169-180 ISSN 0449-2560 R&D Projects: GA AV ČR IAA300130612 Institutional research plan: CEZ:AV0Z30130516 Keywords : cinder cone * Strombolian eruption * volcanic facies * erosion rate * Jičín Volcanic Field * Bohemian Paradise GeoPark Subject RIV: DB - Geology ; Mineralogy

  10. The origin of plagioclase phenocrysts in basalts from continental monogenetic volcanoes of the Kaikohe-Bay of Islands field, New Zealand: implications for magmatic assembly and ascent

    Science.gov (United States)

    Coote, Alisha; Shane, Phil; Stirling, Claudine; Reid, Malcolm

    2018-02-01

    Late Quaternary, porphyritic basalts erupted in the Kaikohe-Bay of Islands area, New Zealand, provide an opportunity to explore the crystallization and ascent history of small volume magmas in an intra-continental monogenetic volcano field. The plagioclase phenocrysts represent a diverse crystal cargo. Most of the crystals have a rim growth that is compositionally similar to groundmass plagioclase ( An65) and is in equilibrium with the host basalt rock. The rims surround a resorbed core that is either less calcic ( An20-45) or more calcic (> An70), having crystallized in more differentiated or more primitive melts, respectively. The relic cores, particularly those that are less calcic (rim growths around the entrained antecrystic and xenocrystic cargo. The recharge also entrained cognate gabbros that occur as inclusions, and produced mingled groundmasses. Multi-stage magmatic ascent and interaction is indicated, and is consistent with the presence of a partial melt body in the lower crust detected by geophysical methods. This crystallization history contrasts with traditional concepts of low-flux basaltic systems where rapid ascent from the mantle is inferred. From a hazards perspective, the magmatic system inferred here increases the likelihood of detecting eruption precursor phenomena such as seismicity, degassing and surface deformation.

  11. An approach of understanding acid volcanics and tuffaceous volcaniclastics from field studies: A case from Tadpatri Formation, Proterozoic Cuddapah basin, Andhra Pradesh, India

    Science.gov (United States)

    Goswami, Sukanta; Upadhyay, P. K.; Bhagat, Sangeeta; Zakaulla, Syed; Bhatt, A. K.; Natarajan, V.; Dey, Sukanta

    2018-03-01

    The lower stratigraphic part of the Cuddapah basin is marked by mafic and felsic volcanism. Tadpatri Formation consists of a greater variety of rock types due to bimodal volcanism in the upper part. Presence of bimodal volcanism is an indication of continental rift setting. Various genetic processes involved in the formation of such volcanic sequence result in original textures which are classified into volcaniclastic and coherent categories. Detailed and systematic field works in Tadpatri-Tonduru transect of SW Cuddapah basin have provided information on the physical processes producing this diversity of rock types. Felsic volcanism is manifested here with features as finger print of past rhyolite-dacite eruptions. Acid volcanics, tuffs and associated shale of Tadpatri Formation are studied and mapped in the field. With supporting subordinate studies on geochemistry, mineralogy and petrogenesis of the volcanics to validate field features accurately, it is understood that volcanism was associated with rifting and shallow marine environmental condition. Four facies (i.e., surge, flow, fall and resedimented volcaniclastic) are demarcated to describe stratigraphic units and volcanic history of the mapped area. The present contribution focuses on the fundamental characterization and categorization of field-based features diagnostic of silica-rich volcanic activities in the Tadpatri Formation.

  12. Validation of gravity data from the geopotential field model for subsurface investigation of the Cameroon Volcanic Line (Western Africa)

    Science.gov (United States)

    Marcel, Jean; Abate Essi, Jean Marcel; Nouck, Philippe Njandjock; Sanda, Oumarou; Manguelle-Dicoum, Eliézer

    2018-03-01

    Belonging to the Cameroon Volcanic Line (CVL), the western part of Cameroon is an active volcanic zone with volcanic eruptions and deadly gas emissions. The volcanic flows generally cover areas and bury structural features like faults. Terrestrial gravity surveys can hardly cover entirely this mountainous area due to difficult accessibility. The present work aims to evaluate gravity data derived from the geopotential field model, EGM2008 to investigate the subsurface of the CVL. The methodology involves upward continuation, horizontal gradient, maxima of horizontal gradient-upward continuation combination and Euler deconvolution techniques. The lineaments map inferred from this geopotential field model confirms several known lineaments and reveals new ones covered by lava flows. The known lineaments are interpreted as faults or geological contacts such as the Foumban fault and the Pan-African Belt-Congo craton contact. The lineaments highlighted coupled with the numerous maar lakes identified in this volcanic sector attest of the vulnerability of the CVL where special attention should be given for geohazard prevention.

  13. Mesozoic rift magmatism in the North Sea region: 40Ar/39Ar geochronology of Scanian basalts and geochemical constraints

    Science.gov (United States)

    Bergelin, Ingemar; Obst, Karsten; Söderlund, Ulf; Larsson, Kent; Johansson, Leif

    2011-06-01

    More than 100 volcanic necks composed of basanites and melanephelinites occur in Scania, southern Sweden, at the junction of two major tectonic lineaments, the Phanerozoic Sorgenfrei-Tornquist Zone (STZ) and the Proterozoic Protogine Zone. New 40Ar/39Ar isotope analyses of whole rock fragments of nine selected basalt necks suggest that the Mesozoic alkaline volcanism in the Scanian province commenced earlier than previously reported and comprised three separate volcanic episodes that span a total period of ca. 80 Myr: a first Jurassic (191-178 Ma), a second at the Jurassic/Cretaceous boundary (ca. 145 Ma), and a final middle Cretaceous episode (ca. 110 Ma). The new results allow for precise time correlations between eruption events in the Scanian and those in the North Sea volcanic provinces. The older, early Jurassic event in Scania is largely synchronous with that in the Egersund Basin and the Forties field whereas the event at ca. 145 Ma is correlated with activity in the Central Graben. These volcanic episodes also correlate in age with Kimmerian tectonic activity. Volcanic activity in the middle Cretaceous period has also been dated in the triple junction in the North Sea and offshore in the Netherland Sector. The correlation of basalt volcanism in Scania with the Egersund nephelinites strongly suggest that volcanism was triggered by repeated tectonic activity along the STZ. Geochemical data of alkaline mafic rocks in the Scanian and the North Sea volcanic provinces imply that different provinces have largely unique geochemical signatures in favour of a heterogeneous mantle in the North Sea volcanic region. However, basalts of different generations in one and the same province cannot be readily separated on the basis of geochemistry, suggesting that the same lithospheric mantle was the source of repeated volcanism over time in each province. The data suggest a low degree of melting of a volatile-bearing mantle lherzolite enriched in incompatible elements with

  14. On the Trail of Missing Heat: Forward Gravity Modeling of the San Francisco Volcanic Field, Northern Arizona

    Science.gov (United States)

    Fry, B. N.; Morgan, P.

    2003-12-01

    The San Francisco volcanic field is a Quaternary field in northern Arizona, the age and size of which suggests there is a high possibility for an associated exploitable high temperature geothermal resource. Sunset Crater, the youngest dated feature in the field, erupted less than 1000 years ago. The youngest felsic volcanism in the area, located near Strawberry Crater, has been dated at about 51,000 years b.p. Felsic magmas are viscous, and therefore felsic magmatism is generally associated with upper crustal plutons, whereas mafic magmas commonly form surface flows. Heat from felsic magmatism tends to remain near subsurface ponds of the magma. Felsic magmatic systems can sustain substantial geothermal heat for tens to hundreds of thousands of years after emplacement. Knowledge of the quantity and distribution of felsic magmatism is therefore paramount to understanding the geothermal potential of the field. Surface heat flow in the study area ranges from ˜20 to ˜50 mW/m2, anomalously low for the region. Hydrological characteristics of the San Francisco volcanic field are thought to mask increased surface heat flow from the magmatic system. The deep water table (>300m) and a 2-level hydraulic system prevent characteristic surface manifestations of hydrothermal potential, such as hot springs and elevated surface heat flow. Lack of these thermal features at the surface precludes analysis of the resource based solely on surficial mapping and measurements. Forward modeling of the gravity field of a 50 km x 45 km area covering the eastern San Francisco volcanic field has been completed. Results suggest that a large felsic body ( ˜-0.15 g/cc contrast) trends northeastward under the Sugarloaf Mountain-O'Leary Peak-Strawberry Crater magmatic trend. This trend parallels a regional basement fabric, likely of early- to middle-Proterozoic origin. These results are being correlated with new surface geologic mapping and radiometric dating of young felsic volcanic rocks to

  15. Post-Columbia River Basalt Group stratigraphy and map compilation of the Columbia Plateau, Oregon

    International Nuclear Information System (INIS)

    Farooqui, S.M.; Bunker, R.C.; Thoms, R.E.; Clayton, D.C.; Bela, J.L.

    1981-01-01

    This report presents the results of reconnaissance mapping of sedimentary deposits and volcanic rocks overlying the Columbia River Basalt. The project area covers parts of the Dalles, Pendleton, Grangeville, Baker, Canyon City, and Bend. The mapping was done to provide stratigraphic data on the sedimentary deposits and volcanic rocks overlying the Columbia River Basalt Group. 160 refs., 16 figs., 1 tab

  16. River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA

    Science.gov (United States)

    Hurwitz, S.; Evans, William C.; Lowenstern, J. B.

    2010-01-01

    In the past few decades numerous studies have quantified the load of dissolved solids in large rivers to determine chemical weathering rates in orogenic belts and volcanic areas, mainly motivated by the notion that over timescales greater than ~100kyr, silicate hydrolysis may be the dominant sink for atmospheric CO2, thus creating a feedback between climate and weathering. Here, we report the results of a detailed study during water year 2007 (October 1, 2006 to September 30, 2007) in the major rivers of the Yellowstone Plateau Volcanic Field (YPVF) which hosts Earth's largest "restless" caldera and over 10,000 thermal features. The chemical compositions of rivers that drain thermal areas in the YPVF differ significantly from the compositions of rivers that drain non-thermal areas. There are large seasonal variations in river chemistry and solute flux, which increases with increasing water discharge. The river chemistry and discharge data collected periodically over an entire year allow us to constrain the annual solute fluxes and to distinguish between low-temperature weathering and hydrothermal flux components. The TDS flux from Yellowstone Caldera in water year 2007 was 93t/km2/year. Extensive magma degassing and hydrothermal interaction with rocks accounts for at least 82% of this TDS flux, 83% of the cation flux and 72% of the HCO3- flux. The low-temperature chemical weathering rate (17t/km2/year), calculated on the assumption that all the Cl- is of thermal origin, could include a component from low-temperature hydrolysis reactions induced by CO2 ascending from depth rather than by atmospheric CO2. Although this uncertainty remains, the calculated low-temperature weathering rate of the young rhyolitic rocks in the Yellowstone Caldera is comparable to the world average of large watersheds that drain also more soluble carbonates and evaporates but is slightly lower than calculated rates in other, less-silicic volcanic regions. Long-term average fluxes at

  17. Pyroclastic Density Current Hazards in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Brand, B. D.; Gravley, D.; Clarke, A. B.; Bloomberg, S. H.

    2012-12-01

    The most dangerous phenomena associated with phreatomagmatic eruptions are dilute pyroclastic density currents (PDCs). These are turbulent, ground-hugging sediment gravity currents that travel radially away from the explosive center at up to 100 m/s. The Auckland Volcanic Field (AVF), New Zealand, consists of approximately 50 eruptive centers, at least 39 of which have had explosive phreatomagmatic behaviour. A primary concern for future AVF eruptions is the impact of dilute PDCs in and around the Auckland area. We combine field observations from the Maungataketake tuff ring, which has one of the best exposures of dilute PDC deposits in the AVF, with a quantitative model for flow of and sedimentation from a radially-spreading, steady-state, depth-averaged dilute PDC (modified from Bursik and Woods, 1996 Bull Volcanol 58:175-193). The model allows us to explore the depositional mechanisms, macroscale current dynamics, and potential impact on societal infrastructure of dilute PDCs from a future AVF eruption. The lower portion of the Maungataketake tuff ring pyroclastic deposits contains trunks, limbs and fragments of Podocarp trees (strength of the wood, we calculate that dynamic pressures (Pdyn) of 10-75 kPa are necessary to topple trees of this size and composition. Thus the two main criteria for model success based on the field evidence include (a) Pdyn must be >10 kPa nearer than 0.9 km to the vent, and 35 kPa can be expected within 3 km from source, ensuring complete destruction of the area; Pdyn > 15 kPa up to 5 km from source, resulting in heavy structural damage to most buildings and near destruction of weaker buildings; and Pdyn <10 kPa at ~6 km from source, resulting in severe damage to weaker structures at least up to this distance. This exercise illustrates our ability to combine field measurements with numerical techniques to explore controlling parameters of dilute PDC dynamics. These tools can be used to understand and estimate the damage potential and

  18. Field and geochemical constraints on the relationship between the Apoteri basalts (northern Brazil, southwestern Guyana) and the Central Atlantic Magmatic Province

    Science.gov (United States)

    Pinto, Viter M.; Santos, João Orestes S.; Ronchi, Luiz H.; Hartmann, Léo A.; Bicudo, Carlos Alberto; de Souza, Vladimir

    2017-11-01

    In northern Brazil, Roraima state and southwestern Guyana, basalt flows characterized by inflated pahoehoe structure occur along the margins of the Tacutu Rift Valley, dykes intrude the Paleoproterozoic basement close to the boundary of the rift system with concordant, NE-trend. The dykes and flows belong to Apoteri magmatism. New field, geochemical data (major, trace and rare-earth elements) and chemical stratigraphy of the Apoteri magmatism indicate petrographic and chemical homogeneity characteristic of continental tholeiitic basalts. The basalt flows of Morro Redondo and Nova Olinda sites show two distinct chemical groups: a) the lower flows with intermediate TiO2 content (ITi group) ranging from 1.09 to 1.41 wt%, MgO (5.64-6.46 wt%) and Ni (43-53 ppm) contents; and b) the upper flows with lower TiO2 content (LTi group) = 0.75 to 0.78 wt%, higher MgO = 7.95-8.85 wt% and Ni = 105-115 ppm. The two magma types share many characteristics in high field strength elements (HFSE) and rare earth elements (REE), but in detail significant differences exist in REE ratios, e.g. (La/Yb)N of ∼4.0 for ITi and 3.2 for LTi and this may be explained by fractional crystallization. The chemical compositions of the Apoteri dykes are similar the ITi group analyses, suggesting that they have the same origin. The La/Ba versus La/Nb diagram is indicative of large ion lithophile elements (LILE) enrichment and LILE/HFSE fractionation in the mantle source, and the data favor a dominant subcontinental lithospheric mantle (SCLM) component in the origin of the Apoteri flows and dykes. These data show consistent similar chemical characteristics and correspond to other tholeiitic flows from the large Central Atlantic Magmatic Province (CAMP), especially eastern USA.

  19. Late Devonian and Triassic basalts from the southern continental ...

    Indian Academy of Sciences (India)

    In Late Devonian and Early-to-Late Triassic times, the southern continental margin of the Eastern. European Platform was the site of a basaltic volcanism in the Donbas and Fore-Caucasus areas respectively. Both volcanic piles rest unconformably upon Paleoproterozoic and Late Paleozoic units respectively, and emplaced ...

  20. Late Devonian and Triassic basalts from the southern continental ...

    Indian Academy of Sciences (India)

    In Late Devonian and Early-to-Late Triassic times, the southern continental margin of the Eastern European Platform was the site of a basaltic volcanism in the Donbas and Fore-Caucasus areas respectively. Both volcanic piles rest unconformably upon Paleoproterozoic and Late Paleozoic units respectively, and emplaced ...

  1. Unrest within a large rhyolitic magma system at Laguna del Maule volcanic field (Chile) from 2007 through 2013: geodetic measurements and numerical models

    Science.gov (United States)

    Le Mevel, H.; Cordova, L.; Ali, S. T.; Feigl, K. L.; DeMets, C.; Williams-Jones, G.; Tikoff, B.; Singer, B. S.

    2013-12-01

    The Laguna del Maule (LdM) volcanic field is remarkable for its unusual concentration of post-glacial rhyolitic lava coulées and domes that erupted between 25 and 2 thousand years ago. Covering more than 100 square kilometers, they erupted from 24 vents encircling a lake basin approximately 20 km in diameter on the range crest of the Andes. Geodetic measurements at the LdM volcanic field show rapid uplift since 2007 over an area more than 20 km in diameter that is centered on the western portion of the young rhyolite domes. By quantifying this active deformation and its evolution with time, we aim to investigate the storage conditions and dynamic processes in the underlying rhyolitic reservoir that drive the ongoing inflation. Analyzing interferometric synthetic aperture radar (InSAR) data, we track the rate of deformation. The rate of vertical uplift is negligible from 2003 to 2004, accelerates from at least 200 mm/yr in 2007 to more than 300 mm/yr in 2012, and then decreases to 200mm/yr in early 2013. To describe the deformation, we use a simple model that approximates the source as a 8 km-by-6 km sill at a depth of 5 km, assuming a rectangular dislocation in a half space with uniform elastic properties. Between 2007 and 2013, the modeled sill increased in volume by at least 190 million cubic meters. Four continuous GPS stations installed in April 2012 around the lake confirm this extraordinarily high rate of vertical uplift and a substantial rate of radial expansion. As of June 2013, the rapid deformation persists in the InSAR and GPS data. To describe the spatial distribution of material properties at depth, we are developing a model using the finite element method. This approach can account for geophysical observations, including magneto-telluric measurements, gravity surveys, and earthquake locations. It can also calculate changes in the local stress field. In particular, a large increase in stress in the magma chamber roof could lead to the initiation and

  2. Construction of the North Head (Maungauika) tuff cone: a product of Surtseyan volcanism, rare in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Agustín-Flores, Javier; Németh, Károly; Cronin, Shane J.; Lindsay, Jan M.; Kereszturi, Gábor

    2015-02-01

    The Auckland Volcanic Field (AVF) comprises at least 52 monogenetic eruption centres dispersed over ˜360 km2. Eruptions have occurred sporadically since 250 ka, predominantly when glacio-eustatic sea levels were lower than today. Now that around 35 % of the field is covered by shallow water (up to 30 m depth), any eruption occurring in the present or near future within this area may display Surtseyan dynamics. The North Head tuff cone evidences eruptive dynamics caused by magma interaction with seawater. The first stages of the eruption comprise a phreatomagmatic phase that built a 48-m-high tuff cone. North Head tuff deposits contain few lithic fragments (Auckland area was at least 10-12 m above the pre-eruptive surface. The hazards associated with this type of eruption pose a risk to the densely populated coastal residential zones and the activities of one of the busiest harbours in New Zealand.

  3. Bibliography of literature pertaining to Long Valley Caldera and associated volcanic fields

    Science.gov (United States)

    Ewert, John W.; Harpel, Christopher J.; Brooks, Suzanna K.; Marcaida, Mae

    2011-01-01

    define the beginning of the Brunhes Chron and helps constrain the Brunhes-Matuyama boundary. The Bishop ash, which was dispersed as far east as Nebraska, Kansas, and Texas, provides an important tephrostratigraphic marker throughout the Western United States. The obsidian domes of both the Mono and Inyo Craters, which were produced by rhyolitic eruptions in the past 40,000 years, have been well studied, including extensive scientific drilling through the domes. Exploratory drilling to 3-km depth on the resurgent dome and subsequent instrumentation of the Long Valley Exploratory Well (LVEW) have led to a number of important new insights. Scientific drilling also has been done within the Casa Diablo geothermal field, which, aside from drilling, has been commercially developed and is currently feeding 40 MW of power into the Southern California Edison grid. Studies in all the above-mentioned volcanic fields have contributed to the extensive scientific literature published on the Long Valley region. Although most of this scientific literature has been published since 1970, a significant amount of historical literature extends backward to the late 1800s. The purpose of this bibliography is to compile references pertaining to the Long Valley region from all time periods and all Earth science fields into a single listing, thus providing an easily accessible guide to the published literature for current and future researchers.

  4. Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model

    Science.gov (United States)

    Bebbington, Mark S.; Cronin, Shane J.

    2011-01-01

    The Auckland Volcanic Field (AVF) with 49 eruptive centres in the last c. 250 ka presents many challenges to our understanding of distributed volcanic field construction and evolution. We re-examine the age constraints within the AVF and perform a correlation exercise matching the well-dated record of tephras from cores distributed throughout the field to the most likely source volcanoes, using thickness and location information and a simple attenuation model. Combining this augmented age information with known stratigraphic constraints, we produce a new age-order algorithm for the field, with errors incorporated using a Monte Carlo procedure. Analysis of the new age model discounts earlier appreciations of spatio-temporal clustering in the AVF. Instead the spatial and temporal aspects appear independent; hence the location of the last eruption provides no information about the next location. The temporal hazard intensity in the field has been highly variable, with over 63% of its centres formed in a high-intensity period between 40 and 20 ka. Another, smaller, high-intensity period may have occurred at the field onset, while the latest event, at 504 ± 5 years B.P., erupted 50% of the entire field's volume. This emphasises the lack of steady-state behaviour that characterises the AVF, which may also be the case in longer-lived fields with a lower dating resolution. Spatial hazard intensity in the AVF under the new age model shows a strong NE-SW structural control of volcanism that may reflect deep-seated crustal or subduction zone processes and matches the orientation of the Taupo Volcanic Zone to the south.

  5. The mode of emplacement of Neogene flood basalts in eastern Iceland: Facies architecture and structure of simple aphyric basalt groups

    Science.gov (United States)

    Óskarsson, Birgir V.; Riishuus, Morten S.

    2014-12-01

    Simple flows (tabular) in the Neogene flood basalt sections of Iceland are described and their mode of emplacement assessed. The flows belong to three aphyric basalt groups: the Kumlafell group, the Hólmatindur group and the Hjálmadalur group. The groups can be traced over 50 km and originate in the Breiðdalur-Thingmuli volcanic zone. The groups have flow fields that display mixed volcanic facies architecture and can be classified after dominating type morphology. The Kumlafell and the Hólmatindur groups have predominantly simple flows of pāhoehoe and rubbly pāhoehoe morphologies with minor compound or lobate pāhoehoe flows. The Hjálmadalur group has simple flows of rubbly pāhoehoe, but also includes minor compound or lobate flows of rubble and 'a'ā. Simple flows are most common in the distal and medial areas from the vents, while more lobate flows in proximal areas. The simple flows are formed by extensive sheet lobes that are several kilometers long with plane-parallel contacts, some reaching thicknesses of ~ 40 m (aspect ratios structures. Their internal structure consists generally of a simple upper vesicular crust, a dense core and a thin basal vesicular zone. The brecciated flow-top is formed by clinker and crustal rubble, the clinker often welded or agglutinated. The simple flows erupted from seemingly short-lived fissures and have the characteristics of cooling-limited flows. We estimate the effusion rates to be ~ 105 m3/s for the simple flows of the Kumlafell and Hólmatindur groups and ~ 104 m3/s for the Hjálmadalur group. The longest flows advanced 15-20 km from the fissures, with lava streams of fast propagating flows inducing tearing and brecciation of the chilled crust. Compound or lobate areas appear to reflect areas of low effusion rates or the interaction of the lava with topographic barriers or wetlands, resulting in chaotic flowage. Slowing lobes with brecciated flow-tops developed into 'a'ā flows. The groups interdigitated with lava

  6. Spreading and collapse of big basaltic volcanoes

    Science.gov (United States)

    Puglisi, Giuseppe; Bonforte, Alessandro; Guglielmino, Francesco; Peltier, Aline; Poland, Michael

    2016-04-01

    Among the different types of volcanoes, basaltic ones usually form the most voluminous edifices. Because volcanoes are growing on a pre-existing landscape, the geologic and structural framework of the basement (and earlier volcanic landforms) influences the stress regime, seismicity, and volcanic activity. Conversely, the masses of these volcanoes introduce a morphological anomaly that affects neighboring areas. Growth of a volcano disturbs the tectonic framework of the region, clamps and unclamps existing faults (some of which may be reactivated by the new stress field), and deforms the substratum. A volcano's weight on its basement can trigger edifice spreading and collapse that can affect populated areas even at significant distance. Volcano instability can also be driven by slow tectonic deformation and magmatic intrusion. The manifestations of instability span a range of temporal and spatial scales, ranging from slow creep on individual faults to large earthquakes affecting a broad area. In the frame of MED-SVU project, our work aims to investigate the relation between basement setting and volcanic activity and stability at three Supersite volcanoes: Etna (Sicily, Italy), Kilauea (Island of Hawaii, USA) and Piton de la Fournaise (La Reunion Island, France). These volcanoes host frequent eruptive activity (effusive and explosive) and share common features indicating lateral spreading and collapse, yet they are characterized by different morphologies, dimensions, and tectonic frameworks. For instance, the basaltic ocean island volcanoes of Kilauea and Piton de la Fournaise are near the active ends of long hotspot chains while Mt. Etna has developed at junction along a convergent margin between the African and Eurasian plates and a passive margin separating the oceanic Ionian crust from the African continental crust. Magma supply and plate velocity also differ in the three settings, as to the sizes of the edifices and the extents of their rift zones. These

  7. Rhyolite thermobarometry and the shallowing of the magma reservoir, Coso volcanic field, California

    Science.gov (United States)

    Manley, C.R.; Bacon, C.R.

    2000-01-01

    The compositionally bimodal Pleistocene Coso volcanic field is located at the western margin of the Basin and Range province ~ 60 km north of the Garlock fault. Thirty-nine nearly aphyric high-silica rhyolite domes were emplaced in the past million years: one at 1 Ma from a transient magma reservoir, one at ~ 0.6 Ma, and the rest since ~ 0.3 Ma. Over the past 0.6 My, the depth from which the rhyolites erupted has decreased and their temperatures have become slightly higher. Pre-eruptive conditions of the rhyolite magmas, calculated from phenocryst compositions using the two-oxide thermometer and the Al-in-hornblende barometer, ranged from 740??C and 270 MPa (2.7 kbar; ~ 10 km depth) for the ~ 0.6 Ma magma, to 770??C and 140 MPa (1.4 kbar; ~ 5.5 km) for the youngest (~ 0.04 Ma) magma. Results are consistent with either a single rhyolitic reservoir moving upward through the crust, or a series of successively shallower reservoirs. As the reservoir has become closer to the surface, eruptions have become both more frequent and more voluminous.

  8. Payenia volcanic province, southern Mendoza, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin; Llambias, Eduardo Jorge

    2013-01-01

    The Pleistocene to Holocene Payenia volcanic province is a backarc region of 60,000 km2 in Mendoza, Argentina, which is dominated by transitional to alkaline basalts and trachybasalts. We present major and trace element compositions of 139 rocks from this area of which the majority are basaltic r...

  9. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    the lithosphere is thinnest and possibly in areas of elevated mantle temperatures. The pyroxenite melts formed at deeper levels react with the surrounding peridotite and thereby changes composition leading to eruption of melts which experienced variable degrees of melt-peridotite interaction. This can presumably...... explain the existence of two elementally distinct magma types with the exact same isotopic composition....

  10. Alberca De Guadalupe Maar Crater, Zacapu Basin : A Rare Type of Volcano within the Michoacán-Guanajuato Volcanic Field, México

    Science.gov (United States)

    Kshirsagar, P. V.; Siebe, C.; Guilbaud, M. N.; Salinas, S.

    2014-12-01

    Phreato-magmatic vents (esp. maar craters) are rare in the ~40,000 Km2 Plio-Quaternary monogenetic Michoacán-Guanajuato Volcanic Field (MGVF) located in the central part of the Mexican Volcanic Belt. In contrast to >1000 scoria cones, only 2 dozen phreato-magmatic monogenetic vents (e.g. tuff cones, tuff rings, and maars) have been identified. About half of these form a cluster near Valle de Santiago in the Lerma river valley at the northern margin of the MGVF, while the others occur in a rather scattered fashion. Here we discuss the origin of Alberca de Guadalupe maar crater, one of the three phreato-magmatic vents (in addition to El Caracol and Alberca de Los Espinos) that occur within the boundaries of the inter-montane lacustrine Zacapu basin, a tectonic graben bound by an ENE-WSW normal fault system. The maar crater came into existence between 20,000 and 23,000 y BP, forming a 140 m deep hole in the otherwise planar surrounding ground of theearly Pleistocene lava flows of Cerro Pelón.The maar crater has a diameter of ~1 Km and bears a 9 m deep lake. Eruptive products include typical surge deposits that are best exposed around the rim and inner crater walls. They are poorly sorted (Mdø= -1.56 to -3.75, ø= 1.43 to 3.23), rich in accidental lithics (angular andesitic lava and ignimbrite clasts) constituting 51-88% of the deposit with few juveniles (basaltic andesite with phenocrysts of plagioclase, olivine, and pyroxene in a quenched glassy matrix; SiO2=54-58 wt. %). Dry surge units are friable and clast-supported, in contrast the wet surge units are fairly indurated and bear accretionary lapilli. Bedding is frequently distorted by ballistic impact-sag structures. The entire construct is disrupted by an E-W trending regional fault, downthrowing the northern part by ~30 m.The unusual formation of this maar crater in the semi-arid highlands of Zacapu was favored by the local hydrological and topographical conditions. Such conditions still prevail in several

  11. Initial results from the Volcanic Risk in Saudi Arabia project: Microearthquakes in the northern Harrat Rahat monogenetic volcanic field, Madinah, Saudi Arabia

    Science.gov (United States)

    Kenedi, C. L.; Alvarez, M. G.; Abdelwahed, M. F.; Aboud, E.; Lindsay, J. M.; Mokhtar, T. A.; Moufti, M. R.

    2012-12-01

    An 8-station borehole seismic research array is recording microearthquake data in northern Harrat Rahat. This recently active monogenetic volcanic field lies southeast of the Islamic holy city of Madinah, Kingdom of Saudi Arabia. The VORiSA seismographs are operated in collaboration between King Abdulaziz University in Jeddah and the Institute of Earth Science and Engineering, University of Auckland, in New Zealand. The goal of the VORiSA project is to evaluate the seismic and volcanic hazard around Madinah. To this end, we will evaluate the local earthquake activity including the extent to which local earthquakes are tectonic or volcanic. We also will use seismicity to understand the subsurface structure. The analytical goals of the seismic research array are the following: (1) Calculate a new seismic velocity model, (2) Map subsurface structures using seismic tomography, and (3) Explore for fracture zones using shear wave splitting analysis. As compared to seismographs installed on the surface, borehole seismometers detect smaller and more numerous microearthquake signals. The sensitivity and location of the borehole sensors in the VORiSA array are designed to detect these weak signals. The array has a total aperture of 17 km with station spacing at 5 - 10 km. The seismometers are housed in IESE model S21g-2.0, two Hz, 3-component borehole sondes. Sensor depths range from 107 - 121 m. The data acquisition system at each stand-alone station consists of a Reftek 130-01, 6-channel, 24 bit data logger which records at 250 samples per second. The power source is a deep cycle battery with solar recharge. Local temperatures reach extremes of 0° to 50°C, so the battery and recorder are contained in a specially designed underground vault. The vault also provides security in the remote and sparsely populated volcanic field. Recording began on 31 March 2012. An average of one earthquake every three days suggests that currently this is not a highly seismic area. However

  12. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    Science.gov (United States)

    Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.

    1994-01-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (< 10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. The precipitation of base-metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems

  13. Microtopographic evolution of lava flows at Cima volcanic field, Mojave Desert, California

    Science.gov (United States)

    Farr, Tom G.

    1992-01-01

    Microtopographic profiles were measured and power spectra calculated for dated lava flow surfaces at Cima volcanic field in the eastern Mojave Desert of California in order to quantify changes in centimeter- to meter-scale roughness as a function of age. For lava flows younger than about 0.8 m.y., roughness over all spatial scales decreases with age, with meter-scale roughness decreasing slightly more than centimeter scales. Flows older than about 0.8 m.y. show a reversal of this trend, becoming as rough as young flows at these scales. Modeling indicates that eolian deposition can explain most of the change observed in the offset, or roughness amplitude, of power spectra of flow surface profiles up to 0.8 m.y. Other processes, such as rubbing and stone pavement development, appear to have a minor effect in this age range. Changes in power spectra of surfaces older than about 0.8 m.y. are consistent with roughening due to fluvial dissection. These results agree qualitatively with a process-response model that attributes systematic changes in flow surface morphology to cyclic changes in the rates of eolian, soil formation, and fluvial processes. Identification of active surficial processes and estimation of the extent of their effects, or stage of surficial evolution, through measurement of surface roughness will help put the correlation of surficial units on a quantitative basis. This may form the basis for the use of radar remote sensing data to help in regional correlations of surficial units.

  14. Supertoxic Flood Basalts: The CAMP - Siberian Trap Connection

    Science.gov (United States)

    Puffer, J. H.

    2007-12-01

    Several diverse magma types are represented throughout the CAMP and Siberian Trap LIPs, however, the main extrusive phase of each province is highly unusual among continental flood basalts. The most widespread extrusions were intermediate titanium (ITi-type) CAMP basalt and the lower portion of the Upper Sequence of Siberian Trap. New and recently published data indicate that the geochemistry and petrology of these basalt suites closely resemble each other and infer similar origins. The basalts are characterized by strong negative Nb- Ta anomalies and unusual island arc-like depletion in high field strength elements, particularly Ti, plotted on spider diagrams. The geochemical data is consistent with significant contributions from subducted slabs into the magma source regions. If contaminated, volatile enriched mantle wedges were trapped beneath thick continental plates during the assembly of Pangea, fertile magma sources would have remained dormant until decompression melting was triggered during failed rift, then early rift stages of continental plate disassembly. The combination of volatile enriched sources and highly extensional tectonism would create rare perfect storms of toxicity. Calculated low viscosities assuming negligible carbon dioxide are consistent with rapid crustal penetration. Resulting aphyric melts extruded at enormous effusive rates as thick sub-parallel flows across wide subareal terrains through fissures extending several hundred km in length. High fountain heights would afford ample opportunity for efficient degassing, perhaps into the stratosphere. When the supply of volatile flux was exhausted magmatism ceased. The mass extinctions that coincide with CAMP and Siberian volcanism contrast with some large plume and superplume events that correlate with expansions of biodiversity. This may be due in part to contrasting magma access to sources of toxic volatiles, particularly sulfur concentrations in anoxic subducted sediments.

  15. Geochemical constraints on the relationship between the Miocene-Pliocene volcanism and tectonics in the Palaoco and Fortunoso volcanic fields, Mendoza Region, Argentina

    DEFF Research Database (Denmark)

    Dyhr, Charlotte Thorup; Holm, Paul Martin; Llambias, Eduardo J.

    2013-01-01

    New 40Ar/39Ar analyses constrain the formation of the volcanic succession of Sierra de Palaoco in the present back-arc of the Andean Southern Volcanic Zone (SVZ), near 36°S, to the Late Miocene and assigns them to the Huincán II Formation. The composition of major and trace elements, Sr, Nd and P...

  16. Combining long- and short-term probabilistic volcanic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Sandri, Laura; Jolly, Gill; Lindsay, Jan; Howe, Tracy; Marzocchi, Warner

    2012-04-01

    By using BET_VH, we propose a quantitative probabilistic hazard assessment for base surge impact in Auckland, New Zealand. Base surges resulting from phreatomagmatic eruptions are among the most dangerous phenomena likely to be associated with the initial phase of a future eruption in the Auckland Volcanic Field. The assessment is done both in the long-term and in a specific short-term case study, i.e. the simulated pre-eruptive unrest episode during Exercise Ruaumoko, a national civil defence exercise. The most important factors to account for are the uncertainties in the vent location (expected for a volcanic field) and in the run-out distance of base surges. Here, we propose a statistical model of base surge run-out distance based on deposits from past eruptions in Auckland and in analogous volcanoes. We then combine our hazard assessment with an analysis of the costs and benefits of evacuating people (on a 1 × 1-km cell grid). In addition to stressing the practical importance of a cost-benefit analysis in creating a bridge between volcanologists and decision makers, our study highlights some important points. First, in the Exercise Ruaumoko application, the evacuation call seems to be required as soon as the unrest phase is clear; additionally, the evacuation area is much larger than what is recommended in the current contingency plan. Secondly, the evacuation area changes in size with time, due to a reduction in the uncertainty in the vent location and increase in the probability of eruption. It is the tradeoff between these two factors that dictates which cells must be evacuated, and when, thus determining the ultimate size and shape of the area to be evacuated.

  17. Regional importance of post-6 M.Y. old vocanism in the southern Great Basin: Implications for risk assessment of volcanism at the proposed Nuclear Waste Repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    1988-01-01

    This report summarizes our activities during the period July 1, 1987 to June 30, 1988. Our goal was to develop an understanding of late-Miocene and Pliocene volcanism in the Great Basin by studying late-Tertiary volcanic rocks to the north and south of the Nevada Test Site (Figure 1). We especially concentrated on detailed stratigraphic studies and geochemistry to determine the nature of chemical changes during the lifetime of a volcanic field, and on structural studies to determine the nature of the structures that control vent location. Also, K-Ar age dating provided important new information on the duration of activity at a single volcanic center. Geologic studies were concentrated in the Fortification basalt field in southern Nevada and in the Reveille Range in central Nevada. Our studies provide three important conclusions that have implications for volcanism about the proposed Nuclear Waste Repository at Yucca Mountain. There are no easily recognized geochemical characteristics that signify the termination of volcanism. The location of vent areas of basaltic volcanoes are not necessarily controlled by pre-existing structures. Volcanism at an individual basaltic center may last as long as 500,000 years. 32 refs., 34 figs., 6 tabs

  18. A unique volcanic field in Tharsis, Mars: Pyroclastic cones as evidence for explosive eruptions

    Czech Academy of Sciences Publication Activity Database

    Brož, Petr; Hauber, E.

    2012-01-01

    Roč. 218, č. 1 (2012), s. 88-99 ISSN 0019-1035 R&D Projects: GA MŠk ME09011 Institutional research plan: CEZ:AV0Z30120515 Keywords : Mars * volcanism * Mars surface Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 3.161, year: 2012

  19. Geochemical/hydrochemical evaluation of the geothermal potential of the Lamongan volcanic field (Eastern Java, Indonesia)

    NARCIS (Netherlands)

    Deon, F.; Förster, H.J.; Brehme, M.; Wiegand, B.; Scheytt, T.; Moeck, I.; Jaya, M.S.; Putriatni, D.J.

    2015-01-01

    Magmatic settings involving active volcanism are potential locations for economic geothermal systems due to the occurrence of high temperature and steam pressures. Indonesia, located along active plate margins, hosts more than 100 volcanoes and, therefore, belongs to the regions with the greatest

  20. Martian Habitability Studies in Two Field Earth Analogues: the Permafrost in the Imuruk Lake Basaltic Field (alaska) and the Atacama Desert

    Science.gov (United States)

    Gómez-Gómez, Felipe; Rodriguez-Manfredi, Jose-Antonio; Perez, Lidia; Prieto-Ballesteros, Olga; Amils, Ricardo; Gomez-Elvira, Javier

    We are developing a Universal Habitability Index for life prospection studies in space missions. Authors will present in this abstract the results of the application of the habitability index in two field case studies: Alaskan permafrost and Atacama Desert. We are using extreme envi-ronments as test facilities from an Astrobiological perspective, in order to reach three main objectives: 1) Define preservation patterns of biosignatures in extreme environments (cold, low water stress, high radiation. . . ) that may be used in future space exploration missions; 2) develop new instrumentation for detecting life in situ or remotely, and for new instrumenta-tion for detection and mapping of extreme niches where life (or biochemical tracers of past life) may be preserved and 3) develop an Universal Habitability Index for space astrobiolog-ical mission application (Mars or Europa life prospection). These aims will be achieved by selected site characterization using geophysical sounding and drilling, atmospheric characteri-zation by meteorological analysis, soil water and temperature profile analysis and, finally, by sampling different levels of the rock cores and analyzing their mineralogy, geochemistry and microbiology in laboratory. First case: studying the permafrost in the Imuruk lake volcanic field area (Alaska): In order to map the permafrost underground, electric tomography sounding was performed. Resulting tomographic data indicate that the permafrost of the studied area is at a mean depth of 0.50 meter from the surface, sometimes even shallower. Drilling points were selected depending on the permafrost depth known from the tomographic data analysis. Three perforations were done all along the hill. Samples were collected at several depths in the three holes for mineralogical, geochemical and biological analysis. They were in situ fixed with formaldehyde in order to be maintained till laboratory analysis was developed. Several growth fresh media were inoculated with

  1. A geostatistical method applied to the geochemical study of the Chichinautzin Volcanic Field in Mexico

    Science.gov (United States)

    Robidoux, P.; Roberge, J.; Urbina Oviedo, C. A.

    2011-12-01

    The origin of magmatism and the role of the subducted Coco's Plate in the Chichinautzin volcanic field (CVF), Mexico is still a subject of debate. It has been established that mafic magmas of alkali type (subduction) and calc-alkali type (OIB) are produced in the CVF and both groups cannot be related by simple fractional crystallization. Therefore, many geochemical studies have been done, and many models have been proposed. The main goal of the work present here is to provide a new tool for the visualization and interpretation of geochemical data using geostatistics and geospatial analysis techniques. It contains a complete geodatabase built from referred samples over the 2500 km2 area of CVF and its neighbour stratovolcanoes (Popocatepetl, Iztaccihuatl and Nevado de Toluca). From this database, map of different geochemical markers were done to visualise geochemical signature in a geographical manner, to test the statistic distribution with a cartographic technique and highlight any spatial correlations. The distribution and regionalization of the geochemical signatures can be viewed in a two-dimensional space using a specific spatial analysis tools from a Geographic Information System (GIS). The model of spatial distribution is tested with Linear Decrease (LD) and Inverse Distance Weight (IDW) interpolation technique because they best represent the geostatistical characteristics of the geodatabase. We found that ratio of Ba/Nb, Nb/Ta, Th/Nb show first order tendency, which means visible spatial variation over a large scale area. Monogenetic volcanoes in the center of the CVF have distinct values compare to those of the Popocatepetl-Iztaccihuatl polygenetic complex which are spatially well defined. Inside the Valley of Mexico, a large quantity of monogenetic cone in the eastern portion of CVF has ratios similar to the Iztaccihuatl and Popocatepetl complex. Other ratios like alkalis vs SiO2, V/Ti, La/Yb, Zr/Y show different spatial tendencies. In that case, second

  2. Conceptual model of volcanism and volcanic hazards of the region of Ararat valley, Armenia

    Science.gov (United States)

    Meliksetian, Khachatur; Connor, Charles; Savov, Ivan; Connor, Laura; Navasardyan, Gevorg; Manucharyan, Davit; Ghukasyan, Yura; Gevorgyan, Hripsime

    2015-04-01

    Armenia and the adjacent volcanically active regions in Iran, Turkey and Georgia are located in the collision zone between the Arabian and Eurasian lithospheric plates. The majority of studies of regional collision related volcanism use the model proposed by Keskin, (2003) where volcanism is driven by Neo-Tethyan slab break-off. In Armenia, >500 Quaternary-Holocene volcanoes from the Gegham, Vardenis and Syunik volcanic fields are hosted within pull-apart structures formed by active faults and their segments (Karakhanyan et al., 2002), while tectonic position of the large in volume basalt-dacite Aragats volcano and periphery volcanic plateaus is different and its position away from major fault lines necessitates more complex volcano-tectonic setup. Our detailed volcanological, petrological and geochemical studies provide insight into the nature of such volcanic activity in the region of Ararat Valley. Most magmas, such as those erupted in Armenia are volatile-poor and erupt fairly hot. Here we report newly discovered tephra sequences in Ararat valley, that were erupted from historically active Ararat stratovolcano and provide evidence for explosive eruption of young, mid K2O calc-alkaline and volatile-rich (>4.6 wt% H2O; amph-bearing) magmas. Such young eruptions, in addition to the ignimbrite and lava flow hazards from Gegham and Aragats, present a threat to the >1.4 million people (~ ½ of the population of Armenia). We will report numerical simulations of potential volcanic hazards for the region of Ararat valley near Yerevan that will include including tephra fallout, lava flows and opening of new vents. Connor et al. (2012) J. Applied Volcanology 1:3, 1-19; Karakhanian et al. (2002), JVGR, 113, 319-344; Keskin, M. (2003) Geophys. Res. Lett. 30, 24, 8046.

  3. The tropospheric processing of acidic gases and hydrogen sulphide in volcanic gas plumes as inferred from field and model investigations

    Directory of Open Access Journals (Sweden)

    A. Aiuppa

    2007-01-01

    Full Text Available Improving the constraints on the atmospheric fate and depletion rates of acidic compounds persistently emitted by non-erupting (quiescent volcanoes is important for quantitatively predicting the environmental impact of volcanic gas plumes. Here, we present new experimental data coupled with modelling studies to investigate the chemical processing of acidic volcanogenic species during tropospheric dispersion. Diffusive tube samplers were deployed at Mount Etna, a very active open-conduit basaltic volcano in eastern Sicily, and Vulcano Island, a closed-conduit quiescent volcano in the Aeolian Islands (northern Sicily. Sulphur dioxide (SO2, hydrogen sulphide (H2S, hydrogen chloride (HCl and hydrogen fluoride (HF concentrations in the volcanic plumes (typically several minutes to a few hours old were repeatedly determined at distances from the summit vents ranging from 0.1 to ~10 km, and under different environmental conditions. At both volcanoes, acidic gas concentrations were found to decrease exponentially with distance from the summit vents (e.g., SO2 decreases from ~10 000 μg/m3at 0.1 km from Etna's vents down to ~7 μg/m3 at ~10 km distance, reflecting the atmospheric dilution of the plume within the acid gas-free background troposphere. Conversely, SO2/HCl, SO2/HF, and SO2/H2S ratios in the plume showed no systematic changes with plume aging, and fit source compositions within analytical error. Assuming that SO2 losses by reaction are small during short-range atmospheric transport within quiescent (ash-free volcanic plumes, our observations suggest that, for these short transport distances, atmospheric reactions for H2S and halogens are also negligible. The one-dimensional model MISTRA was used to simulate quantitatively the evolution of halogen and sulphur compounds in the plume of Mt. Etna. Model predictions support the hypothesis of minor HCl chemical processing during plume transport, at least in cloud-free conditions. Larger

  4. Melding Research on the Navajo Volcanic Field into Undergraduate Curriculum to Promote Scientific Literacy

    Science.gov (United States)

    Gonzales, D. A.

    2011-12-01

    This presentation highlights the curricular design and preliminary outcomes of undergraduate research in the Department of Geosciences at Fort Lewis College (FLC), supported by an NSF-RUI project on the Navajo volcanic field (NVF). A prime impact of this project was to support the education and career development of undergraduate students by further developing basic knowledge and skills in the context of authentic inquiry on petrologic-based research topics. Integrating research into the curriculum promoted scientific habits of mind by engaging students as "active agents" in discovery, and the creative development and testing of ideas. It also gave students a sense of ownership in the scientific process and knowledge construction. The initial phase of this project was conducted in Igneous Petrology at FLC in 2010. Eleven students were enrolled in this course which allowed them to work as a team in collaboration with the PI, and engage in all aspects of research to further develop and hone their skills in scientific inquiry. This course involved a small component of traditional lecture in which selected topics were discussed to provide students with a foundation to understand magmatic processes. This was complemented by a comprehensive review of the literature in which students read and discussed a spectrum of articles on Tertiary magmatism in the western United States and the NVF. Invited lectures by leading-scientists in geology provided opportunities for discussions and interaction with professional geologists. All of the students in the class engaged in the active collection of petrologic data in the field and laboratory sessions, and were introduced to the use of state-of-the art analytical tools as part of their experiences. Four students were recruited from the course to design, develop, and conduct long-term research projects on selected petrologic topics in the NVF. This research allowed these students to engage in the "messy" process of testing existing

  5. Characteristics and origin of Continental and Oceanic Intraplate Volcanism

    Science.gov (United States)

    Smith, E. I.; Conrad, C. P.; Johnsen, R. L.; Tibbetts, A. K.

    2009-12-01

    Intraplate volcanism not clearly associated with plate margin tectonics or mantle plumes occurs in both continental and oceanic environments. A compilation of intraplate volcanic fields indicates several common traits: (1) volcanoes are predominately alkali basalt although tholeiitic, bimodal rhyolite basalt and calc-alkaline magma types occur in the Basin and Range and Utah Transition Zone in the western US; (2) volcanoes are monogenetic and occur in separate volcanic fields that rarely display time migration; (3) intraplate continental volcanic fields form by repeated episodic eruptions over a long period of time (10 m.y. or longer) in a limited geographic area; (4) extended or fractured intraplate areas tend to localize volcanism and (5) in oceanic environments, intraplate volcanism may produce island chains, but chains lack the time progression expected in plume related volcanism. Although intraplate volcanoes have been studied for decades there is little agreement on a mechanism that explains their formation. A selection of recently proposed mechanisms include “hot fingers or mini plumes” (eastern Australia), melting of fertile lithospheric mantle (Jordan, Basin and Range USA), mantle diapirs and crustal extension (Calatrava Spain), “petit spot” volcanoes formed along fractures related to plate flexure (northwestern Pacific Plate), hot line or tectono-magmatic alignment (Cameroon west Africa), upwelling of hot asthenosphere associated with deep subduction and a stagnant slab (Changbai volcano China), rifting of foreland uplifts associated with distant subduction (Rhine Graben), mantle plumes (Eifel Germany), small scale sublithospheric convection (SSC) (Gilbert and Pukapuka ridges Pacific Plate) and shear driven asthenospheric upwelling (SDU) (Basin and Range USA). Although all of these mechanisms have their merits, few explain the longevity of intraplate volcanism and repeated eruptions in the same geographic area. SSC [1] invokes the slow replacement

  6. The Thickness and Volume of Young Basalts Within Mare Imbrium

    Science.gov (United States)

    Chen, Yuan; Li, Chunlai; Ren, Xin; Liu, Jianjun; Wu, Yunzhao; Lu, Yu; Cai, Wei; Zhang, Xunyu

    2018-02-01

    Basaltic volcanism is one of the most important geologic processes of the Moon. Research on the thickness and volume of late-stage basalts of Mare Imbrium helps better understand the source of lunar volcanism and eruption styles. Based on whether apparent flow fronts exist or not, the late-stage basalts within Mare Imbrium were divided into two groups, namely, Upper Eratosthenian basalts (UEm) and Lower Eratosthenian basalts (LEm). Employing the topographic profile analysis method for UEm and the crater excavation technique for LEm, we studied the thickness and distribution of Eratosthenian basalts in Mare Imbrium. For the UEm units, their thicknesses were estimated to be 16-34 (±2) m with several layers of individual lava ( 8-13 m) inside. The estimated thickness of LEm units was 14-45(±1) m, with a trend of reducing thickness from north to south. The measured thickness of late-stage basalts around the Chang'E-3 landing site ( 37 ± 1 m) was quite close to the results acquired by the lunar penetrating radar carried on board the Yutu Rover ( 35 m). The total volume of the late-stage basalts in Mare Imbrium was calculated to be 8,671 (±320) km3, which is 4 times lower than that of Schaber's estimation ( 4 × 104 km3). Our results indicate that the actual volume is much lower than previous estimates of the final stage of the late basaltic eruption of Mare Imbrium. Together, the area flux and transport distance of the lava flows gradually decreased with time. These results suggest that late-stage volcanic evolution of the Moon might be revised.

  7. Can we identify source lithology of basalt?

    Science.gov (United States)

    Yang, Zong-Feng; Zhou, Jun-Hong

    2013-01-01

    The nature of source rocks of basaltic magmas plays a fundamental role in understanding the composition, structure and evolution of the solid earth. However, identification of source lithology of basalts remains uncertainty. Using a parameterization of multi-decadal melting experiments on a variety of peridotite and pyroxenite, we show here that a parameter called FC3MS value (FeO/CaO-3*MgO/SiO2, all in wt%) can identify most pyroxenite-derived basalts. The continental oceanic island basalt-like volcanic rocks (MgO>7.5%) (C-OIB) in eastern China and Mongolia are too high in the FC3MS value to be derived from peridotite source. The majority of the C-OIB in phase diagrams are equilibrium with garnet and clinopyroxene, indicating that garnet pyroxenite is the dominant source lithology. Our results demonstrate that many reputed evolved low magnesian C-OIBs in fact represent primary pyroxenite melts, suggesting that many previous geological and petrological interpretations of basalts based on the single peridotite model need to be reconsidered.

  8. Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Garg, S.K.; Pritchett, J.W.; Stevens, J.L.; Luu, L. [Maxwell Federal Div., Inc., San Diego, CA (United States); Combs, J. [Geo-Hills Associates, Los Altos, CA (United States)

    1996-11-01

    The principal purpose of this case study of the Sumikawa Geothermal Field is to document and to evaluate the use of drilling logs, surface and downhole geophysical measurements, chemical analyses, and pressure transient data for the assessment of a high temperature volcanic geothermal field. The work accomplished during Year 1 of this ongoing program is described in the present report. A brief overview of the Sumikawa Geothermal Field is given. The drilling information and downhole pressure, temperature, and spinner surveys are used to determine feedzone locations, pressures and temperatures. Available injection and production data from both slim holes and large-diameter wells are analyzed to evaluate injectivity/productivity indices and to investigate the variation of discharge rate with borehole diameter. Finally, plans for future work are outlined.

  9. Basalt Related to Lunar Mg-Suite Plutonic Rocks: A Fragment in Lunar Meteorite ALH 81005

    Science.gov (United States)

    Treiman, A. H.; Gross, J.

    2013-09-01

    We report on a basalt clast, in meteorite ALH 81005, which appears to be from a volcanic equivalent of an Mg-suite plutonic rock. Its mineral compositions, mineral proportions, and trace minerals are like those of Mg-norites.

  10. Geochemical Relationships between Volcanic and Plutonic Upper to Mid Crustal Exposures of the Rosario Segment, Alisitos Arc (Baja California, Mexico): An Outstanding Field Analog to the Izu-Bonin-Mariana Arc

    Science.gov (United States)

    Morris, R.; DeBari, S. M.; Busby, C. J.; Medynski, S.

    2015-12-01

    Exposed paleo-arcs, such as the Rosario segment of the Cretaceous Alisitos Arc in Baja California, Mexico, provide an opportunity to explore the evolution of arc crust through time. Remarkable 3-D exposures of the Rosario segment record crustal generation processes in the volcanic rocks and underlying plutonic rocks. In this study, we explore the physical and geochemical connection between the plutonic and volcanic sections of the extensional Alisitos Arc, and elucidate differentiation processes responsible for generating them. These results provide an outstanding analog for extensional active arc systems, such as the Izu-Bonin-Mariana (IBM) Arc. Upper crustal volcanic rocks have a coherent stratigraphy that is 3-5 km thick and ranges in composition from basalt to dacite. The most felsic compositions (70.9% SiO2) are from a welded ignimbrite unit. The most mafic compositions (51.5% SiO2, 3.2% MgO) are found in basaltic sill-like units. Phenocrysts in the volcanic units include plagioclase +/- amphibole and clinopyroxene. The transition to deeper plutonic rocks is clearly an intrusive boundary, where plutonic units intrude the volcanic units. Plutonic rocks are dominantly a quartz diorite main phase with a more mafic, gabbroic margin. A transitional zone is observed along the contact between the plutonic and volcanic rocks, where volcanics have coarsely recrystallized textures. Mineral assemblages in the plutonic units include plagioclase +/- quartz, biotite, amphibole, clinopyroxene and orthopyroxene. Most, but not all, samples are low K. REE patterns are relatively flat with limited enrichment. Normalization diagrams show LILE enrichment and HFSE depletion, where trends are similar to average IBM values. We interpret plutonic and volcanic units to have similar geochemical relationships, where liquid lines of descent show the evolution of least to most evolved magma types. We provide a model for the formation and magmatic evolution of the Alisitos Arc.

  11. Time-predictable bimodal volcanism in the Coso Range, California

    Science.gov (United States)

    Bacon, Charles R.

    1982-01-01

    The bimodal Pleistocene part of the Coso volcanic field has erupted rhyolite and basalt at constant long-term rates during the past ∼0.5 m.y. Both basalt and high-silica rhyolite were erupted in several independent, geologically brief episodes. The interval between eruptions of rhyolite was proportional to the volume of the preceding eruption. Basaltic eruptions appear to have followed a similar pattern. These time-predictable relations would be expected if (1) extensional strain accumulates in roof rocks at a constant rate, (2) the accumulated strain is relieved by near-vertical fractures, which serve as conduits for eruptions, and (3) the volume of erupted material is proportional to the sum of the conduit (dike) widths. The long-term eruption rate of rhyolite is about 5.4 km3/m.y.; that of basalt is about 2.8 km3/m.y. These rates are less than those of magma supply inferred from heat-flow and petrologic arguments by factors of between 100 and 200.

  12. Naming Lunar Mare Basalts: Quo Vadimus Redux

    Science.gov (United States)

    Ryder, G.

    1999-01-01

    and ordering. Classification functions as a primary tool of perception, opening up ways of seeing things and sealing off others. Lacking a classification, mare-basalt petrology appears immature with little consensual perception of the qualities and signifigances of the basalts. The appearance may or may not be the reality, but it demonstrates a need for a functioning, communicatory classification, in particular for the dissemination of ideas and the furtherance of studies. Names are inconsistent both among lunar rocks and between lunar and terrestrial rocks. Samples are labeled by elements, chemistry with tags, chemistry cast into mineralogy, or a mineralogical attribute (respective examples A 14 VHK A 17 high-Ti Group B 1, A 15 quartz-normative, A-12 pigeonite). Such inconsistency is bound to lead to confusion. Chemical descriptions mean different things in mildly different contexts: A low-K Fra Mauro basalt (not a basalt!) contains slightly more K than an Apollo 11 high-K basalt. High-alumina means more than about 11% Al2O3 for mare basalts, but 21% for highlands "basalts." Volcanic KREEP basalts, about 18% Al2O3, are not (usually) qualified with "high-alumina." Yet for terrestrial basalts, high-alumina means more than about 17% Al2O3, Further, even very-low-Ti mare basalts have Ti abundances (about 0.5-1.5% Ti02) as great as typical terrestrial basalts. Thus, parallels between lunar and terrestrial nomenclatures are nonexistent (reinforced by the fact that a mare-basalt composition found on Earth would be too ultramafic to name basalt at all). A separate type of name exists for mare-basalt glasses, which are identified by site, color, and a letter for any subsequent distinctions, e.g., A15 Green Glass C. While the inconsistencies cited above by themselves make nomenclature arcane, a greater source of difficulty is the common use of acronyms such as VHK and VLT. Most of these are partly chemical acronyms, but degrading the symbol Ti to T (for instance) makes them

  13. Hydrated Spinel Websterite Xenoliths From Moses Rock Diatreme, Navajo Volcanic Field: Metasomatism in the Mantle Wedge of the Colorado Plateau Above the De-watering Farallon Plate

    Science.gov (United States)

    Schulze, D. J.; Chow, R.; Helmstaedt, H. H.

    2016-12-01

    Expansion and density decrease in ultramafic rocks in the mantle wedge above the subducted and dewatering Farallon Plate in the Cenozoic may have been the driving force behind uplift of the Colorado Plateau. Here we document the effects of such hydration on spinel websterites that resulted in rocks dominated by pargasitic amphibole, Mg-chlorite and Cr-magnetite/chromite. Xenoliths of spinel websterite from the Moses Rock diatreme in the Navajo Volcanic Field on the Colorado Plateau have granoblastic to mosaic porphyroclastic texture. Porphyroclasts (up to 2 cm across) of lamellar intergrowths of clinopyroxene and orthopyroxene are set in a granular matrix of sub-equal amounts of the two pyroxenes. Both pyroxenes are magnesian and aluminous, with Mg/(Mg+Fe) in the range 0.89 to 0.93 and Al2O3 contents of approximately 4.0 to 9.5 wt%. Many samples contain aluminous spinel with Al/(Al+Cr) = 0.82 to 0.94. The effects of hydration on these samples exist as partial to complete replacement of the pyroxenes by amphibole (tremolite/edenite/pargasite/magnesio-hornblende), pseudomorphing original pyroxene textures, and replacement of primary spinel by Cr-rich magnetite or chromite with Al/(Al+Cr) = 0.07 to 0.35 intergrown with, and surrounded by, clinochlore. Unusual minerals associated with replacement of primary spinel include one example with corundum + zoisite, one with secondary garnet (molar Ca:Mg:Fe = 20:40:40) and two samples with aluminous talc (5 to 7 wt% Al2O3). By analogy with Alpine peridotites and mantle xenolith suites from basalt occurrences, the spinel websterites probably existed as veins and lenses in spinel peridotite of the shallow upper mantle beneath the Colorado Plateau prior to hydration. De-watering of the subducted Farallon Plate in Cenozoic time was likely the source of water-rich fluids that caused the hydration at fairly shallow depths (within amphibole stability), as suggested for hydration of spinel peridotite xenoliths from the Buell Park and

  14. From mantle roots to surface eruptions: Cenozoic and Mesozoic continental basaltic magmatism

    Czech Academy of Sciences Publication Activity Database

    Kämpf, H.; Németh, K.; Puziewicz, J.; Mrlina, Jan; Geissler, W.H.

    2015-01-01

    Roč. 104, č. 8 (2015), s. 1909-1912 ISSN 1437-3254 Institutional support: RVO:67985530 Keywords : continental basaltic volcanism * BASALT 2013 conference * Cenozoic * Mesozoic Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.133, year: 2015

  15. Reservoir characteristics and control factors of Carboniferous volcanic gas reservoirs in the Dixi area of Junggar Basin, China

    Directory of Open Access Journals (Sweden)

    Ji'an Shi

    2017-02-01

    Full Text Available Field outcrop observation, drilling core description, thin-section analysis, SEM analysis, and geochemistry, indicate that Dixi area of Carboniferous volcanic rock gas reservoir belongs to the volcanic rock oil reservoir of the authigenic gas reservoir. The source rocks make contact with volcanic rock reservoir directly or by fault, and having the characteristics of near source accumulation. The volcanic rock reservoir rocks mainly consist of acidic rhyolite and dacite, intermediate andesite, basic basalt and volcanic breccia: (1 Acidic rhyolite and dacite reservoirs are developed in the middle-lower part of the structure, have suffered strong denudation effect, and the secondary pores have formed in the weathering and tectonic burial stages, but primary pores are not developed within the early diagenesis stage. Average porosity is only at 8%, and the maximum porosity is at 13.5%, with oil and gas accumulation showing poor performance. (2 Intermediate andesite and basic basalt reservoirs are mainly distributed near the crater, which resembles the size of and suggests a volcanic eruption. Primary pores are formed in the early diagenetic stage, secondary pores developed in weathering and erosion transformation stage, and secondary fractures formed in the tectonic burial stage. The average porosity is at 9.2%, and the maximum porosity is at 21.9%: it is of the high-quality reservoir types in Dixi area. (3 The volcanic breccia reservoir has the same diagenetic features with sedimentary rocks, but also has the same mineral composition with volcanic rock; rigid components can keep the primary porosity without being affected by compaction during the burial process. At the same time, the brittleness of volcanic breccia reservoir makes it easily fracture under the stress; internal fracture was developmental. Volcanic breccia developed in the structural high part and suffered a long-term leaching effect. The original pore-fracture combination also made

  16. Thermoluminescence dating of Hawaiian basalt

    Science.gov (United States)

    May, Rodd James

    1979-01-01

    The thermoluminescence (TL) properties of plagioclase separates from 11 independently dated alkalic basalts 4,500 years to 3.3 million years old and 17 tholeiitic basalts 16 years to 450,000 years old from the Hawaiian Islands were investigated for the purpose of developing a TL dating method for young volcanic rocks. Ratios of natural to artificial TL intensity, when normalized for natural radiation dose rates, were used to quantify the thermoluminescence response of individual samples for age-determination purposes. The TL ratios for the alkalic basalt plagioclase were found to increase with age at a predictable exponential rate that permits the use of the equation for the best-fit line through a plot of the TL ratios relative to known age as a TL age equation. The equation is applicable to rocks ranging in composition from basaltic andesite to trachyte over the age range from about 2,000 to at least 250,000 years before present (B.P.). The TL ages for samples older than 50,000 years have a calculated precision of less than :t 10 percent and a potential estimated accuracy relative to potassium-argon ages of approximately :t 10 percent. An attempt to develop a similar dating curve for the tholeiitic basalts was not as successful, primarily because the dose rates are on the average lower than those for the alkalic basalts by a factor of 6, resulting in lower TL intensities in the tholeiitic basalts for samples of equivalent age, and also because the age distribution of dated material is inadequate. The basic TL properties of the plagioclase from the two rock types are similar, however, and TL dating of tholeiitic basalts should eventually be feasible over the age range 10,000 to at least 200,000 years B.P. The average composition of the plagioclase separates from the alkalic basalts ranges from oligoclase to andesine; compositional variations within this range have no apparent effect on the TL ratios. The average composition of the plagioclase from the tholeiitic

  17. The geomagnetic field intensity in New Zealand: palaeointensities from Holocene lava flows of the Tongariro Volcanic Centre

    Science.gov (United States)

    Greve, Annika; Hill, Mimi J.; Turner, Gillian M.; Nilsson, Andreas

    2017-11-01

    Very few absolute palaeointensity data exist from Holocene-aged rocks in New Zealand. Here we present a new suite of high-quality palaeointensities, supported by detailed rock magnetic investigations. Samples from 23 sites representing 10 distinct eruptive units of the Tongariro Volcanic Centre, Taupo Volcanic Zone, New Zealand, were studied. Both traditional double heating and microwave palaeointensity methods were employed. The reliability of the palaeointensity data varies with rock magnetic properties of the samples, corresponding, in particular, to their positions within the lava flows. The highest success rates are from samples obtained from near the flow tops where a significant proportion of the remanence unblocked at intermediate temperatures (200-350 °C). By contrast, samples from flow centres, particularly the parts showing platey fracturing, have the lowest success rates. Reliable, high-quality palaeointensity results ranging from 32.4 ± 5.1 μT to 72.1 ± 4.7 μT were obtained from six flows with ages between c. 12 800 yr BP and the present. These correspond to virtual dipole moments that increase from 52 ± 10 ZAm2 in the early Holocene and peak at 112 ± 14 ZAm2 about 300 yr ago. The data agree well with calibrated relative palaeointensities from New Zealand lake sediments. The volcanic and sedimentary data together yield a Holocene virtual axial dipole moment curve that fits the global average variation well in the early Holocene, but which differs significantly in recent millennia. This difference is associated with recent migration of the southern high latitude core-mantle boundary flux lobe towards New Zealand, as is seen in global field models.

  18. Hydrothermal evolution of repository groundwaters in basalt

    International Nuclear Information System (INIS)

    Apps, J.A.

    1984-01-01

    Groundwaters in the near field of a radioactive waste repository in basalt will change their chemical composition in response to reactions with the basalt. These reactions will be promoted by the heat generated by the decaying waste. It is important to predict both the rate and the extent of these reactions, and the secondary minerals produced, because the alteration process controls the chemical environment affecting the corrosion of the canister, the solubility and complexation of migrating radionuclides, the reactivity of the alteration products to radionuclides sorption, and the porosity and permeability of the host rock. A comprehensive review of the literature leads to the preliminary finding that hydrothermally altering basalts in geothermal regions such as Iceland lead to a secondary mineralogy and groundwater composition similar to that expected to surround a repository. Furthermore, laboratory experiments replicating the alteration conditions approximate those observed in the field and expected in a repository. Preliminary estimates were made of the rate of hydration and devitrification of basaltic glass and the zero-order dissolution rate of basaltic materials. The rates were compared with those for rhyolitic glasses and silicate minerals. Preliminary calculations made of mixed process alteration kinetics, involving pore diffusion and surface reaction suggest that at temperatures greater than 150 0 C, alteration proceeds so rapidly as to become pervasive in normally fractured basalt exposed to higher temperatures in the field. 70 references

  19. Volcanic Successions of the Jebal Remah Volcano, Northeast Jordan

    Directory of Open Access Journals (Sweden)

    AHMAD AL-MALABEH

    2010-06-01

    Full Text Available Jebal Remah volcano is one of huge but very poorly known tephra cones exposed on the basalt province of Harra El-Jabban. Detailed investigations indicate that this volcano is topographically distinct and structurally well-developed. It consists of voluminous air-fall scoria, arranged in three distinct horizons; namely lower black lapilli horizon, middle banded yellow horizon and upper brown blocky horizon. Each horizon consists of friable, loose and well bedded ejecta. Agglutination and lithification are limited to the upper horizon. A comparison among the volcanic successions of three horizons show different volcanic features that nevertheless retain a comparable overall character from one horizon to another. In spite of some similarity in the type of ejecta, actually these differ in total thickness, number of beds and internal stratification. This dissimilarity within volcanic successions of the volcano support the overall increase in fluidity, temperature and decrease in volatile content of the magma with the time. Thus, volcano shows a complete range of thermal facies. The studied volcano appears to have resulted from one prolonged eruptive phase. Its volcanic activity consisted of a series of discrete explosion intervals, separated by quiet periods. Field criteria indicate that the volcano is of strombolian type of volcanicity and resulted in a magmatic fragmentation mode.

  20. Ship Rock Diatreme: is it a Classical Volcano? New Evidence on Magma Ascent and Emplacement Within the Navajo Volcanic Field

    Science.gov (United States)

    Rotzien, J. R.; Mayhew, B.; Yospin, S.; Beiki, A.; Tewksbury, C.; Hardman, D.; Bank, C.; Noblett, J.; Semken, S.; Kroeger, G.

    2007-12-01

    The Navajo Volcanic Field (NVF) is an area of late-Tertiary volcanism along the New Mexico-Arizona border near the Four Corners region of the American Southwest. Among the roughly 80 exhumed diatremes that comprise the NVF, Ship Rock and The Thumb are two diatremes that present an interesting problem concerning magma ascent and emplacement within the NVF. Are the diatremes remnants of classical volcanoes with underlying magma chambers, or are the diatremes formed from buds off of upward propagating dike swarms? The 2006 Keck Consortium Geophysics Project collected non-invasive gravity and magnetic data to image the subsurface of Ship Rock and The Thumb to suggest constraints concerning the formation of these diatremes within the Navajo Volcanic Field. At Ship Rock, we collected over 120 gravity points spaced 500 m apart along 10 lines. We also collected about 65,000 magnetic points that cover an area of 1,570,000 square meters surrounding Ship Rock. The gravity data reveal gravity lows several kilometers away from Ship Rock, probably as a result of thick sedimentary units close to the surface. A steep gradient of 5 mGal/km separates the gravity lows from a strong gravity high immediately to the southwest of Ship Rock. We interpret this gravity high to be uneven basement topography or a magma chamber at depth; further studies are required to determine which of the interpretations is more likely. The Ship Rock magnetic data show the prominent west and northeast dikes extend well beyond their surface outcrops while the southern dike extends only to its visible termination. The magnetic data we collected at The Thumb along ~18 km of lines reveal a linear northeast-southwest trending magnetic anomaly about 105 to 360 nT in amplitude that crosses the diatreme. We interpret the anomaly to be a dike beneath The Thumb. Models of the total field magnetic data suggest a dike at shallow depths of about 0.1 to 4.8 m and widths of about 0.25 to 1.5 m with a steep dip to the

  1. Compositional diversity of Late Cenozoic basalts in a transect across the southern Washington Cascades: Implications for subduction zone magmatism

    Science.gov (United States)

    Leeman, William P.; Smith, Diane R.; Hildreth, Wes; Palacz, Zen; Rogers, Nick

    1990-11-01

    Major volcanoes of the Southern Washington Cascades (SWC) include the large Quaternary stratovolcanoes of Mount St. Helens (MSH) and Mount Adams (MA) and the Indian Heaven (IH) and Simcoe Mountain (SIM) volcanic fields. There are significant differences among these volcanic centers in terms of their composition and evolutionary history. The stratovolcanoes consist largely of andesitic to dacitic lavas and pyroclastics with minor basalt flows. IH consists dominantly of basaltic with minor andesite lavas, all erupted from monogenetic rift and cinder cone vents. SIM has a poorly exposed andesite to rhyolite core but mainly consists of basaltic lavas erupted from numerous widely dispersed vents; it has the morphology of a shield volcano. Distribution of mafic lavas across the SWC is related to north-northwest trending faults and fissure zones that indicate a significant component of east-west extension within the area. There is overlap in eruptive history for the areas studied, but it appears that peak activity was progressively older (MSH (slab-metasomatized subarc mantle. The juxtaposition of such different mantle domains within the lithospheric mantle is viewed as a consequence of (1) tectonic mixing associated with accretion of oceanic and island arc terranes along the Pacific margin of North America prior to Neogene time, and possibly (2) a seaward jump in the locus of subduction at about 40 Ma. The Cascades arc is unusual in that the subducting oceanic plate is very young and hot. We suggest that slab dehydration outboard of the volcanic front resulted in a diminished role of aqueous fluids in generating or subsequently modifying SWC magmas compared to the situation at most convergent margins. Furthermore, with low fluid flux conditions, basalt generation is presumably triggered by other processes that increase the temperature of the mantle wedge (e.g., convective mantle flow, shear heating, etc.).

  2. Nature and composition of interbedded marine basaltic pumice in ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 2. Nature and composition of interbedded marine basaltic pumice in the ~52–50 Ma Vastan lignite sequence, western India: Implication for Early Eocene MORB volcanism offshore Arabian Sea. Sarajit Sensarma Hukam Singh R S Rana Debajyoti Paul ...

  3. Primitive off-rift basalts from Iceland and Jan Mayen

    DEFF Research Database (Denmark)

    Debaille, Vinciane; Trønnes, Reidar G.; Brandon, Alan D.

    2009-01-01

    New measurements of Os, He, Sr and Nd isotopes, along with major and trace elements, are presented for basalts from the three volcanic flank zones in Iceland and from Jan Mayen Island. The 187Os/188Os ratios in lavas with <30 ppt Os (n = 4) are elevated compared to ratios in coexisting olivine an...

  4. Nature and composition of interbedded marine basaltic pumice in the

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 2. Nature and composition of interbedded marine basaltic pumice in the ~52–50 Ma Vastan lignite sequence, western India: Implication for Early Eocene MORB volcanism offshore Arabian Sea. Sarajit Sensarma Hukam Singh R S Rana Debajyoti Paul ...

  5. Petrography and petrogenesis of some Indian basaltic achondrites ...

    Indian Academy of Sciences (India)

    oid 4-Vesta (Drake 2001; Barrat 2004; Barrat et al. 2003, 2010; Mittlefehldt 2005; McSween et al. 2011). This is the most abundant class of achon- drites and represents a collection of both volcanic and plutonic rocks formed from basaltic magmas. Keywords. Indian achondrites; HED clan; petrography; mineral chemistry; ...

  6. Evaluation of the evolving stress field of the Yellowstone volcanic plateau, 1988 to 2010, from earthquake first-motion inversions

    Science.gov (United States)

    Russo, E.; Waite, G. P.; Tibaldi, A.

    2017-03-01

    Although the last rhyolite eruption occurred around 70 ka ago, the silicic Yellowstone volcanic field is still considered active due to high hydrothermal and seismic activity and possible recent magma intrusions. Geodetic measurements document complex deformation patterns in crustal strain and seismic activity likewise reveal spatial and temporal variations in the stress field. We use earthquake data recorded between 1988 and 2010 to investigate these variations and their possible causes in more detail. Earthquake relocations and a set of 369 well-constrained, double-couple, focal mechanism solutions were computed. Events were grouped according to location and time to investigate trends in faulting. The majority of the events have normal-faulting solutions, subordinate strike-slip kinematics, and very rarely, reverse motions. The dominant direction of extension throughout the 0.64 Ma Yellowstone caldera is nearly ENE, consistent with the perpendicular direction of alignments of volcanic vents within the caldera, but our study also reveals spatial and temporal variations. Stress-field solutions for different areas and time periods were calculated from earthquake focal mechanism inversion. A well-resolved rotation of σ3 was found, from NNE-SSW near the Hebgen Lake fault zone, to ENE-WSW near Norris Junction. In particular, the σ3 direction changed throughout the years around Norris Geyser Basin, from being ENE-WSW, as calculated in the study by Waite and Smith (2004), to NNE-SSW, while the other σ3 directions are mostly unchanged over time. The presence of ;chocolate tablet; structures, with two sets of nearly perpendicular normal faults, was identified in many stages of the deformation history both in the Norris Geyser Basin area and inside the caldera.

  7. Drilling constraints on bimodal volcanism and subsequent formation of contrasted uppermost crustal compositions at the middle Okinawa Trough

    Science.gov (United States)

    Yamasaki, T.; Takaya, Y.; Mukae, N.; Nagase, T.; Tindell, T.; Totsuka, S.; Uno, Y.; Yonezu, K.; Nozaki, T.; Ishibashi, J. I.; Kumagai, H.; Maeda, L.; Shipboard Scientist, C.

    2016-12-01

    The Okinawa Trough (OT) is a young and actively spreading back-arc basin, extending behind the Ryukyu arc-trench system in the southeastern margin of the East China Sea. The OT is believed to be in an initial rifting stage (starting from 6-9 Ma), prior to the normal/stable seafloor spreading which constitutes the main stage of back-arc basin formation. Two drilling cruises ‒ the IODP Exp. 331 and SIP CK14-04 D/V Chikyu Cruise (Exp. 907) in 2010 and 2014 ‒ were conducted at the Iheya North Knoll, middle OT. The Iheya North Knoll is a domal volcanic complex consisting of small volcanic bodies. On these cruises, pumiceous gravel and altered rhyolitic rocks, as well as hemi-pelagic sediments, hydrothermal clay and Kuroko-type ores, were recovered from the upper 200 m of the crust. From Feb. 11, 2016 to Mar. 17, 2016, the SIP CK16-01 (Exp. 908) D/V Chikyu cruise was conducted at Iheya North Knoll and the sediment-covered rifting center of the Iheya-Minor Ridge area, middle OT. The Iheya-Minor ridge area is also an active hydrothermal field, located 25 km southeast of the Iheya North Knoll. In this area, basaltic rocks are widely distributed, and drilling has confirmed that the basaltic materials continue to 120 m below the seafloor. From an igneous petrological point of view, the volcanic rocks in the Okinawa Trough are characterized by bimodal basaltic and rhyolitic compositions, with a compositional gap between SiO2 = 56-66 wt%. The origin of the rhyolitic rock has been interpreted as magmatic differentiation of basaltic magma. However, the existence of an active basalt-hosted hydrothermal field in the Iheya-Minor ridge area suggests the presence of hot basaltic rocks at a shallow position in the crust, and reaching recharged seawater at this depth. Furthermore, the composition of felsic rocks just after the compositional gap (SiO2 = 67 wt%) is very similar to that of the minimum melt of a granitic system, and experimental partial melt of hydrous basalt. Therefore

  8. Volcanism Studies: Final Report for the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

    1998-12-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is

  9. Hydrothermal uranium deposits containing molybdenum and fluorite in the Marysvale volcanic field, west-central Utah

    Science.gov (United States)

    Cunningham, C.G.; Rasmussen, J.D.; Steven, T.A.; Rye, R.O.; Rowley, P.D.; Romberger, S.B.; Selverstone, J.

    1998-01-01

    Uranium deposits containing molybdenum and fluorite occur in the Central Mining Area, near Marysvale, Utah, and formed in an epithermal vein system that is part of a volcanic/hypabyssal complex. They represent a known, but uncommon, type of deposit; relative to other commonly described volcanic-related uranium deposits, they are young, well-exposed and well-documented. Hydrothermal uranium-bearing quartz and fluorite veins are exposed over a 300 m vertical range in the mines. Molybdenum, as jordisite (amorphous MoS2, together with fluorite and pyrite, increase with depth, and uranium decreases with depth. The veins cut 23-Ma quartz monzonite, 20-Ma granite, and 19-Ma rhyolite ash-flow tuff. The veins formed at 19-18 Ma in a 1 km2 area, above a cupola of a composite, recurrent, magma chamber at least 24 ?? 5 km across that fed a sequence of 21- to 14-Ma hypabyssal granitic stocks, rhyolite lava flows, ash-flow tuffs, and volcanic domes. Formation of the Central Mining Area began when the intrusion of a rhyolite stock, and related molybdenite-bearing, uranium-rich, glassy rhyolite dikes, lifted the fractured roof above the stock. A breccia pipe formed and relieved magmatic pressures, and as blocks of the fractured roof began to settle back in place, flat-lying, concave-downward, 'pull-apart' fractures were formed. Uranium-bearing, quartz and fluorite veins were deposited by a shallow hydrothermal system in the disarticulated carapace. The veins, which filled open spaces along the high-angle fault zones and flat-lying fractures, were deposited within 115 m of the ground surface above the concealed rhyolite stock. Hydrothermal fluids with temperatures near 200??C, ??18OH2O ~ -1.5, ?? -1.5, ??DH2O ~ -130, log fO2 about -47 to -50, and pH about 6 to 7, permeated the fractured rocks; these fluids were rich in fluorine, molybdenum, potassium, and hydrogen sulfide, and contained uranium as fluoride complexes. The hydrothermal fluids reacted with the wallrock resulting in

  10. Thermal, radioactive and magnetic properties of the lavas of the Mt Melbourne Volcanic Field (Victoria Land, Antarctica

    Directory of Open Access Journals (Sweden)

    Egidio Armadillo

    2009-06-01

    Full Text Available We present the results of measurements of physical properties carried out on mafic lavas from the Mt Melbourne
    Volcanic Field, useful for interpretation of geophysical surveys designed to shed light on the structure of the
    crust. The thermal conductivity is comparable to that of glass and shows a clear negative dependence on porosity.
    The volume heat capacity and the thermal diffusivity are less variable. The concentration of the thermally
    important natural radioactive isotopes was determined by gamma-ray spectrometry. Lavas denoted a rather low
    heat-production rate, and the largest concentration of heat-producing elements (potassium, uranium, thorium
    was found in the trachyte samples. The magnetic susceptibility is more variable than the other physical properties
    and, among the several iron-titanium oxides, it appears primarily controlled by the ulvöspinel-magnetite solid
    solution series.

  11. Improved techniques in data analysis and interpretation of potential fields: examples of application in volcanic and seismically active areas

    Directory of Open Access Journals (Sweden)

    G. Florio

    2002-06-01

    Full Text Available Geopotential data may be interpreted by many different techniques, depending on the nature of the mathematical equations correlating specific unknown ground parameters to the measured data set. The investigation based on the study of the gravity and magnetic anomaly fields represents one of the most important geophysical approaches in the earth sciences. It has now evolved aimed both at improving of known methods and testing other new and reliable techniques. This paper outlines a general framework for several applications of recent techniques in the study of the potential methods for the earth sciences. Most of them are here described and significant case histories are shown to illustrate their reliability on active seismic and volcanic areas.

  12. Stability Evaluation of Volcanic Slope Subjected to Rainfall and Freeze-Thaw Action Based on Field Monitoring

    Directory of Open Access Journals (Sweden)

    Shima Kawamura

    2011-01-01

    Full Text Available Rainfall-induced failures of natural and artificial slopes such as cut slopes, which are subjected to freezing and thawing, have been frequently reported in Hokkaido, Japan. In particular, many failures occur intensively from spring to summer seasons. Despite numerous field studies, explanation of their mechanical behavior based on in situ data has not yet been completely achieved due to the difficulty in grasping failure conditions. This study aims at clarifying the aspects of in-situ volcanic slopes subjected to rainfall and freeze-thaw action. The changes in soil moisture, pore pressure, deformations, and temperatures in the slope were investigated using soil moisture meters, tensiometers, thermocouple sensors, clinometers, settlement gauges, an anemovane, a snow gauge, and a rainfall gauge. The data generated from these measures indicated deformation in the slope examined mainly proceeded during the drainage process according to changes in soil moisture. Based on this data, a prediction method for failures is discussed in detail.

  13. Magmatism, ash-flow tuffs, and calderas of the ignimbrite flareup in the western Nevada volcanic field, Great Basin, USA

    Science.gov (United States)

    Christopher D. Henry,; John, David A.

    2013-01-01

    The western Nevada volcanic field is the western third of a belt of calderas through Nevada and western Utah. Twenty-three calderas and their caldera-forming tuffs are reasonably well identified in the western Nevada volcanic field, and the presence of at least another 14 areally extensive, apparently voluminous ash-flow tuffs whose sources are unknown suggests a similar number of undiscovered calderas. Eruption and caldera collapse occurred between at least 34.4 and 23.3 Ma and clustered into five ∼0.5–2.7-Ma-long episodes separated by quiescent periods of ∼1.4 Ma. One eruption and caldera collapse occurred at 19.5 Ma. Intermediate to silicic lavas or shallow intrusions commonly preceded caldera-forming eruptions by 1–6 Ma in any specific area. Caldera-related as well as other magmatism migrated from northeast Nevada to the southwest through time, probably resulting from rollback of the formerly shallow-dipping Farallon slab. Calderas are restricted to the area northeast of what was to become the Walker Lane, although intermediate and effusive magmatism continued to migrate to the southwest across the future Walker Lane.Most ash-flow tuffs in the western Nevada volcanic field are rhyolites, with approximately equal numbers of sparsely porphyritic (≤15% phenocrysts) and abundantly porphyritic (∼20–50% phenocrysts) tuffs. Both sparsely and abundantly porphyritic rhyolites commonly show compositional or petrographic evidence of zoning to trachydacites or dacites. At least four tuffs have volumes greater than 1000 km3, with one possibly as much as ∼3000 km3. However, the volumes of most tuffs are difficult to estimate, because many tuffs primarily filled their source calderas and/or flowed and were deposited in paleovalleys, and thus are irregularly distributed.Channelization and westward flow of most tuffs in paleovalleys allowed them to travel great distances, many as much as ∼250 km (original distance) to what is now the western foothills of the

  14. Timing and composition of continental volcanism at Harrat Hutaymah, western Saudi Arabia

    Science.gov (United States)

    Duncan, Robert A.; Kent, Adam J R; Thornber, Carl; Schliedler, Tyler D; Al-Amri, Abdullah M

    2016-01-01

    Harrat Hutaymah is an alkali basalt volcanic field in north-central Saudi Arabia, at the eastern margin of a large Neogene continental, intraplate magmatic province. Lava flow, tephra and spatter cone compositions in the field include alkali olivine basalts and basanites. These compositions contrast with the predominantly tholeiitic, fissure-fed basalts found along the eastern margin of the Red Sea. The Hutaymah lava flows were erupted through Proterozoic arc-associated plutonic and meta-sedimentary rocks of the Arabian shield, and commonly contain a range of sub-continental lithospheric xenoliths, although the lavas themselves show little indication of crustal contamination. Previous radiometric dating of this volcanic field (a single published K–Ar age; 1.8 Ma) is suspiciously old given the field measurement of normal magnetic polarity only (i.e. Brunhes interval, ≤ 780 Ka). We report new age determinations on 14 lava flows by the 40Ar–39Ar laser step heating method, all younger than ~ 850 Ka, to better constrain the time frame of volcanism, and major, trace and rare earth element compositions to describe the chemical variation of volcanic activity at Harrat Hutaymah. Crystal fractionation was dominated by olivine ± clinopyroxene at a range of upper mantle and crustal pressures. Rapid ascent and eruption of magma is indicated by the array of lower crustal and lithospheric xenoliths observed in lava flows and tephra. Modeling suggests 1–7% melting of an enriched asthenospheric mantle source occurred beneath Harrat Hutaymah under a relatively thick lithospheric cap (60–80 km).

  15. UNCOVERING BURIED VOLCANOES: NEW DATA FOR PROBABILISTIC VOLCANIC HAZARD ASSESSMENT AT YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    F.V. Perry

    2005-01-01

    holes are planned with the goal of sampling each geographic subpopulation of magnetic anomalies in the region (Figure 1). This will result in a more complete characterization of the location, age, volume and composition of buried basaltic features for the purpose of updating the volcanic hazard assessment. Smith and Keenan (2005) suggested that volcanic hazard estimates might be 1-2 orders of magnitude higher than estimated by the DOE expert elicitation in 1996, based on (1) a proposed relationship between recurrence rates in the YMR and the Reveille-Lunar Crater volcanic field to the north, and (2) the implication that a number of so-far-undiscovered buried volcanoes would have a significant impact on hazard estimates. This article presents the new aeromagnetic data and an interpretation of the data that suggests magnetic anomalies nearest the proposed repository site represent buried Miocene basalt that will likely have only a minor impact on the volcanic hazard

  16. Sardinian basalt. An ancient georesource still en vougue

    Science.gov (United States)

    Careddu, Nicola; Grillo, Silvana Maria

    2017-04-01

    Commercially quarried Sardinian basalt was the result of extensive volcanic activity during the Pliocene and Pleistocene ages, following the opening of the Campidano plain and Tyrrhenian sea rift. Extensive areas of Sardinia have been modelled by large volumes of basalt and andesite rock. An example is provided by the 'Giare' tablelands and other large plateaus located in central Sardinia. Other basalt-rich areas exist in the Island. Sardinia is featured by a vast array of basalt monuments, dating back to the II-I millennium BC, bearing witness to the great workability, durability and resistance to weathering of the rock. The complex of circular defensive towers, known as "Su Nuraxi di Barumini" was included in the World Heritage List by Unesco in 1997. Basalt is currently produced locally to be used for architectural and ornamental purposes. It is obtained by quarrying stone deposits or mining huge boulders which are moved and sawn by means of mechanical machinery. Stone-working is carried out in plants located in various sites of the Island. The paper begins with an historical introduction and then focusses on the current state of the art of Sardinian basalt quarrying, processing and using. An analysis of the basalt market has been carried out.

  17. Fluid circulation and structural system of Cerritos Colorados geothermal field in La Primavera volcanic caldera (Mexico) inferred from geophysical surveys

    Science.gov (United States)

    Bolós, X.; Cifuentes-Nava, G.; Macias, J. L.; Sosa-Ceballos, G.; García-Tenorio, F.; Albor, M., III; Juarez, M.; Gamez, V.

    2017-12-01

    Hydrothermal activity in volcanic calderas is the consequence of energy transfer between deep magmatic chambers and subsurface layers saturated in water. This hydrothermal system is generated by convection of the groundwater supplied by meteoric water recharged and the ascent of hot volcanic gasses exsolved from deep magma reservoirs. Calderas are heterogeneous geological structures that due to their formation and evolution produced a complex stratigraphy. All of these heterogeneities can be affected by deformation and also by the presence of fractures and faults which constitute the main pathways whereby hydrothermal fluids can move easily through the surface as spring discharges and fumarolic activity. Geophysical methods have been used in the last decades to investigate the relationship between structural geology and hydrothermal systems in different volcanic areas around the world. In this work, we have focused on the role of subsurface structures to understand and localize the pathways of fluids related to the hydrothermal system of the Cerritos Colorados geothermal field. We focused in the central area of the caldera (P12 well and Cerritos Colorados graben), where active hydrothermal activity is evidenced by fumaroles, thermal anomalies, CO2 diffuse emission, and sulfur precipitation. We have applied a self-potential method (SP) that combined with temperature measurements that allowed to identify the main infiltration and ascending fluid zones in the area, and their specific surface temperature coinciding with fumarolic activity. From this data we an applied Electrical Resistivity Tomography (ERT) survey in two selected places. One ERT profile (1.2 km in length) was located in the P12 well area. A 3D resistivity model used with the equatorial method was carried out on the Cerritos Colorados graben area. Combining the results of the SP, TºC, and ERT data with a detailed structural map we identified the main degassing zones (i.e. fumaroles) that correspond to

  18. Buildings vs. ballistics: Quantifying the vulnerability of buildings to volcanic ballistic impacts using field studies and pneumatic cannon experiments

    Science.gov (United States)

    Williams, G. T.; Kennedy, B. M.; Wilson, T. M.; Fitzgerald, R. H.; Tsunematsu, K.; Teissier, A.

    2017-09-01

    Recent casualties in volcanic eruptions due to trauma from blocks and bombs necessitate more rigorous, ballistic specific risk assessment. Quantitative assessments are limited by a lack of experimental and field data on the vulnerability of buildings to ballistic hazards. An improved, quantitative understanding of building vulnerability to ballistic impacts is required for informing appropriate life safety actions and other risk reduction strategies. We assessed ballistic impacts to buildings from eruptions at Usu Volcano and Mt. Ontake in Japan and compiled available impact data from eruptions elsewhere to identify common damage patterns from ballistic impacts to buildings. We additionally completed a series of cannon experiments which simulate ballistic block impacts to building claddings to investigate their performance over a range of ballistic projectile velocities, masses and energies. Our experiments provide new insights by quantifying (1) the hazard associated with post-impact shrapnel from building and rock fragments; (2) the effect of impact obliquity on damage; and (3) the additional impact resistance buildings possess when claddings are struck in areas directly supported by framing components. This was not well identified in previous work which may have underestimated building vulnerability to ballistic hazards. To improve assessment of building vulnerability to ballistics, we use our experimental and field data to develop quantitative vulnerability models known as fragility functions. Our fragility functions and field studies show that although unreinforced buildings are highly vulnerable to large ballistics (> 20 cm diameter), they can still provide shelter, preventing death during eruptions.

  19. Volcanic-plutonic connections and metal fertility of highly evolved magma systems: A case study from the Herberton Sn-W-Mo Mineral Field, Queensland, Australia

    Science.gov (United States)

    Cheng, Yanbo; Spandler, Carl; Chang, Zhaoshan; Clarke, Gavin

    2018-03-01

    Understanding the connection between the highly evolved intrusive and extrusive systems is essential to explore the evolution of high silicic magma systems, which plays an important role in discussions of planetary differentiation, the growth of continents, crustal evolution, and the formation of highly evolved magma associated Sn-W-Mo mineral systems. To discern differences between "fertile" and "non-fertile" igneous rocks associated with Sn-W-Mo mineralization and reveal the genetic links between coeval intrusive and extrusive rocks, we integrate whole rock geochemistry, geochronology and Hf isotope signatures of igneous zircons from contemporaneous plutonic and volcanic rocks from the world-class Herberton Mineral Field of Queensland, Australia. The 310-300 Ma intrusive rocks and associated intra-plutonic W-Mo mineralization formed from relatively oxidized magmas after moderate degrees of crystal fractionation. The geochemical and isotopic features of the coeval volcanic succession are best reconciled utilizing the widely-accepted volcanic-plutonic connection model, whereby the volcanic rocks represent fractionated derivatives of the intrusive rocks. Older intrusions emplaced at 335-315 Ma formed from relatively low fO2 magmas that fractionated extensively to produce highly evolved granites that host Sn mineralization. Coeval volcanic rocks of this suite are compositionally less evolved than the intrusive rocks, thereby requiring a different model to link these plutonic-volcanic sequences. In this case, we propose that the most fractionated magmas were not lost to volcanism, but instead were effectively retained at the plutonic level, which allowed further localized build-up of volatiles and lithophile metals in the plutonic environment. This disconnection to the volcanism and degassing may be a crucial step for forming granite-hosted Sn mineralization. The transition between these two igneous regimes in Herberton region over a ∼30 m.y. period is attributed to

  20. Late Pleistocene to Holocene soil development and environments in the Long Gang Volcanic Field area, Jilin Province, NE China

    Science.gov (United States)

    Sauer, Daniela; Zhang, Xinrong; Knöbel, Jette; Maerker, Lutz

    2014-05-01

    Late Pleistocene to Holocene shifts of climate and vegetation in the Long Gang Volcanic Field in NE China have been reconstructed, e. g. by Steblich et al. (2009), based on Maar lake sediment cores. In this study, we investigated soil development during the Late Pleistocene and Holocene and linked it to the climate and vegetation reported in the literature. Three pedons were described and analyzed on a crater wall surrounding a maar. The lower part of the slope is covered by basic pyroclastics that are obviously younger than the maar itself. Pedon 1 is located on the upper slope, where the younger pyroclastics are not present; thus it developed over the entire Holocene and part of the Late Pleistocene. Pedon 2 is on the toe slope and developed from the young basic pyroclastics. Vegetation remains, charred by fire that was caused by the volcanic ash fall, were found in the lowermost part of the pyroclastics layer, on top of a paleosol. Charcoal fragments were dated to 18950-18830 cal BP (using INTCAL 09). Thus, pedon 2 developed since around 18.9 ka BP, whereas the development of the paleosol that was buried under the pyroclastics (pedon 3), was stopped at this time. Pedons 1 and 2 are Vitric Andosols, developed mainly from basic pyroclastics, as evidenced by the composition of rock fragments in the soils, comprising 78 / 81 mass % lapilli and 22 / 19 mass % gneiss fragments, respectively. Pedon 3 is a Cutanic Luvisol (Chromic) that developed entirely from gneiss fragments produced by the maar explosion. Lab data suggest increasing intensity of pedogenesis in the direction: Pedon 3 (paleosol) Global and Planetary Change, 65, 56-70.

  1. The morphology and evolution of the Stromboli 2002-2003 lava flow field--An example of a basaltic flow field emplaced on a steep slope

    Science.gov (United States)

    Lodato, Luigi; Harris, A.; Spampinato, L.; Calvari, Sonia; Dehn, J.; Patrick, M.

    2007-01-01

    The use of a hand-held thermal camera during the 2002–2003 Stromboli effusive eruption proved essential in tracking the development of flow field structures and in measuring related eruption parameters, such as the number of active vents and flow lengths. The steep underlying slope on which the flow field was emplaced resulted in a characteristic flow field morphology. This comprised a proximal shield, where flow stacking and inflation caused piling up of lava on the relatively flat ground of the vent zone, that fed a medial–distal lava flow field. This zone was characterized by the formation of lava tubes and tumuli forming a complex network of tumuli and flows linked by tubes. Most of the flow field was emplaced on extremely steep slopes and this had two effects. It caused flows to slide, as well as flow, and flow fronts to fail frequently, persistent flow front crumbling resulted in the production of an extensive debris field. Channel-fed flows were also characterized by development of excavated debris levees in this zone (Calvari et al. 2005). Collapse of lava flow fronts and inflation of the upper proximal lava shield made volume calculation very difficult. Comparison of the final field volume with that expecta by integrating the lava effusion rates through time suggests a loss of ~70% erupted lava by flow front crumbling and accumulation as debris flows below sea level. Derived relationships between effusion rate, flow length, and number of active vents showed systematic and correlated variations with time where spreading of volume between numerous flows caused an otherwise good correlation between effusion rate, flow length to break down. Observations collected during this eruption are useful in helping to understand lava flow processes on steep slopes, as well as in interpreting old lava–debris sequences found in other steep-sided volcanoes subject to effusive activity.

  2. Preliminary feasibility study on storage of radioactive wastes in Columbia River basalts. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    ,

    1976-11-01

    Volume II comprises four appendices: analytical data and sample locations for basalt flow type localities; Analytical data and sample locations for measured field sections in Yakima basalts; core hole lithology and analytical data; and geophysical logs. (LK)

  3. Comprehensive Paleomagnetic Study of the Oligocene-Miocene Rocks from the San Luis Potosí Volcanic Field, Mexico

    Science.gov (United States)

    Alva-Valdivia, L. M.; Gonzalez-Rangel, J. A.; Torres-Hernandez, J. R.

    2014-12-01

    Comprehensive paleomagnetic study of the Oligocene-Miocene sequence of lithological units from the San Luis Potosí volcanic field in central Mexico was accomplished to set up the magnetostratigraphic record. Two hundred and one oriented standard paleomagnetic cores corresponding to twenty-eight paleomagnetic sites were collected from all units. Rock-magnetic properties are characteristic for each unit. Isothermal remanent magnetization acquisition curves and continuous susceptibility vs. temperature experiments point from low to medium-Ti content in titanomagnetite as the main opaque magnetic minerals, presumably result from oxy-exsolution processes during the initial flow cooling. Opaque mineral microscopy supports this assumption. Unblocking temperature and hysteresis parameters suggests predominance of pseudo-single domain magnetic grain size. Thermal and alternating field demagnetizations show mostly well-defined univectorial magnetizations. Most sites present a mean direction with small angular dispersion. The overall mean direction (N=10, Dec=1.1°, Inc=34.1°, k=531 and α95=2.1°) is characterized by small angular dispersion and inclination close to dipolar value for the locality. Anisotropy of magnetic susceptibility lineation match the geologically inferred flow direction.

  4. Mylonitic volcanics near Puging, Upper Siang district, Arunachal ...

    Indian Academy of Sciences (India)

    The Abor volcanics of the continental flood basalt affinity are extensively exposed in different parts of the Siang valley. These are associated with Yinkiong Group of rocks of Paleocene–Eocene age and represent syn-sedimentary volcanism in a rift setting. Subsequent folding and thrusting of the Siyom and Rikor sequences ...

  5. Mesozoic and cenozoic volcanic rocks from central and southern Tibet: 39Ar-40Ar dating, petrological characteristics and geodynamical significance

    International Nuclear Information System (INIS)

    Coulon, C.; Bollinger, C.; Wang, S.

    1986-01-01

    Field relations, radiometric ages and mineralogical and chemical characteristics of the orogenic volcanic rocks from the Lhasa block (Tibet) are studied. Volcanic activity started before the deposition of the Albian-Aptian sedimentary units (Takena Formation and Xigaze Group). Volcanism is volumetrically limited in the northern part of the Lhasa block: basalts, andesites and dacites are present while ignimbrites are scarce. Radiometric ages of these rocks range between 110 and 80 Ma. Conversely, in the southern part of the Lhasa block, volcanism is largely developed (Gangdese belt). There, paroxysmal activity occurred later than in the north, between 60 and 50 Ma (Lingzizong Formation). This volcanism is mainly represented by andesites and ignimbrites. A younger episode at about 15-10 Ma took place in this southern region. The mineralogical and geochemical characteristics indicate that, as a whole, the volcanic rocks from the Lhasa block belong to a calc-alkaline continental-margin series, enriched in K 2 O and other incompatible elements. Subordinate potassic alkaline lavas are present in the northern margin of the Gangdese belt; some basalts exhibit a tholeiitic affinity (Daquin area, southern region). The geodynamic significance of these Cenozoic volcanic rocks lies in the relative motion of India and the Lhasa block, after accretion of the latter to the northern Qantang block. A geodynamic model based on changes of the type of subduction of the Indian oceanic crust beneath the Lhasa block, for the period 120-40 Ma, is proposed to account for the abundance, age, and magmatic affinity of the volcanic products. (orig.)

  6. Mafic Spatter-Rich and Lava-Like Welded Ignimbrites Linked With Collapse of a Basaltic Caldera: The Halarauður Eruption, Krafla, Iceland

    Science.gov (United States)

    Rooyakkers, S. M.; Stix, J.; Berlo, K.; Tuffen, H.

    2017-12-01

    Large, explosive basaltic or basalt-dominated eruptions linked with caldera collapse are uncommon and poorly understood, and collapse of basaltic calderas is more commonly driven by subsurface magma drainage and/or lava effusion. To better understand these rare events, we present field observations and interpretations of the Halarauður sequence, a complex series of pyroclastic deposits previously linked with formation of the Krafla caldera [1]. Basal units are locally dispersed and vary in both composition and mode of emplacement, reflecting tapping of discrete magma batches at widely-spaced vents. Very localised (t1/2 transition into two volumetrically dominant, regionally dispersed units. A remarkably heterogeneous, basaltic to hybrid intermediate spatter-rich welded tuff overlies the early-phase deposits, with a maximum thickness of 15 m. Welding intensity varies at the dm-scale both vertically and laterally, and is influenced by the local abundance of lithics. Lithic-rich horizons reflect periods of conduit instability, likely coincident with caldera collapse. This unit has previously been interpreted as a welded airfall [1], but features more consistent with lateral emplacement, including lithic concentration zones, dense welding > 7 km from probable vent sites, and rapid local thickness changes influenced by paleotopography suggest emplacement as a spatter-rich PDC. The unit grades up into a basaltic lava-like tuff with similar dispersal, interpreted as a lava-like ignimbrite deposited during the climactic phase. The Halarauður eruption is unusual for a basalt-dominated event in its complexity, explosivity, and the generation of welded ignimbrites. This event represents an endmember style of basaltic volcanism, and a worst-case scenario for eruptions at Icelandic calderas. [1] Calderone GM, Grunvold K, Oskarsson N (1990). J Volcanol Geotherm Res 44:303-314

  7. Volcanostratigraphic Sequences of Kebo-Butak Formation at Bayat Geological Field Complex, Central Java Province and Yogyakarta Special Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Sri Mulyaningsih

    2016-06-01

    Full Text Available DOI:10.17014/ijog.3.2.77-94Bayat Complex is usually used as a work field for students of geology and other geosciences. The study area is located in the southern part of the Bayat Complex. Administratively, it belongs to Central Java Province and Yogyakarta Special Province. The lithology of Bayat is very complex, composed of various kinds of igneous, sedimentary, metamorphic, and volcanic rocks. Most of previous researchers interpreted Bayat as a melange complex constructed within a subduction zone. Kebo-Butak is one of formations that forms the Bayat field complex. The formation is composed of basalt, layers of pumice, tuff, shale, and carbonaceous tuff. Most of them are known as volcanic rocks. These imply that volcanic activities are more probable to construct the geology of Bayat rather than the subducted melange complex. The geological mapping, supported by geomorphology, petrology, stratigraphy, and geological structures, had been conducted in a comprehensive manner using the deduction-induction method. The research encounters basalt, black pumice, tuff with basaltic glasses fragments, zeolite, argilic clay, as well as feldspathic- and pumice tuff. Petrographically, the basalt is composed of labradorite, olivine, clinopyroxene, and volcanic glass. Black pumice and tuff contain prismatic clinopyroxene, granular olivine, and volcanic glasses. Feldspathic tuff and pumice tuff are crystal vitric tuff due to more abundant feldspar, quartz, and amphibole than volcanic glass. Zeolite comprises chlorite and altered glasses as deep sea altered volcanic rocks. The geologic structure is very complex, the major structures are normal faults with pyrite in it. There were two deep submarine paleovolcanoes namely Tegalrejo and Baturagung. The first paleovolcano erupted effusively producing basaltic sequence, while the second one erupted explosively ejecting feldspathic-rich pyroclastic material. The two paleovolcanoes erupted simultaneously and

  8. Examining Volcanic Terrains Using In Situ Geochemical Technologies; Implications for Planetary Field Geology

    Science.gov (United States)

    Young, K. E.; Bleacher, J. E.; Evans, C. A.; Rogers, A. D.; Ito, G.; Arzoumanian, Z.; Gendreau, K.

    2015-01-01

    Regardless of the target destination for the next manned planetary mission, the crew will require technology with which to select samples for return to Earth. The six Apollo lunar surface missions crews had only the tools to enable them to physically pick samples up off the surface or from a boulder and store those samples for return to the Lunar Module and eventually to Earth. Sample characterization was dependent upon visual inspection and relied upon their extensive geology training. In the four decades since Apollo however, great advances have been made in traditionally laboratory-based instrument technologies that enable miniaturization to a field-portable configuration. The implications of these advancements extend past traditional terrestrial field geology and into planetary surface exploration. With tools that will allow for real-time geochemical analysis, an astronaut can better develop a series of working hypotheses that are testable during surface science operations. One such technology is x-ray fluorescence (XRF). Traditionally used in a laboratory configuration, these instruments have now been developed and marketed commercially in a field-portable mode. We examine this technology in the context of geologic sample analysis and discuss current and future plans for instrument deployment. We also discuss the development of the Chromatic Mineral Identification and Surface Texture (CMIST) instrument at the NASA Goddard Space Flight Center (GSFC). Testing is taking place in conjunction with the RIS4E (Remote, In Situ, and Synchrotron Studies for Science and Exploration) SSERVI (Solar System Exploration and Research Virtual Institute) team activities, including field testing at Kilauea Volcano, HI..

  9. A combined analysis of basaltic melting and shear wave velocity anomalies to constrain dynamic support of western North America

    Science.gov (United States)

    Klöcking, Marthe; White, Nicky; Maclennan, John; Fitton, Godfrey

    2017-04-01

    The region of western North America that encompasses the Basin and Range Province, the Snake River Plain and the Colorado Plateau is about 2 km higher than cratonic North America. This topographic difference broadly coincides with variations in lithospheric thickness (i.e. Mexico, and inverse modeling of regional drainage networks together suggest that this regional uplift occurred during Cenozoic time in at least two discrete phases. Earthquake tomographic models have imaged low velocity material beneath the bulk of western North America, including a ring-shaped anomaly encompassing the Colorado Plateau itself. Basaltic magmatism coincides with these low velocity zones and indicates an overall increase in melt volume at 40 Ma, as well as an abrupt change from lithospheric to asthenospheric signatures at 5 Ma. To investigate the quantitative relationship between seismic velocity anomalies and basaltic magmatism, we have analyzed >260 samples from volcanic centers throughout western North America for major, trace and rare earth elements using ICP-MS and XRF techniques. For asthenospheric samples, we observe a correlation between slow shear wave velocity anomalies and basaltic geochemistry. Using a combination of petrologic observations, forward and inverse modeling of major and rare earth elements, and shear wave velocity anomalies from tomographic models, we determine depth of melting and melt fraction. We explore the possibility that volatiles, anomalous source composition and/or temperature can give rise to basaltic magmatism and regional uplift. We then calculate mantle temperatures from shear wave velocity profiles beneath each volcanic field. In this way, we exploit a variety of approaches to constrain lithospheric thickness and mantle potential temperature. Our combined geochemical and geophysical results yield excess temperatures of 50-80 °C beneath a 60 km thin lithospheric plate. A dynamic topographic model of progressive lithospheric erosion over

  10. Volcanism Studies: Final Report for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Crowe, Bruce M.; Perry, Frank V.; Valentine, Greg A.; Bowker, Lynn M.

    1998-01-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt ( than about 7 x 10 -8 events yr -1 . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain sit

  11. Effect of volcanic dykes on coastal groundwater flow and saltwater intrusion: A field-scale multiphysics approach and parameter evaluation

    Science.gov (United States)

    Comte, J.-C.; Wilson, C.; Ofterdinger, U.; González-Quirós, A.

    2017-03-01

    Volcanic dykes are common discrete heterogeneities in aquifers; however, there is a lack of field examples of, and methodologies for, comprehensive in situ characterization of their properties with respect to groundwater flow and solute transport. We have applied an integrated multiphysics approach to quantify the effect of dolerite dykes on saltwater intrusion in a coastal sandstone aquifer. The approach involved ground geophysical imaging (passive magnetics and electrical resistivity tomography), well hydraulic testing, and tidal propagation analysis, which provided constraints on the geometry of the dyke network, the subsurface saltwater distribution, and the sandstone hydrodynamic properties and connectivity. A three-dimensional variable-density groundwater model coupled with a resistivity model was further calibrated using groundwater and geophysical observations. A good agreement of model simulations with tide-induced head fluctuations, geophysically derived pore water salinities, and measured apparent resistivities was obtained when dykes' hydraulic conductivity, storativity, and effective porosity are respectively about 3, 1, and 1 orders of magnitude lower than the host aquifer. The presence of the dykes results in barrier-like alterations of groundwater flow and saltwater intrusion. Preferential flow paths occur parallel to observed dyke orientations. Freshwater inflows from upland recharge areas concentrate on the land-facing side of the dykes and saltwater penetration is higher on their sea-facing side. This has major implications for managing groundwater resources in dyke-intruded aquifers, including in coastal and island regions and provides wider insights on preferential pathways of groundwater flow and transport in highly heterogeneous aquifer systems.

  12. Basalt: structural insight as a construction material

    Indian Academy of Sciences (India)

    This paper explores the state of the art of basalt used in the construction industry with the overall layout of different subcategories of historical background starting from fibre development and different chemical and mechanical fibre properties to its applications in the field. Comparative studies have also been reported with ...

  13. Magmatic evolution of Panama Canal volcanic rocks: A record of arc processes and tectonic change.

    Directory of Open Access Journals (Sweden)

    David W Farris

    Full Text Available Volcanic rocks along the Panama Canal present a world-class opportunity to examine the relationship between arc magmatism, tectonic forcing, wet and dry magmas, and volcanic structures. Major and trace element geochemistry of Canal volcanic rocks indicate a significant petrologic transition at 21-25 Ma. Oligocene Bas Obispo Fm. rocks have large negative Nb-Ta anomalies, low HREE, fluid mobile element enrichments, a THI of 0.88, and a H2Ocalc of >3 wt. %. In contrast, the Miocene Pedro Miguel and Late Basalt Fm. exhibit reduced Nb-Ta anomalies, flattened REE curves, depleted fluid mobile elements, a THI of 1.45, a H2Ocalc of <1 wt. %, and plot in mid-ocean ridge/back-arc basin fields. Geochemical modeling of Miocene rocks indicates 0.5-0.1 kbar crystallization depths of hot (1100-1190°C magmas in which most compositional diversity can be explained by fractional crystallization (F = 0.5. However, the most silicic lavas (Las Cascadas Fm. require an additional mechanism, and assimilation-fractional-crystallization can reproduce observed compositions at reasonable melt fractions. The Canal volcanic rocks, therefore, change from hydrous basaltic pyroclastic deposits typical of mantle-wedge-derived magmas, to hot, dry bi-modal magmatism at the Oligocene-Miocene boundary. We suggest the primary reason for the change is onset of arc perpendicular extension localized to central Panama. High-resolution mapping along the Panama Canal has revealed a sequence of inward dipping maar-diatreme pyroclastic pipes, large basaltic sills, and bedded silicic ignimbrites and tuff deposits. These volcanic bodies intrude into the sedimentary Canal Basin and are cut by normal and subsequently strike-slip faults. Such pyroclastic pipes and basaltic sills are most common in extensional arc and large igneous province environments. Overall, the change in volcanic edifice form and geochemistry are related to onset of arc perpendicular extension, and are consistent with the

  14. Inferring Shallow Subsurface Density Structure from Surface and Underground Gravity Measurements: Calibrating Models for Relatively Undeformed Volcanic Strata at the Jemez Volcanic Field, New Mexico, USA

    Science.gov (United States)

    Roy, Mousumi; Lewis, Megan; Johnson, Alex; George, Nicolas; Rowe, Charlotte; Guardincerri, Elena

    2018-03-01

    Imaging shallow subsurface density structure is an important goal in a variety of applications, from hydrogeology to seismic and volcanic hazard assessment. We assess the effectiveness of surface and subsurface gravity measurements in estimating the density structure of a well-characterized rock volume: the mesa (a small, flat-topped plateau) upon which the town of Los Alamos, New Mexico, USA is located. Our gravity measurements were made on the mesa surface above a horizontal tunnel and underground, within the tunnel. We demonstrate that, in the absence of other geophysical data such as seismic data or muon attenuation, subsurface (tunnel) gravity measurements are critical to accurately recovering geologic structure. Without the tunnel data, our resolution is limited to roughly the surface gravity station spacing, but by including the tunnel data we can resolve structure to a depth of 10 times the surface gravity station spacing. Densities were obtained using both forward modeling and a Bayesian inverse modeling approach, incorporating relevant constraints from geologic observations. We find that Bayesian inversion, with geologically relevant prior, is a superior approach to the forward models in terms of both robustness and efficiency and correctly predicts the orientation and elevation of important geologic features.

  15. Volcanic hazard studies for the Yucca Mountain project

    International Nuclear Information System (INIS)

    Crowe, B.; Turrin, B.; Wells, S.; Perry, F.; McFadden, L.; Renault, C.E.; Champion, D.; Harrington, C.

    1989-01-01

    Volcanic hazard studies are ongoing to evaluate the risk of future volcanism with respect to siting of a repository for disposal of high-level radioactive waste at the Yucca Mountain site. Seven Quaternary basaltic volcanic centers are located a minimum distance of 12 km and a maximum distance of 47 km from the outer boundary of the exploration block. The conditional probability of disruption of a repository by future basaltic volcanism is bounded by the range of 10/sup /minus/8/ to 10/sup /minus/10/ yr/sup /minus/1/. These values are currently being reexamined based on new developments in the understanding of the evaluation of small volume, basaltic volcanic centers including: (1) Many, perhaps most, of the volcanic centers exhibit brief periods of eruptive activity separated by longer periods of inactivity. (2) The centers may be active for time spans exceeding 10 5 yrs, (3) There is a decline in the volume of eruptions of the centers through time, and (4) Small volume eruptions occurred at two of the Quaternary centers during latest Pleistocene or Holocene time. We classify the basalt centers as polycyclic, and distinguish them from polygenetic volcanoes. Polycyclic volcanism is characterized by small volume, episodic eruptions of magma of uniform composition over time spans of 10 3 to 10 5 yrs. Magma eruption rates are low and the time between eruptions exceeds the cooling time of the magma volumes. 25 refs., 2 figs

  16. Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise subduction below southern Baja California?

    Science.gov (United States)

    Aguillón-Robles, Alfredo; Calmus, Thierry; Benoit, Mathieu; Bellon, Hervé; Maury, René C.; Cotten, Joseph; Bourgois, Jacques; Michaud, François

    2001-06-01

    A typical slab melt association was emplaced from 11 to 8 Ma in the Santa Clara volcanic field, Vizcaino Peninsula, Baja California Sur. It includes adakitic domes and associated pyroclastic flow deposits, together with lava flows of niobium-enriched basalts. The trace element and isotopic (Sr-Nd-Pb) signatures of adakites are consistent with melting of altered mid-ocean ridge basalts, and the sources of the Nb-enriched basalts contain an enriched mantle wedge component. Such associations commonly form at depths of 70 80 km during low-dip subduction of very young oceanic crust. However, the Santa Clara field is relatively close (100 km) to the paleotrench, which suggests that the genesis of its adakites and Nb- enriched basalts occurred in a very high thermal regime linked to the subduction of the then-active Guadalupe spreading center of the East Pacific Rise. Our data suggest that the asthenospheric window documented below northern Baja California also developed beneath the south of the peninsula during the Neogene. This hypothesis is consistent with the spatial distribution and the ages of adakites and magnesian andesites from this region.

  17. Cenozoic intraplate volcanism on New Zealand: Upwelling induced by lithospheric removal

    Science.gov (United States)

    Hoernle, K.; White, J. D. L.; van den Bogaard, P.; Hauff, F.; Coombs, D. S.; Werner, R.; Timm, C.; Garbe-Schönberg, D.; Reay, A.; Cooper, A. F.

    2006-08-01

    Diffuse intraplate volcanism spanning the Cenozoic on the North, South, Chatham, Auckland, Campbell and Antipodes Islands of New Zealand has produced quartz tholeiitic to basanitic/nephelinitic (including their differentiates) monogenetic volcanic fields and large shield volcanoes. New 40Ar/ 39Ar ages, combined with published age data, show no correlations among age, location or composition of the volcanoes. Continuous volcanism in restricted areas over long time periods, and a lack of volcanic age progressions in the direction and at the rate of plate motion, are inconsistent with a plume origin for the intraplate volcanism. Although localized extension took place during some episodes of volcanic activity, the degree of extension does not correlate with erupted volumes or compositions. Major and trace element data suggest that the silica-poor volcanic rocks (primarily basanites) were derived through low degrees of partial melting at deeper depths than the more silica-rich volcanic rocks (alkali basalts and tholeiites) and that all melts were produced from ocean island basalt (OIB)-type sources, containing garnet pyroxenite or eclogite. The Sr-Nd-Pb isotope data indicate that the silica-poor rocks were derived from high time-integrated U/Pb (HIMU)-type sources and the silica-rich rocks from more enriched mantle (EM)-type sources, reflecting greater interaction with lithosphere modified by subduction beneath Gondwana. The first-order cause of melting is inferred to be decompression melting in the garnet stability field of upwelling asthenosphere, triggered by removal (detachment) of different parts of the subcontinental lithospheric keel throughout the Cenozoic. In some cases, large thicknesses of keel were removed and magmatism extended over many millions of years. Decompression melting beneath a thick craton generates melts that are likely to be similar to those from the base of the mid-ocean-ridge melting column. At mid-ocean ridges, however, these melts never

  18. The Snake River Plain Volcanic Province: Insights from Project Hotspot

    Science.gov (United States)

    Shervais, J. W.; Potter, K. E.; Hanan, B. B.; Jean, M. M.; Duncan, R. A.; Champion, D. E.; Vetter, S.; Glen, J. M. G.; Christiansen, E. H.; Miggins, D. P.; Nielson, D. L.

    2017-12-01

    The Snake River Plain (SRP) Volcanic Province is the best modern example of a time-transgressive hotspot track beneath continental crust. The SRP began 17 Ma with massive eruptions of Columbia River basalt and rhyolite. After 12 Ma volcanism progressed towards Yellowstone, with early rhyolite overlain by basalts that may exceed 2 km thick. The early rhyolites are anorogenic with dry phenocryst assemblages and eruption temperatures up to 950C. Tholeiitic basalts have major and trace element compositions similar to ocean island basalts (OIB). Project Hotspot cored three deep holes in the central and western Snake River Plain: Kimama (mostly basalt), Kimberly (mostly rhyolite), and Mountain Home (lake sediments and basaslt). The Kimberly core documents rhyolite ash flows up to 700 m thick, possibly filling a caldera or sag. Chemical stratigraphy in Kimama and other basalt cores document fractional crystallization in relatively shallow magma chambers with episodic magma recharge. Age-depth relations in the Kimama core suggest accumulation rates of roughly 305 m/Ma. Surface and subsurface basalt flows show systematic variations in Sr-Nd-Pb isotopes with distance from Yellowstone interpreted to reflect changes in the proportion of plume source and the underlying heterogeneous cratonic lithosphere, which varies in age, composition, and thickness from west to east. Sr-Nd-Pb isotopes suggest <5% lithospheric input into a system dominated by OIB-like plume-derived basalts. A major flare-up of basaltic volcanism occurred 75-780 ka throughout the entire SRP, from Yellowstone in the east to Boise in the west. The youngest western SRP basalts are transitional alkali basalts that range in age from circa 900 ka to 2 ka, with trace element and isotopic compositions similar to the plume component of Hawaiian basalts. These observations suggest that ancient SCLM was replaced by plume mantle after the North America passed over the hotspot in the western SRP, which triggered renewed

  19. Constraints on ocean ridge basalt generation from Gakkel Ridge basalts

    Science.gov (United States)

    Langmuir, C. H.; Michael, P.; Standish, J.; Goldstein, S.

    2006-12-01

    The Gakkel Ridge that traverses the Arctic Ocean from Greenland to Siberia provides five "natural experiments" with respect to our understanding of melt generation and delivery at ocean ridges. (1) It is the deepest of the ocean ridges, and tests the global correlations of basalt chemistry with axial depth and the origin of such correlations. (2) It is the slowest spreading ridge, and tests the influence of ultra-slow spreading on magma generation without the complexity of oblique spreading or multiple transform offsets. (3) The samples are both on- and off-axis, allowing tests of the similarity of on- and off-axis volcanism. (4) It provides a test of the veined mantle disequilibrium melting hypothesis for MORB, since both ultra-slow spreading rate and great depth suggest minimum extents of melting, with the extent of melting decreasing progressively towards the east. (5) It tests segmentation models, because there are no transform offsets along the ridge, and the slow spreading rates should lead to maximum melt focusing along strike. The comprehensive major element, trace element and isotopic data set for the rocks obtained on the AMORE cruise allows investigation of all of these issues. (1) The Gakkel fits global depth-chemistry correlations, and major and trace element data as well as crustal thickness suggest small extents of melting in this region, decreasing towards the east. (2)Ultra-slow spreading leads to a thicker lithospheric lid and more garnet influence towards the east. The effects of thick lithosphere and mantle temperature on melting can be clearly distinguished in this region, and contrast with global systematics. This suggests that lithosphere variations are of minor importance in controlling the global array. (3) Off-axis samples are more diverse than on-axis samples, confirming the importance of off-axis volcanism at ultra-slow ridges. (4) Trace element data do not show an increase in a "veined component" towards the east as spreading rate

  20. Geochemical stratigraphy and correlation within large igneous provinces: The final preserved stages of the Faroe Islands Basalt Group

    Science.gov (United States)

    Millett, J. M.; Hole, M. J.; Jolley, D. W.; Passey, S. R.

    2017-08-01

    The Faroe Islands Basalt Group (FIBG) comprises a gross stratigraphic thickness of over 6.5 km of dominantly extrusive basaltic facies erupted during the Late Palaeocene to Early Eocene. In this study we present 140 major and trace element analyses from flow by flow field and borehole sample profiles, through the Enni Formation, which comprises the final phase of volcanism preserved on the Faroe Islands. The sample profiles target geographically spaced and overlapping stratigraphic sequences tied relative to a 3D ArcGIS surface for the regionally extensive volcaniclastic Argir Beds marker unit. From these profiles five geochemical groups including one low TiO2 (Low-Ti 1.5 wt%) groups differentiated by Nb, Zr, Y and V variations are identified in conjunction with previous studies. The spatial and stratigraphic distribution of these groups is mapped across the islands and demonstrates a complex inter-digitated flow field evolution. Within the finer scale variations, broad spatial and temporal development trends are identified demonstrating the potential for correlation within the volcanic succession at the local, tens of kilometers scale. Low-Ti lavas formed in association with lithospheric thinning and developed extensive flow fields between the Faroe Islands and East Greenland contemporaneous to the eruption of High-Ti smaller melt fraction lava flows in both locations. The progression of High-Ti lava groups preserved on either side of the developing rift zone is very similar, but is not, however, chronostratigraphic due to multiple inter-digitations of the chemical types. We tentatively suggest that a previously proposed rift-oblique transfer zone between the Faroe Islands and East Greenland enabled non-uniform lithospheric thinning and the preservation of a near-continuous High-Ti melting region between these areas beyond the onset of Low-Ti eruptions which were initially fed from the west. This study highlights the complex nature of late stage flood basalt

  1. Cosmogenic 3He and 21Ne production rates calibrated against 10Be in minerals from the Coso volcanic field

    Science.gov (United States)

    Amidon, William H.; Rood, Dylan H.; Farley, Kenneth A.

    2009-04-01

    This study calibrates the production rate of cosmogenic 3He in pyroxene, olivine, garnet, zircon and apatite as well as 21Ne in quartz and pyroxene against the known production rate of 10Be in quartz. The Devil's Kitchen rhyolite from the Coso volcanic field in southeastern California (elev. ~ 1300 m) was chosen for this study due to its young age (~ 610 ka) and diverse mineral assemblage. Based on 10Be, our two rhyolite samples have apparent exposure ages of ~ 49 and 93 ka, indicating substantial erosion after eruption. Combining data from the two samples, we estimate sea level high latitude 3He spallation production rates of 145 ± 11, 141 ± 16, and 144 ± 30 at g - 1 a - 1 (2 σ) for pyroxene, olivine and spessartine garnet respectively. For zircon and apatite, we estimate apparent 3He spallation production rates of 114 ± 8 and 149 ± 28 at g - 1 a - 1 (2 σ) respectively. The rates for zircon and apatite are reported as apparent production rates because we do not explicitly address the redistribution of spallation produced 3He from adjacent minerals. These estimates quantitatively account for production of 3He from both cosmogenic and radiogenic neutron reactions on 6Li within the analyzed phases and also implanted from nuclear reactions in neighboring minerals; the high U, Th and Li content of this rhyolite provides a particularly rigorous test of this correction. We estimate 21Ne production rates of 17.7 ± 1.6 and 34.1 ± 3.2 at g - 1 a - 1 (2 σ) in quartz and pyroxene (Fe/Mg = 0.7 by mass) respectively. Although high U and Th contents create the potential for significant production of nucleogenic 21Ne, this component is small due to the young eruption age of the rhyolite.

  2. Terrestrial Analog Field Investigations to Enable Science and Exploration Studies of Impacts and Volcanism on the Moon, NEAs, and Moons of Mars

    Science.gov (United States)

    Heldmann, Jennifer Lynne; Colaprete, Anthony; Cohen, Barbara; Elphic, Richard; Garry, William; Hodges, Kip; Hughes, Scott; Kim, Kyeon; Lim, Darlene; McKay, Chris; hide

    2013-01-01

    Terrestrial analog studies are a critical component for furthering our understanding of geologic processes on the Moon, near-Earth asteroids (NEAs), and the moons of Mars. Carefully chosen analog sites provide a unique natural laboratory with high relevance to the associated science on these solar system target bodies. Volcanism and impact cratering are fundamental processes on the Moon, NEAs, and Phobos and Deimos. The terrestrial volcanic and impact records remain invaluable for our understanding of these processes throughout our solar system, since these are our primary source of firsthand knowledge on volcanic landform formation and modification as well as the three-dimensional structural and lithological character of impact craters. Regarding impact cratering, terrestrial fieldwork can help us to understand the origin and emplacement of impactites, the history of impact bombardment in the inner Solar System, the formation of complex impact craters, and the effects of shock on planetary materials. Volcanism is another dominant geologic process that has significantly shaped the surface of planetary bodies and many asteroids. Through terrestrial field investigations we can study the processes, geomorphic features and rock types related to fissure eruptions, volcanic constructs, lava tubes, flows and pyroclastic deposits. Also, terrestrial analog studies have the advantage of enabling simultaneous robotic and/or human exploration testing in a low cost, low risk, high fidelity environment to test technologies and concepts of operations for future missions to the target bodies. Of particular interest is the importance and role of robotic precursor missions prior to human operations for which there is little to no actual mission experience to draw upon. Also critical to understanding new worlds is sample return, and analog studies enable us to develop the appropriate procedures for collecting samples in a manner that will best achieve the science objectives.

  3. Orientation-dependent electromagnetic properties of basalt fibre/nickel core–shell heterostructures

    International Nuclear Information System (INIS)

    Yu-Qing, Kang; Mao-Sheng, Cao; Xiao-Yong, Fang; Jie, Yuan

    2010-01-01

    The influence of orientation on electromagnetic properties of basalt fibre/nickel core–shell heterostructures prepared by a simple electroless plating method is investigated. For comparison, the same investigation is also performed on naked basalt fibres. For electromagnetic measurement, the directions of basalt fibre/nickel and naked basalt fibres are parallel, random and perpendicular to the direction of external electric field, termed E || sample, random sample and E p erpendicular sample, respectively. Electromagnetic anisotropy can be clearly observed in the basalt fibre/nickel core–shell heterostructures, while electromagnetic properties of naked basalt fibres are unrelated to the orientation. The E p erpendicular basalt fibre/nickel shows the highest dielectric loss but the lowest magnetic loss, and E || basalt fibre/nickel exhibits the highest magnetic loss but the lowest dielectric loss. The dielectric loss of E p erpendicular basalt fibre/nickel is several times as large as that of E || basalt fibre/nickel, which could be attributed to the increase of polarization relaxation time as a consequence of the nanosize-confinement effect. The magnetic loss of E || basalt fibre/nickel is even one order of magnitude higher than that of E p erpendicular basalt fibre/nickel, which originates mainly from the natural magnetic resonance of basalt fibre/nickel core–shell heterostructures. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. The Early Mesozoic volcanic arc of western North America in northeastern Mexico

    Science.gov (United States)

    Barboza-Gudiño, José Rafael; Orozco-Esquivel, María Teresa; Gómez-Anguiano, Martín; Zavala-Monsiváis, Aurora

    2008-02-01

    Volcanic successions underlying clastic and carbonate marine rocks of the Oxfordian-Kimmeridgian Zuloaga Group in northeastern Mexico have been attributed to magmatic arcs of Permo-Triassic and Early Jurassic ages. This work provides stratigraphic, petrographic geochronological, and geochemical data to characterize pre-Oxfordian volcanic rocks outcropping in seven localities in northeastern Mexico. Field observations show that the volcanic units overlie Paleozoic metamorphic rocks (Granjeno schist) or Triassic marine strata (Zacatecas Formation) and intrude Triassic redbeds or are partly interbedded with Lower Jurassic redbeds (Huizachal Group). The volcanic rocks include rhyolitic and rhyodacitic domes and dikes, basaltic to andesitic lava flows and breccias, and andesitic to rhyolitic pyroclastic rocks, including breccias, lapilli, and ashflow tuffs that range from welded to unwelded. Lower-Middle Jurassic ages (U/Pb in zircon) have been reported from only two studied localities (Huizachal Valley, Sierra de Catorce), and other reported ages (Ar/Ar and K-Ar in whole-rock or feldspar) are often reset. This work reports a new U/Pb age in zircon that confirms a Lower Jurassic (193 Ma) age for volcanic rocks exposed in the Aramberri area. The major and trace element contents of samples from the seven localities are typical of calc-alkaline, subduction-related rocks. The new geochronological and geochemical data, coupled with the lithological features and stratigraphic positions, indicate volcanic rocks are part of a continental arc, similar to that represented by the Lower-Middle Jurassic Nazas Formation of Durango and northern Zacatecas. On that basis, the studied volcanic sequences are assigned to the Early Jurassic volcanic arc of western North America.

  5. A Study by Remote Sensing Methods of Volcanism at Craters of the Moon National Park, Idaho

    Science.gov (United States)

    Haberle, C. W.; Hughes, S. S.; Kobs-Nawotniak, S. E.; Lim, D. S. S.; Garry, B.; Sears, D. W. G.; Downs, M.; Busto, J.; Skok, J. R.; Elphic, R. C.; Kobayashi, L.; Heldmann, J. L.; Christensen, P. R.

    2014-12-01

    Craters of the Moon (COTM) National Park, on the eastern Snake River Plain, and its associated lava fields are currently a focus of the NASA SSERVI FINESSE (Field Investigations to Enable Solar System Science and Exploration) team. COTM was selected for study owing to similarities with volcanic features observed on the Moon, Mars and Vesta. The COTM basaltic lava fields emanate from an 80 km long rift zone where at least eight eruptive episodes, occurring 15,000 to 2,000 BP, have created an expansive volcanic field covering an area of approximately 1,650 km2. This polygenetic volcanic field hosts a diverse collection of basaltic volcanic edifices such as phreatic explosion craters, eruptive fissures, cinder cones, spatter cones, shield volcanoes and expansive lava flows. Engineering challenges and high cost limit the number of robotic and human field investigations of planetary bodies and, due to these constraints, exhaustive remote sensing investigations of planetary surface properties are undertaken prior to field deployment. This creates an unavoidable dependence upon remote sensing, a critical difference between field investigations of planetary bodies and most terrestrial field investigations. Studies of this nature have utility in terrestrial investigations as they can help link spatially encompassing datasets and conserve field resources. We present preliminary results utilizing Earth orbital datasets to determine the efficacy of products derived from remotely sensed data when compared to geologic field observations. Multispectral imaging data (ASTER, AVIRIS, TIMS) collected at a range of spatial and spectral resolutions are paired with high resolution imagery from both orbit and unmanned aircraft systems. This enables the creation of derived products detailing morphology, compositional variation, mineralogy, relative age and vegetation. The surface morphology of flows within COTM differs from flow to flow and observations of these properties can aid in

  6. VOLCANIC RISK ASSESSMENT - PROBABILITY AND CONSEQUENCES

    International Nuclear Information System (INIS)

    G.A. Valentine; F.V. Perry; S. Dartevelle

    2005-01-01

    Risk is the product of the probability and consequences of an event. Both of these must be based upon sound science that integrates field data, experiments, and modeling, but must also be useful to decision makers who likely do not understand all aspects of the underlying science. We review a decision framework used in many fields such as performance assessment for hazardous and/or radioactive waste disposal sites that can serve to guide the volcanological community towards integrated risk assessment. In this framework the underlying scientific understanding of processes that affect probability and consequences drive the decision-level results, but in turn these results can drive focused research in areas that cause the greatest level of uncertainty at the decision level. We review two examples of the determination of volcanic event probability: (1) probability of a new volcano forming at the proposed Yucca Mountain radioactive waste repository, and (2) probability that a subsurface repository in Japan would be affected by the nearby formation of a new stratovolcano. We also provide examples of work on consequences of explosive eruptions, within the framework mentioned above. These include field-based studies aimed at providing data for ''closure'' of wall rock erosion terms in a conduit flow model, predictions of dynamic pressure and other variables related to damage by pyroclastic flow into underground structures, and vulnerability criteria for structures subjected to conditions of explosive eruption. Process models (e.g., multiphase flow) are important for testing the validity or relative importance of possible scenarios in a volcanic risk assessment. We show how time-dependent multiphase modeling of explosive ''eruption'' of basaltic magma into an open tunnel (drift) at the Yucca Mountain repository provides insight into proposed scenarios that include the development of secondary pathways to the Earth's surface. Addressing volcanic risk within a decision

  7. Petrographical, geochemical and petrological study of the xenoliths associating the basalt of (Southwest, Syria)

    International Nuclear Information System (INIS)

    Safarjalani, A.; Nasir, S.

    1998-01-01

    Alkali basalt spread northeast part of Shamah volcanic field (Southwest of Syria) belonging to the Neogene and Quaternary ages, which are coexisted with a great quantity of mafic and ultramafic xenoliths and megacrysts. Field observations and data of geochemical and petrographical studies results, for xenoliths coexisted with alkali basalt speared over the northwest part of the arabian plate (Syria) indicate availability of a proper environment where various kinds of xenoliths of lower crustal and upper mantle were formed, this indicates that these xenoliths have been formed under different thermo barometric conditions. The study of available mineral para genesis and geothermobarometrics on coexisting minerals suggests equilibration conditions, ranging between 6-8 kba for pressure and 850-920 Centigrade for temperature, and that is for xenoliths of gabbroic nature formed in the lower crustal between 20-27 km depth. With regard to the formation conditions of the xenoliths formed in the upper mantle (Pyroxenite and Lherzolite); they rang between 13.5 - 14.5 kba for pressure and 950-1060 Centigrade for temperature. (Author)

  8. A combined field and numerical approach to understanding dilute pyroclastic density current dynamics and hazard potential: Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Brand, Brittany D.; Gravley, Darren M.; Clarke, Amanda B.; Lindsay, Jan M.; Bloomberg, Simon H.; Agustin-Flores, Javier; Németh, Károly

    2014-04-01

    The most dangerous and deadly hazards associated with phreatomagmatic eruptions in the Auckland Volcanic Field (AVF; Auckland, New Zealand) are those related to volcanic base surges - dilute, ground-hugging, particle laden currents with dynamic pressures capable of severe to complete structural damage. We use the well-exposed base surge deposits of the Maungataketake tuff ring (Manukau coast, Auckland), to reconstruct flow dynamics and destructive potential of base surges produced during the eruption. The initial base surge(s) snapped trees up to 0.5 m in diameter near their base as far as 0.7-0.9 km from the vent. Beyond this distance the trees were encapsulated and buried by the surge in growth position. Using the tree diameter and yield strength of the wood we calculate that dynamic pressures (Pdyn) in excess of 12-35 kPa are necessary to cause the observed damage. Next we develop a quantitative model for flow of and sedimentation from a radially-spreading, dilute pyroclastic density currents (PDCs) to determine the damage potential of the base surges produced during the early phases of the eruption and explore the implications of this potential on future eruptions in the region. We find that initial conditions with velocities on the order of 65 m s- 1, bulk density of 38 kg m- 3 and initial, near-vent current thicknesses of 60 m reproduce the field-based Pdyn estimates and runout distances. A sensitivity analysis revealed that lower initial bulk densities result in shorter run-out distances, more rapid deceleration of the current and lower dynamic pressures. Initial velocity does not have a strong influence on run-out distance, although higher initial velocity and slope slightly decrease runout distance due to higher rates of atmospheric entrainment. Using this model we determine that for base surges with runout distances of up to 4 km, complete destruction can be expected within 0.5 km from the vent, moderate destruction can be expected up to 2 km, but much

  9. Pliocene volcanism of the Taos Plateau, Rio Grande Rift-New constraints on eruptive cycles, compositional trends and links to rift tectonism

    Science.gov (United States)

    Thompson, R. A.; Cosca, M. A.; Turner, K. J.; Condit, C. B.; Lee, J.; Budahn, J. R.; Drenth, B.

    2011-12-01

    The Taos Plateau volcanic field (TPVF) in the southern San Luis Basin of northern New Mexico and southern Colorado is the most voluminous of the predominantly basaltic Neogene (6-1 Ma) volcanic fields of the Rio Grande rift. Coincident with extensional tectonism, volcanic deposits of the TPVF are intercalated with alluvial deposits of the Santa Fe Group and reflect the time-integrated magmatic response to basin- and sub basin-scale structural accommodation of regional extension. New data constraining the eruptive history of mafic to intermediate composition Pliocene volcanic rocks of the Taos Plateau volcanic field are presented based on integrated geologic mapping (1:24,000 to 1:50,000 scale), 40Ar/39Ar geochronology, geochemistry and aeromagnetic data. Mapped stratigraphy and faulting is linked to new gravity model interpretations to establish the location of deeper basin and sub basin geometry relative to mapped eruptive centers. Three representative clusters of eruptive centers in the San Luis Basin (San Antonio Mtn., Ute Mtn., and Guadalupe Mtn./Red River areas) range in composition from basaltic andesite to dacite but are volumetrically dominated by high-silica andesite to dacite. Eruptive cycles for each cluster are: San Antonio Mtn. (andesite - 4.17 Ma, high silica andesite to dacite - 3.08 Ma); Ute Mtn. (andesite - 3.95 Ma, high silica andesite - 3.90 Ma); Guadalupe Mtn./Red River (Guadalupe Mtn. dacite - 5.04 Ma, Hatchery volcano basaltic andesite to andesite - 4.90 Ma) and Red River high silica andesite - 4.64 Ma). Deposits of each cluster are stratigraphically intercalated with Servilleta Basalt (5.26-3.36 Ma) but not temporally associated with these distally derived lavas. Each mapped cluster is spatially associated with mapped or inferred basin- or sub basin- bounding structures largely derived from new gravity models and interpretation of aeromagnetic data. However, few temporal constraints on pre- as well as post-eruption displacement on rift faults

  10. Synthesis of morphotectonics and volcanics of the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Mukherjee, A.D.; Iyer, S.D.

    the topographic highs, pillow and massive basalts are common while close to fracture zones, flow lavas occur. Two significant volcanic activities: one during the formation of the near-axis generated seamounts and the other in an intraplate environment...

  11. Pressure grouting of fractured basalt flows

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, P.; Weidner, J.; Phillips, S.; Alexander, J.

    1996-04-01

    This report describes a field trial of pressure grouting in basalt and the results of subsequent coring and permeability measurement activities. The objective was to show that the hydraulic conductivity of fractured basalt bedrock can be significantly reduced by pressure injection of cementitious materials. The effectiveness of the pressure grout procedure was evaluated by measuring the change in the hydraulic conductivity of the bedrock. The extent of grout penetration was established by analyzing postgrout injection drilling chips for the presence of a tracer in the grout and also by examining cores of the treated basalt. Downhole radar mapping was used to establish major lava flow patterns and follow water movement during a surface infiltration test. A site called Box Canyon, which is located northwest of the INEL, was chosen for this study due to the similarity of this surface outcrop geology to that of the underlying bedrock fracture system found at the Radioactive Waste Management Complex. This study showed that hydraulic conductivity of basalt can be reduced through pressure grouting of cementitious material.

  12. The use of luminescence for dating young volcanic eruptions

    Science.gov (United States)

    Schmidt, Christoph; Schaarschmidt, Maria; Kolb, Thomas; Richter, Daniel; Tchouankoue, Jean Pierre; Zöller, Ludwig

    2017-04-01

    Reliable chronologies of volcanic eruptions are vital for hazard analysis, but dating of Holocene and Late Pleistocene volcanism poses a major challenge. Established techniques such as 40Ar/39Ar are often problematic due to the long half-life of 40K or the absence of datable materials. In this context, luminescence dating methods are an alternative since they are applicable to Earth's most common minerals and to a range of different datable events. Luminescence signal resetting during volcanic activity can be caused by heat (lava, contact to lava), light (disintegration of ejecta) or (temperature-assisted) pressure in the course of phreatomagmatic explosions. While volcanogenic minerals assembling basalt or other volcanic rocks are less suitable for luminescence dating due to so-called anomalous fading, the signal of volcanogenically heated or fragmented country rock actually relates to the time of eruption as well and further provides reproducible results. This contribution aims to illustrate the potential of this latter approach by presenting two case studies. The first refers to two Late Pleistocene scoria cones in the Westeifel Volcanic Field (WEVF), Germany, of which the Wartgesberg locality was dated by 40Ar/39Ar and 14C, while the closeby Facher Höhe is chronologically poorly constrained (Mertz et al. 2015; pers comm. Luise Eichhorn, 2016). The former locality allows testing the accuracy of various luminescence techniques (thermoluminescence, TL, optically stimulated luminescence, OSL, infrared stimulated luminescence, IRSL) applied to quartz and feldspar against independent age control. The other study site is the monogenetic Lake Nyos Maar as part of the Cameroon Volcanic Line, having killed 1,700 people in 1986 following the release of large amounts of CO2. Previous dating efforts of the last explosive activity are inconsistent and yielded age estimates ranging from 400 a (14C) to >350 ka (K-Ar) (Aka et al. 2008). Our results demonstrate that multiple

  13. Degassing of reduced carbon from planetary basalts.

    Science.gov (United States)

    Wetzel, Diane T; Rutherford, Malcolm J; Jacobsen, Steven D; Hauri, Erik H; Saal, Alberto E

    2013-05-14

    Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential.

  14. The Subduction Component at Volcan El Jorullo: Young but Subdued

    Science.gov (United States)

    Rubin, K. H.; Zellmer, G. F.; Jurado-Chichay, Z.; Moran-Zenteno, D.; Pyle, D.

    2006-12-01

    Volcan El Jorullo (1759 to 1774) was produced in one of two historical eruptions within the Michoacan- Guanajuato Volcanic field (MGVF) in the western Trans Mexican Volcanic Belt. The MGVF has experienced widespread Pleistocene volcanism primarily at monogenetic fissures and cones; its exact relationship to the Mexican Subduction zone has been the subject of some discussion in the literature. Here we demonstrate that Jorullo basalts and basaltic andesites have U-series disequilibria characteristic of arc magmatism, and constrain melting and melt transport from a previously slab-fluid enriched source within the past few thousand years. All Jorullo lavas have excess 238U relative to 230Th (a slab-fluid signature found almost exclusive in arc magmas) and excess ^{226}Ra relative to 230Th (a short-lived melting signature common in all young volcanics enhanced by slab derived fluids at arcs). These signatures are well correlated with other chemical indicators of fluid enrichment in the lavas, and are consistent with a recent Jorullo melt inclusion volatile study indicating relatively high water contents inherrited from the magma source (Johnson et al., EOS 85, Fall Meet. Suppl, 2004). ^{226}Ra excesses in Jorullo lavas reach 70%, a value which is similar to but greater than those reported by Reid (IAVCEI, 1987) for Paricutin (the other historical MGVF eruption). This result is consistent with a similar but slightly shorter crustal residence time of the more mafic Jorullo magmas. Jorullo 238U excesses (5-10%) are at the low end of values reported for Paricutin (up to 20%; Condomines et al., 1988). We have previously reported (Rubin et al., EOS 85, Fall Meet. Suppl, 2004) that country rock assimilation is a more widespread occurrence at Jorullo than previously thought (Luhr and Carmichael, CMP 90, 1985); this significantly impacts the trace element and radiogenic isotope (e.g., Sr, Nd, Pb) composition of some Jorullo lavas. Assimilation also disrupts the U-series system

  15. Subseafloor basalts as fungal habitats

    Directory of Open Access Journals (Sweden)

    M. Ivarsson

    2012-09-01

    Full Text Available The oceanic crust is believed to host the largest potential habitat for microbial life on Earth, yet, still we lack substantial information about the abundance, diversity, and consequence of its biosphere. The last two decades have involved major research accomplishments within this field and a change in view of the ocean crust and its potential to harbour life. Here fossilised fungal colonies in subseafloor basalts are reported from three different seamounts in the Pacific Ocean. The fungal colonies consist of various characteristic structures interpreted as fungal hyphae, fruit bodies and spores. The fungal hyphae are well preserved with morphological characteristics such as hyphal walls, septa, thallic conidiogenesis, and hyphal tips with hyphal vesicles within. The fruit bodies consist of large (∼50–200 µm in diameter body-like structures with a defined outer membrane and an interior filled with calcite. The fruit bodies have at some stage been emptied of their contents of spores and filled by carbonate-forming fluids. A few fruit bodies not filled by calcite and with spores still within support this interpretation. Spore-like structures (ranging from a few µm to ∼20 µm in diameter are also observed outside of the fruit bodies and in some cases concentrated to openings in the membrane of the fruit bodies. The hyphae, fruit bodies and spores are all closely associated with a crust lining the vein walls that probably represent a mineralized biofilm. The results support a fungal presence in deep subseafloor basalts and indicate that such habitats were vital between ∼81 and 48 Ma.

  16. Petrographical indicators of petrogenesis: Examples from Central Indian Ocean Basin basalts

    Digital Repository Service at National Institute of Oceanography (India)

    Mislankar, P.G.; Iyer, S.D.

    petrographic entities that can help to establish a range of under- coolings. The distinction may simply be differences in the length of acicular plagioclase needles in flow interiors 7 and spacing between plagioclase dendrites at known distances from... carried out to help identify the various morpho-tectonic features of the basin. Besides the nodules and encrustations, a number of volcanics were also retrieved. Most of the volcanics are basalts obtained from a depth of 5000 m between lat. 10 o -15 o...

  17. Rapid Mass Wasting Following Nearshore Underwater Volcanism on Kilauea Volcano

    Science.gov (United States)

    Sansone, F. J.; Smith, J. R.; Culp, J. B.

    2003-12-01

    The rapid mass wasting of shallow submarine basalts was documented during SCUBA dives (with extensive underwater video and photography) along the flanks of Kilauea volcano, Hawaii during the Ki'i lava entry of the current eruption (19° 20.4'N, 155° 00.0'W). Lava entered the ocean at this site from mid-February to late March 1990, with several pauses. Dives on 19-20 March 1990 confirmed the widespread formation of lava pillows, as well as channelized lava flows, at this site over a water depth range of 20-40 m. Visual observations suggested that the resulting volcanic deposits were generally stable, despite the steep incline of the seafloor ( ˜40 degrees). (The pre-eruptive seafloor slope was ˜14 degrees.) However, dives on 2 April 1990 revealed that nearly all of these relatively large submarine volcanic features had been subject to mass wasting, as the offshore area had been transformed into a debris field composed of material ranging in size from fine sand to boulder fragments. This generally featureless seascape extended uniformly to beyond the visual range of divers ( ˜60 m water depth). High resolution side-scan bathymetry and imaging indicate that steeply sloped talus fields extend down the flanks of Kilauea in this area to abyssal depths, implying a possible linkage between coastal submarine volcanism and deep-water deposits. This work, combined with other observations at Kilauea, also suggests that coastal submarine volcanism may not generally result in the accumulation of stable rock formations.

  18. The source and longevity of sulfur in an Icelandic flood basalt eruption plume

    Science.gov (United States)

    Ilyinskaya, Evgenia; Edmonds, Marie; Mather, Tamsin; Schmidt, Anja; Hartley, Margaret; Oppenheimer, Clive; Pope, Francis; Donovan, Amy; Sigmarsson, Olgeir; Maclennan, John; Shorttle, Oliver; Francis, Peter; Bergsson, Baldur; Barsotti, Sara; Thordarson, Thorvaldur; Bali, Eniko; Keller, Nicole; Stefansson, Andri

    2015-04-01

    The Holuhraun fissure eruption (Bárðarbunga volcanic system, central Iceland) has been ongoing since 31 August 2014 and is now the largest in Europe since the 1783-84 Laki event. For the first time in the modern age we have the opportunity to study at first hand the environmental impact of a flood basalt fissure eruption (>1 km3 lava). Flood basalt eruptions are one of the most hazardous volcanic scenarios in Iceland and have had enormous societal and economic consequences across the northern hemisphere in the past. The Laki eruption caused the deaths of >20% of the Icelandic population by environmental pollution and famine and potentially also increased European levels of mortality through air pollution by sulphur-bearing gas and aerosol. A flood basalt eruption was included in the UK National Risk Register in 2012 as one of the highest priority risks. The gas emissions from Holuhraun have been sustained since its beginning, repeatedly causing severe air pollution in populated areas in Iceland. During 18-22 September, SO2 fluxes reached 45 kt/day, a rate of outgassing rarely observed during sustained eruptions, suggesting that the sulfur loading per kg of erupted magma exceeds both that of other recent eruptions in Iceland and perhaps also other historic basaltic eruptions globally. This raises key questions regarding the origin of these prodigious quantities of sulphur. A lack of understanding of the source of this sulfur, the conversion rates of SO2 gas into aerosol, the residence times of aerosol in the plume and the dependence of these on meteorological factors is limiting our confidence in the ability of atmospheric models to forecast gas and aerosol concentrations in the near- and far-field from Icelandic flood basalt eruptions. In 2015 our group is undertaking a project funded by UK NERC urgency scheme to investigate several aspects of the sulfur budget at Holuhraun using a novel and powerful approach involving simultaneous tracking of sulfur and

  19. Surface heat flow and CO2 emissions within the Ohaaki hydrothermal field, Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Rissmann, C.; Christenson, B.; Werner, C.; Leybourne, M.; Cole, J.; Gravley, D.

    2012-01-01

    Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20a of production (116MW e). Soil CO2 degassing was quantified with 2663 CO2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (Wm -2) using published soil temperature heat flow functions. Both CO2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO 2 gas samples were also analysed for stable C isotopes. Following 20a of production, current CO2 emissions equated to 111??6.7T/d. Observed heat flow was 70??6.4MW, compared with a pre-production value of 122MW. This 52MW reduction in surface heat flow is due to production-induced drying up of all alkali-Cl outflows (61.5MW) and steam-heated pools (8.6MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali-Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18MW (from 25MW to 43.3??5MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20a of production, with an observed heat flow of 26.7??3MW and a CO 2 emission rate of 39??3T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali-Cl outflows once contributed significantly to the natural surface heat flow (~50%) they contributed little (99% of the original CO 2

  20. Surface heat flow and CO2 emissions within the Ohaaki hydrothermal field, Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Rissmann, C.; Christenson, B.; Werner, C.; Leybourne, M.; Cole, J.; Gravley, D.

    2012-01-01

    Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20a of production (116MW e). Soil CO2 degassing was quantified with 2663 CO2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (Wm -2) using published soil temperature heat flow functions. Both CO2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO 2 gas samples were also analysed for stable C isotopes. Following 20a of production, current CO2 emissions equated to 111??6.7T/d. Observed heat flow was 70??6.4MW, compared with a pre-production value of 122MW. This 52MW reduction in surface heat flow is due to production-induced drying up of all alkali-Cl outflows (61.5MW) and steam-heated pools (8.6MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali-Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18MW (from 25MW to 43.3??5MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20a of production, with an observed heat flow of 26.7??3MW and a CO 2 emission rate of 39??3T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali-Cl outflows once contributed significantly to the natural surface heat flow (~50%) they contributed little (99% of the original CO 2

  1. Geochemistry of middle Tertiary volcanic rocks in the northern Aquarius Mountains, west-central Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, A.M.; Haxel, G.B.

    1993-04-01

    The northern Aquarius Mountains volcanic field ([approximately]50km east of Kingman) covers an area of 400 km[sup 2], bounded by upper Trout Creek (S), the Truxton Valley (N), the Big Sandy Valley (W), and Cross Mountain (E). The volcanic sequence rests upon a pre-middle Eocene erosional surface. The lowest units is a 250 m-thick unit of rhyolitic pyroclastic breccias and airfall tuffs. Successively younger units are: basanite flows and cinder cones; hornblende latite flows and domes; porphyritic dacite flows, domes, and breccias; alkali basalt intrusions; and low-silica rhyolite domes and small high=silica rhyolite flows. Dacite is volumetrically dominant, and erupted primarily from vents in and around Cedar Basin (Penitentiary Mtn 7.5[prime] quad.). Other geologists have obtained K-Ar dates [approximately]24--20 Ma for the basanites and latites. The alkali basalts, latites, dacites, and rhyolites evidently constitute a genetically-related high-K to shoshonitic calcalkaline suite with chemistry typical of subduction-related magmatism: enrichment in LILE and LREE, and depletion of Nb and Ta relative to K and La and of Ti relative to Hf and Yb. Each rock type is unique and distinguishable in K/Rb and Rb/Sr. The basanites are primitive (mg=0.75--0.78), have intraplate affinities (La/Nb[<=]1), and show consistent and distinctive depletion of K relative to the other LILE. The presence of these basanites in an early Miocene volcanic sequence is unusual or unexpected, as they predate (by [approximately]10 m.y.) the regional eruption of asthenosphere-derived basalts associated with Basin-and-Range extension.

  2. Magma chamber processes in central volcanic systems of Iceland

    DEFF Research Database (Denmark)

    Þórarinsson, Sigurjón Böðvar; Tegner, Christian

    2009-01-01

    New field work and petrological investigations of the largest gabbro outcrop in Iceland, the Hvalnesfjall gabbro of the 6-7 Ma Austurhorn intrusive complex, have established a stratigraphic sequence exceeding 800 m composed of at least 8 macrorhythmic units. The bases of the macrorhythmic units......3 of clinopyroxene and magnetite indicative of magma replenishment. Some macrorhythmic units show mineral trends indicative of up-section fractional crystallisation over up to 100 m, whereas others show little variation. Two populations of plagioclase crystals (large, An-rich and small, less An...... olivine basalts from Iceland that had undergone about 20% crystallisation of olivine, plagioclase and clinopyroxene and that the macrorhythmic units formed from thin magma layers not exceeding 200-300 m. Such a "mushy" magma chamber is akin to volcanic plumbing systems in settings of high magma supply...

  3. Assessment of planetary geologic mapping techniques for Mars using terrestrial analogs: The SP Mountain area of the San Francisco Volcanic Field, Arizona

    Science.gov (United States)

    Tanaka, K.L.; Skinner, J.A.; Crumpler, L.S.; Dohm, J.M.

    2009-01-01

    We photogeologically mapped the SP Mountain region of the San Francisco Volcanic Field in northern Arizona, USA to evaluate and improve the fidelity of approaches used in geologic mapping of Mars. This test site, which was previously mapped in the field, is chiefly composed of Late Cenozoic cinder cones, lava flows, and alluvium perched on Permian limestone of the Kaibab Formation. Faulting and folding has deformed the older rocks and some of the volcanic materials, and fluvial erosion has carved drainage systems and deposited alluvium. These geologic materials and their formational and modificational histories are similar to those for regions of the Martian surface. We independently prepared four geologic maps using topographic and image data at resolutions that mimic those that are commonly used to map the geology of Mars (where consideration was included for the fact that Martian features such as lava flows are commonly much larger than their terrestrial counterparts). We primarily based our map units and stratigraphic relations on geomorphology, color contrasts, and cross-cutting relationships. Afterward, we compared our results with previously published field-based mapping results, including detailed analyses of the stratigraphy and of the spatial overlap and proximity of the field-based vs. remote-based (photogeologic) map units, contacts, and structures. Results of these analyses provide insights into how to optimize the photogeologic mapping of Mars (and, by extension, other remotely observed planetary surfaces). We recommend the following: (1) photogeologic mapping as an excellent approach to recovering the general geology of a region, along with examination of local, high-resolution datasets to gain insights into the complexity of the geology at outcrop scales; (2) delineating volcanic vents and lava-flow sequences conservatively and understanding that flow abutment and flow overlap are difficult to distinguish in remote data sets; (3) taking care to

  4. Chemical trends in the Ice Springs basalt, Black Rock Desert, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, W.C.; Nash, W.P.

    1980-06-01

    The Holocene Ice Springs volcanic field of west-central Utah consists of 0.53 km/sup 3/ of tholeiitic basalts erupted as a sequence of nested cinder cones and associated lava flows. Whole rock x-ray fluorescence and atomic absorption analysis of ninety-six samples of known relative age document statistically significant inter- and intra-eruption chemical variations. Elemental trends include increases in Ti, Fe, Ca, P, and Sr and decreases in Si, K, Rb, Ni, Cr, and Zr with decreasing age. Microprobe analyses of microphenocrysts of olivine, plagioclase, and Fe-Ti oxides and of groundmass olivine, plagioclase, and clinopyroxene indicate limited chemical variation between mineral assemblages of the eruptive events. Petrographic analyses have identified the presence of minor amounts of silicic xenoliths, orthopyroxene megacrysts, and plagioclase xenocrysts. Potassium-argon determinations establish the existence of excess argon in the basaltic cinder (30.05 x 10/sup -12/ moles/gm) and in distal lava flows (8.29 x 10/sup -12/ moles/gm) which suggest apparent ages of 16 and 4.3 million years respectively. Strontium isotopic data (Puskar and Condie, 1973) show systematic variations from oldest eruptions (87Sr/86Sr=0.7052) to youngest eruptions (87Sr/86Sr=0.7059).

  5. UPDATING AN EXPERT ELICITATION IN THE LIGHT OF NEW DATA: TEN YEARS OF PROBABILISTIC VOLCANIC HAZARD ANALYSIS FOR THE PROPOSED HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    F.V. Perry; A. Cogbill; R. Kelley

    2005-01-01

    The U.S. Department of Energy (DOE) considers volcanism to be a potentially disruptive class of events that could affect the safety of the proposed high-level waste repository at Yucca Mountain. Volcanic hazard assessment in monogenetic volcanic fields depends on an adequate understanding of the temporal and spatial pattern of past eruptions. At Yucca Mountain, the hazard is due to an 11 Ma-history of basaltic volcanism with the latest eruptions occurring in three Pleistocene episodes to the west and south of Yucca Mountain. An expert elicitation convened in 1995-1996 by the DOE estimated the mean hazard of volcanic disruption of the repository as slightly greater than 10 -8 dike intersections per year with an uncertainty of about two orders of magnitude. Several boreholes in the region have encountered buried basalt in alluvial-filled basins; the youngest of these basalts is dated at 3.8 Ma. The possibility of additional buried basalt centers is indicated by a previous regional aeromagnetic survey conducted by the USGS that detected approximately 20 magnetic anomalies that could represent buried basalt volcanoes. Sensitivity studies indicate that the postulated presence of buried post-Miocene volcanoes to the east of Yucca Mountain could increase the hazard by an order of magnitude, and potentially significantly impact the results of the earlier expert elicitation. Our interpretation of the aeromagnetic data indicates that post-Miocene basalts are not present east of Yucca Mountain, but that magnetic anomalies instead represent faulted and buried Miocene basalt that correlates with nearby surface exposures. This interpretation is being tested by drilling. The possibility of uncharacterized buried volcanoes that could significantly change hazard estimates led DOE to support an update of the expert elicitation in 2004-2006. In support of the expert elicitation data needs, the DOE is sponsoring (1) a new higher-resolution, helicopter-borne aeromagnetic survey

  6. Intracanyon basalt lavas of the Debed River (northern Armenia), part of a Pliocene-Pleistocene continental flood basalt province in the South Caucasus

    Science.gov (United States)

    Sheth, Hetu; Meliksetian, Khachatur; Gevorgyan, Hripsime; Israyelyan, Arsen; Navasardyan, Gevorg

    2015-03-01

    Late Pliocene to Early Pleistocene (~ 3.25-2.05 Ma), 200-400 m thick basalt lavas outcrop in the South Caucasus region, including the Kars-Erzurum Plateau (northeastern Turkey), the Javakheti Plateau (Georgia-Armenia), and the Lori Plateau (northern Armenia). These fissure-fed, rapidly erupted fluid lavas filled pre-existing river valleys over many tens of kilometres. The basalts exposed in the Debed River canyon, northern Armenia, are ~ 200 m thick and of three morphological types: (1) basal pillow basalts and hyaloclastites, overlain by (2) columnar-jointed pahoehoe sheet flows, in turn overlain by (3) slabby pahoehoe and rubbly pahoehoe flows. The lower and middle lavas show evidence for damming of river drainage, like many lavas of the Columbia River flood basalt province, Scotland, Ireland, and Iceland. There is also evidence for syn-volcanic faulting of the early lavas. Related basalts also outcrop in the Gegham Uplands and the Hrazdan River basin in Armenia. This 3.25-2.05 Ma South Caucasus basalt province, covering parts of Turkey, Georgia and Armenia, has an estimated areal extent of ~ 15,000 km2 and volume of ~ 2250 km3. Because its main geological features are remarkably like those of many continental flood basalt (CFB) provinces, we consider it a true, albeit small, CFB province. It is the smallest and youngest CFB in the world. An analogue closely similar in major features is the Late Miocene Altos de Jalisco CFB province in the western Trans-Mexican Volcanic Belt. Both provinces formed during lithospheric pull-apart and transtensional faulting. Their broader significance is in showing flood basalt size distribution to be a continuum without natural breaks, with implications for geodynamic models.

  7. Petrography and petrology of Quaternary volcanic rocks from Ghezel Ghaleh, northwest Qorveh

    Directory of Open Access Journals (Sweden)

    Alireza Bajelan

    2014-10-01

    Full Text Available Introduction In the east and northeast of Sanandaj in the Qorveh-Bijar-Takab axis, there are series of basaltic composition volcanoes with Quaternary age. The study area is part of the Sanandaj-Sirjan zone and is located between 47°52' and 47°57' E longitudes and 35°26 and '35°30' N latitudes. Due to the location of the volcanic cone on Pliocene clastic sediments and Quaternary travertine, the age of these volcanoes is considered to be Quaternary. The cones mostly consist of low scoria, ash, volcanic bombs, lapilli deposits and basaltic lava (Moein Vaziri and Aminsobhani, 1985. Petrological and geochemical studies have been carried out to evaluate Quaternary magmatism in the area and to determine the nature of the lithological characteristics, such as the evaluation of source rocks and magma type, degree of partial melting and the tectonic setting of Ghezel Ghaleh rocks (Moein Vaziri, 1997. Simplified geological map of the study area is characterized by ER-Mapper software. Materials and methods In the course of field studies in the region, 40 samples were taken, 30 thin sections were prepared and polished. XRD analyses were performed on some whole rock samples. All major, minor and trace elements were assessed by ICP-MS at Lab Weft Laboratory in Australia. Results Based on the classification of structural zones, the area is located in the Sanandaj-Sirjan zone, hundred kilometers away from the main Zagros thrust along the NW-SE direction. After early Cimmerian orogeny, andesitic volcanic activity took place (Moein Vaziri and Aminsobhani, 1985. A major secondary mineral in these rocks is iddingsite, formed by hydration and oxidation of the olivine (Shelley, 1993. According to SiO2 against Na2O + K2O (TAS diagram (Irvine and Baragar , 1971 and cationic R1 and R2 diagram (De La Roche et el., 1980, volcanic rocks of the area indicate alkaline series. Discussion To obtain more information on the tectonic setting of these rocks, the Zr/Y-Zr diagram

  8. Rubbly Pahoehoe: Implication for Flood Basalt Eruptions and their Atmospheric Effects

    Science.gov (United States)

    Keszthelyi, L.; Keszthelyi, L.; Thordarson, T.; Self, S.

    2001-12-01

    Rubbly pahoehoe flows consist of a brecciated flow top, a pahoehoe base, and an interior similar to inflated pahoehoe flows. Rubbly pahoehoe flows can be found in many localities, making up ~20% of the Columbia River Basalt Group, ~50% of the lavas drilled on the Kerguelen Plateau, and a substantial fraction of the Icelandic lava flows. They are rare in the tholeiitic shield portions of the Hawaiian volcanoes, but are more common in the alkalic flows. They also appear to be the dominant type of Martian flood lava flow. Based primarily on observations from the 1873-1874 Laki Flow Field in Iceland, we suggest that rubbly pahoehoe flows form when the flux of lava within an inflating pahoehoe flow is so large that it rafts away the upper crust. This crust is then broken into large slabs and fragmented lobes, intruded by liquid lava from below, and folded into pressure ridges. This brecciation process quickly builds an insulating crust; for the Laki case a crust >4 m thick developed in less than a week. This rapid formation of a thick insulating crust allows lava to be transported over great distances with minimal cooling in eruptions lasting only weeks-months. Flood basalt flows emplaced in this manner could have had eruption rates on the order of 104 - 105 m^{3}s^{-1}. If active fissure segments were of the order of 10 km long, the volcanic plumes should have risen 9-16 km -- penetrating the stratosphere in most cases. The injection of \\sim10 Gt of SO_{2}$, F, and Cl into the stratosphere could have had serious climatic effects, thus further strengthening the plausible link between flood basalt eruptions and mass extinctions.

  9. The Ngorongoro Volcanic Highland and its relationships to volcanic deposits at Olduvai Gorge and East African Rift volcanism.

    Science.gov (United States)

    Mollel, Godwin F; Swisher, Carl C

    2012-08-01

    The Ngorongoro Volcanic Highland (NVH), situated adjacent and to the east of Olduvai Gorge in northern Tanzania, is the source of the immense quantities of lava, ignimbrite, air fall ash, and volcaniclastic debris that occur interbedded in the Plio-Pleistocene sedimentary deposits in the Laetoli and Olduvai areas. These volcanics have proven crucial to unraveling stratigraphic correlations, the age of these successions, the archaeological and paleontological remains, as well as the source materials from which the bulk of the stone tools were manufactured. The NVH towers some 2,000 m above the Olduvai and Laetoli landscapes, affecting local climate, run-off, and providing varying elevation - climate controlled ecosystem, habitats, and riparian corridors extending into the Olduvai and Laetoli lowlands. The NVH also plays a crucial role in addressing the genesis and history of East African Rift (EAR) magmatism in northern Tanzania. In this contribution, we provide age and petrochemical compositions of the major NVH centers: Lemagurut, basalt to benmorite, 2.4-2.2 Ma; Satiman, tephrite to phonolite, 4.6-3.5 Ma; Oldeani, basalt to trachyandesite, 1.6-1.5 Ma; Ngorongoro, basalt to rhyolite, 2.3-2.0 Ma; Olmoti, basalt to trachyte, 2.0-1.8 Ma; Embagai, nephelinite to phonolite, 1.2-0.6 Ma; and Engelosin, phonolite, 3-2.7 Ma. We then discuss how these correlate in time and composition with volcanics preserved at Olduvai Gorge. Finally, we place this into context with our current understanding as to the eruptive history of the NVH and relationship to East African Rift volcanism. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Petrology of Gakkel Ridge Basalts: Preliminary Results

    Science.gov (United States)

    Langmuir, C. H.; Lehnert, K.; Goldstein, S. L.; Michael, P.; Graham, D.; Schramm, B.

    2001-12-01

    The Gakkel Ridge offers the opportunity for a direct experiment in mantle melting and ridge dynamics. It is the slowest spreading ridge on the Earth, with a progressive change in spreading rate from 15mm/yr at the western end to 7mm/yr at the eastern end. No transform faults disrupt the melting regime, and spreading rate alone would appear to be the primary variable. During the AMORE2001 expedition of USCGC Healy and RV Polarstern, more than one hundred sampling stations were successfully completed mid-way through the cruise, with precise locations on new multibeam bathymetric charts (Kurras et al, Gauger et al, this meeting). More than 100 samples were analyzed on board for major elements, Sr and Ba by direct current plasma spectrometry. Because the cruise track encompasses a double-pass along most of the ridge, the on board data permitted testing of hypotheses formulated on the first pass by further sampling on the second pass. Models for the effect of decreasing spreading rate on melt composition predict progressively smaller extents of melting at greater depths eastward along the ridge. Instead, the ridge contains three distinct tectono-magmatic regimes. In the west, well-defined linear volcanic ridges occupy the center of the rift valley. The basalts exhibit a ''slow spreading local trend'' of negative correlation between Fe8 and Si8 and positive correlation between Na8 and Fe8. There is a well-defined geochemical gradient from more enriched incompatible trace element compositions in the west to depleted compositions in the east. At the eastern terminus of this region there are small volcanic cones with chemical compositions rare or unique among MORB. Samples with high MgO contain high TiO2 and Sr (3% and 200 ppm), and low SiO2 and Ba (46-47% and 20 ppm ). The low SiO2 and exceptionally high FeO (12%) suggest high pressures of melting. The high Sr and TiO2 but very low Ba of these samples suggest they were derived by very low extents of melting of a depleted

  11. Paleoarchean trace fossils in altered volcanic glass.

    Science.gov (United States)

    Staudigel, Hubert; Furnes, Harald; DeWit, Maarten

    2015-06-02

    Microbial corrosion textures in volcanic glass from Cenozoic seafloor basalts and the corresponding titanite replacement microtextures in metamorphosed Paleoarchean pillow lavas have been interpreted as evidence for a deep biosphere dating back in time through the earliest periods of preserved life on earth. This interpretation has been recently challenged for Paleoarchean titanite replacement textures based on textural and geochronological data from pillow lavas in the Hooggenoeg Complex of the Barberton Greenstone Belt in South Africa. We use this controversy to explore the strengths and weaknesses of arguments made in support or rejection of the biogenicity interpretation of bioalteration trace fossils in Cenozoic basalt glasses and their putative equivalents in Paleoarchean greenstones. Our analysis suggests that biogenicity cannot be taken for granted for all titanite-based textures in metamorphosed basalt glass, but a cautious and critical evaluation of evidence suggests that biogenicity remains the most likely interpretation for previously described titanite microtextures in Paleoarchean pillow lavas.

  12. Chemical magnetization when determining Thellier paleointensity experiments in oceanic basalts

    Science.gov (United States)

    Tselebrovskiy, Alexey; Maksimochkin, Valery

    2017-04-01

    The natural remanent magnetization (NRM) of oceanic basalts selected in the rift zones of the Mid-Atlantic Ridge (MAR) and the Red Sea has been explored. Laboratory simulation shows that the thermoremanent magnetization and chemical remanent magnetization (CRM) in oceanic basalts may be separated by using Tellier-Coe experiment. It was found that the rate of CRM destruction is about four times lower than the rate of the partial thermoremanent magnetization formation in Thellier cycles. The blocking temperatures spectrum of chemical component shifted toward higher temperatures in comparison with the spectrum of primary thermoremanent magnetization. It was revealed that the contribution of the chemical components in the NRM increases with the age of oceanic basalts determined with the analysis of the anomalous geomagnetic field (AGF) and spreading theory. CRM is less than 10% at the basalts aged 0.2 million years, less than 50% at basalts aged 0.35 million years, from 60 to 80% at basalts aged 1 million years [1]. Geomagnetic field paleointensity (Hpl) has been determined through the remanent magnetization of basalt samples of different ages related to Brunhes, Matuyama and Gauss periods of the geomagnetic field polarity. The value of the Hpl determined by basalts of the southern segment of MAR is ranged from 17.5 to 42.5 A/m, by the Reykjanes Ridge basalts — from 20.3 to 44 A/m, by the Bouvet Ridge basalts — from 21.7 to 34.1 A/m. VADM values calculated from these data are in good agreement with the international paleointensity database [2] and PISO-1500 model [3]. Literature 1. Maksimochkin V., Tselebrovskiy A., (2015) The influence of the chemical magnetization of oceanic basalts on determining the geomagnetic field paleointensity by the thellier method, moscow university physics bulletin, 70(6):566-576, 2. Perrin, M., E. Schnepp, and V. Shcherbakov (1998), Update of the paleointensity database, Eos Trans. AGU, 79, 198. 3. Channell JET, Xuan C, Hodell DA (2009

  13. Petrogenesis of the Jiaoziding granitoids and associated basaltic porphyries: Implications for extensive early Neoproterozoic arc magmatism in western Yangtze Block

    Science.gov (United States)

    Li, Jun-Yong; Wang, Xiao-Lei; Gu, Zhi-Dong

    2018-01-01

    Middle Neoproterozoic (ca 860-750 Ma) granitoids are widely distributed in the western margin of the Yangtze Block, China, yet their magma sources and tectonic settings are unclear. The geochronology and geochemistry of the granitoids and associated basaltic porphyries, which intruded the 970 Ma Tongmuliang arc volcanic rocks in the Jiaoziding area (east of Pingwu county), were investigated in this study. LA-ICP-MS zircon U-Pb dating indicates that the Jiaoziding granitoids and basaltic porphyries were formed at 795 ± 6 Ma and 790 ± 20 Ma, respectively. The granitoids have high SiO2 (69.2-76.9 wt%), K2O (2.3-5.6 wt%), and Na2O (3.2-5.1 wt%) contents, and a low Al2O3 (12.4-14.5 wt%) content. The basaltic porphyries contain high concentrations of TiO2 ( 3 wt%) and high field strength elements, have steep rare earth element patterns, and are depleted in Nd and Hf isotopes. Batch partial-melting modelling indicates that the Jiaoziding granitoids could have been derived by 5% and 50-70% partial melting of Tongmuliang mafic rocks and quartz-keratophyres, respectively. Formation of the basaltic porphyries by melting of upwelling asthenospheric mantle would have been facilitated by extensive lithospheric delamination during the Neoproterozoic. This study established a link between mid-Neoproterozoic granitic magmatism and 970 Ma juvenile arc crust, indicating that extensive early Neoproterozoic juvenile arc crust, and partial melting of this crust in an extensional setting, favoured the formation of middle Neoproterozoic granitic rocks along the W-NW margin of the Yangtze Block.

  14. Olivine Major and Trace Element Compositions in Southern Payenia Basalts, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina; Portnyagin, Maxim; Hoernle, Kaj

    2015-01-01

    Olivine major and trace element compositions from 12 basalts from the southern Payenia volcanic province in Argentina have been analyzed by electron microprobe and laser ablation inductively coupled plasma mass spectrometry. The olivines have high Fe/Mn and low Ca/Fe and many fall at the end of t...

  15. Mapping Planetary Volcanic Deposits: Identifying Vents and Distingushing between Effects of Eruption Conditions and Local Lava Storage and Release on Flow Field Morphology

    Science.gov (United States)

    Bleacher, J. E.; Eppler, D. B.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Hurwitz, D. M.; Whitson, P.; Janoiko, B.

    2014-01-01

    Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts [1-3]. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone.

  16. Mapping Planetary Volcanic Deposits: Identifying Vents and Distinguishing between Effects of Eruption Conditions and Local Storage and Release on Flow Field Morphology

    Science.gov (United States)

    Bleacher, J. E.; Eppler, D. B.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Hurwitz, D. M.; Whitson, P.; Janoiko, B.

    2014-01-01

    Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone.

  17. Accessory mineral U-Th-Pb ages and 40Ar/39Ar eruption chronology, and their bearing on rhyolitic magma evolution in the Pleistocene Coso volcanic field, California

    Science.gov (United States)

    Simon, J.I.; Vazquez, J.A.; Renne, P.R.; Schmitt, A.K.; Bacon, C.R.; Reid, M.R.

    2009-01-01

    We determined Ar/Ar eruption ages of eight extrusions from the Pleistocene Coso volcanic field, a long-lived series of small volume rhyolitic domes in eastern California. Combined with ion-microprobe dating of crystal ages of zircon and allanite from these lavas and from granophyre geothermal well cuttings, we were able to track the range of magma-production rates over the past 650 ka at Coso. In ??? 230 ka rhyolites we find no evidence of protracted magma residence or recycled zircon (or allanite) from Pleistocene predecessors. A significant subset of zircon in the ???85 ka rhyolites yielded ages between ???100 and 200 Ma, requiring that generation of at least some rhyolites involves material from Mesozoic basement. Similar zircon xenocrysts are found in an ???200 ka granophyre. The new age constraints imply that magma evolution at Coso can occur rapidly as demonstrated by significant changes in rhyolite composition over short time intervals (???10's to 100's ka). In conjunction with radioisotopic age constraints from other young silicic volcanic fields, dating of Coso rhyolites highlights the fact that at least some (and often the more voluminous) rhyolites are produced relatively rapidly, but that many small-volume rhyolites likely represent separation from long-lived mushy magma bodies. ?? The Author(s) 2009.

  18. Accessory mineral U-Th-Pb ages and 40Ar/39Ar eruption chronology, and their bearing on rhyolitic magma evolution in the Pleistocene Coso volcanic field, California

    Science.gov (United States)

    Simon, Justin I.; Vazquez, Jorge A.; Renne, Paul R.; Schmitt, Axel K.; Bacon, Charles R.; Reid, Mary R.

    2009-10-01

    We determined Ar/Ar eruption ages of eight extrusions from the Pleistocene Coso volcanic field, a long-lived series of small volume rhyolitic domes in eastern California. Combined with ion-microprobe dating of crystal ages of zircon and allanite from these lavas and from granophyre geothermal well cuttings, we were able to track the range of magma-production rates over the past 650 ka at Coso. In ≤230 ka rhyolites we find no evidence of protracted magma residence or recycled zircon (or allanite) from Pleistocene predecessors. A significant subset of zircon in the ~85 ka rhyolites yielded ages between ~100 and 200 Ma, requiring that generation of at least some rhyolites involves material from Mesozoic basement. Similar zircon xenocrysts are found in an ~200 ka granophyre. The new age constraints imply that magma evolution at Coso can occur rapidly as demonstrated by significant changes in rhyolite composition over short time intervals (≤10’s to 100’s ka). In conjunction with radioisotopic age constraints from other young silicic volcanic fields, dating of Coso rhyolites highlights the fact that at least some (and often the more voluminous) rhyolites are produced relatively rapidly, but that many small-volume rhyolites likely represent separation from long-lived mushy magma bodies.

  19. Implications of Zn/Fe ratios for the sources of Colorado Plateau basalts

    Science.gov (United States)

    Rudzitis, S.; Reid, M. R.

    2011-12-01

    Early Miocene to recent mafic magmatism migrated across the Arizona Transition Zone towards the center of the stable Colorado Plateau at a rate of ~ 3-6 km/Myr (Roy et al., 2009). Present-day volcanic centers are close to a stepwise change in the thickness of the lithosphere between the Colorado Plateau and Basin and Range. Accordingly, volcanic migration might track progressive thinning of the lithosphere towards the center of the Colorado Plateau. This project aims to determine the conditions of melt generation across the transition zone in order to investigate the temporal/spatial correlation between volcanism and thinning of the Colorado Plateau lithosphere. Pressure and temperature estimates for Colorado Plateau basalts can be obtained from the Mg and Si contents of melts (Lee et al, 2009) but require melting of a peridotitic source. Eclogite and pyroxenite xenoliths reported in Colorado Plateau basalts show that melt sources could be olivine-poor. Zn/Fe ratios in melts can help to distinguish contributions from olivine-poor sources because they are sensitive to differences in bulk chemistry and to mineralogy (Le Roux et al., 2010). Specifically, Zn/Fe is not fractionated between melt, olivine, and orthopyroxene, but is highly fractionated when clinopyroxene and garnet are present. Our work to date has focused on laser ablation-IC-PMS analysis of individual olivine grains from high-Mg basalts (>8.0 wt. %) from the San Francisco and Mormon Mountain volcanic fields. Preliminary values of Zn/Fe ratios that represent the averages of multiple analyses of several grains in individual samples range from 7.9 to 9.3 (x10000). Variations of up to 1.7 (x10000) in the ratios exist between individual grains within samples and could be the result of co-crystallization of clinopyroxene with olivine. The lowest values in each sample should approach the Zn/Fe ratios of parental melts, and are, in turn, similar to MORB values and predicted peridotite melts. The results suggest

  20. Eruption History and Geochemical Evolution of Servilleta Basalt Along the Rio Grande Gorge, Colorado and New Mexico

    Science.gov (United States)

    Cosca, M. A.; Thompson, R. A.; Turner, K. J.; Morgan, L. E.

    2016-12-01

    Subalkaline basalt to basaltic andesite lava flows formally known as Servilleta Basalt (SB) are the most voluminous rock type forming the Pliocene Taos Plateau volcanic field. Pleistocene incision by the Rio Grande into the bedrock-floored plateau has resulted in spectacular exposures of occasionally thick ( 240 m) accumulations of SB within the Rio Grande gorge. Incremental CO2 laser heating of individual rock fragments, the SB within and along the length of the Rio Grande gorge has been precisely dated by 40Ar/39Ar geochronology to between 5.3 Ma and 3.3 Ma. SB older than 4 Ma is restricted to some lava flows exposed between La Junta point, at the confluence of the Red River and Rio Grande, and the Gorge Bridge crossing northwest of Taos, NM. Vertical sampling through thick SB flow sequences within the gorge yields precise emplacement histories and also reveals small but systematic major and minor element concentration variations (including Si, Rb, Sr, Cu and Zn). 40Ar/39Ar data show that these trends developed over short (0-250 ka) timescales, and probably relate to partial assimilation of crust, possibly at multiple depths. Combined field, geochemical, and 40Ar/39Ar data consequently record short-lived changes in tholeiitic melt compositions in response to regional extension and development of the Rio Grande rift. The age, lateral extent, and thickness of exposed SB partially reflect the paleotopographic surface of the southern San Luis Basin prior to onset of Pliocene Taos Plateau volcanic field magmatism; paleotopographic highs diverted some flows while topographic lows were areas of infilling and accumulation. Heterogeneous basin paleotopography developed during contemporaneous or precursory andesitic to dacitic volcanism, extensional faulting and subsidence of sub-basins within the San Luis Basin, and deposition of prograding alluvial fans that originated in the Sangre de Cristo and Picuris Mountains. SB flowed into the southern San Luis Valley beginning 5

  1. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Perry, F. V.; Crowe, G. A.; Valentine, G. A.; Bowker, L. M.

    1997-09-23

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the

  2. Surface heat flow and CO2 emissions within the Ohaaki hydrothermal field, Taupo Volcanic Zone, New Zealand

    International Nuclear Information System (INIS)

    Rissmann, Clinton; Christenson, Bruce; Werner, Cynthia; Leybourne, Matthew; Cole, Jim; Gravley, Darren

    2012-01-01

    Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20 a of production (116 MW e ). Soil CO 2 degassing was quantified with 2663 CO 2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (W m −2 ) using published soil temperature heat flow functions. Both CO 2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO 2 gas samples were also analysed for stable C isotopes. Following 20 a of production, current CO 2 emissions equated to 111 ± 6.7 T/d. Observed heat flow was 70 ± 6.4 MW, compared with a pre-production value of 122 MW. This 52 MW reduction in surface heat flow is due to production-induced drying up of all alkali–Cl outflows (61.5 MW) and steam-heated pools (8.6 MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali–Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18 MW (from 25 MW to 43.3 ± 5 MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20 a of production, with an observed heat flow of 26.7 ± 3 MW and a CO 2 emission rate of 39 ± 3 T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali–Cl outflows once contributed significantly to the natural surface heat flow (∼50%) they

  3. Geochemical and 40Ar/39Ar constraints on the evolution of volcanism in the Woodlark Rift, Papua New Guinea

    Science.gov (United States)

    Catalano, Joseph P.

    The tectonic mechanisms producing Pliocene to active volcanism in eastern Papua New Guinea (PNG) have been debated for decades. In order to assess mechanisms that produce volcanism in the Woodlark Rift, we evaluate the evolution of volcanism in eastern PNG using 40Ar/39Ar thermochronology and whole rock geochemistry. Active volcanism in southeastern Papua New Guinea occurs on the Papuan Peninsula (Mt. Lamington, Mt. Victory and Waiwa), in the Woodlark Rift (Dobu Island, SE Goodenough Island, and Western Fergusson Island), and in the Woodlark Basin. In the Woodlark Basin, seafloor spreading is active and decompression melting of the upper mantle is producing basaltic magmatism. However, the cause of Pliocene and younger volcanism in the Woodlark Rift is controversial. Two hypotheses for the tectonic setting have been proposed to explain Pliocene and younger volcanism in the Woodlark Rift: (1) southward subduction of Solomon Sea lithosphere beneath eastern PNG at the Trobriand Tough and (2) decompression melting of mantle, previously modified by subduction, as the lithosphere undergoes extension associated with the opening of the Woodlark Basin. A comparison of 40Ar/39Ar ages with high field strength element (HFSE) concentrations in primary magmas indicates that HFSE concentrations correlate with age in the Woodlark rift. These data support the hypothesis that Pliocene to active volcanism in the Woodlark Rise and D'Entrecasteaux Islands results from decompression melting of a relict mantle wedge. The subduction zone geochemical signatures (negative HFSE anomalies) in Woodlark Rift lavas younger than 4 m.y. are a relict from older subduction beneath eastern Papua, likely in the middle Miocene. As the lithosphere is extended ahead of the tip of the westward propagating seafloor spreading center in the Woodlark Basin, the composition of volcanism is inherited from prior arc magmatism (via flux melting) and through time evolves toward magmatism associated with a rifting

  4. Volcanic geomorphosites and geotourism in Las Cañadas del Teide National Park, Tenerife, Canary Islands, Spain

    Science.gov (United States)

    Dóniz-Paéz, Javier; Becerra-Ramírez, Rafael; González-Cárdenas, Elena; Rodriguez, Fátima

    2017-04-01

    Geomorphosites and geoturism studies are increasing for the high scientific, societal, cultural, and aesthetic values of the relief. Volcanic areas are exciting targets for such studies for their geodiversity. The aim of these study is an inventory of volcanic geomorphosites and its relationship to geotourism. Las Cañadas del Teide National Park (LCTNP) is a volcanic complex area located in the central part of Tenerife island (Canary Islands, Spain). This area is a volcanic paradise rich in spectacular landforms: stratovolcanoes, calderas, cinder cones, craters, pahoehoe, aa, block and balls lavas, gullies, etc. The national park is registered in the world heritage list (UNESCO) in 2007 as a natural site. The LCTNP receives more than 2,5 million tourists per year and it has 21 main pahts and 14 secondary ones. For the selection of the geomophosites the LCTNP was divided into four geomorphological units (Teide-Pico Viejo stratovolcanoes, Las Cañadas Caldera wall, the bottom of Las Cañadas and the basaltic volcanic field) and each one of them is selected the most representative geomorphosites by its geodiversity, because of its geomorphological heritage, its landscapes and its tourist potential with the paths. All selected geomorphosites are within areas where public use is allowed in the park. The inventory classifies the 23 geomorphosites in two main categories: (a) direct volcanic with 17 geomorphosites (stratovolcanoes, domes, cinder cones, pahoehoe, aa and bloc lava flows, etc.) and (b) eroded volcanic landforms with 6 (wall of Las Cañadas caldera, talusees, foodplains, etc.). The Teide-Pico Viejo unit is which has more geomorphosites with 8 and the Las Cañadas wall unit possessing less with 5. The assessment evaluates the scientific, cultural/historical, and use values and helps to define priorities in site management. These geomorphosites demonstrate the volcanic history and processes of the LCTNP.

  5. Jarosite occurrence in the Deccan Volcanic Province of Kachchh, western India: Spectroscopic studies on a Martian analog locality

    Science.gov (United States)

    Bhattacharya, Satadru; Mitra, Souvik; Gupta, Saibal; Jain, Nirmala; Chauhan, Prakash; Parthasarathy, G.; Ajai

    2016-03-01

    The sulfate mineral jarosite is considered a key indicator of hydrous, acidic, and oxidizing conditions on the surface of early Mars. Here we report an analog terrestrial locality hosting jarosite from Matanumadh, Kachchh, western India, using detailed spectroscopic studies on weathered basalts of the Deccan Volcanic Province and overlying tuffaceous shales and sandstones of the Matanumadh Formation. Hyperspectral data in the visible/near-infrared (350-2500 nm) to midinfrared (4000-400 cm-1) region of the electromagnetic spectrum and X-ray diffraction patterns have been acquired on samples collected from the field to detect and characterize the hydrous sulfate and phyllosilicate phases present at the studied site. Hydrous sulfates occur in association with Al-rich phyllosilicates (kaolinite) that overlie a zone of Fe/Mg smectites in altered basalts. Jarosite is found within both saprolitic clay horizons altered from the basalt and within variegated sandstone and shale/clay units overlying the saprolite; it mostly occurs as secondary veins with or without gypsum. Jarosite is also seen as coatings on kaolinite clasts of varying shapes and sizes within the tuffaceous variegated sandstone unit. We argue that the overall geological setting of the Matanumadh area, with this unusual mineral assemblage developing within altered basalts and in the overlying sedimentary sequence, mimics the geological environment of many of the identified jarosite localities on Mars and can be considered as a Martian analog from this perspective.

  6. Terminal Pleistocene to early Holocene volcanic eruptions at Zuni Salt Lake, west-central New Mexico, USA

    Science.gov (United States)

    Onken, Jill; Forman, Steven

    2017-01-01

    Zuni Salt Lake (ZSL) is a large maar in the Red Hill-Quemado volcanic field located in west-central New Mexico in the southwestern USA. Stratigraphic analysis of sections in and around the maar, coupled with optically stimulated luminescence (OSL) and accelerator mass spectrometry (AMS) 14C dating, indicate that ZSL volcanic activity occurred between ˜13.4 and 9.9 ka and was most likely confined to a ≤500-year interval sometime between ˜12.3 and 11.0 ka. The basal volcanic unit consists of locally widespread basaltic ash fallout interpreted to represent a violent or wind-aided strombolian eruption tentatively attributed to Cerro Pomo, a scoria cone ˜10 km south of ZSL. Subsequent eruptions emanated from vents near or within the present-day ZSL maar crater. Strombolian eruptions of multiple spatter and scoria cones produced basaltic lava and scoria lapilli fallout. Next, a phreatomagmatic eruption created the maar crater and surrounding tephra rim and apron. ZSL eruptions ended with strombolian eruptions that formed three scoria cones on the crater floor. The revised age range of ZSL is younger and more precise than the 190-24 ka 2-sigma age range derived from previous argon dating. This implies that other morphologically youthful, argon-dated volcanoes on the southern margin of the Colorado Plateau might be substantially younger than previously reported.

  7. Counterclockwise rotations in the Late Eocene-Oligocene volcanic fields of San Luis Potosí and Sierra de Guanajuato (eastern Mesa Central, Mexico)

    Science.gov (United States)

    Andreani, Louis; Gattacceca, Jerôme; Rangin, Claude; Martínez-Reyes, Juventino; Demory, François

    2014-12-01

    We used paleomagnetic and structural data to investigate the late Eocene-Oligocene tectonic evolution of the Mesa Central area in Mexico. The Mesa Central was affected by NW-trending faults (Tepehuanes-San Luis fault system) coeval with a Late Eocene-Oligocene ignimbrite flare-up and by post-27 Ma NNE-trending grabens related to the Basin and Range. We obtained reliable paleomagnetic directions from 61 sites within the Late Eocene-Oligocene volcanic series (~ 30 to ~ 27 Ma) of the San Luis Potosí volcanic field and Sierra de Guanajuato. For each site we also measured the anisotropy of magnetic susceptibility (AMS). Tilt corrections were made using AMS data for 33 sites where in situ bedding measurements were not available. Paleomagnetic directions indicate counterclockwise rotations of about 10° with respect to stable North America after 30-25 Ma. Structural data suggest that the volcanic succession was mainly affected by normal faults. However, we also found evidences for oblique or horizontal striae showing a left-lateral component along NW-trending faults and a right lateral component along NE-trending faults. Both motions are consistent with a N-S extension oblique to the Tepehuanes-San Luis fault system. Previous paleomagnetic studies in northern and southern Mexico show the prevalence of minor left-lateral shear components along regional-scale transpressional and transtensional lineaments. Our paleomagnetic data may reflect thus small vertical-axis rotations related to a minor shear component coeval with the Oligocene intra-arc extension in central Mexico.

  8. The polycyclic Lausche Volcano (Lausitz Volcanic Field) and its message concerning landscape evolution in the Lausitz Mountains (northern Bohemian Massif, Central Europe)

    Science.gov (United States)

    Wenger, Erik; Büchner, Jörg; Tietz, Olaf; Mrlina, Jan

    2017-09-01

    The Tertiary Lausitz Volcanic Field covers a broad area encompassing parts of Eastern Saxony (Germany), Lower Silesia (Poland) and North Bohemia (Czech Republic). Volcanism was predominantly controlled by the volcano-tectonic evolution of the Ohře Rift and culminated in the Lower Oligocene. This paper deals with the highest volcano of this area, the Lausche Hill (792.6 m a.s.l.) situated in the Lausitz Mountains. We offer a reconstruction of the volcanic edifice and its eruptive history. Its complex genesis is reflected by six different eruption styles and an associated petrographic variety. Furthermore, the Lausche Volcano provides valuable information concerning the morphological evolution of its broader environs. The remnant of an alluvial fan marking a Middle Paleocene-Lower Eocene (62-50 Ma) palaeo-surface is preserved at the base of the volcano. The deposition of this fan can be attributed to a period of erosion of its nearby source area, the Lausitz Block that has undergone intermittent uplift at the Lausitz Overthrust since the Upper Cretaceous. The Lausche Hill is one of at least six volcanoes in the Lausitz Mountains which show an eminent low level of erosion despite their Oligocene age and position on elevated terrain. These volcanoes are exposed in their superficial level which clearly contradicts their former interpretation as subvolcanoes. Among further indications, this implies that the final morphotectonic uplift of the Lausitz Mountains started in the upper Lower Pleistocene ( 1.3 Ma) due to revived subsidence of the nearby Zittau Basin. It is likely that this neotectonic activity culminated between the Elsterian and Saalian Glaciation ( 320 ka). The formation of the low mountain range was substantially controlled by the intersection of the Lausitz Overthrust and the Ohře Rift.

  9. Linking magma composition with volcano size and eruptive style in basaltic monogenetic systems

    Science.gov (United States)

    Smith, I. E.; McGee, L. E.; Cronin, S. J.

    2012-12-01

    Magma composition, volcano size and eruptive style (together with vent locations) are the definitive parameters of basaltic monogenetic systems. These variables are not independent, but the relationships between them are complex. Monogenetic volcano fields that episodically erupt small-volume, discrete magma batches such as the Auckland Volcanic Field (AVF, northern New Zealand), typically represent primary mantle melts variably modified by near source processes. In such cases, where the volume of magma is small, eruption styles are strongly controlled by the interaction of magma with the surficial environment and this is determined by both magma volume and its rise rate. The magmatic compositional extremes of primitive magmas in the AVF define a spectrum ranging from strongly silica-undersaturated nephelinite to sub-alkalic basalt. Nephelinites are low SiO2 (~40 wt.%), highly incompatible-element enriched compositions, representing very low degrees of partial melting (<2%) in the asthenospheric mantle. Higher SiO2 (~48 wt.%) sub-alkalic compositions have lower incompatible element contents representing higher degrees of melting (~<5%) at slightly shallower depths. Geochemical modeling indicates that all of these magmas are sourced within the same general mantle region at depths of 80-70 km. The two compositional extremes also define extremes in volume of magma and ultimately magma flux at the surface. The surficial environment of the AVF is characterized by highly water saturated sediments of variable competency and many pressurized aquifer systems. Where there is a combination of small volumes and low flux rates, environmental factors dominate and phreatomagmatic explosive eruptions ensue, forming tuff cones, rings and maars. Larger volumes and flux rates result in dry eruptions forming cinder cones and lava fields. Thus at a fundamental level defining magma source characteristics and temporal or spatial variation in these (such as cyclic or evolutionary trends

  10. Felsic Volcanics on the Moon

    Science.gov (United States)

    Jolliff, B. L.; Lawrence, S. J.; Stopar, J.; Braden, S.; Hawke, B. R.; Robinson, M. S.; Glotch, T. D.; Greenhagen, B. T.; Seddio, S. M.

    2012-12-01

    Lunar Reconnaissance Orbiter (LRO) imaging and thermal data provide new morphologic and compositional evidence for features that appear to be expressions of nonmare silicic volcanism. Examples reflecting a range of sizes and volcanic styles include the Gruithuisen and Mairan Domes, and the Hansteen Alpha (H-A) and Compton-Belkovich (C-B) volcanic complexes. In this work we combine new observations with existing compositional remote sensing and Apollo sample data to assess possible origins. Images and digital topographic data at 100 m scale (Wide Angle Camera) and ~0.5 to 2 m (Narrow Angle Camera) reveal (1) slopes on volcanic constructs of ~12° to 27°, (2) potential endogenic summit depressions, (3) small domical features with dense boulder populations, and (4) irregular collapse features. Morphologies in plan view range from the circular to elliptical Gruithuisen γ and δ domes (~340 km2 each), to smaller cumulodomes such as Mairan T and C-B α (~30 km2, each), to the H-A (~375 km2) and C-B (~680 km2) volcanic complexes. Heights range from ~800-1800 m, and most domes are relatively flat-topped or have a central depression. Positions of the Christiansen Feature in LRO Diviner data reflect silicic compositions [1]. Clementine UVVIS-derived FeO varies from ~5 to 10 wt%. Lunar Prospector Th data indicate model values of 20-55 ppm [2,3], which are consistent with compositions ranging from KREEP basalt to lunar granite. The Apollo collection contains small rocks and breccia clasts of felsic/granitic lithologies. Apollo 12 samples include small, pristine and brecciated granitic rock fragments and a large, polymict breccia (12013) consisting of felsic material (quartz & K-feldspar-rich) and mafic phases (similar to KREEP basalt). Many of the evolved lunar rocks have geochemically complementary compositions. The lithologic associations and the lack of samples with intermediate composition suggest a form of magmatic differentiation that produced mafic and felsic

  11. Energy Exploitation of High-Temperature Geothermal Sources in Volcanic Areas—a Possible ORC Application in Phlegraean Fields (Southern Italy

    Directory of Open Access Journals (Sweden)

    Angelo Algieri

    2018-03-01

    Full Text Available This work aims to investigate the energy performances of small-scale Organic Rankine Cycles (ORCs for the exploitation of high temperature geothermal sources in volcanic areas. For this purpose, a thermodynamic model has been developed, and a parametric analysis has been performed that considers subcritical and transcritical configurations, and different organic fluids (isobutane, isopentane, and R245ca. The investigation illustrates the significant effect of the temperature at the entrance of the expander on the ORC behaviour and the rise in system effectiveness when the internal heat exchange (IHE is adopted. As a possible application, the analysis has focused on the active volcanic area of Phlegraean Fields (Southern Italy where high temperature geothermal reservoirs are available at shallow depths. The work demonstrates that ORC systems represent a very interesting option for exploiting geothermal sources and increasing the share of energy production from renewables. In particular, the investigation has been performed considering a 1 kg/s geothermal mass flow rate at 230 °C. The comparative analysis highlights that transcritical configurations with IHE guarantee the highest performance. Isopentane is suggested to maximise the ORC electric efficiency (17.7%, while R245ca offers the highest electric power (91.3 kWel. The selected systems are able to fulfil a significant quota of the annual electric load of domestic users in the area.

  12. Mylonitic volcanics near Puging, Upper Siang district, Arunachal ...

    Indian Academy of Sciences (India)

    Department of Applied Geology, Dibrugarh University, Dibrugarh 786 004, Assam, India. ∗. Corresponding author. e-mail: taposgoswami@gmail.com. The Abor volcanics of the continental flood basalt affinity are extensively exposed in different parts of the Siang valley. These are associated with Yinkiong Group of rocks of ...

  13. Assessment and Evaluation of Volcanic Rocks Used as Construction ...

    African Journals Online (AJOL)

    Addis Ababa capital city of Ethiopia at an elevation of about 2000 m above mean sea level is entirely covered with volcanic rocks, basalt, trachyte, ignimbrite and rhyolite. Construction industry makes use these rocks extensively and indiscriminately for structural loading, pavements, wall cladding, fencing, as cobblestone ...

  14. Volcanic gas

    Science.gov (United States)

    McGee, Kenneth A.; Gerlach, Terrance M.

    1995-01-01

    In Roman mythology, Vulcan, the god of fire, was said to have made tools and weapons for the other gods in his workshop at Olympus. Throughout history, volcanoes have frequently been identified with Vulcan and other mythological figures. Scientists now know that the “smoke" from volcanoes, once attributed by poets to be from Vulcan’s forge, is actually volcanic gas naturally released from both active and many inactive volcanoes. The molten rock, or magma, that lies beneath volcanoes and fuels eruptions, contains abundant gases that are released to the surface before, during, and after eruptions. These gases range from relatively benign low-temperature steam to thick hot clouds of choking sulfurous fume jetting from the earth. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other volcanic gases are hydrogen sulfide, hydrochloric acid, hydrogen, carbon monoxide, hydrofluoric acid, and other trace gases and volatile metals. The concentrations of these gas species can vary considerably from one volcano to the next.

  15. Geology of Pine and Crater Buttes: two basaltic constructs on the far eastern Snake River Plain

    International Nuclear Information System (INIS)

    Mazierski, P.F.; King, J.S.

    1987-01-01

    The emplacement history and petrochemical evolution of the volcanics associated with Pine Butte, Crater Butte, and other nearby vents are developed and described. Four major vents were identified in the study area and their associated eruptive products were mapped. All of the vents show a marked physical elongation or linear orientation coincident with the observed rift set. Planetary exploration has revealed the importance of volcanic processes in the genesis and modification of extraterrestrial surfaces. Interpretation of surface features has identified plains-type basaltic volcanism in various mare regions of the Moon and the volcanic provinces of Mars. Identification of these areas with features that appear analogous to those observed in the Pine Butte area suggests similar styles of eruption and mode of emplacement. Such terrestrial analogies serve as a method to interpret the evolution of volcanic planetary surfaces on the inner planets

  16. Young Volcanism on 20 Million Year Old Seafloor: The DISCOL Area, Nazca Plate.

    Science.gov (United States)

    Devey, C. W.; Boetius, A.; Kwasnitschka, T.; Augustin, N.; Yeo, I. A.; Greinert, J.

    2016-12-01

    Volcanism in the ocean basins is traditionally assumed to occur only at the plate margins (mid-ocean ridges, subduction zones, possibly also transform boundaries) and areas of intraplate hotspot activity related to thermal plumes in the mantle. As a result, abyssal areas away from hotspots are seldom explored systematically for signs of volcanism and are generally regarded as volcanically "dead". Here we present serendipitous results from the Peru Basin, a site of Mn-nodule accumulation which was targetted in 1989 for a large-scale disturbance experiment (the DISCOL experiment) to simulate the effects of seabed nodule mining. The area is truly intraplate - it is 700 km from the south American subduction zone or the Galapagos Islands and 2000 km from the East Pacific Rise. A return trip to DISCOL in 2015 to assess the extent of environmental recovery also included a remotely-operated underwater vehicle (ROV) dive on a small (300m high) seamount adjacent to the Mn-nodule field. ROV video records show the seamount is generally heavily sedimented but has a small (100x150m) pillow mound and an area of indurated calcareous sediments apparently cut by basaltic dykes near its summit. The summit is also cut by N-S and E-W-trending faults, some with up to 20m of throw, whose scarps expose thick sedimentary sequences. The virtual absence of sediment covering the pillows or dyke outcrops suggest that they are very recent - the thick sediment pile exposed on the fault scarps suggests that they were erupted on top of an old seamount. Regionally, acoustic data (bathymetry and backscatter from the ship-mounted multibeam system) shows several other seamounts in the region which may have experienced recent volcanic activity, although no sign of a linear volcanic chain is seen. Taken together, these observations suggest that, even at age 20Ma, the Nazca Plate is volcanically active.

  17. Mantle dynamics and basalt petrogenesis

    Science.gov (United States)

    Ringwood, A. E.

    1985-03-01

    Differentiation at mid-ocean ridges generates a layered lithosphere consisting of a basaltic crust, immediately underlain by harzburgite and further underlain by pyrolite which has experienced depletion only of highly incompatible elements. The body forces driving subduction are concentrated mainly in the upper half of the lithosphere which is relatively cool and brittle. During subduction, the lower layer of relatively ductile, slightly depleted pyrolite is stripped off and resorbed into the upper mantle, thereby providing a future source region for MORB magmas. The slab which sinks to ~ 600 km is comprised mainly of differentiated former basalt and harzburgite which undergo a different series of phase transformations to those experienced by mantle pyrolite. In consequence, the former basaltic crust remains denser than surrounding mantle whereas former harzburgite becomes relatively buoyant below the 650 km seismic discontinuity. The resulting non-uniformity in stress distribution causes the slab to buckle at this depth and accrete to form a large, relatively cool ovoid "megalith" of mixed former harzburgite and basaltic crust. Heating of the megalith occurs over 1-2 b.y., leading to partial melting of the former basaltic crust. The resultant liquids contaminate regions of former harzburgite, rendering them fertile in the sense of future capacity to produce basaltic magmas. After thermal equilibration, the newly fertile, former harzburgite becomes buoyant, leading to the separation of diapirs which rise into the upper mantle. Such diapirs rising beneath sub-oceanic lithosphere experience small degrees of partial melting to produce ocean island basalts, mainly of the alkaline suite. Diapirs of fertile former harzburgite rising beneath continents become incorporated into the sub-continental lithosphere. This is a cumulative process and is ultimately responsible for the development of the chemical, physical and isotopic characteristics of the sub

  18. New potassium-argon basalt data in relation to the Pliocene Bluff Downs Local Fauna, northern Australia

    International Nuclear Information System (INIS)

    Mackness, B.S.

    2000-01-01

    A new radiometric date of 3.6 Ma for the basalt overlying fossiliferous units of the Allingham Formation, provides a minimum age for the Bluff Downs Local Fauna. Ground studies and interpretation of aerial photography has clarified the volcanic history of the area and a new basalt flow has been identified and named. Although the age of the capping basalt permits a younger age for the Bluff Downs Local Fauna than originally described, the stratigraphy, combined with the interpreted stage of evolution of the fauna, still supports an Early Pliocene age for the site. Copyright (2000) Geological Society of Australia

  19. Deep-seated fractionation during the rise of a small-volume basalt magma batch: Crater Hill, Auckland, New Zealand

    Science.gov (United States)

    Smith, I. E. M.; Blake, S.; Wilson, C. J. N.; Houghton, B. F.

    2008-04-01

    Crater Hill is a small volume alkali olivine basalt volcano in the Auckland volcanic field. Crater Hill consists of a sequence of pyroclastic and effusive eruptive units of which the earliest have low silica, ferromagnesian elements and Mg/Fe ratios, high incompatible elements and are more silica undersaturated while the last material to be erupted has higher silica, ferromagnesian elements and Mg/Fe ratios but relatively low incompatible elements. Through the sequence, Mg-number changes from 59 to 67 and LaN/LuN decreases by a factor of 3. This systematic compositional variation is interpreted to be the result of clinopyroxene ± spinel fractionation at pressures of at least 1.4-1.9 GPa, from a primary magma generated by small-degree partial melting in the garnet peridotite stability field (>2.5 GPa). Fractionation occurred where early crystals grew and accumulated along the conduit walls. The rising magma evolved along a polybaric liquid line of descent until it encountered lithosphere cold enough to chill the dike margin. Above this depth, further cooling resulted only in the growth of suspended phenocrysts in a magma separated from the country rock by a chilled margin. This process is observed in the Auckland volcanic field because the rate of magma production is very small allowing compositional features to be preserved that would be overwhelmed in a larger scale magmatic system.

  20. BASALT A: Basaltic Terrains in Idaho and Hawaii as Planetary Analogs for Mars Geology and Astrobiology

    Science.gov (United States)

    Hughes, Scott S.; Haberle, Christopher W.; Nawotniak, Shannon E. Kobs; Sehlke, Alexander; Garry, W. Brent; Elphic, Richard C.; Payler, Sam J.; Stevens, Adam H.; Cockell, Charles S.; Brady, Allyson L.; hide

    2018-01-01

    Assessments of field research target regions are described within two notably basaltic geologic provinces as Earth analogs to Mars. Regions within the eastern Snake River Plain of Idaho and the Big Island of Hawaii, USA, provinces that represent analogs of present-day and early Mars, respectively, were evaluated on the basis of geologic settings, rock lithology and geochemistry, rock alteration, and climate. Each of these factors provide rationale for the selection of specific targets for field research in five analog target regions: (1) Big Craters and (2) Highway lava flows at Craters of the Moon National Monument and Preserve, Idaho; and (3) Mauna Ulu low shield, (4) Kilauea Iki lava lake and (5) Kilauea caldera in the Kilauea Volcano summit region and the East Rift Zone of Hawaii. Our evaluation of compositional and textural differences, as well as the effects of syn- and post-eruptive rock alteration, shows that the basaltic terrains in Idaho and Hawaii provide a way to characterize the geology and major geologic substrates that host biological activity of relevance to Mars exploration. This work provides the foundation to better understand the scientific questions related to the habitability of basaltic terrains, the rationale behind selecting analog field targets, and their applicability as analogs to Mars.

  1. Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan. Final report, May 1, 1995--November 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Garg, S.K.; Combs, J.; Pritchett, J.W. [and others

    1997-07-01

    The principal purpose of this case study of the Sumikawa Geothermal Field is to document and to evaluate the use of drilling logs, surface and downhole geophysical measurements, chemical analyses and pressure transient data for the assessment of a high temperature volcanic geothermal field. This comprehensive report describes the work accomplished during FY 1993-1996. A brief review of the geological and geophysical surveys at the Sumikawa Geothermal Field is presented (Section 2). Chemical data, consisting of analyses of steam and water from Sumikawa wells, are described and interpreted to indicate compositions and temperatures of reservoir fluids (Section 3). The drilling information and downhole pressure, temperature and spinner surveys are used to determine feedzone locations, pressures and temperatures (Section 4). Available injection and production data from both slim holes and large-diameter wells are analyzed to evaluate injectivity/productivity indices and to investigate the variation of discharge rate with borehole diameter (Section 5). New interpretations of pressure transient data from several wells are discussed (Section 6). The available data have been synthesized to formulate a conceptual model for the Sumikawa Geothermal Field (Section 7).

  2. Mapping and compositional analysis of mare basalts in the Aristarchus region of the Moon using Clementine data

    International Nuclear Information System (INIS)

    Zhang Feng; Zou Yong-Liao; Zheng Yong-Chun; Fu Xiao-Hui; Zhu Yong-Chao

    2014-01-01

    The process of accurately defining and outlining mare basalt units is necessary for constraining the stratigraphy and ages of basalt units, which are used to determine the duration and the flux of lunar volcanism. We use a combination of Clementine's five-band ultraviolet/visible data and TiO 2 and FeO abundance distribution maps to define homogenous mare basalt units and characterize their compositional variations (with maturity) in the Aristarchus region. With 20 groups of distinct mare basaltic soils identified using the method in this paper, six additional spectrally defined areas and five basaltic units are constructed, and their mineralogic quantization values provide new constraints on their temporal and spatial evolution. Our results indicate that the Aristarchus region has diverse basalt units and a complex history of volcanic evolution. We also demonstrate that the techniques, from which spectrally distinct mare basalts can be mapped, performed well in this study and can be confidently expanded to other mare regions of the Moon. (research papers)

  3. Petrogenesis of basalt-trachyte lavas from Olmoti Crater, Tanzania

    Science.gov (United States)

    Mollel, Godwin F.; Swisher, Carl C., III; McHenry, Lindsay J.; Feigenson, Mark D.; Carr, Michael J.

    2009-08-01

    Olmoti Crater is part of the Plio-Pleistocene Ngorongoro Volcanic Highland (NVH) in northern Tanzania to the south of Gregory Rift. The Gregory Rift is part of the eastern branch of the East African Rift System (EARS) that stretches some 4000 km from the Read Sea and Gulf of Aden in the north to the Zambezi River in Mozambique. Here, we (1) characterize the chemistry and mineral compositions of lavas from Olmoti Crater, (2) determine the age and duration of Olmoti volcanic activity through 40Ar/ 39Ar dating of Olmoti Crater wall lavas and (3) determine the genesis of Olmoti lavas and the relationship to other NVH and EARS volcanics and (4) their correlation with volcanics in the Olduvai and Laetoli stratigraphic sequences. Olmoti lavas collected from the lower part of the exposed crater wall section (OLS) range from basalt to trachyandesite whereas the upper part of the section (OUS) is trachytic. Petrography and major and trace element data reflect a very low degree partial melt origin for the Olmoti lavas, presumably of peridotite, followed by extensive fractionation. The 87Sr/ 86Sr data overlap whereas Nd and Pb isotope data are distinct between OLS and OUS samples. Interpretation of the isotope data suggests mixing of enriched mantle (EM I) with high-μ-like reservoirs, consistent with the model of Bell and Blenkinsop [Bell, K., Blenkinsop, J., 1987. Nd and Sr isotopic compositions of East African carbonatites: implications for mantle heterogeneity. Geology 5, 99-102] for East African carbonatite lavas. The isotope ratios are within the range of values defined by Oceanic Island Basalt (OIB) globally and moderate normalized Tb/Yb ratios (2.3-1.6) in these lavas suggest melting in the lithospheric mantle consistent with other studies in the region. 40Ar/ 39Ar incremental-heating analyses of matrix and anorthoclase separates from Olmoti OLS and OUS lavas indicate that volcanic activity was short in duration, lasting ˜200 kyr from 2.01 ± 0.03 Ma to 1.80 ± 0

  4. Surface Textures and Features Indicative of Endogenous Growth at the McCartys Flow Field, NM, as an Analog to Martian Volcanic Plains

    Science.gov (United States)

    Bleacher, Jacob E.; Crumpler, L. S.; Garry, W. B.; Zimbelman, J. R.; Self, S.; Aubele, J. C.

    2012-01-01

    Basaltic lavas typically form channels or tubes, which are recognized on the Earth and Mars. Although largely unrecognized in the planetary community, terrestrial inflated sheet flows also display morphologies that share many commonalities with lava plains on Mars. The McCartys lava flow field is among the youngest (approx.3000 yrs) basaltic flows in the continental United States. The southwest sections of the flow displays smooth, flat-topped plateaus with irregularly shaped pits and hummocky inter-plateau units that form a polygonal surface. Plateaus are typically elongate in map view, up to 20 m high and display lineations within the glassy crust. Lineated surfaces occasionally display small < 1m diameter lava coils. Lineations are generally straight and parallel each other, sometimes for over 100 meters. The boundaries between plateaus and depressions are also lineated and tilted to angles sometimes approaching vertical. Plateau-parallel cracks, sometimes containing squeeze-ups, mark the boundary between tilted crust and plateau. Some plateau depressions display level floors with hummocky surfaces, while some are bowl shaped with floors covered in broken lava slabs. The lower walls of pits sometimes display lateral, sagged lava wedges. Infrequently, pit floors display the upper portion of a tumulus from an older flow. In some places the surface crust has been disrupted forming a slabby texture. Slabs are typically on the scale of a meter or less across and no less than 7-10 cm thick. The slabs preserve the lineated textures of the undisturbed plateau crust. It appears that this style of terrain represents the emplacement of an extensive sheet that experiences inflation episodes within preferred regions where lateral spreading of the sheet is inhibited, thereby forming plateaus. Rough surfaces represent inflation-related disruption of pahoehoe lava and not a a lava. Depressions are often the result of non-inflation and can be clearly identified by lateral

  5. Petrography, mineral chemistry and geochemistry of post-ophiolitic volcanic rocks in the Ratouk area (south of Gazik, east of Iran

    Directory of Open Access Journals (Sweden)

    Zahra Vahedi Tabas

    2017-11-01

    Full Text Available Introduction Basaltic volcanoes are one of the volcanisms that have occurred in different parts of the world. The study of these lavas is important for petrologists, because they are seen in different tectonic settings and therefore diverse mechanisms affect their formation (Chen et al., 2007. Young volcanic rocks such as Quaternary basalts are one of latest products of magmatism in Iran that are related to deep fractures and active faults in Quaternary (Emami, 2000. The study area is located at 140km east of Birjand at Gazik 1:100000 geological map (Guillou et al., 1981 and have 60̊ 11' to 60̊ 15 '27" eastward longitude and 32̊ 33' 24" to 32̊ 39' 10" northward latitude. On the basis of structural subdivisions of Iran, this area is located in the northern part of the Sistan suture zone (Tirrul et al., 1983. Because of the importance of basaltic rocks in Sistan suture, this research is done with the aim of investigating the petrography and mineralogy of basaltic lavas, the nature of basaltic and intermediate magmatism and finally determination of tectonomagmatic regime. Materials and methods After field studies and sampling, 85 thin sections were prepared and carefully studied. Then ten samples with the lowest alteration were analyzed for major elements by inductively coupled plasma (ICP technologies and trace elements were analyzed using inductively coupled plasma mass spectrometry (ICP-MS, following a lithium metaborate/tetraborate fusion and nitric acid total digestion at the Acme laboratories, Vancouver, Canada. Electron probe micro analyses of clinopyroxene and olivine were done at the Iranian mineral processing research center (IMPRC by Cameca SX100 machine. X-ray diffraction analysis of minerals was done at the X-ray laboratory of the University of Birjand. Results In 60km south of GaziK at the east of the southern Khorasan province and the northern part of the Sistan suture zone, volcanic rocks with intermediate (Oligomiocene and

  6. Vapor segregation and loss in basaltic melts

    Science.gov (United States)

    Edmonds, M.; Gerlach, T.M.

    2007-01-01

    Measurements of volcanic gases at Pu'u'O??'o??, Kilauea Volcano, Hawai'i, reveal distinct degassing regimes with respect to vapor segregation and loss during effusive activity in 2004-2005. Three styles of vapor loss are distinguished by the chemical character of the emitted volcanic gases, measured by open path Fourier transform infrared spectroscopy: 1 persistent continuous gas emission, 2 gas piston events, and 3 lava spattering. Persistent continuous gas emission is associated with magma ascent and degassing beneath the crater vents, then eruption of the degassed magma from flank vents. Gas piston events are the result of static gas accumulation at depths of 400-900 m beneath Pu'u'O??'o??. A CO2-rich gas slug travels up the conduit at a few meters per second, displacing magma as it expands. Lava spattering occurs due to dynamic bubble coalescence in a column of relatively stagnant magma. The Large gas bubbles are H2O rich and are generated by open-system degassing at depths of gas accumulation and dynamic bubble coalescence are both manifestations of vapor segregation in basaltic melts, but their implications differ. Accumulation and segregation of CO2-rich vapor at depth does not deplete the melt of H2O (required to drive lava fountains near to the surface) and therefore gas piston events can occur interspersed with lava fountaining activity. Lava spattering, however, efficiently strips H2O-rich vapor from magma beneath the crater vents; the magma must then erupt effusively from vents on the flank of the cone. ?? 2007 The Geological Society of America.

  7. Volcanic Catastrophes

    Science.gov (United States)

    Eichelberger, J. C.

    2003-12-01

    The big news from 20th century geophysics may not be plate tectonics but rather the surprise return of catastrophism, following its apparent 19th century defeat to uniformitarianism. Divine miracles and plagues had yielded to the logic of integrating observations of everyday change over time. Yet the brilliant interpretation of the Cretaceous-Tertiary Boundary iridium anomaly introduced an empirically based catastrophism. Undoubtedly, decades of contemplating our own nuclear self-destruction played a role in this. Concepts of nuclear winter, volcanic winter, and meteor impact winter are closely allied. And once the veil of threat of all-out nuclear exchange began to lift, we could begin to imagine slower routes to destruction as "global change". As a way to end our world, fire is a good one. Three-dimensional magma chambers do not have as severe a magnitude limitation as essentially two-dimensional faults. Thus, while we have experienced earthquakes that are as big as they get, we have not experienced volcanic eruptions nearly as great as those preserved in the geologic record. The range extends to events almost three orders of magnitude greater than any eruptions of the 20th century. Such a calamity now would at the very least bring society to a temporary halt globally, and cause death and destruction on a continental scale. At maximum, there is the possibility of hindering photosynthesis and threatening life more generally. It has even been speculated that the relative genetic homogeneity of humankind derives from an evolutionary "bottleneck" from near-extinction in a volcanic cataclysm. This is somewhat more palatable to contemplate than a return to a form of Original Sin, in which we arrived at homogeneity by a sort of "ethnic cleansing". Lacking a written record of truly great eruptions, our sense of human impact must necessarily be aided by archeological and anthropological investigations. For example, there is much to be learned about the influence of

  8. Volcanic instability: the effects of internal pressurisation and consideration of rock mass properties

    Science.gov (United States)

    Thomas, M.; Petford, N.; Bromhead, E. N.

    2003-04-01

    Since the events at mount St Helens during May 1980, there has been considerable attention focused on the mechanisms and consequences of volcanic edifice collapse. As a result catastrophic edifice failure is now recognised as perhaps the most socially devastating natural disaster associated with volcanic activity. The tendency of volcanic edifices to fail appears ubiquitous behaviour, and a number of failure precursors and more importantly triggers have been suggested, of which magmagenic (e.g. thermal and mechanical pore pressure increases) and seismogenic (e.g. tectonic or volcanic earthquakes) are common. Despite the increased interest in this field, large-scale, deep seated catastrophic edifice failure has still only be successfully modelled in the most extreme of cases, which does not account for the volume of field evidence of edifice collapse. One possible reason for this is the way that pore pressures are considered. For pore fluids that are entering the system from the surface (e.g. rain water) there is a set volume and therefore a set pressure that the system can accommodate, as once the edifice becomes saturated, any new fluids to fall on the surface of the edifice simply run off. If we consider internal pore fluid pressurisation from magmatic gasses, then the pressurising fluid is already in the system and the only limit to how much pressure can be accommodated is the strength of the edifice itself. The failure to fully consider the strength and deformability of a rock mass compared to an intact laboratory sample of a volcanic rock may result in a misleading assessment of edifice strength. An intact laboratory sample of basalt may yield a strength of 100--350 MPa (from uniaxial compression tests), a volcanic edifice however is not an intact rock, and is cut through by many discontinuities, including; faults, fractures and layering from discrete lava flows. A better approximation of the true strength can be determined from the rock mass rating (RMR

  9. Volcanic features of Io

    Science.gov (United States)

    Carr, M.H.; Masursky, H.; Strom, R.G.; Terrile, R.J.

    1979-01-01

    Volcanic activity is apparently higher on Io than on any other body in the Solar System. Its volcanic landforms can be compared with features on Earth to indicate the type of volcanism present on Io. ?? 1979 Nature Publishing Group.

  10. Rapid pre-eruptive thermal rejuvenation in a large silicic magma body: the case of the Masonic Park Tuff, Southern Rocky Mountain volcanic field, CO, USA

    Science.gov (United States)

    Sliwinski, J. T.; Bachmann, O.; Dungan, M. A.; Huber, C.; Deering, C. D.; Lipman, P. W.; Martin, L. H. J.; Liebske, C.

    2017-05-01

    Determining the mechanisms involved in generating large-volume eruptions (>100 km3) of silicic magma with crystallinities approaching rheological lock-up ( 50 vol% crystals) remains a challenge for volcanologists. The Cenozoic Southern Rocky Mountain volcanic field, in Colorado and northernmost New Mexico, USA, produced ten such crystal-rich ignimbrites within 3 m.y. This work focuses on the 28.7 Ma Masonic Park Tuff, a dacitic ( 62-65 wt% SiO2) ignimbrite with an estimated erupted volume of 500 km3 and an average of 45 vol% crystals. Near-absence of quartz, titanite, and sanidine, pronounced An-rich spikes near the rims of plagioclase, and reverse zoning in clinopyroxene record the reheating (from 750 to >800 °C) of an upper crustal mush in response to hotter recharge from below. Zircon U-Pb ages suggest prolonged magmatic residence, while Yb/Dy vs temperature trends indicate co-crystallization with titanite which was later resorbed. High Sr, Ba, and Ti concentrations in plagioclase microlites and phenocryst rims require in-situ feldspar melting and concurrent, but limited, mass addition provided by the recharge, likely in the form of a melt-gas mixture. The larger Fish Canyon Tuff, which erupted from the same location 0.7 m.y. later, also underwent pre-eruptive reheating and partial melting of quartz, titanite, and feldspars in a long-lived upper crustal mush following the underplating of hotter magma. The Fish Canyon Tuff, however, records cooler pre-eruptive temperatures ( 710-760 °C) and a mineral assemblage indicative of higher magmatic water contents (abundant resorbed sanidine and quartz, euhedral amphibole and titanite, and absence of pyroxene). These similar pre-eruptive mush-reactivation histories, despite differing mineral assemblages and pre-eruptive temperatures, indicate that thermal rejuvenation is a key step in the eruption of crystal-rich silicic volcanics over a wide range of conditions.

  11. Explosive mafic volcanism on Earth and Mars

    Science.gov (United States)

    Gregg, Tracy K. P.; Williams, Stanley N.

    1993-01-01

    Deposits within Amazonia Planitia, Mars, have been interpreted as ignimbrite plains on the basis of their erosional characteristics. The western flank of Hecates Tholus appears to be mantled by an airfall deposit, which was produced through magma-water interactions or exsolution of magmatic volatiles. Morphologic studies, along with numerical and analytical modeling of Martian plinian columns and pyroclastic flows, suggest that shield materials of Tyrrhena and Hadriaca paterae are composed of welded pyroclastic flows. Terrestrial pyroclastic flows, ignimbrites, and airfall deposits are typically associated with silicic volcanism. Because it is unlikely that large volumes of silicic lavas have been produced on Mars, we seek terrestrial analogs of explosives, mafic volcanism. Plinian basaltic airfall deposits have been well-documented at Masaya, Nicaragua, and basaltic ignimbrite and surge deposits also have been recognized there. Ambrym and Yasour, both in Vanuatu, are mafic stratovolcanioes with large central calderas, and are composed of interbedded basaltic pyrocalstic deposits and lava flows. Zavaritzki, a mafic stratovolcano in the Kurile Islands, may have also produced pyroclastic deposits, although the exact nature of these deposits in unknown. Masaya, Ambrym and Yasour are known to be located above tensional zones. Hadriaca and Tyrrhena Paterae may also be located above zones of tension, resulting from the formation and evolution of Hellas basin, and, thus, may be directly analogous to these terrestrial mafic, explosive volcanoes.

  12. Hafnium isotope variations in oceanic basalts

    Science.gov (United States)

    Patchett, P. J.; Tatsumoto, M.

    1980-01-01

    Hafnium isotope ratios generated by the beta(-) decay of Lu-176 are investigated in volcanic rocks derived from the suboceanic mantle. Hf-176/Hf-177 and Lu/Hf ratios were determined to precisions of 0.01-0.04% and 0.5%, respectively, by routine, low-blank chemistry. The Hf-176/Hf-177 ratio is found to be positively correlated with the Nd-143/Nd-144 ratio and negatively correlated with the Sr-87/Sr-86 and Pb-206/Pb-204 ratios, and to increase southwards along the Iceland-Reykjanes ridge traverse. An approximate bulk earth Hf-176/Hf-177 ratio of 0.28295 is inferred from the bulk earth Nd-143/Nd-144 ratio, which requires a bulk earth Lu/Hf ratio of 0.25, similar to the Juvinas eucrite. Midocean ridge basalts are shown to account for 60% of the range of Hf isotope ratios, and it is suggested that Lu-Hf fractionation is decoupled from Sm-Nd and Rb-Sr fractionation in very trace-element-depleted source regions as a result of partial melting.

  13. Tracing the HIMU component within Pan-African lithosphere beneath northeast Africa: Evidence from Late Cretaceous Natash alkaline volcanics, Egypt

    Science.gov (United States)

    Abu El-Rus, M. A.; Chazot, G.; Vannucci, R.; Paquette, J.-L.

    2018-02-01

    A large late Cretaceous ( 90 Ma) volcanic field (the Natash volcanic province) crops out in southeast Egypt at the northwestern boundary of the Arabian-Nubian shield. The lavas are mainly of alkaline affinity and exhibit a continuous compositional range from alkali olivine basalt (AOB) to trachyte and rhyolite. All basaltic lavas in the province record various extents of fractional crystallization of olivine, clinopyroxene, plagioclase and spinel. The basaltic lavas show variations in Sr-Nd-Pb-Hf isotopic ratios [(87Sr/86Sr)i = 0.7030-0.70286; (143Nd/144Nd)i = 0.512653-0.512761; (206Pb/204Pb)i = 19.28-19.94; (177Hf-176Hf)i = 0.28274-0.28285], that correlate markedly with the major and trace element ratios and abundances. Assimilation of crustal material cannot explain these correlations, and we invoke instead melting of a multicomponent mantle source. We infer the existence of High-μ (HIMU), Enriched mantle type-I (EM-I) and Depleted mantle (DM) domains in the melting source, with a predominant contribution from the HIMU-type. We suggests further that the basaltic lavas originate from low degrees of partial melting (F < 5%) at moderate potential temperatures (TP) 1391-1425 °C and pressures of 2.0-2.6 GPa. The melting pressure estimations imply that melting entirely occurred within lithospheric mantle, most likely in the presence of residual amphibole as presence negative K-anomalies in the primitive mantle-normalized patterns of the fractionation-corrected melts. The presence of amphibole within the lithosphere is a strong evidence that the lithospheric mantle underwent metasomatic enrichment prior to melting in Late Cretaceous. This metasomatic event affected on the Pb isotopic compositions of the Natash volcanics by adding Th and U to the melting source. Time-integrated calculations to remove the decoupling between 206Pb and 207Pb isotopes that most probably resulted from the metasomatic event indicate a tentative link between the metasomatism occurring in the

  14. Role for syn-eruptive plagioclase disequilibrium crystallisation in basaltic magma ascent dynamics

    Science.gov (United States)

    La Spina, Giuseppe; Burton, Mike; de'Michieli Vitturi, Mattia; Arzilli, Fabio

    2017-04-01

    Magma ascent dynamics in volcanic conduits play a key role in determining the eruptive style of a volcano. The lack of direct observations inside the conduit means that numerical conduit models, constrained with observational data, provide invaluable tools for quantitative insights into complex magma ascent dynamics. The highly nonlinear, interdependent processes involved in magma ascent dynamics require several simplifications when modelling their ascent. For example, timescales of magma ascent in conduit models are typically assumed to be much longer than crystallisation and gas exsolution for basaltic eruptions. However, it is now recognized that basaltic magmas may rise fast enough for disequilibrium processes to play a key role on the ascent dynamics. The quantification of the characteristic times for crystallisation and exsolution processes are fundamental to our understanding of such disequilibria and ascent dynamics. Using observations from Mount Etna's 2001 eruption and a magma ascent model we are able to constrain timescales for crystallisation and exsolution processes. Our results show that plagioclase reaches equilibrium in 1-2 h, whereas ascent times were 1 h. Furthermore, we have related the amount of plagioclase in erupted products with the ascent dynamics of basaltic eruptions. We find that relatively high plagioclase content requires crystallisation in a shallow reservoir, whilst a low plagioclase content reflects a disequilibrium crystallisation occurring during a fast ascent from depth to the surface. Using these new constraints on disequilibrium plagioclase crystallisation we also reproduce observed crystal abundances for different basaltic eruptions: Etna 2002/2003, Stromboli 2007 (effusive eruption) and 1930 (paroxysm) and different Pu'u' O'o eruptions at Kilauea (episodes 49-53). Therefore, our results show that disequilibrium processes play a key role on the ascent dynamics of basaltic magmas and cannot be neglected when describing basaltic

  15. Petrogenesis and geodynamic significance of silicic volcanism in the western Trans-Mexican Volcanic Belt

    Science.gov (United States)

    Petrone, C. M.; Ferrari, L.; Orozco, M. A.; Lopez Martinez, M.

    2012-04-01

    Silicic volcanism in the western Trans-Mexican Volcanic Belt (WTMVB) was defined a Pliocene ignimbrite flare-up associated with the rifting of the Jalisco block from mainland Mexico (Frey et al., 2007; GSAB). With the integration of new and published geochronologic, geochemical, and isotope data we revise this interpretation and propose a new petrogenetic model. The oldest silicic volcanism consists of large silicic domes and minor pyroclastic flows (~370 km3) emplaced to the north of Guadalajara above a thick succession of ~11 to 8.7 Ma basaltic lavas, which yielded Ar-Ar and obsidian FT ages of ~7.5 to 5 Ma. Shortly after (4.9 to 2.9 Ma) large amount of rhyolitic lavas and ash flow tuffs (~500 km3) were emplaced in a WNW-ESE trending belt from Guadalajara to Compostela. Rhyolitic domes and flows (~430 km3) were emplaced also in the Pleistocene mostly between Tequila and Guadalajara with the late Pleistocene La Primavera caldera (~35 km3) as the sole explosive volcanic episodes. As a whole, silicic volcanism occurred from Late Miocene to the Pleistocene, and was dominated by dome and lava flows. Most rhyolites have high LILE/HFSE values and negative spikes at Nb, P and Ti. They also show the same Ba/Nb and K/Rb values and slightly higher Rb/Sr ratios as the 11-8 Ma basalts. Rhyolite Sr isotope data (87Sr/86Sr init = 0.70371 - 070598) are only slightly more radiogenic than the 11-8 basalts (87Sr/86Sr init = 0.70349-0.70410), whereas Nd isotope ratios are indistinguishable from them. Sr and Nd isotope ratios of the rhyolites are also similar to the crust nearby, indicating that they can be compatible either with fractional crystallization (FC) of basalts or with crust assimilation/melting. However REE contents are too low to be the result of basalt FC. Isotope and REE data can be successfully modelled with an initial crustal melt which subsequently undergone fractional crystallization of feldspar and quartz. Late Miocene slab detachment and subsequent slab rollback

  16. Porosity and permeability evolution of vesicular basalt reservoirs with increasing depth: constraints from the Big Island of Hawai'i

    Science.gov (United States)

    Millett, John; Haskins, Eric; Thomas, Donald; Jerram, Dougal; Planke, Sverre; Healy, Dave; Kück, Jochem; Rossetti, Lucas; Farrell, Natalie; Pierdominici, Simona

    2017-04-01

    Volcanic reservoirs are becoming increasingly important in the targeting of petroleum, geothermal and water resources globally. However, key areas of uncertainty in relation to volcanic reservoir properties during burial in different settings remain. In this contribution, we present results from borehole logging and sampling operations within two fully cored c. 1.5 km deep boreholes, PTA2 and KMA1, from the Humúula saddle region on the Big Island of Hawai'i. The boreholes were drilled as part of the Humu'ula Groundwater Research Project (HGRP) between 2013-2016 and provide unique insights into the evolution of pore structure with increasing burial in a basaltic dominated lava sequence. The boreholes encounter mixed sequences of 'a'ā, pāhoehoe and transitional lava flows along with subsidiary intrusions and sediments from the shield to post-shield phases of Mauna Kea. Borehole wireline data including sonic, spectral gamma and Televiewer imagery were collected along with density, porosity, permeability and ultrasonic velocity laboratory measurements from core samples. A range of intra-facies were sampled for analysis from various depths within the two boreholes. By comparison with core data, the potential for high resolution Televiewer imaging to reveal spectacular intra-facies features including individual vesicles, vesicle segregations, 'a'ā rubble zones, intrusive contacts, and intricate pāhoehoe lava flow lobe morphologies is demonstrated. High quality core data enables the calibration of Televiewer facies enabling improved interpretation of volcanic reservoir features in the more common exploration scenario where core is absent. Laboratory results record the ability of natural vesicular basalt samples to host very high porosity (>50%) and permeability (>10 darcies) within lava flow top facies which we demonstrate are associated with vesicle coalescence and not micro-fractures. These properties may be maintained to depths of c. 1.5 km in regions of limited

  17. Giant Plagioclase Basalts, eruption rate versus time

    Indian Academy of Sciences (India)

    R.Narasimhan(krishtel emaging) 1461 1996 Oct 15 13:05:22

    can traps; Earth Planet. Sci. Lett. 180 13–27. Hooper P R and others 1988 The Giant Plagioclase Basalts. (GPBs) of the Western Ghats, Deccan Traps; Mem. Geol. Soc. India 43 153–65. Khadri S F R and 3 others 1988 Stratigraphy of Thakurvadi. Formation, Western Deccan Basalt Province, India: In. Deccan Flood Basalts ...

  18. Volatile Evolution of Magma Associated with the Solchiaro Eruption in the Phlegrean Volcanic District (Italy)

    Science.gov (United States)

    Esposito, R.; Bodnar, R. J.; de Vivo, B.; Lima, A.; Fedele, L.; Shimizu, N.; Hunter, J.

    2009-12-01

    The Phlegrean volcanic district (PVD) in southern Italy is one of the best known volcanic hazard areas in the world. More than 1.5 million people live in close proximity to the volcanic centers. The PVD comprises three volcanic fields: the Campi Flegrei caldera and the islands of Ischia and Procida. We studied volatiles plus major and trace elements in the magma associated with the Solchiaro eruption on the Island of Procida, Italy, to gain a better understanding of the relationship between pre-eruptive volatiles and magmatic evolution. The Solchiaro eruption is one of the more primitive products erupted in the PVD and provides information on the source of later more evolved magmas associated with this volcanic system. The composition of the magma before eruption was determined by analyzing 104 melt inclusions (MIs) in forsteritic olivine, glass embayment plus rim glasses, and high vesciculated glasses selected from 4 representative samples. The composition of MIs was recalculated and ranges from basaltic to trachy-basaltic. Among major elements potassium shows the highest variability, from 0.5 to 6 wt%. MI define a continuous trend based on major and minor element compositions. Embayments matrix glass and high vesciculated glasses define a field that suggests a discontinuous process. Compatible to incompatible trace element ratios in early melts are highly variable and represent the melt phase before or at the very beginning of assimilation-fractional crystallization (FCA) processes. Intermediate melt compositions reflect continuing FCA processes, late melt compositions suggest that the FCA process was aborted before eruption. Volatile contents of early melt are highly variable and reflect source heterogeneities, and the melts are interpreted to be undersaturated. Intermediate melts were volatile saturated and H2O-CO2 contents define a degassing path. Depths of trapping of MI range from 4.4 to 2.2 km, and are calculated based on Newman and Lowenstern (2002) and

  19. Sr, Nd, Pb and Hf isotopic constraints on mantle sources and crustal contaminants in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin; Thirlwall, Matthew F.

    2015-01-01

    The presented Sr, Nd, Hf and double-spike Pb-isotopic analyses of Quaternary basalts from the Payenia volcanic province in southern Mendoza, Argentina, confirm the presence of two distinct mantle types feeding the Payenia volcanism. The southern Payenia mantle source feeding the intraplate-type Río...

  20. Petrology and geochemistry of the Neo-Tethyan volcanism as revealed in the Ankara melange, Turkey

    Science.gov (United States)

    Tankut, Ayla; Dilek, Yıldırım; Önen, Pırıl

    1998-10-01

    The Ankara melange in north-central Turkey represents a typical convergent margin melange which was developed within the Izmir-Ankara-Erzincan suture zone as the northern branch of the Neo-Tethys closed between the Rhodope-Pontide continental fragment in the north and the Kirsehir metamorphic massif in the south. From north to south, the Ankara melange includes three mappable units, a metamorphic block melange, limestone block melange, and ophiolitic melange, that are distinguished based on the nature of their constituent block types. The ophiolitic melange occurs in a structurally lowermost tectonic position as part of a south-directed imbricate thrust system and contains two separate groups of magmatic rocks characterizing different modes of volcanism in the Neo-Tethys. One group contains several incomplete fragments of the Neo-Tethyan oceanic lithosphere that are considered as ophiolite massifs and mafic and ultramafic rock clasts in a serpentinized matrix. The ophiolitic massifs (Edige and Kalecik) consist of lower crustal and upper mantle units of the Neo-Tethyan oceanic lithosphere that are intruded at all structural levels by doleritic to microgabbroic dike swarms. The other group of rocks includes mainly basaltic massive to pillow-lava flows locally intercalated with turbiditic limestone, red argillite, and radiolarite breccias and occurs as clasts and individual megablocks in a tuffaceous-shaly matrix. Dike intrusions in the ophiolitic massifs fall into two separate geochemical groups on the basis of their rock chemistry. One group of dikes, combined with basaltic lava fragments from the melange, has subalkaline characteristics and shows incompatible element abundances characteristic of N-MORB chemistry. The second group of dikes displays typical island-arc tholeiite signatures with large-ion lithophile (LIL) enrichment and high-field strength element (HFS) depletion compared to N-MORB. Mafic extrusive rocks of the second group of magmatic rocks in the

  1. Constraining Silicate Weathering Processes in an Active Volcanic Complex: Implications for the Long-term Carbon Cycle

    Science.gov (United States)

    Washington, K.; West, A. J.; Hartmann, J.; Amann, T.; Hosono, T.; Ide, K.

    2017-12-01

    While analyzing geochemical archives and carbon cycle modelling can further our understanding of the role of silicate weathering as a sink in the long-term carbon cycle, it is necessary to study modern weathering processes to inform these efforts. A recent compilation of data from rivers draining basaltic catchments estimates that rock weathering in active volcanic fields (AVFs) consumes atmospheric CO2 approximately three times faster than in inactive volcanic fields (IVFs), suggesting that the eruption and subsequent weathering of large igneous provinces likely played a major role in the carbon cycle in the geologic past [1]. The study demonstrates a significant correlation between catchment mean annual temperature (MAT) and atmospheric CO2 consumption rate for IVFs. However CO2 consumption due to weathering of AVFs is not correlated with MAT as the relationship is complicated by variability in hydrothermal fluxes, reactive surface area, and groundwater flow paths. To investigate the controls on weathering processes in AVFs, we present data for dissolved and solid weathering products from Mount Aso Caldera, Japan. Aso Caldera is an ideal site for studying the how the chemistry of rivers draining an AVF is impacted by high-temperature water/rock interactions, volcanic ash weathering, and varied groundwater flow paths and residence times. Samples were collected over five field seasons from two rivers and their tributaries, cold groundwater springs, and thermal springs. These samples capture the region's temperature and precipitation seasonality. Solid samples of unaltered volcanic rocks, hydrothermally-altered materials, volcanic ash, a soil profile, and suspended and bedload river sediments were also collected. The hydrochemistry of dissolved phases were analyzed at the University of Hamburg, while the mineralogy and geochemical compositions of solid phases were analyzed at the Natural History Museum of Los Angeles. This work will be discussed in the context of

  2. A Conceptual Model of Future Volcanism at Medicine Lake Volcano, California - With an Emphasis on Understanding Local Volcanic Hazards

    Science.gov (United States)

    Molisee, D. D.; Germa, A.; Charbonnier, S. J.; Connor, C.

    2017-12-01

    Medicine Lake Volcano (MLV) is most voluminous of all the Cascade Volcanoes ( 600 km3), and has the highest eruption frequency after Mount St. Helens. Detailed mapping by USGS colleagues has shown that during the last 500,000 years MLV erupted >200 lava flows ranging from basalt to rhyolite, produced at least one ash-flow tuff, one caldera forming event, and at least 17 scoria cones. Underlying these units are 23 additional volcanic units that are considered to be pre-MLV in age. Despite the very high likelihood of future eruptions, fewer than 60 of 250 mapped volcanic units (MLV and pre-MLV) have been dated reliably. A robust set of eruptive ages is key to understanding the history of the MLV system and to forecasting the future behavior of the volcano. The goals of this study are to 1) obtain additional radiometric ages from stratigraphically strategic units; 2) recalculate recurrence rate of eruptions based on an augmented set of radiometric dates; and 3) use lava flow, PDC, ash fall-out, and lahar computational simulation models to assess the potential effects of discrete volcanic hazards locally and regionally. We identify undated target units (units in key stratigraphic positions to provide maximum chronological insight) and obtain field samples for radiometric dating (40Ar/39Ar and K/Ar) and petrology. Stratigraphic and radiometric data are then used together in the Volcano Event Age Model (VEAM) to identify changes in the rate and type of volcanic eruptions through time, with statistical uncertainty. These newly obtained datasets will be added to published data to build a conceptual model of volcanic hazards at MLV. Alternative conceptual models, for example, may be that the rate of MLV lava flow eruptions are nonstationary in time and/or space and/or volume. We explore the consequences of these alternative models on forecasting future eruptions. As different styles of activity have different impacts, we estimate these potential effects using simulation

  3. Ages of plains volcanism on Mars

    Science.gov (United States)

    Hauber, Ernst; Jagert, Felix; Broz, Petr

    2010-05-01

    Plain-style volcanism [1] is widespread in the Tharsis and Elysium volcanic provinces on Mars, [2,3]. Detailed images and topographic data reveal the morphology and topography of clusters of low shields and associated lava flows. The landforms of plains volcanism on Mars have all well-known terrestrial analogues in basaltic volcanic regions, such as Hawaii, Iceland, and in particular the Snake River Plains [4]. The very gentle flank slopes (J. (1981) Icarus, 45, 586-601. [3] Hodges C.A. and Moore H.J. (1994) Atlas of volcanic features on Mars: USGS Prof. Paper 1534, 194 p. [4] Hauber E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 69-95. [5] Wilson L. et al. (2009) J. Volcanol. Geotherm. Res. 185, 28-46. [6] Vaucher, J. et al. (2009) Icarus 204, 418-442. [7] Baratoux D. et al. (2009) J. Volcanol. Geotherm. Res. 185, 47-68. [8] Bleacher J.E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 96-102. [9] Ivanov B.A. (2001) Space Sci. Rev. 96, 87-104. [10] Hartmann W.H. and Neukum G. (2001) Space Sci. Rev. 96, 165-194 [11] Kneissl T. et al. (2010) LPS XVI, submitted. [12] Michael, G.G. and Neukum G. (2010) Earth Planet. Sci. Lett., in press. . [13] Malin M.C. et al. (2007) JGR 112, E05S04, doi: 10.1029/2006JE002808.

  4. El Estribo Volcanic Complex: Evolution from a shield volcano to a cinder cone, Pátzcuaro Lake, Michoacán, México

    Science.gov (United States)

    Pola, A.; Macías, J. L.; Osorio-Ocampo, S.; Sosa-Ceballos, G.; Garduño-Monroy, V. H.; Martínez-Martínez, J.

    2015-09-01

    El Estribo Volcanic Complex (EVC) is located in the northern part of the Michoacán-Guanajuato Volcanic Field within the Trans-Mexican Volcanic Belt (TMVB). El Estribo is located at the southern edge of the E-W Pátzcuaro fault that belongs to the Pátzcuaro-Jarácuaro graben, a western extension of the E-W Morelia-Acambay fault system. Stratigraphy, geochronology, chemistry, and mineral assemblages suggest that the volcanic complex was constructed in two periods separated by a ~ 100 ka volcanic hiatus: a) emission of lava flows that constructed a shield volcano between 126 ka, and b) mixed phreatomagmatic to Strombolian activity that formed a cinder cone ~ 28 ka. The magmas that fed these monogenetic volcanoes were able to use the same feeding system. The cinder cone itself was constructed by Strombolian fallouts and remobilized scoria beds, followed by an erosion period, and by a mixed phreatomagmatic to magmatic phase (Strombolian fallouts ending with lava flows). Soft-sedimentary deformation of beds and impact sags, cross-bedding, as well as pitting and hydrothermal cracks found in particles support the phreatomagmatic phase. The erupted magmas through time ejected basaltic andesitic lava flows (56.21-58.88% SiO2) that built the shield volcano and then basaltic andesitic scoria (57.65-59.05% SiO2) that constructed the cinder cone. Although they used the same feeding system, the geochemical data and the mineral chemistry of the magmas indicate that the shield volcano and the cinder cone were fed by different magma batches erupted thousands of years apart. Therefore, the location of El Estribo Volcanic Complex along an E-W fault that has generated two sector collapses of the shield volcano to the north may be directly linked to this complex redistribution of the magmatic paths to the surface. Our findings show that magmatic feeding systems within monogenetic volcanic fields could be long lived, questioning the classic view of the monogenetic nature of their

  5. Geochemical characterization of Parana Basin volcanic rocks: petrogenetic implications

    International Nuclear Information System (INIS)

    Marques, L.S.

    1988-01-01

    A detailed study of the geochemical characteristics of Parana Basin volcanic rocks is presented. The results are based on the analyses of major and trace elements of 158 samples. Ninety three of these volcanic samples belong to 8 flow sequences from Rio Grande do Sul and Santa Catarina States. The remaining sixty five samples are distributed over the entire basin. In order to study the influence of crustal contamination processes in changing chemical characteristics of the volcanic rocks, 47 samples representative of the crystalline basement of the southern and southeastern Parana Basin were also analysed. Several petrogenetic models were tested to explain the compocional variability of the volcanic rocks, in particular those of southern region. The results obtained sugest an assimilation-fractional crystallization process as viable to explain the differences of both the chemical characteristics and Sr isotope initial ratios observed in basic and intermediate rocks. A model involving melting processes of basic material, trapped at the base of the crust, with composition similar to low and high TiO 2 basalts appears to be a possibility to originate the Palmas and Chapeco acid melts, respectively. The study of ''uncontaminated'' or poorly contaminated low TiO 2 basic rocks from the southern, central and northern regions shows the existence of significant differences in the geochemical charactetistics according to their geographical occurrence. A similar geochemical diversity is also observed in high TiO 2 basalts and Chapeco volcanics. Differences in incompatible element ratios between low and high TiO 2 ''uncontaminated'' or poorly contaminated basalts suggest that they could have been produced by different degrees of melting in a garnet peridotite source. Geochemical and isotopic (Sr and Nd) data also support the view that basalts from northern and southern regions of Parana Basin originated from mantle source with different composition. (author) [pt

  6. Continental Flood Basalts of Bennett Island, East Siberian Sea: High Arctic Geodynamics

    Science.gov (United States)

    Tegner, Christian; Pease, Victoria

    2014-05-01

    Volcanism provides a means of tracing mantle melting events and crustal evolution. The High Arctic includes a rich portfolio of volcanic rocks outcropping in the Circum-Arctic borderlands and imaged geophysically beneath the Alpha-Mendeleev Ridge that have been lumped together as a High-Arctic Large Igneous Province (HALIP). However, the ages (c. 440-60 Ma) and compositions (tholeiitic-alkaline-calc-alkaline) reported varies considerably and geological correlations remain elusive. One of the possible correlative events is the formation of continental flood basalts and sills in the Canadian Arctic Islands, Svalbard, Franz Josef Land and Bennett Island. These flood basalts have previously been linked to mantle plume melting and may represent a short-lived LIP event at c. 124-122 Ma. We present new data for a 350 m thick continental flood basalt succession at Bennett Island examined during fieldwork in Septemer 2013 on a joint Russian (VSEGEI) - Swedish (SWEDARCTIC) expedition to the De Long Archipelago. This volcanic succession is composed of 20 near-horisontal, undeformed flow units overlying a thin sedimentary succession of Cretaceous age (?) including coal seams and possibly volcaniclastic material that, in turn, unconformably overlies a more steeply dipping succession of Cambrian and Ordovician sediments. The flows are thinnest (c. 2-10 m) and aphyric to very-sparsely olivine-phyric in the lower portion. In contrast, the flows in the upper portion are thicker (>20 m) and aphyric to sparsely plagioclase-phyric. We will discuss new petrographic and compositional data for the Bennett Island flood basalts, possibly including new U-Pb age data. The aim is to evaluate their petrogenesis, to discuss their possible correlation to the flood basalt and sill successions of the Canadian Arctic Islands, Svalbard and Franz Josef Land and evaluate the geodynamic evolution of the High Arctic.

  7. Flood basalts and extinction events

    Science.gov (United States)

    Stothers, Richard B.

    1993-01-01

    The largest known effusive eruptions during the Cenozoic and Mesozoic Eras, the voluminous flood basalts, have long been suspected as being associated with major extinctions of biotic species. Despite the possible errors attached to the dates in both time series of events, the significance level of the suspected correlation is found here to be 1 percent to 4 percent. Statistically, extinctions lag eruptions by a mean time interval that is indistinguishable from zero, being much less than the average residual derived from the correlation analysis. Oceanic flood basalts, however, must have had a different biological impact, which is still uncertain owing to the small number of known examples and differing physical factors. Although not all continental flood basalts can have produced major extinction events, the noncorrelating eruptions may have led to smaller marine extinction events that terminated at least some of the less catastrophically ending geologic stages. Consequently, the 26 Myr quasi-periodicity seen in major marine extinctions may be only a sampling effect, rather than a manifestation of underlying periodicity.

  8. Comparative zircon tephrochronology: correlating the Pliocene Bouse tephra, lower Colorado River trough, California, with the Lawlor Tuff of the Sonoma volcanic field, California

    Science.gov (United States)

    Harvey, J. C.

    2013-12-01

    Identification, correlation, and absolute dating of glassy volcanic ash and cryptically reworked pyroclastic deposits can be problematic. This is especially the case in strongly weathered samples where primary glass chemistry may not be preserved, or in lacustrine and fluvial environments where detrital materials can heavily bias bulk analysis or produce complex age distributions in single crystal dating approaches. These problems have frustrated numerous attempts to date a singular key ash horizon from the Mio-Pliocene Bouse Formation in southern California (fine-grained carbonate beds and clastic sediments derived from the Colorado River, deposited in the lower Colorado River Trough). Constraining the depositional age of the Bouse Formation is important for understanding the evolution of the Colorado River system, the uplift history of the Colorado Plateau, and the climate conditions involved in Colorado River evolution. Prior attempts to directly date the ash have been inconclusive. A K-Ar in glass date of 5.47 × 0.20 Ma (Shafiqullah et al., 1980) was questioned because of the potential disturbance of both the parent and daughter products of potassium decay in glass, and 40Ar/39Ar geochronology on bulk glass and bulk plagioclase separates (Spencer et al., 2000) produced discordant results. Recent glass chemistry correlation of the ash horizon to the 4.83 × 0.011 Ma Lawlor Tuff, Sonoma volcanic field, California (Sarna-Wojcicki et al., 2011), has also been contentious, because that age appears to conflict with the proposed onset of the delivery of Colorado River sediment through to the Gulf of California (Dorsey et al., 2007). To resolve the persistent age arguments, comparative zircon tephrochronology has been undertaken utilizing the single-crystal analysis capabilities of secondary ion mass spectrometry. Here, U-Pb zircon crystallization age spectra, U and Th abundances, and oxygen isotopic composition are presented which confirm the correlation of the Bouse

  9. A new genetic interpretation for the Caotaobei uranium deposit associated with the shoshonitic volcanic rocks in the Hecaokeng ore field, southern Jiangxi, China

    Directory of Open Access Journals (Sweden)

    Dong-Sheng Yang

    2017-03-01

    Full Text Available Combined with in-situ laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS zircon UPb geochronology, published and unpublished literature on the Caotaobei uranium deposit in southern Jiangxi province, China, is re-examined to provide an improved understanding of the origin of the main ore (103 Ma. The Caotaobei deposit lies in the Hecaokeng ore field and is currently one of China's largest, volcanic-related uranium producers. Unlike commonly known volcanogenic uranium deposits throughout the world, it is spatially associated with intermediate lavas with a shoshonitic composition. Uranium mineralization (pitchblende occurs predominantly as veinlets, disseminations, and massive ores, hosted by the cryptoexplosive breccias rimming the Caotaobei crater. Zircons from one latite define four distinct 206Pb/238U age groups at 220–235 Ma (Triassic, 188 Ma (Early Jurassic, 131–137 Ma (Early Cretaceous, and 97–103 Ma (Early-Late Cretaceous transition, hereafter termed mid-Cretaceous. The integrated age (134 ± 2 Ma of Early Cretaceous zircons (group III is interpreted as representing the time of lava emplacement. The age data, together with the re-examination of literature, does not definitively support a volcanogenic origin for the generation of the deposit, which was proposed by the previous workers based mainly on the close spatial relationship and the age similarity between the main ore and volcanic lavas. Drill core and grade-control data reveal that rich concentrations of primary uranium ore are common around the granite porphyry dikes cutting the lavas, and that the cryptoexplosive breccias away from the dikes are barren or unmineralized. These observations indicate that the emplacement of the granite porphyries exerts a fundamental control on ore distribution and thus a genetic link exists between main-stage uranium mineralization and the intrusions of the dikes. Zircon overgrowths of mid-Cretaceous age (99.6

  10. Rubbly Pahoehoe Lavas: An Important Component of Icelandic Basaltic Lava Flows

    Science.gov (United States)

    Guilbaud, M.; Self, S.; Blake, S.; Thordarson, T.; Keyzthelyi, L.

    2003-12-01

    Eruptions at rift zones often produce basaltic lava flows. Structural and textural study of historic and prehistoric flows gives important clues about emplacement processes. The 1783-4 eruption of Laki produced 14.7 km3 of lava from a fissure that opened along the Eastern Volcanic Zone of Iceland. The resulting 600 km2 lava flow-field presents a wide range of surface morphologies that we explored to study emplacement mechanisms. We present results from preliminary field, macroscopic, and microscopic analysis. Field observations show that along a single flow surface morphologies change from (1) flat (with a coherent continuous, pahoehoe(phh)-like crust), to (2) slabby (with a disrupted surface made of phh-like slabs), to (3) rubbly (with a rough surface covered by loose vesicular blocks), and then to (4) folded rubbly (with ridges of rubble several meters high). Features characteristic of flow growth by inflation are abundant. The changes are unidirectional in the above order but the sequence can be repeated. This occurred if the fluid lava stored within the core of the flow broke through the front. Field relationships indicate that the majority of the flows were initially emplaced as small lobes of phh-type lava that gradually changed into slabby phh and then rubbly phh through progressive disruption, shearing and compression of the surface. During its entire advance, the lava flow never reached the point of incessant surface renewal with formation of aa-type clinker, neither did it extensively develop the smooth filamentous surface common in Hawaiian phh flows. Thus, Laki lavas are intermediate flows. Microtexture analysis of samples collected along single flows will tell us what caused this evolution, such as crystallinity due to degassing or viscosity change. This flow type has been recognized on Reykjanes Peninsula in young fissure-fed lava flow-fields and in the Columbia River Basalts and Kerguelen Plateau flows. It is therefore an important component of many

  11. State-space approach to evaluate spatial variability of field measured soil water status along a line transect in a volcanic-vesuvian soil

    Directory of Open Access Journals (Sweden)

    A. Comegna

    2010-12-01

    Full Text Available Unsaturated hydraulic properties and their spatial variability today are analyzed in order to use properly mathematical models developed to simulate flow of the water and solute movement at the field-scale soils. Many studies have shown that observations of soil hydraulic properties should not be considered purely random, given that they possess a structure which may be described by means of stochastic processes. The techniques used for analyzing such a structure have essentially been based either on the theory of regionalized variables or to a lesser extent, on the analysis of time series. This work attempts to use the time-series approach mentioned above by means of a study of pressure head h and water content θ which characterize soil water status, in the space-time domain. The data of the analyses were recorded in the open field during a controlled drainage process, evaporation being prevented, along a 50 m transect in a volcanic Vesuvian soil. The isotropic hypothesis is empirical proved and then the autocorrelation ACF and the partial autocorrelation functions PACF were used to identify and estimate the ARMA(1,1 statistical model for the analyzed series and the AR(1 for the extracted signal. Relations with a state-space model are investigated, and a bivariate AR(1 model fitted. The simultaneous relations between θ and h are considered and estimated. The results are of value for sampling strategies and they should incite to a larger use of time and space series analysis.

  12. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    International Nuclear Information System (INIS)

    FV PERRY; GA CROWE; GA VALENTINE; LM BOWKER

    1997-01-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt ( -7 events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and magmatic events are not significant components of repository performance and volcanism is not a priority issue for performance assessment studies

  13. A conflict of water and fire: Remote sensing imagery of the Uinkaret Volcanic Field, Grand Canyon, Arizona

    Science.gov (United States)

    Ramsey, Michael S.

    1995-01-01

    The sedimentary geology of the western Grand Canyon consists of gently northeast dipping sandstones, shales, and carbonates. However, due to facies changes within the units, the geomorphology varies from that seen by visitors at the National Park Headquarters. There, the cliff and slope expression of the rocks is replaced in the west by a series of mesas, ridges, and horizontal platforms. The largest of these occurs on the Esplanade Sandstone within the Supai Formation. The Esplanade is formed by slope retreat of the overlying units and resistance to erosion by the underlying limestones. It is onto this platform that the lavas of the Uinkaret Plateau were emplaced. The Uinkaret lava field lies 120 km south of St. George, Utah and is tectonically defined by two major normal faults -- the Hurricane to the west and the Toroweap to the east. The purpose of this investigation was to collect visible, near and thermal infrared data at different periods of the day and year. It is expected that these data will provide the ability to retrieve water temperatures; monitor sediment loads; map and examine any changes in the near shore vegetation communities and understand some of the intricacies of the geology. This paper will serve, to some degree, as a progress report on the Grand Canyon study, since only a fraction of the data has been received and processed thus far. Data from the Thermal Infrared Multispectral Scanner (TIMS) and the Landsat Thematic Mapper simulator (NS001) were acquired simultaneously on April 4, 1994. A second data acquisition occurred on August 27, 1994. Initial analysis of the TIMS data indicates a remarkably noise-free data set with minimal atmospheric attenuation. environments is evident.

  14. Volcanic and Tectonic Evolution of The Gulf of California Near Mulege, Baja California Sur: Results From Baja Basins NSF-REU (Research Experience for Undergraduates)

    Science.gov (United States)

    Hutchinson, S. J.; Allard, J.; Acuna, N.; Graettinger, A. H.; Busby, C.

    2017-12-01

    Cenozoic volcanic rocks have been studied along many parts of the Gulf of California margin of Baja California because they provide a record of its volcano-tectonic evolution, from subduction (24-12 Ma), to rifting (820 m thick red bed sequence, sourced to the east by andesitic volcanic rocks eroded from the footwall of a west-dipping normal fault. Proximal alluvial fan bajada deposits are debris-flow dominated, with angular clasts up to 1.3 m in size. Distal braided stream deposits have sandstones and cobble conglomerates, with abundant cut and fill structures and rounded clasts. Adakite trachyandesite block-and-ash-flow tuffs are interstratified with the proximal deposits, representing pyroclastic flows generated by collapse of lava domes plumbed up the basin-bounding fault to the east. (2) The redbeds were cut by a dike swarm that fed a field of lava shield volcanoes. The dikes and lava shields include calcalkaline basaltic andesite, andesite and dacite, as well as magnesian trachyandesite and basaltic andesite. (3) A N-S, subvertical fault stepped into the basin and dropped the lava shields down to the east, while they were eroded off the uplifted footwall to the west. (4) The footwall block was beveled and overlain by plateau-forming magnesian basaltic trachyandesite lavas. Basal clastic sequences in the Baja Gulf of California margin have been inferred to represent Oligocene forearc rocks, with overlying volcanic rocks recording westward sweep of the Miocene arc into the area. However, on the basis of our geochemistry, we infer that all of these rocks record post-subduction (<12 Ma) processes. 1 Acuna et al., this volume

  15. Spectroscopic mapping of the white horse alunite deposit, Marysvale volcanic field, Utah: Evidence of a magmatic component

    Science.gov (United States)

    Rockwell, B.W.; Cunningham, C.G.; Breit, G.N.; Rye, R.O.

    2006-01-01

    Previous studies have demonstrated that the replacement alunite deposits just north of the town of Marysvale, Utah, USA, were formed primarily by low-temperature (100??-170?? C), steam-heated processes near the early Miocene paleoground surface, immediately above convecting hydrothermal plumes. Pyrite-bearing propylitically altered rocks occur mainly beneath the steam-heated alunite and represent the sulfidized feeder zone of the H2S-dominated hydrothermal fluids, the oxidation of which at higher levels led to the formation of the alunite. Maps of surface mineralogy at the White Horse deposit generated from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were used in conjunction with X-ray diffraction studies of field samples to test the accuracy and precision of AVIRIS-based mineral mapping of altered rocks and demonstrate the utility of spectroscopic mapping for ore deposit characterization. The mineral maps identified multiple core zones of alunite that grade laterally outward to kaolinite. Surrounding the core zones are dominantly propylitically altered rocks containing illite, montmorillonite, and chlorite, with minor pyrite, kaolinite, gypsum, and remnant potassium feldspar from the parent rhyodacitic ash-flow tuff. The AVIRIS mapping also identified fracture zones expressed by ridge-forming selvages of quartz + dickite + kaolinite that form a crude ring around the advanced argillic core zones. Laboratory analyses identified the aluminum phosphate-sulfate (APS) minerals woodhouseite and svanbergite in one sample from these dickite-bearing argillic selvages. Reflectance spectroscopy determined that the outer edges of the selvages contain more dickite than do the medial regions. The quartz + dickite ?? kaolinite ?? APS-mineral selvages demonstrate that fracture control of replacement processes is more prevalent away from the advanced argillic core zones. Although not exposed at the White Horse deposit, pyrophyllite ?? ordered illite was identified

  16. Multiphase Alkaline Basalts of Central Al-Haruj Al-Abyad of Libya: Petrological and Geochemical Aspects

    Directory of Open Access Journals (Sweden)

    Abdel-Aal M. Abdel-Karim

    2013-01-01

    Full Text Available Al-Haruj basalts that represent the largest volcanic province in Libya consist of four lava flow phases of varying thicknesses, extensions, and dating. Their eruption is generally controlled by the larger Afro-Arabian rift system. The flow phases range from olivine rich and/or olivine dolerites to olivine and/or normal basalts that consist mainly of variable olivine, clinopyroxene, plagioclase, and glass. Olivine, plagioclase, and clinopyroxene form abundant porphyritic crystals. In olivine-rich basalt and olivine basalt, these minerals occur as glomerophyric or seriate clusters of an individual mineral or group of minerals. Groundmass textures are variably intergranular, intersertal, vitrophyric, and flow. The pyroclastic, clastogenic flows and/or ejecta of the volcanic cones show porphyritic, vitrophric, pilotaxitic, and vesicular textures. They are classified into tholeiite, alkaline, and olivine basalts. Three main groups are recorded. Basalts of phase 1 are generated from tholeiitic to alkaline magma, while those of phases 3 and 4 are derived from alkaline magma. It is proposed that the tholeiitic basalts represent prerift stage magma generated by higher degree of partial melting (2.0–3.5% of garnet-peridotite asthenospheric mantle source, at shallow depth, whereas the dominant alkaline basalts may represent the rift stage magma formed by low degree of partial melting (0.7–1.5% and high fractionation of the same source, at greater depth in an intra-continental plate with OIB affinity. The melt generation could be also attributed to lithosphere extension associated with passive rise of variable enriched mantle.

  17. The geology of Pine and Crater Buttes: Two basaltic constructs on the far eastern Snake River Plain

    Science.gov (United States)

    Mazierski, Paul F.; King, John S.

    1987-01-01

    The emplacement history and petrochemical evolution of the volcanics associated with Pine Butte, Crater Butte, and other nearby vents are developed and described. Four major vents were identified in the study area and their associated eruptive products were mapped. All of the vents show a marked physical elongation or linear orientation coincident with the observed rift set. Planetary exploration has revealed the importance of volcanic processes in the genesis and modification of extraterrestrial surfaces. Interpretation of surface features has identified plains-type basaltic volcanism in various mare regions of the Moon and the volcanic provinces of Mars. Identification of these areas with features that appear analogous to those observed in the Pine Butte area suggests similar styles of eruption and mode of emplacement. Such terrestrial analogies serve as a method to interpret the evolution of volcanic planetary surfaces on the inner planets.

  18. Collision-induced post-plateau volcanism: Evidence from a seamount on Ontong Java Plateau

    Science.gov (United States)

    Hanyu, Takeshi; Tejada, Maria Luisa G.; Shimizu, Kenji; Ishizuka, Osamu; Fujii, Toshiyuki; Kimura, Jun-Ichi; Chang, Qing; Senda, Ryoko; Miyazaki, Takashi; Hirahara, Yuka; Vaglarov, Bogdan S.; Goto, Kosuke T.; Ishikawa, Akira

    2017-12-01

    Many seamounts on the Ontong Java Plateau (OJP) occur near the Stewart Arch, a topographic high that extends parallel to the North Solomon Trench along the southern margins of the plateau. Despite the thick sediment cover, several volcanic cones with strong acoustic reflection were discovered on the submarine flank of the Nuugurigia Seamount. From such volcanic cones, basalts were successfully sampled by dredging. Radiometric dating of basalts and ferromanganese encrustation indicate eruption age of 20-25 Ma, significantly younger than the 122 Ma main OJP plateau and post-plateau basalts. The age range coincides with the collision of the OJP with the Solomon Arc. The Nuugurigia basalts geochemically differ from any other rocks sampled on the OJP so far. They are alkali basalts with elevated Sr, low Zr and Hf, and Enriched Mantle-I (EMI)-like isotopic composition. Parental magmas of these alkali basalts may have formed by small-degree melting of peridotitic mantle impregnated with recycled pyroxenite material having enriched geochemical composition in the OJP's mantle root. We conclude that small-volume alkali basalts from the enriched mantle root migrated through faults or fractures caused by the collision along the Stewart Arch to form the seamount. Our results suggest that the collision of the OJP with the Solomon arc played an important role in the origin of similar post-plateau seamounts along the Stewart Arch.

  19. Helium isotope ratios in circum-Pacific volcanic arcs

    Science.gov (United States)

    Poreda, R.; Craig, H.

    1989-04-01

    Volcanoes in the 'Ring of Fire' surrounding the Pacific Ocean are sited on tectonic arc segments marking the great subduction zones where oceanic crust returns to the mantle. Helium isotope ratios in volcanic gases along these arcs are close to those found in midocean-ridge basalts, revealing the presence of primordial He-3 released from the wedge of mantle material above the sinking plate. These results show that although the subduction of oceanic crust drives the arc volcanism, the subducted crust itself does not contribute a major fraction of the upwelling magma.

  20. Chopped basalt fibres: A new perspective in reinforcing poly(lactic acid to produce injection moulded engineering composites from renewable and natural resources

    Directory of Open Access Journals (Sweden)

    P. Tamas

    2013-02-01

    Full Text Available This paper focuses on the reinforcing of Poly(lactic acid with chopped basalt fibres by using silane treated and untreated basalt fibres. Composite materials with 5–10–15–20–30–40 wt% basalt fibre contents were prepared from silane sized basalt fibres using extrusion, and injection moulding, while composites with 5–10–15 wt% basalt fibre contents were also prepared by using untreated basalt fibres as control. The properties of the injection moulded composites were extensively examined by using quasi-static (tensile, three-point bending and dynamic mechanical tests (notched and unnotched Charpy impact tests, dynamic mechanical analysis (DMA, differential scanning calorimetry (DSC, heat deflection temperature (HDT analysis, dimensional stability test, as well as melt flow index (MFI analysis and scanning electron microscopic (SEM observations. It was found that silane treated chopped basalt fibres are much more effective in reinforcing Poly(lactic acid than natural fibres; although basalt fibres are not biodegradable but they are still considered as natural (can be found in nature in the form of volcanic rocks and biologically inert. It is demonstrated in this paper that by using basalt fibre reinforcement, a renewable and natural resource based composite can be produced by injection moulding with excellent mechanical properties suitable even for engineering applications. Finally it was shown that by using adequate drying of the materials, composites with higher mechanical properties can be achieved compared to literature data.

  1. Geologic Map of Lassen Volcanic National Park and Vicinity, California

    Science.gov (United States)

    Clynne, Michael A.; Muffler, L.J. Patrick

    2010-01-01

    modified for inclusion here. Figure 2 (sheet 3) shows the mapping credit for previous work; figure 3 (sheet 3) shows locations discussed throughout the text. A CD-ROM entitled Database for the Geologic Map of Lassen Volcanic National Park and Vicinity, California accompanies the printed map (Muffler and others, 2010). The CD-ROM contains ESRI compatible geographic information system data files used to create the 1:50,000-scale geologic map, both geologic and topographic data and their associated metadata files, and printable versions of the geologic map and pamphlet as PDF formatted files. The 1:50,000-scale geologic map was compiled from 1:24,000-scale geologic maps of individual quadrangles that are also included in the CD-ROM. It also contains ancillary data that support the map including locations of rock samples selected for chemical analysis (Clynne and others, 2008) and radiometric dating, photographs of geologic features, and links to related data or web sites. Data contained in the CD-ROM are also available on this Web site. The southernmost Cascade Range consists of a regional platform of basalt and basaltic andesite, with subordinate andesite and sparse dacite. Nested within these regional rocks are 'volcanic centers', defined as large, long-lived, composite, calc-alkaline edifices erupting the full range of compositions from basalt to rhyolite, but dominated by andesite and dacite. Volcanic centers are produced by the focusing of basaltic flux from the mantle and resultant enhanced interaction of mafic magma with the crust. Collectively, volcanic centers mark the axis of the southernmost Cascade Range. The map area includes the entire Lassen Volcanic Center, parts of three older volcanic centers (Maidu, Dittmar, and Latour), and the products of regional volcanism (fig. 4, sheet 3). Terminology used for subdivision of the Lassen Volcanic Center has been modified from Clynne (1984, 1990).

  2. Hydrogeological and quantitative groundwater assessment of the Basaltic Aquifer, Northern Harrat Rahat, Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Shaibani, A.; Abokhodair, Abdulwahab A.; Lloyd, J.W.; Al-Ahmari, A.

    2007-01-01

    The Northern Harrat Rahat consists of 300m basalt lavas covering some 2000 km2 to the south-east of Al-Madinah in western Saudi Arabia. Like many basalt sequences, the Rahat basalts form an important aquifer and groundwater resource. The aquifer has a saturated thickness of up to 60m and made up of the weathered upper part of underlying basement, pre-basalt sands and gravels and the fractured basalts. Since 1992, groundwater has been abstracted from the aquifer as part of the Al-Madinah water supply. To assess the potential of the aquifer an assessment has been made based on pumping tests of 70 wells. The hydraulic parameters have been shown to be highly variable typical of the fractured domain. The aquifer contains good-quality water in storage, but receives limited recharge. Groundwater temperature anomalies indicate remnant volcanic activity locally. A numerical groundwater model has been constructed, which has been calibrated using limited groundwater head measurements, but with good abstraction records. Prediction of groundwater heads and the examination of several abstraction scenarios indicate that the aquifer can continue to support part of the Al-Madinah demand for the next several years, if certain well distributions are adopted. The predictions also show that the aquifer can only support the total demand of the city for a few days as a contingency resource. (author)

  3. Expanding Geophysical and Geochemical Investigation of Causes of Extraordinary Unrest at the Laguna del Maule (Rhyolitic) Volcanic Field, Southern Andes, Chile

    Science.gov (United States)

    Singer, B. S.

    2014-12-01

    The Laguna del Maule Volcanic Field, Chile, includes an unusually large and recent concentration of silicic eruptions. Since 2007 the crust here has been inflating at an astonishing rate of 25 cm/yr. Findings thus far lead to the hypothesis that the silicic vents have tapped an extensive layer of crystal-poor, rhyolitic melt that began to form atop a magmatic mush zone that was established by ~20 ka with a renewed phase of rhyolite eruptions during the Holocene. Modeling of surface deformation, magnetotelluric data, and gravity changes suggest that magma is currently intruding at a depth of ~5 km. Swarms of volcano-tectonic and long period earthquakes, mostly of M San Juan-Argentina, Nanyang Technological University-Singapore, SERNAGEOMIN, OVDAS, USGS, and SEGEMAR-Argentina. Team members will be introduced in this presentation. Our approach includes augmenting the OVDAS array of 6 permanent seisic stations with 40 additional instruments to conduct tomographic, receiver function and ambient noise studies. We continue to collect 4-D gravity data from 37 stations. Surface deformation is monitored via cGPS at 5 permanent receivers and InSAR data. A magnetotelluric survey across the Andes at 36o S is planned. Geochemical studies include mineral zoning and U-Th disequilibrium of zircons to constrain the timing of magma intrusion and mixing events prior to the current unrest. The overall aim is to integrate these observations and to construct numerical models of system dynamics. We are developing communications protocols and a web site to facilitate sharing of findings among the team members and with the public.

  4. Ferrous iron- and ammonium-rich diffuse vents support habitat-specific communities in a shallow hydrothermal field off the Basiluzzo Islet (Aeolian Volcanic Archipelago).

    Science.gov (United States)

    Bortoluzzi, G; Romeo, T; La Cono, V; La Spada, G; Smedile, F; Esposito, V; Sabatino, G; Di Bella, M; Canese, S; Scotti, G; Bo, M; Giuliano, L; Jones, D; Golyshin, P N; Yakimov, M M; Andaloro, F

    2017-09-01

    Ammonium- and Fe(II)-rich fluid flows, known from deep-sea hydrothermal systems, have been extensively studied in the last decades and are considered as sites with high microbial diversity and activity. Their shallow-submarine counterparts, despite their easier accessibility, have so far been under-investigated, and as a consequence, much less is known about microbial communities inhabiting these ecosystems. A field of shallow expulsion of hydrothermal fluids has been discovered at depths of 170-400 meters off the base of the Basiluzzo Islet (Aeolian Volcanic Archipelago, Southern Tyrrhenian Sea). This area consists predominantly of both actively diffusing and inactive 1-3 meters-high structures in the form of vertical pinnacles, steeples and mounds covered by a thick orange to brown crust deposits hosting rich benthic fauna. Integrated morphological, mineralogical, and geochemical analyses revealed that, above all, these crusts are formed by ferrihydrite-type Fe 3+ oxyhydroxides. Two cruises in 2013 allowed us to monitor and sampled this novel ecosystem, certainly interesting in terms of shallow-water iron-rich site. The main objective of this work was to characterize the composition of extant communities of iron microbial mats in relation to the environmental setting and the observed patterns of macrofaunal colonization. We demonstrated that iron-rich deposits contain complex and stratified microbial communities with a high proportion of prokaryotes akin to ammonium- and iron-oxidizing chemoautotrophs, belonging to Thaumarchaeota, Nitrospira, and Zetaproteobacteria. Colonizers of iron-rich mounds, while composed of the common macrobenthic grazers, predators, filter-feeders, and tube-dwellers with no representatives of vent endemic fauna, differed from the surrounding populations. Thus, it is very likely that reduced electron donors (Fe 2+ and NH 4 + ) are important energy sources in supporting primary production in microbial mats, which form a habitat

  5. Magnetic Fabric Investigations of the Sapinero Mesa and Fish Canyon Tuffs, Northern Part of the Southern Rocky Mountain Volcanic Field, Colorado

    Science.gov (United States)

    Harper, C.; Martin, M.; Geissman, J. W.

    2013-12-01

    Exposures of two laterally extensive ignimbrites in the northern part of the Southern Rocky Mountain Volcanic Field (SRMVF) allow examination of the emplacement mechanisms of these pyroclastic deposits as a function of deposition on irregular preexisting topography using magnetic fabric techniques. The Sapinero Mesa Tuff (28.19 × 0.03 Ma) was erupted from the San Juan/Uncompahgre Caldera Complex and the Fish Canyon tuff (ca. 28.02 × 0.16 Ma) was erupted from the La Garita caldera. These ignimbrites are major components of the SRMVF and were emplaced on highly irregular paleotopography. The Sapinero Mesa Tuff was emplaced directly on the late Eocene West Elk Breccia near and west of the Blue Mesa reservoir and directly on Precambrian crystalline rocks south of the Blue Mesa reservoir. The Fish Canyon Tuff was emplaced directly on Precambrian crystalline rocks south and southwest of Gunnison. Our study of these two ignimbrites is concentrated in the northern part of the SRMVF and examines how these deposits were emplaced on different topographic features. To date, a total of 16 sites in the Fish Canyon and Sapinero Mesa tuffs have been collected and analyzed for determination of magnetic fabrics through measurements of anisotropy of magnetic susceptibility (AMS). These samples are currently being analyzed for measurements of anisotropy of anhysteretic remanent magnetization (AARM). Initial analyses indicate transport directions that generally coincide with the inferred regional north-northwest transport direction. Additional sampling includes a greater spatial extent and a more focused method of collection with an emphasis on localities chosen with careful consideration of relationships to paleotopographic features present during emplacement of the ignimbrites. Specifically, we have selected linear features of varying scales with strikes that vary significantly from the regional, inferred transport directions. Our work provides a means to compare regional inferred

  6. Ultrasonic P- and S-Wave Attenuation and Petrophysical Properties of Deccan Flood Basalts, India, as Revealed by Borehole Studies

    Science.gov (United States)

    Vedanti, Nimisha; Malkoti, Ajay; Pandey, O. P.; Shrivastava, J. P.

    2018-03-01

    Petrophysical properties and ultrasonic P- and S-wave attenuation measurements on 35 Deccan basalt core specimens, recovered from Killari borehole site in western India, provide unique reference data-sets for a lesser studied Deccan Volcanic Province. These samples represent 338-m-thick basaltic column, consisting four lava flows each of Ambenali and Poladpur Formations, belonging to Wai Subgroup of the Deccan volcanic sequence. These basalt samples are found to be iron-rich (average FeOT: 13.4 wt%), but relatively poor in silica content (average SiO2: 47.8 wt%). The saturated massive basalt cores are characterized by a mean density of 2.91 g/cm3 (range 2.80-3.01 g/cm3) and mean P- and S-wave velocities of 5.89 km/s (range 5.01-6.50 km/s) and 3.43 km/s (range 2.84-3.69 km/s), respectively. In comparison, saturated vesicular basalt cores show a wide range in density (2.40-2.79 g/cm3) as well as P-wave (3.28-4.78 km/s) and S-wave (1.70-2.95 km/s) velocities. Based on the present study, the Deccan volcanic sequence can be assigned a weighted mean density of 2.74 g/cm3 and a low V p and V s of 5.00 and 3.00 km/s, respectively. Such low velocities in Deccan basalts can be attributed mainly to the presence of fine-grained glassy material, high iron contents, and hydrothermally altered secondary mineral products, besides higher porosity in vesicular samples. The measured Q values in saturated massive basalt cores vary enormously (Q p: 33-1960 and Q s: 35-506), while saturated vesicular basalt samples exhibit somewhat lesser variation in Q p (6-46) as well as Q s (5-49). In general, high-porosity rocks exhibit high attenuation, but we observed the high value of attenuation in some of the massive basalt core samples also. In such cases, energy loss is mainly due to the presence of fine-grained glassy material as well as secondary alteration products like chlorophaeite, that could contribute to intrinsic attenuation. Dominance of weekly bound secondary minerals might also be

  7. The Roles of the Yellowstone Hotspot and Crustal Assimilation in Generating Pleistocene-Holocene Basalts on the Eastern Snake River Plain

    Science.gov (United States)

    Mintz, H.; Chadwick, J.

    2017-12-01

    The southwest motion of the North American plate across the Yellowstone hotspot created a chain of age-progressive rhyolitic calderas over the past 16 myr. in southern Idaho, U.S. The focus of Yellowstone activity now resides in northwest Wyoming, but basaltic volcanism has continued in its wake in southern Idaho on the eastern Snake River Plain (ESRP). These younger basaltic lavas are not age progressive and have buried the Yellowstone rhyolites on the ESRP. The ultimate source of the basalts is commonly ascribed to the passage or presence of the hotspot. However, the mechanisms involved, and the relative roles of the hotspot, other mantle sources, and the North American crust in generating the ESRP basalts remain unclear and have been the subject of recent geochemical and isotopic studies. In this study, the role of crustal assimilation is addressed by analyzing the chemical and isotopic characteristics of some of the youngest Pleistocene-Holocene tholeiitic volcanic fields on the ESRP, which were erupted through varying thicknesses of continental crust. Samples were analyzed from the Hell's Half Acre flow (5,200 years old; all dates Kuntz et al., 1986, 1994), Cerro Grande flow (13,380 years), and Black Butte Crater (a.k.a. Shoshone) flow (10,130 years), which were erupted at distances from between about 200 to 300 km from the current location of the hotspot. The crust of the ESRP thins from northeast to southwest, from about 47 km at the Hells Half Acre flow to 40 km at the Black Butte Crater flow, a thickness difference of about 15%. The apparently similar tectonic and magmatic environments of the three sampled flows suggest the crustal thickness variation may be a primary influence on the magnitude of assimilation and therefore the isotopic characteristics of the lavas. The goal of this work is to constrain the relative role of assimilation and to understand the source(s) of the magmas and the Yellowstone hotspot contribution. Major elements, trace elements

  8. Strawberry Rhyolites, Oregon: Northwestern extent of mid-Miocene flood basalt related rhyolites of the Pacific Northwest

    Science.gov (United States)

    Steiner, A. R.; Streck, M. J.

    2011-12-01

    Rhyolitic volcanism associated with the Columbia River-Steens flood basalts of the Pacific Northwest has traditionally been viewed to be centered at McDermitt caldera near the Oregon-Nevada border starting at ~16.5 Ma. In recent years, more rhyolitic centers along this latitude with ages between 16.5-15.5 Ma have been identified and associated with the inception of the Yellowstone hotspot. However the footprint of plume-head related rhyolites becomes much larger when silicic centers of mid-Miocene age in eastern Oregon are included extending the distribution of such rhyolites to areas near the towns of Baker City and John Day ~250 km north of McDermitt. This study addresses one of these rhyolitic centers that was virtually unknown and that constitutes the northwestern extent of mid-Miocene rhyolites. Rhyolites are centered ~40 km SSW of John Day and are considered part of the Strawberry Volcanic Field (SVF), which consists of a diverse group of volcanic rocks ranging from basalt to rhyolite with abundant intermediate compositions. One existing age date of 17.3 Ma ± 0.36 (Robyn, 1977) - if confirmed by our ongoing study - places these rhyolites at the very onset of plume-head related rhyolites. Strawberry rhyolitic lavas are most voluminous in the southwestern portion of the SVF covering approximately 500 km2 between Bear and Logan Valley. The rhyolitic lavas tend to be phenocryst-poor (Strawberry Rhyolites show minor variability except in, Sr (10 - 200 ppm), Zr (65 - 450 ppm), Ti (300 - 3500 ppm), and Ba (350 - 1600 ppm). When normalized to upper crustal values, Strawberry Rhyolites plot around 1 with significant troughs at Sr, P, Ti, and minor troughs in Ba, Nb, and Zr. REE patterns indicate slight LREE enrichment with LaN/YbN values ranging from 2.5 to 8.3 and higher values correlate positively with other differentiation indices (e.g. Ba, Sr, Eu/Eu*). Furthermore, major elements (e.g. SiO2 and FeO*) and trace elements (e.g. Ba, Sr, La, Zr/Hf) display common

  9. Hydrogeology of the Azores volcanic archipelago (Portugal)

    Science.gov (United States)

    Cruz, J.; Coutinho, R.; Antunes, P.; Freire, P.

    2009-04-01

    the volcanic edifices slopes. The basal aquifer system is in the coastal area, presenting generally a very low hydraulic gradient. Hydrogeological surveys that have been made in the Azores archipelago points out to more than 1000 springs and wells spread all over the archipelago (950 springs and 83 drilled wells). Spring distribution is heterogeneous, with densities varying between 0.01 springs/km2 at Pico island and 0.72 springs/km2 estimated at Santa Maria. Specific capacity ranges from 1.4x10-2 to 266.7 L/sm, with a median value of 32.3 L/sm. Transmissivity also present a large range, with values ranging between 1.65x10-5 and 4.03x10-1 m2/s, and a median of 3.66x10-2 m2/s. The heterogeneous distribution shown by these values expresses the influence of the hydrogeological characteristics of volcanic terrain, resulting from syngenetic characteristics and secondary processes, like weathering. The highest values are observed in wells drilled in recent basaltic lava flows, which generally are thin and fractured, with frequent clincker levels interbedded, and the lowest data was estimated in the older volcanic formations of Santa Maria island. Groundwater on perched-water bodies, excluding the numerous mineral waters that are spread in several islands of the archipelago, present usually a low mineralization, shown by the electrical conductivity values (36-725 S/cm; median=158.0 S/cm). The average temperature is equal to 15°C. Waters have an average temperature of 15°C and are mainly slightly acid to slightly alkaline, with a pH range from 4.7 to 8.6, but showing a median value of 7.2. The main water types are Na-Cl to Na-HCO3 waters, with numerous samples lying in the intermediate compositional fields that characterize Na-Cl-HCO3 and Na-HCO3-Cl waters. The groundwater composition in the basal aquifer system is usually from the Na-Cl type and presents a higher mineralization, resulting in a median value for electrical conductivity equal to 1044 S/cm, expressing the

  10. Iridium content of basaltic tuffs and enclosing black shales of the balder formation, North Sea

    Science.gov (United States)

    Crawford Elliott, W.; Aronson, James L.; Millard, Hugh T., Jr.

    1992-07-01

    The anomalous levels of Ir and the presence of shocked metamorphosed quartz deposited at the Cretaceous/Tertiary (K/T) boundary worldwide is strong evidence that a meteorite impact took place during the K/T boundary interval. However, because of observed high Ir contents at Kilauea vents, it is still a major point of contention that the Ir anomaly could have been produced by flood basaltic volcanism. This might especially be true at Stevns Klint, Denmark, where the K/T boundary marl contains pyroclastic labradorite and Mg-smectite thought to have been produced by basaltic volcanism. However, up to now, no study has determined whether or not a depositional Ir anomaly has formed in association with a known major basaltic eruption. Herein, we report the concentrations of Ir, Pt, Au, and Ag in basaltic tuffs and enclosing marine black shales of the widespread Paleocene-Eocene Balder Formation. The tuffs in the Balder Formation represent explosive basaltic volcanism associated with the major volcano/tectonic activity of the opening of the northern North Atlantic Ocean. As such, they are the kind of eruption that could have possibly created a global K/T boundary-type Ir anomaly. Our results show that the tuffs and the shales on a per-weight basis both contain concentrations of Ir (0.1-0.25 ppb) that are higher than the Ir levels recently measured from terrestrial rocks including the Deccan Trap and Columbia River flood basalts, but are comparable to Hawaiian and Reunion Island basalts. Because of its thickness, the absolute amount of Ir expelled during the eruption of the main tuff sequence of the Balder Tuff is sizable. Yet for such an eruption to have produced a global Ir anomaly would mandate it having been one of an extremely high volatile content and it would have to have been erupted over a very short interval of time. Furthermore, such a high proportion of the volatilized Ir would have to have been injected into the stratosphere so that only small enrichments of

  11. Submarine Arc Volcanism in the Southern Mariana Arc: Results of Recent ROV studies

    Science.gov (United States)

    Nichols, A. R.; Tamura, Y.; Stern, R. J.; Embley, R. W.; Hein, J. R.; Jordan, E.; Ribeiro, J. M.; Sica, N.; Kohut, E. J.; Whattam, S. A.; Hirahara, Y.; Senda, R.; Nunokawa, A.

    2009-12-01

    The submarine Diamante cross-arc volcanoes (~16°N) and the Sarigan-Zealandia Bank Multi-Volcano Complex (SZBMVC; ~16°45’N), north and south, respectively, of Anatahan Island in the southern Mariana Arc, were studied during several dives in June 2009 using the ROV Hyper-Dolphin, cruise NT09-08 (R/V Natsushima); neither has been studied in detail before. The data collected provide a new perspective on how the subduction factory operates to complement previous studies on other cross-arc volcanic chains in the Izu-Bonin-Mariana Arc. The Diamante complex consists of three major edifices, two cones (West and Central Diamante) and a more complex caldera-like edifice at the volcanic front (East Diamante). West and Central Diamante are basaltic volcanoes but East Diamante has a more complex history. Our studies indicate initial construction of a basaltic volcano. Magmatic evolution led to a violent caldera-forming and quieter dome-building events. Post-caldera quiescence allowed a carbonate platform to grow, now preserved on the eastern caldera wall. Felsic magma or hot rock provides a heat source for an active hydrothermal field associated with felsic domes in the caldera, which NOAA investigators discovered in 2004. A new type of hydrothermal deposit was discovered in the hydrothermal field, consisting of large sulfide-sulfate mounds topped by bulbous constructions of low-temperature Fe and Mn oxides. Vents on the mounds were observed to emit shimmering water. The SZBMVC consists of six closely spaced edifices whose loci are aligned along two parallel trends, one along the volcanic front (Zealandia Bank, Sarigan and South Sarigan), and one about 15 km west towards the rear-arc (Northwest Zealandia, West Zealandia and West Sarigan). Zealandia Bank dives revealed that, as with East Diamante, initial activity was basaltic and became more evolved with time. The western half of Zealandia Bank is dominated by felsic lavas centered on a small (~2 km diameter) caldera and

  12. Settling-driven gravitational instabilities associated with volcanic clouds: new insights from experimental investigations

    Science.gov (United States)

    Scollo, Simona; Bonadonna, Costanza; Manzella, Irene

    2017-06-01

    Downward propagating instabilities are often observed at the bottom of volcanic plumes and clouds. These instabilities generate fingers that enhance the sedimentation of fine ash. Despite their potential influence on tephra dispersal and deposition, their dynamics is not entirely understood, undermining the accuracy of volcanic ash transport and dispersal models. Here, we present new laboratory experiments that investigate the effects of particle size, composition and concentration on finger generation and dynamics. The experimental set-up consists of a Plexiglas tank equipped with a removable plastic sheet that separates two different layers. The lower layer is a solution of water and sugar, initially denser than the upper layer, which consists of water and particles. Particles in the experiments include glass beads as well as andesitic, rhyolitic and basaltic volcanic ash. During the experiments, we removed the horizontal plastic sheet separating the two fluids. Particles were illuminated with a laser and filmed with a HD camera; particle image velocimetry (PIV) is used to analyse finger dynamics. Results show that both the number an