WorldWideScience

Sample records for basal ganglia network

  1. Functional neuroanatomy of the basal ganglia.

    Science.gov (United States)

    Lanciego, José L; Luquin, Natasha; Obeso, José A

    2012-12-01

    The "basal ganglia" refers to a group of subcortical nuclei responsible primarily for motor control, as well as other roles such as motor learning, executive functions and behaviors, and emotions. Proposed more than two decades ago, the classical basal ganglia model shows how information flows through the basal ganglia back to the cortex through two pathways with opposing effects for the proper execution of movement. Although much of the model has remained, the model has been modified and amplified with the emergence of new data. Furthermore, parallel circuits subserve the other functions of the basal ganglia engaging associative and limbic territories. Disruption of the basal ganglia network forms the basis for several movement disorders. This article provides a comprehensive account of basal ganglia functional anatomy and chemistry and the major pathophysiological changes underlying disorders of movement. We try to answer three key questions related to the basal ganglia, as follows: What are the basal ganglia? What are they made of? How do they work? Some insight on the canonical basal ganglia model is provided, together with a selection of paradoxes and some views over the horizon in the field.

  2. Basal ganglia circuits changes in Parkinson's disease patients.

    Science.gov (United States)

    Wu, Tao; Wang, Jue; Wang, Chaodong; Hallett, Mark; Zang, Yufeng; Wu, Xiaoli; Chan, Piu

    2012-08-22

    Functional changes in basal ganglia circuitry are responsible for the major clinical features of Parkinson's disease (PD). Current models of basal ganglia circuitry can only partially explain the cardinal symptoms in PD. We used functional MRI to investigate the causal connectivity of basal ganglia networks from the substantia nigra pars compacta (SNc) in PD in the movement and resting state. In controls, SNc activity predicted increased activity in the supplementary motor area, the default mode network, and dorsolateral prefrontal cortex, but, in patients, activity predicted decreases in the same structures. The SNc had decreased connectivity with the striatum, globus pallidus, subthalamic nucleus, thalamus, supplementary motor area, dorsolateral prefrontal cortex, insula, default mode network, temporal lobe, cerebellum, and pons in patients compared to controls. Levodopa administration partially normalized the pattern of connectivity. Our findings show how the dopaminergic system exerts influences on widespread brain networks, including motor and cognitive networks. The pattern of basal ganglia network connectivity is abnormal in PD secondary to dopamine depletion, and is more deviant in more severe disease. Use of functional MRI with network analysis appears to be a useful method to demonstrate basal ganglia pathways in vivo in human subjects. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Basal ganglia and cortical networks for sequential ordering and rhythm of complex movements

    Directory of Open Access Journals (Sweden)

    Jeffery G. Bednark

    2015-07-01

    Full Text Available Voluntary actions require the concurrent engagement and coordinated control of complex temporal (e.g. rhythm and ordinal motor processes. Using high-resolution functional magnetic resonance imaging (fMRI and multi-voxel pattern analysis (MVPA, we sought to determine the degree to which these complex motor processes are dissociable in basal ganglia and cortical networks. We employed three different finger-tapping tasks that differed in the demand on the sequential temporal rhythm or sequential ordering of submovements. Our results demonstrate that sequential rhythm and sequential order tasks were partially dissociable based on activation differences. The sequential rhythm task activated a widespread network centered around the SMA and basal-ganglia regions including the dorsomedial putamen and caudate nucleus, while the sequential order task preferentially activated a fronto-parietal network. There was also extensive overlap between sequential rhythm and sequential order tasks, with both tasks commonly activating bilateral premotor, supplementary motor, and superior/inferior parietal cortical regions, as well as regions of the caudate/putamen of the basal ganglia and the ventro-lateral thalamus. Importantly, within the cortical regions that were active for both complex movements, MVPA could accurately classify different patterns of activation for the sequential rhythm and sequential order tasks. In the basal ganglia, however, overlapping activation for the sequential rhythm and sequential order tasks, which was found in classic motor circuits of the putamen and ventro-lateral thalamus, could not be accurately differentiated by MVPA. Overall, our results highlight the convergent architecture of the motor system, where complex motor information that is spatially distributed in the cortex converges into a more compact representation in the basal ganglia.

  4. Global dysrhythmia of cerebro-basal ganglia-cerebellar networks underlies motor tics following striatal disinhibition.

    Science.gov (United States)

    McCairn, Kevin W; Iriki, Atsushi; Isoda, Masaki

    2013-01-09

    Motor tics, a cardinal symptom of Tourette syndrome (TS), are hypothesized to arise from abnormalities within cerebro-basal ganglia circuits. Yet noninvasive neuroimaging of TS has previously identified robust activation in the cerebellum. To date, electrophysiological properties of cerebellar activation and its role in basal ganglia-mediated tic expression remain unknown. We performed multisite, multielectrode recordings of single-unit activity and local field potentials from the cerebellum, basal ganglia, and primary motor cortex using a pharmacologic monkey model of motor tics/TS. Following microinjections of bicuculline into the sensorimotor putamen, periodic tics occurred predominantly in the orofacial region, and a sizable number of cerebellar neurons showed phasic changes in activity associated with tic episodes. Specifically, 64% of the recorded cerebellar cortex neurons exhibited increases in activity, and 85% of the dentate nucleus neurons displayed excitatory, inhibitory, or multiphasic responses. Critically, abnormal discharges of cerebellar cortex neurons and excitatory-type dentate neurons mostly preceded behavioral tic onset, indicating their central origins. Latencies of pathological activity in the cerebellum and primary motor cortex substantially overlapped, suggesting that aberrant signals may be traveling along divergent pathways to these structures from the basal ganglia. Furthermore, the occurrence of tic movement was most closely associated with local field potential spikes in the cerebellum and primary motor cortex, implying that these structures may function as a gate to release overt tic movements. These findings indicate that tic-generating networks in basal ganglia mediated tic disorders extend beyond classical cerebro-basal ganglia circuits, leading to global network dysrhythmia including cerebellar circuits.

  5. Homologous Basal Ganglia Network Models in Physiological and Parkinsonian Conditions

    Directory of Open Access Journals (Sweden)

    Jyotika Bahuguna

    2017-08-01

    Full Text Available The classical model of basal ganglia has been refined in recent years with discoveries of subpopulations within a nucleus and previously unknown projections. One such discovery is the presence of subpopulations of arkypallidal and prototypical neurons in external globus pallidus, which was previously considered to be a primarily homogeneous nucleus. Developing a computational model of these multiple interconnected nuclei is challenging, because the strengths of the connections are largely unknown. We therefore use a genetic algorithm to search for the unknown connectivity parameters in a firing rate model. We apply a binary cost function derived from empirical firing rate and phase relationship data for the physiological and Parkinsonian conditions. Our approach generates ensembles of over 1,000 configurations, or homologies, for each condition, with broad distributions for many of the parameter values and overlap between the two conditions. However, the resulting effective weights of connections from or to prototypical and arkypallidal neurons are consistent with the experimental data. We investigate the significance of the weight variability by manipulating the parameters individually and cumulatively, and conclude that the correlation observed between the parameters is necessary for generating the dynamics of the two conditions. We then investigate the response of the networks to a transient cortical stimulus, and demonstrate that networks classified as physiological effectively suppress activity in the internal globus pallidus, and are not susceptible to oscillations, whereas parkinsonian networks show the opposite tendency. Thus, we conclude that the rates and phase relationships observed in the globus pallidus are predictive of experimentally observed higher level dynamical features of the physiological and parkinsonian basal ganglia, and that the multiplicity of solutions generated by our method may well be indicative of a natural

  6. Network effects of subthalamic deep brain stimulation drive a unique mixture of responses in basal ganglia output.

    Science.gov (United States)

    Humphries, Mark D; Gurney, Kevin

    2012-07-01

    Deep brain stimulation (DBS) is a remarkably successful treatment for the motor symptoms of Parkinson's disease. High-frequency stimulation of the subthalamic nucleus (STN) within the basal ganglia is a main clinical target, but the physiological mechanisms of therapeutic STN DBS at the cellular and network level are unclear. We set out to begin to address the hypothesis that a mixture of responses in the basal ganglia output nuclei, combining regularized firing and inhibition, is a key contributor to the effectiveness of STN DBS. We used our computational model of the complete basal ganglia circuit to show how such a mixture of responses in basal ganglia output naturally arises from the network effects of STN DBS. We replicated the diversification of responses recorded in a primate STN DBS study to show that the model's predicted mixture of responses is consistent with therapeutic STN DBS. We then showed how this 'mixture of response' perspective suggests new ideas for DBS mechanisms: first, that the therapeutic frequency of STN DBS is above 100 Hz because the diversification of responses exhibits a step change above this frequency; and second, that optogenetic models of direct STN stimulation during DBS have proven therapeutically ineffective because they do not replicate the mixture of basal ganglia output responses evoked by electrical DBS. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  7. Electrophysiological Evidences of Organization of Cortical Motor Information in the Basal Ganglia

    Directory of Open Access Journals (Sweden)

    Hirokazu Iwamuro

    2011-05-01

    Full Text Available During the last two decades, the many developments in the treatment of movement disorders such as Parkinson disease and dystonia have enhanced our understanding on organization of the basal ganglia, and this knowledge has led to other advances in the field. According to many electrophysiological and anatomical findings, it is considered that motor information from different cortical areas is processed through several cortico-basal ganglia loops principally in a parallel fashion and somatotopy from each cortical area is also well preserved in each loop. Moreover, recent studies suggest that not only the parallel processing but also some convergence of information occur through the basal ganglia. Information from cortical areas whose functions are close to each other tends to converge in the basal ganglia. The cortico-basal ganglia loops should be comprehended more as a network rather than as separated subdivisions. However, the functions of this convergence still remain unknown. It is important even for clinical doctors to be well informed about this kind of current knowledge because some symptoms of movement disorders may be explained by disorganization of the information network in the basal ganglia.

  8. Network effects of subthalamic deep brain stimulation drive a unique mixture of responses in basal ganglia output

    OpenAIRE

    Humphries, Mark D.; Gurney, Kevin

    2012-01-01

    Deep brain stimulation (DBS) is a remarkably successful treatment for the motor symptoms of Parkinson's disease. High-frequency stimulation of the subthalamic nucleus (STN) within the basal ganglia is a main clinical target, but the physiological mechanisms of therapeutic STN DBS at the cellular and network level are unclear. We set out to begin to address the hypothesis that a mixture of responses in the basal ganglia output nuclei, combining regularized firing and inhibition, is a key contr...

  9. Basal ganglia dysfunction in idiopathic REM sleep behaviour disorder parallels that in early Parkinson's disease.

    Science.gov (United States)

    Rolinski, Michal; Griffanti, Ludovica; Piccini, Paola; Roussakis, Andreas A; Szewczyk-Krolikowski, Konrad; Menke, Ricarda A; Quinnell, Timothy; Zaiwalla, Zenobia; Klein, Johannes C; Mackay, Clare E; Hu, Michele T M

    2016-08-01

    SEE POSTUMA DOI101093/AWW131 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Resting state functional magnetic resonance imaging dysfunction within the basal ganglia network is a feature of early Parkinson's disease and may be a diagnostic biomarker of basal ganglia dysfunction. Currently, it is unclear whether these changes are present in so-called idiopathic rapid eye movement sleep behaviour disorder, a condition associated with a high rate of future conversion to Parkinson's disease. In this study, we explore the utility of resting state functional magnetic resonance imaging to detect basal ganglia network dysfunction in rapid eye movement sleep behaviour disorder. We compare these data to a set of healthy control subjects, and to a set of patients with established early Parkinson's disease. Furthermore, we explore the relationship between resting state functional magnetic resonance imaging basal ganglia network dysfunction and loss of dopaminergic neurons assessed with dopamine transporter single photon emission computerized tomography, and perform morphometric analyses to assess grey matter loss. Twenty-six patients with polysomnographically-established rapid eye movement sleep behaviour disorder, 48 patients with Parkinson's disease and 23 healthy control subjects were included in this study. Resting state networks were isolated from task-free functional magnetic resonance imaging data using dual regression with a template derived from a separate cohort of 80 elderly healthy control participants. Resting state functional magnetic resonance imaging parameter estimates were extracted from the study subjects in the basal ganglia network. In addition, eight patients with rapid eye movement sleep behaviour disorder, 10 with Parkinson's disease and 10 control subjects received (123)I-ioflupane single photon emission computerized tomography. We tested for reduction of basal ganglia network connectivity, and for loss of tracer uptake in rapid eye movement sleep

  10. Positron emission tomography and basal ganglia functions

    International Nuclear Information System (INIS)

    Kato, Motohiro; Otsuka, Makoto; Taniwaki, Koukyo; Hosokawa, Shinichi; Kuwabara, Yasuo; Ichiya, Yuichi

    1990-01-01

    With the advent of positron emission tomography (PET), studies on the human brain function and pathophysiology of brain damage have been extremely progressed. It is well-known that the basal ganglia plays an important role as one of the central nervous system involved in exercise regulation. More recently, the potential involvement of the basal ganglia in psychological processes, such as cognitive function, has been pointed out, receiving much attention. In spite of such a lot of studies, however, basal ganglia function remains unclear. This paper describes the relationships between PET findings and basal ganglia function. PET findings are discussed in relation to brain energy metabolism and striatal dopamine function. Pathophysiology of the basal ganglia are described in terms of the following diseases: Parkinson's disease, Parkinson's syndrome, progressive supranuclear palsy, Huntington's disease, and dystonia. Physiological backgrounds of the basal ganglia for PET images are also referred to. (N.K.) 75 refs

  11. Positron emission tomography and basal ganglia functions

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Motohiro; Otsuka, Makoto; Taniwaki, Koukyo; Hosokawa, Shinichi; Kuwabara, Yasuo; Ichiya, Yuichi [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine

    1990-05-01

    With the advent of positron emission tomography (PET), studies on the human brain function and pathophysiology of brain damage have been extremely progressed. It is well-known that the basal ganglia plays an important role as one of the central nervous system involved in exercise regulation. More recently, the potential involvement of the basal ganglia in psychological processes, such as cognitive function, has been pointed out, receiving much attention. In spite of such a lot of studies, however, basal ganglia function remains unclear. This paper describes the relationships between PET findings and basal ganglia function. PET findings are discussed in relation to brain energy metabolism and striatal dopamine function. Pathophysiology of the basal ganglia are described in terms of the following diseases: Parkinson's disease, Parkinson's syndrome, progressive supranuclear palsy, Huntington's disease, and dystonia. Physiological backgrounds of the basal ganglia for PET images are also referred to. (N.K.) 75 refs.

  12. Oscillatory activity in the basal ganglia and deep brain stimulation.

    Science.gov (United States)

    Guridi, Jorge; Alegre, Manuel

    2017-01-01

    Over the past 10 years, research into the neurophysiology of the basal ganglia has provided new insights into the pathophysiology of movement disorders. The presence of pathological oscillations at specific frequencies has been linked to different signs and symptoms in PD and dystonia, suggesting a new model to explain basal ganglia dysfunction. These advances occurred in parallel with improvements in imaging and neurosurgical techniques, both of which having facilitated the more widespread use of DBS to modulate dysfunctional circuits. High-frequency stimulation is thought to disrupt pathological activity in the motor cortex/basal ganglia network; however, it is not easy to explain all of its effects based only on changes in network oscillations. In this viewpoint, we suggest that a return to classic anatomical concepts might help to understand some apparently paradoxical findings. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  13. Basal Ganglia Circuits as Targets for Neuromodulation in Parkinson Disease.

    Science.gov (United States)

    DeLong, Mahlon R; Wichmann, Thomas

    2015-11-01

    The revival of stereotactic surgery for Parkinson disease (PD) in the 1990s, with pallidotomy and then with high-frequency deep brain stimulation (DBS), has led to a renaissance in functional surgery for movement and other neuropsychiatric disorders. To examine the scientific foundations and rationale for the use of ablation and DBS for treatment of neurologic and psychiatric diseases, using PD as the primary example. A summary of the large body of relevant literature is presented on anatomy, physiology, pathophysiology, and functional surgery for PD and other basal ganglia disorders. The signs and symptoms of movement disorders appear to result largely from signature abnormalities in one of several parallel and largely segregated basal ganglia thalamocortical circuits (ie, the motor circuit). The available evidence suggests that the varied movement disorders resulting from dysfunction of this circuit result from propagated disruption of downstream network activity in the thalamus, cortex, and brainstem. Ablation and DBS act to free downstream networks to function more normally. The basal ganglia thalamocortical circuit may play a key role in the expression of disordered movement, and the basal ganglia-brainstem projections may play roles in akinesia and disturbances of gait. Efforts are under way to target circuit dysfunction in brain areas outside of the traditionally implicated basal ganglia thalamocortical system, in particular, the pedunculopontine nucleus, to address gait disorders that respond poorly to levodopa and conventional DBS targets. Deep brain stimulation is now the treatment of choice for many patients with advanced PD and other movement disorders. The success of DBS and other forms of neuromodulation for neuropsychiatric disorders is the result of the ability to modulate circuit activity in discrete functional domains within the basal ganglia circuitry with highly focused interventions, which spare uninvolved areas that are often disrupted with

  14. Atrophy of the basal ganglia as the initial diagnostic sign of germinoma in the basal ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, K.; Ishikawa, K.; Takahashi, N.; Furusawa, T.; Sakai, K. [Department of Radiology, Niigata University Faculty of Medicine (Japan); Ito, J.; Tokiguchi, S. [Department of Radiology, Niigata University Faculty of Dentistry (Japan); Morii, K. [Department of Neurosurgery, Niigata University Brain Research Institute (Japan); Yamada, M. [Department of Pathology, Niigata University Brain Research Institute (Japan)

    2002-05-01

    Germ-cell tumors of the central nervous system generally develop in the midline, but the tumors can also occur in the basal ganglia and/or thalamus. However, MR images have rarely been documented in the early stage of the tumor in these regions. We retrospectively reviewed MR images obtained on admission and approximately 3 years earlier in two patients with germinoma in the basal ganglia, and compared them with CT. In addition to hyperdensity on CT, both hyperintensity on T1-weighted images and a small hyperintense lesion on T2-weighted images were commonly seen in the basal ganglia. These findings may be early MRI signs of germinoma in this region, and the earliest and most characteristic diagnostic feature on MRI was atrophy of the basal ganglia, which was recognizable before development of hemiparesis. (orig.)

  15. Basal ganglia dysfunction in idiopathic REM sleep behaviour disorder parallels that in early Parkinson’s disease

    Science.gov (United States)

    Rolinski, Michal; Griffanti, Ludovica; Piccini, Paola; Roussakis, Andreas A.; Szewczyk-Krolikowski, Konrad; Menke, Ricarda A.; Quinnell, Timothy; Zaiwalla, Zenobia; Klein, Johannes C.; Mackay, Clare E.

    2016-01-01

    Abstract See Postuma (doi:10.1093/aww131) for a scientific commentary on this article. Resting state functional magnetic resonance imaging dysfunction within the basal ganglia network is a feature of early Parkinson’s disease and may be a diagnostic biomarker of basal ganglia dysfunction. Currently, it is unclear whether these changes are present in so-called idiopathic rapid eye movement sleep behaviour disorder, a condition associated with a high rate of future conversion to Parkinson’s disease. In this study, we explore the utility of resting state functional magnetic resonance imaging to detect basal ganglia network dysfunction in rapid eye movement sleep behaviour disorder. We compare these data to a set of healthy control subjects, and to a set of patients with established early Parkinson’s disease. Furthermore, we explore the relationship between resting state functional magnetic resonance imaging basal ganglia network dysfunction and loss of dopaminergic neurons assessed with dopamine transporter single photon emission computerized tomography, and perform morphometric analyses to assess grey matter loss. Twenty-six patients with polysomnographically-established rapid eye movement sleep behaviour disorder, 48 patients with Parkinson’s disease and 23 healthy control subjects were included in this study. Resting state networks were isolated from task-free functional magnetic resonance imaging data using dual regression with a template derived from a separate cohort of 80 elderly healthy control participants. Resting state functional magnetic resonance imaging parameter estimates were extracted from the study subjects in the basal ganglia network. In addition, eight patients with rapid eye movement sleep behaviour disorder, 10 with Parkinson’s disease and 10 control subjects received 123I-ioflupane single photon emission computerized tomography. We tested for reduction of basal ganglia network connectivity, and for loss of tracer uptake in rapid eye

  16. Using a hybrid neuron in physiologically inspired models of the basal ganglia

    Directory of Open Access Journals (Sweden)

    Corey Michael Thibeault

    2013-07-01

    Full Text Available Our current understanding of the basal ganglia has facilitated the creation of computational models that have contributed novel theories, explored new functional anatomy and demonstrated results complementing physiological experiments. However, the utility of these models extends beyond these applications. Particularly in neuromorphic engineering, where the basal ganglia's role in computation is important for applications such as power efficient autonomous agents and model-based control strategies. The neurons used in existing computational models of the basal ganglia however, are not amenable for many low-power hardware implementations. Motivated by a need for more hardware accessible networks, we replicate four published models of the basal ganglia, spanning single neuron and small networks, replacing the more computationally expensive neuron models with an Izhikevich hybrid neuron. This begins with a network modeling action-selection, where the basal activity levels and the ability to appropriately select the most salient input is reproduced. A Parkinson's disease model is then explored under normal conditions, Parkinsonian conditions and during subthalamic nucleus deep brain stimulation. The resulting network is capable of replicating the loss of thalamic relay capabilities in the Parkinsonian state and its return under deep brain stimulation. This is also demonstrated using a network capable of action-selection. Finally, a study of correlation transfer under different patterns of Parkinsonian activity is presented. These networks successfully captured the significant results of the originals studies. This not only creates a foundation for neuromorphic hardware implementations but may also support the development of large-scale biophysical models. The former potentially providing a way of improving the efficacy of deep brain stimulation and the latter allowing for the efficient simulation of larger more comprehensive networks.

  17. Basal ganglia, movement disorders and deep brain stimulation: advances made through non-human primate research.

    Science.gov (United States)

    Wichmann, Thomas; Bergman, Hagai; DeLong, Mahlon R

    2018-03-01

    Studies in non-human primates (NHPs) have led to major advances in our understanding of the function of the basal ganglia and of the pathophysiologic mechanisms of hypokinetic movement disorders such as Parkinson's disease and hyperkinetic disorders such as chorea and dystonia. Since the brains of NHPs are anatomically very close to those of humans, disease states and the effects of medical and surgical approaches, such as deep brain stimulation (DBS), can be more faithfully modeled in NHPs than in other species. According to the current model of the basal ganglia circuitry, which was strongly influenced by studies in NHPs, the basal ganglia are viewed as components of segregated networks that emanate from specific cortical areas, traverse the basal ganglia, and ventral thalamus, and return to the frontal cortex. Based on the presumed functional domains of the different cortical areas involved, these networks are designated as 'motor', 'oculomotor', 'associative' and 'limbic' circuits. The functions of these networks are strongly modulated by the release of dopamine in the striatum. Striatal dopamine release alters the activity of striatal projection neurons which, in turn, influences the (inhibitory) basal ganglia output. In parkinsonism, the loss of striatal dopamine results in the emergence of oscillatory burst patterns of firing of basal ganglia output neurons, increased synchrony of the discharge of neighboring basal ganglia neurons, and an overall increase in basal ganglia output. The relevance of these findings is supported by the demonstration, in NHP models of parkinsonism, of the antiparkinsonian effects of inactivation of the motor circuit at the level of the subthalamic nucleus, one of the major components of the basal ganglia. This finding also contributed strongly to the revival of the use of surgical interventions to treat patients with Parkinson's disease. While ablative procedures were first used for this purpose, they have now been largely

  18. Learning and memory functions of the Basal Ganglia.

    Science.gov (United States)

    Packard, Mark G; Knowlton, Barbara J

    2002-01-01

    Although the mammalian basal ganglia have long been implicated in motor behavior, it is generally recognized that the behavioral functions of this subcortical group of structures are not exclusively motoric in nature. Extensive evidence now indicates a role for the basal ganglia, in particular the dorsal striatum, in learning and memory. One prominent hypothesis is that this brain region mediates a form of learning in which stimulus-response (S-R) associations or habits are incrementally acquired. Support for this hypothesis is provided by numerous neurobehavioral studies in different mammalian species, including rats, monkeys, and humans. In rats and monkeys, localized brain lesion and pharmacological approaches have been used to examine the role of the basal ganglia in S-R learning. In humans, study of patients with neurodegenerative diseases that compromise the basal ganglia, as well as research using brain neuroimaging techniques, also provide evidence of a role for the basal ganglia in habit learning. Several of these studies have dissociated the role of the basal ganglia in S-R learning from those of a cognitive or declarative medial temporal lobe memory system that includes the hippocampus as a primary component. Evidence suggests that during learning, basal ganglia and medial temporal lobe memory systems are activated simultaneously and that in some learning situations competitive interference exists between these two systems.

  19. Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality?

    Science.gov (United States)

    Wichmann, Thomas; DeLong, Mahlon R

    2016-04-01

    Deep brain stimulation (DBS) is highly effective for both hypo- and hyperkinetic movement disorders of basal ganglia origin. The clinical use of DBS is, in part, empiric, based on the experience with prior surgical ablative therapies for these disorders, and, in part, driven by scientific discoveries made decades ago. In this review, we consider anatomical and functional concepts of the basal ganglia relevant to our understanding of DBS mechanisms, as well as our current understanding of the pathophysiology of two of the most commonly DBS-treated conditions, Parkinson's disease and dystonia. Finally, we discuss the proposed mechanism(s) of action of DBS in restoring function in patients with movement disorders. The signs and symptoms of the various disorders appear to result from signature disordered activity in the basal ganglia output, which disrupts the activity in thalamocortical and brainstem networks. The available evidence suggests that the effects of DBS are strongly dependent on targeting sensorimotor portions of specific nodes of the basal ganglia-thalamocortical motor circuit, that is, the subthalamic nucleus and the internal segment of the globus pallidus. There is little evidence to suggest that DBS in patients with movement disorders restores normal basal ganglia functions (e.g., their role in movement or reinforcement learning). Instead, it appears that high-frequency DBS replaces the abnormal basal ganglia output with a more tolerable pattern, which helps to restore the functionality of downstream networks.

  20. Nonlinear predictive control for adaptive adjustments of deep brain stimulation parameters in basal ganglia-thalamic network.

    Science.gov (United States)

    Su, Fei; Wang, Jiang; Niu, Shuangxia; Li, Huiyan; Deng, Bin; Liu, Chen; Wei, Xile

    2018-02-01

    The efficacy of deep brain stimulation (DBS) for Parkinson's disease (PD) depends in part on the post-operative programming of stimulation parameters. Closed-loop stimulation is one method to realize the frequent adjustment of stimulation parameters. This paper introduced the nonlinear predictive control method into the online adjustment of DBS amplitude and frequency. This approach was tested in a computational model of basal ganglia-thalamic network. The autoregressive Volterra model was used to identify the process model based on physiological data. Simulation results illustrated the efficiency of closed-loop stimulation methods (amplitude adjustment and frequency adjustment) in improving the relay reliability of thalamic neurons compared with the PD state. Besides, compared with the 130Hz constant DBS the closed-loop stimulation methods can significantly reduce the energy consumption. Through the analysis of inter-spike-intervals (ISIs) distribution of basal ganglia neurons, the evoked network activity by the closed-loop frequency adjustment stimulation was closer to the normal state. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Aberrant functional connectivity within the basal ganglia of patients with Parkinson's disease.

    Science.gov (United States)

    Rolinski, Michal; Griffanti, Ludovica; Szewczyk-Krolikowski, Konrad; Menke, Ricarda A L; Wilcock, Gordon K; Filippini, Nicola; Zamboni, Giovanna; Hu, Michele T M; Mackay, Clare E

    2015-01-01

    Resting state functional MRI (rs-fMRI) has been previously shown to be a promising tool for the assessment of early Parkinson's disease (PD). In order to assess whether changes within the basal ganglia network (BGN) are disease specific or relate to neurodegeneration generally, BGN connectivity was assessed in 32 patients with early PD, 19 healthy controls and 31 patients with Alzheimer's disease (AD). Voxel-wise comparisons demonstrated decreased connectivity within the basal ganglia of patients with PD, when compared to patients with AD and healthy controls. No significant changes within the BGN were seen in AD, when compared to healthy controls. Moreover, measures of functional connectivity extracted from regions within the basal ganglia were significantly lower in the PD group. Consistent with previous radiotracer studies, the greatest change when compared to the healthy control group was seen in the posterior putamen of PD subjects. When combined into a single component score, this method differentiated PD from AD and healthy control subjects, with a diagnostic accuracy of 81%. Rs-fMRI can be used to demonstrate the aberrant functional connectivity within the basal ganglia of patients with early PD. These changes are likely to be representative of patho-physiological basal ganglia dysfunction and are not associated with generalised neurodegeneration seen in AD. Further studies are necessary to ascertain whether this method is sensitive enough to detect basal ganglia dysfunction in prodromal PD, and its utility as a potential diagnostic biomarker for premotor and early motoric disease.

  2. Germinoma originating in the basal ganglia

    International Nuclear Information System (INIS)

    Anno, Y.; Hori, T.; Watanabe, T.; Takenobu, A.; Takigawa, H.; Kishimoto, M.; Tanaka, J.

    1990-01-01

    About 5-10% of primary intracranial germ cell tumors arise in basal ganglia and thalamus, where CT studies have been made. MR of the tumors in the pineal region, and to our knowledge, from one tumor in the basal ganglia were similar. In the present case, MR produced confusion in confirming diagnosis, which may require additional evidence from the clinical course, tumor markers, and CT images. (orig.)

  3. Aberrant functional connectivity within the basal ganglia of patients with Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Michal Rolinski

    2015-01-01

    Full Text Available Resting state functional MRI (rs-fMRI has been previously shown to be a promising tool for the assessment of early Parkinson's disease (PD. In order to assess whether changes within the basal ganglia network (BGN are disease specific or relate to neurodegeneration generally, BGN connectivity was assessed in 32 patients with early PD, 19 healthy controls and 31 patients with Alzheimer's disease (AD. Voxel-wise comparisons demonstrated decreased connectivity within the basal ganglia of patients with PD, when compared to patients with AD and healthy controls. No significant changes within the BGN were seen in AD, when compared to healthy controls. Moreover, measures of functional connectivity extracted from regions within the basal ganglia were significantly lower in the PD group. Consistent with previous radiotracer studies, the greatest change when compared to the healthy control group was seen in the posterior putamen of PD subjects. When combined into a single component score, this method differentiated PD from AD and healthy control subjects, with a diagnostic accuracy of 81%. Rs-fMRI can be used to demonstrate the aberrant functional connectivity within the basal ganglia of patients with early PD. These changes are likely to be representative of patho-physiological basal ganglia dysfunction and are not associated with generalised neurodegeneration seen in AD. Further studies are necessary to ascertain whether this method is sensitive enough to detect basal ganglia dysfunction in prodromal PD, and its utility as a potential diagnostic biomarker for premotor and early motoric disease.

  4. Computed tomography of calcification of the basal ganglia

    International Nuclear Information System (INIS)

    Park, Churl Min; Suh, Soo Jhi; Kim, Soon Yong

    1981-01-01

    Calcifications of the basal ganglia are rarely found at routine autopsies and in skull radiographs. CT is superior to the plain skull radiographs in detecting intracranial attenuation differences and may be stated to be the method of choice in the diagnosis of intracranial calcifications. Of 5985 brain CT scans performed in Kyung Hee University Hospital during past 3 years, 36 cases were found to have high attenuation lesions suggesting calcifications within basal ganglia. 1. The incidence of basal ganglia calcification on CT scan was about 0.6%. 2. Of these 36 cases, 34 cases were bilateral and the remainder was unilateral. 3. The plain skull films of 23 cases showed visible calcification of basal ganglia in 3 cases (13%). 4. No specific metabolic disease was noted in the cases

  5. Traumatic bilateral basal ganglia hematoma: A report of two cases

    OpenAIRE

    Bhargava, Pranshu; Grewal, Sarvpreet Singh; Gupta, Bharat; Jain, Vikas; Sobti, Harman

    2012-01-01

    Traumatic Basal ganglia hemorrhage is relatively uncommon. Bilateral basal ganglia hematoma after trauma is extremely rare and is limited to case reports. We report two cases of traumatic bilateral basal ganglia hemorrhage, and review the literature in brief. Both cases were managed conservatively.

  6. Altered effective connectivity network of the basal ganglia in low-grade hepatic encephalopathy: a resting-state fMRI study with Granger causality analysis.

    Directory of Open Access Journals (Sweden)

    Rongfeng Qi

    Full Text Available BACKGROUND: The basal ganglia often show abnormal metabolism and intracranial hemodynamics in cirrhotic patients with hepatic encephalopathy (HE. Little is known about how the basal ganglia affect other brain system and is affected by other brain regions in HE. The purpose of this study was to investigate whether the effective connectivity network associated with the basal ganglia is disturbed in HE patients by using resting-state functional magnetic resonance imaging (rs-fMRI. METHODOLOGY/PRINCIPAL FINDINGS: Thirty five low-grade HE patients and thirty five age- and gender- matched healthy controls participated in the rs-fMRI scans. The effective connectivity networks associated with the globus pallidus, the primarily affected region within basal ganglia in HE, were characterized by using the Granger causality analysis and compared between HE patients and healthy controls. Pearson correlation analysis was performed between the abnormal effective connectivity and venous blood ammonia levels and neuropsychological performances of all HE patients. Compared with the healthy controls, patients with low-grade HE demonstrated mutually decreased influence between the globus pallidus and the anterior cingulate cortex (ACC, cuneus, bi-directionally increased influence between the globus pallidus and the precuneus, and either decreased or increased influence from and to the globus pallidus in many other frontal, temporal, parietal gyri, and cerebellum. Pearson correlation analyses revealed that the blood ammonia levels in HE patients negatively correlated with effective connectivity from the globus pallidus to ACC, and positively correlated with that from the globus pallidus to precuneus; and the number connectivity test scores in patients negatively correlated with the effective connectivity from the globus pallidus to ACC, and from superior frontal gyrus to globus pallidus. CONCLUSIONS/SIGNIFICANCE: Low-grade HE patients had disrupted effective

  7. CT and MRI diagnosis of traumatic basal ganglia hemorrhage

    International Nuclear Information System (INIS)

    Wu Shike; Zhang Yalin; Xu Derong; Zou Gaowei; Chen Dan; He Sujun; Zhou Lichao

    2009-01-01

    Objective: To analyze CT and MRI features of traumatic basal ganglia hemorrhage and investigate the diagnostic value. Methods: 21 cases with traumatic basal ganglia hemorrhage diagnosed by clinic, CT and MRI in our hospital were collected in this study Plain CT scan were immediately performed in 21 cases after injury, plain MR scan were performed in 1 to 3 days. 12 cases of them underwent diffusion weighted imagine (DWI). The CT and MRI findings were retrospectively summarized. Results: 8 cases were found with simple traumatic basal ganglia hemorrhage. Complexity of basal ganglia hemorrhage occurred in 13 cases, 6 cases combined with subdural hemorrhage, 3 cases with epidural hematoma, 2 cases with subarachnoid hemorrhage, 6 cases with brain contusion and laceration in other locations, 4 cases with skull fracture. 26 lesions of basal ganglia hematoma were showed in 21 cases, 14 lesions of pallidum hemorrhage in 11 cases confirmed by MR could not be distinguished from calcification at the fast CT scan. 5 more lesions of brain contusion and laceration and 4 more lesions of brain white matter laceration were found by MR. Conclusion: CT in combination with MRI can diagnose traumatic basal ganglia hemorrhage and its complications early, comprehensively and accurately, which plays an important role in the clinical therapy selection and prognosis evaluation. (authors)

  8. Serum Fetuin-A Levels in Patients with Bilateral Basal Ganglia Calcification.

    Science.gov (United States)

    Demiryurek, Bekir Enes; Gundogdu, Asli Aksoy

    2018-02-14

    The idiopathic basal ganglia calcification (Fahr syndrome) may occur due to senility. Fetuin-A is a negative acute phase reactant which inhibits calcium-phosphorus precipitation and vascular calcification. In this study, we aimed to evaluate whether serum fetuin-A levels correlate with bilateral basal ganglia calcification. Forty-five patients who had bilateral basal ganglia calcification on brain CT were selected according to the inclusion and exclusion criteria, and 45 age and gender-matched subjects without basal ganglia calcification were included for the control group. Serum fetuin-A levels were measured from venous blood samples. All participants were divided into two groups; with and without basal ganglia calcification. These groups were divided into subgroups regarding age (18-32 and 33-45 years of age) and gender (male, female). We detected lower levels of serum fetuin-A in patients with basal ganglia calcification compared with the subjects without basal ganglia calcification. In all subgroups (female, male, 18-32 years and 33-45 years), mean fetuin-A levels were significantly lower in patients with basal ganglia calcification (p = 0.017, p = 0.014, p = 0.024, p = 0.026, p = 0.01 respectively). And statistically significantly lower levels of fetuin-A was found to be correlated with the increasing densities of calcification in the calcified basal ganglia group (p-value: <0.001). Considering the role of fetuin-A in tissue calcification and inflammation, higher serum fetuin-A levels should be measured in patients with basal ganglia calcification. We believe that the measurement of serum fetuin-A may play a role in the prediction of basal ganglia calcification as a biomarker. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A reverse engineering algorithm for neural networks, applied to the subthalamopallidal network of basal ganglia.

    Science.gov (United States)

    Floares, Alexandru George

    2008-01-01

    Modeling neural networks with ordinary differential equations systems is a sensible approach, but also very difficult. This paper describes a new algorithm based on linear genetic programming which can be used to reverse engineer neural networks. The RODES algorithm automatically discovers the structure of the network, including neural connections, their signs and strengths, estimates its parameters, and can even be used to identify the biophysical mechanisms involved. The algorithm is tested on simulated time series data, generated using a realistic model of the subthalamopallidal network of basal ganglia. The resulting ODE system is highly accurate, and results are obtained in a matter of minutes. This is because the problem of reverse engineering a system of coupled differential equations is reduced to one of reverse engineering individual algebraic equations. The algorithm allows the incorporation of common domain knowledge to restrict the solution space. To our knowledge, this is the first time a realistic reverse engineering algorithm based on linear genetic programming has been applied to neural networks.

  10. Simulation of cortico-basal ganglia oscillations and their suppression by closed loop deep brain stimulation.

    Science.gov (United States)

    Grant, Peadar F; Lowery, Madeleine M

    2013-07-01

    A new model of deep brain stimulation (DBS) is presented that integrates volume conduction effects with a neural model of pathological beta-band oscillations in the cortico-basal ganglia network. The model is used to test the clinical hypothesis that closed-loop control of the amplitude of DBS may be possible, based on the average rectified value of beta-band oscillations in the local field potential. Simulation of closed-loop high-frequency DBS was shown to yield energy savings, with the magnitude of the energy saved dependent on the strength of coupling between the subthalamic nucleus and the remainder of the cortico-basal ganglia network. When closed-loop DBS was applied to a strongly coupled cortico-basal ganglia network, the stimulation energy delivered over a 480 s period was reduced by up to 42%. Greater energy reductions were observed for weakly coupled networks, as the stimulation amplitude reduced to zero once the initial desynchronization had occurred. The results provide support for the application of closed-loop high-frequency DBS based on electrophysiological biomarkers.

  11. MRI of the basal ganglia calcification

    International Nuclear Information System (INIS)

    Maeda, Masayuki; Murata, Tetsuhito; Kimura, Hirohiko

    1992-01-01

    MR imaging was performed for 11 patients (9 in Down's syndrome and 2 in idiopathic intracerebral calcification) who showed calcifications in bilateral basal ganglia on CT. High signal intensity in the basal ganglia was found only in one patient with idiopathic intracerebral calcification on T1-weighted image. The calcified areas of all patients in Down's syndrome did not show high signal intensity on T1-weighted image. The exact reasons why MRI exhibits the different signal intensities in calcified tissue on T1-weighted image are unknown. Further clinical investigations will be needed. (author)

  12. computed tomography features of basal ganglia and periventricular

    African Journals Online (AJOL)

    HIV is probably the most common cause of basal ganglia and periventricular calcification today. on-enhanced computed tomography (NECT) shows diffuse cerebral atrophy in 90% of cases. Bilateral, symmetrical basal ganglia calcification is seen in 30% of cases, but virtually never before 1 year of age.1. CMV (FIG.2).

  13. Complex Dynamics in the Basal Ganglia: Health and Disease Beyond the Motor System.

    Science.gov (United States)

    Andres, Daniela S; Darbin, Olivier

    2018-01-01

    The rate and oscillatory hypotheses are the two main current frameworks of basal ganglia pathophysiology. Both hypotheses have emerged from research on movement disorders sharing similar conceptualizations. These pathological conditions are classified either as hypokinetic or hyperkinetic, and the electrophysiological hallmarks of basal ganglia dysfunction are categorized as prokinetic or antikinetic. Although nonmotor symptoms, including neurobehavioral symptoms, are a key manifestation of basal ganglia dysfunction, they are uncommonly accounted for in these models. In patients with Parkinson's disease, the broad spectrum of motor symptoms and neurobehavioral symptoms challenges the concept that basal ganglia disorders can be classified into two categories. The profile of symptoms of basal ganglia dysfunction is best characterized by a breakdown of information processing, accompanied at an electrophysiological level by complex alterations of spiking activity from basal ganglia neurons. The authors argue that the dynamics of the basal ganglia circuit cannot be fully characterized by linear properties such as the firing rate or oscillatory activity. In fact, the neuronal spiking stream of the basal ganglia circuit is irregular but has temporal structure. In this context, entropy was introduced as a measure of probabilistic irregularity in the temporal organization of neuronal activity of the basal ganglia, giving place to the entropy hypothesis of basal ganglia pathology. Obtaining a quantitative characterization of irregularity of spike trains from basal ganglia neurons is key to elaborating a new framework of basal ganglia pathophysiology.

  14. Deep-Brain Stimulation for Basal Ganglia Disorders.

    Science.gov (United States)

    Wichmann, Thomas; Delong, Mahlon R

    2011-07-01

    The realization that medications used to treat movement disorders and psychiatric conditions of basal ganglia origin have significant shortcomings, as well as advances in the understanding of the functional organization of the brain, has led to a renaissance in functional neurosurgery, and particularly the use of deep brain stimulation (DBS). Movement disorders are now routinely being treated with DBS of 'motor' portions of the basal ganglia output nuclei, specifically the subthalamic nucleus and the internal pallidal segment. These procedures are highly effective and generally safe. Use of DBS is also being explored in the treatment of neuropsychiatric disorders, with targeting of the 'limbic' basal ganglia-thalamocortical circuitry. The results of these procedures are also encouraging, but many unanswered questions remain in this emerging field. This review summarizes the scientific rationale and practical aspects of using DBS for neurologic and neuropsychiatric disorders.

  15. A neural mass model of basal ganglia nuclei simulates pathological beta rhythm in Parkinson's disease

    Science.gov (United States)

    Liu, Fei; Wang, Jiang; Liu, Chen; Li, Huiyan; Deng, Bin; Fietkiewicz, Chris; Loparo, Kenneth A.

    2016-12-01

    An increase in beta oscillations within the basal ganglia nuclei has been shown to be associated with movement disorder, such as Parkinson's disease. The motor cortex and an excitatory-inhibitory neuronal network composed of the subthalamic nucleus (STN) and the external globus pallidus (GPe) are thought to play an important role in the generation of these oscillations. In this paper, we propose a neuron mass model of the basal ganglia on the population level that reproduces the Parkinsonian oscillations in a reciprocal excitatory-inhibitory network. Moreover, it is shown that the generation and frequency of these pathological beta oscillations are varied by the coupling strength and the intrinsic characteristics of the basal ganglia. Simulation results reveal that increase of the coupling strength induces the generation of the beta oscillation, as well as enhances the oscillation frequency. However, for the intrinsic properties of each nucleus in the excitatory-inhibitory network, the STN primarily influences the generation of the beta oscillation while the GPe mainly determines its frequency. Interestingly, describing function analysis applied on this model theoretically explains the mechanism of pathological beta oscillations.

  16. Changes in basal ganglia processing of cortical input following magnetic stimulation in Parkinsonism.

    Science.gov (United States)

    Tischler, Hadass; Moran, Anan; Belelovsky, Katya; Bronfeld, Maya; Korngreen, Alon; Bar-Gad, Izhar

    2012-12-01

    Parkinsonism is associated with major changes in neuronal activity throughout the cortico-basal ganglia loop. Current measures quantify changes in baseline neuronal and network activity but do not capture alterations in information propagation throughout the system. Here, we applied a novel non-invasive magnetic stimulation approach using a custom-made mini-coil that enabled us to study transmission of neuronal activity throughout the cortico-basal ganglia loop in both normal and parkinsonian primates. By magnetically perturbing cortical activity while simultaneously recording neuronal responses along the cortico-basal ganglia loop, we were able to directly investigate modifications in descending cortical activity transmission. We found that in both the normal and parkinsonian states, cortical neurons displayed similar multi-phase firing rate modulations in response to magnetic stimulation. However, in the basal ganglia, large synaptically driven stereotypic neuronal modulation was present in the parkinsonian state that was mostly absent in the normal state. The stimulation-induced neuronal activity pattern highlights the change in information propagation along the cortico-basal ganglia loop. Our findings thus point to the role of abnormal dynamic activity transmission rather than changes in baseline activity as a major component in parkinsonian pathophysiology. Moreover, our results hint that the application of transcranial magnetic stimulation (TMS) in human patients of different disorders may result in different neuronal effects than the one induced in normal subjects. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Alterations in Neuronal Activity in Basal Ganglia-Thalamocortical Circuits in the Parkinsonian State

    Directory of Open Access Journals (Sweden)

    Adriana eGalvan

    2015-02-01

    Full Text Available In patients with Parkinson’s disease and in animal models of this disorder, neurons in the basal ganglia and related regions in thalamus and cortex show changes that can be recorded by using electrophysiologic single-cell recording techniques, including altered firing rates and patterns, pathologic oscillatory activity and increased inter-neuronal synchronization. In addition, changes in synaptic potentials or in the joint spiking activities of populations of neurons can be monitored as alterations in local field potentials, electroencephalograms or electrocorticograms. Most of the mentioned electrophysiologic changes are probably related to the degeneration of diencephalic dopaminergic neurons, leading to dopamine loss in the striatum and other basal ganglia nuclei, although degeneration of non-dopaminergic cell groups may also have a role. The altered electrical activity of the basal ganglia and associated nuclei may contribute to some of the motor signs of the disease. We here review the current knowledge of the electrophysiologic changes at the single cell level, the level of local populations of neural elements, and the level of the entire basal ganglia-thalamocortical network in parkinsonism, and discuss the possible use of this information to optimize treatment approaches to Parkinson’s disease, such as deep brain stimulation therapy.

  18. Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state

    Science.gov (United States)

    Galvan, Adriana; Devergnas, Annaelle; Wichmann, Thomas

    2015-01-01

    In patients with Parkinson’s disease and in animal models of this disorder, neurons in the basal ganglia and related regions in thalamus and cortex show changes that can be recorded by using electrophysiologic single-cell recording techniques, including altered firing rates and patterns, pathologic oscillatory activity and increased inter-neuronal synchronization. In addition, changes in synaptic potentials or in the joint spiking activities of populations of neurons can be monitored as alterations in local field potentials (LFPs), electroencephalograms (EEGs) or electrocorticograms (ECoGs). Most of the mentioned electrophysiologic changes are probably related to the degeneration of diencephalic dopaminergic neurons, leading to dopamine loss in the striatum and other basal ganglia nuclei, although degeneration of non-dopaminergic cell groups may also have a role. The altered electrical activity of the basal ganglia and associated nuclei may contribute to some of the motor signs of the disease. We here review the current knowledge of the electrophysiologic changes at the single cell level, the level of local populations of neural elements, and the level of the entire basal ganglia-thalamocortical network in parkinsonism, and discuss the possible use of this information to optimize treatment approaches to Parkinson’s disease, such as deep brain stimulation (DBS) therapy. PMID:25698937

  19. Investigating Synchronous Oscillation and Deep Brain Stimulation Treatment in A Model of Cortico-Basal Ganglia Network.

    Science.gov (United States)

    Lu, Meili; Wei, Xile; Loparo, Kenneth A

    2017-11-01

    Altered firing properties and increased pathological oscillations in the basal ganglia have been proven to be hallmarks of Parkinson's disease (PD). Increasing evidence suggests that abnormal synchronous oscillations and suppression in the cortex may also play a critical role in the pathogenic process and treatment of PD. In this paper, a new closed-loop network including the cortex and basal ganglia using the Izhikevich models is proposed to investigate the synchrony and pathological oscillations in motor circuits and their modulation by deep brain stimulation (DBS). Results show that more coherent dynamics in the cortex may cause stronger effects on the synchrony and pathological oscillations of the subthalamic nucleus (STN). The pathological beta oscillations of the STN can both be efficiently suppressed with DBS applied directly to the STN or to cortical neurons, respectively, but the underlying mechanisms by which DBS suppresses the beta oscillations are different. This research helps to understand the dynamics of pathological oscillations in PD-related motor regions and supports the therapeutic potential of stimulation of cortical neurons.

  20. The role of inhibition in generating and controlling Parkinson's disease oscillations in the basal ganglia

    Directory of Open Access Journals (Sweden)

    Arvind eKumar

    2011-10-01

    Full Text Available Movement disorders in Parkinson's disease (PD are commonly associated with slow oscillations and increased synchrony of neuronal activity in the basal ganglia. The neural mechanisms underlying this dynamic network dysfunction, however, are only poorly understood. Here, we show that the strength of inhibitory inputs from striatum to globus pallidus external (GPe is a key parameter controlling oscillations in the basal ganglia. Specifically, the increase in striatal activity observed in PD is sufficient to unleash the oscillations in the basal ganglia. This finding allows us to propose a unified explanation for different phenomena: absence of oscillation in the healthy state of the basal ganglia, oscillations in dopamine-depleted state and quenching of oscillations under deep brain stimulation (DBS. These novel insights help us to better understand and optimize the function of DBS protocols. Furthermore, studying the model behaviour under transient increase of activity of the striatal neurons projecting to the indirect pathway, we are able to account for both motor impairment in PD patients and for reduced response inhibition in DBS implanted patients.

  1. The Basal Ganglia and Adaptive Motor Control

    Science.gov (United States)

    Graybiel, Ann M.; Aosaki, Toshihiko; Flaherty, Alice W.; Kimura, Minoru

    1994-09-01

    The basal ganglia are neural structures within the motor and cognitive control circuits in the mammalian forebrain and are interconnected with the neocortex by multiple loops. Dysfunction in these parallel loops caused by damage to the striatum results in major defects in voluntary movement, exemplified in Parkinson's disease and Huntington's disease. These parallel loops have a distributed modular architecture resembling local expert architectures of computational learning models. During sensorimotor learning, such distributed networks may be coordinated by widely spaced striatal interneurons that acquire response properties on the basis of experienced reward.

  2. Parallel basal ganglia circuits for decision making.

    Science.gov (United States)

    Hikosaka, Okihide; Ghazizadeh, Ali; Griggs, Whitney; Amita, Hidetoshi

    2018-03-01

    The basal ganglia control body movements, mainly, based on their values. Critical for this mechanism is dopamine neurons, which sends unpredicted value signals, mainly, to the striatum. This mechanism enables animals to change their behaviors flexibly, eventually choosing a valuable behavior. However, this may not be the best behavior, because the flexible choice is focused on recent, and, therefore, limited, experiences (i.e., short-term memories). Our old and recent studies suggest that the basal ganglia contain separate circuits that process value signals in a completely different manner. They are insensitive to recent changes in value, yet gradually accumulate the value of each behavior (i.e., movement or object choice). These stable circuits eventually encode values of many behaviors and then retain the value signals for a long time (i.e., long-term memories). They are innervated by a separate group of dopamine neurons that retain value signals, even when no reward is predicted. Importantly, the stable circuits can control motor behaviors (e.g., hand or eye) quickly and precisely, which allows animals to automatically acquire valuable outcomes based on historical life experiences. These behaviors would be called 'skills', which are crucial for survival. The stable circuits are localized in the posterior part of the basal ganglia, separately from the flexible circuits located in the anterior part. To summarize, the flexible and stable circuits in the basal ganglia, working together but independently, enable animals (and humans) to reach valuable goals in various contexts.

  3. Bilateral basal ganglia calcifications visualised on CT scan.

    OpenAIRE

    Brannan, T S; Burger, A A; Chaudhary, M Y

    1980-01-01

    Thirty-eight cases of basal ganglia calcification imaged on computed axial tomography were reviewed. Most cases were felt to represent senescent calcification. The possibility of a vascular aetiology in this group is discussed. A less common group of patients was identified with calcification secondary to abnormalities in calcium metabolism or radiation therapy. Three cases of basal ganglia calcifications were detected in juvenile epileptic patients receiving chronic anticonvulsants. These ca...

  4. The expanding universe of disorders of the basal ganglia.

    Science.gov (United States)

    Obeso, Jose A; Rodriguez-Oroz, Maria C; Stamelou, Maria; Bhatia, Kailash P; Burn, David J

    2014-08-09

    The basal ganglia were originally thought to be associated purely with motor control. However, dysfunction and pathology of different regions and circuits are now known to give rise to many clinical manifestations beyond the association of basal ganglia dysfunction with movement disorders. Moreover, disorders that were thought to be caused by dysfunction of the basal ganglia only, such as Parkinson's disease and Huntington's disease, have diverse abnormalities distributed not only in the brain but also in the peripheral and autonomic nervous systems; this knowledge poses new questions and challenges. We discuss advances and the unanswered questions, and ways in which progress might be made. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. High frequency stimulation of the entopeduncular nucleus sets the cortico-basal ganglia network to a new functional state in the dystonic hamster.

    Science.gov (United States)

    Reese, René; Charron, Giselle; Nadjar, Agnès; Aubert, Incarnation; Thiolat, Marie-Laure; Hamann, Melanie; Richter, Angelika; Bezard, Erwan; Meissner, Wassilios G

    2009-09-01

    High frequency stimulation (HFS) of the internal pallidum is effective for the treatment of dystonia. Only few studies have investigated the effects of stimulation on the activity of the cortex-basal ganglia network. We here assess within this network the effect of entopeduncular nucleus (EP) HFS on the expression of c-Fos and cytochrome oxidase subunit I (COI) in the dt(sz)-hamster, a well-characterized model of paroxysmal dystonia. In dt(sz)-hamsters, we identified abnormal activity in motor cortex, basal ganglia and thalamus. These structures have already been linked to the pathophysiology of human dystonia. EP-HFS (i) increased striatal c-Fos expression in controls and dystonic hamsters and (ii) reduced thalamic c-Fos expression in dt(sz)-hamsters. EP-HFS had no effect on COI expression. The present results suggest that EP-HFS induces a new network activity state which may improve information processing and finally reduces the severity of dystonic attacks in dt(sz)-hamsters.

  6. Evidence for altered basal ganglia-brainstem connections in cervical dystonia.

    Directory of Open Access Journals (Sweden)

    Anne J Blood

    Full Text Available There has been increasing interest in the interaction of the basal ganglia with the cerebellum and the brainstem in motor control and movement disorders. In addition, it has been suggested that these subcortical connections with the basal ganglia may help to coordinate a network of regions involved in mediating posture and stabilization. While studies in animal models support a role for this circuitry in the pathophysiology of the movement disorder dystonia, thus far, there is only indirect evidence for this in humans with dystonia.In the current study we investigated probabilistic diffusion tractography in DYT1-negative patients with cervical dystonia and matched healthy control subjects, with the goal of showing that patients exhibit altered microstructure in the connectivity between the pallidum and brainstem. The brainstem regions investigated included nuclei that are known to exhibit strong connections with the cerebellum. We observed large clusters of tractography differences in patients relative to healthy controls, between the pallidum and the brainstem. Tractography was decreased in the left hemisphere and increased in the right hemisphere in patients, suggesting a potential basis for the left/right white matter asymmetry we previously observed in focal dystonia patients.These findings support the hypothesis that connections between the basal ganglia and brainstem play a role in the pathophysiology of dystonia.

  7. Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia.

    Science.gov (United States)

    Kita, Hitoshi; Kita, Takako

    2011-07-13

    The motor cortex (MC) sends massive projections to the basal ganglia. Motor disabilities in patients and animal models of Parkinson's disease (PD) may be caused by dopamine (DA)-depleted basal ganglia that abnormally process the information originating from MC. To study how DA depletion alters signal transfer in the basal ganglia, MC stimulation-induced (MC-induced) unitary responses were recorded from the basal ganglia of control and 6-hydroxydopamine-treated hemi-parkinsonian rats anesthetized with isoflurane. This report describes new findings about how DA depletion alters MC-induced responses. MC stimulation evokes an excitation in normally quiescent striatal (Str) neurons projecting to the globus pallidus external segment (GPe). After DA-depletion, the spontaneous firing of Str-GPe neurons increases, and MC stimulation evokes a shorter latency excitation followed by a long-lasting inhibition that was invisible under normal conditions. The increased firing activity and the newly exposed long inhibition generate tonic inhibition and a disfacilitation in GPe. The disfacilitation in GPe is then amplified in basal ganglia circuitry and generates a powerful long inhibition in the basal ganglia output nucleus, the globus pallidus internal segment. Intra-Str injections of a behaviorally effective dose of DA precursor l-3,4-dihydroxyphenylalanine effectively reversed these changes. These newly observed mechanisms also support the generation of pauses and burst activity commonly observed in the basal ganglia of parkinsonian subjects. These results suggest that the generation of abnormal response sequences in the basal ganglia contributes to the development of motor disabilities in PD and that intra-Str DA supplements effectively suppress abnormal signal transfer.

  8. PreSMA stimulation changes task-free functional connectivity in the fronto-basal-ganglia that correlates with response inhibition efficiency.

    Science.gov (United States)

    Xu, Benjamin; Sandrini, Marco; Wang, Wen-Tung; Smith, Jason F; Sarlls, Joelle E; Awosika, Oluwole; Butman, John A; Horwitz, Barry; Cohen, Leonardo G

    2016-09-01

    Previous work using transcranial magnetic stimulation (TMS) demonstrated that the right presupplementary motor area (preSMA), a node in the fronto-basal-ganglia network, is critical for response inhibition. However, TMS influences interconnected regions, raising the possibility of a link between the preSMA activity and the functional connectivity within the network. To understand this relationship, we applied single-pulse TMS to the right preSMA during functional magnetic resonance imaging when the subjects were at rest to examine changes in neural activity and functional connectivity within the network in relation to the efficiency of response inhibition evaluated with a stop-signal task. The results showed that preSMA-TMS increased activation in the right inferior-frontal cortex (rIFC) and basal ganglia and modulated their task-free functional connectivity. Both the TMS-induced changes in the basal-ganglia activation and the functional connectivity between rIFC and left striatum, and of the overall network correlated with the efficiency of response inhibition and with the white-matter microstructure along the preSMA-rIFC pathway. These results suggest that the task-free functional and structural connectivity between the rIFCop and basal ganglia are critical to the efficiency of response inhibition. Hum Brain Mapp 37:3236-3249, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Basal ganglia calcification on computed tomography in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Nagaoka, Shohei; Tani, Kenji; Ishigatsubo, Yoshiaki

    1988-01-01

    The development of basal ganglia calcification was studied in 85 patients with systemic lupus erythematosus (SLE) by computed tomography (CT). Bilateral calcification of the basal ganglia was found to occur in 5 patients (5.9 %) with SLE, but was not seen in patients with rheumatoid arthritis and progressive systemic sclerosis. All were female with a mean age of 42 years (range 29 - 49). The patients with calcification of the basal ganglia had neurological symptoms, such as psychiatric problems (3 cases), grand mal seizures (1 case), CSF abnormalities (2 cases), and EEG changes (4 cases). There were significantly higher incidences of alopecia, cutaneous vasculitis, leukopenia, and thrombocytopenia in the group with calcifications than those in the group with normal CT findings. Circulating immune complexes were detected and LE tests were positive in 2 patients. Endocrinological examination showed no abnormality in any. We suggest that basal ganglia calcification in SLE might be related to cerebral vasculitis. (author)

  10. Basal ganglia calcification on computed tomography in systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Shohei; Tani, Kenji; Ishigatsubo, Yoshiaki and others

    1988-09-01

    The development of basal ganglia calcification was studied in 85 patients with systemic lupus erythematosus (SLE) by computed tomography (CT). Bilateral calcification of the basal ganglia was found to occur in 5 patients (5.9 %) with SLE, but was not seen in patients with rheumatoid arthritis and progressive systemic sclerosis. All were female with a mean age of 42 years (range 29 - 49). The patients with calcification of the basal ganglia had neurological symptoms, such as psychiatric problems (3 cases), grand mal seizures (1 case), CSF abnormalities (2 cases), and EEG changes (4 cases). There were significantly higher incidences of alopecia, cutaneous vasculitis, leukopenia, and thrombocytopenia in the group with calcifications than those in the group with normal CT findings. Circulating immune complexes were detected and LE tests were positive in 2 patients. Endocrinological examination showed no abnormality in any. We suggest that basal ganglia calcification in SLE might be related to cerebral vasculitis.

  11. A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease.

    Science.gov (United States)

    Kumaravelu, Karthik; Brocker, David T; Grill, Warren M

    2016-04-01

    Electrical stimulation of sub-cortical brain regions (the basal ganglia), known as deep brain stimulation (DBS), is an effective treatment for Parkinson's disease (PD). Chronic high frequency (HF) DBS in the subthalamic nucleus (STN) or globus pallidus interna (GPi) reduces motor symptoms including bradykinesia and tremor in patients with PD, but the therapeutic mechanisms of DBS are not fully understood. We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. We used the model to quantify the effectiveness of STN DBS at different frequencies in suppressing low-frequency oscillatory activity in GPi. Frequencies less than 40 Hz were ineffective, low-frequency oscillatory power decreased gradually for frequencies between 50 Hz and 130 Hz, and saturated at frequencies higher than 150 Hz. HF STN DBS suppressed pathological oscillations in GPe/GPi both by exciting and inhibiting the firing in GPe/GPi neurons, and the number of GPe/GPi neurons influenced was greater for HF stimulation than low-frequency stimulation. Similar to the frequency dependent suppression of pathological oscillations, STN DBS also normalized the abnormal GPi spiking activity evoked by CTX stimulation in a frequency dependent fashion with HF being the most effective. Therefore, therapeutic HF STN DBS effectively suppresses pathological activity by influencing the activity of a greater proportion of neurons in the output nucleus of the BG.

  12. Basal Ganglia Calcification with Tetanic Seizure Suggest Mitochondrial Disorder

    OpenAIRE

    Finsterer, Josef; Enzelsberger, Barbara; Bastowansky, Adam

    2017-01-01

    Patient: Female, 65 Final Diagnosis: Mitochondrial disorder Symptoms: Headache ? tetanic seizure Medication: Diazepam Clinical Procedure: Admission Specialty: Neurology Objective: Challenging differential diagnosis Background: Basal ganglia calcification (BGC) is a rare sporadic or hereditary central nervous system (CNS) abnormality, characterized by symmetric or asymmetric calcification of the basal ganglia. Case Report: We report the case of a 65-year-old Gypsy female who was admitted for a...

  13. Do basal Ganglia amplify willed action by stochastic resonance? A model.

    Directory of Open Access Journals (Sweden)

    V Srinivasa Chakravarthy

    Full Text Available Basal ganglia are usually attributed a role in facilitating willed action, which is found to be impaired in Parkinson's disease, a pathology of basal ganglia. We hypothesize that basal ganglia possess the machinery to amplify will signals, presumably weak, by stochastic resonance. Recently we proposed a computational model of Parkinsonian reaching, in which the contributions from basal ganglia aid the motor cortex in learning to reach. The model was cast in reinforcement learning framework. We now show that the above basal ganglia computational model has all the ingredients of stochastic resonance process. In the proposed computational model, we consider the problem of moving an arm from a rest position to a target position: the two positions correspond to two extrema of the value function. A single kick (a half-wave of sinusoid, of sufficiently low amplitude given to the system in resting position, succeeds in taking the system to the target position, with high probability, only at a critical noise level. But for suboptimal noise levels, the model arm's movements resemble Parkinsonian movement symptoms like akinetic rigidity (low noise and dyskinesias (high noise.

  14. Bilateral symmetrical basal ganglia and thalamic lesions in children: an update (2015)

    International Nuclear Information System (INIS)

    Zuccoli, Giulio; Yannes, Michael Paul; Nardone, Raffaele; Bailey, Ariel; Goldstein, Amy

    2015-01-01

    In children, many inherited or acquired neurological disorders may cause bilateral symmetrical signal intensity alterations in the basal ganglia and thalami. A literature review was aimed at assisting neuroradiologists, neurologists, infectious diseases specialists, and pediatricians to provide further understanding into the clinical and neuroimaging features in pediatric patients presenting with bilateral symmetrical basal ganglia and thalamic lesions on magnetic resonance imaging (MRI). We discuss hypoxic-ischemic, toxic, infectious, immune-mediated, mitochondrial, metabolic, and neurodegenerative disorders affecting the basal ganglia and thalami. Recognition and correct evaluation of basal ganglia abnormalities, together with a proper neurological examination and laboratory findings, may enable the identification of each of these clinical entities and lead to earlier diagnosis. (orig.)

  15. Bilateral symmetrical basal ganglia and thalamic lesions in children: an update (2015)

    Energy Technology Data Exchange (ETDEWEB)

    Zuccoli, Giulio [Children' s Hospital of Pittsburgh of UPMC, Section of Neuroradiology, Pittsburgh, PA (United States); Yannes, Michael Paul [University of Pittsburgh School of Medicine, Department of Radiology, Pittsburgh, PA (United States); Nardone, Raffaele [Paracelsus Medical University, Department of Neurology, Christian Doppler Klinik, Salzburg (Austria); Bailey, Ariel [West Virginia University, Department of Radiology, Morgantown, WV (United States); Goldstein, Amy [Children' s Hospital of Pittsburgh of UPMC, Department of Neurology, Section of Metabolic Disorders and Neurogenetics, Pittsburgh, PA (United States)

    2015-10-15

    In children, many inherited or acquired neurological disorders may cause bilateral symmetrical signal intensity alterations in the basal ganglia and thalami. A literature review was aimed at assisting neuroradiologists, neurologists, infectious diseases specialists, and pediatricians to provide further understanding into the clinical and neuroimaging features in pediatric patients presenting with bilateral symmetrical basal ganglia and thalamic lesions on magnetic resonance imaging (MRI). We discuss hypoxic-ischemic, toxic, infectious, immune-mediated, mitochondrial, metabolic, and neurodegenerative disorders affecting the basal ganglia and thalami. Recognition and correct evaluation of basal ganglia abnormalities, together with a proper neurological examination and laboratory findings, may enable the identification of each of these clinical entities and lead to earlier diagnosis. (orig.)

  16. The role of basal ganglia in language production: evidence from Parkinson's disease.

    Science.gov (United States)

    Macoir, Joël; Fossard, Marion; Mérette, Chantal; Langlois, Mélanie; Chantal, Sophie; Auclair-Ouellet, Noémie

    2013-01-01

    According to the dominant view in the literature, basal ganglia do not play a direct role in language but are involved in cognitive control required by linguistic and non-linguistic processing. In Parkinson's disease, basal ganglia impairment leads to motor symptoms and language deficits; those affecting the production of verbs have been frequently explored. According to a controversial theory, basal ganglia play a specific role in the conjugation of regular verbs as compared to irregular verbs. We report the results of 15 patients with Parkinson's disease in experimental conjugation tasks. They performed below healthy controls but their performance did not differ for regular and irregular verbs. These results confirm that basal ganglia are involved in language processing but do not play a specific role in verb production.

  17. Hemodynamics in the cerebral cortex and basal ganglia

    International Nuclear Information System (INIS)

    Yamaguchi, Shinya; Fukuyama, Hidenao; Yamauchi, Hiroshi; Kimura, Jun

    1991-01-01

    We examined ten healthy volunteers using positron emission tomography (PET) in order to elucidate regional changes and correlations in the cerebral circulation and oxygen metabolism. We also studied eight lacunar stroke patients so as to disclose the influences of vascular risk factors and aging on the cerebral blood flow and metabolism. We can conclude from our result as follows: (1) Cerebral blood volume (CBV) was minimum in the basal ganglia and cerebral blood flow (CBF)/CBV ratio was higher than that of cerebral cortex in healthy volunteers; (2) CBF of gray matter in healthy volunteers correlated with CBV and cerebral metabolic rate of oxygen where oxygen extraction fraction inversely correlated with CBF, CBV, and CBF/CBV; and (3) the basal ganglia CBF/CBV ratio in lacunar stroke patients was lower than that of healthy volunteers. These findings suggested that the perfusion pressure in the basal ganglia was so high in the normal condition than the angionecrosis or occlusion in the perforating arteries would be induced, especially in the aged and hypertensive patients. (author)

  18. Freezing of gait in Parkinson's disease is associated with functional decoupling between the cognitive control network and the basal ganglia.

    Science.gov (United States)

    Shine, James M; Matar, Elie; Ward, Philip B; Frank, Michael J; Moustafa, Ahmed A; Pearson, Mark; Naismith, Sharon L; Lewis, Simon J G

    2013-12-01

    Recent neuroimaging evidence has led to the proposal that freezing of gait in Parkinson's disease is due to dysfunctional interactions between frontoparietal cortical regions and subcortical structures, such as the striatum. However, to date, no study has employed task-based functional connectivity analyses to explore this hypothesis. In this study, we used a data-driven multivariate approach to explore the impaired communication between distributed neuronal networks in 10 patients with Parkinson's disease and freezing of gait, and 10 matched patients with no clinical history of freezing behaviour. Patients performed a virtual reality gait task on two separate occasions (once ON and once OFF their regular dopaminergic medication) while functional magnetic resonance imaging data were collected. Group-level independent component analysis was used to extract the subject-specific time courses associated with five well-known neuronal networks: the motor network, the right- and left cognitive control networks, the ventral attention network and the basal ganglia network. We subsequently analysed both the activation and connectivity of these neuronal networks between the two groups with respect to dopaminergic state and cognitive load while performing the virtual reality gait task. During task performance, all patients used the left cognitive control network and the ventral attention network and in addition, showed increased connectivity between the bilateral cognitive control networks. However, patients with freezing demonstrated functional decoupling between the basal ganglia network and the cognitive control network in each hemisphere. This decoupling was also associated with paroxysmal motor arrests. These results support the hypothesis that freezing behaviour in Parkinson's disease is because of impaired communication between complimentary yet competing neural networks.

  19. Psychological Assessment of Patients With Biotin-Thiamine-Responsive Basal Ganglia Disease.

    Science.gov (United States)

    Alfadhel, Majid; Al-Bluwi, Amal

    2017-01-01

    Biotin-thiamine-responsive basal ganglia disease is a devastating autosomal recessive inherited neurological disorder. We conducted a retrospective chart review of all patients with biotin-thiamine-responsive basal ganglia disease who underwent a formal psychological assessment. Six females and 3 males were included. Five patients (56%) had an average IQ, two patients (22%) had mild delay, and two (22%) had severe delay. A normal outcome was directly related to the time of diagnosis and initiation of treatment. Early diagnosis and immediate commencement of treatment were associated with a favorable outcome and vice versa. The most affected domain was visual motor integration, while understanding and mathematical problem-solving were the least affected. In summary, this is the first study discussing the psychological assessment of patients with biotin-thiamine-responsive basal ganglia disease. The results of this study alert clinicians to consider prompt initiation of biotin and thiamine in any patient presenting with neuroregression and a basal ganglia lesion on a brain magnetic resonance imaging.

  20. Past, present and future of the pathophysiological model of the basal ganglia

    Directory of Open Access Journals (Sweden)

    Jose A Obeso

    2011-07-01

    Full Text Available The current model of basal ganglia was introduced two decades ago and has settled most of our current understanding of basal ganglia function and dysfunction. Extensive research efforts have been carried out in recent years leading to further refinement and understanding of the normal and diseased basal ganglia. Several questions, however, are yet to be resolved. This short review provides a synopsis of the evolution of thought regarding the pathophysiological model of the BG and summarizes the main recent findings and additions to this field of research. We have also tried to identify major challenges that need to be addressed and resolved in the near future. Detailed accounts and state-of-the-art developments concerning research on the basal ganglia are provided in the articles that make up this Special Issue.

  1. Bilateral hyperintense basal ganglia on T1-weighted image

    International Nuclear Information System (INIS)

    Baik, Seung Kug; Ahn, Woo Hyun; Choi, Han Yong; Kim, Bong Gi

    1994-01-01

    Bilateral high signal intensity in basal ganglia on T1-weighted images is unusual, the purpose of this study is to describe the pattern of high signal intensity and underlying disease. During the last three years, 8 patients showed bilateral high signal intensity in basal ganglia on T1-weighted image, as compared with cerebral white matter. Authors analyzed the images and underlying causes retrospectively. Of 8 patients, 5 were male and 3 were female. The age ranged from 15 days to 79 years. All patient were examined by a 0.5T superconductive MRI. Images were obtained by spin echo multislice technique. Underlying causes were 4 cases of hepatopathy, 2 cases of calcium metabolism disorder, and one case each of neurofibromatosis and hypoxic brain injury. These process were bilateral in all cases and usually symmetric. In all cases the hyperintense areas were generally homogenous without mass effect or edema, although somewhat nodular appearance was seen in neurofibromatosis. Lesions were located in the globus pallidus and internal capsule in hepatopathy and neurofibromatosis, head of the caudate nucleus in disorder of calcum metabolism, and the globus pallidus in hypoxic brain injury. Although this study is limited by its patient population, bilateral hyperintense basal ganglia is associated with various disease entities. On analysis of hyperintense basal ganglia lesion, the knowledge of clinical information improved diagnostic accuracy

  2. Basal ganglia lesions in children and adults

    Energy Technology Data Exchange (ETDEWEB)

    Bekiesinska-Figatowska, Monika, E-mail: m.figatowska@mp.pl [Department of Diagnostic Imaging, Institute of Mother and Child, ul. Kasprzaka 17a, 01-211 Warsaw (Poland); Mierzewska, Hanna, E-mail: h.mierzewska@gmail.com [Department of Neurology of Children and Adolescents, Institute of Mother and Child, ul. Kasprzaka 17a, 01-211 Warsaw (Poland); Jurkiewicz, Elżbieta, E-mail: e-jurkiewicz@o2.pl [Department of Diagnostic Imaging, Children' s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland)

    2013-05-15

    The term “basal ganglia” refers to caudate and lentiform nuclei, the latter composed of putamen and globus pallidus, substantia nigra and subthalamic nuclei and these deep gray matter structures belong to the extrapyramidal system. Many diseases may present as basal ganglia abnormalities. Magnetic resonance imaging (MRI) and computed tomography (CT) – to a lesser degree – allow for detection of basal ganglia injury. In many cases, MRI alone does not usually allow to establish diagnosis but together with the knowledge of age and circumstances of onset and clinical course of the disease is a powerful tool of differential diagnosis. The lesions may be unilateral: in Rassmussen encephalitis, diabetes with hemichorea/hemiballism and infarction or – more frequently – bilateral in many pathologic conditions. Restricted diffusion is attributable to infarction, acute hypoxic–ischemic injury, hypoglycemia, Leigh disease, encephalitis and CJD. Contrast enhancement may be seen in cases of infarction and encephalitis. T1-hyperintensity of the lesions is uncommon and may be observed unilaterally in case of hemichorea/hemiballism and bilaterally in acute asphyxia in term newborns, in hypoglycemia, NF1, Fahr disease and manganese intoxication. Decreased signal intensity on GRE/T2*-weighted images and/or SWI indicating iron, calcium or hemosiderin depositions is observed in panthotenate kinase-associated neurodegeneration, Parkinson variant of multiple system atrophy, Fahr disease (and other calcifications) as well as with the advancing age. There are a few papers in the literature reviewing basal ganglia lesions. The authors present a more detailed review with rich iconography from the own archive.

  3. Basal ganglia lesions in children and adults

    International Nuclear Information System (INIS)

    Bekiesinska-Figatowska, Monika; Mierzewska, Hanna; Jurkiewicz, Elżbieta

    2013-01-01

    The term “basal ganglia” refers to caudate and lentiform nuclei, the latter composed of putamen and globus pallidus, substantia nigra and subthalamic nuclei and these deep gray matter structures belong to the extrapyramidal system. Many diseases may present as basal ganglia abnormalities. Magnetic resonance imaging (MRI) and computed tomography (CT) – to a lesser degree – allow for detection of basal ganglia injury. In many cases, MRI alone does not usually allow to establish diagnosis but together with the knowledge of age and circumstances of onset and clinical course of the disease is a powerful tool of differential diagnosis. The lesions may be unilateral: in Rassmussen encephalitis, diabetes with hemichorea/hemiballism and infarction or – more frequently – bilateral in many pathologic conditions. Restricted diffusion is attributable to infarction, acute hypoxic–ischemic injury, hypoglycemia, Leigh disease, encephalitis and CJD. Contrast enhancement may be seen in cases of infarction and encephalitis. T1-hyperintensity of the lesions is uncommon and may be observed unilaterally in case of hemichorea/hemiballism and bilaterally in acute asphyxia in term newborns, in hypoglycemia, NF1, Fahr disease and manganese intoxication. Decreased signal intensity on GRE/T2*-weighted images and/or SWI indicating iron, calcium or hemosiderin depositions is observed in panthotenate kinase-associated neurodegeneration, Parkinson variant of multiple system atrophy, Fahr disease (and other calcifications) as well as with the advancing age. There are a few papers in the literature reviewing basal ganglia lesions. The authors present a more detailed review with rich iconography from the own archive

  4. Crossed cerebellar and cerebral cortical diaschisis in basal ganglia hemorrhage

    International Nuclear Information System (INIS)

    Lim, Joon Seok; Ryu, Young Hoon; Kim, Hee Joung; Kim, Byung Moon; Lee, Jong Doo; Lee, Byung Hee

    1998-01-01

    The purpose of this study was to evaluate the phenomenon of diaschisis in the cerebellum and cerebral cortex in patients with pure basal ganglia hemorrhage using cerebral blood flow SPECT. Twelve patients with pure basal ganglia hemorrhage were studied with Tc-99m ECD brain SPECT. Asymmetric index (AI) was calculated in the cerebellum and cerebral cortical regions as | C R -C L |/ (C R -C L ) x 200, where C R and C L are the mean reconstructed counts for the right and left ROIs, respectively. Hypoperfusion was considered to be present when AI was greater than mean + 2 SD of 20 control subjects. Mean AI of the cerebellum and cerebral cortical regions in patients with pure basal ganglia hemorrhage was significantly higher than normal controls (p<0.05): Cerebellum (18.68±8.94 vs 4.35±0.94, mean ±SD), thalamus (31.91±10.61 vs 2.57±1.45), basal ganglia (35.94±16.15 vs 4.34±2.08), parietal (18.94±10.69 vs 3.24±0.87), frontal (13.60±10.8 vs 4.02±2.04) and temporal cortex (18.92±11.95 vs 5.13±1.69). Ten of the 12 patients had significant hypoperfusion in the contralateral cerebellum. Hypoperfusion was also shown in the ipsilateral thalamus (n=12), ipsilateral parietal (n=12), frontal (n=6) and temporal cortex (n=10). Crossed cerebellar diaschisis (CCD) and cortical diaschisis may frequently occur in patients with pure basal ganglia hemorrhage, suggesting that CCD can develop without the interruption of corticopontocerebellar pathway

  5. Time representation in reinforcement learning models of the basal ganglia

    Directory of Open Access Journals (Sweden)

    Samuel Joseph Gershman

    2014-01-01

    Full Text Available Reinforcement learning models have been influential in understanding many aspects of basal ganglia function, from reward prediction to action selection. Time plays an important role in these models, but there is still no theoretical consensus about what kind of time representation is used by the basal ganglia. We review several theoretical accounts and their supporting evidence. We then discuss the relationship between reinforcement learning models and the timing mechanisms that have been attributed to the basal ganglia. We hypothesize that a single computational system may underlie both reinforcement learning and interval timing—the perception of duration in the range of seconds to hours. This hypothesis, which extends earlier models by incorporating a time-sensitive action selection mechanism, may have important implications for understanding disorders like Parkinson's disease in which both decision making and timing are impaired.

  6. Single-photon-emission-computed-tomography (SPECT) in basal ganglia disorders

    International Nuclear Information System (INIS)

    Tatsch, K.

    1997-01-01

    In the past, SPECT investigations of regional cerebral blood flow have played a minor role in the diagnostic work-up of patients with basal ganglia disorders. More recently, however, interest in nuclear medicine procedures has dramatically increased since with the development of selective receptor ligands diagnostic tools have been provided which address the pathology in basal ganglia disorders more specifically than other diagnostic modalities. Evaluations of the pre- and postsynaptic aspects of the dopaminergic system, for example, deliver not only interesting data from the scientific point of view but also for the daily routine work. This paper summarizes some of the experience reported in the literature on SPECT investigations in basal ganglia disorders, such as Parkinson's disease, parkinsonian syndromes of other etiology, Wilson's and Huntington's disease, focal dystonias, and schizophrenia under treatment with neuroleptics. (orig.) [de

  7. Attenuated frontal and sensory inputs to the basal ganglia in cannabis users.

    Science.gov (United States)

    Blanco-Hinojo, Laura; Pujol, Jesus; Harrison, Ben J; Macià, Dídac; Batalla, Albert; Nogué, Santiago; Torrens, Marta; Farré, Magí; Deus, Joan; Martín-Santos, Rocío

    2017-07-01

    Heavy cannabis use is associated with reduced motivation. The basal ganglia, central in the motivation system, have the brain's highest cannabinoid receptor density. The frontal lobe is functionally coupled to the basal ganglia via segregated frontal-subcortical circuits conveying information from internal, self-generated activity. The basal ganglia, however, receive additional influence from the sensory system to further modulate purposeful behaviors according to the context. We postulated that cannabis use would impact functional connectivity between the basal ganglia and both internal (frontal cortex) and external (sensory cortices) sources of influence. Resting-state functional connectivity was measured in 28 chronic cannabis users and 29 controls. Selected behavioral tests included reaction time, verbal fluency and exposition to affective pictures. Assessments were repeated after one month of abstinence. Cannabis exposure was associated with (1) attenuation of the positive correlation between the striatum and areas pertaining to the 'limbic' frontal-basal ganglia circuit, and (2) attenuation of the negative correlation between the striatum and the fusiform gyrus, which is critical in recognizing significant visual features. Connectivity alterations were associated with lower arousal in response to affective pictures. Functional connectivity changes had a tendency to normalize after abstinence. The results overall indicate that frontal and sensory inputs to the basal ganglia are attenuated after chronic exposure to cannabis. This effect is consistent with the common behavioral consequences of chronic cannabis use concerning diminished responsiveness to both internal and external motivation signals. Such an impairment of the fine-tuning in the motivation system notably reverts after abstinence. © 2016 Society for the Study of Addiction.

  8. Phenotypic spectrum of probable and genetically-confirmed idiopathic basal ganglia calcification.

    Science.gov (United States)

    Nicolas, Gaël; Pottier, Cyril; Charbonnier, Camille; Guyant-Maréchal, Lucie; Le Ber, Isabelle; Pariente, Jérémie; Labauge, Pierre; Ayrignac, Xavier; Defebvre, Luc; Maltête, David; Martinaud, Olivier; Lefaucheur, Romain; Guillin, Olivier; Wallon, David; Chaumette, Boris; Rondepierre, Philippe; Derache, Nathalie; Fromager, Guillaume; Schaeffer, Stéphane; Krystkowiak, Pierre; Verny, Christophe; Jurici, Snejana; Sauvée, Mathilde; Vérin, Marc; Lebouvier, Thibaud; Rouaud, Olivier; Thauvin-Robinet, Christel; Rousseau, Stéphane; Rovelet-Lecrux, Anne; Frebourg, Thierry; Campion, Dominique; Hannequin, Didier

    2013-11-01

    Idiopathic basal ganglia calcification is characterized by mineral deposits in the brain, an autosomal dominant pattern of inheritance in most cases and genetic heterogeneity. The first causal genes, SLC20A2 and PDGFRB, have recently been reported. Diagnosing idiopathic basal ganglia calcification necessitates the exclusion of other causes, including calcification related to normal ageing, for which no normative data exist. Our objectives were to diagnose accurately and then describe the clinical and radiological characteristics of idiopathic basal ganglia calcification. First, calcifications were evaluated using a visual rating scale on the computerized tomography scans of 600 consecutively hospitalized unselected controls. We determined an age-specific threshold in these control computerized tomography scans as the value of the 99th percentile of the total calcification score within three age categories: 60 years. To study the phenotype of the disease, patients with basal ganglia calcification were recruited from several medical centres. Calcifications that rated below the age-specific threshold using the same scale were excluded, as were patients with differential diagnoses of idiopathic basal ganglia calcification, after an extensive aetiological assessment. Sanger sequencing of SLC20A2 and PDGFRB was performed. In total, 72 patients were diagnosed with idiopathic basal ganglia calcification, 25 of whom bore a mutation in either SLC20A2 (two families, four sporadic cases) or PDGFRB (one family, two sporadic cases). Five mutations were novel. Seventy-one per cent of the patients with idiopathic basal ganglia calcification were symptomatic (mean age of clinical onset: 39 ± 20 years; mean age at last evaluation: 55 ± 19 years). Among them, the most frequent signs were: cognitive impairment (58.8%), psychiatric symptoms (56.9%) and movement disorders (54.9%). Few clinical differences appeared between SLC20A2 and PDGFRB mutation carriers. Radiological analysis

  9. Model-based analysis and control of a network of basal ganglia spiking neurons in the normal and Parkinsonian states

    Science.gov (United States)

    Liu, Jianbo; Khalil, Hassan K.; Oweiss, Karim G.

    2011-08-01

    Controlling the spatiotemporal firing pattern of an intricately connected network of neurons through microstimulation is highly desirable in many applications. We investigated in this paper the feasibility of using a model-based approach to the analysis and control of a basal ganglia (BG) network model of Hodgkin-Huxley (HH) spiking neurons through microstimulation. Detailed analysis of this network model suggests that it can reproduce the experimentally observed characteristics of BG neurons under a normal and a pathological Parkinsonian state. A simplified neuronal firing rate model, identified from the detailed HH network model, is shown to capture the essential network dynamics. Mathematical analysis of the simplified model reveals the presence of a systematic relationship between the network's structure and its dynamic response to spatiotemporally patterned microstimulation. We show that both the network synaptic organization and the local mechanism of microstimulation can impose tight constraints on the possible spatiotemporal firing patterns that can be generated by the microstimulated network, which may hinder the effectiveness of microstimulation to achieve a desired objective under certain conditions. Finally, we demonstrate that the feedback control design aided by the mathematical analysis of the simplified model is indeed effective in driving the BG network in the normal and Parskinsonian states to follow a prescribed spatiotemporal firing pattern. We further show that the rhythmic/oscillatory patterns that characterize a dopamine-depleted BG network can be suppressed as a direct consequence of controlling the spatiotemporal pattern of a subpopulation of the output Globus Pallidus internalis (GPi) neurons in the network. This work may provide plausible explanations for the mechanisms underlying the therapeutic effects of deep brain stimulation (DBS) in Parkinson's disease and pave the way towards a model-based, network level analysis and closed

  10. Role of basal ganglia in sleep-wake regulation: neural circuitry and clinical significance

    Directory of Open Access Journals (Sweden)

    Ramalingam Vetrivelan

    2010-11-01

    Full Text Available Researchers over the last decade have made substantial progress towards understanding the roles of dopamine and the basal ganglia in the control of sleep-wake behavior. In this review, we outline recent advancements regarding dopaminergic modulation of sleep through the basal ganglia (BG and extra-BG sites. Our main hypothesis is that dopamine promotes sleep by its action on the D2 receptors in the BG and promotes wakefulness by its action on D1 and D2 receptors in the extra-BG sites. This hypothesis implicates dopamine depletion in the BG (such as in Parkinson’s disease in causing frequent nighttime arousal and overall insomnia. Furthermore, the arousal effects of psychostimulants (methamphetamine, cocaine and modafinil may be linked to the ventral periaquductal grey (vPAG dopaminergic circuitry targeting the extra-BG sleep-wake network.

  11. Activity of the basal ganglia in Parkinson's disease estimated by PET

    International Nuclear Information System (INIS)

    Ohye, Chihiro

    1995-01-01

    Positron emission tomographic (PET) studies on the local cerebral blood flow, oxygen metabolic rate, glucose metabolic rate in the basal ganglia of Parkinson's disease are reviewed. PET has demonstrated that blood flow was decreased in the cerebral cortex, especially the frontal region, of Parkinson's disease and that specific change in blood flow or metabolic rate in the basal ganglia was detected only in patients with hemi-parkinsonism. In authors' study on PET using 18 FDG in patients with tremor type and rigid type Parkinson's disease, changes in blood flow and metabolic rate were minimal at the basal ganglia level in tremor type patients, but cortical blood flow was decreased and metabolic rate was more elevated in the basal ganglia in rigid type patients. These findings were correlated with depth micro-recordings obtained by stereotactic pallidotomy. PET studies have also revealed that activity in the nerve terminal was decreased with decreasing dopamine and that dopamine (mainly D 2 ) activity was remarkably increased. PET studies with specific tracers are promising in providing more accurate information about functional state of living human brain with minimal invasion to patients. (N.K.)

  12. Functional Neuroanatomy and Behavioural Correlates of the Basal Ganglia: Evidence from Lesion Studies

    Directory of Open Access Journals (Sweden)

    Peter Ward

    2013-01-01

    Full Text Available Introduction: The basal ganglia are interconnected with cortical areas involved in behavioural, cognitive and emotional processes, in addition to movement regulation. Little is known about which of these functions are associated with individual basal ganglia substructures.

  13. Learning Reward Uncertainty in the Basal Ganglia.

    Directory of Open Access Journals (Sweden)

    John G Mikhael

    2016-09-01

    Full Text Available Learning the reliability of different sources of rewards is critical for making optimal choices. However, despite the existence of detailed theory describing how the expected reward is learned in the basal ganglia, it is not known how reward uncertainty is estimated in these circuits. This paper presents a class of models that encode both the mean reward and the spread of the rewards, the former in the difference between the synaptic weights of D1 and D2 neurons, and the latter in their sum. In the models, the tendency to seek (or avoid options with variable reward can be controlled by increasing (or decreasing the tonic level of dopamine. The models are consistent with the physiology of and synaptic plasticity in the basal ganglia, they explain the effects of dopaminergic manipulations on choices involving risks, and they make multiple experimental predictions.

  14. External pallidal stimulation improves parkinsonian motor signs and modulates neuronal activity throughout the basal ganglia thalamic network.

    Science.gov (United States)

    Vitek, Jerrold L; Zhang, Jianyu; Hashimoto, Takao; Russo, Gary S; Baker, Kenneth B

    2012-01-01

    Deep brain stimulation (DBS) of the internal segment of the globus pallidus (GPi) and the subthalamic nucleus (STN) are effective for the treatment of advanced Parkinson's disease (PD). We have shown previously that DBS of the external segment of the globus pallidus (GPe) is associated with improvements in parkinsonian motor signs; however, the mechanism of this effect is not known. In this study, we extend our findings on the effect of STN and GPi DBS on neuronal activity in the basal ganglia thalamic network to include GPe DBS using the 1-methyl-4-phenyl-1.2.3.6-tetrahydropyridine (MPTP) monkey model. Stimulation parameters that improved bradykinesia were associated with changes in the pattern and mean discharge rate of neuronal activity in the GPi, STN, and the pallidal [ventralis lateralis pars oralis (VLo) and ventralis anterior (VA)] and cerebellar [ventralis lateralis posterior pars oralis (VPLo)] receiving areas of the motor thalamus. Population post-stimulation time histograms revealed a complex pattern of stimulation-related inhibition and excitation for the GPi and VA/VLo, with a more consistent pattern of inhibition in STN and excitation in VPLo. Mean discharge rate was reduced in the GPi and STN and increased in the VPLo. Effective GPe DBS also reduced bursting in the STN and GPi. These data support the hypothesis that therapeutic DBS activates output from the stimulated structure and changes the temporal pattern of neuronal activity throughout the basal ganglia thalamic network and provide further support for GPe as a potential therapeutic target for DBS in the treatment of PD. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Migraine attacks the Basal Ganglia

    Directory of Open Access Journals (Sweden)

    Bigal Marcelo

    2011-09-01

    Full Text Available Abstract Background With time, episodes of migraine headache afflict patients with increased frequency, longer duration and more intense pain. While episodic migraine may be defined as 1-14 attacks per month, there are no clear-cut phases defined, and those patients with low frequency may progress to high frequency episodic migraine and the latter may progress into chronic daily headache (> 15 attacks per month. The pathophysiology of this progression is completely unknown. Attempting to unravel this phenomenon, we used high field (human brain imaging to compare functional responses, functional connectivity and brain morphology in patients whose migraine episodes did not progress (LF to a matched (gender, age, age of onset and type of medication group of patients whose migraine episodes progressed (HF. Results In comparison to LF patients, responses to pain in HF patients were significantly lower in the caudate, putamen and pallidum. Paradoxically, associated with these lower responses in HF patients, gray matter volume of the right and left caudate nuclei were significantly larger than in the LF patients. Functional connectivity analysis revealed additional differences between the two groups in regard to response to pain. Conclusions Supported by current understanding of basal ganglia role in pain processing, the findings suggest a significant role of the basal ganglia in the pathophysiology of the episodic migraine.

  16. Basal ganglia impairments in autism spectrum disorder are related to abnormal signal gating to prefrontal cortex.

    Science.gov (United States)

    Prat, Chantel S; Stocco, Andrea; Neuhaus, Emily; Kleinhans, Natalia M

    2016-10-01

    Research on the biological basis of autism spectrum disorder has yielded a list of brain abnormalities that are arguably as diverse as the set of behavioral symptoms that characterize the disorder. Among these are patterns of abnormal cortical connectivity and abnormal basal ganglia development. In attempts to integrate the existing literature, the current paper tests the hypothesis that impairments in the basal ganglia's function to flexibly select and route task-relevant neural signals to the prefrontal cortex underpins patterns of abnormal synchronization between the prefrontal cortex and other cortical processing centers observed in individuals with autism spectrum disorder (ASD). We tested this hypothesis using a Dynamic Causal Modeling analysis of neuroimaging data collected from 16 individuals with ASD (mean age=25.3 years; 6 female) and 17 age- and IQ-matched neurotypical controls (mean age=25.6, 6 female), who performed a Go/No-Go test of executive functioning. Consistent with the hypothesis tested, a random-effects Bayesian model selection procedure determined that a model of network connectivity in which basal ganglia activation modulated connectivity between the prefrontal cortex and other key cortical processing centers best fit the data of both neurotypicals and individuals with ASD. Follow-up analyses suggested that the largest group differences were observed for modulation of connectivity between prefrontal cortex and the sensory input region in the occipital lobe [t(31)=2.03, p=0.025]. Specifically, basal ganglia activation was associated with a small decrease in synchronization between the occipital region and prefrontal cortical regions in controls; however, in individuals with ASD, basal ganglia activation resulted in increased synchronization between the occipital region and the prefrontal cortex. We propose that this increased synchronization may reflect a failure in basal ganglia signal gating mechanisms, resulting in a non-selective copying

  17. Localization of Basal Ganglia and Thalamic Damage in Dyskinetic Cerebral Palsy.

    Science.gov (United States)

    Aravamuthan, Bhooma R; Waugh, Jeff L

    2016-01-01

    Dyskinetic cerebral palsy affects 15%-20% of patients with cerebral palsy. Basal ganglia injury is associated with dyskinetic cerebral palsy, but the patterns of injury within the basal ganglia predisposing to dyskinetic cerebral palsy are unknown, making treatment difficult. For example, deep brain stimulation of the globus pallidus interna improves dystonia in only 40% of patients with dyskinetic cerebral palsy. Basal ganglia injury heterogeneity may explain this variability. To investigate this, we conducted a qualitative systematic review of basal ganglia and thalamic damage in dyskinetic cerebral palsy. Reviews and articles primarily addressing genetic or toxic causes of cerebral palsy were excluded yielding 22 studies (304 subjects). Thirteen studies specified the involved basal ganglia nuclei (subthalamic nucleus, caudate, putamen, globus pallidus, or lentiform nuclei, comprised by the putamen and globus pallidus). Studies investigating the lentiform nuclei (without distinguishing between the putamen and globus pallidus) showed that all subjects (19 of 19) had lentiform nuclei damage. Studies simultaneously but independently investigating the putamen and globus pallidus also showed that all subjects (35 of 35) had lentiform nuclei damage (i.e., putamen or globus pallidus damage); this was followed in frequency by damage to the putamen alone (70 of 101, 69%), the subthalamic nucleus (17 of 25, 68%), the thalamus (88 of 142, 62%), the globus pallidus (7/35, 20%), and the caudate (6 of 47, 13%). Globus pallidus damage was almost always coincident with putaminal damage. Noting consistent involvement of the lentiform nuclei in dyskinetic cerebral palsy, these results could suggest two groups of patients with dyskinetic cerebral palsy: those with putamen-predominant damage and those with panlenticular damage involving both the putamen and the globus pallidus. Differentiating between these groups could help predict response to therapies such as deep brain

  18. Effective deep brain stimulation suppresses low frequency network oscillations in the basal ganglia by regularizing neural firing patterns

    Science.gov (United States)

    McConnell, George C.; So, Rosa Q.; Hilliard, Justin D; Lopomo, Paola; Grill, Warren M.

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for the motor symptoms of Parkinson’s disease (PD). The effects of DBS depend strongly on stimulation frequency: high frequencies (>90Hz) improve motor symptoms, while low frequencies (basal ganglia were studied in the unilateral 6-hydroxydopamine lesioned rat model of PD. Only high frequency DBS reversed motor symptoms and the effectiveness of DBS depended strongly on stimulation frequency in a manner reminiscent of its clinical effects in persons with PD. Quantification of single-unit activity in the globus pallidus externa (GPe) and substantia nigra reticulata (SNr) revealed that high frequency DBS, but not low frequency DBS, reduced pathological low frequency oscillations (~9Hz) and entrained neurons to fire at the stimulation frequency. Similarly, the coherence between simultaneously recorded pairs of neurons within and across GPe and SNr shifted from the pathological low frequency band to the stimulation frequency during high frequency DBS, but not during low frequency DBS. The changes in firing patterns in basal ganglia neurons were not correlated with changes in firing rate. These results indicate that high frequency DBS is more effective than low frequency DBS, not as a result of changes in firing rate, but rather due to its ability to replace pathological low frequency network oscillations with a regularized pattern of neuronal firing. PMID:23136407

  19. Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns.

    Science.gov (United States)

    McConnell, George C; So, Rosa Q; Hilliard, Justin D; Lopomo, Paola; Grill, Warren M

    2012-11-07

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for the motor symptoms of Parkinson's disease (PD). The effects of DBS depend strongly on stimulation frequency: high frequencies (>90 Hz) improve motor symptoms, while low frequencies (basal ganglia were studied in the unilateral 6-hydroxydopamine lesioned rat model of PD. Only high-frequency DBS reversed motor symptoms, and the effectiveness of DBS depended strongly on stimulation frequency in a manner reminiscent of its clinical effects in persons with PD. Quantification of single-unit activity in the globus pallidus externa (GPe) and substantia nigra reticulata (SNr) revealed that high-frequency DBS, but not low-frequency DBS, reduced pathological low-frequency oscillations (∼9 Hz) and entrained neurons to fire at the stimulation frequency. Similarly, the coherence between simultaneously recorded pairs of neurons within and across GPe and SNr shifted from the pathological low-frequency band to the stimulation frequency during high-frequency DBS, but not during low-frequency DBS. The changes in firing patterns in basal ganglia neurons were not correlated with changes in firing rate. These results indicate that high-frequency DBS is more effective than low-frequency DBS, not as a result of changes in firing rate, but rather due to its ability to replace pathological low-frequency network oscillations with a regularized pattern of neuronal firing.

  20. Dysfunctions of the basal ganglia-cerebellar-thalamo-cortical system produce motor tics in Tourette syndrome.

    Science.gov (United States)

    Caligiore, Daniele; Mannella, Francesco; Arbib, Michael A; Baldassarre, Gianluca

    2017-03-01

    Motor tics are a cardinal feature of Tourette syndrome and are traditionally associated with an excess of striatal dopamine in the basal ganglia. Recent evidence increasingly supports a more articulated view where cerebellum and cortex, working closely in concert with basal ganglia, are also involved in tic production. Building on such evidence, this article proposes a computational model of the basal ganglia-cerebellar-thalamo-cortical system to study how motor tics are generated in Tourette syndrome. In particular, the model: (i) reproduces the main results of recent experiments about the involvement of the basal ganglia-cerebellar-thalamo-cortical system in tic generation; (ii) suggests an explanation of the system-level mechanisms underlying motor tic production: in this respect, the model predicts that the interplay between dopaminergic signal and cortical activity contributes to triggering the tic event and that the recently discovered basal ganglia-cerebellar anatomical pathway may support the involvement of the cerebellum in tic production; (iii) furnishes predictions on the amount of tics generated when striatal dopamine increases and when the cortex is externally stimulated. These predictions could be important in identifying new brain target areas for future therapies. Finally, the model represents the first computational attempt to study the role of the recently discovered basal ganglia-cerebellar anatomical links. Studying this non-cortex-mediated basal ganglia-cerebellar interaction could radically change our perspective about how these areas interact with each other and with the cortex. Overall, the model also shows the utility of casting Tourette syndrome within a system-level perspective rather than viewing it as related to the dysfunction of a single brain area.

  1. Dysfunctions of the basal ganglia-cerebellar-thalamo-cortical system produce motor tics in Tourette syndrome.

    Directory of Open Access Journals (Sweden)

    Daniele Caligiore

    2017-03-01

    Full Text Available Motor tics are a cardinal feature of Tourette syndrome and are traditionally associated with an excess of striatal dopamine in the basal ganglia. Recent evidence increasingly supports a more articulated view where cerebellum and cortex, working closely in concert with basal ganglia, are also involved in tic production. Building on such evidence, this article proposes a computational model of the basal ganglia-cerebellar-thalamo-cortical system to study how motor tics are generated in Tourette syndrome. In particular, the model: (i reproduces the main results of recent experiments about the involvement of the basal ganglia-cerebellar-thalamo-cortical system in tic generation; (ii suggests an explanation of the system-level mechanisms underlying motor tic production: in this respect, the model predicts that the interplay between dopaminergic signal and cortical activity contributes to triggering the tic event and that the recently discovered basal ganglia-cerebellar anatomical pathway may support the involvement of the cerebellum in tic production; (iii furnishes predictions on the amount of tics generated when striatal dopamine increases and when the cortex is externally stimulated. These predictions could be important in identifying new brain target areas for future therapies. Finally, the model represents the first computational attempt to study the role of the recently discovered basal ganglia-cerebellar anatomical links. Studying this non-cortex-mediated basal ganglia-cerebellar interaction could radically change our perspective about how these areas interact with each other and with the cortex. Overall, the model also shows the utility of casting Tourette syndrome within a system-level perspective rather than viewing it as related to the dysfunction of a single brain area.

  2. Computational Stimulation of the Basal Ganglia Neurons with Cost Effective Delayed Gaussian Waveforms.

    Science.gov (United States)

    Daneshzand, Mohammad; Faezipour, Miad; Barkana, Buket D

    2017-01-01

    Deep brain stimulation (DBS) has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD). Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG) waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the performance of DBS

  3. Computational Stimulation of the Basal Ganglia Neurons with Cost Effective Delayed Gaussian Waveforms

    Directory of Open Access Journals (Sweden)

    Mohammad Daneshzand

    2017-08-01

    Full Text Available Deep brain stimulation (DBS has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD. Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the

  4. Selective attentional enhancement and inhibition of fronto-posterior connectivity by the basal ganglia during attention switching.

    Science.gov (United States)

    van Schouwenburg, Martine R; den Ouden, Hanneke E M; Cools, Roshan

    2015-06-01

    The prefrontal cortex and the basal ganglia interact to selectively gate a desired action. Recent studies have shown that this selective gating mechanism of the basal ganglia extends to the domain of attention. Here, we investigate the nature of this action-like gating mechanism for attention using a spatial attention-switching paradigm in combination with functional neuroimaging and dynamic causal modeling. We show that the basal ganglia guide attention by focally releasing inhibition of task-relevant representations, while simultaneously inhibiting task-irrelevant representations by selectively modulating prefrontal top-down connections. These results strengthen and specify the role of the basal ganglia in attention. Moreover, our findings have implications for psychological theorizing by suggesting that inhibition of unattended sensory regions is not only a consequence of mutual suppression, but is an active process, subserved by the basal ganglia. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Frequency and function in the basal ganglia: the origins of beta and gamma band activity.

    Science.gov (United States)

    Blenkinsop, Alexander; Anderson, Sean; Gurney, Kevin

    2017-07-01

    Neuronal oscillations in the basal ganglia have been observed to correlate with behaviours, although the causal mechanisms and functional significance of these oscillations remain unknown. We present a novel computational model of the healthy basal ganglia, constrained by single unit recordings from non-human primates. When the model is run using inputs that might be expected during performance of a motor task, the network shows emergent phenomena: it functions as a selection mechanism and shows spectral properties that match those seen in vivo. Beta frequency oscillations are shown to require pallido-striatal feedback, and occur with behaviourally relevant cortical input. Gamma oscillations arise in the subthalamic-globus pallidus feedback loop, and occur during movement. The model provides a coherent framework for the study of spectral, temporal and functional analyses of the basal ganglia and lays the foundation for an integrated approach to study basal ganglia pathologies such as Parkinson's disease in silico. Neural oscillations in the basal ganglia (BG) are well studied yet remain poorly understood. Behavioural correlates of spectral activity are well described, yet a quantitative hypothesis linking time domain dynamics and spectral properties to BG function has been lacking. We show, for the first time, that a unified description is possible by interpreting previously ignored structure in data describing globus pallidus interna responses to cortical stimulation. These data were used to expose a pair of distinctive neuronal responses to the stimulation. This observation formed the basis for a new mathematical model of the BG, quantitatively fitted to the data, which describes the dynamics in the data, and is validated against other stimulus protocol experiments. A key new result is that when the model is run using inputs hypothesised to occur during the performance of a motor task, beta and gamma frequency oscillations emerge naturally during static-force and

  6. Computed tomography of basal ganglia calcifications in pseudo- and idiopathic hypoparathyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Fukunaga, Masao; Otsuka, Nobuaki; Ono, Shimato; Kajihara, Yasumasa; Nishishita, Soichi; Morita, Rikushi; Nakano, Yoshihisa; Yamamoto, Itsuo; Torizuka, Kanji.

    1987-12-01

    It is well known that patients with pseudo (PHP)- and idiopathic (IHP) hypoparathyroidism are frequently associated with intracranial calcifications. The relative sensitivity of computed tomography (CT) and conventional skull radiography in detecting basal ganglia calcifications was studied in two patients with PHP and six with IHP. CT was more sensitive: the detection rate was 71 % (5/7) for CT and 14 % (1/7) for skull radiography. Furthermore, patients with more prolonged hypocalcemia showed a higher incidence of calcifications. Thus, CT was useful as a diagnostic technique in the early detection of calcified basal ganglia.

  7. Computed tomography of basal ganglia calcifications in pseudo- and idiopathic hypoparathyroidism

    International Nuclear Information System (INIS)

    Fukunaga, Masao; Otsuka, Nobuaki; Ono, Shimato; Kajihara, Yasumasa; Nishishita, Soichi; Morita, Rikushi; Nakano, Yoshihisa; Yamamoto, Itsuo; Torizuka, Kanji.

    1987-01-01

    It is well known that patients with pseudo (PHP)- and idiopathic (IHP) hypoparathyroidism are frequently associated with intracranial calcifications. The relative sensitivity of computed tomography (CT) and conventional skull radiography in detecting basal ganglia calcifications was studied in two patients with PHP and six with IHP. CT was more sensitive: the detection rate was 71 % (5/7) for CT and 14 % (1/7) for skull radiography. Furthermore, patients with more prolonged hypocalcemia showed a higher incidence of calcifications. Thus, CT was useful as a diagnostic technique in the early detection of calcified basal ganglia. (author)

  8. Basal ganglia calcification on CT in adult patients with Down's syndrome

    International Nuclear Information System (INIS)

    Ono, Yoshiro; Yoshida, Hironobu; Yoshimasu, Fumio; Higashi, Yuji.

    1987-01-01

    Fourteen adult cases with Down's syndrome were examined on cranial CT scan, and 5 of them (35.7 %) showed basal ganglia calcification (BGC). The incidence of BGC in the present cases was very high in comparison with the one in general population (0.3 ∼ 1.5 %). Abnormalities of calcium metabolism or dysfunctions of the basal ganglia were absent in each case with BGC. Calcifications were exclusively located in globus pallidus. It is considered that BGC found in the present cases may be due to the premature aging process in Down's syndrome. (author)

  9. Serial dynamic CT scan in patients with acute basal ganglia infarctions

    International Nuclear Information System (INIS)

    Node, Yoji; Nakazawa, Shozo; Tsuji, Yukihide.

    1987-01-01

    Dynamic computed tomography (CT) was performed on 15 patients (37 to 93 years of age) with acute basal ganglia infarctions, and the perfusion patterns of the infarcted regions on CT were evaluated. The initial dynamic CT was performed within 12 hours after onset, while the serial studies of the dynamic CT were performed on the 3rd and 7th days. The left-over-right ratio in the peak value in the basal ganglia in 15 normal subjects was 1.01 ± 0.03 (mean ± SD), so there were no differences in the peak values of the bilateral basal ganglia. We also examined the left-over-right ratio in the peak value and in the rapid-washout ratio in the basal ganglia in the 15 normal subjects. There was no difference in the peak values of the bilateral basal ganglia. The mean rapid-washout ratio was 0.62 ± 0.11 (mean ± SD). The prognoses of these patients three months after onset were as follows: 8 showed a good recovery, 5 had a moderate disability, and 2 had a severe disability. The perfusions on admission were as follows. 10 were hypoperfusions, 3 were hypo + late perfusions, one was a normoperfusion, and one was a late perfusion. There was a tendency for the rapid-washout ratio decrease more in the hypo + late perfusion group than in the other groups. Twelve patients showed an iso-density, while 3 showed a low density, on admission. The ''low-density'' group showed a decrease in the A/N ratio of the peak value. We performed serial dynamic CT in 11 cases. The group with severe disabilities (2 cases) showed a hypo + late perfusion in the initial CT, one case kept a hypo + late perfusion, and another case changed to a hypoperfusion; also, there was a tendency for there to be a poor improvement in the A/N ratio of the peak value in these two ''severe-disability'' patients. (J.P.N.)

  10. United in Diversity : A Physiological and Molecular Characterization of Subpopulations in the Basal Ganglia Circuitry

    OpenAIRE

    Viereckel, Thomas

    2017-01-01

    The Basal Ganglia consist of a number of different nuclei that form a diverse circuitry of GABAergic, dopaminergic and glutamatergic neurons. This complex network is further organized in subcircuits that govern limbic and motor functions in humans and other vertebrates. Due to the interconnection of the individual structures, dysfunction in one area or cell population can affect the entire network, leading to synaptic and molecular alterations in the circuitry as a whole. The studies in this ...

  11. Sonographic detection of basal ganglia abnormalities in spasmodic dysphonia.

    Science.gov (United States)

    Walter, U; Blitzer, A; Benecke, R; Grossmann, A; Dressler, D

    2014-02-01

    Abnormalities of the lenticular nucleus (LN) on transcranial sonography (TCS) are a characteristic finding in idiopathic segmental and generalized dystonia. Our intention was to study whether TCS detects basal ganglia abnormalities also in spasmodic dysphonia, an extremely focal form of dystonia. Transcranial sonography of basal ganglia, substantia nigra and ventricles was performed in 14 patients with spasmodic dysphonia (10 women, four men; disease duration 16.5 ± 6.1 years) and 14 age- and sex-matched healthy controls in an investigator-blinded setting. Lenticular nucleus hyperechogenicity was found in 12 spasmodic dysphonia patients but only in one healthy individual (Fisher's exact test, P spasmodic dysphonia severity (Spearman test, r = 0.82, P spasmodic dysphonia to that of more widespread forms of dystonia. © 2013 The Author(s) European Journal of Neurology © 2013 EFNS.

  12. Basal ganglia-dependent processes in recalling learned visual-motor adaptations.

    Science.gov (United States)

    Bédard, Patrick; Sanes, Jerome N

    2011-03-01

    Humans learn and remember motor skills to permit adaptation to a changing environment. During adaptation, the brain develops new sensory-motor relationships that become stored in an internal model (IM) that may be retained for extended periods. How the brain learns new IMs and transforms them into long-term memory remains incompletely understood since prior work has mostly focused on the learning process. A current model suggests that basal ganglia, cerebellum, and their neocortical targets actively participate in forming new IMs but that a cerebellar cortical network would mediate automatization. However, a recent study (Marinelli et al. 2009) reported that patients with Parkinson's disease (PD), who have basal ganglia dysfunction, had similar adaptation rates as controls but demonstrated no savings at recall tests (24 and 48 h). Here, we assessed whether a longer training session, a feature known to increase long-term retention of IM in healthy individuals, could allow PD patients to demonstrate savings. We recruited PD patients and age-matched healthy adults and used a visual-motor adaptation paradigm similar to the study by Marinelli et al. (2009), doubling the number of training trials and assessed recall after a short and a 24-h delay. We hypothesized that a longer training session would allow PD patients to develop an enhanced representation of the IM as demonstrated by savings at the recall tests. Our results showed that PD patients had similar adaptation rates as controls but did not demonstrate savings at both recall tests. We interpret these results as evidence that fronto-striatal networks have involvement in the early to late phase of motor memory formation, but not during initial learning.

  13. Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex.

    Science.gov (United States)

    Caligiore, Daniele; Pezzulo, Giovanni; Baldassarre, Gianluca; Bostan, Andreea C; Strick, Peter L; Doya, Kenji; Helmich, Rick C; Dirkx, Michiel; Houk, James; Jörntell, Henrik; Lago-Rodriguez, Angel; Galea, Joseph M; Miall, R Chris; Popa, Traian; Kishore, Asha; Verschure, Paul F M J; Zucca, Riccardo; Herreros, Ivan

    2017-02-01

    Despite increasing evidence suggesting the cerebellum works in concert with the cortex and basal ganglia, the nature of the reciprocal interactions between these three brain regions remains unclear. This consensus paper gathers diverse recent views on a variety of important roles played by the cerebellum within the cerebello-basal ganglia-thalamo-cortical system across a range of motor and cognitive functions. The paper includes theoretical and empirical contributions, which cover the following topics: recent evidence supporting the dynamical interplay between cerebellum, basal ganglia, and cortical areas in humans and other animals; theoretical neuroscience perspectives and empirical evidence on the reciprocal influences between cerebellum, basal ganglia, and cortex in learning and control processes; and data suggesting possible roles of the cerebellum in basal ganglia movement disorders. Although starting from different backgrounds and dealing with different topics, all the contributors agree that viewing the cerebellum, basal ganglia, and cortex as an integrated system enables us to understand the function of these areas in radically different ways. In addition, there is unanimous consensus between the authors that future experimental and computational work is needed to understand the function of cerebellar-basal ganglia circuitry in both motor and non-motor functions. The paper reports the most advanced perspectives on the role of the cerebellum within the cerebello-basal ganglia-thalamo-cortical system and illustrates other elements of consensus as well as disagreements and open questions in the field.

  14. Meige`s syndrome associated with basal ganglia and thalamic functional disorders

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Tsutomu; Shikishima, Keigo; Kawai, Kazushige; Kitahara, Kenji [Jikei Univ., Tokyo (Japan). School of Medicine

    1998-11-01

    Magnetic resonance imaging (MRI) or single positron emission computed tomography (SPECT) or both were performed and the responses of surface electromyography (EMG) were examined in seven cases of Meige`s syndrome. MRI or SPECT or both demonstrated lesions of the basal ganglia, the thalamus, or both in five of the cases. Surface EMG revealed abnormal burst discharges in the orbicularis oculi and a failure of reciprocal muscular activity between the frontalis and orbicularis oculi in all the cases. These findings suggest that voluntary motor control and reciprocal activity in the basal ganglia-thalamocortical circuits are impaired in Meige`s syndrome. In addition, good responses were seen to clonazepam, tiapride and trihexyphenidyl in these cases. Therefore, we conclude that dopaminergic, cholinergic, and {gamma}-aminobutyric acid (GABA) ergic imbalances in the disorders of the basal ganglia and thalamus in Meige`s syndrome cause control in the excitatory and inhibitory pathways to be lost, resulting in the failure of integration in reciprocal muscular activity and voluntary motor control. This failure subsequently causes the symptoms of Meige`s syndrome. (author)

  15. MRI volume measurement of basal ganglia volumes in patients with Tourette's syndrome

    International Nuclear Information System (INIS)

    Lu Jie; Li Kuncheng; Cao Yanxiang; Zhang Miao; Sui Xin; Zhang Xiaohua

    2009-01-01

    Objective: To evaluate MRI measurement of basal ganglia volumes in patients with Tourette's syndrome. Methods: Ten patients with Tourette's syndrome (TS) and 10 healthy volunteers were studied. Volumes of bilateral caudate, putamen and pallidum were measured, and the results were analyzed using paired t test. The basal ganglia volume was normalized according to individual brain volume. The basal ganglia volumes of TS patients were compared with normal control group using independent-sample t test. Results: In 10 healthy volunteers, volumes of the left caudate, putamen, pallidum were significantly larger compared with those of the right side (P 0.05) in TS patients. After normalized processing, the volumes of the left caudate (7.06 ± 0.48) cm 3 , putamen (8.81±1.01) cm 3 , pallidum (2.64± 0.38) cm 3 were smaller than those of control group [caudate (11.05±1.86) cm 3 , putamen (9.97± 1.11) cm 3 , pallidum (3.04±0.37) cm 3 ] (t=-6.577, -2.457, -2.376, P 3 in TS patients was significantly smaller compared with the control group (9.81±1.83) cm 3 (t=-4.258, P 0.05). Conclusion: The basal ganglia volumes were significantly decreased in patients with TS. MRI volumetric measurement was an important tool for evaluating pathologic changes of TS. (authors)

  16. The Pedunculopontine Tegmental Nucleus as a Motor and Cognitive Interface between the Cerebellum and Basal Ganglia.

    Science.gov (United States)

    Mori, Fumika; Okada, Ken-Ichi; Nomura, Taishin; Kobayashi, Yasushi

    2016-01-01

    As an important component of ascending activating systems, brainstem cholinergic neurons in the pedunculopontine tegmental nucleus (PPTg) are involved in the regulation of motor control (locomotion, posture and gaze) and cognitive processes (attention, learning and memory). The PPTg is highly interconnected with several regions of the basal ganglia, and one of its key functions is to regulate and relay activity from the basal ganglia. Together, they have been implicated in the motor control system (such as voluntary movement initiation or inhibition), and modulate aspects of executive function (such as motivation). In addition to its intimate connection with the basal ganglia, projections from the PPTg to the cerebellum have been recently reported to synaptically activate the deep cerebellar nuclei. Classically, the cerebellum and basal ganglia were regarded as forming separated anatomical loops that play a distinct functional role in motor and cognitive behavioral control. Here, we suggest that the PPTg may also act as an interface device between the basal ganglia and cerebellum. As such, part of the therapeutic effect of PPTg deep brain stimulation (DBS) to relieve gait freezing and postural instability in advanced Parkinson's disease (PD) patients might also involve modulation of the cerebellum. We review the anatomical position and role of the PPTg in the pathway of basal ganglia and cerebellum in relation to motor control, cognitive function and PD.

  17. The pedunculopontine tegmental nucleus as a motor and cognitive interface between the cerebellum and basal ganglia

    Directory of Open Access Journals (Sweden)

    Fumika Mori

    2016-11-01

    Full Text Available As an important component of ascending activating systems, brainstem cholinergic neurons in the pedunculopontine tegmental nucleus (PPTg are involved in the regulation of motor control (locomotion, posture and gaze and cognitive processes (attention, learning, and memory. The PPTg is highly interconnected with several regions of the basal ganglia, and one of its key functions is to regulate and relay activity from the basal ganglia. Together, they have been implicated in the motor control system (such as voluntary movement initiation or inhibition, and modulate aspects of executive function (such as motivation. In addition to its intimate connection with the basal ganglia, projections from the PPTg to the cerebellum have been recently reported to synaptically activate the deep cerebellar nuclei. Classically, the cerebellum and basal ganglia were regarded as forming separated anatomical loops that play a distinct functional role in motor and cognitive behavioral control. Here, we suggest that the PPTg may also act as an interface device between the basal ganglia and cerebellum. As such, part of the therapeutic effect of PPTg deep brain stimulation to relieve gait freezing and postural instability in advanced Parkinson’s disease patients might also involve modulation of the cerebellum. We review the anatomical position and role of the PPTg in the pathway of basal ganglia and cerebellum in relation to motor control, cognitive function, and Parkinson’s disease.

  18. Opponent and bidirectional control of movement velocity in the basal ganglia

    Science.gov (United States)

    Yttri, Eric A.

    2016-01-01

    For goal-directed behavior it is critical that we can both select the appropriate action and learn to modify the underlying movements (e.g. the pitch of a note or velocity of a reach) to improve outcomes. The basal ganglia are a critical nexus where circuits necessary for the production of behavior, such as neocortex and thalamus, are integrated with reward signaling 1 to reinforce successful, purposive actions 2. Dorsal striatum, a major input structure of basal ganglia is composed of two opponent pathways, direct and indirect, thought to select actions that elicit positive outcomes or suppress actions that do not, respectively 3,4. Activity-dependent plasticity modulated by reward is thought to be sufficient for selecting actions in striatum 5,6. Although perturbations of basal ganglia function produce profound changes in movement 7, it remains unknown whether activity-dependent plasticity is sufficient to produce learned changes in movement kinematics, such as velocity. Here we used cell-type specific stimulation delivered in closed-loop during movement to demonstrate that activity in either the direct or indirect pathway is sufficient to produce specific and sustained increases or decreases in velocity without affecting action selection or motivation. These behavioral changes were a form of learning that accumulated over trials, persisted after the cessation of stimulation, and were abolished in the presence of dopamine antagonists. Our results reveal that the direct and indirect pathways can each bidirectionally control movement velocity, demonstrating unprecedented specificity and flexibility in the control of volition by the basal ganglia. PMID:27135927

  19. Basal ganglia modulation of thalamocortical relay in Parkinson's disease and dystonia.

    Science.gov (United States)

    Guo, Yixin; Park, Choongseok; Worth, Robert M; Rubchinsky, Leonid L

    2013-01-01

    Basal ganglia dysfunction has being implied in both Parkinson's disease and dystonia. While these disorders probably involve different cellular and circuit pathologies within and beyond basal ganglia, there may be some shared neurophysiological pathways. For example, pallidotomy and pallidal Deep Brain Stimulation (DBS) are used in symptomatic treatment of both disorders. Both conditions are marked by alterations of rhythmicity of neural activity throughout basal ganglia-thalamocortical circuits. Increased synchronized oscillatory activity in beta band is characteristic of Parkinson's disease, while different frequency bands, theta and alpha, are involved in dystonia. We compare the effect of the activity of GPi, the output nuclei of the basal ganglia, on information processing in the downstream neural circuits of thalamus in Parkinson's disease and dystonia. We use a data-driven computational approach, a computational model of the thalamocortical (TC) cell modulated by experimentally recorded data, to study the differences and similarities of thalamic dynamics in dystonia and Parkinson's disease. Our analysis shows no substantial differences in TC relay between the two conditions. Our results suggest that, similar to Parkinson's disease, a disruption of thalamic processing could also be involved in dystonia. Moreover, the degree to which TC relay fidelity is impaired is approximately the same in both conditions. While Parkinson's disease and dystonia may have different pathologies and differ in the oscillatory content of neural discharge, our results suggest that the effect of patterning of pallidal discharge is similar in both conditions. Furthermore, these results suggest that the mechanisms of GPi DBS in dystonia may involve improvement of TC relay fidelity.

  20. Idiopathic Basal Ganglia Calcification Presented with Impulse Control Disorder

    OpenAIRE

    Sahin, Cem; Levent, Mustafa; Akbaba, Gulhan; Kara, Bilge; Yeniceri, Emine Nese; Inanc, Betul Battaloglu

    2015-01-01

    Primary familial brain calcification (PFBC), also referred to as Idiopathic Basal Ganglia Calcification (IBGC) or “Fahr’s disease,” is a clinical condition characterized by symmetric and bilateral calcification of globus pallidus and also basal ganglions, cerebellar nuclei, and other deep cortical structures. It could be accompanied by parathyroid disorder and other metabolic disturbances. The clinical features are dysfunction of the calcified anatomic localization. IBGC most commonly present...

  1. Centrality of striatal cholinergic transmission in basal ganglia function

    Directory of Open Access Journals (Sweden)

    Paola eBonsi

    2011-02-01

    Full Text Available Work over the past two decades revealed a previously unexpected role for striatal cholinergic interneurons in the context of basal ganglia function. The recognition that these interneurons are essential in synaptic plasticity and motor learning represents a significant step ahead in deciphering how the striatum processes cortical inputs, and why pathological circumstances cause motor dysfunction.Loss of the reciprocal modulation between dopaminergic inputs and the intrinsic cholinergic innervation within the striatum appears to be the trigger for pathophysiological changes occurring in basal ganglia disorders. Accordingly, there is now compelling evidence showing profound changes in cholinergic markers in these disorders, in particular Parkinson’s disease and dystonia.Based on converging experimental and clinical evidence, we provide an overview of the role of striatal cholinergic transmission in physiological and pathological conditions, in the context of the pathogenesis of movement disorders.

  2. Basal ganglia germinoma in children with associated ipsilateral cerebral and brain stem hemiatrophy

    Energy Technology Data Exchange (ETDEWEB)

    Ozelame, Rodrigo V.; Shroff, Manohar; Wood, Bradley; Bouffet, Eric; Bartels, Ute; Drake, James M.; Hawkins, Cynthia; Blaser, Susan [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, Ontario (Canada)

    2006-04-15

    Germinoma is the most common and least-malignant intracranial germ cell tumor, usually found in the midline. Germinoma that arises in the basal ganglia, called ectopic germinoma, is a rare and well-documented entity representing 5% to 10% of all intracranial germinomas. The association of cerebral and/or brain stem atrophy with basal ganglia germinoma on CT and MRI is found in 33% of the cases. To review the literature and describe the CT and MRI findings of basal ganglia germinoma in children, known as ectopic germinoma, with associated ipsilateral cerebral and brain stem hemiatrophy. Three brain CT and six brain MRI studies performed in four children at two institutions were retrospectively reviewed. All patients were male (case 1, 14 years; case 2, 13 years; case 3, 9 years; case 4, 13 years), with pathologically proved germinoma arising in the basal ganglia, and associated ipsilateral cerebral and/or brain stem hemiatrophy on the first imaging study. It is important to note that three of these children presented with cognitive decline, psychosis and slowly progressive hemiparesis as their indication for imaging. Imaging results on initial scans were varied. In all patients, the initial study showed ipsilateral cerebral and/or brain stem hemiatrophy, representing Wallerian degeneration. All patients who underwent CT imaging presented with a hyperdense or calcified lesion in the basal ganglia on unenhanced scans. Only one of these lesions had a mass effect on the surrounding structures. In one of these patients a large, complex, heterogeneous mass appeared 15 months later. Initial MR showed focal or diffusely increased T2 signal in two cases and heterogeneous signal in the other two. (orig.)

  3. Basal ganglia germinoma in children with associated ipsilateral cerebral and brain stem hemiatrophy

    International Nuclear Information System (INIS)

    Ozelame, Rodrigo V.; Shroff, Manohar; Wood, Bradley; Bouffet, Eric; Bartels, Ute; Drake, James M.; Hawkins, Cynthia; Blaser, Susan

    2006-01-01

    Germinoma is the most common and least-malignant intracranial germ cell tumor, usually found in the midline. Germinoma that arises in the basal ganglia, called ectopic germinoma, is a rare and well-documented entity representing 5% to 10% of all intracranial germinomas. The association of cerebral and/or brain stem atrophy with basal ganglia germinoma on CT and MRI is found in 33% of the cases. To review the literature and describe the CT and MRI findings of basal ganglia germinoma in children, known as ectopic germinoma, with associated ipsilateral cerebral and brain stem hemiatrophy. Three brain CT and six brain MRI studies performed in four children at two institutions were retrospectively reviewed. All patients were male (case 1, 14 years; case 2, 13 years; case 3, 9 years; case 4, 13 years), with pathologically proved germinoma arising in the basal ganglia, and associated ipsilateral cerebral and/or brain stem hemiatrophy on the first imaging study. It is important to note that three of these children presented with cognitive decline, psychosis and slowly progressive hemiparesis as their indication for imaging. Imaging results on initial scans were varied. In all patients, the initial study showed ipsilateral cerebral and/or brain stem hemiatrophy, representing Wallerian degeneration. All patients who underwent CT imaging presented with a hyperdense or calcified lesion in the basal ganglia on unenhanced scans. Only one of these lesions had a mass effect on the surrounding structures. In one of these patients a large, complex, heterogeneous mass appeared 15 months later. Initial MR showed focal or diffusely increased T2 signal in two cases and heterogeneous signal in the other two. (orig.)

  4. Effects of Electrical and Optogenetic Deep Brain Stimulation on Synchronized Oscillatory Activity in Parkinsonian Basal Ganglia.

    Science.gov (United States)

    Ratnadurai-Giridharan, Shivakeshavan; Cheung, Chung C; Rubchinsky, Leonid L

    2017-11-01

    Conventional deep brain stimulation of basal ganglia uses high-frequency regular electrical pulses to treat Parkinsonian motor symptoms but has a series of limitations. Relatively new and not yet clinically tested, optogenetic stimulation is an effective experimental stimulation technique to affect pathological network dynamics. We compared the effects of electrical and optogenetic stimulation of the basal gangliaon the pathologicalParkinsonian rhythmic neural activity. We studied the network response to electrical stimulation and excitatory and inhibitory optogenetic stimulations. Different stimulations exhibit different interactions with pathological activity in the network. We studied these interactions for different network and stimulation parameter values. Optogenetic stimulation was found to be more efficient than electrical stimulation in suppressing pathological rhythmicity. Our findings indicate that optogenetic control of neural synchrony may be more efficacious than electrical control because of the different ways of how stimulations interact with network dynamics.

  5. Hypofractionated Stereotactic Radiosurgery in a Large Bilateral Thalamic and Basal Ganglia Arteriovenous Malformation

    Directory of Open Access Journals (Sweden)

    Janet Lee

    2013-01-01

    Full Text Available Purpose. Arteriovenous malformations (AVMs in the basal ganglia and thalamus have a more aggressive natural history with a higher morbidity and mortality than AVMs in other locations. Optimal treatment—complete obliteration without new neurological deficits—is often challenging. We present a patient with a large bilateral basal ganglia and thalamic AVM successfully treated with hypofractionated stereotactic radiosurgery (HFSRS with intensity modulated radiotherapy (IMRT. Methods. The patient was treated with hypofractionated stereotactic radiosurgery to 30 Gy at margin in 5 fractions of 9 static fields with a minimultileaf collimator and intensity modulated radiotherapy. Results. At 10 months following treatment, digital subtraction angiography showed complete obliteration of the AVM. Conclusions. Large bilateral thalamic and basal ganglia AVMs can be successfully treated with complete obliteration by HFSRS with IMRT with relatively limited toxicity. Appropriate caution is recommended.

  6. Interaction of synchronized dynamics in cortex and basal ganglia in Parkinson's disease.

    Science.gov (United States)

    Ahn, Sungwoo; Zauber, S Elizabeth; Worth, Robert M; Witt, Thomas; Rubchinsky, Leonid L

    2015-09-01

    Parkinson's disease pathophysiology is marked by increased oscillatory and synchronous activity in the beta frequency band in cortical and basal ganglia circuits. This study explores the functional connections between synchronized dynamics of cortical areas and synchronized dynamics of subcortical areas in Parkinson's disease. We simultaneously recorded neuronal units (spikes) and local field potentials (LFP) from subthalamic nucleus (STN) and electroencephalograms (EEGs) from the scalp in parkinsonian patients, and analysed the correlation between the time courses of the spike-LFP synchronization and inter-electrode EEG synchronization. We found the (non-invasively obtained) time course of the synchrony strength between EEG electrodes and the (invasively obtained) time course of the synchrony between spiking units and LFP in STN to be weakly, but significantly, correlated with each other. This correlation is largest for the bilateral motor EEG synchronization, followed by bilateral frontal EEG synchronization. Our observations suggest that there may be multiple functional modes by which the cortical and basal ganglia circuits interact with each other in Parkinson's disease: not only may synchronization be observed between some areas in cortex and the basal ganglia, but also synchronization within cortex and within basal ganglia may be related, suggesting potentially a more global functional interaction. More coherent dynamics in one brain region may modulate or activate the dynamics of another brain region in a more powerful way, causing correlations between changes in synchrony strength in the two regions. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. How may the basal ganglia contribute to auditory categorization and speech perception?

    Directory of Open Access Journals (Sweden)

    Sung-Joo eLim

    2014-08-01

    Full Text Available Listeners must accomplish two complementary perceptual feats in extracting a message from speech. They must discriminate linguistically-relevant acoustic variability and generalize across irrelevant variability. Said another way, they must categorize speech. Since the mapping of acoustic variability is language-specific, these categories must be learned from experience. Thus, understanding how, in general, the auditory system acquires and represents categories can inform us about the toolbox of mechanisms available to speech perception. This perspective invites consideration of findings from cognitive neuroscience literatures outside of the speech domain as a means of constraining models of speech perception. Although neurobiological models of speech perception have mainly focused on cerebral cortex, research outside the speech domain is consistent with the possibility of significant subcortical contributions in category learning. Here, we review the functional role of one such structure, the basal ganglia. We examine research from animal electrophysiology, human neuroimaging, and behavior to consider characteristics of basal ganglia processing that may be advantageous for speech category learning. We also present emerging evidence for a direct role for basal ganglia in learning auditory categories in a complex, naturalistic task intended to model the incidental manner in which speech categories are acquired. To conclude, we highlight new research questions that arise in incorporating the broader neuroscience research literature in modeling speech perception, and suggest how understanding contributions of the basal ganglia can inform attempts to optimize training protocols for learning non-native speech categories in adulthood.

  8. Prevalences of CT detected calcification in the basal ganglia in idiopathic hypoparathyroidism and pseudohypoparathyroidism

    International Nuclear Information System (INIS)

    Illum, F.; Dupont, E.; Aarhus Univ.; Aarhus Univ.

    1985-01-01

    Sixteen patients with idiopathic hypoparathyroidism (IHP) and eight patients with pseudohypoparathyroidism (PHP) were examined by CT scan of the brain. Calcification in the basal ganglia was observed in 11 patients with IHP (69%) and in all eight patients with PHP. Of the 19 patients with basal ganglia calcification, nine had calcifications in the cerebral cortex (47%), and four had calcifications in the cerebellum (21%). Observation of basal ganglia calcification on CT gave rise to suspicion of IHP or PHP in three patients (12%). The remaining patients were examined at varying time after diagnosis. Since arrest in growth of calcifications after institution of treatment has never been proven, the reported prevalences of calcifications may not be valid to the situation at the time of diagnosis. (orig.)

  9. The Development of the Basal Ganglia in Capuchin Monkeys (Cebus apella)

    Science.gov (United States)

    Phillips, Kimberley A.; Sobieski, Courtney A.; Gilbert, Valerie R.; Chiappini-Williamson, Christine; Sherwood, Chet C.; Strick, Peter L.

    2010-01-01

    The basal ganglia are subcortical structures involved in the planning, initiation and regulation of movement as well as a variety of non-motor, cognitive and affective functions. Capuchin monkeys share several important characteristics of development with humans, including a prolonged infancy and juvenile period, a long lifespan, and complex manipulative abilities. This makes capuchins important comparative models for understanding age-related neuroanatomical changes in these structures. Here we report developmental volumetric data on the three subdivisions of the basal ganglia, the caudate, putamen and globus pallidus in brown capuchin monkeys (Cebus apella). Based on a cross-sectional sample, we describe brain development in 28 brown capuchin monkeys (male n = 17, female n = 11; age range = 2 months – 20 years) using high-resolution structural MRI. We found that the raw volumes of the putamen and caudate varied significantly with age, decreasing in volume from birth through early adulthood. Notably, developmental changes did not differ between sexes. Because these observed developmental patterns are similar to humans, our results suggest that capuchin monkeys may be useful animal models for investigating neurodevelopmental disorders of the basal ganglia. PMID:20227397

  10. Electrocorticography reveals beta desynchronization in the basal ganglia-cortical loop during rest tremor in Parkinson's disease.

    Science.gov (United States)

    Qasim, Salman E; de Hemptinne, Coralie; Swann, Nicole C; Miocinovic, Svjetlana; Ostrem, Jill L; Starr, Philip A

    2016-02-01

    The pathophysiology of rest tremor in Parkinson's disease (PD) is not well understood, and its severity does not correlate with the severity of other cardinal signs of PD. We hypothesized that tremor-related oscillatory activity in the basal-ganglia-thalamocortical loop might serve as a compensatory mechanism for the excessive beta band synchronization associated with the parkinsonian state. We recorded electrocorticography (ECoG) from the sensorimotor cortex and local field potentials (LFP) from the subthalamic nucleus (STN) in patients undergoing lead implantation for deep brain stimulation (DBS). We analyzed differences in measures of network synchronization during epochs of spontaneous rest tremor, versus epochs without rest tremor, occurring in the same subjects. The presence of tremor was associated with reduced beta power in the cortex and STN. Cortico-cortical coherence and phase-amplitude coupling (PAC) decreased during rest tremor, as did basal ganglia-cortical coherence in the same frequency band. Cortical broadband gamma power was not increased by tremor onset, in contrast to the movement-related gamma increase typically observed at the onset of voluntary movement. These findings suggest that the cortical representation of rest tremor is distinct from that of voluntary movement, and support a model in which tremor acts to decrease beta band synchronization within the basal ganglia-cortical loop. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Task-rest modulation of basal ganglia connectivity in mild to moderate Parkinson's disease.

    Science.gov (United States)

    Müller-Oehring, Eva M; Sullivan, Edith V; Pfefferbaum, Adolf; Huang, Neng C; Poston, Kathleen L; Bronte-Stewart, Helen M; Schulte, Tilman

    2015-09-01

    Parkinson's disease (PD) is associated with abnormal synchronization in basal ganglia-thalamo-cortical loops. We tested whether early PD patients without demonstrable cognitive impairment exhibit abnormal modulation of functional connectivity at rest, while engaged in a task, or both. PD and healthy controls underwent two functional MRI scans: a resting-state scan and a Stroop Match-to-Sample task scan. Rest-task modulation of basal ganglia (BG) connectivity was tested using seed-to-voxel connectivity analysis with task and rest time series as conditions. Despite substantial overlap of BG-cortical connectivity patterns in both groups, connectivity differences between groups had clinical and behavioral correlates. During rest, stronger putamen-medial parietal and pallidum-occipital connectivity in PD than controls was associated with worse task performance and more severe PD symptoms suggesting that abnormalities in resting-state connectivity denote neural network dedifferentiation. During the executive task, PD patients showed weaker BG-cortical connectivity than controls, i.e., between caudate-supramarginal gyrus and pallidum-inferior prefrontal regions, that was related to more severe PD symptoms and worse task performance. Yet, task processing also evoked stronger striatal-cortical connectivity, specifically between caudate-prefrontal, caudate-precuneus, and putamen-motor/premotor regions in PD relative to controls, which was related to less severe PD symptoms and better performance on the Stroop task. Thus, stronger task-evoked striatal connectivity in PD demonstrated compensatory neural network enhancement to meet task demands and improve performance levels. fMRI-based network analysis revealed that despite resting-state BG network compromise in PD, BG connectivity to prefrontal, premotor, and precuneus regions can be adequately invoked during executive control demands enabling near normal task performance.

  12. Mössbauer spectroscopy of Basal Ganglia

    International Nuclear Information System (INIS)

    Miglierini, Marcel; Lančok, Adriana; Kopáni, Martin; Boča, Roman

    2014-01-01

    Chemical states, structural arrangement, and magnetic features of iron deposits in biological tissue of Basal Ganglia are characterized. The methods of SQUID magnetometry and electron microscopy are employed. 57 Fe Mössbauer spectroscopy is used as a principal method of investigation. Though electron microscopy has unveiled robust crystals (1-3 μm in size) of iron oxides, they are not manifested in the corresponding 57 Fe Mössbauer spectra. The latter were acquired at 300 K and 4.2 K and resemble ferritin-like behavior

  13. Mössbauer spectroscopy of Basal Ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Miglierini, Marcel, E-mail: marcel.miglierini@stuba.sk [Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava, Slovakia and Regional Centre of Advanced Technologies and Materials (Czech Republic); Lančok, Adriana [Institute of Inorganic Chemistry AS CR, v. v. i., 250 68 Husinec-Řež 1001 (Czech Republic); Kopáni, Martin [Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Sasinkova 2, 811 08 Bratislava (Slovakia); Boča, Roman [Department of Chemistry, Faculty of Natural Sciences, University of SS. Cyril and Methodius, 917 01 Trnava (Slovakia)

    2014-10-27

    Chemical states, structural arrangement, and magnetic features of iron deposits in biological tissue of Basal Ganglia are characterized. The methods of SQUID magnetometry and electron microscopy are employed. {sup 57}Fe Mössbauer spectroscopy is used as a principal method of investigation. Though electron microscopy has unveiled robust crystals (1-3 μm in size) of iron oxides, they are not manifested in the corresponding {sup 57}Fe Mössbauer spectra. The latter were acquired at 300 K and 4.2 K and resemble ferritin-like behavior.

  14. Interaction of oscillations, and their suppression via deep brain stimulation, in a model of the cortico-basal ganglia network.

    Science.gov (United States)

    Kang, Guiyeom; Lowery, Madeleine M

    2013-03-01

    Growing evidence suggests that synchronized neural oscillations in the cortico-basal ganglia network may play a critical role in the pathophysiology of Parkinson's disease. In this study, a new model of the closed loop network is used to explore the generation and interaction of network oscillations and their suppression through deep brain stimulation (DBS). Under simulated dopamine depletion conditions, increased gain through the hyperdirect pathway resulted in the interaction of neural oscillations at different frequencies in the cortex and subthalamic nucleus (STN), leading to the emergence of synchronized oscillations at a new intermediate frequency. Further increases in synaptic gain resulted in the cortex driving synchronous oscillatory activity throughout the network. When DBS was added to the model a progressive reduction in STN power at the tremor and beta frequencies was observed as the frequency of stimulation was increased, with resonance effects occurring for low frequency DBS (40 Hz) in agreement with experimental observations. The results provide new insights into the mechanisms by which synchronous oscillations can arise within the network and how DBS may suppress unwanted oscillatory activity.

  15. Cavitary Cryptogenic Organizing Pneumonia and abnormalities of the Basal Ganglia Case presentation

    International Nuclear Information System (INIS)

    Prieto, Enrique; Mora, Alfonso Sergio

    2007-01-01

    Cryptogenic Organizing Pneumonia (COP) is a pulmonary disorder with a wide spectrum of radiological features. A case of a young patient of 16 years old is shown with CAT appearance of multiple cavitary nodules in both lungs that responded with a complete resolution after corticosteroid therapy. This patient also reveals abnormalities of the basal ganglia as the result of hypoxic ischemic encephalopathy associated with the acute presentation of this disorder. We justify the inclusion of COP in the differential diagnosis of multiple cavitary nodules, and it is discussed the differential diagnosis of her abnormalities of the basal ganglia

  16. Basal Ganglia Calcification with Tetanic Seizure Suggest Mitochondrial Disorder.

    Science.gov (United States)

    Finsterer, Josef; Enzelsberger, Barbara; Bastowansky, Adam

    2017-04-09

    BACKGROUND Basal ganglia calcification (BGC) is a rare sporadic or hereditary central nervous system (CNS) abnormality, characterized by symmetric or asymmetric calcification of the basal ganglia. CASE REPORT We report the case of a 65-year-old Gypsy female who was admitted for a tetanic seizure, and who had a history of polyneuropathy, restless-leg syndrome, retinopathy, diabetes, hyperlipidemia, osteoporosis with consecutive hyperkyphosis, cervicalgia, lumbalgia, struma nodosa requiring thyroidectomy and consecutive hypothyroidism, adipositas, resection of a vocal chord polyp, arterial hypertension, coronary heart disease, atheromatosis of the aorta, peripheral artery disease, chronic obstructive pulmonary disease, steatosis hepatis, mild renal insufficiency, long-term hypocalcemia, hyperphosphatemia, impingement syndrome, spondylarthrosis of the lumbar spine, and hysterectomy. History and clinical presentation suggested a mitochondrial defect which also manifested as hypoparathyroidism or Fanconi syndrome resulting in BGC. After substitution of calcium, no further tetanic seizures occurred. CONCLUSIONS Patients with BGC should be investigated for a mitochondrial disorder. A mitochondrial disorder may also manifest as tetanic seizure.

  17. Functional connectivity in the basal ganglia network differentiates PD patients from controls

    Science.gov (United States)

    Szewczyk-Krolikowski, Konrad; Menke, Ricarda A.L.; Rolinski, Michal; Duff, Eugene; Salimi-Khorshidi, Gholamreza; Filippini, Nicola; Zamboni, Giovanna; Hu, Michele T.M.

    2014-01-01

    Objective: To examine functional connectivity within the basal ganglia network (BGN) in a group of cognitively normal patients with early Parkinson disease (PD) on and off medication compared to age- and sex-matched healthy controls (HC), and to validate the findings in a separate cohort of participants with PD. Methods: Participants were scanned with resting-state fMRI (RS-fMRI) at 3T field strength. Resting-state networks were isolated using independent component analysis. A BGN template was derived from 80 elderly HC participants. BGN maps were compared between 19 patients with PD on and off medication in the discovery group and 19 age- and sex-matched controls to identify a threshold for optimal group separation. The threshold was applied to 13 patients with PD (including 5 drug-naive) in the validation group to establish reproducibility of findings. Results: Participants with PD showed reduced functional connectivity with the BGN in a wide range of areas. Administration of medication significantly improved connectivity. Average BGN connectivity differentiated participants with PD from controls with 100% sensitivity and 89.5% specificity. The connectivity threshold was tested on the validation cohort and achieved 85% accuracy. Conclusions: We demonstrate that resting functional connectivity, measured with MRI using an observer-independent method, is reproducibly reduced in the BGN in cognitively intact patients with PD, and increases upon administration of dopaminergic medication. Our results hold promise for RS-fMRI connectivity as a biomarker in early PD. Classification of evidence: This study provides Class III evidence that average connectivity in the BGN as measured by RS-fMRI distinguishes patients with PD from age- and sex-matched controls. PMID:24920856

  18. Task-Rest Modulation of Basal Ganglia Connectivity in Mild to Moderate Parkinson’s Disease

    Science.gov (United States)

    Müller-Oehring, Eva M.; Sullivan, Edith V.; Pfefferbaum, Adolf; Huang, Neng C.; Poston, Kathleen L.; Bronte-Stewart, Helen M.; Schulte, Tilman

    2014-01-01

    Parkinson’s disease (PD) is associated with abnormal synchronization in basal ganglia-thalamo-cortical loops. We tested whether early PD patients without demonstrable cognitive impairment exhibit abnormal modulation of functional connectivity at rest, while engaged in a task, or both. PD and healthy controls underwent two functional MRI scans: a resting-state scan and a Stroop Match-to-Sample task scan. Rest-task modulation of basal ganglia (BG) connectivity was tested using seed-to-voxel connectivity analysis with task and rest time series as conditions. Despite substantial overlap of BG–cortical connectivity patterns in both groups, connectivity differences between groups had clinical and behavioral correlates. During rest, stronger putamen–medial parietal and pallidum–occipital connectivity in PD than controls was associated with worse task performance and more severe PD symptoms suggesting that abnormalities in resting-state connectivity denote neural network dedifferentiation. During the executive task, PD patients showed weaker BG-cortical connectivity than controls, i.e., between caudate–supramarginal gyrus and pallidum–inferior prefrontal regions, that was related to more severe PD symptoms and worse task performance. Yet, task processing also evoked stronger striatal–cortical connectivity, specifically between caudate–prefrontal, caudate–precuneus, and putamen–motor/premotor regions in PD relative to controls, which was related to less severe PD symptoms and better performance on the Stroop task. Thus, stronger task-evoked striatal connectivity in PD demonstrated compensatory neural network enhancement to meet task demands and improve performance levels. fMRI-based network analysis revealed that despite resting-state BG network compromise in PD, BG connectivity to prefrontal, premotor, and precuneus regions can be adequately invoked during executive control demands enabling near normal task performance. PMID:25280970

  19. Toward sophisticated basal ganglia neuromodulation: Review on basal ganglia deep brain stimulation.

    Science.gov (United States)

    Da Cunha, Claudio; Boschen, Suelen L; Gómez-A, Alexander; Ross, Erika K; Gibson, William S J; Min, Hoon-Ki; Lee, Kendall H; Blaha, Charles D

    2015-11-01

    This review presents state-of-the-art knowledge about the roles of the basal ganglia (BG) in action-selection, cognition, and motivation, and how this knowledge has been used to improve deep brain stimulation (DBS) treatment of neurological and psychiatric disorders. Such pathological conditions include Parkinson's disease, Huntington's disease, Tourette syndrome, depression, and obsessive-compulsive disorder. The first section presents evidence supporting current hypotheses of how the cortico-BG circuitry works to select motor and emotional actions, and how defects in this circuitry can cause symptoms of the BG diseases. Emphasis is given to the role of striatal dopamine on motor performance, motivated behaviors and learning of procedural memories. Next, the use of cutting-edge electrochemical techniques in animal and human studies of BG functioning under normal and disease conditions is discussed. Finally, functional neuroimaging studies are reviewed; these works have shown the relationship between cortico-BG structures activated during DBS and improvement of disease symptoms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Neuroanatomical correlates of intelligence in healthy young adults: the role of basal ganglia volume.

    Science.gov (United States)

    Rhein, Cosima; Mühle, Christiane; Richter-Schmidinger, Tanja; Alexopoulos, Panagiotis; Doerfler, Arnd; Kornhuber, Johannes

    2014-01-01

    In neuropsychiatric diseases with basal ganglia involvement, higher cognitive functions are often impaired. In this exploratory study, we examined healthy young adults to gain detailed insight into the relationship between basal ganglia volume and cognitive abilities under non-pathological conditions. We investigated 137 healthy adults that were between the ages of 21 and 35 years with similar educational backgrounds. Magnetic resonance imaging (MRI) was performed, and volumes of basal ganglia nuclei in both hemispheres were calculated using FreeSurfer software. The cognitive assessment consisted of verbal, numeric and figural aspects of intelligence for either the fluid or the crystallised intelligence factor using the intelligence test Intelligenz-Struktur-Test (I-S-T 2000 R). Our data revealed significant correlations of the caudate nucleus and pallidum volumes with figural and numeric aspects of intelligence, but not with verbal intelligence. Interestingly, figural intelligence associations were dependent on sex and intelligence factor; in females, the pallidum volumes were correlated with crystallised figural intelligence (r = 0.372, p = 0.01), whereas in males, the caudate volumes were correlated with fluid figural intelligence (r = 0.507, p = 0.01). Numeric intelligence was correlated with right-lateralised caudate nucleus volumes for both females and males, but only for crystallised intelligence (r = 0.306, p = 0.04 and r = 0.459, p = 0.04, respectively). The associations were not mediated by prefrontal cortical subfield volumes when controlling with partial correlation analyses. The findings of our exploratory analysis indicate that figural and numeric intelligence aspects, but not verbal aspects, are strongly associated with basal ganglia volumes. Unlike numeric intelligence, the type of figural intelligence appears to be related to distinct basal ganglia nuclei in a sex-specific manner. Subcortical brain structures thus may contribute substantially to

  1. The inhibitory microcircuit of the substantia nigra provides feedback gain control of the basal ganglia output.

    Science.gov (United States)

    Brown, Jennifer; Pan, Wei-Xing; Dudman, Joshua Tate

    2014-05-21

    Dysfunction of the basal ganglia produces severe deficits in the timing, initiation, and vigor of movement. These diverse impairments suggest a control system gone awry. In engineered systems, feedback is critical for control. By contrast, models of the basal ganglia highlight feedforward circuitry and ignore intrinsic feedback circuits. In this study, we show that feedback via axon collaterals of substantia nigra projection neurons control the gain of the basal ganglia output. Through a combination of physiology, optogenetics, anatomy, and circuit mapping, we elaborate a general circuit mechanism for gain control in a microcircuit lacking interneurons. Our data suggest that diverse tonic firing rates, weak unitary connections and a spatially diffuse collateral circuit with distinct topography and kinetics from feedforward input is sufficient to implement divisive feedback inhibition. The importance of feedback for engineered systems implies that the intranigral microcircuit, despite its absence from canonical models, could be essential to basal ganglia function. DOI: http://dx.doi.org/10.7554/eLife.02397.001. Copyright © 2014, Brown et al.

  2. Basal ganglia disorders studied by positron emission tomography

    International Nuclear Information System (INIS)

    Shinotoh, Hitoshi

    1994-01-01

    Recent development of positron emitting radioligands has made it possible to investigate the alterations of neurotransmitter systems associated with basal ganglia disorders in vivo. The functional integrity of nigro-striatal dopaminergic terminals may be studied with [ 18 F]6-fluoro-L-dopa ([ 18 F]dopa), and striatal dopamine receptor density with suitable PET ligands. [ 18 F]dopa uptake in the striatum (putamen) is markedly reduced in patients with Parkinson's disease (PD). [ 18 F]dopa-PET is capable of detecting sub-clinical nigral dysfunction in asymptomatic patients with familial PD and those who become Parkinsonian on conventional doses of dopamine receptor antagonists. While putamen [ 18 F]dopa uptake is reduced to a similar level in patients with multiple system atrophy (MSA) and PD, caudate [ 18 F] dopa uptake is lower in MSA than PD. However, [ 18 F]dopa PET cannot consistently distinguish MSA from PD because individual ranges of caudate [ 18 F]dopa uptake overlap. D 1 and D 2 receptor binding is markedly reduced in the striatum (posterior putamen) of MSA patients. Therefore, dopamine receptor imaging is useful for the differential diagnosis of MSA and PD. Similar marked reductions in putamen and caudate [ 18 F]dopa uptake have been observed in patients with progressive supranuclear palsy (PSP). Moderate reductions in D 2 receptor binding have been reported in the striatum of PSP patients. The reduction in D 2 receptor binding is more prominent in the caudate than putamen. Striatal [ 18 F]dopa uptake is normal or only mildly reduced in patients with dopa responsive dystonia (DRD). D 2 receptor binding is markedly reduced in patients with Huntington's disease, while striatal [ 18 F]dopa uptake is normal or mildly reduced. In summary, PET can demonstrate characteristic patterns of disruption of dopaminergic systems associated with basal ganglia disorders. These PET findings are useful in the differential diagnosis of basal ganglia disorders. (J.P.N.) 55 refs

  3. Modulating basal ganglia and cerebellar activity to suppress parkinsonian tremor

    NARCIS (Netherlands)

    Heida, Tjitske; Zhao, Yan; van Wezel, Richard Jack Anton

    2013-01-01

    Despite extensive research, the detailed pathophysiology of the parkinsonian tremor is still unknown. It has been hypothesized that the generation of parkinsonian tremor is related to abnormal activity within the basal ganglia. The cerebello-thalamic-cortical loop has been suggested to indirectly

  4. Do gap junctions regulate synchrony in the parkinsonian basal ganglia?

    NARCIS (Netherlands)

    Schwab, B.C.

    2016-01-01

    Patients with Parkinson’s disease (PD) typically suffer severely from different types of symptoms. Motor symptoms, restricting the patients’ ability to perform controlled movements in daily life, are of special clinical interest and have been related to neural activity in the basal ganglia.

  5. iPhone-Assisted Augmented Reality Localization of Basal Ganglia Hypertensive Hematoma.

    Science.gov (United States)

    Hou, YuanZheng; Ma, LiChao; Zhu, RuYuan; Chen, XiaoLei

    2016-10-01

    A low-cost, time-efficient technique that could localize hypertensive hematomas in the basal ganglia would be beneficial for minimally invasive hematoma evacuation surgery. We used an iPhone to achieve this goal and evaluated its accuracy and feasibility. We located basal ganglia hematomas in 26 patients and depicted the boundaries of the hematomas on the skin. To verify the accuracy of the drawn boundaries, computed tomography (CT) markers surrounding the depicted boundaries were attached to 10 patients. The deviation between the CT markers and the actual hematoma boundaries was then measured. In the other 16 patients, minimally invasive endoscopic hematoma evacuation surgery was performed according to the depicted hematoma boundary. The deflection angle of the actual trajectory and deviation in the hematoma center were measured according to the preoperative and postoperative CT data. There were 40 CT markers placed on 10 patients. The mean deviation of these markers was 3.1 mm ± 2.4. In the 16 patients who received surgery, the deflection angle of the actual trajectory was 4.3° ± 2.1. The deviation in the hematoma center was 5.2 mm ± 2.6. This new method can locate basal ganglia hematomas with a sufficient level of accuracy and is helpful for minimally invasive endoscopic hematoma evacuation surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Comprehensive in vivo mapping of the human basal ganglia and thalamic connectome in individuals using 7T MRI.

    Directory of Open Access Journals (Sweden)

    Christophe Lenglet

    Full Text Available Basal ganglia circuits are affected in neurological disorders such as Parkinson's disease (PD, essential tremor, dystonia and Tourette syndrome. Understanding the structural and functional connectivity of these circuits is critical for elucidating the mechanisms of the movement and neuropsychiatric disorders, and is vital for developing new therapeutic strategies such as deep brain stimulation (DBS. Knowledge about the connectivity of the human basal ganglia and thalamus has rapidly evolved over recent years through non-invasive imaging techniques, but has remained incomplete because of insufficient resolution and sensitivity of these techniques. Here, we present an imaging and computational protocol designed to generate a comprehensive in vivo and subject-specific, three-dimensional model of the structure and connections of the human basal ganglia. High-resolution structural and functional magnetic resonance images were acquired with a 7-Tesla magnet. Capitalizing on the enhanced signal-to-noise ratio (SNR and enriched contrast obtained at high-field MRI, detailed structural and connectivity representations of the human basal ganglia and thalamus were achieved. This unique combination of multiple imaging modalities enabled the in-vivo visualization of the individual human basal ganglia and thalamic nuclei, the reconstruction of seven white-matter pathways and their connectivity probability that, to date, have only been reported in animal studies, histologically, or group-averaged MRI population studies. Also described are subject-specific parcellations of the basal ganglia and thalamus into sub-territories based on their distinct connectivity patterns. These anatomical connectivity findings are supported by functional connectivity data derived from resting-state functional MRI (R-fMRI. This work demonstrates new capabilities for studying basal ganglia circuitry, and opens new avenues of investigation into the movement and neuropsychiatric

  7. Neuroradiology of basal ganglia diseases in children and adolescents

    International Nuclear Information System (INIS)

    Savoiardo, M.; Passerini, A.; D'Incerti, L.

    1987-01-01

    Computerized tomography and NMR imaging findings observed in the diseases affecting the basal ganglia in childhood and adolescence are discussed. First the dystonic syndromes associated with hereditary neurologic disorders of probable metabolic degenerative origin are considered; then the non-hereditary dystonias caused by various intoxications or acute insults are briefly discussed. 26 refs.; 4 figs

  8. Correlation transfer from basal ganglia to thalamus in Parkinson's disease

    Science.gov (United States)

    Pamela, Reitsma; Brent, Doiron; Jonathan, Rubin

    2011-01-01

    Spike trains from neurons in the basal ganglia of parkinsonian primates show increased pairwise correlations, oscillatory activity, and burst rate compared to those from neurons recorded during normal brain activity. However, it is not known how these changes affect the behavior of downstream thalamic neurons. To understand how patterns of basal ganglia population activity may affect thalamic spike statistics, we study pairs of model thalamocortical (TC) relay neurons receiving correlated inhibitory input from the internal segment of the globus pallidus (GPi), a primary output nucleus of the basal ganglia. We observe that the strength of correlations of TC neuron spike trains increases with the GPi correlation level, and bursty firing patterns such as those seen in the parkinsonian GPi allow for stronger transfer of correlations than do firing patterns found under normal conditions. We also show that the T-current in the TC neurons does not significantly affect correlation transfer, despite its pronounced effects on spiking. Oscillatory firing patterns in GPi are shown to affect the timescale at which correlations are best transferred through the system. To explain this last result, we analytically compute the spike count correlation coefficient for oscillatory cases in a reduced point process model. Our analysis indicates that the dependence of the timescale of correlation transfer is robust to different levels of input spike and rate correlations and arises due to differences in instantaneous spike correlations, even when the long timescale rhythmic modulations of neurons are identical. Overall, these results show that parkinsonian firing patterns in GPi do affect the transfer of correlations to the thalamus. PMID:22355287

  9. Ketamine-induced oscillations in the motor circuit of the rat basal ganglia.

    Directory of Open Access Journals (Sweden)

    María Jesús Nicolás

    Full Text Available Oscillatory activity can be widely recorded in the cortex and basal ganglia. This activity may play a role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of psychiatric and neurological diseases like schizophrenia or Parkinson's disease. Ketamine administration has been shown to cause an increase in gamma activity in cortical and subcortical structures, and an increase in 150 Hz oscillations in the nucleus accumbens in healthy rats, together with hyperlocomotion.We recorded local field potentials from motor cortex, caudate-putamen (CPU, substantia nigra pars reticulata (SNr and subthalamic nucleus (STN in 20 awake rats before and after the administration of ketamine at three different subanesthetic doses (10, 25 and 50 mg/Kg, and saline as control condition. Motor behavior was semiautomatically quantified by custom-made software specifically developed for this setting.Ketamine induced coherent oscillations in low gamma (~ 50 Hz, high gamma (~ 80 Hz and high frequency (HFO, ~ 150 Hz bands, with different behavior in the four structures studied. While oscillatory activity at these three peaks was widespread across all structures, interactions showed a different pattern for each frequency band. Imaginary coherence at 150 Hz was maximum between motor cortex and the different basal ganglia nuclei, while low gamma coherence connected motor cortex with CPU and high gamma coherence was more constrained to the basal ganglia nuclei. Power at three bands correlated with the motor activity of the animal, but only coherence values in the HFO and high gamma range correlated with movement. Interactions in the low gamma band did not show a direct relationship to movement.These results suggest that the motor effects of ketamine administration may be primarily mediated by the induction of coherent widespread high-frequency activity in the motor circuit of the basal ganglia, together with a frequency

  10. Reduced topological efficiency in cortical-basal Ganglia motor network of Parkinson's disease: a resting state fMRI study.

    Science.gov (United States)

    Wei, Luqing; Zhang, Jiuquan; Long, Zhiliang; Wu, Guo-Rong; Hu, Xiaofei; Zhang, Yanling; Wang, Jian

    2014-01-01

    Parkinson's disease (PD) is mainly characterized by dopamine depletion of the cortico-basal ganglia (CBG) motor circuit. Given that dopamine dysfunction could affect functional brain network efficiency, the present study utilized resting-state fMRI (rs-fMRI) and graph theoretical approach to investigate the topological efficiency changes of the CBG motor network in patients with PD during a relatively hypodopaminergic state (12 hours after a last dose of dopamimetic treatment). We found that PD compared with controls had remarkable decreased efficiency in the CBG motor network, with the most pronounced changes observed in rostral supplementary motor area (pre-SMA), caudal SMA (SMA-proper), primary motor cortex (M1), primary somatosensory cortex (S1), thalamus (THA), globus pallidus (GP), and putamen (PUT). Furthermore, reduced efficiency in pre-SMA, M1, THA and GP was significantly correlated with Unified Parkinson's Disease Rating Scale (UPDRS) motor scores in PD patients. Together, our results demonstrate that individuals with PD appear to be less effective at information transfer within the CBG motor pathway, which provides a novel perspective on neurobiological explanation for the motor symptoms in patients. These findings are in line with the pathophysiology of PD, suggesting that network efficiency metrics may be used to identify and track the pathology of PD.

  11. Synergy as a new and sensitive marker of basal ganglia dysfunction: A study of asymptomatic welders.

    Science.gov (United States)

    Lewis, Mechelle M; Lee, Eun-Young; Jo, Hang Jin; Du, Guangwei; Park, Jaebum; Flynn, Michael R; Kong, Lan; Latash, Mark L; Huang, Xuemei

    2016-09-01

    Multi-digit synergies, a recently developed, theory-based method to quantify stability of motor action, are shown to reflect basal ganglia dysfunction associated with parkinsonian syndromes. In this study, we tested the hypothesis that multi-digit synergies may capture early and subclinical basal ganglia dysfunction. We chose asymptomatic welders to test the hypothesis because the basal ganglia are known to be most susceptible to neurotoxicity caused by welding-related metal accumulation (such as manganese and iron). Twenty right-handed welders and 13 matched controls were invited to perform single- and multi-finger pressing tasks using the fingers of the right or left hand. Unified Parkinson's Disease Rating Scale and Grooved Pegboard scores were used to gauge gross and fine motor dysfunction, respectively. High-resolution (3T) T1-weighted, T2-weighted, T1 mapping, susceptibility, and diffusion tensor MRIs were obtained to reflect manganese, iron accumulation, and microstructural changes in basal ganglia. The synergy index stabilizing total force and anticipatory synergy adjustments were computed, compared between groups, and correlated with estimates of basal ganglia manganese [the pallidal index, R1 (1/T1)], iron [R2* (1/T2*)], and microstructural changes [fractional anisotropy and mean diffusivity]. There were no significant differences in Unified Parkinson's Disease Rating Scale (total or motor subscale) or Grooved Pegboard test scores between welders and controls. The synergy index during steady-state accurate force production was decreased significantly in the left hand of welders compared to controls (p=0.004) but did not reach statistical significance in the right hand (p=0.16). Anticipatory synergy adjustments, however, were not significantly different between groups. Among welders, higher synergy indices in the left hand were associated significantly with higher fractional anisotropy values in the left globus pallidus (R=0.731, psynergy metrics may serve

  12. Ictal hyperperfusion of cerebellum and basal ganglia in temporal lobe epilepsy: SPECT subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Won Chul; Hong, Seung Bong; Tae, Woo Suk; Seo, Dae Won; Kim, Sang Eun [School of Medicine, Sungkyunkwan, Seoul (Korea, Republic of)

    2001-02-01

    The ictal perfusion patterns of cerebellum and basal ganglia have not been systematically investigated in patients with temporal lobe epilepsy (TLE). Their ictal perfusion patterns were analyzed in relation with temporal lobe and frontal lobe hyperperfusion during TLE seizures using SPECT subtraction. Thirty-three TLE patients had interictal and ictal SPECT, video-EEG monitoring. SPGR MRI, and SPECT subtraction with MRI co-registration. The vermian cerebellar hyperperfusion (CH) was observed in 26 patients (78.8%) and hemispheric CH in 25 (75.8%). Compared to the side of epileptogenic temporal lobe, there were seven ipsilateral hemispheric CH (28.0%), fifteen contralateral hemispheric CH( 60.0%) and three bilateral hemispheric CH( 12.0%). CH was more frequently observed in patients with additional frontal hyperperfusion (15/15, 93.3%) than in patients without frontal hyperperfusion (11/18, 61.1 %). The basal ganglia hyperperfusion (14/15, 93.3%) than in patients without frontal hyperperfusion (BGH) was seen in 11 of the 15 patients with frontotemporal hyperperfusion (73.3%) and 11 of the 18 with temporal hyperperfusion only (61.1%). In 17 patients with unilateral BGH, contralateral CH to the BGH was observed in 14 (82.5%) and ipsilateral CH to BGH in 2 (11.8%) and bilateral CH in 1 (5.9%). The cerebellar hyperperfusion and basal ganglia hyperperfusion during seizures of TLE can be contralateral, ipsilateral or bilateral to the seizure focus. The presence of additional frontal or basal ganglia hyperperfusion was more frequently associated with contralateral hemispheric CH to their sides. However, temporal lobe hyperperfusion appears to be related with both ipsilateral and contralateral hemispheric CH.

  13. Ictal hyperperfusion of cerebellum and basal ganglia in temporal lobe epilepsy: SPECT subtraction

    International Nuclear Information System (INIS)

    Shin, Won Chul; Hong, Seung Bong; Tae, Woo Suk; Seo, Dae Won; Kim, Sang Eun

    2001-01-01

    The ictal perfusion patterns of cerebellum and basal ganglia have not been systematically investigated in patients with temporal lobe epilepsy (TLE). Their ictal perfusion patterns were analyzed in relation with temporal lobe and frontal lobe hyperperfusion during TLE seizures using SPECT subtraction. Thirty-three TLE patients had interictal and ictal SPECT, video-EEG monitoring. SPGR MRI, and SPECT subtraction with MRI co-registration. The vermian cerebellar hyperperfusion (CH) was observed in 26 patients (78.8%) and hemispheric CH in 25 (75.8%). Compared to the side of epileptogenic temporal lobe, there were seven ipsilateral hemispheric CH (28.0%), fifteen contralateral hemispheric CH( 60.0%) and three bilateral hemispheric CH( 12.0%). CH was more frequently observed in patients with additional frontal hyperperfusion (15/15, 93.3%) than in patients without frontal hyperperfusion (11/18, 61.1 %). The basal ganglia hyperperfusion (14/15, 93.3%) than in patients without frontal hyperperfusion (BGH) was seen in 11 of the 15 patients with frontotemporal hyperperfusion (73.3%) and 11 of the 18 with temporal hyperperfusion only (61.1%). In 17 patients with unilateral BGH, contralateral CH to the BGH was observed in 14 (82.5%) and ipsilateral CH to BGH in 2 (11.8%) and bilateral CH in 1 (5.9%). The cerebellar hyperperfusion and basal ganglia hyperperfusion during seizures of TLE can be contralateral, ipsilateral or bilateral to the seizure focus. The presence of additional frontal or basal ganglia hyperperfusion was more frequently associated with contralateral hemispheric CH to their sides. However, temporal lobe hyperperfusion appears to be related with both ipsilateral and contralateral hemispheric CH

  14. Chronological changes in nonhaemorrhagic brain infarcts with short T1 in the cerebellum and basal ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, M.; Nakajima, H.; Nishikawa, M.; Yasui, T. [Dept. of Neurosurgery, Osaka City General Hospital, Miyakojima-Hondouri, Miyakojima, Osaka (Japan)

    2000-07-01

    Our purpose was to investigate nonhaemorrhagic infarcts with a short T1 in the cerebellum and basal ganglia. We carried out repeat MRI on 12 patients with infarcts in the cerebellum or basal ganglia with a short T1. Cerebellar cortical lesions showed high signal on T1-weighted spin-echo images beginning at 2 weeks, which became prominent from 3 weeks to 2 months, and persisted for as long as 14 months after the ictus. The basal ganglia lesions demonstrated slightly high signal from a week after the ictus, which became more intense thereafter. Signal intensity began to fade gradually after 2 months. High signal could be seen at the periphery until 5 months, and then disappeared, while low or isointense signal, seen in the central portion from day 20, persisted thereafter. (orig.)

  15. Chronological changes in nonhaemorrhagic brain infarcts with short T1 in the cerebellum and basal ganglia

    International Nuclear Information System (INIS)

    Komiyama, M.; Nakajima, H.; Nishikawa, M.; Yasui, T.

    2000-01-01

    Our purpose was to investigate nonhaemorrhagic infarcts with a short T1 in the cerebellum and basal ganglia. We carried out repeat MRI on 12 patients with infarcts in the cerebellum or basal ganglia with a short T1. Cerebellar cortical lesions showed high signal on T1-weighted spin-echo images beginning at 2 weeks, which became prominent from 3 weeks to 2 months, and persisted for as long as 14 months after the ictus. The basal ganglia lesions demonstrated slightly high signal from a week after the ictus, which became more intense thereafter. Signal intensity began to fade gradually after 2 months. High signal could be seen at the periphery until 5 months, and then disappeared, while low or isointense signal, seen in the central portion from day 20, persisted thereafter. (orig.)

  16. T2-weighted high-intensity signals in the basal ganglia as an interesting image finding in Unverricht-Lundborg disease.

    Science.gov (United States)

    Korja, Miikka; Ferlazzo, Edoardo; Soilu-Hänninen, Merja; Magaudda, Adriana; Marttila, Reijo; Genton, Pierre; Parkkola, Riitta

    2010-01-01

    We conducted a search for white matter changes (WMCs) in 13 Unverricht-Lundborg disease patients and compared the prevalence of WMCs in these patients to age-matched long-term epileptics and healthy controls. ULD patients had significantly more T2-weighted high-intensity signals on MRI than control subjects, due to the increased prevalence of these signals in the basal ganglia. Interestingly, ULD patients with the basal ganglia changes were overweight. Basal ganglia T2-weighted high-intensity signals are novel findings in ULD. 2009 Elsevier B.V. All rights reserved.

  17. Impaired Frontal-Basal Ganglia Connectivity in Male Adolescents with Conduct Disorder.

    Directory of Open Access Journals (Sweden)

    Jibiao Zhang

    Full Text Available Alack of inhibition control has been found in subjects with conduct disorder (CD, but the underlying neuropathophysiology remains poorly understood. The current study investigated the different mechanism of inhibition control in adolescent-onset CD males (n = 29 and well-matched healthy controls (HCs (n = 40 when performing a GoStop task by functional magnetic resonance images. Effective connectivity (EC within the inhibition control network was analyzed using a stochastic dynamic causality model. We found that EC within the inhibition control network was significantly different in the CD group when compared to the HCs. Exploratory relationship analysis revealed significant negative associations between EC between the IFG and striatum and behavioral scale scores in the CD group. These results suggest for the first time that the failure of inhibition control in subjects with CD might be associated with aberrant connectivity of the frontal-basal ganglia pathways, especially between the IFG and striatum.

  18. Motor phenotype and magnetic resonance measures of basal ganglia iron levels in Parkinson's disease.

    Science.gov (United States)

    Bunzeck, Nico; Singh-Curry, Victoria; Eckart, Cindy; Weiskopf, Nikolaus; Perry, Richard J; Bain, Peter G; Düzel, Emrah; Husain, Masud

    2013-12-01

    In Parkinson's disease the degree of motor impairment can be classified with respect to tremor dominant and akinetic rigid features. While tremor dominance and akinetic rigidity might represent two ends of a continuum rather than discrete entities, it would be important to have non-invasive markers of any biological differences between them in vivo, to assess disease trajectories and response to treatment, as well as providing insights into the underlying mechanisms contributing to heterogeneity within the Parkinson's disease population. Here, we used magnetic resonance imaging to examine whether Parkinson's disease patients exhibit structural changes within the basal ganglia that might relate to motor phenotype. Specifically, we examined volumes of basal ganglia regions, as well as transverse relaxation rate (a putative marker of iron load) and magnetization transfer saturation (considered to index structural integrity) within these regions in 40 individuals. We found decreased volume and reduced magnetization transfer within the substantia nigra in Parkinson's disease patients compared to healthy controls. Importantly, there was a positive correlation between tremulous motor phenotype and transverse relaxation rate (reflecting iron load) within the putamen, caudate and thalamus. Our findings suggest that akinetic rigid and tremor dominant symptoms of Parkinson's disease might be differentiated on the basis of the transverse relaxation rate within specific basal ganglia structures. Moreover, they suggest that iron load within the basal ganglia makes an important contribution to motor phenotype, a key prognostic indicator of disease progression in Parkinson's disease. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Why we can talk, debate, and change our minds: neural circuits, basal ganglia operations, and transcriptional factors.

    Science.gov (United States)

    Lieberman, Philip

    2014-12-01

    Ackermann et al. disregard attested knowledge concerning aphasia, Parkinson disease, cortical-to-striatal circuits, basal ganglia, laryngeal phonation, and other matters. Their dual-pathway model cannot account for "what is special about the human brain." Their human cortical-to-laryngeal neural circuit does not exist. Basal ganglia operations, enhanced by mutations on FOXP2, confer human motor-control, linguistic, and cognitive capabilities.

  20. Effect of an 8-week practice of externally triggered speech on basal ganglia activity of stuttering and fluent speakers.

    Science.gov (United States)

    Toyomura, Akira; Fujii, Tetsunoshin; Kuriki, Shinya

    2015-04-01

    The neural mechanisms underlying stuttering are not well understood. It is known that stuttering appears when persons who stutter speak in a self-paced manner, but speech fluency is temporarily increased when they speak in unison with external trigger such as a metronome. This phenomenon is very similar to the behavioral improvement by external pacing in patients with Parkinson's disease. Recent imaging studies have also suggested that the basal ganglia are involved in the etiology of stuttering. In addition, previous studies have shown that the basal ganglia are involved in self-paced movement. Then, the present study focused on the basal ganglia and explored whether long-term speech-practice using external triggers can induce modification of the basal ganglia activity of stuttering speakers. Our study of functional magnetic resonance imaging revealed that stuttering speakers possessed significantly lower activity in the basal ganglia than fluent speakers before practice, especially when their speech was self-paced. After an 8-week speech practice of externally triggered speech using a metronome, the significant difference in activity between the two groups disappeared. The cerebellar vermis of stuttering speakers showed significantly decreased activity during the self-paced speech in the second compared to the first experiment. The speech fluency and naturalness of the stuttering speakers were also improved. These results suggest that stuttering is associated with defective motor control during self-paced speech, and that the basal ganglia and the cerebellum are involved in an improvement of speech fluency of stuttering by the use of external trigger. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Potential long-term effects of MDMA on the basal ganglia-thalamocortical circuit: a proton MR spectroscopy and diffusion-tensor imaging study.

    Science.gov (United States)

    Liu, Hua-Shan; Chou, Ming-Chung; Chung, Hsiao-Wen; Cho, Nai-Yu; Chiang, Shih-Wei; Wang, Chao-Ying; Kao, Hung-Wen; Huang, Guo-Shu; Chen, Cheng-Yu

    2011-08-01

    To investigate the effects of 3,4-methylenedioxymethamphetamine (MDMA, commonly known as "ecstasy") on the alterations of brain metabolites and anatomic tissue integrity related to the function of the basal ganglia-thalamocortical circuit by using proton magnetic resonance (MR) spectroscopy and diffusion-tensor MR imaging. This study was approved by a local institutional review board, and written informed consent was obtained from all subjects. Thirty-one long-term (>1 year) MDMA users and 33 healthy subjects were enrolled. Proton MR spectroscopy from the middle frontal cortex and bilateral basal ganglia and whole-brain diffusion-tensor MR imaging were performed with a 3.0-T system. Absolute concentrations of metabolites were computed, and diffusion-tensor data were registered to the International Consortium for Brain Mapping template to facilitate voxel-based group comparison. The mean myo-inositol level in the basal ganglia of MDMA users (left: 4.55 mmol/L ± 2.01 [standard deviation], right: 4.48 mmol/L ± 1.33) was significantly higher than that in control subjects (left: 3.25 mmol/L ± 1.30, right: 3.31 mmol/L ± 1.19) (P 50 voxels). Increased myo-inositol and Cho concentrations in the basal ganglia of MDMA users are suggestive of glial response to degenerating serotonergic functions. The abnormal metabolic changes in the basal ganglia may consequently affect the inhibitory effect of the basal ganglia to the thalamus, as suggested by the increased FA in the thalamus and abnormal changes in water diffusion in the corresponding basal ganglia-thalamocortical circuit. © RSNA, 2011.

  2. High signal intensity lesion in basal ganglia on MR imaging: correlation with portal-systemic encephalopathy in liver cirrhosis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Ju; Choi, Sun Jeong; Kim, Chang Soo; Kim, Sun Hee; Chung, Chun Phil; Kim, Yang Sook [Maryknoll Hospital, Pusan (Korea, Republic of)

    1993-01-15

    To evaluate of the relationship between basal ganglia lesion and portal-systemic encephalopathy, eleven patients who had clinically proved liver cirrhosis with superior mesenteric vein larger than 10mm in diameter on ultrasonogram underwent brain MR imaging. No evidence of clinical or neuropsychiatric disturbance was observed in any patient at the time of the MR examination. Brain MR imaging revealed basal ganglia lesion characterized by bilateral, symmetric, high signal intensity without edema or mass effect on spin echo T1-weighted images in nine patients which included three patients with the past history of portal-systemic encephalopathy. It was concluded that excepted in the circumstances of other causes of the high signal intensity in basal ganglia on T1-weighted images such as fat, methemoglobin, melanin, neurofibromatosis, dense calcification, and parenteral nutrition, bilateral and symmetric high signal intensity lesion in basal ganglia would be a useful MR finding of subclinical portal-systemic encephalopathy in liver cirrhosis patients with no clinical or neuropsychiatric symptoms and larger than 10mm in diameter of superior mesenteric vein in ultrasonography.

  3. High signal intensity lesion in basal ganglia on MR imaging: correlation with portal-systemic encephalopathy in liver cirrhosis

    International Nuclear Information System (INIS)

    Kim, Yun Ju; Choi, Sun Jeong; Kim, Chang Soo; Kim, Sun Hee; Chung, Chun Phil; Kim, Yang Sook

    1993-01-01

    To evaluate of the relationship between basal ganglia lesion and portal-systemic encephalopathy, eleven patients who had clinically proved liver cirrhosis with superior mesenteric vein larger than 10mm in diameter on ultrasonogram underwent brain MR imaging. No evidence of clinical or neuropsychiatric disturbance was observed in any patient at the time of the MR examination. Brain MR imaging revealed basal ganglia lesion characterized by bilateral, symmetric, high signal intensity without edema or mass effect on spin echo T1-weighted images in nine patients which included three patients with the past history of portal-systemic encephalopathy. It was concluded that excepted in the circumstances of other causes of the high signal intensity in basal ganglia on T1-weighted images such as fat, methemoglobin, melanin, neurofibromatosis, dense calcification, and parenteral nutrition, bilateral and symmetric high signal intensity lesion in basal ganglia would be a useful MR finding of subclinical portal-systemic encephalopathy in liver cirrhosis patients with no clinical or neuropsychiatric symptoms and larger than 10mm in diameter of superior mesenteric vein in ultrasonography

  4. Bilateral functional connectivity of the basal ganglia in patients with Parkinson's disease and its modulation by dopaminergic treatment.

    Science.gov (United States)

    Little, Simon; Tan, Huiling; Anzak, Anam; Pogosyan, Alek; Kühn, Andrea; Brown, Peter

    2013-01-01

    Parkinson's disease is characterised by excessive subcortical beta oscillations. However, little is known about the functional connectivity of the two basal ganglia across hemispheres and specifically the role beta plays in this. We recorded local field potentials from the subthalamic nucleus bilaterally in 23 subjects with Parkinson's disease at rest, on and off medication. We found suppression of low beta power in response to levodopa (t22 = -4.4, pbasal ganglia networks may have to be approached separately with independent sensing and stimulation during adaptive deep brain stimulation. In addition, our findings highlight the functional distinction between the lower and upper beta frequency ranges and between amplitude co-modulation and phase synchronization across subthalamic nuclei.

  5. Clinical observation of hemocoagulase combined with aminomethylbenzoic acid in the treatment of basal ganglia hemorrhage

    Directory of Open Access Journals (Sweden)

    Min SU

    2014-07-01

    Full Text Available Patients with cerebral hemorrhage in basal ganglia were treated with hemocoagulase combined with aminomethylbenzoic acid from May 2010 to April 2013 in our hospital, and hematoma volume and neurological impairment were compared with the control group before and after treatment. This study confirmed that hemocoagulase combined with aninomethylbenzoic acid is a safe and effective method for cerebral hemorrhage in basal ganglia. It can effectively prevent the hematoma enlargement and improve neurological function and prognosis. doi: 10.3969/j.issn.1672-6731.2014.07.014

  6. Early imaging findings in germ cell tumors arising from the basal ganglia

    International Nuclear Information System (INIS)

    Lee, So Mi; Kim, In-One; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun; Cho, Hyun-Hae; You, Sun Kyoung

    2016-01-01

    It is difficult to diagnosis early stage germ cell tumors originating in the basal ganglia, but early recognition is important for better outcome. To evaluate serial MR images of basal ganglia germ cell tumors, with emphasis on the features of early stage tumors. We retrospectively reviewed serial MR images of 15 tumors in 14 children and young adults. We categorized MR images of the tumors as follows: type I, ill-defined patchy lesions (<3 cm) without cyst; type II, small mass lesions (<3 cm) with cyst; and type III, large lesions (≥3 cm) with cyst. We also assessed temporal changes of the MR images. On the initial images, 8 of 11 (73%) type I tumors progressed to types II or III, and 3 of 4 (75%) type II tumors progressed to type III. The remaining 4 tumors did not change in type. All type II tumors (5/5, 100%) that changed from type I had a few tiny cysts. Intratumoral hemorrhage was observed even in the type I tumor. Ipsilateral hemiatrophy was observed in most of the tumors (13/15, 87%) on initial MR images. As tumors grew, cystic changes, intratumoral hemorrhage, and ipsilateral hemiatrophy became more apparent. Early stage basal ganglia germ cell tumors appear as ill-defined small patchy hyperintense lesions without cysts on T2-weighted images, are frequently associated with ipsilateral hemiatrophy, and sometimes show microhemorrhage. Tumors develop tiny cysts at a relatively early stage. (orig.)

  7. Early imaging findings in germ cell tumors arising from the basal ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Mi [Seoul National University College of Medicine, Department of Radiology, 101 Daehak-ro, Jongno-gu, Seoul (Korea, Republic of); Kyungpook National University Medical Center, Department of Radiology, Daegu (Korea, Republic of); Kim, In-One; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun [Seoul National University College of Medicine, Department of Radiology and Institute of Radiation Medicine, 101 Daehak-ro, Jongno-gu, Seoul (Korea, Republic of); Cho, Hyun-Hae [Seoul National University College of Medicine, Department of Radiology, 101 Daehak-ro, Jongno-gu, Seoul (Korea, Republic of); Ewha Woman' s University Mokdong Hospital, Department of Radiology, Seoul (Korea, Republic of); You, Sun Kyoung [Seoul National University College of Medicine, Department of Radiology, 101 Daehak-ro, Jongno-gu, Seoul (Korea, Republic of); Chungnam National University Hospital, Department of Radiology, Daejeon (Korea, Republic of)

    2016-05-15

    It is difficult to diagnosis early stage germ cell tumors originating in the basal ganglia, but early recognition is important for better outcome. To evaluate serial MR images of basal ganglia germ cell tumors, with emphasis on the features of early stage tumors. We retrospectively reviewed serial MR images of 15 tumors in 14 children and young adults. We categorized MR images of the tumors as follows: type I, ill-defined patchy lesions (<3 cm) without cyst; type II, small mass lesions (<3 cm) with cyst; and type III, large lesions (≥3 cm) with cyst. We also assessed temporal changes of the MR images. On the initial images, 8 of 11 (73%) type I tumors progressed to types II or III, and 3 of 4 (75%) type II tumors progressed to type III. The remaining 4 tumors did not change in type. All type II tumors (5/5, 100%) that changed from type I had a few tiny cysts. Intratumoral hemorrhage was observed even in the type I tumor. Ipsilateral hemiatrophy was observed in most of the tumors (13/15, 87%) on initial MR images. As tumors grew, cystic changes, intratumoral hemorrhage, and ipsilateral hemiatrophy became more apparent. Early stage basal ganglia germ cell tumors appear as ill-defined small patchy hyperintense lesions without cysts on T2-weighted images, are frequently associated with ipsilateral hemiatrophy, and sometimes show microhemorrhage. Tumors develop tiny cysts at a relatively early stage. (orig.)

  8. Crossed cerebellar and uncrossed basal ganglia and thalamic diaschisis in Alzheimer's disease

    International Nuclear Information System (INIS)

    Akiyama, H.; Harrop, R.; McGeer, P.L.; Peppard, R.; McGeer, E.G.

    1989-01-01

    We detected crossed cerebellar as well as uncrossed basal ganglia and thalamic diaschisis in Alzheimer's disease by positron emission tomography (PET) using 18 F-fluorodeoxyglucose. We studied a series of 26 consecutive, clinically diagnosed Alzheimer cases, including 6 proven by later autopsy, and compared them with 9 age-matched controls. We calculated asymmetry indices (AIs) of cerebral metabolic rate for matched left-right regions of interest (ROIs) and determined the extent of diaschisis by correlative analyses. For the Alzheimer group, we found cerebellar AIs correlated negatively, and thalamic AIs positively, with those of the cerebral hemisphere and frontal, temporal, parietal, and angular cortices, while basal ganglia AIs correlated positively with frontal cortical AIs. The only significant correlation of AIs for normal subjects was between the thalamus and cerebral hemisphere. These data indicate that PET is a sensitive technique for detecting diaschisis

  9. Optogenetic Activation of the Sensorimotor Cortex Reveals "Local Inhibitory and Global Excitatory" Inputs to the Basal Ganglia.

    Science.gov (United States)

    Ozaki, Mitsunori; Sano, Hiromi; Sato, Shigeki; Ogura, Mitsuhiro; Mushiake, Hajime; Chiken, Satomi; Nakao, Naoyuki; Nambu, Atsushi

    2017-12-01

    To understand how information from different cortical areas is integrated and processed through the cortico-basal ganglia pathways, we used optogenetics to systematically stimulate the sensorimotor cortex and examined basal ganglia activity. We utilized Thy1-ChR2-YFP transgenic mice, in which channelrhodopsin 2 is robustly expressed in layer V pyramidal neurons. We applied light spots to the sensorimotor cortex in a grid pattern and examined neuronal responses in the globus pallidus (GP) and entopeduncular nucleus (EPN), which are the relay and output nuclei of the basal ganglia, respectively. Light stimulation typically induced a triphasic response composed of early excitation, inhibition, and late excitation in GP/EPN neurons. Other response patterns lacking 1 or 2 of the components were also observed. The distribution of the cortical sites whose stimulation induced a triphasic response was confined, whereas stimulation of the large surrounding areas induced early and late excitation without inhibition. Our results suggest that cortical inputs to the GP/EPN are organized in a "local inhibitory and global excitatory" manner. Such organization seems to be the neuronal basis for information processing through the cortico-basal ganglia pathways, that is, releasing and terminating necessary information at an appropriate timing, while simultaneously suppressing other unnecessary information. © The Author 2017. Published by Oxford University Press.

  10. Basal ganglia calcification as a putative cause for cognitive decline

    OpenAIRE

    de Oliveira, João Ricardo Mendes; de Oliveira, Matheus Fernandes

    2013-01-01

    ABSTRACT Basal ganglia calcifications (BGC) may be present in various medical conditions, such as infections, metabolic, psychiatric and neurological diseases, associated with different etiologies and clinical outcomes, including parkinsonism, psychosis, mood swings and dementia. A literature review was performed highlighting the main neuropsychological findings of BGC, with particular attention to clinical reports of cognitive decline. Neuroimaging studies combined with neuropsychological an...

  11. Basal ganglia structure in Tourette's disorder and/or attention-deficit/hyperactivity disorder

    NARCIS (Netherlands)

    Forde, N.J.; Zwiers, M.P.; Naaijen, J.; Akkermans, S.E.A.; Openneer, T.J.; Visscher, F.; Dietrich, A.; Buitelaar, J.K.; Hoekstra, P.J.

    2017-01-01

    BACKGROUND: Tourette's disorder and attention-deficit/hyperactivity disorder often co-occur and have both been associated with structural variation of the basal ganglia. However, findings are inconsistent and comorbidity is often neglected. METHODS: T1-weighted magnetic resonance images from

  12. Effects of Focal Basal Ganglia Lesions on Timing and Force Control

    Science.gov (United States)

    Aparicio, P.; Diedrichsen, J.; Ivry, R.B.

    2005-01-01

    Studies of basal ganglia dysfunction in humans have generally involved patients with degenerative disorders, notably Parkinson's disease. In many instances, the performance of these patients is compared to that of patients with focal lesions of other brain structures such as the cerebellum. In the present report, we studied the performance of…

  13. Dopamine transporter density of the basal ganglia in children with attention deficit hyperactivity disorder assessed with I-123 IPT SPECT

    International Nuclear Information System (INIS)

    Ryu, Won Gee; Kim, Tae Hoon; Ryu, Young Hoon; Yun, Mi Jin; Lee, Jong Doo; Cheon, Keun Ah; Chi, Dae Yoon; Kim, Jong Ho; Choi, Tae Hyun

    2003-01-01

    Attention deficit hyperactivity disorder (ADHD) has been known as psychiatric disorder in childhood associated with dopamine dysregulation. In present study, we investigated changes in dopamine transporter (DAT) density of the basal ganglias using I-123 N-(3-iodopropen-2-yl) -2-carbomethoxy-3beta-(4-chlorphenyl) tropane (I-123 IPT) SPECT in children with ADHD before and after methylphenidate treatment. Nine drug-naive children with ADHD and seven normal children were included in the study. We performed brain SPECT two hours after the intravenous administration of I-123 IPT and made both quantitative and qualitative analyses using the obtained SPECT data, which were reconstructed for the assessment of specific/nonspecific DAT binding ratios in the basal ganglia. All children with ADHD reperformed (123I)IPT SPECT after treatment with methylphenidate (0.7mg/kg/d) during about 8 weeks. SPECT data reconstructed for the assessment of specific/nonspecific DAT binding ratio of the basal ganglia were compared between before and after treatment methyphenidate. We investigated correlation between the change of ADHD symptom severity assessed with ADHD rating scale-IV and specific/nonspecific DAT binding ratio of basal ganglia. Children with ADHD had a significantly greater specific/nonspecific DAT binding ratio of the basal ganglia comparing to normal children (Right : z = 2.057, p = 0.041 ; Left : z = 2.096, p = 0.032). Under treatment with methylphenidate in all children with ADHD, specific/nonspecific DAT binding ratio of both ganglia decreased significantly greater than before treatment with methylphenidate (Right : t = 3.239, p = 0.018 ; Left : t = 3.133, p 0.020). However, no significant correlation between the change of ADHD symptom severity scores and specific/nonspecific DAT binding ratio of the basal ganglia were found. These findings support the complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD

  14. Dopamine transporter density of the basal ganglia in children with attention deficit hyperactivity disorder assessed with I-123 IPT SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Won Gee; Kim, Tae Hoon; Ryu, Young Hoon; Yun, Mi Jin; Lee, Jong Doo; Cheon, Keun Ah [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of); Chi, Dae Yoon [College of Medicine, Inha Univ., Incheon (Korea, Republic of); Kim, Jong Ho; Choi, Tae Hyun [School of Medicine, Gachon Univ., Gachon (Korea, Republic of)

    2003-08-01

    Attention deficit hyperactivity disorder (ADHD) has been known as psychiatric disorder in childhood associated with dopamine dysregulation. In present study, we investigated changes in dopamine transporter (DAT) density of the basal ganglias using I-123 N-(3-iodopropen-2-yl) -2-carbomethoxy-3beta-(4-chlorphenyl) tropane (I-123 IPT) SPECT in children with ADHD before and after methylphenidate treatment. Nine drug-naive children with ADHD and seven normal children were included in the study. We performed brain SPECT two hours after the intravenous administration of I-123 IPT and made both quantitative and qualitative analyses using the obtained SPECT data, which were reconstructed for the assessment of specific/nonspecific DAT binding ratios in the basal ganglia. All children with ADHD reperformed (123I)IPT SPECT after treatment with methylphenidate (0.7mg/kg/d) during about 8 weeks. SPECT data reconstructed for the assessment of specific/nonspecific DAT binding ratio of the basal ganglia were compared between before and after treatment methyphenidate. We investigated correlation between the change of ADHD symptom severity assessed with ADHD rating scale-IV and specific/nonspecific DAT binding ratio of basal ganglia. Children with ADHD had a significantly greater specific/nonspecific DAT binding ratio of the basal ganglia comparing to normal children (Right : z = 2.057, p = 0.041 ; Left : z = 2.096, p = 0.032). Under treatment with methylphenidate in all children with ADHD, specific/nonspecific DAT binding ratio of both ganglia decreased significantly greater than before treatment with methylphenidate (Right : t = 3.239, p = 0.018 ; Left : t = 3.133, p 0.020). However, no significant correlation between the change of ADHD symptom severity scores and specific/nonspecific DAT binding ratio of the basal ganglia were found. These findings support the complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD.

  15. A computational model of Dopamine and Acetylcholine aberrant learning in Basal Ganglia.

    Science.gov (United States)

    Baston, Chiara; Ursino, Mauro

    2015-01-01

    Basal Ganglia (BG) are implied in many motor and cognitive tasks, such as action selection, and have a central role in many pathologies, primarily Parkinson Disease. In the present work, we use a recently developed biologically inspired BG model to analyze how the dopamine (DA) level can affect the temporal response during action selection, and the capacity to learn new actions following rewards and punishments. The model incorporates the 3 main pathways (direct, indirect and hyperdirect) working in BG functioning. The behavior of 2 alternative networks (the first with normal DA levels, the second with reduced DA) is analyzed both in untrained conditions, and during training performed in different epochs. The results show that reduced DA causes delayed temporal responses in the untrained network, and difficult of learning during training, characterized by the necessity of much more epochs. The results provide interesting hints to understand the behavior of healthy and dopamine depleted subjects, such as parkinsonian patients.

  16. Mean-field modeling of the basal ganglia-thalamocortical system. II Dynamics of parkinsonian oscillations.

    Science.gov (United States)

    van Albada, S J; Gray, R T; Drysdale, P M; Robinson, P A

    2009-04-21

    Neuronal correlates of Parkinson's disease (PD) include a shift to lower frequencies in the electroencephalogram (EEG) and enhanced synchronized oscillations at 3-7 and 7-30 Hz in the basal ganglia, thalamus, and cortex. This study describes the dynamics of a recent physiologically based mean-field model of the basal ganglia-thalamocortical system, and shows how it accounts for many key electrophysiological correlates of PD. Its detailed functional connectivity comprises partially segregated direct and indirect pathways through two populations of striatal neurons, a hyperdirect pathway involving a corticosubthalamic projection, thalamostriatal feedback, and local inhibition in striatum and external pallidum (GPe). In a companion paper, realistic steady-state firing rates were obtained for the healthy state, and after dopamine loss modeled by weaker direct and stronger indirect pathways, reduced intrapallidal inhibition, lower firing thresholds of the GPe and subthalamic nucleus (STN), a stronger projection from striatum to GPe, and weaker cortical interactions. Here it is shown that oscillations around 5 and 20 Hz can arise with a strong indirect pathway, which also causes increased synchronization throughout the basal ganglia. Furthermore, increased theta power with progressive nigrostriatal degeneration is correlated with reduced alpha power and peak frequency, in agreement with empirical results. Unlike the hyperdirect pathway, the indirect pathway sustains oscillations with phase relationships that coincide with those found experimentally. Alterations in the responses of basal ganglia to transient stimuli accord with experimental observations. Reduced cortical gains due to both nigrostriatal and mesocortical dopamine loss lead to slower changes in cortical activity and may be related to bradykinesia. Finally, increased EEG power found in some studies may be partly explained by a lower effective GPe firing threshold, reduced GPe-GPe inhibition, and/or weaker

  17. Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control.

    Science.gov (United States)

    Dasgupta, Sakyasingha; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Goal-directed decision making in biological systems is broadly based on associations between conditional and unconditional stimuli. This can be further classified as classical conditioning (correlation-based learning) and operant conditioning (reward-based learning). A number of computational and experimental studies have well established the role of the basal ganglia in reward-based learning, where as the cerebellum plays an important role in developing specific conditioned responses. Although viewed as distinct learning systems, recent animal experiments point toward their complementary role in behavioral learning, and also show the existence of substantial two-way communication between these two brain structures. Based on this notion of co-operative learning, in this paper we hypothesize that the basal ganglia and cerebellar learning systems work in parallel and interact with each other. We envision that such an interaction is influenced by reward modulated heterosynaptic plasticity (RMHP) rule at the thalamus, guiding the overall goal directed behavior. Using a recurrent neural network actor-critic model of the basal ganglia and a feed-forward correlation-based learning model of the cerebellum, we demonstrate that the RMHP rule can effectively balance the outcomes of the two learning systems. This is tested using simulated environments of increasing complexity with a four-wheeled robot in a foraging task in both static and dynamic configurations. Although modeled with a simplified level of biological abstraction, we clearly demonstrate that such a RMHP induced combinatorial learning mechanism, leads to stabler and faster learning of goal-directed behaviors, in comparison to the individual systems. Thus, in this paper we provide a computational model for adaptive combination of the basal ganglia and cerebellum learning systems by way of neuromodulated plasticity for goal-directed decision making in biological and bio-mimetic organisms.

  18. Tractographical model of the cortico-basal ganglia and corticothalamic connections: Improving Our Understanding of Deep Brain Stimulation.

    Science.gov (United States)

    Avecillas-Chasin, Josué M; Rascón-Ramírez, Fernando; Barcia, Juan A

    2016-05-01

    The cortico-basal ganglia and corticothalamic projections have been extensively studied in the context of neurological and psychiatric disorders. Deep brain stimulation (DBS) is known to modulate many of these pathways to produce the desired clinical effect. The aim of this work is to describe the anatomy of the main circuits of the basal ganglia using tractography in a surgical planning station. We used imaging studies of 20 patients who underwent DBS for movement and psychiatric disorders. We segmented the putamen, caudate nucleus (CN), thalamus, and subthalamic nucleus (STN), and we also segmented the cortical areas connected with these subcortical areas. We used tractography to define the subdivisions of the basal ganglia and thalamus through the generation of fibers from the cortical areas to the subcortical structures. We were able to generate the corticostriatal and corticothalamic connections involved in the motor, associative and limbic circuits. Furthermore, we were able to reconstruct the hyperdirect pathway through the corticosubthalamic connections and we found subregions in the STN. Finally, we reconstructed the cortico-subcortical connections of the ventral intermediate nucleus, the nucleus accumbens and the CN. We identified a feasible delineation of the basal ganglia and thalamus connections using tractography. These results could be potentially useful in DBS if the parcellations are used as targets during surgery. © 2016 Wiley Periodicals, Inc.

  19. Structural differences in basal ganglia of elite running versus martial arts athletes: a diffusion tensor imaging study.

    Science.gov (United States)

    Chang, Yu-Kai; Tsai, Jack Han-Chao; Wang, Chun-Chih; Chang, Erik Chihhung

    2015-07-01

    The aim of this study was to use diffusion tensor imaging (DTI) to characterize and compare microscopic differences in white matter integrity in the basal ganglia between elite professional athletes specializing in running and martial arts. Thirty-three young adults with sport-related skills as elite professional runners (n = 11) or elite professional martial artists (n = 11) were recruited and compared with non-athletic and healthy controls (n = 11). All participants underwent health- and skill-related physical fitness assessments. Fractional anisotropy (FA) and mean diffusivity (MD), the primary indices derived from DTI, were computed for five regions of interest in the bilateral basal ganglia, including the caudate nucleus, putamen, globus pallidus internal segment (GPi), globus pallidus external segment (GPe), and subthalamic nucleus. Results revealed that both athletic groups demonstrated better physical fitness indices compared with their control counterparts, with the running group exhibiting the highest cardiovascular fitness and the martial arts group exhibiting the highest muscular endurance and flexibility. With respect to the basal ganglia, both athletic groups showed significantly lower FA and marginally higher MD values in the GPi compared with the healthy control group. These findings suggest that professional sport or motor skill training is associated with changes in white matter integrity in specific regions of the basal ganglia, although these positive changes did not appear to depend on the type of sport-related motor skill being practiced.

  20. The Differential Effects of Thalamus and Basal Ganglia on Facial Emotion Recognition

    Science.gov (United States)

    Cheung, Crystal C. Y.; Lee, Tatia M. C.; Yip, James T. H.; King, Kristin E.; Li, Leonard S. W.

    2006-01-01

    This study examined if subcortical stroke was associated with impaired facial emotion recognition. Furthermore, the lateralization of the impairment and the differential profiles of facial emotion recognition deficits with localized thalamic or basal ganglia damage were also studied. Thirty-eight patients with subcortical strokes and 19 matched…

  1. Acute movement disorder with bilateral basal ganglia lesions in diabetic uremia

    Directory of Open Access Journals (Sweden)

    Gurusidheshwar M Wali

    2011-01-01

    Full Text Available Acute movement disorder associated with symmetrical basal ganglia lesions occurring in the background of diabetic end stage renal disease is a recently described condition. It has distinct clinico-radiological features and is commonly described in Asian patients. We report the first Indian case report of this potentially reversible condition and discuss its various clinico-radiological aspects.

  2. The effects of age on resting state functional connectivity of the basal ganglia from young to middle adulthood.

    Science.gov (United States)

    Manza, Peter; Zhang, Sheng; Hu, Sien; Chao, Herta H; Leung, Hoi-Chung; Li, Chiang-Shan R

    2015-02-15

    The basal ganglia nuclei are critical for a variety of cognitive and motor functions. Much work has shown age-related structural changes of the basal ganglia. Yet less is known about how the functional interactions of these regions with the cerebral cortex and the cerebellum change throughout the lifespan. Here, we took advantage of a convenient sample and examined resting state functional magnetic resonance imaging data from 250 adults 18 to 49 years of age, focusing specifically on the caudate nucleus, pallidum, putamen, and ventral tegmental area/substantia nigra (VTA/SN). There are a few main findings to report. First, with age, caudate head connectivity increased with a large region of ventromedial prefrontal/medial orbitofrontal cortex. Second, across all subjects, pallidum and putamen showed negative connectivity with default mode network (DMN) regions such as the ventromedial prefrontal cortex and posterior cingulate cortex, in support of anti-correlation of the "task-positive" network (TPN) and DMN. This negative connectivity was reduced with age. Furthermore, pallidum, posterior putamen and VTA/SN connectivity to other TPN regions, such as somatomotor cortex, decreased with age. These results highlight a distinct effect of age on cerebral functional connectivity of the dorsal striatum and VTA/SN from young to middle adulthood and may help research investigating the etiologies or monitoring outcomes of neuropsychiatric conditions that implicate dopaminergic dysfunction. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Balancing the Basal Ganglia Circuitry: A Possible New Role for Dopamine D2 Receptors in Health and Disease

    OpenAIRE

    Cazorla, Maxime; Kang, Un Jung; Kellendonk, Christoph

    2015-01-01

    Current therapies for treating movement disorders such as Parkinson’s disease are effective but limited by undesirable and intractable side effects. Developing more effective therapies will require better understanding of what causes basal ganglia dys-regulation and why medication-induced side effects develop. Although basal ganglia have been extensively studied in the last decades, its circuit anatomy is very complex, and significant controversy exists as to how the interplay of different ba...

  4. Distinct neurogenomic states in basal ganglia subregions relate differently to singing behavior in songbirds.

    Directory of Open Access Journals (Sweden)

    Austin T Hilliard

    Full Text Available Both avian and mammalian basal ganglia are involved in voluntary motor control. In birds, such movements include hopping, perching and flying. Two organizational features that distinguish the songbird basal ganglia are that striatal and pallidal neurons are intermingled, and that neurons dedicated to vocal-motor function are clustered together in a dense cell group known as area X that sits within the surrounding striato-pallidum. This specification allowed us to perform molecular profiling of two striato-pallidal subregions, comparing transcriptional patterns in tissue dedicated to vocal-motor function (area X to those in tissue that contains similar cell types but supports non-vocal behaviors: the striato-pallidum ventral to area X (VSP, our focus here. Since any behavior is likely underpinned by the coordinated actions of many molecules, we constructed gene co-expression networks from microarray data to study large-scale transcriptional patterns in both subregions. Our goal was to investigate any relationship between VSP network structure and singing and identify gene co-expression groups, or modules, found in the VSP but not area X. We observed mild, but surprising, relationships between VSP modules and song spectral features, and found a group of four VSP modules that were highly specific to the region. These modules were unrelated to singing, but were composed of genes involved in many of the same biological processes as those we previously observed in area X-specific singing-related modules. The VSP-specific modules were also enriched for processes disrupted in Parkinson's and Huntington's Diseases. Our results suggest that the activation/inhibition of a single pathway is not sufficient to functionally specify area X versus the VSP and support the notion that molecular processes are not in and of themselves specialized for behavior. Instead, unique interactions between molecular pathways create functional specificity in particular brain

  5. Imaging insights into basal ganglia function, Parkinson's disease, and dystonia.

    Science.gov (United States)

    Stoessl, A Jon; Lehericy, Stephane; Strafella, Antonio P

    2014-08-09

    Recent advances in structural and functional imaging have greatly improved our ability to assess normal functions of the basal ganglia, diagnose parkinsonian syndromes, understand the pathophysiology of parkinsonism and other movement disorders, and detect and monitor disease progression. Radionuclide imaging is the best way to detect and monitor dopamine deficiency, and will probably continue to be the best biomarker for assessment of the effects of disease-modifying therapies. However, advances in magnetic resonance enable the separation of patients with Parkinson's disease from healthy controls, and show great promise for differentiation between Parkinson's disease and other akinetic-rigid syndromes. Radionuclide imaging is useful to show the dopaminergic basis for both motor and behavioural complications of Parkinson's disease and its treatment, and alterations in non-dopaminergic systems. Both PET and MRI can be used to study patterns of functional connectivity in the brain, which is disrupted in Parkinson's disease and in association with its complications, and in other basal-ganglia disorders such as dystonia, in which an anatomical substrate is not otherwise apparent. Functional imaging is increasingly used to assess underlying pathological processes such as neuroinflammation and abnormal protein deposition. This imaging is another promising approach to assess the effects of treatments designed to slow disease progression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The role of the basal ganglia in learning and memory: Insight from Parkinson's disease

    Science.gov (United States)

    2013-01-01

    It has long been known that memory is not a single process. Rather, there are different kinds of memory that are supported by distinct neural systems. This idea stemmed from early findings of dissociable patterns of memory impairments in patients with selective damage to different brain regions. These studies highlighted the role of the basal ganglia in non-declarative memory, such as procedural or habit learning, contrasting it with the known role of the medial temporal lobes in declarative memory. In recent years, major advances across multiple areas of neuroscience have revealed an important role for the basal ganglia in motivation and decision making. These findings have led to new discoveries about the role of the basal ganglia in learning and highlighted the essential role of dopamine in specific forms of learning. Here we review these recent advances with an emphasis on novel discoveries from studies of learning in patients with Parkinson's disease. We discuss how these findings promote the development of current theories away from accounts that emphasize the verbalizability of the contents of memory and towards a focus on the specific computations carried out by distinct brain regions. Finally, we discuss new challenges that arise in the face of accumulating evidence for dynamic and interconnected memory systems that jointly contribute to learning. PMID:21945835

  7. The role of the basal ganglia in learning and memory: insight from Parkinson's disease.

    Science.gov (United States)

    Foerde, Karin; Shohamy, Daphna

    2011-11-01

    It has long been known that memory is not a single process. Rather, there are different kinds of memory that are supported by distinct neural systems. This idea stemmed from early findings of dissociable patterns of memory impairments in patients with selective damage to different brain regions. These studies highlighted the role of the basal ganglia in non-declarative memory, such as procedural or habit learning, contrasting it with the known role of the medial temporal lobes in declarative memory. In recent years, major advances across multiple areas of neuroscience have revealed an important role for the basal ganglia in motivation and decision making. These findings have led to new discoveries about the role of the basal ganglia in learning and highlighted the essential role of dopamine in specific forms of learning. Here we review these recent advances with an emphasis on novel discoveries from studies of learning in patients with Parkinson's disease. We discuss how these findings promote the development of current theories away from accounts that emphasize the verbalizability of the contents of memory and towards a focus on the specific computations carried out by distinct brain regions. Finally, we discuss new challenges that arise in the face of accumulating evidence for dynamic and interconnected memory systems that jointly contribute to learning. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Dynamic causal modeling revealed dysfunctional effective connectivity in both, the cortico-basal-ganglia and the cerebello-cortical motor network in writers' cramp

    Directory of Open Access Journals (Sweden)

    Inken Rothkirch

    Full Text Available Writer's cramp (WC is a focal task-specific dystonia characterized by sustained or intermittent muscle contractions while writing, particularly with the dominant hand. Since structural lesions rarely cause WC, it has been assumed that the disease might be caused by a functional maladaptation within the sensory-motor system. Therefore, our objective was to examine the differences between patients suffering from WC and a healthy control (HC group with regard to the effective connectivity that describes causal influences one brain region exerts over another within the motor network. The effective connectivity within a network including contralateral motor cortex (M1, supplementary motor area (SMA, globus pallidus (GP, putamen (PU and ipsilateral cerebellum (CB was investigated using dynamic causal modeling (DCM for fMRI. Eight connectivity models of functional motor systems were compared. Fifteen WC patients and 18 age-matched HC performed a sequential, five-element finger-tapping task with the non-dominant and non-affected left hand within a 3 T MRI-scanner as quickly and accurately as possible. The task was conducted in a fixed block design repeated 15 times and included 30 s of tapping followed by 30 s of rest. DCM identified the same model in WC and HC as superior for reflecting basal ganglia and cerebellar motor circuits of healthy subjects. The M1-PU, as well as M1-CB connectivity, was more strongly influenced by tapping in WC, but the intracortical M1-SMA connection was more facilitating in controls. Inhibiting influences originating from GP to M1 were stronger in controls compared to WC patients whereby facilitating influences the PU exerts over CB and CB exerts over M1 were not as strong. Although the same model structure explains the given data best, DCM confirms previous research demonstrating a malfunction in effective connectivity intracortically (M1-SMA and in the cortico-basal ganglia circuitry in WC. In addition, DCM analysis

  9. Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder

    International Nuclear Information System (INIS)

    Cheon, Keun-Ah; Kim, Young-Kee; Namkoong, Kee; Kim, Chan-Hyung; Ryu, Young Hoon; Lee, Jong Doo

    2003-01-01

    Attention deficit hyperactivity disorder (ADHD) is a psychiatric disorder in childhood that is known to be associated with dopamine dysregulation. In this study, we investigated dopamine transporter (DAT) density in children with ADHD using iodine-123 labelled N-(3-iodopropen-2-yl)-2β-carbomethoxy-3β-(4-chlorophenyl) tropane ([ 123 I]IPT) single-photon emission tomography (SPET) and postulated that an alteration in DAT density in the basal ganglia is responsible for dopaminergic dysfunction in children with ADHD. Nine drug-naive children with ADHD and six normal children were included in the study. We performed brain SPET 2 h after the intravenous administration of [ 123 I]IPT and carried out both quantitative and qualitative analyses using the obtained SPET data, which were reconstructed for the assessment of the specific/non-specific DAT binding ratio in the basal ganglia. We then investigated the correlation between the severity scores of ADHD symptoms in children with ADHD assessed with ADHD rating scale-IV and the specific/non-specific DAT binding ratio in the basal ganglia. Drug-naive children with ADHD showed a significantly increased specific/non-specific DAT binding ratio in the basal ganglia compared with normal children. However, no significant correlation was found between the severity scores of ADHD symptoms in children with ADHD and the specific/non-specific DAT binding ratio in the basal ganglia. Our findings support the complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD. (orig.)

  10. Ultra-high field magnetic resonance imaging of the basal ganglia and related structures

    NARCIS (Netherlands)

    Plantinga, B.R.; Temel, Y.; Roebroeck, A.; Uludag, K.; Ivanov, D.; Kuijf, M.L.; ter Haar Romeny, B.M.

    2014-01-01

    Deep brain stimulation is a treatment for Parkinson's disease and other related disorders, involving the surgical placement of electrodes in the deeply situated basal ganglia or thalamic structures. Good clinical outcome requires accurate targeting. However, due to limited visibility of the target

  11. Levodopa Effect on Basal Ganglia Motor Circuit in Parkinson's Disease.

    Science.gov (United States)

    Gao, Lin-Lin; Zhang, Jia-Rong; Chan, Piu; Wu, Tao

    2017-01-01

    To investigate the effects of levodopa on the basal ganglia motor circuit (BGMC) in Parkinson's disease (PD). Thirty PD patients with asymmetrical bradykinesia and 30 control subjects were scanned using resting-state functional MRI. Functional connectivity of the BGMC was measured and compared before and after levodopa administration in patients with PD. The correlation between improvements in bradykinesia and changes in BGMC connectivity was examined. In the PD-off state (before medication), the posterior putamen and internal globus pallidus (GPi) had decreased connectivity while the subthalamic nucleus (STN) had enhanced connectivity within the BGMC relative to control subjects. Levodopa administration increased the connectivity of posterior putamen- and GPi-related networks but decreased the connectivity of STN-related networks. Improvements in bradykinesia were correlated with enhanced connectivity of the posterior putamen-cortical motor pathway and with decreased connectivity of the STN-thalamo-cortical motor pathway. In PD patients with asymmetrical bradykinesia, levodopa can partially normalize the connectivity of the BGMC with a larger effect on the more severely affected side. Moreover, the beneficial effect of levodopa on bradykinesia is associated with normalization of the striato-thalamo-cortical motor and STN-cortical motor pathways. Our findings inform the neural mechanism of levodopa treatment in PD. © 2016 John Wiley & Sons Ltd.

  12. Oscillatory activity in the human basal ganglia: more than just beta, more than just Parkinson's disease.

    Science.gov (United States)

    Alegre, Manuel; Valencia, Miguel

    2013-10-01

    The implantation of deep brain stimulators in different structures of the basal ganglia to treat neurological and psychiatric diseases has allowed the recording of local field potential activity in these structures. The analysis of these signals has helped our understanding of basal ganglia physiology in health and disease. However, there remain some major challenges and questions for the future. In a recent work, Tan et al. (Tan, H., Pogosyan, A., Anam, A., Foltynie, T., Limousin, P., Zrinzo, L., et al. 2013. Frequency specific activity in subthalamic nucleus correlates with hand bradykinesia in Parkinson's disease. Exp. Neurol. 240,122-129) take profit of these recordings to study the changes in subthalamic oscillatory activity during the hold and release phases of a grasping paradigm, and correlate the changes in different frequency bands with performance parameters. They found that beta activity was related to the release phase, while force maintenance related most to theta and gamma/HFO activity. There was no significant effect of the motor state of the patient on this latter association. These findings suggest that the alterations in the oscillatory activity of the basal ganglia in Parkinson's disease are not limited to the beta band, and they involve aspects different from movement preparation and initiation. Additionally, these results highlight the usefulness of the combination of well-designed paradigms with recordings in off and on motor states (in Parkinson's disease), or in different pathologies, in order to understand not only the pathophysiology of the diseases affecting the patients, but also the normal physiology of the basal ganglia. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. A morphometric CT study of Down's syndrome showing small posterior fossa and calcification of basal ganglia

    International Nuclear Information System (INIS)

    Ieshima, A.; Yoshino, K.; Takashima, S.; Takeshita, K.; Kisa, T.

    1984-01-01

    We report characteristic and morphometric changes of cranial computed tomography (CT) with increasing age in 56 patients with Down's syndrome aged from 0 month to 37 years. Patients were compared with 142 normal controls aged 0 to 59 years. Width of ventricles, Sylvian fissures, posterior fossa, pons and cisterna magna were measured on CT. The incidences of the cavum septi pellucidi, cavum vergae and cavum veli interpositi and high density in the basal ganglia were examined. There was high incidence (10.7%) of bilateral calcification of basal ganglia in Down's syndrome, although that of pineal body and choroid plexus calcification was similar in Down's syndrome and controls. Basal ganglia calcification is more frequently seen in young Down's syndrome and may be related to the premature aging characteristic of Down's syndrome. The CT in Down's syndrome showed relatively small posterior fossa, small cerebellum, small brain stem and relatively large Sylvian fissures in those under one year of age. There was a high frequency of midline cava and large cisterna magna. There were no significant atrophic changes on CT except after the fifth decade comparing with controls. (orig.)

  14. Ictal and peri-ictal oscillations in the human basal ganglia in temporal lobe epilepsy

    Czech Academy of Sciences Publication Activity Database

    Rektor, I.; Kuba, R.; Brázdil, M.; Halámek, Josef; Jurák, Pavel

    2011-01-01

    Roč. 20, č. 3 (2011), s. 512-517 ISSN 1525-5050 Institutional research plan: CEZ:AV0Z20650511 Keywords : basal ganglia * oscillations * epilepsy * ictal Subject RIV: FH - Neurology Impact factor: 2.335, year: 2011

  15. Role of Basal Ganglia in Swallowing Process: A Systematic Review

    OpenAIRE

    Hamideh Ghaemi; Davood Sobhani-Rad; Ali Arabi; Sadegh Saifpanahi; Zahra Ghayoumi Anaraki

    2016-01-01

    Objectives: The basal ganglia (BG) controls different patterns of behavior by receiving inputs from sensory-motor and pre-motor cortex and projecting it to pre-frontal, pre-motor and supplementary motor areas. As the exact role of BG in swallowing process has not been fully determined, we aimed at reviewing the published data on neurological control in the swallowing technique to have a better understanding of BG’s role in this performance.  Methods: English-language articles, w...

  16. A Pause-then-Cancel model of stopping: evidence from basal ganglia neurophysiology.

    Science.gov (United States)

    Schmidt, Robert; Berke, Joshua D

    2017-04-19

    Many studies have implicated the basal ganglia in the suppression of action impulses ('stopping'). Here, we discuss recent neurophysiological evidence that distinct hypothesized processes involved in action preparation and cancellation can be mapped onto distinct basal ganglia cell types and pathways. We examine how movement-related activity in the striatum is related to a 'Go' process and how going may be modulated by brief epochs of beta oscillations. We then describe how, rather than a unitary 'Stop' process, there appear to be separate, complementary 'Pause' and 'Cancel' mechanisms. We discuss the implications of these stopping subprocesses for the interpretation of the stop-signal reaction time-in particular, some activity that seems too slow to causally contribute to stopping when assuming a single Stop processes may actually be fast enough under a Pause-then-Cancel model. Finally, we suggest that combining complementary neural mechanisms that emphasize speed or accuracy respectively may serve more generally to optimize speed-accuracy trade-offs.This article is part of the themed issue 'Movement suppression: brain mechanisms for stopping and stillness'. © 2017 The Author(s).

  17. Dopamine transporter density in the basal ganglia assessed with [{sup 123}I]IPT SPET in children with attention deficit hyperactivity disorder

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Keun-Ah; Kim, Young-Kee; Namkoong, Kee; Kim, Chan-Hyung [Department of Psychiatry, College of Medicine, Yonsei University, Seoul (Korea); Ryu, Young Hoon; Lee, Jong Doo [Division of Nuclear Medicine, Department of Radiology, College of Medicine, Yonsei University, 146-92 Dogokdong, Gangnam-Gu, Seoul, 135-720 (Korea)

    2003-02-01

    Attention deficit hyperactivity disorder (ADHD) is a psychiatric disorder in childhood that is known to be associated with dopamine dysregulation. In this study, we investigated dopamine transporter (DAT) density in children with ADHD using iodine-123 labelled N-(3-iodopropen-2-yl)-2β-carbomethoxy-3β-(4-chlorophenyl) tropane ([{sup 123}I]IPT) single-photon emission tomography (SPET) and postulated that an alteration in DAT density in the basal ganglia is responsible for dopaminergic dysfunction in children with ADHD. Nine drug-naive children with ADHD and six normal children were included in the study. We performed brain SPET 2 h after the intravenous administration of [{sup 123}I]IPT and carried out both quantitative and qualitative analyses using the obtained SPET data, which were reconstructed for the assessment of the specific/non-specific DAT binding ratio in the basal ganglia. We then investigated the correlation between the severity scores of ADHD symptoms in children with ADHD assessed with ADHD rating scale-IV and the specific/non-specific DAT binding ratio in the basal ganglia. Drug-naive children with ADHD showed a significantly increased specific/non-specific DAT binding ratio in the basal ganglia compared with normal children. However, no significant correlation was found between the severity scores of ADHD symptoms in children with ADHD and the specific/non-specific DAT binding ratio in the basal ganglia. Our findings support the complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD. (orig.)

  18. Prefrontal Activity and Connectivity with the Basal Ganglia during Performance of Complex Cognitive Tasks Is Associated with Apathy in Healthy Subjects.

    Science.gov (United States)

    Fazio, Leonardo; Logroscino, Giancarlo; Taurisano, Paolo; Amico, Graziella; Quarto, Tiziana; Antonucci, Linda Antonella; Barulli, Maria Rosaria; Mancini, Marina; Gelao, Barbara; Ferranti, Laura; Popolizio, Teresa; Bertolino, Alessandro; Blasi, Giuseppe

    2016-01-01

    Convergent evidence indicates that apathy affects cognitive behavior in different neurological and psychiatric conditions. Studies of clinical populations have also suggested the primary involvement of the prefrontal cortex and the basal ganglia in apathy. These brain regions are interconnected at both the structural and functional levels and are deeply involved in cognitive processes, such as working memory and attention. However, it is unclear how apathy modulates brain processing during cognition and whether such a modulation occurs in healthy young subjects. To address this issue, we investigated the link between apathy and prefrontal and basal ganglia function in healthy young individuals. We hypothesized that apathy may be related to sub-optimal activity and connectivity in these brain regions. Three hundred eleven healthy subjects completed an apathy assessment using the Starkstein's Apathy Scale and underwent fMRI during working memory and attentional performance tasks. Using an ROI approach, we investigated the association of apathy with activity and connectivity in the DLPFC and the basal ganglia. Apathy scores correlated positively with prefrontal activity and negatively with prefrontal-basal ganglia connectivity during both working memory and attention tasks. Furthermore, prefrontal activity was inversely related to attentional behavior. These results suggest that in healthy young subjects, apathy is a trait associated with inefficient cognitive-related prefrontal activity, i.e., it increases the need for prefrontal resources to process cognitive stimuli. Furthermore, apathy may alter the functional relationship between the prefrontal cortex and the basal ganglia during cognition.

  19. Prefrontal Activity and Connectivity with the Basal Ganglia during Performance of Complex Cognitive Tasks Is Associated with Apathy in Healthy Subjects.

    Directory of Open Access Journals (Sweden)

    Leonardo Fazio

    Full Text Available Convergent evidence indicates that apathy affects cognitive behavior in different neurological and psychiatric conditions. Studies of clinical populations have also suggested the primary involvement of the prefrontal cortex and the basal ganglia in apathy. These brain regions are interconnected at both the structural and functional levels and are deeply involved in cognitive processes, such as working memory and attention. However, it is unclear how apathy modulates brain processing during cognition and whether such a modulation occurs in healthy young subjects. To address this issue, we investigated the link between apathy and prefrontal and basal ganglia function in healthy young individuals. We hypothesized that apathy may be related to sub-optimal activity and connectivity in these brain regions.Three hundred eleven healthy subjects completed an apathy assessment using the Starkstein's Apathy Scale and underwent fMRI during working memory and attentional performance tasks. Using an ROI approach, we investigated the association of apathy with activity and connectivity in the DLPFC and the basal ganglia.Apathy scores correlated positively with prefrontal activity and negatively with prefrontal-basal ganglia connectivity during both working memory and attention tasks. Furthermore, prefrontal activity was inversely related to attentional behavior.These results suggest that in healthy young subjects, apathy is a trait associated with inefficient cognitive-related prefrontal activity, i.e., it increases the need for prefrontal resources to process cognitive stimuli. Furthermore, apathy may alter the functional relationship between the prefrontal cortex and the basal ganglia during cognition.

  20. Imaging insights into basal ganglia function, Parkinson’s disease, and dystonia

    OpenAIRE

    Stoessl, A. Jon; Lehericy, Stephane; Strafella, Antonio P.

    2014-01-01

    Recent advances in structural and functional imaging have greatly improved our ability to assess normal functions of the basal ganglia, diagnose parkinsonian syndromes, understand the pathophysiology of parkinsonism and other movement disorders, and detect and monitor disease progression. Radionuclide imaging is the best way to detect and monitor dopamine deficiency, and will probably continue to be the best biomarker for assessment of the effects of disease-modifying therapies. However, adva...

  1. Bilateral basal ganglia necrosis following exogenous toxins shown on computer tomography

    Energy Technology Data Exchange (ETDEWEB)

    Rodiek, S

    1982-09-01

    By means of cranial computer tomography, it is possible to demonstrate the cerebral consequences of severe intoxications in vivo. A variety of different toxic agents produce similar disease patterns, which are thought to be due to fall in blood pressure caused by the toxin. The lesions are mainly localised in the basal ganglia at the borders of contiguous vascular territories. Six patients observed by the authors are described.

  2. Dopamine transporter density of the basal ganglia assessed with I-123 IPT SPECT in methamphetamine abusers

    International Nuclear Information System (INIS)

    Lee, Joo Ryung; Ahn, Byeong Cheol; Kewm, Do Hun

    2005-01-01

    Functional imaging of dopamine transporter (DAT) defines integrity of the dopaminergic system, and DAT is the target site of drugs of abuse such as cocaine and methamphetamine. Functional imaging the DAT may be a sensitive and selective indicator of neurotoxic change by the drug. The aim of the present study is to evaluate the clinical implications of qualitative/quantitative analyses of dopamine transporter imaging in methamphetamine abusers. Six detoxified methamphetamine abusers (abuser group) and 4 volunteers (control group) were enrolled in this study. Brain MRI was performed in all of abuser group. Abuser group underwent psychiatric and depression assessment using brief psychiatric rating scale (BPRS) and Hamilton depression rating scale (HAMD), respectively. All of the subjects underwent I-123 IPT SPECT (IPT SPECT). IPT SPECT image was analysed with visual qualitative method and quantitative method using basal ganglia dopamine transporter (DAT) specific/non-specific binding ratio (SBR). Comparison of DAT SBR between abuser and control groups was performed. We also performed correlation tests between psychiatric and depression assessment results and DAT SBR in abuser group. All of abuser group showed normal MRI finding, but had residual psychiatric and depressive symptoms, and psychiatric and depressive symptom scores were exactly correlated (r=1.0, ρ =0.005) each other. Five of them showed abnormal finding on qualitative visual I-123 IPT SPECT. Abuser group had lower basal ganglia DAT SBR than that of control (2.38 ± 0.20 vs 3.04 ± 0.27, ρ =0.000). Psychiatric and depressive symptoms were negatively well correlated with basal ganglia DAT SBR (r=-0.908, ρ =0.012, r=-0.924, ρ =0.009) This results suggest that dopamine transporter imaging using I-123 IPT SPECT may be used to evaluate dopaminergic system of the basal ganglia and the clinical status in methamphetamine abusers

  3. Dopamine transporter density of the basal ganglia assessed with I-123 IPT SPECT in methamphetamine abusers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo Ryung; Ahn, Byeong Cheol [Kyungpook National University Medical School, Daegu (Korea, Republic of); Kewm, Do Hun [National Bugok Mental Hospital, Changryung (Korea, Republic of)] (and others)

    2005-10-15

    Functional imaging of dopamine transporter (DAT) defines integrity of the dopaminergic system, and DAT is the target site of drugs of abuse such as cocaine and methamphetamine. Functional imaging the DAT may be a sensitive and selective indicator of neurotoxic change by the drug. The aim of the present study is to evaluate the clinical implications of qualitative/quantitative analyses of dopamine transporter imaging in methamphetamine abusers. Six detoxified methamphetamine abusers (abuser group) and 4 volunteers (control group) were enrolled in this study. Brain MRI was performed in all of abuser group. Abuser group underwent psychiatric and depression assessment using brief psychiatric rating scale (BPRS) and Hamilton depression rating scale (HAMD), respectively. All of the subjects underwent I-123 IPT SPECT (IPT SPECT). IPT SPECT image was analysed with visual qualitative method and quantitative method using basal ganglia dopamine transporter (DAT) specific/non-specific binding ratio (SBR). Comparison of DAT SBR between abuser and control groups was performed. We also performed correlation tests between psychiatric and depression assessment results and DAT SBR in abuser group. All of abuser group showed normal MRI finding, but had residual psychiatric and depressive symptoms, and psychiatric and depressive symptom scores were exactly correlated (r=1.0, {rho} =0.005) each other. Five of them showed abnormal finding on qualitative visual I-123 IPT SPECT. Abuser group had lower basal ganglia DAT SBR than that of control (2.38 {+-} 0.20 vs 3.04 {+-} 0.27, {rho} =0.000). Psychiatric and depressive symptoms were negatively well correlated with basal ganglia DAT SBR (r=-0.908, {rho} =0.012, r=-0.924, {rho} =0.009) This results suggest that dopamine transporter imaging using I-123 IPT SPECT may be used to evaluate dopaminergic system of the basal ganglia and the clinical status in methamphetamine abusers.

  4. 1H MR spectroscopy of the basal ganglia in childhood: a semiquantitative analysis

    International Nuclear Information System (INIS)

    Lam, W.W.M.; Zhao, H.; Berry, G.T.; Kaplan, P.; Gibson, J.; Kaplan, B.S.

    1998-01-01

    Proton MR spectra of the basal ganglia were obtained from 28 patients, 24 male and 14 female, median age 16.3 months (5 weeks to 31 years). They included 17 patients with normal MRI of the basal ganglia without metabolic disturbance (control group) and 11 patients with various metabolic diseases: one case each of high serum sodium and high serum osmolarity, cobalamin C deficiency, Leigh disease, Galloway-Mowat syndrome, Pelizaeus-Merzbacher disease, hemolytic-uremic syndrome and Wilson disease and two cases of Alagille syndrome and methylmalonic acidemia with abnormal MRI of the basal ganglia or blood or urine analysis (abnormal group). The MR spectrum was measured by using STEAM. The MR-visible water content of the region of interest was obtained. Levels of myoinositol, choline, creatine and N -acetylaspartate were measured using a semiquantitative approach, with absolute reference calibration. In the control group, there was a gradual drop of water content over the first year of life; N -acetylaspartate, creatine and myoinositol levels showed no significant change with age, in contrast to the occipital, parietal and cerebellar regions. Choline showed a gradual decrease for the first 2 years of life and then remained fairly constant. In the abnormal group the water content was not significantly different. N -Acetylaspartate was decreased in patients with high serum sodium and high serum osmolarity, cobalamin C deficiency, Leigh disease and one case of methylmalonic acidemia. Decreased creatine was also found in Leigh disease, and decreased choline in Galloway-Mowat syndrome and Wilson disease. Myoinositol was elevated in the patient with abnormally high serum sodium, and decreased in the hemolytic-uremic syndrome. (orig.)

  5. Extrahepatic portal vein obstruction with parkinsonism and symmetric hyperintense basal ganglia on T1 weighted MRI

    Directory of Open Access Journals (Sweden)

    Jayalakshmi Sita

    2006-01-01

    Full Text Available Abnormal high signal in the globus pallidus on T1 weighted magnetic resonance imaging (MRI of the brain has been well described in patients with chronic liver disease. It may be related to liver dysfunction or portal-systemic shunting. We report a case of extra hepatic portal vein obstruction with portal hypertension and esophageal varices that presented with extra pyramidal features. T1 weighted MRI brain scans showed increased symmetrical signal intensities in the basal ganglia. Normal hepatic function in this patient emphasizes the role of portal- systemic communications in the development of these hyperintensities, which may be due to deposition of paramagnetic substances like manganese in the basal ganglia.

  6. Minimal invasive puncture and drainage versus endoscopic surgery for spontaneous intracerebral hemorrhage in basal ganglia

    Directory of Open Access Journals (Sweden)

    Li Z

    2017-01-01

    Full Text Available Zhihong Li,1,* Yuqian Li,1,* Feifei Xu,2,* Xi Zhang,3 Qiang Tian,4 Lihong Li1 1Department of Neurosurgery, Tangdu Hospital, 2Department of Foreign Languages, 3Department of Biomedical Engineering, 4Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China *These authors contributed equally to this work Abstract: Two prevalent therapies for the treatment of spontaneous intracerebral hemorrhage (ICH in basal ganglia are, minimally invasive puncture and drainage (MIPD, and endoscopic surgery (ES. Because both surgical techniques are of a minimally invasive nature, they have attracted greater attention in recent years. However, evidence comparing the curative effect of MIPD and ES has been uncertain. The indication for MIPD or ES has been uncertain till now. In the present study, 112 patients with spontaneous ICH in basal ganglia who received MIPD or ES were reviewed retrospectively. Baseline parameters prior to the operation, evacuation rate (ER, perihematoma edema, postoperative complications, and rebleeding incidences were collected. Moreover, 1-year postictus, the long-term functional outcomes of patients with regard to hematoma volume (HV or Glasgow Coma Scale (GCS score were judged, respectively, by the case fatality, Glasgow Outcome Scale (GOS, Barthel Index (BI, and modified Rankin Scale (mRS. The ES group had a higher ER than the MIPD group on postoperative day 1. The MIPD group had fewer adverse outcomes, which included less perihematoma edema, anesthetic time, and blood loss, than the ES group. The functional outcomes represented by GOS, BI, and mRS were better in the MIPD group than in the ES group for patients with HV 30–60 mL or GCS score 9–14. These results indicate that ES is more effective in evacuating hematoma in basal ganglia, while MIPD is less invasive than ES. Patients with HV 30–60 mL or GCS score 9–14 may benefit more from the MIPD

  7. Imaging insights into basal ganglia function, Parkinson’s disease, and dystonia

    Science.gov (United States)

    Stoessl, A. Jon; Lehericy, Stephane; Strafella, Antonio P.

    2015-01-01

    Recent advances in structural and functional imaging have greatly improved our ability to assess normal functions of the basal ganglia, diagnose parkinsonian syndromes, understand the pathophysiology of parkinsonism and other movement disorders, and detect and monitor disease progression. Radionuclide imaging is the best way to detect and monitor dopamine deficiency, and will probably continue to be the best biomarker for assessment of the effects of disease-modifying therapies. However, advances in magnetic resonance enable the separation of patients with Parkinson’s disease from healthy controls, and show great promise for differentiation between Parkinson’s disease and other akinetic-rigid syndromes. Radionuclide imaging is useful to show the dopaminergic basis for both motor and behavioural complications of Parkinson’s disease and its treatment, and alterations in non-dopaminergic systems. Both PET and MRI can be used to study patterns of functional connectivity in the brain, which is disrupted in Parkinson’s disease and in association with its complications, and in other basal-ganglia disorders such as dystonia, in which an anatomical substrate is not otherwise apparent. Functional imaging is increasingly used to assess underlying pathological processes such as neuroinflammation and abnormal protein deposition. This imaging is another promising approach to assess the effects of treatments designed to slow disease progression. PMID:24954673

  8. Neuronal degeneration induced by status epilepticus in basal ganglia of immature rats

    Czech Academy of Sciences Publication Activity Database

    Druga, Rastislav; Kubová, Hana; Mareš, Pavel

    2005-01-01

    Roč. 46, č. S8 (2005), s. 98-99 ISSN 0013-9580. [Joint Annual Meeting of the American Epilepsy Society and American Clinical Neurophysiology Society. 02.12.2005-06.12.2005, Washington, DC] R&D Projects: GA ČR(CZ) GA304/04/0464 Institutional research plan: CEZ:AV0Z50110509 Keywords : status epilepticus * neurodegeneration * basal ganglia Subject RIV: ED - Physiology

  9. Acute Psychosis Associated with Subcortical Stroke: Comparison between Basal Ganglia and Mid-Brain Lesions

    Directory of Open Access Journals (Sweden)

    Aaron McMurtray

    2014-01-01

    Full Text Available Acute onset of psychosis in an older or elderly individual without history of previous psychiatric disorders should prompt a thorough workup for neurologic causes of psychiatric symptoms. This report compares and contrasts clinical features of new onset of psychotic symptoms between two patients, one with an acute basal ganglia hemorrhagic stroke and another with an acute mid-brain ischemic stroke. Delusions and hallucinations due to basal ganglia lesions are theorized to develop as a result of frontal lobe dysfunction causing impairment of reality checking pathways in the brain, while visual hallucinations due to mid-brain lesions are theorized to develop due to dysregulation of inhibitory control of the ponto-geniculate-occipital system. Psychotic symptoms occurring due to stroke demonstrate varied clinical characteristics that depend on the location of the stroke within the brain. Treatment with antipsychotic medications may provide symptomatic relief.

  10. Review: electrophysiology of basal ganglia and cortex in models of Parkinson disease.

    Science.gov (United States)

    Ellens, Damien J; Leventhal, Daniel K

    2013-01-01

    Incomplete understanding of the systems-level pathophysiology of Parkinson Disease (PD) remains a significant barrier to improving its treatment. Substantial progress has been made, however, due to the availability of neurotoxins that selectively target monoaminergic (in particular, dopaminergic) neurons. This review discusses the in vivo electrophysiology of basal ganglia (BG), thalamic, and cortical regions after dopamine-depleting lesions. These include firing rate changes, neuronal burst-firing, neuronal oscillations, and neuronal synchrony that result from a combination of local microanatomic changes and network-level interactions. While much is known of the clinical and electrophysiological phenomenology of dopamine loss, a critical gap in our conception of PD pathophysiology is the link between them. We discuss potential mechanisms by which these systems-level electrophysiological changes may emerge, as well as how they may relate to clinical parkinsonism. Proposals for an updated understanding of BG function are reviewed, with an emphasis on how emerging frameworks will guide future research into the pathophysiology and treatment of PD.

  11. Alteration of basal ganglia and right frontoparietal network in early drug-naïve Parkinson’s disease during heat pain stimuli and resting state

    Directory of Open Access Journals (Sweden)

    Ying eTan

    2015-08-01

    Full Text Available Background: The symptoms and pathogenesis of Parkinson’s disease (PD are complicated and accurate diagnosis is difficult, particularly in early-stage. Functional magnetic resonance imaging is noninvasive and characterized by the integration of different brain areas at functional connectivity (FC. Considering pain process in PD, we hypothesized that pain is one of the earliest symptoms and investigated whether FC of the pain network was disrupted in PD without pain.Methods: Fourteen early drug-naïve PD without pain and 17 age- and sex-matched healthy controls (HC participated in our test. We investigate abnormalities in FC and in functional network connectivity in PD compared with HC during the task (51 °C heat pain stimuli and at rest.Results: Compared with HC, PD showed decreased FC in basal ganglia network (BGN, salience network (SN and sensorimotor network in two states respectively. FNC between the BGN and the SN are reduced during both states in PD compared with HC. In addition, the FNC associated with right frontoparietal network (RFPN was also significantly disturbed during the task.Conclusion: These findings suggest that BGN plays a role in the pathological mechanisms of pain underlying PD, and RFPN likely contributes greatly to harmonization between intrinsic brain activity and external stimuli.

  12. Inter regional correlations of glucose metabolism between the basal ganglia and different cortical areas: an ultra-high resolution PET/MRI fusion study using 18F-FDG

    International Nuclear Information System (INIS)

    Kim, J.H.; Son, Y.D.; Kim, H.K.; Oh, C.H.; Kim, J.M.; Kim, Y.B.; Lee, C.

    2018-01-01

    Basal ganglia have complex functional connections with the cerebral cortex and are involved in motor control, executive functions of the forebrain, such as the planning of movement, and cognitive behaviors based on their connections. The aim of this study was to provide detailed functional correlation patterns between the basal ganglia and cerebral cortex by conducting an inter regional correlation analysis of the 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography (PET) data based on precise structural information. Fifteen participants were scanned with 7-Tesla magnetic resonance imaging (MRI) and high resolution research tomography (HRRT)-PET fusion system using 18 F-FDG. For detailed inter regional correlation analysis, 24 subregions of the basal ganglia including pre-commissural dorsal caudate, post-commissural caudate, pre-commissural dorsal putamen, post-commissural putamen, internal globus pallidus, and external globus pallidus and 80 cerebral regions were selected as regions of interest on the MRI image and their glucose metabolism were calculated from the PET images. Pearson's product-moment correlation analysis was conducted for the inter regional correlation analysis of the basal ganglia. Functional correlation patterns between the basal ganglia and cerebral cortex were not only consistent with the findings of previous studies, but also showed new functional correlation between the dorsal striatum (i.e., caudate nucleus and putamen) and insula. In this study, we established the detailed basal ganglia subregional functional correlation patterns using 18 F-FDG PET/MRI fusion imaging. Our methods and results could potentially be an important resource for investigating basal ganglia dysfunction as well as for conducting functional studies in the context of movement and psychiatric disorders. (author)

  13. Radiological imaging features of the basal ganglia that may predict progression to hemicraniectomy in large territory middle cerebral artery infarct

    Energy Technology Data Exchange (ETDEWEB)

    Mian, Asim Z.; Edasery, David; Sakai, Osamu; Mustafa Qureshi, M. [Boston University School of Medicine, Department of Radiology, Boston Medical Center, Boston, MA 02118 (United States); Holsapple, James [Boston University School of Medicine, Department of Neurosurgery, Boston Medical Center, Boston, MA (United States); Nguyen, Thanh [Boston University School of Medicine, Department of Neurology, Boston Medical Center, Boston, MA (United States)

    2017-05-15

    Predicting which patients are at risk for hemicraniectomy can be helpful for triage and can help preserve neurologic function if detected early. We evaluated basal ganglia imaging predictors for early hemicraniectomy in patients with large territory anterior circulation infarct. This retrospective study evaluated patients with ischemic infarct admitted from January 2005 to July 2011. Patients with malignant cerebral edema refractory to medical therapy or with herniating signs such as depressed level of consciousness, anisocoria, and contralateral leg weakness were triaged to hemicraniectomy. Admission images were reviewed for presence of caudate, lentiform nucleus (putamen and globus pallidus), or basal ganglia (caudate + lentiform nucleus) infarction. Thirty-one patients with large territory MCA infarct, 10 (32%), underwent hemicraniectomy. Infarction of the caudate nucleus (9/10 vs 6/21, p = 0.002) or basal ganglia (5/10 vs 2/21, p = 0.02) predicted progression to hemicraniectomy. Infarction of the lentiform nucleus only did not predict progression to hemicraniectomy. Sensitivity for patients who did and did not have hemicraniectomy were 50% (5/10) and 90.5% (19/21). For caudate nucleus and caudate plus lentiform nucleus infarcts, the crude- and age-adjusted odds of progression to hemicraniectomy were 9.5 (1.4-64.3) and 6.6 (0.78-55.4), respectively. Infarction of the caudate nucleus or basal ganglia correlated with patients progressing to hemicraniectomy. Infarction of the lentiform nucleus alone did not. (orig.)

  14. Vascular Risk Factors and Diseases Modulate Deficits of Reward-Based Reversal Learning in Acute Basal Ganglia Stroke.

    Directory of Open Access Journals (Sweden)

    Ulla K Seidel

    Full Text Available Besides motor function, the basal ganglia have been implicated in feedback learning. In patients with chronic basal ganglia infarcts, deficits in reward-based reversal learning have previously been described.We re-examined the acquisition and reversal of stimulus-stimulus-reward associations and acquired equivalence in eleven patients with acute basal ganglia stroke (8 men, 3 women; 57.8±13.3 years, whose performance was compared eleven healthy subjects of comparable age, sex distribution and education, who were recruited outside the hospital. Eleven hospitalized patients with a similar vascular risk profile as the stroke patients but without stroke history served as clinical control group.In a neuropsychological assessment 7±3 days post-stroke, verbal and spatial short-term and working memory and inhibition control did not differ between groups. Compared with healthy subjects, control patients with vascular risk factors exhibited significantly reduced performance in the reversal phase (F[2,30] = 3.47; p = 0.044; post-hoc comparison between risk factor controls and healthy controls: p = 0.030, but not the acquisition phase (F[2,30] = 1.01; p = 0.376 and the acquired equivalence (F[2,30] = 1.04; p = 0.367 tasks. In all tasks, the performance of vascular risk factor patients closely resembled that of basal ganglia stroke patients. Correlation studies revealed a significant association of the number of vascular risk factors with reversal learning (r = -0.33, p = 0.012, but not acquisition learning (r = -0.20, p = 0.121 or acquired equivalence (r = -0.22, p = 0.096.The previously reported impairment of reward-based learning may be attributed to vascular risk factors and associated diseases, which are enriched in stroke patients. This study emphasizes the necessity of appropriate control subjects in cognition studies.

  15. Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans

    NARCIS (Netherlands)

    Williams, D; Tijssen, M; van Bruggen, G; Bosch, A; Insola, A; Di Lazzaro, V; Mazzone, P; Oliviero, A; Quartarone, A; Speelman, H; Brown, P

    2002-01-01

    We test the hypothesis that interaction between the human basal ganglia and cerebral cortex involves activity in multiple functional circuits characterized by their frequency of oscillation, phase characteristics, dopamine dependency and topography. To this end we took recordings from

  16. Multiple Frequencies in the Basal Ganglia in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Clare M. Davidson

    2015-01-01

    Full Text Available In recent years, the authors have developed what appears to be a very successful phenomenological model for analyzing the role of deep brain stimulation (DBS in alleviating the symptoms of Parkinson's disease. In this paper, we extend the scope of the model by using it to predict the generation of new frequencies from networks tuned to a specific frequency, or indeed not self-oscillatory at all. We have discussed two principal cases: firstly where the constituent systems are coupled in an excitatory-excitatory fashion, which we designate by ``+/+''; and secondly where the constituent systems are coupled in an excitatory-inhibitory fashion, which we designate ``+/-''. The model predicts that from a basic system tuned to tremor frequency we can generate an unlimited range of frequencies. We illustrate in particular, starting from systems which are initially non-oscillatory, that when the coupling coefficient exceeds a certain value, the system begins to oscillate at an amplitude which increases with the coupling strength. Another very interesting feature, which has been shown by colleagues of ours to arise through the coupling of complicated networks based on the physiology of the basal ganglia, can be illustrated by the root locus method which shows that increasing and decreasing frequencies of oscillation, existing simultaneously, have the property that their geometric mean remains substantially constant as the coupling strength is varied. We feel that with the present approach, we have provided another tool for understanding the existence and interaction of pathological oscillations which underlie, not only Parkinson's disease, but other conditions such as Tourette's syndrome, depression and epilepsy.

  17. Basal ganglia neuronal activity during scanning eye movements in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Tomáš Sieger

    Full Text Available The oculomotor role of the basal ganglia has been supported by extensive evidence, although their role in scanning eye movements is poorly understood. Nineteen Parkinsońs disease patients, which underwent implantation of deep brain stimulation electrodes, were investigated with simultaneous intraoperative microelectrode recordings and single channel electrooculography in a scanning eye movement task by viewing a series of colored pictures selected from the International Affective Picture System. Four patients additionally underwent a visually guided saccade task. Microelectrode recordings were analyzed selectively from the subthalamic nucleus, substantia nigra pars reticulata and from the globus pallidus by the WaveClus program which allowed for detection and sorting of individual neurons. The relationship between neuronal firing rate and eye movements was studied by crosscorrelation analysis. Out of 183 neurons that were detected, 130 were found in the subthalamic nucleus, 30 in the substantia nigra and 23 in the globus pallidus. Twenty percent of the neurons in each of these structures showed eye movement-related activity. Neurons related to scanning eye movements were mostly unrelated to the visually guided saccades. We conclude that a relatively large number of basal ganglia neurons are involved in eye motion control. Surprisingly, neurons related to scanning eye movements differed from neurons activated during saccades suggesting functional specialization and segregation of both systems for eye movement control.

  18. Basal ganglia neuronal activity during scanning eye movements in Parkinson's disease.

    Science.gov (United States)

    Sieger, Tomáš; Bonnet, Cecilia; Serranová, Tereza; Wild, Jiří; Novák, Daniel; Růžička, Filip; Urgošík, Dušan; Růžička, Evžen; Gaymard, Bertrand; Jech, Robert

    2013-01-01

    The oculomotor role of the basal ganglia has been supported by extensive evidence, although their role in scanning eye movements is poorly understood. Nineteen Parkinsońs disease patients, which underwent implantation of deep brain stimulation electrodes, were investigated with simultaneous intraoperative microelectrode recordings and single channel electrooculography in a scanning eye movement task by viewing a series of colored pictures selected from the International Affective Picture System. Four patients additionally underwent a visually guided saccade task. Microelectrode recordings were analyzed selectively from the subthalamic nucleus, substantia nigra pars reticulata and from the globus pallidus by the WaveClus program which allowed for detection and sorting of individual neurons. The relationship between neuronal firing rate and eye movements was studied by crosscorrelation analysis. Out of 183 neurons that were detected, 130 were found in the subthalamic nucleus, 30 in the substantia nigra and 23 in the globus pallidus. Twenty percent of the neurons in each of these structures showed eye movement-related activity. Neurons related to scanning eye movements were mostly unrelated to the visually guided saccades. We conclude that a relatively large number of basal ganglia neurons are involved in eye motion control. Surprisingly, neurons related to scanning eye movements differed from neurons activated during saccades suggesting functional specialization and segregation of both systems for eye movement control.

  19. Bilateral Functional Connectivity of the Basal Ganglia in Patients with Parkinson’s Disease and Its Modulation by Dopaminergic Treatment

    Science.gov (United States)

    Little, Simon; Tan, Huiling; Anzak, Anam; Pogosyan, Alek; Kühn, Andrea; Brown, Peter

    2013-01-01

    Parkinson’s disease is characterised by excessive subcortical beta oscillations. However, little is known about the functional connectivity of the two basal ganglia across hemispheres and specifically the role beta plays in this. We recorded local field potentials from the subthalamic nucleus bilaterally in 23 subjects with Parkinson’s disease at rest, on and off medication. We found suppression of low beta power in response to levodopa (t22 = −4.4, psynchronisation in the beta band and found significant amplitude co-modulation and phase locking values in 17 and 16 subjects respectively, off medication. There was a dissociable effect of levodopa on these measures, with a significant suppression only in low beta phase locking value (t22 = −2.8, p = 0.01) and not amplitude co-modulation. The absolute mean values of amplitude co-modulation (0.40±0.03) and phase synchronisation (0.29±0.02) off medication were, however, relatively low, suggesting that the two basal ganglia networks may have to be approached separately with independent sensing and stimulation during adaptive deep brain stimulation. In addition, our findings highlight the functional distinction between the lower and upper beta frequency ranges and between amplitude co-modulation and phase synchronization across subthalamic nuclei. PMID:24376574

  20. Significant Risk Factors for Postoperative Enlargement of Basal Ganglia Hematoma after Frameless Stereotactic Aspiration: Antiplatelet Medication and Concomitant IVH.

    Science.gov (United States)

    Son, Wonsoo; Park, Jaechan

    2017-09-01

    Frameless stereotactic aspiration of a hematoma can be the one of the treatment options for spontaneous intracerebral hemorrhage in the basal ganglia. Postoperative hematoma enlargement, however, can be a serious complication of intracranial surgery that frequently results in severe neurological deficit and even death. Therefore, it is important to identify the risk factors of postoperative hematoma growth. During a 13-year period, 101 patients underwent minimally invasive frameless stereotactic aspiration for basal ganglia hematoma. Patients were classified into two groups according to whether or not they had postoperative hematoma enlargement in a computed tomography scan. Baseline demographic data and several risk factors, such as hypertension, preoperative hematoma growth, antiplatelet medication, presence of concomitant intraventricular hemorrhage (IVH), were analysed via a univariate statistical study. Nine of 101 patients (8.9%) showed hematoma enlargement after frameless stereotactic aspiration. Among the various risk factors, concomitant IVH and antiplatelet medication were found to be significantly associated with postoperative enlargement of hematomas. In conclusion, our study revealed that aspirin use and concomitant IVH are factors associated with hematoma enlargement subsequent to frameless stereotactic aspiration for basal ganglia hematoma.

  1. Inter regional correlations of glucose metabolism between the basal ganglia and different cortical areas: an ultra-high resolution PET/MRI fusion study using {sup 18}F-FDG

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H. [Research Institute for Advanced Industrial Technology, Korea University, Sejong (Korea, Republic of); Son, Y.D.; Kim, H.K.; Oh, C.H., E-mail: ohch@korea.ac.kr [College of Health Science, Gachon University, Incheon, (Korea, Republic of); Kim, J.M. [College of Science and Technology, Korea University, Sejong (Korea, Republic of); Kim, Y.B. [Gachon University School of Medicine, Incheon (Korea, Republic of); Lee, C. [Bioimaging Research Team, Korea Basic Science Institute, Cheongju (Korea, Republic of)

    2018-02-01

    Basal ganglia have complex functional connections with the cerebral cortex and are involved in motor control, executive functions of the forebrain, such as the planning of movement, and cognitive behaviors based on their connections. The aim of this study was to provide detailed functional correlation patterns between the basal ganglia and cerebral cortex by conducting an inter regional correlation analysis of the {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography (PET) data based on precise structural information. Fifteen participants were scanned with 7-Tesla magnetic resonance imaging (MRI) and high resolution research tomography (HRRT)-PET fusion system using {sup 18}F-FDG. For detailed inter regional correlation analysis, 24 subregions of the basal ganglia including pre-commissural dorsal caudate, post-commissural caudate, pre-commissural dorsal putamen, post-commissural putamen, internal globus pallidus, and external globus pallidus and 80 cerebral regions were selected as regions of interest on the MRI image and their glucose metabolism were calculated from the PET images. Pearson's product-moment correlation analysis was conducted for the inter regional correlation analysis of the basal ganglia. Functional correlation patterns between the basal ganglia and cerebral cortex were not only consistent with the findings of previous studies, but also showed new functional correlation between the dorsal striatum (i.e., caudate nucleus and putamen) and insula. In this study, we established the detailed basal ganglia subregional functional correlation patterns using {sup 18}F-FDG PET/MRI fusion imaging. Our methods and results could potentially be an important resource for investigating basal ganglia dysfunction as well as for conducting functional studies in the context of movement and psychiatric disorders. (author)

  2. Basal ganglia disorders studied by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Shinotoh, Hitoshi [Chiba Univ. (Japan). School of Medicine

    1994-04-01

    Recent development of positron emitting radioligands has made it possible to investigate the alterations of neurotransmitter systems associated with basal ganglia disorders in vivo. The functional integrity of nigro-striatal dopaminergic terminals may be studied with [[sup 18]F]6-fluoro-L-dopa ([[sup 18]F]dopa), and striatal dopamine receptor density with suitable PET ligands. [[sup 18]F]dopa uptake in the striatum (putamen) is markedly reduced in patients with Parkinson's disease (PD). [[sup 18]F]dopa-PET is capable of detecting sub-clinical nigral dysfunction in asymptomatic patients with familial PD and those who become Parkinsonian on conventional doses of dopamine receptor antagonists. While putamen [[sup 18]F]dopa uptake is reduced to a similar level in patients with multiple system atrophy (MSA) and PD, caudate [[sup 18]F] dopa uptake is lower in MSA than PD. However, [[sup 18]F]dopa PET cannot consistently distinguish MSA from PD because individual ranges of caudate [[sup 18]F]dopa uptake overlap. D[sub 1] and D[sub 2] receptor binding is markedly reduced in the striatum (posterior putamen) of MSA patients. Therefore, dopamine receptor imaging is useful for the differential diagnosis of MSA and PD. Similar marked reductions in putamen and caudate [[sup 18]F]dopa uptake have been observed in patients with progressive supranuclear palsy (PSP). Moderate reductions in D[sub 2] receptor binding have been reported in the striatum of PSP patients. The reduction in D[sub 2] receptor binding is more prominent in the caudate than putamen. Striatal [[sup 18]F]dopa uptake is normal or only mildly reduced in patients with dopa responsive dystonia (DRD). D[sub 2] receptor binding is markedly reduced in patients with Huntington's disease, while striatal [[sup 18]F]dopa uptake is normal or mildly reduced. In summary, PET can demonstrate characteristic patterns of disruption of dopaminergic systems associated with basal ganglia disorders. (J.P.N.) 55 refs.

  3. Measurement of the Effect of Phenothiazine on the Manganese Concentration in the Basal Ganglia of Sub-Human Primates by Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bird, E. D.; Grant, L. G.; Ellis, W. H. [University of Florida, Gainesville, FL (United States)

    1967-10-15

    In man toxicity to manganese and phenothiazine drugs is manifested as dyskinesia. Cotzias and co-workers demonstrated that the phenothiazines form a semiquinone radical with manganese suggesting a common mechanism for production of Parkinsonism. Previous measurements of manganese have been made on whole brain. The very sensitive technique of activation analysis was used in the present study to measure manganese concentration in various nuclei of the basal ganglia. Phenothiazine was given to one group of Rhesus monkeys (Macaca mulatta) for one month. One group served as a control. After sacrifice the basal ganglia were dissected out with plastic knives, dried, and duplicate samples exposed to thermal neutrons at a flux of 1.35 x 10{sup 12} n/cm{sup 2}s. Manganese was separated radiochemical and counts under the manganese peak were compared to a standard handled identically. The results are presented. The manganese concentration was significantly increased in the putamen of primates receiving phenothiazine. There was no significant difference in the other nuclei examined. Phenothiazine is concentrated in basal ganglia. Dopamine is found in large quantities in caudate and putamen, and following phenothiazine therapy dopamine was found to be increased slightly. The associated increase of manganese and dopamine following phenothiazine provides some evidence that this drug causes profound biochemical alterations in the basal ganglia resulting in the various dyskinesias that are seen. (author)

  4. Deep brain stimulation changes basal ganglia output nuclei firing pattern in the dystonic hamster.

    Science.gov (United States)

    Leblois, Arthur; Reese, René; Labarre, David; Hamann, Melanie; Richter, Angelika; Boraud, Thomas; Meissner, Wassilios G

    2010-05-01

    Dystonia is a heterogeneous syndrome of movement disorders characterized by involuntary muscle contractions leading to abnormal movements and postures. While medical treatment is often ineffective, deep brain stimulation (DBS) of the internal pallidum improves dystonia. Here, we studied the impact of DBS in the entopeduncular nucleus (EP), the rodent equivalent of the human globus pallidus internus, on basal ganglia output in the dt(sz)-hamster, a well-characterized model of dystonia by extracellular recordings. Previous work has shown that EP-DBS improves dystonic symptoms in dt(sz)-hamsters. We report that EP-DBS changes firing pattern in the EP, most neurons switching to a less regular firing pattern during DBS. In contrast, EP-DBS did not change the average firing rate of EP neurons. EP neurons display multiphasic responses to each stimulation impulse, likely underlying the disruption of their firing rhythm. Finally, neurons in the substantia nigra pars reticulata display similar responses to EP-DBS, supporting the idea that EP-DBS affects basal ganglia output activity through the activation of common afferent fibers. Copyright 2010 Elsevier Inc. All rights reserved.

  5. What basal ganglia changes underlie the parkinsonian state? The significance of neuronal oscillatory activity

    Science.gov (United States)

    Quiroga-Varela, A.; Walters, J.R.; Brazhnik, E.; Marin, C.; Obeso, J.A.

    2014-01-01

    One well accepted functional feature of the parkinsonian state is the recording of enhanced beta oscillatory activity in the basal ganglia. This has been demonstrated in patients with Parkinson's disease (PD) and in animal models such as the rat with 6-hydroxydopamine (6-OHDA)-induced lesion and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys, all of which are associated with severe striatal dopamine depletion. Neuronal hyper-synchronization in the beta (or any other) band is not present despite the presence of bradykinetic features in the rat and monkey models, suggesting that increased beta band power may arise when nigro-striatal lesion is advanced and that it is not an essential feature of the early parkinsonian state. Similar observations and conclusions have been previously made for increased neuronal firing rate in the subthalamic and globus pallidus pars interna nuclei. Accordingly, it is suggested that early parkinsonism may be associated with dynamic changes in basal ganglia output activity leading to reduced movement facilitation that may be an earlier feature of the parkinsonian state. PMID:23727447

  6. Microstructural Changes within the Basal Ganglia Differ between Parkinson Disease Subtypes.

    Science.gov (United States)

    Nagae, Lidia M; Honce, Justin M; Tanabe, Jody; Shelton, Erika; Sillau, Stefan H; Berman, Brian D

    2016-01-01

    Diffusion tensor imaging (DTI) of the substantia nigra has shown promise in detecting and quantifying neurodegeneration in Parkinson disease (PD). It remains unknown, however, whether differences in microstructural changes within the basal ganglia underlie PD motor subtypes. We investigated microstructural changes within the basal ganglia of mild to moderately affected PD patients using DTI and sought to determine if microstructural changes differ between the tremor dominant (TD) and postural instability/gait difficulty (PIGD) subtypes. Fractional anisotropy, mean diffusivity, radial, and axial diffusivity were obtained from bilateral caudate, putamen, globus pallidus, and substantia nigra of 21 PD patients (12 TD and 9 PIGD) and 20 age-matched healthy controls. T-tests and ANOVA methods were used to compare PD patients, subtypes, and controls, and Spearman correlations tested for relationships between DTI and clinical measures. We found our cohort of PD patients had reduced fractional anisotropy within the substantia nigra and increased mean and radial diffusivity within the substantia nigra and globus pallidus compared to controls, and that changes within those structures were largely driven by the PIGD subtype. Across all PD patients fractional anisotropy within the substantia nigra correlated with disease stage, while in PIGD patients increased diffusivity within the globus pallidus correlated with disease stage and motor severity. We conclude that PIGD patients have more severely affected microstructural changes within the substantia nigra compared to TD, and that microstructural changes within the globus pallidus may be particularly relevant for the manifestation of the PIGD subtype.

  7. Hereditary haemochromatosis: a case of iron accumulation in the basal ganglia associated with a parkinsonian syndrome

    DEFF Research Database (Denmark)

    Nielsen, J.E.; Jensen, L. Neerup; Krabbe, K.

    1995-01-01

    . A patient is reported with hereditary haemochromatosis and a syndrome of dementia, dysarthria, a slowly progressive gait disturbance, imbalance, muscle weakness, rigidity, bradykinesia, tremor, ataxia, and dyssynergia. The findings on MRI of a large signal decrease in the basal ganglia, consistent...

  8. Exercise Mode Moderates the Relationship Between Mobility and Basal Ganglia Volume in Healthy Older Adults.

    Science.gov (United States)

    Nagamatsu, Lindsay S; Weinstein, Andrea M; Erickson, Kirk I; Fanning, Jason; Awick, Elizabeth A; Kramer, Arthur F; McAuley, Edward

    2016-01-01

    To examine whether 12 months of aerobic training (AT) moderated the relationship between change in mobility and change in basal ganglia volume than balance and toning (BAT) exercises in older adults. Secondary analysis of a randomized controlled trial. Champaign-Urbana, Illinois. Community-dwelling older adults (N=101; mean age 66.4). Twelve-month exercise trial with two groups: AT and BAT. Mobility was assessed using the Timed Up and Go test. Basal ganglia (putamen, caudate nucleus, pallidum) was segmented from T1-weighted magnetic resonance images using the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain Software Library Integrated Registration and Segmentation Tool. Measurements were obtained at baseline and trial completion. Hierarchical multiple regression was conducted to examine whether exercise mode moderates the relationship between change in mobility and change in basal ganglia volume over 12 months. Age, sex, and education were included as covariates. Exercise significantly moderated the relationship between change in mobility and change in left putamen volume. Specifically, for the AT group, volume of the left putamen did not change, regardless of change in mobility. Similarly, in the BAT group, those who improved their mobility most over 12 months had no change in left putamen volume, although left putamen volume of those who declined in mobility levels decreased significantly. The primary finding that older adults who engaged in 12 months of BAT training and improved mobility exhibited maintenance of brain volume in an important region responsible for motor control provides compelling evidence that such exercises can contribute to the promotion of functional independence and healthy aging. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  9. Raclopride or high-frequency stimulation of the subthalamic nucleus stops cocaine-induced motor stereotypy and restores related alterations in prefrontal basal ganglia circuits.

    Science.gov (United States)

    Aliane, Verena; Pérez, Sylvie; Deniau, Jean-Michel; Kemel, Marie-Louise

    2012-11-01

    Motor stereotypy is a key symptom of various neurological or neuropsychiatric disorders. Neuroleptics or the promising treatment using deep brain stimulation stops stereotypies but the mechanisms underlying their actions are unclear. In rat, motor stereotypies are linked to an imbalance between prefrontal and sensorimotor cortico-basal ganglia circuits. Indeed, cortico-nigral transmission was reduced in the prefrontal but not sensorimotor basal ganglia circuits and dopamine and acetylcholine release was altered in the prefrontal but not sensorimotor territory of the dorsal striatum. Furthermore, cholinergic transmission in the prefrontal territory of the dorsal striatum plays a crucial role in the arrest of motor stereotypy. Here we found that, as previously observed for raclopride, high-frequency stimulation of the subthalamic nucleus (HFS STN) rapidly stopped cocaine-induced motor stereotypies in rat. Importantly, raclopride and HFS STN exerted a strong effect on cocaine-induced alterations in prefrontal basal ganglia circuits. Raclopride restored the cholinergic transmission in the prefrontal territory of the dorsal striatum and the cortico-nigral information transmissions in the prefrontal basal ganglia circuits. HFS STN also restored the N-methyl-d-aspartic-acid-evoked release of acetylcholine and dopamine in the prefrontal territory of the dorsal striatum. However, in contrast to raclopride, HFS STN did not restore the cortico-substantia nigra pars reticulata transmissions but exerted strong inhibitory and excitatory effects on neuronal activity in the prefrontal subdivision of the substantia nigra pars reticulata. Thus, both raclopride and HFS STN stop cocaine-induced motor stereotypy, but exert different effects on the related alterations in the prefrontal basal ganglia circuits. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  10. Urokinase vs Tissue-Type Plasminogen Activator for Thrombolytic Evacuation of Spontaneous Intracerebral Hemorrhage in Basal Ganglia

    Directory of Open Access Journals (Sweden)

    Yuqian Li

    2017-08-01

    Full Text Available Spontaneous intracerebral hemorrhage (ICH is a devastating form of stroke, which leads to a high rate of mortality and poor neurological outcomes worldwide. Thrombolytic evacuation with urokinase-type plasminogen activator (uPA or tissue-type plasminogen activator (tPA has been showed to be a hopeful treatment for ICH. However, to the best of our knowledge, no clinical trials were reported to compare the efficacy and safety of these two fibrinolytics administrated following minimally invasive stereotactic puncture (MISP in patients with spontaneous basal ganglia ICH. Therefore, the authors intended here to evaluate the differential impact of uPA and tPA in a retrospective study. In the present study, a total of 86 patients with spontaneous ICH in basal ganglia using MISP received either uPA (uPA group, n = 45 or tPA (tPA group, n = 41, respectively. The clinical baseline characteristics prior to the operation were collected. In addition, therapeutic responses were assessed by the short-term outcomes within 30 days postoperation, as well as long-term outcomes at 1 year postoperation. Our findings showed that, in comparison with tPA, uPA was able to better promote hematoma evacuation and ameliorate perihematomal edema, but the differences were not statistically significant. Moreover, the long-term functional outcomes of both groups were similar, with no statistical difference. In conclusion, these results provide evidence supporting that uPA and tPA are similar in the efficacy and safety for thrombolytic evacuation in combination with MISP in patients with spontaneous basal ganglia ICH.

  11. Loss of function of Slc20a2 associated with familial idiopathic Basal Ganglia calcification in humans causes brain calcifications in mice

    DEFF Research Database (Denmark)

    Jensen, N.; Schroder, H. D.; Hejbol, E. K.

    2013-01-01

    Familial idiopathic basal ganglia calcification (FIBGC) is a neurodegenerative disorder with neuropsychiatric and motor symptoms. Deleterious mutations in SLC20A2, encoding the type III sodium-dependent phosphate transporter 2 (PiT2), were recently linked to FIBGC in almost 50% of the families...... reported worldwide. Here, we show that knockout of Slc20a2 in mice causes calcifications in the thalamus, basal ganglia, and cortex, demonstrating that reduced PiT2 expression alone can cause brain calcifications....

  12. Novel signal-dependent filter bank method for identification of multiple basal ganglia nuclei in Parkinsonian patients

    Science.gov (United States)

    Pinzon-Morales, R. D.; Orozco-Gutierrez, A. A.; Castellanos-Dominguez, G.

    2011-06-01

    Microelectrode recordings are a valuable tool for assisting localization targets during deep brain stimulation procedures in Parkinson's disease neurosurgery. Attempts to automate and standardize this process have been limited by variability in patient neurophysiology and strong dynamics of microelectrode recordings. In this paper, a methodology for the identification of basal ganglia nuclei is presented that is based on a signal-dependent filter bank method using microelectrode recordings. The method is a customized realization of the discrete wavelet transform via the lifting scheme that is optimally tuned by genetic algorithms. Using this method, unique mother wavelet functions that exhibit an adaptable spectrum to the microelectrode recording dynamic are generated. Additionally, by extracting morphological features from the space-transformed microelectrode recording, it is possible to integrate them into three-dimensional (3D) feature spaces with maximum class separability. Finally, high discriminant feature spaces are fed into basic classifiers to recognize up to four basal nuclei. Comparison with several existing wavelets highlights the characteristics of new mother wavelets. Additionally, classification results show that identification of addressed nuclei in the basal ganglia can be performed with 95% confidence.

  13. Toward sophisiticated basal ganglia neuromodulation: review on basal gaglia deep brain stimulation

    Science.gov (United States)

    Da Cunha, Claudio; Boschen, Suelen L.; Gómez-A, Alexander; Ross, Erika K.; Gibson, William S. J.; Min, Hoon-Ki; Lee, Kendall H.; Blaha, Charles D.

    2015-01-01

    This review presents state-of-the-art knowledge about the roles of the basal ganglia (BG) in action-selection, cognition, and motivation, and how this knowledge has been used to improve deep brain stimulation (DBS) treatment of neurological and psychiatric disorders. Such pathological conditions include Parkinson’s disease, Huntington’s disease, Tourette syndrome, depression, and obsessive-compulsive disorder. The first section presents evidence supporting current hypotheses of how the cortico-BG circuitry works to select motor and emotional actions, and how defects in this circuitry can cause symptoms of the BG diseases. Emphasis is given to the role of striatal dopamine on motor performance, motivated behaviors and learning of procedural memories. Next, the use of cutting-edge electrochemical techniques in animal and human studies of BG functioning under normal and disease conditions is discussed. Finally, functional neuroimaging studies are reviewed; these works have shown the relationship between cortico-BG structures activated during DBS and improvement of disease symptoms. PMID:25684727

  14. The Role of the Basal Ganglia in Implicit Contextual Learning: A Study of Parkinson's Disease

    Science.gov (United States)

    van Asselen, Marieke; Almeida, Ines; Andre, Rui; Januario, Cristina; Goncalves, Antonio Freire; Castelo-Branco, Miguel

    2009-01-01

    Implicit contextual learning refers to the ability to memorize contextual information from our environment. This contextual information can then be used to guide our attention to a specific location. Although the medial temporal lobe is important for this type of learning, the basal ganglia might also be involved considering its role in many…

  15. Retinoic acid functions as a key GABAergic differentiation signal in the basal ganglia.

    Directory of Open Access Journals (Sweden)

    Christina Chatzi

    2011-04-01

    Full Text Available Although retinoic acid (RA has been implicated as an extrinsic signal regulating forebrain neurogenesis, the processes regulated by RA signaling remain unclear. Here, analysis of retinaldehyde dehydrogenase mutant mouse embryos lacking RA synthesis demonstrates that RA generated by Raldh3 in the subventricular zone of the basal ganglia is required for GABAergic differentiation, whereas RA generated by Raldh2 in the meninges is unnecessary for development of the adjacent cortex. Neurospheres generated from the lateral ganglionic eminence (LGE, where Raldh3 is highly expressed, produce endogenous RA, which is required for differentiation to GABAergic neurons. In Raldh3⁻/⁻ embryos, LGE progenitors fail to differentiate into either GABAergic striatal projection neurons or GABAergic interneurons migrating to the olfactory bulb and cortex. We describe conditions for RA treatment of human embryonic stem cells that result in efficient differentiation to a heterogeneous population of GABAergic interneurons without the appearance of GABAergic striatal projection neurons, thus providing an in vitro method for generation of GABAergic interneurons for further study. Our observation that endogenous RA is required for generation of LGE-derived GABAergic neurons in the basal ganglia establishes a key role for RA signaling in development of the forebrain.

  16. MRI pattern of infarcts in basal ganglia region in patients with tuberculous meningitis

    Energy Technology Data Exchange (ETDEWEB)

    Nair, P.P.; Kalita, J.; Misra, U.K. [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Neurology, Lucknow (India); Kumar, S. [Sanjay Gandhi Postgraduate Institute of Medical sciences, Department of Radiology, Lucknow (India)

    2009-04-15

    This study aimed to evaluate the pattern of infarct in basal ganglia region in tuberculous meningitis (TBM) and ischemic strokes and its sensitivity and specificity in the diagnosis of these disorders. Patients with TBM and ischemic strokes in basal ganglia region were retrospectively evaluated from our tuberculous meningitis and ischemic stroke registry. Magnetic resonance imaging findings were grouped into anterior (caudate, genu, anterior limb of internal capsule, anteromedial thalamus) and posterior (lentiform nuclei, posterior limb of internal capsule, posterolateral thalamus). The sensitivity and specificity of these patterns in diagnosing TBM and ischemic stroke were evaluated. There were 24 patients in each group. Infarct in TBM was purely anterior in eight patients and in ischemic stroke purely posterior in 18 patients. The frequency of caudate infarct was significantly higher in TBM compared to ischemic stroke (37.5% vs 8.3%). In TBM patients, purely posterior infarcts were present in seven patients; three had associated risk factors of ischemic stroke. The sensitivity of pure anterior infarct in the diagnosis of TBM was 33%, specificity 91.66%. For ischemic stroke, the sensitivity of posterior infarct was 75% and specificity 70.83%. TBM patients having infarcts in posterior region should be looked for associated risk factors of ischemic stroke. (orig.)

  17. Automatic evaluation of speech rhythm instability and acceleration in dysarthrias associated with basal ganglia dysfunction

    Directory of Open Access Journals (Sweden)

    Jan eRusz

    2015-07-01

    Full Text Available Speech rhythm abnormalities are commonly present in patients with different neurodegenerative disorders. These alterations are hypothesized to be a consequence of disruption to the basal ganglia circuitry involving dysfunction of motor planning, programming and execution, which can be detected by a syllable repetition paradigm. Therefore, the aim of the present study was to design a robust signal processing technique that allows the automatic detection of spectrally-distinctive nuclei of syllable vocalizations and to determine speech features that represent rhythm instability and acceleration. A further aim was to elucidate specific patterns of dysrhythmia across various neurodegenerative disorders that share disruption of basal ganglia function. Speech samples based on repetition of the syllable /pa/ at a self-determined steady pace were acquired from 109 subjects, including 22 with Parkinson's disease (PD, 11 progressive supranuclear palsy (PSP, 9 multiple system atrophy (MSA, 24 ephedrone-induced parkinsonism (EP, 20 Huntington's disease (HD, and 23 healthy controls. Subsequently, an algorithm for the automatic detection of syllables as well as features representing rhythm instability and rhythm acceleration were designed. The proposed detection algorithm was able to correctly identify syllables and remove erroneous detections due to excessive inspiration and nonspeech sounds with a very high accuracy of 99.6%. Instability of vocal pace performance was observed in PSP, MSA, EP and HD groups. Significantly increased pace acceleration was observed only in the PD group. Although not significant, a tendency for pace acceleration was observed also in the PSP and MSA groups. Our findings underline the crucial role of the basal ganglia in the execution and maintenance of automatic speech motor sequences. We envisage the current approach to become the first step towards the development of acoustic technologies allowing automated assessment of rhythm

  18. Temporal changes of CB1 cannabinoid receptor in the basal ganglia as a possible structure-specific plasticity process in 6-OHDA lesioned rats.

    Directory of Open Access Journals (Sweden)

    Gabriela P Chaves-Kirsten

    Full Text Available The endocannabinoid system has been implicated in several neurobiological processes, including neurodegeneration, neuroprotection and neuronal plasticity. The CB1 cannabinoid receptors are abundantly expressed in the basal ganglia, the circuitry that is mostly affected in Parkinson's Disease (PD. Some studies show variation of CB1 expression in basal ganglia in different animal models of PD, however the results are quite controversial, due to the differences in the procedures employed to induce the parkinsonism and the periods analyzed after the lesion. The present study evaluated the CB1 expression in four basal ganglia structures, namely striatum, external globus pallidus (EGP, internal globus pallidus (IGP and substantia nigra pars reticulata (SNpr of rats 1, 5, 10, 20, and 60 days after unilateral intrastriatal 6-hydroxydopamine injections, that causes retrograde dopaminergic degeneration. We also investigated tyrosine hydroxylase (TH, parvalbumin, calbindin and glutamic acid decarboxylase (GAD expression to verify the status of dopaminergic and GABAergic systems. We observed a structure-specific modulation of CB1 expression at different periods after lesions. In general, there were no changes in the striatum, decreased CB1 in IGP and SNpr and increased CB1 in EGP, but this increase was not sustained over time. No changes in GAD and parvalbumin expression were observed in basal ganglia, whereas TH levels were decreased and the calbindin increased in striatum in short periods after lesion. We believe that the structure-specific variation of CB1 in basal ganglia in the 6-hydroxydopamine PD model could be related to a compensatory process involving the GABAergic transmission, which is impaired due to the lack of dopamine. Our data, therefore, suggest that the changes of CB1 and calbindin expression may represent a plasticity process in this PD model.

  19. Singing can improve speech function in aphasics associated with intact right basal ganglia and preserve right temporal glucose metabolism: Implications for singing therapy indication.

    Science.gov (United States)

    Akanuma, Kyoko; Meguro, Kenichi; Satoh, Masayuki; Tashiro, Manabu; Itoh, Masatoshi

    2016-01-01

    Clinically, we know that some aphasic patients can sing well despite their speech disturbances. Herein, we report 10 patients with non-fluent aphasia, of which half of the patients improved their speech function after singing training. We studied ten patients with non-fluent aphasia complaining of difficulty finding words. All had lesions in the left basal ganglia or temporal lobe. They selected the melodies they knew well, but which they could not sing. We made a new lyric with a familiar melody using words they could not name. The singing training using these new lyrics was performed for 30 minutes once a week for 10 weeks. Before and after the training, their speech functions were assessed by language tests. At baseline, 6 of them received positron emission tomography to evaluate glucose metabolism. Five patients exhibited improvements after intervention; all but one exhibited intact right basal ganglia and left temporal lobes, but all exhibited left basal ganglia lesions. Among them, three subjects exhibited preserved glucose metabolism in the right temporal lobe. We considered that patients who exhibit intact right basal ganglia and left temporal lobes, together with preserved right hemispheric glucose metabolism, might be an indication of the effectiveness of singing therapy.

  20. A three-dimensional histological atlas of the human basal ganglia. II. Atlas deformation strategy and evaluation in deep brain stimulation for Parkinson disease.

    Science.gov (United States)

    Bardinet, Eric; Bhattacharjee, Manik; Dormont, Didier; Pidoux, Bernard; Malandain, Grégoire; Schüpbach, Michael; Ayache, Nicholas; Cornu, Philippe; Agid, Yves; Yelnik, Jérôme

    2009-02-01

    The localization of any given target in the brain has become a challenging issue because of the increased use of deep brain stimulation to treat Parkinson disease, dystonia, and nonmotor diseases (for example, Tourette syndrome, obsessive compulsive disorders, and depression). The aim of this study was to develop an automated method of adapting an atlas of the human basal ganglia to the brains of individual patients. Magnetic resonance images of the brain specimen were obtained before extraction from the skull and histological processing. Adaptation of the atlas to individual patient anatomy was performed by reshaping the atlas MR images to the images obtained in the individual patient using a hierarchical registration applied to a region of interest centered on the basal ganglia, and then applying the reshaping matrix to the atlas surfaces. Results were evaluated by direct visual inspection of the structures visible on MR images and atlas anatomy, by comparison with electrophysiological intraoperative data, and with previous atlas studies in patients with Parkinson disease. The method was both robust and accurate, never failing to provide an anatomically reliable atlas to patient registration. The registration obtained did not exceed a 1-mm mismatch with the electrophysiological signatures in the region of the subthalamic nucleus. This registration method applied to the basal ganglia atlas forms a powerful and reliable method for determining deep brain stimulation targets within the basal ganglia of individual patients.

  1. Basal ganglia calcification as a putative cause for cognitive decline.

    Science.gov (United States)

    de Oliveira, João Ricardo Mendes; de Oliveira, Matheus Fernandes

    2013-01-01

    Basal ganglia calcifications (BGC) may be present in various medical conditions, such as infections, metabolic, psychiatric and neurological diseases, associated with different etiologies and clinical outcomes, including parkinsonism, psychosis, mood swings and dementia. A literature review was performed highlighting the main neuropsychological findings of BGC, with particular attention to clinical reports of cognitive decline. Neuroimaging studies combined with neuropsychological analysis show that some patients have shown progressive disturbances of selective attention, declarative memory and verbal perseveration. Therefore, the calcification process might represent a putative cause for dementia syndromes, suggesting a probable link among calcinosis, the aging process and eventually with neuronal death. The increasing number of reports available will foster a necessary discussion about cerebral calcinosis and its role in determining symptomatology in dementia patients.

  2. Basal Ganglia Activity Mirrors a Benefit of Action and Reward on Long-Lasting Event Memory.

    Science.gov (United States)

    Koster, Raphael; Guitart-Masip, Marc; Dolan, Raymond J; Düzel, Emrah

    2015-12-01

    The expectation of reward is known to enhance a consolidation of long-term memory for events. We tested whether this effect is driven by positive valence or action requirements tied to expected reward. Using a functional magnetic resonance imaging (fMRI) paradigm in young adults, novel images predicted gain or loss outcomes, which in turn were either obtained or avoided by action or inaction. After 24 h, memory for these images reflected a benefit of action as well as a congruence of action requirements and valence, namely, action for reward and inaction for avoidance. fMRI responses in the hippocampus, a region known to be critical for long-term memory function, reflected the anticipation of inaction. In contrast, activity in the putamen mirrored the congruence of action requirement and valence, whereas other basal ganglia regions mirrored overall action benefits on long-lasting memory. The findings indicate a novel type of functional division between the hippocampus and the basal ganglia in the motivational regulation of long-term memory consolidation, which favors remembering events that are worth acting for. © The Author 2015. Published by Oxford University Press.

  3. Neurotensin receptor binding levels in basal ganglia are not altered in Huntington's chorea or schizophrenia

    International Nuclear Information System (INIS)

    Palacios, J.M.; Chinaglia, G.; Rigo, M.; Ulrich, J.; Probst, A.

    1991-01-01

    Autoradiographic techniques were used to examine the distribution and levels of neurotensin receptor binding sites in the basal ganglia and related regions of the human brain. Monoiodo ( 125 I-Tyr3)neurotensin was used as a ligand. High amounts of neurotensin receptor binding sites were found in the substantia nigra pars compacta. Lower but significant quantities of neurotensin receptor binding sites characterized the caudate, putamen, and nucleus accumbens, while very low quantities were seen in both medial and lateral segments of the globus pallidus. In Huntington's chorea, the levels of neurotensin receptor binding sites were found to be comparable to those of control cases. Only slight but not statistically significant decreases in amounts of receptor binding sites were detected in the dorsal part of the head and in the body of caudate nucleus. No alterations in the levels of neurotensin receptor binding sites were observed in the substantia nigra pars compacta and reticulata. These results suggest that a large proportion of neurotensin receptor binding sites in the basal ganglia are located on intrinsic neurons and on extrinsic afferent fibers that do not degenerate in Huntington's disease

  4. Changes in total cell numbers of the basal ganglia in patients with multiple system atrophy - A stereological study

    DEFF Research Database (Denmark)

    Salvesen, Lisette; Ullerup, Birgitte H; Sunay, Fatma B

    2014-01-01

    Total numbers of neurons, oligodendrocytes, astrocytes, and microglia in the basal ganglia and red nucleus were estimated in brains from 11 patients with multiple system atrophy (MSA) and 11 age- and gender-matched control subjects with unbiased stereological methods. Compared to the control...

  5. Effect of basal ganglia calcification on its glucose metabolism and dopaminergic function in idiopathic hypoparathyroidism.

    Science.gov (United States)

    Modi, Sagar; Arora, Geetanjali; Bal, Chandra Shekhar; Sreenivas, Vishnubhatla; Kailash, Suparna; Sagar, Rajesh; Goswami, Ravinder

    2015-10-01

    The functional significance of basal ganglia calcification (BGC) in idiopathic hypoparathyroidism (IH) is not clear. To assess the effect of BGC on glucose metabolism and dopaminergic function in IH. (18) F-FDG and (99m) Tc-TRODAT-1 nuclear imaging were performed in 35 IH patients with (n = 26) and without (n = 9) BGC. Controls were subjects without hypoparathyroidism or BGC (nine for (18) F-FDG and 12 for (99m) Tc-TRODAT-1). Relationship of the glucose metabolism and dopaminergic function was assessed with the neuropsychological and biochemical abnormalities. (18) F-FDG uptake in IH patients with calcification at caudate and striatum was less than that of IH patients without calcification (1·06 ± 0·13 vs 1·24 ± 0·09, P = <0·0001 and 1·06 ± 0·09 vs 1·14 ± 0·08, P = 0·03, respectively). (18) F-FDG uptake did not correlate with neuropsychological dysfunctions. (18) F-FDG uptake in IH without BGC was significantly lower than that of controls. The mean (99m) Tc-TRODAT-1 uptake at basal ganglia was comparable between IH with and without BGC and between IH without BGC and controls. Serum calcium-phosphorus ratio maintained by the patients correlated with (18) F-FDG uptake at striatum (r = 0·57, P = 0·001). For every 0·1 unit reduction in calcium-phosphorus ratio, (18) F-FDG uptake decreased by 2·5 ± 0·68% (P = 0·001). BGC was associated with modest reduction (15%) in (18) F-FDG uptake at basal ganglia in IH but did not affect dopaminergic function. (18) F-FDG uptake did not correlate with neuropsychological dysfunctions. Interestingly, chronic hypocalcaemia-hyperphosphataemia also contributed to reduction in (18) F-FDG uptake which was independent of BGC. © 2014 John Wiley & Sons Ltd.

  6. Bilateral symmetrical low density areas in the basal ganglia

    International Nuclear Information System (INIS)

    Ugawa, Yoshikazu; Ihara, Yasuo

    1984-01-01

    We reported a case with dysarthria and gait disturbance, in which CT revealed symmetrical well-demarcated low density areas in the basal ganglia. The patient was a 43-year-old woman. Her family history and past history were not contributory. She had a little difficulty in speaking at the age of 17. Gait disturbance and micrographia appeared later. Although her expressionless face resembles to that seen in Parkinsonism, rigidity, akinesia and small-stepped gait were not present. The unclassified types of dysarthria and gait disturbance, which characterize the present case, were considered to be a kind of extrapyramidal symptoms, which were distinct from those of Parkinsonism. CT showed well demarcated low density areas predominantly in bilateral putamen. Metrizamide CT failed to show any communication between low density areas and subarachnoid spaces. To date, six cases, which presented similar clinical features and almost same CT findings as our case, were reported. (author)

  7. Basal ganglia dysfunction in OCD: subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy.

    Science.gov (United States)

    Welter, M-L; Burbaud, P; Fernandez-Vidal, S; Bardinet, E; Coste, J; Piallat, B; Borg, M; Besnard, S; Sauleau, P; Devaux, B; Pidoux, B; Chaynes, P; Tézenas du Montcel, S; Bastian, A; Langbour, N; Teillant, A; Haynes, W; Yelnik, J; Karachi, C; Mallet, L

    2011-05-03

    Functional and connectivity changes in corticostriatal systems have been reported in the brains of patients with obsessive-compulsive disorder (OCD); however, the relationship between basal ganglia activity and OCD severity has never been adequately established. We recently showed that deep brain stimulation of the subthalamic nucleus (STN), a central basal ganglia nucleus, improves OCD. Here, single-unit subthalamic neuronal activity was analysed in 12 OCD patients, in relation to the severity of obsessions and compulsions and response to STN stimulation, and compared with that obtained in 12 patients with Parkinson's disease (PD). STN neurons in OCD patients had lower discharge frequency than those in PD patients, with a similar proportion of burst-type activity (69 vs 67%). Oscillatory activity was present in 46 and 68% of neurons in OCD and PD patients, respectively, predominantly in the low-frequency band (1-8 Hz). In OCD patients, the bursty and oscillatory subthalamic neuronal activity was mainly located in the associative-limbic part. Both OCD severity and clinical improvement following STN stimulation were related to the STN neuronal activity. In patients with the most severe OCD, STN neurons exhibited bursts with shorter duration and interburst interval, but higher intraburst frequency, and more oscillations in the low-frequency bands. In patients with best clinical outcome with STN stimulation, STN neurons displayed higher mean discharge, burst and intraburst frequencies, and lower interburst interval. These findings are consistent with the hypothesis of a dysfunction in the associative-limbic subdivision of the basal ganglia circuitry in OCD's pathophysiology.

  8. Proton MR spectroscopic imaging of basal ganglia and thalamus in neurofibromatosis type 1: correlation with T2 hyperintensities

    International Nuclear Information System (INIS)

    Barbier, Charlotte; Barantin, Laurent; Chabernaud, Camille; Bertrand, Philippe; Sembely, Catherine; Sirinelli, Dominique; Castelnau, Pierre; Cottier, Jean-Philippe

    2011-01-01

    Neurofibromatosis type 1 (NF1) is frequently associated with hyperintense lesions on T2-weighted images called ''unidentified bright objects'' (UBO). To better characterize the functional significance of UBO, we investigate the basal ganglia and thalamus using spectroscopic imaging in children with NF1 and compare the results to anomalies observed on T2-weighted images. Magnetic resonance (MR) data of 25 children with NF1 were analyzed. On the basis of T2-weighted images analysis, two groups were identified: one with normal MR imaging (UBO- group; n = 10) and one with UBO (UBO+ group; n = 15). Within the UBO+ group, a subpopulation of patients (n = 5) only had lesions of the basal ganglia. We analyzed herein seven regions of interest (ROIs) for each side: caudate nucleus, capsulo-lenticular region, lateral and posterior thalamus, thalamus (lateral and posterior voxels combined), putamen, and striatum. For each ROI, a spectrum of the metabolites and their ratio was obtained. Patients with abnormalities on T2-weighted images had significantly lower NAA/Cr, NAA/Cho, and NAA/mI ratios in the lateral right thalamus compared with patients with normal T2. These abnormal spectroscopic findings were not observed in capsulo-lenticular regions that had UBO but in the thalamus region that was devoid of UBO. Multivoxel spectroscopic imaging using short-time echo showed spectroscopic abnormalities in the right thalamus of NF1 patients harboring UBO, which were mainly located in the basal ganglia. This finding could reflect the anatomical and functional interactions of these regions. (orig.)

  9. Bee Venom Alleviates Motor Deficits and Modulates the Transfer of Cortical Information through the Basal Ganglia in Rat Models of Parkinson's Disease.

    Science.gov (United States)

    Maurice, Nicolas; Deltheil, Thierry; Melon, Christophe; Degos, Bertrand; Mourre, Christiane; Amalric, Marianne; Kerkerian-Le Goff, Lydia

    2015-01-01

    Recent evidence points to a neuroprotective action of bee venom on nigral dopamine neurons in animal models of Parkinson's disease (PD). Here we examined whether bee venom also displays a symptomatic action by acting on the pathological functioning of the basal ganglia in rat PD models. Bee venom effects were assessed by combining motor behavior analyses and in vivo electrophysiological recordings in the substantia nigra pars reticulata (SNr, basal ganglia output structure) in pharmacological (neuroleptic treatment) and lesional (unilateral intranigral 6-hydroxydopamine injection) PD models. In the hemi-parkinsonian 6-hydroxydopamine lesion model, subchronic bee venom treatment significantly alleviates contralateral forelimb akinesia and apomorphine-induced rotations. Moreover, a single injection of bee venom reverses haloperidol-induced catalepsy, a pharmacological model reminiscent of parkinsonian akinetic deficit. This effect is mimicked by apamin, a blocker of small conductance Ca2+-activated K+ (SK) channels, and blocked by CyPPA, a positive modulator of these channels, suggesting the involvement of SK channels in the bee venom antiparkinsonian action. In vivo electrophysiological recordings in the substantia nigra pars reticulata (basal ganglia output structure) showed no significant effect of BV on the mean neuronal discharge frequency or pathological bursting activity. In contrast, analyses of the neuronal responses evoked by motor cortex stimulation show that bee venom reverses the 6-OHDA- and neuroleptic-induced biases in the influence exerted by the direct inhibitory and indirect excitatory striatonigral circuits. These data provide the first evidence for a beneficial action of bee venom on the pathological functioning of the cortico-basal ganglia circuits underlying motor PD symptoms with potential relevance to the symptomatic treatment of this disease.

  10. Basal ganglia calcification as a putative cause for cognitive decline

    Directory of Open Access Journals (Sweden)

    João Ricardo Mendes de Oliveira

    Full Text Available ABSTRACT Basal ganglia calcifications (BGC may be present in various medical conditions, such as infections, metabolic, psychiatric and neurological diseases, associated with different etiologies and clinical outcomes, including parkinsonism, psychosis, mood swings and dementia. A literature review was performed highlighting the main neuropsychological findings of BGC, with particular attention to clinical reports of cognitive decline. Neuroimaging studies combined with neuropsychological analysis show that some patients have shown progressive disturbances of selective attention, declarative memory and verbal perseveration. Therefore, the calcification process might represent a putative cause for dementia syndromes, suggesting a probable link among calcinosis, the aging process and eventually with neuronal death. The increasing number of reports available will foster a necessary discussion about cerebral calcinosis and its role in determining symptomatology in dementia patients

  11. Total numbers of neurons and glial cells in cortex and basal ganglia of aged brains with Down syndrome--a stereological study.

    Science.gov (United States)

    Karlsen, Anna Schou; Pakkenberg, Bente

    2011-11-01

    The total numbers of neurons and glial cells in the neocortex and basal ganglia in adults with Down syndrome (DS) were estimated with design-based stereological methods, providing quantitative data on brains affected by delayed development and accelerated aging. Cell numbers, volume of regions, and densities of neurons and glial cell subtypes were estimated in brains from 4 female DS subjects (mean age 66 years) and 6 female controls (mean age 70 years). The DS subjects were estimated to have about 40% fewer neocortical neurons in total (11.1 × 10(9) vs. 17.8 × 10(9), 2p ≤ 0.001) and almost 30% fewer neocortical glial cells with no overlap to controls (12.8 × 10(9) vs. 18.2 × 10(9), 2p = 0.004). In contrast, the total number of neurons in the basal ganglia was the same in the 2 groups, whereas the number of oligodendrocytes in the basal ganglia was reduced by almost 50% in DS (405 × 10(6) vs. 816 × 10(6), 2p = 0.01). We conclude that trisomy 21 affects cortical structures more than central gray matter emphasizing the differential impairment of brain development. Despite concomitant Alzheimer-like pathology, the neurodegenerative outcome in a DS brain deviates from common Alzheimer disease.

  12. Age-related decreases in the concentration of Met- and Leu-enkephalin and neurotensin in the basal ganglia or rats

    International Nuclear Information System (INIS)

    Ceballos, M.L. de; Boyce, S.; Taylor, M.; Jenner, P.; Marsden, C.D.

    1987-01-01

    Previous studies using radioimmunoassay procedures have failed to show age-related changes in the concentration of Met-and Leu-enkephalin or neurotensin in rat basal ganglia. In contrast, using a combined high-pressure liquid chromatography (HLPC)- radioimmunoassay (RIA) technique we now report considerable decreases in the levels of these neuropeptides in areas of basal ganglia of 22 months-old compared to 3 months-old male Wistar rats. The concentration of Met-enkephalin was greatly reduced in the striatum and nucleus accumbens, but not in substantia nigra, of old compared to young animals. There was a similarly large decrease in Leu-enkephalin content in striatum of old rats with less marked decreases occurring in both the nucleus accumbens and substantia nigra. Neurotensin levels in the striatum and substantia nigra were greatly reduced in old rats, with a less marked decrease in the nucleus accumbens

  13. Age-related decreases in the concentration of Met- and Leu-enkephalin and neurotensin in the basal ganglia or rats

    Energy Technology Data Exchange (ETDEWEB)

    Ceballos, M.L. de; Boyce, S; Taylor, M; Jenner, P; Marsden, C D

    1987-03-20

    Previous studies using radioimmunoassay procedures have failed to show age-related changes in the concentration of Met-and Leu-enkephalin or neurotensin in rat basal ganglia. In contrast, using a combined high-pressure liquid chromatography (HLPC)- radioimmunoassay (RIA) technique we now report considerable decreases in the levels of these neuropeptides in areas of basal ganglia of 22 months-old compared to 3 months-old male Wistar rats. The concentration of Met-enkephalin was greatly reduced in the striatum and nucleus accumbens, but not in substantia nigra, of old compared to young animals. There was a similarly large decrease in Leu-enkephalin content in striatum of old rats with less marked decreases occurring in both the nucleus accumbens and substantia nigra. Neurotensin levels in the striatum and substantia nigra were greatly reduced in old rats, with a less marked decrease in the nucleus accumbens.

  14. Dopamine-transporter SPECT and Dopamine-D2-receptor SPECT in basal ganglia diseases

    International Nuclear Information System (INIS)

    Hesse, S.; Barthel, H.; Seese, A.; Sabri, O.

    2007-01-01

    The basal ganglia comprise a group of subcortical nuclei, which are essential for motor control. Dysfunction of these areas, especially in dopaminergic transmission, results in disordered movement and neurological diseases such as Parkinson's disease, Wilson's disease, or Huntington disease. Positron emission tomography and single photon emission computed tomography (SPECT) have enhanced the understanding of the underlying pathophysiology, but they much more contribute to the early differential diagnosis of patients suffering from Parkinsonian syndrome in routine care. The present article provides dopamine transporter and D 2 receptor SPECT findings in selected movement disorders. (orig.)

  15. Creation of computerized 3D MRI-integrated atlases of the human basal ganglia and thalamus

    Directory of Open Access Journals (Sweden)

    Abbas F. Sadikot

    2011-09-01

    Full Text Available Functional brain imaging and neurosurgery in subcortical areas often requires visualization of brain nuclei beyond the resolution of current Magnetic Resonance Imaging (MRI methods. We present techniques used to create: 1 a lower resolution 3D atlas, based on the Schaltenbrand and Wahren print atlas, which was integrated into a stereotactic neurosurgery planning and visualization platform (VIPER; and 2 a higher resolution 3D atlas derived from a single set of manually segmented histological slices containing nuclei of the basal ganglia, thalamus, basal forebrain and medial temporal lobe. Both atlases were integrated to a canonical MRI (Colin27 from a young male participant by manually identifying homologous landmarks. The lower resolution atlas was then warped to fit the MRI based on the identified landmarks. A pseudo-MRI representation of the high-resolution atlas was created, and a nonlinear transformation was calculated in order to match the atlas to the template MRI. The atlas can then be warped to match the anatomy of Parkinson’s disease surgical candidates by using 3D automated nonlinear deformation methods. By way of functional validation of the atlas, the location of the sensory thalamus was correlated with stereotactic intraoperative physiological data. The position of subthalamic electrode positions in patients with Parkinson’s disease was also evaluated in the atlas-integrated MRI space. Finally, probabilistic maps of subthalamic stimulation electrodes were developed, in order to allow group analysis of the location of contacts associated with the best motor outcomes. We have therefore developed, and are continuing to validate, a high-resolution computerized MRI-integrated 3D histological atlas, which is useful in functional neurosurgery, and for functional and anatomical studies of the human basal ganglia, thalamus and basal forebrain.

  16. Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology.

    Science.gov (United States)

    Sizemore, Rachel J; Seeger-Armbruster, Sonja; Hughes, Stephanie M; Parr-Brownlie, Louise C

    2016-04-01

    Viral vectors were originally developed to deliver genes into host cells for therapeutic potential. However, viral vector use in neuroscience research has increased because they enhance interpretation of the anatomy and physiology of brain circuits compared with conventional tract tracing or electrical stimulation techniques. Viral vectors enable neuronal or glial subpopulations to be labeled or stimulated, which can be spatially restricted to a single target nucleus or pathway. Here we review the use of viral vectors to examine the structure and function of motor and limbic basal ganglia (BG) networks in normal and pathological states. We outline the use of viral vectors, particularly lentivirus and adeno-associated virus, in circuit tracing, optogenetic stimulation, and designer drug stimulation experiments. Key studies that have used viral vectors to trace and image pathways and connectivity at gross or ultrastructural levels are reviewed. We explain how optogenetic stimulation and designer drugs used to modulate a distinct pathway and neuronal subpopulation have enhanced our mechanistic understanding of BG function in health and pathophysiology in disease. Finally, we outline how viral vector technology may be applied to neurological and psychiatric conditions to offer new treatments with enhanced outcomes for patients. Copyright © 2016 the American Physiological Society.

  17. OCD candidate gene SLC1A1/EAAT3 impacts basal ganglia-mediated activity and stereotypic behavior.

    Science.gov (United States)

    Zike, Isaac D; Chohan, Muhammad O; Kopelman, Jared M; Krasnow, Emily N; Flicker, Daniel; Nautiyal, Katherine M; Bubser, Michael; Kellendonk, Christoph; Jones, Carrie K; Stanwood, Gregg; Tanaka, Kenji Fransis; Moore, Holly; Ahmari, Susanne E; Veenstra-VanderWeele, Jeremy

    2017-05-30

    Obsessive-compulsive disorder (OCD) is a chronic, disabling condition with inadequate treatment options that leave most patients with substantial residual symptoms. Structural, neurochemical, and behavioral findings point to a significant role for basal ganglia circuits and for the glutamate system in OCD. Genetic linkage and association studies in OCD point to SLC1A1 , which encodes the neuronal glutamate/aspartate/cysteine transporter excitatory amino acid transporter 3 (EAAT3)/excitatory amino acid transporter 1 (EAAC1). However, no previous studies have investigated EAAT3 in basal ganglia circuits or in relation to OCD-related behavior. Here, we report a model of Slc1a1 loss based on an excisable STOP cassette that yields successful ablation of EAAT3 expression and function. Using amphetamine as a probe, we found that EAAT3 loss prevents expected increases in ( i ) locomotor activity, ( ii ) stereotypy, and ( iii ) immediate early gene induction in the dorsal striatum following amphetamine administration. Further, Slc1a1 -STOP mice showed diminished grooming in an SKF-38393 challenge experiment, a pharmacologic model of OCD-like grooming behavior. This reduced grooming is accompanied by reduced dopamine D 1 receptor binding in the dorsal striatum of Slc1a1 -STOP mice. Slc1a1 -STOP mice also exhibit reduced extracellular dopamine concentrations in the dorsal striatum both at baseline and following amphetamine challenge. Viral-mediated restoration of Slc1a1 /EAAT3 expression in the midbrain but not in the striatum results in partial rescue of amphetamine-induced locomotion and stereotypy in Slc1a1 -STOP mice, consistent with an impact of EAAT3 loss on presynaptic dopaminergic function. Collectively, these findings indicate that the most consistently associated OCD candidate gene impacts basal ganglia-dependent repetitive behaviors.

  18. Long-term increase in coherence between the basal ganglia and motor cortex after asphyxial cardiac arrest and resuscitation in developing rats.

    Science.gov (United States)

    Aravamuthan, Bhooma R; Shoykhet, Michael

    2015-10-01

    The basal ganglia are vulnerable to injury during cardiac arrest. Movement disorders are a common morbidity in survivors. Yet, neuronal motor network changes post-arrest remain poorly understood. We compared function of the motor network in adult rats that, during postnatal week 3, underwent 9.5 min of asphyxial cardiac arrest (n = 9) or sham intervention (n = 8). Six months after injury, we simultaneously recorded local field potentials (LFP) from the primary motor cortex (MCx) and single neuron firing and LFP from the rat entopeduncular nucleus (EPN), which corresponds to the primate globus pallidus pars interna. Data were analyzed for firing rates, power, and coherence between MCx and EPN spike and LFP activity. Cardiac arrest survivors display chronic motor deficits. EPN firing rate is lower in cardiac arrest survivors (19.5 ± 2.4 Hz) compared with controls (27.4 ± 2.7 Hz; P motor network after cardiac arrest. Increased motor network synchrony is thought to be antikinetic in primary movement disorders. Characterization of motor network synchrony after cardiac arrest may help guide management of post-hypoxic movement disorders.

  19. The impact of multichannel microelectrode recording (MER) in deep brain stimulation of the basal ganglia.

    Science.gov (United States)

    Kinfe, Thomas M; Vesper, Jan

    2013-01-01

    Deep brain stimulation (DBS) of the basal ganglia (Ncl. subthalamicus, Ncl. ventralis intermedius thalami, globus pallidus internus) has become an evidence-based and well-established treatment option in otherwise refractory movement disorders. The Ncl. subthalamicus (STN) is the target of choice in Parkinson's disease.However, a considerable discussion is currently ongoing with regard to the necessity for micro-electrode recording (MER) in DBS surgery.The present review provides an overview on deep brain stimulation and (MER) of the STN in patients with Parkinson's disease. Detailed description is given concerning the multichannel MER systems nowadays available for DBS of the basal ganglia, especially of the STN, as a useful tool for target refinement. Furthermore, an overview is given of the historical aspects, spatial mapping of the STN by MER, and its impact for accuracy and precision in current functional stereotactic neurosurgery.The pros concerning target refinement by MER means on the one hand, and cons including increased bleeding risk, increased operation time, local or general anesthesia, and single versus multichannel microelectrode recording are discussed in detail. Finally, the authors favor the use of MER with intraoperative testing combined with imaging to achieve a more precise electrode placement, aiming to ameliorate clinical outcome in therapy-resistant movement disorders.

  20. Involvement of dopamine loss in extrastriatal basal ganglia nuclei in the pathophysiology of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Abdelhamid eBenazzouz

    2014-05-01

    Full Text Available Parkinson’s disease is a neurological disorder characterized by the manifestation of motor symptoms, such as akinesia, muscle rigidity and tremor at rest. These symptoms are classically attributed to the degeneration of dopamine neurons in the pars compacta of substantia nigra (SNc, which results in a marked dopamine depletion in the striatum. It is well established that dopamine neurons in the SNc innervate not only the striatum, which is the main target, but also other basal ganglia nuclei including the two segments of globus pallidus and the subthalamic nucleus. The role of dopamine and its depletion in the striatum is well known, however, the role of dopamine depletion in the pallidal complex and the subthalamic nucleus in the genesis of their abnormal neuronal activity and in parkinsonian motor deficits is still not clearly determined. Based on recent experimental data from animal models of Parkinson's disease in rodents and non-human primates and also from parkinsonian patients, this review summarizes current knowledge on the role of dopamine in the modulation of basal ganglia neuronal activity and also the role of dopamine depletion in these nuclei in the pathophysiology of Parkinson's disease.

  1. Massive calcification in basal ganglia, thalamus and cerebellum caused by postoperative hypoparathyroidism

    International Nuclear Information System (INIS)

    Toneva, T.; Mlachkova, D.; Kaitazki, L.; Boneva, J.; Yordanova, S.

    2015-01-01

    The depicted case is of a 65 year old woman, who was admitted to hospital with complaints of excess sweating, dizziness and loss of consciousness. Symptomatic epilepsy was established after examination from a neurologist. A CT scan showed hyperdense symmetrical striation of the hemisphere of the small brain (parasagittal); symmetrical double-sided calcifications in the caudate nucleus, globus pallidus, thalamus and medial to the capsula interna; snake-like calcifications of the sulcus (occipital, parasagittai). Paraclinical tests have found hypocalcemia and hypoparathyroidism. Past illnesses: resection of the thyroid due to a nodose struma 20 years before. Key words: Calcifications in Basal Ganglia. Calcifications in the Cerebrum. Hypoparathyroidism

  2. MR spectroscopy-based brain metabolite profiling in propionic acidaemia: metabolic changes in the basal ganglia during acute decompensation and effect of liver transplantation

    Directory of Open Access Journals (Sweden)

    McKiernan Patrick J

    2011-05-01

    Full Text Available Abstract Background Propionic acidaemia (PA results from deficiency of Propionyl CoA carboxylase, the commonest form presenting in the neonatal period. Despite best current management, PA is associated with severe neurological sequelae, in particular movement disorders resulting from basal ganglia infarction, although the pathogenesis remains poorly understood. The role of liver transplantation remains controversial but may confer some neuro-protection. The present study utilises quantitative magnetic resonance spectroscopy (MRS to investigate brain metabolite alterations in propionic acidaemia during metabolic stability and acute encephalopathic episodes. Methods Quantitative MRS was used to evaluate brain metabolites in eight children with neonatal onset propionic acidaemia, with six elective studies acquired during metabolic stability and five studies during acute encephalopathic episodes. MRS studies were acquired concurrently with clinically indicated MR imaging studies at 1.5 Tesla. LCModel software was used to provide metabolite quantification. Comparison was made with a dataset of MRS metabolite concentrations from a cohort of children with normal appearing MR imaging. Results MRI findings confirm the vulnerability of basal ganglia to infarction during acute encephalopathy. We identified statistically significant decreases in basal ganglia glutamate+glutamine and N-Acetylaspartate, and increase in lactate, during encephalopathic episodes. In white matter lactate was significantly elevated but other metabolites not significantly altered. Metabolite data from two children who had received liver transplantation were not significantly different from the comparator group. Conclusions The metabolite alterations seen in propionic acidaemia in the basal ganglia during acute encephalopathy reflect loss of viable neurons, and a switch to anaerobic respiration. The decrease in glutamine + glutamate supports the hypothesis that they are consumed to

  3. Measurement of Lactate Content and Amide Proton Transfer Values in the Basal Ganglia of a Neonatal Piglet Hypoxic-Ischemic Brain Injury Model Using MRI.

    Science.gov (United States)

    Zheng, Y; Wang, X-M

    2017-04-01

    As amide proton transfer imaging is sensitive to protein content and intracellular pH, it has been widely used in the nervous system, including brain tumors and stroke. This work aimed to measure the lactate content and amide proton transfer values in the basal ganglia of a neonatal piglet hypoxic-ischemic brain injury model by using MR spectroscopy and amide proton transfer imaging. From 58 healthy neonatal piglets (3-5 days after birth; weight, 1-1.5 kg) selected initially, 9 piglets remained in the control group and 43 piglets, in the hypoxic-ischemic brain injury group. Single-section amide proton transfer imaging was performed at the coronal level of the basal ganglia. Amide proton transfer values of the bilateral basal ganglia were measured in all piglets. The ROI of MR spectroscopy imaging was the right basal ganglia, and the postprocessing was completed with LCModel software. After hypoxic-ischemic insult, the amide proton transfer values immediately decreased, and at 0-2 hours, they remained at their lowest level. Thereafter, they gradually increased and finally exceeded those of the control group at 48-72 hours. After hypoxic-ischemic insult, the lactate content increased immediately, was maximal at 2-6 hours, and then gradually decreased to the level of the control group. The amide proton transfer values were negatively correlated with lactate content ( r = -0.79, P < .05). This observation suggests that after hypoxic-ischemic insult, the recovery of pH was faster than that of lactate homeostasis. © 2017 by American Journal of Neuroradiology.

  4. Basal Ganglia, Dopamine and Temporal Processing: Performance on Three Timing Tasks on and off Medication in Parkinson's Disease

    Science.gov (United States)

    Jones, Catherine R. G.; Malone, Tim J. L.; Dirnberger, Georg; Edwards, Mark; Jahanshahi, Marjan

    2008-01-01

    A pervasive hypothesis in the timing literature is that temporal processing in the milliseconds and seconds range engages the basal ganglia and is modulated by dopamine. This hypothesis was investigated by testing 12 patients with Parkinson's disease (PD), both "on" and "off" dopaminergic medication, and 20 healthy controls on three timing tasks.…

  5. Neuromodulatory Adaptive Combination of Correlation-based Learning in Cerebellum and Reward-based Learning in Basal Ganglia for Goal-directed Behavior Control

    DEFF Research Database (Denmark)

    Dasgupta, Sakyasingha; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Goal-directed decision making in biological systems is broadly based on associations between conditional and unconditional stimuli. This can be further classified as classical conditioning (correlation-based learning) and operant conditioning (reward-based learning). A number of computational...... and experimental studies have well established the role of the basal ganglia in reward-based learning, where as the cerebellum plays an important role in developing specific conditioned responses. Although viewed as distinct learning systems, recent animal experiments point toward their complementary role...... in behavioral learning, and also show the existence of substantial two-way communication between these two brain structures. Based on this notion of co-operative learning, in this paper we hypothesize that the basal ganglia and cerebellar learning systems work in parallel and interact with each other. We...

  6. Acupuncture inhibits Notch1 and Hes1 protein expression in the basal ganglia of rats with cerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    Wei Zou

    2015-01-01

    Full Text Available Notch pathway activation maintains neural stem cells in a proliferating state and increases nerve repair capacity. To date, studies have rarely focused on changes or damage to signal transduction pathways during cerebral hemorrhage. Here, we examined the effect of acupuncture in a rat model of cerebral hemorrhage. We examined four groups: in the control group, rats received no treatment. In the model group, cerebral hemorrhage models were established by infusing non-heparinized blood into the brain. In the acupuncture group, modeled rats had Baihui (DU20 and Qubin (GB7 acupoints treated once a day for 30 minutes. In the DAPT group, modeled rats had 0.15 μg/mL DAPT solution (10 mL infused into the brain. Immunohistochemistry and western blot results showed that acupuncture effectively inhibits Notch1 and Hes1 protein expression in rat basal ganglia. These inhibitory effects were identical to DAPT, a Notch signaling pathway inhibitor. Our results suggest that acupuncture has a neuroprotective effect on cerebral hemorrhage by inhibiting Notch-Hes signaling pathway transduction in rat basal ganglia after cerebral hemorrhage.

  7. Common features of neural activity during singing and sleep periods in a basal ganglia nucleus critical for vocal learning in a juvenile songbird.

    Directory of Open Access Journals (Sweden)

    Shin Yanagihara

    Full Text Available Reactivations of waking experiences during sleep have been considered fundamental neural processes for memory consolidation. In songbirds, evidence suggests the importance of sleep-related neuronal activity in song system motor pathway nuclei for both juvenile vocal learning and maintenance of adult song. Like those in singing motor nuclei, neurons in the basal ganglia nucleus Area X, part of the basal ganglia-thalamocortical circuit essential for vocal plasticity, exhibit singing-related activity. It is unclear, however, whether Area X neurons show any distinctive spiking activity during sleep similar to that during singing. Here we demonstrate that, during sleep, Area X pallidal neurons exhibit phasic spiking activity, which shares some firing properties with activity during singing. Shorter interspike intervals that almost exclusively occurred during singing in awake periods were also observed during sleep. The level of firing variability was consistently higher during singing and sleep than during awake non-singing states. Moreover, deceleration of firing rate, which is considered to be an important firing property for transmitting signals from Area X to the thalamic nucleus DLM, was observed mainly during sleep as well as during singing. These results suggest that songbird basal ganglia circuitry may be involved in the off-line processing potentially critical for vocal learning during sensorimotor learning phase.

  8. Endoscopic surgery versus conservative treatment for the moderate-volume hematoma in spontaneous basal ganglia hemorrhage (ECMOH: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Zan Xin

    2012-06-01

    Full Text Available Abstract Background Spontaneous intracerebral hemorrhage is a disease with high morbidity, high disability rate, high mortality, and high economic burden. Whether patients can benefit from surgical evacuation of hematomas is still controversial, especially for those with moderate-volume hematomas in the basal ganglia. This study is designed to compare the efficacy of endoscopic surgery and conservative treatment for the moderate-volume hematoma in spontaneous basal ganglia hemorrhage. Methods Patients meet the criteria will be randomized into the endoscopic surgery group (endoscopic surgery for hematoma evacuation and the best medical treatment or the conservative treatment group (the best medical treatment. Patients will be followed up at 1, 3, and 6 months after initial treatment. The primary outcomes include the Extended Glasgow Outcome Scale and the Modified Rankin Scale. The secondary outcomes consist of the National Institutes of Health Stroke Scale and the mortality. The Barthel Index(BI will also be evaluated. The sample size is 100 patients. Discussion The ECMOH trial is a randomized controlled trial designed to evaluate if endoscopic surgery is better than conservative treatment for patients with moderate-volume hematomas in the basal ganglia. Trial registration Chinese Clinical Trial Registry: ChiCTR-TRC-11001614 (http://www.chictr.org/en/proj/show.aspx?proj=1618

  9. Identifying the Basal Ganglia network model markers for medication-induced impulsivity in Parkinson's disease patients.

    Directory of Open Access Journals (Sweden)

    Pragathi Priyadharsini Balasubramani

    Full Text Available Impulsivity, i.e. irresistibility in the execution of actions, may be prominent in Parkinson's disease (PD patients who are treated with dopamine precursors or dopamine receptor agonists. In this study, we combine clinical investigations with computational modeling to explore whether impulsivity in PD patients on medication may arise as a result of abnormalities in risk, reward and punishment learning. In order to empirically assess learning outcomes involving risk, reward and punishment, four subject groups were examined: healthy controls, ON medication PD patients with impulse control disorder (PD-ON ICD or without ICD (PD-ON non-ICD, and OFF medication PD patients (PD-OFF. A neural network model of the Basal Ganglia (BG that has the capacity to predict the dysfunction of both the dopaminergic (DA and the serotonergic (5HT neuromodulator systems was developed and used to facilitate the interpretation of experimental results. In the model, the BG action selection dynamics were mimicked using a utility function based decision making framework, with DA controlling reward prediction and 5HT controlling punishment and risk predictions. The striatal model included three pools of Medium Spiny Neurons (MSNs, with D1 receptor (R alone, D2R alone and co-expressing D1R-D2R. Empirical studies showed that reward optimality was increased in PD-ON ICD patients while punishment optimality was increased in PD-OFF patients. Empirical studies also revealed that PD-ON ICD subjects had lower reaction times (RT compared to that of the PD-ON non-ICD patients. Computational modeling suggested that PD-OFF patients have higher punishment sensitivity, while healthy controls showed comparatively higher risk sensitivity. A significant decrease in sensitivity to punishment and risk was crucial for explaining behavioral changes observed in PD-ON ICD patients. Our results highlight the power of computational modelling for identifying neuronal circuitry implicated in learning

  10. Identifying the Basal Ganglia network model markers for medication-induced impulsivity in Parkinson's disease patients.

    Science.gov (United States)

    Balasubramani, Pragathi Priyadharsini; Chakravarthy, V Srinivasa; Ali, Manal; Ravindran, Balaraman; Moustafa, Ahmed A

    2015-01-01

    Impulsivity, i.e. irresistibility in the execution of actions, may be prominent in Parkinson's disease (PD) patients who are treated with dopamine precursors or dopamine receptor agonists. In this study, we combine clinical investigations with computational modeling to explore whether impulsivity in PD patients on medication may arise as a result of abnormalities in risk, reward and punishment learning. In order to empirically assess learning outcomes involving risk, reward and punishment, four subject groups were examined: healthy controls, ON medication PD patients with impulse control disorder (PD-ON ICD) or without ICD (PD-ON non-ICD), and OFF medication PD patients (PD-OFF). A neural network model of the Basal Ganglia (BG) that has the capacity to predict the dysfunction of both the dopaminergic (DA) and the serotonergic (5HT) neuromodulator systems was developed and used to facilitate the interpretation of experimental results. In the model, the BG action selection dynamics were mimicked using a utility function based decision making framework, with DA controlling reward prediction and 5HT controlling punishment and risk predictions. The striatal model included three pools of Medium Spiny Neurons (MSNs), with D1 receptor (R) alone, D2R alone and co-expressing D1R-D2R. Empirical studies showed that reward optimality was increased in PD-ON ICD patients while punishment optimality was increased in PD-OFF patients. Empirical studies also revealed that PD-ON ICD subjects had lower reaction times (RT) compared to that of the PD-ON non-ICD patients. Computational modeling suggested that PD-OFF patients have higher punishment sensitivity, while healthy controls showed comparatively higher risk sensitivity. A significant decrease in sensitivity to punishment and risk was crucial for explaining behavioral changes observed in PD-ON ICD patients. Our results highlight the power of computational modelling for identifying neuronal circuitry implicated in learning, and its

  11. Proceedings of the workshop on Cerebellum, Basal Ganglia and Cortical Connections Unmasked in Health and Disorder held in Brno, Czech Republic, October 17th, 2013.

    Science.gov (United States)

    Bareš, Martin; Apps, Richard; Kikinis, Zora; Timmann, Dagmar; Oz, Gulin; Ashe, James J; Loft, Michaela; Koutsikou, Stella; Cerminara, Nadia; Bushara, Khalaf O; Kašpárek, Tomáš

    2015-04-01

    The proceedings of the workshop synthesize the experimental, preclinical, and clinical data suggesting that the cerebellum, basal ganglia (BG), and their connections play an important role in pathophysiology of various movement disorders (like Parkinson's disease and atypical parkinsonian syndromes) or neurodevelopmental disorders (like autism). The contributions from individual distinguished speakers cover the neuroanatomical research of complex networks, neuroimaging data showing that the cerebellum and BG are connected to a wide range of other central nervous system structures involved in movement control. Especially, the cerebellum plays a more complex role in how the brain functions than previously thought.

  12. A Biologically Inspired Computational Model of Basal Ganglia in Action Selection.

    Science.gov (United States)

    Baston, Chiara; Ursino, Mauro

    2015-01-01

    The basal ganglia (BG) are a subcortical structure implicated in action selection. The aim of this work is to present a new cognitive neuroscience model of the BG, which aspires to represent a parsimonious balance between simplicity and completeness. The model includes the 3 main pathways operating in the BG circuitry, that is, the direct (Go), indirect (NoGo), and hyperdirect pathways. The main original aspects, compared with previous models, are the use of a two-term Hebb rule to train synapses in the striatum, based exclusively on neuronal activity changes caused by dopamine peaks or dips, and the role of the cholinergic interneurons (affected by dopamine themselves) during learning. Some examples are displayed, concerning a few paradigmatic cases: action selection in basal conditions, action selection in the presence of a strong conflict (where the role of the hyperdirect pathway emerges), synapse changes induced by phasic dopamine, and learning new actions based on a previous history of rewards and punishments. Finally, some simulations show model working in conditions of altered dopamine levels, to illustrate pathological cases (dopamine depletion in parkinsonian subjects or dopamine hypermedication). Due to its parsimonious approach, the model may represent a straightforward tool to analyze BG functionality in behavioral experiments.

  13. A Biologically Inspired Computational Model of Basal Ganglia in Action Selection

    Directory of Open Access Journals (Sweden)

    Chiara Baston

    2015-01-01

    Full Text Available The basal ganglia (BG are a subcortical structure implicated in action selection. The aim of this work is to present a new cognitive neuroscience model of the BG, which aspires to represent a parsimonious balance between simplicity and completeness. The model includes the 3 main pathways operating in the BG circuitry, that is, the direct (Go, indirect (NoGo, and hyperdirect pathways. The main original aspects, compared with previous models, are the use of a two-term Hebb rule to train synapses in the striatum, based exclusively on neuronal activity changes caused by dopamine peaks or dips, and the role of the cholinergic interneurons (affected by dopamine themselves during learning. Some examples are displayed, concerning a few paradigmatic cases: action selection in basal conditions, action selection in the presence of a strong conflict (where the role of the hyperdirect pathway emerges, synapse changes induced by phasic dopamine, and learning new actions based on a previous history of rewards and punishments. Finally, some simulations show model working in conditions of altered dopamine levels, to illustrate pathological cases (dopamine depletion in parkinsonian subjects or dopamine hypermedication. Due to its parsimonious approach, the model may represent a straightforward tool to analyze BG functionality in behavioral experiments.

  14. CT differential diagnosis between hypertensive putaminal hemorrhage and hemorrhagic infarction localized in basal ganglia

    International Nuclear Information System (INIS)

    Tazawa, Toshiaki; Mizukami, Masahiro; Kawase, Takeshi.

    1984-01-01

    The symptoms of hypertensive putaminal hemorrhage and of middle cerebral artery occlusion are sometimes similar to each other. Hemorrhage sometimes occurs following cerebral infarction. We experienced 7 patients with hemorrhages localized in the basal ganglia following cerebral infarction. The CT findings of 55 patients with putaminal hemorrhage and 7 patients with hemorrhagic infarction localized at the basal ganglia were investigated retrospectively in order to discuss their characteristics. The high-density area (HD) of a putaminal hemorrhage was homogeneous on a plain CT within a week of the onset. There was a close correlation between the size of the HD and the timing of its disappearance. The HD with a maximum diameter of A cm generally disappeared A weeks after. On the other hand, the HD of a hemorrhagic infarction was lower in density than that of the putaminal hemorrhage. The HD of a hemorrhagic infarction generally disappeared earlier than that of a putaminal hemorrhage. Ring enhancement was visualized on contrast-enhanced CT (CECT) from 2 or 3 weeks after the onset in patients with putaminal hemorrhages except in the case of small hemorrhages (less than 1 cm diameter). Ring enhancement was also visualized in 6 out of 7 patients with hemorrhagic infarction; one of them was recognized within a week of the onset. Contrast enhancement of the cortex in the territory of the middle cerebral artery was visualized in 4 out of 7 patients with hemorrhagic infarction. This finding seems to indicate one characteristic of hemorrhagic infarction. (author)

  15. Toward a functional analysis of the basal ganglia.

    Science.gov (United States)

    Hayes, A E; Davidson, M C; Keele, S W; Rafal, R D

    1998-03-01

    Parkinson patients were tested in two paradigms to test the hypothesis that the basal ganglia are involved in the shifting of attentional set. Set shifting means a respecification of the conditions that regulate responding, a process sometimes referred to as an executive process. In one paradigm, upon the appearance of each stimulus, subjects were instructed to respond either to its color or to its shape. In a second paradigm, subjects learned to produce short sequences of three keypresses in response to two arbitrary stimuli. Reaction times were compared for the cases where set either remained the same or changed for two successive stimuli. Parkinson patients were slow to change set compared to controls. Parkinson patients were also less able to filter the competing but irrelevant set than were control subjects. The switching deficit appears to be dopamine based; the magnitude of the shifting deficit was related to the degree to which 1-dopa-based medication ameliorated patients' motor symptoms. Moreover, temporary withholding of medication, a so-called off manipulation, increased the time to switch. Using the framework of equilibrium point theory of movement, we discuss how a set switching deficit may also underlie clinical motor disturbances seen in Parkinson's disease.

  16. No change of dopamine transporter density in basal ganglia after risperidone treatment in drug-naive children with Tourette's disorder

    International Nuclear Information System (INIS)

    Ryu, W. K.; Ryu, Y. H.; Yoon, M. J.; Chun, K. A.; Lee, J. D.; Zee, D. Y.; Choi, T. H.

    2003-01-01

    Tourette's disorder (TD), which is characterized by multiple waxing and waning motor tics and one or more vocal tics, is known to be associated with abnormalities in the dopaminergic system. To testify our hypothesis that risperidone would improve tic symptoms of TD patients through the change of the dopaminergic system, we measured the DAT densities between drug-naive children with TD and normal children investigated the DAT density before and after treatment with risperidone in drug-naive children with TD, using lodine-123 labelled N-(3-iodopropen-2-yl)-2beta-carbomethoxy-3beta-(4-chlorophenyl) tropane(I-123 IPT) single photon emission computed tomography (SPECT). I-123 IPT SPECT imaging and Yale Global Tic Severity Scale-Korean version (YGTSS-K) for assessing the tic symptom severity were carried out before and after treatment with risperidone for 8 weeks in eight drug-naive children with TD. Eight normal children also underwent SPECT imaging 2 hours after an intravenous administration of I-123 IPT and carried out both quantitative and qualitative analyses using the obtained SPECT data, which were reconstructed for the assessment of the specific/non-specific DAT binding ratio in the basal ganglia. The drug-naive children with TD had a significantly greater increase in the specific/nonspecific DAT binding ratio of both basal ganglia compared with the normal children. However, no significant difference in the specific/nonspecific DAT binding ratio of the basal ganglia before and after treatment with riperidone in children with TD was not found, although tic symptoms were significantly improved with risperidone. These findings suggest that DAT densities are directly associated with the pathophysiology of TD, however, that the effect of risperidone on tic symptoms in children with TD is not attributed to the change of dopaminergic system

  17. A Biologically Plausible Action Selection System for Cognitive Architectures: Implications of Basal Ganglia Anatomy for Learning and Decision-Making Models

    Science.gov (United States)

    Stocco, Andrea

    2018-01-01

    Several attempts have been made previously to provide a biological grounding for cognitive architectures by relating their components to the computations of specific brain circuits. Often, the architecture's action selection system is identified with the basal ganglia. However, this identification overlooks one of the most important features of…

  18. Pharmacologic MRI (phMRI) as a tool to differentiate Parkinson's disease-related from age-related changes in basal ganglia function.

    Science.gov (United States)

    Andersen, Anders H; Hardy, Peter A; Forman, Eric; Gerhardt, Greg A; Gash, Don M; Grondin, Richard C; Zhang, Zhiming

    2015-02-01

    The prevalence of both parkinsonian signs and Parkinson's disease (PD) per se increases with age. Although the pathophysiology of PD has been studied extensively, less is known about the functional changes taking place in the basal ganglia circuitry with age. To specifically address this issue, 3 groups of rhesus macaques were studied: normal middle-aged animals (used as controls), middle-aged animals with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism, and aged animals (>20 years old) with declines in motor function. All animals underwent the same behavioral and pharmacologic magnetic resonance imaging (phMRI) procedures to measure changes in basal ganglia function in response to dopaminergic drug challenges consisting of apomorphine administration followed by either a D1 (SCH23390) or a D2 (raclopride) receptor antagonist. Significant functional changes were predominantly seen in the external segment of the globus pallidus (GPe) in aged animals and in the striatum (caudate nucleus and putamen) in MPTP-lesioned animals. Despite significant differences seen in the putamen and GPe between MPTP-lesioned versus aged animals, a similar response profile to dopaminergic stimulations was found between these 2 groups in the internal segment of the GP. In contrast, the pharmacologic responses seen in the control animals were much milder compared with the other 2 groups in all the examined areas. Our phMRI findings in MPTP-lesioned parkinsonian and aged animals suggest that changes in basal ganglia function in the elderly may differ from those seen in parkinsonian patients and that phMRI could be used to distinguish PD from other age-associated functional alterations in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Analysis of delay-induced basal ganglia oscillations: the role of external excitatory nuclei

    Science.gov (United States)

    Haidar, Ihab; Pasillas-Lépine, William; Panteley, Elena; Chaillet, Antoine; Palfi, Stéphane; Senova, Suhan

    2014-09-01

    Basal ganglia are interconnected deep brain structures involved in movement generation. Their persistent beta-band oscillations (13-30 Hz) are known to be linked to Parkinson's disease motor symptoms. In this paper, we provide conditions under which these oscillations may occur, by explicitly considering the role of the pedunculopontine nucleus (PPN). We analyse the existence of equilibria in the associated firing-rate dynamics and study their stability by relying on a delayed multiple-input/multiple-output (MIMO) frequency analysis. Our analysis suggests that the PPN has an influence on the generation of pathological beta-band oscillations. These results are illustrated by simulations that confirm numerically the analytic predictions of our two main theorems.

  20. Infiltration of the basal ganglia by brain tumors is associated with the development of co-dominant language function on fMRI.

    Science.gov (United States)

    Shaw, Katharina; Brennan, Nicole; Woo, Kaitlin; Zhang, Zhigang; Young, Robert; Peck, Kyung K; Holodny, Andrei

    2016-01-01

    Studies have shown that some patients with left-hemispheric brain tumors have an increased propensity for developing right-sided language support. However, the precise trigger for establishing co-dominant language function in brain tumor patients remains unknown. We analyzed the MR scans of patients with left-hemispheric tumors and either co-dominant (n=35) or left-hemisphere dominant (n=35) language function on fMRI to investigate anatomical factors influencing hemispheric language dominance. Of eleven neuroanatomical areas evaluated for tumor involvement, the basal ganglia was significantly correlated with co-dominant language function (pdominance performed significantly better on the Boston Naming Test, a clinical measure of aphasia, compared to their left-lateralized counterparts (56.5 versus 36.5, p=0.025). While further studies are needed to elucidate the role of the basal ganglia in establishing co-dominance, our results suggest that reactive co-dominance may afford a behavioral advantage to patients with left-hemispheric tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Treatment of biotin-responsive basal ganglia disease: Open comparative study between the combination of biotin plus thiamine versus thiamine alone.

    Science.gov (United States)

    Tabarki, Brahim; Alfadhel, Majid; AlShahwan, Saad; Hundallah, Khaled; AlShafi, Shatha; AlHashem, Amel

    2015-09-01

    To compare the combination of biotin plus thiamine to thiamine alone in treating patients with biotin-responsive basal ganglia disease in an open-label prospective, comparative study. twenty patients with genetically proven biotin-responsive basal ganglia disease were enrolled, and received for at least 30 months a combination of biotin plus thiamine or thiamine alone. The outcome measures included duration of the crisis, number of recurrence/admissions, the last neurological examination, the severity of dystonia using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS), and the brain MRI findings during the crisis and after 30 months of follow-up. Ten children with a mean age of 6 years(1/2) were recruited in the biotin plus thiamine group (group 1) and ten children (6 females and 4 males) with a mean age of 6 years and 2 months were recruited in the thiamine group (group 2). After 2 years of follow-up treatment, 6 of 20 children achieved complete remission, 10 had minimal sequelae in the form of mild dystonia and dysarthria (improvement of the BFMDRS, mean: 80%), and 4 had severe neurologic sequelae. All these 4 patients had delayed diagnosis and management. Regarding outcome measures, both groups have a similar outcome regarding the number of recurrences, the neurologic sequelae (mean BFMDS score between the groups, p = 0.84), and the brain MRI findings. The only difference was the duration of the acute crisis: group 1 had faster recovery (2 days), versus 3 days in group 2 (p = 0.005). Our study suggests that over 30 months of treatment, the combination of biotin plus thiamine is not superior to thiamine alone in the treatment of biotin-responsive basal ganglia disease. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  2. Basal ganglia perfusion using dynamic color Doppler sonography in infants with hypoxic ischemic encephalopathy receiving therapeutic hypothermia: a pilot study.

    Science.gov (United States)

    Faingold, Ricardo; Cassia, Guilherme; Morneault, Linda; Saint-Martin, Christine; Sant'Anna, Guilherme

    2016-10-01

    The objective of this study was to evaluate the cerebral perfusion of the basal ganglia in infants with hypoxic-ischemic encephalopathy (HIE) receiving hypothermia using dynamic color Doppler sonography (CDS) and investigate for any correlation between these measurements and survival. Head ultrasound (HUS) was performed with a 9S4 MHz sector transducer in HIE infants submitted to hypothermia as part of their routine care. Measurements of cerebral perfusion intensity (CPI) with an 11LW4 MHz linear array transducer were performed to obtain static images and DICOM color Doppler videos of the blood flow in the basal ganglia area. Clinical and radiological data were evaluated retrospectively. The video images were analyzed by two radiologists using dedicated software, which allows automatic quantification of color Doppler data from a region of interest (ROI) by dynamically assessing color pixels and flow velocity during the heart cycle. CPI is expressed in cm/sec and is calculated by multiplying the mean velocity of all pixels divided by the area of the ROI. Three videos of 3 seconds each were obtained of the ROI, in the coronal plane, and used to calculate the CPI. Data are presented as mean ± SEM or median (quartiles). A total of 28 infants were included in this study: 16 male, 12 female. HUS was performed within the first 48 hours of therapeutic hypothermia treatment. CPI values were significantly higher in the seven non-survivors when compared to survivors (0.226±0.221 vs . 0.111±0.082 cm/sec; P=0.02). Increased perfusion intensity of the basal ganglia area within the first 48 of therapeutic hypothermia treatment was associated with poor outcome in neonates with HIE.

  3. The study of automatic brain extraction of basal ganglia based on atlas of Talairach in 18F-FDG PET images

    International Nuclear Information System (INIS)

    Zuo Chantao; Guan Yihui; Zhao Jun; Lin Xiangtong; Wang Jian; Zhang Jiange; Zhang Lu

    2005-01-01

    Objective: To establish a method which can extract functional areas of the brain basal ganglia automatically. Methods: 18 F-fluorodeoxyglucose (FDG) PET images were spatial normalized to Talairach atlas space through two steps, image registration and image deformation. The functional areas were extracted from three dimension PET images based on the coordinate obtained from atlas; caudate and putamen were extracted and rendered, the grey value of the area was normalized by whole brain. Results: The normal ratio of left caudate head, body and tail were 1.02 ± 0.04, 0.92 ± 0.07 and 0.71 ± 0.03, the right were 0.98 ± 0.03, 0.87 ± 0.04 and 0.71 ± 0.01 respectively. The normal ratio of left and right putamen were 1.20 ± 0.06 and 1.20 ± 0.04. The mean grey value between left and right basal ganglia had no significant difference (P>0.05). Conclusion: The automatic functional area extracting method based on atlas of Talairach is feasible. (authors)

  4. Behavioral Abnormalities and Circuit Defects in the Basal Ganglia of a Mouse Model of 16p11.2 Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Thomas Portmann

    2014-05-01

    Full Text Available A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11+/−. We found elevated numbers of striatal medium spiny neurons (MSNs expressing the dopamine D2 receptor (Drd2+ and fewer dopamine-sensitive (Drd1+ neurons in deep layers of cortex. Electrophysiological recordings of Drd2+ MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11+/− mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11+/− mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism.

  5. Impact of surgery targeting the caudal intralaminar thalamic nuclei on the pathophysiological functioning of basal ganglia in a rat model of Parkinson's disease.

    Science.gov (United States)

    Kerkerian-Le Goff, Lydia; Bacci, Jean-Jacques; Jouve, Loreline; Melon, Christophe; Salin, Pascal

    2009-02-16

    There is accumulating evidence that the centre median-parafascicular (CM/Pf) complex of the thalamus is implicated in basal ganglia-related movement disorders and notably in Parkinson's disease. However, the impact of the changes affecting CM/Pf on the pathophysiological functioning of basal ganglia in parkinsonian state remains poorly understood. To address this issue, we have examined the effects of excitotoxic lesion of CM/Pf and of 6-hydroxydopamine-induced lesion of nigral dopamine neurons, separately or in association, on gene expression of markers of neuronal activity in the rat basal ganglia (striatal neuropeptide precursors, GAD67, cytochrome oxidase subunit I) by quantitative in situ hybridization histochemistry. CM/Pf lesion prevented the changes produced by the dopamine denervation in the components of the indirect pathway connecting the striatum to the output structures (striatopallidal neurons, globus pallidus, subthalamic nucleus), and among the output structures, in the entopeduncular nucleus. Preliminary data on the effects of deep brain stimulation of CM/Pf in rats with nigral dopamine lesion show that this surgical approach produces efficient anti-akinetic effect associated with partial reversal of the dopamine lesion-induced increase in striatal preproenkephalin A mRNA levels, a marker of the striatopallidal neurons. These data, which provide substrates for the potential of CM/Pf surgery in the treatment of movement disorders, are discussed in comparison with the effects of lesion or deep brain stimulation of the subthalamic nucleus, the currently preferred target for the surgical treatment of PD.

  6. Stimulation of serotonin2C receptors elicits abnormal oral movements by acting on pathways other than the sensorimotor one in the rat basal ganglia.

    Science.gov (United States)

    Beyeler, A; Kadiri, N; Navailles, S; Boujema, M Ben; Gonon, F; Moine, C Le; Gross, C; De Deurwaerdère, P

    2010-08-11

    Serotonin2C (5-HT(2C)) receptors act in the basal ganglia, a group of sub-cortical structures involved in motor behavior, where they are thought to modulate oral activity and participate in iatrogenic motor side-effects in Parkinson's disease and Schizophrenia. Whether abnormal movements initiated by 5-HT(2C) receptors are directly consequent to dysfunctions of the motor circuit is uncertain. In the present study, we combined behavioral, immunohistochemical and extracellular single-cell recordings approaches in rats to investigate the effect of the 5-HT(2C) agonist Ro-60-0175 respectively on orofacial dyskinesia, the expression of the marker of neuronal activity c-Fos in basal ganglia and the electrophysiological activity of substantia nigra pars reticulata (SNr) neuron connected to the orofacial motor cortex (OfMC) or the medial prefrontal cortex (mPFC). The results show that Ro-60-0175 (1 mg/kg) caused bouts of orofacial movements that were suppressed by the 5-HT(2C) antagonist SB-243213 (1 mg/kg). Ro-60-0175 (0.3, 1, 3 mg/kg) dose-dependently enhanced Fos expression in the striatum and the nucleus accumbens. At the highest dose, it enhanced Fos expression in the subthalamic nucleus, the SNr and the entopeduncular nucleus but not in the external globus pallidus. However, the effect of Ro-60-0175 was mainly associated with associative/limbic regions of basal ganglia whereas subregions of basal ganglia corresponding to sensorimotor territories were devoid of Fos labeling. Ro-60-0175 (1-3 mg/kg) did not affect the electrophysiological activity of SNr neurons connected to the OfMC nor their excitatory-inhibitory-excitatory responses to the OfMC electrical stimulation. Conversely, Ro-60-0175 (1 mg/kg) enhanced the late excitatory response of SNr neurons evoked by the mPFC electrical stimulation. These results suggest that oral dyskinesia induced by 5-HT(2C) agonists are not restricted to aberrant signalling in the orofacial motor circuit and demonstrate discrete

  7. Clinical, endocrinological, and computerized tomography scans for symmetrical calcification of the basal ganglia

    International Nuclear Information System (INIS)

    Goldscheider, H.G.; Lischewski, R.; Claus, D.; Streibl, W.; Waiblinger, G.; Ulm Univ., Schwendi/Dietenbronn; Ulm Univ.

    1980-01-01

    Symmetrical calcification of the basal ganglia was found in 2 promille of 8000 computerized tomography (CT) scans. Of 19 cases, only 2 were detectable on conventional skull films. The less prominent calcifications were most often found in the region of the pallidum, the knee of the internal capsule. Also, the lesions were generally symmetrical. Thus these factors must be considered basic morphological characteristics of the pathophysiological process. Additional neurological disorders were present in 6 patients. Neurological symptoms in the remaining 13, when present, depended on the extent of the lesion. The most common finding was tremor, although disturbances of fine motor control, transient lateralizing signs, and seizures were also noted. No particular constellation of symptoms or signs permitted accurate clinical localization of the lesions. (orig./AJ) [de

  8. Mutations in SLC20A2 are a major cause of familial idiopathic basal ganglia calcification

    Science.gov (United States)

    Hsu, Sandy Chan; Sears, Renee L.; Lemos, Roberta R.; Quintáns, Beatriz; Huang, Alden; Spiteri, Elizabeth; Nevarez, Lisette; Mamah, Catherine; Zatz, Mayana; Pierce, Kerrie D.; Fullerton, Janice M.; Adair, John C.; Berner, Jon E.; Bower, Matthew; Brodaty, Henry; Carmona, Olga; Dobricić, Valerija; Fogel, Brent L.; García-Estevez, Daniel; Goldman, Jill; Goudreau, John L.; Hopfer, Suellen; Janković, Milena; Jaumà, Serge; Jen, Joanna C.; Kirdlarp, Suppachok; Klepper, Joerg; Kostić, Vladimir; Lang, Anthony E.; Linglart, Agnès; Maisenbacher, Melissa K.; Manyam, Bala V.; Mazzoni, Pietro; Miedzybrodzka, Zofia; Mitarnun, Witoon; Mitchell, Philip B.; Mueller, Jennifer; Novaković, Ivana; Paucar, Martin; Paulson, Henry; Simpson, Sheila A.; Svenningsson, Per; Tuite, Paul; Vitek, Jerrold; Wetchaphanphesat, Suppachok; Williams, Charles; Yang, Michele; Schofield, Peter R.; de Oliveira, João R. M.; Sobrido, María-Jesús

    2014-01-01

    Familial idiopathic basal ganglia calcification (IBGC) or Fahr’s disease is a rare neurodegenerative disorder characterized by calcium deposits in the basal ganglia and other brain regions, which is associated with neuropsychiatric and motor symptoms. Familial IBGC is genetically heterogeneous and typically transmitted in an autosomal dominant fashion. We performed a mutational analysis of SLC20A2, the first gene found to cause IBGC, to assess its genetic contribution to familial IBGC. We recruited 218 subjects from 29 IBGC-affected families of varied ancestry and collected medical history, neurological exam, and head CT scans to characterize each patient’s disease status. We screened our patient cohort for mutations in SLC20A2. Twelve novel (nonsense, deletions, missense, and splice site) potentially pathogenic variants, one synonymous variant, and one previously reported mutation were identified in 13 families. Variants predicted to be deleterious cosegregated with disease in five families. Three families showed nonsegregation with clinical disease of such variants, but retrospective review of clinical and neuroimaging data strongly suggested previous misclassification. Overall, mutations in SLC20A2 account for as many as 41 % of our familial IBGC cases. Our screen in a large series expands the catalog of SLC20A2 mutations identified to date and demonstrates that mutations in SLC20A2 are a major cause of familial IBGC. Non-perfect segregation patterns of predicted deleterious variants highlight the challenges of phenotypic assessment in this condition with highly variable clinical presentation. PMID:23334463

  9. Functional imaging of the cerebellum and basal ganglia during predictive motor timing in early Parkinson's disease.

    Science.gov (United States)

    Husárová, Ivica; Lungu, Ovidiu V; Mareček, Radek; Mikl, Michal; Gescheidt, Tomáš; Krupa, Petr; Bareš, Martin

    2014-01-01

    The basal ganglia and the cerebellum have both emerged as important structures involved in the processing of temporal information. We examined the roles of the cerebellum and striatum in predictive motor timing during a target interception task in healthy individuals (HC group; n = 21) and in patients with early Parkinson's disease (early stage PD group; n = 20) using functional magnetic resonance imaging. Despite having similar hit ratios, the PD failed more often than the HC to postpone their actions until the right moment and to adapt their behavior from one trial to the next. We found more activation in the right cerebellar lobule VI in HC than in early stage PD during successful trials. Successful trial-by-trial adjustments were associated with higher activity in the right putamen and lobule VI of the cerebellum in HC. We conclude that both the cerebellum and striatum are involved in predictive motor timing tasks. The cerebellar activity is associated exclusively with the postponement of action until the right moment, whereas both the cerebellum and striatum are needed for successful adaptation of motor actions from one trial to the next. We found a general ''hypoactivation'' of basal ganglia and cerebellum in early stage PD relative to HC, indicating that even in early stages of the PD there could be functional perturbations in the motor system beyond striatum. Copyright © 2011 by the American Society of Neuroimaging.

  10. Primary hypoparathyroidism presenting as basal ganglia calcification secondary to extreme hypocalcemia

    Directory of Open Access Journals (Sweden)

    Edite Marques Mendes

    2018-01-01

    Full Text Available Hypoparathyroidism is a rare endocrine disorder characterized by low serum calcium and parathyroid hormone levels. The most common cause is parathyroid iatrogenic surgical removal. However, innumerous and rarer conditions can cause hypoparathyroidism. The authors describe a 27-year-old man that presented in emergency department with confusion, amnesia and decreased attention span. A cerebral computed tomography revealed bilateral extensive calcification in the basal ganglia. A complete work-up revealed low serum calcium, high serum phosphorus and low parathyroid hormone, leading to the diagnosis of idiopathic primary hypoparathyroidism. Initial intravenous therapy with calcium gluconate and calcitriol was administered, with clinical and analytical improvement. The authors describe a rare condition, with an exuberant cerebral presentation and extreme hypocalcemia, which did not directly correlate to the severity of symptoms. Not only this is a treatable disorder that may have catastrophic results if overlooked but also its symptoms may be completely reversed with prompt treatment.

  11. Nitric oxide modulation of the basal ganglia circuitry: therapeutic implication for Parkinson's disease and other motor disorders.

    Science.gov (United States)

    Pierucci, Massimo; Galati, Salvatore; Valentino, Mario; Di Matteo, Vincenzo; Benigno, Arcangelo; Pitruzzella, Alessandro; Muscat, Richard; Di Giovanni, Giuseppe

    2011-11-01

    Several recent studies have emphasized a crucial role for the nitrergic system in movement control and the pathophysiology of the basal ganglia (BG). These observations are supported by anatomical evidence demonstrating the presence of nitric oxide synthase (NOS) in all the basal ganglia nuclei. In fact, nitrergic terminals have been reported to make synaptic contacts with both substantia nigra dopamine-containing neurons and their terminal areas such as the striatum, the globus pallidus and the subthalamus. These brain areas contain a high expression of nitric oxide (NO)-producing neurons, with the striatum having the greatest number, together with important NO afferent input. In this paper, the distribution of NO in the BG nuclei will be described. Furthermore, evidence demonstrating the nitrergic control of BG activity will be reviewed. The new avenues that the increasing knowledge of NO in motor control has opened for exploring the pathophysiology and pharmacology of Parkinson's disease and other movement disorders will be discussed. For example, inhibition of striatal NO/guanosine monophosphate signal pathway by phosphodiesterases seems to be effective in levodopa-induced dyskinesia. However, the results of experimental studies have to be interpreted with caution given the complexities of nitrergic signalling and the limitations of animal models. Nevertheless, the NO system represents a promising pharmacological intervention for treating Parkinson's disease and related disorders.

  12. Hyperintense basal ganglia lesions on T1-weighted MR images in asymptomatic patients with hepatic dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Saatci, I. [Dept. of Radiology, Hacettepe Univ. Hospital, Ankara (Turkey); Cila, A. [Dept. of Radiology, Hacettepe Univ. Hospital, Ankara (Turkey); Dincer, F.F. [Dept. of Radiology, Hacettepe Univ. Hospital, Ankara (Turkey)

    1995-12-31

    Cranial MRI findings in four patients who had hepatic dysfunction, including one with sole hepatic form of Wilson`s disease, were reported. The MR examinations revealed bilateral, symmetric hyperintensity in the globus pallidus, subthalamic nuclei and mesencephalon on T1-weighted images with no corresponding abnormality on T2-weighted sequences. The basal ganglia were normal on CT examinations in all patients. None of the patients had the clinical findings of hepatic encephalopathy. The MR findings in our patients did not correlate with the degree or duration of hepatic dysfunction. (orig.)

  13. Clinical studies of the calcification of the basal ganglia as disclosed by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Node, Yoji; Nakazawa, Shozo (Nippon Medical School, Tokyo)

    1983-04-01

    One hundred and twenty-nine of the 12,645 patients (1.0%) were found to have attenuating changes suggesting calcification of the basal ganglia. Thirty-seven of those patients were male and 92 were female. The calcification was bilateral and grossly symmetric in 108 of these patients (83.7%), while it was unilateral in 21 (16.3%). In the unilaterally located cases, 15 were on the left side and 6 were on the right side. In 128 of these patients (99.2%), calcification was located in the globus pallidus. Only one patient, whose diagnosis was hypoparathyroidism, had calcification in both the globus pallidus and the head of the caudate nucleus. The patients' ages ranged from 10 to 85 years (mean, 58), but 88.4% of the patients were more than 40 years old at the time of the CT scanning. The attenuation values of the lesions varied from 35 to 375 EMI units (mean, 55.7). Skull radiographs were performed in 120 of the 129 patients. Calcification was detected in only one patient, a 76-year-old woman, whose diagnosis was myasthenia gravis. The clinical diagnoses of the 129 patients were as follows: 37, headache; 22, cerebrovascular diseases (19, occlusive cerebrovascular diseases); 20, vertigo and/or tinnitus; 12, psychiatric disorders; 5, Parkinson's Syndrome; 2, hypopara thyroidism; 2, Fahr's disease; 2, familial basal ganglia calcification; 2, epilepsy, and 25, miscellaneous (including carcinoma, brain tumor, and trauma). Nervous system abnormalities were observed in 41 of the 129 patients (31.2%). Mental signs, such as disturbance of recent memory, mental retardation, and dementia, were noted in 14 patients. Movement disorders were noted in 13 patients. Other nervous-system abnormalities were sensory disturbances (5 patients) and seizures (4 patients). Abnormal EEG activities were noted in 9 patients; three patients showed epileptic activity, and six had a pathologically slow rhythm.

  14. Clinical studies of the calcification of the basal ganglia as disclosed by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Node, Yoji; Nakazawa, Shozo [Nippon Medical School, Tokyo

    1983-04-01

    One hundred and twenty-nine of the 12,645 patients (1.0%) were found to have attenuating changes suggesting calcification of the basal ganglia. Thirty-seven of those patients were male and 92 were female. The calcification was bilateral and grossly symmetric in 108 of these patients (83.7%), while it was unilateral in 21 (16.3%). In the unilaterally located cases, 15 were on the left side and 6 were on the right side. In 128 of these patients (99.2%), calcification was located in the globus pallidus. Only one patient, whose diagnosis was hypoparathyroidism, had calcification in both the globus pallidus and the head of the caudate nucleus. The patients' ages ranged from 10 to 85 years (mean, 58), but 88.4% of the patients were more than 40 years old at the time of the CT scanning. The attenuation values of the lesions varied from 35 to 375 EMI units (mean, 55.7). Skull radiographs were performed in 120 of the 129 patients. Calcification was detected in only one patient, a 76-year-old woman, whose diagnosis was myasthenia gravis. The clinical diagnoses of the 129 patients were as follows: 37, headache; 22, cerebrovascular diseases (19, occlusive cerebrovascular diseases); 20, vertigo and/or tinnitus; 12, psychiatric disorders; 5, Parkinson's Syndrome; 2, hypopara thyroidism; 2, Fahr's disease; 2, familial basal ganglia calcification; 2, epilepsy, and 25, miscellaneous (including carcinoma, brain tumor, and trauma). Nervous system abnormalities were observed in 41 of the 129 patients (31.2%). Mental signs, such as disturbance of recent memory, mental retardation, and dementia, were noted in 14 patients. Movement disorders were noted in 13 patients. Other nervous-system abnormalities were sensory disturbances (5 patients) and seizures (4 patients). Abnormal EEG activities were noted in 9 patients; three patients showed epileptic activity, and six had a pathologically slow rhythm.

  15. Clinical studies of the calcification of the basal ganglia as disclosed by computed tomography

    International Nuclear Information System (INIS)

    Node, Yoji; Nakazawa, Shozo

    1983-01-01

    One hundred and twenty-nine of the 12,645 patients (1.0%) were found to have attenuating changes suggesting calcification of the basal ganglia. Thirty-seven of those patients were male and 92 were female. The calcification was bilateral and grossly symmetric in 108 of these patients (83.7%), while it was unilateral in 21 (16.3%). In the unilaterally located cases, 15 were on the left side and 6 were on the right side. In 128 of these patients (99.2%), calcification was located in the globus pallidus. Only one patient, whose diagnosis was hypoparathyroidism, had calcification in both the globus pallidus and the head of the caudate nucleus. The patients' ages ranged from 10 to 85 years (mean, 58), but 88.4% of the patients were more than 40 years old at the time of the CT scanning. The attenuation values of the lesions varied from 35 to 375 EMI units (mean, 55.7). Skull radiographs were performed in 120 of the 129 patients. Calcification was detected in only one patient, a 76-year-old woman, whose diagnosis was myasthenia gravis. The clinical diagnoses of the 129 patients were as follows: 37, headache; 22, cerebrovascular diseases (19, occlusive cerebrovascular diseases); 20, vertigo and/or tinnitus; 12, psychiatric disorders; 5, Parkinson's Syndrome; 2, hypopara thyroidism; 2, Fahr's disease; 2, familial basal ganglia calcification; 2, epilepsy, and 25, miscellaneous (including carcinoma, brain tumor, and trauma). Nervous system abnormalities were observed in 41 of the 129 patients (31.2%). Mental signs, such as disturbance of recent memory, mental retardation, and dementia, were noted in 14 patients. Movement disorders were noted in 13 patients. Other nervous-system abnormalities were sensory disturbances (5 patients) and seizures (4 patients). Abnormal EEG activities were noted in 9 patients; three patients showed epileptic activity, and six had a pathologically slow rhythm. (J.P.N.)

  16. No change of dopamine transporter density in basal ganglia after risperidone treatment in drug-naive children with Tourette's disorder

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, W. K.; Ryu, Y. H.; Yoon, M. J.; Chun, K. A.; Lee, J. D. [College of Medicine, Univ. of Yonsei, Seoul (Korea, Republic of); Zee, D. Y. [Univ. of Inhwa, Incheon (Korea, Republic of); Choi, T. H. [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    2003-07-01

    Tourette's disorder (TD), which is characterized by multiple waxing and waning motor tics and one or more vocal tics, is known to be associated with abnormalities in the dopaminergic system. To testify our hypothesis that risperidone would improve tic symptoms of TD patients through the change of the dopaminergic system, we measured the DAT densities between drug-naive children with TD and normal children investigated the DAT density before and after treatment with risperidone in drug-naive children with TD, using lodine-123 labelled N-(3-iodopropen-2-yl)-2beta-carbomethoxy-3beta-(4-chlorophenyl) tropane(I-123 IPT) single photon emission computed tomography (SPECT). I-123 IPT SPECT imaging and Yale Global Tic Severity Scale-Korean version (YGTSS-K) for assessing the tic symptom severity were carried out before and after treatment with risperidone for 8 weeks in eight drug-naive children with TD. Eight normal children also underwent SPECT imaging 2 hours after an intravenous administration of I-123 IPT and carried out both quantitative and qualitative analyses using the obtained SPECT data, which were reconstructed for the assessment of the specific/non-specific DAT binding ratio in the basal ganglia. The drug-naive children with TD had a significantly greater increase in the specific/nonspecific DAT binding ratio of both basal ganglia compared with the normal children. However, no significant difference in the specific/nonspecific DAT binding ratio of the basal ganglia before and after treatment with riperidone in children with TD was not found, although tic symptoms were significantly improved with risperidone. These findings suggest that DAT densities are directly associated with the pathophysiology of TD, however, that the effect of risperidone on tic symptoms in children with TD is not attributed to the change of dopaminergic system.

  17. Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition

    NARCIS (Netherlands)

    Jahfari, S.; Waldorp, L.; van den Wildenberg, W.P.M.; Scholte, H.S.; Ridderinkhof, K.R.; Forstmann, B.U.

    2011-01-01

    Fronto-basal ganglia pathways play a crucial role in voluntary action control, including the ability to inhibit motor responses. Response inhibition might be mediated via a fast hyperdirect pathway connecting the right inferior frontal gyrus (rIFG) and the presupplementary motor area (preSMA) with

  18. Individual differences in brainstem and basal ganglia structure predict postural control and balance loss in young and older adults.

    Science.gov (United States)

    Boisgontier, Matthieu P; Cheval, Boris; Chalavi, Sima; van Ruitenbeek, Peter; Leunissen, Inge; Levin, Oron; Nieuwboer, Alice; Swinnen, Stephan P

    2017-02-01

    It remains unclear which specific brain regions are the most critical for human postural control and balance, and whether they mediate the effect of age. Here, associations between postural performance and corticosubcortical brain regions were examined in young and older adults using multiple structural imaging and linear mixed models. Results showed that of the regions involved in posture, the brainstem was the strongest predictor of postural control and balance: lower brainstem volume predicted larger center of pressure deviation and higher odds of balance loss. Analyses of white and gray matter in the brainstem showed that the pedunculopontine nucleus area appeared to be critical for postural control in both young and older adults. In addition, the brainstem mediated the effect of age on postural control, underscoring the brainstem's fundamental role in aging. Conversely, lower basal ganglia volume predicted better postural performance, suggesting an association between greater neural resources in the basal ganglia and greater movement vigor, resulting in exaggerated postural adjustments. Finally, results showed that practice, shorter height and heavier weight (i.e., higher body mass index), higher total physical activity, and larger ankle active (but not passive) range of motion were predictive of more stable posture, irrespective of age. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Associations of olfactory bulb and depth of olfactory sulcus with basal ganglia and hippocampus in patients with Parkinson's disease.

    Science.gov (United States)

    Tanik, Nermin; Serin, Halil Ibrahim; Celikbilek, Asuman; Inan, Levent Ertugrul; Gundogdu, Fatma

    2016-05-04

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by hyposmia in the preclinical stages. We investigated the relationships of olfactory bulb (OB) volume and olfactory sulcus (OS) depth with basal ganglia and hippocampal volumes. The study included 25 patients with PD and 40 age- and sex-matched control subjects. Idiopathic PD was diagnosed according to published diagnostic criteria. The Hoehn and Yahr (HY) scale, the motor subscale of the Unified Parkinson's Disease Rating Scale (UPDRS III), and the Mini-Mental State Examination (MMSE) were administered to participants. Volumetric measurements of olfactory structures, the basal ganglia, and hippocampus were performed using magnetic resonance imaging (MRI). OB volume and OS depth were significantly reduced in PD patients compared to healthy control subjects (p<0.001 and p<0.001, respectively). The OB and left putamen volumes were significantly correlated (p=0.048), and the depth of the right OS was significantly correlated with right hippocampal volume (p=0.018). We found significant correlations between OB and putamen volumes and OS depth and hippocampal volume. Our study is the first to demonstrate associations of olfactory structures with the putamen and hippocampus using MRI volumetric measurements. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Relationship between obsessive-compulsive disorders and diseases affecting primarily the basal ganglia Relação entre transtorno obsessivo-compulsivo e doenças neurológicas dos gânglios da base

    Directory of Open Access Journals (Sweden)

    Alex S. S. Freire Maia

    1999-12-01

    Full Text Available Obsessive-compulsive disorder (OCD has been reported in association with some neurological diseases that affect the basal ganglia such as Tourette's syndrome, Sydenham's chorea, Parkinson's disease, and Huntington's disease. Furthermore, studies such as neuroimaging, suggest a role of the basal ganglia in the pathophysiology of OCD. The aim of this paper is to describe the association of OCD and several neurologic disorders affecting the basal ganglia, report the existing evidences of the role of the basal ganglia in the pathophysiology of OCD, and analyze the mechanisms probably involved in this pathophysiology.O transtorno obsessivo-compulsivo (TOC tem sido reportado em associação com algumas doenças neurológicas que afetam primariamente os gânglios da base como a síndrome de Tourette , a coréia de Sydenham, a doença de Parkinson e a doença de Huntington. Da mesma forma, estudos de neuroimagem sugerem a participação dos gânglios da base na fisiopatologia do TOC. O objetivo deste estudo é rever a coexistência de TOC e várias doenças que afetam os gânglios da base, as evidências da participação dessas estruturas na fisiopatologia do TOC e os mecanismos neurais subjacentes a esse distúrbio psiquiátrico.

  1. Effect of exposure to polycyclic aromatic hydrocarbons on basal ganglia and attention-deficit hyperactivity disorder symptoms in primary school children.

    Science.gov (United States)

    Mortamais, Marion; Pujol, Jesus; van Drooge, Barend L; Macià, Didac; Martínez-Vilavella, Gerard; Reynes, Christelle; Sabatier, Robert; Rivas, Ioar; Grimalt, Joan; Forns, Joan; Alvarez-Pedrerol, Mar; Querol, Xavier; Sunyer, Jordi

    2017-08-01

    Polycyclic aromatic hydrocarbons (PAHs) have been proposed as environmental risk factors for attention deficit hyperactivity disorder (ADHD). The effects of these pollutants on brain structures potentially involved in the pathophysiology of ADHD are unknown. The aim of this study was to investigate the effects of PAHs on basal ganglia volumes and ADHD symptoms in school children. We conducted an imaging study in 242 children aged 8-12years, recruited through a set of representative schools of the city of Barcelona, Spain. Indoor and outdoor PAHs and benzo[a]pyrene (BPA) levels were assessed in the school environment, one year before the MRI assessment. Whole-brain volumes and basal ganglia volumes (caudate nucleus, globus pallidus, putamen) were derived from structural MRI scans using automated tissue segmentation. ADHD symptoms (ADHD/DSM-IV Scales, American Psychiatric Association 2002) were reported by teachers, and inattentiveness was evaluated with standard error of hit reaction time in the attention network computer-based test. Total PAHs and BPA were associated with caudate nucleus volume (CNV) (i.e., an interquartile range increase in BPA outdoor level (67pg/m 3 ) and indoor level (76pg/m 3 ) was significantly linked to a decrease in CNV (mm 3 ) (β=-150.6, 95% CI [-259.1, -42.1], p=0.007, and β=-122.4, 95% CI [-232.9, -11.8], p=0.030 respectively) independently of intracranial volume, age, sex, maternal education and socioeconomic vulnerability index at home). ADHD symptoms and inattentiveness increased in children with higher exposure to BPA, but these associations were not statistically significant. Exposure to PAHs, and in particular to BPA, is associated with subclinical changes on the caudate nucleus, even below the legislated annual target levels established in the European Union. The behavioral consequences of this induced brain change were not identified in this study, but given the caudate nucleus involvement in many crucial cognitive and behavior

  2. Functional neuroanatomy of the basal ganglia as studied by dual-probe microdialysis

    International Nuclear Information System (INIS)

    O'Connor, William T.

    1998-01-01

    Dual probe microdialysis was employed in intact rat brain to investigate the effect of intrastriatal perfusion with selective dopamine D 1 and D 2 receptor agonists and with c-fos antisense oligonucleotide on (a) local GABA release in the striatum; (b) the internal segment of the globus pallidus and the substantia nigra pars reticulata, which is the output site of the strionigral GABA pathway; and (c) the external segment of the globus pallidus, which is the output site of the striopallidal GABA pathway. The data provide functional in vivo evidence for a selective dopamine D 1 receptor-mediated activation of the direct strionigral GABA pathway and a selective dopamine D 2 receptor inhibition of the indirect striopallidal GABA pathway and provides a neuronal substrate for parallel processing in the basal ganglia regulation of motor function. Taken together, these findings offer new therapeutic strategies for the treatment of dopamine-linked disorders such as Parkinson's disease, Huntington's disease, and schizophrenia

  3. Functional neuroanatomy of the basal ganglia as studied by dual-probe microdialysis

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, William T. E-mail: woconn@iveagh.ucd.ie

    1998-11-01

    Dual probe microdialysis was employed in intact rat brain to investigate the effect of intrastriatal perfusion with selective dopamine D{sub 1} and D{sub 2} receptor agonists and with c-fos antisense oligonucleotide on (a) local GABA release in the striatum; (b) the internal segment of the globus pallidus and the substantia nigra pars reticulata, which is the output site of the strionigral GABA pathway; and (c) the external segment of the globus pallidus, which is the output site of the striopallidal GABA pathway. The data provide functional in vivo evidence for a selective dopamine D{sub 1} receptor-mediated activation of the direct strionigral GABA pathway and a selective dopamine D{sub 2} receptor inhibition of the indirect striopallidal GABA pathway and provides a neuronal substrate for parallel processing in the basal ganglia regulation of motor function. Taken together, these findings offer new therapeutic strategies for the treatment of dopamine-linked disorders such as Parkinson's disease, Huntington's disease, and schizophrenia.

  4. Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson's disease and Huntington's disease

    Science.gov (United States)

    Hausdorff, J. M.; Cudkowicz, M. E.; Firtion, R.; Wei, J. Y.; Goldberger, A. L.

    1998-01-01

    The basal ganglia are thought to play an important role in regulating motor programs involved in gait and in the fluidity and sequencing of movement. We postulated that the ability to maintain a steady gait, with low stride-to-stride variability of gait cycle timing and its subphases, would be diminished with both Parkinson's disease (PD) and Huntington's disease (HD). To test this hypothesis, we obtained quantitative measures of stride-to-stride variability of gait cycle timing in subjects with PD (n = 15), HD (n = 20), and disease-free controls (n = 16). All measures of gait variability were significantly increased in PD and HD. In subjects with PD and HD, gait variability measures were two and three times that observed in control subjects, respectively. The degree of gait variability correlated with disease severity. In contrast, gait speed was significantly lower in PD, but not in HD, and average gait cycle duration and the time spent in many subphases of the gait cycle were similar in control subjects, HD subjects, and PD subjects. These findings are consistent with a differential control of gait variability, speed, and average gait cycle timing that may have implications for understanding the role of the basal ganglia in locomotor control and for quantitatively assessing gait in clinical settings.

  5. Quantitation of the human basal ganglia with positron emission tomography

    International Nuclear Information System (INIS)

    Bendrien, B.; Dewey, S.L.; Schlyer, D.J.; Wolf, A.P.; Volkow, N.D.

    1990-01-01

    The accurate measurement of the concentration of a radioisotope in small structures with PET requires a correction for quantitation loss due to the partial volume effect and the effect of scattered radiation. To evaluate errors associated with measures in the human basal ganglia (BG) the authors have built a unilateral model of the BG that the authors have inserted in a 20 cm cylinder. The recovery coefficient (RC = measured activity/true activity) for the BG phantom has been measured on a CTI tomograph (model 931-08/12) with different background concentrations (contrast) and at different axial locations in the gantry. The BG was visualized on 4 or 5 slices depending on its position in the gantry and on the contrast used. The RC was 0.75 with no background (contrast equal to 1.0). Increasing the relative radioactivity 2.00 when the contrast was -0.7 (BG 2 ). This paper also demonstrates that the higher the contrast the more sensitive to axial positioning PET measurements in the BG are. These data provide the authors' with some information about the variability of PET measurements in small structure like the BG and the authors have proposed some strategies to improve the reproducibility

  6. Basal Ganglia Outputs Map Instantaneous Position Coordinates during Behavior

    Science.gov (United States)

    Barter, Joseph W.; Li, Suellen; Sukharnikova, Tatyana; Rossi, Mark A.; Bartholomew, Ryan A.

    2015-01-01

    The basal ganglia (BG) are implicated in many movement disorders, yet how they contribute to movement remains unclear. Using wireless in vivo recording, we measured BG output from the substantia nigra pars reticulata (SNr) in mice while monitoring their movements with video tracking. The firing rate of most nigral neurons reflected Cartesian coordinates (either x- or y-coordinates) of the animal's head position during movement. The firing rates of SNr neurons are either positively or negatively correlated with the coordinates. Using an egocentric reference frame, four types of neurons can be classified: each type increases firing during movement in a particular direction (left, right, up, down), and decreases firing during movement in the opposite direction. Given the high correlation between the firing rate and the x and y components of the position vector, the movement trajectory can be reconstructed from neural activity. Our results therefore demonstrate a quantitative and continuous relationship between BG output and behavior. Thus, a steady BG output signal from the SNr (i.e., constant firing rate) is associated with the lack of overt movement, when a stable posture is maintained by structures downstream of the BG. Any change in SNr firing rate is associated with a change in position (i.e., movement). We hypothesize that the SNr output quantitatively determines the direction, velocity, and amplitude of voluntary movements. By changing the reference signals to downstream position control systems, the BG can produce transitions in body configurations and initiate actions. PMID:25673860

  7. Relationship between Contrast Enhancement of the Perivascular Space in the Basal Ganglia and Endolymphatic Volume Ratio.

    Science.gov (United States)

    Ohashi, Toshio; Naganawa, Shinji; Katagiri, Toshio; Kuno, Kayao

    2018-01-10

    We routinely obtain the endolymphatic hydrops (EH) image using heavily T 2 -weighted three dimensional-fluid attenuated inversion recovery (hT 2 w-3D-FLAIR) imaging at 4 hours after intravenous administration of a single-dose of gadolinium-based contrast media (IV-SD-GBCM). While repeating the examination, we speculated that the contrast enhancement of the perivascular space (PVS) in the basal ganglia might be related to the degree of EH. Therefore, the purpose of this study was to investigate the relationship between the endolymphatic volume ratio (%EL volume ) and the signal intensity of the PVS (SI-PVS). In 20 patients with a suspicion of EH, a heavily T 2 -weighted 3D-turbo spin echo sequence for MR cisternography (MRC) and an hT 2 w-3D-FLAIR as a positive perilymph image (PPI) were obtained at 4 hours after IV-SD-GBCM. The %EL volume of the cochlea and the vestibule were measured on the previously reported HYDROPS2-Mi2 image. The PVS in the basal ganglia was segmented on MRC using a region-growing method. The PVS regions were copied and pasted onto the PPI, and the SI-PVS was measured. The larger value of the right and the left ears was employed as the %EL volume , and the weighted average of both sides was employed as the SI-PVS. The correlation between the %EL volume and the SI-PVS was evaluated. There was a strong negative linear correlation between the %EL volume of the cochlea and the SI-PVS (r = -0.743, P < 0.001); however, there was no significant correlation between the %EL volume of the vestibule and the SI-PVS (r = -0.267, P = 0.256). There was a strong negative correlation between the cochlear %EL volume and the SI-PVS. Contrast enhancement of PVS might be a biomarker of EH.

  8. Adaptive autoregressive identification with spectral power decomposition for studying movement-related activity in scalp EEG signals and basal ganglia local field potentials

    Science.gov (United States)

    Foffani, Guglielmo; Bianchi, Anna M.; Priori, Alberto; Baselli, Giuseppe

    2004-09-01

    We propose a method that combines adaptive autoregressive (AAR) identification and spectral power decomposition for the study of movement-related spectral changes in scalp EEG signals and basal ganglia local field potentials (LFPs). This approach introduces the concept of movement-related poles, allowing one to study not only the classical event-related desynchronizations (ERD) and synchronizations (ERS), which correspond to modulations of power, but also event-related modulations of frequency. We applied the method to analyze movement-related EEG signals and LFPs contemporarily recorded from the sensorimotor cortex, the globus pallidus internus (GPi) and the subthalamic nucleus (STN) in a patient with Parkinson's disease who underwent stereotactic neurosurgery for the implant of deep brain stimulation (DBS) electrodes. In the AAR identification we compared the whale and the exponential forgetting factors, showing that the whale forgetting provides a better disturbance rejection and it is therefore more suitable to investigate movement-related brain activity. Movement-related power modulations were consistent with previous studies. In addition, movement-related frequency modulations were observed from both scalp EEG signals and basal ganglia LFPs. The method therefore represents an effective approach to the study of movement-related brain activity.

  9. Motor network structure and function are associated with motor performance in Huntington's disease.

    Science.gov (United States)

    Müller, Hans-Peter; Gorges, Martin; Grön, Georg; Kassubek, Jan; Landwehrmeyer, G Bernhard; Süßmuth, Sigurd D; Wolf, Robert Christian; Orth, Michael

    2016-03-01

    In Huntington's disease, the relationship of brain structure, brain function and clinical measures remains incompletely understood. We asked how sensory-motor network brain structure and neural activity relate to each other and to motor performance. Thirty-four early stage HD and 32 age- and sex-matched healthy control participants underwent structural magnetic resonance imaging (MRI), diffusion tensor, and intrinsic functional connectivity MRI. Diffusivity patterns were assessed in the cortico-spinal tract and the thalamus-somatosensory cortex tract. For the motor network connectivity analyses the dominant M1 motor cortex region and for the basal ganglia-thalamic network the thalamus were used as seeds. Region to region structural and functional connectivity was examined between thalamus and somatosensory cortex. Fractional anisotropy (FA) was higher in HD than controls in the basal ganglia, and lower in the external and internal capsule, in the thalamus, and in subcortical white matter. Between-group axial and radial diffusivity differences were more prominent than differences in FA, and correlated with motor performance. Within the motor network, the insula was less connected in HD than in controls, with the degree of connection correlating with motor scores. The basal ganglia-thalamic network's connectivity differed in the insula and basal ganglia. Tract specific white matter diffusivity and functional connectivity were not correlated. In HD sensory-motor white matter organization and functional connectivity in a motor network were independently associated with motor performance. The lack of tract-specific association of structure and function suggests that functional adaptation to structural loss differs between participants.

  10. Basal ganglia - thalamus and the crowning enigma

    Directory of Open Access Journals (Sweden)

    Marianela eGarcia-Munoz

    2015-11-01

    Full Text Available When Hubel (1982 referred to layer 1 of primary visual cortex as …a ‘crowning mystery’ to keep area-17 physiologists busy for years to come... he could have been talking about any cortical area. In the 80’s and 90’s there were no methods to examine this neuropile on the surface of the cortex: a tangled web of axons and dendrites from a variety of different places with unknown specificities and doubtful connections to the cortical output neurons some hundreds of microns below. Recently, three changes have made the crowning enigma less of an impossible mission: the clear presence of neurons in layer 1 (L1, the active conduction of voltage along apical dendrites and optogenetic methods that might allow us to look at one source of input at a time. For all of those reasons alone, it seems it is time to take seriously the function of L1. The functional properties of this layer will need to wait for more experiments but already L1 cells are GAD67 positive, i.e., inhibitory! They could reverse the sign of the thalamic glutamate (GLU input for the entire cortex. It is at least possible that in the near future normal activity of individual sources of L1 could be detected using genetic tools. We are at the outset of important times in the exploration of thalamic functions and perhaps the solution to the crowning enigma is within sight. Our review looks forward to that solution from the solid basis of the anatomy of the basal ganglia output to motor thalamus. We will focus on L1, its afferents, intrinsic neurons and its influence on responses of pyramidal neurons in layers 2/3 and 5. Since L1 is present in the whole cortex we will provide a general overview considering evidence mainly from the somatosensory cortex before focusing on motor cortex.

  11. Quetiapine responsive catatonia in an autistic patient with comorbid bipolar disorder and idiopathic basal ganglia calcification.

    Science.gov (United States)

    Ishitobi, Makoto; Kawatani, Masao; Asano, Mizuki; Kosaka, Hirotaka; Goto, Takashi; Hiratani, Michio; Wada, Yuji

    2014-10-01

    Bipolar disorder (BD) has been linked with the manifestation of catatonia in subjects with autism spectrum disorders (ASD). Idiopathic basal ganglia calcification (IBGC) is characterized by movement disorders and various neuropsychiatric disturbances including mood disorder. We present a patient with ASD and IBGC who developed catatonia presenting with prominent dystonic feature caused by comorbid BD, which was treated effectively with quetiapine. In addition to considering the possibility of neurodegenerative disease, careful psychiatric interventions are important to avoid overlooking treatable catatonia associated with BD in cases of ASD presenting with both prominent dystonic features and apparent fluctuation of the mood state. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  12. Calcification of the bilateral basal ganglia after radiation therapy for childhood brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Osami; Tajika, Yasuhiko; Sakairi, Mitsuhiko; Katahira, Masako; Shimizu, Takashi; Kitamura, Koichi

    1987-12-01

    Calcification of the basal ganglia subsequent to radiation therapy for childhood brain tumors has rarely been reported. Three cases of this calcification subsequent to radiation are presented here. Case 1 is a 7 year-old boy who underwent irradiation of 5000 rads locally for craniopharyngioma at the age of 4 years. Case 2 is a 4 year-old boy who was treated with irradiation of 4500 rads locally for cerebellar medulloblastoma at the age of 1 year. Case 3 is a 15 year-old girl who was treated with irradiation of 5000 rads to the brain and 3000 rads locally for suprasellar germinoma at the age of 11 years. In all these cases, the interval between radiation and evidence of calcification as detected only by CT scan, was more than 3 years and 2 cases are experiencing mild mental retardation. These findings suggest the possibility of long-term complications due to radiation therapy.

  13. Tourette syndrome: a disorder of the social decision-making network.

    Science.gov (United States)

    Albin, Roger L

    2018-02-01

    Tourette syndrome is a common neurodevelopmental disorder defined by characteristic involuntary movements, tics, with both motor and phonic components. Tourette syndrome is usually conceptualized as a basal ganglia disorder, with an emphasis on striatal dysfunction. While considerable evidence is consistent with these concepts, imaging data suggest diffuse functional and structural abnormalities in Tourette syndrome brain. Tourette syndrome exhibits features that are difficult to explain solely based on basal ganglia circuit dysfunctions. These features include the natural history of tic expression, with typical onset of tics around ages 5 to 7 years and exacerbation during the peri-pubertal years, marked sex disparity with higher male prevalence, and the characteristic distribution of tics. The latter are usually repetitive, somewhat stereotyped involuntary eye, facial and head movements, and phonations. A major functional role of eye, face, and head movements is social signalling. Prior work in social neuroscience identified a phylogenetically conserved network of sexually dimorphic subcortical nuclei, the Social Behaviour Network, mediating many social behaviours. Social behaviour network function is modulated developmentally by gonadal steroids and social behaviour network outputs are stereotyped sex and species specific behaviours. In 2011 O'Connell and Hofmann proposed that the social behaviour network interdigitates with the basal ganglia to form a greater network, the social decision-making network. The social decision-making network may have two functionally complementary limbs: the basal ganglia component responsible for evaluation of socially relevant stimuli and actions with the social behaviour network component responsible for the performance of social acts. Social decision-making network dysfunction can explain major features of the neurobiology of Tourette syndrome. Tourette syndrome may be a disorder of social communication resulting from

  14. A patient with Moyamoya-like vessels after radiation therapy for a tumor in the basal ganglia

    International Nuclear Information System (INIS)

    Ishiyama, Koichi; Tomura, Noriaki; Kato, Koki; Takahashi, Satoshi; Watarai, Jiro; Sasajima, Toshio; Mizoi, Kazuo

    2001-01-01

    A patient with Moyamoya-like vessels after radiation therapy for treatment of a tumor in the basal ganglia is reported. He was diagnosed as Down syndrome at birth. He had a tumor in the left basal ganglionic region at 12 years of the age. The tumor increased in size at age 14. He underwent cerebral angiography, which did not show a stenosis nor occlusion of the internal carotid artery, anterior cerebral artery, nor the middle cerebral artery. He received radiation therapy with a total dose of 56 Gy. He presented a dressing apraxia at age 19. MRI showed cerebral infarction in the left temporo-occipital region. Right internal carotid angiography revealed a severe stenosis of the internal carotid artery and anterior cerebral artery as well as a severe stenosis of the middle cerebral artery on the right side. Moyamoya-like vessels were seen in the basal ganglionic region. Left internal carotid angiography also showed a stenosis of the internal carotid artery and anterior cerebral artery as well as a severe stenosis of the middle cerebral artery on the left side. Moyamoya-like vessels were seen in the basal ganglionic region. Leptomeningeal anastomose and transdural anastomose were bilaterally seen. These arterial occlusion and stenotic phenomenon corresponded to a previous radiation field. These Moyamoya-like vessels with arterial stenosis and occlusion were thought to be due to radiation-induced vasculopathy, because a previous cerebral angiography showed a normal caliber of cerebral arteries. This patient showed that patients with radiation therapy in their early childhood should be carefully observed considering the possibility of the phenomenon. (author)

  15. MRI and MR spectroscopy study on basal ganglia alterations in patients with liver cirrhosis

    International Nuclear Information System (INIS)

    Wu Haibo; Ma Lin; Cai Youquan; Li Tao; Li Dejun; Liang Li

    2007-01-01

    Objective: To study the signal changes and metabolic alterations in the basal ganglia (BG) by using magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (MRS) in patients with hepatic encephalopathy with and without parkinsonism. Methods: MRI and MRS in the basal ganglia were performed in 27 patients (22 males, 5 females, age ranging from 29 to 62 years) with liver cirrhosis and hepatic encephalopathy. 14 of the 27 patients were classified as having parkinsonian signs evaluated by Unified Parkinson's Disease Rating Scale (UPDRS) test. 18 age-matched healthy volunteers (13 males, 5 females, age ranging from 24 to 51 years) underwent MRI and MRS as a control group. Results: NAA/Cr levels (average numbers are 1.40±0.03, 1.35±0.03 respectively) showed no statistical difference between cirrhotic patients with hepatic encephalopathy and the control group (t=1.16, t=0.87, P>0.05). Values of signal hyperintensities (average numbers are 1.03±0.002, 1.04± 0.003 respectively) in globus pallidus and ratios of mI/Cr(average numbers are 0.63±0.01, 0.61± 0.02 respectively) and Cho/Cr (average numbers are 0.82±0.03, 0.80±0.02 respectively) showed no statistically significant differences between the control group and the 13 patients without parkinsonism (t=0.63, t=-0.52, t=-0.54, P>0.05), whereas values of signal hyperintensities (average numbers are 1.18±0.001, 1.04±0.003 respectively) in globus pallidus and ratios of mI/Cr (average numbers are 0.39±0.02, 0.63±0.01 respectively) and Cho/Cr(average numbers are 0.68±0.01, 0.82±0.03 respectively) shows statistically significant difference in patients without and with parkinsonism (t=-5.16, t=7.61, t=4.12, P<0.05). In patients with cirrhosis, the values of signal hyperintensities in globus pallidus were inversely correlated with the ratio for mI/Cr(r=-0.764, P<0.05) and Cho/Cr (r=-0.553, P<0.05), respectively. Conclusion: MRI and MRS may be useful tools in the evaluation of extrapyramidal

  16. The allocation of attention to learning of goal-directed actions: A cognitive neuroscience framework focusing on the basal ganglia

    Directory of Open Access Journals (Sweden)

    Liz eFranz

    2012-12-01

    Full Text Available The present paper builds on the idea that attention is largely in service of our actions. A framework and model which captures the allocation of attention for learning of goal-directed actions is proposed and developed. This framework highlights an evolutionary model based on the notion that rudimentary brain functions have become embedded into increasingly higher levels of networks which all contribute to adaptive learning. Background literature is presented alongside key evidence based on experimental studies in the so-called ‘split-brain’ (surgically divided cerebral hemispheres with a key focus on bimanual actions. The proposed multilevel cognitive-neural system of attention is built upon key processes of a highly-adaptive basal-ganglia-thalamic-cortical system. Although overlap with other existing findings and models is acknowledged where appropriate, the proposed framework is an original synthesis of cognitive experimental findings with supporting evidence of a neural system and a carefully formulated model of attention. It is the hope that this new synthesis will be informative in fields of cognition and other fields of brain sciences and will lead to new avenues for experimentation across domains.

  17. Rehabilitation program based on sensorimotor recovery improves the static and dynamic balance and modifies the basal ganglia neurochemistry: A pilot 1H-MRS study on Parkinson's disease patients.

    Science.gov (United States)

    Delli Pizzi, Stefano; Bellomo, Rosa Grazia; Carmignano, Simona Maria; Ancona, Emilio; Franciotti, Raffaella; Supplizi, Marco; Barassi, Giovanni; Onofrj, Marco; Bonanni, Laura; Saggini, Raoul

    2017-12-01

    Rehabilitation interventions represent an alternative strategy to pharmacological treatment in order to slow or reverse some functional aspects of disability in Parkinson's disease (PD). To date, the neurophysiological mechanisms underlying rehabilitation-mediated improvement in PD patients are still poorly understood. Interestingly, growing evidence has highlighted a key role of the glutamate in neurogenesis and brain plasticity. The brain levels of glutamate, and of its precursor glutamine, can be detected in vivo and noninvasively as "Glx" by means of proton magnetic resonance spectroscopy (H-MRS). In the present pilot study, 7 PD patients with frequent falls and axial dystonia underwent 8-week rehabilitative protocol focused on sensorimotor improvement. Clinical evaluation and Glx quantification were performed before and after rehabilitation. The Glx assessment was focused on the basal ganglia in agreement with their key role in the motor functions. We found that the rehabilitation program improves the static and dynamic balance in PD patients, promoting a better global motor performance. Moreover, we observed that the levels of Glx within the left basal ganglia were higher after rehabilitation as compared with baseline. Thus, we posit that our sensorimotor rehabilitative protocol could stimulate the glutamate metabolism in basal ganglia and, in turn, neuroplasticity processes. We also hypothesize that these mechanisms could prepare the ground to restore the functional interaction among brain areas deputed to motor controls, which are affected in PD. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  18. A Mathematical Model of Levodopa Medication Effect on Basal Ganglia in Parkinson's Disease: An Application to the Alternate Finger Tapping Task.

    Science.gov (United States)

    Baston, Chiara; Contin, Manuela; Calandra Buonaura, Giovanna; Cortelli, Pietro; Ursino, Mauro

    2016-01-01

    Malfunctions in the neural circuitry of the basal ganglia (BG), induced by alterations in the dopaminergic system, are responsible for an array of motor disorders and milder cognitive issues in Parkinson's disease (PD). Recently Baston and Ursino (2015a) presented a new neuroscience mathematical model aimed at exploring the role of basal ganglia in action selection. The model is biologically inspired and reproduces the main BG structures and pathways, modeling explicitly both the dopaminergic and the cholinergic system. The present work aims at interfacing this neurocomputational model with a compartmental model of levodopa, to propose a general model of medicated Parkinson's disease. Levodopa effect on the striatum was simulated with a two-compartment model of pharmacokinetics in plasma joined with a motor effect compartment. The latter is characterized by the levodopa removal rate and by a sigmoidal relationship (Hill law) between concentration and effect. The main parameters of this relationship are saturation, steepness, and the half-maximum concentration. The effect of levodopa is then summed to a term representing the endogenous dopamine effect, and is used as an external input for the neurocomputation model; this allows both the temporal aspects of medication and the individual patient characteristics to be simulated. The frequency of alternate tapping is then used as the outcome of the whole model, to simulate effective clinical scores. Pharmacokinetic-pharmacodynamic modeling was preliminary performed on data of six patients with Parkinson's disease (both "stable" and "wearing-off" responders) after levodopa standardized oral dosing over 4 h. Results show that the model is able to reproduce the temporal profiles of levodopa in plasma and the finger tapping frequency in all patients, discriminating between different patterns of levodopa motor response. The more influential parameters are the Hill coefficient, related with the slope of the effect sigmoidal

  19. Dynamic stereotypic responses of basal ganglia neurons to subthalamic nucleus high frequency stimulation in the parkinsonian primate

    Directory of Open Access Journals (Sweden)

    Anan eMoran

    2011-04-01

    Full Text Available Deep brain stimulation in the subthalamic nucleus (STN is a well-established therapy for patients with severe Parkinson‟s disease (PD; however, its mechanism of action is still unclear. In this study we explored static and dynamic activation patterns in the basal ganglia during high frequency macro-stimulation of the STN. Extracellular multi-electrode recordings were performed in primates rendered parkinsonian using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Recordings were preformed simultaneously in the STN and the globus pallidus externus and internus. Single units were recorded preceding and during the stimulation. During the stimulation, STN mean firing rate dropped significantly, while pallidal mean firing rates did not change significantly. The vast majority of neurons across all three nuclei displayed stimulation driven modulations, which were stereotypic within each nucleus but differed across nuclei. The predominant response pattern of STN neurons was somatic inhibition. However, most pallidal neurons demonstrated synaptic activation patterns. A minority of neurons across all nuclei displayed axonal activation. Temporal dynamics were observed in the response to stimulation over the first 10 seconds in the STN and over the first 30 seconds in the pallidum. In both pallidal segments, the synaptic activation response patterns underwent delay and decay of the magnitude of the peak response due to short term synaptic depression. We suggest that during STN macro stimulation the STN goes through a functional ablation as its upper bound on information transmission drops significantly. This notion is further supported by the evident dissociation between the stimulation driven pre-synaptic STN somatic inhibition and the post-synaptic axonal activation of its downstream targets. Thus, basal ganglia output maintains its firing rate while losing the deleterious effect of the STN. This may be a part of the mechanism leading to the beneficial

  20. Interaction between the 5-HT system and the basal ganglia: functional implication and therapeutic perspective in Parkinson's disease.

    Science.gov (United States)

    Miguelez, Cristina; Morera-Herreras, Teresa; Torrecilla, Maria; Ruiz-Ortega, Jose A; Ugedo, Luisa

    2014-01-01

    The neurotransmitter serotonin (5-HT) has a multifaceted function in the modulation of information processing through the activation of multiple receptor families, including G-protein-coupled receptor subtypes (5-HT1, 5-HT2, 5-HT4-7) and ligand-gated ion channels (5-HT3). The largest population of serotonergic neurons is located in the midbrain, specifically in the raphe nuclei. Although the medial and dorsal raphe nucleus (DRN) share common projecting areas, in the basal ganglia (BG) nuclei serotonergic innervations come mainly from the DRN. The BG are a highly organized network of subcortical nuclei composed of the striatum (caudate and putamen), subthalamic nucleus (STN), internal and external globus pallidus (or entopeduncular nucleus in rodents, GPi/EP and GPe) and substantia nigra (pars compacta, SNc, and pars reticulata, SNr). The BG are part of the cortico-BG-thalamic circuits, which play a role in many functions like motor control, emotion, and cognition and are critically involved in diseases such as Parkinson's disease (PD). This review provides an overview of serotonergic modulation of the BG at the functional level and a discussion of how this interaction may be relevant to treating PD and the motor complications induced by chronic treatment with L-DOPA.

  1. Behavioural effects of basal ganglia rho-kinase inhibition in the unilateral 6-hydroxydopamine rat model of Parkinson's disease.

    Science.gov (United States)

    Inan, Salim Yalcin; Soner, Burak Cem; Sahin, Ayse Saide

    2016-08-01

    Parkinson's disease (PD) is one of the most common neurodegenerative disorders, which affects more than six million people in the world. While current available pharmacological therapies for PD in the early stages of the disease usually improve motor symptoms, they cause side effects, such as fluctuations and dyskinesias in the later stages. In this later stage, high frequency deep brain stimulation of the subthalamic nucleus (STN-DBS) is a treatment option which is most successful to treat drug resistant advanced PD. It has previously been demonstrated that activation of Rho/Rho-kinase pathway is involved in the dopaminergic cell degeneration which is one of the main characteristics of PD pathology. In addition, the involvement of this pathway has been suggested in diverse cellular events in the central nervous system; such as epilepsy, anxiety-related behaviors, regulation of dendritic and axonal morphology, antinociception, subarachnoid haemorrhage, spinal cord injury and amyotrophic lateral sclerosis. However, up to date, to our knowledge there are no previous reports showing the beneficial effects of the potent Rho-kinase inhibitor Y-27632 in the 6-hydroxydopamine (6-OHDA) rat model of PD. Therefore, in the present study, we investigated the behavioural effects of basal ganglia Y-27632 microinjections in this PD model. Our results indicated that basal ganglia Y-27632 microinjections significantly decreased the number of contralateral rotations-induced by apomorphine, significantly increased line crossings in the open-field test, contralateral forelimb use in the limb-use asymmetry test and contralateral tape playing time in the somatosensory asymmetry test, which may suggest that Y-27632 could be a potentially active antiparkinsonian agent.

  2. Interaction between basal ganglia and limbic circuits in learning and memory processes.

    Science.gov (United States)

    Calabresi, Paolo; Picconi, Barbara; Tozzi, Alessandro; Ghiglieri, Veronica

    2016-01-01

    Hippocampus and striatum play distinctive roles in memory processes since declarative and non-declarative memory systems may act independently. However, hippocampus and striatum can also be engaged to function in parallel as part of a dynamic system to integrate previous experience and adjust behavioral responses. In these structures the formation, storage, and retrieval of memory require a synaptic mechanism that is able to integrate multiple signals and to translate them into persistent molecular traces at both the corticostriatal and hippocampal/limbic synapses. The best cellular candidate for this complex synthesis is represented by long-term potentiation (LTP). A common feature of LTP expressed in these two memory systems is the critical requirement of convergence and coincidence of glutamatergic and dopaminergic inputs to the dendritic spines of the neurons expressing this form of synaptic plasticity. In experimental models of Parkinson's disease abnormal accumulation of α-synuclein affects these two memory systems by altering two major synaptic mechanisms underlying cognitive functions in cholinergic striatal neurons, likely implicated in basal ganglia dependent operative memory, and in the CA1 hippocampal region, playing a central function in episodic/declarative memory processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Refractory epilepsy and basal ganglia: the role of seizure frequency

    Energy Technology Data Exchange (ETDEWEB)

    Bouilleret, V.; Trebossen, R.; Mantzerides, M.; Semah, F.; Ribeiro, M.J. [Service Hospitalier Frederic Joliot, I2BM/DSV, CEA, 91 - Orsay (France); Bouilleret, V. [CHU Bicetre, Unite de Neurophysiologie et d' Epileptologie, AP-HP, 75 - Paris (France); Chassoux, F. [Hopital Saint Anne, Service de Neurochirurgie, 75 - Paris (France); Biraben, A. [CHU, Service de Neurologie, Hopital Pontchaillou, 35 - Rennes (France)

    2008-02-15

    Objectives. - A decrease of [{sup 18}F]Fluoro-L-DOPA uptake in basal ganglia (B.G.) was recently reported in medically refractory epilepsy. The purpose of this study was to assess the involvement of dopaminergic neurotransmission in refractory Temporal Lobe Epilepsy (T.L.E.) and its relationship to glucose metabolism and morphological changes. Methods. - Twelve T.L.E. patients were studied using [{sup 18}F]FDG PET, [{sup 18}F]Fluoro-L-DOPA PET and MRI and compared with healthy control volunteers. Morphological cerebral changes were assessed using Voxel-Based Morphometry (V.B.M.). Student t test statistical maps of functional and morphological differences between patients and controls were obtained using a general linear model. Results. - In T.L.E. patients, [{sup 18}F]Fluoro-L-DOPA uptake was reduced to the same extent in caudate and putamen in both cerebral hemispheres as well as in the substantia nigra (S.N.). These dopaminergic functional alterations occurred without any glucose metabolism changes in these areas. The only mild morphological abnormality was found in striatal regions without any changes in the S.N.. Conclusion. - The present study provides support for dopaminergic neurotransmission involvement in T.L.E.. The discrepancies between G.M.V. atrophy and the pattern of [{sup 18}F]Fluoro-L-DOPA suggest that B.G. involvement is not related to structural subcortical abnormalities. A functional decrease can be ruled out as there was no change of the glycolytic pathway metabolism in these areas. (authors)

  4. Quantitation of the human basal ganglia with Positron Emission Tomography

    International Nuclear Information System (INIS)

    Bendriem, B.; Dewey, S.L.; Schlyer, D.J.; Wolf, A.P.; Volkow, N.D.

    1990-01-01

    The accurate measurement of the concentration of a radioisotope in small structures with PET requires a correction for quantitation loss due to the partial volume effect and the effect of scattered radiation. To evaluate errors associated with measures in the human basal ganglia (BG) we have built a unilateral model of the BG that we have inserted in a 20 cm cylinder. The recovery coefficient (RC = measured activity/true activity) for our BG phantom has been measured on a CTI tomograph (model 931-08/12) with different background concentrations (contrast) and at different axial locations in the gantry. The BG was visualized on 4 or 5 slices depending on its position in the gantry and on the contrast used. The RC was 0.75 with no background (contrast equal to 1.0). Increasing the relative radioactivity concentration in the background increased the RC from 0.75 to 2.00 when the contrast was -0.7 (BG 2 ). These results show that accurate RC correction depends not only on the volume of the structure but also on its contrast with its surroundings as well as on the selection of the ROI. They also demonstrate that the higher the contrast the more sensitive to axial positioning PET measurements in the BG are. These data provide us with some information about the variability of PET measurements in small structure like the BG and we have proposed some strategies to improve the reproducibility. 18 refs., 3 figs., 5 tabs

  5. Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions

    Directory of Open Access Journals (Sweden)

    Clémentine eBosch-Bouju

    2013-11-01

    Full Text Available Motor thalamus (Mthal is implicated in the control of movement because it is strategically located between motor areas of the cerebral cortex and motor-related subcortical structures, such as the cerebellum and basal ganglia (BG. The role of BG and cerebellum in motor control has been extensively studied but how Mthal processes inputs from these two networks is unclear. Specifically, there is considerable debate about the role of BG inputs on Mthal activity. This review summarises anatomical and physiological knowledge of the Mthal and its afferents and reviews current theories of Mthal function by discussing the impact of cortical, BG and cerebellar inputs on Mthal activity. One view is that Mthal activity in BG and cerebellar-receiving territories is primarily driven by glutamatergic inputs from the cortex or cerebellum, respectively, whereas BG inputs are modulatory and do not strongly determine Mthal activity. This theory is steeped in the assumption that the Mthal processes information in the same way as sensory thalamus, through interactions of modulatory inputs with a single driver input. Another view, from BG models, is that BG exert primary control on the BG-receiving Mthal so it effectively relays information from BG to cortex. We propose a new super-integrator theory where each Mthal territory processes multiple driver or driver-like inputs (cortex and BG, cortex and cerebellum, which are the result of considerable integrative processing. Thus, BG and cerebellar Mthal territories assimilate motivational and proprioceptive motor information previously integrated in cortico-BG and cortico-cerebellar networks, respectively, to develop sophisticated motor signals that are transmitted in parallel pathways to cortical areas for optimal generation of motor programmes. Finally, we briefly review the pathophysiological changes that occur in the BG in parkinsonism and generate testable hypotheses about how these may affect processing of inputs

  6. Neural Dynamics of Autistic Repetitive Behaviors and Fragile X Syndrome: Basal Ganglia Movement Gating and mGluR-Modulated Adaptively Timed Learning.

    Science.gov (United States)

    Grossberg, Stephen; Kishnan, Devika

    2018-01-01

    This article develops the iSTART neural model that proposes how specific imbalances in cognitive, emotional, timing, and motor processes that involve brain regions like prefrontal cortex, temporal cortex, amygdala, hypothalamus, hippocampus, and cerebellum may interact together to cause behavioral symptoms of autism. These imbalances include underaroused emotional depression in the amygdala/hypothalamus, learning of hyperspecific recognition categories that help to cause narrowly focused attention in temporal and prefrontal cortices, and breakdowns of adaptively timed motivated attention and motor circuits in the hippocampus and cerebellum. The article expands the model's explanatory range by, first, explaining recent data about Fragile X syndrome (FXS), mGluR, and trace conditioning; and, second, by explaining distinct causes of stereotyped behaviors in individuals with autism. Some of these stereotyped behaviors, such as an insistence on sameness and circumscribed interests, may result from imbalances in the cognitive and emotional circuits that iSTART models. These behaviors may be ameliorated by operant conditioning methods. Other stereotyped behaviors, such as repetitive motor behaviors, may result from imbalances in how the direct and indirect pathways of the basal ganglia open or close movement gates, respectively. These repetitive behaviors may be ameliorated by drugs that augment D2 dopamine receptor responses or reduce D1 dopamine receptor responses. The article also notes the ubiquitous role of gating by basal ganglia loops in regulating all the functions that iSTART models.

  7. Interaction between the 5-HT system and the basal ganglia: Functional implication and therapeutic perspective in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Cristina eMiguelez

    2014-03-01

    Full Text Available The neurotransmitter serotonin (5-HT has a multifaceted function in the modulation of information processing through the activation of multiple receptor families, including G-protein-coupled receptor subtypes (5-HT1, 5-HT2, 5-HT4-7 and ligand-gated ion channels (5-HT3. The largest population of serotonergic neurons is located in the midbrain, specifically in the raphe nuclei. Although the medial and dorsal raphe nucleus (DRN share common projecting areas, in the basal ganglia (BG nuclei serotonergic innervations come mainly from the DRN. The BG are a highly organized network of subcortical nuclei composed of the striatum (caudate and putamen, subthalamic nucleus (STN, internal and external globus pallidus (or entopeduncular nucleus in rodents, GPi/EP and GPe and substantia nigra (pars compacta, SNc, and pars reticulata, SNr. The BG are part of the cortico-BG-thalamic circuits, which play a role in many functions like motor control, emotion, and cognition and are critically involved in diseases such as Parkinson’s disease. This review provides an overview of serotonergic modulation of the BG at the functional level and a discussion of how this interaction may be relevant to treating Parkinson’s disease and the motor complications induced by chronic treatment with L-DOPA.

  8. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    Science.gov (United States)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  9. Potential mechanisms for imperfect synchronization in parkinsonian basal ganglia.

    Directory of Open Access Journals (Sweden)

    Choongseok Park

    Full Text Available Neural activity in the brain of parkinsonian patients is characterized by the intermittently synchronized oscillatory dynamics. This imperfect synchronization, observed in the beta frequency band, is believed to be related to the hypokinetic motor symptoms of the disorder. Our study explores potential mechanisms behind this intermittent synchrony. We study the response of a bursting pallidal neuron to different patterns of synaptic input from subthalamic nucleus (STN neuron. We show how external globus pallidus (GPe neuron is sensitive to the phase of the input from the STN cell and can exhibit intermittent phase-locking with the input in the beta band. The temporal properties of this intermittent phase-locking show similarities to the intermittent synchronization observed in experiments. We also study the synchronization of GPe cells to synaptic input from the STN cell with dependence on the dopamine-modulated parameters. Earlier studies showed how the strengthening of dopamine-modulated coupling may lead to transitions from non-synchronized to partially synchronized dynamics, typical in Parkinson's disease. However, dopamine also affects the cellular properties of neurons. We show how the changes in firing patterns of STN neuron due to the lack of dopamine may lead to transition from a lower to a higher coherent state, roughly matching the synchrony levels observed in basal ganglia in normal and parkinsonian states. The intermittent nature of the neural beta band synchrony in Parkinson's disease is achieved in the model due to the interplay of the timing of STN input to pallidum and pallidal neuronal dynamics, resulting in sensitivity of pallidal output to the phase of the arriving STN input. Thus the mechanism considered here (the change in firing pattern of subthalamic neurons through the dopamine-induced change of membrane properties may be one of the potential mechanisms responsible for the generation of the intermittent synchronization

  10. Changing pattern in the basal ganglia: motor switching under reduced dopaminergic drive

    Science.gov (United States)

    Fiore, Vincenzo G.; Rigoli, Francesco; Stenner, Max-Philipp; Zaehle, Tino; Hirth, Frank; Heinze, Hans-Jochen; Dolan, Raymond J.

    2016-01-01

    Action selection in the basal ganglia is often described within the framework of a standard model, associating low dopaminergic drive with motor suppression. Whilst powerful, this model does not explain several clinical and experimental data, including varying therapeutic efficacy across movement disorders. We tested the predictions of this model in patients with Parkinson’s disease, on and off subthalamic deep brain stimulation (DBS), focussing on adaptive sensory-motor responses to a changing environment and maintenance of an action until it is no longer suitable. Surprisingly, we observed prolonged perseverance under on-stimulation, and high inter-individual variability in terms of the motor selections performed when comparing the two conditions. To account for these data, we revised the standard model exploring its space of parameters and associated motor functions and found that, depending on effective connectivity between external and internal parts of the globus pallidus and saliency of the sensory input, a low dopaminergic drive can result in increased, dysfunctional, motor switching, besides motor suppression. This new framework provides insight into the biophysical mechanisms underlying DBS, allowing a description in terms of alteration of the signal-to-baseline ratio in the indirect pathway, which better account of known electrophysiological data in comparison with the standard model. PMID:27004463

  11. Social modulation of learned behavior by dopamine in the basal ganglia: insights from songbirds.

    Science.gov (United States)

    Leblois, Arthur

    2013-06-01

    Dysfunction of the dopaminergic system leads to motor, cognitive, and motivational symptoms in brain disorders such as Parkinson's disease. The basal ganglia (BG) are involved in sensorimotor learning and receive a strong dopaminergic signal, shown to play an important role in social interactions. The function of the dopaminergic input to the BG in the integration of social cues during sensorimotor learning remains however largely unexplored. Songbirds use learned vocalizations to communicate during courtship and aggressive behaviors. Like language learning in humans, song learning strongly depends on social interactions. In songbirds, a specialized BG-thalamo-cortical loop devoted to song is particularly tractable for elucidating the signals carried by dopamine in the BG, and the function of dopamine signaling in mediating social cues during skill learning and execution. Here, I review experimental findings uncovering the physiological effects and function of the dopaminergic signal in the songbird BG, in light of our knowledge of the BG-dopamine interactions in mammals. Interestingly, the compact nature of the striato-pallidal circuits in birds led to new insight on the physiological effects of the dopaminergic input on the BG network as a whole. In singing birds, D1-like receptor agonist and antagonist can modulate the spectral variability of syllables bi-directionally, suggesting that social context-dependent changes in spectral variability are triggered by dopaminergic input through D1-like receptors. As variability is crucial for exploration during motor learning, but must be reduced after learning to optimize performance, I propose that, the dopaminergic input to the BG could be responsible for the social-dependent regulation of the exploration/exploitation balance in birdsong, and possibly in learned skills in other vertebrates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. The relative phases of basal ganglia activities dynamically shape effective connectivity in Parkinson's disease.

    Science.gov (United States)

    Cagnan, Hayriye; Duff, Eugene Paul; Brown, Peter

    2015-06-01

    Optimal phase alignment between oscillatory neural circuits is hypothesized to optimize information flow and enhance system performance. This theory is known as communication-through-coherence. The basal ganglia motor circuit exhibits exaggerated oscillatory and coherent activity patterns in Parkinson's disease. Such activity patterns are linked to compromised motor system performance as evinced by bradykinesia, rigidity and tremor, suggesting that network function might actually deteriorate once a certain level of net synchrony is exceeded in the motor circuit. Here, we characterize the processes underscoring excessive synchronization and its termination. To this end, we analysed local field potential recordings from the subthalamic nucleus and globus pallidus of five patients with Parkinson's disease (four male and one female, aged 37-64 years). We observed that certain phase alignments between subthalamic nucleus and globus pallidus amplified local neural synchrony in the beta frequency band while others either suppressed it or did not induce any significant change with respect to surrogates. The increase in local beta synchrony directly correlated with how long the two nuclei locked to beta-amplifying phase alignments. Crucially, administration of the dopamine prodrug, levodopa, reduced the frequency and duration of periods during which subthalamic and pallidal populations were phase-locked to beta-amplifying alignments. Conversely ON dopamine, the total duration over which subthalamic and pallidal populations were aligned to phases that left beta-amplitude unchanged with respect to surrogates increased. Thus dopaminergic input shifted circuit dynamics from persistent periods of locking to amplifying phase alignments, associated with compromised motoric function, to more dynamic phase alignment and improved motoric function. This effect of dopamine on local circuit resonance suggests means by which novel electrical interventions might prevent resonance

  13. Chronic alcohol exposure disrupts top-down control over basal ganglia action selection to produce habits.

    Science.gov (United States)

    Renteria, Rafael; Baltz, Emily T; Gremel, Christina M

    2018-01-15

    Addiction involves a predominance of habitual control mediated through action selection processes in dorsal striatum. Research has largely focused on neural mechanisms mediating a proposed progression from ventral to dorsal lateral striatal control in addiction. However, over reliance on habit striatal processes may also arise from reduced cortical input to striatum, thereby disrupting executive control over action selection. Here, we identify novel mechanisms through which chronic intermittent ethanol exposure and withdrawal (CIE) disrupts top-down control over goal-directed action selection processes to produce habits. We find CIE results in decreased excitability of orbital frontal cortex (OFC) excitatory circuits supporting goal-directed control, and, strikingly, selectively reduces OFC output to the direct output pathway in dorsal medial striatum. Increasing the activity of OFC circuits restores goal-directed control in CIE-exposed mice. Our findings show habitual control in alcohol dependence can arise through disrupted communication between top-down, goal-directed processes onto basal ganglia pathways controlling action selection.

  14. Correlation of iron deposition and change of gliocyte metabolism in the basal ganglia region evaluated using magnetic resonance imaging techniques: an in vivo study

    OpenAIRE

    Liu, Haodi; Wang, Xiaoming

    2016-01-01

    Introduction We assessed the correlation between iron deposition and the change of gliocyte metabolism in healthy subjects? basal ganglia region, by using 3D-enhanced susceptibility weighted angiography (ESWAN) and proton magnetic resonance spectroscopy (1H-MRS). Material and methods Seventy-seven healthy volunteers (39 female and 38 male subjects; age range: 24?82 years old) were enrolled in the experiment including ESWAN and proton MRS sequences, consent for which was provided by themselves...

  15. Neural Dynamics of Autistic Repetitive Behaviors and Fragile X Syndrome: Basal Ganglia Movement Gating and mGluR-Modulated Adaptively Timed Learning

    Directory of Open Access Journals (Sweden)

    Stephen Grossberg

    2018-03-01

    Full Text Available This article develops the iSTART neural model that proposes how specific imbalances in cognitive, emotional, timing, and motor processes that involve brain regions like prefrontal cortex, temporal cortex, amygdala, hypothalamus, hippocampus, and cerebellum may interact together to cause behavioral symptoms of autism. These imbalances include underaroused emotional depression in the amygdala/hypothalamus, learning of hyperspecific recognition categories that help to cause narrowly focused attention in temporal and prefrontal cortices, and breakdowns of adaptively timed motivated attention and motor circuits in the hippocampus and cerebellum. The article expands the model’s explanatory range by, first, explaining recent data about Fragile X syndrome (FXS, mGluR, and trace conditioning; and, second, by explaining distinct causes of stereotyped behaviors in individuals with autism. Some of these stereotyped behaviors, such as an insistence on sameness and circumscribed interests, may result from imbalances in the cognitive and emotional circuits that iSTART models. These behaviors may be ameliorated by operant conditioning methods. Other stereotyped behaviors, such as repetitive motor behaviors, may result from imbalances in how the direct and indirect pathways of the basal ganglia open or close movement gates, respectively. These repetitive behaviors may be ameliorated by drugs that augment D2 dopamine receptor responses or reduce D1 dopamine receptor responses. The article also notes the ubiquitous role of gating by basal ganglia loops in regulating all the functions that iSTART models.

  16. Alterations of the cerebellum and basal ganglia in bipolar disorder mood states detected by quantitative T1ρ mapping.

    Science.gov (United States)

    Johnson, Casey P; Christensen, Gary E; Fiedorowicz, Jess G; Mani, Merry; Shaffer, Joseph J; Magnotta, Vincent A; Wemmie, John A

    2018-01-07

    Quantitative mapping of T1 relaxation in the rotating frame (T1ρ) is a magnetic resonance imaging technique sensitive to pH and other cellular and microstructural factors, and is a potentially valuable tool for identifying brain alterations in bipolar disorder. Recently, this technique identified differences in the cerebellum and cerebral white matter of euthymic patients vs healthy controls that were consistent with reduced pH in these regions, suggesting an underlying metabolic abnormality. The current study built upon this prior work to investigate brain T1ρ differences across euthymic, depressed, and manic mood states of bipolar disorder. Forty participants with bipolar I disorder and 29 healthy control participants matched for age and gender were enrolled. Participants with bipolar disorder were imaged in one or more mood states, yielding 27, 12, and 13 imaging sessions in euthymic, depressed, and manic mood states, respectively. Three-dimensional, whole-brain anatomical images and T1ρ maps were acquired for all participants, enabling voxel-wise evaluation of T1ρ differences between bipolar mood state and healthy control groups. All three mood state groups had increased T1ρ relaxation times in the cerebellum compared to the healthy control group. Additionally, the depressed and manic groups had reduced T1ρ relaxation times in and around the basal ganglia compared to the control and euthymic groups. The study implicated the cerebellum and basal ganglia in the pathophysiology of bipolar disorder and its mood states, the roles of which are relatively unexplored. These findings motivate further investigation of the underlying cause of the abnormalities, and the potential role of altered metabolic activity in these regions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. The effect of low frequency stimulation of the pedunculopontine tegmental nucleus on basal ganglia in a rat model of Parkinson's disease.

    Science.gov (United States)

    Park, Eunkyoung; Song, Inho; Jang, Dong Pyo; Kim, In Young

    2014-08-08

    The pedunculopontine nucleus (PPN) has recently been introduced as an alternative target to the subthalamic nucleus (STN) or globus pallidus internus (GPi) for the treatment of advanced Parkinson's disease with severe and medically intractable axial symptoms such as gait and postural impairment. However, it is little known about how electrical stimulation of the PPN affects control of neuronal activities between the PPN and basal ganglia. We examined how low frequency stimulation of the pedunculopontine tegmental nucleus (PPTg) affects control of neuronal activities between the PPN and basal ganglia in 6-OHDA lesioned rats. In order to identify the effect of low frequency stimulation on the PPTg, neuronal activity in both the STN and substantia nigra par reticulata (SNr) were recorded and subjected to quantitative analysis, including analysis of firing rates and firing patterns. In this study, we found that the firing rates of the STN and SNr were suppressed during low frequency stimulation of the PPTg. However, the firing pattern, in contrast to the firing rate, did not exhibit significant changes in either the STN or SNr of 6-OHDA lesioned rats during low frequency stimulation of the PPTg. In addition, we also found that the firing rate of STN and SNr neurons displaying burst and random pattern were decreased by low frequency stimulation of PPTg, while the neurons displaying regular pattern were not affected. These results indicate that low frequency stimulation of the PPTg affects neuronal activity in both the STN and SNr, and may represent electrophysiological efficacy of low frequency PPN stimulation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Calcificação nos núcleos da base na tomografia computadorizada: correlação clínica em 25 pacientes consecutivos Basal ganglia calcification on computed tomography: clinical characteristics in 25 patients

    Directory of Open Access Journals (Sweden)

    Glória Maria A.S. Tedrus

    2006-03-01

    Full Text Available Analisamos os aspectos clínicos de 25 pacientes consecutivos que apresentaram calcificação nos núcleos da base na tomografia computadorizada (TC de crânio. Esta ocorreu em 0,68% de todos os exames realizados no período. Vinte e três pacientes apresentavam condições clínicas diversas, a saber: cefaléia em 7 casos, acidente vascular cerebral em 5, síndrome extrapiramidal em 2, processo expansivo cerebral em 2, epilepsia, retardo do desenvolvimento neuropsicomotor, demência e trauma de crânio em um caso cada ou outras condições neurológicas em 3. Não havia sintomas neurológicos em 2 casos. Em 15 pacientes (60,0% havia, além da calcificação dos núcleos da base, outras alterações na TC. Correlação clínica foi observada apenas com as outras alterações da TC e não com a calcificação dos núcleos da base, corroborando a hipótese de que esta possa ser um achado incidental.Twenty-five patients presenting basal ganglia calcification were assessed. This finding comprised 0.68% of all skull CT scan carried out during the period. Two patients were neurologically asymptomatic and 23 presented a variety neurological disorders - headache (7 patients, stroke (5 patients, extrapyramidal syndromes (2 patients, tumor (2 patients, epilepsy (1 patient, mental retardation (1 patient, dementia (1 patient, cranial trauma (1 patient, other neurological conditions (3 patients - or were asymptomatic from the neurological point of view (2 patients. Findings in the CT scan other than the basal ganglia calcification were observed in 15 (60% patients. There was a clinical-CT scan correlation in these cases but not in those in which the basal ganglia calcification was an isolated finding. This study highlights the fact that basal ganglia calcification is often a nonspecific finding on CT scan and that it may not be possible to establish a clinical-pathological correlation between them.

  19. Where neuroscience and dynamic system theory meet autonomous robotics: a contracting basal ganglia model for action selection.

    Science.gov (United States)

    Girard, B; Tabareau, N; Pham, Q C; Berthoz, A; Slotine, J-J

    2008-05-01

    Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computational model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neural projections, which participate in performing accurate selection. Finally, the efficiency of this model as an autonomous robot action selection mechanism is assessed in a standard survival task. The model exhibits valuable dithering avoidance and energy-saving properties, when compared with a simple if-then-else decision rule.

  20. Believer-Skeptic Meets Actor-Critic: Rethinking the Role of Basal Ganglia Pathways during Decision-Making and Reinforcement Learning

    Science.gov (United States)

    Dunovan, Kyle; Verstynen, Timothy

    2016-01-01

    The flexibility of behavioral control is a testament to the brain's capacity for dynamically resolving uncertainty during goal-directed actions. This ability to select actions and learn from immediate feedback is driven by the dynamics of basal ganglia (BG) pathways. A growing body of empirical evidence conflicts with the traditional view that these pathways act as independent levers for facilitating (i.e., direct pathway) or suppressing (i.e., indirect pathway) motor output, suggesting instead that they engage in a dynamic competition during action decisions that computationally captures action uncertainty. Here we discuss the utility of encoding action uncertainty as a dynamic competition between opposing control pathways and provide evidence that this simple mechanism may have powerful implications for bridging neurocomputational theories of decision making and reinforcement learning. PMID:27047328

  1. Unusual progression of herpes simplex encephalitis with basal ganglia and extensive white matter involvement

    Directory of Open Access Journals (Sweden)

    Yasuhiro Manabe

    2009-08-01

    Full Text Available We report a 51-year old male with herpes simplex encephalitis (HSE showing unusual progression and magnetic resonance (MR findings. The initial neurological manifestation of intractable focal seizure with low-grade fever persisted for three days, and rapidly coma, myoclonic status, and respiratory failure with high-grade fever emerged thereafter. The polymerase chain reaction (PCR result of cerebrospinal fluid (CSF was positive for HSV-1 DNA. In the early stage, MR images (MRI were normal. On subsequent MR diffusion-weighted (DW and fluid-attenuated inversion recovery (FLAIR images, high-intensity areas first appeared in the left frontal cortex, which was purely extra-temporal involvement, and extended into the basal ganglia, then the white matter, which are relatively spared in HSE. Antiviral therapy and immunosuppressive therapy did not suppress the progression of HSE, and finally severe cerebral edema developed into cerebral herniation, which required emergency decompressive craniectomy. Histological examination of a biopsy specimen of the white matter detected perivascular infiltration and destruction of basic structure, which confirmed non specific inflammatory change without obvious edema or demyelination. The present case shows both MR and pathological findings in the white matter in the acute stage of HSE.

  2. Fiber tractography of the axonal pathways linking the basal ganglia and cerebellum in Parkinson disease: implications for targeting in deep brain stimulation.

    Science.gov (United States)

    Sweet, Jennifer A; Walter, Benjamin L; Gunalan, Kabilar; Chaturvedi, Ashutosh; McIntyre, Cameron C; Miller, Jonathan P

    2014-04-01

    Stimulation of white matter pathways near targeted structures may contribute to therapeutic effects of deep brain stimulation (DBS) for patients with Parkinson disease (PD). Two tracts linking the basal ganglia and cerebellum have been described in primates: the subthalamopontocerebellar tract (SPCT) and the dentatothalamic tract (DTT). The authors used fiber tractography to evaluate white matter tracts that connect the cerebellum to the region of the basal ganglia in patients with PD who were candidates for DBS. Fourteen patients with advanced PD underwent 3-T MRI, including 30-directional diffusion-weighted imaging sequences. Diffusion tensor tractography was performed using 2 regions of interest: ipsilateral subthalamic and red nuclei, and contralateral cerebellar hemisphere. Nine patients underwent subthalamic DBS, and the course of each tract was observed relative to the location of the most effective stimulation contact and the volume of tissue activated. In all patients 2 distinct tracts were identified that corresponded closely to the described anatomical features of the SPCT and DTT, respectively. The mean overall distance from the active contact to the DTT was 2.18 ± 0.35 mm, and the mean proportional distance relative to the volume of tissue activated was 1.35 ± 0.48. There was a nonsignificant trend toward better postoperative tremor control in patients with electrodes closer to the DTT. The SPCT and the DTT may be related to the expression of symptoms in PD, and this may have implications for DBS targeting. The use of tractography to identify the DTT might assist with DBS targeting in the future.

  3. Altered neuronal firing pattern of the basal ganglia nucleus plays a role in levodopa-induced dyskinesia in patients with Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Xiaoyu eLi

    2015-11-01

    Full Text Available Background: Levodopa therapy alleviates the symptoms of Parkinson's disease (PD, but long-term treatment often leads to motor complications such as levodopa-induced dyskinesia (LID. Aim: To explore the neuronal activity in the basal ganglia nuclei in patients with PD and LID. Methods: Thirty patients with idiopathic PD (age, 55.1±11.0 years; disease duration, 8.7±5.6 years were enrolled between August 2006 and August 2013 at the Xuanwu Hospital, Capital Medical University, China. Their Hoehn and Yahr scores ranged from 2 to 4 and their UPDRS III scores were 28.5±5.2. Fifteen of them had severe LID (UPDRS IV scores of 6.7±1.6. Microelectrode recording was performed in the globus pallidus internus (GPi and subthalamic nucleus (STN during pallidotomy (n=12 or STN deep brain stimulation (DBS; bilateral, n=12; unilateral, n=6. The firing patterns and frequencies of various cell types were analyzed by assessing single cell interspike intervals (ISIs and the corresponding coefficient of variation (CV. Results: A total of 295 neurons were identified from the GPi (n=12 and STN (n=18. These included 26 (8.8% highly grouped discharge, 30 (10.2% low frequency firing, 78 (26.4% rapid tonic discharge, 103 (34.9% irregular activity, and 58 (19.7% tremor-related activity. There were significant differences between the two groups (P<0.05 for neurons with irregular firing, highly irregular cluster-like firing, and low-frequency firing. Conclusion: Altered neuronal activity was observed in the basal ganglia nucleus of GPi and STN, and may play important roles in the pathophysiology of PD and LID.

  4. Electro-acupuncture stimulation acts on the basal ganglia output pathway to ameliorate motor impairment in Parkinsonian model rats.

    Science.gov (United States)

    Jia, Jun; Li, Bo; Sun, Zuo-Li; Yu, Fen; Wang, Xuan; Wang, Xiao-Min

    2010-04-01

    The role of electro-acupuncture (EA) stimulation on motor symptoms in Parkinson's disease (PD) has not been well studied. In a rat hemiparkinsonian model induced by unilateral transection of the medial forebrain bundle (MFB), EA stimulation improved motor impairment in a frequency-dependent manner. Whereas EA stimulation at a low frequency (2 Hz) had no effect, EA stimulation at a high frequency (100 Hz) significantly improved motor coordination. However, neither low nor high EA stimulation could significantly enhance dopamine levels in the striatum. EA stimulation at 100 Hz normalized the MFB lesion-induced increase in midbrain GABA content, but it had no effect on GABA content in the globus pallidus. These results suggest that high-frequency EA stimulation improves motor impairment in MFB-lesioned rats by increasing GABAergic inhibition in the output structure of the basal ganglia.

  5. CT brain demonstration of basal ganglion calcification in adult HIV ...

    African Journals Online (AJOL)

    brain barrier has been postulated. Calcification of the basal ganglia in encephalopathic HIV/AIDS children has been relatively well documented. Only two adult HIV cases with basal ganglion calcification (BGC) have been reported in the literature.

  6. Functional Relevance of Different Basal Ganglia Pathways Investigated in a Spiking Model with Reward Dependent Plasticity

    Directory of Open Access Journals (Sweden)

    Pierre Berthet

    2016-07-01

    Full Text Available The brain enables animals to behaviourally adapt in order to survive in a complex and dynamic environment, but how reward-oriented behaviours are achieved and computed by its underlying neural circuitry is an open question. To address this concern, we have developed a spiking model of the basal ganglia (BG that learns to dis-inhibit the action leading to a reward despite ongoing changes in the reward schedule. The architecture of the network features the two pathways commonly described in BG, the direct (denoted D1 and the indirect (denoted D2 pathway, as well as a loop involving striatum and the dopaminergic system. The activity of these dopaminergic neurons conveys the reward prediction error (RPE, which determines the magnitude of synaptic plasticity within the different pathways. All plastic connections implement a versatile four-factor learning rule derived from Bayesian inference that depends upon pre- and postsynaptic activity, receptor type and dopamine level. Synaptic weight updates occur in the D1 or D2 pathways depending on the sign of the RPE, and an efference copy informs upstream nuclei about the action selected. We demonstrate successful performance of the system in a multiple-choice learning task with a transiently changing reward schedule. We simulate lesioning of the various pathways and show that a condition without the D2 pathway fares worse than one without D1. Additionally, we simulate the degeneration observed in Parkinson’s disease (PD by decreasing the number of dopaminergic neurons during learning. The results suggest that the D1 pathway impairment in PD might have been overlooked. Furthermore, an analysis of the alterations in the synaptic weights shows that using the absolute reward value instead of the RPE leads to a larger change in D1.

  7. An infant who had chorea-athetotic movement and psychomotor deterioration associated with the low density area in the bilateral cerebral basal ganglia on CT

    International Nuclear Information System (INIS)

    Tojo, Megumu; Matsui, Akira; Sakuragawa, Norio; Hirayama, Yoshito; Arima, Masataka

    1984-01-01

    A 6-year-old girl with convulsive tetraplegia and chorea-athetotic movement was reported. Since the age of one year, psychomotor retardation had begun to occur and CT showed a low density area in the putamen. At the age of 3 years and 6 months, psychomotor deterioration occurred subsequently to varicella. An abnormality in carbohydrate metabolism was suspected because of a slightly increased lactic acid and pyruvic acid. Because CT showed a low density area in the cerebral basal ganglia, juvenile Lee's encephalopathy and striatal necrosis remained to be ruled out. (Namekawa, K.)

  8. Use of intraoperative local field potential spectral analysis to differentiate basal ganglia structures in Parkinson's disease patients.

    Science.gov (United States)

    Kolb, Rachel; Abosch, Aviva; Felsen, Gidon; Thompson, John A

    2017-06-01

    Identification of brain structures traversed during implantation of deep brain-stimulating (DBS) electrodes into the subthalamic nucleus (STN-DBS) for the treatment of Parkinson's disease (PD) frequently relies on subjective correspondence between kinesthetic response and multiunit activity. However, recent work suggests that local field potentials (LFP) could be used as a more robust signal to objectively differentiate subcortical structures. The goal of this study was to analyze the spectral properties of LFP collected during STN-DBS in order to objectively identify commonly traversed brain regions and improve our understanding of aberrant oscillations in the PD-related pathophysiological cortico-basal ganglia network. In 21 PD patients, LFP were collected and analyzed during STN-DBS implantation surgery. Spectral power for delta-, theta-, alpha-, low-beta-, and high-beta-frequency bands was assessed at multiple depths throughout the subcortical structures traversed on the trajectory to the ventral border of STN. Similar to previous findings, beta-band oscillations had an increased magnitude within the borders of the motor-related area of STN, however, across several subjects, we also observed increased high-beta magnitude within the borders of thalamus. Comparing across all patients using relative power, we observed a gradual increase in the magnitude of both low- and high-beta-frequency bands as the electrode descended from striatum to STN. These results were also compared with frequency bands below beta, and similar trends were observed. Our results suggest that LFP signals recorded during the implantation of a DBS electrode evince distinct oscillatory signatures that distinguish subcortical structures. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  9. Influence of basal ganglia on upper limb locomotor synergies. Evidence from deep brain stimulation and L-DOPA treatment in Parkinson's disease.

    Science.gov (United States)

    Crenna, P; Carpinella, I; Lopiano, L; Marzegan, A; Rabuffetti, M; Rizzone, M; Lanotte, M; Ferrarin, M

    2008-12-01

    Clinical evidence of impaired arm swing while walking in patients with Parkinson's disease suggests that basal ganglia and related systems play an important part in the control of upper limb locomotor automatism. To gain more information on this supraspinal influence, we measured arm and thigh kinematics during walking in 10 Parkinson's disease patients, under four conditions: (i) baseline (no treatment), (ii) therapeutic stimulation of the subthalamic nucleus (STN), (iii)L-DOPA medication and (iv) combined STN stimulation and L-DOPA. Ten age-matched controls provided reference data. Under baseline conditions the range of patients' arm motion was severely restricted, with no correlation with the excursion of the thigh. In addition, the arm swing was abnormally coupled in time with oscillation of the ipsilateral thigh. STN stimulation significantly increased the gait speed and improved the spatio-temporal parameters of arm and thigh motion. The kinematic changes as a function of gait speed changes, however, were significantly smaller for the upper than the lower limb, in contrast to healthy controls. Arm motion was also less responsive after L-DOPA. Simultaneous deep brain stimulation and L-DOPA had additive effects on thigh motion, but not on arm motion and arm-thigh coupling. The evidence that locomotor automatisms of the upper and lower limbs display uncorrelated impairment upon dysfunction of the basal ganglia, as well as different susceptibility to electrophysiological and pharmacological interventions, points to the presence of heterogeneously distributed, possibly partially independent, supraspinal control channels, whereby STN and dopaminergic systems have relatively weaker influence on the executive structures involved in the arm swing and preferential action on those for lower limb movements. These findings might be considered in the light of phylogenetic changes in supraspinal control of limb motion related to primate bipedalism.

  10. Deep brain stimulation of the center median-parafascicular complex of the thalamus has efficient anti-parkinsonian action associated with widespread cellular responses in the basal ganglia network in a rat model of Parkinson's disease.

    Science.gov (United States)

    Jouve, Loréline; Salin, Pascal; Melon, Christophe; Kerkerian-Le Goff, Lydia

    2010-07-21

    The thalamic centromedian-parafascicular (CM/Pf) complex, mainly represented by Pf in rodents, is proposed as an interesting target for the neurosurgical treatment of movement disorders, including Parkinson's disease. In this study, we examined the functional impact of subchronic high-frequency stimulation (HFS) of Pf in the 6-hydroxydopamine-lesioned hemiparkinsonian rat model. Pf-HFS had significant anti-akinetic action, evidenced by alleviation of limb use asymmetry (cylinder test). Whereas this anti-akinetic action was moderate, Pf-HFS totally reversed lateralized neglect (corridor task), suggesting potent action on sensorimotor integration. At the cellular level, Pf-HFS partially reversed the dopamine denervation-induced increase in striatal preproenkephalin A mRNA levels, a marker of the neurons of the indirect pathway, without interfering with the markers of the direct pathway (preprotachykinin and preprodynorphin). Pf-HFS totally reversed the lesion-induced changes in the gene expression of cytochrome oxidase subunit I in the subthalamic nucleus, the globus pallidus, and the substantia nigra pars reticulata, and partially in the entopeduncular nucleus. Unlike HFS of the subthalamic nucleus, Pf-HFS did not induce per se dyskinesias and directly, although partially, alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced forelimb dyskinesia. Conversely, L-DOPA treatment negatively interfered with the anti-parkinsonian effect of Pf-HFS. Altogether, these data show that Pf-DBS, by recruiting a large basal ganglia circuitry, provides moderate to strong anti-parkinsonian benefits that might, however, be affected by L-DOPA. The widespread behavioral and cellular outcomes of Pf-HFS evidenced here demonstrate that CM/Pf is an important node for modulating the pathophysiological functioning of basal ganglia and related disorders.

  11. A de novo nonsense PDGFB mutation causing idiopathic basal ganglia calcification with laryngeal dystonia.

    Science.gov (United States)

    Nicolas, Gaël; Jacquin, Agnès; Thauvin-Robinet, Christel; Rovelet-Lecrux, Anne; Rouaud, Olivier; Pottier, Cyril; Aubriot-Lorton, Marie-Hélène; Rousseau, Stéphane; Wallon, David; Duvillard, Christian; Béjot, Yannick; Frébourg, Thierry; Giroud, Maurice; Campion, Dominique; Hannequin, Didier

    2014-10-01

    Idiopathic basal ganglia calcification (IBGC) is characterized by brain calcification and a wide variety of neurologic and psychiatric symptoms. In families with autosomal dominant inheritance, three causative genes have been identified: SLC20A2, PDGFRB, and, very recently, PDGFB. Whereas in clinical practice sporadic presentation of IBGC is frequent, well-documented reports of true sporadic occurrence are rare. We report the case of a 20-year-old woman who presented laryngeal dystonia revealing IBGC. Her healthy parents' CT scans were both normal. We identified in the proband a new nonsense mutation in exon 4 of PDGFB, c.439C>T (p.Gln147*), which was absent from the parents' DNA. This mutation may result in a loss-of-function of PDGF-B, which has been shown to cause IBGC in humans and to disrupt the blood-brain barrier in mice, resulting in brain calcification. The c.439C>T mutation is located between two previously reported nonsense mutations, c.433C>T (p.Gln145*) and c.445C>T (p.Arg149*), on a region that could be a hot spot for de novo mutations. We present the first full demonstration of the de novo occurrence of an IBGC-causative mutation in a sporadic case.

  12. Gd-based Contrast Enhancement of the Perivascular Spaces in the Basal Ganglia.

    Science.gov (United States)

    Naganawa, Shinji; Nakane, Toshiki; Kawai, Hisashi; Taoka, Toshiaki

    2017-01-10

    In textbooks, the perivascular space (PVS) is described as non-enhancing after the intravenous administration of gadolinium-based contrast agent (IV-GBCA). We noticed that the PVS sometimes has high signal intensity (SI) on heavily T 2 -weighted 3D-FLAIR (hT 2 -FL) images obtained 4 h after IV-GBCA. The purpose of this study was to retrospectively evaluate the contrast enhancement of the PVS. In 8 healthy subjects and 19 patients with suspected endolymphatic hydrops, magnetic resonance cisternography (MRC) and hT 2 -FL images were obtained before and 4 h after a single dose of IV-GBCA. No subjects had renal insufficiency. On axial MRC at the level of the anterior commissure (AC)-posterior commissure (PC) line, 1 cm circular regions of interest (ROIs) were drawn centering on the PVS in the bilateral basal ganglia and thalami. Three-millimeter diameter ROIs were set in the cerebrospinal fluid (CSF) of the bilateral ambient cistern. The ROIs on MRC were copied onto the hT 2 -FL images and the SI was measured. The SI ratio (SIR) was defined as SIR PVS = SI of PVS/SI of the thalami, and SIR CSF = SI of CSF/SI of the thalami. The average of the bilateral values was used for the calculation. The SIR CSF , SIR PVS , and SI of the thalami were compared between before and 4 h after IV-GBCA. The SIR was increased significantly from 1.02 ± 0.37 to 2.65 ± 0.82 in the CSF (P glymphatic system (waste clearance system) of the brain.

  13. Metabolic networks in epilepsy by MR spectroscopic imaging.

    Science.gov (United States)

    Pan, J W; Spencer, D D; Kuzniecky, R; Duckrow, R B; Hetherington, H; Spencer, S S

    2012-12-01

    The concept of an epileptic network has long been suggested from both animal and human studies of epilepsy. Based on the common observation that the MR spectroscopic imaging measure of NAA/Cr is sensitive to neuronal function and injury, we use this parameter to assess for the presence of a metabolic network in mesial temporal lobe epilepsy (MTLE) patients. A multivariate factor analysis is performed with controls and MTLE patients, using NAA/Cr measures from 12 loci: the bilateral hippocampi, thalami, basal ganglia, and insula. The factor analysis determines which and to what extent these loci are metabolically covarying. We extract two independent factors that explain the data's variability in control and MTLE patients. In controls, these factors characterize a 'thalamic' and 'dominant subcortical' function. The MTLE patients also exhibit a 'thalamic' factor, in addition to a second factor involving the ipsilateral insula and bilateral basal ganglia. These data suggest that MTLE patients demonstrate a metabolic network that involves the thalami, also seen in controls. The MTLE patients also display a second set of metabolically covarying regions that may be a manifestation of the epileptic network that characterizes limbic seizure propagation. © 2012 John Wiley & Sons A/S.

  14. Anti-basal ganglia antibodies and Tourette's syndrome: a voxel-based morphometry and diffusion tensor imaging study in an adult population.

    Science.gov (United States)

    Martino, D; Draganski, B; Cavanna, A; Church, A; Defazio, G; Robertson, M M; Frackowiak, R S J; Giovannoni, G; Critchley, H D

    2008-07-01

    Anti-basal ganglia antibodies (ABGAs) have been suggested to be a hallmark of autoimmunity in Gilles de la Tourette's syndrome (GTS), possibly related to prior exposure to streptococcal infection. In order to detect whether the presence of ABGAs was associated with subtle structural changes in GTS, whole-brain analysis using independent sets of T(1) and diffusion tensor imaging MRI-based methods were performed on 22 adults with GTS with (n = 9) and without (n = 13) detectable ABGAs in the serum. Voxel-based morphometry analysis failed to detect any significant difference in grey matter density between ABGA-positive and ABGA-negative groups in caudate nuclei, putamina, thalami and frontal lobes. These results suggest that ABGA synthesis is not related to structural changes in grey and white matter (detectable with these methods) within frontostriatal circuits.

  15. Whole transcriptome expression of trigeminal ganglia compared to dorsal root ganglia in Rattus Norvegicus

    DEFF Research Database (Denmark)

    Kogelman, Lisette Johanna Antonia; Christensen, Rikke Elgaard; Pedersen, Sara Hougaard

    2017-01-01

    The trigeminal ganglia (TG) subserving the head and the dorsal root ganglia (DRG) subserving the rest of the body are homologous handling sensory neurons. Differences exist, as a number of signaling substances cause headache but no pain in the rest of the body. To date, very few genes involved...... in this difference have been identified. We aim to reveal basal gene expression levels in TG and DRG and detect genes that are differentially expressed (DE) between TG and DRG. RNA-Sequencing from six naïve rats describes the whole transcriptome expression profiles of TG and DRG. Differential expression analysis...... was followed by pathway analysis to identify DE processes between TG and DRG. In total, 64 genes had higher and 55 genes had lower expressed levels in TG than DRG. Higher expressed genes, including S1pr5 and Gjc2, have been related to phospholipase activity. The lower expressed genes, including several Hox...

  16. Inhibitory Control in the Cortico-Basal Ganglia-Thalamocortical Loop: Complex Regulation and Interplay with Memory and Decision Processes.

    Science.gov (United States)

    Wei, Wei; Wang, Xiao-Jing

    2016-12-07

    We developed a circuit model of spiking neurons that includes multiple pathways in the basal ganglia (BG) and is endowed with feedback mechanisms at three levels: cortical microcircuit, corticothalamic loop, and cortico-BG-thalamocortical system. We focused on executive control in a stop signal task, which is known to depend on BG across species. The model reproduces a range of experimental observations and shows that the newly discovered feedback projection from external globus pallidus to striatum is crucial for inhibitory control. Moreover, stopping process is enhanced by the cortico-subcortical reverberatory dynamics underlying persistent activity, establishing interdependence between working memory and inhibitory control. Surprisingly, the stop signal reaction time (SSRT) can be adjusted by weights of certain connections but is insensitive to other connections in this complex circuit, suggesting novel circuit-based intervention for inhibitory control deficits associated with mental illness. Our model provides a unified framework for inhibitory control, decision making, and working memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Radiation Absorbed Dose to the Basal Ganglia from Dopamine Transporter Radioligand 18F-FPCIT

    Directory of Open Access Journals (Sweden)

    William Robeson

    2014-01-01

    Full Text Available Our previous dosimetry studies have demonstrated that for dopaminergic radiotracers, 18F-FDOPA and 18F-FPCIT, the urinary bladder is the critical organ. As these tracers accumulate in the basal ganglia (BG with high affinity and long residence times, radiation dose to the BG may become significant, especially in normal control subjects. We have performed dynamic PET measurements using 18F-FPCIT in 16 normal adult subjects to determine if in fact the BG, although not a whole organ, but a well-defined substructure, receives the highest dose. Regions of interest were drawn over left and right BG structures. Resultant time-activity curves were generated and used to determine residence times for dosimetry calculations. S-factors were computed using the MIRDOSE3 nodule model for each caudate and putamen. For 18F-FPCIT, BG dose ranged from 0.029 to 0.069 mGy/MBq. In half of all subjects, BG dose exceeded 85% of the published critical organ (bladder dose, and in three of those, the BG dose exceeded that for the bladder. The BG can become the dose-limiting organ in studies using dopamine transporter ligands. For some normal subjects studied with F-18 or long half-life radionuclide, the BG may exceed bladder dose and become the critical structure.

  18. Striatal Function Explored Through a Biophysical Model of a Medium Spiny Neuron

    OpenAIRE

    Guthrie, Martin

    2006-01-01

    The basal ganglia are a dynamic neural network of telencephalic subcortical nuclei, involved in adaptive control of behaviour. There has been much experimental evidence on the anatomy and physiology of the basal ganglia published over the last 25 years showing that the basal ganglia are involved in the learning of many adaptive behaviours, including motor planning, working memory and cognitive functions. Current qualitative basal ganglia models of the box and arrow type, whi...

  19. Larger Gray Matter Volume in the Basal Ganglia of Heavy Cannabis Users Detected by Voxel-Based Morphometry and Subcortical Volumetric Analysis

    Directory of Open Access Journals (Sweden)

    Ana Moreno-Alcázar

    2018-05-01

    Full Text Available Background: Structural imaging studies of cannabis users have found evidence of both cortical and subcortical volume reductions, especially in cannabinoid receptor-rich regions such as the hippocampus and amygdala. However, the findings have not been consistent. In the present study, we examined a sample of adult heavy cannabis users without other substance abuse to determine whether long-term use is associated with brain structural changes, especially in the subcortical regions.Method: We compared the gray matter volume of 14 long-term, heavy cannabis users with non-using controls. To provide robust findings, we conducted two separate studies using two different MRI techniques. Each study used the same sample of cannabis users and a different control group, respectively. Both control groups were independent of each other. First, whole-brain voxel-based morphometry (VBM was used to compare the cannabis users against 28 matched controls (HC1 group. Second, a volumetric analysis of subcortical regions was performed to assess differences between the cannabis users and a sample of 100 matched controls (HC2 group obtained from a local database of healthy volunteers.Results: The VBM study revealed that, compared to the control group HC1, the cannabis users did not show cortical differences nor smaller volume in any subcortical structure but showed a cluster (p < 0.001 of larger GM volume in the basal ganglia, involving the caudate, putamen, pallidum, and nucleus accumbens, bilaterally. The subcortical volumetric analysis revealed that, compared to the control group HC2, the cannabis users showed significantly larger volumes in the putamen (p = 0.001 and pallidum (p = 0.0015. Subtle trends, only significant at the uncorrected level, were also found in the caudate (p = 0.05 and nucleus accumbens (p = 0.047.Conclusions: This study does not support previous findings of hippocampal and/or amygdala structural changes in long-term, heavy cannabis users. It

  20. Intrinsic connectivity networks from childhood to late adolescence: Effects of age and sex

    Directory of Open Access Journals (Sweden)

    Cristina Solé-Padullés

    2016-02-01

    Full Text Available There is limited evidence on the effects of age and sex on intrinsic connectivity of networks underlying cognition during childhood and adolescence. Independent component analysis was conducted in 113 subjects aged 7–18; the default mode, executive control, anterior salience, basal ganglia, language and visuospatial networks were identified. The effect of age was examined with multiple regression, while sex and ‘age × sex’ interactions were assessed by dividing the sample according to age (7–12 and 13–18 years. As age increased, connectivity in the dorsal and ventral default mode network became more anterior and posterior, respectively, while in the executive control network, connectivity increased within frontoparietal regions. The basal ganglia network showed increased engagement of striatum, thalami and precuneus. The anterior salience network showed greater connectivity in frontal areas and anterior cingulate, and less connectivity of orbitofrontal, middle cingulate and temporoparietal regions. The language network presented increased connectivity of inferior frontal and decreased connectivity within the right middle frontal and left inferior parietal cortices. The visuospatial network showed greater engagement of inferior parietal and frontal cortices. No effect of sex, nor age by sex interactions was observed. These findings provide evidence of strengthening of cortico-cortical and cortico-subcortical networks across childhood and adolescence.

  1. Iterative free-energy optimization for recurrent neural networks (INFERNO)

    Science.gov (United States)

    2017-01-01

    The intra-parietal lobe coupled with the Basal Ganglia forms a working memory that demonstrates strong planning capabilities for generating robust yet flexible neuronal sequences. Neurocomputational models however, often fails to control long range neural synchrony in recurrent spiking networks due to spontaneous activity. As a novel framework based on the free-energy principle, we propose to see the problem of spikes’ synchrony as an optimization problem of the neurons sub-threshold activity for the generation of long neuronal chains. Using a stochastic gradient descent, a reinforcement signal (presumably dopaminergic) evaluates the quality of one input vector to move the recurrent neural network to a desired activity; depending on the error made, this input vector is strengthened to hill-climb the gradient or elicited to search for another solution. This vector can be learned then by one associative memory as a model of the basal-ganglia to control the recurrent neural network. Experiments on habit learning and on sequence retrieving demonstrate the capabilities of the dual system to generate very long and precise spatio-temporal sequences, above two hundred iterations. Its features are applied then to the sequential planning of arm movements. In line with neurobiological theories, we discuss its relevance for modeling the cortico-basal working memory to initiate flexible goal-directed neuronal chains of causation and its relation to novel architectures such as Deep Networks, Neural Turing Machines and the Free-Energy Principle. PMID:28282439

  2. Do spotty high intensity regions found in basal ganglia on MRI T2-weighted brain images of elderly subjects indicate gliosis? Comparison of brain MRI T2-weighted images of elderly subjects and necropsy brain

    International Nuclear Information System (INIS)

    Murai, Hiroshi; Hattori, Hideyuki; Matsumoto, Masayuki

    2001-01-01

    Spotty high intensity regions are frequently found on the MRI T2-weighted brain images (T2WI) of elderly people. High intensity regions with a diameter of 3 mm or less have been considered as expanded perivascular space with no pathological implications on radiological diagnosis. However, its morphometrical basis is not clear. We examined the character of the spotty regions using brain MRI of brain screening subjects, and studied morphometrically arteriolosclerosis and perivascular tissue damage using necropsy brains of subjects aged 65 years and over. The size, number and location of the spotty high intensity regions were examined using the brain MRI of 109 T2WI which is used for brain screening at Kanazawa Medical University Hospital. The frontal lobe, temporal lobe, parietal lobe, hippocampus, midbrain and basal ganglia were sampled from 15 subjects aged 65 years and over, and the tissue sections were processed for HE stain, Elastica van Gieson stain and immunostaining with GFAP. We took photographs of brain arterioli and surrounding parenchyma with a digital telescope camera and the degree of arterioscleosis and tissue damage were assessed by measurements with an image analyzer. Spotty high intensity regions on T2WI with a diameter of 3 mm or less were observed in 95.5% subjects aged 65 years and over. 69.4% spotty region was observed in basal ganglia. There was a significant correlation between age and size. In morphometrical examination, at the basal ganglia, the density of GFAP-positive astrocytes in the perivascular tissue had a significant positive correlation with the proportional thickness of the adventitia, which is an index of arteriosclerosis, and a significant negative correlation with the size of the perivascular space. The results suggested that the spotty regions in the brain MRI of elderly people do not represent dilatations of the perivascular space, but is mild brain damage caused by arteriosclerosis. (author)

  3. Limbic and Basal Ganglia Neuroanatomical Correlates of Gait and Executive Function: Older Adults With Mild Cognitive Impairment and Intact Cognition.

    Science.gov (United States)

    McGough, Ellen L; Kelly, Valerie E; Weaver, Kurt E; Logsdon, Rebecca G; McCurry, Susan M; Pike, Kenneth C; Grabowski, Thomas J; Teri, Linda

    2018-04-01

    This study aimed to examine differences in spatiotemporal gait parameters between older adults with amnestic mild cognitive impairment and normal cognition and to examine limbic and basal ganglia neural correlates of gait and executive function in older adults without dementia. This was a cross-sectional study of 46 community-dwelling older adults, ages 70-95 yrs, with amnestic mild cognitive impairment (n = 23) and normal cognition (n = 23). Structural magnetic resonance imaging was used to attain volumetric measures of limbic and basal ganglia structures. Quantitative motion analysis was used to measure spatiotemporal parameters of gait. The Trail Making Test was used to assess executive function. During fast-paced walking, older adults with amnestic mild cognitive impairment demonstrated significantly slower gait speed and shorter stride length compared with older adults with normal cognition. Stride length was positively correlated with hippocampal, anterior cingulate, and nucleus accumbens volumes (P function was positively correlated with hippocampal, anterior cingulate, and posterior cingulate volumes (P older adults with normal cognition, those with amnestic mild cognitive impairment demonstrated slower gait speed and shorter stride length, during fast-paced walking, and lower executive function. Hippocampal and anterior cingulate volumes demonstrated moderate positive correlation with both gait and executive function, after adjusting for age. Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) discuss gait performance and cognitive function in older adults with amnestic mild cognitive impairment versus normal cognition, (2) discuss neurocorrelates of gait and executive function in older adults without dementia, and (3) recognize the importance of assessing gait speed and cognitive function in the clinical management of older

  4. Cortical information flow in Parkinson's disease: a composite network/field model

    Directory of Open Access Journals (Sweden)

    Cliff C. Kerr

    2013-04-01

    Full Text Available The basal ganglia play a crucial role in the execution of movements, as demonstrated by the severe motor deficits that accompany Parkinson's disease (PD. Since motor commands originate in the cortex, an important question is how the basal ganglia influence cortical information flow, and how this influence becomes pathological in PD. To explore this, we developed a composite neuronal network/neural field model. The network model consisted of 4950 spiking neurons, divided into 15 excitatory and inhibitory cell populations in the thalamus and cortex. The field model consisted of the cortex, thalamus, striatum, subthalamic nucleus, and globus pallidus. Both models have been separately validated in previous work. Three field models were used: one with basal ganglia parameters based on data from healthy individuals, one based on data from individuals with PD, and one purely thalamocortical model. Spikes generated by these field models were then used to drive the network model. Compared to the network driven by the healthy model, the PD-driven network had lower firing rates, a shift in spectral power towards lower frequencies, and higher probability of bursting; each of these findings is consistent with empirical data on PD. In the healthy model, we found strong Granger causality in the beta and low gamma bands between cortical layers, but this was largely absent in the PD model. In particular, the reduction in Granger causality from the main "input" layer of the cortex (layer 4 to the main "output" layer (layer 5 was pronounced. This may account for symptoms of PD that seem to reflect deficits in information flow, such as bradykinesia. In general, these results demonstrate that the brain's large-scale oscillatory environment, represented here by the field model, strongly influences the information processing that occurs within its subnetworks. Hence, it may be preferable to drive spiking network models with physiologically realistic inputs rather than

  5. Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction.

    Science.gov (United States)

    Belin, David; Jonkman, Sietse; Dickinson, Anthony; Robbins, Trevor W; Everitt, Barry J

    2009-04-12

    In this review we discuss the evidence that drug addiction, defined as a maladaptive compulsive habit, results from the progressive subversion by addictive drugs of striatum-dependent operant and Pavlovian learning mechanisms that are usually involved in the control over behaviour by stimuli associated with natural reinforcement. Although mainly organized through segregated parallel cortico-striato-pallido-thalamo-cortical loops involved in motor or emotional functions, the basal ganglia, and especially the striatum, are key mediators of the modulation of behavioural responses, under the control of both action-outcome and stimulus-response mechanisms, by incentive motivational processes and Pavlovian associations. Here we suggest that protracted exposure to addictive drugs recruits serial and dopamine-dependent, striato-nigro-striatal ascending spirals from the nucleus accumbens to more dorsal regions of the striatum that underlie a shift from action-outcome to stimulus-response mechanisms in the control over drug seeking. When this progressive ventral to dorsal striatum shift is combined with drug-associated Pavlovian influences from limbic structures such as the amygdala and the orbitofrontal cortex, drug seeking behaviour becomes established as an incentive habit. This instantiation of implicit sub-cortical processing of drug-associated stimuli and instrumental responding might be a key mechanism underlying the development of compulsive drug seeking and the high vulnerability to relapse which are hallmarks of drug addiction.

  6. Dopamine physiology in the basal ganglia of male zebra finches during social stimulation.

    Science.gov (United States)

    Ihle, Eva C; van der Hart, Marieke; Jongsma, Minke; Tecott, Larry H; Doupe, Allison J

    2015-06-01

    Accumulating evidence suggests that dopamine (DA) is involved in altering neural activity and gene expression in a zebra finch cortical-basal ganglia circuit specialized for singing, upon the shift between solitary singing and singing as a part of courtship. Our objective here was to sample changes in the extracellular concentrations of DA in Area X of adult and juvenile birds, to test the hypothesis that DA levels would change similarly during presentation of a socially salient stimulus in both age groups. We used microdialysis to sample the extracellular milieu of Area X in awake, behaving adult and juvenile male zebra finches, and analysed the dialysate using high-performance liquid chromatography coupled with electrochemical detection. The extracellular levels of DA in Area X increased significantly during both female presentation to adult males and tutor presentation to juvenile males. DA levels were not correlated with the time spent singing. We also reverse-dialysed Area X with pharmacologic agents that act either on DA systems directly or on norepinephrine, and found that all of these agents significantly increased DA levels (3- to 10-fold) in Area X. These findings suggest that changes in extracellular DA levels can be stimulated similarly by very different social contexts (courtship and interaction with tutor), and influenced potently by dopaminergic and noradrenergic drugs. These results raise the possibility that the arousal level or attentional state of the subject (rather than singing behavior) is the common feature eliciting changes in extracellular DA concentration. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. In vivo basal ganglia volumetry through application of NURBS models to MR images

    International Nuclear Information System (INIS)

    Anastasi, Giuseppe; Cutroneo, Giuseppina; Vitetta, Anton Giulio; Tomasello, Francesco; Lucerna, Sebastiano; Bramanti, Placido; Bella, Paolo di; Parenti, Anna; Porzionato, Andrea; Caro, Raffaele de; Macchi, Veronica

    2006-01-01

    Volumetry of basal ganglia (BG) based on magnetic resonance imaging (MRI) provides a sensitive marker in differential diagnosis of BG disorders. The non-uniform rational B-spline (NURBS) surfaces are mathematical representations of three-dimensional structures which have recently been applied in volumetric studies. In this study, a volumetric evaluation of BG based on NURBS was performed in 35 right-handed volunteers. We aimed to compare and validate this technique with respect to manual MRI volumetry and evaluate possible side differences between these structures. Intra- and interobserver biases less than 1.5% demonstrated the method's stability. The mean percentage differences between NURBS and manual methods were less than 1% for all the structures considered; however, the internal segments of the globus pallidus showed a mean percentage difference of about 1.7%. Rightward asymmetry was found for the caudate nucleus (mean±SD 3.20±0.20 cm 3 vs. 3.10±0.19 cm 3 , P 3 vs. 1.41±0.09 cm 3 , P 3 and 1.68±0.12 cm 3 , P 3 and 1.18±0.09 cm 3 , P 3 vs. 0.31±0.05 cm 3 , P 3 vs. 0.86±0.05 cm 3 , P 3 vs. 3.39±0.17 cm 3 , P>0.05). The rightward asymmetry of the BG may be ascribed to the predominant use of the right hand. In conclusion, NURBS is an accurate and reliable method for quantitative volumetry of nervous structures. It offers the advantage of giving a three-dimensional representation of the structures examined. (orig.)

  8. Large germinoma in basal ganglia treated by intraarterial chemotherapy with ACNU following osmotic blood-brain barrier disruption and radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Miyagami, Mitsusuke; Tsubokawa, Takashi; Kobayashi, Makio.

    1988-10-01

    A rare case of large germinoma in the basal ganglia is reported which was effectively treated by intracarotid chemotherapy with ACNU following osmotic blood-brain barrier disruption using 20 % mannitol and radiation therapy. A 19-year-old man displayed slowly progressive right hemiparesis, motor aphasia and predementia on admission. Plain CT demonstrated a tumor which had a slightly high density with intratumoral calcification and a small cyst, and slight to moderate enhancement was observed following intravenous injection of contrast medium, but there was no unilateral ventricular enlargement. Cerebral angiography revealed hypervascular tumor staining with early draining veins. After biopsy, and as a result of intracarotid chemotherapy with ACNU following osmotic blood-brain barrier disruption and radiation therapy, the tumor decreased rapidly to about 20 % of its original mass. After discharge, tumor progression was observed. However, the enlarged tumor mass almost disappeared (except for calcification) on CT with clinical improvement in response to intracarotid chemotherapy with ACNU following 20 % mannitol.

  9. Computational modeling of stuttering caused by impairments in a basal ganglia thalamo-cortical circuit involved in syllable selection and initiation

    Science.gov (United States)

    Civier, Oren; Bullock, Daniel; Max, Ludo; Guenther, Frank H.

    2013-01-01

    A typical white-matter integrity and elevated dopamine levels have been reported for individuals who stutter. We investigated how such abnormalities may lead to speech dysfluencies due to their effects on a syllable-sequencing circuit that consists of basal ganglia (BG), thalamus, and left ventral premotor cortex (vPMC). “Neurally impaired” versions of the neurocomputational speech production model GODIVA were utilized to test two hypotheses: (1) that white-matter abnormalities disturb the circuit via corticostriatal projections carrying copies of executed motor commands, and (2) that dopaminergic abnormalities disturb the circuit via the striatum. Simulation results support both hypotheses: in both scenarios, the neural abnormalities delay readout of the next syllable’s motor program, leading to dysfluency. The results also account for brain imaging findings during dysfluent speech. It is concluded that each of the two abnormality types can cause stuttering moments, probably by affecting the same BG-thalamus-vPMC circuit. PMID:23872286

  10. MR measurement of the basal ganglia volume in the tourette syndrome

    International Nuclear Information System (INIS)

    Liao Kaibing; Li Guiping; Yang Bo; Feng Gansheng

    2014-01-01

    Objective: To compare the volume of the basal ganglia in patients with Tourette syndrome (TS) and the normal volunteers and to explore the underlying anatomical basis of TS. Methods: Thirty-one cases of TS (TS subjects), 31 gender and age-matched subjects (the control subjects) were examined on a 3.0 T MRI system. The volume of the caudate nucleus, globus pallidus, putamen of the two sides and the brain volume were measured with volume analysis software, and the data were normalized according to the individual brain volume. Statistical analysis was performed using t test to compare between the TS subjects and the controls. Results: The volume of the both sides of the caudate nucleus, putamen and globus pallidus of TS subjects were (4.11 ±0.12) and (3.76 ±0.11), (2.28 ±0.12) and (2.35 ±0.28), (4.98 ±0.20) and (4.89 ±0.31) cm 3 , while they were (4.88 ±0.19) and (4.30 ±0.12), (2.28 ±0.12) and (2.35 ±0.28), (4.98 ±0.20) and (4.89 ±0.31) cm 3 in the controls, respectively. There were significant differences in the bilateral caudate nucleus and globus pallidus between the TS subjects and control subjects (t=2.97, 1.74, 3.72, 3.93, P<0.05), but there were no significant differences of the volume in the bilateral putamen between the TS and control subjects (t=0.47, 1.31, P>0.05). The volume was not significantly different between the left and right caudate nucleus in the TS subjects (t=1.81, P>0.05), but the left volume of the caudate nucleus was bigger in the control subjects compared with the right volume, however, there was significant difference between the bilateral caudate nucleus in the control subjects (t=2.34, P<0.05). There were no differences of volume between the bilateral globus pallidus and putamen in both the TS and control subjects (t=1.12, 1.44, 1.68, 0.38, P>0.05). Conclusion: The abnormal volume of caudate nucleus, putamen, and the globus pallidus may be involved in the pathogenesis of TS. (authors)

  11. Basal ganglia disorders associated with imbalances in the striatal striosome and matrix compartments

    Directory of Open Access Journals (Sweden)

    Jill R. Crittenden

    2011-09-01

    Full Text Available The striatum is composed principally of GABAergic, medium spiny projection neurons (MSNs that can be categorized based on their gene expression, electrophysiological profiles and input-output circuits. Major subdivisions of MSN populations include 1 those in ventromedial and dorsolateral striatal regions, 2 those giving rise to the direct and indirect pathways, and 3 those that lie in the striosome and matrix compartments. The first two classificatory schemes have enabled advances in understanding of how basal ganglia circuits contribute to disease. However, despite the large number of molecules that are differentially expressed in the striosomes or the extra-striosomal matrix, and the evidence that these compartments have different input-output connections, our understanding of how this compartmentalization contributes to striatal function is still not clear. A broad view is that the matrix contains the direct and indirect pathway MSNs that form parts of sensorimotor and associative circuits, whereas striosomes contain MSNs that receive input from parts of limbic cortex and project directly or indirectly to the dopamine-containing neurons of the substantia nigra, pars compacta. Striosomes are widely distributed within the striatum and are thought to exert global, as well as local, influences on striatal processing by exchanging information with the surrounding matrix, including through interneurons that send processes into both compartments. It has been suggested that striosomes exert and maintain limbic control over behaviors driven by surrounding sensorimotor and associative parts of the striatal matrix. Consistent with this possibility, imbalances between striosome and matrix functions have been reported in relation to neurological disorders, including Huntington’s disease, L-DOPA-induced dyskinesias, dystonia and drug addiction. Here, we consider how signaling imbalances between the striosomes and matrix might relate to symptomatology in

  12. Hypoattenuation of the basal nuclei as a sign of propionic acidemia

    International Nuclear Information System (INIS)

    Asenjo, M.; Moron, A.; Marti, M.; Dominguez, F.

    1999-01-01

    The hypoattenuation of the basal ganglia is an uncommon radiological finding that suggests a metabolic or hypoxic disorder. We report a case of propionic acidemia in a five-year-old boy, presenting as a symmetric hypoattenuation of the basal neclei. We discuss this and other causes of this radiological finding, as well as the possible mechanism and underlying pathology. (Author) 17 refs

  13. A network analysis of ¹⁵O-H₂O PET reveals deep brain stimulation effects on brain network of Parkinson's disease.

    Science.gov (United States)

    Park, Hae-Jeong; Park, Bumhee; Kim, Hae Yu; Oh, Maeng-Keun; Kim, Joong Il; Yoon, Misun; Lee, Jong Doo; Chang, Jin Woo

    2015-05-01

    As Parkinson's disease (PD) can be considered a network abnormality, the effects of deep brain stimulation (DBS) need to be investigated in the aspect of networks. This study aimed to examine how DBS of the bilateral subthalamic nucleus (STN) affects the motor networks of patients with idiopathic PD during motor performance and to show the feasibility of the network analysis using cross-sectional positron emission tomography (PET) images in DBS studies. We obtained [¹⁵O]H₂O PET images from ten patients with PD during a sequential finger-to-thumb opposition task and during the resting state, with DBS-On and DBS-Off at STN. To identify the alteration of motor networks in PD and their changes due to STN-DBS, we applied independent component analysis (ICA) to all the cross-sectional PET images. We analysed the strength of each component according to DBS effects, task effects and interaction effects. ICA blindly decomposed components of functionally associated distributed clusters, which were comparable to the results of univariate statistical parametric mapping. ICA further revealed that STN-DBS modifies usage-strengths of components corresponding to the basal ganglia-thalamo-cortical circuits in PD patients by increasing the hypoactive basal ganglia and by suppressing the hyperactive cortical motor areas, ventrolateral thalamus and cerebellum. Our results suggest that STN-DBS may affect not only the abnormal local activity, but also alter brain networks in patients with PD. This study also demonstrated the usefulness of ICA for cross-sectional PET data to reveal network modifications due to DBS, which was not observable using the subtraction method.

  14. Motor cortex stimulation does not improve dystonia secondary to a focal basal ganglia lesion.

    Science.gov (United States)

    Rieu, Isabelle; Aya Kombo, Magaly; Thobois, Stéphane; Derost, Philippe; Pollak, Pierre; Xie, Jing; Pereira, Bruno; Vidailhet, Marie; Burbaud, Pierre; Lefaucheur, Jean Pascal; Lemaire, Jean Jacques; Mertens, Patrick; Chabardes, Stephan; Broussolle, Emmanuel; Durif, Franck

    2014-01-14

    To assess the efficacy of epidural motor cortex stimulation (MCS) on dystonia, spasticity, pain, and quality of life in patients with dystonia secondary to a focal basal ganglia (BG) lesion. In this double-blind, crossover, multicenter study, 5 patients with dystonia secondary to a focal BG lesion were included. Two quadripolar leads were implanted epidurally over the primary motor (M1) and premotor cortices, contralateral to the most dystonic side. The leads were placed parallel to the central sulcus. Only the posterior lead over M1 was activated in this study. The most lateral or medial contact of the lead (depending on whether the dystonia predominated in the upper or lower limb) was selected as the anode, and the other 3 as cathodes. One month postoperatively, patients were randomly assigned to on- or off-stimulation for 3 months each, with a 1-month washout between the 2 conditions. Voltage, frequency, and pulse width were fixed at 3.8 V, 40 Hz, and 60 μs, respectively. Evaluations of dystonia (Burke-Fahn-Marsden Scale), spasticity (Ashworth score), pain intensity (visual analog scale), and quality of life (36-Item Short Form Health Survey) were performed before surgery and after each period of stimulation. Burke-Fahn-Marsden Scale, Ashworth score, pain intensity, and quality of life were not statistically significantly modified by MCS. Bipolar epidural MCS failed to improve any clinical feature in dystonia secondary to a focal BG lesion. This study provides Class I evidence that bipolar epidural MCS with the anode placed over the motor representation of the most affected limb failed to improve any clinical feature in dystonia secondary to a focal BG lesion.

  15. Higher ambulatory systolic blood pressure independently associated with enlarged perivascular spaces in basal ganglia.

    Science.gov (United States)

    Yang, Shuna; Yuan, Junliang; Zhang, Xiaoyu; Fan, Huimin; Li, Yue; Yin, Jiangmei; Hu, Wenli

    2017-09-01

    Enlarged perivascular spaces (EPVS) have been identified as a marker of cerebral small vessel diseases (CSVD). Ambulatory blood pressure (ABP) is the strongest predictor of hypertension-related brain damage. However, the relationship between ABP levels and EPVS is unclear. This study aimed to investigate the association between ABP levels and EPVS by 24-hour ambulatory blood pressure monitoring (ABPM). We prospectively recruited inpatients for physical examinations in our hospital from May 2013 to Jun 2016. 24-hour ABPM data and cranial magnetic resonance imaging information were collected. EPVS in basal ganglia (BG) and centrum semiovale (CSO) were identified and classified into three categories by the severity. White matter hyperintensities were scored by Fazekas scale. Spearman correlation analysis and multiple logistic regression analysis were used to determine the relationship between ABP levels and EPVS. A total of 573 subjects were enrolled in this study. 24-hour, day and night systolic blood pressure (SBP) levels were positively related to higher numbers of EPVS in BG (24-hour SBP: r = 0.23, p blood pressure (DBP) levels increased with an increasing degree of EPVS in CSO (p = 0.04 and 0.049, respectively). But the association disappeared after adjusting for confounders. Spearman correlation analysis indicated that ABP levels were not associated with higher numbers of EPVS in CSO (p > 0.05). DBP levels were not independently associated with the severity of EPVS in BG and CSO. Higher SBP levels were independently associated with EPVS in BG, but not in CSO, which supported EPVS in BG to be a marker of CSVD. Pathogenesis of EPVS in BG and CSO might be different.

  16. The basal ganglia matching tools package for striatal uptake semi-quantification: description and validation

    International Nuclear Information System (INIS)

    Calvini, Piero; Rodriguez, Guido; Nobili, Flavio; Inguglia, Fabrizio; Mignone, Alessandro; Guerra, Ugo P.

    2007-01-01

    To design a novel algorithm (BasGan) for automatic segmentation of striatal 123 I-FP-CIT SPECT. The BasGan algorithm is based on a high-definition, three-dimensional (3D) striatal template, derived from Talairach's atlas. A blurred template, obtained by convolving the former with a 3D Gaussian kernel (FWHM = 10 mm), approximates striatal activity distribution. The algorithm performs translations and scale transformation on the bicommissural aligned image to set the striatal templates with standard size in an appropriate initial position. An optimization protocol automatically performs fine adjustments in the positioning of blurred templates to best match the radioactive counts, and locates an occipital ROI for background evaluation. Partial volume effect correction is included in the process of uptake computation of caudate, putamen and background. Experimental validation was carried out by means of six acquisitions of an anthropomorphic striatal phantom. The BasGan software was applied to a first set of patients with Parkinson's disease (PD) versus patients affected by essential tremor. A highly significant correlation was achieved between true binding potential and measured 123 I activity from the phantom. 123 I-FP-CIT uptake was significantly lower in all basal ganglia in the PD group versus controls with both BasGan and a conventional ROI method used for comparison, but particularly with the former. Correlations with the motor UPDRS score were far more significant with the BasGan. The novel BasGan algorithm automatically performs the 3D segmentation of striata. Because co-registered MRI is not needed, it can be used by all nuclear medicine departments, since it is freely available on the Web. (orig.)

  17. Differentiation of sCJD and vCJD forms by automated analysis of basal ganglia intensity distribution in multisequence MRI of the brain--definition and evaluation of new MRI-based ratios.

    Science.gov (United States)

    Linguraru, Marius George; Ayache, Nicholas; Bardinet, Eric; Ballester, Miguel Angel González; Galanaud, Damien; Haïk, Stéphane; Faucheux, Baptiste; Hauw, Jean-Jacques; Cozzone, Patrick; Dormont, Didier; Brandel, Jean-Philippe

    2006-08-01

    We present a method for the analysis of basal ganglia (including the thalamus) for accurate detection of human spongiform encephalopathy in multisequence magnetic resonance imaging (MRI) of the brain. One common feature of most forms of prion protein diseases is the appearance of hyperintensities in the deep grey matter area of the brain in T2-weighted magnetic resonance (MR) images. We employ T1, T2, and Flair-T2 MR sequences for the detection of intensity deviations in the internal nuclei. First, the MR data are registered to a probabilistic atlas and normalized in intensity. Then smoothing is applied with edge enhancement. The segmentation of hyperintensities is performed using a model of the human visual system. For more accurate results, a priori anatomical data from a segmented atlas are employed to refine the registration and remove false positives. The results are robust over the patient data and in accordance with the clinical ground truth. Our method further allows the quantification of intensity distributions in basal ganglia. The caudate nuclei are highlighted as main areas of diagnosis of sporadic Creutzfeldt-Jakob Disease (sCJD), in agreement with the histological data. The algorithm permitted the classification of the intensities of abnormal signals in sCJD patient FLAIR images with a higher hypersignal in caudate nuclei (10/10) and putamen (6/10) than in thalami. Defining normalized MRI measures of the intensity relations between the internal grey nuclei of patients, we robustly differentiate sCJD and variant CJD (vCJD) patients, in an attempt to create an automatic classification tool of human spongiform encephalopathies.

  18. Novel SLC19A3 Promoter Deletion and Allelic Silencing in Biotin-Thiamine-Responsive Basal Ganglia Encephalopathy.

    Directory of Open Access Journals (Sweden)

    Irene Flønes

    Full Text Available Biotin-thiamine responsive basal ganglia disease is a severe, but potentially treatable disorder caused by mutations in the SLC19A3 gene. Although the disease is inherited in an autosomal recessive manner, patients with typical phenotypes carrying single heterozygous mutations have been reported. This makes the diagnosis uncertain and may delay treatment.In two siblings with early-onset encephalopathy dystonia and epilepsy, whole-exome sequencing revealed a novel single heterozygous SLC19A3 mutation (c.337T>C. Although Sanger-sequencing and copy-number analysis revealed no other aberrations, RNA-sequencing in brain tissue suggested the second allele was silenced. Whole-genome sequencing resolved the genetic defect by revealing a novel 45,049 bp deletion in the 5'-UTR region of the gene abolishing the promoter. High dose thiamine and biotin therapy was started in the surviving sibling who remains stable. In another patient two novel compound heterozygous SLC19A3 mutations were found. He improved substantially on thiamine and biotin therapy.We show that large genomic deletions occur in the regulatory region of SLC19A3 and should be considered in genetic testing. Moreover, our study highlights the power of whole-genome sequencing as a diagnostic tool for rare genetic disorders across a wide spectrum of mutations including non-coding large genomic rearrangements.

  19. Dynamics of human subthalamic neuron phase-locking to motor and sensory cortical oscillations during movement.

    Science.gov (United States)

    Lipski, Witold J; Wozny, Thomas A; Alhourani, Ahmad; Kondylis, Efstathios D; Turner, Robert S; Crammond, Donald J; Richardson, Robert Mark

    2017-09-01

    Coupled oscillatory activity recorded between sensorimotor regions of the basal ganglia-thalamocortical loop is thought to reflect information transfer relevant to movement. A neuronal firing-rate model of basal ganglia-thalamocortical circuitry, however, has dominated thinking about basal ganglia function for the past three decades, without knowledge of the relationship between basal ganglia single neuron firing and cortical population activity during movement itself. We recorded activity from 34 subthalamic nucleus (STN) neurons, simultaneously with cortical local field potentials and motor output, in 11 subjects with Parkinson's disease (PD) undergoing awake deep brain stimulator lead placement. STN firing demonstrated phase synchronization to both low- and high-beta-frequency cortical oscillations, and to the amplitude envelope of gamma oscillations, in motor cortex. We found that during movement, the magnitude of this synchronization was dynamically modulated in a phase-frequency-specific manner. Importantly, we found that phase synchronization was not correlated with changes in neuronal firing rate. Furthermore, we found that these relationships were not exclusive to motor cortex, because STN firing also demonstrated phase synchronization to both premotor and sensory cortex. The data indicate that models of basal ganglia function ultimately will need to account for the activity of populations of STN neurons that are bound in distinct functional networks with both motor and sensory cortices and code for movement parameters independent of changes in firing rate. NEW & NOTEWORTHY Current models of basal ganglia-thalamocortical networks do not adequately explain simple motor functions, let alone dysfunction in movement disorders. Our findings provide data that inform models of human basal ganglia function by demonstrating how movement is encoded by networks of subthalamic nucleus (STN) neurons via dynamic phase synchronization with cortex. The data also

  20. Shifted dynamic interactions between subcortical nuclei and inferior frontal gyri during response preparation in persistent developmental stuttering.

    Science.gov (United States)

    Metzger, F Luise; Auer, Tibor; Helms, Gunther; Paulus, Walter; Frahm, Jens; Sommer, Martin; Neef, Nicole E

    2018-01-01

    Persistent developmental stuttering is associated with basal ganglia dysfunction or dopamine dysregulation. Here, we studied whole-brain functional connectivity to test how basal ganglia structures coordinate and reorganize sensorimotor brain networks in stuttering. To this end, adults who stutter and fluent speakers (control participants) performed a response anticipation paradigm in the MRI scanner. The preparation of a manual Go/No-Go response reliably produced activity in the basal ganglia and thalamus and particularly in the substantia nigra. Strikingly, in adults who stutter, substantia nigra activity correlated positively with stuttering severity. Furthermore, functional connectivity analyses yielded altered task-related network formations in adults who stutter compared to fluent speakers. Specifically, in adults who stutter, the globus pallidus and the thalamus showed increased network synchronization with the inferior frontal gyrus. This implies dynamic shifts in the response preparation-related network organization through the basal ganglia in the context of a non-speech motor task in stuttering. Here we discuss current findings in the traditional framework of how D1 and D2 receptor activity shapes focused movement selection, thereby suggesting a disproportional involvement of the direct and the indirect pathway in stuttering.

  1. Neural correlates underlying micrographia in Parkinson’s disease

    Science.gov (United States)

    Zhang, Jiarong; Hallett, Mark; Feng, Tao; Hou, Yanan; Chan, Piu

    2016-01-01

    Micrographia is a common symptom in Parkinson’s disease, which manifests as either a consistent or progressive reduction in the size of handwriting or both. Neural correlates underlying micrographia remain unclear. We used functional magnetic resonance imaging to investigate micrographia-related neural activity and connectivity modulations. In addition, the effect of attention and dopaminergic administration on micrographia was examined. We found that consistent micrographia was associated with decreased activity and connectivity in the basal ganglia motor circuit; while progressive micrographia was related to the dysfunction of basal ganglia motor circuit together with disconnections between the rostral supplementary motor area, rostral cingulate motor area and cerebellum. Attention significantly improved both consistent and progressive micrographia, accompanied by recruitment of anterior putamen and dorsolateral prefrontal cortex. Levodopa improved consistent micrographia accompanied by increased activity and connectivity in the basal ganglia motor circuit, but had no effect on progressive micrographia. Our findings suggest that consistent micrographia is related to dysfunction of the basal ganglia motor circuit; while dysfunction of the basal ganglia motor circuit and disconnection between the rostral supplementary motor area, rostral cingulate motor area and cerebellum likely contributes to progressive micrographia. Attention improves both types of micrographia by recruiting additional brain networks. Levodopa improves consistent micrographia by restoring the function of the basal ganglia motor circuit, but does not improve progressive micrographia, probably because of failure to repair the disconnected networks. PMID:26525918

  2. Neurobrucellosis with transient ischemic attack, vasculopathic changes, intracerebral granulomas and basal ganglia infarction: a case report

    Directory of Open Access Journals (Sweden)

    Ozyurek Seyfi C

    2010-10-01

    Full Text Available Abstract Introduction Central nervous system involvement is a rare but serious manifestation of brucellosis. We present an unusual case of neurobrucellosis with transient ischemic attack, intracerebral vasculopathy granulomas, seizures, and paralysis of sixth and seventh cranial nerves. Case presentation A 17-year-old Caucasian man presented with nausea and vomiting, headache, double vision and he gave a history of weakness in the left arm, speech disturbance and imbalance. Physical examination revealed fever, doubtful neck stiffness and left abducens nerve paralysis. An analysis of his cerebrospinal fluid showed a pleocytosis (lymphocytes, 90%, high protein and low glucose levels. He developed generalized tonic-clonic seizures, facial paralysis and left hemiparesis. Cranial magnetic resonance imaging demonstrated intracerebral vasculitis, basal ganglia infarction and granulomas, mimicking the central nervous system involvement of tuberculosis. On the 31st day of his admission, neurobrucellosis was diagnosed with immunoglobulin M and immunoglobulin G positivity by standard tube agglutination test and enzyme-linked immunosorbent assay in both serum and cerebrospinal fluid samples (the tests had been negative until that day. He was treated successfully with trimethoprim and sulfamethoxazole, doxycyline and rifampicin for six months. Conclusions Our patient illustrates the importance of suspecting brucellosis as a cause of meningoencephalitis, even if cultures and serological tests are negative at the beginning of the disease. As a result, in patients who have a history of residence or travel to endemic areas, neurobrucellosis should be considered in the differential diagnosis of any neurologic symptoms. If initial tests fail, repetition of these tests at appropriate intervals along with complementary investigations are indicated.

  3. Dopamine transporter density in the basal ganglia assessed with 123I-IPT SPECT in children with attention deficit hyperactivity disorder

    International Nuclear Information System (INIS)

    Yoo, Y. H.; Cheon, K. A.; Yoon, M. J.; Kim, C. H.; Lee, J. D.; Kim, H. H.; Choi, T. H.

    2002-01-01

    Attention deficit hyperactivity disorder (ADHD) is known as a psychiatric disorder in childhood associated with dopamine dysregulation. We investigated dopamine transporter (DAT) density in children with ADHD in the present study using 123 I-IPT SPECT and postulated that an alteration in DAT density in the basal ganglia (BG) is responsible for dopaminergic dysfunction in children with ADHD. 9 durg-naive children with ADHD and 6 normal children were included in the study. We performed brain SPECT 2 hours after administration of 123 I-IPT and made both quantitative and qualitative analyses for assessment of specific/nonspecific DAT binding ratio in the BG. We investigated the correlation between the severity scores of ADHD symptoms in children with ADHD assessed with ADHD rating scale and specific/nonspecific DAT binding ratio in the BG. Drug-naive children with ADHD showed a significantly incresed specific/nonspecific DAT binding ratio in the BG compared with normal children. Whereas, no significant correlation was found between severity scores of symptoms in children with ADHD and specific/nonspecific DAT binding ratio n the BG. Our findings support complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD

  4. Modulation of Cortical-subcortical Networks in Parkinson’s Disease by Applied Field Effects

    Directory of Open Access Journals (Sweden)

    Christopher William Hess

    2013-09-01

    Full Text Available Studies suggest that endogenous field effects may play a role in neuronal oscillations and communication. Non-invasive transcranial electrical stimulation with low-intensity currents can also have direct effects on the underlying cortex as well as distant network effects. While Parkinson's disease (PD is amenable to invasive neuromodulation in the basal ganglia by deep brain stimulation, techniques of non-invasive neuromodulation like transcranial direct current stimulation (tDCS and transcranial alternating current stimulation (tACS are being investigated as possible therapies. tDCS and tACS have the potential to influence the abnormal cortical-subcortical network activity that occurs in PD through sub-threshold changes in cortical excitability or through entrainment or disruption of ongoing rhythmic cortical activity. This may allow for the targeting of specific features of the disease involving abnormal oscillatory activity, as well as the enhancement of potential cortical compensation for basal ganglia dysfunction and modulation of cortical plasticity in neurorehabilitation. However, little is currently known about how cortical stimulation will affect subcortical structures, the size of any effect, and the factors of stimulation that will influence these effects.

  5. High-frequency stimulation of the subthalamic nucleus modifies the expression of vesicular glutamate transporters in basal ganglia in a rat model of Parkinson's disease.

    Science.gov (United States)

    Favier, Mathieu; Carcenac, Carole; Drui, Guillaume; Boulet, Sabrina; El Mestikawy, Salah; Savasta, Marc

    2013-12-05

    It has been suggested that glutamatergic system hyperactivity may be related to the pathogenesis of Parkinson's disease (PD). Vesicular glutamate transporters (VGLUT1-3) import glutamate into synaptic vesicles and are key anatomical and functional markers of glutamatergic excitatory transmission. Both VGLUT1 and VGLUT2 have been identified as definitive markers of glutamatergic neurons, but VGLUT 3 is also expressed by non glutamatergic neurons. VGLUT1 and VGLUT2 are thought to be expressed in a complementary manner in the cortex and the thalamus (VL/VM), in glutamatergic neurons involved in different physiological functions. Chronic high-frequency stimulation (HFS) of the subthalamic nucleus (STN) is the neurosurgical therapy of choice for the management of motor deficits in patients with advanced PD. STN-HFS is highly effective, but its mechanisms of action remain unclear. This study examines the effect of STN-HFS on VGLUT1-3 expression in different brain nuclei involved in motor circuits, namely the basal ganglia (BG) network, in normal and 6-hydroxydopamine (6-OHDA) lesioned rats. Here we report that: 1) Dopamine(DA)-depletion did not affect VGLUT1 and VGLUT3 expression but significantly decreased that of VGLUT2 in almost all BG structures studied; 2) STN-HFS did not change VGLUT1-3 expression in the different brain areas of normal rats while, on the contrary, it systematically induced a significant increase of their expression in DA-depleted rats and 3) STN-HFS reversed the decrease in VGLUT2 expression induced by the DA-depletion. These results show for the first time a comparative analysis of changes of expression for the three VGLUTs induced by STN-HFS in the BG network of normal and hemiparkinsonian rats. They provide evidence for the involvement of VGLUT2 in the modulation of BG cicuits and in particular that of thalamostriatal and thalamocortical pathways suggesting their key role in its therapeutic effects for alleviating PD motor symptoms.

  6. The Effects of Cues on Neurons in the Basal Ganglia in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sridevi V. Sarma

    2012-07-01

    Full Text Available Visual cues open a unique window to the understanding of Parkinson’s disease (PD. These cues can temporarily but dramatically improve PD motor symptoms. Although details are unclear, cues are believed to suppress pathological basal ganglia (BG activity through activation of corticostriatal pathways. In this study, we investigated human BG neurophysiology under different cued conditions. We evaluated bursting, 10-30Hz oscillations (OSCs, and directional tuning (DT dynamics in the subthalamic nucleus activity while 7 patients executed a two-step motor task. In the first step (predicted +cue, the patient moved to a target when prompted by a visual go cue that appeared 100% of the time. Here, the timing of the cue is predictable and the cue serves an external trigger to execute a motor plan. In the second step, the cue appeared randomly 50% of the time, and the patient had to move to the same target as in the first step. When it appeared (unpredicted +cue, the motor plan was to be triggered by the cue, but its timing was not predictable. When the cue failed to appear (unpredicted -cue, the motor plan was triggered by the absence of the visual cue. We found that during predicted +cue and unpredicted -cue trials, OSCs significantly decreased and DT significantly increased above baseline, though these modulations occurred an average of 640 milliseconds later in unpredicted -cue trials. Movement and reaction times were comparable in these trials. During unpredicted +cue trials, OSCs and DT failed to modulate though bursting significantly decreased after movement. Correspondingly, movement performance deteriorated. These findings suggest that during motor planning either a predictably timed external cue or an internally generated cue (generated by the absence of a cue trigger the execution of a motor plan in premotor cortex, whose increased activation then suppresses pathological activity in STN through direct pathways, leading to motor facilitation in

  7. Basal ganglia and gait control: apomorphine administration and internal pallidum stimulation in Parkinson's disease.

    Science.gov (United States)

    Grasso, R; Peppe, A; Stratta, F; Angelini, D; Zago, M; Stanzione, P; Lacquaniti, F

    1999-05-01

    Gait coordination was analyzed (four-camera 100 Hz ELITE system) in two groups of idiopathic Parkinson disease (PD) patients. Five patients underwent continuous infusion of apomorphine and were recorded in two different sessions (APO OFF and APO ON) in the same day. Three patients with a previous chronic electrode implantation in both internal globi pallidi (GPi) were recorded in the same experimental session with the electrodes on and off (STIM ON and STIM OFF). The orientation of both the trunk and the lower-limb segments was described with respect to the vertical in the sagittal plane. Lower-limb inter-segmental coordination was evaluated by analyzing the co-variation between thigh, shank, and foot elevation angles by means of orthogonal planar regression. At least 30 gait cycles per experimental condition were processed. We found that the trunk was bent forward in STIM OFF, whereas it was better aligned with the vertical in STIM ON in both PD groups. The legs never fully extended during the gait cycle in STIM OFF, whereas they extended before heel strike in STIM ON. The multisegmental coordination of the lower limb changed almost in parallel with the changes in trunk orientation. In STIM OFF, both the shape and the spatial orientation of the planar gait loops (thigh angle vs. shank angle vs. foot angle) differed from those of physiological locomotion, whereas in STIM ON the gait loop tended to resume features closer to the control. Switching the electrodes on and off in patients with GPi electrodes resulted in quasi-parallel changes of the trunk inclination and of the planar gait loop. The bulk of the data suggest that the basal-ganglia circuitry may be relevant in locomotion by providing an appropriate spatio-temporal framework for the control of posture and movement in a gravity-based body-centered frame of reference. Pallido-thalamic and/or pallido-mesencephalic pathways may influence the timing of the inter-segmental coordination for gait.

  8. In vivo basal ganglia volumetry through application of NURBS models to MR images

    Energy Technology Data Exchange (ETDEWEB)

    Anastasi, Giuseppe; Cutroneo, Giuseppina; Vitetta, Anton Giulio [University of Messina, Department of Biomorphology and Biotechnologies, Messina (Italy); Tomasello, Francesco; Lucerna, Sebastiano [University of Messina, Department of Neurosurgery, Messina (Italy); Bramanti, Placido; Bella, Paolo di [University of Messina, Study and Treatment Centre for Long-Stay Neurological Patients, Section of Neuroradiology, Messina (Italy); Parenti, Anna [University of Padua, Department of Diagnostic Sciences and Special Therapy, Section of Neuroradiology, Padua (Italy); Porzionato, Andrea; Caro, Raffaele de [University of Padua, Department of Human Anatomy and Physiology, Section of Anatomy, Padua (Italy); Macchi, Veronica [University of Padua, Department of Human Anatomy and Physiology, Section of Anatomy, Padua (Italy); University of Padua, Department of Diagnostic Sciences and Special Therapy, Section of Neuroradiology, Padua (Italy)

    2006-05-15

    Volumetry of basal ganglia (BG) based on magnetic resonance imaging (MRI) provides a sensitive marker in differential diagnosis of BG disorders. The non-uniform rational B-spline (NURBS) surfaces are mathematical representations of three-dimensional structures which have recently been applied in volumetric studies. In this study, a volumetric evaluation of BG based on NURBS was performed in 35 right-handed volunteers. We aimed to compare and validate this technique with respect to manual MRI volumetry and evaluate possible side differences between these structures. Intra- and interobserver biases less than 1.5% demonstrated the method's stability. The mean percentage differences between NURBS and manual methods were less than 1% for all the structures considered; however, the internal segments of the globus pallidus showed a mean percentage difference of about 1.7%. Rightward asymmetry was found for the caudate nucleus (mean{+-}SD 3.20{+-}0.20 cm{sup 3} vs. 3.10{+-}0.19 cm{sup 3}, P<0.001) for both its head (1.44{+-}0.10 cm{sup 3} vs. 1.41{+-}0.09 cm{sup 3}, P<0.01) and its body/tail (1.73{+-}0.11 cm{sup 3} and 1.68{+-}0.12 cm{sup 3}, P<0.01), and for the globus pallidus (1.23{+-}0.08 cm{sup 3} and 1.18{+-}0.09 cm{sup 3}, P<0.001) for both the internal (0.33{+-}0.05 cm{sup 3} vs. 0.31{+-}0.05 cm{sup 3}, P<0.01) and external (0.90{+-}0.05 cm{sup 3} vs. 0.86{+-}0.05 cm{sup 3}, P<0.001) segments. No volumetric side differences were found for the putamen (3.43{+-}0.14 cm{sup 3} vs. 3.39{+-}0.17 cm{sup 3}, P>0.05). The rightward asymmetry of the BG may be ascribed to the predominant use of the right hand. In conclusion, NURBS is an accurate and reliable method for quantitative volumetry of nervous structures. It offers the advantage of giving a three-dimensional representation of the structures examined. (orig.)

  9. Endothelial Proliferation and Increased Blood - Brain Barrier Permeability in the Basal Ganglia in a Rat Model of 3,4-Dihydrozyphenyl-L-Alanine-Induced Dyskinesia

    DEFF Research Database (Denmark)

    Westin, Jenny E.; Lindgren, Hanna S.; Gardi, Jonathan Eyal

    2006-01-01

    3,4-Dihydroxyphenyl-L-alanine (L-DOPA)-induced dyskinesia is associated with molecular and synaptic plasticity in the basal ganglia, but the occurrence of structural remodeling through cell genesis has not been explored. In this study, rats with 6-hydroxydopamine lesions received injections of th...... of angiogenesis and blood-brain barrier dysfunction in an experimental model of L-DOPA-induced dyskinesia. These microvascular changes are likely to affect the kinetics of L-DOPA entry into the brain, favoring the occurrence of motor complications....... dyskinesia. The vast majority (60-80%) of the newborn cells stained positively for endothelial markers. This endothelial proliferation was associated with an upregulation of immature endothelial markers (nestin) and a downregulation of endothelial barrier antigen on blood vessel walls. In addition......, dyskinetic rats exhibited a significant increase in total blood vessel length and a visible extravasation of serum albumin in the two structures in which endothelial proliferation was most pronounced (substantia nigra pars reticulata and entopeduncular nucleus). The present study provides the first evidence...

  10. Massive Submucosal Ganglia in Colonic Inertia.

    Science.gov (United States)

    Naemi, Kaveh; Stamos, Michael J; Wu, Mark Li-Cheng

    2018-02-01

    - Colonic inertia is a debilitating form of primary chronic constipation with unknown etiology and diagnostic criteria, often requiring pancolectomy. We have occasionally observed massively enlarged submucosal ganglia containing at least 20 perikarya, in addition to previously described giant ganglia with greater than 8 perikarya, in cases of colonic inertia. These massively enlarged ganglia have yet to be formally recognized. - To determine whether such "massive submucosal ganglia," defined as ganglia harboring at least 20 perikarya, characterize colonic inertia. - We retrospectively reviewed specimens from colectomies of patients with colonic inertia and compared the prevalence of massive submucosal ganglia occurring in this setting to the prevalence of massive submucosal ganglia occurring in a set of control specimens from patients lacking chronic constipation. - Seven of 8 specimens affected by colonic inertia harbored 1 to 4 massive ganglia, for a total of 11 massive ganglia. One specimen lacked massive ganglia but had limited sampling and nearly massive ganglia. Massive ganglia occupied both superficial and deep submucosal plexus. The patient with 4 massive ganglia also had 1 mitotically active giant ganglion. Only 1 massive ganglion occupied the entire set of 10 specimens from patients lacking chronic constipation. - We performed the first, albeit distinctly small, study of massive submucosal ganglia and showed that massive ganglia may be linked to colonic inertia. Further, larger studies are necessary to determine whether massive ganglia are pathogenetic or secondary phenomena, and whether massive ganglia or mitotically active ganglia distinguish colonic inertia from other types of chronic constipation.

  11. Subthalamic nucleus stimulation does not influence basal glucose metabolism or insulin sensitivity in patients with Parkinson's disease.

    Science.gov (United States)

    Lammers, Nicolette M; Sondermeijer, Brigitte M; Twickler, Th B Marcel; de Bie, Rob M; Ackermans, Mariëtte T; Fliers, Eric; Schuurman, P Richard; La Fleur, Susanne E; Serlie, Mireille J

    2014-01-01

    Animal studies have shown that central dopamine signaling influences glucose metabolism. As a first step to show this association in an experimental setting in humans, we studied whether deep brain stimulation (DBS) of the subthalamic nucleus (STN), which modulates the basal ganglia circuitry, alters basal endogenous glucose production (EGP) or insulin sensitivity in patients with Parkinson's disease (PD). We studied 8 patients with PD treated with DBS STN, in the basal state and during a hyperinsulinemic euglycemic clamp using a stable glucose isotope, in the stimulated and non-stimulated condition. We measured EGP, hepatic insulin sensitivity, peripheral insulin sensitivity (Rd), resting energy expenditure (REE), glucoregulatory hormones, and Parkinson symptoms, using the Unified Parkinson's Disease Rating Scale (UPDRS). Basal plasma glucose and EGP did not differ between the stimulated and non-stimulated condition. Hepatic insulin sensitivity was similar in both conditions and there were no significant differences in Rd and plasma glucoregulatory hormones between DBS on and DBS off. UPDRS was significantly higher in the non-stimulated condition. DBS of the STN in patients with PD does not influence basal EGP or insulin sensitivity. These results suggest that acute modulation of the motor basal ganglia circuitry does not affect glucose metabolism in humans.

  12. Dopamine transporter density in the basal ganglia assessed with {sup 123}I-IPT SPECT in children with attention deficit hyperactivity disorder

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Y. H.; Cheon, K. A.; Yoon, M. J.; Kim, C. H.; Lee, J. D. [Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, H. H.; Choi, T. H. [Gachon Medical School, Incheon (Korea, Republic of)

    2002-07-01

    Attention deficit hyperactivity disorder (ADHD) is known as a psychiatric disorder in childhood associated with dopamine dysregulation. We investigated dopamine transporter (DAT) density in children with ADHD in the present study using {sup 123}I-IPT SPECT and postulated that an alteration in DAT density in the basal ganglia (BG) is responsible for dopaminergic dysfunction in children with ADHD. 9 durg-naive children with ADHD and 6 normal children were included in the study. We performed brain SPECT 2 hours after administration of {sup 123}I-IPT and made both quantitative and qualitative analyses for assessment of specific/nonspecific DAT binding ratio in the BG. We investigated the correlation between the severity scores of ADHD symptoms in children with ADHD assessed with ADHD rating scale and specific/nonspecific DAT binding ratio in the BG. Drug-naive children with ADHD showed a significantly incresed specific/nonspecific DAT binding ratio in the BG compared with normal children. Whereas, no significant correlation was found between severity scores of symptoms in children with ADHD and specific/nonspecific DAT binding ratio n the BG. Our findings support complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD.

  13. Restoring the basal ganglia in Parkinson's disease to normal via multi-input phase-shifted deep brain stimulation.

    Science.gov (United States)

    Agarwal, Rahul; Sarma, Sridevi V

    2010-01-01

    Deep brain stimulation (DBS) injects a high frequency current that effectively disables the diseased basal ganglia (BG) circuit in Parkinson's disease (PD) patients, leading to a reversal of motor symptoms. Though therapeutic, high frequency stimulation consumes significant power forcing frequent surgical battery replacements and causing widespread influence into other brain areas which may lead to adverse side effects. In this paper, we conducted a rigorous study to assess whether low frequency signals can restore behavior in PD patients by restoring neural activity in the BG to the normal state. We used a biophysical-based model of BG nuclei and motor thalamus whose parameters can be set to simulate the normal state and the PD state with and without DBS. We administered pulse train DBS waveforms to the subthalamic nucleus (STN) with frequencies ranging from 1-150Hz. For each DBS frequency, we computed statistics on the simulated neural activity to assess whether it is restored to the normal state. In particular, we searched for DBS waveforms that suppress pathological bursting, oscillations, correlations and synchronization prevalent in the PD state and that enable thalamic cells to relay cortical inputs reliably. We found that none of the tested waveforms restores neural activity to the normal state. However, our simulations led us to construct a novel DBS strategy involving low frequency multi-input phaseshifted DBS to be administered into the STN. This strategy successfully suppressed all pathological symptoms in the BG in addition to enabling thalamic cells to relay cortical inputs reliably.

  14. Dopaminergic balance between reward maximization and policy complexity

    Directory of Open Access Journals (Sweden)

    Naama eParush

    2011-05-01

    Full Text Available Previous reinforcement-learning models of the basal ganglia network have highlighted the role of dopamine in encoding the mismatch between prediction and reality. Far less attention has been paid to the computational goals and algorithms of the main-axis (actor. Here, we construct a top-down model of the basal ganglia with emphasis on the role of dopamine as both a reinforcement learning signal and as a pseudo-temperature signal controlling the general level of basal ganglia excitability and motor vigilance of the acting agent. We argue that the basal ganglia endow the thalamic-cortical networks with the optimal dynamic tradeoff between two constraints: minimizing the policy complexity (cost and maximizing the expected future reward (gain. We show that this multi-dimensional optimization processes results in an experience-modulated version of the softmax behavioral policy. Thus, as in classical softmax behavioral policies, probability of actions are selected according to their estimated values and the pseudo-temperature, but in addition also vary according to the frequency of previous choices of these actions. We conclude that the computational goal of the basal ganglia is not to maximize cumulative (positive and negative reward. Rather, the basal ganglia aim at optimization of independent gain and cost functions. Unlike previously suggested single-variable maximization processes, this multi-dimensional optimization process leads naturally to a softmax-like behavioral policy. We suggest that beyond its role in the modulation of the efficacy of the cortico-striatal synapses, dopamine directly affects striatal excitability and thus provides a pseudo-temperature signal that modulates the trade-off between gain and cost. The resulting experience and dopamine modulated softmax policy can then serve as a theoretical framework to account for the broad range of behaviors and clinical states governed by the basal ganglia and dopamine systems.

  15. Modulation of cortical-subcortical networks in Parkinson’s disease by applied field effects

    OpenAIRE

    Hess, Christopher W.

    2013-01-01

    Studies suggest that endogenous field effects may play a role in neuronal oscillations and communication. Non-invasive transcranial electrical stimulation with low-intensity currents can also have direct effects on the underlying cortex as well as distant network effects. While Parkinson’s disease (PD) is amenable to invasive neuromodulation in the basal ganglia by deep brain stimulation (DBS), techniques of non-invasive neuromodulation like transcranial direct current stimulation (tDCS) and ...

  16. Dopamine and the Brainstem Locomotor Networks: From Lamprey to Human

    Directory of Open Access Journals (Sweden)

    Dimitri Ryczko

    2017-05-01

    Full Text Available In vertebrates, dopamine neurons are classically known to modulate locomotion via their ascending projections to the basal ganglia that project to brainstem locomotor networks. An increased dopaminergic tone is associated with increase in locomotor activity. In pathological conditions where dopamine cells are lost, such as in Parkinson's disease, locomotor deficits are traditionally associated with the reduced ascending dopaminergic input to the basal ganglia. However, a descending dopaminergic pathway originating from the substantia nigra pars compacta was recently discovered. It innervates the mesencephalic locomotor region (MLR from basal vertebrates to mammals. This pathway was shown to increase locomotor output in lampreys, and could very well play an important role in mammals. Here, we provide a detailed account on the newly found dopaminergic pathway in lamprey, salamander, rat, monkey, and human. In lampreys and salamanders, dopamine release in the MLR is associated with the activation of reticulospinal neurons that carry the locomotor command to the spinal cord. Dopamine release in the MLR potentiates locomotor movements through a D1-receptor mechanism in lampreys. In rats, stimulation of the substantia nigra pars compacta elicited dopamine release in the pedunculopontine nucleus, a known part of the MLR. In a monkey model of Parkinson's disease, a reduced dopaminergic innervation of the brainstem locomotor networks was reported. Dopaminergic fibers are also present in human pedunculopontine nucleus. We discuss the conserved locomotor role of this pathway from lamprey to mammals, and the hypothesis that this pathway could play a role in the locomotor deficits reported in Parkinson's disease.

  17. [Emotion and basal ganglia (II): what can we learn from subthalamic nucleus deep brain stimulation in Parkinson's disease?].

    Science.gov (United States)

    Péron, J; Dondaine, T

    2012-01-01

    The subthalamic nucleus deep-brain stimulation Parkinson's disease patient model seems to represent a unique opportunity for studying the functional role of the basal ganglia and notably the subthalamic nucleus in human emotional processing. Indeed, in addition to constituting a therapeutic advance for severely disabled Parkinson's disease patients, deep brain stimulation is a technique, which selectively modulates the activity of focal structures targeted by surgery. There is growing evidence of a link between emotional impairments and deep-brain stimulation of the subthalamic nucleus. In this context, according to the definition of emotional processing exposed in the companion paper available in this issue, the aim of the present review will consist in providing a synopsis of the studies that investigated the emotional disturbances observed in subthalamic nucleus deep brain stimulation Parkinson's disease patients. This review leads to the conclusion that several emotional components would be disrupted after subthalamic nucleus deep brain stimulation in Parkinson's disease: subjective feeling, neurophysiological activation, and motor expression. Finally, after a description of the limitations of this study model, we discuss the functional role of the subthalamic nucleus (and the striato-thalamo-cortical circuits in which it is involved) in emotional processing. It seems reasonable to conclude that the striato-thalamo-cortical circuits are indeed involved in emotional processing and that the subthalamic nucleus plays a central in role the human emotional architecture. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  18. Neural correlates underlying micrographia in Parkinson's disease.

    Science.gov (United States)

    Wu, Tao; Zhang, Jiarong; Hallett, Mark; Feng, Tao; Hou, Yanan; Chan, Piu

    2016-01-01

    Micrographia is a common symptom in Parkinson's disease, which manifests as either a consistent or progressive reduction in the size of handwriting or both. Neural correlates underlying micrographia remain unclear. We used functional magnetic resonance imaging to investigate micrographia-related neural activity and connectivity modulations. In addition, the effect of attention and dopaminergic administration on micrographia was examined. We found that consistent micrographia was associated with decreased activity and connectivity in the basal ganglia motor circuit; while progressive micrographia was related to the dysfunction of basal ganglia motor circuit together with disconnections between the rostral supplementary motor area, rostral cingulate motor area and cerebellum. Attention significantly improved both consistent and progressive micrographia, accompanied by recruitment of anterior putamen and dorsolateral prefrontal cortex. Levodopa improved consistent micrographia accompanied by increased activity and connectivity in the basal ganglia motor circuit, but had no effect on progressive micrographia. Our findings suggest that consistent micrographia is related to dysfunction of the basal ganglia motor circuit; while dysfunction of the basal ganglia motor circuit and disconnection between the rostral supplementary motor area, rostral cingulate motor area and cerebellum likely contributes to progressive micrographia. Attention improves both types of micrographia by recruiting additional brain networks. Levodopa improves consistent micrographia by restoring the function of the basal ganglia motor circuit, but does not improve progressive micrographia, probably because of failure to repair the disconnected networks. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Impact of L-DOPA treatment on regional cerebral blood flow and metabolism in the basal ganglia in a rat model of Parkinson's disease.

    Science.gov (United States)

    Ohlin, K Elisabet; Sebastianutto, Irene; Adkins, Chris E; Lundblad, Cornelia; Lockman, Paul R; Cenci, M Angela

    2012-05-15

    Large increases in regional cerebral blood flow (rCBF) have been measured in patients with Parkinson's disease (PD) following the administration of L-DOPA, but the underlying mechanisms have remained unknown. In this study, rats with unilateral 6-hydroxydopamine (6-OHDA) lesions were used to compare patterns of rCBF and regional cerebral glucose utilisation (rCGU) in chronically L-DOPA-treated subjects following a final injection of L-DOPA or saline. The same animal model was used to the leakage of a blood-brain barrier (BBB) tracer molecule at 60 min vs. 24h following the last L-DOPA injection of a chronic treatment. All the parameters under investigation were examined with brain autoradiography following intravenous injections of specific radiotracers in awake animals ([14C]-iodoantipyrine for rCBF, [14C]-2-deoxyglucose for rCGU, and [14C]-α-aminoisobutyric acid for BBB leakage). Significant changes in rCBF and rCGU on the side ipsilateral to the 6-OHDA lesion relative to the non-lesioned side were seen at 60 min ("ON") but not 24h ("OFF") following L-DOPA administration. These changes were not seen in sham-operated rats. In the output nuclei of the basal ganglia (the entopeduncular nucleus and the substantia nigra pars reticulata) both rCBF and rCGU were elevated both in acutely L-DOPA-treated rats and chronically L-DOPA-treated rats displaying dyskinesia, but did not change significantly in chronically L-DOPA-treated non-dyskinetic cases. Acutely and chronically L-DOPA-treated rats with dyskinesia exhibited increases in rCBF "ON L-DOPA" also in the motor cortex, the striatum, and the globus pallidus, but the corresponding changes in rCGU did not show the same direction, magnitude, and/or relative group differences. The uptake of a BBB tracer (studied in the striatum and the substantia nigra reticulata in chronically L-DOPA treated rats) was significantly higher ON vs. OFF L-DOPA. The present results are the first to show that the administration of L-DOPA is

  20. Optogenetic stimulation in a computational model of the basal ganglia biases action selection and reward prediction error.

    Science.gov (United States)

    Berthet, Pierre; Lansner, Anders

    2014-01-01

    Optogenetic stimulation of specific types of medium spiny neurons (MSNs) in the striatum has been shown to bias the selection of mice in a two choices task. This shift is dependent on the localisation and on the intensity of the stimulation but also on the recent reward history. We have implemented a way to simulate this increased activity produced by the optical flash in our computational model of the basal ganglia (BG). This abstract model features the direct and indirect pathways commonly described in biology, and a reward prediction pathway (RP). The framework is similar to Actor-Critic methods and to the ventral/dorsal distinction in the striatum. We thus investigated the impact on the selection caused by an added stimulation in each of the three pathways. We were able to reproduce in our model the bias in action selection observed in mice. Our results also showed that biasing the reward prediction is sufficient to create a modification in the action selection. However, we had to increase the percentage of trials with stimulation relative to that in experiments in order to impact the selection. We found that increasing only the reward prediction had a different effect if the stimulation in RP was action dependent (only for a specific action) or not. We further looked at the evolution of the change in the weights depending on the stage of learning within a block. A bias in RP impacts the plasticity differently depending on that stage but also on the outcome. It remains to experimentally test how the dopaminergic neurons are affected by specific stimulations of neurons in the striatum and to relate data to predictions of our model.

  1. Stimulation sites in the subthalamic nucleus projected onto a mean 3-D atlas of the thalamus and basal ganglia.

    Science.gov (United States)

    Sarnthein, Johannes; Péus, Dominik; Baumann-Vogel, Heide; Baumann, Christian R; Sürücü, Oguzkan

    2013-09-01

    In patients with severe forms of Parkinson's disease (PD), deep brain stimulation (DBS) commonly targets the subthalamic nucleus (STN). Recently, the mean 3-D Morel-Atlas of the basal ganglia and the thalamus was introduced. It combines information contained in histological data from ten post-mortem brains. We were interested whether the Morel-Atlas is applicable for the visualization of stimulation sites. In a consecutive PD patient series, we documented preoperative MRI planning, intraoperative target adjustment based on electrophysiological and neurological testing, and perioperative CT target reconstruction. The localization of the DBS electrodes and the optimal stimulation sites were projected onto the Morel-Atlas. We included 20 patients (median age 62 years). The active contact had mean coordinates Xlat = ±12.1 mm, Yap = -1.8 mm, Zvert = -3.2 mm. There was a significant difference between the initially planned site and the coordinates of the postoperative active contact site (median 2.2 mm). The stimulation site was, on average, more anterior and more dorsal. The electrode contact used for optimal stimulation was found within the STN of the atlas in 38/40 (95 %) of implantations. The cluster of stimulation sites in individual patients-as deduced from preoperative MR, intraoperative electrophysiology and neurological testing-showed a high degree of congruence with the atlas. The mean 3D Morel Atlas is thus a useful tool for postoperative target visualization. This represents the first clinical evaluation of the recently created atlas.

  2. Large-scale cortico-subcortical functional networks in focal epilepsies: The role of the basal ganglia

    Directory of Open Access Journals (Sweden)

    Eva Výtvarová

    2017-01-01

    Significance: Focal epilepsies affect large-scale brain networks beyond the epileptogenic zones. Cortico-subcortical functional connectivity disturbance was displayed in LTLE, FLE, and POLE. Significant changes in the resting-state functional connectivity between cortical and subcortical structures suggest an important role of the BG and thalamus in focal epilepsies.

  3. Dynamic stereotypic responses of Basal Ganglia neurons to subthalamic nucleus high-frequency stimulation in the parkinsonian primate.

    Science.gov (United States)

    Moran, Anan; Stein, Edward; Tischler, Hadass; Belelovsky, Katya; Bar-Gad, Izhar

    2011-01-01

    Deep brain stimulation (DBS) in the subthalamic nucleus (STN) is a well-established therapy for patients with severe Parkinson's disease (PD); however, its mechanism of action is still unclear. In this study we explored static and dynamic activation patterns in the basal ganglia (BG) during high-frequency macro-stimulation of the STN. Extracellular multi-electrode recordings were performed in primates rendered parkinsonian using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Recordings were preformed simultaneously in the STN and the globus pallidus externus and internus. Single units were recorded preceding and during the stimulation. During the stimulation, STN mean firing rate dropped significantly, while pallidal mean firing rates did not change significantly. The vast majority of neurons across all three nuclei displayed stimulation driven modulations, which were stereotypic within each nucleus but differed across nuclei. The predominant response pattern of STN neurons was somatic inhibition. However, most pallidal neurons demonstrated synaptic activation patterns. A minority of neurons across all nuclei displayed axonal activation. Temporal dynamics were observed in the response to stimulation over the first 10 seconds in the STN and over the first 30 seconds in the pallidum. In both pallidal segments, the synaptic activation response patterns underwent delay and decay of the magnitude of the peak response due to short term synaptic depression. We suggest that during STN macro-stimulation the STN goes through a functional ablation as its upper bound on information transmission drops significantly. This notion is further supported by the evident dissociation between the stimulation driven pre-synaptic STN somatic inhibition and the post-synaptic axonal activation of its downstream targets. Thus, BG output maintains its firing rate while losing the deleterious effect of the STN. This may be a part of the mechanism leading to the beneficial effect of DBS in PD.

  4. High-frequency stimulation of the globus pallidus interna nucleus modulates GFRα1 gene expression in the basal ganglia.

    Science.gov (United States)

    Ho, Duncun Xun Kiat; Tan, Yong Chee; Tan, Jiayi; Too, Heng Phon; Ng, Wai Hoe

    2014-04-01

    Deep brain stimulation (DBS) is an established therapy for movement disorders such as Parkinson's disease (PD). Although the efficacy of DBS is clear, its precise molecular mechanism remains unknown. The glial cell line derived factor (GDNF) family of ligands has been shown to confer neuroprotective effects on dopaminergic neurons, and putaminal infusion of GDNF have been investigated in PD patients with promising results. Despite the potential therapeutic role of GDNF in alleviating motor symptoms, there is no data on the effects of electrical stimulation on GDNF-family receptor (GFR) expression in the basal ganglia structures. Here, we report the effects of electrical stimulation on GFRα1 isoforms, particularly GFRα1a and GFRα1b. Wistar rats underwent 2 hours of high frequency stimulation (HFS) at the globus pallidus interna nucleus. A control group was subjected to a similar procedure but without stimulation. The HFS group, sacrificed 24 hours after treatment, had a threefold decrease in mRNA expression level of GFRα1b (p=0.037), but the expression level reverted to normal 72 hours after stimulation. Our preliminary data reveal the acute effects of HFS on splice isoforms of GFRα1, and suggest that HFS may modulate the splice isoforms of GFRα1a and GFRα1b to varying degrees. Going forward, elucidating the interactions between HFS and GFR may shed new insights into the complexity of GDNF signaling in the nervous system and lead to better design of clinical trials using these signaling pathways to halt disease progression in PD and other neurodegenerative diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Understanding the Functional Plasticity in Neural Networks of the Basal Ganglia in Cocaine Use Disorder: A Role for Allosteric Receptor-Receptor Interactions in A2A-D2 Heteroreceptor Complexes

    Directory of Open Access Journals (Sweden)

    Dasiel O. Borroto-Escuela

    2016-01-01

    Full Text Available Our hypothesis is that allosteric receptor-receptor interactions in homo- and heteroreceptor complexes may form the molecular basis of learning and memory. This principle is illustrated by showing how cocaine abuse can alter the adenosine A2AR-dopamine D2R heterocomplexes and their receptor-receptor interactions and hereby induce neural plasticity in the basal ganglia. Studies with A2AR ligands using cocaine self-administration procedures indicate that antagonistic allosteric A2AR-D2R heterocomplexes of the ventral striatopallidal GABA antireward pathway play a significant role in reducing cocaine induced reward, motivation, and cocaine seeking. Anticocaine actions of A2AR agonists can also be produced at A2AR homocomplexes in these antireward neurons, actions in which are independent of D2R signaling. At the A2AR-D2R heterocomplex, they are dependent on the strength of the antagonistic allosteric A2AR-D2R interaction and the number of A2AR-D2R and A2AR-D2R-sigma1R heterocomplexes present in the ventral striatopallidal GABA neurons. It involves a differential cocaine-induced increase in sigma1Rs in the ventral versus the dorsal striatum. In contrast, the allosteric brake on the D2R protomer signaling in the A2AR-D2R heterocomplex of the dorsal striatopallidal GABA neurons is lost upon cocaine self-administration. This is potentially due to differences in composition and allosteric plasticity of these complexes versus those in the ventral striatopallidal neurons.

  6. Rethinking Functional Outcome Measures: The Development of a Novel Upper Limb Token Transfer Test to Assess Basal Ganglia Dysfunction

    Directory of Open Access Journals (Sweden)

    Susanne P. Clinch

    2018-05-01

    Full Text Available The basal ganglia are implicated in a wide range of motor, cognitive and behavioral activities required for normal function. This region is predominantly affected in Huntington's disease (HD, meaning that functional ability progressively worsens. However, functional outcome measures for HD, particularly those for the upper limb, are limited meaning there is an imperative for well-defined, quantitative measures. Here we describe the development and evaluation of the Moneybox test (MBT. This novel, functional upper limb assessment was developed in accordance with translational neuroscience and physiological principles for people with a broad disease manifestation, such as HD. Participants with HD (n = 64 and healthy controls (n = 21 performed the MBT, which required subjects to transfer tokens into a container in order of size (Baseline Transfer, value (Complex Transfer with and without reciting the alphabet (Dual Transfer. Disease specific measures of motor, cognition, behavior, and function were collected. HD patients were grouped into disease stage, from which, discriminative and convergent validity was assessed using Analysis of Variance and Pearson's correlation respectively. Manifest HD participants were slower than pre-manifest and control participants, and achieved significantly lower MBT total scores. Performance in the Complex Transfer and Dual Transfer tasks were significantly different between pre-manifest and stage 1 HD. All MBT performance variables significantly correlated with routinely used measures of motor, cognition, behavior, and function. The MBT provides a valid, sensitive, and affordable functional outcome measure. Unlike current assessments, MBT performance significantly distinguished the subtle differences between the earliest disease stages of HD, which are the populations typically targeted in clinical trials.

  7. A system-level mathematical model of Basal Ganglia motor-circuit for kinematic planning of arm movements.

    Science.gov (United States)

    Salimi-Badr, Armin; Ebadzadeh, Mohammad Mehdi; Darlot, Christian

    2018-01-01

    In this paper, a novel system-level mathematical model of the Basal Ganglia (BG) for kinematic planning, is proposed. An arm composed of several segments presents a geometric redundancy. Thus, selecting one trajectory among an infinite number of possible ones requires overcoming redundancy, according to some kinds of optimization. Solving this optimization is assumed to be the function of BG in planning. In the proposed model, first, a mathematical solution of kinematic planning is proposed for movements of a redundant arm in a plane, based on minimizing energy consumption. Next, the function of each part in the model is interpreted as a possible role of a nucleus of BG. Since the kinematic variables are considered as vectors, the proposed model is presented based on the vector calculus. This vector model predicts different neuronal populations in BG which is in accordance with some recent experimental studies. According to the proposed model, the function of the direct pathway is to calculate the necessary rotation of each joint, and the function of the indirect pathway is to control each joint rotation considering the movement of the other joints. In the proposed model, the local feedback loop between Subthalamic Nucleus and Globus Pallidus externus is interpreted as a local memory to store the previous amounts of movements of the other joints, which are utilized by the indirect pathway. In this model, activities of dopaminergic neurons would encode, at short-term, the error between the desired and actual positions of the end-effector. The short-term modulating effect of dopamine on Striatum is also modeled as cross product. The model is simulated to generate the commands of a redundant manipulator. The performance of the model is studied for different reaching movements between 8 points in a plane. Finally, some symptoms of Parkinson's disease such as bradykinesia and akinesia are simulated by modifying the model parameters, inspired by the dopamine depletion

  8. Gene co-expression networks shed light into diseases of brain iron accumulation.

    Science.gov (United States)

    Bettencourt, Conceição; Forabosco, Paola; Wiethoff, Sarah; Heidari, Moones; Johnstone, Daniel M; Botía, Juan A; Collingwood, Joanna F; Hardy, John; Milward, Elizabeth A; Ryten, Mina; Houlden, Henry

    2016-03-01

    Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. The Functional Neuroanatomy of Dystonia

    Science.gov (United States)

    Neychev, Vladimir K.; Gross, Robert; Lehéricy, Stephane; Hess, Ellen J.; Jinnah, H. A.

    2011-01-01

    Dystonia is a neurological disorder characterized by involuntary twisting movements and postures. There are many different clinical manifestations, and many different causes. The neuroanatomical substrates for dystonia are only partly understood. Although the traditional view localizes dystonia to basal ganglia circuits, there is increasing recognition that this view is inadequate for accommodating a substantial portion of available clinical and experimental evidence. A model in which several brain regions play a role in a network better accommodates the evidence. This network model accommodates neuropathological and neuroimaging evidence that dystonia may be associated with abnormalities in multiple different brain regions. It also accommodates animal studies showing that dystonic movements arise with manipulations of different brain regions. It is consistent with neurophysiological evidence suggesting defects in neural inhibitory processes, sensorimotor integration, and maladaptive plasticity. Finally, it may explain neurosurgical experience showing that targeting the basal ganglia is effective only for certain subpopulations of dystonia. Most importantly, the network model provides many new and testable hypotheses with direct relevance for new treatment strategies that go beyond the basal ganglia. PMID:21303695

  10. Subthalamic nucleus stimulation does not influence basal glucose metabolism or insulin sensitivity in patients with Parkinson's disease

    NARCIS (Netherlands)

    Lammers, Nicolette M.; Sondermeijer, Brigitte M.; Twickler, Th B. Marcel; de Bie, Rob M.; Ackermans, Mariëtte T.; Fliers, Eric; Schuurman, P. Richard; la Fleur, Susanne E.; Serlie, Mireille J.

    2014-01-01

    Animal studies have shown that central dopamine signaling influences glucose metabolism. As a first step to show this association in an experimental setting in humans, we studied whether deep brain stimulation (DBS) of the subthalamic nucleus (STN), which modulates the basal ganglia circuitry,

  11. Motor circuit computer model based on studies of functional Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Garcia Ramo, Karla Batista; Rodriguez Rojas, Rafael; Carballo Barreda, Maylen

    2012-01-01

    The basal ganglia are a complex network of subcortical nuclei involved in motor control, sensorimotor integration, and cognitive processes. Their functioning and interaction with other cerebral structures remains as a subject of debate. The aim of the present work was to simulate the basal ganglia-thalamus-cortex circuitry interaction in motor program selection, supported by functional connectivity pattern obtained by functional nuclear magnetic resonance imaging. Determination of connections weights between neural populations by functional magnetic resonance imaging, contributed to a more realistic formulation of the model; and consequently to obtain similar results to clinical and experimental data. The network allowed to describe the participation of the basal ganglia in motor program selection and the changes in Parkinson disease. The simulation allowed to demonstrate that dopamine depletion above to 40 % leads to a loss of action selection capability, and to reflect the system adaptation ability to compensate dysfunction in Parkinson disease, coincident with experimental and clinical studies

  12. [Mineralization of the basal ganglia as the supposed cause of poor tolerance of zuclopenthixol in a patient with long-term untreated paranoid schizophrenia].

    Science.gov (United States)

    Wichowicz, Hubert M; Wilkowska, Alina; Banecka-Majkutewicz, Zyta; Kummer, Łukasz; Konarzewska, Joanna; Raczak, Alicja

    2013-01-01

    Formations described as intracranial calcifications can appear in the course of diseases of the central nervous system, other systems and organs (e.g. endocrine), but also as a disorder of idiopathic character. They are frequently located in subcortical nuclei and usually constitute an incidental finding. This report presents the case of a patient suffering from paranoid schizophrenia for approximately 40 years, who did not agree to any treatment and was hospitalized against her will because she was the threat to the lives of others. She was treated with zuklopentixol resulting in positive symptoms reduction and considerable improvement in social functioning. Unfortunately neurological symptoms appeared: bradykinesis, rigidity--of the type of the lead pipe, balance, posture and gait abnormalities, disturbances in precise hands movements, double-sided Rossolimo's sign, plantar reflex without the participation of the big toe on the left. Neuroimaging studies have demonstrated changes in the form of lenticular nuclei calcification and reduction of signal intensity in posterior parts of both putamens. Neurological symptoms decreased significantly after switching to atypical neuroleptic (olanzapine), and the patient did not require any additional treatment. Mineralization of the basal ganglia can often be associated with psychiatric disorders and it shouldn't be neglected because it can require modification of pharmacotherapy or additional neurological treatment.

  13. Unilateral traumatic hemorrhage of the basal ganglion and bihemisferic cerebral infarction

    Directory of Open Access Journals (Sweden)

    Moscote-Salazar Luis Rafael

    2017-09-01

    Full Text Available Among the various injuries caused by the cerebral tramatic lesion are traumatic brain contusions. Hemorrhagic contusions of the basal ganglia are unusual. Different injuries such as cranial fractures, epidural hemorrhage, subdural hematoma, subarachnoid hemorrhage among others may be associated with brain contusions. In some cases traumatic brain injury arises. We present a case of a patient with unilateral cerebral contusion associated with bihemispheric cerebral infarction.

  14. Dynamical analysis of Parkinsonian state emulated by hybrid Izhikevich neuron models

    Science.gov (United States)

    Liu, Chen; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Li, Huiyan; Loparo, Kenneth A.; Fietkiewicz, Chris

    2015-11-01

    Computational models play a significant role in exploring novel theories to complement the findings of physiological experiments. Various computational models have been developed to reveal the mechanisms underlying brain functions. Particularly, in the development of therapies to modulate behavioral and pathological abnormalities, computational models provide the basic foundations to exhibit transitions between physiological and pathological conditions. Considering the significant roles of the intrinsic properties of the globus pallidus and the coupling connections between neurons in determining the firing patterns and the dynamical activities of the basal ganglia neuronal network, we propose a hypothesis that pathological behaviors under the Parkinsonian state may originate from combined effects of intrinsic properties of globus pallidus neurons and synaptic conductances in the whole neuronal network. In order to establish a computational efficient network model, hybrid Izhikevich neuron model is used due to its capacity of capturing the dynamical characteristics of the biological neuronal activities. Detailed analysis of the individual Izhikevich neuron model can assist in understanding the roles of model parameters, which then facilitates the establishment of the basal ganglia-thalamic network model, and contributes to a further exploration of the underlying mechanisms of the Parkinsonian state. Simulation results show that the hybrid Izhikevich neuron model is capable of capturing many of the dynamical properties of the basal ganglia-thalamic neuronal network, such as variations of the firing rates and emergence of synchronous oscillations under the Parkinsonian condition, despite the simplicity of the two-dimensional neuronal model. It may suggest that the computational efficient hybrid Izhikevich neuron model can be used to explore basal ganglia normal and abnormal functions. Especially it provides an efficient way of emulating the large-scale neuron network

  15. Repetitive transcranial magnetic stimulation for depression after basal ganglia ischaemic stroke: protocol for a multicentre randomised double-blind placebo-controlled trial.

    Science.gov (United States)

    Tang, Ying; Chen, Aimin; Zhu, Shuzhen; Yang, Li; Zhou, Jiyuan; Pan, Suyue; Shao, Min; Zhao, Lianxu

    2018-02-03

    Studies suggest that repetitive transcranial magnetic stimulation (rTMS) is effective for the treatment of depression and promotes the repair of white matter. This study aims to assess the effectiveness of rTMS in treating depression after basal ganglia ischaemic stroke and to examine whether such effects are related to restoration of white matter integrity. Sixty-six participants will be recruited from Zhujiang Hospital, Nanfang Hospital and Sichuan Bayi Rehabilitation Hospital and randomised in a 1:1 ratio to receive active rTMS treatment or sham rTMS treatment in addition to routine supportive treatments. The data will be collected at 0, 2 and 4 weeks after the commencement of treatment. The primary outcome is the measurement of 24-item Hamilton Depression Rating Scale scores, and the secondary outcomes include diffusion tensor imaging results and the results of neuropsychological tests including the National Institutes of Health Stroke Scale, Activities of Daily Living Scale, Montreal Cognitive Assessment, Clinical Global Impressions scales, Aphasia Battery in Chinese, Social Support Revalued Scale and Medical Coping Modes Questionnaire. This study has been approved by the Ethics Committee of Zhujiang Hospital of Southern Medical University. The findings will be disseminated by publication in a peer-reviewed journal and by presentation at international conferences. NCT03159351. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Good recovery from aphasia is also supported by right basal ganglia: a longitudinal controlled PET study. EJPRM-ESPRM 2008 award winner.

    Science.gov (United States)

    De Boissezon, X; Marie, N; Castel-Lacanal, E; Marque, P; Bezy, C; Gros, H; Lotterie, J-A; Cardebat, D; Puel, M; Demonet, J-F

    2009-12-01

    It has long been a matter of debate whether recovery from aphasia after left perisylvian lesion is mediated by perilesional left hemispheric regions or by right homologous areas. To investigate the neural substrates of aphasia recovery, a longitudinal study in patients after a left single perisylvian stroke was performed. Thirteen aphasic patients were H2(15)O PET-scanned twice at a one year interval during a word generation task. Patients are divided into two groups according to language performance for the word generation task at PET2. For the Good Recovery (GR) group, patients' performances are indistinguishable from those of normal subjects, while patients from the Poor Recovery (PR) group keep language disorders. Using SPM2, Language-Rest contrast is computed for both groups at both PET stages. Then, Session Effect contrast (TEP2-TEP1>0) is calculated for both groups. For the GR group, the Session Effect contrast shows an increase of activations in the left Postero-Superior Temporal Gyrus PSTG but also in the right thalamus and lenticular nuclei; for PR patients, the right lenticular nucleus activation is more important at PET1 than PET2. The crucial role of the left temporal activation is confirmed and its increase is linked to behavioural recovery. The role of the right basal ganglia to support good recovery from aphasia is a new finding. Their activation may be more task-dependant and related to inhibition of the right frontal cortex.

  17. Inorganic phosphorus (Pi) in CSF is a biomarker for SLC20A2-associated idiopathic basal ganglia calcification (IBGC1).

    Science.gov (United States)

    Hozumi, Isao; Kurita, Hisaka; Ozawa, Kazuhiro; Furuta, Nobuyuki; Inden, Masatoshi; Sekine, Shin-Ichiro; Yamada, Megumi; Hayashi, Yuichi; Kimura, Akio; Inuzuka, Takashi; Seishima, Mitsuru

    2018-05-15

    Idiopathic basal ganglia calcification (IBGC), also called Fahr's disease or recently primary familial brain calcification (PFBC), is characterized by abnormal deposits of minerals including calcium mainly and phosphate in the brain. Mutations in SLC20A2 (IBGC1 (merged with former IBGC2 and IBGC3)), which encodes PiT-2, a phosphate transporter, is the major cause of IBGC. Recently, Slc20a2-KO mice have been showed to have elevated levels of inorganic phosphorus (Pi) in cerebrospinal fluid (CSF); however, CSF Pi levels in patients with IBGC have not been fully examined. We investigated the cases of 29 patients with IBGC including six patients with SLC20A2 mutation and three patients with PDGFB mutation, and 13 controls. The levels of sodium (Na), potassium (K), chloride (Cl), calcium (Ca), and Pi in sera and CSF were determined by potentiometry and colorimetry. Moreover, clinical manifestations were investigated in the IBGC patients with high Pi levels in CSF. The study revealed that the average level of Pi in the CSF of the total group of patients with IBGC is significantly higher than that of the control group, and the levels of Pi in CSF of the IBGC patients with SLC20A2 mutations are significantly higher than those of the IBGC patients with PDGFB mutations, the other IBGC patients and controls. Results of this study suggest that the levels of CSF Pi will be a good biomarker for IBGC1. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Celiac ganglia block

    International Nuclear Information System (INIS)

    Akinci, Devrim; Akhan, Okan

    2005-01-01

    Pain occurs frequently in patients with advanced cancers. Tumors originating from upper abdominal viscera such as pancreas, stomach, duodenum, proximal small bowel, liver and biliary tract and from compressing enlarged lymph nodes can cause severe abdominal pain, which do not respond satisfactorily to medical treatment or radiotherapy. Percutaneous celiac ganglia block (CGB) can be performed with high success and low complication rates under imaging guidance to obtain pain relief in patients with upper abdominal malignancies. A significant relationship between pain relief and degree of tumoral celiac ganglia invasion according to CT features was described in the literature. Performing the procedure in the early grades of celiac ganglia invasion on CT can increase the effectiveness of the CGB, which is contrary to World Health Organization criteria stating that CGB must be performed in patients with advanced stage cancer. CGB may also be effectively performed in patients with chronic pancreatitis for pain palliation

  19. Faciobrachial dystonic seizures result from fronto-temporo-basalganglial network involvement.

    Science.gov (United States)

    Iyer, Rajesh Shankar; Ramakrishnan, T C R; Karunakaran; Shinto, Ajit; Kamaleshwaran, Koramadai Karuppuswamy

    2017-01-01

    •Faciobrachial dystonic seizures (FBDS) are caused by autoantibodies to leucine-rich glioma-inactivated1 proteins, a component of the voltage-gated potassium channel complex (VGKC-complex) and precede the clinical presentation of limbic encephalitis.•The exact pathophysiology of FBDS is not known and whether they are seizures or movement disorder is still debated.•We suggest the fronto-temporo-basal ganglia network involving the medial frontal and temporal regions along with the corpus striatum and substantia nigra being responsible for the clinical phenomenon of FBDS.•The varied clinical, electrical and imaging features of FBDS in our cases and in the literature are best explained by involvement of this network.•Entrainment from any part of this network will result in similar clinical expression of FBDS, whereas other electro-clinical associations and duration depends on the extent of involvement of the network.

  20. Altered Cortico-Striatal Connectivity in Offspring of Schizophrenia Patients Relative to Offspring of Bipolar Patients and Controls.

    Directory of Open Access Journals (Sweden)

    Cristina Solé-Padullés

    Full Text Available Schizophrenia (SZ and bipolar disorder (BD share clinical features, genetic risk factors and neuroimaging abnormalities. There is evidence of disrupted connectivity in resting state networks in patients with SZ and BD and their unaffected relatives. Resting state networks are known to undergo reorganization during youth coinciding with the period of increased incidence for both disorders. We therefore focused on characterizing resting state network connectivity in youth at familial risk for SZ or BD to identify alterations arising during this period. We measured resting-state functional connectivity in a sample of 106 youth, aged 7-19 years, comprising offspring of patients with SZ (N = 27, offspring of patients with BD (N = 39 and offspring of community control parents (N = 40. We used Independent Component Analysis to assess functional connectivity within the default mode, executive control, salience and basal ganglia networks and define their relationship to grey matter volume, clinical and cognitive measures. There was no difference in connectivity within any of the networks examined between offspring of patients with BD and offspring of community controls. In contrast, offspring of patients with SZ showed reduced connectivity within the left basal ganglia network compared to control offspring, and they showed a positive correlation between connectivity in this network and grey matter volume in the left caudate. Our findings suggest that dysconnectivity in the basal ganglia network is a robust correlate of familial risk for SZ and can be detected during childhood and adolescence.

  1. Anatomy of the nerves and ganglia of the aortic plexus in males

    Science.gov (United States)

    Beveridge, Tyler S; Johnson, Marjorie; Power, Adam; Power, Nicholas E; Allman, Brian L

    2015-01-01

    It is well accepted that the aortic plexus is a network of pre- and post-ganglionic nerves overlying the abdominal aorta, which is primarily involved with the sympathetic innervation to the mesenteric, pelvic and urogenital organs. Because a comprehensive anatomical description of the aortic plexus and its connections with adjacent plexuses are lacking, these delicate structures are prone to unintended damage during abdominal surgeries. Through dissection of fresh, frozen human cadavers (n = 7), the present study aimed to provide the first complete mapping of the nerves and ganglia of the aortic plexus in males. Using standard histochemical procedures, ganglia of the aortic plexus were verified through microscopic analysis using haematoxylin & eosin (H&E) and anti-tyrosine hydroxylase stains. All specimens exhibited four distinct sympathetic ganglia within the aortic plexus: the right and left spermatic ganglia, the inferior mesenteric ganglion and one previously unidentified ganglion, which has been named the prehypogastric ganglion by the authors. The spermatic ganglia were consistently supplied by the L1 lumbar splanchnic nerves and the inferior mesenteric ganglion and the newly characterized prehypogastric ganglion were supplied by the left and right L2 lumbar splanchnic nerves, respectively. Additionally, our examination revealed the aortic plexus does have potential for variation, primarily in the possibility of exhibiting accessory splanchnic nerves. Clinically, our results could have significant implications for preserving fertility in men as well as sympathetic function to the hindgut and pelvis during retroperitoneal surgeries. PMID:25382240

  2. An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks

    Science.gov (United States)

    Cabessa, Jérémie; Villa, Alessandro E. P.

    2014-01-01

    We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits. PMID:24727866

  3. Neuropathological characteristics of the brain in two patients with SLC19A3 mutations related to the biotin-thiamine-responsive basal ganglia disease

    Directory of Open Access Journals (Sweden)

    Maciej Pronicki

    2017-06-01

    Full Text Available Biotin-thiamine-responsive basal ganglia disease is a severe form of a rare neurogenetic disorder caused by pathogenic molecular variants in the thiamine transporter gene. Nowadays, a potentially effective treatment is known, therefore the early diagnosis is mandatory. The aim of the paper was to assess the contribution of neuropathological and magnetic resonance imaging (MRI studies to a proper diagnosis. We present the brain study of two Polish patients with SLC19A3 mutations, including (1 an infant with an intriguing “walnut” appearance of the brain autopsied many years before the discovery of the SLC19A3 defect, and (2 a one-year-old patient with clinical features of Leigh syndrome. In patient 2, biotin/thiamine responsiveness was not tested at the time of diagnosis and causal treatment started with one-year delay. The central nervous system lesions found in the patients displayed almost clearly a specific pattern for SLC19A3 defect, as previously proposed in diagnostic criteria. Our study presents a detailed description of neuropathological and MRI findings of both patients. We confirm that the autopsy and/or MRI of the brain is sufficient to qualify a patient with an unknown neuropathological disorder directly for SLC19A3 mutations testing and a prompt trial of specific treatment.

  4. AN EXTENDED REINFORCEMENT LEARNING MODEL OF BASAL GANGLIA TO UNDERSTAND THE CONTRIBUTIONS OF SEROTONIN AND DOPAMINE IN RISK-BASED DECISION MAKING, REWARD PREDICTION, AND PUNISHMENT LEARNING

    Directory of Open Access Journals (Sweden)

    Pragathi Priyadharsini Balasubramani

    2014-04-01

    Full Text Available Although empirical and neural studies show that serotonin (5HT plays many functional roles in the brain, prior computational models mostly focus on its role in behavioral inhibition. In this study, we present a model of risk based decision making in a modified Reinforcement Learning (RL-framework. The model depicts the roles of dopamine (DA and serotonin (5HT in Basal Ganglia (BG. In this model, the DA signal is represented by the temporal difference error (δ, while the 5HT signal is represented by a parameter (α that controls risk prediction error. This formulation that accommodates both 5HT and DA reconciles some of the diverse roles of 5HT particularly in connection with the BG system. We apply the model to different experimental paradigms used to study the role of 5HT: 1 Risk-sensitive decision making, where 5HT controls risk assessment, 2 Temporal reward prediction, where 5HT controls time-scale of reward prediction, and 3 Reward/Punishment sensitivity, in which the punishment prediction error depends on 5HT levels. Thus the proposed integrated RL model reconciles several existing theories of 5HT and DA in the BG.

  5. Basal ganglia dysfunction

    Science.gov (United States)

    ... cells may cause problems controlling speech, movement, and posture. This combination of symptoms is called parkinsonism. A ... if you have any abnormal or involuntary movements, falls without known reason, or if you or others ...

  6. A brain network instantiating approach and avoidance motivation.

    Science.gov (United States)

    Spielberg, Jeffrey M; Miller, Gregory A; Warren, Stacie L; Engels, Anna S; Crocker, Laura D; Banich, Marie T; Sutton, Bradley P; Heller, Wendy

    2012-09-01

    Research indicates that dorsolateral prefrontal cortex (DLPFC) is important for pursuing goals, and areas of DLPFC are differentially involved in approach and avoidance motivation. Given the complexity of the processes involved in goal pursuit, DLPFC is likely part of a network that includes orbitofrontal cortex (OFC), cingulate, amygdala, and basal ganglia. This hypothesis was tested with regard to one component of goal pursuit, the maintenance of goals in the face of distraction. Examination of connectivity with motivation-related areas of DLPFC supported the network hypothesis. Differential patterns of connectivity suggest a distinct role for DLPFC areas, with one involved in selecting approach goals, one in selecting avoidance goals, and one in selecting goal pursuit strategies. Finally, differences in trait motivation moderated connectivity between DLPFC and OFC, suggesting that this connectivity is important for instantiating motivation. Copyright © 2012 Society for Psychophysiological Research.

  7. Reduced concentrations of N-acetylaspartate (NAA) and the NAA-creatine ratio in the basal ganglia in bipolar disorder: a study using 3-Tesla proton magnetic resonance spectroscopy.

    Science.gov (United States)

    Frye, Mark A; Thomas, M Albert; Yue, Kenneth; Binesh, Nader; Davanzo, Pablo; Ventura, Joseph; O'Neill, Joseph; Guze, Barry; Curran, John G; Mintz, Jim

    2007-04-15

    The N-acetylaspartate (NAA) peak is prominent in the proton magnetic resonance spectrum and is thought to reflect neuron loss or dysfunction. This study was conducted to explore NAA biochemistry and its clinical correlates in mania. Subjects comprised 16 manic patients and 17 controls who underwent a structured diagnostic interview and (1)H magnetic resonance spectroscopy (MRS) acquisition. STEAM (1)H MRS (TR/TE/TM=2000/20/8 ms) was acquired at 3 Tesla from 2 x 2 x 2 cm(3) voxels in anterior cingulate (AC), right basal ganglia (BG), and left occipital-parietal white matter (OP). Absolute metabolite concentrations and ratios to creatine were calculated using the LC Model. The mean absolute concentrations of NAA and NAA-creatine ratio in the BG were significantly lower in manic subjects than in controls. There was a significant inverse correlation between NAA in the BG and the number of prior hospitalizations for mania. These data suggest BG pathology in mania and that NAA decrements may mark prior manic episode burden. Limitations of this study include small sample size and lack of tissue segmentation. Further study is encouraged to clarify state vs. trait aspects of NAA in bipolar disorder.

  8. Selected Gray Matter Volumes and Gender but Not Basal Ganglia nor Cerebellum Gyri Discriminate Left Versus Right Cerebral Hemispheres: Multivariate Analyses in human Brains at 3T.

    Science.gov (United States)

    Roldan-Valadez, Ernesto; Suarez-May, Marcela A; Favila, Rafael; Aguilar-Castañeda, Erika; Rios, Camilo

    2015-07-01

    Interest in the lateralization of the human brain is evident through a multidisciplinary number of scientific studies. Understanding volumetric brain asymmetries allows the distinction between normal development stages and behavior, as well as brain diseases. We aimed to evaluate volumetric asymmetries in order to select the best gyri able to classify right- versus left cerebral hemispheres. A cross-sectional study performed in 47 right-handed young-adults healthy volunteers. SPM-based software performed brain segmentation, automatic labeling and volumetric analyses for 54 regions involving the cerebral lobes, basal ganglia and cerebellum from each cerebral hemisphere. Multivariate discriminant analysis (DA) allowed the assembling of a predictive model. DA revealed one discriminant function that significantly differentiated left vs. right cerebral hemispheres: Wilks' λ = 0.008, χ(2) (9) = 238.837, P brain gyri are able to accurately classify left vs. right cerebral hemispheres by using a multivariate approach; the selected regions correspond to key brain areas involved in attention, internal thought, vision and language; our findings favored the concept that lateralization has been evolutionary favored by mental processes increasing cognitive efficiency and brain capacity. © 2015 Wiley Periodicals, Inc.

  9. Malignant Lesions as Mammographically Appearing Intramammary Ganglia

    International Nuclear Information System (INIS)

    Martinez-Miraveta, P.; Pons, M. J.; Pina, L. J.; Zornoza, G.

    2004-01-01

    Intramammary ganglia are frequent mammographic findings of no pathological importance. We present two cases of malignant breast lesions whose mammographic appearance could resemble that of intramammary ganglia. Although the mammographic appearance of a lesion is similar to that of intramammary ganglia, it should be carefully studied, especially if it presents a poorly defined border or is palpable. (Author)

  10. COMPARATIVE ANATOMICAL STUDIES ABOUT CHICKEN SUB-BASAL CONNECTIONS

    Directory of Open Access Journals (Sweden)

    CARMEN BERGHES

    2009-05-01

    Full Text Available The studies aimed to describe the nervous formations from the base of the cranium in the hen and domestic duck. These clarifications are necessary in order to disclose some unknown facts regarding this region in the poultry species used preponderantly in laboratory studies of the aviary flu. The vegetative connections from the base of the skull have been studied on 10 poultry specimens, 5 hens and 5 ducks. The animals have been euthanatized using chloroform and a special dye has been injected through the heart in order to achieve a better differentiation of the nervous formations. Dissection was performed under a magnifying glass using instruments adequate to highly fine dissections. Photos and sketches of the dissected pieces have been taken. Nomina Anatomica (2003 was used to describe the observed formations.The studies showed that the cranial cervical ganglia around which is the sub-basal nervous tissue, is located on the border of the occipital hole, at the basis of the temporal pyramid, much deeper than in mammalians; it is better developed in the duck (3-4 mm than in the hen (1-2 mm; the cranial cervical ganglia has the shape of a globe in gallinaceans and it is long in shape in the ducks. A multitude of connecting branches were observed around the lymph node, linking it to the vague nerve, to the hypoglossal nerve, to the glossopharyngeal nerve and to the transversal paravertebral chain which is specific to poultry; an obvious branch detaches from the cranial pole, which is the sub-basal connective, while the cervical connective detaches from the caudal pole, connecting it to the cervical-thoracic lymph node.

  11. The network of causal interactions for beta oscillations in the pedunculopontine nucleus, primary motor cortex, and subthalamic nucleus of walking parkinsonian rats.

    Science.gov (United States)

    Li, Min; Zhou, Ming; Wen, Peng; Wang, Qiang; Yang, Yong; Xiao, Hu; Xie, Zhengyuan; Li, Xing; Wang, Ning; Wang, Jinyan; Luo, Fei; Chang, Jingyu; Zhang, Wangming

    2016-08-01

    Oscillatory activity has been well-studied in many structures within cortico-basal ganglia circuits, but it is not well understood within the pedunculopontine nucleus (PPN), which was recently introduced as a potential target for the treatment of gait and postural impairments in advanced stages of Parkinson's disease (PD). To investigate oscillatory activity in the PPN and its relationship with oscillatory activity in cortico-basal ganglia circuits, we simultaneously recorded local field potentials in the PPN, primary motor cortex (M1), and subthalamic nucleus (STN) of 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats during resting and walking. After analysis of power spectral density, coherence, and partial Granger causality, three major findings emerged: 1) after 6-OHDA lesions, beta band oscillations were enhanced in all three regions during walking; 2) the direction of information flow for beta oscillations among the three structures was STN→M1, STN→PPN, and PPN→M1; 3) after the treatment of levodopa, beta activity in the three regions was reduced significantly and the flow of beta band was also abrogated. Our results suggest that beta activity in the PPN is transmitted from the basal ganglia and probably comes from the STN, and the STN plays a dominant role in the network of causal interactions for beta activity. Thus, the STN may be a potential source of aberrant beta band oscillations in PD. Levodopa can inhibit beta activity in the PPN of parkinsonian rats but cannot relieve parkinsonian patients' axial symptoms clinically. Therefore, beta oscillations may not be the major cause of axial symptoms. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Living with idiopathic basal ganglia calcification 3: a qualitative study describing the lives and illness of people diagnosed with a rare neurological disease.

    Science.gov (United States)

    Takeuchi, Tomiko; Muraoka, Koko; Yamada, Megumi; Nishio, Yuri; Hozumi, Isao

    2016-01-01

    Idiopathic basal ganglia calcification (IBGC) is a rare, intractable disease with unknown etiology. IBGC3 is a familial genetic disease defined by genetic mutations in the major causative gene ( SLC20A2 ). People with IBGC3 experience distress from the uncommon nature of their illness and uncertainty about treatment and prognoses. The present study aimed to describe the lives and illness of people with IBGC3. Participants were recruited from patients aged 20 years or older enrolled in a genetic study, who were diagnosed with IBGC3 and wanted to share their experiences. In-depth semi-structured interviews were conducted with six participants. Interviews were conducted between December 2012 and February 2014, and were recorded and transcribed verbatim. Qualitative data analysis was performed to identify categories and subcategories. Efforts were made to ensure the credibility, transferability, dependability, conformability, and validity of the data. Six thematic categories, 17 subcategories, and 143 codes emerged. The six categories were: (1) Frustration and anxiety with progression of symptoms without a diagnosis; (2) Confusion about diagnosis with an unfamiliar disease; (3) Emotional distress caused by a genetic disease; (4) Passive attitude toward life, being extra careful; (5) Taking charge of life, becoming active and engaged; and (6) Requests for healthcare. The qualitative data analysis indicated a need for genetic counseling, access to disease information, establishment of peer and family support systems, mental health services, and improvement in early intervention and treatment for the disease.

  13. Anatomic variation of cranial parasympathetic ganglia

    Directory of Open Access Journals (Sweden)

    Selma Siéssere

    2008-06-01

    Full Text Available Having broad knowledge of anatomy is essential for practicing dentistry. Certain anatomical structures call for detailed studies due to their anatomical and functional importance. Nevertheless, some structures are difficult to visualize and identify due to their small volume and complicated access. Such is the case of the parasympathetic ganglia located in the cranial part of the autonomic nervous system, which include: the ciliary ganglion (located deeply in the orbit, laterally to the optic nerve, the pterygopalatine ganglion (located in the pterygopalatine fossa, the submandibular ganglion (located laterally to the hyoglossus muscle, below the lingual nerve, and the otic ganglion (located medially to the mandibular nerve, right beneath the oval foramen. The aim of this study was to present these structures in dissected anatomic specimens and perform a comparative analysis regarding location and morphology. The proximity of the ganglia and associated nerves were also analyzed, as well as the number and volume of fibers connected to them. Human heads were dissected by planes, partially removing the adjacent structures to the point we could reach the parasympathetic ganglia. With this study, we concluded that there was no significant variation regarding the location of the studied ganglia. Morphologically, our observations concur with previous classical descriptions of the parasympathetic ganglia, but we observed variations regarding the proximity of the otic ganglion to the mandibular nerve. We also observed that there were variations regarding the number and volume of fiber bundles connected to the submandibular, otic, and pterygopalatine ganglia.

  14. Anatomic study of celiac ganglia using CT in cadavers

    International Nuclear Information System (INIS)

    Zhao Qionghui; Zhang Xiaoming; Zeng Nanlin; Cai Changping; Xie Xingguo; Li Chengjun

    2005-01-01

    Objective: To identify the celiac ganglia in cadavers by using current CT techniques, and to facilitate its identification in vivo by CT. Methods: Fifty cadavers were dissected, moving peritoneal organs such as liver and stomach to expose the celiac ganglia. The location, morphology, and dimensions of celiac ganglia, and their relationship to abutting structures, were noted. The celiac ganglia in 6 of the 50 cadavers without peripancreatic diseases and with clear anatomy were isolated and marked with yellow dye and Iohexol injection. In these 6 cadavers, the moved organs were relocated, the abdomen was closed, and CT was performed. CT derived measurements of celiac ganglia were compared with those from cadavers study. Results: The celiac ganglia of 47 of 50 cadavers (94%) were located between T12-L1, and those of 3 cadavers (6%) were located between T11-12. The superior-inferior diameter of the right ganglia was (25.01 ±6.09) mm, long (left-right) diameter was (13.18 ± 3.62) mm, and short (thickness) diameter was (1.40 ± 0.55) mm. In the left ganglia, these three diameters were (22.74 ± 5.70) mm, (15.07 ± 4.35) mm, and (2.00 ± 0.71 ) mm, respectively. On the CT images of 6 cadavers, the right and left ganglia were all identified and were hyperdense relative to viscus, such as liver and spleen. The long and short diameters on CT images were (15.20 ± 1.64) mm and (1.53 ± 0.52) mm for the right ganglia and (16.25 ± 1.73 ) mm and (2.20 ± 0.73) mm for the left ganglia. There was no significant difference between the diameters of the ganglia measured on CT images and by dissection (P>0.05). Conclusion: Current CT techniques can demonstrate accurately the celiac ganglia in cadavers. This can be a reference for identifying the celiac plexus in vivo. (authors)

  15. Quantification of motor network dynamics in Parkinson's disease by means of landscape and flux theory.

    Directory of Open Access Journals (Sweden)

    Han Yan

    Full Text Available The basal ganglia neural circuit plays an important role in motor control. Despite the significant efforts, the understanding of the principles and underlying mechanisms of this modulatory circuit and the emergence of abnormal synchronized oscillations in movement disorders is still challenging. Dopamine loss has been proved to be responsible for Parkinson's disease. We quantitatively described the dynamics of the basal ganglia-thalamo-cortical circuit in Parkinson's disease in terms of the emergence of both abnormal firing rates and firing patterns in the circuit. We developed a potential landscape and flux framework for exploring the modulatory circuit. The driving force of the circuit can be decomposed into a gradient of the potential, which is associated with the steady-state probability distributions, and the curl probability flux term. We uncovered the underlying potential landscape as a Mexican hat-shape closed ring valley where abnormal oscillations emerge due to dopamine depletion. We quantified the global stability of the network through the topography of the landscape in terms of the barrier height, which is defined as the potential difference between the maximum potential inside the ring and the minimum potential along the ring. Both a higher barrier and a larger flux originated from detailed balance breaking result in more stable oscillations. Meanwhile, more energy is consumed to support the increasing flux. Global sensitivity analysis on the landscape topography and flux indicates how changes in underlying neural network regulatory wirings and external inputs influence the dynamics of the system. We validated two of the main hypotheses(direct inhibition hypothesis and output activation hypothesis on the therapeutic mechanism of deep brain stimulation (DBS. We found GPe appears to be another effective stimulated target for DBS besides GPi and STN. Our approach provides a general way to quantitatively explore neural networks and may

  16. Brain correlates of constituent structure in sign language comprehension.

    Science.gov (United States)

    Moreno, Antonio; Limousin, Fanny; Dehaene, Stanislas; Pallier, Christophe

    2018-02-15

    During sentence processing, areas of the left superior temporal sulcus, inferior frontal gyrus and left basal ganglia exhibit a systematic increase in brain activity as a function of constituent size, suggesting their involvement in the computation of syntactic and semantic structures. Here, we asked whether these areas play a universal role in language and therefore contribute to the processing of non-spoken sign language. Congenitally deaf adults who acquired French sign language as a first language and written French as a second language were scanned while watching sequences of signs in which the size of syntactic constituents was manipulated. An effect of constituent size was found in the basal ganglia, including the head of the caudate and the putamen. A smaller effect was also detected in temporal and frontal regions previously shown to be sensitive to constituent size in written language in hearing French subjects (Pallier et al., 2011). When the deaf participants read sentences versus word lists, the same network of language areas was observed. While reading and sign language processing yielded identical effects of linguistic structure in the basal ganglia, the effect of structure was stronger in all cortical language areas for written language relative to sign language. Furthermore, cortical activity was partially modulated by age of acquisition and reading proficiency. Our results stress the important role of the basal ganglia, within the language network, in the representation of the constituent structure of language, regardless of the input modality. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Larger Gray Matter Volume in the Basal Ganglia of Heavy Cannabis Users Detected by Voxel-Based Morphometry and Subcortical Volumetric Analysis.

    Science.gov (United States)

    Moreno-Alcázar, Ana; Gonzalvo, Begoña; Canales-Rodríguez, Erick J; Blanco, Laura; Bachiller, Diana; Romaguera, Anna; Monté-Rubio, Gemma C; Roncero, Carlos; McKenna, Peter J; Pomarol-Clotet, Edith

    2018-01-01

    Background: Structural imaging studies of cannabis users have found evidence of both cortical and subcortical volume reductions, especially in cannabinoid receptor-rich regions such as the hippocampus and amygdala. However, the findings have not been consistent. In the present study, we examined a sample of adult heavy cannabis users without other substance abuse to determine whether long-term use is associated with brain structural changes, especially in the subcortical regions. Method: We compared the gray matter volume of 14 long-term, heavy cannabis users with non-using controls. To provide robust findings, we conducted two separate studies using two different MRI techniques. Each study used the same sample of cannabis users and a different control group, respectively. Both control groups were independent of each other. First, whole-brain voxel-based morphometry (VBM) was used to compare the cannabis users against 28 matched controls (HC1 group). Second, a volumetric analysis of subcortical regions was performed to assess differences between the cannabis users and a sample of 100 matched controls (HC2 group) obtained from a local database of healthy volunteers. Results: The VBM study revealed that, compared to the control group HC1, the cannabis users did not show cortical differences nor smaller volume in any subcortical structure but showed a cluster ( p users showed significantly larger volumes in the putamen ( p = 0.001) and pallidum ( p = 0.0015). Subtle trends, only significant at the uncorrected level, were also found in the caudate ( p = 0.05) and nucleus accumbens ( p = 0.047). Conclusions: This study does not support previous findings of hippocampal and/or amygdala structural changes in long-term, heavy cannabis users. It does, however, provide evidence of basal ganglia volume increases.

  18. Resting-state functional connectivity differences in premature children

    Directory of Open Access Journals (Sweden)

    Eswar Damaraju

    2010-06-01

    Full Text Available We examine the coherence in the spontaneous brain activity of sleeping children as measured by the blood oxygenation level dependent (BOLD functional magnetic resonance imaging (fMRI signals. The results are described in terms of resting-state networks (RSN and their properties. More specifically, in this study we examine the effect of severe prematurity on the spatial location of the visual, temporal, motor, basal ganglia, and the default mode networks, the temporal response properties of each of these networks, and the functional connectivity between them. Our results suggest that the anatomical locations of the RSNs are well developed by 18 months of age and their spatial locations are not distinguishable between premature and term born infants at 18 months or at 36 months, with the exception of small spatial differences noted in the basal ganglia area and the visual cortex. The two major differences between term and preterm children were present at 36 but not 18 months and include: 1 increased spectral energy in the low frequency range (0.01 – 0.06 Hz for pre-term children in the basal ganglia component, and 2 stronger connectivity between RSNs in term children. We speculate that children born very prematurely are vulnerable to injury resulting in weaker connectivity between resting state networks by 36 months of age. Further work is required to determine whether this could be a clinically useful tool to identify children at risk of developmental delay related to premature birth.

  19. Endogenous neurotrophin-3 promotes neuronal sprouting from dorsal root ganglia.

    Science.gov (United States)

    Wang, Xu-Yang; Gu, Pei-Yuan; Chen, Shi-Wen; Gao, Wen-Wei; Tian, Heng-Li; Lu, Xiang-He; Zheng, Wei-Ming; Zhuge, Qi-Chuan; Hu, Wei-Xing

    2015-11-01

    In the present study, we investigated the role of endogenous neurotrophin-3 in nerve terminal sprouting 2 months after spinal cord dorsal root rhizotomy. The left L1-5 and L7-S2 dorsal root ganglia in adult cats were exposed and removed, preserving the L6 dorsal root ganglia. Neurotrophin-3 was mainly expressed in large neurons in the dorsal root ganglia and in some neurons in spinal lamina II. Two months after rhizotomy, the number of neurotrophin-3-positive neurons in the spared dorsal root ganglia and the density of neurite sprouts emerging from these ganglia were increased. Intraperitoneal injection of an antibody against neurotrophin-3 decreased the density of neurite sprouts. These findings suggest that endogenous neurotrophin-3 is involved in spinal cord plasticity and regeneration, and that it promotes axonal sprouting from the dorsal root ganglia after spinal cord dorsal root rhizotomy.

  20. Calcificación simétrica y bilateral de ganglios basales. Serie de casos y revisión de la literatura.

    Science.gov (United States)

    Jiménez-Ruiz, Amado; Cárdenas-Sáenz, Omar; Ruiz-Sandoval, José Luis

    2018-01-01

    La calcificación bilateral y simétrica de los ganglios basales es un hallazgo infrecuente que a veces no ocasiona síntomas. Su prevalencia aumenta con la edad y el sitio más afectado es el globo pálido. Se describe una serie de siete casos con diagnóstico clínico y por imagen de calcificación de ganglios basales, atendidos entre 2012 y 2016 en el Servicio de Medicina Interna del Hospital Civil de Guadalajara Fray Antonio Alcalde. Las manifestaciones clínicas más comunes fueron alteración del estado de alerta, cefalea y crisis convulsivas. Se identificó un caso con trastornos del movimiento; no hubo casos con demencia o tetania. La calcificación de los ganglios puede estar relacionada con cambios neurodegenerativos por la edad, pero puede ser la manifestación inicial de una variedad de patologías sistémicas, incluyendo trastornos del metabolismo del calcio, intoxicación por diversos agentes, enfermedades autoinmunes y genéticas. Se debe hacer la correlación de los hallazgos de imagen típicos con manifestaciones clínicas y resultados de laboratorio para llegar a un dictamen definitivo. Symmetric, bilateral basal ganglia calcification is rare finding that sometimes occurs asymptomatically. Its prevalence increases with age, and the most affected site is the globus pallidus. A series of seven cases with clinical and imaging diagnosis of basal ganglia calcification, recorded during the 2012 to 2016 period at the Department of Internal Medicine of the Hospital Civil de Guadalajara "Fray Antonio Alcalde, is presented. Most common clinical presentation was with altered alertness, headache and seizures. There was one case with movement disorders; there were no cases identified with dementia or tetany. Ganglia calcification can be associated with age-related neurodegenerative changes, but it can be an initial manifestation of a variety of systemic pathologies, including disorders of the calcium metabolism, intoxication by different agents, and autoimmune

  1. Brain MR imaging in patients with hepatic cirrhosis: relationship between high intensity signal in basal ganglia on T1-weighted images and elemental concentrations in brain

    International Nuclear Information System (INIS)

    Maeda, H.; Sato, M.; Yoshikawa, A.; Kimura, M.; Sonomura, T.; Terada, M.; Kishi, K.

    1997-01-01

    In patients with hepatic cirrhosis, the globus pallidus and putamen show high intensity on T1-weighted MRI. While the causes of this high signal have been thought to include paramagnetic substances, especially manganese, no evidence for this has been presented. Autopsy in four cases of hepatic cirrhosis permitted measurement of metal concentrations in brain and histopathological examination. In three cases the globus pallidus showed high intensity on T1-weighted images. Mean manganese concentrations in globus pallidus, putamen and frontal white matter were 3.03 ± 0.38, 2.12 ± 0.37, and 1.38 ± 0.24 (μg/g wet weight), respectively, being approximately four- to almost ten-fold the normal values. Copper concentrations in globus pallidus and putamen were also high, 50 % more than normal. Calcium, iron, zinc and magnesium concentrations were all normal. The fourth case showed no abnormal intensity in the basal ganglia and brain metal concentrations were all normal. Histopathologically, cases with showing high signal remarkable atrophy, necrosis, and deciduation of nerve cells and proliferation of glial cells and microglia in globus pallidus. These findings were similar to those in chronic manganese poisoning. On T1-weighted images, copper deposition shows no abnormal intensity. It is therefore inferred that deposition of highly concentrations of manganese may caused high signal on T1-weighted images and nerve cell death in the globus pallidus. (orig.). With 2 figs., 2 tabs

  2. The Anatomical Basis for Dystonia: The Motor Network Model

    Directory of Open Access Journals (Sweden)

    H.A. Jinnah

    2017-10-01

    Full Text Available Background: The dystonias include a clinically and etiologically very diverse group of disorders. There are both degenerative and non-degenerative subtypes resulting from genetic or acquired causes. Traditionally, all dystonias have been viewed as disorders of the basal ganglia. However, there has been increasing appreciation for involvement of other brain regions including the cerebellum, thalamus, midbrain, and cortex. Much of the early evidence for these other brain regions has come from studies of animals, but multiple recent studies have been done with humans, in an effort to confirm or refute involvement of these other regions. The purpose of this article is to review the new evidence from animals and humans regarding the motor network model, and to address the issues important to translational neuroscience.Methods: The English literature was reviewed for articles relating to the neuroanatomical basis for various types of dystonia in both animals and humans.Results: There is evidence from both animals and humans that multiple brain regions play an important role in various types of dystonia. The most direct evidence for specific brain regions comes from animal studies using pharmacological, lesion, or genetic methods. In these studies, experimental manipulations of specific brain regions provide direct evidence for involvement of the basal ganglia, cerebellum, thalamus and other regions. Additional evidence also comes from human studies using neuropathological, neuroimaging, non-invasive brain stimulation, and surgical interventions. In these studies, the evidence is less conclusive, because discriminating the regions that cause dystonia from those that reflect secondary responses to abnormal movements is more challenging.Discussion: Overall, the evidence from both animals and humans suggests that different regions may play important roles in different subtypes of dystonia. The evidence so far provides strong support for the motor

  3. Thalamocortical integration of instrumental learning and performance and their disintegration in addiction.

    Science.gov (United States)

    Balleine, Bernard W; Morris, Richard W; Leung, Beatrice K

    2015-12-02

    A recent focus of addiction research has been on the effect of drug exposure on the neural processes that mediate the acquisition and performance of goal-directed instrumental actions. Deficits in goal-directed control and a consequent dysregulation of habit learning processes have been described as resulting in compulsive drug seeking. Similarly, considerable research has focussed on the motivational and emotional changes that drugs produce and that result in changes in the incentive processes that modulate goal-directed performance. Although these areas have developed independently, we argue that the effects they described are likely not independent. Here we hypothesize that these changes result from a core deficit in the way the learning and performance factors that support goal-directed action are integrated at a neural level to maintain behavioural control. A dorsal basal ganglia stream mediating goal-directed learning and a ventral stream mediating various performance factors find several points of integration in the cortical basal ganglia system, most notably in the thalamocortical network linking basal ganglia output to a variety of cortical control centres. Recent research in humans and other animals is reviewed suggesting that learning and performance factors are integrated in a network centred on the mediodorsal thalamus and that disintegration in this network may provide the basis for a 'switch' from recreational to dysregulated drug seeking resulting in the well documented changes associated with addiction. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The Multiple Correspondence Analysis Method and Brain Functional Connectivity: Its Application to the Study of the Non-linear Relationships of Motor Cortex and Basal Ganglia.

    Science.gov (United States)

    Rodriguez-Sabate, Clara; Morales, Ingrid; Sanchez, Alberto; Rodriguez, Manuel

    2017-01-01

    The complexity of basal ganglia (BG) interactions is often condensed into simple models mainly based on animal data and that present BG in closed-loop cortico-subcortical circuits of excitatory/inhibitory pathways which analyze the incoming cortical data and return the processed information to the cortex. This study was aimed at identifying functional relationships in the BG motor-loop of 24 healthy-subjects who provided written, informed consent and whose BOLD-activity was recorded by MRI methods. The analysis of the functional interaction between these centers by correlation techniques and multiple linear regression showed non-linear relationships which cannot be suitably addressed with these methods. The multiple correspondence analysis (MCA), an unsupervised multivariable procedure which can identify non-linear interactions, was used to study the functional connectivity of BG when subjects were at rest. Linear methods showed different functional interactions expected according to current BG models. MCA showed additional functional interactions which were not evident when using lineal methods. Seven functional configurations of BG were identified with MCA, two involving the primary motor and somatosensory cortex, one involving the deepest BG (external-internal globus pallidum, subthalamic nucleus and substantia nigral), one with the input-output BG centers (putamen and motor thalamus), two linking the input-output centers with other BG (external pallidum and subthalamic nucleus), and one linking the external pallidum and the substantia nigral. The results provide evidence that the non-linear MCA and linear methods are complementary and should be best used in conjunction to more fully understand the nature of functional connectivity of brain centers.

  5. Cerebral blood flow SPECT scanning in cortico-basal degeneration

    International Nuclear Information System (INIS)

    Slawek, J.; Walczak, A.; Krupa-Olchawa, J.; Lass, P.; Dubaniewicz, M.

    1999-01-01

    Idiopathic Parkinson's disease accounts for ca. 75% of all cases of Parkinsonism. Corticobasal degeneration is a relatively rare example of the so-called ''Parkinson-plus'' syndrome. The authors present the case of a 56-year-old woman with rigidity and atypical tremor of upper extremity followed by gait apraxia, dysarthria, bilateral pyramidal signs and myoclonus. There was no improvement after treatment with L-dopa. The disease has progressed, but the patient is still alive. On the basis of clinical data a diagnosis of corticobasal degeneration has been established. Cerebral blood flow SPECT scanning revealed diffuse hypoperfusion of left frontal lobe, antero-inferior part of the left temporal lobe and left basal ganglia. The case illustrates the usefulness of brain SPECT in atypical forma of Parkinson's disease. (author)

  6. Cerebral blood flow and metabolism in patients with aphasia due to basal ganglionic lesion

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Shin; Kato, Toshiaki; Ujike, Takashi; Kuroki, Soemu; Terashi, Akiro

    1987-03-01

    Cerebral blood flow and metabolism in right handed eight patients with subcortical lesion and aphasia were measured to investigate the correlation between aphasia and functional changes in cerebral blood flow (CBF) and cerebral oxygen consumption (CMRO/sub 2/) in the cortex and the basal ganglionic region. All patients had no lesion in the cortex, but in the basal ganglionic region (putamen, caudate nucleus, internal capsule, and periventricular white matter) on CT images. Patients with bilateral lesion were excluded in this study. Six patients with cerebral infarction in the left basal ganglionic region and two patients with the left putammal hemorrhage were examined. Five patients had non fluent Broca's type speech, two patients had poor comprehension, fluent Wernicke-type speech and one patient was globally aphasic. CBF, CMRO/sub 2/, and oxygen extraction fraction were measured by the positron emission tomography using /sup 15/O/sub 2/, C/sup 15/O/sub 2/ inhalation technique. In addition to reduction of CBF and CMRO/sub 2/ in the basal ganglionic region, CBF and CMRO/sub 2/ decreased in the left frontal cortex especially posterior part in four patients with Broca's aphasia. In two patients with Wernicke type aphasia, CBF and CMRO/sub 2/ decreased in the basal ganglionic region and the left temporal cortex. In a globally aphasic patient, marked reduction of CBF and CMRO/sub 2/ was observed in the left frontal and temporal cortex, in addition to the basal ganglionic region. These results suggest that dysfunction of cortex as well as that of basal ganglionic region might be related to the occurence of aphasia. However, in one patient with Broca's ahasia, CBF and CMRO/sub 2/ were preserved in the cortex and metabolic reduction was observed in only basal ganglia. This case indicates the relation between basal ganglionic lesion and the occurrence of aphasia.

  7. The role of frontostriatal impairment in freezing of gait in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    James eShine

    2013-10-01

    Full Text Available Freezing of gait (FOG is a disabling symptom of advanced Parkinson’s disease (PD that leads to an increased risk of falls and nursing home placement. Interestingly, multiple lines of evidence suggest that the manifestation of FOG is related to specific deficits in cognition, such as set shifting and the ability to process conflict-related signals. These findings are consistent with the specific patterns of abnormal cortical processing seen during functional neuroimaging experiments of FOG, implicating increased neural activation within cortical structures underlying cognition, such as the Cognitive Control Network. In addition, these studies show that freezing episodes are associated with abnormalities in the BOLD response within key structures of the basal ganglia, such as the striatum and the subthalamic nucleus. In this article, we discuss the implications of these findings on current models of freezing behaviour and propose an updated model of basal ganglia impairment during FOG episodes that integrates the neural substrates of freezing from the cortex and the basal ganglia to the cognitive dysfunctions inherent in the condition.

  8. Local dynamics of gap-junction-coupled interneuron networks

    International Nuclear Information System (INIS)

    Lau, Troy; Zochowski, Michal; Gage, Gregory J; Berke, Joshua D

    2010-01-01

    Interneurons coupled by both electrical gap-junctions (GJs) and chemical GABAergic synapses are major components of forebrain networks. However, their contributions to the generation of specific activity patterns, and their overall contributions to network function, remain poorly understood. Here we demonstrate, using computational methods, that the topological properties of interneuron networks can elicit a wide range of activity dynamics, and either prevent or permit local pattern formation. We systematically varied the topology of GJ and inhibitory chemical synapses within simulated networks, by changing connection types from local to random, and changing the total number of connections. As previously observed we found that randomly coupled GJs lead to globally synchronous activity. In contrast, we found that local GJ connectivity may govern the formation of highly spatially heterogeneous activity states. These states are inherently temporally unstable when the input is uniformly random, but can rapidly stabilize when the network detects correlations or asymmetries in the inputs. We show a correspondence between this feature of network activity and experimental observations of transient stabilization of striatal fast-spiking interneurons (FSIs), in electrophysiological recordings from rats performing a simple decision-making task. We suggest that local GJ coupling enables an active search-and-select function of striatal FSIs, which contributes to the overall role of cortical-basal ganglia circuits in decision-making

  9. Supervisory and Routine Processes in Noun and Verb Generation in Nondemented Patients with Parkinson's Disease

    Science.gov (United States)

    Crescentini, Cristiano; Mondolo, Federica; Biasutti, Emanuele; Shallice, Tim

    2008-01-01

    Despite the increased comprehension of the role of the basal ganglia in cognitive functions such as learning, attention, and executive functions, the exact implication of these structures in language remains unclear. A specific role of basal ganglia in language has been proposed. Nonetheless, a recent hypothesis gives the basal ganglia a…

  10. The Time Course of Task-Specific Memory Consolidation Effects in Resting State Networks

    Science.gov (United States)

    Sami, Saber; Robertson, Edwin M.

    2014-01-01

    Previous studies have reported functionally localized changes in resting-state brain activity following a short period of motor learning, but their relationship with memory consolidation and their dependence on the form of learning is unclear. We investigate these questions with implicit or explicit variants of the serial reaction time task (SRTT). fMRI resting-state functional connectivity was measured in human subjects before the tasks, and 0.1, 0.5, and 6 h after learning. There was significant improvement in procedural skill in both groups, with the group learning under explicit conditions showing stronger initial acquisition, and greater improvement at the 6 h retest. Immediately following acquisition, this group showed enhanced functional connectivity in networks including frontal and cerebellar areas and in the visual cortex. Thirty minutes later, enhanced connectivity was observed between cerebellar nuclei, thalamus, and basal ganglia, whereas at 6 h there was enhanced connectivity in a sensory-motor cortical network. In contrast, immediately after acquisition under implicit conditions, there was increased connectivity in a network including precentral and sensory-motor areas, whereas after 30 min a similar cerebello-thalamo-basal ganglionic network was seen as in explicit learning. Finally, 6 h after implicit learning, we found increased connectivity in medial temporal cortex, but reduction in precentral and sensory-motor areas. Our findings are consistent with predictions that two variants of the SRTT task engage dissociable functional networks, although there are also networks in common. We also show a converging and diverging pattern of flux between prefrontal, sensory-motor, and parietal areas, and subcortical circuits across a 6 h consolidation period. PMID:24623776

  11. Functional MRI study of response inhibition in myoclonus dystonia

    NARCIS (Netherlands)

    van der Salm, S.M.A.; van der Meer, J.N.; Nederveen, A.J.; Veltman, D.J.; van Rootselaar, A.F.; Tijssen, M.A.J.

    2013-01-01

    Background: Myoclonus-dystonia (MD) is a movement disorder characterized by myoclonic jerks, dystonic postures and psychiatric co-morbidity. A mutation in the DYT11 gene underlies half of MD cases. We hypothesize that MD results from a dysfunctional basal ganglia network causing insufficient

  12. Functional MRI study of response inhibition in myoclonus dystonia

    NARCIS (Netherlands)

    van der Salm, Sandra M. A.; van der Meer, Johan N.; Nederveen, Aart J.; Veltman, Dick J.; van Rootselaar, Anne-Fleur; Tijssen, Marina A. J.

    Background: Myoclonus-dystonia (MD) is a movement disorder characterized by myoclonic jerks, dystonic postures and psychiatric co-morbidity. A mutation in the DYT11 gene underlies half of MD cases. We hypothesize that MD results from a dysfunctional basal ganglia network causing insufficient

  13. Implications of basal micro-earthquakes and tremor for ice stream mechanics: Stick-slip basal sliding and till erosion

    Science.gov (United States)

    Barcheck, C. Grace; Tulaczyk, Slawek; Schwartz, Susan Y.; Walter, Jacob I.; Winberry, J. Paul

    2018-03-01

    The Whillans Ice Plain (WIP) is unique among Antarctic ice streams because it moves by stick-slip. The conditions allowing stick-slip and its importance in controlling ice dynamics remain uncertain. Local basal seismicity previously observed during unstable slip is a clue to the mechanism of ice stream stick-slip and a window into current basal conditions, but the spatial extent and importance of this basal seismicity are unknown. We analyze data from a 2010-2011 ice-plain-wide seismic and GPS network to show that basal micro-seismicity correlates with large-scale patterns in ice stream slip behavior: Basal seismicity is common where the ice moves the least between unstable slip events, with small discrete basal micro-earthquakes happening within 10s of km of the central stick-slip nucleation area and emergent basal tremor occurring downstream of this area. Basal seismicity is largely absent in surrounding areas, where inter-slip creep rates are high. The large seismically active area suggests that a frictional sliding law that can accommodate stick-slip may be appropriate for ice stream beds on regional scales. Variability in seismic behavior over inter-station distances of 1-10 km indicates heterogeneity in local bed conditions and frictional complexity. WIP unstable slips may nucleate when stick-slip basal earthquake patches fail over a large area. We present a conceptual model in which basal seismicity results from slip-weakening frictional failure of over-consolidated till as it is eroded and mobilized into deforming till.

  14. Differences in Signal Intensity and Enhancement on MR Images of the Perivascular Spaces in the Basal Ganglia versus Those in White Matter.

    Science.gov (United States)

    Naganawa, Shinji; Nakane, Toshiki; Kawai, Hisashi; Taoka, Toshiaki

    2018-01-18

    To elucidate differences between the perivascular space (PVS) in the basal ganglia (BG) versus that found in white matter (WM) using heavily T 2 -weighted FLAIR (hT 2 -FL) in terms of 1) signal intensity on non-contrast enhanced images, and 2) the degree of contrast enhancement by intravenous single dose administration of gadolinium based contrast agent (IV-SD-GBCA). Eight healthy men and 13 patients with suspected endolymphatic hydrops were included. No subjects had renal insufficiency. All subjects received IV-SD-GBCA. MR cisternography (MRC) and hT 2 -FL images were obtained prior to and 4 h after IV-SD-GBCA. The signal intensity of the PVS in the BG, subinsular WM, and the cerebrospinal fluid (CSF) in Ambient cistern (CSF AC ) and CSF in Sylvian fissure (CSF Syl ) was measured as well as that of the thalamus. The signal intensity ratio (SIR) was calculated by dividing the intensity by that of the thalamus. We used 5% as a threshold to determine the significance of the statistical test. In the pre-contrast scan, the SIR of the PVS in WM (Mean ± standard deviation, 1.83 ± 0.46) was significantly higher than that of the PVS in the BG (1.05 ± 0.154), CSF Syl (1.03 ± 0.15) and the CSF AC (0.97 ± 0.29). There was no significant difference between the SIR of the PVS in the BG compared to the CSF AC and CSF Syl . For the evaluation of the contrast enhancement effect, significant enhancement was observed in the PVS in the BG, the CSF AC and the CSF Syl compared to the pre-contrast scan. No significant contrast enhancement was observed in the PVS in WM. The signal intensity difference between the PVS in the BG versus WM on pre-contrast images suggests that the fluid composition might be different between these PVSs. The difference in the contrast enhancement between the PVSs in the BG versus WM suggests a difference in drainage function.

  15. A comprehensive assessment of resting state networks: bidirectional modification of functional integrity in cerebro-cerebellar networks in dementia.

    Science.gov (United States)

    Castellazzi, Gloria; Palesi, Fulvia; Casali, Stefano; Vitali, Paolo; Sinforiani, Elena; Wheeler-Kingshott, Claudia A M; D'Angelo, Egidio

    2014-01-01

    In resting state fMRI (rs-fMRI), only functional connectivity (FC) reductions in the default mode network (DMN) are normally reported as a biomarker for Alzheimer's disease (AD). In this investigation we have developed a comprehensive strategy to characterize the FC changes occurring in multiple networks and applied it in a pilot study of subjects with AD and Mild Cognitive Impairment (MCI), compared to healthy controls (HC). Resting state networks (RSNs) were studied in 14 AD (70 ± 6 years), 12 MCI (74 ± 6 years), and 16 HC (69 ± 5 years). RSN alterations were present in almost all the 15 recognized RSNs; overall, 474 voxels presented a reduced FC in MCI and 1244 in AD while 1627 voxels showed an increased FC in MCI and 1711 in AD. The RSNs were then ranked according to the magnitude and extension of FC changes (gFC), putting in evidence 6 RSNs with prominent changes: DMN, frontal cortical network (FCN), lateral visual network (LVN), basal ganglia network (BGN), cerebellar network (CBLN), and the anterior insula network (AIN). Nodes, or hubs, showing alterations common to more than one RSN were mostly localized within the prefrontal cortex and the mesial-temporal cortex. The cerebellum showed a unique behavior where voxels of decreased gFC were only found in AD while a significant gFC increase was only found in MCI. The gFC alterations showed strong correlations (p neural reserve through plasticity, which evolve in a state of lack of connectivity between different networks with the worsening of the pathology.

  16. Functional organization of intrinsic connectivity networks in Chinese-chess experts.

    Science.gov (United States)

    Duan, Xujun; Long, Zhiliang; Chen, Huafu; Liang, Dongmei; Qiu, Lihua; Huang, Xiaoqi; Liu, Timon Cheng-Yi; Gong, Qiyong

    2014-04-16

    The functional architecture of the human brain has been extensively described in terms of functional connectivity networks, detected from the low-frequency coherent neuronal fluctuations during a resting state condition. Accumulating evidence suggests that the overall organization of functional connectivity networks is associated with individual differences in cognitive performance and prior experience. Such an association raises the question of how cognitive expertise exerts an influence on the topological properties of large-scale functional networks. To address this question, we examined the overall organization of brain functional networks in 20 grandmaster and master level Chinese-chess players (GM/M) and twenty novice players, by means of resting-state functional connectivity and graph theoretical analyses. We found that, relative to novices, functional connectivity was increased in GM/Ms between basal ganglia, thalamus, hippocampus, and several parietal and temporal areas, suggesting the influence of cognitive expertise on intrinsic connectivity networks associated with learning and memory. Furthermore, we observed economical small-world topology in the whole-brain functional connectivity networks in both groups, but GM/Ms exhibited significantly increased values of normalized clustering coefficient which resulted in increased small-world topology. These findings suggest an association between the functional organization of brain networks and individual differences in cognitive expertise, which might provide further evidence of the mechanisms underlying expert behavior. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Behavioral and multimodal neuroimaging evidence for a deficit in brain timing networks in stuttering: A hypothesis and theory

    Directory of Open Access Journals (Sweden)

    Andrew C Etchell

    2014-06-01

    Full Text Available The fluent production of speech requires accurately timed movements. In this article, we propose that a deficit in brain timing networks is the core neurophysiological deficit in stuttering. We first discuss the experimental evidence supporting the involvement of the basal ganglia and supplementary motor area in stuttering and the involvement of the cerebellum as a mechanism for compensating for the neural deficits that underlie stuttering. Next, we outline the involvement of the right inferior frontal gyrus as another putative compensatory locus in stuttering and suggest a role for this structure in an expanded core timing-network. Subsequently, we review behavioral studies of timing in people who stutter and examine their behavioral performance as compared to people who do not stutter. Finally, we highlight challenges to existing research and provide avenues for future research with specific hypotheses.

  18. Subthalamic nucleus electrical stimulation modulates calcium activity of nigral astrocytes.

    Directory of Open Access Journals (Sweden)

    Elodie Barat

    Full Text Available The substantia nigra pars reticulata (SNr is a major output nucleus of the basal ganglia, delivering inhibitory efferents to the relay nuclei of the thalamus. Pathological hyperactivity of SNr neurons is known to be responsible for some motor disorders e.g. in Parkinson's disease. One way to restore this pathological activity is to electrically stimulate one of the SNr input, the excitatory subthalamic nucleus (STN, which has emerged as an effective treatment for parkinsonian patients. The neuronal network and signal processing of the basal ganglia are well known but, paradoxically, the role of astrocytes in the regulation of SNr activity has never been studied.In this work, we developed a rat brain slice model to study the influence of spontaneous and induced excitability of afferent nuclei on SNr astrocytes calcium activity. Astrocytes represent the main cellular population in the SNr and display spontaneous calcium activities in basal conditions. Half of this activity is autonomous (i.e. independent of synaptic activity while the other half is dependent on spontaneous glutamate and GABA release, probably controlled by the pace-maker activity of the pallido-nigral and subthalamo-nigral loops. Modification of the activity of the loops by STN electrical stimulation disrupted this astrocytic calcium excitability through an increase of glutamate and GABA releases. Astrocytic AMPA, mGlu and GABA(A receptors were involved in this effect.Astrocytes are now viewed as active components of neural networks but their role depends on the brain structure concerned. In the SNr, evoked activity prevails and autonomous calcium activity is lower than in the cortex or hippocampus. Our data therefore reflect a specific role of SNr astrocytes in sensing the STN-GPe-SNr loops activity and suggest that SNr astrocytes could potentially feedback on SNr neuronal activity. These findings have major implications given the position of SNr in the basal ganglia network.

  19. Subthalamic nucleus electrical stimulation modulates calcium activity of nigral astrocytes.

    Science.gov (United States)

    Barat, Elodie; Boisseau, Sylvie; Bouyssières, Céline; Appaix, Florence; Savasta, Marc; Albrieux, Mireille

    2012-01-01

    The substantia nigra pars reticulata (SNr) is a major output nucleus of the basal ganglia, delivering inhibitory efferents to the relay nuclei of the thalamus. Pathological hyperactivity of SNr neurons is known to be responsible for some motor disorders e.g. in Parkinson's disease. One way to restore this pathological activity is to electrically stimulate one of the SNr input, the excitatory subthalamic nucleus (STN), which has emerged as an effective treatment for parkinsonian patients. The neuronal network and signal processing of the basal ganglia are well known but, paradoxically, the role of astrocytes in the regulation of SNr activity has never been studied. In this work, we developed a rat brain slice model to study the influence of spontaneous and induced excitability of afferent nuclei on SNr astrocytes calcium activity. Astrocytes represent the main cellular population in the SNr and display spontaneous calcium activities in basal conditions. Half of this activity is autonomous (i.e. independent of synaptic activity) while the other half is dependent on spontaneous glutamate and GABA release, probably controlled by the pace-maker activity of the pallido-nigral and subthalamo-nigral loops. Modification of the activity of the loops by STN electrical stimulation disrupted this astrocytic calcium excitability through an increase of glutamate and GABA releases. Astrocytic AMPA, mGlu and GABA(A) receptors were involved in this effect. Astrocytes are now viewed as active components of neural networks but their role depends on the brain structure concerned. In the SNr, evoked activity prevails and autonomous calcium activity is lower than in the cortex or hippocampus. Our data therefore reflect a specific role of SNr astrocytes in sensing the STN-GPe-SNr loops activity and suggest that SNr astrocytes could potentially feedback on SNr neuronal activity. These findings have major implications given the position of SNr in the basal ganglia network.

  20. Functional MRI study of response inhibition in myoclonus dystonia

    NARCIS (Netherlands)

    van der Salm, Sandra M. A.; van der Meer, Johan N.; Nederveen, Aart J.; Veltman, Dick J.; van Rootselaar, Anne-Fleur; Tijssen, Marina A. J.

    2013-01-01

    Myoclonus-dystonia (MD) is a movement disorder characterized by myoclonic jerks, dystonic postures and psychiatric co-morbidity. A mutation in the DYT11 gene underlies half of MD cases. We hypothesize that MD results from a dysfunctional basal ganglia network causing insufficient inhibitory motor

  1. Maturation of Cortico-Subcortical Structural Networks-Segregation and Overlap of Medial Temporal and Fronto-Striatal Systems in Development.

    Science.gov (United States)

    Walhovd, Kristine B; Tamnes, Christian K; Bjørnerud, Atle; Due-Tønnessen, Paulina; Holland, Dominic; Dale, Anders M; Fjell, Anders M

    2015-07-01

    The brain consists of partly segregated neural circuits within which structural convergence and functional integration occurs during development. The relationship of structural cortical and subcortical maturation is largely unknown. We aimed to study volumetric development of the hippocampus and basal ganglia (caudate, putamen, pallidum, accumbens) in relation to volume changes throughout the cortex. Longitudinal MRI data were obtained across a mean interval of 2.6 years in 85 participants with an age range of 8-19 years at study start. Left and right subcortical changes were related to cortical change vertex-wise in the ipsilateral hemisphere with general linear models with age, sex, interval between scans, and mean cortical volume change as covariates. Hippocampal-cortical change relationships centered on parts of the Papez circuit, including entorhinal, parahippocampal, and isthmus cingulate areas, and lateral temporal, insular, and orbitofrontal cortices in the left hemisphere. Basal ganglia-cortical change relationships were observed in mostly nonoverlapping and more anterior cortical areas, all including the anterior cingulate. Other patterns were unique to specific basal ganglia structures, including pre-, post-, and paracentral patterns relating to putamen change. In conclusion, patterns of cortico-subcortical development as assessed by morphometric analyses in part map out segregated neural circuits at the macrostructural level. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Cerebral blood flow and metabolism in patients with aphasia due to basal ganglionic lesion

    International Nuclear Information System (INIS)

    Kitamura, Shin; Kato, Toshiaki; Ujike, Takashi; Kuroki, Soemu; Terashi, Akiro

    1987-01-01

    Cerebral blood flow and metabolism in right handed eight patients with subcortical lesion and aphasia were measured to investigate the correlation between aphasia and functional changes in cerebral blood flow (CBF) and cerebral oxygen consumption (CMRO 2 ) in the cortex and the basal ganglionic region. All patients had no lesion in the cortex, but in the basal ganglionic region (putamen, caudate nucleus, internal capsule, and periventricular white matter) on CT images. Patients with bilateral lesion were excluded in this study. Six patients with cerebral infarction in the left basal ganglionic region and two patients with the left putammal hemorrhage were examined. Five patients had non fluent Broca's type speech, two patients had poor comprehension, fluent Wernicke-type speech and one patient was globally aphasic. CBF, CMRO 2 , and oxygen extraction fraction were measured by the positron emission tomography using 15 O 2 , C 15 O 2 inhalation technique. In addition to reduction of CBF and CMRO 2 in the basal ganglionic region, CBF and CMRO 2 decreased in the left frontal cortex especially posterior part in four patients with Broca's aphasia. In two patients with Wernicke type aphasia, CBF and CMRO 2 decreased in the basal ganglionic region and the left temporal cortex. In a globally aphasic patient, marked reduction of CBF and CMRO 2 was observed in the left frontal and temporal cortex, in addition to the basal ganglionic region. These results suggest that dysfunction of cortex as well as that of basal ganglionic region might be related to the occurence of aphasia. However, in one patient with Broca's ahasia, CBF and CMRO 2 were preserved in the cortex and metabolic reduction was observed in only basal ganglia. This case indicates the relation between basal ganglionic lesion and the occurrence of aphasia. These results suggest that measurements of cerebral blood flow and metabolism were necessary to study the responsible lesion for aphasia. (author)

  3. THE SIGNIFICANCE OF LESIONS IN PERIPHERAL GANGLIA IN CHIMPANZEE AND IN HUMAN POLIOMYELITIS

    Science.gov (United States)

    Bodian, David; Howe, Howard A.

    1947-01-01

    1. The peripheral ganglia of eighteen inoculated chimpanzees and thirteen uninoculated controls, and of eighteen fatal human poliomyelitis cases, were studied for histopathological evidence of the route of transmission of virus from the alimentary tract to the CNS. 2. Lesions thought to be characteristic of poliomyelitis in inoculated chimpanzees could not be sharply differentiated from lesions of unknown origin in uninoculated control animals. Moreover, although the inoculated animals as a group, in comparison with the control animals, had a greater number of infiltrative lesions in sympathetic as well as in sensory ganglia, it was not possible to make satisfactory correlations between the distribution of these lesions and the routes of inoculation. 3. In sharp contrast with chimpanzees, the celiac and stellate ganglia of the human poliomyelitis cases were free of any but insignificant infiltrative lesions. Lesions in human trigeminal and spinal sensory ganglia included neuronal damage as well as focal and perivascular inflitrative lesions, as is well known. In most ganglia, as in monkey and chimpanzee sensory ganglia, these were correlated in intensify with the degree of severity of lesions in the region of the CNS receiving their axons. This suggested that lesions in sensory ganglia probably resulted from spread of virus centrifugally from the CNS, in accord with considerable experimental evidence. 4. Two principal difficulties in the interpretation of histopathological findings in peripheral ganglia were revealed by this study. The first is that the specificity of lesions in sympathetic ganglia has not been established beyond doubt as being due to poliomyelitis. The second is that the presence of characteristic lesions in sensory ganglia does not, and cannot, reveal whether the virus reached the ganglia from the periphery or from the central nervous system, except in very early preparalytic stages or in exceptional cases of early arrest of virus spread and of

  4. Proprioceptive dysfunction in focal dystonia: from experimental evidence to rehabilitation strategies.

    Directory of Open Access Journals (Sweden)

    Laura eAvanzino

    2014-12-01

    Full Text Available Dystonia has historically been considered a disorder of the basal ganglia, mainly affecting planning and execution of voluntary movements. This notion comes from the observation that most lesions responsible for secondary dystonia involve the basal ganglia. However, what emerges from recent research is that dystonia is linked to the dysfunction of a complex neural network that comprises basal ganglia-thalamic-frontal cortex, but also the inferior parietal cortex and the cerebellum. While dystonia is clearly a motor problem, it turned out that sensory aspects are also fundamental, especially those related to proprioception.We outline experimental evidence for proprioceptive dysfunction in focal dystonia from intrinsic sensory abnormalities to impaired sensorimotor integration, that is the process by which sensory information is used to plan and execute volitional movements. Particularly, we will focus on proprioceptive aspects of dystonia, including: i processing of vibratory input, ii temporal discrimination of two passive movements, iii multimodal integration of visual-tactile and proprioceptive inputs and, iv motor control in the absence of visual feedback. We suggest that these investigations contribute not only to a better understanding of dystonia pathophysiology, but also to develop rehabilitation strategies aimed at facilitating the processing of proprioceptive input.

  5. Short-Term Sleep Disturbance-Induced Stress Does not Affect Basal Pain Perception, but Does Delay Postsurgical Pain Recovery.

    Science.gov (United States)

    Wang, Po-Kai; Cao, Jing; Wang, Hongzhen; Liang, Lingli; Zhang, Jun; Lutz, Brianna Marie; Shieh, Kun-Ruey; Bekker, Alex; Tao, Yuan-Xiang

    2015-11-01

    Chronic sleep disturbance-induced stress is known to increase basal pain sensitivity. However, most surgical patients frequently report short-term sleep disturbance/deprivation during the pre- and postoperation periods and have normal pain perception presurgery. Whether this short-term sleep disturbance affects postsurgical pain is elusive. Here, we report that pre- or postexposure to rapid eye movement sleep disturbance (REMSD) for 6 hours daily for 3 consecutive days did not alter basal responses to mechanical, heat, and cold stimuli, but did delay recovery in incision-induced reductions in paw withdrawal threshold to mechanical stimulation and paw withdrawal latencies to heat and cold stimuli on the ipsilateral side of male or female rats. This short-term REMSD led to stress shown by an increase in swim immobility time, a decrease in sucrose consumption, and an increase in the level of corticosterone in serum. Blocking this stress via intrathecal RU38486 or bilateral adrenalectomy abolished REMSD-caused delay in recovery of incision-induced reductions in behavioral responses to mechanical, heat, and cold stimuli. Moreover, this short-term REMSD produced significant reductions in the levels of mu opioid receptor and kappa opioid receptor, but not Kv1.2, in the ipsilateral L4/5 spinal cord and dorsal root ganglia on day 9 after incision (but not after sham surgery). Our findings show that short-term sleep disturbance either pre- or postsurgery does not alter basal pain perception, but does exacerbate postsurgical pain hypersensitivity. The latter may be related to the reductions of mu and kappa opioid receptors in the spinal cord and dorsal root ganglia caused by REMSD plus incision. Prevention of short-term sleep disturbance may help recovery from postsurgical pain in patients. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  6. c-Fos immunoreactivity in prefrontal, basal ganglia and limbic areas of the rat brain after central and peripheral administration of ethanol and its metabolite acetaldehyde.

    Directory of Open Access Journals (Sweden)

    Kristen N. Segovia

    2013-05-01

    Full Text Available Considerable evidence indicates that the metabolite of ethanol (EtOH, acetaldehyde, is biologically active. Acetaldehyde can be formed from EtOH peripherally mainly by alcohol dehydrogenase, and also centrally by catalase. EtOH and acetaldehyde show differences in their behavioral effects depending upon the route of administration. In terms of their effects on motor activity and motivated behaviors, when administered peripherally acetaldehyde tends to be more potent than EtOH but shows very similar potency administered centrally. Since dopamine (DA rich areas have an important role in regulating both motor activity and motivation, the present studies were undertaken to compare the effects of central (intraventricular, ICV and peripheral (intraperitoneal, IP administration of EtOH and acetaldehyde on a cellular marker of brain activity, c-Fos immunoreactivity, in DA innervated areas. Male Sprague-Dawley rats received an IP injection of vehicle, EtOH (0.5 or 2.5 g/kg or acetaldehyde (0.1 or 0.5 g/kg or an ICV injection of vehicle, EtOH or acetaldehyde (2.8 or 14.0 µmoles. IP administration of EtOH minimally induced c-Fos in some regions of the prefrontal cortex and basal ganglia, mainly at the low dose (0.5 g/kg, while IP acetaldehyde induced c-Fos in virtually all the structures studied at both doses. Acetaldehyde administered centrally increased c-Fos in all areas studied, a pattern that was very similar to EtOH. Thus, IP administered acetaldehyde was more efficacious than EtOH at inducing c-Fos expression. However, the general pattern of c-Fos induction promoted by ICV EtOH and acetaldehyde was similar. These results are consistent with the pattern observed in behavioral studies in which both substances produced the same magnitude of effect when injected centrally, and produced differences in potency after peripheral administration.

  7. TGF-β1 induces an age-dependent inflammation of nerve ganglia and fibroplasia in the prostate gland stroma of a novel transgenic mouse.

    Directory of Open Access Journals (Sweden)

    David A Barron

    2010-10-01

    Full Text Available TGF-β1 is overexpressed in wound repair and in most proliferative disorders including benign prostatic hyperplasia and prostate cancer. The stromal microenvironment at these sites is reactive and typified by altered phenotype, matrix deposition, inflammatory responses, and alterations in nerve density and biology. TGF-β1 is known to modulate several stromal responses; however there are few transgenic models to study its integrated biology. To address the actions of TGF-β1 in prostate disorders, we targeted expression of an epitope tagged and constitutively active TGF-β1 via the enhanced probasin promoter to the murine prostate gland epithelium. Transgenic mice developed age-dependent lesions leading to severe, yet focal attenuation of epithelium, and a discontinuous basal lamina. These changes were associated with elevated fibroplasia and frequency of collagenous micronodules in collapsed acini, along with an induced inflammation in nerve ganglia and small vessels. Elevated recruitment of CD115+ myeloid cells but not mature macrophages was observed in nerve ganglia, also in an age-dependent manner. Similar phenotypic changes were observed using a human prostate epithelium tissue recombination xenograft model, where epithelial cells engineered to overexpress TGF-β1 induced fibrosis and altered matrix deposition concurrent with inflammation in the stromal compartment. Together, these data suggest that elevated TGF-β1 expression induces a fibroplasia stromal response associated with breach of epithelial wall structure and inflammatory involvement of nerve ganglia and vessels. The novel findings of ganglia and vessel inflammation associated with formation of collagenous micronodules in collapsed acini is important as each of these are observed in human prostate carcinoma and may play a role in disease progression.

  8. Brainstem stimulation increases functional connectivity of basal forebrain-paralimbic network in isoflurane-anesthetized rats.

    Science.gov (United States)

    Pillay, Siveshigan; Liu, Xiping; Baracskay, Péter; Hudetz, Anthony G

    2014-09-01

    Brain states and cognitive-behavioral functions are precisely controlled by subcortical neuromodulatory networks. Manipulating key components of the ascending arousal system (AAS), via deep-brain stimulation, may help facilitate global arousal in anesthetized animals. Here we test the hypothesis that electrical stimulation of the oral part of the pontine reticular nucleus (PnO) under light isoflurane anesthesia, associated with loss of consciousness, leads to cortical desynchronization and specific changes in blood-oxygenation-level-dependent (BOLD) functional connectivity (FC) of the brain. BOLD signals were acquired simultaneously with frontal epidural electroencephalogram before and after PnO stimulation. Whole-brain FC was mapped using correlation analysis with seeds in major centers of the AAS. PnO stimulation produced cortical desynchronization, a decrease in δ- and θ-band power, and an increase in approximate entropy. Significant increases in FC after PnO stimulation occurred between the left nucleus Basalis of Meynert (NBM) as seed and numerous regions of the paralimbic network. Smaller increases in FC were present between the central medial thalamic nucleus and retrosplenium seeds and the left caudate putamen and NBM. The results suggest that, during light anesthesia, PnO stimulation preferentially modulates basal forebrain-paralimbic networks. We speculate that this may be a reflection of disconnected awareness.

  9. State-dependent spike and local field synchronization between motor cortex and substantia nigra in hemiparkinsonian rats.

    Science.gov (United States)

    Brazhnik, Elena; Cruz, Ana V; Avila, Irene; Wahba, Marian I; Novikov, Nikolay; Ilieva, Neda M; McCoy, Alex J; Gerber, Colin; Walters, Judith R

    2012-06-06

    Excessive beta frequency oscillatory and synchronized activity has been reported in the basal ganglia of parkinsonian patients and animal models of the disease. To gain insight into processes underlying this activity, this study explores relationships between oscillatory activity in motor cortex and basal ganglia output in behaving rats after dopamine cell lesion. During inattentive rest, 7 d after lesion, increases in motor cortex-substantia nigra pars reticulata (SNpr) coherence emerged in the 8-25 Hz range, with significant increases in local field potential (LFP) power in SNpr but not motor cortex. In contrast, during treadmill walking, marked increases in both motor cortex and SNpr LFP power, as well as coherence, emerged in the 25-40 Hz band with a peak frequency at 30-35 Hz. Spike-triggered waveform averages showed that 77% of SNpr neurons, 77% of putative cortical interneurons, and 44% of putative pyramidal neurons were significantly phase-locked to the increased cortical LFP activity in the 25-40 Hz range. Although the mean lag between cortical and SNpr LFPs fluctuated around zero, SNpr neurons phase-locked to cortical LFP oscillations fired, on average, 17 ms after synchronized spiking in motor cortex. High coherence between LFP oscillations in cortex and SNpr supports the view that cortical activity facilitates entrainment and synchronization of activity in basal ganglia after loss of dopamine. However, the dramatic increases in cortical power and relative timing of phase-locked spiking in these areas suggest that additional processes help shape the frequency-specific tuning of the basal ganglia-thalamocortical network during ongoing motor activity.

  10. Effects of high-frequency stimulation of the internal pallidal segment on neuronal activity in the thalamus in parkinsonian monkeys

    OpenAIRE

    Kammermeier, Stefan; Pittard, Damien; Hamada, Ikuma; Wichmann, Thomas

    2016-01-01

    It is known that parkinsonism is associated with abnormalities in basal ganglia activity and that deep brain stimulation of these structures, a common treatment for Parkinson's disease, strongly alters basal ganglia output. However, parkinsonism- and stimulation-related activity changes in the ventral thalamus, a major recipient of basal ganglia output, remain controversial. These primate experiments demonstrate such changes, emphasizing emerging oscillatory activity patterns, and changes of ...

  11. [Distribution of herpes simplex virus type 1 and 2 genomes in the human spinal ganglia].

    Science.gov (United States)

    Obara, Y

    1994-09-01

    Herpes simplex virus (HSV) is well known for its propensity to cause recurrent oral or genital mucosal infections in humans. HSV-1 is involved primarily in oral lesions, whereas HSV-2 is more frequently involved in genital lesions. Based on this, it is thought that HSV-1 may produce latent infections in trigeminal ganglia, and HSV-2 in the sacral ganglia. However the distribution pattern of latent HSV-1 and HSV-2 infections in spinal ganglia remains unknown. Using the polymerase chain reaction we detected latent herpes HSV-1 and HSV-2 in human spinal ganglia obtained from autopsy material. A pair of primers which were specific for a part of the HSV-1 and HSV-2 DNA polymerase domain were employed. HSV-1 and HSV-2 DNAs were detected in 11 of 40 (28%) and 15 of 40 (38%) cervical ganglia, respectively, 52 of 103 (50%) and 47 of 103 (46%) thoracic ganglia, 16 of 53 (30%) and 17 of 53 (32%) lumbar ganglia, and 3 of 20 (15%) and 3 of 20 (15%) sacral ganglia. These findings suggest that latent HSV-1 and HSV-2 infections have a widespread distribution from the cervical ganglia to sacral ganglia. Importantly this study demonstrated latent HSV-1 infection of both the lumbar and sacral ganglia for the first time.

  12. The processing of lexical ambiguity in healthy ageing and Parkinson׳s disease: role of cortico-subcortical networks.

    Science.gov (United States)

    Ketteler, Simon; Ketteler, Daniel; Vohn, René; Kastrau, Frank; Schulz, Jörg B; Reetz, Kathrin; Huber, Walter

    2014-09-18

    Previous neuroimaging studies showed that correct resolution of lexical ambiguity relies on the integrity of prefrontal and inferior parietal cortices. Whereas prefrontal brain areas were associated with executive control over semantic selection, inferior parietal areas were linked with access to modality-independent representations of semantic memory. Yet insufficiently understood is the contribution of subcortical structures in ambiguity processing. Patients with disturbed basal ganglia function such as Parkinson׳s disease (PD) showed development of discourse comprehension deficits evoked by lexical ambiguity. To further investigate the engagement of cortico-subcortical networks functional Magnetic Resonance Imaging (fMRI) was monitored during ambiguity resolution in eight early PD patients without dementia and 14 age- and education-matched controls. Participants were required to relate meanings to a lexically ambiguous target (homonym). Each stimulus consisted of two words arranged on top of a screen, which had to be attributed to a homonym at the bottom. Brain activity was found in bilateral inferior parietal (BA 39), right middle temporal (BA 21/22), left middle frontal (BA 10) and bilateral inferior frontal areas (BA 45/46). Extent and amplitude of activity in the angular gyrus changed depending on semantic association strength that varied between conditions. Less activity in the left caudate was associated with semantic integration deficits in PD. The results of the present study suggest a relationship between subtle language deficits and early stages of basal ganglia dysfunction. Uncovering impairments in ambiguity resolution may be of future use in the neuropsychological assessment of non-motor deficits in PD. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Machine learning classifier using abnormal brain network topological metrics in major depressive disorder.

    Science.gov (United States)

    Guo, Hao; Cao, Xiaohua; Liu, Zhifen; Li, Haifang; Chen, Junjie; Zhang, Kerang

    2012-12-05

    Resting state functional brain networks have been widely studied in brain disease research. However, it is currently unclear whether abnormal resting state functional brain network metrics can be used with machine learning for the classification of brain diseases. Resting state functional brain networks were constructed for 28 healthy controls and 38 major depressive disorder patients by thresholding partial correlation matrices of 90 regions. Three nodal metrics were calculated using graph theory-based approaches. Nonparametric permutation tests were then used for group comparisons of topological metrics, which were used as classified features in six different algorithms. We used statistical significance as the threshold for selecting features and measured the accuracies of six classifiers with different number of features. A sensitivity analysis method was used to evaluate the importance of different features. The result indicated that some of the regions exhibited significantly abnormal nodal centralities, including the limbic system, basal ganglia, medial temporal, and prefrontal regions. Support vector machine with radial basis kernel function algorithm and neural network algorithm exhibited the highest average accuracy (79.27 and 78.22%, respectively) with 28 features (Pdisorder is associated with abnormal functional brain network topological metrics and statistically significant nodal metrics can be successfully used for feature selection in classification algorithms.

  14. A Population of Indirect Pathway Striatal Projection Neurons Is Selectively Entrained to Parkinsonian Beta Oscillations.

    Science.gov (United States)

    Sharott, Andrew; Vinciati, Federica; Nakamura, Kouichi C; Magill, Peter J

    2017-10-11

    Classical schemes of basal ganglia organization posit that parkinsonian movement difficulties presenting after striatal dopamine depletion stem from the disproportionate firing rates of spiny projection neurons (SPNs) therein. There remains, however, a pressing need to elucidate striatal SPN firing in the context of the synchronized network oscillations that are abnormally exaggerated in cortical-basal ganglia circuits in parkinsonism. To address this, we recorded unit activities in the dorsal striatum of dopamine-intact and dopamine-depleted rats during two brain states, respectively defined by cortical slow-wave activity (SWA) and activation. Dopamine depletion escalated striatal net output but had contrasting effects on "direct pathway" SPNs (dSPNs) and "indirect pathway" SPNs (iSPNs); their firing rates became imbalanced, and they disparately engaged in network oscillations. Disturbed striatal activity dynamics relating to the slow (∼1 Hz) oscillations prevalent during SWA partly generalized to the exaggerated beta-frequency (15-30 Hz) oscillations arising during cortical activation. In both cases, SPNs exhibited higher incidences of phase-locked firing to ongoing cortical oscillations, and SPN ensembles showed higher levels of rhythmic correlated firing, after dopamine depletion. Importantly, in dopamine-depleted striatum, a widespread population of iSPNs, which often displayed excessive firing rates and aberrant phase-locked firing to cortical beta oscillations, preferentially and excessively synchronized their firing at beta frequencies. Conversely, dSPNs were neither hyperactive nor synchronized to a large extent during cortical activation. These data collectively demonstrate a cell type-selective entrainment of SPN firing to parkinsonian beta oscillations. We conclude that a population of overactive, excessively synchronized iSPNs could orchestrate these pathological rhythms in basal ganglia circuits. SIGNIFICANCE STATEMENT Chronic depletion of dopamine

  15. Crista Supraventricularis Purkinje Network and Its Relation to Intraseptal Purkinje Network.

    Science.gov (United States)

    De Almeida, Marcos C; Araujo, Mayssa; Duque, Mathias; Vilhena, Virginia

    2017-10-01

    Using transparent specimens with a dual color injection, microscopy, and computer tomography, this report shows that the right and left ventricular subendocardial Purkinje networks are connected by an extensive septal network in the bovine heart. The septal network is present along the entire septum except at a free zone below ventricular valves. Being the only communication of the basal right septum with the right free wall, the supraventricular crest is an enigmatic but not, by any means, hidden muscular structure. It is one of the last structures to be activated in human heart. It is shown here that the supraventricular crest Purkinje network connects the anterosuperior right ventricular basal free wall Purkinje network to anterior right ventricular basal septal Purkinje network. It is suggested that the stimulus initiated at middle left ventricular endocardium will activate the supraventricular crest. The intraseptal connection found between the basal left ventricular subendocardial septal Purkinje network and the right ventricular basal septal Purkinje network is, probably, the pathway for the stimulus. An anatomic basis is provided to explain why the inflow tract contracts earlier than the outflow tract in the right ventricle systole. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1793-1801, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Influence of deep brain stimulation on postural stability in patients with Parkinson disease

    OpenAIRE

    Zelenková, Jana

    2012-01-01

    Parkinson's disease is a neurodegenerative disease of the basal ganglia. Its main symptoms are rigidity, tremor, bradykinesia, hypokinesia and postural instability. One possible way how to infuence diseases is neurosurgical treatment - deep brain stimulation. The principle is the implantation of electrodes in the basal ganglia and modulation of activity of the basal ganglia circuits due to electrical stimulation. Stimulation affects the motor symptoms of Parkinson's disease. This thesis deals...

  17. Transcription Factor Networks derived from Breast Cancer Stem Cells control the immune response in the Basal subtype

    DEFF Research Database (Denmark)

    da Silveira, W A; Palma, P V B; Sicchieri, R D

    2017-01-01

    Breast cancer is the most common cancer in women worldwide and metastatic dissemination is the principal factor related to death by this disease. Breast cancer stem cells (bCSC) are thought to be responsible for metastasis and chemoresistance. In this study, based on whole transcriptome analysis...... of these networks in patient tumours is predictive of engraftment success. Our findings point out a potential molecular mechanism underlying the balance between immune surveillance and EMT activation in breast cancer. This molecular mechanism may be useful to the development of new target therapies....... and IKZF3 transcription factors which correspond to immune response modulators. Immune response network expression is correlated with pathological response to chemotherapy, and in the Basal subtype is related to better recurrence-free survival. In patient-derived xenografts, the expression...

  18. A diagnosis model for early Tourette syndrome children based on brain structural network characteristics

    Science.gov (United States)

    Wen, Hongwei; Liu, Yue; Wang, Jieqiong; Zhang, Jishui; Peng, Yun; He, Huiguang

    2016-03-01

    Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder characterized by the presence of multiple motor and vocal tics. Tic generation has been linked to disturbed networks of brain areas involved in planning, controlling and execution of action. The aim of our work is to select topological characteristics of structural network which were most efficient for estimating the classification models to identify early TS children. Here we employed the diffusion tensor imaging (DTI) and deterministic tractography to construct the structural networks of 44 TS children and 48 age and gender matched healthy children. We calculated four different connection matrices (fiber number, mean FA, averaged fiber length weighted and binary matrices) and then applied graph theoretical methods to extract the regional nodal characteristics of structural network. For each weighted or binary network, nodal degree, nodal efficiency and nodal betweenness were selected as features. Support Vector Machine Recursive Feature Extraction (SVM-RFE) algorithm was used to estimate the best feature subset for classification. The accuracy of 88.26% evaluated by a nested cross validation was achieved on combing best feature subset of each network characteristic. The identified discriminative brain nodes mostly located in the basal ganglia and frontal cortico-cortical networks involved in TS children which was associated with tic severity. Our study holds promise for early identification and predicting prognosis of TS children.

  19. Intermittent synchronization in a network of bursting neurons

    Science.gov (United States)

    Park, Choongseok; Rubchinsky, Leonid L.

    2011-09-01

    Synchronized oscillations in networks of inhibitory and excitatory coupled bursting neurons are common in a variety of neural systems from central pattern generators to human brain circuits. One example of the latter is the subcortical network of the basal ganglia, formed by excitatory and inhibitory bursters of the subthalamic nucleus and globus pallidus, involved in motor control and affected in Parkinson's disease. Recent experiments have demonstrated the intermittent nature of the phase-locking of neural activity in this network. Here, we explore one potential mechanism to explain the intermittent phase-locking in a network. We simplify the network to obtain a model of two inhibitory coupled elements and explore its dynamics. We used geometric analysis and singular perturbation methods for dynamical systems to reduce the full model to a simpler set of equations. Mathematical analysis was completed using three slow variables with two different time scales. Intermittently, synchronous oscillations are generated by overlapped spiking which crucially depends on the geometry of the slow phase plane and the interplay between slow variables as well as the strength of synapses. Two slow variables are responsible for the generation of activity patterns with overlapped spiking, and the other slower variable enhances the robustness of an irregular and intermittent activity pattern. While the analyzed network and the explored mechanism of intermittent synchrony appear to be quite generic, the results of this analysis can be used to trace particular values of biophysical parameters (synaptic strength and parameters of calcium dynamics), which are known to be impacted in Parkinson's disease.

  20. Neurological signs and involuntary movements in schizophrenia: intrinsic to and informative on systems pathobiology.

    LENUS (Irish Health Repository)

    Whitty, Peter F

    2012-02-01

    While it has long been considered whether the pathobiology of schizophrenia extends beyond its defining symptoms to involve diverse domains of abnormality, in the manner of a systemic disease, studies of neuromotor dysfunction have been confounded by treatment with antipsychotic drugs. This challenge has been illuminated by a new generation of studies on first-episode schizophrenia before initiation of antipsychotic treatment and by opportunities in developing countries to study chronically ill patients who have remained antipsychotic naive due to limitations in provision of psychiatric care. Building from studies in antipsychotic-naive patients, this article reviews 2 domains of neuromotor dysfunction in schizophrenia: neurological signs and involuntary movements. The presence and characteristics of neurological signs in untreated vis-a-vis treated psychosis indicate a vulnerability marker for schizophrenia and implicate disruption to neuronal circuits linking the basal ganglia, cerebral cortex, and cerebellum. The presence and characteristics of involuntary movements in untreated vis-a-vis treated psychosis indicate an intrinsic feature of the disease process and implicate dysfunction in cortical-basal ganglia-cortical circuitry. These neuromotor disorders of schizophrenia join other markers of subtle but pervasive cerebral and extracerebral, systemic dysfunction, and complement current concepts of schizophrenia as a disorder of developmentally determined cortical-basal ganglia-thalamo-cortical\\/cerebellar network disconnectivity.

  1. l-Dopa responsiveness is associated with distinctive connectivity patterns in advanced Parkinson's disease.

    Science.gov (United States)

    Akram, Harith; Wu, Chengyuan; Hyam, Jonathan; Foltynie, Thomas; Limousin, Patricia; De Vita, Enrico; Yousry, Tarek; Jahanshahi, Marjan; Hariz, Marwan; Behrens, Timothy; Ashburner, John; Zrinzo, Ludvic

    2017-06-01

    Neuronal loss and dopamine depletion alter motor signal processing between cortical motor areas, basal ganglia, and the thalamus, resulting in the motor manifestations of Parkinson's disease. Dopamine replacement therapy can reverse these manifestations with varying degrees of improvement. To evaluate functional connectivity in patients with advanced Parkinson's disease and changes in functional connectivity in relation to the degree of response to l-dopa, 19 patients with advanced Parkinson's disease underwent resting-state functional magnetic resonance imaging in the on-medication state. Scans were obtained on a 3-Tesla scanner in 3 × 3 × 2.5 mm 3 voxels. Seed-based bivariate regression analyses were carried out with atlas-defined basal ganglia regions as seeds, to explore relationships between functional connectivity and improvement in the motor section of the UPDRS-III following an l-dopa challenge. False discovery rate-corrected P was set at basal ganglia resting-state functional connectivity patterns associated with different degrees of l-dopa responsiveness in patients with advanced Parkinson's disease. l-Dopa exerts a graduated influence on remapping connectivity in distinct motor control networks, potentially explaining some of the variance in treatment response. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  2. Ganglia of the tarsal sinus: MR imaging features and clinical findings

    International Nuclear Information System (INIS)

    Bauer, Jan S.; Müller, Dirk; Sauerschnig, Martin; Imhoff, Andreas B.; Rechl, H.; Rummeny, Ernst J.; Woertler, Klaus

    2011-01-01

    Purpose: To analyze MR imaging and clinical findings associated with ganglia of the tarsal sinus. Materials and methods: In a record search, ganglia of the tarsal sinus were retrospectively identified in 26 patients (mean age 48 ± 16 years), who underwent MR imaging for chronic ankle pain. Images were reviewed by two radiologists in consensus for size and location of ganglia, lesions of ligaments of the ankle and the tarsal sinus, tendon abnormalities, osteoarthritis, osseous erosions and bone marrow abnormalities. Medical records were reviewed for patient history and clinical findings. Results: Ganglia were associated with the interosseus ligament in 81%, the cervical ligament in 31% and the retinacula in 46% of cases. Signal alterations suggesting degeneration were found in 85%, 50% and 63% in case of the interosseus ligament, the cervical ligament and the retinacula, respectively. Scarring of the anterior talofibular ligament and the fibulocalcaneal ligament was found in 68% and 72% of the patients, respectively, while only 27% of the patients recalled ankle sprains. Ganglia at the retinacula were highly associated with synovitis and tendinosis of the posterior tibial tendon (p < 0.05). Conclusion: All patients with ganglia in the tarsal sinus presented with another pathology at the ankle, suggesting that degeneration of the tarsal sinus may be a secondary phenomenon, due to pathologic biomechanics at another site of the hind foot. Thus, in patients with degenerative changes of the tarsal sinus, one should be alerted and search for underlying pathology, which may be injury of the lateral collateral ligaments in up to 70%.

  3. Multiple-time-scale framework for understanding the progression of Parkinson's disease

    Science.gov (United States)

    Andres, D. S.; Gomez, F.; Ferrari, F. A. S.; Cerquetti, D.; Merello, M.; Viana, R.; Stoop, R.

    2014-12-01

    Parkinson's disease is marked by neurodegenerative processes that affect the pattern of discharge of basal ganglia neurons. The main features observed in the parkinsonian globus pallidus pars interna (GPi), a subdomain of the basal ganglia that is involved in the regulation of voluntary movement, are pathologically increased and synchronized neuronal activity. How these changes affect the implemented neuronal code is not well understood. Our experimental temporal structure-function analysis shows that in parkinsonian animals the rate-coding window of GPi neurons needed for the proper performance of voluntary actions is reduced. The model of the GPi network that we develop and discuss here reveals indeed that the size of the rate-coding window shrinks as the network activity increases and is expanded if the coupling strength among the neurons is increased. This leads to the novel interpretation that the pathological neuronal synchronization in Parkinson's disease in the GPi is the result of a collective attempt to counterbalance the shrinking of the rate-coding window due to increased activity in GPi neurons.

  4. [Repetitive phenomenona in the spontaneous speech of aphasic patients: perseveration, stereotypy, echolalia, automatism and recurring utterance].

    Science.gov (United States)

    Wallesch, C W; Brunner, R J; Seemüller, E

    1983-12-01

    Repetitive phenomena in spontaneous speech were investigated in 30 patients with chronic infarctions of the left hemisphere which included Broca's and/or Wernicke's area and/or the basal ganglia. Perseverations, stereotypies, and echolalias occurred with all types of brain lesions, automatisms and recurring utterances only with those patients, whose infarctions involved Wernicke's area and basal ganglia. These patients also showed more echolalic responses. The results are discussed in view of the role of the basal ganglia as motor program generators.

  5. Monetary reward activates human prefrontal cortex

    International Nuclear Information System (INIS)

    Thut, G.; Roelcke, U.; Nienhusmeier, M.; Missimer, J.; Maguire, R.P.; Leenders, K.L.; Schultz, W.

    1997-01-01

    We present a rCBF PET activation study, in which we demonstrated that reward processing in humans activates a cortical-subcortical network including dorsolateral prefrontal, orbital frontal, thalamic and midbrain regions. It is suggested that, as found for non-human primates, the basal ganglia-thalamo-cortical system is implicated in reward processing. (author) 1 fig., 3 refs

  6. Contribution of transcranial magnetic stimulation to assessment of brain connectivity and networks.

    Science.gov (United States)

    Hallett, Mark; Di Iorio, Riccardo; Rossini, Paolo Maria; Park, Jung E; Chen, Robert; Celnik, Pablo; Strafella, Antonio P; Matsumoto, Hideyuki; Ugawa, Yoshikazu

    2017-11-01

    The goal of this review is to show how transcranial magnetic stimulation (TMS) techniques can make a contribution to the study of brain networks. Brain networks are fundamental in understanding how the brain operates. Effects on remote areas can be directly observed or identified after a period of stimulation, and each section of this review will discuss one method. EEG analyzed following TMS is called TMS-evoked potentials (TEPs). A conditioning TMS can influence the effect of a test TMS given over the motor cortex. A disynaptic connection can be tested also by assessing the effect of a pre-conditioning stimulus on the conditioning-test pair. Basal ganglia-cortical relationships can be assessed using electrodes placed in the process of deep brain stimulation therapy. Cerebellar-cortical relationships can be determined using TMS over the cerebellum. Remote effects of TMS on the brain can be found as well using neuroimaging, including both positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). The methods complement each other since they give different views of brain networks, and it is often valuable to use more than one technique to achieve converging evidence. The final product of this type of work is to show how information is processed and transmitted in the brain. Published by Elsevier B.V.

  7. The electrophysiological effects of nicotinic and electrical stimulation of intrinsic cardiac ganglia in the absence of extrinsic autonomic nerves in the rabbit heart.

    Science.gov (United States)

    Allen, Emily; Coote, John H; Grubb, Blair D; Batten, Trevor Fc; Pauza, Dainius H; Ng, G André; Brack, Kieran E

    2018-05-22

    The intrinsic cardiac nervous system (ICNS) is a rich network of cardiac nerves that converge to form distinct ganglia and extend across the heart and is capable of influencing cardiac function. To provide a picture of the neurotransmitter/neuromodulator profile of the rabbit ICNS and determine the action of spatially divergent ganglia on cardiac electrophysiology. Nicotinic or electrical stimulation was applied at discrete sites of the intrinsic cardiac nerve plexus in the Langendorff perfused rabbit heart. Functional effects on sinus rate and atrioventricular conduction were measured. Immunohistochemistry for choline acetyltransferase (ChAT), tyrosine hydroxylase (TH) and/or neuronal nitric oxide synthase (nNOS) was performed on whole-mount preparations. Stimulation within all ganglia produced either bradycardia, tachycardia or a biphasic brady-tachycardia. Electrical stimulation of the right atrial (RA) and right neuronal cluster (RNC) regions produced the greatest chronotropic responses. Significant prolongation of atrioventricular conduction (AVC) was predominant at the pulmonary vein-caudal vein region (PVCV). Neurons immunoreactive (IR) only for ChAT, or TH or nNOS were consistently located within the limits of the hilum and at the roots of the right cranial and right pulmonary veins. ChAT-IR neurons were most abundant (1946±668 neurons). Neurons IR solely for nNOS were distributed within ganglia. Stimulation of intrinsic ganglia, shown to be of phenotypic complexity but predominantly of cholinergic nature, indicates that clusters of neurons are capable of independent selective effects on cardiac electrophysiology, therefore providing a potential therapeutic target for the prevention and treatment of cardiac disease. Copyright © 2018. Published by Elsevier Inc.

  8. MRI Study on the Functional and Spatial Consistency of Resting State-Related Independent Components of the Brain Network

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Bum Seok [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Choi, Jee Wook [Daejeon St. Mary' s Hospital, The Catholic University of Korea College of Medicine, Daejeon (Korea, Republic of); Kim, Ji Woong [College of Medical Science, Konyang University, Daejeon(Korea, Republic of)

    2012-06-15

    Resting-state networks (RSNs), including the default mode network (DMN), have been considered as markers of brain status such as consciousness, developmental change, and treatment effects. The consistency of functional connectivity among RSNs has not been fully explored, especially among resting-state-related independent components (RSICs). This resting-state fMRI study addressed the consistency of functional connectivity among RSICs as well as their spatial consistency between 'at day 1' and 'after 4 weeks' in 13 healthy volunteers. We found that most RSICs, especially the DMN, are reproducible across time, whereas some RSICs were variable in either their spatial characteristics or their functional connectivity. Relatively low spatial consistency was found in the basal ganglia, a parietal region of left frontoparietal network, and the supplementary motor area. The functional connectivity between two independent components, the bilateral angular/supramarginal gyri/intraparietal lobule and bilateral middle temporal/occipital gyri, was decreased across time regardless of the correlation analysis method employed, (Pearson's or partial correlation). RSICs showing variable consistency are different between spatial characteristics and functional connectivity. To understand the brain as a dynamic network, we recommend further investigation of both changes in the activation of specific regions and the modulation of functional connectivity in the brain network.

  9. MRI Study on the Functional and Spatial Consistency of Resting State-Related Independent Components of the Brain Network

    International Nuclear Information System (INIS)

    Jeong, Bum Seok; Choi, Jee Wook; Kim, Ji Woong

    2012-01-01

    Resting-state networks (RSNs), including the default mode network (DMN), have been considered as markers of brain status such as consciousness, developmental change, and treatment effects. The consistency of functional connectivity among RSNs has not been fully explored, especially among resting-state-related independent components (RSICs). This resting-state fMRI study addressed the consistency of functional connectivity among RSICs as well as their spatial consistency between 'at day 1' and 'after 4 weeks' in 13 healthy volunteers. We found that most RSICs, especially the DMN, are reproducible across time, whereas some RSICs were variable in either their spatial characteristics or their functional connectivity. Relatively low spatial consistency was found in the basal ganglia, a parietal region of left frontoparietal network, and the supplementary motor area. The functional connectivity between two independent components, the bilateral angular/supramarginal gyri/intraparietal lobule and bilateral middle temporal/occipital gyri, was decreased across time regardless of the correlation analysis method employed, (Pearson's or partial correlation). RSICs showing variable consistency are different between spatial characteristics and functional connectivity. To understand the brain as a dynamic network, we recommend further investigation of both changes in the activation of specific regions and the modulation of functional connectivity in the brain network.

  10. Patterned basal seismicity shows sub-ice stream bedforms

    Science.gov (United States)

    Barcheck, C. G.; Tulaczyk, S. M.; Schwartz, S. Y.

    2017-12-01

    Patterns in seismicity emanating from the bottom of fast-moving ice streams and glaciers may indicate localized patches of higher basal resistance— sometimes called 'sticky spots', or otherwise varying basal properties. These seismogenic basal areas resist an unknown portion of the total driving stress of the Whillans Ice Plain (WIP), in West Antarctica, but may play an important role in the WIP stick-slip cycle and ice stream slowdown. To better understand the mechanism and importance of basal seismicity beneath the WIP, we analyze seismic data collected by a small aperture (micro-earthquakes in Dec 2014, and we compare the resulting map of seismicity to ice bottom depth measured by airborne radar. The number of basal earthquakes per area within the network is spatially heterogeneous, but a pattern of two 400m wide streaks of high seismicity rates is evident, with >50-500 earthquakes detected per 50x50m grid cell in 2 weeks. These seismically active streaks are elongated approximately in the ice flow direction with a spacing of 750m. Independent airborne radar measurements of ice bottom depth from Jan 2013 show a low-amplitude ( 5m) undulation in the basal topography superposed on a regional gradient in ice bottom depth. The flow-perpendicular wavelength of these low-amplitude undulations is comparable to the spacing of the high seismicity bands, and the streaks of high seismicity intersect local lows in the undulating basal topography. We interpret these seismic and radar observations as showing seismically active sub-ice stream bedforms that are low amplitude and elongated in the direction of ice flow, comparable to the morphology of mega scale glacial lineations (MSGLs), with high basal seismicity rates observed in the MSGL troughs. These results have implications for understanding the formation mechanism of MSGLS and well as understanding the interplay between basal topographic roughness, spatially varying basal till and hydrologic properties, basal

  11. Expression of varicella-zoster virus and herpes simplex virus in normal human trigeminal ganglia

    International Nuclear Information System (INIS)

    Vafai, A.; Wellish, M.; Devlin, M.; Gilden, D.H.; Murray, R.S.

    1988-01-01

    Lysates of radiolabeled explants from four human trigeminal ganglia were immunoprecipitated with antibodies to varicella-zoster virus (VZV) and to herpes simplex virus. Both herpes simplex virus- and VZV-specific proteins were detected in lysates of all four ganglia. Absence of reactivity in ganglion explants with monoclonal antibodies suggested that herpes simplex virus and VZV were not reactivated during the culture period. In situ hybridization studies demonstrated the presence of RNA transcripts from the VZV immediate early gene 63. This approach to the detection of herpes simplex virus and VZV expression in human ganglia should facilitate analysis of viral RNA and proteins in human sensory ganglia

  12. Dopamine controls Parkinson's tremor by inhibiting the cerebellar thalamus.

    Science.gov (United States)

    Dirkx, Michiel F; den Ouden, Hanneke E M; Aarts, Esther; Timmer, Monique H M; Bloem, Bastiaan R; Toni, Ivan; Helmich, Rick C

    2017-03-01

    Parkinson's resting tremor is related to altered cerebral activity in the basal ganglia and the cerebello-thalamo-cortical circuit. Although Parkinson's disease is characterized by dopamine depletion in the basal ganglia, the dopaminergic basis of resting tremor remains unclear: dopaminergic medication reduces tremor in some patients, but many patients have a dopamine-resistant tremor. Using pharmacological functional magnetic resonance imaging, we test how a dopaminergic intervention influences the cerebral circuit involved in Parkinson's tremor. From a sample of 40 patients with Parkinson's disease, we selected 15 patients with a clearly tremor-dominant phenotype. We compared tremor-related activity and effective connectivity (using combined electromyography-functional magnetic resonance imaging) on two occasions: ON and OFF dopaminergic medication. Building on a recently developed cerebral model of Parkinson's tremor, we tested the effect of dopamine on cerebral activity associated with the onset of tremor episodes (in the basal ganglia) and with tremor amplitude (in the cerebello-thalamo-cortical circuit). Dopaminergic medication reduced clinical resting tremor scores (mean 28%, range -12 to 68%). Furthermore, dopaminergic medication reduced tremor onset-related activity in the globus pallidus and tremor amplitude-related activity in the thalamic ventral intermediate nucleus. Network analyses using dynamic causal modelling showed that dopamine directly increased self-inhibition of the ventral intermediate nucleus, rather than indirectly influencing the cerebello-thalamo-cortical circuit through the basal ganglia. Crucially, the magnitude of thalamic self-inhibition predicted the clinical dopamine response of tremor. Dopamine reduces resting tremor by potentiating inhibitory mechanisms in a cerebellar nucleus of the thalamus (ventral intermediate nucleus). This suggests that altered dopaminergic projections to the cerebello-thalamo-cortical circuit have a role

  13. Uremic Encephalopathy with Atypical Magnetic Resonance Features on Diffusion-Weighted Images

    International Nuclear Information System (INIS)

    Kang, Eu Gene; Jeon, Se Jeong; Choi, See Sung

    2012-01-01

    Uremic encephalopathy is a well-known disease with typical MR findings including bilateral vasogenic or cytotoxic edema at the cerebral cortex or basal ganglia. Involvement of the basal ganglia has been very rarely reported, typically occurring in uremic-diabetic patients. We recently treated a patient who had non-diabetic uremic encephalopathy with an atypical lesion distribution involving the supratentorial white matter, without cortical or basal ganglia involvement. To the best of our knowledge, this is only the second reported case of non-diabetic uremic encephalopathy with atypical MR findings.

  14. Uremic Encephalopathy with Atypical Magnetic Resonance Features on Diffusion-Weighted Images

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Eu Gene; Jeon, Se Jeong; Choi, See Sung [Dept. of Radiology, Wonkwang University School of Medicine and Hospital, Iksan (Korea, Republic of)

    2012-11-15

    Uremic encephalopathy is a well-known disease with typical MR findings including bilateral vasogenic or cytotoxic edema at the cerebral cortex or basal ganglia. Involvement of the basal ganglia has been very rarely reported, typically occurring in uremic-diabetic patients. We recently treated a patient who had non-diabetic uremic encephalopathy with an atypical lesion distribution involving the supratentorial white matter, without cortical or basal ganglia involvement. To the best of our knowledge, this is only the second reported case of non-diabetic uremic encephalopathy with atypical MR findings.

  15. Increasing dopamine levels in the brain improves feedback-based procedural learning: An artificial grammar learning experiment

    NARCIS (Netherlands)

    de Vries, M.H.; Ulte, C.; Zwitserlood, P.; Szymanski, B.; Knecht, S.

    2010-01-01

    Recently, an increasing number of studies have suggested a role for the basal ganglia and related dopamine inputs in procedural learning, specifically when learning occurs through trial-by-trial feedback (Shohamy, Myers, Kalanithi, & Gluck. (2008). Basal ganglia and dopamine contributions to

  16. Dopamine controls Parkinson's tremor by inhibiting the cerebellar thalamus

    NARCIS (Netherlands)

    Dirkx, M.F.M.; Ouden, H.E.M. den; Aarts, E.; Timmer, M.H.M.; Bloem, B.R.; Toni, I.; Helmich, R.C.G.

    2017-01-01

    Parkinson's resting tremor is related to altered cerebral activity in the basal ganglia and the cerebello-thalamo-cortical circuit. Although Parkinson's disease is characterized by dopamine depletion in the basal ganglia, the dopaminergic basis of resting tremor remains unclear: dopaminergic

  17. Parkinson's disease as a system-level disorder

    NARCIS (Netherlands)

    Caligiore, D.; Helmich, R.C.G.; Hallett, M.; Moustafa, A.A.; Timmermann, L.; Toni, I.; Baldassarre, G.

    2016-01-01

    Traditionally, the basal ganglia have been considered the main brain region implicated in Parkinson's disease. This single area perspective gives a restricted clinical picture and limits therapeutic approaches because it ignores the influence of altered interactions between the basal ganglia and

  18. The subdiaphragmatic part of the phrenic nerve - morphometry and connections to autonomic ganglia.

    Science.gov (United States)

    Loukas, Marios; Du Plessis, Maira; Louis, Robert G; Tubbs, R Shane; Wartmann, Christopher T; Apaydin, Nihal

    2016-01-01

    Few anatomical textbooks offer much information concerning the anatomy and distribution of the phrenic nerve inferior to the diaphragm. The aim of this study was to identify the subdiaphragmatic distribution of the phrenic nerve, the presence of phrenic ganglia, and possible connections to the celiac plexus. One hundred and thirty formalin-fixed adult cadavers were studied. The right phrenic nerve was found inferior to the diaphragm in 98% with 49.1% displaying a right phrenic ganglion. In 22.8% there was an additional smaller ganglion (right accessory phrenic ganglion). The remaining 50.9% had no grossly identifiable right phrenic ganglion. Most (65.5% of specimens) exhibited plexiform communications with the celiac ganglion, aorticorenal ganglion, and suprarenal gland. The left phrenic nerve inferior to the diaphragm was observed in 60% of specimens with 19% containing a left phrenic ganglion. No accessory left phrenic ganglia were observed. The left phrenic ganglion exhibited plexiform communications to several ganglia in 71.4% of specimens. Histologically, the right phrenic and left phrenic ganglia contained large soma concentrated in their peripheries. Both phrenic nerves and ganglia were closely related to the diaphragmatic crura. Surgically, sutures to approximate the crura for repair of hiatal hernias must be placed above the ganglia in order to avoid iatrogenic injuries to the autonomic supply to the diaphragm and abdomen. These findings could also provide a better understanding of the anatomy and distribution of the fibers of that autonomic supply. © 2015 Wiley Periodicals, Inc.

  19. Pallidal gap junctions-triggers of synchrony in Parkinson's disease?

    NARCIS (Netherlands)

    Schwab, B.C.; Heida, T.; Zhao, Y.; Gils, S.A. van; Wezel, R.J.A. van

    2014-01-01

    Although increased synchrony of the neural activity in the basal ganglia may underlie the motor deficiencies exhibited in Parkinson's disease (PD), how this synchrony arises, propagates through the basal ganglia, and changes under dopamine replacement remains unknown. Gap junctions could play a

  20. Pallidal gap junctions - Triggers of synchrony in Parkinson's disease?

    NARCIS (Netherlands)

    Schwab, B.C.; Heida, Tjitske; Zhao, Yan; van Gils, Stephanus A.; van Wezel, Richard Jack Anton

    2014-01-01

    Although increased synchrony of the neural activity in the basal ganglia may underlie the motor deficiencies exhibited in Parkinson's disease (PD), how this synchrony arises, propagates through the basal ganglia, and changes under dopamine replacement remains unknown. Gap junctions could play a

  1. Basal Cell Carcinoma

    Science.gov (United States)

    ... Kids’ zone Video library Find a dermatologist Basal cell carcinoma Overview Basal cell carcinoma: This skin cancer ... that has received years of sun exposure. Basal cell carcinoma: Overview Basal cell carcinoma (BCC) is the ...

  2. Thoracoscopic sympathectomy ganglia ablation in the management ...

    African Journals Online (AJOL)

    Thoracoscopic sympathectomy ganglia ablation in the management of palmer hyperhidrosis: A decade experience in a single institution. D Kravarusic, E Freud. Abstract. Background: Hyperhidrosis can cause significant professional and social handicaps. Surgery is the preferred treatment modality for hyperhidrosis.

  3. Cross-Excitation in Peripheral Sensory Ganglia Associated with Pain Transmission

    Directory of Open Access Journals (Sweden)

    Katsuhiro Omoto

    2015-08-01

    Full Text Available Despite the absence of synaptic contacts, cross-excitation of neurons in sensory ganglia during signal transmission is considered to be chemically mediated and appears increased in chronic pain states. In this study, we modulated neurotransmitter release in sensory neurons by direct application of type A botulinum neurotoxin (BoNT/A to sensory ganglia in an animal model of neuropathic pain and evaluated the effect of this treatment on nocifensive. Unilateral sciatic nerve entrapment (SNE reduced the ipsilateral hindpaw withdrawal threshold to mechanical stimulation and reduced hindpaw withdrawal latency to thermal stimulation. Direct application of BoNT/A to the ipsilateral L4 dorsal root ganglion (DRG was localized in the cell bodies of the DRG and reversed the SNE-induced decreases in withdrawal thresholds within 2 days of BoNT/A administration. Results from this study suggest that neurotransmitter release within sensory ganglia is involved in the regulation of pain-related signal transmission.

  4. Enlargement of thalamic nuclei in Tourette syndrome

    DEFF Research Database (Denmark)

    Miller, Ann M; Bansal, Ravi; Hao, Xuejun

    2010-01-01

    CONTEXT: The basal ganglia and thalamus together connect in parallel closed-loop circuits with the cortex. Previous imaging studies have shown modifications of the basal ganglia and cortical targets in individuals with Tourette syndrome (TS), but less is known regarding the role of the thalamus...

  5. A comprehensive assessment of resting state networks: bidirectional modification of functional integrity in cerebro-cerebellar networks in dementia

    Directory of Open Access Journals (Sweden)

    Gloria eCastellazzi

    2014-07-01

    Full Text Available In resting state fMRI (rs-fMRI, only functional connectivity (FC reductions in the default mode network (DMN are normally reported as a biomarker for Alzheimer's disease (AD. In this investigation we have developed a comprehensive strategy to characterize the FC changes occurring in multiple networks and applied it in a pilot study of subjects with AD and Mild Cognitive Impairment (MCI, compared to healthy controls (HC. Resting state networks (RSNs were studied in 14 AD (70±6 years, 12 MCI (74±6 years and 16 HC (69±5 years. RSN alterations were present in almost all the 15 recognized RSNs; overall, 474 voxels presented a reduced FC in MCI and 1244 in AD while 1627 voxels showed an increased FC in MCI and 1711 in AD. The RSNs were then ranked according to the magnitude and extension of FC changes (gFC, putting in evidence 6 RSNs with prominent changes: DMN, frontal cortical network (FCN, lateral visual network (LVN, basal ganglia network (BGN, cerebellar network (CBLN, and the anterior insula network (AIN. Nodes, or hubs, showing alterations common to more than one RSN were mostly localized within the prefrontal cortex and the mesial-temporal cortex. The cerebellum showed a unique behavior where voxels of decreased gFC were only found in AD while a significant gFC increase was only found in MCI. The gFC alterations showed strong correlations (p< 0.001 with psychological scores, in particular MMSE and attention/memory tasks. In conclusion, this analysis revealed that the DMN was affected by remarkable FC increases, that FC alterations extended over several RSNs, that derangement of functional relationships between multiple areas occurred already in the early stages of dementia. These results warrant future work to verify whether these represent compensatory mechanisms that exploit a pre-existing neural reserve through plasticity, which evolve in a state of lack of connectivity between different networks with the worsening of the pathology.

  6. Hyper-modulation of brain networks by the amygdala among women with Borderline Personality Disorder: Network signatures of affective interference during cognitive processing.

    Science.gov (United States)

    Soloff, Paul H; Abraham, Kristy; Ramaseshan, Karthik; Burgess, Ashley; Diwadkar, Vaibhav A

    2017-05-01

    Emotion dysregulation is a core characteristic of patients with Borderline Personality Disorder (BPD), and is often attributed to an imbalance in fronto-limbic network function. Hyperarousal of amygdala, especially in response to negative affective stimuli, results in affective interference with cognitive processing of executive functions. Clinical consequences include the impulsive-aggression, suicidal and self-injurious behaviors which characterize BPD. Dysfunctional interactions between amygdala and its network targets have not been well characterized during cognitive task performance. Using psychophysiological interaction analysis (PPI), we mapped network profiles of amygdala interaction with key regulatory regions during a Go No-Go task, modified to use negative, positive and neutral Ekman faces as targets. Fifty-six female subjects, 31 BPD and 25 healthy controls (HC), completed the affectively valenced Go No-Go task during fMRI scanning. In the negative affective condition, the amygdala exerted greater modulation of its targets in BPD compared to HC subjects in Rt. OFC, Rt. dACC, Rt. Parietal cortex, Rt. Basal Ganglia, and Rt. dlPFC. Across the spectrum of affective contrasts, hypermodulation in BPD subjects observed the following ordering: Negative > Neutral > Positive contrast. The amygdala seed exerted modulatory effects on specific target regions important in processing response inhibition and motor impulsiveness. The vulnerability of BPD subjects to affective interference with impulse control may be due to specific network dysfunction related to amygdala hyper-arousal and its effects on prefrontal regulatory regions such as the OFC and dACC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Uncovering the Forgotten Effect of Superior Cervical Ganglia on Pupil Diameter in Subarachnoid Hemorrhage: An Experimental Study.

    Science.gov (United States)

    Onen, Mehmet Resid; Yilmaz, Ilhan; Ramazanoglu, Leyla; Aydin, Mehmet Dumlu; Keles, Sadullah; Baykal, Orhan; Aydin, Nazan; Gundogdu, Cemal

    2018-01-01

    To investigate the relationship between neuron density of the superior cervical sympathetic ganglia and pupil diameter in subarachnoid hemorrhage. This study was conducted on 22 rabbits; 5 for the baseline control group, 5 for the SHAM group and 12 for the study group. Pupil diameters were measured via sunlight and ocular tomography on day 1 as the control values. Pupil diameters were re-measured after injecting 0.5 cc saline to the SHAM group, and autologous arterial blood into the cisterna magna of the study group. After 3 weeks, the brain, superior cervical sympathetic ganglia and ciliary ganglia were extracted with peripheral tissues bilaterally and examined histopathologically. Pupil diameters were compared with neuron densities of the sympathetic ganglia and ciliary ganglia which were examined using stereological methods. Baseline values were; normal pupil diameter 7.180±620 ?m and mean neuron density of the superior cervical sympathetic ganglia 6.321±510/mm3, degenerated neuron density of ciliary ganglia was 5±2/mm3 after histopathological examination in the control group. These values were measured as 6.850±578 ?m, 5.950±340/mm3 and 123±39/mm3 in the SHAM group and 9.910±840 ?m, 7.950±764/mm3 and 650±98/mm3 in the study group. A linear relationship was determined between neuron density of the superior cervical sympathetic ganglia and pupil diameters (p < 0.005). Degenerated ciliary ganglia neuron density had an inverse effect on pupil diameters in all groups (p < 0.0001). Highly degenerated neuron density of the ciliary ganglion is not responsible for pupil dilatation owing to parasympathetic pupilloconstrictor palsy, but high neuron density of the pupillodilatatory superior cervical sympathetic ganglia should be considered an important factor for pupil dilatation.

  8. The neuropsychiatry of hyperkinetic movement disorders: insights from neuroimaging into the neural circuit bases of dysfunction.

    Science.gov (United States)

    Hayhow, Bradleigh D; Hassan, Islam; Looi, Jeffrey C L; Gaillard, Francesco; Velakoulis, Dennis; Walterfang, Mark

    2013-01-01

    Movement disorders, particularly those associated with basal ganglia disease, have a high rate of comorbid neuropsychiatric illness. We consider the pathophysiological basis of the comorbidity between movement disorders and neuropsychiatric illness by 1) reviewing the epidemiology of neuropsychiatric illness in a range of hyperkinetic movement disorders, and 2) correlating findings to evidence from studies that have utilized modern neuroimaging techniques to investigate these disorders. In addition to diseases classically associated with basal ganglia pathology, such as Huntington disease, Wilson disease, the neuroacanthocytoses, and diseases of brain iron accumulation, we include diseases associated with pathology of subcortical white matter tracts, brain stem nuclei, and the cerebellum, such as metachromatic leukodystrophy, dentatorubropallidoluysian atrophy, and the spinocerebellar ataxias. Neuropsychiatric symptoms are integral to a thorough phenomenological account of hyperkinetic movement disorders. Drawing on modern theories of cortico-subcortical circuits, we argue that these disorders can be conceptualized as disorders of complex subcortical networks with distinct functional architectures. Damage to any component of these complex information-processing networks can have variable and often profound consequences for the function of more remote neural structures, creating a diverse but nonetheless rational pattern of clinical symptomatology.

  9. Increasing Dopamine Levels in the Brain Improves Feedback-Based Procedural Learning in Healthy Participants: An Artificial-Grammar-Learning Experiment

    Science.gov (United States)

    de Vries, Meinou H.; Ulte, Catrin; Zwitserlood, Pienie; Szymanski, Barbara; Knecht, Stefan

    2010-01-01

    Recently, an increasing number of studies have suggested a role for the basal ganglia and related dopamine inputs in procedural learning, specifically when learning occurs through trial-by-trial feedback (Shohamy, Myers, Kalanithi, & Gluck. (2008). "Basal ganglia and dopamine contributions to probabilistic category learning." "Neuroscience and…

  10. A review of brain circuitries involved in stuttering

    Directory of Open Access Journals (Sweden)

    Anna eCraig-Mcquaide

    2014-11-01

    Full Text Available Stuttering has been the subject of much research, nevertheless its aetiology remains incompletely understood. This article presents a critical review of the literature on stuttering, with particular reference to the role of the basal ganglia. Neuroimaging and lesion studies of developmental and acquired stuttering, as well as pharmacological and genetic studies are discussed. Evidence that stuttering of structural and functional changes in the basal ganglia in those who stutter indicates that this motor speech disorder is due, at least in part, to abnormal basal ganglia cues for the initiation and termination of articulatory movements. Studies discussed provide evidence of a dysfunctional hyperdopaminergic state of the thalamocortical pathways underlying speech motor control in stuttering. Evidence that stuttering can improve, worsen or recur following deep brain stimulation (DBS for other indications is presented in order to emphasise the role of basal ganglia in stuttering. Further research is needed to fully elucidate the pathophysiology of this speech disorder, which is associated with significant social isolation.

  11. Evidence for anomalous network connectivity during working memory encoding in schizophrenia: an ICA based analysis.

    Directory of Open Access Journals (Sweden)

    Shashwath A Meda

    2009-11-01

    Full Text Available Numerous neuroimaging studies report abnormal regional brain activity during working memory performance in schizophrenia, but few have examined brain network integration as determined by "functional connectivity" analyses.We used independent component analysis (ICA to identify and characterize dysfunctional spatiotemporal networks in schizophrenia engaged during the different stages (encoding and recognition of a Sternberg working memory fMRI paradigm. 37 chronic schizophrenia and 54 healthy age/gender-matched participants performed a modified Sternberg Item Recognition fMRI task. Time series images preprocessed with SPM2 were analyzed using ICA. Schizophrenia patients showed relatively less engagement of several distinct "normal" encoding-related working memory networks compared to controls. These encoding networks comprised 1 left posterior parietal-left dorsal/ventrolateral prefrontal cortex, cingulate, basal ganglia, 2 right posterior parietal, right dorsolateral prefrontal cortex and 3 default mode network. In addition, the left fronto-parietal network demonstrated a load-dependent functional response during encoding. Network engagement that differed between groups during recognition comprised the posterior cingulate, cuneus and hippocampus/parahippocampus. As expected, working memory task accuracy differed between groups (p<0.0001 and was associated with degree of network engagement. Functional connectivity within all three encoding-associated functional networks correlated significantly with task accuracy, which further underscores the relevance of abnormal network integration to well-described schizophrenia working memory impairment. No network was significantly associated with task accuracy during the recognition phase.This study extends the results of numerous previous schizophrenia studies that identified isolated dysfunctional brain regions by providing evidence of disrupted schizophrenia functional connectivity using ICA within

  12. Multi-threshold white matter structural networks fusion for accurate diagnosis of Tourette syndrome children

    Science.gov (United States)

    Wen, Hongwei; Liu, Yue; Wang, Shengpei; Li, Zuoyong; Zhang, Jishui; Peng, Yun; He, Huiguang

    2017-03-01

    Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder. To date, TS is still misdiagnosed due to its varied presentation and lacking of obvious clinical symptoms. Therefore, studies of objective imaging biomarkers are of great importance for early TS diagnosis. As tic generation has been linked to disturbed structural networks, and many efforts have been made recently to investigate brain functional or structural networks using machine learning methods, for the purpose of disease diagnosis. However, few studies were related to TS and some drawbacks still existed in them. Therefore, we propose a novel classification framework integrating a multi-threshold strategy and a network fusion scheme to address the preexisting drawbacks. Here we used diffusion MRI probabilistic tractography to construct the structural networks of 44 TS children and 48 healthy children. We ameliorated the similarity network fusion algorithm specially to fuse the multi-threshold structural networks. Graph theoretical analysis was then implemented, and nodal degree, nodal efficiency and nodal betweenness centrality were selected as features. Finally, support vector machine recursive feature extraction (SVM-RFE) algorithm was used for feature selection, and then optimal features are fed into SVM to automatically discriminate TS children from controls. We achieved a high accuracy of 89.13% evaluated by a nested cross validation, demonstrated the superior performance of our framework over other comparison methods. The involved discriminative regions for classification primarily located in the basal ganglia and frontal cortico-cortical networks, all highly related to the pathology of TS. Together, our study may provide potential neuroimaging biomarkers for early-stage TS diagnosis.

  13. A case for motor network contributions to schizophrenia symptoms: Evidence from resting-state connectivity.

    Science.gov (United States)

    Bernard, Jessica A; Goen, James R M; Maldonado, Ted

    2017-09-01

    Though schizophrenia (SCZ) is classically defined based on positive symptoms and the negative symptoms of the disease prove to be debilitating for many patients, motor deficits are often present as well. A growing literature highlights the importance of motor systems and networks in the disease, and it may be the case that dysfunction in motor networks relates to the pathophysiology and etiology of SCZ. To test this and build upon recent work in SCZ and in at-risk populations, we investigated cortical and cerebellar motor functional networks at rest in SCZ and controls using publically available data. We analyzed data from 82 patients and 88 controls. We found key group differences in resting-state connectivity patterns that highlight dysfunction in motor circuits and also implicate the thalamus. Furthermore, we demonstrated that in SCZ, these resting-state networks are related to both positive and negative symptom severity. Though the ventral prefrontal cortex and corticostriatal pathways more broadly have been implicated in negative symptom severity, here we extend these findings to include motor-striatal connections, as increased connectivity between the primary motor cortex and basal ganglia was associated with more severe negative symptoms. Together, these findings implicate motor networks in the symptomatology of psychosis, and we speculate that these networks may be contributing to the etiology of the disease. Overt motor deficits in SCZ may signal underlying network dysfunction that contributes to the overall disease state. Hum Brain Mapp 38:4535-4545, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Abnormal CT scan in a patient with Gilles de la Tourette syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kjaer, M.; Boris, P.; Gadegaard Hansen, L.

    1986-07-01

    In a 28-year-old woman, who presented multiple muscular and vocal tics, typical of Gilles de la Tourette syndrome, CT scans revealed a large porencephalic cyst in the right hemisphere involving the right basal ganglia, as well as contrast enhancement in the region of the left basal ganglia.

  15. Intramuscular ganglia arising from the superior tibiofibular joint: CT and MR evaluation

    International Nuclear Information System (INIS)

    Bianchi, S.; Abdelwahab, I.F.; Kenan, S.; Zwass, A.; Ricci, G.; Palomba, G.

    1995-01-01

    To evaluate the role of magnetic resonance imaging (MRI) and computed tomography (CT) in the diagnosis of intramuscular ganglia (IMG) that arise from the superior tibiofibular joint (STFJ). Our series consisted of three men and three women. Four patients were studied by MRI, one by CT only, and two by both modalities. Contrast was used in one of the two patients studied by CT. MRI was obtained in at least two orthogonal planes to demonstrate the relation of the ganglia to STFJ. The MR and CT appearance of these ganglia was basically that of a well-defined soft tissue mass with low attenuation on CT images consistent with the presence of fluid. On MR studies, they had an isointense signal on T1-weighted images and a homogenous high-intensity signal on T2-weighted images. MRI demonstrated the attachment of these ganglia to the STFJ. CT and MRI were effective, noninvasive modalities in the evaluation of IMG. The imaging features on both modalities were consistent with the presence of fluid-containing lesions that had close proximity and were attached to the STFJ. The combination of location and the fluid consistency of these lesions facilitated the diagnosis. (orig.)

  16. A multivariate analysis of age-related differences in functional networks supporting conflict resolution.

    Science.gov (United States)

    Salami, Alireza; Rieckmann, Anna; Fischer, Håkan; Bäckman, Lars

    2014-02-01

    Functional neuroimaging studies demonstrate age-related differences in recruitment of a large-scale attentional network during interference resolution, especially within dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). These alterations in functional responses have been frequently observed despite equivalent task performance, suggesting age-related reallocation of neural resources, although direct evidence for a facilitating effect in aging is sparse. We used the multi-source interference task and multivariate partial-least-squares to investigate age-related differences in the neuronal signature of conflict resolution, and their behavioral implications in younger and older adults. There were interference-related increases in activity, involving fronto-parietal and basal ganglia networks that generalized across age. In addition an age-by-task interaction was observed within a distributed network, including DLPFC and ACC, with greater activity during interference in the old. Next, we combined brain-behavior and functional connectivity analyses to investigate whether compensatory brain changes were present in older adults, using DLPFC and ACC as regions of interest (i.e. seed regions). This analysis revealed two networks differentially related to performance across age groups. A structural analysis revealed age-related gray-matter losses in regions facilitating performance in the young, suggesting that functional reorganization may partly reflect structural alterations in aging. Collectively, these findings suggest that age-related structural changes contribute to reductions in the efficient recruitment of a youth-like interference network, which cascades into instantiation of a different network facilitating conflict resolution in elderly people. © 2013. Published by Elsevier Inc. All rights reserved.

  17. Primary brain lymphoma presenting as Parkinson's disease

    International Nuclear Information System (INIS)

    Sanchez-Guerra, M.; Leno, C.; Berciano, J.; Cerezal, L.; Diez, C.; Figols, J.

    2001-01-01

    Neoplasm is an uncommon cause of a parkinsonian syndrome. We report a woman with primary brain B-cell lymphoma presenting as Parkinson's disease. After 1 year of the illness, CT and MRI showed lesions without mass effect in the basal ganglia and corpus callosum. The patient did not respond to levodopa and right cerebellar and brain-stem signs appeared, which prompted further neuroimaging, showing an increase in size of the lesions and a right cerebellar and pontine mass. Stereotactic biopsy of the basal ganglia showed high-grade B-cell lymphoma. Despite the basal ganglia frequently being involved in lymphoma of the brain, presentation with typical or atypical parkinsonism is exceptional. (orig.)

  18. Increased dependence of action selection on recent motor history in Parkinson's disease.

    NARCIS (Netherlands)

    Helmich, R.C.G.; Aarts, E.; Lange, F.P. de; Bloem, B.R.; Toni, I.

    2009-01-01

    It is well known that the basal ganglia are involved in switching between movement sequences. Here we test the hypothesis that this contribution is an instance of a more general role of the basal ganglia in selecting actions that deviate from the context defined by the recent motor history, even

  19. Increased Dependence of Action Selection on Recent Motor History in Parkinson's Disease

    NARCIS (Netherlands)

    Helmich, R.C.G.; Aarts, E.; Lange, F.P. de; Bloem, B.R.; Toni, I.

    2009-01-01

    It is well known that the basal ganglia are involved in switching between movement sequences. Here we test the hypothesis that this contribution is an instance of a more general role of the basal ganglia in selecting actions that deviate from the context defined by the recent motor history, even

  20. Abnormal CT scan in a patient with Gilles de la Tourette syndrome

    International Nuclear Information System (INIS)

    Kjaer, M.; Boris, P.; Gadegaard Hansen, L.

    1986-01-01

    In a 28-year-old woman, who presented multiple muscular and vocal tics, typical of Gilles de la Tourette syndrome, CT scans revealed a large porencephalic cyst in the right hemisphere involving the right basal ganglia, as well as contrast enhancement in the region of the left basal ganglia. (orig.)