WorldWideScience

Sample records for basal ganglia calcification

  1. MRI of the basal ganglia calcification

    International Nuclear Information System (INIS)

    MR imaging was performed for 11 patients (9 in Down's syndrome and 2 in idiopathic intracerebral calcification) who showed calcifications in bilateral basal ganglia on CT. High signal intensity in the basal ganglia was found only in one patient with idiopathic intracerebral calcification on T1-weighted image. The calcified areas of all patients in Down's syndrome did not show high signal intensity on T1-weighted image. The exact reasons why MRI exhibits the different signal intensities in calcified tissue on T1-weighted image are unknown. Further clinical investigations will be needed. (author)

  2. Prevalence and clinical relevance of idiopathic basal ganglia calcification

    International Nuclear Information System (INIS)

    With increasing CT examinations of the cerebrum, the discovery of basal ganglia calcification becomes more frequent. In order to correlate these calcifications to the symptoms believed to be accompanied with Fahr's disease 2318 cranial CT scans were examined. There was an overall incidence of basal ganglia calcification of 12.5%. The most frequent location was the globus pallidus (96.4%). In the examined population there was no correlation found between the calcifications and symptoms having been described with striopallidentate calcifications. (orig.)

  3. Basal ganglia calcification on computed tomography in systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Shohei; Tani, Kenji; Ishigatsubo, Yoshiaki and others

    1988-09-01

    The development of basal ganglia calcification was studied in 85 patients with systemic lupus erythematosus (SLE) by computed tomography (CT). Bilateral calcification of the basal ganglia was found to occur in 5 patients (5.9 %) with SLE, but was not seen in patients with rheumatoid arthritis and progressive systemic sclerosis. All were female with a mean age of 42 years (range 29 - 49). The patients with calcification of the basal ganglia had neurological symptoms, such as psychiatric problems (3 cases), grand mal seizures (1 case), CSF abnormalities (2 cases), and EEG changes (4 cases). There were significantly higher incidences of alopecia, cutaneous vasculitis, leukopenia, and thrombocytopenia in the group with calcifications than those in the group with normal CT findings. Circulating immune complexes were detected and LE tests were positive in 2 patients. Endocrinological examination showed no abnormality in any. We suggest that basal ganglia calcification in SLE might be related to cerebral vasculitis.

  4. Basal ganglia calcification on computed tomography in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    The development of basal ganglia calcification was studied in 85 patients with systemic lupus erythematosus (SLE) by computed tomography (CT). Bilateral calcification of the basal ganglia was found to occur in 5 patients (5.9 %) with SLE, but was not seen in patients with rheumatoid arthritis and progressive systemic sclerosis. All were female with a mean age of 42 years (range 29 - 49). The patients with calcification of the basal ganglia had neurological symptoms, such as psychiatric problems (3 cases), grand mal seizures (1 case), CSF abnormalities (2 cases), and EEG changes (4 cases). There were significantly higher incidences of alopecia, cutaneous vasculitis, leukopenia, and thrombocytopenia in the group with calcifications than those in the group with normal CT findings. Circulating immune complexes were detected and LE tests were positive in 2 patients. Endocrinological examination showed no abnormality in any. We suggest that basal ganglia calcification in SLE might be related to cerebral vasculitis. (author)

  5. Calcification of the basal ganglia following carbon monoxide poisoning

    International Nuclear Information System (INIS)

    Minor calcification of the basal ganglia was demonstrated by computed tomography in a woman, aged 66, who had survived carbon monoxide poisoning 48 years earlier. Extensive neuropathological investigations have demonstrated calcified lesions of the basal ganglia in a number of conditions, but their frequency and topographic distribution in vivo remain to be elucidated, by means of CT. (orig.)

  6. Pseudohypoparathyroidism, parkinsonism syndrome, with no basal ganglia calcification.

    OpenAIRE

    Evans, B K; Donley, D K

    1988-01-01

    A 20 year old woman with pseudohypoparathyroidism, Parkinsonism and no basal ganglia calcifications shown by computed tomography is reported. She has typical features of pseudohypoparathyroidism and biochemical evidence of end-organ resistance to parathyroid hormone. She is mentally retarded and has tremor, rigidity, bradykinesia, and stooped posture. The cause of Parkinsonism in pseudohypoparathyroidism is thought to be basal ganglia calcification. This patient must have another pathophysiol...

  7. Genetics Home Reference: familial idiopathic basal ganglia calcification

    Science.gov (United States)

    ... Wang QK, Liu JY. Identification of a novel genetic locus on chromosome 8p21.1-q11.23 for idiopathic ... DH. Analysis of candidate genes at the IBGC1 locus associated with idiopathic basal ... DH. Genetic heterogeneity in familial idiopathic basal ganglia calcification (Fahr ...

  8. Basal ganglia calcification on CT-scanning in children with acute lymphocytic leukemia

    International Nuclear Information System (INIS)

    Calcification occurring in the basal ganglia in children with acute hympocytic leukemia following therapy is uncommon and to the best of our knowledge has not been reported prior to therapy. Eleven cases of bilateral symmetrical calcification in the basal ganglia were noted in 2350 CT scans, two being in children with acute lymphocytic leukemia. In one of the two cases, calcification was present prior to therapy. (orig.)

  9. Computed tomography of basal ganglia calcifications in pseudo- and idiopathic hypoparathyroidism

    International Nuclear Information System (INIS)

    It is well known that patients with pseudo (PHP)- and idiopathic (IHP) hypoparathyroidism are frequently associated with intracranial calcifications. The relative sensitivity of computed tomography (CT) and conventional skull radiography in detecting basal ganglia calcifications was studied in two patients with PHP and six with IHP. CT was more sensitive: the detection rate was 71 % (5/7) for CT and 14 % (1/7) for skull radiography. Furthermore, patients with more prolonged hypocalcemia showed a higher incidence of calcifications. Thus, CT was useful as a diagnostic technique in the early detection of calcified basal ganglia. (author)

  10. Developmental Venous Anomaly With Asymmetrical Basal Ganglia Calcification: Two Case Reports and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Sarp

    2015-07-01

    Full Text Available Developmental venous anomaly (DVA is a common lesion formerly known as venous angioma. DVAs drain normal brain parenchyma; however, parenchymal abnormalities surrounding DVAs have been reported. Unilateral putamen and caudate calcification in the drainage territory of DVAs has so far been reported in 7 cases, all with deep venous drainage. We present two additional cases of DVAs, one with superficial and the other one with deep venous drainage, associated with basal ganglia calcifications. We emphasize that DVAs should be in the differential diagnosis of unilateral basal ganglia calcifications.

  11. Basal ganglia calcification on CT in adult patients with Down's syndrome

    International Nuclear Information System (INIS)

    Fourteen adult cases with Down's syndrome were examined on cranial CT scan, and 5 of them (35.7 %) showed basal ganglia calcification (BGC). The incidence of BGC in the present cases was very high in comparison with the one in general population (0.3 ∼ 1.5 %). Abnormalities of calcium metabolism or dysfunctions of the basal ganglia were absent in each case with BGC. Calcifications were exclusively located in globus pallidus. It is considered that BGC found in the present cases may be due to the premature aging process in Down's syndrome. (author)

  12. Massive calcification in basal ganglia, thalamus and cerebellum caused by postoperative hypoparathyroidism

    International Nuclear Information System (INIS)

    The depicted case is of a 65 year old woman, who was admitted to hospital with complaints of excess sweating, dizziness and loss of consciousness. Symptomatic epilepsy was established after examination from a neurologist. A CT scan showed hyperdense symmetrical striation of the hemisphere of the small brain (parasagittal); symmetrical double-sided calcifications in the caudate nucleus, globus pallidus, thalamus and medial to the capsula interna; snake-like calcifications of the sulcus (occipital, parasagittai). Paraclinical tests have found hypocalcemia and hypoparathyroidism. Past illnesses: resection of the thyroid due to a nodose struma 20 years before. Key words: Calcifications in Basal Ganglia. Calcifications in the Cerebrum. Hypoparathyroidism

  13. A morphometric CT study of Down's syndrome showing small posterior fossa and calcification of basal ganglia

    International Nuclear Information System (INIS)

    We report characteristic and morphometric changes of cranial computed tomography (CT) with increasing age in 56 patients with Down's syndrome aged from 0 month to 37 years. Patients were compared with 142 normal controls aged 0 to 59 years. Width of ventricles, Sylvian fissures, posterior fossa, pons and cisterna magna were measured on CT. The incidences of the cavum septi pellucidi, cavum vergae and cavum veli interpositi and high density in the basal ganglia were examined. There was high incidence (10.7%) of bilateral calcification of basal ganglia in Down's syndrome, although that of pineal body and choroid plexus calcification was similar in Down's syndrome and controls. Basal ganglia calcification is more frequently seen in young Down's syndrome and may be related to the premature aging characteristic of Down's syndrome. The CT in Down's syndrome showed relatively small posterior fossa, small cerebellum, small brain stem and relatively large Sylvian fissures in those under one year of age. There was a high frequency of midline cava and large cisterna magna. There were no significant atrophic changes on CT except after the fifth decade comparing with controls. (orig.)

  14. Calcification of the bilateral basal ganglia after radiation therapy for childhood brain tumors

    International Nuclear Information System (INIS)

    Calcification of the basal ganglia subsequent to radiation therapy for childhood brain tumors has rarely been reported. Three cases of this calcification subsequent to radiation are presented here. Case 1 is a 7 year-old boy who underwent irradiation of 5000 rads locally for craniopharyngioma at the age of 4 years. Case 2 is a 4 year-old boy who was treated with irradiation of 4500 rads locally for cerebellar medulloblastoma at the age of 1 year. Case 3 is a 15 year-old girl who was treated with irradiation of 5000 rads to the brain and 3000 rads locally for suprasellar germinoma at the age of 11 years. In all these cases, the interval between radiation and evidence of calcification as detected only by CT scan, was more than 3 years and 2 cases are experiencing mild mental retardation. These findings suggest the possibility of long-term complications due to radiation therapy. (author)

  15. Clinical studies of the calcification of the basal ganglia as disclosed by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Node, Yoji; Nakazawa, Shozo (Nippon Medical School, Tokyo)

    1983-04-01

    One hundred and twenty-nine of the 12,645 patients (1.0%) were found to have attenuating changes suggesting calcification of the basal ganglia. Thirty-seven of those patients were male and 92 were female. The calcification was bilateral and grossly symmetric in 108 of these patients (83.7%), while it was unilateral in 21 (16.3%). In the unilaterally located cases, 15 were on the left side and 6 were on the right side. In 128 of these patients (99.2%), calcification was located in the globus pallidus. Only one patient, whose diagnosis was hypoparathyroidism, had calcification in both the globus pallidus and the head of the caudate nucleus. The patients' ages ranged from 10 to 85 years (mean, 58), but 88.4% of the patients were more than 40 years old at the time of the CT scanning. The attenuation values of the lesions varied from 35 to 375 EMI units (mean, 55.7). Skull radiographs were performed in 120 of the 129 patients. Calcification was detected in only one patient, a 76-year-old woman, whose diagnosis was myasthenia gravis. The clinical diagnoses of the 129 patients were as follows: 37, headache; 22, cerebrovascular diseases (19, occlusive cerebrovascular diseases); 20, vertigo and/or tinnitus; 12, psychiatric disorders; 5, Parkinson's Syndrome; 2, hypopara thyroidism; 2, Fahr's disease; 2, familial basal ganglia calcification; 2, epilepsy, and 25, miscellaneous (including carcinoma, brain tumor, and trauma). Nervous system abnormalities were observed in 41 of the 129 patients (31.2%). Mental signs, such as disturbance of recent memory, mental retardation, and dementia, were noted in 14 patients. Movement disorders were noted in 13 patients. Other nervous-system abnormalities were sensory disturbances (5 patients) and seizures (4 patients). Abnormal EEG activities were noted in 9 patients; three patients showed epileptic activity, and six had a pathologically slow rhythm.

  16. Clinical studies of the calcification of the basal ganglia as disclosed by computed tomography

    International Nuclear Information System (INIS)

    One hundred and twenty-nine of the 12,645 patients (1.0%) were found to have attenuating changes suggesting calcification of the basal ganglia. Thirty-seven of those patients were male and 92 were female. The calcification was bilateral and grossly symmetric in 108 of these patients (83.7%), while it was unilateral in 21 (16.3%). In the unilaterally located cases, 15 were on the left side and 6 were on the right side. In 128 of these patients (99.2%), calcification was located in the globus pallidus. Only one patient, whose diagnosis was hypoparathyroidism, had calcification in both the globus pallidus and the head of the caudate nucleus. The patients' ages ranged from 10 to 85 years (mean, 58), but 88.4% of the patients were more than 40 years old at the time of the CT scanning. The attenuation values of the lesions varied from 35 to 375 EMI units (mean, 55.7). Skull radiographs were performed in 120 of the 129 patients. Calcification was detected in only one patient, a 76-year-old woman, whose diagnosis was myasthenia gravis. The clinical diagnoses of the 129 patients were as follows: 37, headache; 22, cerebrovascular diseases (19, occlusive cerebrovascular diseases); 20, vertigo and/or tinnitus; 12, psychiatric disorders; 5, Parkinson's Syndrome; 2, hypopara thyroidism; 2, Fahr's disease; 2, familial basal ganglia calcification; 2, epilepsy, and 25, miscellaneous (including carcinoma, brain tumor, and trauma). Nervous system abnormalities were observed in 41 of the 129 patients (31.2%). Mental signs, such as disturbance of recent memory, mental retardation, and dementia, were noted in 14 patients. Movement disorders were noted in 13 patients. Other nervous-system abnormalities were sensory disturbances (5 patients) and seizures (4 patients). Abnormal EEG activities were noted in 9 patients; three patients showed epileptic activity, and six had a pathologically slow rhythm. (J.P.N.)

  17. Familial idiopathic basal ganglia calcification: Histopathologic features of an autopsied patient with an SLC20A2 mutation.

    Science.gov (United States)

    Kimura, Tadashi; Miura, Takeshi; Aoki, Kenju; Saito, Shoji; Hondo, Hiroaki; Konno, Takuya; Uchiyama, Akio; Ikeuchi, Takeshi; Takahashi, Hitoshi; Kakita, Akiyoshi

    2016-08-01

    Idiopathic basal ganglia calcification (IBGC), or Fahr's disease, is a neurological disorder characterized by widespread calcification in the brain. Recently, several causative genes have been identified, but the histopathologic features of the brain lesions and expression of the gene products remain unclear. Here, we report the clinical and autopsy features of a 62-year-old Japanese man with familial IBGC, in whom an SLC20A2 mutation was identified. The patient developed mild cognitive impairment and parkinsonism. A brain CT scan demonstrated abnormal calcification in the bilateral basal ganglia, thalami and cerebellum. An MRI study at this point revealed glioblastoma, and the patient died 6 months later. At autopsy, symmetric calcification in the basal ganglia, thalami, cerebellar white matter and deeper layers of the cerebral cortex was evident. The calcification was observed in the tunica media of small arteries, arterioles and capillaries, but not in veins. Immunohistochemistry using an antibody against type III sodium-dependent phosphate transporter 2 (PiT-2), the SLC20A2 product, demonstrated that astrocytic processes were labeled in several regions in control brains, whereas in the patient, reactivity in astrocytes was apparently weak. Immunoblotting demonstrated a marked decrease of PiT-2 in the patient. There are few autopsy reports of IBGC patients with confirmation of the genetic background. The autopsy features seem informative for better understanding the histogenesis of IBGC lesions. PMID:26635128

  18. Loss of function of Slc20a2 associated with familial idiopathic basal ganglia calcification in humans causes brain calcifications in mice

    DEFF Research Database (Denmark)

    Jensen, Nina; Daa Schrøder, Henrik; Kildall Hejbøl, Eva; Füchtbauer, Ernst-Martin; de Oliveira, João Ricardo Mendes; Pedersen, Lene

    2013-01-01

    Familial idiopathic basal ganglia calcification (FIBGC) is a neurodegenerative disorder with neuropsychiatric and motor symptoms. Deleterious mutations in SLC20A2, encoding the type III sodium-dependent phosphate transporter 2 (PiT2), were recently linked to FIBGC in almost 50 % of the families...

  19. Chromosome 10p deletion in a patient with hypoparathyroidism, severe mental retardation, autism and basal ganglia calcifications.

    Science.gov (United States)

    Verri, Annapia; Maraschio, Paola; Devriendt, Koen; Uggetti, Carla; Spadoni, Emanuela; Haeusler, Edward; Federico, Antonio

    2004-01-01

    Chromosome 10p terminal deletions have been associated with a DiGeorge like phenotype. Haploinsufficiency of the region 10p14-pter, results in hypoparathyroidism, sensorineural deafness, renal anomaly, that is the triad that features the HDR syndrome. Van Esch (2000) identified in a HDR patient, within a 200 kb critical region, the GATA3 gene, a transcription factor involved in the embryonic development of the parathyroids, auditory system and kidneys. We describe a new male patient, 33-year-old, with 10p partial deletion affected by hypocalcemia, basal ganglia calcifications and a severe autistic syndrome associated with mental retardation. Neurologically he presented severe impairment of language, hypotonia, clumsiness and a postural dystonic attitude. A peripheral involvement of auditory pathways was documented by auditory evoked potentials alterations. CT scan documented basal ganglia calcifications. Hyperintensity of the lentiform nuclei was evident at the MRI examination. Renal ultrasound scan was normal. Haploinsufficiency for GATA3 gene was documented with FISH analysis using cosmid clone 1.2. Phenotypic spectrum observed in del (10p) is more severe than the classical DGS spectrum. GATA3 has been found to regulate the development of serotoninergic neurons. A serotoninergic dysfunction may be linked with autism in this patient. PMID:15337474

  20. Autoimmune basal ganglia disorders.

    Science.gov (United States)

    Dale, Russell C; Brilot, Fabienne

    2012-11-01

    The basal ganglia are deep nuclei in the brain that include the caudate, putamen, globus pallidus, and substantia nigra. Pathological processes involving the basal ganglia often result in disorders of movement and behavior. A number of different autoimmune disorders predominantly involve the basal ganglia and can result in movement and psychiatric disorders. The classic basal ganglia autoimmune disorder is Sydenham chorea, a poststreptococcal neuropsychiatric disorder. Resurgence in the interest in Sydenham chorea is the result of the descriptions of other poststreptococcal neuropsychiatric disorders including tics and obsessive-compulsive disorder, broadly termed pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection. Encephalitic processes affecting the basal ganglia are also described including the syndromes basal ganglia encephalitis, encephalitis lethargica, and bilateral striatal necrosis. Last, systemic autoimmune disorders such as systemic lupus erythematosus and antiphospholipid syndrome can result in chorea or parkinsonism. Using paradigms learned from other autoantibody associated disorders, the authors discuss the autoantibody hypothesis and the role of systemic inflammation in autoimmune basal ganglia disorders. Identification of these entities is important as the clinician has an increasing therapeutic repertoire to modulate or suppress the aberrant immune system. PMID:22832771

  1. [Anti-basal ganglia antibody].

    Science.gov (United States)

    Hayashi, Masaharu

    2013-04-01

    Sydenham's chorea (SC) is a major manifestation of rheumatic fever, and the production of anti-basal ganglia antibodies (ABGA) has been proposed in SC. The pathogenesis is hypothesized as autoimmune targeting of the basal ganglia via molecular mimicry, triggered by streptococcal infection. The spectrum of diseases in which ABGA may be involved has been broadened to include other extrapyramidal movement disorders, such as tics, dystonia, and Parkinsonism, as well as other psychiatric disorders. The autoimmune hypothesis in the presence and absence of ABGA has been suggested in Tourette's syndrome (TS), early onset obsessive-compulsive disorders (OCD), and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS). Recently, the relationship between ABGA and dopamine neurons in the basal ganglia has been examined, and autoantibodies against dopamine receptors were detected in the sera from patients with basal ganglia encephalitis. In Japan, the occurrence of subacute encephalitis, where patients suffer from episodes of altered behavior and involuntary movements, has increased. Immune-modulating treatments are effective, indicating the involvement of an autoimmune mechanism. We aimed to detect the anti-neuronal autoantibodies in such encephalitis, using immunohistochemical assessment of patient sera. The sera from patients showing involuntary movements had immunoreactivity for basal ganglia neurons. Further epitopes for ABGA will be investigated in basal ganglia disorders other than SC, TS, OCD, and PANDAS. PMID:23568985

  2. Basal ganglia lesions in children and adults

    International Nuclear Information System (INIS)

    The term “basal ganglia” refers to caudate and lentiform nuclei, the latter composed of putamen and globus pallidus, substantia nigra and subthalamic nuclei and these deep gray matter structures belong to the extrapyramidal system. Many diseases may present as basal ganglia abnormalities. Magnetic resonance imaging (MRI) and computed tomography (CT) – to a lesser degree – allow for detection of basal ganglia injury. In many cases, MRI alone does not usually allow to establish diagnosis but together with the knowledge of age and circumstances of onset and clinical course of the disease is a powerful tool of differential diagnosis. The lesions may be unilateral: in Rassmussen encephalitis, diabetes with hemichorea/hemiballism and infarction or – more frequently – bilateral in many pathologic conditions. Restricted diffusion is attributable to infarction, acute hypoxic–ischemic injury, hypoglycemia, Leigh disease, encephalitis and CJD. Contrast enhancement may be seen in cases of infarction and encephalitis. T1-hyperintensity of the lesions is uncommon and may be observed unilaterally in case of hemichorea/hemiballism and bilaterally in acute asphyxia in term newborns, in hypoglycemia, NF1, Fahr disease and manganese intoxication. Decreased signal intensity on GRE/T2*-weighted images and/or SWI indicating iron, calcium or hemosiderin depositions is observed in panthotenate kinase-associated neurodegeneration, Parkinson variant of multiple system atrophy, Fahr disease (and other calcifications) as well as with the advancing age. There are a few papers in the literature reviewing basal ganglia lesions. The authors present a more detailed review with rich iconography from the own archive

  3. Basal ganglia lesions in children and adults

    Energy Technology Data Exchange (ETDEWEB)

    Bekiesinska-Figatowska, Monika, E-mail: m.figatowska@mp.pl [Department of Diagnostic Imaging, Institute of Mother and Child, ul. Kasprzaka 17a, 01-211 Warsaw (Poland); Mierzewska, Hanna, E-mail: h.mierzewska@gmail.com [Department of Neurology of Children and Adolescents, Institute of Mother and Child, ul. Kasprzaka 17a, 01-211 Warsaw (Poland); Jurkiewicz, Elżbieta, E-mail: e-jurkiewicz@o2.pl [Department of Diagnostic Imaging, Children' s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland)

    2013-05-15

    The term “basal ganglia” refers to caudate and lentiform nuclei, the latter composed of putamen and globus pallidus, substantia nigra and subthalamic nuclei and these deep gray matter structures belong to the extrapyramidal system. Many diseases may present as basal ganglia abnormalities. Magnetic resonance imaging (MRI) and computed tomography (CT) – to a lesser degree – allow for detection of basal ganglia injury. In many cases, MRI alone does not usually allow to establish diagnosis but together with the knowledge of age and circumstances of onset and clinical course of the disease is a powerful tool of differential diagnosis. The lesions may be unilateral: in Rassmussen encephalitis, diabetes with hemichorea/hemiballism and infarction or – more frequently – bilateral in many pathologic conditions. Restricted diffusion is attributable to infarction, acute hypoxic–ischemic injury, hypoglycemia, Leigh disease, encephalitis and CJD. Contrast enhancement may be seen in cases of infarction and encephalitis. T1-hyperintensity of the lesions is uncommon and may be observed unilaterally in case of hemichorea/hemiballism and bilaterally in acute asphyxia in term newborns, in hypoglycemia, NF1, Fahr disease and manganese intoxication. Decreased signal intensity on GRE/T2*-weighted images and/or SWI indicating iron, calcium or hemosiderin depositions is observed in panthotenate kinase-associated neurodegeneration, Parkinson variant of multiple system atrophy, Fahr disease (and other calcifications) as well as with the advancing age. There are a few papers in the literature reviewing basal ganglia lesions. The authors present a more detailed review with rich iconography from the own archive.

  4. The basal ganglia in haemochromatosis

    Energy Technology Data Exchange (ETDEWEB)

    Berg, D.; Hoggenmueller, U.; Becker, G. [Wuerzburg Univ. (Germany). Abt. fuer Neuroradiologie; Hofmann, E. [Division of Neuroradiology, University of Wuerzburg (Germany); Fischer, R. [Medical Division Heinz Kalk-Klinik, Bad Kissingen (Germany); Kraus, M.; Scheurlen, M. [Department of Medicine, University of Wuerzburg (Germany)

    2000-01-01

    Haemochromatosis is characterised by deposition of iron-containing pigment in various organs, but little is known about possible deposition in the brain and its clinical impact. We therefore investigated 14 patients with hereditary haemochromatosis with MRI, CT and transcranial ultrasound (TCS) and examined them neurologically. In six of the patients dense lesions were found within the lentiform nucleus on CT, all of whom displayed hyperechogenic lesions in the same area on TCS, as did one other patient. In these patients the relative signal intensities of the lentiform nucleus measured by MRI relaxometry were higher. No patient had clinical signs of basal ganglia disorders. (orig.)

  5. The basal ganglia in haemochromatosis

    International Nuclear Information System (INIS)

    Haemochromatosis is characterised by deposition of iron-containing pigment in various organs, but little is known about possible deposition in the brain and its clinical impact. We therefore investigated 14 patients with hereditary haemochromatosis with MRI, CT and transcranial ultrasound (TCS) and examined them neurologically. In six of the patients dense lesions were found within the lentiform nucleus on CT, all of whom displayed hyperechogenic lesions in the same area on TCS, as did one other patient. In these patients the relative signal intensities of the lentiform nucleus measured by MRI relaxometry were higher. No patient had clinical signs of basal ganglia disorders. (orig.)

  6. Positron emission tomography and basal ganglia functions

    International Nuclear Information System (INIS)

    With the advent of positron emission tomography (PET), studies on the human brain function and pathophysiology of brain damage have been extremely progressed. It is well-known that the basal ganglia plays an important role as one of the central nervous system involved in exercise regulation. More recently, the potential involvement of the basal ganglia in psychological processes, such as cognitive function, has been pointed out, receiving much attention. In spite of such a lot of studies, however, basal ganglia function remains unclear. This paper describes the relationships between PET findings and basal ganglia function. PET findings are discussed in relation to brain energy metabolism and striatal dopamine function. Pathophysiology of the basal ganglia are described in terms of the following diseases: Parkinson's disease, Parkinson's syndrome, progressive supranuclear palsy, Huntington's disease, and dystonia. Physiological backgrounds of the basal ganglia for PET images are also referred to. (N.K.) 75 refs

  7. Migraine attacks the Basal Ganglia

    Directory of Open Access Journals (Sweden)

    Bigal Marcelo

    2011-09-01

    Full Text Available Abstract Background With time, episodes of migraine headache afflict patients with increased frequency, longer duration and more intense pain. While episodic migraine may be defined as 1-14 attacks per month, there are no clear-cut phases defined, and those patients with low frequency may progress to high frequency episodic migraine and the latter may progress into chronic daily headache (> 15 attacks per month. The pathophysiology of this progression is completely unknown. Attempting to unravel this phenomenon, we used high field (human brain imaging to compare functional responses, functional connectivity and brain morphology in patients whose migraine episodes did not progress (LF to a matched (gender, age, age of onset and type of medication group of patients whose migraine episodes progressed (HF. Results In comparison to LF patients, responses to pain in HF patients were significantly lower in the caudate, putamen and pallidum. Paradoxically, associated with these lower responses in HF patients, gray matter volume of the right and left caudate nuclei were significantly larger than in the LF patients. Functional connectivity analysis revealed additional differences between the two groups in regard to response to pain. Conclusions Supported by current understanding of basal ganglia role in pain processing, the findings suggest a significant role of the basal ganglia in the pathophysiology of the episodic migraine.

  8. On neurocomputational models of the basal ganglia

    OpenAIRE

    Ahmed Moustafa

    2009-01-01

    Over the past few decades, it became evident that the basal ganglia is involved in cognitive as well as motor processes, including motor control, conditioning, working memory, and sequence learning. Systems-levels models attempt to explain what kinds of computations are employed by the basal ganglia. It is argued that the basal ganglia integrates information from different structures, such as the prefrontal cortex and hippocampus, and decides on which motor response to execute. Learning such ...

  9. Striatal plasticity and basal ganglia circuit function

    OpenAIRE

    Kreitzer, Anatol C.; Malenka, Robert C.

    2008-01-01

    The dorsal striatum, which consists of the caudate and putamen, is the gateway to the basal ganglia. It receives convergent excitatory afferents from cortex and thalamus and forms the origin of the direct and indirect pathways—distinct basal ganglia circuits involved in motor control. It is also a major site of activity-dependent synaptic plasticity. Striatal plasticity alters the transfer of information throughout basal ganglia circuits and may represent a key neural substrate for adaptive m...

  10. Pathological basal ganglia activity in movement disorders

    OpenAIRE

    Wichmann, Thomas; Dostrovsky, Jonathan O

    2011-01-01

    Our understanding of the pathophysiology of movement disorders, and associated changes in basal ganglia activities has significantly changed in the course of the last few decades. This process began with the development of detailed anatomical models of the basal ganglia, followed by studies of basal ganglia activity patterns in animal models of common movement disorders and electrophysiological recordings in movement disorder patients undergoing functional neurosurgical procedures. These inve...

  11. Striatal plasticity and basal ganglia circuit function.

    Science.gov (United States)

    Kreitzer, Anatol C; Malenka, Robert C

    2008-11-26

    The dorsal striatum, which consists of the caudate and putamen, is the gateway to the basal ganglia. It receives convergent excitatory afferents from cortex and thalamus and forms the origin of the direct and indirect pathways, which are distinct basal ganglia circuits involved in motor control. It is also a major site of activity-dependent synaptic plasticity. Striatal plasticity alters the transfer of information throughout basal ganglia circuits and may represent a key neural substrate for adaptive motor control and procedural memory. Here, we review current understanding of synaptic plasticity in the striatum and its role in the physiology and pathophysiology of basal ganglia function. PMID:19038213

  12. CT and MRI diagnosis of traumatic basal ganglia hemorrhage

    International Nuclear Information System (INIS)

    Objective: To analyze CT and MRI features of traumatic basal ganglia hemorrhage and investigate the diagnostic value. Methods: 21 cases with traumatic basal ganglia hemorrhage diagnosed by clinic, CT and MRI in our hospital were collected in this study Plain CT scan were immediately performed in 21 cases after injury, plain MR scan were performed in 1 to 3 days. 12 cases of them underwent diffusion weighted imagine (DWI). The CT and MRI findings were retrospectively summarized. Results: 8 cases were found with simple traumatic basal ganglia hemorrhage. Complexity of basal ganglia hemorrhage occurred in 13 cases, 6 cases combined with subdural hemorrhage, 3 cases with epidural hematoma, 2 cases with subarachnoid hemorrhage, 6 cases with brain contusion and laceration in other locations, 4 cases with skull fracture. 26 lesions of basal ganglia hematoma were showed in 21 cases, 14 lesions of pallidum hemorrhage in 11 cases confirmed by MR could not be distinguished from calcification at the fast CT scan. 5 more lesions of brain contusion and laceration and 4 more lesions of brain white matter laceration were found by MR. Conclusion: CT in combination with MRI can diagnose traumatic basal ganglia hemorrhage and its complications early, comprehensively and accurately, which plays an important role in the clinical therapy selection and prognosis evaluation. (authors)

  13. The basal ganglia communicate with the cerebellum.

    Science.gov (United States)

    Bostan, Andreea C; Dum, Richard P; Strick, Peter L

    2010-05-01

    The basal ganglia and cerebellum are major subcortical structures that influence not only movement, but putatively also cognition and affect. Both structures receive input from and send output to the cerebral cortex. Thus, the basal ganglia and cerebellum form multisynaptic loops with the cerebral cortex. Basal ganglia and cerebellar loops have been assumed to be anatomically separate and to perform distinct functional operations. We investigated whether there is any direct route for basal ganglia output to influence cerebellar function that is independent of the cerebral cortex. We injected rabies virus (RV) into selected regions of the cerebellar cortex in cebus monkeys and used retrograde transneuronal transport of the virus to determine the origin of multisynaptic inputs to the injection sites. We found that the subthalamic nucleus of the basal ganglia has a substantial disynaptic projection to the cerebellar cortex. This pathway provides a means for both normal and abnormal signals from the basal ganglia to influence cerebellar function. We previously showed that the dentate nucleus of the cerebellum has a disynaptic projection to an input stage of basal ganglia processing, the striatum. Taken together these results provide the anatomical substrate for substantial two-way communication between the basal ganglia and cerebellum. Thus, the two subcortical structures may be linked together to form an integrated functional network. PMID:20404184

  14. Genetics Home Reference: biotin-thiamine-responsive basal ganglia disease

    Science.gov (United States)

    ... Health Conditions biotin-thiamine-responsive basal ganglia disease biotin-thiamine-responsive basal ganglia disease Enable Javascript to ... boxes. Print All Open All Close All Description Biotin-thiamine-responsive basal ganglia disease is a disorder ...

  15. Functional Neuroanatomy of the Basal Ganglia

    OpenAIRE

    Lanciego, José L.; Luquin, Natasha; Obeso, José A.

    2012-01-01

    The “basal ganglia” refers to a group of subcortical nuclei responsible primarily for motor control, as well as other roles such as motor learning, executive functions and behaviors, and emotions. Proposed more than two decades ago, the classical basal ganglia model shows how information flows through the basal ganglia back to the cortex through two pathways with opposing effects for the proper execution of movement. Although much of the model has remained, the model has been modified and amp...

  16. Methanol intoxication with bilateral basal ganglia infarct

    International Nuclear Information System (INIS)

    Methanol is a toxic agent that affects the central nervous system, especially the optic nerves and basal ganglia. Symmetrical hypodense lesions in the basal ganglia, which can be demonstrated by CT or MRI, is accepted as the most characteristic radiological feature of the disease. A case of a patient with bilateral putaminal hypodense infarcts due tomethanol intoxication is presented. Copyright (2001) Blackwell Science Pty Ltd

  17. Somatotopic Organization of the Primate Basal Ganglia

    OpenAIRE

    Nambu, Atsushi

    2011-01-01

    Somatotopic organization is a fundamental and key concept to understand how the cortico-basal ganglia loop works. It is also indispensable knowledge to perform stereotaxic surgery for movement disorders. Here I would like to describe the somatotopic organization of the basal ganglia, which consist of the striatum, subthalamic nucleus, globus pallidus, and substantia nigra. Projections from motor cortical regions representing different body parts terminate in different regions of these nuclei....

  18. Somatotopic organization of the primate basal ganglia

    OpenAIRE

    Atsushi Nambu

    2011-01-01

    Somatotopic organization is a fundamental and key concept to understand how the cortico-basal ganglia loop works. It is also indispensable knowledge to perform stereotaxic surgery for movement disorders. Here I would like to describe the somatotopic organization of the basal ganglia, which consist of the striatum, subthalamic nucleus, globus pallidus and substantia nigra. Projections from motor cortical regions representing different body parts terminate in different regions of these nuclei. ...

  19. Somatotopic organization of the primate basal ganglia

    Directory of Open Access Journals (Sweden)

    Atsushi Nambu

    2011-04-01

    Full Text Available Somatotopic organization is a fundamental and key concept to understand how the cortico-basal ganglia loop works. It is also indispensable knowledge to perform stereotaxic surgery for movement disorders. Here I would like to describe the somatotopic organization of the basal ganglia, which consist of the striatum, subthalamic nucleus, globus pallidus and substantia nigra. Projections from motor cortical regions representing different body parts terminate in different regions of these nuclei. Basal ganglia neurons respond not only to the stimulation of the corresponding regions of the motor cortices, but also to active and passive movements of the corresponding body parts. On the basis of these anatomical and physiological findings, somatotopic organization can be identified in the motor territories of these nuclei in the basal ganglia. In addition, projections from functionally interrelated cortical areas partially converge through the cortico-basal ganglia loop, but nevertheless the somatotopy is still preserved. Disorganized somatotopy may explain, at least in part, the pathophysiology of movement disorders, such as Parkinson’s disease and dystonia.

  20. The connectome of the basal ganglia.

    Science.gov (United States)

    Schmitt, Oliver; Eipert, Peter; Kettlitz, Richard; Leßmann, Felix; Wree, Andreas

    2016-03-01

    The basal ganglia of the laboratory rat consist of a few core regions that are specifically interconnected by efferents and afferents of the central nervous system. In nearly 800 reports of tract-tracing investigations the connectivity of the basal ganglia is documented. The readout of connectivity data and the collation of all the connections of these reports in a database allows to generate a connectome. The collation, curation and analysis of such a huge amount of connectivity data is a great challenge and has not been performed before (Bohland et al. PloS One 4:e7200, 2009) in large connectomics projects based on meta-analysis of tract-tracing studies. Here, the basal ganglia connectome of the rat has been generated and analyzed using the consistent cross-platform and generic framework neuroVIISAS. Several advances of this connectome meta-study have been made: the collation of laterality data, the network-analysis of connectivity strengths and the assignment of regions to a hierarchically organized terminology. The basal ganglia connectome offers differences in contralateral connectivity of motoric regions in contrast to other regions. A modularity analysis of the weighted and directed connectome produced a specific grouping of regions. This result indicates a correlation of structural and functional subsystems. As a new finding, significant reciprocal connections of specific network motifs in this connectome were detected. All three principal basal ganglia pathways (direct, indirect, hyperdirect) could be determined in the connectome. By identifying these pathways it was found that there exist many further equivalent pathways possessing the same length and mean connectivity weight as the principal pathways. Based on the connectome data it is unknown why an excitation pattern may prefer principal rather than other equivalent pathways. In addition to these new findings the local graph-theoretical features of regions of the connectome have been determined. By

  1. Reward functions of the basal ganglia.

    Science.gov (United States)

    Schultz, Wolfram

    2016-07-01

    Besides their fundamental movement function evidenced by Parkinsonian deficits, the basal ganglia are involved in processing closely linked non-motor, cognitive and reward information. This review describes the reward functions of three brain structures that are major components of the basal ganglia or are closely associated with the basal ganglia, namely midbrain dopamine neurons, pedunculopontine nucleus, and striatum (caudate nucleus, putamen, nucleus accumbens). Rewards are involved in learning (positive reinforcement), approach behavior, economic choices and positive emotions. The response of dopamine neurons to rewards consists of an early detection component and a subsequent reward component that reflects a prediction error in economic utility, but is unrelated to movement. Dopamine activations to non-rewarded or aversive stimuli reflect physical impact, but not punishment. Neurons in pedunculopontine nucleus project their axons to dopamine neurons and process sensory stimuli, movements and rewards and reward-predicting stimuli without coding outright reward prediction errors. Neurons in striatum, besides their pronounced movement relationships, process rewards irrespective of sensory and motor aspects, integrate reward information into movement activity, code the reward value of individual actions, change their reward-related activity during learning, and code own reward in social situations depending on whose action produces the reward. These data demonstrate a variety of well-characterized reward processes in specific basal ganglia nuclei consistent with an important function in non-motor aspects of motivated behavior. PMID:26838982

  2. Atrophy of the basal ganglia as the initial diagnostic sign of germinoma in the basal ganglia

    International Nuclear Information System (INIS)

    Germ-cell tumors of the central nervous system generally develop in the midline, but the tumors can also occur in the basal ganglia and/or thalamus. However, MR images have rarely been documented in the early stage of the tumor in these regions. We retrospectively reviewed MR images obtained on admission and approximately 3 years earlier in two patients with germinoma in the basal ganglia, and compared them with CT. In addition to hyperdensity on CT, both hyperintensity on T1-weighted images and a small hyperintense lesion on T2-weighted images were commonly seen in the basal ganglia. These findings may be early MRI signs of germinoma in this region, and the earliest and most characteristic diagnostic feature on MRI was atrophy of the basal ganglia, which was recognizable before development of hemiparesis. (orig.)

  3. Functional anatomy of thalamus and basal ganglia.

    Science.gov (United States)

    Herrero, María-Trinidad; Barcia, Carlos; Navarro, Juana Mari

    2002-08-01

    THALAMUS: The human thalamus is a nuclear complex located in the diencephalon and comprising of four parts (the hypothalamus, the epythalamus, the ventral thalamus, and the dorsal thalamus). The thalamus is a relay centre subserving both sensory and motor mechanisms. Thalamic nuclei (50-60 nuclei) project to one or a few well-defined cortical areas. Multiple cortical areas receive afferents from a single thalamic nucleus and send back information to different thalamic nuclei. The corticofugal projection provides positive feedback to the "correct" input, while at the same time suppressing irrelevant information. Topographical organisation of the thalamic afferents and efferents is contralateral, and the lateralisation of the thalamic functions affects both sensory and motoric aspects. Symptoms of lesions located in the thalamus are closely related to the function of the areas involved. An infarction or haemorrhage thalamic lesion can develop somatosensory disturbances and/or central pain in the opposite hemibody, analgesic or purely algesic thalamic syndrome characterised by contralateral anaesthesia (or hypaesthesia), contralateral weakness, ataxia and, often, persistent spontaneous pain. BASAL GANGLIA: Basal ganglia form a major centre in the complex extrapyramidal motor system, as opposed to the pyramidal motor system (corticobulbar and corticospinal pathways). Basal ganglia are involved in many neuronal pathways having emotional, motivational, associative and cognitive functions as well. The striatum (caudate nucleus, putamen and nucleus accumbens) receive inputs from all cortical areas and, throughout the thalamus, project principally to frontal lobe areas (prefrontal, premotor and supplementary motor areas) which are concerned with motor planning. These circuits: (i) have an important regulatory influence on cortex, providing information for both automatic and voluntary motor responses to the pyramidal system; (ii) play a role in predicting future events

  4. What do the basal ganglia do?

    Science.gov (United States)

    Brown, P; Marsden, C D

    1998-06-13

    We propose that the basal ganglia support a basic attentional mechanism operating to bind input to output in the executive forebrain. Such focused attention provides the automatic link between voluntary effort, sensory input, and the calling up and operation of a sequence of motor programmes or thoughts. The physiological basis for this attentional mechanism may lie in the tendency of distributed, but related, cortical activities to synchronise in the gamma (30 to 50 Hz) band, as occurs in the visual cortex. Coherent and synchronised elements are more effective when convergence occurs during successive stages of processing, and in this way may come together to give the one gestalt or action. We suggest that the basal ganglia have a major role in facilitating this aspect of neuronal processing in the forebrain, and that loss of this function contributes to parkinsonism and abulia. PMID:9635969

  5. Mössbauer spectroscopy of Basal Ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Miglierini, Marcel, E-mail: marcel.miglierini@stuba.sk [Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava, Slovakia and Regional Centre of Advanced Technologies and Materials (Czech Republic); Lančok, Adriana [Institute of Inorganic Chemistry AS CR, v. v. i., 250 68 Husinec-Řež 1001 (Czech Republic); Kopáni, Martin [Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Sasinkova 2, 811 08 Bratislava (Slovakia); Boča, Roman [Department of Chemistry, Faculty of Natural Sciences, University of SS. Cyril and Methodius, 917 01 Trnava (Slovakia)

    2014-10-27

    Chemical states, structural arrangement, and magnetic features of iron deposits in biological tissue of Basal Ganglia are characterized. The methods of SQUID magnetometry and electron microscopy are employed. {sup 57}Fe Mössbauer spectroscopy is used as a principal method of investigation. Though electron microscopy has unveiled robust crystals (1-3 μm in size) of iron oxides, they are not manifested in the corresponding {sup 57}Fe Mössbauer spectra. The latter were acquired at 300 K and 4.2 K and resemble ferritin-like behavior.

  6. Mössbauer spectroscopy of Basal Ganglia

    International Nuclear Information System (INIS)

    Chemical states, structural arrangement, and magnetic features of iron deposits in biological tissue of Basal Ganglia are characterized. The methods of SQUID magnetometry and electron microscopy are employed. 57Fe Mössbauer spectroscopy is used as a principal method of investigation. Though electron microscopy has unveiled robust crystals (1-3 μm in size) of iron oxides, they are not manifested in the corresponding 57Fe Mössbauer spectra. The latter were acquired at 300 K and 4.2 K and resemble ferritin-like behavior

  7. Covert skill learning in a cortical-basal ganglia circuit

    OpenAIRE

    Charlesworth, JD; Warren, TL; Brainard, MS

    2012-01-01

    We learn complex skills such as speech and dance through a gradual process of trial and error. Cortical-basal ganglia circuits have an important yet unresolved function in this trial-and-error skill learning; influential ' actor-models propose that basal ganglia circuits generate a variety of behaviours during training and learn to implement the successful behaviours in their repertoire. Here we show that the anterior forebrain pathway (AFP), a cortical-basal ganglia circuit, contributes to s...

  8. Sequence learning in a model of the basal ganglia

    OpenAIRE

    Søiland, Stian

    2006-01-01

    This thesis presents a computational model of the basal ganglia that is able to learn sequences and perform action selection. The basal ganglia is a set of structures in the human brain involved in everything from action selection to reinforcement learning, inspiring research in psychology, neuroscience and computer science. Two temporal difference models of the basal ganglia based on previous work have been reimplemented. Several experiments and analyses help understand and describe the or...

  9. Computed tomography of germinomas in basal ganglia and thalamus

    International Nuclear Information System (INIS)

    CT findings of 6 cases with germinoma originating in the basal ganglia and thalamus are reported. The early finding of germinoma in this region on plain CT, was an irregularly defined, slightly high density area without mass effect. Repeated CT scanning showed enlarging iso-to high density lesion accompanied by mass effect. Intratumorous cysts and calcifications were frequently observed. The tumor showed mild to moderate and inhomogeneous enhancement by intravenous injection of contrast medium. A tendency to ipsilateral hemicerebral atrophy was found in one case. These findings were somewhat different from those of germinomas in the pineal and suprasellar regions. This phenomenon may be related to the anatomical difference of the brain where the tumor originated. (orig.)

  10. Mineralizing angiopathy with basal ganglia stroke in an infant

    Directory of Open Access Journals (Sweden)

    Puneet Jain

    2015-01-01

    Full Text Available Basal ganglia stroke is known following trivial head trauma. Recently a distinct clinic-radiological entity termed ′mineralizing angiopathy′ was described. We report an infant who developed basal ganglia stroke following trivial fall. His clinic-radiological features are described.

  11. Update on models of basal ganglia function and dysfunction

    OpenAIRE

    DeLong, Mahlon; Wichmann, Thomas

    2009-01-01

    Circuit models of basal ganglia function and dysfunction have undergone significant changes over time. The previous view that the basal ganglia are centers in which massive convergence of cortical information occurred has now been replaced by a view in which these structures process information in a highly specific manner, participating in anatomical and functional modules that also involve cortex and thalamus. In addition, much has been learned about the intrinsic connections of the basal ga...

  12. Anti-basal ganglia antibodies in PANDAS.

    Science.gov (United States)

    Singer, Harvey S; Loiselle, Christopher R; Lee, Olivia; Minzer, Karen; Swedo, Susan; Grus, Franz H

    2004-04-01

    An autoimmune-mediated mechanism involving molecular mimicry has been proposed for a variety of pediatric movement disorders that occur after a streptococcal infection. In this study, anti-basal ganglia antibodies (ABGA) were measured in 15 children with the diagnosis of pediatric autoimmune neuropsychiatric disorder associated with streptococcal infection (PANDAS) and compared with those in 15 controls. ELISA and Western immunoblotting (WB) methods were used to detect ABGA against supernatant (S1), pellet (P2), and synaptosomal preparations from adult postmortem caudate, putamen, and globus pallidus. ELISA optical density values did not differ between PANDAS patients and controls across all preparations. Immunoblotting identified multiple bands in all subjects with no differences in the number of bands or their total density. Discriminant analysis, used to assess mean binding patterns, showed that PANDAS patients differed from controls only for the caudate S1 fraction (Wilks' lambda = 0.0236, P tic subjects providing the greatest discrimination. Among the epitopes contributing to differences between PANDAS and control in the caudate S1 fraction, mean binding to the epitope at 183 kDa was the most different between groups. In conclusion, ELISA measurements do not differentiate between PANDAS and controls, suggesting a lack of major antibody changes in this disorder. Further immunoblot analyses using a caudate supernatant fraction are required to completely exclude the possibility of minor antibody repertoire differences in PANDAS subjects, especially in those who primarily have tics. PMID:15077238

  13. Cortico-Basal Ganglia Circuit Function in Psychiatric Disease.

    Science.gov (United States)

    Gunaydin, Lisa A; Kreitzer, Anatol C

    2016-01-01

    Circuit dysfunction models of psychiatric disease posit that pathological behavior results from abnormal patterns of electrical activity in specific cells and circuits in the brain. Many psychiatric disorders are associated with abnormal activity in the prefrontal cortex and in the basal ganglia, a set of subcortical nuclei implicated in cognitive and motor control. Here we discuss the role of the basal ganglia and connected prefrontal regions in the etiology and treatment of obsessive-compulsive disorder, anxiety, and depression, emphasizing mechanistic work in rodent behavioral models to dissect causal cortico-basal ganglia circuits underlying discrete behavioral symptom domains relevant to these complex disorders. PMID:26667072

  14. Basal ganglia - thalamus and the crowning enigma

    Directory of Open Access Journals (Sweden)

    Marianela eGarcia-Munoz

    2015-11-01

    Full Text Available When Hubel (1982 referred to layer 1 of primary visual cortex as …a ‘crowning mystery’ to keep area-17 physiologists busy for years to come... he could have been talking about any cortical area. In the 80’s and 90’s there were no methods to examine this neuropile on the surface of the cortex: a tangled web of axons and dendrites from a variety of different places with unknown specificities and doubtful connections to the cortical output neurons some hundreds of microns below. Recently, three changes have made the crowning enigma less of an impossible mission: the clear presence of neurons in layer 1 (L1, the active conduction of voltage along apical dendrites and optogenetic methods that might allow us to look at one source of input at a time. For all of those reasons alone, it seems it is time to take seriously the function of L1. The functional properties of this layer will need to wait for more experiments but already L1 cells are GAD67 positive, i.e., inhibitory! They could reverse the sign of the thalamic glutamate (GLU input for the entire cortex. It is at least possible that in the near future normal activity of individual sources of L1 could be detected using genetic tools. We are at the outset of important times in the exploration of thalamic functions and perhaps the solution to the crowning enigma is within sight. Our review looks forward to that solution from the solid basis of the anatomy of the basal ganglia output to motor thalamus. We will focus on L1, its afferents, intrinsic neurons and its influence on responses of pyramidal neurons in layers 2/3 and 5. Since L1 is present in the whole cortex we will provide a general overview considering evidence mainly from the somatosensory cortex before focusing on motor cortex.

  15. Short latency cerebellar modulation of the basal ganglia.

    Science.gov (United States)

    Chen, Christopher H; Fremont, Rachel; Arteaga-Bracho, Eduardo E; Khodakhah, Kamran

    2014-12-01

    The graceful, purposeful motion of our body is an engineering feat that remains unparalleled in robotic devices using advanced artificial intelligence. Much of the information required for complex movements is generated by the cerebellum and the basal ganglia in conjunction with the cortex. Cerebellum and basal ganglia have been thought to communicate with each other only through slow, multi-synaptic cortical loops, begging the question as to how they coordinate their outputs in real time. We found that the cerebellum rapidly modulates the activity of the striatum via a disynaptic pathway in mice. Under physiological conditions, this short latency pathway was capable of facilitating optimal motor control by allowing the basal ganglia to incorporate time-sensitive cerebellar information and by guiding the sign of cortico-striatal plasticity. Conversely, under pathological condition, this pathway relayed aberrant cerebellar activity to the basal ganglia to cause dystonia. PMID:25402853

  16. Dopamine-glutamate interactions in the basal ganglia.

    Science.gov (United States)

    Schmidt, W J

    1998-01-01

    In an attempt to formulate a working hypothesis of basal-ganglia functions, arguments are considered suggesting that the basal ganglia are involved in a process of response selection i.e. in the facilitation of "wanted" and in the suppression of "unwanted" behaviour. The meso-accumbal dopamine-system is considered to mediate natural and drug-induced reward and sensitization. The meso-striatal dopamine-system seems to fulfill similar functions: It may mediate reinforcement which strengthens a given behaviour when elicited subsequently, but which is not experienced as reward or hedonia. Glutamate as the transmitter of the corticofugal projections to the basal ganglia nuclei and of the subthalamic neurons is critically involved in basal ganglia functions and dysfunctions; for example Parkinson's disease can be considered to be a secondary hyperglutamatergic disease. Additionally, glutamate is an essential factor in the plasticity response of the basal-ganglia. However, opposite to previous suggestions, the NMDA-receptor blocker MK-801 does not prevent psychostimulant- nor morphine-induced day to day increase (sensitization) of locomotion. Also the day to day increase of haloperidol-induced catalepsy was not prevented by MK-801. PMID:9871434

  17. Time representation in reinforcement learning models of the basal ganglia

    Directory of Open Access Journals (Sweden)

    Samuel Joseph Gershman

    2014-01-01

    Full Text Available Reinforcement learning models have been influential in understanding many aspects of basal ganglia function, from reward prediction to action selection. Time plays an important role in these models, but there is still no theoretical consensus about what kind of time representation is used by the basal ganglia. We review several theoretical accounts and their supporting evidence. We then discuss the relationship between reinforcement learning models and the timing mechanisms that have been attributed to the basal ganglia. We hypothesize that a single computational system may underlie both reinforcement learning and interval timing—the perception of duration in the range of seconds to hours. This hypothesis, which extends earlier models by incorporating a time-sensitive action selection mechanism, may have important implications for understanding disorders like Parkinson's disease in which both decision making and timing are impaired.

  18. Time representation in reinforcement learning models of the basal ganglia

    Science.gov (United States)

    Gershman, Samuel J.; Moustafa, Ahmed A.; Ludvig, Elliot A.

    2014-01-01

    Reinforcement learning (RL) models have been influential in understanding many aspects of basal ganglia function, from reward prediction to action selection. Time plays an important role in these models, but there is still no theoretical consensus about what kind of time representation is used by the basal ganglia. We review several theoretical accounts and their supporting evidence. We then discuss the relationship between RL models and the timing mechanisms that have been attributed to the basal ganglia. We hypothesize that a single computational system may underlie both RL and interval timing—the perception of duration in the range of seconds to hours. This hypothesis, which extends earlier models by incorporating a time-sensitive action selection mechanism, may have important implications for understanding disorders like Parkinson's disease in which both decision making and timing are impaired. PMID:24409138

  19. Synchronizing activity of basal ganglia and pathophysiology of Parkinson's disease.

    Science.gov (United States)

    Heimer, G; Rivlin, M; Israel, Z; Bergman, H

    2006-01-01

    Early physiological studies emphasized changes in the discharge rate of basal ganglia in the pathophysiology of Parkinson's disease (PD), whereas recent studies stressed the role of the abnormal oscillatory activity and neuronal synchronization of pallidal cells. However, human observations cast doubt on the synchronization hypothesis since increased synchronization may be an epi-phenomenon of the tremor or of independent oscillators with similar frequency. Here, we show that modern actor/ critic models of the basal ganglia predict the emergence of synchronized activity in PD and that significant non-oscillatory and oscillatory correlations are found in MPTP primates. We conclude that the normal fluctuation of basal ganglia dopamine levels combined with local cortico-striatal learning rules lead to noncorrelated activity in the pallidum. Dopamine depletion, as in PD, results in correlated pallidal activity, and reduced information capacity. We therefore suggest that future deep brain stimulation (DBS) algorithms may be improved by desynchronizing pallidal activity. PMID:17017503

  20. Covert skill learning in a cortical-basal ganglia circuit.

    Science.gov (United States)

    Charlesworth, Jonathan D; Warren, Timothy L; Brainard, Michael S

    2012-06-14

    We learn complex skills such as speech and dance through a gradual process of trial and error. Cortical-basal ganglia circuits have an important yet unresolved function in this trial-and-error skill learning; influential 'actor-critic' models propose that basal ganglia circuits generate a variety of behaviours during training and learn to implement the successful behaviours in their repertoire. Here we show that the anterior forebrain pathway (AFP), a cortical-basal ganglia circuit, contributes to skill learning even when it does not contribute to such 'exploratory' variation in behavioural performance during training. Blocking the output of the AFP while training Bengalese finches to modify their songs prevented the gradual improvement that normally occurs in this complex skill during training. However, unblocking the output of the AFP after training caused an immediate transition from naive performance to excellent performance, indicating that the AFP covertly gained the ability to implement learned skill performance without contributing to skill practice. In contrast, inactivating the output nucleus of the AFP during training completely prevented learning, indicating that learning requires activity within the AFP during training. Our results suggest a revised model of skill learning: basal ganglia circuits can monitor the consequences of behavioural variation produced by other brain regions and then direct those brain regions to implement more successful behaviours. The ability of the AFP to identify successful performances generated by other brain regions indicates that basal ganglia circuits receive a detailed efference copy of premotor activity in those regions. The capacity of the AFP to implement successful performances that were initially produced by other brain regions indicates precise functional connections between basal ganglia circuits and the motor regions that directly control performance. PMID:22699618

  1. Radiotherapy of germinomas involving the basal ganglia and thalamus

    International Nuclear Information System (INIS)

    Nine patients with histologically confirmed germinomas of the basal ganglia and thalamus (GBT) were treated by radiotherapy. The average dose of 52.5 Gy was delivered to the tumor bed, 37 Gy to the whole brain and 24.8 Gy to the CNS axis. The local control, which was verified by CT scan, was achieved in all patients. All patients are alive 11 to 96 months after radiotherapy. As with other intracranial germinomas, germinomas of the basal ganglia and thalamus respond well to radiotherapy and the prognosis is good after treatment. (author). 20 refs., 1 fig., 1 tab

  2. Abnormalities of the bilateral basal ganglia and thalami - diagnostic possibilities

    International Nuclear Information System (INIS)

    Several diseases may cause non specific MRT abnormalities of the bilateral basal ganglia and thalami. As such, diagnosis of the underlying etiology may be difficult to achieve at imaging. In one clinical case are presented the diagnostic possibilities based on clinical date (previous history, clinical symptoms and evolution) and imaging data (type of signal abnormalities, location of lesions and associated abnormalities). The main categories of diseases causing MRT abnormalities of the bilateral basal ganglia and thalami in adult are: toxic, metabolic, vascular, infectious, inflammatory diseases and tumors.

  3. Crossed cerebellar and cerebral cortical diaschisis in basal ganglia hemorrhage

    International Nuclear Information System (INIS)

    The purpose of this study was to evaluate the phenomenon of diaschisis in the cerebellum and cerebral cortex in patients with pure basal ganglia hemorrhage using cerebral blood flow SPECT. Twelve patients with pure basal ganglia hemorrhage were studied with Tc-99m ECD brain SPECT. Asymmetric index (AI) was calculated in the cerebellum and cerebral cortical regions as | CR-CL |/ (CR-CL) x 200, where CR and CL are the mean reconstructed counts for the right and left ROIs, respectively. Hypoperfusion was considered to be present when AI was greater than mean + 2 SD of 20 control subjects. Mean AI of the cerebellum and cerebral cortical regions in patients with pure basal ganglia hemorrhage was significantly higher than normal controls (p<0.05): Cerebellum (18.68±8.94 vs 4.35±0.94, mean ±SD), thalamus (31.91±10.61 vs 2.57±1.45), basal ganglia (35.94±16.15 vs 4.34±2.08), parietal (18.94±10.69 vs 3.24±0.87), frontal (13.60±10.8 vs 4.02±2.04) and temporal cortex (18.92±11.95 vs 5.13±1.69). Ten of the 12 patients had significant hypoperfusion in the contralateral cerebellum. Hypoperfusion was also shown in the ipsilateral thalamus (n=12), ipsilateral parietal (n=12), frontal (n=6) and temporal cortex (n=10). Crossed cerebellar diaschisis (CCD) and cortical diaschisis may frequently occur in patients with pure basal ganglia hemorrhage, suggesting that CCD can develop without the interruption of corticopontocerebellar pathway

  4. Functional Neuroanatomy and Behavioural Correlates of the Basal Ganglia: Evidence from Lesion Studies

    Directory of Open Access Journals (Sweden)

    Peter Ward

    2013-01-01

    Full Text Available Introduction: The basal ganglia are interconnected with cortical areas involved in behavioural, cognitive and emotional processes, in addition to movement regulation. Little is known about which of these functions are associated with individual basal ganglia substructures.

  5. Morphological elucidation of basal ganglia circuits contributing reward prediction.

    Science.gov (United States)

    Fujiyama, Fumino; Takahashi, Susumu; Karube, Fuyuki

    2015-01-01

    Electrophysiological studies in monkeys have shown that dopaminergic neurons respond to the reward prediction error. In addition, striatal neurons alter their responsiveness to cortical or thalamic inputs in response to the dopamine signal, via the mechanism of dopamine-regulated synaptic plasticity. These findings have led to the hypothesis that the striatum exhibits synaptic plasticity under the influence of the reward prediction error and conduct reinforcement learning throughout the basal ganglia circuits. The reinforcement learning model is useful; however, the mechanism by which such a process emerges in the basal ganglia needs to be anatomically explained. The actor-critic model has been previously proposed and extended by the existence of role sharing within the striatum, focusing on the striosome/matrix compartments. However, this hypothesis has been difficult to confirm morphologically, partly because of the complex structure of the striosome/matrix compartments. Here, we review recent morphological studies that elucidate the input/output organization of the striatal compartments. PMID:25698913

  6. [Morphological Re-evaluation of the Basal Ganglia Network].

    Science.gov (United States)

    Fujiyama, Fumino

    2016-07-01

    Electrophysiological studies in monkeys have shown that dopaminergic neurons respond to the reward prediction error. In addition, striatal neurons alter their responsiveness to cortical or thalamic inputs in response to dopamine signals, via dopamine-regulated synaptic plasticity. These findings have led to the hypothesis that the striatum exhibits synaptic plasticity under the influence of reward prediction error and conducts reinforcement learning throughout the basal ganglia circuits. The reinforcement learning model is useful; however, the mechanism by which such a process emerges in the basal ganglia needs to be anatomically explained. The actor-critic model has been previously proposed and extended by the existence of role sharing within the striatum, with particular focus on the striosome and matrix compartments. However, this hypothesis has been difficult to confirm morphologically, partly because of the complex structure of the striosome and matrix compartments. Here, we review recent morphological studies that elucidate the input/output organization of the striatal compartments. PMID:27395470

  7. Cerebellar networks with the cerebral cortex and basal ganglia.

    Science.gov (United States)

    Bostan, Andreea C; Dum, Richard P; Strick, Peter L

    2013-05-01

    The dominant view of cerebellar function has been that it is exclusively concerned with motor control and coordination. Recent findings from neuroanatomical, behavioral, and imaging studies have profoundly changed this view. Neuroanatomical studies using virus transneuronal tracers have demonstrated that cerebellar output reaches vast areas of the neocortex, including regions of prefrontal and posterior parietal cortex. Furthermore, it has recently become clear that the cerebellum is reciprocally connected with the basal ganglia, which suggests that the two subcortical structures are part of a densely interconnected network. Taken together, these findings elucidate the neuroanatomical substrate for cerebellar involvement in non-motor functions mediated by the prefrontal and posterior parietal cortex, as well as in processes traditionally associated with the basal ganglia. PMID:23579055

  8. Is Broca's area part of a basal ganglia thalamocortical circuit?

    Science.gov (United States)

    Ullman, Michael T

    2006-05-01

    The cortex constituting Broca's area does not exist in isolation. Rather, like other cortical regions, Broca's area is connected to other brain structures, which likely play closely related functional roles. This paper focuses on the basal ganglia, a set of subcortical structures that project through topographically organized "channels" via the thalamus to different frontal regions. It is hypothesized that the basal ganglia project to Broca's area. This circuitry is further posited to encompass at least two channels. One channel can be characterized as subserving procedural memory, while the other underlies the retrieval of knowledge from declarative memory. These hypotheses are supported by both anatomical and functional evidence. Implications and issues for further investigation are discussed. PMID:16881254

  9. A case of basal ganglia germinoma with characteristic CT findings

    International Nuclear Information System (INIS)

    An 11-year-old boy with left spastic hemiplegia and learning difficulty was reported. Changes of his character appeared first, followed by atrophy of the left upper and lower extremities. Exaggerated deep tendon reflexes and positive Babinski sign were present on the left extremities, but sensory disturbances and ataxia were absent. There was no denervation pattern in EMG. Brain CT revealed a high density area in the right basal ganglia and enlarged right lateral ventricle without shift of the midline. This high density area on CT gradually became conspicuous within 6 months without a mass effect or shift of the midline. CSF cytology was negative and stereotaxic biopsy revealed two cell pattern germinoma of basal ganglia. (author)

  10. MRI of germinomas arising from the basal ganglia and thalamus

    International Nuclear Information System (INIS)

    We reviewed the MRI findings of germinomas originating from the basal ganglia, thalamus or deep white matter in 13 patients with 14 germinomas, excluding those in the suprasellar or pineal regions. Ten cases were confirmed as germinomas by stereotaxic biopsy, three by partial and one by total removal of the tumour. Analysis was focussed on the location and the signal characteristic of the tumour, haemorrhage, cysts within the tumour and any other associated findings. Thirteen of the tumours were in the basal ganglia and one in the thalamus. Haemorrhage was observed in seven patients, while twelve showed multiple cysts. Associated ipsilateral cerebral hemiatrophy was seen in three patients. The signal intensity of the parenchymal germinomas was heterogeneous on T1- and T2-weighted images due to haemorrhage, cysts and solid portions. We also report the MRI findings of germinomas in an early stage in two patients. (orig.)

  11. Subsystems of the basal ganglia and motor infrastructure

    OpenAIRE

    Kamali Sarvestani, Iman

    2013-01-01

    The motor nervous system is one of the main systems of the body and is our principle means ofbehavior. Some of the most debilitating and wide spread disorders are motor systempathologies. In particular the basal ganglia are complex networks of the brain that control someaspects of movement in all vertebrates. Although these networks have been extensively studied,lack of proper methods to study them on a system level has hindered the process ofunderstanding what they do and how they do it. In ...

  12. Modulating basal ganglia and cerebellar activity to suppress parkinsonian tremor

    OpenAIRE

    Heida, T.; Zhao, Yan; Wezel, van, H.B.

    2013-01-01

    Despite extensive research, the detailed pathophysiology of the parkinsonian tremor is still unknown. It has been hypothesized that the generation of parkinsonian tremor is related to abnormal activity within the basal ganglia. The cerebello-thalamic-cortical loop has been suggested to indirectly contribute to the expression of parkinsonian tremor. However, the observed tremor-related hyperactivity in the cerebellar loop may have a compensatory rather than a causal role in Parkinson's disease...

  13. Changing Views of Basal Ganglia Circuits and Circuit Disorders

    OpenAIRE

    DeLong, Mahlon; Wichmann, Thomas

    2010-01-01

    The basal ganglia (BG) have long been considered to play an important role in the control of movement and the pathophysiology of movement disorders, such as Parkinson’s disease (PD). Studies over the past decades have considerably broadened this view, indicating that the BG participate in multiple, parallel, largely segregated, cortico-subcortical reentrant pathways involving motor, associative and limbic functions. Research has shown that dysfunction within individual circuits is associated ...

  14. BASAL GANGLIA PATHOLOGY IN SCHIZOPHRENIA: DOPAMINE CONNECTIONS and ANOMALIES

    OpenAIRE

    Perez-Costas, Emma; Melendez-Ferro, Miguel; Roberts, Rosalinda C.

    2010-01-01

    Schizophrenia is a severe mental illness that affects 1% of the world population. The disease usually manifests itself in early adulthood with hallucinations, delusions, cognitive and emotional disturbances and disorganized thought and behavior. Dopamine was the first neurotransmitter to be implicated in the disease, and though no longer the only suspect in schizophrenia pathophysiology, it obviously plays an important role. The basal ganglia are the site of most of the dopamine neurons in th...

  15. Autoimmunity and the basal ganglia: new insights into old diseases.

    Science.gov (United States)

    Dale, R C

    2003-03-01

    Sydenham's chorea (SC) occurs weeks or months after Group A streptococcal infection, and is characterized by involuntary, purposeless movements of the limbs, in addition to behavioural alteration. There is a body of evidence which suggests that SC is an immune-mediated brain disorder with regional localization to the basal ganglia. Recent reports have suggested that the spectrum of post-streptococcal CNS disease is broader than chorea alone, and includes other hyperkinetic movement disorders (tics, dystonia and myoclonus). In addition, there are high rates of behavioural sequelae, particularly emotional disorders such as obsessive-compulsive disorder, anxiety and depression. These findings have lead to the hypothesis that similar immune-mediated basal ganglia processes may be operating in common neuropsychiatric disease such as tic disorders, Tourette syndrome and obsessive-compulsive disorder. This review analyses the historical aspects of post-streptococcal CNS disease, and the recent immunological studies which have addressed the hypothesis that common neuropsychiatric disorders may be secondary to basal ganglia autoimmunity. PMID:12615982

  16. Meige's syndrome associated with basal ganglia and thalamic functional disorders

    International Nuclear Information System (INIS)

    Magnetic resonance imaging (MRI) or single positron emission computed tomography (SPECT) or both were performed and the responses of surface electromyography (EMG) were examined in seven cases of Meige's syndrome. MRI or SPECT or both demonstrated lesions of the basal ganglia, the thalamus, or both in five of the cases. Surface EMG revealed abnormal burst discharges in the orbicularis oculi and a failure of reciprocal muscular activity between the frontalis and orbicularis oculi in all the cases. These findings suggest that voluntary motor control and reciprocal activity in the basal ganglia-thalamocortical circuits are impaired in Meige's syndrome. In addition, good responses were seen to clonazepam, tiapride and trihexyphenidyl in these cases. Therefore, we conclude that dopaminergic, cholinergic, and γ-aminobutyric acid (GABA) ergic imbalances in the disorders of the basal ganglia and thalamus in Meige's syndrome cause control in the excitatory and inhibitory pathways to be lost, resulting in the failure of integration in reciprocal muscular activity and voluntary motor control. This failure subsequently causes the symptoms of Meige's syndrome. (author)

  17. Saccade learning with concurrent cortical and subcortical basal ganglia loops

    Directory of Open Access Journals (Sweden)

    Steve eN'guyen

    2014-04-01

    Full Text Available The Basal Ganglia is a central structure involved in multiple cortical and subcortical loops. Some of these loops are believed to be responsible for saccade target selection. We study here how the very specific structural relationships of these saccadic loops can affect the ability of learning spatial and feature-based tasks.We propose a model of saccade generation with reinforcement learning capabilities based onour previous basal ganglia and superior colliculus models. It is structured around the interactions of two parallel cortico-basal loops and one tecto-basal loop. The two cortical loops separately deal with spatial and non-spatial information to select targets in a concurrent way. The subcortical loop is used to make the final target selection leading to the production of thesaccade. These different loops may work in concert or disturb each other regarding reward maximization. Interactions between these loops and their learning capabilities are tested on different saccade tasks.The results show the ability of this model to correctly learn basic target selection based on different criteria (spatial or not. Moreover the model reproduces and explains training dependent express saccades toward targets based on a spatial criterion. Finally, the model predicts that in absence of prefrontal control, the spatial loop should dominate.

  18. Correlation transfer from basal ganglia to thalamus in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Pamela eReitsma

    2011-12-01

    Full Text Available Spike trains from neurons in the basal ganglia of parkinsonian primatesshow increased pairwise correlations, oscillatory activity, and burstrate compared to those from neurons recorded during normal brainactivity. However, it is not known how these changes affect the behaviorof downstream thalamic neurons. To understand how patterns ofbasal ganglia population activity may affect thalamic spike statistics,we study pairs of model thalamocortical (TC relay neurons receivingcorrelated inhibitory input from the internal segment of the globus pallidus(GPi, a primary output nucleus of the basal ganglia. We observethat the strength of correlations of TC neuron spike trains increaseswith the GPi correlation level, and bursty firing patterns such as thoseseen in the parkinsonian GPi allow for stronger transfer of correlationsthan do firing patterns found under normal conditions. We also showthat the T-current in the TC neurons does not significantly affect correlationtransfer, despite its pronounced effects on spiking. Oscillatoryfiring patterns in GPi are shown to affect the timescale at which correlationsare best transferred through the system. To explain this lastresult, we analytically compute the spike count correlation coefficientfor oscillatory cases in a reduced point process model. Our analysisindicates that the dependence of the timescale of correlation transfer isrobust to different levels of input spike and rate correlations and arisesdue to differences in instantaneous spike correlations, even when thelong timescale rhythmic modulations of neurons are identical. Overall,these results show that parkinsonian firing patterns in GPi do affectthe transfer of correlations to the thalamus.

  19. Basal ganglia disorders studied by positron emission tomography

    International Nuclear Information System (INIS)

    Recent development of positron emitting radioligands has made it possible to investigate the alterations of neurotransmitter systems associated with basal ganglia disorders in vivo. The functional integrity of nigro-striatal dopaminergic terminals may be studied with [18F]6-fluoro-L-dopa ([18F]dopa), and striatal dopamine receptor density with suitable PET ligands. [18F]dopa uptake in the striatum (putamen) is markedly reduced in patients with Parkinson's disease (PD). [18F]dopa-PET is capable of detecting sub-clinical nigral dysfunction in asymptomatic patients with familial PD and those who become Parkinsonian on conventional doses of dopamine receptor antagonists. While putamen [18F]dopa uptake is reduced to a similar level in patients with multiple system atrophy (MSA) and PD, caudate [18F] dopa uptake is lower in MSA than PD. However, [18F]dopa PET cannot consistently distinguish MSA from PD because individual ranges of caudate [18F]dopa uptake overlap. D1 and D2 receptor binding is markedly reduced in the striatum (posterior putamen) of MSA patients. Therefore, dopamine receptor imaging is useful for the differential diagnosis of MSA and PD. Similar marked reductions in putamen and caudate [18F]dopa uptake have been observed in patients with progressive supranuclear palsy (PSP). Moderate reductions in D2 receptor binding have been reported in the striatum of PSP patients. The reduction in D2 receptor binding is more prominent in the caudate than putamen. Striatal [18F]dopa uptake is normal or only mildly reduced in patients with dopa responsive dystonia (DRD). D2 receptor binding is markedly reduced in patients with Huntington's disease, while striatal [18F]dopa uptake is normal or mildly reduced. In summary, PET can demonstrate characteristic patterns of disruption of dopaminergic systems associated with basal ganglia disorders. These PET findings are useful in the differential diagnosis of basal ganglia disorders. (J.P.N.) 55 refs

  20. Understanding Parkinsonian handwriting through a computational model of basal ganglia.

    Science.gov (United States)

    Gangadhar, Garipelli; Joseph, Denny; Chakravarthy, V Srinivasa

    2008-10-01

    Handwriting in Parkinson's disease (PD) is typically characterized by micrographia, jagged line contour, and unusual fluctuations in pen tip velocity. Although PD handwriting features have been used for diagnostics, they are not based on a signaling model of basal ganglia (BG). In this letter, we present a computational model of handwriting generation that highlights the role of BG. When PD conditions like reduced dopamine and altered dynamics of the subthalamic nucleus and globus pallidus externa subsystems are simulated, the handwriting produced by the model manifested characteristic PD handwriting distortions like micrographia and velocity fluctuations. Our approach to PD modeling is in tune with the perspective that PD is a dynamic disease. PMID:18386983

  1. High signal intensity lesion in basal ganglia on MR imaging: correlation with portal-systemic encephalopathy in liver cirrhosis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Ju; Choi, Sun Jeong; Kim, Chang Soo; Kim, Sun Hee; Chung, Chun Phil; Kim, Yang Sook [Maryknoll Hospital, Pusan (Korea, Republic of)

    1993-01-15

    To evaluate of the relationship between basal ganglia lesion and portal-systemic encephalopathy, eleven patients who had clinically proved liver cirrhosis with superior mesenteric vein larger than 10mm in diameter on ultrasonogram underwent brain MR imaging. No evidence of clinical or neuropsychiatric disturbance was observed in any patient at the time of the MR examination. Brain MR imaging revealed basal ganglia lesion characterized by bilateral, symmetric, high signal intensity without edema or mass effect on spin echo T1-weighted images in nine patients which included three patients with the past history of portal-systemic encephalopathy. It was concluded that excepted in the circumstances of other causes of the high signal intensity in basal ganglia on T1-weighted images such as fat, methemoglobin, melanin, neurofibromatosis, dense calcification, and parenteral nutrition, bilateral and symmetric high signal intensity lesion in basal ganglia would be a useful MR finding of subclinical portal-systemic encephalopathy in liver cirrhosis patients with no clinical or neuropsychiatric symptoms and larger than 10mm in diameter of superior mesenteric vein in ultrasonography.

  2. High signal intensity lesion in basal ganglia on MR imaging: correlation with portal-systemic encephalopathy in liver cirrhosis

    International Nuclear Information System (INIS)

    To evaluate of the relationship between basal ganglia lesion and portal-systemic encephalopathy, eleven patients who had clinically proved liver cirrhosis with superior mesenteric vein larger than 10mm in diameter on ultrasonogram underwent brain MR imaging. No evidence of clinical or neuropsychiatric disturbance was observed in any patient at the time of the MR examination. Brain MR imaging revealed basal ganglia lesion characterized by bilateral, symmetric, high signal intensity without edema or mass effect on spin echo T1-weighted images in nine patients which included three patients with the past history of portal-systemic encephalopathy. It was concluded that excepted in the circumstances of other causes of the high signal intensity in basal ganglia on T1-weighted images such as fat, methemoglobin, melanin, neurofibromatosis, dense calcification, and parenteral nutrition, bilateral and symmetric high signal intensity lesion in basal ganglia would be a useful MR finding of subclinical portal-systemic encephalopathy in liver cirrhosis patients with no clinical or neuropsychiatric symptoms and larger than 10mm in diameter of superior mesenteric vein in ultrasonography

  3. Novelty encoding by the output neurons of the basal ganglia

    Directory of Open Access Journals (Sweden)

    Mati Joshua

    2010-01-01

    Full Text Available Reinforcement learning models of the basal ganglia have focused on the resemblance of the dopamine signal to the temporal difference error. However the role of the network as a whole is still elusive, in particular whether the output of the basal ganglia encodes only the behavior (actions or it is part of the valuation process. We trained a monkey extensively on a probabilistic conditional task with seven fractal cues predicting rewarding or aversive outcomes (familiar cues. Then in each recording session we added a cue that the monkey had never seen before (new cue and recorded from single units in the Substantia Nigra pars reticulata (SNpr while the monkey was engaged in a task with new cues intermingled within the familiar ones. The monkey learned the association between the new cue and outcome and modified its licking and blinking behavior which became similar to responses to the familiar cues with the same outcome. However, the responses of many SNpr neurons to the new cue exceeded their response to familiar cues even after behavioral learning was completed. This dissociation between behavior and neural activity suggests that the BG output code goes beyond instruction or gating of behavior to encoding of novel cues. Thus, BG output can enable learning at the levels of its target neural networks.

  4. Morphological elucidation of basal ganglia circuits contributing reward prediction

    Directory of Open Access Journals (Sweden)

    Fumino eFujiyama

    2015-02-01

    Full Text Available Electrophysiological studies in monkeys have shown that dopaminergic neurons respond to the reward prediction error. In addition, striatal neurons alter their responsiveness to cortical or thalamic inputs in response to the dopamine signal, via the mechanism of dopamine-regulated synaptic plasticity. These findings have led to the hypothesis that the striatum exhibits synaptic plasticity under the influence of the reward prediction error and conduct reinforcement learning throughout the basal ganglia circuits.The reinforcement learning model is useful; however, the mechanism by which such a process emerges in the basal ganglia needs to be anatomically explained. The actor–critic model has been previously proposed and extended by the existence of role sharing within the striatum, focusing on the striosome/matrix compartments. However, this hypothesis has been difficult to confirm morphologically, partly because of the complex structure of the striosome/matrix compartments. Here, we review recent morphological studies that elucidate the input/output organization of the striatal compartments.

  5. Chorea due to basal ganglia involvement in a uremic diabetic patient

    Directory of Open Access Journals (Sweden)

    Faik Ilik

    2014-04-01

    Full Text Available Syndromes associated with acute bilateral lesions of the basal ganglia in diabetic uremic patients are uncommon. Uremic encephalopathy is typical of patients showing cortical involvement, with symptoms including confusion, seizures, tremors, or myoclonus. Whenever basal ganglia are anatomically involved, movement disorders arise, including chorea. In this article we present a case with basal ganglia involvement in a uremic diabetic patient causes chorea because of rare presentation. [Cukurova Med J 2014; 39(2.000: 353-356

  6. Control of Basal Ganglia Output by Direct and Indirect Pathway Projection Neurons

    OpenAIRE

    Freeze, Benjamin S.; Kravitz, Alexxai V.; Hammack, Nora; Berke, Joshua D.; Kreitzer, Anatol C.

    2013-01-01

    The direct and indirect efferent pathways from striatum ultimately reconverge to influence basal ganglia output nuclei, which in turn regulate behavior via thalamocortical and brainstem motor circuits. However, the distinct contributions of these two efferent pathways in shaping basal ganglia output are not well understood. We investigated these processes using selective optogenetic control of the direct and indirect pathways, in combination with single-unit recording in the basal ganglia out...

  7. Relationship between obsessive-compulsive disorders and diseases affecting primarily the basal ganglia

    OpenAIRE

    Maia Alex S. S. Freire; Barbosa Egberto Reis; Menezes Paulo Rossi; Miguel Filho Eurípedes C.

    1999-01-01

    Obsessive-compulsive disorder (OCD) has been reported in association with some neurological diseases that affect the basal ganglia such as Tourette's syndrome, Sydenham's chorea, Parkinson's disease, and Huntington's disease. Furthermore, studies such as neuroimaging, suggest a role of the basal ganglia in the pathophysiology of OCD. The aim of this paper is to describe the association of OCD and several neurologic disorders affecting the basal ganglia, report the existing evidences of the ro...

  8. Relationship between obsessive-compulsive disorders and diseases affecting primarily the basal ganglia

    Directory of Open Access Journals (Sweden)

    Maia Alex S. S. Freire

    1999-01-01

    Full Text Available Obsessive-compulsive disorder (OCD has been reported in association with some neurological diseases that affect the basal ganglia such as Tourette's syndrome, Sydenham's chorea, Parkinson's disease, and Huntington's disease. Furthermore, studies such as neuroimaging, suggest a role of the basal ganglia in the pathophysiology of OCD. The aim of this paper is to describe the association of OCD and several neurologic disorders affecting the basal ganglia, report the existing evidences of the role of the basal ganglia in the pathophysiology of OCD, and analyze the mechanisms probably involved in this pathophysiology.

  9. Bilateral symmetrical low density areas in the basal ganglia

    International Nuclear Information System (INIS)

    We reported a case with dysarthria and gait disturbance, in which CT revealed symmetrical well-demarcated low density areas in the basal ganglia. The patient was a 43-year-old woman. Her family history and past history were not contributory. She had a little difficulty in speaking at the age of 17. Gait disturbance and micrographia appeared later. Although her expressionless face resembles to that seen in Parkinsonism, rigidity, akinesia and small-stepped gait were not present. The unclassified types of dysarthria and gait disturbance, which characterize the present case, were considered to be a kind of extrapyramidal symptoms, which were distinct from those of Parkinsonism. CT showed well demarcated low density areas predominantly in bilateral putamen. Metrizamide CT failed to show any communication between low density areas and subarachnoid spaces. To date, six cases, which presented similar clinical features and almost same CT findings as our case, were reported. (author)

  10. Exploring the cognitive and motor functions of the basal ganglia: an integrative review of computational cognitive neuroscience models

    OpenAIRE

    Sebastien Helie; Srinivasa Chakravarthy; Moustafa, Ahmed A.

    2013-01-01

    Many computational models of the basal ganglia have been proposed over the past twenty-five years. While computational neuroscience models have focused on closely matching the neurobiology of the basal ganglia, computational cognitive neuroscience models have focused on how the basal ganglia can be used to implement cognitive and motor functions. This review article focuses on computational cognitive neuroscience models of the basal ganglia and how they use the neuroanatomy of the basal gangl...

  11. Unilateral germinomas involving the basal ganglia and thalamus.

    Science.gov (United States)

    Kobayashi, T; Kageyama, N; Kida, Y; Yoshida, J; Shibuya, N; Okamura, K

    1981-07-01

    Clinical characteristics of six cases of germinoma involving a unilateral basal ganglion and thalamus are summarized. The incidence was estimated as 10% of all intracranial germinomas. The average age at the onset was 10.5 years. The sex incidence showed a male dominance. The clinical course was slowly progressive, and the average duration between onset and diagnosis was 2 years 5 months. Common symptoms and signs were hemiparesis in all cases, fever of unknown origin and eye symptoms in most, mental deterioration and psychiatric signs in three, and convulsions, pubertas praecox, and diabetes insipidus in two. Signs of increased intracranial pressure were found in only two cases in the later state of the disease. Early diagnosis is difficult because of nonspecific symptomatology and slow progression. Carotid angiography and pneumoencephalography showed abnormal findings compatible with basal ganglia and thalamic tumors, but not specific to germinoma. Ipsilateral cortical atrophy and ventricular dilatation might be significant findings. Radioisotope scanning was useful. Computerized tomography scans were the best method of detecting the location and nature of this tumor, and repeat scans showed response to radiation therapy. PMID:7241216

  12. Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards.

    Science.gov (United States)

    Kim, Hyoung F; Hikosaka, Okihide

    2015-07-01

    The basal ganglia control body movements, value processing and decision-making. Many studies have shown that the inputs and outputs of each basal ganglia structure are topographically organized, which suggests that the basal ganglia consist of separate circuits that serve distinct functions. A notable example is the circuits that originate from the rostral (head) and caudal (tail) regions of the caudate nucleus, both of which target the superior colliculus. These two caudate regions encode the reward values of visual objects differently: flexible (short-term) values by the caudate head and stable (long-term) values by the caudate tail. These value signals in the caudate guide the orienting of gaze differently: voluntary saccades by the caudate head circuit and automatic saccades by the caudate tail circuit. Moreover, separate groups of dopamine neurons innervate the caudate head and tail and may selectively guide the flexible and stable learning/memory in the caudate regions. Studies focusing on manual handling of objects also suggest that rostrocaudally separated circuits in the basal ganglia control the action differently. These results suggest that the basal ganglia contain parallel circuits for two steps of goal-directed behaviour: finding valuable objects and manipulating the valuable objects. These parallel circuits may underlie voluntary behaviour and automatic skills, enabling animals (including humans) to adapt to both volatile and stable environments. This understanding of the functions and mechanisms of the basal ganglia parallel circuits may inform the differential diagnosis and treatment of basal ganglia disorders. PMID:25981958

  13. Basal ganglia cholinergic and dopaminergic function in progressive supranuclear palsy.

    Science.gov (United States)

    Warren, Naomi M; Piggott, Margaret A; Greally, Elizabeth; Lake, Michelle; Lees, Andrew J; Burn, David J

    2007-08-15

    Progressive Supranuclear Palsy (PSP) is a progressive neurodegenerative disorder. In contrast to Parkinson's disease (PD) and dementia with Lewy bodies (DLB), replacement therapy with dopaminergic and cholinergic agents in PSP has been disappointing. The neurochemical basis for this is unclear. Our objective was to measure dopaminergic and cholinergic receptors in the basal ganglia of PSP and control brains. We measured, autoradiographically, dopaminergic (dopamine transporter, 125I PE2I and dopamine D2 receptors, 125I epidepride) and cholinergic (nicotinic alpha4beta2 receptors, 125I 5IA85380 and muscarinic M1 receptors, 3H pirenzepine) parameters in the striatum and pallidum of pathologically confirmed PSP cases (n=15) and controls (n=32). In PSP, there was a marked loss of dopamine transporter and nicotinic alpha4beta2 binding in the striatum and pallidum, consistent with loss of nigrostriatal neurones. Striatal D2 receptors were increased in the caudate and muscarinic M1 receptors were unchanged compared with controls. These results do not account for the poor response to dopaminergic and cholinergic replacement therapies in PSP, and suggest relative preservation of postsynaptic striatal projection neurones bearing D2/M1 receptors. PMID:17534953

  14. Basal ganglia contributions to motor control: a vigorous tutor.

    Science.gov (United States)

    Turner, Robert S; Desmurget, Michel

    2010-12-01

    The roles of the basal ganglia (BG) in motor control are much debated. Many influential hypotheses have grown from studies in which output signals of the BG were not blocked, but pathologically disturbed. A weakness of that approach is that the resulting behavioral impairments reflect degraded function of the BG per se mixed together with secondary dysfunctions of BG-recipient brain areas. To overcome that limitation, several studies have focused on the main skeletomotor output region of the BG, the globus pallidus internus (GPi). Using single-cell recording and inactivation protocols these studies provide consistent support for two hypotheses: the BG modulates movement performance ('vigor') according to motivational factors (i.e. context-specific cost/reward functions) and the BG contributes to motor learning. Results from these studies also add to the problems that confront theories positing that the BG selects movement, inhibits unwanted motor responses, corrects errors on-line, or stores and produces well-learned motor skills. PMID:20850966

  15. Quantitation of the human basal ganglia with Positron Emission Tomography

    International Nuclear Information System (INIS)

    The accurate measurement of the concentration of a radioisotope in small structures with PET requires a correction for quantitation loss due to the partial volume effect and the effect of scattered radiation. To evaluate errors associated with measures in the human basal ganglia (BG) we have built a unilateral model of the BG that we have inserted in a 20 cm cylinder. The recovery coefficient (RC = measured activity/true activity) for our BG phantom has been measured on a CTI tomograph (model 931-08/12) with different background concentrations (contrast) and at different axial locations in the gantry. The BG was visualized on 4 or 5 slices depending on its position in the gantry and on the contrast used. The RC was 0.75 with no background (contrast equal to 1.0). Increasing the relative radioactivity concentration in the background increased the RC from 0.75 to 2.00 when the contrast was -0.7 (BG 2). These results show that accurate RC correction depends not only on the volume of the structure but also on its contrast with its surroundings as well as on the selection of the ROI. They also demonstrate that the higher the contrast the more sensitive to axial positioning PET measurements in the BG are. These data provide us with some information about the variability of PET measurements in small structure like the BG and we have proposed some strategies to improve the reproducibility. 18 refs., 3 figs., 5 tabs

  16. Modeling basal ganglia for understanding Parkinsonian reaching movements.

    Science.gov (United States)

    Magdoom, K N; Subramanian, D; Chakravarthy, V S; Ravindran, B; Amari, Shun-Ichi; Meenakshisundaram, N

    2011-02-01

    We present a computational model that highlights the role of basal ganglia (BG) in generating simple reaching movements. The model is cast within the reinforcement learning (RL) framework with correspondence between RL components and neuroanatomy as follows: dopamine signal of substantia nigra pars compacta as the temporal difference error, striatum as the substrate for the critic, and the motor cortex as the actor. A key feature of this neurobiological interpretation is our hypothesis that the indirect pathway is the explorer. Chaotic activity, originating from the indirect pathway part of the model, drives the wandering, exploratory movements of the arm. Thus, the direct pathway subserves exploitation, while the indirect pathway subserves exploration. The motor cortex becomes more and more independent of the corrective influence of BG as training progresses. Reaching trajectories show diminishing variability with training. Reaching movements associated with Parkinson's disease (PD) are simulated by reducing dopamine and degrading the complexity of indirect pathway dynamics by switching it from chaotic to periodic behavior. Under the simulated PD conditions, the arm exhibits PD motor symptoms like tremor, bradykinesia and undershooting. The model echoes the notion that PD is a dynamical disease. PMID:21105828

  17. What do the basal ganglia do? A modeling perspective.

    Science.gov (United States)

    Chakravarthy, V S; Joseph, Denny; Bapi, Raju S

    2010-09-01

    Basal ganglia (BG) constitute a network of seven deep brain nuclei involved in a variety of crucial brain functions including: action selection, action gating, reward based learning, motor preparation, timing, etc. In spite of the immense amount of data available today, researchers continue to wonder how a single deep brain circuit performs such a bewildering range of functions. Computational models of BG have focused on individual functions and fail to give an integrative picture of BG function. A major breakthrough in our understanding of BG function is perhaps the insight that activities of mesencephalic dopaminergic cells represent some form of 'reward' to the organism. This insight enabled application of tools from 'reinforcement learning,' a branch of machine learning, in the study of BG function. Nevertheless, in spite of these bright spots, we are far from the goal of arriving at a comprehensive understanding of these 'mysterious nuclei.' A comprehensive knowledge of BG function has the potential to radically alter treatment and management of a variety of BG-related neurological disorders (Parkinson's disease, Huntington's chorea, etc.) and neuropsychiatric disorders (schizophrenia, obsessive compulsive disorder, etc.) also. In this article, we review the existing modeling literature on BG and hypothesize an integrative picture of the function of these nuclei. PMID:20644953

  18. Focal expression of mutant huntingtin in the songbird basal ganglia disrupts cortico-basal ganglia networks and vocal sequences.

    Science.gov (United States)

    Tanaka, Masashi; Singh Alvarado, Jonnathan; Murugan, Malavika; Mooney, Richard

    2016-03-22

    The basal ganglia (BG) promote complex sequential movements by helping to select elementary motor gestures appropriate to a given behavioral context. Indeed, Huntington's disease (HD), which causes striatal atrophy in the BG, is characterized by hyperkinesia and chorea. How striatal cell loss alters activity in the BG and downstream motor cortical regions to cause these disorganized movements remains unknown. Here, we show that expressing the genetic mutation that causes HD in a song-related region of the songbird BG destabilizes syllable sequences and increases overall vocal activity, but leave the structure of individual syllables intact. These behavioral changes are paralleled by the selective loss of striatal neurons and reduction of inhibitory synapses on pallidal neurons that serve as the BG output. Chronic recordings in singing birds revealed disrupted temporal patterns of activity in pallidal neurons and downstream cortical neurons. Moreover, reversible inactivation of the cortical neurons rescued the disorganized vocal sequences in transfected birds. These findings shed light on a key role of temporal patterns of cortico-BG activity in the regulation of complex motor sequences and show how a genetic mutation alters cortico-BG networks to cause disorganized movements. PMID:26951661

  19. Refractory epilepsy and basal ganglia: the role of seizure frequency

    Energy Technology Data Exchange (ETDEWEB)

    Bouilleret, V.; Trebossen, R.; Mantzerides, M.; Semah, F.; Ribeiro, M.J. [Service Hospitalier Frederic Joliot, I2BM/DSV, CEA, 91 - Orsay (France); Bouilleret, V. [CHU Bicetre, Unite de Neurophysiologie et d' Epileptologie, AP-HP, 75 - Paris (France); Chassoux, F. [Hopital Saint Anne, Service de Neurochirurgie, 75 - Paris (France); Biraben, A. [CHU, Service de Neurologie, Hopital Pontchaillou, 35 - Rennes (France)

    2008-02-15

    Objectives. - A decrease of [{sup 18}F]Fluoro-L-DOPA uptake in basal ganglia (B.G.) was recently reported in medically refractory epilepsy. The purpose of this study was to assess the involvement of dopaminergic neurotransmission in refractory Temporal Lobe Epilepsy (T.L.E.) and its relationship to glucose metabolism and morphological changes. Methods. - Twelve T.L.E. patients were studied using [{sup 18}F]FDG PET, [{sup 18}F]Fluoro-L-DOPA PET and MRI and compared with healthy control volunteers. Morphological cerebral changes were assessed using Voxel-Based Morphometry (V.B.M.). Student t test statistical maps of functional and morphological differences between patients and controls were obtained using a general linear model. Results. - In T.L.E. patients, [{sup 18}F]Fluoro-L-DOPA uptake was reduced to the same extent in caudate and putamen in both cerebral hemispheres as well as in the substantia nigra (S.N.). These dopaminergic functional alterations occurred without any glucose metabolism changes in these areas. The only mild morphological abnormality was found in striatal regions without any changes in the S.N.. Conclusion. - The present study provides support for dopaminergic neurotransmission involvement in T.L.E.. The discrepancies between G.M.V. atrophy and the pattern of [{sup 18}F]Fluoro-L-DOPA suggest that B.G. involvement is not related to structural subcortical abnormalities. A functional decrease can be ruled out as there was no change of the glycolytic pathway metabolism in these areas. (authors)

  20. Potential mechanisms for imperfect synchronization in parkinsonian basal ganglia.

    Directory of Open Access Journals (Sweden)

    Choongseok Park

    Full Text Available Neural activity in the brain of parkinsonian patients is characterized by the intermittently synchronized oscillatory dynamics. This imperfect synchronization, observed in the beta frequency band, is believed to be related to the hypokinetic motor symptoms of the disorder. Our study explores potential mechanisms behind this intermittent synchrony. We study the response of a bursting pallidal neuron to different patterns of synaptic input from subthalamic nucleus (STN neuron. We show how external globus pallidus (GPe neuron is sensitive to the phase of the input from the STN cell and can exhibit intermittent phase-locking with the input in the beta band. The temporal properties of this intermittent phase-locking show similarities to the intermittent synchronization observed in experiments. We also study the synchronization of GPe cells to synaptic input from the STN cell with dependence on the dopamine-modulated parameters. Earlier studies showed how the strengthening of dopamine-modulated coupling may lead to transitions from non-synchronized to partially synchronized dynamics, typical in Parkinson's disease. However, dopamine also affects the cellular properties of neurons. We show how the changes in firing patterns of STN neuron due to the lack of dopamine may lead to transition from a lower to a higher coherent state, roughly matching the synchrony levels observed in basal ganglia in normal and parkinsonian states. The intermittent nature of the neural beta band synchrony in Parkinson's disease is achieved in the model due to the interplay of the timing of STN input to pallidum and pallidal neuronal dynamics, resulting in sensitivity of pallidal output to the phase of the arriving STN input. Thus the mechanism considered here (the change in firing pattern of subthalamic neurons through the dopamine-induced change of membrane properties may be one of the potential mechanisms responsible for the generation of the intermittent synchronization

  1. Bilateral symmetrical basal ganglia and thalamic lesions in children: an update (2015)

    Energy Technology Data Exchange (ETDEWEB)

    Zuccoli, Giulio [Children' s Hospital of Pittsburgh of UPMC, Section of Neuroradiology, Pittsburgh, PA (United States); Yannes, Michael Paul [University of Pittsburgh School of Medicine, Department of Radiology, Pittsburgh, PA (United States); Nardone, Raffaele [Paracelsus Medical University, Department of Neurology, Christian Doppler Klinik, Salzburg (Austria); Bailey, Ariel [West Virginia University, Department of Radiology, Morgantown, WV (United States); Goldstein, Amy [Children' s Hospital of Pittsburgh of UPMC, Department of Neurology, Section of Metabolic Disorders and Neurogenetics, Pittsburgh, PA (United States)

    2015-10-15

    In children, many inherited or acquired neurological disorders may cause bilateral symmetrical signal intensity alterations in the basal ganglia and thalami. A literature review was aimed at assisting neuroradiologists, neurologists, infectious diseases specialists, and pediatricians to provide further understanding into the clinical and neuroimaging features in pediatric patients presenting with bilateral symmetrical basal ganglia and thalamic lesions on magnetic resonance imaging (MRI). We discuss hypoxic-ischemic, toxic, infectious, immune-mediated, mitochondrial, metabolic, and neurodegenerative disorders affecting the basal ganglia and thalami. Recognition and correct evaluation of basal ganglia abnormalities, together with a proper neurological examination and laboratory findings, may enable the identification of each of these clinical entities and lead to earlier diagnosis. (orig.)

  2. Endoscopic considerations treating hydrocephalus caused by basal ganglia and large thalamic tumors

    Directory of Open Access Journals (Sweden)

    Jonathan Roth

    2015-01-01

    Conclusions: Endoscopic surgery may potentially play a significant role in the initial management of patients with large basal ganglia and large thalamic tumors causing obstructive hydrocephalus. Technical nuances and individualized goals are crucial for optimal outcomes.

  3. Bilateral symmetrical basal ganglia and thalamic lesions in children: an update (2015)

    International Nuclear Information System (INIS)

    In children, many inherited or acquired neurological disorders may cause bilateral symmetrical signal intensity alterations in the basal ganglia and thalami. A literature review was aimed at assisting neuroradiologists, neurologists, infectious diseases specialists, and pediatricians to provide further understanding into the clinical and neuroimaging features in pediatric patients presenting with bilateral symmetrical basal ganglia and thalamic lesions on magnetic resonance imaging (MRI). We discuss hypoxic-ischemic, toxic, infectious, immune-mediated, mitochondrial, metabolic, and neurodegenerative disorders affecting the basal ganglia and thalami. Recognition and correct evaluation of basal ganglia abnormalities, together with a proper neurological examination and laboratory findings, may enable the identification of each of these clinical entities and lead to earlier diagnosis. (orig.)

  4. Actor-critic models of the basal ganglia: new anatomical and computational perspectives.

    Science.gov (United States)

    Joel, Daphna; Niv, Yael; Ruppin, Eytan

    2002-01-01

    A large number of computational models of information processing in the basal ganglia have been developed in recent years. Prominent in these are actor-critic models of basal ganglia functioning, which build on the strong resemblance between dopamine neuron activity and the temporal difference prediction error signal in the critic, and between dopamine-dependent long-term synaptic plasticity in the striatum and learning guided by a prediction error signal in the actor. We selectively review several actor-critic models of the basal ganglia with an emphasis on two important aspects: the way in which models of the critic reproduce the temporal dynamics of dopamine firing, and the extent to which models of the actor take into account known basal ganglia anatomy and physiology. To complement the efforts to relate basal ganglia mechanisms to reinforcement learning (RL), we introduce an alternative approach to modeling a critic network, which uses Evolutionary Computation techniques to 'evolve' an optimal RL mechanism, and relate the evolved mechanism to the basic model of the critic. We conclude our discussion of models of the critic by a critical discussion of the anatomical plausibility of implementations of a critic in basal ganglia circuitry, and conclude that such implementations build on assumptions that are inconsistent with the known anatomy of the basal ganglia. We return to the actor component of the actor-critic model, which is usually modeled at the striatal level with very little detail. We describe an alternative model of the basal ganglia which takes into account several important, and previously neglected, anatomical and physiological characteristics of basal ganglia-thalamocortical connectivity and suggests that the basal ganglia performs reinforcement-biased dimensionality reduction of cortical inputs. We further suggest that since such selective encoding may bias the representation at the level of the frontal cortex towards the selection of rewarded

  5. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences

    OpenAIRE

    Jin, Xin; Tecuapetla, Fatuel; Costa, Rui M.

    2014-01-01

    Chunking allows the brain to efficiently organize memories and actions. Although basal ganglia circuits have been implicated in action chunking, little is known about how individual elements are concatenated into a behavioral sequence at the neural level. Using a task where mice learn rapid action sequences, we uncovered neuronal activity encoding entire sequences as single actions in basal ganglia circuits. Besides start/stop activity signaling sequence parsing, we found neurons displaying i...

  6. Acute Psychosis Associated with Subcortical Stroke: Comparison between Basal Ganglia and Mid-Brain Lesions

    OpenAIRE

    Aaron McMurtray; Ben Tseng; Natalie Diaz; Julia Chung; Bijal Mehta; Erin Saito

    2014-01-01

    Acute onset of psychosis in an older or elderly individual without history of previous psychiatric disorders should prompt a thorough workup for neurologic causes of psychiatric symptoms. This report compares and contrasts clinical features of new onset of psychotic symptoms between two patients, one with an acute basal ganglia hemorrhagic stroke and another with an acute mid-brain ischemic stroke. Delusions and hallucinations due to basal ganglia lesions are theorized to develop as a result ...

  7. Identifying Basal Ganglia Divisions in Individuals Using Resting-State Functional Connectivity MRI

    OpenAIRE

    Barnes, Kelly Anne; Cohen, Alexander L.; Power, Jonathan D.; Nelson, Steven M.; Dosenbach, Yannic B.L.; Miezin, Francis M.; Petersen, Steven E.; Schlaggar, Bradley L.

    2010-01-01

    Studies in non-human primates and humans reveal that discrete regions (henceforth, “divisions”) in the basal ganglia are intricately interconnected with regions in the cerebral cortex. However, divisions within basal ganglia nuclei (e.g., within the caudate) are difficult to identify using structural MRI. Resting-state functional connectivity MRI (rs-fcMRI) can be used to identify putative cerebral cortical functional areas in humans (Cohen et al., 2008). Here, we determine whether rs-fcMRI c...

  8. Single-voxel proton MR spectroscopy of the basal ganglia in patients with neurofibromatosis type 1

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Nak Kwan; Kim, Jong Ki; Oh, Kyu Hyeon; Lee, Young Hwan; Chung, Duk Soo; Kim, Ok Dong; Lee, Dong Kuck; Hwang, Jin Bok [Catholic Univ. of Taegu-Hyosung, Taegu (Korea, Republic of)

    1998-08-01

    To demonstrate the proton MR spectroscopic characteristics of non-neoplastic focal basal ganglia lesions with high signal intensity on long TR MR images in patients with neurofibromatosis type 1(NF-1), and to compare them with those of normal-appearing basal ganglia in patients without focal lesions. Materials and Methods: Single-voxel proton MR spectroscopy was performed in six patients with NF-1 from two families(three with and three without non-neoplastic focal brain lesions). All six individual spectra were obtained from basal ganglia with voxel sizes of about 1 x 1 x 1 cm, three from focal pallidal lesions in patients with focal lesions and three from normal-appearing basal ganglia in patients without focal lesions. Spectra were acquired using a 1.5T clinical MR imager and stimulated echo acquisition mode sequence, with the following parameters: 30 ms of echo time, 13.7ms of mixing time, and 2560 ms of repetition time. Zero and first-order phase correction was performed. Results :N-acetyl aspartate(NAA)/creatine(Cr) ratios were similar between focal basal ganglia lesions and normal-appearing basal ganglia, though the former showed slightly lower choline(Cho)/Cr ratios and slightly higher NAA/Cho ratios than the latter. Relatively enhanced resonances around 3.75 ppm, assigned as glutamate/glutamine, were observed in the spectra of three focal lesions. Lipid resonances around slightly different positions were observed in all six patients, regardless of the presence or absence of focal lesions. Conclusion : Slightly decreased Cho levels and relatively enhanced glutamate/glutamine resonances are thought to characterize the focal basal ganglia lesions of NF-1. Different mobile lipids appear to be present in the basal ganglia of NF-1 patients, regardless of the presence of focal lesions.

  9. Basal ganglia intensity indices and diffusion weighted imaging in manganese-exposed welders

    Science.gov (United States)

    Criswell, Susan R; Perlmutter, Joel S; Huang, John L; Golchin, Nima; Flores, Hubert P; Hobson, Angela; Aschner, Michael; Erikson, Keith M; Checkoway, Harvey; Racette, Brad A

    2013-01-01

    Objectives Manganese exposure leads to diffuse cerebral metal deposition with the highest concentration in the globus pallidus associated with increased T1-weighted MRI signal. T1 signal intensity in extra-pallidal basal ganglia (caudate and putamen) has not been studied in occupationally exposed workers. Diffusion weighted imaging is a non-invasive measure of neuronal damage and may provide a quantification of neurotoxicity associated with welding and manganese exposure. This study investigated extra-pallidal T1 basal ganglia signal intensity as a marker of manganese exposure and basal ganglia diffusion weighted imaging abnormalities as a potential marker of neurotoxicity. Methods A 3T MR case:control imaging study was performed on 18 welders and 18 age- and gender-matched controls. Basal ganglia regions of interest were identified for each subject. T1-weighted intensity indices and apparent diffusion coefficients were generated for each region. Results All regional indices were higher in welders than controls (p≤0.05). Combined basal ganglia (ρ=0.610), caudate (ρ=0.645), anterior (ρ=0.595) and posterior putamen (ρ=0.511) indices were more correlated with exposure than pallidal (ρ=0.484) index. Welder apparent diffusion coefficient values were lower than controls for globus pallidus (p=0.03) and anterior putamen (p=0.004). Conclusions Welders demonstrated elevated T1 indices throughout the basal ganglia. Combined basal ganglia, caudate and putamen indices were more correlated with exposure than pallidal index suggesting more inclusive basal ganglia sampling results in better exposure markers. Elevated indices were associated with diffusion weighted abnormalities in the pallidum and anterior putamen suggesting neurotoxicity in these regions. PMID:22447645

  10. Changes in the basal ganglia and thalamus following reperfusion after complete cerebral ischaemia

    International Nuclear Information System (INIS)

    We report specific changes bilaterally in the basal ganglia and thalamus following reperfusion after complete cerebral ischaemia. A 69-year-old man, resuscitated after cardiac arrest, showed symmetrical low-density lesions in the head of the caudate nucleus and lentiform nucleus on CT. MRI revealed methaemoglobin derived from minor haemorrhage in the basal ganglia and thalamus, not evident on CT. We suggest that this haemorrhage results from diapedesis of red blood cells through the damaged capillary endothelium following reperfusion. (orig.)

  11. Acute Chorea Characterized by Bilateral Basal Ganglia Lesions in a Patient with Diabetic Nephropathy

    OpenAIRE

    İbrahim DOĞAN; Serdar KAHVECİOĞLU; Kurtoğlu, Ünal; YILDIZ, DEMET; Abdulmecit YILDIZ

    2015-01-01

    The syndrome of acute bilateral basal ganglia lesions associated with uremia presents with parkinsonism, altered mental status, and chorea in association with specific imaging findings in the basal ganglia. It is an uncommon syndrome seen generally in patients with diabetes mellitus and renal failure. We report a male patient with diabetes mellitus who received hemodialysis treatment 3 days a week for 5 years and suffered from choreic movements developed suddenly and associated with bilateral...

  12. Single-voxel proton MR spectroscopy of the basal ganglia in patients with neurofibromatosis type 1

    International Nuclear Information System (INIS)

    To demonstrate the proton MR spectroscopic characteristics of non-neoplastic focal basal ganglia lesions with high signal intensity on long TR MR images in patients with neurofibromatosis type 1(NF-1), and to compare them with those of normal-appearing basal ganglia in patients without focal lesions. Materials and Methods: Single-voxel proton MR spectroscopy was performed in six patients with NF-1 from two families(three with and three without non-neoplastic focal brain lesions). All six individual spectra were obtained from basal ganglia with voxel sizes of about 1 x 1 x 1 cm, three from focal pallidal lesions in patients with focal lesions and three from normal-appearing basal ganglia in patients without focal lesions. Spectra were acquired using a 1.5T clinical MR imager and stimulated echo acquisition mode sequence, with the following parameters: 30 ms of echo time, 13.7ms of mixing time, and 2560 ms of repetition time. Zero and first-order phase correction was performed. Results :N-acetyl aspartate(NAA)/creatine(Cr) ratios were similar between focal basal ganglia lesions and normal-appearing basal ganglia, though the former showed slightly lower choline(Cho)/Cr ratios and slightly higher NAA/Cho ratios than the latter. Relatively enhanced resonances around 3.75 ppm, assigned as glutamate/glutamine, were observed in the spectra of three focal lesions. Lipid resonances around slightly different positions were observed in all six patients, regardless of the presence or absence of focal lesions. Conclusion : Slightly decreased Cho levels and relatively enhanced glutamate/glutamine resonances are thought to characterize the focal basal ganglia lesions of NF-1. Different mobile lipids appear to be present in the basal ganglia of NF-1 patients, regardless of the presence of focal lesions

  13. Minimizing Human Intervention in the Development of Basal Ganglia-Inspired Robot Control

    OpenAIRE

    F. Montes-Gonzalez; Prescott, T.J; Negrete-Martinez, J.

    2007-01-01

    A biologically inspired mechanism for robot action selection, based on the vertebrate basal ganglia, has been previously presented (Prescott et al. 2006, Montes Gonzalez et al. 2000). In this model the task confronting the robot is decomposed into distinct behavioural modules that integrate information from multiple sensors and internal state to form ‘salience’ signals. These signals are provided as inputs to a computational model of the basal ganglia whose intrinsic processes cause the selec...

  14. Modulation of the basal ganglia dopaminergic system in a transgenic mouse exhibiting dystonia-like features

    OpenAIRE

    Giannakopoulou, D.; Armata, I.A.; Mitsacos, A.; Shashidharan, P.; Giompres, P.

    2010-01-01

    Dystonia is a movement disorder characterized by involuntary excessive muscle activity and abnormal postures. There are data supporting the hypothesis that basal ganglia dysfunction, and specifically dopaminergic system dysfunction, plays a role in dystonia. In the present study, we used hyperkinetic transgenic mice generated as a model of DYT1 dystonia and compared the basal ganglia dopaminergic system between transgenic mice exhibiting hyperkinesia (affected) transgenic mice not showing mov...

  15. Evidence for Altered Basal Ganglia-Brainstem Connections in Cervical Dystonia

    OpenAIRE

    Kuster, John K.; Woodman, Sandra C.; Kirlic, Namik; Multhaupt-Buell, Trisha J.; Makris, Nikos; Parent, Martin; Sjalander, Greta; Breiter, Henry; Blood, Anne J.; Makhlouf, Miriam Louise; Sudarsky, Lewis Richard; Breiter, Hans Charles; Sharma, Nutan

    2012-01-01

    Background: There has been increasing interest in the interaction of the basal ganglia with the cerebellum and the brainstem in motor control and movement disorders. In addition, it has been suggested that these subcortical connections with the basal ganglia may help to coordinate a network of regions involved in mediating posture and stabilization. While studies in animal models support a role for this circuitry in the pathophysiology of the movement disorder dystonia, thus far, there is onl...

  16. Reversible Acute Parkinsonism and Bilateral Basal Ganglia Lesions in a Diabetic Uremic Patient

    OpenAIRE

    Nzwalo, Hipólito; Sá, Francisca; Capela, Carlos; Ferreira, Fátima; Basílio, Carlos

    2012-01-01

    The syndrome of bilateral basal ganglia lesions in diabetic uremic patients is a rare disorder mostly reported in Asians. There are few reports of the syndrome in Caucasians. It manifests as an acute hyperkinetic or hypokinetic extrapyramidal disorder in association with uniform neuroimaging findings of bilateral symmetrical basal ganglia changes in diabetics undergoing hemodialysis. Its pathophysiology remains largely unknown. Thus, we report a typical case of the syndrome in a Caucasian pat...

  17. MR imaging study of tumors originating in the basal ganglia and thalamus in children

    International Nuclear Information System (INIS)

    Objective: To study and compare the clinical and MR imaging characteristics of tumors originating in the basal ganglia and thalamus in children. Analysis was focussed on the relationship of the sex, location and the signal characteristics of the tumors. Methods: MR imaging studies of 36 children (23 boys and 13 girls; ranging in age from 3-15 years; mean age, 10.7 years) with the tumors arising from the basal ganglia and thalamus were reviewed retrospectively. The tumors included 15 astrocytomas, 8 glioblastomas, 9 germinoma, 2 malignant teratomas and 2 gangliocytomas. All had surgery, with pathologic confirmation. Results: In 23 gliomas, 1 was located in basal ganglia and 22 in thalamus. There was a slight male predilection. All germinomas and malignant teratomas were male in this group. In germinoma and malignant teratoma group, 2 germinomas and one malignant teratoma were in thalamus, the others were in basal ganglia. Two gangliocytomas were female and located in thalamus. Conclusion: The tumors originating in the basal ganglia and thalamus in children have sex, located in thalamus. Conclusion: The tumors originating in the basal ganglia and thalamus in children have sex, location and imaging characteristics. Therefore, it is possible to make preoperative diagnosis using CT or MR

  18. Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality?

    Science.gov (United States)

    Wichmann, Thomas; DeLong, Mahlon R

    2016-04-01

    Deep brain stimulation (DBS) is highly effective for both hypo- and hyperkinetic movement disorders of basal ganglia origin. The clinical use of DBS is, in part, empiric, based on the experience with prior surgical ablative therapies for these disorders, and, in part, driven by scientific discoveries made decades ago. In this review, we consider anatomical and functional concepts of the basal ganglia relevant to our understanding of DBS mechanisms, as well as our current understanding of the pathophysiology of two of the most commonly DBS-treated conditions, Parkinson's disease and dystonia. Finally, we discuss the proposed mechanism(s) of action of DBS in restoring function in patients with movement disorders. The signs and symptoms of the various disorders appear to result from signature disordered activity in the basal ganglia output, which disrupts the activity in thalamocortical and brainstem networks. The available evidence suggests that the effects of DBS are strongly dependent on targeting sensorimotor portions of specific nodes of the basal ganglia-thalamocortical motor circuit, that is, the subthalamic nucleus and the internal segment of the globus pallidus. There is little evidence to suggest that DBS in patients with movement disorders restores normal basal ganglia functions (e.g., their role in movement or reinforcement learning). Instead, it appears that high-frequency DBS replaces the abnormal basal ganglia output with a more tolerable pattern, which helps to restore the functionality of downstream networks. PMID:26956115

  19. Electrophysiological Evidences of Organization of Cortical Motor Information in the Basal Ganglia

    Directory of Open Access Journals (Sweden)

    Hirokazu Iwamuro

    2011-05-01

    Full Text Available During the last two decades, the many developments in the treatment of movement disorders such as Parkinson disease and dystonia have enhanced our understanding on organization of the basal ganglia, and this knowledge has led to other advances in the field. According to many electrophysiological and anatomical findings, it is considered that motor information from different cortical areas is processed through several cortico-basal ganglia loops principally in a parallel fashion and somatotopy from each cortical area is also well preserved in each loop. Moreover, recent studies suggest that not only the parallel processing but also some convergence of information occur through the basal ganglia. Information from cortical areas whose functions are close to each other tends to converge in the basal ganglia. The cortico-basal ganglia loops should be comprehended more as a network rather than as separated subdivisions. However, the functions of this convergence still remain unknown. It is important even for clinical doctors to be well informed about this kind of current knowledge because some symptoms of movement disorders may be explained by disorganization of the information network in the basal ganglia.

  20. Dopaminergic Control of the Exploration-Exploitation Trade-Off via the Basal Ganglia

    Science.gov (United States)

    Humphries, Mark D.; Khamassi, Mehdi; Gurney, Kevin

    2012-01-01

    We continuously face the dilemma of choosing between actions that gather new information or actions that exploit existing knowledge. This “exploration-exploitation” trade-off depends on the environment: stability favors exploiting knowledge to maximize gains; volatility favors exploring new options and discovering new outcomes. Here we set out to reconcile recent evidence for dopamine’s involvement in the exploration-exploitation trade-off with the existing evidence for basal ganglia control of action selection, by testing the hypothesis that tonic dopamine in the striatum, the basal ganglia’s input nucleus, sets the current exploration-exploitation trade-off. We first advance the idea of interpreting the basal ganglia output as a probability distribution function for action selection. Using computational models of the full basal ganglia circuit, we showed that, under this interpretation, the actions of dopamine within the striatum change the basal ganglia’s output to favor the level of exploration or exploitation encoded in the probability distribution. We also found that our models predict striatal dopamine controls the exploration-exploitation trade-off if we instead read-out the probability distribution from the target nuclei of the basal ganglia, where their inhibitory input shapes the cortical input to these nuclei. Finally, by integrating the basal ganglia within a reinforcement learning model, we showed how dopamine’s effect on the exploration-exploitation trade-off could be measurable in a forced two-choice task. These simulations also showed how tonic dopamine can appear to affect learning while only directly altering the trade-off. Thus, our models support the hypothesis that changes in tonic dopamine within the striatum can alter the exploration-exploitation trade-off by modulating the output of the basal ganglia. PMID:22347155

  1. Identifying basal ganglia divisions in individuals using resting-state functional connectivity MRI

    Directory of Open Access Journals (Sweden)

    Kelly A Barnes

    2010-06-01

    Full Text Available Studies in non-human primates and humans reveal that discrete regions (henceforth, “divisions” in the basal ganglia are intricately interconnected with regions in the cerebral cortex. However, divisions within basal ganglia nuclei (e.g., within the caudate are difficult to identify using structural MRI. Resting-state functional connectivity MRI (rs-fcMRI can be used to identify putative cerebral cortical functional areas in humans (Cohen et al., 2008. Here, we determine whether rs-fcMRI can be used to identify divisions in individual human adult basal ganglia. Putative basal ganglia divisions were generated by assigning basal ganglia voxels to groups based on the similarity of whole-brain functional connectivity correlation maps using modularity optimization, a network analysis tool. We assessed the validity of this approach by examining the spatial contiguity and location of putative divisions and whether divisions’ correlation maps were consistent with previously reported patterns of anatomical and functional connectivity. Spatially constrained divisions consistent with the dorsal caudate, ventral striatum, and dorsal caudal putamen could be identified in each subject. Further, correlation maps associated with putative divisions were consistent with their presumed connectivity. These findings suggest that, as in the cerebral cortex, subcortical divisions can be identified in individuals using rs-fcMRI. Developing and validating these methods should improve the study of brain structure and function, both typical and atypical, by allowing for more precise comparison across individuals.

  2. Diffusion Tensor Imaging of Basal Ganglia and Thalamus in Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Sharma, Khema R.; Sheriff, Sulaiman; Maudsley, Andrew; Govind, Varan

    2016-01-01

    Purpose To assess the involvement of basal ganglia and thalamus in patients with amyotrophic lateral sclerosis (ALS) using diffusion tensor imaging (DTI) method. Methods Fourteen definite-ALS patients and 12 age-matched controls underwent whole brain DTI on a 3T scanner. Mean-diffusivity (MD) and fractional anisotropy (FA) were obtained bilaterally from the basal ganglia and thalamus in the regions-of-interest (ROI). Results The MD was significantly higher (p < 0.02) in basal ganglia and thalamus in patients with ALS compared with controls. Correspondingly, the FA was significantly lower (p < 0.02) in these structures, except in caudate (p =0.04) and putamen (p = 0.06) in patients compared with controls. There were mild to strong correlations (r: 0.3 – 0.7) between the DTI measures of basal ganglia and finger–tap, foot-tap, and lip-and-tongue-movement-rate. Conclusions The increased MD in basal ganglia and thalamus, and decreased FA in globus pallidus and thalamus are indicative of neuronal loss or dysfunction in these structures. PMID:22273090

  3. Exercise-induced changes in basal ganglia volume and cognition in older adults.

    Science.gov (United States)

    Niemann, C; Godde, B; Staudinger, U M; Voelcker-Rehage, C

    2014-12-01

    Physical activity has been demonstrated to diminish age-related brain volume shrinkage in several brain regions accompanied by a reduction of age-related decline in cognitive functions. Most studies investigated the impact of cardiovascular fitness or training. Other types of fitness or training are less well investigated. In addition, little is known about exercise effects on volume of the basal ganglia, which, however, are involved in motor activities and cognitive functioning. In the current study (1) we examined the relationships of individual cardiovascular and motor fitness levels with the volume of the basal ganglia (namely caudate, putamen, and globus pallidus) and selected cognitive functions (executive control, perceptual speed). (2) We investigated the effect of 12-month training interventions (cardiovascular and coordination training, control group stretching and relaxation) on the volume of the respective basal ganglia nuclei. Results revealed that motor fitness but not cardiovascular fitness was positively related with the volume of the putamen and the globus pallidus. Additionally, a moderating effect of the volume of the basal ganglia (as a whole, but also separately for putamen and globus pallidus) on the relationship between motor fitness and executive function was revealed. Coordination training increased caudate and globus pallidus volume. We provide evidence that coordinative exercise seems to be a favorable leisure activity for older adults that has the potential to improve volume of the basal ganglia. PMID:25255932

  4. Acute bilateral basal ganglia lesions in diabetic uraemia: diffusion-weighted MRI

    International Nuclear Information System (INIS)

    We studied four patients with diabetes mellitus and chronic renal failure who developed sudden choreic movement disorders. The clinical manifestations, laboratory findings, MR imaging findings, and clinical outcome in each patient were evaluated. All four patients had long-term diabetes mellitus and severe azotaemia. Brain MR findings consisted of bilateral symmetric basal ganglia lesions, with decreased signal intensity on T1-weighted images and increased signal intensity on T2-weighted images. All three patients who underwent diffusion-weighted MR imaging (DWI) showed signal intensities similar to those of the surroundings in regions corresponding to increased signal intensity on T2-weighted images, with slightly increased apparent diffusion coefficient (ADC) values. Two of the patients showed small focal areas of restricted diffusion within the basal ganglia lesions. After haemodialysis, follow-up MR imaging in all patients demonstrated that the basal ganglia lesions had regressed markedly, with some residual changes. The movement disorders also improved in all patients. A syndrome associated with acute bilateral basal ganglia lesions in diabetic uraemic patients is rare, with reversible changes demonstrated by clinical and imaging findings. DWI showed that the bilateral basal ganglia lesions in this syndrome were primarily vasogenic in origin, although there were small foci of cytotoxic oedema within the lesions. (orig.)

  5. Acute bilateral basal ganglia lesions in diabetic uraemia: diffusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Ja; Park, Chan Sup [Kwandong University, College of Medicine, Department of Radiology, Myongji Hospital, Koyang-City, Gyunggi-Do (Korea); Park, Jong-Ho [Myongji Hospital, Kwandong University, College of Medicine, Department of Neurology, Koyang (Korea); Ihn, Yon kwon; Kim, Young Joo [The Catholic University of Korea, Department of Radiology, Seoul (Korea); Lee, Seon Kyu [University of Toronto, Department of Medical Imaging, Toronto Western Hospital, Toronto (Canada)

    2007-12-15

    We studied four patients with diabetes mellitus and chronic renal failure who developed sudden choreic movement disorders. The clinical manifestations, laboratory findings, MR imaging findings, and clinical outcome in each patient were evaluated. All four patients had long-term diabetes mellitus and severe azotaemia. Brain MR findings consisted of bilateral symmetric basal ganglia lesions, with decreased signal intensity on T1-weighted images and increased signal intensity on T2-weighted images. All three patients who underwent diffusion-weighted MR imaging (DWI) showed signal intensities similar to those of the surroundings in regions corresponding to increased signal intensity on T2-weighted images, with slightly increased apparent diffusion coefficient (ADC) values. Two of the patients showed small focal areas of restricted diffusion within the basal ganglia lesions. After haemodialysis, follow-up MR imaging in all patients demonstrated that the basal ganglia lesions had regressed markedly, with some residual changes. The movement disorders also improved in all patients. A syndrome associated with acute bilateral basal ganglia lesions in diabetic uraemic patients is rare, with reversible changes demonstrated by clinical and imaging findings. DWI showed that the bilateral basal ganglia lesions in this syndrome were primarily vasogenic in origin, although there were small foci of cytotoxic oedema within the lesions. (orig.)

  6. Task-related “cortical” bursting depends critically on basal ganglia input and is linked to vocal plasticity

    OpenAIRE

    Kojima, Satoshi; Kao, Mimi H.; Doupe, Allison J.

    2013-01-01

    Basal ganglia-thalamocortical circuits are critical for motor control and motor learning. Classically, basal ganglia nuclei are thought to regulate motor behavior by increasing or decreasing cortical firing rates, and basal ganglia diseases are assumed to reflect abnormal overall activity levels. More recent studies suggest instead that motor disorders derive from abnormal firing patterns, and have led to the hypothesis that surgical treatments, such as pallidotomy, act primarily by eliminati...

  7. A review of pathologies associated with high T1W signal intensity in the basal ganglia on Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    With several functions and a fundamental influence over cognition and motor functions, the basal ganglia are the cohesive centre of the brain. There are several conditions which affect the basal ganglia and these have various clinical and radiological manifestations. Nevertheless, on magnetic resonance imaging there is a limited differential diagnosis for those conditions presenting with T1 weighted spin echo hyperintensity within the central nervous system in general and the basal ganglia in particular. The aim of our review is to explore some of these basal ganglia pathologies and provide image illustrations

  8. The basal ganglia downstream control of brainstem motor centres--an evolutionarily conserved strategy.

    Science.gov (United States)

    Grillner, Sten; Robertson, Brita

    2015-08-01

    The basal ganglia plays a crucial role in decision-making and control of motion. The output of the basal ganglia consists of tonically active GABAergic neurons, a proportion of which project to different brainstem centres and another part projecting to thalamus and back to cortex. The focus here is on the former part, which keeps the different brainstem motor-centres tonically inhibited under resting conditions. These centres will be disinhibited when called into action. In the control of motion the direct pathway will promote movement and the indirect pathway inhibit competing movement patterns counteracting the motor-command issued. The basal ganglia detailed structure and function are conserved throughout the vertebrate evolution, including the afferent (e.g. habenulae) and efferent control of the dopamine system. PMID:25682058

  9. Single-photon-emission-computed-tomography (SPECT) in basal ganglia disorders

    International Nuclear Information System (INIS)

    In the past, SPECT investigations of regional cerebral blood flow have played a minor role in the diagnostic work-up of patients with basal ganglia disorders. More recently, however, interest in nuclear medicine procedures has dramatically increased since with the development of selective receptor ligands diagnostic tools have been provided which address the pathology in basal ganglia disorders more specifically than other diagnostic modalities. Evaluations of the pre- and postsynaptic aspects of the dopaminergic system, for example, deliver not only interesting data from the scientific point of view but also for the daily routine work. This paper summarizes some of the experience reported in the literature on SPECT investigations in basal ganglia disorders, such as Parkinson's disease, parkinsonian syndromes of other etiology, Wilson's and Huntington's disease, focal dystonias, and schizophrenia under treatment with neuroleptics. (orig.)

  10. Cognition and the basal ganglia: a possible substrate for procedural knowledge.

    Science.gov (United States)

    Phillips, A G; Carr, G D

    1987-08-01

    Disruption of neural activity within the basal ganglia of experimental animals causes selective learning deficits in tasks requiring switching between response strategies. These data along with reports of both general and specific intellectual impairment in patients with neurodegenerative disorders such as Parkinson's disease, appear to support the theory of cognitive functions of the basal ganglia. Recent studies have failed to confirm general cognitive or memory deficits in parkinsonian patients, but have identified deficiencies in devising and executing certain cognitive strategies. Following the lead of theorists such as Squire and Mishkin, this brief review emphasizes the distinction between procedural and declarative knowledge and examines the possible role of the basal ganglia in the acquisition and retention of procedural knowledge. PMID:3315145

  11. Chronological changes in nonhaemorrhagic brain infarcts with short T1 in the cerebellum and basal ganglia

    International Nuclear Information System (INIS)

    Our purpose was to investigate nonhaemorrhagic infarcts with a short T1 in the cerebellum and basal ganglia. We carried out repeat MRI on 12 patients with infarcts in the cerebellum or basal ganglia with a short T1. Cerebellar cortical lesions showed high signal on T1-weighted spin-echo images beginning at 2 weeks, which became prominent from 3 weeks to 2 months, and persisted for as long as 14 months after the ictus. The basal ganglia lesions demonstrated slightly high signal from a week after the ictus, which became more intense thereafter. Signal intensity began to fade gradually after 2 months. High signal could be seen at the periphery until 5 months, and then disappeared, while low or isointense signal, seen in the central portion from day 20, persisted thereafter. (orig.)

  12. MR-DTI and PET multimodal imaging of dopamine release within subdivisions of basal ganglia

    International Nuclear Information System (INIS)

    The basal ganglia is a group of anatomical nuclei, functionally organised into limbic, associative and sensorimotor regions, which plays a central role in dopamine related neurological and psychiatric disorders. In this study, we combine two imaging modalities to enable the measurement of dopamine release in functionally related subdivisions of the basal ganglia. [11C]-(+)-PHNO Positron Emission Tomography (PET) measurements in the living human brain pre- and post-administration of amphetamine allow for the estimation of regional dopamine release. Combined Magnetic Resonance Diffusion Tensor Imaging (MR-DTI) data allows for the definition of functional territories of the basal ganglia from connectivity information. The results suggest that there is a difference in dopamine release among the connectivity derived functional subdivisions. Dopamine release is highest in the limbic area followed by the sensorimotor and then the associative area with this pattern reflected in both striatum and pallidum.

  13. The role of the basal ganglia in beat perception: neuroimaging and neuropsychological investigations.

    Science.gov (United States)

    Grahn, Jessica A

    2009-07-01

    Perception of musical rhythms is culturally universal. Despite this special status, relatively little is known about the neurobiology of rhythm perception, particularly with respect to beat processing. Findings are presented here from a series of studies that have specifically examined the neural basis of beat perception, using functional magnetic resonance imaging (fMRI) and studying patients with Parkinson's disease. fMRI data indicate that novel beat-based sequences robustly activate the basal ganglia when compared to irregular, nonbeat sequences. Furthermore, although most healthy participants find it much easier to discriminate changes in beat-based sequences compared to irregular sequences, Parkinson's disease patients fail to show the same degree of benefit. Taken together, these data suggest that the basal ganglia are performing a crucial function in beat processing. The results of an additional fMRI study indicate that the role of the basal ganglia is strongly linked to internal generation of the beat. Basal ganglia activity is greater when participants listen to rhythms in which internal generation of the beat is required, as opposed to rhythms with strongly externally cued beats. Functional connectivity between part of the basal ganglia (the putamen) and cortical motor areas (premotor and supplementary motor areas) is also higher during perception of beat rhythms compared to nonbeat rhythms. Increased connectivity between cortical motor and auditory areas is found in those with musical training. The findings from these converging methods strongly implicate the basal ganglia in processing a regular beat, particularly when internal generation of the beat is required. PMID:19673753

  14. Symmetrical low-density areas on bilateral basal ganglia in childhood CT scans

    International Nuclear Information System (INIS)

    Symmetrical low-density areas of the bilateral basal ganglia are sometimes observed on CT scans in childhood. We report here eight cases who showed these lesions. Three of these cases had Leigh's encephalitis, 2 had perinatal anoxia, and 2 had viral encephalitis, while in the remaining two cases we could not distinctly determine the cause of the lesions. In Leigh's encephalitis, we speculate that metabolic abnormalities cause the necrosis of the basal ganglia. In perinatal anoxia and viral encephalitis, vascular infarction due to anoxia or brain edema may cause these lesions. (author)

  15. Cavitary Cryptogenic Organizing Pneumonia and abnormalities of the Basal Ganglia Case presentation

    International Nuclear Information System (INIS)

    Cryptogenic Organizing Pneumonia (COP) is a pulmonary disorder with a wide spectrum of radiological features. A case of a young patient of 16 years old is shown with CAT appearance of multiple cavitary nodules in both lungs that responded with a complete resolution after corticosteroid therapy. This patient also reveals abnormalities of the basal ganglia as the result of hypoxic ischemic encephalopathy associated with the acute presentation of this disorder. We justify the inclusion of COP in the differential diagnosis of multiple cavitary nodules, and it is discussed the differential diagnosis of her abnormalities of the basal ganglia

  16. How preparation changes the need for top-down control of the basal ganglia when inhibiting premature actions

    NARCIS (Netherlands)

    S. Jahfari; F. Verbruggen; M.J. Frank; L.J. Waldorp; L. Colzato; K.R. Ridderinkhof; B.U. Forstmann

    2012-01-01

    Goal-oriented signals from the prefrontal cortex gate the selection of appropriate actions in the basal ganglia. Key nodes within this fronto-basal ganglia action regulation network are increasingly engaged when one anticipates the need to inhibit and override planned actions. Here, we ask how the a

  17. Conditional Routing of Information to the Cortex: A Model of the Basal Ganglia's Role in Cognitive Coordination

    Science.gov (United States)

    Stocco, Andrea; Lebiere, Christian; Anderson, John R.

    2010-01-01

    The basal ganglia play a central role in cognition and are involved in such general functions as action selection and reinforcement learning. Here, we present a model exploring the hypothesis that the basal ganglia implement a conditional information-routing system. The system directs the transmission of cortical signals between pairs of regions…

  18. Acute movement disorder with bilateral basal ganglia lesions in diabetic uremia

    Directory of Open Access Journals (Sweden)

    Gurusidheshwar M Wali

    2011-01-01

    Full Text Available Acute movement disorder associated with symmetrical basal ganglia lesions occurring in the background of diabetic end stage renal disease is a recently described condition. It has distinct clinico-radiological features and is commonly described in Asian patients. We report the first Indian case report of this potentially reversible condition and discuss its various clinico-radiological aspects.

  19. Methylphenidate alters basal ganglia neurotensin systems through dopaminergic mechanisms: a comparison with cocaine treatment.

    Science.gov (United States)

    Alburges, Mario E; Hoonakker, Amanda J; Horner, Kristen A; Fleckenstein, Annette E; Hanson, Glen R

    2011-05-01

    Methylphenidate (MPD) is a psychostimulant widely used to treat behavioral problems such as attention deficit hyperactivity disorder. MPD competitively inhibits the dopamine (DA) transporter. Previous studies demonstrated that stimulants of abuse, such as cocaine (COC) and methamphetamine differentially alter rat brain neurotensin (NT) systems through DA mechanisms. As NT is a neuropeptide primarily associated with the regulation of the nigrostriatal and mesolimbic DA systems, the effect of MPD on NT-like immunoreactivity (NTLI) content in several basal ganglia regions was assessed. MPD, at doses of 2.0 or 10.0 mg/kg, s.c., significantly increased the NTLI contents in dorsal striatum, substantia nigra and globus pallidus; similar increases in NTLI were observed in these areas after administration of COC (30.0 mg/kg, i.p.). No changes in NTLI occurred within the nucleus accumbens, frontal cortex and ventral tegmental area following MPD treatment. In addition, the NTLI changes in basal ganglia regions induced by MPD were prevented when D(1) (SCH 23390) or D(2) (eticlopride) receptor antagonists were coadministered with MPD. MPD treatment also increased dynorphin (DYN) levels in basal ganglia structures. These findings provide evidence that basal ganglia, but not limbic, NT systems are significantly affected by MPD through D(1) and D(2) receptor mechanisms, and these NTLI changes are similar, but not identical to those which occurred with COC administration. In addition, the MPD effects on NT systems are mechanistically distinct from the effects of methamphetamine. PMID:21323925

  20. Alterations in Neuronal Activity in Basal Ganglia-Thalamocortical Circuits in the Parkinsonian State

    Directory of Open Access Journals (Sweden)

    Adriana Galvan

    2015-02-01

    Full Text Available In patients with Parkinson’s disease and in animal models of this disorder, neurons in the basal ganglia and related regions in thalamus and cortex show changes that can be recorded by using electrophysiologic single-cell recording techniques, including altered firing rates and patterns, pathologic oscillatory activity and increased inter-neuronal synchronization. In addition, changes in synaptic potentials or in the joint spiking activities of populations of neurons can be monitored as alterations in local field potentials, electroencephalograms or electrocorticograms. Most of the mentioned electrophysiologic changes are probably related to the degeneration of diencephalic dopaminergic neurons, leading to dopamine loss in the striatum and other basal ganglia nuclei, although degeneration of non-dopaminergic cell groups may also have a role. The altered electrical activity of the basal ganglia and associated nuclei may contribute to some of the motor signs of the disease. We here review the current knowledge of the electrophysiologic changes at the single cell level, the level of local populations of neural elements, and the level of the entire basal ganglia-thalamocortical network in parkinsonism, and discuss the possible use of this information to optimize treatment approaches to Parkinson’s disease, such as deep brain stimulation therapy.

  1. MRI volume measurement of basal ganglia volumes in patients with Tourette's syndrome

    International Nuclear Information System (INIS)

    Objective: To evaluate MRI measurement of basal ganglia volumes in patients with Tourette's syndrome. Methods: Ten patients with Tourette's syndrome (TS) and 10 healthy volunteers were studied. Volumes of bilateral caudate, putamen and pallidum were measured, and the results were analyzed using paired t test. The basal ganglia volume was normalized according to individual brain volume. The basal ganglia volumes of TS patients were compared with normal control group using independent-sample t test. Results: In 10 healthy volunteers, volumes of the left caudate, putamen, pallidum were significantly larger compared with those of the right side (P0.05) in TS patients. After normalized processing, the volumes of the left caudate (7.06 ± 0.48) cm3, putamen (8.81±1.01) cm3, pallidum (2.64± 0.38) cm3 were smaller than those of control group [caudate (11.05±1.86) cm3, putamen (9.97± 1.11) cm3, pallidum (3.04±0.37) cm3] (t=-6.577, -2.457, -2.376, P3 in TS patients was significantly smaller compared with the control group (9.81±1.83) cm3 (t=-4.258, P0.05). Conclusion: The basal ganglia volumes were significantly decreased in patients with TS. MRI volumetric measurement was an important tool for evaluating pathologic changes of TS. (authors)

  2. The Differential Effects of Thalamus and Basal Ganglia on Facial Emotion Recognition

    Science.gov (United States)

    Cheung, Crystal C. Y.; Lee, Tatia M. C.; Yip, James T. H.; King, Kristin E.; Li, Leonard S. W.

    2006-01-01

    This study examined if subcortical stroke was associated with impaired facial emotion recognition. Furthermore, the lateralization of the impairment and the differential profiles of facial emotion recognition deficits with localized thalamic or basal ganglia damage were also studied. Thirty-eight patients with subcortical strokes and 19 matched…

  3. Bidirectional Plasticity in Striatonigral Synapses: A Switch to Balance Direct and Indirect Basal Ganglia Pathways

    Science.gov (United States)

    Aceves, Jose J.; Rueda-Orozco, Pavel E.; Hernandez-Martinez, Ricardo; Galarraga, Elvira; Bargas, Jose

    2011-01-01

    There is no hypothesis to explain how direct and indirect basal ganglia (BG) pathways interact to reach a balance during the learning of motor procedures. Both pathways converge in the substantia nigra pars reticulata (SNr) carrying the result of striatal processing. Unfortunately, the mechanisms that regulate synaptic plasticity in striatonigral…

  4. How may the basal ganglia contribute to auditory categorization and speech perception?

    Directory of Open Access Journals (Sweden)

    Sung-JooLim

    2014-08-01

    Full Text Available Listeners must accomplish two complementary perceptual feats in extracting a message from speech. They must discriminate linguistically-relevant acoustic variability and generalize across irrelevant variability. Said another way, they must categorize speech. Since the mapping of acoustic variability is language-specific, these categories must be learned from experience. Thus, understanding how, in general, the auditory system acquires and represents categories can inform us about the toolbox of mechanisms available to speech perception. This perspective invites consideration of findings from cognitive neuroscience literatures outside of the speech domain as a means of constraining models of speech perception. Although neurobiological models of speech perception have mainly focused on cerebral cortex, research outside the speech domain is consistent with the possibility of significant subcortical contributions in category learning. Here, we review the functional role of one such structure, the basal ganglia. We examine research from animal electrophysiology, human neuroimaging, and behavior to consider characteristics of basal ganglia processing that may be advantageous for speech category learning. We also present emerging evidence for a direct role for basal ganglia in learning auditory categories in a complex, naturalistic task intended to model the incidental manner in which speech categories are acquired. To conclude, we highlight new research questions that arise in incorporating the broader neuroscience research literature in modeling speech perception, and suggest how understanding contributions of the basal ganglia can inform attempts to optimize training protocols for learning non-native speech categories in adulthood.

  5. Ictal and peri-ictal oscillations in the human basal ganglia in temporal lobe epilepsy

    Czech Academy of Sciences Publication Activity Database

    Rektor, I.; Kuba, R.; Brázdil, M.; Halámek, Josef; Jurák, Pavel

    2011-01-01

    Roč. 20, č. 3 (2011), s. 512-517. ISSN 1525-5050 Institutional research plan: CEZ:AV0Z20650511 Keywords : basal ganglia * oscillations * epilepsy * ictal Subject RIV: FH - Neurology Impact factor: 2.335, year: 2011

  6. Hereditary haemochromatosis: a case of iron accumulation in the basal ganglia associated with a parkinsonian syndrome

    DEFF Research Database (Denmark)

    Nielsen, J.E.; Jensen, L.N.; Krabbe, K

    1995-01-01

    patient is reported with hereditary haemochromatosis and a syndrome of dementia, dysarthria, a slowly progressive gait disturbance, imbalance, muscle weakness, rigidity, bradykinesia, tremor, ataxia, and dyssynergia. The findings on MRI of a large signal decrease in the basal ganglia, consistent with...

  7. Activity of the basal ganglia in Parkinson's disease estimated by PET

    International Nuclear Information System (INIS)

    Positron emission tomographic (PET) studies on the local cerebral blood flow, oxygen metabolic rate, glucose metabolic rate in the basal ganglia of Parkinson's disease are reviewed. PET has demonstrated that blood flow was decreased in the cerebral cortex, especially the frontal region, of Parkinson's disease and that specific change in blood flow or metabolic rate in the basal ganglia was detected only in patients with hemi-parkinsonism. In authors' study on PET using 18FDG in patients with tremor type and rigid type Parkinson's disease, changes in blood flow and metabolic rate were minimal at the basal ganglia level in tremor type patients, but cortical blood flow was decreased and metabolic rate was more elevated in the basal ganglia in rigid type patients. These findings were correlated with depth micro-recordings obtained by stereotactic pallidotomy. PET studies have also revealed that activity in the nerve terminal was decreased with decreasing dopamine and that dopamine (mainly D2) activity was remarkably increased. PET studies with specific tracers are promising in providing more accurate information about functional state of living human brain with minimal invasion to patients. (N.K.)

  8. Association Between Invisible Basal Ganglia and ZNF335 Mutations: A Case Report.

    Science.gov (United States)

    Sato, Rieko; Takanashi, Jun-Ichi; Tsuyusaki, Yu; Kato, Mitsuhiro; Saitsu, Hirotomo; Matsumoto, Naomichi; Takahashi, Takao

    2016-09-01

    ZNF335 was first reported in 2012 as a causative gene for microcephaly. Because only 1 consanguineous pedigree has ever been reported, the key clinical features associated with ZNF335 mutations remain unknown. In this article, we describe another family harboring ZNF335 mutations. The female proband was the first child of nonconsanguineous Japanese parents. At birth, microcephaly was absent; her head circumference was 32.0 cm (-0.6 SD). At 3 months, microcephaly was noted, (head circumference, 34.0 cm [-4.6 SD]). Brain MRI showed invisible basal ganglia, cerebral atrophy, brainstem hypoplasia, and cerebellar atrophy. At 33 months, (head circumference, 41.0 cm [-5.1 SD]), she had severe psychomotor retardation. After obtaining informed consent from her parents, we performed exome sequencing in the proband and identified 1 novel and 1 known mutation in ZNF335, namely, c.1399T>C (p.C467R) and c.1505A>G (p.Y502C), respectively. The mutations were individually transmitted by her parents, indicating that the proband was compound heterozygous for the mutations. Her brain imaging findings, including invisible basal ganglia, were similar to those observed in the previous case with ZNF335 mutations. We speculate that invisible basal ganglia may be the key feature of ZNF335 mutations. For infants presenting with both microcephaly and invisible basal ganglia, ZNF335 mutations should be considered as a differential diagnosis. PMID:27540107

  9. [Distinct roles of the direct and indirect pathways in the basal ganglia circuit mechanism].

    Science.gov (United States)

    Morita, Makiko; Hikida, Takatoshi

    2015-11-01

    The basal ganglia are key neural substrates that control not only motor balance but also emotion, motivation, cognition, learning, and decision-making. Dysfunction of the basal ganglia leads to neurodegenerative diseases (e.g. Parkinson's disease and Huntington's disease) and psychiatric disorders (e.g. drug addiction, schizophrenia, and depression). In the basal ganglia circuit, there are two important pathways: the direct and indirect striatal pathways. Recently, new molecular techniques that activate or inactive selectively the direct or indirect pathway neurons have revealed the function of each pathway. Here we review the distinct roles of the direct and indirect striatal pathways in brain function and drug addiction. We have developed a reversible neurotransmission blocking technique, in which transmission of each pathway is selectively blocked by specific expression of transmission-blocking tetanus toxin, and revealed that the activation of D1 receptors in the direct pathway is critical for reward learning/cocaine addiction, and that the inactivation of D2 receptors is critical for aversive learning/learning flexibility. We propose a new circuit mechanism by which the dopaminergic input from the ventral tegmental area can switch the direct and indirect pathways in the nucleus accumbens. These basal ganglia circuit mechanisms will give us insights into the pathophysiology of mental diseases. PMID:26785520

  10. Stuttering and the Basal Ganglia Circuits: A Critical Review of Possible Relations

    Science.gov (United States)

    Alm, Per A.

    2004-01-01

    The possible relation between stuttering and the basal ganglia is discussed. Important clues to the pathophysiology of stuttering are given by conditions known to alleviate dysfluency, like the rhythm effect, chorus speech, and singing. Information regarding pharmacologic trials, lesion studies, brain imaging, genetics, and developmental changes…

  11. Interaction of synchronized dynamics in cortex and basal ganglia in Parkinson's disease.

    Science.gov (United States)

    Ahn, Sungwoo; Zauber, S Elizabeth; Worth, Robert M; Witt, Thomas; Rubchinsky, Leonid L

    2015-09-01

    Parkinson's disease pathophysiology is marked by increased oscillatory and synchronous activity in the beta frequency band in cortical and basal ganglia circuits. This study explores the functional connections between synchronized dynamics of cortical areas and synchronized dynamics of subcortical areas in Parkinson's disease. We simultaneously recorded neuronal units (spikes) and local field potentials (LFP) from subthalamic nucleus (STN) and electroencephalograms (EEGs) from the scalp in parkinsonian patients, and analysed the correlation between the time courses of the spike-LFP synchronization and inter-electrode EEG synchronization. We found the (non-invasively obtained) time course of the synchrony strength between EEG electrodes and the (invasively obtained) time course of the synchrony between spiking units and LFP in STN to be weakly, but significantly, correlated with each other. This correlation is largest for the bilateral motor EEG synchronization, followed by bilateral frontal EEG synchronization. Our observations suggest that there may be multiple functional modes by which the cortical and basal ganglia circuits interact with each other in Parkinson's disease: not only may synchronization be observed between some areas in cortex and the basal ganglia, but also synchronization within cortex and within basal ganglia may be related, suggesting potentially a more global functional interaction. More coherent dynamics in one brain region may modulate or activate the dynamics of another brain region in a more powerful way, causing correlations between changes in synchrony strength in the two regions. PMID:26154341

  12. A resting state network in the motor control circuit of the basal ganglia

    Directory of Open Access Journals (Sweden)

    Bruzzone Lorenzo

    2009-11-01

    Full Text Available Abstract Background In the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely independent resting state networks (RSNs showing this behaviour have been documented to date. Recent studies have reported the existence of an RSN in the basal ganglia - albeit inconsistently and without the means to interpret its function. Using two large study groups with different resting state conditions and MR protocols, the reproducibility of the network across subjects, behavioural conditions and acquisition parameters is assessed. Independent Component Analysis (ICA, combined with novel analyses of temporal features, is applied to establish the basis of signal fluctuations in the network and its relation to other RSNs. Reference to prior probabilistic diffusion tractography work is used to identify the basal ganglia circuit to which these fluctuations correspond. Results An RSN is identified in the basal ganglia and thalamus, comprising the pallidum, putamen, subthalamic nucleus and substantia nigra, with a projection also to the supplementary motor area. Participating nuclei and thalamo-cortical connection probabilities allow this network to be identified as the motor control circuit of the basal ganglia. The network was reproducibly identified across subjects, behavioural conditions (fixation, eyes closed, field strength and echo-planar imaging parameters. It shows a frequency peak at 0.025 ± 0.007 Hz and is most similar in spectral composition to the Default Mode (DM, a network of regions that is more active at rest than during task processing. Frequency features allow the network to be classified as an RSN rather than a physiological artefact. Fluctuations in this RSN are correlated with those in the task-positive fronto-parietal network and anticorrelated with those in the DM, whose hemodynamic response it anticipates. Conclusion Although the basal ganglia RSN has not been

  13. Evidence for a glutamatergic projection from the zona incerta to the basal ganglia of rats.

    Science.gov (United States)

    Heise, Claire E; Mitrofanis, John

    2004-01-19

    This study explores the organisation and neurochemical nature of the projections from the zona incerta (ZI) to the basal ganglia. Sprague-Dawley rats were anaesthetised with ketamine (100 mg/kg) and Rompun (10 mg/kg), and injections of cholera toxin subunit B were made into each of the following nuclei: the ZI, the substantia nigra (SN), the pedunculopontine tegmental nucleus (PpT), and the entopeduncular nucleus (Ep). Brains were aldehyde fixed, sectioned, and processed using standard methods. Tracer-labelled sections were then doubly labelled with antibodies to glutamate (Glu), nitric oxide synthase (NOS), parvalbumin (Pv), or glutamic acid decarboxylase (GAD; the latter two are markers for GABAergic cells); these neurochemicals characterise most types of ZI cells. After ZI injections, labelling was nonuniform across the different basal ganglia nuclei. The bulk of labelling, both anterograde and retrograde, was seen in the SN and PpT and, to a lesser extent, within the other nuclei of the basal ganglia (e.g., caudate-putamen, globus pallidus, subthalamus, Ep). In the SN, labelling was found in both major parts of the nucleus, the pars compacta and pars reticulata. Within the PpT, however, the bulk of labelling was limited to only one of the two sectors of the nucleus, namely, the pars dissipata (PpTd). The pars compacta of the PpT (PpTc) remained largely free of labelled profiles. After CTb injections into three basal ganglia nuclei (SN, PpT, Ep), most labelled cells in the ZI were glutamate+ and very few were NOS+ or gamma-aminobutyric acidergic. Overall, the results indicate that the ZI is in a position to influence preferentially the activity of the SN and PpTd of the basal ganglia via an excitatory, glutamatergic input. PMID:14689481

  14. A large germinoma in basal ganglia treated by intraarterial chemotherapy with ACNU following osmotic blood-brain barrier disruption and radiation therapy

    International Nuclear Information System (INIS)

    A rare case of large germinoma in the basal ganglia is reported which was effectively treated by intracarotid chemotherapy with ACNU following osmotic blood-brain barrier disruption using 20 % mannitol and radiation therapy. A 19-year-old man displayed slowly progressive right hemiparesis, motor aphasia and predementia on admission. Plain CT demonstrated a tumor which had a slightly high density with intratumoral calcification and a small cyst, and slight to moderate enhancement was observed following intravenous injection of contrast medium, but there was no unilateral ventricular enlargement. Cerebral angiography revealed hypervascular tumor staining with early draining veins. After biopsy, and as a result of intracarotid chemotherapy with ACNU following osmotic blood-brain barrier disruption and radiation therapy, the tumor decreased rapidly to about 20 % of its original mass. After discharge, tumor progression was observed. However, the enlarged tumor mass almost disappeared (except for calcification) on CT with clinical improvement in response to intracarotid chemotherapy with ACNU following 20 % mannitol. (author)

  15. Acute Chorea Characterized by Bilateral Basal Ganglia Lesions in a Patient with Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    İbrahim DOĞAN

    2015-09-01

    Full Text Available The syndrome of acute bilateral basal ganglia lesions associated with uremia presents with parkinsonism, altered mental status, and chorea in association with specific imaging findings in the basal ganglia. It is an uncommon syndrome seen generally in patients with diabetes mellitus and renal failure. We report a male patient with diabetes mellitus who received hemodialysis treatment 3 days a week for 5 years and suffered from choreic movements developed suddenly and associated with bilateral basal ganglia lesions. In the brain magnetic resonance (MR imaging, isointense was detected in sequence T1 in the bilateral basal ganglions and hyperintense lesion was determined in T2 and FLAIR sequences. The patient was administered daily hemodialysis and neuroleptic treatment. After intensified hemodialysis, his symptoms and follow-up brain MR imaging showed marked improvement. The underlying mechanism of such lesions may be associated with metabolic, as well as vascular factors. Acute choreic movements may be seen in patients with diabetic nephropathy and intensification of hemodialysis treatment along with blood glucose regulation may provide improvement in this syndrome.

  16. Using a hybrid neuron in physiologically inspired models of the basal ganglia

    Directory of Open Access Journals (Sweden)

    Corey Michael Thibeault

    2013-07-01

    Full Text Available Our current understanding of the basal ganglia has facilitated the creation of computational models that have contributed novel theories, explored new functional anatomy and demonstrated results complementing physiological experiments. However, the utility of these models extends beyond these applications. Particularly in neuromorphic engineering, where the basal ganglia's role in computation is important for applications such as power efficient autonomous agents and model-based control strategies. The neurons used in existing computational models of the basal ganglia however, are not amenable for many low-power hardware implementations. Motivated by a need for more hardware accessible networks, we replicate four published models of the basal ganglia, spanning single neuron and small networks, replacing the more computationally expensive neuron models with an Izhikevich hybrid neuron. This begins with a network modeling action-selection, where the basal activity levels and the ability to appropriately select the most salient input is reproduced. A Parkinson's disease model is then explored under normal conditions, Parkinsonian conditions and during subthalamic nucleus deep brain stimulation. The resulting network is capable of replicating the loss of thalamic relay capabilities in the Parkinsonian state and its return under deep brain stimulation. This is also demonstrated using a network capable of action-selection. Finally, a study of correlation transfer under different patterns of Parkinsonian activity is presented. These networks successfully captured the significant results of the originals studies. This not only creates a foundation for neuromorphic hardware implementations but may also support the development of large-scale biophysical models. The former potentially providing a way of improving the efficacy of deep brain stimulation and the latter allowing for the efficient simulation of larger more comprehensive networks.

  17. Magnetic resonance spectroscopy study in basal ganglia of patients with myoclonic epilepsy with ragged-red fibers

    Directory of Open Access Journals (Sweden)

    Chuang Chieh-Sen

    2007-01-01

    Full Text Available Abnormal magnetic resonance spectroscopic (MRS signals in the basal ganglia may be one of the characteristics in mitochondrial disease. We report MRS study in a family with myoclonic epilepsy with ragged-red fibers (MERRF. Their MRS studies over the basal ganglia revealed decreased N-acetylaspartate/creatine ratio and increased choline/creatine ratio in the four symptomatic members, but normal in the two asymptomatic members. However, negative MRI study was found in all members of this family. Our report suggests that the increased choline/creatine ratio in basal ganglia MRS may be one of the early information to suspect MERRF disease.

  18. Role of basal ganglia in sleep-wake regulation: neural circuitry and clinical significance

    Directory of Open Access Journals (Sweden)

    Ramalingam Vetrivelan

    2010-11-01

    Full Text Available Researchers over the last decade have made substantial progress towards understanding the roles of dopamine and the basal ganglia in the control of sleep-wake behavior. In this review, we outline recent advancements regarding dopaminergic modulation of sleep through the basal ganglia (BG and extra-BG sites. Our main hypothesis is that dopamine promotes sleep by its action on the D2 receptors in the BG and promotes wakefulness by its action on D1 and D2 receptors in the extra-BG sites. This hypothesis implicates dopamine depletion in the BG (such as in Parkinson’s disease in causing frequent nighttime arousal and overall insomnia. Furthermore, the arousal effects of psychostimulants (methamphetamine, cocaine and modafinil may be linked to the ventral periaquductal grey (vPAG dopaminergic circuitry targeting the extra-BG sleep-wake network.

  19. Acute Psychosis Associated with Subcortical Stroke: Comparison between Basal Ganglia and Mid-Brain Lesions

    Directory of Open Access Journals (Sweden)

    Aaron McMurtray

    2014-01-01

    Full Text Available Acute onset of psychosis in an older or elderly individual without history of previous psychiatric disorders should prompt a thorough workup for neurologic causes of psychiatric symptoms. This report compares and contrasts clinical features of new onset of psychotic symptoms between two patients, one with an acute basal ganglia hemorrhagic stroke and another with an acute mid-brain ischemic stroke. Delusions and hallucinations due to basal ganglia lesions are theorized to develop as a result of frontal lobe dysfunction causing impairment of reality checking pathways in the brain, while visual hallucinations due to mid-brain lesions are theorized to develop due to dysregulation of inhibitory control of the ponto-geniculate-occipital system. Psychotic symptoms occurring due to stroke demonstrate varied clinical characteristics that depend on the location of the stroke within the brain. Treatment with antipsychotic medications may provide symptomatic relief.

  20. Crossed cerebellar and uncrossed basal ganglia and thalamic diaschisis in Alzheimer's disease

    International Nuclear Information System (INIS)

    We detected crossed cerebellar as well as uncrossed basal ganglia and thalamic diaschisis in Alzheimer's disease by positron emission tomography (PET) using 18F-fluorodeoxyglucose. We studied a series of 26 consecutive, clinically diagnosed Alzheimer cases, including 6 proven by later autopsy, and compared them with 9 age-matched controls. We calculated asymmetry indices (AIs) of cerebral metabolic rate for matched left-right regions of interest (ROIs) and determined the extent of diaschisis by correlative analyses. For the Alzheimer group, we found cerebellar AIs correlated negatively, and thalamic AIs positively, with those of the cerebral hemisphere and frontal, temporal, parietal, and angular cortices, while basal ganglia AIs correlated positively with frontal cortical AIs. The only significant correlation of AIs for normal subjects was between the thalamus and cerebral hemisphere. These data indicate that PET is a sensitive technique for detecting diaschisis

  1. Ischemic-anoxic insults in children leading to iron accumulation in the basal ganglia: MR findings

    International Nuclear Information System (INIS)

    The MR imaging appearances of normal brain iron distribution and increased iron deposition in several degenerative disorders have been previously reported. The authors describe the MR imaging findings (0.3-T imaging system) in three children, aged 2-6 years, with previous ischemic-anoxic events and subsequent resuscitations. On T2- weighted images (repetition time/echo time [msec] = 2,000/84) areas of decreased signal intensity were seen that involved the basal ganglia (three patients) and adjacent white matter (two patients), consistent with iron deposition; areas of hyperintensity were seen in the periventricular and/or subcortical white matter. These findings suggest that abnormal levels of iron accumulate in the basal ganglia after peripheral ischemic damage

  2. Computational models of basal-ganglia pathway functions: Focus on functional neuroanatomy

    Directory of Open Access Journals (Sweden)

    Henning eSchroll

    2013-12-01

    Full Text Available Over the past 15 years, computational models have had a considerable impact on basal-ganglia research. Most of these models implement multiple distinct basal ganglia pathways and assume them to fulfill different functions. As there is now a multitude of different models, it has become complex to keep track of their various, sometimes just marginally different assumptions on pathway functions. Moreover, it has become a challenge to oversee to what extent individual assumptions are corroborated or challenged by empirical data. Focusing on computational, but also considering non-computational models, we review influential concepts of pathway functions and show to what extent they are compatible with or contradict each other. Moreover, we outline how empirical evidence favors or challenges specific assumptions and propose experiments that allow testing assumptions against each other.

  3. Striatal Cholinergic Interneurons Control Motor Behavior and Basal Ganglia Function in Experimental Parkinsonism.

    Science.gov (United States)

    Maurice, Nicolas; Liberge, Martine; Jaouen, Florence; Ztaou, Samira; Hanini, Marwa; Camon, Jeremy; Deisseroth, Karl; Amalric, Marianne; Kerkerian-Le Goff, Lydia; Beurrier, Corinne

    2015-10-27

    Despite evidence showing that anticholinergic drugs are of clinical relevance in Parkinson's disease (PD), the causal role of striatal cholinergic interneurons (CINs) in PD pathophysiology remains elusive. Here, we show that optogenetic inhibition of CINs alleviates motor deficits in PD mouse models, providing direct demonstration for their implication in parkinsonian motor dysfunctions. As neural correlates, CIN inhibition in parkinsonian mice differentially impacts the excitability of striatal D1 and D2 medium spiny neurons, normalizes pathological bursting activity in the main basal ganglia output structure, and increases the functional weight of the direct striatonigral pathway in cortical information processing. By contrast, CIN inhibition in non-lesioned mice does not affect locomotor activity, equally modulates medium spiny neuron excitability, and does not modify spontaneous or cortically driven activity in the basal ganglia output, suggesting that the role of these interneurons in motor function is highly dependent on dopamine tone. PMID:26489458

  4. Striatal Cholinergic Interneurons Control Motor Behavior and Basal Ganglia Function in Experimental Parkinsonism

    Directory of Open Access Journals (Sweden)

    Nicolas Maurice

    2015-10-01

    Full Text Available Despite evidence showing that anticholinergic drugs are of clinical relevance in Parkinson’s disease (PD, the causal role of striatal cholinergic interneurons (CINs in PD pathophysiology remains elusive. Here, we show that optogenetic inhibition of CINs alleviates motor deficits in PD mouse models, providing direct demonstration for their implication in parkinsonian motor dysfunctions. As neural correlates, CIN inhibition in parkinsonian mice differentially impacts the excitability of striatal D1 and D2 medium spiny neurons, normalizes pathological bursting activity in the main basal ganglia output structure, and increases the functional weight of the direct striatonigral pathway in cortical information processing. By contrast, CIN inhibition in non-lesioned mice does not affect locomotor activity, equally modulates medium spiny neuron excitability, and does not modify spontaneous or cortically driven activity in the basal ganglia output, suggesting that the role of these interneurons in motor function is highly dependent on dopamine tone.

  5. Extrahepatic portal vein obstruction with parkinsonism and symmetric hyperintense basal ganglia on T1 weighted MRI

    Directory of Open Access Journals (Sweden)

    Jayalakshmi Sita

    2006-01-01

    Full Text Available Abnormal high signal in the globus pallidus on T1 weighted magnetic resonance imaging (MRI of the brain has been well described in patients with chronic liver disease. It may be related to liver dysfunction or portal-systemic shunting. We report a case of extra hepatic portal vein obstruction with portal hypertension and esophageal varices that presented with extra pyramidal features. T1 weighted MRI brain scans showed increased symmetrical signal intensities in the basal ganglia. Normal hepatic function in this patient emphasizes the role of portal- systemic communications in the development of these hyperintensities, which may be due to deposition of paramagnetic substances like manganese in the basal ganglia.

  6. FROM REINFORCEMENT LEARNING MODELS OF THE BASAL GANGLIA TO THE PATHOPHYSIOLOGY OF PSYCHIATRIC AND NEUROLOGICAL DISORDERS

    OpenAIRE

    Maia, Tiago V.; Frank, Michael J.

    2011-01-01

    Over the last decade and a half, reinforcement learning models have fostered an increasingly sophisticated understanding of the functions of dopamine and cortico-basal ganglia-thalamo-cortical (CBGTC) circuits. More recently, these models, and the insights that they afford, have started to be used to understand key aspects of several psychiatric and neurological disorders that involve disturbances of the dopaminergic system and CBGTC circuits. We review this approach and its existing and pote...

  7. Role of the Basal Ganglia and Frontal Cortex in Selecting and Producing Internally Guided Force Pulses

    OpenAIRE

    Vaillancourt, David E.; Yu, Hong; Mayka, Mary A.; Corcos, Daniel M.

    2007-01-01

    The basal ganglia comprise a crucial circuit involved in force production and force selection, but the specific role of each nucleus to the production of force pulses and the selection of pulses of different force amplitudes remains unknown. We conducted an fMRI study in which participants produced force using a precision grip while a) holding a steady-state force, b) performing a series of force pulses with similar amplitude, and c) selecting force pulses of different amplitude. Region of in...

  8. Dopamine transporter density of the basal ganglia assessed with I-123 IPT SPECT in methamphetamine abusers

    International Nuclear Information System (INIS)

    Functional imaging of dopamine transporter (DAT) defines integrity of the dopaminergic system, and DAT is the target site of drugs of abuse such as cocaine and methamphetamine. Functional imaging the DAT may be a sensitive and selective indicator of neurotoxic change by the drug. The aim of the present study is to evaluate the clinical implications of qualitative/quantitative analyses of dopamine transporter imaging in methamphetamine abusers. Six detoxified methamphetamine abusers (abuser group) and 4 volunteers (control group) were enrolled in this study. Brain MRI was performed in all of abuser group. Abuser group underwent psychiatric and depression assessment using brief psychiatric rating scale (BPRS) and Hamilton depression rating scale (HAMD), respectively. All of the subjects underwent I-123 IPT SPECT (IPT SPECT). IPT SPECT image was analysed with visual qualitative method and quantitative method using basal ganglia dopamine transporter (DAT) specific/non-specific binding ratio (SBR). Comparison of DAT SBR between abuser and control groups was performed. We also performed correlation tests between psychiatric and depression assessment results and DAT SBR in abuser group. All of abuser group showed normal MRI finding, but had residual psychiatric and depressive symptoms, and psychiatric and depressive symptom scores were exactly correlated (r=1.0, ρ =0.005) each other. Five of them showed abnormal finding on qualitative visual I-123 IPT SPECT. Abuser group had lower basal ganglia DAT SBR than that of control (2.38 ± 0.20 vs 3.04 ± 0.27, ρ =0.000). Psychiatric and depressive symptoms were negatively well correlated with basal ganglia DAT SBR (r=-0.908, ρ =0.012, r=-0.924, ρ =0.009) This results suggest that dopamine transporter imaging using I-123 IPT SPECT may be used to evaluate dopaminergic system of the basal ganglia and the clinical status in methamphetamine abusers

  9. Cardiorespiratory fitness and its association with thalamic, hippocampal, and basal ganglia volumes in multiple sclerosis

    OpenAIRE

    Motl, Robert W.; Pilutti, Lara A.; Hubbard, Elizabeth A.; Wetter, Nathan C.; Sosnoff, Jacob J.; Sutton, Bradley P.

    2015-01-01

    Background: There is little known about cardiorespiratory fitness and its association with volumes of the thalamus, hippocampus, and basal ganglia in multiple sclerosis (MS). Such inquiry is important for identifying a possible behavioral approach (e.g., aerobic exercise training) that might change volumes of deep gray matter (DGM) structures associated with cognitive and motor functions in MS. Purpose: This study examined the association between cardiorespiratory fitness and volumes of th...

  10. Two Case Reports on Thalamic and Basal Ganglia Involvement in Children with Dengue Fever

    Science.gov (United States)

    Adhikari, Lihini; Wijesekera, Saraji; Wijayawardena, Maheshaka; Chandrasiri, Suchithra

    2016-01-01

    There have been increasing numbers of case reports of dengue infection with unusual manifestations. Such unusual manifestations including acute liver failure and encephalopathy could be manifested even in the absence of significant plasma leakage. Further, severe organ involvement including nervous system involvement indicates severe dengue infection. However, neurological manifestations of dengue fever are rare. This is the first case report of dengue infection with thalamic and basal ganglia involvement in Sri Lanka. PMID:27478661

  11. Role of movement in long-term basal ganglia changes: implications for abnormal motor responses

    OpenAIRE

    Nicola eSimola; Micaela eMorelli; Giuseppe eFrazzitta; Lucia eFrau

    2013-01-01

    Abnormal involuntary movements and dyskinesias elicited by drugs that stimulate dopamine receptors in the basal ganglia are a major issue in the management of Parkinson’s disease (PD). Preclinical studies in dopamine-denervated animals have contributed to the modeling of these abnormal movements, but the precise neurochemical and functional mechanisms underlying these untoward effects are still elusive. It has recently been suggested that the performance of movement may itself promote the lat...

  12. Role of movement in long-term basal ganglia changes: implications for abnormal motor responses

    OpenAIRE

    Simola, Nicola; Morelli, Micaela; Frazzitta, Giuseppe; Frau, Lucia

    2013-01-01

    Abnormal involuntary movements (AIMs) and dyskinesias elicited by drugs that stimulate dopamine receptors in the basal ganglia are a major issue in the management of Parkinson’s disease (PD). Preclinical studies in dopamine-denervated animals have contributed to the modeling of these abnormal movements, but the precise neurochemical and functional mechanisms underlying these untoward effects are still elusive. It has recently been suggested that the performance of movement may itself promote ...

  13. Two Case Reports on Thalamic and Basal Ganglia Involvement in Children with Dengue Fever.

    Science.gov (United States)

    Liyanage, Guwani; Adhikari, Lihini; Wijesekera, Saraji; Wijayawardena, Maheshaka; Chandrasiri, Suchithra

    2016-01-01

    There have been increasing numbers of case reports of dengue infection with unusual manifestations. Such unusual manifestations including acute liver failure and encephalopathy could be manifested even in the absence of significant plasma leakage. Further, severe organ involvement including nervous system involvement indicates severe dengue infection. However, neurological manifestations of dengue fever are rare. This is the first case report of dengue infection with thalamic and basal ganglia involvement in Sri Lanka. PMID:27478661

  14. Dopamine transporter density of the basal ganglia assessed with I-123 IPT SPECT in methamphetamine abusers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo Ryung; Ahn, Byeong Cheol [Kyungpook National University Medical School, Daegu (Korea, Republic of); Kewm, Do Hun [National Bugok Mental Hospital, Changryung (Korea, Republic of)] (and others)

    2005-10-15

    Functional imaging of dopamine transporter (DAT) defines integrity of the dopaminergic system, and DAT is the target site of drugs of abuse such as cocaine and methamphetamine. Functional imaging the DAT may be a sensitive and selective indicator of neurotoxic change by the drug. The aim of the present study is to evaluate the clinical implications of qualitative/quantitative analyses of dopamine transporter imaging in methamphetamine abusers. Six detoxified methamphetamine abusers (abuser group) and 4 volunteers (control group) were enrolled in this study. Brain MRI was performed in all of abuser group. Abuser group underwent psychiatric and depression assessment using brief psychiatric rating scale (BPRS) and Hamilton depression rating scale (HAMD), respectively. All of the subjects underwent I-123 IPT SPECT (IPT SPECT). IPT SPECT image was analysed with visual qualitative method and quantitative method using basal ganglia dopamine transporter (DAT) specific/non-specific binding ratio (SBR). Comparison of DAT SBR between abuser and control groups was performed. We also performed correlation tests between psychiatric and depression assessment results and DAT SBR in abuser group. All of abuser group showed normal MRI finding, but had residual psychiatric and depressive symptoms, and psychiatric and depressive symptom scores were exactly correlated (r=1.0, {rho} =0.005) each other. Five of them showed abnormal finding on qualitative visual I-123 IPT SPECT. Abuser group had lower basal ganglia DAT SBR than that of control (2.38 {+-} 0.20 vs 3.04 {+-} 0.27, {rho} =0.000). Psychiatric and depressive symptoms were negatively well correlated with basal ganglia DAT SBR (r=-0.908, {rho} =0.012, r=-0.924, {rho} =0.009) This results suggest that dopamine transporter imaging using I-123 IPT SPECT may be used to evaluate dopaminergic system of the basal ganglia and the clinical status in methamphetamine abusers.

  15. The role of the basal ganglia in learning and memory: Insight from Parkinson's disease

    OpenAIRE

    Foerde, Karin; Shohamy, Daphna

    2011-01-01

    It has long been known that memory is not a single process. Rather, there are different kinds of memory that are supported by distinct neural systems. This idea stemmed from early findings of dissociable patterns of memory impairments in patients with selective damage to different brain regions. These studies highlighted the role of the basal ganglia in non-declarative memory, such as procedural or habit learning, contrasting it with the known role of the medial temporal lobes in declarative ...

  16. Ictal hyperperfusion of cerebellum and basal ganglia in temporal lobe epilepsy: SPECT subtraction

    International Nuclear Information System (INIS)

    The ictal perfusion patterns of cerebellum and basal ganglia have not been systematically investigated in patients with temporal lobe epilepsy (TLE). Their ictal perfusion patterns were analyzed in relation with temporal lobe and frontal lobe hyperperfusion during TLE seizures using SPECT subtraction. Thirty-three TLE patients had interictal and ictal SPECT, video-EEG monitoring. SPGR MRI, and SPECT subtraction with MRI co-registration. The vermian cerebellar hyperperfusion (CH) was observed in 26 patients (78.8%) and hemispheric CH in 25 (75.8%). Compared to the side of epileptogenic temporal lobe, there were seven ipsilateral hemispheric CH (28.0%), fifteen contralateral hemispheric CH( 60.0%) and three bilateral hemispheric CH( 12.0%). CH was more frequently observed in patients with additional frontal hyperperfusion (15/15, 93.3%) than in patients without frontal hyperperfusion (11/18, 61.1 %). The basal ganglia hyperperfusion (14/15, 93.3%) than in patients without frontal hyperperfusion (BGH) was seen in 11 of the 15 patients with frontotemporal hyperperfusion (73.3%) and 11 of the 18 with temporal hyperperfusion only (61.1%). In 17 patients with unilateral BGH, contralateral CH to the BGH was observed in 14 (82.5%) and ipsilateral CH to BGH in 2 (11.8%) and bilateral CH in 1 (5.9%). The cerebellar hyperperfusion and basal ganglia hyperperfusion during seizures of TLE can be contralateral, ipsilateral or bilateral to the seizure focus. The presence of additional frontal or basal ganglia hyperperfusion was more frequently associated with contralateral hemispheric CH to their sides. However, temporal lobe hyperperfusion appears to be related with both ipsilateral and contralateral hemispheric CH

  17. Shape of the basal ganglia in preadolescent children is associated with cognitive performance.

    Science.gov (United States)

    Sandman, Curt A; Head, Kevin; Muftuler, L Tugan; Su, Lydia; Buss, Claudia; Davis, Elysia Poggi

    2014-10-01

    Current studies support the belief that high levels of performance and intellectual abilities are associated with increased brain size or volume. With few exceptions, this conclusion is restricted to studies of post-adolescent subjects and to cerebral cortex. There is evidence that "bigger is better" may not pertain to children and further, that there are areas of the brain in which larger structures are associated with cognitive deficits. In 50 preadolescent children (21 girls) a structural survey of the brain (VBM) was conducted to determine and locate areas in which gray matter volume was associated with poor cognitive performance. Only increased gray matter volume in particular areas of the basal ganglia and specifically the putamen was significantly associated with poor performance on tests of memory, response speed and a general marker and subtests of intelligence. Based on the VBM findings, volumetric analysis of basal ganglia structures was performed using FSL/FIRST. However, no significant changes in total volume of putamen or other basal ganglia structures were detected with this analysis. The disagreement between measures of localized gray matter differences and volumetric analysis suggested that there might be local regional deformity rather than widespread volumetric changes of the putamen. Surface analysis with FSL/FIRST demonstrated that bilateral outward deformation of the putamen, but especially the left, was associated with poor performance on several cognitive tests. Expansion of the globus pallidus and caudate nucleus also was associated with poor performance. Moreover a significant association was detected between a reliable test of language-free intelligence and topographically distinct outward and inward deformation of the putamen. Expansion and contraction of the putamen as a predictor of intelligence may explain why this association was not observed with measures of total volume. These results suggest that deformity is a sensitive measure

  18. Secondary attention deficit/hyperactivity disorder due to right basal ganglia injury: A case report

    OpenAIRE

    Ceylan, Mehmet Fatih; AKCA, Ömer Faruk

    2013-01-01

    Attention deficit/hyperactivity disorder (ADHD) is a frequent and commonly studied neuropsychiatric disorder in children and adolescents. The symptoms of ADHD include inattention and/or hyperactivity and impulsivity. Diagnosis of ADHD requires a persistent pattern of symptoms beginning before the age of 7 except for secondary ADHD. Secondary ADHD may occur as a consequence of childhood traumatic brain injury. A patient with secondary ADHD as a result of right basal ganglia injury is presented...

  19. Proton spectroscopic imaging of brain metabolites in basal ganglia of healthy older adults

    OpenAIRE

    Parikh, Jehill; Thrippleton, Michael J.; Murray, Catherine; Armitage, Paul A.; Harris, Bridget A.; Andrews, Peter J D; Wardlaw, Joanna M.; Starr, John M.; Deary, Ian J.; Marshall, Ian

    2014-01-01

    Object We sought to measure brain metabolite levels in healthy older people. Materials and methods Spectroscopic imaging at the level of the basal ganglia was applied in 40 participants aged 73–74 years. Levels of the metabolites N-acetyl aspartate (NAA), choline, and creatine were determined in "institutional units" (IU) corrected for T1 and T2 relaxation effects. Structural imaging enabled determination of grey matter (GM), white matter (WM), and cerebrospinal fluid content. ANOVA analysis ...

  20. Actor-critic models of reinforcement learning in the basal ganglia: From natural to artificial rats

    OpenAIRE

    Khamassi, Mehdi; Lachèze, Loïc; Girard, Benoît; Berthoz, Alain; Guillot, Agnès

    2005-01-01

    International audience Since 1995, numerous Actor–Critic architectures for reinforcement learning have been proposed as models of dopamine-like reinforcement learning mechanisms in the rat's basal ganglia. However, these models were usually tested in different tasks, and it is then difficult to compare their efficiency for an autonomous animat. We present here the comparison of four architectures in an animat as it per forms the same reward-seeking task. This will illustrate the consequenc...

  1. Neural circuits and topographic organization of the basal ganglia and related regions.

    Science.gov (United States)

    Nakano, K

    2000-09-01

    The present review was attempted to analyze the multiple channels of basal ganglia-thalamocortical connections, and the connections of their related nuclei. The prefrontal and motor areas consist of a number of modules, which seem to provide multiple subloops of the basal ganglia-thalamocortical connections in subhuman primates. There may be a great degree of convergence of the limbic, associative and motor loops at the level of the striatum, substantia nigra, pallidum, and the subthalamic nucleus as well as the pedunculopontine nucleus. Nigral dopaminergic neurons receive limbic input directly as well as indirectly through the striosomes in the striatum. Dopamine contributes to behavioral learning by signaling motivation and reinforcement. The pedunculopontine nucleus might be involved in behavioral state control, learning and reinforcement processes, locomotion and autonomic functions. Each subdivision of the motor areas receives a mixed and weighted transthalamic input from both the cerebellum and basal ganglia. In particular, based on the author's data, the hand/arm motor area and adjacent premotor area receive strong superficial basal ganglia-thalamocortical projections as well as the deep cerebello-thalamocortical projections. These areas, have very dense corticocotrical connections with other cortical areas, receive polymodal afferents from the parietal and temporal cortices, and integrated information, via multiple routes, from the prefrontal cortex. The author suggests that the ventrolateral part of the caudal medial pallidal segment (GPi) and the ventromedial part of the GPi are linked directly to these areas by ways of the oral part of ventral lateral nucleus (VLo) and the ventral part of the parvicellular part of ventral anterior nucleus (VApc), respectively. These connections are thought to be involved in the acquisition and coordination of motor sequences. PMID:10984656

  2. Anatomical connectivity of the basal ganglia : methodological developments and application to motor disorders

    OpenAIRE

    Kacem, Linda

    2011-01-01

    The recent advances in magnetic resonance imaging helped understanding brain anatomy and function. Today, MR imaging is a key tool for inferring imaging-based biomarkers for most neuropathologies. In this work, we focused on the anatomical connectivity of the basal ganglia which are involved in several cortico-subcortical loops and which dysfunction is the origin of motor disorders like Huntington and Parkinson diseases and Gilles de la Tourette syndrome. We developed several tools allowing t...

  3. Increased volume and impaired function: the role of the basal ganglia in writer’s cramp

    OpenAIRE

    Zeuner, Kirsten E; Knutzen, Arne; Granert, Oliver; Götz, Julia; Wolff, Stephan; Jansen, Olav; Dressler, Dirk; Hefter, Harald; Hallett, Mark; Deuschl, Günther; van Eimeren, Thilo; Witt, Karsten

    2014-01-01

    Introduction The pathophysiology of writer's cramp, a task-specific dystonia, remains unclear. The objective of this study was to investigate the basal ganglia circuit and the cerebellum during a complex motor sequence learning task carried out with the nonaffected hand in writer's cramp patients. Methods We applied structural and functional imaging in 22 writer's cramp patients and 28 matched controls using 3T MRI. With the asymptomatic left hand all participants learned a complex, sequentia...

  4. Ketamine-Induced Oscillations in the Motor Circuit of the Rat Basal Ganglia

    OpenAIRE

    Nicolas, M.J. (María Jesús); Lopez-Azcarate, J. (Jon); Valencia, M.; M. Alegre; Perez-Alcazar, M. (Marta); J Iriarte; Artieda, J.

    2011-01-01

    Oscillatory activity can be widely recorded in the cortex and basal ganglia. This activity may play a role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of psychiatric and neurological diseases like schizophrenia or Parkinson's disease. Ketamine administration has been shown to cause an increase in gamma activity in cortical and subcortical structures, and an increase in 150 Hz oscillations in the nucleus accumbens in healthy rats, together ...

  5. G protein-coupled receptors oligomerization in the basal ganglia and its implications in Parkinson's disease

    OpenAIRE

    Albergaria, Catarina Soares de

    2009-01-01

    ABSTRACT| Parkinson’s disease is a chronic and progressive condition of the central nervous system (CNS) that affects around 1% of the world population – it is the second most common neurodegenerative disease among elderly people, being only superseded by Alzheimer’s disease. The symptoms of the disease are originated by a selective death of dopaminergic neurons from a particular region of basal ganglia, but the etiology of this event remains unknown. In the last few years, neu...

  6. Imaging insights into basal ganglia function, Parkinson’s disease, and dystonia

    OpenAIRE

    Stoessl, A Jon; Lehericy, Stephane; Strafella, Antonio P

    2014-01-01

    Recent advances in structural and functional imaging have greatly improved our ability to assess normal functions of the basal ganglia, diagnose parkinsonian syndromes, understand the pathophysiology of parkinsonism and other movement disorders, and detect and monitor disease progression. Radionuclide imaging is the best way to detect and monitor dopamine deficiency, and will probably continue to be the best biomarker for assessment of the effects of disease-modifying therapies. However, adva...

  7. Involvement of Basal Ganglia Network in Motor Disabilities Induced by Typical Antipsychotics

    OpenAIRE

    Chetrit, Jonathan; Ballion, Bérangère; Laquitaine, Steeve; Belujon, Pauline; Morin, Stéphanie,; Taupignon, Anne; Bioulac, Bernard; Gross, Christian E.; Benazzouz, Abdelhamid

    2009-01-01

    Background Clinical treatments with typical antipsychotic drugs (APDs) are accompanied by extrapyramidal motor side-effects (EPS) such as hypokinesia and catalepsy. As little is known about electrophysiological substrates of such motor disturbances, we investigated the effects of a typical APD, α-flupentixol, on the motor behavior and the neuronal activity of the whole basal ganglia nuclei in the rat. Methods and Findings The motor behavior was examined by the open field actimeter and the neu...

  8. Tic-related neuronal activity in the cortico-basal ganglia loop

    OpenAIRE

    Izhar Bar‐Gad

    2013-01-01

    Motor tics are brief, repetitive, involuntary muscle contractions that interfere with ongoing behavior and are a symptom of several neural disorders, most notably Tourette syndrome. While the pathophysiology of tics is still largely unknown, multiple lines of evidence suggest the involvement of the cortico-basal ganglia loop in tic disorders, specifically the striatum. Theoretical models hypothesized an abnormal "action selection" process leading to tic generation in which an aberrant focus o...

  9. Electrophysiology of Basal Ganglia and Cortex in Models of Parkinson Disease

    OpenAIRE

    Ellens, Damien J.; Leventhal, Daniel K.

    2013-01-01

    Incomplete understanding of the systems-level pathophysiology of Parkinson Disease (PD) remains a significant barrier to improving its treatment. Substantial progress has been made, however, due to the availability of neurotoxins that selectively target monoaminergic (in particular, dopaminergic) neurons. This review discusses the in vivo electrophysiology of basal ganglia (BG), thalamic, and cortical regions after dopamine-depleting lesions. These include firing rate changes, neuronal burst-...

  10. Computational model-based identification of the critical alterations in parkinsonian basal ganglia's physiology

    OpenAIRE

    George Tsirogiannis; George Tagaris

    2014-01-01

    Parkinson's disease (PD) is considered as a result of dopamine (DA) depletion in the basal ganglia. The objective of the present study is to contribute to the identification of the critical physiological alterations caused by DA depletion that lead to PD. Specifically it is assumed that DA modulates the power of postsynaptic potentials (PSPs) by altering not only their amplitude, but also their duration[Biol Cybern (2010) 102:155–176]. The validity of this hypothesis was assessed through a de...

  11. Meige`s syndrome associated with basal ganglia and thalamic functional disorders

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Tsutomu; Shikishima, Keigo; Kawai, Kazushige; Kitahara, Kenji [Jikei Univ., Tokyo (Japan). School of Medicine

    1998-11-01

    Magnetic resonance imaging (MRI) or single positron emission computed tomography (SPECT) or both were performed and the responses of surface electromyography (EMG) were examined in seven cases of Meige`s syndrome. MRI or SPECT or both demonstrated lesions of the basal ganglia, the thalamus, or both in five of the cases. Surface EMG revealed abnormal burst discharges in the orbicularis oculi and a failure of reciprocal muscular activity between the frontalis and orbicularis oculi in all the cases. These findings suggest that voluntary motor control and reciprocal activity in the basal ganglia-thalamocortical circuits are impaired in Meige`s syndrome. In addition, good responses were seen to clonazepam, tiapride and trihexyphenidyl in these cases. Therefore, we conclude that dopaminergic, cholinergic, and {gamma}-aminobutyric acid (GABA) ergic imbalances in the disorders of the basal ganglia and thalamus in Meige`s syndrome cause control in the excitatory and inhibitory pathways to be lost, resulting in the failure of integration in reciprocal muscular activity and voluntary motor control. This failure subsequently causes the symptoms of Meige`s syndrome. (author)

  12. Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output.

    Science.gov (United States)

    Akkal, Dalila; Dum, Richard P; Strick, Peter L

    2007-10-01

    We used retrograde transneuronal transport of neurotropic viruses in Cebus monkeys to examine the organization of basal ganglia and cerebellar projections to two cortical areas on the medial wall of the hemisphere, the supplementary motor area (SMA) and the pre-SMA. We found that both of these cortical areas are the targets of disynaptic projections from the dentate nucleus of the cerebellum and from the internal segment of the globus pallidus (GPi). On average, the number of pallidal neurons that project to the SMA and pre-SMA is approximately three to four times greater than the number of dentate neurons that project to these cortical areas. GPi neurons that project to the pre-SMA are located in a rostral, "associative" territory of the nucleus, whereas GPi neurons that project to the SMA are located in a more caudal and ventral "sensorimotor" territory. Similarly, dentate neurons that project to the pre-SMA are located in a ventral, "nonmotor" domain of the nucleus, whereas dentate neurons that project to the SMA are located in a more dorsal, "motor" domain. The differential origin of subcortical projections to the SMA and pre-SMA suggests that these cortical areas are nodes in distinct neural systems. Although both systems are the target of outputs from the basal ganglia and the cerebellum, these two cortical areas seem to be dominated by basal ganglia input. PMID:17913900

  13. Early imaging findings in germ cell tumors arising from the basal ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Mi [Seoul National University College of Medicine, Department of Radiology, 101 Daehak-ro, Jongno-gu, Seoul (Korea, Republic of); Kyungpook National University Medical Center, Department of Radiology, Daegu (Korea, Republic of); Kim, In-One; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun [Seoul National University College of Medicine, Department of Radiology and Institute of Radiation Medicine, 101 Daehak-ro, Jongno-gu, Seoul (Korea, Republic of); Cho, Hyun-Hae [Seoul National University College of Medicine, Department of Radiology, 101 Daehak-ro, Jongno-gu, Seoul (Korea, Republic of); Ewha Woman' s University Mokdong Hospital, Department of Radiology, Seoul (Korea, Republic of); You, Sun Kyoung [Seoul National University College of Medicine, Department of Radiology, 101 Daehak-ro, Jongno-gu, Seoul (Korea, Republic of); Chungnam National University Hospital, Department of Radiology, Daejeon (Korea, Republic of)

    2016-05-15

    It is difficult to diagnosis early stage germ cell tumors originating in the basal ganglia, but early recognition is important for better outcome. To evaluate serial MR images of basal ganglia germ cell tumors, with emphasis on the features of early stage tumors. We retrospectively reviewed serial MR images of 15 tumors in 14 children and young adults. We categorized MR images of the tumors as follows: type I, ill-defined patchy lesions (<3 cm) without cyst; type II, small mass lesions (<3 cm) with cyst; and type III, large lesions (≥3 cm) with cyst. We also assessed temporal changes of the MR images. On the initial images, 8 of 11 (73%) type I tumors progressed to types II or III, and 3 of 4 (75%) type II tumors progressed to type III. The remaining 4 tumors did not change in type. All type II tumors (5/5, 100%) that changed from type I had a few tiny cysts. Intratumoral hemorrhage was observed even in the type I tumor. Ipsilateral hemiatrophy was observed in most of the tumors (13/15, 87%) on initial MR images. As tumors grew, cystic changes, intratumoral hemorrhage, and ipsilateral hemiatrophy became more apparent. Early stage basal ganglia germ cell tumors appear as ill-defined small patchy hyperintense lesions without cysts on T2-weighted images, are frequently associated with ipsilateral hemiatrophy, and sometimes show microhemorrhage. Tumors develop tiny cysts at a relatively early stage. (orig.)

  14. The role of the basal ganglia in learning and memory: insight from Parkinson's disease.

    Science.gov (United States)

    Foerde, Karin; Shohamy, Daphna

    2011-11-01

    It has long been known that memory is not a single process. Rather, there are different kinds of memory that are supported by distinct neural systems. This idea stemmed from early findings of dissociable patterns of memory impairments in patients with selective damage to different brain regions. These studies highlighted the role of the basal ganglia in non-declarative memory, such as procedural or habit learning, contrasting it with the known role of the medial temporal lobes in declarative memory. In recent years, major advances across multiple areas of neuroscience have revealed an important role for the basal ganglia in motivation and decision making. These findings have led to new discoveries about the role of the basal ganglia in learning and highlighted the essential role of dopamine in specific forms of learning. Here we review these recent advances with an emphasis on novel discoveries from studies of learning in patients with Parkinson's disease. We discuss how these findings promote the development of current theories away from accounts that emphasize the verbalizability of the contents of memory and towards a focus on the specific computations carried out by distinct brain regions. Finally, we discuss new challenges that arise in the face of accumulating evidence for dynamic and interconnected memory systems that jointly contribute to learning. PMID:21945835

  15. [Cortico-basal ganglia circuits--parallel closed loops and convergent/divergent connections].

    Science.gov (United States)

    Miyachi, Shigehiro

    2009-04-01

    The basal ganglia play important roles not only in motor control but also in higher cognitive functions such as reinforcement learning and procedural memory. Anatomical studies on the neuronal connections between the basal ganglia, cerebral cortex, and thalamus have demonstrated that these nuclei and cortical areas are interconnected via independent parallel loop circuits. The association, motor, and limbic cortices project to specific domains in the striatum, which, in turn, project back to the corresponding cortical areas via the substantia nigra/globus pallidus and the thalamus. Likewise, subregions in the motor cortex representing different body parts project to specific regions in the putamen, which project back to the original motor cortical regions. These parallel loops have been thought to be the basic anatomical structures involved in the basal ganglia functions. Furthermore, neuronal projections communicating between different loops (or functional domains) have also been discovered. A considerable number of corticostriatal projections from functionally interrelated cortical areas (e. g., hand representations of the motor cortex and somatosensory cortex) converge at the striatum. It has also been suggested that the location of the substantia nigra is in such that it can transmit information from the 'limbic loop' to the 'association loop', and from the 'association loop' to the 'motor loop'. Furthermore, a recent transsynaptic neuronal tracing study conducted at our laboratory demonstrated that the ventral (limbic) striatum sends divergent outputs to multiple regions in the frontal cortex. These 'inter-loop' connections would be important for the integration of information to achieve goal-directed behaviors. PMID:19378804

  16. Evidence for altered basal ganglia-brainstem connections in cervical dystonia.

    Directory of Open Access Journals (Sweden)

    Anne J Blood

    Full Text Available BACKGROUND: There has been increasing interest in the interaction of the basal ganglia with the cerebellum and the brainstem in motor control and movement disorders. In addition, it has been suggested that these subcortical connections with the basal ganglia may help to coordinate a network of regions involved in mediating posture and stabilization. While studies in animal models support a role for this circuitry in the pathophysiology of the movement disorder dystonia, thus far, there is only indirect evidence for this in humans with dystonia. METHODOLOGY/PRINCIPAL FINDINGS: In the current study we investigated probabilistic diffusion tractography in DYT1-negative patients with cervical dystonia and matched healthy control subjects, with the goal of showing that patients exhibit altered microstructure in the connectivity between the pallidum and brainstem. The brainstem regions investigated included nuclei that are known to exhibit strong connections with the cerebellum. We observed large clusters of tractography differences in patients relative to healthy controls, between the pallidum and the brainstem. Tractography was decreased in the left hemisphere and increased in the right hemisphere in patients, suggesting a potential basis for the left/right white matter asymmetry we previously observed in focal dystonia patients. CONCLUSIONS/SIGNIFICANCE: These findings support the hypothesis that connections between the basal ganglia and brainstem play a role in the pathophysiology of dystonia.

  17. Early imaging findings in germ cell tumors arising from the basal ganglia

    International Nuclear Information System (INIS)

    It is difficult to diagnosis early stage germ cell tumors originating in the basal ganglia, but early recognition is important for better outcome. To evaluate serial MR images of basal ganglia germ cell tumors, with emphasis on the features of early stage tumors. We retrospectively reviewed serial MR images of 15 tumors in 14 children and young adults. We categorized MR images of the tumors as follows: type I, ill-defined patchy lesions (<3 cm) without cyst; type II, small mass lesions (<3 cm) with cyst; and type III, large lesions (≥3 cm) with cyst. We also assessed temporal changes of the MR images. On the initial images, 8 of 11 (73%) type I tumors progressed to types II or III, and 3 of 4 (75%) type II tumors progressed to type III. The remaining 4 tumors did not change in type. All type II tumors (5/5, 100%) that changed from type I had a few tiny cysts. Intratumoral hemorrhage was observed even in the type I tumor. Ipsilateral hemiatrophy was observed in most of the tumors (13/15, 87%) on initial MR images. As tumors grew, cystic changes, intratumoral hemorrhage, and ipsilateral hemiatrophy became more apparent. Early stage basal ganglia germ cell tumors appear as ill-defined small patchy hyperintense lesions without cysts on T2-weighted images, are frequently associated with ipsilateral hemiatrophy, and sometimes show microhemorrhage. Tumors develop tiny cysts at a relatively early stage. (orig.)

  18. Integration of reinforcement learning and optimal decision-making theories of the basal ganglia.

    Science.gov (United States)

    Bogacz, Rafal; Larsen, Tobias

    2011-04-01

    This article seeks to integrate two sets of theories describing action selection in the basal ganglia: reinforcement learning theories describing learning which actions to select to maximize reward and decision-making theories proposing that the basal ganglia selects actions on the basis of sensory evidence accumulated in the cortex. In particular, we present a model that integrates the actor-critic model of reinforcement learning and a model assuming that the cortico-basal-ganglia circuit implements a statistically optimal decision-making procedure. The values of cortico-striatal weights required for optimal decision making in our model differ from those provided by standard reinforcement learning models. Nevertheless, we show that an actor-critic model converges to the weights required for optimal decision making when biologically realistic limits on synaptic weights are introduced. We also describe the model's predictions concerning reaction times and neural responses during learning, and we discuss directions required for further integration of reinforcement learning and optimal decision-making theories. PMID:21222528

  19. Serial dynamic CT scan in patients with acute basal ganglia infarctions

    International Nuclear Information System (INIS)

    Dynamic computed tomography (CT) was performed on 15 patients (37 to 93 years of age) with acute basal ganglia infarctions, and the perfusion patterns of the infarcted regions on CT were evaluated. The initial dynamic CT was performed within 12 hours after onset, while the serial studies of the dynamic CT were performed on the 3rd and 7th days. The left-over-right ratio in the peak value in the basal ganglia in 15 normal subjects was 1.01 ± 0.03 (mean ± SD), so there were no differences in the peak values of the bilateral basal ganglia. We also examined the left-over-right ratio in the peak value and in the rapid-washout ratio in the basal ganglia in the 15 normal subjects. There was no difference in the peak values of the bilateral basal ganglia. The mean rapid-washout ratio was 0.62 ± 0.11 (mean ± SD). The prognoses of these patients three months after onset were as follows: 8 showed a good recovery, 5 had a moderate disability, and 2 had a severe disability. The perfusions on admission were as follows. 10 were hypoperfusions, 3 were hypo + late perfusions, one was a normoperfusion, and one was a late perfusion. There was a tendency for the rapid-washout ratio decrease more in the hypo + late perfusion group than in the other groups. Twelve patients showed an iso-density, while 3 showed a low density, on admission. The ''low-density'' group showed a decrease in the A/N ratio of the peak value. We performed serial dynamic CT in 11 cases. The group with severe disabilities (2 cases) showed a hypo + late perfusion in the initial CT, one case kept a hypo + late perfusion, and another case changed to a hypoperfusion; also, there was a tendency for there to be a poor improvement in the A/N ratio of the peak value in these two ''severe-disability'' patients. (J.P.N.)

  20. A modular neural-network model of the basal ganglia's role in learning and selecting motor behaviours.

    OpenAIRE

    Baldassarre, Gianluca

    2002-01-01

    This work presents a modular neural-network model (based on reinforcement learning actor-critic methods) that tries to capture some of the most relevant known aspects of the role that basal ganglia play in learning and selecting motor behavior related to different goals. The model uses a mixture of experts network for the critic and a hierarchical network with two levels for the actor. Some simulations with the model show that basal ganglia select "chunks" of behavior whose "details" are spec...

  1. Basal ganglia dysfunction in OCD: subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy

    OpenAIRE

    Welter, Marie-Laure; Burbaud, Pierre; Fernandez-Vidal, Sara; Bardinet, Eric; Coste, Jérôme; Piallat, Brigitte; Borg, Michel; Besnard, Stéphane; Sauleau, Paul; Devaux, Bertrand; Pidoux, Bernard; Chaynes, Patrick; Tézenas Du Montcel, Sophie; Bastian, A; Langbour, Nicolas

    2011-01-01

    Functional and connectivity changes in corticostriatal systems have been reported in the brains of patients with obsessive-compulsive disorder (OCD); however, the relationship between basal ganglia activity and OCD severity has never been adequately established. We recently showed that deep brain stimulation of the subthalamic nucleus (STN), a central basal ganglia nucleus, improves OCD. Here, single-unit subthalamic neuronal activity was analysed in 12 OCD patients, in relation to the severi...

  2. Mechanism of Parkinsonian Neuronal Oscillations in the Primate Basal Ganglia: Some Considerations Based on Our Recent Work

    OpenAIRE

    Atsushi Nambu

    2014-01-01

    Accumulating evidence suggests that abnormal neuronal oscillations in the basal ganglia contribute to the manifestation of parkinsonian symptoms. In this article, we would like to summarize our recent work on the mechanism underlying abnormal oscillations in the parkinsonian state and discuss its significance in pathophysiology of Parkinson’s disease. We recorded neuronal activity in the basal ganglia of parkinsonian monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Systemi...

  3. Balancing the Basal Ganglia Circuitry: A Possible New Role for Dopamine D2 Receptors in Health and Disease

    Science.gov (United States)

    Cazorla, Maxime; Kang, Un Jung; Kellendonk, Christoph

    2016-01-01

    Current therapies for treating movement disorders such as Parkinson’s disease are effective but limited by undesirable and intractable side effects. Developing more effective therapies will require better understanding of what causes basal ganglia dys-regulation and why medication-induced side effects develop. Although basal ganglia have been extensively studied in the last decades, its circuit anatomy is very complex, and significant controversy exists as to how the interplay of different basal ganglia nuclei process motor information and output. We have recently identified the importance of an underappreciated collateral projection that bridges the striatal output direct pathway with the indirect pathway. These bridging collaterals are extremely plastic in the adult brain and are involved in the regulation of motor balance. Our findings add a new angle to the classical model of basal ganglia circuitry that could be exploited for the development of new therapies against movement disorders. In this Scientific Perspective, we describe the function of bridging collaterals and other recent discoveries that challenge the simplicity of the classical basal ganglia circuit model. We then discuss the potential implication of bridging collaterals in the pathophysiology of Parkinson’s disease and schizophrenia. Because dopamine D2 receptors and striatal neuron excitability have been found to regulate the density of bridging collaterals, we propose that targeting these projections downstream of D2 receptors could be a possible strategy for the treatment of basal ganglia disorders. PMID:26018615

  4. Competing basal ganglia pathways determine the difference between stopping and deciding not to go.

    Science.gov (United States)

    Dunovan, Kyle; Lynch, Brighid; Molesworth, Tara; Verstynen, Timothy

    2015-01-01

    The architecture of corticobasal ganglia pathways allows for many routes to inhibit a planned action: the hyperdirect pathway performs fast action cancellation and the indirect pathway competitively constrains execution signals from the direct pathway. We present a novel model, principled off of basal ganglia circuitry, that differentiates control dynamics of reactive stopping from intrinsic no-go decisions. Using a nested diffusion model, we show how reactive braking depends on the state of an execution process. In contrast, no-go decisions are best captured by a failure of the execution process to reach the decision threshold due to increasing constraints on the drift rate. This model accounts for both behavioral and functional MRI (fMRI) responses during inhibitory control tasks better than alternative models. The advantage of this framework is that it allows for incorporating the effects of context in reactive and proactive control into a single unifying parameter, while distinguishing action cancellation from no-go decisions. PMID:26402462

  5. Two-phase model of the basal ganglia: implications for discontinuous control of the motor system.

    Science.gov (United States)

    Lisman, John

    2014-11-01

    In this article, I point out that simple one-phase models of the role of the basal ganglia in action selection have a problem. Furthermore, I suggest a solution with major implications for the organization of the action-selection and motor systems. In current models, the striatum evaluates multiple potential actions by adding biases based on previous conditioning. These biases may arise in both the direct (bias for) and indirect (bias against) pathways. Together, these biases influence which action is ultimately chosen. For efficient conditioning to occur, a positive outcome must selectively strengthen the striatal bias for the chosen action (via a dopaminergic mechanism). This is problematic, however, because all potential action choices have influenced firing patterns in striatal cells during the selection process; it is therefore unclear how the synapses that represent the chosen plan could be selectively strengthened. I suggest a simple solution in which the striatum has two functional phases. In the first phase, the basal ganglia provide biases for multiple potential actions (using both the direct and indirect pathways), leading to the choice of a single action in the cortex. In the second phase, an efference copy of the chosen action is sent to the striatum, where it contributes to the establishment of the eligibility trace for that action. This trace, when acted on by subsequent dopaminergic reinforcement, leads to specific strengthening of the bias only for the chosen action. Consistent with this model, recordings show post-choice imposition onto the striatum of signals corresponding to the chosen action. The existence of dual phases of basal ganglia function implies that decisions about action choice are sent to the motor system in a discontinuous manner. This would not be problematic if the motor system also operated discontinuously. I will review evidence suggesting that this is the case, notably that action is organized by approximately 10 Hz

  6. Models of basal ganglia and cerebellum for sensorimotor integration and predictive control

    Science.gov (United States)

    Jabri, Marwan A.; Huang, Jerry; Coenen, Olivier J. D.; Sejnowski, Terrence J.

    2000-10-01

    This paper presents a sensorimotor architecture integrating computational models of a cerebellum and a basal ganglia and operating on a microrobot. The computational models enable a microrobot to learn to track a moving object and anticipate future positions using a CCD camera. The architecture features pre-processing modules for coordinate transformation and instantaneous orientation extraction. Learning of motor control is implemented using predictive Hebbian reinforcement-learning algorithm in the basal ganglia model. Learning of sensory predictions makes use of a combination of long-term depression (LTD) and long-term potentiation (LTP) adaptation rules within the cerebellum model. The basal ganglia model uses the visual inputs to develop sensorimotor mapping for motor control, while the cerebellum module uses robot orientation and world- coordinate transformed inputs to predict the location of the moving object in a robot centered coordinate system. We propose several hypotheses about the functional role of cell populations in the cerebellum and argue that mossy fiber projections to the deep cerebellar nucleus (DCN) could play a coordinate transformation role and act as gain fields. We propose that such transformation could be learnt early in the brain development stages and could be guided by the activity of the climbing fibers. Proprioceptor mossy fibers projecting to the DCN and providing robot orientation with respect to a reference system could be involved in this case. Other mossy fibers carrying visual sensory input provide visual patterns to the granule cells. The combined activities of the granule and the Purkinje cells store spatial representations of the target patterns. The combinations of mossy and Purkinje projections to the DCN provide a prediction of the location of the moving target taking into consideration the robot orientation. Results of lesion simulations based on our model show degradations similar to those reported in cerebellar lesion

  7. Automatic evaluation of speech rhythm instability and acceleration in dysarthrias associated with basal ganglia dysfunction

    Directory of Open Access Journals (Sweden)

    Jan eRusz

    2015-07-01

    Full Text Available Speech rhythm abnormalities are commonly present in patients with different neurodegenerative disorders. These alterations are hypothesized to be a consequence of disruption to the basal ganglia circuitry involving dysfunction of motor planning, programming and execution, which can be detected by a syllable repetition paradigm. Therefore, the aim of the present study was to design a robust signal processing technique that allows the automatic detection of spectrally-distinctive nuclei of syllable vocalizations and to determine speech features that represent rhythm instability and acceleration. A further aim was to elucidate specific patterns of dysrhythmia across various neurodegenerative disorders that share disruption of basal ganglia function. Speech samples based on repetition of the syllable /pa/ at a self-determined steady pace were acquired from 109 subjects, including 22 with Parkinson's disease (PD, 11 progressive supranuclear palsy (PSP, 9 multiple system atrophy (MSA, 24 ephedrone-induced parkinsonism (EP, 20 Huntington's disease (HD, and 23 healthy controls. Subsequently, an algorithm for the automatic detection of syllables as well as features representing rhythm instability and rhythm acceleration were designed. The proposed detection algorithm was able to correctly identify syllables and remove erroneous detections due to excessive inspiration and nonspeech sounds with a very high accuracy of 99.6%. Instability of vocal pace performance was observed in PSP, MSA, EP and HD groups. Significantly increased pace acceleration was observed only in the PD group. Although not significant, a tendency for pace acceleration was observed also in the PSP and MSA groups. Our findings underline the crucial role of the basal ganglia in the execution and maintenance of automatic speech motor sequences. We envisage the current approach to become the first step towards the development of acoustic technologies allowing automated assessment of rhythm

  8. 1H MR spectroscopy of the basal ganglia in childhood: a semiquantitative analysis

    International Nuclear Information System (INIS)

    Proton MR spectra of the basal ganglia were obtained from 28 patients, 24 male and 14 female, median age 16.3 months (5 weeks to 31 years). They included 17 patients with normal MRI of the basal ganglia without metabolic disturbance (control group) and 11 patients with various metabolic diseases: one case each of high serum sodium and high serum osmolarity, cobalamin C deficiency, Leigh disease, Galloway-Mowat syndrome, Pelizaeus-Merzbacher disease, hemolytic-uremic syndrome and Wilson disease and two cases of Alagille syndrome and methylmalonic acidemia with abnormal MRI of the basal ganglia or blood or urine analysis (abnormal group). The MR spectrum was measured by using STEAM. The MR-visible water content of the region of interest was obtained. Levels of myoinositol, choline, creatine and N -acetylaspartate were measured using a semiquantitative approach, with absolute reference calibration. In the control group, there was a gradual drop of water content over the first year of life; N -acetylaspartate, creatine and myoinositol levels showed no significant change with age, in contrast to the occipital, parietal and cerebellar regions. Choline showed a gradual decrease for the first 2 years of life and then remained fairly constant. In the abnormal group the water content was not significantly different. N -Acetylaspartate was decreased in patients with high serum sodium and high serum osmolarity, cobalamin C deficiency, Leigh disease and one case of methylmalonic acidemia. Decreased creatine was also found in Leigh disease, and decreased choline in Galloway-Mowat syndrome and Wilson disease. Myoinositol was elevated in the patient with abnormally high serum sodium, and decreased in the hemolytic-uremic syndrome. (orig.)

  9. {sup 1}H MR spectroscopy of the basal ganglia in childhood: a semiquantitative analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lam, W.W.M. [Chinese Univ. of Hong Kong, Hong Kong (China). Dept. of Diagnostic Radiol. and Organ Imaging; Wang, Z.J.; Bilaniuk, L.T.; Hunter, J.V.; Haselgrove, J.C.; Zimmermann, R.A. [Department of Radiology, The Children`s Hospital of Philadelphia, 34th St. and Civic Center Blvd., Philadelphia, PA 19104 (United States); Zhao, H. [Division of Biostatistics and Epidemiology, The Children`s Hospital of Philadelphia, Philadelphia, Pennsylvania (United States); Berry, G.T.; Kaplan, P.; Gibson, J. [Division of Metabolism, The Children`s Hospital of Philadelphia, Philadelphia, Pennsylvania (United States); Kaplan, B.S. [Division of Nephrology, The Children`s Hospital of Philadelphia, Philadelphia, Pennsylvania (United States)

    1998-05-01

    Proton MR spectra of the basal ganglia were obtained from 28 patients, 24 male and 14 female, median age 16.3 months (5 weeks to 31 years). They included 17 patients with normal MRI of the basal ganglia without metabolic disturbance (control group) and 11 patients with various metabolic diseases: one case each of high serum sodium and high serum osmolarity, cobalamin C deficiency, Leigh disease, Galloway-Mowat syndrome, Pelizaeus-Merzbacher disease, hemolytic-uremic syndrome and Wilson disease and two cases of Alagille syndrome and methylmalonic acidemia with abnormal MRI of the basal ganglia or blood or urine analysis (abnormal group). The MR spectrum was measured by using STEAM. The MR-visible water content of the region of interest was obtained. Levels of myoinositol, choline, creatine and N -acetylaspartate were measured using a semiquantitative approach, with absolute reference calibration. In the control group, there was a gradual drop of water content over the first year of life; N -acetylaspartate, creatine and myoinositol levels showed no significant change with age, in contrast to the occipital, parietal and cerebellar regions. Choline showed a gradual decrease for the first 2 years of life and then remained fairly constant. In the abnormal group the water content was not significantly different. N -Acetylaspartate was decreased in patients with high serum sodium and high serum osmolarity, cobalamin C deficiency, Leigh disease and one case of methylmalonic acidemia. Decreased creatine was also found in Leigh disease, and decreased choline in Galloway-Mowat syndrome and Wilson disease. Myoinositol was elevated in the patient with abnormally high serum sodium, and decreased in the hemolytic-uremic syndrome. (orig.) With 3 figs., 4 tabs., 35 refs.

  10. Neuronal activity (c-Fos) delineating interactions of the cerebral cortex and basal ganglia

    OpenAIRE

    Mei-Hong Qiu; Chen, Michael C.; Zhi-Li Huang

    2014-01-01

    The cerebral cortex and basal ganglia (BG) form a neural circuit that is disrupted in disorders such as Parkinson’s disease. We found that neuronal activity (c-Fos) in the BG followed cortical activity, i.e., high in arousal state and low in sleep state. To determine if cortical activity is necessary for BG activity, we administered atropine to rats to induce a dissociative state resulting in slow-wave EEG but hyperactive motor behaviors. Atropine blocked c-Fos expression in the cortex and BG...

  11. Isolated symmetrical bilateral basal ganglia T2 hyperintensity in carbon monoxide poisoning

    Directory of Open Access Journals (Sweden)

    Subhaschandra S

    2008-01-01

    Full Text Available Carbon monoxide poisoning is not uncommon during the winter months. To make a diagnosis, strong clinical suspicion and acumen, and history of the exposure are necessary. Many a time, the presenting complaints may fail to help reach a diagnosis, in the absence of history. Imaging plays a role in the diagnosis of brain injury with the characteristic features, which are correlated with the clinical profile. Isolated bilateral basal ganglia injury revealing T2 hyperintensity in MRI may be observed in acute carbon monoxide poisoning.

  12. Dopamine-transporter SPECT and Dopamine-D2-receptor SPECT in basal ganglia diseases

    International Nuclear Information System (INIS)

    The basal ganglia comprise a group of subcortical nuclei, which are essential for motor control. Dysfunction of these areas, especially in dopaminergic transmission, results in disordered movement and neurological diseases such as Parkinson's disease, Wilson's disease, or Huntington disease. Positron emission tomography and single photon emission computed tomography (SPECT) have enhanced the understanding of the underlying pathophysiology, but they much more contribute to the early differential diagnosis of patients suffering from Parkinsonian syndrome in routine care. The present article provides dopamine transporter and D2 receptor SPECT findings in selected movement disorders. (orig.)

  13. A neuromotor model of handwriting generation highlighting the role of basal ganglia

    OpenAIRE

    Garipelli, Gangadhar

    2006-01-01

    Handwriting (HW), unlike reaching or walking, is a high-level motor activity, engaging large parts of cortical and sub-cortical regions that include supplementary motor area(SMA), premotor area(PM), primary motor area(M1), basal ganglia(BG), cerebellum, spinal cord etc. Since each of these regions contributes to HW output in its own unique fashion, pathology of any of these regions is manifest as characteristic features in HW. For example, in Parkinson's disease, a disorder of BG, HW is marke...

  14. Hyperintense basal ganglia lesions on T1-weighted MR images in asymptomatic patients with hepatic dysfunction

    International Nuclear Information System (INIS)

    Cranial MRI findings in four patients who had hepatic dysfunction, including one with sole hepatic form of Wilson's disease, were reported. The MR examinations revealed bilateral, symmetric hyperintensity in the globus pallidus, subthalamic nuclei and mesencephalon on T1-weighted images with no corresponding abnormality on T2-weighted sequences. The basal ganglia were normal on CT examinations in all patients. None of the patients had the clinical findings of hepatic encephalopathy. The MR findings in our patients did not correlate with the degree or duration of hepatic dysfunction. (orig.)

  15. Neuronal activity (c-Fos) delineating interactions of the cerebral cortex and basal ganglia

    OpenAIRE

    Qiu, Mei-Hong; Chen, Michael C.; Huang, Zhi-Li; Lu, Jun

    2014-01-01

    The cerebral cortex and basal ganglia (BG) form a neural circuit that is disrupted in disorders such as Parkinson’s disease. We found that neuronal activity (c-Fos) in the BG followed cortical activity, i.e., high in arousal state and low in sleep state. To determine if cortical activity is necessary for BG activity, we administered atropine to rats to induce a dissociative state resulting in slow-wave electroencephalography but hyperactive motor behaviors. Atropine blocked c-Fos expression i...

  16. Dopamine transporter density of basal ganglia assessed with [123I]IPT SPET in obsessive-compulsive disorder

    International Nuclear Information System (INIS)

    It has been suggested that dopamine, as well as serotonin, is associated with the pathophysiology of obsessive-compulsive disorder (OCD). Thus, many studies have been performed on brain regions associated with dopamine in patients with OCD. In the present study, we investigated the DAT density of the basal ganglia using iodine-123 labelled N-(3-iodopropen-2-yl)-2β-carbomethoxy-3β-(4-chlorophenyl) tropane ([123I]IPT) single-photon emission tomography (SPET) and evaluated the activity of the presynaptic dopamine function in patients with OCD. Fifteen patients with OCD and 19 normal control adults were included in the study. We performed brain SPET 2 h after the intravenous administration of [123I]IPT and carried out both quantitative and qualitative analyses using the obtained SPET data, which were reconstructed for the assessment of the specific/non-specific dopamine transporter (DAT) binding ratio in the basal ganglia. We then investigated the correlation between the severity scores of OCD symptoms assessed with the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) and the specific/non-specific DAT binding ratio of the basal ganglia. Compared with normal control adults, patients with OCD showed a significantly increased specific/non-specific DAT binding ratio in the right basal ganglia and a tendency towards an increased specific/non-specific DAT binding ratio in the left basal ganglia. No significant correlation was found between the total scores on the Y-BOCS and the specific/non-specific DAT binding ratio of the basal ganglia. These findings suggest that the dopaminergic neurotransmitter system of the basal ganglia in patients with OCD could be involved in the pathophysiology of OCD. (orig.)

  17. Dopamine transporter density of basal ganglia assessed with [{sup 123}I]IPT SPET in obsessive-compulsive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan-Hyung; Cheon, Keun-Ah; Lee, Hong-Shick [Department of Psychiatry, College of Medicine, Yonsei University, 146-92 Dogokdong, 135-720, Gangnam-Gu, Seoul (Korea); Koo, Min-Seong [Department of Psychiatry, College of Medicine, Kwandong University, Kangwon (Korea); Ryu, Young-Hoon; Lee, Jong-Doo [Division of Nuclear Medicine, Department of Radiology, College of Medicine, Yonsei University, Seoul (Korea)

    2003-12-01

    It has been suggested that dopamine, as well as serotonin, is associated with the pathophysiology of obsessive-compulsive disorder (OCD). Thus, many studies have been performed on brain regions associated with dopamine in patients with OCD. In the present study, we investigated the DAT density of the basal ganglia using iodine-123 labelled N-(3-iodopropen-2-yl)-2{beta}-carbomethoxy-3{beta}-(4-chlorophenyl) tropane ([{sup 123}I]IPT) single-photon emission tomography (SPET) and evaluated the activity of the presynaptic dopamine function in patients with OCD. Fifteen patients with OCD and 19 normal control adults were included in the study. We performed brain SPET 2 h after the intravenous administration of [{sup 123}I]IPT and carried out both quantitative and qualitative analyses using the obtained SPET data, which were reconstructed for the assessment of the specific/non-specific dopamine transporter (DAT) binding ratio in the basal ganglia. We then investigated the correlation between the severity scores of OCD symptoms assessed with the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) and the specific/non-specific DAT binding ratio of the basal ganglia. Compared with normal control adults, patients with OCD showed a significantly increased specific/non-specific DAT binding ratio in the right basal ganglia and a tendency towards an increased specific/non-specific DAT binding ratio in the left basal ganglia. No significant correlation was found between the total scores on the Y-BOCS and the specific/non-specific DAT binding ratio of the basal ganglia. These findings suggest that the dopaminergic neurotransmitter system of the basal ganglia in patients with OCD could be involved in the pathophysiology of OCD. (orig.)

  18. Dopamine Transporter Density of the Basal Ganglia Assessed with I-123 IPT SPECT in Patients with Obsessive-Compulsive Disorder

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, W. K.; Ryu, Y. H.; Yoon, M. J.; Kim, C. H.; Chun, K. A.; Lee, J. D. [College of Medicine, Univ. of Yonsei, Seoul (Korea, Republic of); Jee, D. Y. [College of Medicine, Univ. of Inhwa, Seoul (Korea, Republic of); Choi, T. H. [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    2003-07-01

    It has been suggested that dopamine as well as serotonin is associated with the pathophysiology of obsessive-compulsive disorder (OCD). Thus, many studies about brain regions associated with dopamine in OCD have been performed. In the present study, we investigated the DAT density of the basal ganglia using iodine-123 labelled N-(3-iodopropen-2-yl) - 2beta - carbomethoxy - 3beta - (4 - chloropheny1) tropane (I-123 IPT) single-photon emission tomography (SPECT) in patients with OCD and evaluated the activity of the presynaptic dopamine function in patients with OCD. Fifteen patients with OCD and nineteen normal control adults were included in the study. We performed brain SPET 2 hours after the intravenous administration of I-123 IPT and carried out both quantitative and qualitative analyses using the obtained SPET data, which were reconstructed for the assessment of the specific/non-specific DAT binding ratio in the basal ganglia. We then investigated the correlation between the severity scores of OCD symptoms assessed with the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) and the specific/non-specific DAT binding ratio of the basal ganglia. Patients with OCD showed a significantly increased specific/non-specific DAT binding ratio in right basal ganglia compared with normal control adults and an increased tendency in the specific/non-specific DAT binding ratio in left basal ganglia. No significant correlation was found between the total scores of the Y-BOCS and the specific/non-specific DAT binding ratio of the basal ganglia. Our findings suggest that the dopaminergic neurotransmitter system of the basal ganglia in patients with OCD plays an important role in fronto-subcortical circuit well-known as the pathophysiological mechanism of OCD.

  19. Comprehensive in vivo mapping of the human basal ganglia and thalamic connectome in individuals using 7T MRI.

    Directory of Open Access Journals (Sweden)

    Christophe Lenglet

    Full Text Available Basal ganglia circuits are affected in neurological disorders such as Parkinson's disease (PD, essential tremor, dystonia and Tourette syndrome. Understanding the structural and functional connectivity of these circuits is critical for elucidating the mechanisms of the movement and neuropsychiatric disorders, and is vital for developing new therapeutic strategies such as deep brain stimulation (DBS. Knowledge about the connectivity of the human basal ganglia and thalamus has rapidly evolved over recent years through non-invasive imaging techniques, but has remained incomplete because of insufficient resolution and sensitivity of these techniques. Here, we present an imaging and computational protocol designed to generate a comprehensive in vivo and subject-specific, three-dimensional model of the structure and connections of the human basal ganglia. High-resolution structural and functional magnetic resonance images were acquired with a 7-Tesla magnet. Capitalizing on the enhanced signal-to-noise ratio (SNR and enriched contrast obtained at high-field MRI, detailed structural and connectivity representations of the human basal ganglia and thalamus were achieved. This unique combination of multiple imaging modalities enabled the in-vivo visualization of the individual human basal ganglia and thalamic nuclei, the reconstruction of seven white-matter pathways and their connectivity probability that, to date, have only been reported in animal studies, histologically, or group-averaged MRI population studies. Also described are subject-specific parcellations of the basal ganglia and thalamus into sub-territories based on their distinct connectivity patterns. These anatomical connectivity findings are supported by functional connectivity data derived from resting-state functional MRI (R-fMRI. This work demonstrates new capabilities for studying basal ganglia circuitry, and opens new avenues of investigation into the movement and neuropsychiatric

  20. Dopamine Transporter Density of the Basal Ganglia Assessed with I-123 IPT SPECT in Patients with Obsessive-Compulsive Disorder

    International Nuclear Information System (INIS)

    It has been suggested that dopamine as well as serotonin is associated with the pathophysiology of obsessive-compulsive disorder (OCD). Thus, many studies about brain regions associated with dopamine in OCD have been performed. In the present study, we investigated the DAT density of the basal ganglia using iodine-123 labelled N-(3-iodopropen-2-yl) - 2beta - carbomethoxy - 3beta - (4 - chloropheny1) tropane (I-123 IPT) single-photon emission tomography (SPECT) in patients with OCD and evaluated the activity of the presynaptic dopamine function in patients with OCD. Fifteen patients with OCD and nineteen normal control adults were included in the study. We performed brain SPET 2 hours after the intravenous administration of I-123 IPT and carried out both quantitative and qualitative analyses using the obtained SPET data, which were reconstructed for the assessment of the specific/non-specific DAT binding ratio in the basal ganglia. We then investigated the correlation between the severity scores of OCD symptoms assessed with the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) and the specific/non-specific DAT binding ratio of the basal ganglia. Patients with OCD showed a significantly increased specific/non-specific DAT binding ratio in right basal ganglia compared with normal control adults and an increased tendency in the specific/non-specific DAT binding ratio in left basal ganglia. No significant correlation was found between the total scores of the Y-BOCS and the specific/non-specific DAT binding ratio of the basal ganglia. Our findings suggest that the dopaminergic neurotransmitter system of the basal ganglia in patients with OCD plays an important role in fronto-subcortical circuit well-known as the pathophysiological mechanism of OCD

  1. Dopamine transporter density of the basal ganglia in children with attention deficit hyperactivity disorder assessed with I-123 IPT SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Won Gee; Kim, Tae Hoon; Ryu, Young Hoon; Yun, Mi Jin; Lee, Jong Doo; Cheon, Keun Ah [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of); Chi, Dae Yoon [College of Medicine, Inha Univ., Incheon (Korea, Republic of); Kim, Jong Ho; Choi, Tae Hyun [School of Medicine, Gachon Univ., Gachon (Korea, Republic of)

    2003-08-01

    Attention deficit hyperactivity disorder (ADHD) has been known as psychiatric disorder in childhood associated with dopamine dysregulation. In present study, we investigated changes in dopamine transporter (DAT) density of the basal ganglias using I-123 N-(3-iodopropen-2-yl) -2-carbomethoxy-3beta-(4-chlorphenyl) tropane (I-123 IPT) SPECT in children with ADHD before and after methylphenidate treatment. Nine drug-naive children with ADHD and seven normal children were included in the study. We performed brain SPECT two hours after the intravenous administration of I-123 IPT and made both quantitative and qualitative analyses using the obtained SPECT data, which were reconstructed for the assessment of specific/nonspecific DAT binding ratios in the basal ganglia. All children with ADHD reperformed (123I)IPT SPECT after treatment with methylphenidate (0.7mg/kg/d) during about 8 weeks. SPECT data reconstructed for the assessment of specific/nonspecific DAT binding ratio of the basal ganglia were compared between before and after treatment methyphenidate. We investigated correlation between the change of ADHD symptom severity assessed with ADHD rating scale-IV and specific/nonspecific DAT binding ratio of basal ganglia. Children with ADHD had a significantly greater specific/nonspecific DAT binding ratio of the basal ganglia comparing to normal children (Right : z = 2.057, p = 0.041 ; Left : z = 2.096, p = 0.032). Under treatment with methylphenidate in all children with ADHD, specific/nonspecific DAT binding ratio of both ganglia decreased significantly greater than before treatment with methylphenidate (Right : t = 3.239, p = 0.018 ; Left : t = 3.133, p 0.020). However, no significant correlation between the change of ADHD symptom severity scores and specific/nonspecific DAT binding ratio of the basal ganglia were found. These findings support the complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD.

  2. Dopamine transporter density of the basal ganglia in children with attention deficit hyperactivity disorder assessed with I-123 IPT SPECT

    International Nuclear Information System (INIS)

    Attention deficit hyperactivity disorder (ADHD) has been known as psychiatric disorder in childhood associated with dopamine dysregulation. In present study, we investigated changes in dopamine transporter (DAT) density of the basal ganglias using I-123 N-(3-iodopropen-2-yl) -2-carbomethoxy-3beta-(4-chlorphenyl) tropane (I-123 IPT) SPECT in children with ADHD before and after methylphenidate treatment. Nine drug-naive children with ADHD and seven normal children were included in the study. We performed brain SPECT two hours after the intravenous administration of I-123 IPT and made both quantitative and qualitative analyses using the obtained SPECT data, which were reconstructed for the assessment of specific/nonspecific DAT binding ratios in the basal ganglia. All children with ADHD reperformed (123I)IPT SPECT after treatment with methylphenidate (0.7mg/kg/d) during about 8 weeks. SPECT data reconstructed for the assessment of specific/nonspecific DAT binding ratio of the basal ganglia were compared between before and after treatment methyphenidate. We investigated correlation between the change of ADHD symptom severity assessed with ADHD rating scale-IV and specific/nonspecific DAT binding ratio of basal ganglia. Children with ADHD had a significantly greater specific/nonspecific DAT binding ratio of the basal ganglia comparing to normal children (Right : z = 2.057, p = 0.041 ; Left : z = 2.096, p = 0.032). Under treatment with methylphenidate in all children with ADHD, specific/nonspecific DAT binding ratio of both ganglia decreased significantly greater than before treatment with methylphenidate (Right : t = 3.239, p = 0.018 ; Left : t = 3.133, p 0.020). However, no significant correlation between the change of ADHD symptom severity scores and specific/nonspecific DAT binding ratio of the basal ganglia were found. These findings support the complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD

  3. Creation of computerized 3D MRI-integrated atlases of the human basal ganglia and thalamus

    Directory of Open Access Journals (Sweden)

    Abbas F. Sadikot

    2011-09-01

    Full Text Available Functional brain imaging and neurosurgery in subcortical areas often requires visualization of brain nuclei beyond the resolution of current Magnetic Resonance Imaging (MRI methods. We present techniques used to create: 1 a lower resolution 3D atlas, based on the Schaltenbrand and Wahren print atlas, which was integrated into a stereotactic neurosurgery planning and visualization platform (VIPER; and 2 a higher resolution 3D atlas derived from a single set of manually segmented histological slices containing nuclei of the basal ganglia, thalamus, basal forebrain and medial temporal lobe. Both atlases were integrated to a canonical MRI (Colin27 from a young male participant by manually identifying homologous landmarks. The lower resolution atlas was then warped to fit the MRI based on the identified landmarks. A pseudo-MRI representation of the high-resolution atlas was created, and a nonlinear transformation was calculated in order to match the atlas to the template MRI. The atlas can then be warped to match the anatomy of Parkinson’s disease surgical candidates by using 3D automated nonlinear deformation methods. By way of functional validation of the atlas, the location of the sensory thalamus was correlated with stereotactic intraoperative physiological data. The position of subthalamic electrode positions in patients with Parkinson’s disease was also evaluated in the atlas-integrated MRI space. Finally, probabilistic maps of subthalamic stimulation electrodes were developed, in order to allow group analysis of the location of contacts associated with the best motor outcomes. We have therefore developed, and are continuing to validate, a high-resolution computerized MRI-integrated 3D histological atlas, which is useful in functional neurosurgery, and for functional and anatomical studies of the human basal ganglia, thalamus and basal forebrain.

  4. MRI pattern of infarcts in basal ganglia region in patients with tuberculous meningitis

    International Nuclear Information System (INIS)

    This study aimed to evaluate the pattern of infarct in basal ganglia region in tuberculous meningitis (TBM) and ischemic strokes and its sensitivity and specificity in the diagnosis of these disorders. Patients with TBM and ischemic strokes in basal ganglia region were retrospectively evaluated from our tuberculous meningitis and ischemic stroke registry. Magnetic resonance imaging findings were grouped into anterior (caudate, genu, anterior limb of internal capsule, anteromedial thalamus) and posterior (lentiform nuclei, posterior limb of internal capsule, posterolateral thalamus). The sensitivity and specificity of these patterns in diagnosing TBM and ischemic stroke were evaluated. There were 24 patients in each group. Infarct in TBM was purely anterior in eight patients and in ischemic stroke purely posterior in 18 patients. The frequency of caudate infarct was significantly higher in TBM compared to ischemic stroke (37.5% vs 8.3%). In TBM patients, purely posterior infarcts were present in seven patients; three had associated risk factors of ischemic stroke. The sensitivity of pure anterior infarct in the diagnosis of TBM was 33%, specificity 91.66%. For ischemic stroke, the sensitivity of posterior infarct was 75% and specificity 70.83%. TBM patients having infarcts in posterior region should be looked for associated risk factors of ischemic stroke. (orig.)

  5. A case of vitamin B12 deficiency with involuntary movements and bilateral basal ganglia lesions.

    Science.gov (United States)

    Kitamura, Taisuke; Gotoh, Seiji; Takaki, Hayato; Kiyuna, Fumi; Yoshimura, Sohei; Fujii, Kenichiro

    2016-07-28

    An 86-year-old woman with a one-year history of dementia was admitted to our hospital complaining of loss of appetite, hallucinations, and disturbance of consciousness. She gradually presented with chorea-like involuntary movements of the extremities. Diffusion-weighted magnetic resonance imaging (MRI) showed bilateral symmetrical hyperintense signals in the basal ganglia. The serum vitamin B12 level was below the lower detection limit of 50 pg/ml. The homocysteine level was markedly elevated at 115.8 nmol/ml. Anti-intrinsic factor and anti-parietal cell antibody tests were positive. Gastrointestinal endoscopy revealed atrophic gastritis. The patient was diagnosed with encephalopathy due to vitamin B12 deficiency caused by pernicious anemia. Involuntary movements and MRI abnormalities improved with parenteral vitamin B12 supplementation. Bilateral basal ganglia lesions are rare manifestations of adult vitamin B12 deficiency. The present case is considered valuable in identifying the pathophysiology of involuntary movement due to vitamin B12 deficiency. PMID:27356735

  6. Learning processing in the basal ganglia: a mosaic of broken mirrors.

    Science.gov (United States)

    Da Cunha, Claudio; Wietzikoski, Evellyn Claudia; Dombrowski, Patrícia; Bortolanza, Mariza; Santos, Lucélia Mendes; Boschen, Suelen Lucio; Miyoshi, Edmar

    2009-04-12

    In the present review we propose a model to explain the role of the basal ganglia in sensorimotor and cognitive functions based on a growing body of behavioural, anatomical, physiological, and neurochemical evidence accumulated over the last decades. This model proposes that the body and its surrounding environment are represented in the striatum in a fragmented and repeated way, like a mosaic consisting of the fragmented images of broken mirrors. Each fragment forms a functional unit representing articulated parts of the body with motion properties, objects of the environment which the subject can approach or manipulate, and locations the subject can move to. These units integrate the sensory properties and movements related to them. The repeated and widespread distribution of such units amplifies the combinatorial power of the associations among them. These associations depend on the phasic release of dopamine in the striatum triggered by the saliency of stimuli and will be reinforced by the rewarding consequences of the actions related to them. Dopamine permits synaptic plasticity in the corticostriatal synapses. The striatal units encoding the same stimulus/action send convergent projections to the internal segment of the globus pallidus (GPi) and to the substantia nigra pars reticulata (SNr) that stimulate or hold the action through a thalamus-frontal cortex pathway. According to this model, this is how the basal ganglia select actions based on environmental stimuli and store adaptive associations as nondeclarative memories such as motor skills, habits, and memories formed by Pavlovian and instrumental conditioning. PMID:18977393

  7. Cardiorespiratory fitness and its association with thalamic, hippocampal, and basal ganglia volumes in multiple sclerosis

    Science.gov (United States)

    Motl, Robert W.; Pilutti, Lara A.; Hubbard, Elizabeth A.; Wetter, Nathan C.; Sosnoff, Jacob J.; Sutton, Bradley P.

    2015-01-01

    Background There is little known about cardiorespiratory fitness and its association with volumes of the thalamus, hippocampus, and basal ganglia in multiple sclerosis (MS). Such inquiry is important for identifying a possible behavioral approach (e.g., aerobic exercise training) that might change volumes of deep gray matter (DGM) structures associated with cognitive and motor functions in MS. Purpose This study examined the association between cardiorespiratory fitness and volumes of the thalamus, hippocampus, and basal ganglia in MS. Method We enrolled 35 persons with MS who underwent a maximal exercise test for measuring cardiorespiratory fitness as peak oxygen consumption (VO2peak) and brain MRI. Volumes of the thalamus, hippocampus, caudate, putamen, and pallidum were calculated from 3D T1-weighted structural brain images. We examined associations using partial (pr) correlations controlling for demographic and clinical variables. Results VO2peak was significantly associated with composite scaled volumes of the caudate(pr = .47, p < .01), putamen (pr = .44, p < .05), pallidum (pr = .40, p < .05), and hippocampus (pr = .42, p < .05), but not thalamus (pr = .31, p = .09), when controlling for sex, age, disability, and duration of MS. Conclusion Our results provide novel evidence that cardiorespiratory fitness is associated with volumes of DGM structures that are involved in motor and cognitive functions in MS. PMID:25844320

  8. Neurotensin receptor binding levels in basal ganglia are not altered in Huntington's chorea or schizophrenia

    International Nuclear Information System (INIS)

    Autoradiographic techniques were used to examine the distribution and levels of neurotensin receptor binding sites in the basal ganglia and related regions of the human brain. Monoiodo (125I-Tyr3)neurotensin was used as a ligand. High amounts of neurotensin receptor binding sites were found in the substantia nigra pars compacta. Lower but significant quantities of neurotensin receptor binding sites characterized the caudate, putamen, and nucleus accumbens, while very low quantities were seen in both medial and lateral segments of the globus pallidus. In Huntington's chorea, the levels of neurotensin receptor binding sites were found to be comparable to those of control cases. Only slight but not statistically significant decreases in amounts of receptor binding sites were detected in the dorsal part of the head and in the body of caudate nucleus. No alterations in the levels of neurotensin receptor binding sites were observed in the substantia nigra pars compacta and reticulata. These results suggest that a large proportion of neurotensin receptor binding sites in the basal ganglia are located on intrinsic neurons and on extrinsic afferent fibers that do not degenerate in Huntington's disease

  9. Role of movement in long-term basal ganglia changes: implications for abnormal motor responses

    Directory of Open Access Journals (Sweden)

    Nicola eSimola

    2013-10-01

    Full Text Available Abnormal involuntary movements and dyskinesias elicited by drugs that stimulate dopamine receptors in the basal ganglia are a major issue in the management of Parkinson’s disease (PD. Preclinical studies in dopamine-denervated animals have contributed to the modeling of these abnormal movements, but the precise neurochemical and functional mechanisms underlying these untoward effects are still elusive. It has recently been suggested that the performance of movement may itself promote the later emergence of drug-induced motor complications, by favoring the generation of aberrant motor memories in the dopamine-denervated basal ganglia. Our recent results from hemiparkinsonian rats subjected to the priming model of dopaminergic stimulation are in agreement with this and may constitute a useful model to study the early neurochemical events underling dyskinesia. These results demonstrate that early performance of movement is crucial for the manifestation of sensitized rotational behavior, indicative of an abnormal motor response, and neurochemical modifications in selected striatal neurons following a dopaminergic challenge. Building on this evidence, this paper discusses the possible role of movement performance in drug-induced motor complications, with a look at the implications for PD management.

  10. The basal ganglia and rule-governed language use: evidence from vascular and degenerative conditions.

    Science.gov (United States)

    Longworth, C E; Keenan, S E; Barker, R A; Marslen-Wilson, W D; Tyler, L K

    2005-03-01

    The Declarative/Procedural Model of Pinker, Ullman and colleagues claims that the basal ganglia are part of a fronto-striatal procedural memory system which applies grammatical rules to combine morphemes (the smallest meaningful units in language) into complex words (e.g. talk-ed, talk-ing). We tested this claim by investigating whether striatal damage or loss of its dopaminergic innervation is reliably associated with selective regular past tense deficits in patients with subcortical cerebrovascular damage, Parkinson's disease or Huntington's disease. We focused on past tense morphology since this allows us to contrast the regular past tense (jump-jumped), which is rule-based, with the irregular past tense (sleep-slept), which is not. We used elicitation and priming tasks to test patients' ability to comprehend and produce inflected forms. We found no evidence of a consistent association between striatal dysfunction and selective impairment of regular past tense morphology, suggesting that the basal ganglia are not essential for processing the regular past tense as a sequence of morphemes, either in comprehension or production, in contrast to the claims of the Declarative/Procedural Model. All patient groups showed normal activation of semantic and morphological representations in comprehension, despite difficulties suppressing semantically appropriate alternatives when trying to inflect novel verbs. This is consistent with previous reports that striatal dysfunction spares automatic activation of linguistic information, but disrupts later language processes that require inhibition of competing alternatives. PMID:15659423

  11. MRI pattern of infarcts in basal ganglia region in patients with tuberculous meningitis

    Energy Technology Data Exchange (ETDEWEB)

    Nair, P.P.; Kalita, J.; Misra, U.K. [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Neurology, Lucknow (India); Kumar, S. [Sanjay Gandhi Postgraduate Institute of Medical sciences, Department of Radiology, Lucknow (India)

    2009-04-15

    This study aimed to evaluate the pattern of infarct in basal ganglia region in tuberculous meningitis (TBM) and ischemic strokes and its sensitivity and specificity in the diagnosis of these disorders. Patients with TBM and ischemic strokes in basal ganglia region were retrospectively evaluated from our tuberculous meningitis and ischemic stroke registry. Magnetic resonance imaging findings were grouped into anterior (caudate, genu, anterior limb of internal capsule, anteromedial thalamus) and posterior (lentiform nuclei, posterior limb of internal capsule, posterolateral thalamus). The sensitivity and specificity of these patterns in diagnosing TBM and ischemic stroke were evaluated. There were 24 patients in each group. Infarct in TBM was purely anterior in eight patients and in ischemic stroke purely posterior in 18 patients. The frequency of caudate infarct was significantly higher in TBM compared to ischemic stroke (37.5% vs 8.3%). In TBM patients, purely posterior infarcts were present in seven patients; three had associated risk factors of ischemic stroke. The sensitivity of pure anterior infarct in the diagnosis of TBM was 33%, specificity 91.66%. For ischemic stroke, the sensitivity of posterior infarct was 75% and specificity 70.83%. TBM patients having infarcts in posterior region should be looked for associated risk factors of ischemic stroke. (orig.)

  12. Basal ganglia neuronal activity during scanning eye movements in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Tomáš Sieger

    Full Text Available The oculomotor role of the basal ganglia has been supported by extensive evidence, although their role in scanning eye movements is poorly understood. Nineteen Parkinsońs disease patients, which underwent implantation of deep brain stimulation electrodes, were investigated with simultaneous intraoperative microelectrode recordings and single channel electrooculography in a scanning eye movement task by viewing a series of colored pictures selected from the International Affective Picture System. Four patients additionally underwent a visually guided saccade task. Microelectrode recordings were analyzed selectively from the subthalamic nucleus, substantia nigra pars reticulata and from the globus pallidus by the WaveClus program which allowed for detection and sorting of individual neurons. The relationship between neuronal firing rate and eye movements was studied by crosscorrelation analysis. Out of 183 neurons that were detected, 130 were found in the subthalamic nucleus, 30 in the substantia nigra and 23 in the globus pallidus. Twenty percent of the neurons in each of these structures showed eye movement-related activity. Neurons related to scanning eye movements were mostly unrelated to the visually guided saccades. We conclude that a relatively large number of basal ganglia neurons are involved in eye motion control. Surprisingly, neurons related to scanning eye movements differed from neurons activated during saccades suggesting functional specialization and segregation of both systems for eye movement control.

  13. Functional magnetic resonance imaging of basal ganglia. Activation mapping with FLASH sequences for BOLD contrast and high resolution

    International Nuclear Information System (INIS)

    The activation pattern of putamen, internal and external division of globus pallidus was investigated during rapid pronation and supination of the right and left hand in 12 normal volunteers using a FLASH sequence with high resolution for functional magnetic resonance imaging (fMRI) at 1.5 T. The chosen paradigm for motor function led to a signal increase within the basal ganglia between 3 and 23%, depending on the structure and individual subject. In all cases significant activation could be found contralateral to the moving hand. In six cases activation was also found on the ipsilateral side. The activated areas within putamen, internal and external division of globus pallidus were less than 5 mm2. These first results indicate that fMRI studies of basal ganglia are feasible and might be suitable for analyzing basal ganglia disorders. (orig.)

  14. DISTRIBUTION OF PARVALBUMIN,CALBINDIN-D28 AND CALRETININ IMMUNOREACTIVE NEURONS AND FIBERS IN THE MONKEY BASAL GANGLIA

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To investigate the cellular localization of parvalbumin(PV),calbindin-D28K(CB)and clretinin(CR)in the monkey basal ganglia.Methods Immunocytochemical technique was used to detect PV,CB and CR immunoreactivity in the basal ganglia.Results In the striatum,CB labeled medium-sized spiny projection neuronsshereas PV and CR marked two separate classes of aspiny interneurons,The striatal matrix compartment was markedly enriched with CB while striatal patches displayed a CR-ich neuropil,In the pallidum,virtually all neurons contained PV but none express CB,CR occured only in a small subpopulation of large and small pallidal neurons.In the subthalamic nucleus,there existed a multitude of PV-positive cells and fibers but the number of CR and CB-postive neuronal elements was small,In the substantia nigra/ventral tegmental area complex.CB and CR occured principally in dopaminergic neurons of the dorsal tier of the pars compacta and in those of the ventral tegmental area.PV was strickly confined to the GABAergic neurons of the pars reticular and lateralis.CB-rich fibers abounded in the pars reticular and lateralis,while CR-positive axons were confined to the pars compacta.Conclusion:CB and PV were distributed according to a strikingly complementary pattern in primate basal ganglia,and the use of CB and PV immunocytochemistry may be considered as an excellent tool to define distinct chemoarchitectonic and functional domains within the complex organization of the basal ganglia ,CR was less ubiquitous but occured in small basal ganglia components where it labeled distinct subsets of neurons.Such highly specific patterns of distribution indicate that CB,PV and CR may work in synery within primate basal ganglia.

  15. Basal ganglia dysfunction in idiopathic REM sleep behaviour disorder parallels that in early Parkinson’s disease

    Science.gov (United States)

    Rolinski, Michal; Griffanti, Ludovica; Piccini, Paola; Roussakis, Andreas A.; Szewczyk-Krolikowski, Konrad; Menke, Ricarda A.; Quinnell, Timothy; Zaiwalla, Zenobia; Klein, Johannes C.; Mackay, Clare E.

    2016-01-01

    See Postuma (doi:10.1093/aww131) for a scientific commentary on this article. Resting state functional magnetic resonance imaging dysfunction within the basal ganglia network is a feature of early Parkinson’s disease and may be a diagnostic biomarker of basal ganglia dysfunction. Currently, it is unclear whether these changes are present in so-called idiopathic rapid eye movement sleep behaviour disorder, a condition associated with a high rate of future conversion to Parkinson’s disease. In this study, we explore the utility of resting state functional magnetic resonance imaging to detect basal ganglia network dysfunction in rapid eye movement sleep behaviour disorder. We compare these data to a set of healthy control subjects, and to a set of patients with established early Parkinson’s disease. Furthermore, we explore the relationship between resting state functional magnetic resonance imaging basal ganglia network dysfunction and loss of dopaminergic neurons assessed with dopamine transporter single photon emission computerized tomography, and perform morphometric analyses to assess grey matter loss. Twenty-six patients with polysomnographically-established rapid eye movement sleep behaviour disorder, 48 patients with Parkinson’s disease and 23 healthy control subjects were included in this study. Resting state networks were isolated from task-free functional magnetic resonance imaging data using dual regression with a template derived from a separate cohort of 80 elderly healthy control participants. Resting state functional magnetic resonance imaging parameter estimates were extracted from the study subjects in the basal ganglia network. In addition, eight patients with rapid eye movement sleep behaviour disorder, 10 with Parkinson’s disease and 10 control subjects received 123I-ioflupane single photon emission computerized tomography. We tested for reduction of basal ganglia network connectivity, and for loss of tracer uptake in rapid eye movement

  16. Basal ganglia circuit loops, dopamine and motivation: A review and enquiry.

    Science.gov (United States)

    Ikemoto, Satoshi; Yang, Chen; Tan, Aaron

    2015-09-01

    Dopamine neurons located in the midbrain play a role in motivation that regulates approach behavior (approach motivation). In addition, activation and inactivation of dopamine neurons regulate mood and induce reward and aversion, respectively. Accumulating evidence suggests that such motivational role of dopamine neurons is not limited to those located in the ventral tegmental area, but also in the substantia nigra. The present paper reviews previous rodent work concerning dopamine's role in approach motivation and the connectivity of dopamine neurons, and proposes two working models: One concerns the relationship between extracellular dopamine concentration and approach motivation. High, moderate and low concentrations of extracellular dopamine induce euphoric, seeking and aversive states, respectively. The other concerns circuit loops involving the cerebral cortex, basal ganglia, thalamus, epithalamus, and midbrain through which dopaminergic activity alters approach motivation. These models should help to generate hypothesis-driven research and provide insights for understanding altered states associated with drugs of abuse and affective disorders. PMID:25907747

  17. Functional neuroanatomy of the basal ganglia as studied by dual-probe microdialysis

    International Nuclear Information System (INIS)

    Dual probe microdialysis was employed in intact rat brain to investigate the effect of intrastriatal perfusion with selective dopamine D1 and D2 receptor agonists and with c-fos antisense oligonucleotide on (a) local GABA release in the striatum; (b) the internal segment of the globus pallidus and the substantia nigra pars reticulata, which is the output site of the strionigral GABA pathway; and (c) the external segment of the globus pallidus, which is the output site of the striopallidal GABA pathway. The data provide functional in vivo evidence for a selective dopamine D1 receptor-mediated activation of the direct strionigral GABA pathway and a selective dopamine D2 receptor inhibition of the indirect striopallidal GABA pathway and provides a neuronal substrate for parallel processing in the basal ganglia regulation of motor function. Taken together, these findings offer new therapeutic strategies for the treatment of dopamine-linked disorders such as Parkinson's disease, Huntington's disease, and schizophrenia

  18. Basal ganglia circuits underlying the pathophysiology of levodopa-induced dyskinesia

    Directory of Open Access Journals (Sweden)

    Erwan Bezard

    2010-09-01

    Full Text Available Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa therapy for Parkinson’s disease. Dyskinesia are, ultimately, experienced by the vast majority of the patients. Despite the importance of this problem, little was known about the cause of dyskinesia, a situation that has dramatically evolved in the last few years with a focus upon the molecular and signalling changes induced by chronic levodopa treatment. Departing from this, we here review the progress made in functional anatomy and neuroimaging that have had a tremendous impact on our understanding of the anatomo-functional organization of the basal ganglia in Parkinsonism and dyskinetic states, notably the demonstration that dyskinesia are linked to a pathological processing of limbic and cognitive information.

  19. The behavioural and motor consequences of focal lesions of the basal ganglia in man.

    Science.gov (United States)

    Bhatia, K P; Marsden, C D

    1994-08-01

    The behavioural and movement disorders reported in 240 patients described in the literature with lesions affecting the caudate nucleus, putamen and the globus pallidus (lentiform nucleus) have been analysed. Reports were classified into two groups: small or isolated lesions involving the said nuclei alone; and large lesions with additional involvement of the adjacent internal capsule and/or periventricular white matter. Amongst the 240 cases, dystonia was the most frequent movement disorder recorded (36%); chorea (8%) and parkinsonism (6%) or dystonia-parkinsonism (3%) were uncommon. The commonest behavioural disturbance was the syndrome of abulia (apathy with loss of initiative and of spontaneous thought and emotional responses) (13%); disinhibition was rare (4%). Confusion usually was associated with intracerebral haemorrhage and depression was a relatively non-specific finding. Aphasia was extremely rare with lesions confined to these basal ganglia structures. Lesions of the caudate nucleus rarely caused motor disorders but were more likely to cause behavioural problems. Chorea has been described in only 6% of those with caudate lesions, and dystonia in only 9%. The most significant behavioural disturbance described in 28% of those with caudate lesions was the syndrome of abulia, sometimes alternating with disinhibition (11%). Lesions of the lentiform nuclei rarely caused abulia (10%) and did not produce disinhibition, but they commonly caused dystonia (49%), particularly when the putamen was involved (63%). Bilateral lesions of the lentiform nuclei, either of the globus pallidus or of the putamen, caused parkinsonism (19%) or dystonia-parkinsonism (6%) infrequently. The prominence of the behavioural disturbance of abulia with caudate lesions emphasizes the more complex cognitive role of this basal ganglia structure. The frequent occurrence of dystonia and less commonly of parkinsonism with lentiform lesions emphasize the motor roles of putamen and globus

  20. Increased functional connectivity in the resting-state basal ganglia network after acute heroin substitution.

    Science.gov (United States)

    Schmidt, A; Denier, N; Magon, S; Radue, E-W; Huber, C G; Riecher-Rossler, A; Wiesbeck, G A; Lang, U E; Borgwardt, S; Walter, M

    2015-01-01

    Reinforcement signals in the striatum are known to be crucial for mediating the subjective rewarding effects of acute drug intake. It is proposed that these effects may be more involved in early phases of drug addiction, whereas negative reinforcement effects may occur more in later stages of the illness. This study used resting-state functional magnetic resonance imaging to explore whether acute heroin substitution also induced positive reinforcement effects in striatal brain regions of protracted heroin-maintained patients. Using independent component analysis and a dual regression approach, we compared resting-state functional connectivity (rsFC) strengths within the basal ganglia/limbic network across a group of heroin-dependent patients receiving both an acute infusion of heroin and placebo and 20 healthy subjects who received placebo only. Subsequent correlation analyses were performed to test whether the rsFC strength under heroin exposure correlated with the subjective rewarding effect and with plasma concentrations of heroin and its main metabolites morphine. Relative to the placebo treatment in patients, heroin significantly increased rsFC of the left putamen within the basal ganglia/limbic network, the extent of which correlated positively with patients' feelings of rush and with the plasma level of morphine. Furthermore, healthy controls revealed increased rsFC of the posterior cingulate cortex/precuneus in this network relative to the placebo treatment in patients. Our results indicate that acute heroin substitution induces a subjective rewarding effect via increased striatal connectivity in heroin-dependent patients, suggesting that positive reinforcement effects in the striatum still occur after protracted maintenance therapy. PMID:25803496

  1. Intracranial calcification on paediatric computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kendall, B.; Cavanagh, N.

    1986-07-01

    An analysis of the computed tomograms of 18000 children examined consecutively form the basis of an assessment of the diagnostic significance of intracranial calcification. The low incidence of physiological calcification in the pineal and choroid of about 2% up to the age of 8 years, but increasing 5-fold by the age of 15 years, is confirmed. Pathological calcification occurred in 1.6%, the commonest causes being neoplasms (43%), neuroectodermal syndromes (20%) and infections (12%). Diffuse basal ganglia calcification (15%) bore little relation to the diverse clinical symptomatology, and routine biochemical studies showed a disorder of metabolism to be present in only 6 cases. Calcification has not been previously noted in acute haemorrhagic leukoencephalitis, Pertussis or Cocksackie encephalitis, infantile neuraxonal dystrophy, Marinesco-Sjoegren syndrome or in the basal ganglia in neurofibromatosis.

  2. DISTRIBUTION OF PARVALBUMIN, CALBINDIN-D28 AND CALRETININ IMMUNOREACTIVE NEURO NS AND FIBERS IN THE MONKEY BASAL GANGLIA

    Institute of Scientific and Technical Information of China (English)

    刘健; 张巧俊

    2002-01-01

    Objective To investigate the cellular localization of parvalbumin (PV), calbindin-D28k (CB) and calretinin (CR) in the monkey basal ganglia.Methods Immunocytochemica l technique was used to detect PV,CB and CR immunoreactivity in the basal gangl ia. Results In the striatum, CB labeled medium-sized spin y projection neurons whereas PV and CR marked two separate classes of aspiny int erneurons. The striatal matrix compartment was markedly enriched with CB while s triatal patches displayed a CR-rich neuropil. In the pallidum, virtually all ne u rons contained PV but none express CB. CR occured only in a small subpopulation of large and small pallidal neurons. In the subthalamic nucleus, there existed a multitude of PV-positive cells and fibers but the number of CR and CB-positiv e neuronal elements was small. In the substantia nigra / ventral tegmental area co mplex, CB and CR occured principally in dopaminergic neurons of the dorsal tier of the pars compacta and in those of the ventral tegmental area. PV was strickly confined to the GABAergic neurons of the pars reticular and lateralis. CB-rich fibers abounded in the pars reticular and lateralis, while CR-positive axons we re confined to the pars compacta. Conclusion CB and PV were di stributed accordin g to a strikingly complementary pattern in primate basal ganglia, and the use of CB and PV immunocytochemistry may be considered as an excellent tool to define dist inct chemoarchitectonic and functional domains within the complex organization o f the basal ganglia. CR was less ubiquitous but occured in small basal ganglia c omponents where it labeled distinct subsets of neurons. Such highly specific pat terns of distribution indicate that CB, PV and CR may work in synery within prim ate basal ganglia.

  3. Characterization of neuropeptide, monoamine, and amino acid release in the basal ganglia of the rat : Neuronal dependence and reciprocal interactions

    OpenAIRE

    You, Zhi-Bing

    1996-01-01

    Functional interactions in the basal ganglia of rats were characterized with in vivomicrodialysis. The study was mainly focused on the dynorphin and cholecystokinin (CCK)systems. The extracellular levels of both dynorphin B and CCK were found in the pM range inthe neostriatum and substantia nigra under basal conditions. The release of these peptides wasCa++- and K+-dependent. Dynorphin B, as well as GABA, levels in the neotriatum andsubstantia nigra were significantly decreased following a le...

  4. Singing-Related Neural Activity Distinguishes Four Classes of Putative Striatal Neurons in the Songbird Basal Ganglia

    OpenAIRE

    Goldberg, Jesse H.; Fee, Michale S

    2010-01-01

    The striatum—the primary input nucleus of the basal ganglia—plays a major role in motor control and learning. Four main classes of striatal neuron are thought to be essential for normal striatal function: medium spiny neurons, fast-spiking interneurons, cholinergic tonically active neurons, and low-threshold spiking interneurons. However, the nature of the interaction of these neurons during behavior is poorly understood. The songbird area X is a specialized striato-pallidal basal ganglia nuc...

  5. Lrrk2 Localization in the Primate Basal ganglia and Thalamus: A Light and Electron Microscopic Analysis in Monkeys

    OpenAIRE

    Lee, H; Melrose, H. L.; Yu, M.; Pare, Jean-Francois; Farrer, M.J.; Smith, Y.

    2010-01-01

    The Leucine Rich Repeat Kinase-2 (LRRK2) gene is a common mutation target in Parkinson’s disease (PD), but the cellular mechanisms by which such mutations underlie the pathophysiology of PD remain poorly understood. Thus, to better characterize the neuronal target sites of LRRK2 mutations in the primate brain, we studied the cellular and ultrastructural localization of Lrrk2 immunoreactivity in the monkey basal ganglia. As previously described, the monkey striatum was the most enriched basal ...

  6. Basal Ganglia Structures Differentially Contribute to Verbal Fluency: Evidence from Human Immunodeficiency Virus (HIV)-Infected Adults

    Science.gov (United States)

    Thames, April D.; Foley, Jessica M.; Wright, Matthew J.; Panos, Stella E.; Ettenhofer, Mark; Ramezani, Amir; Streiff, Vanessa; El-Saden, Suzie; Goodwin, Scott; Bookheimer, Susan Y.; Hinkin, Charles H.

    2012-01-01

    Background: The basal ganglia (BG) are involved in executive language functions (i.e., verbal fluency) through their connections with cortical structures. The caudate and putamen receive separate inputs from prefrontal and premotor cortices, and may differentially contribute to verbal fluency performance. We examined BG integrity in relation to…

  7. How preparation changes the need for top-down control of the basal ganglia when inhibiting premature actions.

    Science.gov (United States)

    Jahfari, Sara; Verbruggen, Frederick; Frank, Michael J; Waldorp, Lourens J; Colzato, Lorenza; Ridderinkhof, K Richard; Forstmann, Birte U

    2012-08-01

    Goal-oriented signals from the prefrontal cortex gate the selection of appropriate actions in the basal ganglia. Key nodes within this fronto-basal ganglia action regulation network are increasingly engaged when one anticipates the need to inhibit and override planned actions. Here, we ask how the advance preparation of action plans modulates the need for fronto-subcortical control when a planned action needs to be withdrawn. Functional magnetic resonance imaging data were collected while human participants performed a stop task with cues indicating the likelihood of a stop signal being sounded. Mathematical modeling of go trial responses suggested that participants attained a more cautious response strategy when the probability of a stop signal increased. Effective connectivity analysis indicated that, even in the absence of stop signals, the proactive engagement of the full control network is tailored to the likelihood of stop trial occurrence. Importantly, during actual stop trials, the strength of fronto-subcortical projections was stronger when stopping had to be engaged reactively compared with when it was proactively prepared in advance. These findings suggest that fronto-basal ganglia control is strongest in an unpredictable environment, where the prefrontal cortex plays an important role in the optimization of reactive control. Importantly, these results further indicate that the advance preparation of action plans reduces the need for reactive fronto-basal ganglia communication to gate voluntary actions. PMID:22875921

  8. MR-examinations on the distribution of iron deposits in the basal ganglia with special reference to age, sex and disease

    International Nuclear Information System (INIS)

    Using a 1.5 Tesla super-conducting magnet T2 weighted images of the brain not seldom exhibit a reduced signal intensity in the region of the basal ganglia as an expression of increased iron deposits in these regions. We examined 180 patients (a control group, and groups of patients with vascular, inflammatory or tumorous disease of the brain) in order to answer the question whether the T2-relaxation times of the basal ganglia show a correlation to age, sex and the disease of the patient. We measured a significant decrease of the T2-relaxation times in women compared to men in the region of the basal ganglia. We observed increased T2-relaxation times in the region of basal ganglia with aging in the control group. We were able to show disease-specific alterations in the iron distributions in the region of the basal ganglias in patients with vascular and inflammatory disorders of the brain. (orig.)

  9. Massive intracranial calcifications in a patient with systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Central nervous system involvement is frequently reported in patients with systemic lupus erythematosus. Computed tomography and magnetic resonance imaging studies usually show brain atrophy, cerebral infarction and/or intracranial bleeding. Extensive intracranial calcification in patients with systemic lupus erythematosus is rare. We report a case of a patient with systemic lupus erythematosus who presented with seizures and massive basal ganglia calcification and mild calcifications in the frontal lobes, seen on the brain computed tomography scan. Magnetic resonance imaging showed hyperintensity on FLAIR images and hypointense signals on T2* gradient echo images in the basal ganglia. (author)

  10. The Basal Ganglia Select the Expected Sensory Input Used for Predictive Coding

    Directory of Open Access Journals (Sweden)

    Brian eColder

    2015-09-01

    Full Text Available While considerable evidence supports the notion that lower-level interpretation of incoming sensory information is guided by top-down sensory expectations, less is known about the source of the sensory expectations or the mechanisms by which they are spread. Predictive coding theory proposes that sensory expectations flow down from higher-level association areas to lower-level sensory cortex, and deviations from those expectations (error signals flow back up to association areas. A separate theory of the role of prediction in cognition describes emulations as linked representations of potential actions and their associated expected sensation that are hypothesized to play an important role in many aspects of cognition. The expected sensations in active emulations are proposed to be the top-down expectation used in predictive coding. Representations of the potential action and expected sensation in emulations are thought to be instantiated in distributed cortical networks. Combining predictive coding with emulations thus provides a theoretical link between the top-down expectations that guide sensory expectations and the cortical networks representing potential actions. Now moving to theories of action selection, the basal ganglia has long been proposed to select between potential actions by reducing inhibition to the cortical network instantiating the desired action plan. Integration of these isolated theories

  11. Cost-efficient FPGA implementation of basal ganglia and their Parkinsonian analysis.

    Science.gov (United States)

    Yang, Shuangming; Wang, Jiang; Li, Shunan; Deng, Bin; Wei, Xile; Yu, Haitao; Li, Huiyan

    2015-11-01

    The basal ganglia (BG) comprise multiple subcortical nuclei, which are responsible for cognition and other functions. Developing a brain-machine interface (BMI) demands a suitable solution for the real-time implementation of a portable BG. In this study, we used a digital hardware implementation of a BG network containing 256 modified Izhikevich neurons and 2048 synapses to reliably reproduce the biological characteristics of BG on a single field programmable gate array (FPGA) core. We also highlighted the role of Parkinsonian analysis by considering neural dynamics in the design of the hardware-based architecture. Thus, we developed a multi-precision architecture based on a precise analysis using the FPGA-based platform with fixed-point arithmetic. The proposed embedding BG network can be applied to intelligent agents and neurorobotics, as well as in BMI projects with clinical applications. Although we only characterized the BG network with Izhikevich models, the proposed approach can also be extended to more complex neuron models and other types of functional networks. PMID:26318085

  12. Role of beta-arrestin 2 downstream of dopamine receptors in the basal ganglia

    Directory of Open Access Journals (Sweden)

    Thomas eDel'Guidice

    2011-09-01

    Full Text Available Multifunctional scaffolding protein beta-arrestins (βArr and the G protein receptor kinases (GRK are involved in the desensitization of several G protein coupled-receptors (GPCR. However, arrestins can also contribute to GPCR signaling independently from G proteins. In this review, we focus on the role of βArr in the regulation of dopamine receptor functions in the striatum. First, we present in vivo evidence supporting a role for these proteins in the regulation of dopamine receptor desensitization. Second, we provide an overview of the roles of βArr-2 in the regulation of ERK/MAPkinases and Akt/GSK3 signaling pathways downstream of the D1 and D2 dopamine receptors. Thereafter, we examine the possible involvement of βArr-mediated signaling in the action of dopaminergic drugs used for the treatment of mental disorders. Finally, we focus on different potential cellular proteins regulated by βArr-mediated signaling which could contribute to the regulation of behavioral responses to dopamine. Overall, the identification of a cell signaling function for βArr downstream of dopamine receptors underscores the intricate complexity of the intertwined mechanisms regulating and mediating cell signaling in the basal ganglia. Understanding these mechanisms may lead to a better comprehension of the several roles played by these structures in the regulation of mood and to the development of new psychoactive drugs having better therapeutic efficacy.

  13. Model-based action planning involves cortico-cerebellar and basal ganglia networks

    Science.gov (United States)

    Fermin, Alan S. R.; Yoshida, Takehiko; Yoshimoto, Junichiro; Ito, Makoto; Tanaka, Saori C.; Doya, Kenji

    2016-01-01

    Humans can select actions by learning, planning, or retrieving motor memories. Reinforcement Learning (RL) associates these processes with three major classes of strategies for action selection: exploratory RL learns state-action values by exploration, model-based RL uses internal models to simulate future states reached by hypothetical actions, and motor-memory RL selects past successful state-action mapping. In order to investigate the neural substrates that implement these strategies, we conducted a functional magnetic resonance imaging (fMRI) experiment while humans performed a sequential action selection task under conditions that promoted the use of a specific RL strategy. The ventromedial prefrontal cortex and ventral striatum increased activity in the exploratory condition; the dorsolateral prefrontal cortex, dorsomedial striatum, and lateral cerebellum in the model-based condition; and the supplementary motor area, putamen, and anterior cerebellum in the motor-memory condition. These findings suggest that a distinct prefrontal-basal ganglia and cerebellar network implements the model-based RL action selection strategy. PMID:27539554

  14. Unusual progression of herpes simplex encephalitis with basal ganglia and extensive white matter involvement

    Directory of Open Access Journals (Sweden)

    Yasuhiro Manabe

    2009-08-01

    Full Text Available We report a 51-year old male with herpes simplex encephalitis (HSE showing unusual progression and magnetic resonance (MR findings. The initial neurological manifestation of intractable focal seizure with low-grade fever persisted for three days, and rapidly coma, myoclonic status, and respiratory failure with high-grade fever emerged thereafter. The polymerase chain reaction (PCR result of cerebrospinal fluid (CSF was positive for HSV-1 DNA. In the early stage, MR images (MRI were normal. On subsequent MR diffusion-weighted (DW and fluid-attenuated inversion recovery (FLAIR images, high-intensity areas first appeared in the left frontal cortex, which was purely extra-temporal involvement, and extended into the basal ganglia, then the white matter, which are relatively spared in HSE. Antiviral therapy and immunosuppressive therapy did not suppress the progression of HSE, and finally severe cerebral edema developed into cerebral herniation, which required emergency decompressive craniectomy. Histological examination of a biopsy specimen of the white matter detected perivascular infiltration and destruction of basic structure, which confirmed non specific inflammatory change without obvious edema or demyelination. The present case shows both MR and pathological findings in the white matter in the acute stage of HSE.

  15. Changing pattern in the basal ganglia: motor switching under reduced dopaminergic drive.

    Science.gov (United States)

    Fiore, Vincenzo G; Rigoli, Francesco; Stenner, Max-Philipp; Zaehle, Tino; Hirth, Frank; Heinze, Hans-Jochen; Dolan, Raymond J

    2016-01-01

    Action selection in the basal ganglia is often described within the framework of a standard model, associating low dopaminergic drive with motor suppression. Whilst powerful, this model does not explain several clinical and experimental data, including varying therapeutic efficacy across movement disorders. We tested the predictions of this model in patients with Parkinson's disease, on and off subthalamic deep brain stimulation (DBS), focussing on adaptive sensory-motor responses to a changing environment and maintenance of an action until it is no longer suitable. Surprisingly, we observed prolonged perseverance under on-stimulation, and high inter-individual variability in terms of the motor selections performed when comparing the two conditions. To account for these data, we revised the standard model exploring its space of parameters and associated motor functions and found that, depending on effective connectivity between external and internal parts of the globus pallidus and saliency of the sensory input, a low dopaminergic drive can result in increased, dysfunctional, motor switching, besides motor suppression. This new framework provides insight into the biophysical mechanisms underlying DBS, allowing a description in terms of alteration of the signal-to-baseline ratio in the indirect pathway, which better account of known electrophysiological data in comparison with the standard model. PMID:27004463

  16. Functional lateralization in cingulate cortex predicts motor recovery after basal ganglia stroke.

    Science.gov (United States)

    Li, Yao; Chen, Zengai; Su, Xin; Zhang, Xiaoliu; Wang, Ping; Zhu, Yajing; Xu, Qun; Xu, Jianrong; Tong, Shanbao

    2016-02-01

    The basal ganglia (BG) is involved in higher order motor control such as movement planning and execution of complex motor synergies. Neuroimaging study on stroke patients specifically with BG lesions would help to clarify the consequence of BG damage on motor control. In this paper, we performed a longitudinal study in the stroke patients with lesions in BG regions across three motor recovery stages, i.e., less than 2week (Session 1), 1-3m (Session 2) and more than 3m (Session 3). The patients showed an activation shift from bilateral hemispheres during early sessions (3m), suggesting a compensation effect from the contralesional hemisphere during motor recovery. We found that the lateralization of cerebellum(CB) for affected hand task correlated with patients' concurrent Fugl-Meyer index (FMI) in Session 2. Moreover, the cingulate cortex lateralization index in Session 2 was shown to significantly correlate with subsequent FMI change between Session 3 and Session 2, which serves as a prognostic marker for motor recovery. Our findings consolidated the close interactions between BG and CB during the motor recovery after stroke. The dominance of activation in contralateral cingulate cortex was associated with a better motor recovery, suggesting the important role of ipsilesional attention modulation in the early stage after BG stroke. PMID:26742641

  17. Gamma knife treatment of AVM of the basal ganglia and thalamus

    International Nuclear Information System (INIS)

    Arteriovenous malformations (AVMs) in the basal ganglia (BG) and thalamus (Thal) are difficult to treat by microsurgery or intravascular embolization alone, and the role of stereotactic gamma radiosurgery (gamma knife) of these AVMs is discussed. We have treated 324 cases of AVM with gamma knife since May 1991, and in 71 of these cases (19%) the AVM was in the BG or Thal. The results of gamma radiosurgery on AVMs of the BG and Thal were compared with the results of treating AVMs at other intracranial locations by gamma radiosurgery. The nidi were small (mean diameter: 16.4 mm), and they were treated with a mean maximum dose of 36.4 Gy and marginal dose of 19.9 Gy. The results were evaluated angiographically in 39 (55%) of the 71 cases, with a mean follow-up period of 23 months. The complete obliteration rate of AVMs in the BG and Thal 1 and 2 years after treatment was 54.3% and 92.0%, respectively, and the rate at the other locations was 42.9% and 76.0%, respectively. Adverse effects of this treatment in the AVM cases overall were rebleeding from the nidus in 5 cases (1.5%) and radiation necrosis in 4 cases (1.2%). In conclusion, AVMs of the BG and Thal were effectively and safely treated with the gamma knife, and stereotactic radiosurgery is a definitive alternative treatment for deep-seated AVMs. (author)

  18. Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia.

    Science.gov (United States)

    O'Reilly, Randall C; Frank, Michael J

    2006-02-01

    The prefrontal cortex has long been thought to subserve both working memory (the holding of information online for processing) and executive functions (deciding how to manipulate working memory and perform processing). Although many computational models of working memory have been developed, the mechanistic basis of executive function remains elusive, often amounting to a homunculus. This article presents an attempt to deconstruct this homunculus through powerful learning mechanisms that allow a computational model of the prefrontal cortex to control both itself and other brain areas in a strategic, task-appropriate manner. These learning mechanisms are based on subcortical structures in the midbrain, basal ganglia, and amygdala, which together form an actor-critic architecture. The critic system learns which prefrontal representations are task relevant and trains the actor, which in turn provides a dynamic gating mechanism for controlling working memory updating. Computationally, the learning mechanism is designed to simultaneously solve the temporal and structural credit assignment problems. The model's performance compares favorably with standard backpropagation-based temporal learning mechanisms on the challenging 1-2-AX working memory task and other benchmark working memory tasks. PMID:16378516

  19. Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology.

    Science.gov (United States)

    Sizemore, Rachel J; Seeger-Armbruster, Sonja; Hughes, Stephanie M; Parr-Brownlie, Louise C

    2016-04-01

    Viral vectors were originally developed to deliver genes into host cells for therapeutic potential. However, viral vector use in neuroscience research has increased because they enhance interpretation of the anatomy and physiology of brain circuits compared with conventional tract tracing or electrical stimulation techniques. Viral vectors enable neuronal or glial subpopulations to be labeled or stimulated, which can be spatially restricted to a single target nucleus or pathway. Here we review the use of viral vectors to examine the structure and function of motor and limbic basal ganglia (BG) networks in normal and pathological states. We outline the use of viral vectors, particularly lentivirus and adeno-associated virus, in circuit tracing, optogenetic stimulation, and designer drug stimulation experiments. Key studies that have used viral vectors to trace and image pathways and connectivity at gross or ultrastructural levels are reviewed. We explain how optogenetic stimulation and designer drugs used to modulate a distinct pathway and neuronal subpopulation have enhanced our mechanistic understanding of BG function in health and pathophysiology in disease. Finally, we outline how viral vector technology may be applied to neurological and psychiatric conditions to offer new treatments with enhanced outcomes for patients. PMID:26888111

  20. Evaluation of remote effect from hypertensive intracerebral hemorrhage confined to the basal ganglia and thalamus on cerebral blood flow using Tc-99m ECD brain SPECT

    International Nuclear Information System (INIS)

    To evaluate the remote effect of the hypertensive intracerebral hemorrhage (HICH) only confined either to the basal ganglia or thalamus on regional cerebral blood flow using Tc-99m ECD brain SPECT. This study included 23 HICH patients who had single hematoma strictly confined to the basal ganglia (n=12) or thalamus (n=11), respectively, sparing cortex on CT and MRI and 20 normal subjects free of neurological deficits and structural lesions on MRI as control. SPECT was performed after intravenous injection of 740MBq of Tc-99m ECD using brain dedicated gamma camera. Regional cerebral blood flow (rCBF) was visually assessed and asymmetry index (AI) was measured at the level of thalamus, basal ganglia, cerebellum, frontal, parietal and temporal cortex and compared with control group. We defined that hypoperfusion was evident when a patient had an AI greater than that of the mean +2*SD of normal control. rCBF was significantly reduced in the affected basal ganglia, ipsilateral thalamus (12/12), cerebral cortex (10/12) and contralateral cerebellum (12/12) in patients with basal ganglia hemorrhage. As for the thalamic hemorrhage patients, significant reduced perfusion was noted in the affected thalamus, ipsilateral basal ganglia (7/11), cerebral hemisphere (7/11) and contralateral cerebellum (9/11). AI analysis also demonstrated the concordant significant differences between the patients and control subjects. We can attribute blood flow reductions resulting from HICH confined to the thalamus or basal ganglia sparing cortex to a functional depression akin to diaschisis. Our findings are concordant basically to the well-known crossed cerebellar diaschisis; however, our cases are hematomas confined to thalamus or basal ganglia sparing cortex. It may be proposed that lesions confined to the thalamus or basal ganglia itself may play an important role for deactivation of cortico-cerebellar pathways other than cortico-pontocerebellar tract

  1. Incomplete and Inaccurate Vocal Imitation after Knockdown of FoxP2 in Songbird Basal Ganglia Nucleus Area X

    OpenAIRE

    Haesler, Sebastian; Rochefort, Christelle; Georgi, Benjamin; Licznerski, Pawel; Osten, Pavel; Scharff, Constance

    2007-01-01

    The gene encoding the forkhead box transcription factor, FOXP2, is essential for developing the full articulatory power of human language. Mutations of FOXP2 cause developmental verbal dyspraxia (DVD), a speech and language disorder that compromises the fluent production of words and the correct use and comprehension of grammar. FOXP2 patients have structural and functional abnormalities in the striatum of the basal ganglia, which also express high levels of FOXP2. Since human speech and lear...

  2. Basal ganglia lesions and the theory of fronto-subcortical loops: neuropsychological findings in two patients with left caudate lesions.

    Science.gov (United States)

    Benke, Thomas; Delazer, Margarete; Bartha, Lisa; Auer, Alexandra

    2003-01-01

    Basal ganglia lesions have a high prevalence for associated behavioural impairments. However, the exact pattern of cognitive impairments and its relationship to individual basal ganglia lesion have rarely been investigated by means of a detailed neuropsychological and lesion study. Furthermore, different mechanisms have been proposed as relevant for the observed cognitive deficits; among these, the hypothesis of fronto-subcortical loops (Alexander et al., 1986) has made predictions regarding the relationship between the damage of particular striato-frontal circuits and the resulting behavioural impairment which await clinical confirmation. We present a study of two subjects who suffered a MRI-documented focal left basal ganglia hematoma. The two patients differed in their lesions; in one patient (PJ) large parts of the caudate nucleus were destroyed whereas in the other (AS) mainly the pallidum and putamen were lesioned and the caudate suffered only minor damage. In the acute phase, the behavioural and neuropsychological abnormalities were similar in both cases and included mainly abulia, an impairment of executive and attentional functions, and a severe amnestic syndrome. After several months many functions were restored in AS, whereas PJ's abilities remained largely defective. Based on these data and on previous case studies several conclusions are drawn. Left caudate lesions induce marked and long-lasting behavioural and neuropsychological impairments comprising predominantly drive, executive control, attention, and memory. The extent of lesion in the head of the caudate nucleus is the critical factor regarding the severity and the outcome of the syndrome, whereas damage to the putamen and pallidum is less crucial for cognitive functions. A subset of behavioural alterations, among them abulia, attentional and frontal-executive dysfunctions, can well be attributed to lesions of the anterior cingulate circuit and the dorsolateral-frontal circuit at the basal

  3. Emotional blunting following left basal ganglia stroke: The role of depression and fronto-limbic functional alterations

    OpenAIRE

    Paradiso, Sergio; Ostedgaard, Katharine; Vaidya, Jatin; Ponto, Laura Boles; Robinson, Robert

    2012-01-01

    Disorders of the basal ganglia (BG) alter perception and experience of emotions. Left hemisphere BG (LBG) stroke is also associated with depression. The interplay between depression and alterations in emotional processing following LBG stroke was examined. Evoked affective responses to emotion-laden pictorial stimuli were compared among LBG stroke and healthy participants and participants with stroke damage in brain regions not including the LBG selected to equate depression severity (measure...

  4. Mechanism of parkinsonian neuronal oscillations in the primate basal ganglia: some considerations based on our recent work

    OpenAIRE

    Nambu, Atsushi; Tachibana, Yoshihisa

    2014-01-01

    Accumulating evidence suggests that abnormal neuronal oscillations in the basal ganglia (BG) contribute to the manifestation of parkinsonian symptoms. In this article, we would like to summarize our recent work on the mechanism underlying abnormal oscillations in the parkinsonian state and discuss its significance in pathophysiology of Parkinson’s disease. We recorded neuronal activity in the BG of parkinsonian monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Systemic admini...

  5. Involvement of dopamine loss in extrastriatal basal ganglia nuclei in the pathophysiology of Parkinson’s disease

    OpenAIRE

    Abdelhamid Benazzouz; Omar Mamad; Rabia Bouali-Benazzouz

    2014-01-01

    Parkinson’s disease is a neurological disorder characterized by the manifestation of motor symptoms, such as akinesia, muscle rigidity and tremor at rest. These symptoms are classically attributed to the degeneration of dopamine neurons in the pars compacta of substantia nigra (SNc), which results in a marked dopamine depletion in the striatum. It is well established that dopamine neurons in the SNc innervate not only the striatum, which is the main target, but also other basal ganglia nuclei...

  6. One View of the Current State of Understanding in Basal Ganglia Pathophysiology and What is Needed for the Future

    OpenAIRE

    Montgomery, Erwin B.

    2011-01-01

    Deep Brain Stimulation (DBS), arguably, is the most dramatic development in movement disorders since the levodopa for Parkinson’s disease. Yet, its mechanisms of action of DBS are unknown. However, DBS related research already has demonstrated that current concepts of basal ganglia pathophysiology are wrong. Specifically, the notion that over-activity of the globus pallidus interna causes parkinsonism, the basis for the most current theories, is no longer tenable. The development of any new t...

  7. Involvement of dopamine loss in extrastriatal basal ganglia nuclei in the pathophysiology of Parkinson’s disease

    OpenAIRE

    Benazzouz, Abdelhamid; Mamad, Omar; Abedi, Pamphyle; Bouali-Benazzouz, Rabia; Chetrit, Jonathan

    2014-01-01

    Parkinson’s disease (PD) is a neurological disorder characterized by the manifestation of motor symptoms, such as akinesia, muscle rigidity and tremor at rest. These symptoms are classically attributed to the degeneration of dopamine neurons in the pars compacta of substantia nigra (SNc), which results in a marked dopamine depletion in the striatum. It is well established that dopamine neurons in the SNc innervate not only the striatum, which is the main target, but also other basal ganglia n...

  8. Oscillations in the basal ganglia in Parkinson's disease patients and their influence on the cerebral cortex and behavioural performance.

    OpenAIRE

    Fogelson, N.

    2005-01-01

    Synchronised bursting of the basal ganglia, specifically at frequencies below 30 Hz, has been implicated to have a major role in the pathophysiology of Parkinson's disease (PD). The aim of this thesis is to further investigate the pathological role of low frequency activities in the subthalamic nucleus. These activities are characterised through exploration of their interactions with oscillatory cortical activities as well as with subthalamic prokinetic high frequency activities and by determ...

  9. Reduced Topological Efficiency in Cortical-Basal Ganglia Motor Network of Parkinson's Disease: A Resting State fMRI Study

    OpenAIRE

    Wei, Luqing; Zhang, Jiuquan; Long, Zhiliang; Wu, Guo-Rong; Hu, Xiaofei; Zhang, Yanling; Wang, Jian

    2014-01-01

    Parkinson's disease (PD) is mainly characterized by dopamine depletion of the cortico-basal ganglia (CBG) motor circuit. Given that dopamine dysfunction could affect functional brain network efficiency, the present study utilized resting-state fMRI (rs-fMRI) and graph theoretical approach to investigate the topological efficiency changes of the CBG motor network in patients with PD during a relatively hypodopaminergic state (12 hours after a last dose of dopamimetic treatment). We found that ...

  10. Electrocorticography reveals beta desynchronization in the basal ganglia-cortical loop during rest tremor in Parkinson's disease.

    Science.gov (United States)

    Qasim, Salman E; de Hemptinne, Coralie; Swann, Nicole C; Miocinovic, Svjetlana; Ostrem, Jill L; Starr, Philip A

    2016-02-01

    The pathophysiology of rest tremor in Parkinson's disease (PD) is not well understood, and its severity does not correlate with the severity of other cardinal signs of PD. We hypothesized that tremor-related oscillatory activity in the basal-ganglia-thalamocortical loop might serve as a compensatory mechanism for the excessive beta band synchronization associated with the parkinsonian state. We recorded electrocorticography (ECoG) from the sensorimotor cortex and local field potentials (LFP) from the subthalamic nucleus (STN) in patients undergoing lead implantation for deep brain stimulation (DBS). We analyzed differences in measures of network synchronization during epochs of spontaneous rest tremor, versus epochs without rest tremor, occurring in the same subjects. The presence of tremor was associated with reduced beta power in the cortex and STN. Cortico-cortical coherence and phase-amplitude coupling (PAC) decreased during rest tremor, as did basal ganglia-cortical coherence in the same frequency band. Cortical broadband gamma power was not increased by tremor onset, in contrast to the movement-related gamma increase typically observed at the onset of voluntary movement. These findings suggest that the cortical representation of rest tremor is distinct from that of voluntary movement, and support a model in which tremor acts to decrease beta band synchronization within the basal ganglia-cortical loop. PMID:26639855

  11. A spiking Basal Ganglia model of synchrony, exploration and decision making

    Directory of Open Access Journals (Sweden)

    Alekhya eMandali

    2015-05-01

    Full Text Available To make an optimal decision we need to weigh all the available options, compare them with the current goal, and choose the most rewarding one. Depending on the situation an optimal decision could be to either ‘explore’ or ‘exploit’ or ‘not to take any action’ for which the Basal Ganglia (BG is considered to be a key neural substrate. In an attempt to expand this classical picture of BG function, we had earlier hypothesized that the Indirect Pathway (IP of the BG could be the subcortical substrate for exploration. In this study we build a spiking network model to relate exploration to synchrony levels in the BG (which are a neural marker for tremor in Parkinson’s disease. Key BG nuclei such as the Sub Thalamic Nucleus (STN, Globus Pallidus externus (GPe and Globus Pallidus internus (GPi were modeled as Izhikevich spiking neurons whereas the Striatal output was modeled as Poisson spikes. The model is cast in reinforcement learning framework with the dopamine signal representing reward prediction error. We apply the model to two decision making tasks: a binary action selection task (similar to one used by Humphries et al. 2006 and an n-armed bandit task (Bourdaud et al. 2008. The model shows that exploration levels could be controlled by STN’s lateral connection strength which also influenced the synchrony levels in the STN-GPe circuit. An increase in STN’s lateral strength led to a decrease in exploration which can be thought as the possible explanation for reduced exploratory levels in Parkinson’s patients. Our simulations also show that on complete removal of IP, the model exhibits only Go and No-Go behaviors, thereby demonstrating the crucial role of IP in exploration. Our model provides a unified account for synchronization, action section, and explorative behavior.

  12. Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions.

    Science.gov (United States)

    Bosch-Bouju, Clémentine; Hyland, Brian I; Parr-Brownlie, Louise C

    2013-01-01

    Motor thalamus (Mthal) is implicated in the control of movement because it is strategically located between motor areas of the cerebral cortex and motor-related subcortical structures, such as the cerebellum and basal ganglia (BG). The role of BG and cerebellum in motor control has been extensively studied but how Mthal processes inputs from these two networks is unclear. Specifically, there is considerable debate about the role of BG inputs on Mthal activity. This review summarizes anatomical and physiological knowledge of the Mthal and its afferents and reviews current theories of Mthal function by discussing the impact of cortical, BG and cerebellar inputs on Mthal activity. One view is that Mthal activity in BG and cerebellar-receiving territories is primarily "driven" by glutamatergic inputs from the cortex or cerebellum, respectively, whereas BG inputs are modulatory and do not strongly determine Mthal activity. This theory is steeped in the assumption that the Mthal processes information in the same way as sensory thalamus, through interactions of modulatory inputs with a single driver input. Another view, from BG models, is that BG exert primary control on the BG-receiving Mthal so it effectively relays information from BG to cortex. We propose a new "super-integrator" theory where each Mthal territory processes multiple driver or driver-like inputs (cortex and BG, cortex and cerebellum), which are the result of considerable integrative processing. Thus, BG and cerebellar Mthal territories assimilate motivational and proprioceptive motor information previously integrated in cortico-BG and cortico-cerebellar networks, respectively, to develop sophisticated motor signals that are transmitted in parallel pathways to cortical areas for optimal generation of motor programmes. Finally, we briefly review the pathophysiological changes that occur in the BG in parkinsonism and generate testable hypotheses about how these may affect processing of inputs in the Mthal

  13. Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions

    Directory of Open Access Journals (Sweden)

    Brian I Hyland

    2013-11-01

    Full Text Available Motor thalamus (Mthal is implicated in the control of movement because it is strategically located between motor areas of the cerebral cortex and motor-related subcortical structures, such as the cerebellum and basal ganglia (BG. The role of BG and cerebellum in motor control has been extensively studied but how Mthal processes inputs from these two networks is unclear. Specifically, there is considerable debate about the role of BG inputs on Mthal activity. This review summarises anatomical and physiological knowledge of the Mthal and its afferents and reviews current theories of Mthal function by discussing the impact of cortical, BG and cerebellar inputs on Mthal activity. One view is that Mthal activity in BG and cerebellar-receiving territories is primarily “driven” by glutamatergic inputs from the cortex or cerebellum, respectively, whereas BG inputs are modulatory and do not strongly determine Mthal activity. This theory is steeped in the assumption that the Mthal processes information in the same way as sensory thalamus, through interactions of modulatory inputs with a single driver input. Another view, from BG models, is that BG exert primary control on the BG-receiving Mthal so it effectively relays information from BG to cortex. We propose a new “super-integrator” theory where each Mthal territory processes multiple driver or driver-like inputs (cortex and BG, cortex and cerebellum, which are the result of considerable integrative processing. Thus, BG and cerebellar Mthal territories assimilate motivational and proprioceptive motor information previously integrated in cortico-BG and cortico-cerebellar networks, respectively, to develop sophisticated motor signals that are transmitted in parallel pathways to cortical areas for optimal generation of motor programmes. Finally, we briefly review the pathophysiological changes that occur in the BG in parkinsonism and generate testable hypotheses about how these may affect

  14. Cortico-basal ganglia circuits involved in different motivation disorders in non-human primates.

    Science.gov (United States)

    Sgambato-Faure, Véronique; Worbe, Yulia; Epinat, Justine; Féger, Jean; Tremblay, Léon

    2016-01-01

    The ventral striatum (VS) is of particular interest in the study of neuropsychiatric disorders. In this study, performed on non-human primates, we associated local perturbation with monosynaptic axonal tracer injection into medial, central and lateral VS to characterize anatomo-functional circuits underlying the respective expression of sexual manifestations, stereotyped behaviors and hypoactive state associated with loss of food motivation. For the three behavioral effects, we demonstrated the existence of three distinct cortico-basal ganglia (BG) circuits that were topographically organized and overlapping at some cortical (orbitofrontal cortex, anterior cingulate cortex) and subcortical (caudal levels of BG) levels, suggesting interactions between motivation domains. Briefly, erection was associated with a circuit involving the orbitofrontal cortex, medial prefrontal cortex (areas 10, 11) and limbic parts of BG, i.e. medial parts of the pallidal complex and the substantia nigra pars reticulata (SNr). Stereotyped behavior was linked to a circuit involving the lateral orbitofrontal cortex (area 12/47) and limbic parts of the pallidal complex and of the SNr, while the apathetic state was underlined by a circuit involving not only the orbital and medial prefrontal cortex but also the lateral prefrontal cortex (area 8, 45), the anterior insula and the lateral parts of the medial pallidal complex and of the ventro-medial SNr. For the three behavioral effects, the cortico-BG circuits mainly involved limbic regions of the external and internal pallidum, as well as the limbic part of the substantia nigra pars reticulata (SNr), suggesting the involvement of both direct and indirect striatal pathways and both output BG structures. As these motivation disorders could still be induced in dopamine (DA)-depleted monkeys, we suggest that DA issued from the substantia nigra pars compacta (SNc) modulates their expression rather than causes them. Finally, this study may give some

  15. In vivo basal ganglia volumetry through application of NURBS models to MR images

    International Nuclear Information System (INIS)

    Volumetry of basal ganglia (BG) based on magnetic resonance imaging (MRI) provides a sensitive marker in differential diagnosis of BG disorders. The non-uniform rational B-spline (NURBS) surfaces are mathematical representations of three-dimensional structures which have recently been applied in volumetric studies. In this study, a volumetric evaluation of BG based on NURBS was performed in 35 right-handed volunteers. We aimed to compare and validate this technique with respect to manual MRI volumetry and evaluate possible side differences between these structures. Intra- and interobserver biases less than 1.5% demonstrated the method's stability. The mean percentage differences between NURBS and manual methods were less than 1% for all the structures considered; however, the internal segments of the globus pallidus showed a mean percentage difference of about 1.7%. Rightward asymmetry was found for the caudate nucleus (mean±SD 3.20±0.20 cm3 vs. 3.10±0.19 cm3, P3 vs. 1.41±0.09 cm3, P3 and 1.68±0.12 cm3, P3 and 1.18±0.09 cm3, P3 vs. 0.31±0.05 cm3, P3 vs. 0.86±0.05 cm3, P3 vs. 3.39±0.17 cm3, P>0.05). The rightward asymmetry of the BG may be ascribed to the predominant use of the right hand. In conclusion, NURBS is an accurate and reliable method for quantitative volumetry of nervous structures. It offers the advantage of giving a three-dimensional representation of the structures examined. (orig.)

  16. Basal ganglia contribution to rule expectancy and temporal predictability in speech.

    Science.gov (United States)

    Kotz, Sonja A; Schmidt-Kassow, Maren

    2015-07-01

    The current work set out to answer three questions: (1) Are reported syntactic deficits in patients with structural damage to the basal ganglia (BG) in the cortico-striato-thalamo-cortical systems (CSTCS) the result of a syntax specific computational deficit or are they potentially a consequence of a generalized timing deficit? (2) Do BG patients suffer from a simple beat perception deficit in speech comparable to the one reported in music? (3) Can regular speech meter (i.e., a pattern of beats induced by the regular alteration of stressed and unstressed syllable accents) ameliorate the computation of syntactically marked information by making speech events temporally predictable and salient? The latter 'remediation' hypothesis would predict that when speech events (i.e., those that are syntactically marked) are metrically aligned to the syllabic accent structure, the computation of syntactic information is facilitated or in the case of patients ameliorated. During continuous EEG measurement nineteen patients with focal BG lesions and matched healthy controls listened to metrically regular and syntactically well-formed sentences and metrically well-formed sentences that either violated syntactic expectancy, metrical expectancy, or both. While healthy controls showed an expected P600 response in the event-related brain potential (ERP) to all expectancy violations, BG patients showed overall comparable P600 responses to all, but the metrical expectancy violation. These results confirm that (1) BG patients suffer from a simple beat perception deficit in speech and (2) regular speech meter ameliorates the computation of syntactically marked information in the speech signal. We propose that a domain general sensorimotor cerebello-thalamo-cortical system (CTCS), involved in event-based temporal processing, engages in the remediation of dysfunctional cortico-striato-thalamo-cortical timing that affects the timely computation of linguistic (i.e., syntax) information in the

  17. Functional Relevance of Different Basal Ganglia Pathways Investigated in a Spiking Model with Reward Dependent Plasticity.

    Science.gov (United States)

    Berthet, Pierre; Lindahl, Mikael; Tully, Philip J; Hellgren-Kotaleski, Jeanette; Lansner, Anders

    2016-01-01

    The brain enables animals to behaviorally adapt in order to survive in a complex and dynamic environment, but how reward-oriented behaviors are achieved and computed by its underlying neural circuitry is an open question. To address this concern, we have developed a spiking model of the basal ganglia (BG) that learns to dis-inhibit the action leading to a reward despite ongoing changes in the reward schedule. The architecture of the network features the two pathways commonly described in BG, the direct (denoted D1) and the indirect (denoted D2) pathway, as well as a loop involving striatum and the dopaminergic system. The activity of these dopaminergic neurons conveys the reward prediction error (RPE), which determines the magnitude of synaptic plasticity within the different pathways. All plastic connections implement a versatile four-factor learning rule derived from Bayesian inference that depends upon pre- and post-synaptic activity, receptor type, and dopamine level. Synaptic weight updates occur in the D1 or D2 pathways depending on the sign of the RPE, and an efference copy informs upstream nuclei about the action selected. We demonstrate successful performance of the system in a multiple-choice learning task with a transiently changing reward schedule. We simulate lesioning of the various pathways and show that a condition without the D2 pathway fares worse than one without D1. Additionally, we simulate the degeneration observed in Parkinson's disease (PD) by decreasing the number of dopaminergic neurons during learning. The results suggest that the D1 pathway impairment in PD might have been overlooked. Furthermore, an analysis of the alterations in the synaptic weights shows that using the absolute reward value instead of the RPE leads to a larger change in D1. PMID:27493625

  18. Neurobrucellosis with transient ischemic attack, vasculopathic changes, intracerebral granulomas and basal ganglia infarction: a case report

    Directory of Open Access Journals (Sweden)

    Ozyurek Seyfi C

    2010-10-01

    Full Text Available Abstract Introduction Central nervous system involvement is a rare but serious manifestation of brucellosis. We present an unusual case of neurobrucellosis with transient ischemic attack, intracerebral vasculopathy granulomas, seizures, and paralysis of sixth and seventh cranial nerves. Case presentation A 17-year-old Caucasian man presented with nausea and vomiting, headache, double vision and he gave a history of weakness in the left arm, speech disturbance and imbalance. Physical examination revealed fever, doubtful neck stiffness and left abducens nerve paralysis. An analysis of his cerebrospinal fluid showed a pleocytosis (lymphocytes, 90%, high protein and low glucose levels. He developed generalized tonic-clonic seizures, facial paralysis and left hemiparesis. Cranial magnetic resonance imaging demonstrated intracerebral vasculitis, basal ganglia infarction and granulomas, mimicking the central nervous system involvement of tuberculosis. On the 31st day of his admission, neurobrucellosis was diagnosed with immunoglobulin M and immunoglobulin G positivity by standard tube agglutination test and enzyme-linked immunosorbent assay in both serum and cerebrospinal fluid samples (the tests had been negative until that day. He was treated successfully with trimethoprim and sulfamethoxazole, doxycyline and rifampicin for six months. Conclusions Our patient illustrates the importance of suspecting brucellosis as a cause of meningoencephalitis, even if cultures and serological tests are negative at the beginning of the disease. As a result, in patients who have a history of residence or travel to endemic areas, neurobrucellosis should be considered in the differential diagnosis of any neurologic symptoms. If initial tests fail, repetition of these tests at appropriate intervals along with complementary investigations are indicated.

  19. Neuronal activity (c-Fos delineating interactions of the cerebral cortex and basal ganglia

    Directory of Open Access Journals (Sweden)

    Mei-Hong Qiu

    2014-03-01

    Full Text Available The cerebral cortex and basal ganglia (BG form a neural circuit that is disrupted in disorders such as Parkinson’s disease. We found that neuronal activity (c-Fos in the BG followed cortical activity, i.e., high in arousal state and low in sleep state. To determine if cortical activity is necessary for BG activity, we administered atropine to rats to induce a dissociative state resulting in slow-wave EEG but hyperactive motor behaviors. Atropine blocked c-Fos expression in the cortex and BG, despite high c-Fos expression in the sub-cortical arousal neuronal groups and thalamus, indicating that cortical activity is required for BG activation. To identify which glutamate receptors in the BG that mediate cortical inputs, we injected ketamine (NMDA receptor antagonist and 6-cyano-nitroquinoxaline-2, 3-dione (CNQX, a non-NMDA receptor antagonist. Systemic ketamine and CNQX administration revealed that NMDA receptors mediated subthalamic nucleus (STN input to internal globus pallidus (GPi and substantia nigra pars reticulata (SNr, while non-NMDA receptor mediated cortical input to the STN. Both types of glutamate receptors were involved in mediating cortical input to the striatum. Dorsal striatal (caudoputamen, CPu dopamine depletion by 6-hydroxydopamine resulted in reduced activity of the CPu, globus pallidus externa (GPe, and STN but increased activity of the GPi, SNr and putative layer V neurons in the motor cortex. Our results reveal that the cortical activity is necessary for BG activity and clarifies the pathways and properties of the BG-cortical network and their putative role in the pathophysiology of BG disorders.

  20. Clinical characteristics and prognosis of traumatic basal ganglia hematomas: A retrospective analysis of 40 cases

    Institute of Scientific and Technical Information of China (English)

    Jialiang Li; Chunjiang Yu

    2006-01-01

    AIM: To retrospectively analyze the pathogenesis, clinical characteristics, treatment and prognostic characteristics in patients with traumatic basal ganglia hematomas (TBGH).METHODS: A retrospective analysis of the clinical data was performed in 40 patients with TBGH who were selected from 1 250 patients with closed brain injury, who admitted to the Department of Neurosurgery of Shangqiu First People's Hospital from January 1990 to January 2004. The pathogenesis, clinical characteristics and signs, results of radiological examination, treatment and prognostic characteristics were analyzed. The patients all had definite history of brain injury, manifested by neurological functional disturbance to different extent after brain injury, and basal ganglia hemorrhage was identified by CT after brain injury, and hemorrhagic volume were more than or equal to 2 mL. Totally 34 males and 6 females were enrolled, aged 16-72 years and 28 cases of them were younger than 40 years old. The prognosis of the patients was evaluated with Glasgow outcome scale (GOS) at 6 months after injury, and GOS scoring standard was 1-5 points (1 for dead; 2 for vegetative survival, long-term coma, manifestations of decorticate rigidity or decerebrate rigidity; 3 for severely disabled, should be look after by others; 4 for moderately disabled, be able in self-care; 5 for good recovery, adults can work and study).RESULTS: The enrolled cases accounted for 3.20% of the 1250 patients with closed brain injury admitted at the same period. ① The causes of injury included traffic accident in 36 cases, fall in 2 cases, and assault in 2 cases. ② At admission, the Glasgow coma scale (GCS) scores were as follow: 13-15 scores (mild) in 10 cases,9-12 scores (moderate)in 20 cases, and 3-8 scores (severe) in 10 cases. Hemiplegia presented in 37 cases,aphasia in 20 cases, conscious disturbance in 10 cases, unilateral mydriasis in 6 cases, and decerebrate rigidity in 2 cases. ③ TBGH was detected by CT within

  1. Singing-related neural activity distinguishes two putative pallidal cell types in the songbird basal ganglia: comparison to the primate internal and external pallidal segments

    OpenAIRE

    Goldberg, Jesse H.; Adler, Avital; Bergman, Hagai; Fee, Michale S

    2010-01-01

    The songbird area X is a basal ganglia homologue that contains two pallidal cell types—local neurons that project within the basal ganglia and output neurons that project to the thalamus. Based on these projections, it has been proposed that these classes are structurally homologous to the primate external (GPe) and internal (GPi) pallidal segments. To test the hypothesis that the two area X pallidal types are functionally homologous to GPe and GPi neurons, we recorded from neurons in area X ...

  2. Bee Venom Alleviates Motor Deficits and Modulates the Transfer of Cortical Information through the Basal Ganglia in Rat Models of Parkinson’s Disease

    OpenAIRE

    Maurice, Nicolas; Deltheil, Thierry; Melon, Christophe; Degos, Bertrand; Mourre, Christiane; Amalric, Marianne; Kerkerian-Le Goff, Lydia

    2015-01-01

    Recent evidence points to a neuroprotective action of bee venom on nigral dopamine neurons in animal models of Parkinson’s disease (PD). Here we examined whether bee venom also displays a symptomatic action by acting on the pathological functioning of the basal ganglia in rat PD models. Bee venom effects were assessed by combining motor behavior analyses and in vivo electrophysiological recordings in the substantia nigra pars reticulata (SNr, basal ganglia output structure) in pharmacological...

  3. Rem2, a member of the RGK family of small GTPases, is enriched in nuclei of the basal ganglia

    Science.gov (United States)

    Liput, Daniel J.; Lu, Van B.; Davis, Margaret I.; Puhl, Henry L.; Ikeda, Stephen R.

    2016-01-01

    Rem2 is a member of the RGK subfamily of RAS small GTPases. Rem2 inhibits high voltage activated calcium channels, is involved in synaptogenesis, and regulates dendritic morphology. Rem2 is the primary RGK protein expressed in the nervous system, but to date, the precise expression patterns of this protein are unknown. In this study, we characterized Rem2 expression in the mouse nervous system. In the CNS, Rem2 mRNA was detected in all regions examined, but was enriched in the striatum. An antibody specific for Rem2 was validated using a Rem2 knockout mouse model and used to show abundant expression in striatonigral and striatopallidal medium spiny neurons but not in several interneuron populations. In the PNS, Rem2 was abundant in a subpopulation of neurons in the trigeminal and dorsal root ganglia, but was absent in sympathetic neurons of superior cervical ganglia. Under basal conditions, Rem2 was subject to post-translational phosphorylation, likely at multiple residues. Further, Rem2 mRNA and protein expression peaked at postnatal week two, which corresponds to the period of robust neuronal maturation in rodents. This study will be useful for elucidating the functions of Rem2 in basal ganglia physiology. PMID:27118437

  4. [Gait disturbances related to dysfunction of the cerebral cortex and basal ganglia].

    Science.gov (United States)

    Takezawa, Nobuo; Mizuno, Toshiki; Seo, Kazuya; Kondo, Masaki; Nakagawa, Masanori

    2010-11-01

    This review aimed to characterize the gait disturbances in Parkinson disease (PD) and highlight how a rehabilitation program would affect the care of patients with PD. The typical PD gait is a type of hypokinetic gait characterized by reduced stride length and velocity; shortening of the swing phase; and increase in the stance phase, double-limb support duration, and cadence rate. In the advanced phase of PD, start hesitation, shuffling and festinating gait, propulsion, and freezing of gait (FOG) become remarkable. Notably, in PD, attention may influence gait control, and sensory cueing may improve the stride length. Our study on gait impairment in PD by using a three-dimensional motion analysis system revealed that the stride length and walking speed decreased, but there was no change in cadence. The decreased stride length was due to reduction in the range of movement at the leg and pelvic joints. A 4-week physical rehabilitation program for PD improved the stride length and walking speed;this was achieved by increasing the range of movement of at the leg and pelvic joints. We also assessed the effects of a rehabilitation program for patients with PD who experienced FOG. Although the lower limb function was more impaired in patients with PD and FOG than in those with PD without FOG, the rehabilitation program was effective even for patients with PD and FOG. FOG might be associated with functional impairment of the lower limb as well as dysfunction of the fronto-basal ganglia circuit. We also reported 3 cases of camptocormia (bent spine syndrome) with autonomic dysfunction and rapid eye movement (REM) sleep behavior disorders (RBD) and compared their symptoms with those reported elsewhere. We think that the pedunculopontine nuclear area may control the postural muscle tone and locomotion in PD. On the basis of the results of our rehabilitation programs, we speculate that physical modalities may modify synaptic plasticity by utilizing the cerebellar and/or afferent

  5. Methylphenidate exposure induces dopamine neuron loss and activation of microglia in the basal ganglia of mice.

    Directory of Open Access Journals (Sweden)

    Shankar Sadasivan

    Full Text Available BACKGROUND: Methylphenidate (MPH is a psychostimulant that exerts its pharmacological effects via preferential blockade of the dopamine transporter (DAT and the norepinephrine transporter (NET, resulting in increased monoamine levels in the synapse. Clinically, methylphenidate is prescribed for the symptomatic treatment of ADHD and narcolepsy; although lately, there has been an increased incidence of its use in individuals not meeting the criteria for these disorders. MPH has also been misused as a "cognitive enhancer" and as an alternative to other psychostimulants. Here, we investigate whether chronic or acute administration of MPH in mice at either 1 mg/kg or 10 mg/kg, affects cell number and gene expression in the basal ganglia. METHODOLOGY/PRINCIPAL FINDINGS: Through the use of stereological counting methods, we observed a significant reduction (∼20% in dopamine neuron numbers in the substantia nigra pars compacta (SNpc following chronic administration of 10 mg/kg MPH. This dosage of MPH also induced a significant increase in the number of activated microglia in the SNpc. Additionally, exposure to either 1 mg/kg or 10 mg/kg MPH increased the sensitivity of SNpc dopaminergic neurons to the parkinsonian agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP. Unbiased gene screening employing Affymetrix GeneChip® HT MG-430 PM revealed changes in 115 and 54 genes in the substantia nigra (SN of mice exposed to 1 mg/kg and 10 mg/kg MPH doses, respectively. Decreases in the mRNA levels of gdnf, dat1, vmat2, and th in the substantia nigra (SN were observed with both acute and chronic dosing of 10 mg/kg MPH. We also found an increase in mRNA levels of the pro-inflammatory genes il-6 and tnf-α in the striatum, although these were seen only at an acute dose of 10 mg/kg and not following chronic dosing. CONCLUSION: Collectively, our results suggest that chronic MPH usage in mice at doses spanning the therapeutic range in humans, especially at

  6. MR measurement of the basal ganglia volume in the tourette syndrome

    International Nuclear Information System (INIS)

    Objective: To compare the volume of the basal ganglia in patients with Tourette syndrome (TS) and the normal volunteers and to explore the underlying anatomical basis of TS. Methods: Thirty-one cases of TS (TS subjects), 31 gender and age-matched subjects (the control subjects) were examined on a 3.0 T MRI system. The volume of the caudate nucleus, globus pallidus, putamen of the two sides and the brain volume were measured with volume analysis software, and the data were normalized according to the individual brain volume. Statistical analysis was performed using t test to compare between the TS subjects and the controls. Results: The volume of the both sides of the caudate nucleus, putamen and globus pallidus of TS subjects were (4.11 ±0.12) and (3.76 ±0.11), (2.28 ±0.12) and (2.35 ±0.28), (4.98 ±0.20) and (4.89 ±0.31) cm3, while they were (4.88 ±0.19) and (4.30 ±0.12), (2.28 ±0.12) and (2.35 ±0.28), (4.98 ±0.20) and (4.89 ±0.31) cm3 in the controls, respectively. There were significant differences in the bilateral caudate nucleus and globus pallidus between the TS subjects and control subjects (t=2.97, 1.74, 3.72, 3.93, P<0.05), but there were no significant differences of the volume in the bilateral putamen between the TS and control subjects (t=0.47, 1.31, P>0.05). The volume was not significantly different between the left and right caudate nucleus in the TS subjects (t=1.81, P>0.05), but the left volume of the caudate nucleus was bigger in the control subjects compared with the right volume, however, there was significant difference between the bilateral caudate nucleus in the control subjects (t=2.34, P<0.05). There were no differences of volume between the bilateral globus pallidus and putamen in both the TS and control subjects (t=1.12, 1.44, 1.68, 0.38, P>0.05). Conclusion: The abnormal volume of caudate nucleus, putamen, and the globus pallidus may be involved in the pathogenesis of TS. (authors)

  7. Proton MR spectroscopic imaging of basal ganglia and thalamus in neurofibromatosis type 1: correlation with T2 hyperintensities

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, Charlotte; Barantin, Laurent [CHRU and Tours University, Department of Neuroradiology, Tours (France); Chabernaud, Camille [CHRU and Tours University et INSERM U930, Department of Pediatric Neurology, Tours (France); Bertrand, Philippe [CHRU and Tours University, Department of Radiology, Tours (France); Sembely, Catherine; Sirinelli, Dominique [CHRU and Tours University, Department of Pediatric Radiology, Tours (France); Castelnau, Pierre [CHRU and Tours University et INSERM U930, Department of Pediatric Neurology, Tours (France); CHRU and Tours University et INSERM U930, Tours (France); Neurologie Pediatrique and INSERM U930, Hopital d' Enfants Gatien de Clocheville, Tours cedex 09 (France); Cottier, Jean-Philippe [CHRU and Tours University, Department of Neuroradiology, Tours (France); CHRU and Tours University et INSERM U930, Tours (France)

    2011-02-15

    Neurofibromatosis type 1 (NF1) is frequently associated with hyperintense lesions on T2-weighted images called ''unidentified bright objects'' (UBO). To better characterize the functional significance of UBO, we investigate the basal ganglia and thalamus using spectroscopic imaging in children with NF1 and compare the results to anomalies observed on T2-weighted images. Magnetic resonance (MR) data of 25 children with NF1 were analyzed. On the basis of T2-weighted images analysis, two groups were identified: one with normal MR imaging (UBO- group; n = 10) and one with UBO (UBO+ group; n = 15). Within the UBO+ group, a subpopulation of patients (n = 5) only had lesions of the basal ganglia. We analyzed herein seven regions of interest (ROIs) for each side: caudate nucleus, capsulo-lenticular region, lateral and posterior thalamus, thalamus (lateral and posterior voxels combined), putamen, and striatum. For each ROI, a spectrum of the metabolites and their ratio was obtained. Patients with abnormalities on T2-weighted images had significantly lower NAA/Cr, NAA/Cho, and NAA/mI ratios in the lateral right thalamus compared with patients with normal T2. These abnormal spectroscopic findings were not observed in capsulo-lenticular regions that had UBO but in the thalamus region that was devoid of UBO. Multivoxel spectroscopic imaging using short-time echo showed spectroscopic abnormalities in the right thalamus of NF1 patients harboring UBO, which were mainly located in the basal ganglia. This finding could reflect the anatomical and functional interactions of these regions. (orig.)

  8. Proton MR spectroscopic imaging of basal ganglia and thalamus in neurofibromatosis type 1: correlation with T2 hyperintensities

    International Nuclear Information System (INIS)

    Neurofibromatosis type 1 (NF1) is frequently associated with hyperintense lesions on T2-weighted images called ''unidentified bright objects'' (UBO). To better characterize the functional significance of UBO, we investigate the basal ganglia and thalamus using spectroscopic imaging in children with NF1 and compare the results to anomalies observed on T2-weighted images. Magnetic resonance (MR) data of 25 children with NF1 were analyzed. On the basis of T2-weighted images analysis, two groups were identified: one with normal MR imaging (UBO- group; n = 10) and one with UBO (UBO+ group; n = 15). Within the UBO+ group, a subpopulation of patients (n = 5) only had lesions of the basal ganglia. We analyzed herein seven regions of interest (ROIs) for each side: caudate nucleus, capsulo-lenticular region, lateral and posterior thalamus, thalamus (lateral and posterior voxels combined), putamen, and striatum. For each ROI, a spectrum of the metabolites and their ratio was obtained. Patients with abnormalities on T2-weighted images had significantly lower NAA/Cr, NAA/Cho, and NAA/mI ratios in the lateral right thalamus compared with patients with normal T2. These abnormal spectroscopic findings were not observed in capsulo-lenticular regions that had UBO but in the thalamus region that was devoid of UBO. Multivoxel spectroscopic imaging using short-time echo showed spectroscopic abnormalities in the right thalamus of NF1 patients harboring UBO, which were mainly located in the basal ganglia. This finding could reflect the anatomical and functional interactions of these regions. (orig.)

  9. No change of dopamine transporter density in basal ganglia after risperidone treatment in drug-naive children with Tourette's disorder

    International Nuclear Information System (INIS)

    Tourette's disorder (TD), which is characterized by multiple waxing and waning motor tics and one or more vocal tics, is known to be associated with abnormalities in the dopaminergic system. To testify our hypothesis that risperidone would improve tic symptoms of TD patients through the change of the dopaminergic system, we measured the DAT densities between drug-naive children with TD and normal children investigated the DAT density before and after treatment with risperidone in drug-naive children with TD, using lodine-123 labelled N-(3-iodopropen-2-yl)-2beta-carbomethoxy-3beta-(4-chlorophenyl) tropane(I-123 IPT) single photon emission computed tomography (SPECT). I-123 IPT SPECT imaging and Yale Global Tic Severity Scale-Korean version (YGTSS-K) for assessing the tic symptom severity were carried out before and after treatment with risperidone for 8 weeks in eight drug-naive children with TD. Eight normal children also underwent SPECT imaging 2 hours after an intravenous administration of I-123 IPT and carried out both quantitative and qualitative analyses using the obtained SPECT data, which were reconstructed for the assessment of the specific/non-specific DAT binding ratio in the basal ganglia. The drug-naive children with TD had a significantly greater increase in the specific/nonspecific DAT binding ratio of both basal ganglia compared with the normal children. However, no significant difference in the specific/nonspecific DAT binding ratio of the basal ganglia before and after treatment with riperidone in children with TD was not found, although tic symptoms were significantly improved with risperidone. These findings suggest that DAT densities are directly associated with the pathophysiology of TD, however, that the effect of risperidone on tic symptoms in children with TD is not attributed to the change of dopaminergic system

  10. Dopamine transporter density in the basal ganglia assessed with [{sup 123}I]IPT SPET in children with attention deficit hyperactivity disorder

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Keun-Ah; Kim, Young-Kee; Namkoong, Kee; Kim, Chan-Hyung [Department of Psychiatry, College of Medicine, Yonsei University, Seoul (Korea); Ryu, Young Hoon; Lee, Jong Doo [Division of Nuclear Medicine, Department of Radiology, College of Medicine, Yonsei University, 146-92 Dogokdong, Gangnam-Gu, Seoul, 135-720 (Korea)

    2003-02-01

    Attention deficit hyperactivity disorder (ADHD) is a psychiatric disorder in childhood that is known to be associated with dopamine dysregulation. In this study, we investigated dopamine transporter (DAT) density in children with ADHD using iodine-123 labelled N-(3-iodopropen-2-yl)-2β-carbomethoxy-3β-(4-chlorophenyl) tropane ([{sup 123}I]IPT) single-photon emission tomography (SPET) and postulated that an alteration in DAT density in the basal ganglia is responsible for dopaminergic dysfunction in children with ADHD. Nine drug-naive children with ADHD and six normal children were included in the study. We performed brain SPET 2 h after the intravenous administration of [{sup 123}I]IPT and carried out both quantitative and qualitative analyses using the obtained SPET data, which were reconstructed for the assessment of the specific/non-specific DAT binding ratio in the basal ganglia. We then investigated the correlation between the severity scores of ADHD symptoms in children with ADHD assessed with ADHD rating scale-IV and the specific/non-specific DAT binding ratio in the basal ganglia. Drug-naive children with ADHD showed a significantly increased specific/non-specific DAT binding ratio in the basal ganglia compared with normal children. However, no significant correlation was found between the severity scores of ADHD symptoms in children with ADHD and the specific/non-specific DAT binding ratio in the basal ganglia. Our findings support the complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD. (orig.)

  11. Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder

    International Nuclear Information System (INIS)

    Attention deficit hyperactivity disorder (ADHD) is a psychiatric disorder in childhood that is known to be associated with dopamine dysregulation. In this study, we investigated dopamine transporter (DAT) density in children with ADHD using iodine-123 labelled N-(3-iodopropen-2-yl)-2β-carbomethoxy-3β-(4-chlorophenyl) tropane ([123I]IPT) single-photon emission tomography (SPET) and postulated that an alteration in DAT density in the basal ganglia is responsible for dopaminergic dysfunction in children with ADHD. Nine drug-naive children with ADHD and six normal children were included in the study. We performed brain SPET 2 h after the intravenous administration of [123I]IPT and carried out both quantitative and qualitative analyses using the obtained SPET data, which were reconstructed for the assessment of the specific/non-specific DAT binding ratio in the basal ganglia. We then investigated the correlation between the severity scores of ADHD symptoms in children with ADHD assessed with ADHD rating scale-IV and the specific/non-specific DAT binding ratio in the basal ganglia. Drug-naive children with ADHD showed a significantly increased specific/non-specific DAT binding ratio in the basal ganglia compared with normal children. However, no significant correlation was found between the severity scores of ADHD symptoms in children with ADHD and the specific/non-specific DAT binding ratio in the basal ganglia. Our findings support the complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD. (orig.)

  12. Involvement of dopamine loss in extrastriatal basal ganglia nuclei in the pathophysiology of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Abdelhamid eBenazzouz

    2014-05-01

    Full Text Available Parkinson’s disease is a neurological disorder characterized by the manifestation of motor symptoms, such as akinesia, muscle rigidity and tremor at rest. These symptoms are classically attributed to the degeneration of dopamine neurons in the pars compacta of substantia nigra (SNc, which results in a marked dopamine depletion in the striatum. It is well established that dopamine neurons in the SNc innervate not only the striatum, which is the main target, but also other basal ganglia nuclei including the two segments of globus pallidus and the subthalamic nucleus. The role of dopamine and its depletion in the striatum is well known, however, the role of dopamine depletion in the pallidal complex and the subthalamic nucleus in the genesis of their abnormal neuronal activity and in parkinsonian motor deficits is still not clearly determined. Based on recent experimental data from animal models of Parkinson's disease in rodents and non-human primates and also from parkinsonian patients, this review summarizes current knowledge on the role of dopamine in the modulation of basal ganglia neuronal activity and also the role of dopamine depletion in these nuclei in the pathophysiology of Parkinson's disease.

  13. Acupuncture inhibits Notch1 and Hes1 protein expression in the basal ganglia of rats with cerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    Wei Zou

    2015-01-01

    Full Text Available Notch pathway activation maintains neural stem cells in a proliferating state and increases nerve repair capacity. To date, studies have rarely focused on changes or damage to signal transduction pathways during cerebral hemorrhage. Here, we examined the effect of acupuncture in a rat model of cerebral hemorrhage. We examined four groups: in the control group, rats received no treatment. In the model group, cerebral hemorrhage models were established by infusing non-heparinized blood into the brain. In the acupuncture group, modeled rats had Baihui (DU20 and Qubin (GB7 acupoints treated once a day for 30 minutes. In the DAPT group, modeled rats had 0.15 μg/mL DAPT solution (10 mL infused into the brain. Immunohistochemistry and western blot results showed that acupuncture effectively inhibits Notch1 and Hes1 protein expression in rat basal ganglia. These inhibitory effects were identical to DAPT, a Notch signaling pathway inhibitor. Our results suggest that acupuncture has a neuroprotective effect on cerebral hemorrhage by inhibiting Notch-Hes signaling pathway transduction in rat basal ganglia after cerebral hemorrhage.

  14. Relationship between obsessive-compulsive disorders and diseases affecting primarily the basal ganglia Relação entre transtorno obsessivo-compulsivo e doenças neurológicas dos gânglios da base

    OpenAIRE

    Alex S. S. Freire Maia; Egberto Reis Barbosa; Paulo Rossi Menezes; Eurípedes C. Miguel Filho

    1999-01-01

    Obsessive-compulsive disorder (OCD) has been reported in association with some neurological diseases that affect the basal ganglia such as Tourette's syndrome, Sydenham's chorea, Parkinson's disease, and Huntington's disease. Furthermore, studies such as neuroimaging, suggest a role of the basal ganglia in the pathophysiology of OCD. The aim of this paper is to describe the association of OCD and several neurologic disorders affecting the basal ganglia, report the existing evidences of the ro...

  15. Basal ganglia volumes in drug-naive first-episode schizophrenia patients before and after short-term treatment with either a typical or an atypical antipsychotic drug

    DEFF Research Database (Denmark)

    Glenthoj, Andreas; Glenthøj, Birte Yding; Mackeprang, Torben; Pagsberg, Anne K; Hemmingsen, Ralf; Jernigan, Terry L; Baaré, William Frans Christian

    2007-01-01

    The present study examined basal ganglia volumes in drug-naive first-episode schizophrenic patients before and after treatment with either a specific typical or atypical antipsychotic compound. Sixteen antipsychotic drug-naive and three minimally medicated first-episode schizophrenic patients and...... altered asymmetry in caudate volume in patients suggests intrinsic basal ganglia pathology in schizophrenia, most likely of neurodevelopmental origin.......The present study examined basal ganglia volumes in drug-naive first-episode schizophrenic patients before and after treatment with either a specific typical or atypical antipsychotic compound. Sixteen antipsychotic drug-naive and three minimally medicated first-episode schizophrenic patients and...... 19 matched controls participated. Patients were randomly assigned to treatment with either low doses of the typical antipsychotic drug, zuclopenthixol, or the atypical compound, risperidone. High-resolution magnetic resonance imaging (MRI) scans were obtained in patients before and after 12 weeks of...

  16. Massive intracranial calcifications in a patient with systemic lupus erythematosus; Calcificacoes intracranianas macicas em um paciente com lupus eritematoso sistemico

    Energy Technology Data Exchange (ETDEWEB)

    Gasparetto, Emerson L.; Carvalho Neto, Arnolfo de [Parana Univ., Curitiba, PR (Brazil). Dept. de Clinica Medica. Servico de Radiologia Medica]. E-mail: gasparetto@hotmail.com; Ono, Sergio E. [Parana Univ., Curitiba, PR (Brazil). Faculdade de Medicina

    2004-12-01

    Central nervous system involvement is frequently reported in patients with systemic lupus erythematosus. Computed tomography and magnetic resonance imaging studies usually show brain atrophy, cerebral infarction and/or intracranial bleeding. Extensive intracranial calcification in patients with systemic lupus erythematosus is rare. We report a case of a patient with systemic lupus erythematosus who presented with seizures and massive basal ganglia calcification and mild calcifications in the frontal lobes, seen on the brain computed tomography scan. Magnetic resonance imaging showed hyperintensity on FLAIR images and hypointense signals on T2{sup *} gradient echo images in the basal ganglia. (author)

  17. Evaluation of regional cerebral blood flow in patient with atypical senile dementia with asymmetrical calcification.

    Science.gov (United States)

    Shoyama, Masaru; Ukai, Satoshi; Shinosaki, Kazuhiro

    2015-12-01

    We report an 83-year-old woman with atypical senile dementia with Fahr-type calcification. Brain computed tomography demonstrated asymmetrical calcification predominant in the basal ganglia on the right side and pronounced diffuse cortical atrophy in the frontotemporal areas. The patient was clinically diagnosed with diffuse neurofibrillary tangles with calcification. Brain single photon emission computed tomography findings revealed that cerebral blood flow was reduced on the right side, as compared with the left side, in widespread areas. Hemispheric asymmetry in both calcification and cerebral blood flow suggests a relationship between calcification and vascular changes. PMID:25737312

  18. Behavioural effects of basal ganglia rho-kinase inhibition in the unilateral 6-hydroxydopamine rat model of Parkinson's disease.

    Science.gov (United States)

    Inan, Salim Yalcin; Soner, Burak Cem; Sahin, Ayse Saide

    2016-08-01

    Parkinson's disease (PD) is one of the most common neurodegenerative disorders, which affects more than six million people in the world. While current available pharmacological therapies for PD in the early stages of the disease usually improve motor symptoms, they cause side effects, such as fluctuations and dyskinesias in the later stages. In this later stage, high frequency deep brain stimulation of the subthalamic nucleus (STN-DBS) is a treatment option which is most successful to treat drug resistant advanced PD. It has previously been demonstrated that activation of Rho/Rho-kinase pathway is involved in the dopaminergic cell degeneration which is one of the main characteristics of PD pathology. In addition, the involvement of this pathway has been suggested in diverse cellular events in the central nervous system; such as epilepsy, anxiety-related behaviors, regulation of dendritic and axonal morphology, antinociception, subarachnoid haemorrhage, spinal cord injury and amyotrophic lateral sclerosis. However, up to date, to our knowledge there are no previous reports showing the beneficial effects of the potent Rho-kinase inhibitor Y-27632 in the 6-hydroxydopamine (6-OHDA) rat model of PD. Therefore, in the present study, we investigated the behavioural effects of basal ganglia Y-27632 microinjections in this PD model. Our results indicated that basal ganglia Y-27632 microinjections significantly decreased the number of contralateral rotations-induced by apomorphine, significantly increased line crossings in the open-field test, contralateral forelimb use in the limb-use asymmetry test and contralateral tape playing time in the somatosensory asymmetry test, which may suggest that Y-27632 could be a potentially active antiparkinsonian agent. PMID:26996632

  19. Dynamic stereotypic responses of basal ganglia neurons to subthalamic nucleus high frequency stimulation in the parkinsonian primate

    Directory of Open Access Journals (Sweden)

    Anan eMoran

    2011-04-01

    Full Text Available Deep brain stimulation in the subthalamic nucleus (STN is a well-established therapy for patients with severe Parkinson‟s disease (PD; however, its mechanism of action is still unclear. In this study we explored static and dynamic activation patterns in the basal ganglia during high frequency macro-stimulation of the STN. Extracellular multi-electrode recordings were performed in primates rendered parkinsonian using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Recordings were preformed simultaneously in the STN and the globus pallidus externus and internus. Single units were recorded preceding and during the stimulation. During the stimulation, STN mean firing rate dropped significantly, while pallidal mean firing rates did not change significantly. The vast majority of neurons across all three nuclei displayed stimulation driven modulations, which were stereotypic within each nucleus but differed across nuclei. The predominant response pattern of STN neurons was somatic inhibition. However, most pallidal neurons demonstrated synaptic activation patterns. A minority of neurons across all nuclei displayed axonal activation. Temporal dynamics were observed in the response to stimulation over the first 10 seconds in the STN and over the first 30 seconds in the pallidum. In both pallidal segments, the synaptic activation response patterns underwent delay and decay of the magnitude of the peak response due to short term synaptic depression. We suggest that during STN macro stimulation the STN goes through a functional ablation as its upper bound on information transmission drops significantly. This notion is further supported by the evident dissociation between the stimulation driven pre-synaptic STN somatic inhibition and the post-synaptic axonal activation of its downstream targets. Thus, basal ganglia output maintains its firing rate while losing the deleterious effect of the STN. This may be a part of the mechanism leading to the beneficial

  20. Freezing of gait in Parkinson's disease is associated with functional decoupling between the cognitive control network and the basal ganglia.

    Science.gov (United States)

    Shine, James M; Matar, Elie; Ward, Philip B; Frank, Michael J; Moustafa, Ahmed A; Pearson, Mark; Naismith, Sharon L; Lewis, Simon J G

    2013-12-01

    Recent neuroimaging evidence has led to the proposal that freezing of gait in Parkinson's disease is due to dysfunctional interactions between frontoparietal cortical regions and subcortical structures, such as the striatum. However, to date, no study has employed task-based functional connectivity analyses to explore this hypothesis. In this study, we used a data-driven multivariate approach to explore the impaired communication between distributed neuronal networks in 10 patients with Parkinson's disease and freezing of gait, and 10 matched patients with no clinical history of freezing behaviour. Patients performed a virtual reality gait task on two separate occasions (once ON and once OFF their regular dopaminergic medication) while functional magnetic resonance imaging data were collected. Group-level independent component analysis was used to extract the subject-specific time courses associated with five well-known neuronal networks: the motor network, the right- and left cognitive control networks, the ventral attention network and the basal ganglia network. We subsequently analysed both the activation and connectivity of these neuronal networks between the two groups with respect to dopaminergic state and cognitive load while performing the virtual reality gait task. During task performance, all patients used the left cognitive control network and the ventral attention network and in addition, showed increased connectivity between the bilateral cognitive control networks. However, patients with freezing demonstrated functional decoupling between the basal ganglia network and the cognitive control network in each hemisphere. This decoupling was also associated with paroxysmal motor arrests. These results support the hypothesis that freezing behaviour in Parkinson's disease is because of impaired communication between complimentary yet competing neural networks. PMID:24142148

  1. Mechanism of Parkinsonian Neuronal Oscillations in the Primate Basal Ganglia: Some Considerations Based on Our Recent Work

    Directory of Open Access Journals (Sweden)

    Atsushi Nambu

    2014-05-01

    Full Text Available Accumulating evidence suggests that abnormal neuronal oscillations in the basal ganglia contribute to the manifestation of parkinsonian symptoms. In this article, we would like to summarize our recent work on the mechanism underlying abnormal oscillations in the parkinsonian state and discuss its significance in pathophysiology of Parkinson’s disease. We recorded neuronal activity in the basal ganglia of parkinsonian monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Systemic administration of L-DOPA alleviated parkinsonian motor signs and decreased abnormal neuronal oscillations (8-15 Hz in the internal (GPi and external (GPe segments of the globus pallidus and the subthalamic nucleus (STN. Inactivation of the STN by muscimol (GABAA receptor agonist injection also ameliorated parkinsonian signs and suppressed GPi oscillations. Blockade of glutamatergic inputs to the STN by local microinjection of a mixture of 3-(2-carboxypiperazin-4-yl-propyl-1-phosphonic acid (glutamatergic NMDA receptor antagonist and 1,2,3,4-tetrahydro-6-nitro-2,3- dioxo-benzo[f]quinoxaline-7-sulfonamide (glutamatergic AMPA/kainate receptor antagonist suppressed neuronal oscillations in the STN. The STN oscillations were further attenuated by the blockade of GABAergic neurotransmission from the GPe to the STN by muscimol inactivation of the GPe. These results suggest that cortical glutamatergic inputs to the STN and reciprocal GPe-STN interconnections are both important for the generation and amplification of the oscillatory activity of GPe and STN neurons in the dopamine-depleted state. The oscillatory activity in the STN is subsequently transmitted to the GPi and may contribute to manifestation of parkinsonian symptoms.

  2. A patient with Moyamoya-like vessels after radiation therapy for a tumor in the basal ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Ishiyama, Koichi; Tomura, Noriaki; Kato, Koki; Takahashi, Satoshi; Watarai, Jiro; Sasajima, Toshio; Mizoi, Kazuo [Akita Univ. (Japan). School of Medicine

    2001-10-01

    A patient with Moyamoya-like vessels after radiation therapy for treatment of a tumor in the basal ganglia is reported. He was diagnosed as Down syndrome at birth. He had a tumor in the left basal ganglionic region at 12 years of the age. The tumor increased in size at age 14. He underwent cerebral angiography, which did not show a stenosis nor occlusion of the internal carotid artery, anterior cerebral artery, nor the middle cerebral artery. He received radiation therapy with a total dose of 56 Gy. He presented a dressing apraxia at age 19. MRI showed cerebral infarction in the left temporo-occipital region. Right internal carotid angiography revealed a severe stenosis of the internal carotid artery and anterior cerebral artery as well as a severe stenosis of the middle cerebral artery on the right side. Moyamoya-like vessels were seen in the basal ganglionic region. Left internal carotid angiography also showed a stenosis of the internal carotid artery and anterior cerebral artery as well as a severe stenosis of the middle cerebral artery on the left side. Moyamoya-like vessels were seen in the basal ganglionic region. Leptomeningeal anastomose and transdural anastomose were bilaterally seen. These arterial occlusion and stenotic phenomenon corresponded to a previous radiation field. These Moyamoya-like vessels with arterial stenosis and occlusion were thought to be due to radiation-induced vasculopathy, because a previous cerebral angiography showed a normal caliber of cerebral arteries. This patient showed that patients with radiation therapy in their early childhood should be carefully observed considering the possibility of the phenomenon. (author)

  3. A patient with Moyamoya-like vessels after radiation therapy for a tumor in the basal ganglia

    International Nuclear Information System (INIS)

    A patient with Moyamoya-like vessels after radiation therapy for treatment of a tumor in the basal ganglia is reported. He was diagnosed as Down syndrome at birth. He had a tumor in the left basal ganglionic region at 12 years of the age. The tumor increased in size at age 14. He underwent cerebral angiography, which did not show a stenosis nor occlusion of the internal carotid artery, anterior cerebral artery, nor the middle cerebral artery. He received radiation therapy with a total dose of 56 Gy. He presented a dressing apraxia at age 19. MRI showed cerebral infarction in the left temporo-occipital region. Right internal carotid angiography revealed a severe stenosis of the internal carotid artery and anterior cerebral artery as well as a severe stenosis of the middle cerebral artery on the right side. Moyamoya-like vessels were seen in the basal ganglionic region. Left internal carotid angiography also showed a stenosis of the internal carotid artery and anterior cerebral artery as well as a severe stenosis of the middle cerebral artery on the left side. Moyamoya-like vessels were seen in the basal ganglionic region. Leptomeningeal anastomose and transdural anastomose were bilaterally seen. These arterial occlusion and stenotic phenomenon corresponded to a previous radiation field. These Moyamoya-like vessels with arterial stenosis and occlusion were thought to be due to radiation-induced vasculopathy, because a previous cerebral angiography showed a normal caliber of cerebral arteries. This patient showed that patients with radiation therapy in their early childhood should be carefully observed considering the possibility of the phenomenon. (author)

  4. Intracranial physiological calcification on computed tomography, 1. Calcification of pineal region

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Ryungchan; Takeuchi, Fumihiko; Ito, Shotaro; Kadoya, Satoru

    1988-06-01

    Of intracranial physiological calcification, common calcification of pineal region, choroid plexus of lateral ventricles and of basal ganglia was examined based on the frequency of occurence of age and sex and type of CT scanners. Consecutive cases of 2877 (1450 males and 1427 females) underwent plain CT scanning were studied. Pathological calcification was excluded from this study. Three types of CT scanners (SCN-200, Somatom 2 and TCT-10 A) were used. As a whole, calcification was shown in 67.7 % in pineal region, 57.6 % in choroid plexus of lateral ventricles and 7.5 % in basal ganglia. First, we reported in detail the calcification of pineal region, in which calcification occurred most frequently. Calcification in pineal region had a close relation with age by increasing with aging. The youngest patient was 8 years old. There was a striking increase in number of patients aged from 10 to 39 years. There was a gradual increase in those aged over 40 years. Of patients aged from 70 to 79 years, calcification was found in 81.5 %. The incidence was noted no changes in patients aged over 80 years. As for patients aged over 20 years, calcification was observed in 75.1 % (82.6 % males and 68.0 % females). In patients aged from 20 to 79 years, the calcification was significantly higher in male than female. Although there was a different incidence of calcification examined by three types of CT scanners, it was not significant. There was no significant difference between thickness of 8 mm section and 10 mm.

  5. Measurement of the Effect of Phenothiazine on the Manganese Concentration in the Basal Ganglia of Sub-Human Primates by Activation Analysis

    International Nuclear Information System (INIS)

    In man toxicity to manganese and phenothiazine drugs is manifested as dyskinesia. Cotzias and co-workers demonstrated that the phenothiazines form a semiquinone radical with manganese suggesting a common mechanism for production of Parkinsonism. Previous measurements of manganese have been made on whole brain. The very sensitive technique of activation analysis was used in the present study to measure manganese concentration in various nuclei of the basal ganglia. Phenothiazine was given to one group of Rhesus monkeys (Macaca mulatta) for one month. One group served as a control. After sacrifice the basal ganglia were dissected out with plastic knives, dried, and duplicate samples exposed to thermal neutrons at a flux of 1.35 x 1012 n/cm2s. Manganese was separated radiochemical and counts under the manganese peak were compared to a standard handled identically. The results are presented. The manganese concentration was significantly increased in the putamen of primates receiving phenothiazine. There was no significant difference in the other nuclei examined. Phenothiazine is concentrated in basal ganglia. Dopamine is found in large quantities in caudate and putamen, and following phenothiazine therapy dopamine was found to be increased slightly. The associated increase of manganese and dopamine following phenothiazine provides some evidence that this drug causes profound biochemical alterations in the basal ganglia resulting in the various dyskinesias that are seen. (author)

  6. Neuromodulatory Adaptive Combination of Correlation-based Learning in Cerebellum and Reward-based Learning in Basal Ganglia for Goal-directed Behavior Control

    DEFF Research Database (Denmark)

    Dasgupta, Sakyasingha; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    envision that such an interaction is influenced by reward modulated heterosynaptic plasticity (RMHP) rule at the thalamus, guiding the overall goal directed behavior. Using a recurrent neural network actor-critic model of the basal ganglia and a feed-forward correlation-based learning model...

  7. fMRI of Cocaine Self-Administration in Macaques Reveals Functional Inhibition of Basal Ganglia

    OpenAIRE

    Mandeville, Joseph B.; Choi, Ji-Kyung; Jarraya, Bechir; Rosen, Bruce R.; Jenkins, Bruce G.; Vanduffel, Wim

    2011-01-01

    Disparities in cocaine-induced neurochemical and metabolic responses between human beings and rodents motivate the use of non-human primates (NHP) to model consequences of repeated cocaine exposure in human subjects. To characterize the functional response to cocaine infusion in NHP brain, we employed contrast-enhanced fMRI during both non-contingent injection of drug and self-administration of cocaine in the magnet. Cocaine robustly decreased cerebral blood volume (CBV) throughout basal gang...

  8. Transtorno obsessivo-compulsivo e os gânglios da base Obsessive-compulsive disorder and the basal ganglia

    Directory of Open Access Journals (Sweden)

    Eurípedes Constantino Miguel Filho

    1995-12-01

    Full Text Available O transtorno obsessivo compulsivo (TOC, caracterizado por obsessões e compulsões, foi descrito com frequência aumentada em várias doenças que acometem primariamente of gânglios da base sugerindo que estas estruturas também estivessem acometidas no TOC. Os gânglios da base, que no passado se acreditava estarem implicados apenas no comportamento motor, são, na verdade, importantes em inúmeras outras funções psíquicas como o processamento de vivências cognitivas. Estudos recentes utilizando imagem de ressonância magnética mostraram tendência a diminuição do núcleo caudado em pacientes com TOC. De forma coerente, estudos com neuroimagem funcional, sugerem a implicação de um circuito cerebral envolvendo o córtex órbito-frontal, o giro cíngulo, o núcleo caudado e o tálamo na patofisiologia do TOC. Entre as diversas hipóteses formuladas a partir desses achados, especula-se que um déficit no funcionamento do núcleo caudado levaria a uma filtragem inadequada de preocupações que então estimulariam o córtex órbito-frontal a desencadear ações adaptativas: as compulsões.Obsessive-compulsive disorder (OCD, characterized by obsessions and compulsions, was described as more frequent in patients with primary lesions of the basal ganglia suggesting that these brain structures may be also altered in OCD. The basal ganglia, that were considered important only for the motor control, are known now as crucial for many other mental functions as processing of cognitive experience. Recent studies using magnetic resonance image have found a tendency for smaller caudate nucleus in patients with OCD. Consistently, studies using functional neuroimaging suggest implication of a neurocircuit that includes the orbitalfrontal cortex, the cingulate cortex, caudate nucleus and thalamus in the pathophysiology of OCD. Among several hypotheses formulated to explain these findings, some authors speculated that a deficit of the caudate nucleus

  9. Oculomotor learning revisited: a model of reinforcement learning in the basal ganglia incorporating an efference copy of motor actions

    Directory of Open Access Journals (Sweden)

    Michale Sean Fee

    2012-06-01

    Full Text Available In its simplest formulation, reinforcement learning is based on the idea that if an action taken in a particular context is followed by a favorable outcome, then, in the same context, the tendency to produce that action should be strengthened, or reinforced. While reinforcement learning forms the basis of many current theories of basal ganglia (BG function, these models do not incorporate distinct computational roles for signals that convey context, and those that convey what action an animal takes. Recent experiments in the songbird suggest that vocal-related BG circuitry receives two functionally distinct excitatory inputs. One input is from a cortical region that carries context information about the current ‘time’ in the motor sequence. The other is an efference copy of motor commands from a separate cortical brain region that generates vocal variability during learning. Based on these findings, I propose here a general model of vertebrate BG function that combines context information with a distinct motor efference copy signal. The signals are integrated by a learning rule in which efference copy inputs gate the potentiation of context inputs (but not efference copy inputs onto medium spiny neurons in response to a rewarded action. The hypothesis is described in terms of a circuit that implements the learning of visually-guided saccades. The model makes testable predictions about the anatomical and functional properties of hypothesized context and efference copy inputs to the striatum from both thalamic and cortical sources.

  10. Investigating complex basal ganglia circuitry in the regulation of motor behaviour, with particular focus on orofacial movement.

    Science.gov (United States)

    Ikeda, Hiroko; Adachi, Kazunori; Fujita, Satoshi; Tomiyama, Katsunori; Saigusa, Tadashi; Kobayashi, Masayuki; Koshikawa, Noriaki; Waddington, John L

    2015-02-01

    Current concepts of basal ganglia function have evolved from the essentially motoric, to include a range of extramotoric functions that involve not only dopaminergic but also cholinergic, γ-aminobutyric acid (GABA)ergic and glutamatergic mechanisms. We consider these mechanisms and their efferent systems, including spiralling, feed-forward striato-nigro-striatal circuitry, involving the dorsal and ventral striatum and the nucleus accumbens (NAc) core and shell. These processes are illustrated using three behavioural models: turning-pivoting, orofacial movements in rats and orofacial movements in genetically modified mice. Turning-pivoting indicates that dopamine-dependent behaviour elicited from the NAc shell is funnelled through the NAc-nigro-striato-nigro-pedunculopontine pathway, whereas acetylcholine-dependent behaviour elicited from the NAc shell is funnelled through the NAc-ventral pallidum-mediodorsal thalamus pathway. Cooperative/synergistic interactions between striatal D1-like and D2-like dopamine receptors regulate individual topographies of orofacial movements that are funnelled through striatal projection pathways and involve interactions with GABAergic and glutamatergic receptor subtypes. This application of concerted behavioural, neurochemical and neurophysiological techniques implicates a network that is yet broader and interacts with other neurotransmitters and neuropeptides within subcortical, cortical and brainstem regions to 'sculpt' aspects of behaviour into its topographical collective. PMID:25485640

  11. The Relationship of Hematoma Size and Mortality in Non-Traumatic Intra-Cerebral Hemorrhages in Basal Ganglia

    Directory of Open Access Journals (Sweden)

    P. Ahmadi

    2006-04-01

    Full Text Available Introduction & Objective: Among all of the neurologic diseases in adult life, the cerebrovascular disease (CVD is the most common and important ones. Intracerebral hemorrhage (ICH in basal ganglia (BG is one of the common and major types of CVD. The relations between clot size and mortality rate, in different parts of the brain, has been addressed by several researchers. It is unclear whether such a relationship is in BG. Therefore this study was designed to find a formula that predicts outcome of hemorrhage based on clot size in BG.Materials & Methods: This descriptive-comparative study that was carried out prospectively, conducted on all 63 patients who admitted to the hospital during one year, with definite diagnosis of ICH in BG. After urgent CT scanning, the size of hematoma was determined by scan images. Routine treatment was uniform for all patients. Focal signs and consciousness state were assessed in the first and last days of admission. The data were analyzed using descriptive statistics, frequency tables and chi-square and T- test. Results: 33% of patients died. Hematoma size in 70% of them was larger than 5cm and in other 30% smaller. None of the hematoma with less than 4cm size was fatal. In patients with clots of 5cm or larger, the mortality was 100%. Conclusion: The results indicated that, there was meaningful relationship between hematoma size and mortality, in BG hemorrhages. So the clot size can be used as a factor in predicting hemorrhage outcome in BG.

  12. Exploring the cognitive and motor functions of the basal ganglia: an integrative review of computational cognitive neuroscience models

    Science.gov (United States)

    Helie, Sebastien; Chakravarthy, Srinivasa; Moustafa, Ahmed A.

    2013-01-01

    Many computational models of the basal ganglia (BG) have been proposed over the past twenty-five years. While computational neuroscience models have focused on closely matching the neurobiology of the BG, computational cognitive neuroscience (CCN) models have focused on how the BG can be used to implement cognitive and motor functions. This review article focuses on CCN models of the BG and how they use the neuroanatomy of the BG to account for cognitive and motor functions such as categorization, instrumental conditioning, probabilistic learning, working memory, sequence learning, automaticity, reaching, handwriting, and eye saccades. A total of 19 BG models accounting for one or more of these functions are reviewed and compared. The review concludes with a discussion of the limitations of existing CCN models of the BG and prescriptions for future modeling, including the need for computational models of the BG that can simultaneously account for cognitive and motor functions, and the need for a more complete specification of the role of the BG in behavioral functions. PMID:24367325

  13. One View of the Current State of Understanding in Basal Ganglia Pathophysiology and What is Needed for the Future

    Directory of Open Access Journals (Sweden)

    Erwin B. Montgomery

    2011-05-01

    Full Text Available Deep Brain Stimulation (DBS, arguably, is the most dramatic development in movement disorders since the levodopa for Parkinson’s disease. Yet, its mechanisms of action of DBS are unknown. However, DBS related research already has demonstrated that current concepts of basal ganglia pathophysiology are wrong. Specifically, the notion that over-activity of the globus pallidus interna causes parkinsonism, the basis for the most current theories, is no longer tenable. The development of any new theory will be aided by an understanding of how current theories are wrong and why have these flawed theories persist. Many of the problems of current theories are more matters of inference, assumptions, presumptions, and the accepted level of ambiguity than they are of fact. Consequently, it is imperative that these issues be addressed. Just as the inappropriate use of a tool or method is grounds for criticism, methods of reasoning are tools that can be used inappropriately and should be subject to discussion just as misuse of any other tool. Thorough criticism can provide very important lesions though the process could be mistaken as harsh or personal; neither is the case here. At the least, such analyzes can point to potential pitfalls that could be avoided in the development of new theories. As will be discussed, theories are important for the development of therapies but perhaps most important, for the acceptance of new therapies, as was the case for the recent resurgence of interest in surgical therapies.

  14. Novel SLC19A3 Promoter Deletion and Allelic Silencing in Biotin-Thiamine-Responsive Basal Ganglia Encephalopathy.

    Directory of Open Access Journals (Sweden)

    Irene Flønes

    Full Text Available Biotin-thiamine responsive basal ganglia disease is a severe, but potentially treatable disorder caused by mutations in the SLC19A3 gene. Although the disease is inherited in an autosomal recessive manner, patients with typical phenotypes carrying single heterozygous mutations have been reported. This makes the diagnosis uncertain and may delay treatment.In two siblings with early-onset encephalopathy dystonia and epilepsy, whole-exome sequencing revealed a novel single heterozygous SLC19A3 mutation (c.337T>C. Although Sanger-sequencing and copy-number analysis revealed no other aberrations, RNA-sequencing in brain tissue suggested the second allele was silenced. Whole-genome sequencing resolved the genetic defect by revealing a novel 45,049 bp deletion in the 5'-UTR region of the gene abolishing the promoter. High dose thiamine and biotin therapy was started in the surviving sibling who remains stable. In another patient two novel compound heterozygous SLC19A3 mutations were found. He improved substantially on thiamine and biotin therapy.We show that large genomic deletions occur in the regulatory region of SLC19A3 and should be considered in genetic testing. Moreover, our study highlights the power of whole-genome sequencing as a diagnostic tool for rare genetic disorders across a wide spectrum of mutations including non-coding large genomic rearrangements.

  15. The allocation of attention to learning of goal-directed actions: A cognitive neuroscience framework focusing on the basal ganglia

    Directory of Open Access Journals (Sweden)

    LizFranz

    2012-12-01

    Full Text Available The present paper builds on the idea that attention is largely in service of our actions. A framework and model which captures the allocation of attention for learning of goal-directed actions is proposed and developed. This framework highlights an evolutionary model based on the notion that rudimentary brain functions have become embedded into increasingly higher levels of networks which all contribute to adaptive learning. Background literature is presented alongside key evidence based on experimental studies in the so-called ‘split-brain’ (surgically divided cerebral hemispheres with a key focus on bimanual actions. The proposed multilevel cognitive-neural system of attention is built upon key processes of a highly-adaptive basal-ganglia-thalamic-cortical system. Although overlap with other existing findings and models is acknowledged where appropriate, the proposed framework is an original synthesis of cognitive experimental findings with supporting evidence of a neural system and a carefully formulated model of attention. It is the hope that this new synthesis will be informative in fields of cognition and other fields of brain sciences and will lead to new avenues for experimentation across domains.

  16. Usefulness of computed tomography in the diagnosis of cryptococcal meningoencephalitis. Multiple low density lesions in the basal ganglia and corona radiata

    Energy Technology Data Exchange (ETDEWEB)

    Tokumaru, Yukio; Kojima, Shigeyuki; Yamada, Tatsuo; Ito, Naoki; Hirayama, Keizo (Chiba Univ. (Japan). School of Medicine)

    1982-11-01

    In 2 cases of cryptococcal meningoencephalitis, we found multiple round low density lesions in the basal ganglia and corona radiata by CT scan. Both cases were treated successfully with amphotericin B and 5-fluorocytosine. Pathologically, cryptococcal meningoencephalitis usually shows two types of lesions: one being gelatinous and the other granulomatous. The former is a cystic lesion which mainly invades the cerebral cortex, dentate nucleus and basal ganglia; the latter is a granuloma as a result of histological reaction common to any of fungal organism. In granulomatous lesions, CT scan usually shows a high density or ring enhancement by contrast medium. In our 2 cases, CT scan showed multiple low density spots with no enhancement. We thought that they might represent gelatinous lesions. We stressed the importance of checking serial CT scans for the diagnosis of chronic meningoencephalitis of unknown etiology.

  17. Bee Venom Alleviates Motor Deficits and Modulates the Transfer of Cortical Information through the Basal Ganglia in Rat Models of Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Nicolas Maurice

    Full Text Available Recent evidence points to a neuroprotective action of bee venom on nigral dopamine neurons in animal models of Parkinson's disease (PD. Here we examined whether bee venom also displays a symptomatic action by acting on the pathological functioning of the basal ganglia in rat PD models. Bee venom effects were assessed by combining motor behavior analyses and in vivo electrophysiological recordings in the substantia nigra pars reticulata (SNr, basal ganglia output structure in pharmacological (neuroleptic treatment and lesional (unilateral intranigral 6-hydroxydopamine injection PD models. In the hemi-parkinsonian 6-hydroxydopamine lesion model, subchronic bee venom treatment significantly alleviates contralateral forelimb akinesia and apomorphine-induced rotations. Moreover, a single injection of bee venom reverses haloperidol-induced catalepsy, a pharmacological model reminiscent of parkinsonian akinetic deficit. This effect is mimicked by apamin, a blocker of small conductance Ca2+-activated K+ (SK channels, and blocked by CyPPA, a positive modulator of these channels, suggesting the involvement of SK channels in the bee venom antiparkinsonian action. In vivo electrophysiological recordings in the substantia nigra pars reticulata (basal ganglia output structure showed no significant effect of BV on the mean neuronal discharge frequency or pathological bursting activity. In contrast, analyses of the neuronal responses evoked by motor cortex stimulation show that bee venom reverses the 6-OHDA- and neuroleptic-induced biases in the influence exerted by the direct inhibitory and indirect excitatory striatonigral circuits. These data provide the first evidence for a beneficial action of bee venom on the pathological functioning of the cortico-basal ganglia circuits underlying motor PD symptoms with potential relevance to the symptomatic treatment of this disease.

  18. Computational modeling of stuttering caused by impairments in a basal ganglia thalamo-cortical circuit involved in syllable selection and initiation

    OpenAIRE

    Civier, Oren; Bullock, Daniel; Max, Ludo; Guenther, Frank H.

    2013-01-01

    A typical white-matter integrity and elevated dopamine levels have been reported for individuals who stutter. We investigated how such abnormalities may lead to speech dysfluencies due to their effects on a syllable-sequencing circuit that consists of basal ganglia (BG), thalamus, and left ventral premotor cortex (vPMC). “Neurally impaired” versions of the neurocomputational speech production model GODIVA were utilized to test two hypotheses: (1) that white-matter abnormalities disturb the ci...

  19. Believer-Skeptic Meets Actor-Critic: Rethinking the Role of Basal Ganglia Pathways during Decision-Making and Reinforcement Learning

    OpenAIRE

    Dunovan, Kyle; Verstynen, Timothy

    2016-01-01

    The flexibility of behavioral control is a testament to the brain's capacity for dynamically resolving uncertainty during goal-directed actions. This ability to select actions and learn from immediate feedback is driven by the dynamics of basal ganglia (BG) pathways. A growing body of empirical evidence conflicts with the traditional view that these pathways act as independent levers for facilitating (i.e., direct pathway) or suppressing (i.e., indirect pathway) motor output, suggesting inste...

  20. Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control.

    Science.gov (United States)

    Dasgupta, Sakyasingha; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Goal-directed decision making in biological systems is broadly based on associations between conditional and unconditional stimuli. This can be further classified as classical conditioning (correlation-based learning) and operant conditioning (reward-based learning). A number of computational and experimental studies have well established the role of the basal ganglia in reward-based learning, where as the cerebellum plays an important role in developing specific conditioned responses. Although viewed as distinct learning systems, recent animal experiments point toward their complementary role in behavioral learning, and also show the existence of substantial two-way communication between these two brain structures. Based on this notion of co-operative learning, in this paper we hypothesize that the basal ganglia and cerebellar learning systems work in parallel and interact with each other. We envision that such an interaction is influenced by reward modulated heterosynaptic plasticity (RMHP) rule at the thalamus, guiding the overall goal directed behavior. Using a recurrent neural network actor-critic model of the basal ganglia and a feed-forward correlation-based learning model of the cerebellum, we demonstrate that the RMHP rule can effectively balance the outcomes of the two learning systems. This is tested using simulated environments of increasing complexity with a four-wheeled robot in a foraging task in both static and dynamic configurations. Although modeled with a simplified level of biological abstraction, we clearly demonstrate that such a RMHP induced combinatorial learning mechanism, leads to stabler and faster learning of goal-directed behaviors, in comparison to the individual systems. Thus, in this paper we provide a computational model for adaptive combination of the basal ganglia and cerebellum learning systems by way of neuromodulated plasticity for goal-directed decision making in biological and bio-mimetic organisms. PMID:25389391

  1. Neuromodulatory Adaptive Combination of Correlation-based Learning in Cerebellum and Reward-based Learning in Basal Ganglia for Goal-directed Behavior Control

    Directory of Open Access Journals (Sweden)

    Sakyasingha eDasgupta

    2014-10-01

    Full Text Available Goal-directed decision making in biological systems is broadly based on associations between conditional and unconditional stimuli. This can be further classified as classical conditioning (correlation-based learning and operant conditioning (reward-based learning. A number of computational and experimental studies have well established the role of the basal ganglia in reward-based learning, where as the cerebellum plays an important role in developing specific conditioned responses. Although viewed as distinct learning systems, recent animal experiments point towards their complementary role in behavioral learning, and also show the existence of substantial two-way communication between these two brain structures. Based on this notion of co-operative learning, in this paper we hypothesize that the basal ganglia and cerebellar learning systems work in parallel and interact with each other. We envision that such an interaction is influenced by reward modulated heterosynaptic plasticity (RMHP rule at the thalamus, guiding the overall goal directed behavior. Using a recurrent neural network actor-critic model of the basal ganglia and a feed-forward correlation-based learning model of the cerebellum, we demonstrate that the RMHP rule can effectively balance the outcomes of the two learning systems. This is tested using simulated environments of increasing complexity with a four-wheeled robot in a foraging task in both static and dynamic configurations. Although modeled with a simplified level of biological abstraction, we clearly demonstrate that such a RMHP induced combinatorial learning mechanism, leads to stabler and faster learning of goal-directed behaviors, in comparison to the individual systems. Thus in this paper we provide a computational model for adaptive combination of the basal ganglia and cerebellum learning systems by way of neuromodulated plasticity for goal-directed decision making in biological and bio-mimetic organisms.

  2. Combining self-organizing maps with mixtures of experts: Application to an Actor-critic model of reinforcement learning in the Basal Ganglia

    OpenAIRE

    Khamassi, Mehdi; Martinet, Louis-Emmanuel; Guillot, Agnés

    2006-01-01

    International audience In a reward-seeking task performed in a continuous environment, our previous work compared several Actor-Critic architectures implementing dopamine-like reinforcement learning mechanisms in the rat's basal ganglia. The task complexity imposes the coordination of several submodules, each module being an expert trained in a particular subset of the task. Our results illustrated the consequences of different hypotheses about the management of Actor-Critic submodules. We...

  3. Bee Venom Alleviates Motor Deficits and Modulates the Transfer of Cortical Information through the Basal Ganglia in Rat Models of Parkinson's Disease.

    Science.gov (United States)

    Maurice, Nicolas; Deltheil, Thierry; Melon, Christophe; Degos, Bertrand; Mourre, Christiane; Amalric, Marianne; Kerkerian-Le Goff, Lydia

    2015-01-01

    Recent evidence points to a neuroprotective action of bee venom on nigral dopamine neurons in animal models of Parkinson's disease (PD). Here we examined whether bee venom also displays a symptomatic action by acting on the pathological functioning of the basal ganglia in rat PD models. Bee venom effects were assessed by combining motor behavior analyses and in vivo electrophysiological recordings in the substantia nigra pars reticulata (SNr, basal ganglia output structure) in pharmacological (neuroleptic treatment) and lesional (unilateral intranigral 6-hydroxydopamine injection) PD models. In the hemi-parkinsonian 6-hydroxydopamine lesion model, subchronic bee venom treatment significantly alleviates contralateral forelimb akinesia and apomorphine-induced rotations. Moreover, a single injection of bee venom reverses haloperidol-induced catalepsy, a pharmacological model reminiscent of parkinsonian akinetic deficit. This effect is mimicked by apamin, a blocker of small conductance Ca2+-activated K+ (SK) channels, and blocked by CyPPA, a positive modulator of these channels, suggesting the involvement of SK channels in the bee venom antiparkinsonian action. In vivo electrophysiological recordings in the substantia nigra pars reticulata (basal ganglia output structure) showed no significant effect of BV on the mean neuronal discharge frequency or pathological bursting activity. In contrast, analyses of the neuronal responses evoked by motor cortex stimulation show that bee venom reverses the 6-OHDA- and neuroleptic-induced biases in the influence exerted by the direct inhibitory and indirect excitatory striatonigral circuits. These data provide the first evidence for a beneficial action of bee venom on the pathological functioning of the cortico-basal ganglia circuits underlying motor PD symptoms with potential relevance to the symptomatic treatment of this disease. PMID:26571268

  4. Bee Venom Alleviates Motor Deficits and Modulates the Transfer of Cortical Information through the Basal Ganglia in Rat Models of Parkinson’s Disease

    Science.gov (United States)

    Maurice, Nicolas; Deltheil, Thierry; Melon, Christophe; Degos, Bertrand; Mourre, Christiane

    2015-01-01

    Recent evidence points to a neuroprotective action of bee venom on nigral dopamine neurons in animal models of Parkinson’s disease (PD). Here we examined whether bee venom also displays a symptomatic action by acting on the pathological functioning of the basal ganglia in rat PD models. Bee venom effects were assessed by combining motor behavior analyses and in vivo electrophysiological recordings in the substantia nigra pars reticulata (SNr, basal ganglia output structure) in pharmacological (neuroleptic treatment) and lesional (unilateral intranigral 6-hydroxydopamine injection) PD models. In the hemi-parkinsonian 6-hydroxydopamine lesion model, subchronic bee venom treatment significantly alleviates contralateral forelimb akinesia and apomorphine-induced rotations. Moreover, a single injection of bee venom reverses haloperidol-induced catalepsy, a pharmacological model reminiscent of parkinsonian akinetic deficit. This effect is mimicked by apamin, a blocker of small conductance Ca2+-activated K+ (SK) channels, and blocked by CyPPA, a positive modulator of these channels, suggesting the involvement of SK channels in the bee venom antiparkinsonian action. In vivo electrophysiological recordings in the substantia nigra pars reticulata (basal ganglia output structure) showed no significant effect of BV on the mean neuronal discharge frequency or pathological bursting activity. In contrast, analyses of the neuronal responses evoked by motor cortex stimulation show that bee venom reverses the 6-OHDA- and neuroleptic-induced biases in the influence exerted by the direct inhibitory and indirect excitatory striatonigral circuits. These data provide the first evidence for a beneficial action of bee venom on the pathological functioning of the cortico-basal ganglia circuits underlying motor PD symptoms with potential relevance to the symptomatic treatment of this disease. PMID:26571268

  5. Common features of neural activity during singing and sleep periods in a basal ganglia nucleus critical for vocal learning in a juvenile songbird.

    Directory of Open Access Journals (Sweden)

    Shin Yanagihara

    Full Text Available Reactivations of waking experiences during sleep have been considered fundamental neural processes for memory consolidation. In songbirds, evidence suggests the importance of sleep-related neuronal activity in song system motor pathway nuclei for both juvenile vocal learning and maintenance of adult song. Like those in singing motor nuclei, neurons in the basal ganglia nucleus Area X, part of the basal ganglia-thalamocortical circuit essential for vocal plasticity, exhibit singing-related activity. It is unclear, however, whether Area X neurons show any distinctive spiking activity during sleep similar to that during singing. Here we demonstrate that, during sleep, Area X pallidal neurons exhibit phasic spiking activity, which shares some firing properties with activity during singing. Shorter interspike intervals that almost exclusively occurred during singing in awake periods were also observed during sleep. The level of firing variability was consistently higher during singing and sleep than during awake non-singing states. Moreover, deceleration of firing rate, which is considered to be an important firing property for transmitting signals from Area X to the thalamic nucleus DLM, was observed mainly during sleep as well as during singing. These results suggest that songbird basal ganglia circuitry may be involved in the off-line processing potentially critical for vocal learning during sensorimotor learning phase.

  6. Analysis of grey matter in thalamus and basal ganglia based on EEG α3/α2 frequency ratio reveals specific changes in subjects with mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Davide V Moretti

    2012-12-01

    Full Text Available GM (grey matter changes of thalamus and basal ganglia have been demonstrated to be involved in AD (Alzheimer's disease. Moreover, the increase of a specific EEG (electroencephalogram marker, α3/α2, have been associated with AD-converters subjects with MCI (mild cognitive impairment. To study the association of prognostic EEG markers with specific GM changes of thalamus and basal ganglia in subjects with MCI to detect biomarkers (morpho-physiological early predictive of AD and non-AD dementia. Seventy-four adult subjects with MCI underwent EEG recording and high-resolution 3D MRI (three-dimensional magnetic resonance imaging. The α3/α2 ratio was computed for each subject. Three groups were obtained according to increasing tertile values of α3/α2 ratio. GM density differences between groups were investigated using a VBM (voxel-based morphometry technique. Subjects with higher α3/α2 ratios when compared with subjects with lower and middle α3/α2 ratios showed minor atrophy in the ventral stream of basal ganglia (head of caudate nuclei and accumbens nuclei bilaterally and of the pulvinar nuclei in the thalamus; The integrated analysis of EEG and morpho-structural markers could be useful in the comprehension of anatomo-physiological underpinning of the MCI entity.

  7. The dopamine D1-D2 receptor heteromer in striatal medium spiny neurons: evidence for a third distinct neuronal pathway in basal ganglia

    Directory of Open Access Journals (Sweden)

    Melissa L. Perreault

    2011-05-01

    Full Text Available Dopaminergic signaling within the basal ganglia has classically been thought to occur within two distinct neuronal pathways; the direct striatonigral pathway which contains the dopamine D1 receptor and the neuropeptides dynorphin and substance P, and the indirect striatopallidal pathway which expresses the dopamine D2 receptor and enkephalin. A number of studies have also shown, however, that D1 and D2 receptors can co-exist within the same medium spiny neuron and emerging evidence indicates that these D1/D2-coexpressing neurons, which also express dynorphin and enkephalin, may comprise a third neuronal pathway, with representation in both the striatonigral and striatopallidal projections of the basal ganglia. Furthermore, within these coexpressing neurons it has been shown that the dopamine D1 and D2 receptor can form a novel and pharmacologically distinct receptor complex, the dopamine D1-D2 receptor heteromer, with unique signaling properties. This is indicative of a functionally unique role for these neurons in brain. The aim of this review is to discuss the evidence in support of a novel third pathway coexpressing the D1 and D2 receptor, to discuss the potential relevance of this pathway to basal ganglia signaling, and to address its potential value, and that of the dopamine D1-D2 receptor heteromer, in the search for new therapeutic strategies for disorders involving dopamine neurotransmission.

  8. Emergent structured transition from variation to repetition in a biologically-plausible model of learning in basal ganglia.

    Directory of Open Access Journals (Sweden)

    AshvinShah

    2014-02-01

    Full Text Available Often, when animals encounter an unexpected sensory event, they transition from executing a variety of movements to repeating the movement(s that may have caused the event. According to a recent theory of action discovery (Redgrave and Gurney 2006, repetition allows the animal to represent those movements, and the outcome, as an action for later recruitment. The transition from variation to repetition often follows a non-random, structured, pattern. While the structure of the pattern can be explained by sophisticated cognitive mechanisms, simpler mechanisms based on dopaminergic modulation of basal ganglia (BG activity are thought to underlie action discovery (Redgrave and Gurney 2006. In this paper we ask the question: can simple BG-mediated mechanisms account for a structured transition from variation to repetition, or are more sophisticated cognitive mechanisms always necessary?To address this question, we present a computational model of BG-mediated biasing of behavior. In our model, unlike most other models of BG function, the BG biases behaviour through modulation of cortical response to excitation; many possible movements are represented by the cortical area; and excitation to the cortical area is topographically-organized. We subject the model to simple reaching tasks, inspired by behavioral studies, in which a location to which to reach must be selected. Locations within a target area elicit a reinforcement signal. A structured transition from variation to repetition emerges from simple BG-mediated biasing of cortical response to excitation. We show how the structured pattern influences behavior in simple and complicated tasks. We also present analyses that describe the structured transition from variation to repetition due to BG-mediated biasing and from biasing that would be expected from a type of cognitive biasing, allowing us to compare behaviour resulting from these types of biasing and make connections with future behavioural

  9. Optogenetic stimulation in a computational model of the basal ganglia biases action selection and reward prediction error.

    Directory of Open Access Journals (Sweden)

    Pierre Berthet

    Full Text Available Optogenetic stimulation of specific types of medium spiny neurons (MSNs in the striatum has been shown to bias the selection of mice in a two choices task. This shift is dependent on the localisation and on the intensity of the stimulation but also on the recent reward history. We have implemented a way to simulate this increased activity produced by the optical flash in our computational model of the basal ganglia (BG. This abstract model features the direct and indirect pathways commonly described in biology, and a reward prediction pathway (RP. The framework is similar to Actor-Critic methods and to the ventral/dorsal distinction in the striatum. We thus investigated the impact on the selection caused by an added stimulation in each of the three pathways. We were able to reproduce in our model the bias in action selection observed in mice. Our results also showed that biasing the reward prediction is sufficient to create a modification in the action selection. However, we had to increase the percentage of trials with stimulation relative to that in experiments in order to impact the selection. We found that increasing only the reward prediction had a different effect if the stimulation in RP was action dependent (only for a specific action or not. We further looked at the evolution of the change in the weights depending on the stage of learning within a block. A bias in RP impacts the plasticity differently depending on that stage but also on the outcome. It remains to experimentally test how the dopaminergic neurons are affected by specific stimulations of neurons in the striatum and to relate data to predictions of our model.

  10. Optogenetic stimulation in a computational model of the basal ganglia biases action selection and reward prediction error.

    Science.gov (United States)

    Berthet, Pierre; Lansner, Anders

    2014-01-01

    Optogenetic stimulation of specific types of medium spiny neurons (MSNs) in the striatum has been shown to bias the selection of mice in a two choices task. This shift is dependent on the localisation and on the intensity of the stimulation but also on the recent reward history. We have implemented a way to simulate this increased activity produced by the optical flash in our computational model of the basal ganglia (BG). This abstract model features the direct and indirect pathways commonly described in biology, and a reward prediction pathway (RP). The framework is similar to Actor-Critic methods and to the ventral/dorsal distinction in the striatum. We thus investigated the impact on the selection caused by an added stimulation in each of the three pathways. We were able to reproduce in our model the bias in action selection observed in mice. Our results also showed that biasing the reward prediction is sufficient to create a modification in the action selection. However, we had to increase the percentage of trials with stimulation relative to that in experiments in order to impact the selection. We found that increasing only the reward prediction had a different effect if the stimulation in RP was action dependent (only for a specific action) or not. We further looked at the evolution of the change in the weights depending on the stage of learning within a block. A bias in RP impacts the plasticity differently depending on that stage but also on the outcome. It remains to experimentally test how the dopaminergic neurons are affected by specific stimulations of neurons in the striatum and to relate data to predictions of our model. PMID:24614169

  11. Action selection performance of a reconfigurable Basal Ganglia inspired model with Hebbian-Bayesian Go-NoGo connectivity

    Directory of Open Access Journals (Sweden)

    Pierre eBerthet

    2012-10-01

    Full Text Available Several studies have shown a strong involvement of the basal ganglia (BG in action selection and dopamine dependent learning. The dopaminergic signal to striatum, the input stage of the BG, has been commonly described as coding a reward prediction error (RPE, i.e. the difference between the predicted and actual reward. The RPE has been hypothesized to be critical in the modulation of the synaptic plasticity in cortico-striatal synapses in the direct and indirect pathway. We developed an abstract computational model of the BG, with a dual pathway structure functionally corresponding to the direct and indirect pathways, and compared its behaviour to biological data as well as other reinforcement learning models. The computations in our model are inspired by Bayesian inference, and the synaptic plasticity changes depend on a three factor Hebbian-Bayesian learning rule based on co-activation of pre- and post-synaptic units and on the value of the RPE. The model builds on a modified Actor-Critic architecture and implements the direct (Go and the indirect (NoGo pathway, as well as the reward prediction (RP system, acting in a complementary fashion. We investigated the performance of the model system when different configurations of the Go, NoGo and RP system were utilized, e.g. using only the Go, NoGo, or RP system, or combinations of those. Learning performance was investigated in several types of learning paradigms, such as learning-relearning, successive learning, stochastic learning, reversal learning and a two-choice task. The RPE and the activity of the model during learning were similar to monkey electrophysiological and behavioural data. Our results, however, show that there is not a unique best way to configure this BG model to handle well all the learning paradigms tested. We thus suggest that an agent might dynamically configure its action selection mode, possibly depending on task characteristics and also on how much time is available.

  12. Action selection performance of a reconfigurable basal ganglia inspired model with Hebbian-Bayesian Go-NoGo connectivity.

    Science.gov (United States)

    Berthet, Pierre; Hellgren-Kotaleski, Jeanette; Lansner, Anders

    2012-01-01

    Several studies have shown a strong involvement of the basal ganglia (BG) in action selection and dopamine dependent learning. The dopaminergic signal to striatum, the input stage of the BG, has been commonly described as coding a reward prediction error (RPE), i.e., the difference between the predicted and actual reward. The RPE has been hypothesized to be critical in the modulation of the synaptic plasticity in cortico-striatal synapses in the direct and indirect pathway. We developed an abstract computational model of the BG, with a dual pathway structure functionally corresponding to the direct and indirect pathways, and compared its behavior to biological data as well as other reinforcement learning models. The computations in our model are inspired by Bayesian inference, and the synaptic plasticity changes depend on a three factor Hebbian-Bayesian learning rule based on co-activation of pre- and post-synaptic units and on the value of the RPE. The model builds on a modified Actor-Critic architecture and implements the direct (Go) and the indirect (NoGo) pathway, as well as the reward prediction (RP) system, acting in a complementary fashion. We investigated the performance of the model system when different configurations of the Go, NoGo, and RP system were utilized, e.g., using only the Go, NoGo, or RP system, or combinations of those. Learning performance was investigated in several types of learning paradigms, such as learning-relearning, successive learning, stochastic learning, reversal learning and a two-choice task. The RPE and the activity of the model during learning were similar to monkey electrophysiological and behavioral data. Our results, however, show that there is not a unique best way to configure this BG model to handle well all the learning paradigms tested. We thus suggest that an agent might dynamically configure its action selection mode, possibly depending on task characteristics and also on how much time is available. PMID:23060764

  13. MR spectroscopy-based brain metabolite profiling in propionic acidaemia: metabolic changes in the basal ganglia during acute decompensation and effect of liver transplantation

    Directory of Open Access Journals (Sweden)

    McKiernan Patrick J

    2011-05-01

    Full Text Available Abstract Background Propionic acidaemia (PA results from deficiency of Propionyl CoA carboxylase, the commonest form presenting in the neonatal period. Despite best current management, PA is associated with severe neurological sequelae, in particular movement disorders resulting from basal ganglia infarction, although the pathogenesis remains poorly understood. The role of liver transplantation remains controversial but may confer some neuro-protection. The present study utilises quantitative magnetic resonance spectroscopy (MRS to investigate brain metabolite alterations in propionic acidaemia during metabolic stability and acute encephalopathic episodes. Methods Quantitative MRS was used to evaluate brain metabolites in eight children with neonatal onset propionic acidaemia, with six elective studies acquired during metabolic stability and five studies during acute encephalopathic episodes. MRS studies were acquired concurrently with clinically indicated MR imaging studies at 1.5 Tesla. LCModel software was used to provide metabolite quantification. Comparison was made with a dataset of MRS metabolite concentrations from a cohort of children with normal appearing MR imaging. Results MRI findings confirm the vulnerability of basal ganglia to infarction during acute encephalopathy. We identified statistically significant decreases in basal ganglia glutamate+glutamine and N-Acetylaspartate, and increase in lactate, during encephalopathic episodes. In white matter lactate was significantly elevated but other metabolites not significantly altered. Metabolite data from two children who had received liver transplantation were not significantly different from the comparator group. Conclusions The metabolite alterations seen in propionic acidaemia in the basal ganglia during acute encephalopathy reflect loss of viable neurons, and a switch to anaerobic respiration. The decrease in glutamine + glutamate supports the hypothesis that they are consumed to

  14. Basal ganglia dysfunction

    Science.gov (United States)

    ... overdose Head injury Infection Liver disease Metabolic problems Multiple sclerosis Poisoning with copper, manganese, or other heavy metals Side effects of certain medications Stroke Tumors Many brain disorders are associated with ...

  15. A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease.

    Science.gov (United States)

    Kumaravelu, Karthik; Brocker, David T; Grill, Warren M

    2016-04-01

    Electrical stimulation of sub-cortical brain regions (the basal ganglia), known as deep brain stimulation (DBS), is an effective treatment for Parkinson's disease (PD). Chronic high frequency (HF) DBS in the subthalamic nucleus (STN) or globus pallidus interna (GPi) reduces motor symptoms including bradykinesia and tremor in patients with PD, but the therapeutic mechanisms of DBS are not fully understood. We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. We used the model to quantify the effectiveness of STN DBS at different frequencies in suppressing low-frequency oscillatory activity in GPi. Frequencies less than 40 Hz were ineffective, low-frequency oscillatory power decreased gradually for frequencies between 50 Hz and 130 Hz, and saturated at frequencies higher than 150 Hz. HF STN DBS suppressed pathological oscillations in GPe/GPi both by exciting and inhibiting the firing in GPe/GPi neurons, and the number of GPe/GPi neurons influenced was greater for HF stimulation than low-frequency stimulation. Similar to the frequency dependent suppression of pathological oscillations, STN DBS also normalized the abnormal GPi spiking activity evoked by CTX stimulation in a frequency dependent fashion with HF being the most effective. Therefore, therapeutic HF STN DBS effectively suppresses pathological activity by influencing the activity of a greater proportion of neurons in the output nucleus of the BG. PMID:26867734

  16. No change of dopamine transporter density in basal ganglia after risperidone treatment in drug-naive children with Tourette's disorder

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, W. K.; Ryu, Y. H.; Yoon, M. J.; Chun, K. A.; Lee, J. D. [College of Medicine, Univ. of Yonsei, Seoul (Korea, Republic of); Zee, D. Y. [Univ. of Inhwa, Incheon (Korea, Republic of); Choi, T. H. [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    2003-07-01

    Tourette's disorder (TD), which is characterized by multiple waxing and waning motor tics and one or more vocal tics, is known to be associated with abnormalities in the dopaminergic system. To testify our hypothesis that risperidone would improve tic symptoms of TD patients through the change of the dopaminergic system, we measured the DAT densities between drug-naive children with TD and normal children investigated the DAT density before and after treatment with risperidone in drug-naive children with TD, using lodine-123 labelled N-(3-iodopropen-2-yl)-2beta-carbomethoxy-3beta-(4-chlorophenyl) tropane(I-123 IPT) single photon emission computed tomography (SPECT). I-123 IPT SPECT imaging and Yale Global Tic Severity Scale-Korean version (YGTSS-K) for assessing the tic symptom severity were carried out before and after treatment with risperidone for 8 weeks in eight drug-naive children with TD. Eight normal children also underwent SPECT imaging 2 hours after an intravenous administration of I-123 IPT and carried out both quantitative and qualitative analyses using the obtained SPECT data, which were reconstructed for the assessment of the specific/non-specific DAT binding ratio in the basal ganglia. The drug-naive children with TD had a significantly greater increase in the specific/nonspecific DAT binding ratio of both basal ganglia compared with the normal children. However, no significant difference in the specific/nonspecific DAT binding ratio of the basal ganglia before and after treatment with riperidone in children with TD was not found, although tic symptoms were significantly improved with risperidone. These findings suggest that DAT densities are directly associated with the pathophysiology of TD, however, that the effect of risperidone on tic symptoms in children with TD is not attributed to the change of dopaminergic system.

  17. Altered neuronal firing pattern of the basal ganglia nucleus plays a role in levodopa-induced dyskinesia in patients with Parkinson's disease

    OpenAIRE

    Xiaoyu Li; Ping Zhuang

    2015-01-01

    Background: Levodopa therapy alleviates the symptoms of Parkinson's disease (PD), but long-term treatment often leads to motor complications such as levodopa-induced dyskinesia (LID). Aim: To explore the neuronal activity in the basal ganglia nuclei in patients with PD and LID. Methods: Thirty patients with idiopathic PD (age, 55.1±11.0 years; disease duration, 8.7±5.6 years) were enrolled between August 2006 and August 2013 at the Xuanwu Hospital, Capital Medical University, China. T...

  18. Altered Neuronal Firing Pattern of the Basal Ganglia Nucleus Plays a Role in Levodopa-Induced Dyskinesia in Patients with Parkinson’s Disease

    OpenAIRE

    Li, Xiaoyu; Zhuang, Ping; Li, Yongjie

    2015-01-01

    Background: Levodopa therapy alleviates the symptoms of Parkinson’s disease (PD), but long-term treatment often leads to motor complications such as levodopa-induced dyskinesia (LID). Aim: To explore the neuronal activity in the basal ganglia nuclei in patients with PD and LID. Methods: Thirty patients with idiopathic PD (age, 55.1 ± 11.0 years; disease duration, 8.7 ± 5.6 years) were enrolled between August 2006 and August 2013 at the Xuanwu Hospital, Capital Medical University, China....

  19. The study of automatic brain extraction of basal ganglia based on atlas of Talairach in 18F-FDG PET images

    International Nuclear Information System (INIS)

    Objective: To establish a method which can extract functional areas of the brain basal ganglia automatically. Methods: 18F-fluorodeoxyglucose (FDG) PET images were spatial normalized to Talairach atlas space through two steps, image registration and image deformation. The functional areas were extracted from three dimension PET images based on the coordinate obtained from atlas; caudate and putamen were extracted and rendered, the grey value of the area was normalized by whole brain. Results: The normal ratio of left caudate head, body and tail were 1.02 ± 0.04, 0.92 ± 0.07 and 0.71 ± 0.03, the right were 0.98 ± 0.03, 0.87 ± 0.04 and 0.71 ± 0.01 respectively. The normal ratio of left and right putamen were 1.20 ± 0.06 and 1.20 ± 0.04. The mean grey value between left and right basal ganglia had no significant difference (P>0.05). Conclusion: The automatic functional area extracting method based on atlas of Talairach is feasible. (authors)

  20. Behavioral Abnormalities and Circuit Defects in the Basal Ganglia of a Mouse Model of 16p11.2 Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Thomas Portmann

    2014-05-01

    Full Text Available A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11+/−. We found elevated numbers of striatal medium spiny neurons (MSNs expressing the dopamine D2 receptor (Drd2+ and fewer dopamine-sensitive (Drd1+ neurons in deep layers of cortex. Electrophysiological recordings of Drd2+ MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11+/− mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11+/− mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism.

  1. A Mathematical Model of Levodopa Medication Effect on Basal Ganglia in Parkinson's Disease: An Application to the Alternate Finger Tapping Task.

    Science.gov (United States)

    Baston, Chiara; Contin, Manuela; Calandra Buonaura, Giovanna; Cortelli, Pietro; Ursino, Mauro

    2016-01-01

    Malfunctions in the neural circuitry of the basal ganglia (BG), induced by alterations in the dopaminergic system, are responsible for an array of motor disorders and milder cognitive issues in Parkinson's disease (PD). Recently Baston and Ursino (2015a) presented a new neuroscience mathematical model aimed at exploring the role of basal ganglia in action selection. The model is biologically inspired and reproduces the main BG structures and pathways, modeling explicitly both the dopaminergic and the cholinergic system. The present work aims at interfacing this neurocomputational model with a compartmental model of levodopa, to propose a general model of medicated Parkinson's disease. Levodopa effect on the striatum was simulated with a two-compartment model of pharmacokinetics in plasma joined with a motor effect compartment. The latter is characterized by the levodopa removal rate and by a sigmoidal relationship (Hill law) between concentration and effect. The main parameters of this relationship are saturation, steepness, and the half-maximum concentration. The effect of levodopa is then summed to a term representing the endogenous dopamine effect, and is used as an external input for the neurocomputation model; this allows both the temporal aspects of medication and the individual patient characteristics to be simulated. The frequency of alternate tapping is then used as the outcome of the whole model, to simulate effective clinical scores. Pharmacokinetic-pharmacodynamic modeling was preliminary performed on data of six patients with Parkinson's disease (both "stable" and "wearing-off" responders) after levodopa standardized oral dosing over 4 h. Results show that the model is able to reproduce the temporal profiles of levodopa in plasma and the finger tapping frequency in all patients, discriminating between different patterns of levodopa motor response. The more influential parameters are the Hill coefficient, related with the slope of the effect sigmoidal

  2. 脑梗死后基底节性失语的临床分析%Clinical analysis of basal ganglia aphasia after cerebral infarction

    Institute of Scientific and Technical Information of China (English)

    丁杰

    2013-01-01

    目的:探讨脑梗死后基底节性失语临床特点,为提高患者诊断与治疗效果提供可靠依据。方法9例脑梗死后基底节性失语患者均出现音韵节律、语调、看图命名、动作描述以及书写障碍,部分患者发生听理解及复述障碍,患者自发性语言可表现为流畅性或非流畅性。结果治疗后,其听、说、读能力均较治疗前显著提高,3例患者书写能力明显改善,6例患者书写能力未改善;临床治愈2例,显效7例,治疗总有效率为100.00%。结论脑梗死后基底节性失语患者均可出现不同程度的表达障碍,不利于其保持积极心态尽快恢复健康,根据患者具体症状采用针对性的康复训练措施,可显著提高患者语言能力,保障患者生活质量。%Objective To investigate the clinical characteristics of basal ganglia aphasia after cerebral infarction, and to provide reliable basis for diagnosis and treatment. Methods 9 patients with basal ganglia aphasia after cerebral infarction all appeared phonological rhythm,intonation, picture naming, action description and writing disorders, some patients appeared listen understand and repeat disorders,spontaneous language can be expressed as smooth or non-fluency. Results After the treatment,their listening,speaking,reading ability improved significantly,3 patients'ability to write were significantly improved,6 patients did not improve writing skills.2 cases were cured,7 cases were markedly,the total effective rate was 100.00%. Conclusion The basal ganglia aphasia after infarction patients all may have varying degrees of expression barriers,it's detrimental to their health restored as soon as possible,according to specific symptoms in patients to use targeted rehabilitation measures can significantly improve patients' language ability,protect the quality of patients'life.

  3. Believer-Skeptic Meets Actor-Critic: Rethinking the Role of Basal Ganglia Pathways during Decision-Making and Reinforcement Learning.

    Science.gov (United States)

    Dunovan, Kyle; Verstynen, Timothy

    2016-01-01

    The flexibility of behavioral control is a testament to the brain's capacity for dynamically resolving uncertainty during goal-directed actions. This ability to select actions and learn from immediate feedback is driven by the dynamics of basal ganglia (BG) pathways. A growing body of empirical evidence conflicts with the traditional view that these pathways act as independent levers for facilitating (i.e., direct pathway) or suppressing (i.e., indirect pathway) motor output, suggesting instead that they engage in a dynamic competition during action decisions that computationally captures action uncertainty. Here we discuss the utility of encoding action uncertainty as a dynamic competition between opposing control pathways and provide evidence that this simple mechanism may have powerful implications for bridging neurocomputational theories of decision making and reinforcement learning. PMID:27047328

  4. Believer-Skeptic meets Actor-Critic: Rethinking the role of basal ganglia pathways during decision-making and reinforcement learning

    Directory of Open Access Journals (Sweden)

    Kyle eDunovan

    2016-03-01

    Full Text Available The flexibility of behavioral control is a testament to the brain’s capacity for dynamically resolving uncertainty during goal-directed actions. This ability to select actions and learn from immediate feedback is driven by the dynamics of basal ganglia (BG pathways. A growing body of empirical evidence conflicts with the traditional view that these pathways act as independent levers for facilitating (i.e., direct pathway or suppressing (i.e., indirect pathway motor output, suggesting instead that they engage in a dynamic competition during action decisions that computationally captures action uncertainty. Here we discuss the utility of encoding action uncertainty as a dynamic competition between opposing control pathways and provide evidence that this simple mechanism may have powerful implications for bridging neurocomputational theories of decision making and reinforcement learning.

  5. Computational modeling of stuttering caused by impairments in a basal ganglia thalamo-cortical circuit involved in syllable selection and initiation.

    Science.gov (United States)

    Civier, Oren; Bullock, Daniel; Max, Ludo; Guenther, Frank H

    2013-09-01

    Atypical white-matter integrity and elevated dopamine levels have been reported for individuals who stutter. We investigated how such abnormalities may lead to speech dysfluencies due to their effects on a syllable-sequencing circuit that consists of basal ganglia (BG), thalamus, and left ventral premotor cortex (vPMC). "Neurally impaired" versions of the neurocomputational speech production model GODIVA were utilized to test two hypotheses: (1) that white-matter abnormalities disturb the circuit via corticostriatal projections carrying copies of executed motor commands and (2) that dopaminergic abnormalities disturb the circuit via the striatum. Simulation results support both hypotheses: in both scenarios, the neural abnormalities delay readout of the next syllable's motor program, leading to dysfluency. The results also account for brain imaging findings during dysfluent speech. It is concluded that each of the two abnormality types can cause stuttering moments, probably by affecting the same BG-thalamus-vPMC circuit. PMID:23872286

  6. Believer-Skeptic Meets Actor-Critic: Rethinking the Role of Basal Ganglia Pathways during Decision-Making and Reinforcement Learning

    Science.gov (United States)

    Dunovan, Kyle; Verstynen, Timothy

    2016-01-01

    The flexibility of behavioral control is a testament to the brain's capacity for dynamically resolving uncertainty during goal-directed actions. This ability to select actions and learn from immediate feedback is driven by the dynamics of basal ganglia (BG) pathways. A growing body of empirical evidence conflicts with the traditional view that these pathways act as independent levers for facilitating (i.e., direct pathway) or suppressing (i.e., indirect pathway) motor output, suggesting instead that they engage in a dynamic competition during action decisions that computationally captures action uncertainty. Here we discuss the utility of encoding action uncertainty as a dynamic competition between opposing control pathways and provide evidence that this simple mechanism may have powerful implications for bridging neurocomputational theories of decision making and reinforcement learning. PMID:27047328

  7. Adult-onset Alexander disease with typical "tadpole" brainstem atrophy and unusual bilateral basal ganglia involvement: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Sakoe Kumi

    2010-04-01

    Full Text Available Abstract Background Alexander disease (ALX is a rare neurological disorder characterized by white matter degeneration and cytoplasmic inclusions in astrocytes called Rosenthal fibers, labeled by antibodies against glial fibrillary acidic protein (GFAP. Three subtypes are distinguished according to age at onset: infantile (under age 2, juvenile (age 2 to 12 and adult (over age 12. Following the identification of heterozygous mutations in GFAP that cause this disease, cases of adult-onset ALX have been increasingly reported. Case Presentation We present a 60-year-old Japanese man with an unremarkable past and no family history of ALX. After head trauma in a traffic accident at the age of 46, his character changed, and dementia and dysarthria developed, but he remained independent. Spastic paresis and dysphagia were observed at age 57 and 59, respectively, and worsened progressively. Neurological examination at the age of 60 revealed dementia, pseudobulbar palsy, left-side predominant spastic tetraparesis, axial rigidity, bradykinesia and gaze-evoked nystagmus. Brain MRI showed tadpole-like atrophy of the brainstem, caused by marked atrophy of the medulla oblongata, cervical spinal cord and midbrain tegmentum, with an intact pontine base. Analysis of the GFAP gene revealed a heterozygous missense mutation, c.827G>T, p.R276L, which was already shown to be pathogenic in a case of pathologically proven hereditary adult-onset ALX. Conclusion The typical tadpole-like appearance of the brainstem is strongly suggestive of adult-onset ALX, and should lead to a genetic investigation of the GFAP gene. The unusual feature of this patient is the symmetrical involvement of the basal ganglia, which is rarely observed in the adult form of the disease. More patients must be examined to confirm, clinically and neuroradiologically, extrapyramidal involvement of the basal ganglia in adult-onset ALX.

  8. Real-time simulation of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics processing units.

    Science.gov (United States)

    Igarashi, Jun; Shouno, Osamu; Fukai, Tomoki; Tsujino, Hiroshi

    2011-11-01

    Real-time simulation of a biologically realistic spiking neural network is necessary for evaluation of its capacity to interact with real environments. However, the real-time simulation of such a neural network is difficult due to its high computational costs that arise from two factors: (1) vast network size and (2) the complicated dynamics of biologically realistic neurons. In order to address these problems, mainly the latter, we chose to use general purpose computing on graphics processing units (GPGPUs) for simulation of such a neural network, taking advantage of the powerful computational capability of a graphics processing unit (GPU). As a target for real-time simulation, we used a model of the basal ganglia that has been developed according to electrophysiological and anatomical knowledge. The model consists of heterogeneous populations of 370 spiking model neurons, including computationally heavy conductance-based models, connected by 11,002 synapses. Simulation of the model has not yet been performed in real-time using a general computing server. By parallelization of the model on the NVIDIA Geforce GTX 280 GPU in data-parallel and task-parallel fashion, faster-than-real-time simulation was robustly realized with only one-third of the GPU's total computational resources. Furthermore, we used the GPU's full computational resources to perform faster-than-real-time simulation of three instances of the basal ganglia model; these instances consisted of 1100 neurons and 33,006 synapses and were synchronized at each calculation step. Finally, we developed software for simultaneous visualization of faster-than-real-time simulation output. These results suggest the potential power of GPGPU techniques in real-time simulation of realistic neural networks. PMID:21764258

  9. Altered neuronal firing pattern of the basal ganglia nucleus plays a role in levodopa-induced dyskinesia in patients with Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Xiaoyu Li

    2015-11-01

    Full Text Available Background: Levodopa therapy alleviates the symptoms of Parkinson's disease (PD, but long-term treatment often leads to motor complications such as levodopa-induced dyskinesia (LID. Aim: To explore the neuronal activity in the basal ganglia nuclei in patients with PD and LID. Methods: Thirty patients with idiopathic PD (age, 55.1±11.0 years; disease duration, 8.7±5.6 years were enrolled between August 2006 and August 2013 at the Xuanwu Hospital, Capital Medical University, China. Their Hoehn and Yahr scores ranged from 2 to 4 and their UPDRS III scores were 28.5±5.2. Fifteen of them had severe LID (UPDRS IV scores of 6.7±1.6. Microelectrode recording was performed in the globus pallidus internus (GPi and subthalamic nucleus (STN during pallidotomy (n=12 or STN deep brain stimulation (DBS; bilateral, n=12; unilateral, n=6. The firing patterns and frequencies of various cell types were analyzed by assessing single cell interspike intervals (ISIs and the corresponding coefficient of variation (CV. Results: A total of 295 neurons were identified from the GPi (n=12 and STN (n=18. These included 26 (8.8% highly grouped discharge, 30 (10.2% low frequency firing, 78 (26.4% rapid tonic discharge, 103 (34.9% irregular activity, and 58 (19.7% tremor-related activity. There were significant differences between the two groups (P<0.05 for neurons with irregular firing, highly irregular cluster-like firing, and low-frequency firing. Conclusion: Altered neuronal activity was observed in the basal ganglia nucleus of GPi and STN, and may play important roles in the pathophysiology of PD and LID.

  10. Differential gene expression for glutamic acid decarboxylase and type II calcium-calmodulin-dependent protein kinase in basal ganglia, thalamus, and hypothalamus of the monkey

    International Nuclear Information System (INIS)

    In situ hybridization histochemistry, using cRNA probes, revealed a complementarity in the distributions of cells in the basal ganglia, basal nucleus of Meynert, thalamus, hypothalamus, and rostral part of the midbrain that showed gene expression for glutamic acid decarboxylase (GAD) or the alpha-subunit of type II calcium-calmodulin-dependent protein kinase (CAM II kinase-alpha). Cells in certain nuclei such as the thalamic reticular nucleus, globus pallidus, and pars reticulata of the substantia nigra show GAD gene expression only; others in nuclei such as the basal nucleus of Meynert, medial mamillary nuclei, and ventromedial hypothalamic nuclei show CAM II kinase-alpha gene expression only. A few nuclei, for example, the pars compacta of the substantia nigra and the greater part of the subthalamic nucleus, display gene expression for neither GAD nor CAM II kinase-alpha. In other nuclei, notably those of the dorsal thalamus, and possibly in the striatum, GAD- and CAM II kinase-expressing cells appear to form two separate populations that, in most thalamic nuclei, together account for the total cell population. In situ hybridization reveals large amounts of CAM II kinase-alpha mRNA in the neuropil of most nuclei containing CAM II kinase-alpha-positive cells, suggesting its association with dendritic polyribosomes. The message may thus be translated at those sites, close to the synapses with which the protein is associated. The in situ hybridization results, coupled with those from immunocytochemical staining for CAM II kinase-alpha protein, indicate that CAM II kinase-alpha is commonly found in certain non-GABAergic afferent fiber systems but is not necessarily present in the postsynaptic cells on which they terminate. It appears to be absent from most GABAergic fiber systems but can be present in the cells on which they terminate

  11. 基底节缺血性卒中对认知功能的影响%A study on cognitive function after ischemic basal ganglia's stroke

    Institute of Scientific and Technical Information of China (English)

    王久武; 孙月吉; 庞鑫鑫; 林媛; 于亮; 李倩; 婉思莹; 周世煜; 郇明明

    2009-01-01

    目的 探讨基底节缺血性卒中导致的认知功能损害特点.方法 基底节缺血性卒中住院患者46例为观察组,所有病例均符1995年10月中华医学会第四届脑血管病学术研讨会通过的脑卒中诊断标准;对照组为性别、年龄和教育程度与观察组相匹配的健康人46例.认知评价采用一般问卷、韦氏成人智力量表的词汇及数字符号测试、韦氏记忆量表、工作记忆课题及威斯康星卡片等,共收集了20项认知功能相关指标.结果 观察组的连线作业A[(54.04±5.66)分]、执行完成分类数[(3.56±0.12)分]、执行错误应答数[(16.17±0.58)分]、执行非持续性错误数[(10.17±0.58)分]的得分显著高于对照组(t=4.67,5.03,9.45,9.5;P0,P<0.05),与顺背与倒背呈负相关(r=-0.857,-0.811;P=0.014,0.027);左侧基底节缺血性卒中体积与词汇测试、经历、视觉再认呈负相关(r=-0.764,-0.907,-0.747;P=0.027,0.002,0.033);右侧基底节缺血性卒中体积与词汇测试、数字符号、视觉再生、执行完成分类数呈负相关(r=-0.747,-0.770,-0.798;P=0.033,0.026,0.011).结论 基底节缺血性卒中可以引起言语智能、执行功能及记忆等认知功能改变,两侧基底节在操作智能、长时记忆及执行功能方面发挥作用不同,基底节卒中体积越大,认知功能损害越明显.%Objective To find the correlation factors of cognitive disorder after ischemic basal ganglia's stroke. Methods 46 cases of ischemic basal ganglia's stroked patients by MRI. And 46 cases health control were tested by Wechsler Adult Intelligence Scale (WAIS),Wechsler Memory Scale (WMS),Trail Making Test A and B,Wisconsin Card Sorting Test (WCST).t test,chi-square,two independent samples and spearmancorrelation were used to analyze the data. Results 1)Group of thalamic stroke compare with health control for recognition index,there were significant different between the two groups,there were higher score in the stroke group at

  12. A preliminary study of the frequency of anti-basal ganglia antibodies and streptococcal infection in attention deficit/hyperactivity disorder.

    Science.gov (United States)

    Sanchez-Carpintero, Rocio; Albesa, Sergio Aguilera; Crespo, Nerea; Villoslada, Pablo; Narbona, Juan

    2009-07-01

    Attention deficit/hyperactivity disorder (ADHD) is often present in patients with post-streptococcal neuropsychiatric disorders such as Sydenham's chorea and PANDAS, in which anti-basal ganglia antibodies (ABGA) have been frequently found. Our study investigates the hypothesis that pharyngeal group A beta-hemolytic streptococcus (GABHS) infections and serum ABGA are more frequent in children with ADHD non-comorbid (nc-ADHD) with obsessive-compulsive disorder or tics than in controls. We compared 22 children with nc-ADHD (DSM-IV-TR) and 22 healthy controls matched by age, gender and season of sample collection, for the frequency of recent GABHS infection and the presence of ABGA. Eleven out of 22 children (51%) with nc-ADHD showed evidence of GABHS infection compared to three out of 22 (14%) controls (P = 0.007). We found positive ABGA in one ADHD subject (4%) and in one control (4%). This preliminary study indicates that frequency of ABGA in children with nc-ADHD does not differ from that in matched controls, despite the fact that our ADHD patients had had more recent GABHS infections than the controls. This suggests that ABGA do not have a role in the pathogenesis of nc-ADHD. PMID:19288046

  13. A De Novo Mutation in the β-Tubulin Gene TUBB4A Results in the Leukoencephalopathy Hypomyelination with Atrophy of the Basal Ganglia and Cerebellum

    Science.gov (United States)

    Simons, Cas; Wolf, Nicole I.; McNeil, Nathan; Caldovic, Ljubica; Devaney, Joseph M.; Takanohashi, Asako; Crawford, Joanna; Ru, Kelin; Grimmond, Sean M.; Miller, David; Tonduti, Davide; Schmidt, Johanna L.; Chudnow, Robert S.; van Coster, Rudy; Lagae, Lieven; Kisler, Jill; Sperner, Jürgen; van der Knaap, Marjo S.; Schiffmann, Raphael; Taft, Ryan J.; Vanderver, Adeline

    2013-01-01

    Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) is a rare hereditary leukoencephalopathy that was originally identified by MRI pattern analysis, and it has thus far defied all attempts at identifying the causal mutation. Only 22 cases are published in the literature to date. We performed exome sequencing on five family trios, two family quartets, and three single probands, which revealed that all eleven H-ABC-diagnosed individuals carry the same de novo single-nucleotide TUBB4A mutation resulting in nonsynonymous change p.Asp249Asn. Detailed investigation of one of the family quartets with the singular finding of an H-ABC-affected sibling pair revealed maternal mosaicism for the mutation, suggesting that rare de novo mutations that are initially phenotypically neutral in a mosaic individual can be disease causing in the subsequent generation. Modeling of TUBB4A shows that the mutation creates a nonsynonymous change at a highly conserved asparagine that sits at the intradimer interface of α-tubulin and β-tubulin, and this change might affect tubulin dimerization, microtubule polymerization, or microtubule stability. Consistent with H-ABC’s clinical presentation, TUBB4A is highly expressed in neurons, and a recent report has shown that an N-terminal alteration is associated with a heritable dystonia. Together, these data demonstrate that a single de novo mutation in TUBB4A results in H-ABC. PMID:23582646

  14. AN EXTENDED REINFORCEMENT LEARNING MODEL OF BASAL GANGLIA TO UNDERSTAND THE CONTRIBUTIONS OF SEROTONIN AND DOPAMINE IN RISK-BASED DECISION MAKING, REWARD PREDICTION, AND PUNISHMENT LEARNING

    Directory of Open Access Journals (Sweden)

    Pragathi Priyadharsini Balasubramani

    2014-04-01

    Full Text Available Although empirical and neural studies show that serotonin (5HT plays many functional roles in the brain, prior computational models mostly focus on its role in behavioral inhibition. In this study, we present a model of risk based decision making in a modified Reinforcement Learning (RL-framework. The model depicts the roles of dopamine (DA and serotonin (5HT in Basal Ganglia (BG. In this model, the DA signal is represented by the temporal difference error (δ, while the 5HT signal is represented by a parameter (α that controls risk prediction error. This formulation that accommodates both 5HT and DA reconciles some of the diverse roles of 5HT particularly in connection with the BG system. We apply the model to different experimental paradigms used to study the role of 5HT: 1 Risk-sensitive decision making, where 5HT controls risk assessment, 2 Temporal reward prediction, where 5HT controls time-scale of reward prediction, and 3 Reward/Punishment sensitivity, in which the punishment prediction error depends on 5HT levels. Thus the proposed integrated RL model reconciles several existing theories of 5HT and DA in the BG.

  15. An extended reinforcement learning model of basal ganglia to understand the contributions of serotonin and dopamine in risk-based decision making, reward prediction, and punishment learning

    Science.gov (United States)

    Balasubramani, Pragathi P.; Chakravarthy, V. Srinivasa; Ravindran, Balaraman; Moustafa, Ahmed A.

    2014-01-01

    Although empirical and neural studies show that serotonin (5HT) plays many functional roles in the brain, prior computational models mostly focus on its role in behavioral inhibition. In this study, we present a model of risk based decision making in a modified Reinforcement Learning (RL)-framework. The model depicts the roles of dopamine (DA) and serotonin (5HT) in Basal Ganglia (BG). In this model, the DA signal is represented by the temporal difference error (δ), while the 5HT signal is represented by a parameter (α) that controls risk prediction error. This formulation that accommodates both 5HT and DA reconciles some of the diverse roles of 5HT particularly in connection with the BG system. We apply the model to different experimental paradigms used to study the role of 5HT: (1) Risk-sensitive decision making, where 5HT controls risk assessment, (2) Temporal reward prediction, where 5HT controls time-scale of reward prediction, and (3) Reward/Punishment sensitivity, in which the punishment prediction error depends on 5HT levels. Thus the proposed integrated RL model reconciles several existing theories of 5HT and DA in the BG. PMID:24795614

  16. Brain MR imaging in patients with hepatic cirrhosis: relationship between high intensity signal in basal ganglia on T1-weighted images and elemental concentrations in brain

    International Nuclear Information System (INIS)

    In patients with hepatic cirrhosis, the globus pallidus and putamen show high intensity on T1-weighted MRI. While the causes of this high signal have been thought to include paramagnetic substances, especially manganese, no evidence for this has been presented. Autopsy in four cases of hepatic cirrhosis permitted measurement of metal concentrations in brain and histopathological examination. In three cases the globus pallidus showed high intensity on T1-weighted images. Mean manganese concentrations in globus pallidus, putamen and frontal white matter were 3.03 ± 0.38, 2.12 ± 0.37, and 1.38 ± 0.24 (μg/g wet weight), respectively, being approximately four- to almost ten-fold the normal values. Copper concentrations in globus pallidus and putamen were also high, 50 % more than normal. Calcium, iron, zinc and magnesium concentrations were all normal. The fourth case showed no abnormal intensity in the basal ganglia and brain metal concentrations were all normal. Histopathologically, cases with showing high signal remarkable atrophy, necrosis, and deciduation of nerve cells and proliferation of glial cells and microglia in globus pallidus. These findings were similar to those in chronic manganese poisoning. On T1-weighted images, copper deposition shows no abnormal intensity. It is therefore inferred that deposition of highly concentrations of manganese may caused high signal on T1-weighted images and nerve cell death in the globus pallidus. (orig.). With 2 figs., 2 tabs

  17. Dopamine transporter density in the basal ganglia assessed with {sup 123}I-IPT SPECT in children with attention deficit hyperactivity disorder

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Y. H.; Cheon, K. A.; Yoon, M. J.; Kim, C. H.; Lee, J. D. [Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, H. H.; Choi, T. H. [Gachon Medical School, Incheon (Korea, Republic of)

    2002-07-01

    Attention deficit hyperactivity disorder (ADHD) is known as a psychiatric disorder in childhood associated with dopamine dysregulation. We investigated dopamine transporter (DAT) density in children with ADHD in the present study using {sup 123}I-IPT SPECT and postulated that an alteration in DAT density in the basal ganglia (BG) is responsible for dopaminergic dysfunction in children with ADHD. 9 durg-naive children with ADHD and 6 normal children were included in the study. We performed brain SPECT 2 hours after administration of {sup 123}I-IPT and made both quantitative and qualitative analyses for assessment of specific/nonspecific DAT binding ratio in the BG. We investigated the correlation between the severity scores of ADHD symptoms in children with ADHD assessed with ADHD rating scale and specific/nonspecific DAT binding ratio in the BG. Drug-naive children with ADHD showed a significantly incresed specific/nonspecific DAT binding ratio in the BG compared with normal children. Whereas, no significant correlation was found between severity scores of symptoms in children with ADHD and specific/nonspecific DAT binding ratio n the BG. Our findings support complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD.

  18. Dopamine transporter density in the basal ganglia assessed with 123I-IPT SPECT in children with attention deficit hyperactivity disorder

    International Nuclear Information System (INIS)

    Attention deficit hyperactivity disorder (ADHD) is known as a psychiatric disorder in childhood associated with dopamine dysregulation. We investigated dopamine transporter (DAT) density in children with ADHD in the present study using 123I-IPT SPECT and postulated that an alteration in DAT density in the basal ganglia (BG) is responsible for dopaminergic dysfunction in children with ADHD. 9 durg-naive children with ADHD and 6 normal children were included in the study. We performed brain SPECT 2 hours after administration of 123I-IPT and made both quantitative and qualitative analyses for assessment of specific/nonspecific DAT binding ratio in the BG. We investigated the correlation between the severity scores of ADHD symptoms in children with ADHD assessed with ADHD rating scale and specific/nonspecific DAT binding ratio in the BG. Drug-naive children with ADHD showed a significantly incresed specific/nonspecific DAT binding ratio in the BG compared with normal children. Whereas, no significant correlation was found between severity scores of symptoms in children with ADHD and specific/nonspecific DAT binding ratio n the BG. Our findings support complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD

  19. Alteration of basal ganglia and right frontoparietal network in early drug-naïve Parkinson’s disease during heat pain stimuli and resting state

    Directory of Open Access Journals (Sweden)

    Ying eTan

    2015-08-01

    Full Text Available Background: The symptoms and pathogenesis of Parkinson’s disease (PD are complicated and accurate diagnosis is difficult, particularly in early-stage. Functional magnetic resonance imaging is noninvasive and characterized by the integration of different brain areas at functional connectivity (FC. Considering pain process in PD, we hypothesized that pain is one of the earliest symptoms and investigated whether FC of the pain network was disrupted in PD without pain.Methods: Fourteen early drug-naïve PD without pain and 17 age- and sex-matched healthy controls (HC participated in our test. We investigate abnormalities in FC and in functional network connectivity in PD compared with HC during the task (51 °C heat pain stimuli and at rest.Results: Compared with HC, PD showed decreased FC in basal ganglia network (BGN, salience network (SN and sensorimotor network in two states respectively. FNC between the BGN and the SN are reduced during both states in PD compared with HC. In addition, the FNC associated with right frontoparietal network (RFPN was also significantly disturbed during the task.Conclusion: These findings suggest that BGN plays a role in the pathological mechanisms of pain underlying PD, and RFPN likely contributes greatly to harmonization between intrinsic brain activity and external stimuli.

  20. Hypomyelination with atrophy of the basal ganglia and cerebellum: case report Hipomielinização com atrofia dos núcleos da base e do cerebelo: relato de caso

    OpenAIRE

    André Palma da Cunha Matta; Márcia Cristina Antunes Ribas

    2007-01-01

    Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) is a rare disease that has been recently described. It must be remembered as a possible etiology of leukoencephalopathies in children. We describe a typical case of H-ABC in a 11-month-old boy. He presents with global development delay, oral dyskinesia, and global dystonia and spasticity. Magnetic resonance imaging disclosed typical features of H-ABC and clinical laboratory tests were all negative. A slow neurological de...

  1. Human-specific increase of dopaminergic innervation in a striatal region associated with speech and language: A comparative analysis of the primate basal ganglia.

    Science.gov (United States)

    Raghanti, Mary Ann; Edler, Melissa K; Stephenson, Alexa R; Wilson, Lakaléa J; Hopkins, William D; Ely, John J; Erwin, Joseph M; Jacobs, Bob; Hof, Patrick R; Sherwood, Chet C

    2016-07-01

    The dopaminergic innervation of the striatum has been implicated in learning processes and in the development of human speech and language. Several lines of evidence suggest that evolutionary changes in dopaminergic afferents of the striatum may be associated with uniquely human cognitive and behavioral abilities, including the association of the human-specific sequence of the FOXP2 gene with decreased dopamine in the dorsomedial striatum of mice. To examine this possibility, we quantified the density of tyrosine hydroxylase-immunoreactive axons as a measure of dopaminergic innervation within five basal ganglia regions in humans, great apes, and New and Old World monkeys. Our results indicate that humans differ from nonhuman primate species in having a significant increase in dopaminergic innervation selectively localized to the medial caudate nucleus. This region of the striatum is highly interconnected, receiving afferents from multiple neocortical regions, and supports behavioral and cognitive flexibility. The medial caudate nucleus also shows hyperactivity in humans lacking a functional FOXP2 allele and exhibits altered dopamine concentrations in humanized Foxp2 mice. Additionally, striatal dopaminergic input was not altered in chimpanzees that used socially learned attention-getting sounds versus those that did not. This evidence indicates that the increase in dopamine innervation of the medial caudate nucleus in humans is a species-typical characteristic not associated with experience-dependent plasticity. The specificity of this increase may be related to the degree of convergence from cortical areas within this region of the striatum and may also be involved in human speech and language. J. Comp. Neurol. 524:2117-2129, 2016. © 2015 Wiley Periodicals, Inc. PMID:26715195

  2. Characterization and distribution of [125I]epidepride binding to dopamine D2 receptors in basal ganglia and cortex of human brain

    International Nuclear Information System (INIS)

    The distribution and pharmacology of the binding of 125I-epidepride, a substituted benzamide with high affinity and selectivity for dopamine (DA) D2 receptors in rat brain is described in human brain. Saturation analysis of the binding of 125I-epidepride to membranes derived from striatum and regions of cortex demonstrated similar Kd values (34 and 28-33 pM, respectively) but differing maximum density of binding site values (152 and 3-8 fmol/mg of protein, respectively). The pharmacological profile of binding in cortex was also similar to striatum (epidepride greater than spiperone greater than butaclamol = flupenthixol greater than clozapine) except that an additional low-affinity site, blocked by the alpha-2 adrenergic antagonist idazoxan, was present in cortex. Quantification by autoradiography also demonstrated the greatest binding in the basal ganglia, with the striatum exhibiting greater binding than the pallidal complex or midbrain regions. For the pallidum, binding in the external segment was higher than the internal segment. Within the midbrain the binding of 125I-epidepride correlated well with the known distribution of DA-containing cell bodies, with the substantia nigra (pars compacta and pars lateralis) and ventral tegmental area (A10) higher than area A8 and central gray. Binding in frontal and parietal cortex was highest in the internal layers (layers V and VI). Temporal cortex showed a 2-fold higher density of binding than other cortical regions and a trilaminar pattern; binding was greater in the external (layers I and II) and internal layers than in the middle layers (III and IV). This pattern changed in the parahippocampal complex. Within the lateral occipitotemporal cortex, binding was densest in layers I to III and very low in layers IV to VI, but binding was almost nonexistent in the adjacent entorhinal cortex

  3. Characterization and distribution of (125I)epidepride binding to dopamine D2 receptors in basal ganglia and cortex of human brain

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, J.N.; Janowsky, A.; Neve, K.A. (Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia (USA))

    1991-06-01

    The distribution and pharmacology of the binding of {sup 125}I-epidepride, a substituted benzamide with high affinity and selectivity for dopamine (DA) D2 receptors in rat brain is described in human brain. Saturation analysis of the binding of {sup 125}I-epidepride to membranes derived from striatum and regions of cortex demonstrated similar Kd values (34 and 28-33 pM, respectively) but differing maximum density of binding site values (152 and 3-8 fmol/mg of protein, respectively). The pharmacological profile of binding in cortex was also similar to striatum (epidepride greater than spiperone greater than butaclamol = flupenthixol greater than clozapine) except that an additional low-affinity site, blocked by the alpha-2 adrenergic antagonist idazoxan, was present in cortex. Quantification by autoradiography also demonstrated the greatest binding in the basal ganglia, with the striatum exhibiting greater binding than the pallidal complex or midbrain regions. For the pallidum, binding in the external segment was higher than the internal segment. Within the midbrain the binding of {sup 125}I-epidepride correlated well with the known distribution of DA-containing cell bodies, with the substantia nigra (pars compacta and pars lateralis) and ventral tegmental area (A10) higher than area A8 and central gray. Binding in frontal and parietal cortex was highest in the internal layers (layers V and VI). Temporal cortex showed a 2-fold higher density of binding than other cortical regions and a trilaminar pattern; binding was greater in the external (layers I and II) and internal layers than in the middle layers (III and IV). This pattern changed in the parahippocampal complex. Within the lateral occipitotemporal cortex, binding was densest in layers I to III and very low in layers IV to VI, but binding was almost nonexistent in the adjacent entorhinal cortex.

  4. Migraine attacks the Basal Ganglia

    OpenAIRE

    Bigal Marcelo; Brawn Jennifer; Pendse Gautam; Nutile Lauren; Becerra Lino; Maleki Nasim; Burstein Rami; Borsook David

    2011-01-01

    Abstract Background With time, episodes of migraine headache afflict patients with increased frequency, longer duration and more intense pain. While episodic migraine may be defined as 1-14 attacks per month, there are no clear-cut phases defined, and those patients with low frequency may progress to high frequency episodic migraine and the latter may progress into chronic daily headache (> 15 attacks per month). The pathophysiology of this progression is completely unknown. Attempting to unr...

  5. A network model of basal ganglia for understanding the roles of dopamine and serotonin in reward-punishment-risk based decision making

    Directory of Open Access Journals (Sweden)

    Pragathi Priyadharsini Balasubramani

    2015-06-01

    Full Text Available There is significant evidence that in addition to reward-punishment based decision making, the Basal Ganglia (BG contributes to risk-based decision making as well. Despite this evidence, little is known about the computational principles and neural correlates of risk computation in this subcortical system. We have previously proposed a reinforcement learning based model of the BG that simulates the interactions between dopamine (DA and serotonin (5HT in a diverse set of experimental effects including reward, punishment and risk based decision making. Starting with the idea that the activity of DA represents reward prediction error, the model posits that serotoninergic activity in the striatum controls risk-prediction error. Our prior model of the BG was an abstract model that did not incorporate anatomical and cellular-level data. In this work, we expand the earlier model into a detailed network model of the BG and demonstrate the joint contributions of DA-5HT in risk and reward-punishment sensitivity. At the core of the proposed network model is the following insight regarding cellular correlates of value and risk computation. Just as DA D1 receptor (D1R expressing medium spiny neurons (MSNs of the striatum were thought to be neural substrates for value computation, we propose that DA D1R and D2R co-expressing MSNs, reported to occupy a significant proportion of the striatum and are implicated in disorders like schizophrenia and drug addiction, are capable of computing risk. Ours is the first-of-its-kind model that accounts for the significant computational possibilities of these co-expressing D1R-D2R MSNs, and describes how DA-5HT mediated activity in these classes of neurons (D1R-, D2R-, D1R-D2R- MSNs contribute to the BG dynamics. We also apply the model to capture the behaviour of PD patients in a probabilistic learning paradigm. The study observes that optimizing 5HT levels along with DA medication could be essential to improving the

  6. Can minimal invasive puncture and drainage for hypertension spontaneous basal ganglia intracerebral hemorrhage improve patient outcome: A prospective non-randomized comparative study

    Directory of Open Access Journals (Sweden)

    Guo-qiang WANG

    2014-08-01

    Full Text Available Objective The treatment of hypertensive spontaneous intracranial hemorrhage (ICH is still controversial. The purpose of the present study was to investigate whether minimally invasive puncture and drainage (MIPD could provide improved patient outcome compared with decompressive craniectomy (DC. Methods Eligible, consecutive patients with ICH (≥30 ml, in basal ganglia, within 24 hours of ictus were non-randomly assigned to receive MIPD (group A or to undergo DC (group B hematoma evacuation. The primary outcome was death at 30 days after onset. Functional independence was assessed at 1 year using the Glasgow Outcome Scale (GOS, scores range from 1 to 5, score 1 indicating death, ≥4 indicating functional independence, with lower scores indicating greater disability. Results A total of 198 patients met the per protocol analysis (84 cases in group A and 114 cases in group B, including 9 cases lost during follow-up (2 cases in group A and 7 cases in group B. For these 9 patients, their last observed data were used as their final results for intention-to-treat analysis. The mean age of all patients was 57.1 years (range of 31-95 years, and 144 patients were male. The initial Glasgow Coma Scale (GCS score was 8.1±3.4, and the National Institutes of Health Stroke Scale (NIHSS score was 20.8±5.3. The mean hematoma volume (HV was 56.7±23.0 ml (range of 30-144 ml, and there was extended intraventricular hemorrhage (IVH in 134 patients (67.7%. There were no significant intergroup differences in the above baseline data, except group A had a higher mean age (59.4±14.5 years than the mean age of group B (55.3±11.1 years, P =0.025. The total cumulative mortalities at 30 days and 1 year were 32.3% and 43.4%, respectively, and there were no significant differences between groups A and B (30 days: 27.4% vs 36.0%, P =0.203; 1 year: 36.1% vs 48.2%, P =0.112, respectively. However, the mortality for patients ≤60 years, NIHSS60 ml, deep coma and severe

  7. Hypoparathyroidism and intracerebral calcification in patients with beta-thalassemia major

    International Nuclear Information System (INIS)

    Background: Hypoparathyroidism is one of the most important endocrine complications of thalassemia major. This study was conducted to evaluate the prevalence of intracerebral calcifications in patients with thalassemia with and without hypoparathyroidism. Methods: 47 beta-thalassemia patients with hypoparathyroidism underwent a brain CT scan to investigate the presence and extent of intracerebral calcification. 30 age- and sex-matched beta-thalassemic patients with normal parathyroid function who had undergone brain CT for headache, or some other minor neurologic problems were also enrolled in the study serving as controls. The amount of intracerebral calcification, hematologic parameters, and some clinical findings were compared between both groups. Results: Intracerebral calcification was present in 54.2% of beta-thalassemia patients with hypoparathyroidism. The most frequent sites of calcification were basal ganglia, and frontoparietal areas of the brain. Thalami, internal capsule, cerebellum and posterior fossa were other less frequently calcified regions of the brain. In contrast, there was no evidence of intracerebral calcifications in the 30 thalassemic patients with normal parathyroid function. There was not a statistically significant difference between serum ferritin concentrations in thalassemia patient with hypoparathyroidism and those with normal parathyroid function (2781 vs. 2178, P > 0.05). Conclusion: Intracranial calcification is a common finding in thalassemia patients with hypoparathyroidism, it can be extensive and involves most regions of the brain.

  8. Hypoparathyroidism and intracerebral calcification in patients with beta-thalassemia major

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, M. [Iran-Shiraz-Namazee Hospital, Namazee Square, Hematology Research Center, Department of Pediatrics, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of)], E-mail: karimim@sums.ac.ir; Rasekhi, A.R. [Iran-Shiraz-Namazee Hospital, Namazee Square, Imaging Research Center, Department of Radiology, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of)], E-mail: rasekhia@sums.ac.ir; Rasekh, M. [Iran-Shiraz-Namazee Hospital, Namazee Square, Department of Endocrinology and Metabolism, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of)], E-mail: Rasekhm@sums.ac.ir; Nabavizadeh, S.A. [Iran-Shiraz-Namazee Hospital, Namazee Square, Imaging Research Center, Department of Radiology, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of)], E-mail: nabavia@gmail.com; Assadsangabi, R. [Iran-Shiraz-Namazee Hospital, Namazee Square, Imaging Research Center, Department of Radiology, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of)], E-mail: assadsangabi@yahoo.com; Amirhakimi, G.H. [Iran-Shiraz-Namazee Hospital, Namazee Square, Department of Endocrinology and Metabolism, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of)], E-mail: amirhakimig@sums.ac.ir

    2009-06-15

    Background: Hypoparathyroidism is one of the most important endocrine complications of thalassemia major. This study was conducted to evaluate the prevalence of intracerebral calcifications in patients with thalassemia with and without hypoparathyroidism. Methods: 47 beta-thalassemia patients with hypoparathyroidism underwent a brain CT scan to investigate the presence and extent of intracerebral calcification. 30 age- and sex-matched beta-thalassemic patients with normal parathyroid function who had undergone brain CT for headache, or some other minor neurologic problems were also enrolled in the study serving as controls. The amount of intracerebral calcification, hematologic parameters, and some clinical findings were compared between both groups. Results: Intracerebral calcification was present in 54.2% of beta-thalassemia patients with hypoparathyroidism. The most frequent sites of calcification were basal ganglia, and frontoparietal areas of the brain. Thalami, internal capsule, cerebellum and posterior fossa were other less frequently calcified regions of the brain. In contrast, there was no evidence of intracerebral calcifications in the 30 thalassemic patients with normal parathyroid function. There was not a statistically significant difference between serum ferritin concentrations in thalassemia patient with hypoparathyroidism and those with normal parathyroid function (2781 vs. 2178, P > 0.05). Conclusion: Intracranial calcification is a common finding in thalassemia patients with hypoparathyroidism, it can be extensive and involves most regions of the brain.

  9. Functional magnetic resonance imaging of basal ganglia. Activation mapping with FLASH sequences for BOLD contrast and high resolution; Funktionelle Magnetresonanztomographie der Basalganglien. Einsatz von FLASH-Sequenzen zum Aktivitaetsmapping mit BOLD-Kontrast und Hochaufloesung

    Energy Technology Data Exchange (ETDEWEB)

    Seelos, K.C. [Inst. fuer Radiologische Diagnostik, Klinikum Grosshadern, Univ. Muenchen (Germany); Bucher, S.F. [Neurologische Klinik und Poliklinik, Klinikum Grosshadern, Univ. Muenchen (Germany); Stehling, M.K. [Inst. fuer Radiologische Diagnostik, Klinikum Grosshadern, Univ. Muenchen (Germany); Oertel, W.H. [Neurologische Klinik und Poliklinik, Klinikum Grosshadern, Univ. Muenchen (Germany); Reiser, M. [Inst. fuer Radiologische Diagnostik, Klinikum Grosshadern, Univ. Muenchen (Germany)

    1995-04-01

    The activation pattern of putamen, internal and external division of globus pallidus was investigated during rapid pronation and supination of the right and left hand in 12 normal volunteers using a FLASH sequence with high resolution for functional magnetic resonance imaging (fMRI) at 1.5 T. The chosen paradigm for motor function led to a signal increase within the basal ganglia between 3 and 23%, depending on the structure and individual subject. In all cases significant activation could be found contralateral to the moving hand. In six cases activation was also found on the ipsilateral side. The activated areas within putamen, internal and external division of globus pallidus were less than 5 mm{sup 2}. These first results indicate that fMRI studies of basal ganglia are feasible and might be suitable for analyzing basal ganglia disorders. (orig.) [Deutsch] Das Aktivierungsmuster von Putamen, Globus pallidus internus und externus waehrend schneller Pronation und Supination von rechter und linker Hand wurde bei 12 normalen Probanden mit Hilfe einer fuer die funktionelle Magnetresonanztomographie (fMRT) geeigneten hochaufloesenden FLASH-Sequenz bei 1,5 Tesla untersucht. Der durch das Bewegungsparadigma verursachte Signalanstieg innerhalb der Basalganglien lag je nach Struktur und untersuchtem Individuum zwischen 3 und 23%. In allen Faellen war kontralateral zur bewegten Hand ein signifikanter Aktivitaetsanstieg nachweisbar. In 6 Faellen war auch auf der ipsilateralen Seite eine Aktivitaet nachweisbar. Die aktivierten Areale innerhalb von Putamen, Globus pallidus internus und externus waren nicht groesser als 5 mm{sup 2}. Diese ersten Ergebnisse zeigen, dass magnetresonanztomographische Funktionsuntersuchungen im Bereich der Basalganglien moeglich sind und geeignet erscheinen, um Erkrankungen dieser Systeme zu analysieren. (orig.)

  10. Do spotty high intensity regions found in basal ganglia on MRI T2-weighted brain images of elderly subjects indicate gliosis? Comparison of brain MRI T2-weighted images of elderly subjects and necropsy brain

    International Nuclear Information System (INIS)

    Spotty high intensity regions are frequently found on the MRI T2-weighted brain images (T2WI) of elderly people. High intensity regions with a diameter of 3 mm or less have been considered as expanded perivascular space with no pathological implications on radiological diagnosis. However, its morphometrical basis is not clear. We examined the character of the spotty regions using brain MRI of brain screening subjects, and studied morphometrically arteriolosclerosis and perivascular tissue damage using necropsy brains of subjects aged 65 years and over. The size, number and location of the spotty high intensity regions were examined using the brain MRI of 109 T2WI which is used for brain screening at Kanazawa Medical University Hospital. The frontal lobe, temporal lobe, parietal lobe, hippocampus, midbrain and basal ganglia were sampled from 15 subjects aged 65 years and over, and the tissue sections were processed for HE stain, Elastica van Gieson stain and immunostaining with GFAP. We took photographs of brain arterioli and surrounding parenchyma with a digital telescope camera and the degree of arterioscleosis and tissue damage were assessed by measurements with an image analyzer. Spotty high intensity regions on T2WI with a diameter of 3 mm or less were observed in 95.5% subjects aged 65 years and over. 69.4% spotty region was observed in basal ganglia. There was a significant correlation between age and size. In morphometrical examination, at the basal ganglia, the density of GFAP-positive astrocytes in the perivascular tissue had a significant positive correlation with the proportional thickness of the adventitia, which is an index of arteriosclerosis, and a significant negative correlation with the size of the perivascular space. The results suggested that the spotty regions in the brain MRI of elderly people do not represent dilatations of the perivascular space, but is mild brain damage caused by arteriosclerosis. (author)

  11. Dopamine-transporter SPECT and Dopamine-D{sub 2}-receptor SPECT in basal ganglia diseases; Dopamin-Transporter- und Dopamin-D{sub 2}-Rezeptor-SPECT bei Erkrankungen der Basalganglien

    Energy Technology Data Exchange (ETDEWEB)

    Hesse, S.; Barthel, H.; Seese, A.; Sabri, O. [Universitaetsklinikum Leipzig A.oe.R. (Germany). Klinik und Poliklinik fuer Nuklearmedizin

    2007-09-15

    The basal ganglia comprise a group of subcortical nuclei, which are essential for motor control. Dysfunction of these areas, especially in dopaminergic transmission, results in disordered movement and neurological diseases such as Parkinson's disease, Wilson's disease, or Huntington disease. Positron emission tomography and single photon emission computed tomography (SPECT) have enhanced the understanding of the underlying pathophysiology, but they much more contribute to the early differential diagnosis of patients suffering from Parkinsonian syndrome in routine care. The present article provides dopamine transporter and D{sub 2} receptor SPECT findings in selected movement disorders. (orig.)

  12. Leukoencephalopathy with intracranial calcifications and cysts in an adult: Case report and review of literature

    Directory of Open Access Journals (Sweden)

    Ummer K

    2010-01-01

    Full Text Available Leukoencephalopathy, intracranial calcifications, and cysts (LCC is a very rare cerebral disorder, first described in 3 children in 1996. It has subsequently been reported in adults and children from Europe and America, but has not so far been reported from Asia. We report an adult patient with pathologically proven LCC from a tertiary care hospital in South India. He presented with features of ataxia and raised intracranial pressure. Magnetic resonance imaging of the brain showed multiple bilateral cerebral cystic lesions along with diffuse white matter lesions in the cerebral and cerebellar white matter, and computed tomography of brain showed multiple calcifications in the white matter and basal ganglia. A large right cerebellar cyst causing mass effect was surgically excised. Histopathologic features were consistent with earlier reports of LCC and showed Rosenthal fibers, angiomatous changes, and calcifications. Our report suggests that although it is rare, LCC has a global distribution.

  13. Diffuse brain calcification after radiation therapy in infantile cerebral malignant glioma

    International Nuclear Information System (INIS)

    We reported a case of infantile cerebral malignant glioma, which showed extensive intracranial calcification following radiation therapy, and reviewed the literature. A 4-month-old female infant was admitted to our hospital because of vomiting, enlargement of the head and convulsive seizures. Computerized tomography (CT) scans demonstrated a heterogeneously contrast-enhanced mass in the right temporo-parieto-occipital region and marked obstructive hydrocephalus. Subsequent to ventriculo-peritoneal shunt, biopsy was performed. The surgical specimen revealed anaplastic glioma. She then underwent whole brain irradiation with 1800 rads before subtotal removal and 3000 rads postoperatively. Calcification was first identified in the right frontal region and left basal ganglia 2.5 months after radiation therapy. At the age of 14 months, CT scans demonstrated extensive intracranial calcification in the cerebral hemispheres, basal ganglias, thalami, pons and cerebellum. A biopsy specimen of the frontal lobe revealed calcospherites of various sizes within and beside the walls of small vessels, but no tumor cells were observed. Cranial radiation therapy is a standard modality for treatment of children with neoplasm in the central nervous system. Since, however this therapy possibly causes long-term complications on the developing brain, it is important to plan radiation therapy for the brain tumor carefully. (author)

  14. 经外侧裂岛叶入路显微清除高血压性基底节区脑出血%Transsylvian-transinsular approach for the microsurgical removal of hypertensive basal ganglia hemorrhage

    Institute of Scientific and Technical Information of China (English)

    刘永; 张玉海; 何升学; 赵金兵; 朱海涛; 张光绪; 邹元杰

    2015-01-01

    目的:探讨在显微镜下经外侧裂-岛叶入路清除高血压性基底节区脑出血的手术要点及脑组织和血管保护。方法回顾性分析18例经外侧裂-岛叶入路显微手术清除基底节区高血压脑出血患者临床资料。术后复查头颅CT了解血肿清除情况。采用Karnofsky功能状态评分评估术后3~6个月患者功能状态。结果本组血肿清除>90%16例,80%~90%1例;再出血1例。其中1例患者因术后严重肺部感染死亡。随访3~6个月,KPS 90~100分3例,60~80分9例,30~50分4例,10~20分1例。结论经外侧裂-岛叶入路有利于保护重要的大脑皮层和血管,是显微清除高血压性基底节区脑出血安全有效的手术方式。%Objective To explore the key points of transsylvian-transinsular approach to remove the hypertensive basal ganglia hemorrhage and adjacent brain tissue and blood vessels protection . Methods The clinical data of 18 patients who underwent the transsylvian-transinsular approach to remove the hypertensive basal ganglia hemorrhage were analyzed retrospectively .The volume of remaining hematoma was evaluated by postoperative CT scan .The Karnofsky performance score was used to evaluated patient outcome of 3-6 months after the surgery .Results The evacuation rate of hematoma was >90% in 16 patients and 80%-90% in 1.One case occured rehemorrhage .One patient died from severe pulmonary infection .The follow-up from 3 to 6 months showed KPS was 90~100 in 3 patients,60~80 in 9,30 ~50 in 4 and 10 ~20 in 1.Conclusion The transsylvian-transinsular approach was benefit to protect important cerebral cortex and vessels ,thus being a safe and effective operation method for microscopic removal of hypertensive basal ganglia hemorrhage .

  15. Behavior Cognition Computational Model Based on Cerebellum and Basal Ganglia Mechanism%基于小脑-基底神经节机理的行为认知计算模型

    Institute of Scientific and Technical Information of China (English)

    陈静; 阮晓钢; 戴丽珍

    2012-01-01

    针对智能体的行为认知问题,提出一种小脑与基底神经节相互协调的行为认知计算模型.该模型核心为操作条件学习算法,包括评价机制、行为选择机制、取向机制及小脑与基底神经节的协调机制.初期的学习信号来自于下橄榄体和黑质两部分,在熵的意义上说明该算法是收敛的.采用该学习方法为自平衡两轮机器人建立运动神经认知系统,利用RBF网络逼近行为和评价网络.仿真实验表明该方法改善仅有基底神经节作用的行为-评价算法学习速度慢和失败次数多的问题,学习后期通过温度的不断降低,加快学习速度,震荡逐渐消失,改善学习效果.%Aiming at agent' s behavioral cognition problem, a behavior cognition computational model based on the coordination of cerebellum and basal ganglia is proposed. Operant conditioning learning algorithm is the central algorithm including evaluation mechanism, action selection mechanism, tropism mechanism, and the coordination mechanism between cerebellum and basal ganglia. The learning signals come from not only the Inferior Olive but also the Substantia Nigra in the beginning. The convergence of the algorithm can be guaranteed in the sense of entropy. With the proposed method, a motor nerve cognitive system for the self-balancing two-wheeled robot has been built using the RBF neural network as the actor and evaluation function approximator. The simulation results show that the learning speed is increased as well as the failure times are reduced by the proposed method than by the Actor-Critic method with the only Basal Ganglia mechanism. Through decreasing temperature in the late stage, the learning speed is increased and the vibration disappeares eventually, and the learning effect is improved.

  16. Hepatocellular calcification

    DEFF Research Database (Denmark)

    Ladefoged, Claus; Frifelt, J J

    1987-01-01

    Autopsy of a twenty year old girl dying from complications of renal and cardiac failure demonstrated severe hepatocellular calcification, a rare finding. The pathogenesis is thought to be a combination of dystrophic calcification caused by severe centrilobular necrosis and metastatic calcification...

  17. Transcranial Magnetic Stimulation (TMS) as a Tool for Early Diagnosis and Prognostication in Cortico-Basal Ganglia Degeneration (CBD) Syndromes: Review of Literature and Case Report

    OpenAIRE

    Thomas Gregor Issac; Sadanandavalli Retnaswami Chandra; Nagaraju, B. C.

    2016-01-01

    Background: Cortico basal degeneration (CBD) of the brain is a rare progressive neurodegenerative disease which encompasses unique neuropsychiatric manifestations. Early diagnosis is essential for initiating proper treatment and favorable outcome. Transcranial Magnetic Stimulation (TMS), a well-known technique for assessment of cortical excitatory and inhibitory properties. It was suggested that in a degenerative disease like CBD which involves the cortex as well as the subcortical structures...

  18. Cardiac Calcification

    Directory of Open Access Journals (Sweden)

    Morteza Joorabian

    2011-05-01

    Full Text Available There is a spectrum of different types of cardiac"ncalcifications with the importance and significance"nof each type of cardiac calcification, especially"ncoronary artery calcification. Radiologic detection of"ncalcifications within the heart is quite common. The"namount of coronary artery calcification correlates"nwith the severity of coronary artery disease (CAD."nCalcification of the aortic or mitral valve may indicate"nhemodynamically significant valvular stenosis."nMyocardial calcification is a sign of prior infarction,"nwhile pericardial calcification is strongly associated"nwith constrictive pericarditis. A spectrum of different"ntypes of cardiac calcifications (linear, annular,"ncurvilinear,... could be seen in chest radiography and"nother imaging modalities. So a carful inspection for"ndetection and reorganization of these calcifications"nshould be necessary. Numerous modalities exist for"nidentifying coronary calcification, including plain"nradiography, fluoroscopy, intravascular ultrasound,"nMRI, echocardiography, and conventional, helical and"nelectron-beam CT (EBCT. Coronary calcifications"ndetected on EBCT or helical CT can be quantifie,"nand a total calcification score (Cardiac Calcification"nScoring may be calculated. In an asymptomatic"npopulation and/or patients with concomitant risk"nfactors like diabetes mellitus, determination of the"npresence of coronary calcifications identifies the"npatients at risk for future myocardial infarction and"ncoronary artery disease. In patients without coronary"ncalcifications, future cardiovascular events could"nbe excluded. Therefore, detecting and recognizing"ncalcification related to the heart on chest radiography"nand other imaging modalities such as fluoroscopy, CT"nand echocardiography may have important clinical"nimplications.

  19. Transcranial magnetic stimulation (TMS as a tool for early diagnosis and prognostication in Cortico-basal ganglia degeneration (CBD syndromes: Review of literature and case report

    Directory of Open Access Journals (Sweden)

    Thomas Gregor Issac

    2016-01-01

    Full Text Available Background: Cortico basal degeneration (CBD of the brain is a rare progressive neurodegenerative disease which encompasses unique neuropsychiatric manifestations. Early diagnosis is essential for initiating proper treatment and favorable outcome. Transcranial Magnetic Stimulation (TMS, a well-known technique for assessment of cortical excitatory and inhibitory properties. It was suggested that in a degenerative disease like CBD which involves the cortex as well as the subcortical structures, comparing both hemispheres, a differential pattern in TMS can be obtained which would help in early identification, prognostication and early therapeutic intervention. Case Report: We describe a case of CBD with corroborative clinical and imaging picture wherein single pulse TMS was used over both the hemispheres measuring the following parameters of interest which included: Motor Threshold (MT, Central Motor Conduction Time (CMCT and Silent Period (SP. Results and Conclusion: Differential patterns of MT, CMCT and SP was obtained by stimulating over both the hemispheres with the affected hemisphere showing significantly reduced MT and prolonged CMCT implying early impairment of cortical and subcortical structures thereby revealing the potential application of TMS being utilized in a novel way for early detection and prognostication in CBD syndromes.

  20. Germinoma localizado nos núcleos da base e tálamo com invasão do tronco cerebral: relato de caso Germinoma involving the basal ganglia and thalamus with brain stem invasion: case report

    Directory of Open Access Journals (Sweden)

    ROBERTO GOMES NOGUEIRA

    1998-09-01

    Full Text Available Descrevemos o caso de um paciente com diagnóstico de germinoma nos núcleos da base e tálamo, com invasão do tronco cerebral, ressaltando as características observadas nos exames de tomografia computadorizada e de ressonância magnética, os possíveis diagnósticos diferenciais, e a necessidade da comprovação anátomo-patológica, por tratar-se de localização pouco frequente de um tumor com possibilidade de evolução favorável após tratamento com quimio e radioterapia.We report an unusual case of germinoma arising from the basal ganglia and thalamus with brain stem invasion, with emphasis on computed tomography and magnetic resonance findings. Diagnosis was confirmed by histopathologic examination. Early detection of this tumor is important due to its potential response to treatment.

  1. A pilot study of basal ganglia and thalamus structure by high dimensional mapping in children with Tourette syndrome [v1; ref status: indexed, http://f1000r.es/1yu

    Directory of Open Access Journals (Sweden)

    Alton C. Williams

    2013-10-01

    Full Text Available Background: Prior brain imaging and autopsy studies have suggested that structural abnormalities of the basal ganglia (BG nuclei may be present in Tourette Syndrome (TS. These studies have focused mainly on the volume differences of the BG structures and not their anatomical shapes.  Shape differences of various brain structures have been demonstrated in other neuropsychiatric disorders using large-deformation, high dimensional brain mapping (HDBM-LD.  A previous study of a small sample of adult TS patients demonstrated the validity of the method, but did not find significant differences compared to controls. Since TS usually begins in childhood and adult studies may show structure differences due to adaptations, we hypothesized that differences in BG and thalamus structure geometry and volume due to etiological changes in TS might be better characterized in children. Objective: Pilot the HDBM-LD method in children and estimate effect sizes. Methods: In this pilot study, T1-weighted MRIs were collected in 13 children with TS and 16 healthy, tic-free, control children. The groups were well matched for age.  The primary outcome measures were the first 10 eigenvectors which are derived using HDBM-LD methods and represent the majority of the geometric shape of each structure, and the volumes of each structure adjusted for whole brain volume. We also compared hemispheric right/left asymmetry and estimated effect sizes for both volume and shape differences between groups. Results: We found no statistically significant differences between the TS subjects and controls in volume, shape, or right/left asymmetry.  Effect sizes were greater for shape analysis than for volume. Conclusion: This study represents one of the first efforts to study the shape as opposed to the volume of the BG in TS, but power was limited by sample size. Shape analysis by the HDBM-LD method may prove more sensitive to group differences.

  2. Clinical analysis of symmetrical pathological changes involving bilateral basal ganglia in 28 children.%儿童基底节对称性病变28例临床分析

    Institute of Scientific and Technical Information of China (English)

    徐三清; 刘艳; 方峰; 周华; 罗小平

    2009-01-01

    Objective To explore and analyze the pathogenesis,clinical characteristics and prognosis of symmetrical pathological changes involving bilateral basal ganglia in children. Methods Analyzing retrospectively clinical data of 28 inpatients with the performance of brain damage and symmetrical low-density lesions on plain CT scans and/or low-signal on MRI T1 weighted imaging, high-signal on MRI T2 weighted imaging involving bilateral basal ganglia. Results Six patients first had fever,cough and (or) vomiting,diarrhea and subsequently progressed rapidly to convulsions, coma and also had marked acidosis, increased blood lactate and pyruvate levels,in which three cases were diagnosed as methylmalonic acidaemia,two were diagnosed as α-keto-glutaric aciduria,one was diagnosed as lactic academia;One 7-month-old infant with delayed motor development,feeding difficulties and repeated seizure was diagnosed as lactic academia;One simple breast-feeding patient with cerebral vitamine Bl deficiency had hoarse cry,muscular weakness,convulsion and good effect to vitamine Bl intramuscular injection;Eighteen cases with hepatolenticular degeneration had muscular hypertonia,tremor, salivation, ataxia, speech unclear and memory decline, in which 13 cases were accompanied by hepatomegaly, 10 cases were accompanied by splenomegaly,two cases were accompanied by liver cirrhosis and two cases were accompanied by hypersplenism; One case with moldy sugarcane poisoning and one case with carbon monoxide-induced toxic encephopathy had cognitive and motor dysfunction which recovered slowly. Conclusion Many causes can lead to symmetrical pathological changes involving bilateral basal ganglia with diverse symptoms in children. The diseases should be diagnosed early by illness history, clinical features, imaging study and laboratory tests including the screening for metabolic disorders, which can help treat them effectively and improve the prognosis.%目的 探讨和分析儿童基底节区对称性

  3. Multiplexed coding in the human basal ganglia

    Science.gov (United States)

    Andres, D. S.; Cerquetti, D.; Merello, M.

    2016-04-01

    A classic controversy in neuroscience is whether information carried by spike trains is encoded by a time averaged measure (e.g. a rate code), or by complex time patterns (i.e. a time code). Here we apply a tool to quantitatively analyze the neural code. We make use of an algorithm based on the calculation of the temporal structure function, which permits to distinguish what scales of a signal are dominated by a complex temporal organization or a randomly generated process. In terms of the neural code, this kind of analysis makes it possible to detect temporal scales at which a time patterns coding scheme or alternatively a rate code are present. Additionally, finding the temporal scale at which the correlation between interspike intervals fades, the length of the basic information unit of the code can be established, and hence the word length of the code can be found. We apply this algorithm to neuronal recordings obtained from the Globus Pallidus pars interna from a human patient with Parkinson’s disease, and show that a time pattern coding and a rate coding scheme co-exist at different temporal scales, offering a new example of multiplexed neuronal coding.

  4. Basal ganglia contributions to adaptive navigation.

    Science.gov (United States)

    Mizumori, Sheri J Y; Puryear, Corey B; Martig, Adria K

    2009-04-12

    The striatum has long been considered to be selectively important for nondeclarative, procedural types of memory. This stands in contrast with spatial context processing that is typically attributed to hippocampus. Neurophysiological evidence from studies of the neural mechanisms of adaptive navigation reveals that distinct neural systems such as the striatum and hippocampus continuously process task relevant information regardless of the current cognitive strategy. For example, both striatal and hippocampal neural representations reflect spatial location, directional heading, reward, and egocentric movement features of a test situation in an experience-dependent way, and independent of task demands. Thus, continual parallel processing across memory systems may be the norm rather than the exception. It is suggested that neuromodulators, such as dopamine, may serve to differentially regulate learning-induced neural plasticity mechanisms within these memory systems such that the most successful form of neural processing exerts the strongest control over response selection functions. In this way, dopamine may serve to optimize behavioral choices in the face of changing environmental demands during navigation. PMID:19056429

  5. A case of idiopathic intracranial calcifications - Hahr syndrome

    International Nuclear Information System (INIS)

    Full text: The purpose of the study is to review the clinical manifestation, imaging characteristics and pathophysiology of the Fahr syndrome and to present a case of the Fahr syndrome from our clinic. The Fahr syndrome is a rare neurodegenerative disorder, characterized by seizures, tetany, psychomotor retardation, development of a spastic paralysis, athetosis and parkinson like syndrome. It is inherited by an AR way but in affected families (relatives) an AD way is also possible. Sporadic cases have been known. Recently a possible chromosome locus on 14q was proved. Probably the case in point is a group of anomalies, in which symmetrically and bilaterally significant calcifications in the region of the basal ganglia, dentate nuclei in cerebellum and centrum semiovale are found. It is not clear yet whether these calcifications are a result from a 'metastatic' deposition because of a local destruction of the blood-brain barrier or are due to a disturbance in the neuronic calcium metabolism. The X-ray findings could be accidental in an asymptomatic patient but a progressive development of an extrapyramidal syndrome may be also observed. Our case is a 37 years old woman with seizures with loss of consciousness, convulsions and urine incontinence. The complaints are dated from the age of 5 years old. The X-ray images disclosed striking non-natural calcifications in globus pallidus, putamen, n.caudatus, thalami, n.dentati, cerebellum.The blood test revealed normal serum levels of calcium, phosphorus, alkaline phosphatase. The CT findings put together with the typical clinical history and the normal blood test were a prerequisite for this diagnosis

  6. Psychotic disorder in the course of Systemic Lupus Erythematosus with subcortical calcifications – case report

    Directory of Open Access Journals (Sweden)

    Malec, Michalina

    2014-04-01

    Full Text Available Systemic Lupus Erythematosus (SLE is autoimmunological disease of connective tissue which is characterized with clinical symptoms of many systems and organs injury. There are often neuropsychiatric symptoms. Psychotic disorder is the least frequent syndrome. Neuropsychiatric symptoms are important because they deteriorate the quality of life and are poor prognostic factor. Aim: The aim of the study is to present the patient with chronic, lasting for many years, skin lesions and laboratory tests results characteristic for SLE, who had psychotic disorder diagnosed as schizophrenia and in the next few years there were observed other neuropsychiatric symptoms including cognitive impairment and mood disorder. Conclusions: Psychotic disorder is rare syndrome of neuropsychiatric SLE (NPSLE. It may primarily originate from SLE or be secondary either to the therapy or the complications of the disease. It is not possible to define if the psychosis is the primary schizophrenic process or secondary to the autoimmune disease in presented patient. However the clinical picture pays attention to the significance of careful diagnostic process, including neuroimaging. In head CT of presented patient there were revealed massive, bilateral, calcifications of subcortical structures which probably substantially enhanced neuropsychiatric symptoms. Key words: Neuropsychiatric Lupus Erythematosus, schizophrenia, calcification of the basal ganglia

  7. Early recognition of basal cell naevus syndrome

    NARCIS (Netherlands)

    Veenstra-Knol, HE; Scheewe, JH; van der Vlist, GJ; van Doorn, ME; Ausems, MGEM

    2005-01-01

    The basal cell naevus syndrome is an autosomal dominant syndrome characterised by major manifestations such as basal cell carcinomas, jaw cysts, palmar or plantar pits, and intracranial calcifications. Early recognition is important in order to reduce morbidity due to cutaneous and cerebral malignan

  8. Metastatic Basal Cell Carcinoma Accompanying Gorlin Syndrome

    OpenAIRE

    Yeliz Bilir; Erkan Gokce; Banu Ozturk; Faik Alev Deresoy; Ruken Yuksekkaya; Emel Yaman

    2014-01-01

    Gorlin-Goltz syndrome or basal cell nevus syndrome is an autosomal dominant syndrome characterized by skeletal anomalies, numerous cysts observed in the jaw, and multiple basal cell carcinoma of the skin, which may be accompanied by falx cerebri calcification. Basal cell carcinoma is the most commonly skin tumor with slow clinical course and low metastatic potential. Its concomitance with Gorlin syndrome, resulting from a mutation in a tumor suppressor gene, may substantially change morbidity...

  9. The recent prognosis after operation of hypertensive basal ganglia hemorrhage by using CT perfusion imaging%应用 CT 灌注成像预测基底节区高血压脑出血术后近期预后的研究

    Institute of Scientific and Technical Information of China (English)

    郑念东; 张道宝; 万晓强; 王山; 卫正洪

    2016-01-01

    目的:探讨CT灌注成像对基底节区高血压脑出血术后近期预后的评估作用。方法2012年6月至2013年9月高血压脑出血术后患者81例,术后两周行基底节区CT灌注成像,术后3月为患者行日常生活能力( ADL)分级评估,了解患者近期预后与术区局部脑血容量( rCBV)、局部脑血流量( rCBF)、平均通过时间( MTT)的相关性。结果 Logistic多元回归分析结果显示,rCBV、rCBF及MTT是影响患者预后的独立危险因素,患者近期预后与rCBV、rCBF呈正相关,与MTT呈负相关( P<0.05)。结论 CT灌注成像对预测患者近期预后有指导意义,患者的近期预后和术区周围脑组织的灌注状态密切相关,灌注越好,患者的近期预后越好。%Objective To investigate the evaluation effect of CT perfusion imaging on recent prognosis of hypertensive basal ganglia hemorrhage after operation .Methods Eighty-one patients with hypertensive basal ganglia hemorrhage after operation from June 2012 to September 2013 received CT perfusion imaging examination after 2 weeks of operation .Ability of daily life was estimated after 3 months of operation .The correlation between the recent prognosis and rCBV ,rCBF and MTT of operation area was explored .Results Logistic multivariate regression analysis showed that rCBV ,rCBF and MTT were independent risk factors of prognosis .The recent prog-nosis was positively correlated with rCBV and rCBF but negatively correlated with MTT ( P<0.05 ) .Conclusion The CT perfusion imaging has a guiding significance for recent prognosis of the patients .The recent prognosis was closely related to the brain tissue perfu-sion status in the operation area .The better perfusion the patients have ,they may have better recent prognosis .

  10. Bilateral lunate intraosseous ganglia

    International Nuclear Information System (INIS)

    An intraosseous ganglion is a relatively uncommon, benign, cyst-like lesion that occurs in young and middle-aged adults. Most commonly seen adjacent to the hip, ankle, knee, or wrist, they are histologically identical to their soft tissue counterparts. A review of the literature revealed only two previously reported examples of bilateral symmetrical ganglia of the lunate bones. (orig.)

  11. Association Between Depressive Disorders and Early Progressive Motor Deficits Among Patients with Cerebral Infarcts in Basal Ganglia Region%抑郁障碍与基底节区脑梗死患者早期运动障碍加重的关系

    Institute of Scientific and Technical Information of China (English)

    伍明; 李梅笑

    2013-01-01

    Objective To explore the impact of depressive disorders on early progressive motor deficits among patients with cerebral infarcts of basal ganglia region.Methods Eighty-five patients with first cerebral infarcts in basal ganglia region were enrolled into this study.All patients were examined with brain magnetic resonance imaging (MRI),magnetic resonance angiography (MRA) and diffusion weighted imaging (DWI).According to the Hamilton Depression Rating Scale scores on admission,patients were divided into non-depressive disorders group and depressive disorders group.Based on NIHSS scores of early progressive motor deficits,each above-mentioned group was further divided into stable subgroup and progressive subgroup.The occurrence rate of early progressive motor deficits,front-to-back ratio of volume of lesions (V2/V1),pathological changes in the middle cerebral artery (MCA),blood pressure,blood lipids and fasting blood glucose were compared between non-depressive disorders and depressive disorders groups.Results The occurrence rate of early progressive motor deficits in depressive disorders group was significantly higher than that of non-depressive disorders group (10/27,37.04 % vs 9/58,15.52%,x2 =4.92,P =0.03).MCAs were obviously stenosing or occlusive (37/85,43.53 %) in cerebral infarcts of basal ganglia region,but no statistically significant difference was found in the pathological changes in the MCA between non-depressive disorders and depressive disorders groups (x2 =0.34,P =0.56).V2/V1 of progressive subgroups was larger than that of stable subgroups,and V2/V1 of depressive disorders groups was significantly different from that of non-depressive disorders in progressive subgroups (F =167.39,P =0.00).Systolic blood pressure and fasting blood glucose were significantly higher in the progression of the disease,and there was a significantly correlation between fasting blood glucose and depressive disorders (r =0.425,P =0.000).Conclusions Depressive disorders

  12. Calcifications in keloid

    Energy Technology Data Exchange (ETDEWEB)

    Reinartz, H.; Meissner, G.

    1985-06-01

    Ossification as a dystrophic alteration of scar tissue is not an unusual radiologic finding in patients who have had a laparotomy. Calcification or ossification in other than abdominal scars following injury, however, represent an extremely rare entity. A case of calcifications in posttraumatic keloid forming in the submandibular soft tissue is presented and the pathogenesis is discussed.

  13. Bilateral lunate intraosseous ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Pablos, J.M. [Department of Radiology, Hospital San Juan de Dios, Seville (Spain); Valdes, J.C. [Department of Radiology, Cemedi, Seville (Spain); Gavilan, F. [Department of Pathology, Hospital Universitario Virgen del Rocio, Seville (Spain)

    1998-12-01

    An intraosseous ganglion is a relatively uncommon, benign, cyst-like lesion that occurs in young and middle-aged adults. Most commonly seen adjacent to the hip, ankle, knee, or wrist, they are histologically identical to their soft tissue counterparts. A review of the literature revealed only two previously reported examples of bilateral symmetrical ganglia of the lunate bones. (orig.) With 3 figs., 10 refs.

  14. 早期抗抑郁治疗对基底节区脑出血患者预后的影响研究%Effect of early anti-depression therapy on prognosis of patients with intracerebral hemorrhage in basal ganglia

    Institute of Scientific and Technical Information of China (English)

    吴丽华; 王怡雯; 郝磊; 田洪; 张玉波; 周虎传; 刘磊

    2015-01-01

    目的:探讨早期抗抑郁治疗对基底节区脑出血患者预后的影响。方法103例患者随机分为两组。对照组给予常规治疗和护理,实验组在对照组基础上给予早期抗抑郁治疗,包括早期心理干预和抗抑郁药物治疗。采用汉密尔顿抑郁量表评分(HAMD-17)、临床神经功能缺损评分(NFA)、简式Fugl-Meyer评分(FMA)及Barthel 指数BI评定,比较入院时和治疗后3个月的评分变化,评估患者抑郁状态、神经功能缺损、运动功能以及日常生活能力。结果治疗后3个月,与对照组比较,实验组HAMD评分、FMA评分、BI指数均优于对照组(P<0.01),两组NFA评分无显著差异(P>0.05)。结论早期抗抑郁治疗能够缓解基底节区脑出血患者的不良情绪,并能提高患者的预后和日常生活能力。%Objective To investigate the effect of early anti-depression therapy on the prognosis of patients with intracerebral hemorrhage in the basal ganglia .Methods 103 patients were randomly divided into 2 groups:anti-depression group and control group;routine treatment was provided to patients in both groups ,while anti-depression therapy was added to patients in anti-depression group , including early psychological intervention and anti-depression drugs;Hamilton Depression Scale ( HAMD-17 ) , Neurological Function Assessment(NFA),Fugl-Meyer Assessment(FMA),and Bathel Index(BI)were used to evaluated the conditions of patients in both groups and the changes of the scores at admission and 3 months after treatment were comparatively analyzed , the evaluation of depression,neurological deficits,motor function and activities of daily living was made .Results 3 months after treatment,the scores of HAMD,FMA and BI of the patients in anti-depression group were superior to those of the patients in control group (P0.05).Conclusion Early anti-depression therapy can relieve the unhealthy mood of the patients with

  15. MRI of intracranial calcifications

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jin Wha; Chang, Kee Hyun; Park, Jung Mi; Han, Moon Hee; Han, Man Chung; Kim, Chu Wan [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1988-12-15

    Recently computed tomography(CT) has been rapidly replaced by magnetic resonance imaging (MRI) in diagnosis of majority of intracranial diseases. But MRI still has some limitation, one of which is its inferiority in detecting calcification. MRI of intracranial calcification has been known to be variable in signal intensity. We retrospectively analyzed the MRI of 26 patients with intracranial calcified lesions in order to evaluate the MR intensity of calcification and to assess the capability of MRI in detecting calcification in various intracranial lesions. All the MRI were obtained using routine T1-and T2-weighted spin eco pulse sequences on 2.0T superconducting system. The 26 patients consisted of 13 brain tumors (4 oligodendrogliomas, 2 craniopharyngiomas, 2 astrocytomas, 1 gem cell tumor, 1 medulloblastoma, 1 ependympma, and pathologically unconfirmed 2 cases), 11 infectious diseases (1 paragonimiasis, 1 sparganosis, 2 cysticercosis, 3 tuberculosis, and 4 unknown cases), and 2 undetermined pathologies. Eighty-two percent (9/11) of infections disease, and 50% (1/2) of undetermined group showed signal diminution or signal void on both T1-and T2-weighted image (T1W1, T2W1). Twenty-four percent (3/13) of brain tumors showed signal diminution on both T1W1 and T2W1. In 46% (6/13) and 61% (8/13) of brain tumors the signal intensities were isointense on T1W1 and T1W1, respectively. Unexpectedly, 3 oligodendrogliomas showed high signal intensity on T1W1, two of which showed com plexed signal intensity mixed with high, iso, and low signal intensities on T2W1. In remained cases (18% (2/11) of infectious diseases and 50% (1/2) of undetermined group) the signal intensities were mixed. With simultaneous review of CT and MRI in each case, the calcification (at least one in cases showing multiple ones) was identifiable on MRI in 62% (8/13) of rumors, 82% (9/11) of infectious diseases, and 100% (2/2) in undetermined group. In 36% (4/11) of infectious diseases, fewer number of

  16. 帕金森病患者基底节区的磁共振氨基质子转移成像研究%Amide proton transfer MR imaging at 3.0 T of the basal ganglia in Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    王蕊; 李春媚; 陈敏; 张晨; 周进元; 苏闻

    2015-01-01

    目的 探讨磁共振氨基质子转移成像(APT)技术对于发现帕金森病患者基底节异常改变的可行性.方法 收集27例帕金森病患者和23名年龄及性别相匹配的健康对照者进行头颅APT成像和常规磁共振检查.测量双侧苍白球、壳核和尾状核的酰胺质子不对称磁化转移率(MTRasym),分别采用独立样本t检验和配对样本t检验比较帕金森病患者与健康对照者、帕金森病患者起病侧和对侧各脑结构MTRasym (3.5 ppm)的差异.使用单因素方差分析比较健康对照者和不同严重程度帕金森病患者间各脑结构MTRasym(3.5 ppm)的差异.结果 帕金森病患者苍白球、壳核和尾状核的MTRasym (3.5 ppm)均高于健康对照者[分别为(0.89±0.12)%与(0.57 ±0.16)%,(1.05±0.11)%与(0.82±0.15)%,(1.15±0.13)%与(0.78 ± 0.19)%;t=3.311、2.562和3.277,均P<0.05].健康对照组、轻度和中重度帕金森病组基底节各脑结构MTRasym(3.5 ppm)的差异具有统计学意义,且轻度帕金森病患者苍白球、壳核和尾状核的MTRasym(3.5 ppm)明显高于健康对照者.帕金森病患者基底节各脑结构起病侧的MTRasym(3.5 ppm)虽均略低于对侧,但差异均无统计学意义.结论 APT成像技术可以敏感地显示早期帕金森病患者和健康对照者基底节各脑结构MTRasym(3.5 ppm)的差异,是一种评价帕金森病患者脑代谢异常的有效工具.%Objective To explore the feasibility of amide proton transfer (APT) MR imaging for the detection of basal ganglia abnormalities in patients with Parkinson' s disease (PD).Methods Twentyseven patients with PD and twenty-three age-matched normal control subjects underwent cerebral APT and structural MR imaging.The magnetic resonance ratio asymmetry (MTRasym) values at 3.5 ppm of bilateral globus pallidus,putamen and caudate were measured on APT images.MTRasym (3.5 ppm) values of cerebral structures between PD patients and control subjects were compared with

  17. Calcifications in the buttock

    International Nuclear Information System (INIS)

    The majority of injections intended to be intramuscular are actually delivered into fat in the area of the buttock in most of the patients having a thick gluteal fat layer. Injections of some drugs can cause tissue necrosis that ensues in scar formation and often in dystrophic calcification giving rise to ring-like densities in antero-posterior radiographs of the pelvis. We studied the incidence and characteristics of calcifications in the buttocks frequently noted in pelvic radiographs and whether they have any relationship with thickness and distribution pattern of the fat layer in the buttocks. Pelvic radiograms of 220 consecutive patients (110 males and 110 females) with the age ranging from 16 to 76 years (average 39) were reviewed. The area of buttock was divided arbitrarily into four quadrants by the vertical line crossing the center of the head of each femur and the horizontal line connecting the summit of each femoral head, and the upper outer quadrant was further divided into four quadrants. We measured the thickness of the extraperitoneal fat layer at the level where it cross the iliac crest bilaterally. The results were as follows: 1. Thirty out of 220 cases (14%) showed calcifications in the buttock. 2. Calcifications in the buttock were much more frequent in female than in male (ρ < 0.01). 3. The incidence of calcifications increased with age (ρ < 0.01) and with increase in fat layer thickness (ρ < 0.01). 4. Calcifications in the buttock were mostly located at the upper outer quadrant of the buttock (78%). 5. In conclusion, we assume that calcifications in the buttock are result of fat necrosis after injection into fat instead of muscle

  18. PET activation in basal ganglia disorders: Parkinson's disease and dystonia

    International Nuclear Information System (INIS)

    This article reviews PET activation studies with performance of different motor paradigms (joy-stick movements, imagination of movement, writing) in patients with movement disorders. The focus will be on Parkinson's disease (PD) and dystonia. PET findings will be related to clinical and electrophysiological observations. PET activation studies before and after therapeutic interventions such as pallidotomy in Parkinson's disease and botulinum toxin in writer's cramp are described. The contribution of PET activation studies to the understanding of the pathophysiology of dystonia and PD is discussed. (orig.)

  19. Volumetric changes in the Basal Ganglia after antipsychotic monotherapy

    DEFF Research Database (Denmark)

    Ebdrup, B H; Nørbak, H; Borgwardt, S; Glenthøj, B

    2013-01-01

    studies. Results: We identified 13 studies published in the period from 1996 to 2011. Overall six compounds (two classified as FGAs and four as SGAs) have been investigated: haloperidol, zuclophentixol, risperidone, olanzapine, clozapine, and quetiapine. The follow-up period ranged from 3-24 months...

  20. [Disk calcifications in children].

    Science.gov (United States)

    Schmit, P; Fauré, C; Denarnaud, L

    1985-05-01

    It is not unusual for intervertebral disk calcifications to be detected in pediatric practice, the 150 or so cases reported in the literature probably representing only a small proportion of lesions actually diagnosed. Case reports of 33 children with intervertebral disk calcifications were analyzed. In the majority of these patients (31 of 33) a diagnosis of "idiopathic" calcifications had been made, the cervical localization of the lesions being related to repeated ORL infections and/or trauma. A pre-existing pathologic factor was found in two cases (one child with juvenile rheumatoid arthritis treated by corticoids and one child with Williams and Van Beuren's syndrome). An uncomplicated course was noted in 31 cases, the symptomatology (pain, spinal stiffness and febricula) improving after several days. Complications developed in two cases: one child had very disabling dysphagia due to an anteriorly protruding cervical herniated disc and surgery was necessary; the other child developed cervicobrachial neuralgia due to herniated disc protrusion into the cervical spinal canal, but symptoms regressed within several days although calcifications persisted unaltered. These findings and the course of the rare complications documented in the literature suggest the need for the most conservative treatment possible in cases of disc calcifications in children. PMID:4032343

  1. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    Science.gov (United States)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  2. Nanoparticles (nanobacteria) responsible from calcification

    OpenAIRE

    Dal, Tuba; Dal, Mehmet Sinan

    2011-01-01

    Calcifying nanoparticles (CNPs) are particles smaller (80-500nm) than known bacteria and have bacteria-like features (membrane structures, in two division, colony formation). CNPs have shown in human and animal sera, human\\'s pathological calcifications (kidney stones, dental pulp stones, heart valve calcifications, arterial calcifications, psammoma bodies in ovarian cancer, etc.), the nature\\'s calcifications (travertines, etc.) and Mars meteors. CNPs are able to grow in Dulbecco's m...

  3. Cell mediated calcification and matrix vesicles

    International Nuclear Information System (INIS)

    This publication on calcification and the sequence of events directed by the cell to facilitate this process contains the following topics: New Ultrastructural Techniques for Study of Calcification; Mechanisms of Matrix Vesicle Calcification; Role of Mitochondria, Matrix Proteins and Cytokines in Calcification; Role of Phospholipids and Membranes in Calcification; Biogenesis of Matrix Vesicles in Vivo and in Vitro; Calcification and Ossification in Vitro; Calcific Diseases and Abnormal Bone Mineralization. (Auth.)

  4. Calcific retropharyngeal tendinitis

    International Nuclear Information System (INIS)

    Calcific retropharyngeal tendinitis is an imflammation of the longus colli muscle tendon which is located on the anterior surface of the verterbral column extending from the atlas to the third thoracic vertebra. The acute inflammatory condition is selflimiting with symptoms consisting of a gradually increasing neck pain often associated with throat pain and difficulty swallowing. The pain is aggravated by head and neck movement. Clinically the condition can be confused with retropharyngeal absecess, meningitis, infectious spondylitis, and post-traumatic muscle spasm. The radiographic features of this condition consist of pre-vertebral soft tissue swelling from C1 to C4 and amorphous calcific density in the longus colli tendon anterior to the body of C2 and inferior to the anterior arch of C1. (orig.)

  5. The Treatment of Intracranial Hematoma Drainage by Drilling Cranium at the Frontal Region for Basal Ganglia Hemorrhage in 109 Cases%额部钻颅血肿引流术治疗高血压基底节区脑出血109例

    Institute of Scientific and Technical Information of China (English)

    罗德群

    2012-01-01

    目的 探索一种新的手术方法治疗高血压脑出血,既能避开重要功能区及重要血管分布区,又能达到与其他穿刺术式引流效果相仿. 方法 回顾性分析我科2010年8月至2011年10月行新术式穿刺的高血压脑出血患者109例,所有患者均经头颅CT确诊,根据多田公式计算出血量,分别采用局麻或全麻下额部钻颅软通道引流血肿78例,额部钻颅血肿引流配合脑室外引流20例,单纯行脑室外引流术11例. 结果 术后2~5d复查头颅CT示:血肿完全清除19例;血肿清除90%以上37例,血肿清除80%以上43例,清除50%以上8例,血肿清除小于50%2例;未发生切口及颅内感染;术后死亡6例. 结论 额部钻颅血肿引流术治疗高血压基底节区脑出血能有效避免对重要脑组织的损伤,减少手术并发症;血肿清除率高,提高了患者的生存率和生存质量.%Objective To explore a new operative method for the treatment of hypertensive cerebral hemorrhage which can avoid the damage to the functional area and important vascular area while also can a-chieve the same therapeutic equivalence as traditional operations. Methods The clinical results were retrospectively analyzed in 109 cases of hypertensive cerebral hemorrhage underwent the new operative method in our department from August, 2010 to October, 2011. All the cases were confirmed by CT scam as the basal ganglia hemorrhage. Intracranial hematoma drainage by drilling cranium at the frontal region was done for all the cases. Results Two to five days after operation, the intracranial hematoma was completely disappeared in 19 patients, 90% above cleared in 37 patients, 80% above cleared in 43 patients, 50% above cleared in 8 patients and less than 50% decreased in 2 patients. Neither intracranial infection nor wound infection was observed. Six patients died after the operation. Conclusion It can effectively avoid the damage to the important brain tissue, decrease complications

  6. Non-communicating intramuscular ganglia

    International Nuclear Information System (INIS)

    Intramuscular ganglia are rare. Most of the previously reported cases were connected with an adjacent joint. We present the imaging findings in three patients who had intramuscular ganglia that were not connected with a joint. Magnetic resonance showed a septated, encapsulated mass that was iso- or hypointense to muscle on T1-weighted and hyperintense on T2-weighted images. A post-contrast T1-weighted scan in one patient showed minimal capsular enhancement. Ultrasound performed in one case showed an encapsulated, anechoic mass. (orig.)

  7. Medial arterial calcification, calcific aortic stenosis and mitral annular calcification in a diabetic patient with severe autonomic neuropathy.

    LENUS (Irish Health Repository)

    Cronin, C C

    2012-02-03

    Medial arterial calcification (Monckeberg\\'s arteriosclerosis) is well described in diabetic patients with autonomic neuropathy. There is also a high prevalence of diabetes mellitus among subjects with calcific aortic stenosis and mitral annular calcification. We describe a diabetic patient with autonomic neuropathy and extensive medial arterial calcification who also had calcification of the aortic valve and of the mitral valve annulus. We propose that autonomic neuropathy may play a role in calcification of these structures at the base of the heart.

  8. Acute calcific retropharyngeal tendinitis

    International Nuclear Information System (INIS)

    Acute calcific tendinitis results from the deposition of calcium hydroxyapatite crystals in peri articular muscular attachments. It usually develops in extremities, most often in shoulders and hips. Although the incidence is much lower, it has been reported to occur in the neck region, where it involves the tendons insertion of the longs colli muscle. We present a case of acute neck pain caused by a calcareous deposition in the tendon of the longs colli muscle, producing inflammation. We describe the clinical and radiologic features (plain radiography, CT,MRI) associated with this entire. (Author) 7 refs

  9. Nevoid basal cell carcinoma syndrome; Naevoid Basalzellkarzinom-Syndrom

    Energy Technology Data Exchange (ETDEWEB)

    Grgic, A.; Heinrich, M.; Heckmann, M.; Kramann, B. [Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany). Abt. fuer Diagnostische und Interventionelle Radiologie; Aliani, S. [Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany). Klinik fuer Kinder- und Jugendmedizin; Dill-Mueller, D. [Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany). Hautklinik und Poliklinik; Uder, M. [Erlange-Nuernberg Univ. (Germany). Inst. fuer Diagnostische Radiologie

    2005-07-01

    Nevoid Basal Cell Carcinoma Syndrome (NBCCS) is an autosomal-dominant disorder characterized by multiple basal cell carcinomas, jaw cysts, palmar/plantar pits, calcification of the falx cerebri, and spine and rib anomalies. The combination of clinical, imaging, and histological findings is helpful in identifying NBCCS patients. Imaging plays a crucial role in evaluation of these patients. We present a wide variety of clinical and radiological findings characteristic of this disease. (orig.)

  10. Cardiovascular calcification. An inflammatory disease

    International Nuclear Information System (INIS)

    Cardiovascular calcification is an independent risk factor for cardiovascular morbidity and mortality. This disease of dysregulated metabolism is no longer viewed as a passive degenerative disease, but instead as an active process triggered by pro-inflammatory cues. Furthermore, a positive feedback loop of calcification and inflammation is hypothesized to drive disease progression in arterial calcification. Both calcific aortic valve disease and atherosclerotic arterial calcification may possess similar underlying mechanisms. Early histopathological studies first highlighted the contribution of inflammation to cardiovascular calcification by demonstrating the accumulation of macrophages and T lymphocytes in 'early' lesions within the aortic valves and arteries. A series of in vitro work followed, which gave a mechanistic insight into the stimulation of smooth muscle cells to undergo osteogenic differentiation and mineralization. The emergence of novel technology, in the form of animal models and more recently molecular imaging, has enabled accelerated progression of this field, by providing strong evidence regarding the concept of this disorder as an inflammatory disease. Although there are still gaps in our knowledge of the mechanisms behind this disorder, this review discusses the various studies that have helped form the concept of the inflammation-dependent cardiovascular calcification paradigm. (author)

  11. Vascular calcification: Inducers and inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Donghyun, E-mail: dhlee@cau.ac.kr [Department of Biomedical Engineering, Division of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756 (Korea, Republic of)

    2011-09-15

    Highlights: {center_dot} Types of vascular calcification processes. {center_dot} Inducers of vascular calcification. {center_dot} Inhibitors of vascular calcifications. {center_dot} Clinical utility for vascular calcification therapy. {center_dot} Implications for the development of new tissue engineering strategies. - Abstract: Unlike the traditional beliefs, there are mounting evidences suggesting that ectopic mineral depositions, including vascular calcification are mostly active processes, many times resembling that of the bone mineralization. Numbers of agents are involved in the differentiation of certain subpopulation of smooth muscle cells (SMCs) into the osteoblast-like entity, and the activation and initiation of extracellular matrix ossification process. On the other hand, there are factors as well, that prevent such differentiation and ectopic calcium phosphate formation. In normal physiological environments, activities of such procalcific and anticalcific regulatory factors are in harmony, prohibiting abnormal calcification from occurring. However, in certain pathophysiological conditions, such as atherosclerosis, chronic kidney disease (CKD), and diabetes, such balances are altered, resulting in abnormal ectopic mineral deposition. Understanding the factors that regulate the formation and inhibition of ectopic mineral formation would be beneficial in the development of tissue engineering strategies for prevention and/or treatment of such soft-tissue calcification. Current review focuses on the factors that seem to be clinically relevant and/or could be useful in developing future tissue regeneration strategies. Clinical utilities and implications of such factors are also discussed.

  12. Conditional Routing of Information to the Cortex: A Model of the Basal Ganglia’s Role in Cognitive Coordination

    OpenAIRE

    Stocco, Andrea; Lebiere, Christian; Anderson, John R.

    2010-01-01

    The basal ganglia play a central role in cognition and are involved in such general functions as action selection and reinforcement learning. Here, we present a model exploring the hypothesis that the basal ganglia implement a conditional information-routing system. The system directs the transmission of cortical signals between pairs of regions by manipulating separately the selection of sources and destinations of information transfers. We suggest that such a mechanism provides an account f...

  13. Calcifications simulating peroneus longus tendinitis

    International Nuclear Information System (INIS)

    In two patients with sprains of the ankle joint calcification adjacent to the posterior tibial margin was evident in the lateral projection of a standard radiographic examination. Calcifying peroneus longus tendinitis was suggested. Further tangential views and computed tomography (CT) scan disclosed, however, that the calcifications in both patients were located in the tibial insertion of the posterior and inferior tibio-fibular ligament. In such cases, a correct diagnosis will avoid unnecessary treatment for a non-existent tendinitis. (orig.)

  14. Calcific tendinitis of the shoulder

    OpenAIRE

    DE CARLI, ANGELO; PULCINELLI, FERDINANDO; ROSE, GIACOMO DELLE; PITINO, DARIO; Ferretti, Andrea

    2014-01-01

    Calcific tendinitis is a common disease that predominantly affects individuals aged between 40 and 60 years. Women seem to be more affected than men. Various factors have been suggested to play a role in this condition, such as abnormal activity of the thyroid gland, metabolic diseases (e.g. diabetes), and genetic predisposition. Various etiological hypotheses have been advanced: the degenerative and multiphasic theories are the two most accredited ones. Clinically, calcific tendinitis is cha...

  15. Calcifications simulating peroneus longus tendinitis

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, A. de; Illum, F.; Joergensen, J.

    1984-06-01

    In two patients with sprains of the ankle joint calcification adjacent to the posterior tibial margin was evident in the lateral projection of a standard radiographic examination. Calcifying peroneus longus tendinitis was suggested. Further tangential views and computed tomography (CT) scan disclosed, however, that the calcifications in both patients were located in the tibial insertion of the posterior and inferior tibio-fibular ligament. In such cases, a correct diagnosis will avoid unnecessary treatment for a non-existent tendinitis.

  16. Basal Cell Carcinoma (BCC)

    Science.gov (United States)

    ... epithelioma, is the most common form of skin cancer. Basal cell carcinoma usually occurs on sun-damaged skin, especially ... other health issues. Infiltrating or morpheaform basal cell carcinomas: Infiltrating basal cell carcinomas can be more aggressive and locally destructive ...

  17. Calcification Transformation of Diasporic Bauxite

    Science.gov (United States)

    Zhao, Qiuyue; Zhu, Xiaofeng; Lv, Guozhi; Zhang, Zimu; Yin, Zhengnan; Zhang, Tingan

    2016-06-01

    The disposal of red mud, which is a solid waste that is generated during the extraction of alumina from bauxite, is one of major problems faced by the aluminum industry. Alkali in red mud seeping under the soil may pollute land and water. The Northeastern University, China, has proposed a calcification-carbonation method to deal with low-grade bauxite or red mud. Its main purpose is to change the equilibrium phase of red mud to 2CaO·SiO2 and CaCO3 hydrometallurgically, so that recomposed alkali-free red mud can be widely used. We conducted calcification transformation experiments using diasporic bauxite sampled from Wenshan, and investigated the effects of parameters such as diasporic bauxite grain size, temperature and treatment time on the calcification transformation digestion rate, which is also termed the calcification transformation rate (CTR). The main phase in the calcification transformation slag (CTS) is hydrogarnet with different grain sizes. The CTR increases with decrease in diasporic bauxite grain size, or increase in temperature or reaction time. The CTR reaches a maximum of 87% after 120 min reaction at 240°C. The Na2O/Al2O3 ratio decreases with increase in temperature and reaches 1.5. The sodium content in the CTS decreases with increasing reaction time and is lower than that in the red mud treated using the Bayer process (4-12%).

  18. Coffee consumption and coronary calcification - The Rotterdam Coronary Calcification Study

    NARCIS (Netherlands)

    van Woudenbergh, Geertruida J.; Vliegenthart, Rozemarijn; van Rooij, Frank J. A.; Hofman, Albert; Oudkerk, Matthijs; Witteman, Jacqueline C. M.; Geleijnse, Johanna M.

    2008-01-01

    Background-The role of coffee in the cardiovascular system is not yet clear. We examined the relation of coffee intake with coronary calcification in a population-based cohort. Methods and Results-The study involved 1570 older men and women without coronary heart disease who participated in the Rott

  19. Coffee Consumption and Coronary Calcification: The Rotterdam Coronary Calcification Study

    NARCIS (Netherlands)

    Woudenbergh, van G.J.; Vliegenthart, R.; Rooij, van F.J.A.; Hofman, A.; Oudkerk, M.; Witteman, J.C.M.; Geleijnse, J.M.

    2008-01-01

    Background¿ The role of coffee in the cardiovascular system is not yet clear. We examined the relation of coffee intake with coronary calcification in a population-based cohort. Methods and Results¿ The study involved 1570 older men and women without coronary heart disease who participated in the Ro

  20. Calcification of peritoneal carcinomatosis from gastric carcinoma

    International Nuclear Information System (INIS)

    Peritoneal calcification is noted in peritoneal dissemination from serious cystoadenocarcinoma of the ovary, pseudomyxoma peritonei and meconium peritonitis. This article discusses a case of peritoneal disseminated calcification from gastric carcinoma. To the author's knowledge, this is the first report in English literature of gastric cancer showing peritoneal calcification. (author). 10 refs.; 1 fig

  1. Intracranial calcification in central diabetes insipidus

    International Nuclear Information System (INIS)

    Intracranial calcification is a known but extremely rare complication of diabetes insipidus. To date, only 16 patients have been reported and all had the peripheral (nephrogenic) type of diabetes insipidus. We report a child with intracranial calcification complicating central diabetes insipidus. We also report a child with nephrogenic diabetes insipidus, and compare the patterns of intracranial calcification. (orig.)

  2. Chronic calcific tendinitis of the neck

    International Nuclear Information System (INIS)

    The authors present the first three cases of chronic calcific tendinits of the neck. This condition is diagnosed radiologically by the presence of calcification located just inferior to the anterior tubercle of C1. The calcification is at the insertion of the longus colli muscle. No soft tissue swelling is present and the patients are asymptomatic. (orig.)

  3. Chronic calcific tendinitis of the neck

    Energy Technology Data Exchange (ETDEWEB)

    Newmark, H.; Zee, C.S.; Frankel, P.; Robinson, A.; Blau, L.; Gans, D.C.

    1981-12-01

    The authors present the first three cases of chronic calcific tendinits of the neck. This condition is diagnosed radiologically by the presence of calcification located just inferior to the anterior tubercle of C1. The calcification is at the insertion of the longus colli muscle. No soft tissue swelling is present and the patients are asymptomatic.

  4. Acute retropharyngeal calcific tendinitis: a case report with unusual location of calcification

    International Nuclear Information System (INIS)

    Retropharyngeal calcific tendinitis is an inflammatory process caused by calcium hydroxyapatite crystal deposition in the longus colli tendon of the prevertebral space, and it may mimic a retropharyngeal infection or abscess. The diagnosis of retropharyngeal calcific tendinitis will be made radiologically by the detection of calcifications anterior to C1-C3 and prevertebral soft tissue swelling. We present a case of acute retropharyngeal calcific tendinitis with an unusual location of calcification anterior to the C5-C6 disc. (orig.)

  5. Acute retropharyngeal calcific tendinitis: a case report with unusual location of calcification

    Energy Technology Data Exchange (ETDEWEB)

    Park, So Young; Jin, Wook; Yang, Dal Mo [East-West Neo-Medical Center, College of Medicine, Kyung Hee University, Department of Radiology, Seoul (Korea); Lee, Sang Hun [East-West Neo Medical Center, College of Medicine, Kyung Hee University, Department of Orthopedic Surgery, Seoul (Korea); Park, Ji Seon; Ryu, Kyung Nam [Kyung Hee University Medical Center, College of Medicine, Kyung Hee University, Department of Radiology, Seoul (Korea)

    2010-08-15

    Retropharyngeal calcific tendinitis is an inflammatory process caused by calcium hydroxyapatite crystal deposition in the longus colli tendon of the prevertebral space, and it may mimic a retropharyngeal infection or abscess. The diagnosis of retropharyngeal calcific tendinitis will be made radiologically by the detection of calcifications anterior to C1-C3 and prevertebral soft tissue swelling. We present a case of acute retropharyngeal calcific tendinitis with an unusual location of calcification anterior to the C5-C6 disc. (orig.)

  6. Neuroaxonal dystrophy in aging human sympathetic ganglia.

    OpenAIRE

    Schmidt, R.E.; Chae, H. Y.; Parvin, C. A.; Roth, K A

    1990-01-01

    Autonomic dysfunction is an increasingly recognized problem in aging animals and man. The pathologic changes that produce autonomic dysfunction in human aging are largely unknown; however, in experimental animal models specific pathologic changes have been found in selected sympathetic ganglia. To address whether similar neuropathologic changes occur in aging humans, the authors have examined paravertebral and prevertebral sympathetic ganglia from a series of 56 adult autopsied nondiabetic pa...

  7. Anatomic variation of cranial parasympathetic ganglia

    Directory of Open Access Journals (Sweden)

    Selma Siéssere

    2008-06-01

    Full Text Available Having broad knowledge of anatomy is essential for practicing dentistry. Certain anatomical structures call for detailed studies due to their anatomical and functional importance. Nevertheless, some structures are difficult to visualize and identify due to their small volume and complicated access. Such is the case of the parasympathetic ganglia located in the cranial part of the autonomic nervous system, which include: the ciliary ganglion (located deeply in the orbit, laterally to the optic nerve, the pterygopalatine ganglion (located in the pterygopalatine fossa, the submandibular ganglion (located laterally to the hyoglossus muscle, below the lingual nerve, and the otic ganglion (located medially to the mandibular nerve, right beneath the oval foramen. The aim of this study was to present these structures in dissected anatomic specimens and perform a comparative analysis regarding location and morphology. The proximity of the ganglia and associated nerves were also analyzed, as well as the number and volume of fibers connected to them. Human heads were dissected by planes, partially removing the adjacent structures to the point we could reach the parasympathetic ganglia. With this study, we concluded that there was no significant variation regarding the location of the studied ganglia. Morphologically, our observations concur with previous classical descriptions of the parasympathetic ganglia, but we observed variations regarding the proximity of the otic ganglion to the mandibular nerve. We also observed that there were variations regarding the number and volume of fiber bundles connected to the submandibular, otic, and pterygopalatine ganglia.

  8. Mineralization (calcification) of coronary arteries.

    Science.gov (United States)

    Pawlikowski, M; Pfitzner, R; Wachowiak, J

    1994-01-01

    Mineralogical investigations of calcifications located in coronary vessels were performed on the material obtained from the endarterectomized arteries of 18 patients (15 M, 3 F, aged 36-65) during surgical revascularization procedures consisting in coronary artery bypass grafting. The samples were tested using scanning microscopy, X-ray diffractometry, infrared spectroscopy, atomic absorption spectroscopy, electron microprobe and neutron activation spectroscopy. The results of analyses were calculated with the use of computer programmes. Two types of mineralization were determined: 1. secret mineralization identified as higher than normal content of elements in biological tissues, not demonstrating any mineral grains, and 2. apparent mineralization, appearing micro- and macroscopically as grains composed mainly of hydroxyapatite containing admixture of carbonate groups, i.e. a mineral identical with apatite present in bones, or as calcification of other tissues (heart valves, lungs etc.). The authors suggest that the phenomenon of mineralization should be taken into consideration in the preventive treatment of coronary atheriosclerosis. PMID:7808039

  9. Coral calcification and ocean acidification

    Science.gov (United States)

    Jokiel, Paul L.; Jury, Christopher P.; Kuffner, Ilsa B.

    2016-01-01

    Over 60 years ago, the discovery that light increased calcification in the coral plant-animal symbiosis triggered interest in explaining the phenomenon and understanding the mechanisms involved. Major findings along the way include the observation that carbon fixed by photosynthesis in the zooxanthellae is translocated to animal cells throughout the colony and that corals can therefore live as autotrophs in many situations. Recent research has focused on explaining the observed reduction in calcification rate with increasing ocean acidification (OA). Experiments have shown a direct correlation between declining ocean pH, declining aragonite saturation state (Ωarag), declining [CO32_] and coral calcification. Nearly all previous reports on OA identify Ωarag or its surrogate [CO32] as the factor driving coral calcification. However, the alternate “Proton Flux Hypothesis” stated that coral calcification is controlled by diffusion limitation of net H+ transport through the boundary layer in relation to availability of dissolved inorganic carbon (DIC). The “Two Compartment Proton Flux Model” expanded this explanation and synthesized diverse observations into a universal model that explains many paradoxes of coral metabolism, morphology and plasticity of growth form in addition to observed coral skeletal growth response to OA. It is now clear that irradiance is the main driver of net photosynthesis (Pnet), which in turn drives net calcification (Gnet), and alters pH in the bulk water surrounding the coral. Pnet controls [CO32] and thus Ωarag of the bulk water over the diel cycle. Changes in Ωarag and pH lag behind Gnet throughout the daily cycle by two or more hours. The flux rate Pnet, rather than concentration-based parameters (e.g., Ωarag, [CO3 2], pH and [DIC]:[H+] ratio) is the primary driver of Gnet. Daytime coral metabolism rapidly removes DIC from the bulk seawater. Photosynthesis increases the bulk seawater pH while providing the energy that drives

  10. Calcific retropharyngeal tendinitis. [Radiological findings

    Energy Technology Data Exchange (ETDEWEB)

    Karasick, D.; Karasick, S.

    1981-12-01

    Calcific retropharyngeal tendinitis is an imflammation of the longus colli muscle tendon which is located on the anterior surface of the verterbral column extending from the atlas to the third thoracic vertebra. The acute inflammatory condition is selflimiting with symptoms consisting of a gradually increasing neck pain often associated with throat pain and difficulty swallowing. The pain is aggravated by head and neck movement. Clinically the condition can be confused with retropharyngeal absecess, meningitis, infectious spondylitis, and post-traumatic muscle spasm. The radiographic features of this condition consist of pre-vertebral soft tissue swelling from C1 to C4 and amorphous calcific density in the longus colli tendon anterior to the body of C2 and inferior to the anterior arch of C1.

  11. Cerebral calcifications and schizophreniform disorder

    Directory of Open Access Journals (Sweden)

    Leonardo Fernandez Meyer

    2013-01-01

    Full Text Available OBJECTIVES: Discuss pathophysiological aspects of cerebral calcifications (CC and highlight its importance related to the occurrence of neuropsychiatric syndromes. METHOD: Single case report. RESULT: Man 52 years old, 20 years after going through a total thyroidectomy, starts showing behavioral disturbance (psychotic syndrome. He was diagnosed as schizophrenic (paranoid subtype and submitted to outpatient psychiatric treatment. During a psychiatric admission to evaluate his progressive cognitive and motor deterioration, we identified a dementia syndrome and extensive cerebral calcifications, derived from iatrogenic hypoparathyroidism. CONCLUSION: The calcium and phosphorus disturbances, including hypoparathyroidism, are common causes of CC. Its symptoms can imitate psychiatric disorders and produce serious and permanent cognitive sequelae. The exclusion of organicity is mandatory in any psychiatric investigative diagnosis in order to avoid unfavorable outcomes, such as in the present case report.

  12. Quantitative analysis of vascular calcification

    OpenAIRE

    Joh, Jin Hyun; Kim, Dong Ik

    2013-01-01

    Vascular calcification is a prominent feature of atherosclerosis. The mineral composition and quantity within calcified arterial plaques remains unelucidated; therefore, the aim of this study was to analyze the mineral composition of such plaques. Calcified arterial plaques were obtained from patients with abdominal aortic aneurysms (AAAs) and carotid artery stenoses. Calcified aneurysmal plaques were obtained during the routine open repair of AAAs, while calcified carotid plaques were collec...

  13. OVARIAN CALCIFICATION MIMICKING VESICLE CALCULUS

    OpenAIRE

    Pallavi; Pratibha; Santosh Kumar; Neeeta; Kamal

    2013-01-01

    INTRODUCTION: Calcification in ovary is usually dystrophic in natu re, forming secondary to degeneration of the epithelium or in association wit h areas of necrosis. It may occur in cases of endometriosis [1] or in some ovarian tumor eg. Fibro thecoma [2] , Brenner’s tumor [3] , cavernous hemangioma [4] etc. Benign unilateral densely calcified ovary wit hout any association with tumor or endometriosis has not been reported previously. We repo...

  14. Pleural calcification in northwest Greece

    International Nuclear Information System (INIS)

    Mass miniature radiography in 1969 detected a high prevalence of pleural calcification in three villages in northwest Greece. In 1980 a survey of a 15% sample of the population over the age of 10 was carried out with a 80% response rate. Full-size radiographs, ventilatory capacity measurements, and a detailed questionnaire on respiratory symptoms, type of work, and residence were used. Independent classification of the 408 films by two readers using the ILO/UC scheme showed very few small opacities but a very high prevalence of pleural calcification first evident in young adults and rising to 70% in the elderly. The overall prevalence was 34.7% in men and 21.5% in women. A comparison with the 1969 survey showed a progression rate of 5% per annum. In neither sex was there a significant relation of pleural calcification to smoking, ventilatory capacity, nor type of work, though those classified as field croppers had a slightly higher prevalence. There was no obvious evidence of increased lung cancer or mesothelioma in the village. The agent responsible for this apparently benign condition was not identified

  15. Imaging Atherosclerotic Plaque Calcification: Translating Biology.

    Science.gov (United States)

    Bailey, Grant; Meadows, Judith; Morrison, Alan R

    2016-08-01

    Calcification of atherosclerotic lesions was long thought to be an age - related, passive process, but increasingly data has revealed that atherosclerotic calcification is a more active process, involving complex signaling pathways and bone-like genetic programs. Initially, imaging of atherosclerotic calcification was limited to gross assessment of calcium burden, which is associated with total atherosclerotic burden and risk of cardiovascular mortality and of all cause mortality. More recently, sophisticated molecular imaging studies of the various processes involved in calcification have begun to elucidate information about plaque calcium composition and consequent vulnerability to rupture, leading to hard cardiovascular events like myocardial infarction. As such, there has been renewed interest in imaging calcification to advance risk assessment accuracy in an evolving era of precision medicine. Here we summarize recent advances in our understanding of the biologic process of atherosclerotic calcification as well as some of the molecular imaging tools used to assess it. PMID:27339750

  16. Evaluation and Management of Breast Calcifications

    Directory of Open Access Journals (Sweden)

    Behrooz Zandi

    2010-05-01

    Full Text Available When evaluating mammograms, one looks for masses, areas of asymmetry or architectural distortion and microcalcifications."nCalcification found on screening and diagnostic mammography may be typically benign, of intermediate type, or have a high probability of malignancy."nThe calcifications that most radiologists have prob-lems dealing with are those of "intermediate con-cern.""nOccasionally spot compression-magnification views are necessary to evaluate and analyze the calcification characteristics."nThe morphology and distribution of calcifications are often clues to the differential diagnosis and appropriate management. Calcifications deserve closer scrutiny than those in a regional or diffuse distribution."nIn this article, we discuss the imaging evaluation and management of lesions found on screening and diagnostic mammography, with the focus on commonly encumbered questions and problems. We will also present our interesting cases with breast calcification.

  17. Adrenal gland and adrenal mass calcification

    Energy Technology Data Exchange (ETDEWEB)

    Hindman, Nicole; Israel, Gary M. [New York University Medical Center, Department of Radiology, New York, New York (United States)

    2005-06-01

    With the widespread use of computed tomography (CT), it is not unusual to find calcification within the adrenal glands. There are a variety of adrenal lesions that may calcify, but usually the appearance of the calcification is not specific. However, when the pattern and morphology of the adrenal calcification are combined with the other imaging features and the appropriate clinical history, the correct diagnosis may be suggested. (orig.)

  18. Cardiac calcification in acute intermittent porphyria

    Directory of Open Access Journals (Sweden)

    Tanmoy Ghatak

    2011-01-01

    Full Text Available Aetiology of pericardial calcifications can be multifactorial. Tuberculosis has been reported as the most common cause. Other known causes include uraemia, asbestosis, post-traumatic or postoperative. We report a rare case of pericardial calcification seen in a patient with established acute intermittent porphyria. A direct causal relationship cannot be established between porphyria and pericardial calcification, but it may be due to deposition of the porphyrin in the pericardium.

  19. Cardiac calcification in acute intermittent porphyria

    OpenAIRE

    Tanmoy Ghatak; Afzal Azim; Arvind K Baronia; Banani Poddar

    2011-01-01

    Aetiology of pericardial calcifications can be multifactorial. Tuberculosis has been reported as the most common cause. Other known causes include uraemia, asbestosis, post-traumatic or postoperative. We report a rare case of pericardial calcification seen in a patient with established acute intermittent porphyria. A direct causal relationship cannot be established between porphyria and pericardial calcification, but it may be due to deposition of the porphyrin in the pericardium.

  20. Nevoid Basal Cell Carcinoma Syndrome

    Science.gov (United States)

    ... Nevoid Basal Cell Carcinoma Syndrome Request Permissions Nevoid Basal Cell Carcinoma Syndrome Approved by the Cancer.Net Editorial Board , 04/2016 What is Nevoid Basal Cell Carcinoma Syndrome? Nevoid Basal Cell Carcinoma Syndrome (NBCCS) is ...

  1. OVARIAN CALCIFICATION MIMICKING VESICLE CALCULUS

    Directory of Open Access Journals (Sweden)

    Pallavi

    2013-04-01

    Full Text Available INTRODUCTION: Calcification in ovary is usually dystrophic in natu re, forming secondary to degeneration of the epithelium or in association wit h areas of necrosis. It may occur in cases of endometriosis [1] or in some ovarian tumor eg. Fibro thecoma [2] , Brenner’s tumor [3] , cavernous hemangioma [4] etc. Benign unilateral densely calcified ovary wit hout any association with tumor or endometriosis has not been reported previously. We report a case of heavily calcified left ovary which mimicked as vesicle calculus on X- ray leading to confusion in diagnosis.

  2. THE MAMMOGRAPHIC CALCIFICATIONS IN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    Tang Ruiying; Liu Jingxian; Gaowen

    1998-01-01

    Objective: This study was performed to exam the relativeship between mammographic calcifications and breast cancer. Methods: All of the 184 patients with breast diseases underwent mammography before either an open biopsy or a mastectomy. The presence,morphology, and distribution of calcifications visualized on mammograms for breast cancer were compared with the controls who remained cancer free. Statistical comparisons were made by using the x2 test. Results:Of the 184 patients with breast diaeases, 93 malignant and 91 benign lesions were histologically confirmed.Calcifications were visualized on mammograms in 60(64%) of 93 breast cancers and 26 (28%) of 91 non breast cancers. The estimated odds ratio (OR) of breast cancer was 4.5 in women with calcifications seen on mammograms, compared with those having none (P<0.01). Of the 60 breast carcinomas having mammographic calcifications, 28 (47%) were infiltrating ductal carcinomas.There were only 8 (24%) cases with infiltrating ductal cancers in the group of without calcifications seen on the mammograms (P<0.05). Conclusion: Our finding suggests that mammographic calcification appears to be a risk factor for breast cancer. The granular and linear cast type calcification provide clues to the presence of breast cancer, especially when the carcinomas without associated masses were seen on mammograms.

  3. Vascular Adventitia Calcification and Its Underlying Mechanism.

    Directory of Open Access Journals (Sweden)

    Na Li

    Full Text Available Previous research on vascular calcification has mainly focused on the vascular intima and media. However, we show here that vascular calcification may also occur in the adventitia. The purpose of this work is to help elucidate the pathogenic mechanisms underlying vascular calcification. The calcified lesions were examined by Von Kossa staining in ApoE-/- mice which were fed high fat diets (HFD for 48 weeks and human subjects aged 60 years and older that had died of coronary heart disease, heart failure or acute renal failure. Explant cultured fibroblasts and smooth muscle cells (SMCswere obtained from rat adventitia and media, respectively. After calcification induction, cells were collected for Alizarin Red S staining. Calcified lesions were observed in the aorta adventitia and coronary artery adventitia of ApoE-/-mice, as well as in the aorta adventitia of human subjects examined. Explant culture of fibroblasts, the primary cell type comprising the adventitia, was successfully induced for calcification after incubation with TGF-β1 (20 ng/ml + mineralization media for 4 days, and the phenotype conversion vascular adventitia fibroblasts into myofibroblasts was identified. Culture of SMCs, which comprise only a small percentage of all cells in the adventitia, in calcifying medium for 14 days resulted in significant calcification.Vascular calcification can occur in the adventitia. Adventitia calcification may arise from the fibroblasts which were transformed into myofibroblasts or smooth muscle cells.

  4. Calcifications of the bladder in schistosomiasis

    International Nuclear Information System (INIS)

    In schistosomiasis calcification of the urinary bladder are characteristic signs that allow a corresponding diagnosis in endemic regions. Problems concerning differential diagnosis occur only in very rare cases. The calcifications of the bladder can be easily detected by native diagnostics. A late complication in an affected bladder is often a bladder carcinoma. (orig.)

  5. Pineal calcification on computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. H.; Kang, M. S.; Zeon, S. K.; Park, S. K. [Keimyung University Medical College and Hospital, Daegu (Korea, Republic of)

    1981-09-15

    Pineal gland visible in plain skull radiography when calcified had been an important indicator for evaluation of any space, occupying lesion within cranium according to displacement of it from normal midline position. Since the pineal gland is more frequently demonstrated on CT scan than plain skull radiography, it seems helpful to define the incidence and localization of pineal gland. 324 patients, performed head CT scan are analyzed incidence and localization of calcified pineal gland. The results were as follows: 1. The overall incidence of pineal calcification was 51%. 2. The male and female ratio in pineal calcification was 56% to 43%. 3. 1) In the AP localization of pineal gland, the ratio of distance from anterior inner table of the skull to the pineal gland and that from pineal gland to the posterior inner table was 1.46 {+-} 0.20. 2) In the lateral localization of pineal gland, according to 'Lateral Percentage Shift' by Hahn and Rim (1976), the result was 0.98% shift in 80 normal cases, but 2.20% shift in 38 cases with S.O.L.

  6. Atypical Radiological Manifestation of Pulmonary Metastatic Calcification

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Eun Hae; Kim, Eun Sun; Kim, Chul Hwan; Ham, Soo Youn; Oh, Yu Whan [Korea University College of Medicine, Seoul (Korea, Republic of)

    2008-04-15

    Metastatic pulmonary calcification is a condition of calcium deposition in the normal pulmonary parenchyma, and this is secondary to abnormal calcium metabolism without any prior soft tissue damage. The predisposing factors for this condition include chronic renal failure, hypercalcemia and increased tissue alkalinity. The most common radiologic manifestation consists of poorly defined nodular opacities in the upper lung zone. These opacities reflect the deposition of calcium salts in the pulmonary interstitium. We present here a case of metastatic pulmonary calcification in a patient who recovered from pneumonia with sepsis and whose high-resolution CT (HRCT) images demonstrated localized parenchymal airspace calcification that was limited to the bilateral lower lobes. These lower lobes had been involved with pneumonic consolidation without calcification, as seen on the previous CT scan. In summary, we report here on an atypical presentation of metastatic pulmonary calcification that showed dense airspace consolidation localized to the bilateral lower lobes in a patient with primary hyperparathyroidism and pneumonia.

  7. Basal Reinforced Piled Embankments

    NARCIS (Netherlands)

    Van Eekelen, S.J.M.

    2015-01-01

    A basal reinforced piled embankment consists of a reinforced embankment on a pile foundation. The reinforcement consists of one or more horizontal layers of geosynthetic reinforcement (GR) installed at the base of the embankment. The design of the GR is the subject of this thesis. A basal reinforce

  8. Cutaneous necrosis from calcific uremic arteriolopathy.

    Science.gov (United States)

    Coates, T; Kirkland, G S; Dymock, R B; Murphy, B F; Brealey, J K; Mathew, T H; Disney, A P

    1998-09-01

    Calcific uremic arteriolopathy (calciphylaxis) is an uncommon complication of chronic renal failure that is associated with high morbidity and mortality. We report 16 patients (13 female) who presented between 1985 and 1996. All patients developed painful livido reticularis that progressed to cutaneous necrosis and ulceration (11 cases on the proximal extremities and five cases on the distal extremities). Two patients with predominately distal leg disease survived; the cause of death in the other 14 patients was sepsis (six patients), withdrawal from dialysis (three), cardiac arrest (three), and gastrointestinal hemorrhage (two). Mesenteric ischemia from intestinal vascular calcification occurred in two cases. Clinical factors identified included the use of warfarin therapy in seven cases and significant weight loss (>10% body weight) in seven cases in the 6 months preceding the development of calcific uremic arteriolopathy. Skin pathology was studied in 12 cases, with all showing calcific panniculitis and small vessel calcification. Electron microscopic spectral analysis of the mineral content of the calcific lesions in the subcutaneous tissue showed only calcium and phosphorous. In two cases, substitution of low molecular weight heparin for warfarin therapy resulted in clinical improvement. Current theories of pathogenesis and treatment are reviewed. This study confirms the high morbidity and mortality of calcific uremic arteriolopathy producing ischemic tissue necrosis while drawing attention to significant weight loss and warfarin therapy as risk factors for the development of ischemic tissue necrosis. Hyperbaric oxygen therapy warrants further study. PMID:9740153

  9. Calcifications in the breast in Filaria loa infection

    Energy Technology Data Exchange (ETDEWEB)

    Novak, R. (Karolinska Sjukhuset, Stockholm (Sweden). Dept. of Diagnostic Radiology)

    A 40-year-old patient underwent mammography for evaluation of a mass. Atypical calcifications were observed in the opposite breast. Two types of calcification were observed: One type was spiral-shaped and the other type rod-shaped. These calcifications were caused by Filaria loa. Parasitic calcifications in the breast are uncommon. (orig.).

  10. Tracheobronchial calcification in adult health study subjects

    International Nuclear Information System (INIS)

    Tracheobronchial calcification is reportedly more frequent in women than in men. Ten cases of extensive tracehobronchial calcification were identified on chest radiographs of 1,152 consecutively examined Adult Health Study subjects, for a prevalence of 0.87 %. An additional 51 subjects having this coded diagnosis were identified among 11,758 members of this fixed population sample. Sixty of the 61 subjects were women. The manifestations and extent of this type of calcification and its correlations with clinical and histopathologic features, which have not been previously reported, are described here. (author)

  11. Imaging findings in acute calcific prevertebral tendinitis

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, Caio Giometti; Diniz, Fabio de Vilhena; Garcia, Marcio Ricardo Taveira; Gomes, Regina Lucia Elia; Daniel, Mauro Miguel; Funari, Marcelo Buarque de Gusmao [Hospital Israelita Albert Einstein (HIAE), Sao Paulo, SP (Brazil). Imaging Dept.

    2011-09-15

    Acute calcific prevertebral tendinitis is a benign and rare condition that presents calcification of the superior oblique fibers of longus colli muscle with local inflammatory reaction. Such condition is one of the less common presentations of calcium hydroxyapatite deposition disease. Clinical signs are usually acute neck pain and odynophagia, and it may be misdiagnosed as retropharyngeal abscess, spondylodiscitis or traumatic injury. The imaging findings in calcific prevertebral tendinitis are pathognomonic. The knowledge of such findings is extremely important to avoid unnecessary interventions in a patient presenting a condition with a good response to conservative treatment. (author)

  12. Radiographic spectrum of rectocolonic calcification from schistosomiasis.

    Science.gov (United States)

    Fataar, S; Bassiony, H; Hamed, M S; Ghoneim, I; Satyanath, S; Hebbar, H G; Elgindy, N N; Hanna, R M

    1984-05-01

    Rectocolonic calcification was detected radiographically in 17 sites in 14 patients undergoing excretory urography for the assessment of urinary schistosomiasis. The right colon was involved in 11 sites, the rectum in four, and the left colon in two. The pattern of calcification varied according to the degree of bowel distension. A laminar pattern was common to all sites and occurred when the rectum or colon was distended with air, feces, or barium. A laminar or irregular amorphous density was found in the empty colon, whereas the calcified, empty rectum had a corrugated pattern. Rectocolonic calcification is probably the most common radiographic manifestation of schistosomal infestation of the gastrointestinal tract. PMID:6609576

  13. Imaging findings in acute calcific prevertebral tendinitis

    International Nuclear Information System (INIS)

    Acute calcific prevertebral tendinitis is a benign and rare condition that presents calcification of the superior oblique fibers of longus colli muscle with local inflammatory reaction. Such condition is one of the less common presentations of calcium hydroxyapatite deposition disease. Clinical signs are usually acute neck pain and odynophagia, and it may be misdiagnosed as retropharyngeal abscess, spondylodiscitis or traumatic injury. The imaging findings in calcific prevertebral tendinitis are pathognomonic. The knowledge of such findings is extremely important to avoid unnecessary interventions in a patient presenting a condition with a good response to conservative treatment. (author)

  14. Atypical calcific tendinitis with cortical erosions

    International Nuclear Information System (INIS)

    Objective. To present and discuss six cases of calcific tendinitis in atypical locations (one at the insertion of the pectoralis major and five at the insertion of the gluteus maximus).Patients and results. All cases were associated with cortical erosions, and five had soft tissue calcifications. The initial presentation was confusing and the patients were suspected of having infection or neoplastic disease.Conclusion. Calcific tendinitis is a self-limiting condition. It is important to recognize the imaging features of this condition to avoid unnecessary investigation and surgery. (orig.)

  15. Atypical calcific tendinitis with cortical erosions

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, E.J. [College of Medicine, Univ. of Iowa, Iowa City, IA (United States); El-Khoury, G.Y. [Dept. of Radiology and Orthopaedics, Univ. of Iowa, Iowa City, IA (United States)

    2000-12-01

    Objective. To present and discuss six cases of calcific tendinitis in atypical locations (one at the insertion of the pectoralis major and five at the insertion of the gluteus maximus).Patients and results. All cases were associated with cortical erosions, and five had soft tissue calcifications. The initial presentation was confusing and the patients were suspected of having infection or neoplastic disease.Conclusion. Calcific tendinitis is a self-limiting condition. It is important to recognize the imaging features of this condition to avoid unnecessary investigation and surgery. (orig.)

  16. Isolated splenic calcifications in two patients with portal hypertension

    International Nuclear Information System (INIS)

    Calcification of the walls of the veins of the portal hypertension (PHT) (1-0), is uncommon. Calcification of the intra splenic vessels is exceptional. We report two cases of isolated calcification of intra splenic vessels, without calcification of the splenoportal venous axis, in patients with liver cirrhosis and PHT. The calcification was not clear. Computed tomography identified the calcification as linear tubular, branched structures located in the wall of intra splenic vessels. magnetic resonance imaging disclosed signs of cirrhosis and PHT but did not show the splenic classifications because of technical limitations. The cause of these calcifications was sustained PHT due to chronic liver disease. (Author) 15 refs

  17. Association of mitral annulus calcification, aortic valve calcification with carotid intima media thickness

    OpenAIRE

    Scuteri Angelo; Sgorbini Luca; Leggio Massimo; Leggio Francesco

    2004-01-01

    Abstract Background Mitral annular calcification (MAC) and aortic annular calcification (AVC) may represent a manifestation of generalized atherosclerosis in the elederly. Alterations in vascular structure, as indexed by the intima media thickness (IMT), are also recognized as independent predictors of adverse cardiovascular outcomes. Aim To examine the relationship between the degree of calcification at mitral and/or aortic valve annulus and large artery structure (thickness). Methods We eva...

  18. [Arthroscopic resection of dorsal wrist ganglia].

    Science.gov (United States)

    Borisch, N

    2014-10-01

    In arthroscopic wrist surgery, the resection of dorsal wrist ganglia has become a well accepted practice. As advantages for the minimally invasive procedure the low complication rate and low postoperative morbidity, less postoperative pain and faster recovery over open techniques are discussed. The possibility to assess accompanying joint pathology is considered as another advantage. The importance of identifying a so-called ganglion cyst stalk seems to have been overstated. Regarding the technique, the main discussion points are the size and localisation of the capsular window and the necessity of additional midcarpal arthroscopy. The possibility and results of treatment of recurrent ganglion cysts are still controversial. Our own experience and that of some authors are positive. Hardly mentioned in the literature is the treatment of occult dorsal wrist ganglia and its results, which is considered as very successful by the authors. PMID:25290273

  19. Alendronate conjugated nanoparticles for calcification targeting.

    Science.gov (United States)

    Li, Nanying; Song, Juqing; Zhu, Guanglin; Shi, Xuetao; Wang, Yingjun

    2016-06-01

    In this article, the synthesis of a novel calcification-targeting nanoparticle (NP) is reported, which is realized through dopamine self-polymerization on the poly(lactic-co-glycolic acid) (PLGA) particle surface and subsequent alendronate conjugation. Cell viability and proliferation tests confirmed that such particle has low cytotoxicity and good biocompatibility. Experiments were designed to observe whether the synthesized NPs can pass through an obstructive hydrogel and directly bind themselves to hydroxyapatite (HA) NPs (mimicking calcified spots) and HA porous scaffolds (mimicking calcified tissues); and the result was positive, indicating ingenious targeting of NPs on calcifications. The calcification-targeting NPs are expected to be with promising applications on calcification-related disease diagnoses and therapies. PMID:26970822

  20. Breast skin calcifications: Mammographic recognition and confirmation

    International Nuclear Information System (INIS)

    The authors found microcalcifications in the skin of the breast to occur in 8% of patients undergoing mammography, a prevalence much higher than what has been previously reported. Usually in incidental finding, breast skin calcifications are readily recognized when they are multiple, bilateral, coarse, or polygonal with a central radiolucency; when they are located in a peripheral portion of the breast on at least one view, or when they are serendipitously imaged within the skin. One hundred patients with breast skin calcifications were studied. In 15 patients in whom clustered dermal calcifications simulated parenchymal microcalcifications, template-guided tangential views permitted precise skin localization. Three of those patients had been referred for needle localization before biopsy and four after failed biopsy for clustered microcalcifications. Dermal calcifications can pose a vexing problem in the management of microcalcifications of the breast. A high index of suspicion is warrented in order to forestall unnecessary or unsuccessful biopsies

  1. Costs and benefits of calcification in coccolithophorids

    Science.gov (United States)

    Anning, T.; Nimer, N.; Merrett, M. J.; Brownlee, C.

    1996-10-01

    Calcification in coccolithophorids requires major intracellular fluxes of inorganic carbon and calcium. This paper summarises the major cellular fluxes of substrates and products of calcification described in a simple four compartment model (cytosol, Golgi, coccolith vesicle and chloroplast). Measurements of the cytosolic and intra-coccolith vesicle pH and electrical potentials across the plasma membrane and coccolith vesicle membrane allow calculations of the proton electrochemical gradients across these membranes and estimates of the free carbonate and calcium concentrations in the coccolith vesicle. Calcification may provide a relatively low cost route for elevating the concentration of carbon dioxide in the chloroplast. This may have benefits in terms of the nutrient requirements for photosynthesis and growth. In particular, a close relationship appears to exist between calcification and the availability of phosphorus which may correlate with the occurrence of large scale blooms of Emiliania huxleyi in the North Atlantic.

  2. Coral calcification in a changing ocean

    Science.gov (United States)

    Kuffner, Ilsa B.

    2010-01-01

    Animals and plants that live in the ocean form skeletons and other hard parts by combining calcium ions and carbonate ions to create calcium carbonate. This process is called calcification. In tropical and subtropical oceans, the calcification of corals and other organisms creates reefs that protect islands, produce beautiful white-sand beaches, and create habitat for thousands of species that live on coral reefs.

  3. Mammographically Detectable Breast Arterial Calcification and Atherosclerosis

    OpenAIRE

    Shah, Neeraj; Chainani, Vinod; Delafontaine, Patrice; Abdo, Abir; Lafferty, James; Rafeh, Nidal Abi

    2014-01-01

    Breast arterial calcification (BAC), observed as an incidental finding on screening mammograms, represents degenerative calcific changes occurring in the mammary arteries, with increasing age. The aim of this review is to discuss relevant literature examining relation between BAC and atherosclerosis. After a thorough literature search, in OVID and PubMed, 199 studies were identified, of which 25 were relevant to our review. Data were abstracted from each study and statistical analysis was don...

  4. Idiopathic Arterial Calcification of Infancy: Case Report

    OpenAIRE

    Attia, Tarek Hamed; Abd Alhamed, Mohamed Maisara; Selim, Mohamed Fouad; Haggag, Mohamed Salah; Fathalla, Diaa

    2015-01-01

    Idiopathic arterial calcification of infancy is a rare autosomal recessive disease, characterized by deposition of calcium along the internal elastic membrane of arteries, accompanied by fibrous thickening of the intima which causes luminal narrowing. Here we are reporting a case of idiopathic arterial calcification of infancy in a Saudi female newborn of non-consanguineous pregnant woman who had polyhydramnios. The newborn baby had severe respiratory distress, systemic hypertension and persi...

  5. Proatherogenic pathways leading to vascular calcification

    Energy Technology Data Exchange (ETDEWEB)

    Mazzini, Michael J. [Department of Cardiology, Boston University Medical Center, Boston, MA (United States); Schulze, P. Christian [Department of Medicine, Boston University Medical Center, Boston, MA (United States)]. E-mail: christian.schulze@bmc.org

    2006-03-15

    Cardiovascular disease is the leading cause of morbidity and mortality in the western world and atherosclerosis is the major common underlying disease. The pathogenesis of atherosclerosis involves local vascular injury, inflammation and oxidative stress as well as vascular calcification. Vascular calcification has long been regarded as a degenerative process leading to mineral deposition in the vascular wall characteristic for late stages of atherosclerosis. However, recent studies identified vascular calcification in early stages of atherosclerosis and its occurrence has been linked to clinical events in patients with cardiovascular disease. Its degree correlates with local vascular inflammation and with the overall impact and the progression of atherosclerosis. Over the last decade, diverse and highly regulated molecular signaling cascades controlling vascular calcification have been described. Local and circulating molecules such as osteopontin, osteoprogerin, leptin and matrix Gla protein were identified as critical regulators of vascular calcification. We here review the current knowledge on molecular pathways of vascular calcification and their relevance for the progression of cardiovascular disease.

  6. DISCONNECTION OF A BASAL GANGLIA CIRCUIT IN JUVENILE SONGBIRDS ATTENUATES THE SPECTRAL DIFFERENTIATION OF SONG SYLLABLES

    OpenAIRE

    Elliott, Kevin C.; Wu, Wei; Bertram, Richard; Johnson, Frank

    2013-01-01

    Similar to language acquisition by human infants, juvenile male zebra finches (Taeniopygia guttata) imitate an adult (tutor) song by transitioning from repetitive production of one or two undifferentiated protosyllables to the sequential production of a larger and spectrally heterogeneous set of syllables. The primary motor region that controls learned song is driven by a confluence of input from two pre-motor pathways: a posterior pathway that encodes the adult song syllables and an anterior...

  7. Severity of Dysfluency Correlates with Basal Ganglia Activity in Persistent Developmental Stuttering

    Science.gov (United States)

    Giraud, Anne-Lise; Neumann, Katrin; Bachoud-Levi, Anne-Catherine; von Gudenberg, Alexander W.; Euler, Harald A.; Lanfermann, Heinrich; Preibisch, Christine

    2008-01-01

    Previous studies suggest that anatomical anomalies [Foundas, A. L., Bollich, A. M., Corey, D. M., Hurley, M., & Heilman, K. M. (2001). "Anomalous anatomy of speech-language areas in adults with persistent developmental stuttering." "Neurology," 57, 207-215; Foundas, A. L., Corey, D. M., Angeles, V., Bollich, A. M., Crabtree-Hartman, E., & Heilman,…

  8. Evidence for a causal inverse model in an avian cortico-basal ganglia circuit

    OpenAIRE

    Giret, N.; Kornfeld, J.; Ganguli, S.; Hahnloser, R. H. R.

    2014-01-01

    Auditory neural responses mirror motor activity in a songbird cortical area. The average temporal offset of mirrored responses is roughly equal to short sensorimotor loop delays. This correspondence between mirroring offsets and loop delays constitutes evidence for a causal inverse model. Causal inverse models can map a desired sensation into the required action.

  9. Computational Studies of the Role of Serotonin in the Basal Ganglia

    Directory of Open Access Journals (Sweden)

    Janet Best

    2013-05-01

    Full Text Available It has been well established that serotonin (5-HT plays an important role in the striatum. For example, during levodopa therapy for Parkinson’s disease (PD, the serotonergic projections from the dorsal raphe nucleus release dopamine as a false transmitter, and there are strong indications that this pulsatile release is connected to dyskinesias that reduce the effectiveness of the therapy. Here we present hypotheses about the functional role of 5-HT in the normal striatum and present computational studies showing the feasibility of these hypotheses. Dopaminergic projections to the striatum inhibit the medium spiny neurons (MSN in the striatopalladal (indirect pathway and excite MSNs in the striatonigral (direct pathway. It has long been hypothesized that effect of dopamine (DA depletion caused by the loss of SNc cells in PD is to change the “balance” between the pathways to favor the indirect pathway. Originally, “balance” was understood to mean equal firing rates, but now it is understood that the level of DA affects the patterns of firing too. There are dense 5-HT projections to the striatum from the dorsal raphe nucleus and it is known that increased 5-HT in the striatum facilitates DA release from DA terminals. The direct pathway excites various cortical nuclei and some of these nuclei send inhibitory projections to the DRN. Our hypothesis is that this feedback circuit from the striatum to the cortex to the DRN to the striatum stabilizes the balance between the direct and indirect pathways, and this is confirmed by our model calculations. Our calculations also show that this circuit contributes to the stability of the dopamine concentration in the striatum as SNc cells die during Parkinson’s disease progression (until late phase. There may be situations in which there are physiological reasons to “unbalance” the direct and indirect pathways, and we show that projections to the DRN from the cortex or other brain regions could accomplish this task.

  10. Differential activation of dopaminergic systems in rat brain basal ganglia by morphine and methamphetamine.

    Science.gov (United States)

    Mori, T; Iwase, Y; Saeki, T; Iwata, N; Murata, A; Masukawa, D; Suzuki, T

    2016-05-13

    Typical abused drug-induced behavioral changes are ordinarily mediated by the mesolimbic dopaminergic system and even the phenotypes of behavior are different from each other. However, the mechanisms that underlie the behavioral changes induced by these abused drugs have not yet been elucidated. The present study was designed to investigate the mechanisms that underlie how abused drugs induce distinct behavioral changes using neurochemical as well as behavioral techniques in rats. Methamphetamine (2mg/kg) more potently increased dopamine release from the striatum more than that from the nucleus accumbens. In contrast, the administration of morphine (10mg/kg) produced a significant increase in the release of dopamine from the nucleus accumbens, but not the striatum, which is accompanied by a decrease in the release of GABA in the ventral tegmental area. These findings indicate that morphine and methamphetamine differentially regulate dopaminergic systems to produce behavioral changes, even though both drugs have abuse potential through activation of the mesolimbic dopaminergic system. PMID:26820597

  11. Hyporesponsive Reward Anticipation in the Basal Ganglia following Severe Institutional Deprivation Early in Life

    Science.gov (United States)

    Mehta, Mitul A.; Gore-Langton, Emma; Golembo, Nicole; Colvert, Emma; Williams, Steven C. R.; Sonuga-Barke, Edmund

    2010-01-01

    Severe deprivation in the first few years of life is associated with multiple difficulties in cognition and behavior. However, the brain basis for these difficulties is poorly understood. Structural and functional neuroimaging studies have implicated limbic system structures as dysfunctional, and one functional imaging study in a heterogeneous…

  12. Motion and Emotion : Functional In Vivo Analyses of the Mouse Basal Ganglia

    OpenAIRE

    Arvidsson, Emma

    2014-01-01

    A major challenge in the field of neuroscience is to link behavior with specific neuronal circuitries and cellular events. One way of facing this challenge is to identify unique cellular markers and thus have the ability to, through various mouse genetics tools, mimic, manipulate and control various aspects of neuronal activity to decipher their correlation to behavior. The Vesicular Glutamate Transporter 2 (VGLUT2) packages glutamate into presynaptic vesicles for axonal terminal release. In ...

  13. The role of exercise in facilitating basal ganglia function in Parkinson’s disease

    OpenAIRE

    Petzinger, Giselle M.; Fisher, Beth E.; Akopian, Garnik; Holschneider, Daniel P.; Wood, Ruth; Walsh, John P.; Lund, Brett; Meshul, Charles; Vuckovic, Marta; Jakowec, Michael W.

    2011-01-01

    Epidemiological and clinical studies have suggested that exercise is beneficial for patients with Parkinson’s disease (PD). Through research in normal (noninjured) animals, neuroscientists have begun to understand the mechanisms in the brain by which behavioral training and exercise facilitates improvement in motor behavior through modulation of neuronal function and structure, called experience-dependent neuroplasticity. Recent studies are beginning to reveal molecules and downstream signali...

  14. Structural findings in the basal ganglia in genetically determined and idiopathic Parkinson's disease

    DEFF Research Database (Denmark)

    Reetz, Kathrin; Gaser, Christian; Klein, Christine;

    2009-01-01

    (sPARKIN-MC) and idiopathic PD patients (iPD) after the occurrence of PD symptoms, reflecting the breakdown of compensatory mechanisms. Nine sPARKIN-MC, 14 iPD, and 24 controls were studied clinically and with voxel-based morphometry. Analysis of variance revealed mainly BG decrease of GMV in s...

  15. High-signal basal ganglia on T1-weighted images in a patient with Sydenham's chorea

    International Nuclear Information System (INIS)

    We report a 16-year-old girl with Sydenham's chorea. Choreiform movements involved both sides of her body. MRI 2 months after the onset revealed abnormal increased signal on T2-weighted images and enlargement of the caudate and putamen bilaterally. MRI 5 months later showed resolution of the swelling, but with increased signal on T1-weighted images in the putamen, globus pallidus and the head of the caudate nucleus bilaterally, with slightly increased signal intensity on T2-weighted images. (orig.) (orig.)

  16. How may the basal ganglia contribute to auditory categorization and speech perception?

    OpenAIRE

    Lim, Sung-joo; Fiez, Julie A.; Holt, Lori L.

    2014-01-01

    Listeners must accomplish two complementary perceptual feats in extracting a message from speech. They must discriminate linguistically-relevant acoustic variability and generalize across irrelevant variability. Said another way, they must categorize speech. Since the mapping of acoustic variability is language-specific, these categories must be learned from experience. Thus, understanding how, in general, the auditory system acquires and represents categories can inform us about the toolbox ...

  17. The role of basal ganglia and cerebellum in motor learning. A computational model

    OpenAIRE

    Senatore, Rosa

    2012-01-01

    2010 - 2011 Our research activity investigates the computational processes underlying the execution of complex sequences of movements and aims at understanding how different levels of the nervous system interact and contribute to the gradual improvement of motor performance during learning. Many research areas, from neuroscience to engineering, investigate, from different perspectives and for diverse purposes, the processes that allow humans to efficiently perform skilled movem...

  18. Manganese Exposure is Cytotoxic and Alters Dopaminergic and GABAergic Neurons within the Basal Ganglia

    OpenAIRE

    Stanwood, Gregg D.; Leitch, Duncan B.; Savchenko, Valentina; Wu, Jane; Fitsanakis, Vanessa A.; Anderson, Douglas J.; Stankowski, Jeannette N.; Aschner, Michael; McLaughlin, BethAnn

    2009-01-01

    Manganese is an essential nutrient, integral to proper metabolism of amino acids, proteins and lipids. Excessive environmental exposure to manganese can produce extrapyramidal symptoms similar to those observed in Parkinson’s disease (PD). We used in vivo and in vitro models to examine cellular and circuitry alterations induced by manganese exposure. Primary mesencephalic cultures were treated with 10–00µM manganese chloride (MnCl2) which resulted in dramatic changes in the neuronal cytoskele...

  19. Increased functional connectivity in the resting-state basal ganglia network after acute heroin substitution

    OpenAIRE

    Schmidt, A.; Denier, N; Magon, S; Radue, E-W; Huber, C. G.; Riecher-Rossler, A; Wiesbeck, G A; Lang, U E; Borgwardt, S; Walter, M

    2015-01-01

    Reinforcement signals in the striatum are known to be crucial for mediating the subjective rewarding effects of acute drug intake. It is proposed that these effects may be more involved in early phases of drug addiction, whereas negative reinforcement effects may occur more in later stages of the illness. This study used resting-state functional magnetic resonance imaging to explore whether acute heroin substitution also induced positive reinforcement effects in striatal brain regions of prot...

  20. Creation of computerized 3D MRI-integrated atlases of the human basal ganglia and thalamus

    OpenAIRE

    Sadikot, Abbas F; D. Louis Collins

    2011-01-01

    Functional brain imaging and neurosurgery in subcortical areas often requires visualization of brain nuclei beyond the resolution of current Magnetic Resonance Imaging (MRI) methods. We present techniques used to create: 1) a lower resolution 3D atlas, based on the Schaltenbrand and Wahren print atlas, which was integrated into a stereotactic neurosurgery planning and visualization platform (VIPER); and 2) a higher resolution 3D atlas derived from a single set of manually segmented histologic...

  1. Creation of Computerized 3D MRI-Integrated Atlases of the Human Basal Ganglia and Thalamus

    OpenAIRE

    Sadikot, Abbas F; Chakravarty, M Mallar; Bertrand, Gilles; Rymar, Vladimir V.; Al-Subaie, Fahd; Collins, D. Louis

    2011-01-01

    Functional brain imaging and neurosurgery in subcortical areas often requires visualization of brain nuclei beyond the resolution of current magnetic resonance imaging (MRI) methods. We present techniques used to create: (1) a lower resolution 3D atlas, based on the Schaltenbrand and Wahren print atlas, which was integrated into a stereotactic neurosurgery planning and visualization platform (VIPER); and (2) a higher resolution 3D atlas derived from a single set of manually segmented histolog...

  2. Basal Ganglia Circuits Underlying the Pathophysiology of Levodopa-Induced Dyskinesia

    OpenAIRE

    Barroso-Chinea, Pedro; Bezard, Erwan

    2010-01-01

    Involuntary movements or dyskinesia, represent a debilitating complication of levodopa therapy for Parkinson's disease. Dyskinesia is, ultimately, experienced by the vast majority of the patients. Despite the importance of this problem, little was known about the cause of dyskinesia, a situation that has dramatically evolved in the last few years with a focus upon the molecular and signaling changes induced by chronic levodopa treatment. Departing from this, we here review the progress made i...

  3. Striatal Cholinergic Interneurons Control Motor Behavior and Basal Ganglia Function in Experimental Parkinsonism

    OpenAIRE

    Nicolas Maurice; Martine Liberge; Florence Jaouen; Samira Ztaou; Marwa Hanini; Jeremy Camon; Karl Deisseroth; Marianne Amalric; Lydia Kerkerian-Le Goff; Corinne Beurrier

    2015-01-01

    Despite evidence showing that anticholinergic drugs are of clinical relevance in Parkinson’s disease (PD), the causal role of striatal cholinergic interneurons (CINs) in PD pathophysiology remains elusive. Here, we show that optogenetic inhibition of CINs alleviates motor deficits in PD mouse models, providing direct demonstration for their implication in parkinsonian motor dysfunctions. As neural correlates, CIN inhibition in parkinsonian mice differentially impacts the excitability of stria...

  4. Basal ganglia circuits underlying the pathophysiology of levodopa-induced dyskinesia

    OpenAIRE

    Erwan Bezard

    2010-01-01

    Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa therapy for Parkinson’s disease. Dyskinesia are, ultimately, experienced by the vast majority of the patients. Despite the importance of this problem, little was known about the cause of dyskinesia, a situation that has dramatically evolved in the last few years with a focus upon the molecular and signalling changes induced by chronic levodopa treatment. Departing from this, we here review the progress mad...

  5. Idiopathic Arterial Calcification of Infancy: Case Report.

    Science.gov (United States)

    Attia, Tarek Hamed; Abd Alhamed, Mohamed Maisara; Selim, Mohamed Fouad; Haggag, Mohamed Salah; Fathalla, Diaa

    2015-11-01

    Idiopathic arterial calcification of infancy is a rare autosomal recessive disease, characterized by deposition of calcium along the internal elastic membrane of arteries, accompanied by fibrous thickening of the intima which causes luminal narrowing. Here we are reporting a case of idiopathic arterial calcification of infancy in a Saudi female newborn of non-consanguineous pregnant woman who had polyhydramnios. The newborn baby had severe respiratory distress, systemic hypertension and persistent pulmonary hypertension of newborn. She was admitted to Neonatal Intensive Care Unit, where she was ventilated and proper treatment was provided. Molecular genetic testing was positive for mutations of ectonucleotide pyrophosphatase/phosphodiesterase1 gene which is reported in 80% of cases of Idiopathic arterial calcification of infancy. The baby died at about 5 month of age because of myocardial ischemia and cardiorespiratory arrest. Idiopathic Arterial Calcification of Infancy should be considered in any newborn who presented with persistent pulmonary hypertension of newborn, severe systemic hypertension and echogenic vessels on any radiological study. Calcifications of large and medium-sized arteries are important diagnostic finding. PMID:27252793

  6. Recurrent peripheral odontogenic fibroma associated with basal cell budding

    Directory of Open Access Journals (Sweden)

    C Sreeja

    2014-01-01

    Full Text Available Peripheral odontogenic fibroma (POdF is a rare benign odontogenic neoplasm. It represents the soft tissue counterpart of central odontogenic fibroma. The embryonic source of POdF has been suggested by many as arising from the rest of dental lamina that has persisted in the gingiva following its disintegration. It presents clinically as a firm, slow growing and sessile gingival mass, which is difficult to distinguish with more common inflammatory lesions. Very few cases of recurrence have been documented. It has been stated that histological budding of basal cell layer of the surface squamous epithelium is associated with higher recurrence and the presence of calcification in direct apposition to the epithelial rest is associated with lower recurrence. Hereby, we present a case which histologically exhibited budding of the basal cell layer, which could have been the reason for its recurrence.

  7. High-Dose Menaquinone-7 Supplementation Reduces Cardiovascular Calcification in a Murine Model of Extraosseous Calcification

    Directory of Open Access Journals (Sweden)

    Daniel Scheiber

    2015-08-01

    Full Text Available Cardiovascular calcification is prevalent in the aging population and in patients with chronic kidney disease (CKD and diabetes mellitus, giving rise to substantial morbidity and mortality. Vitamin K-dependent matrix Gla-protein (MGP is an important inhibitor of calcification. The aim of this study was to evaluate the impact of high-dose menaquinone-7 (MK-7 supplementation (100 µg/g diet on the development of extraosseous calcification in a murine model. Calcification was induced by 5/6 nephrectomy combined with high phosphate diet in rats. Sham operated animals served as controls. Animals received high or low MK-7 diets for 12 weeks. We assessed vital parameters, serum chemistry, creatinine clearance, and cardiac function. CKD provoked increased aortic (1.3 fold; p < 0.05 and myocardial (2.4 fold; p < 0.05 calcification in line with increased alkaline phosphatase levels (2.2 fold; p < 0.01. MK-7 supplementation inhibited cardiovascular calcification and decreased aortic alkaline phosphatase tissue concentrations. Furthermore, MK-7 supplementation increased aortic MGP messenger ribonucleic acid (mRNA expression (10-fold; p < 0.05. CKD-induced arterial hypertension with secondary myocardial hypertrophy and increased elastic fiber breaking points in the arterial tunica media did not change with MK-7 supplementation. Our results show that high-dose MK-7 supplementation inhibits the development of cardiovascular calcification. The protective effect of MK-7 may be related to the inhibition of secondary mineralization of damaged vascular structures.

  8. Heart failure due to severe myocardial calcification

    International Nuclear Information System (INIS)

    A 28-year-old female who had had irradiation on the chest wall at the age of 5 as a remedy for keloid granulation after burn, recently developed congestive heart failure. Severe tricuspid regurgitation was demonstrated by echocardiography with a certain calcification in the cardiac shadow on chest radiogram. Calcified right ventricle and ventricular septum were noticed operatively, which disturbed ventricular motion and also caused tricuspid valve deformity. These calcified myocardium apparently corresponded with the irradiation field. After tricuspid valve replacement, she regained physical activity satisfactorily without congestive heart failure. Because she had no other known causes of cardiac calcification such as hypercalcemia, myocarditis, myocardial infarction or renal diseases, irradiation on the chest wall could be responsible for the severe myocardial calcification. (author)

  9. [Pulmonary calcification in C3H mice].

    Science.gov (United States)

    Yoshida, M; Uchida, K; Shigemura, M; Fujiwara, H; Kusano, N

    1985-10-01

    C3H mice including aged retired breeding females, aged virginal females, young virginal females and young males were examined for the incidence and severity of pulmonary calcification. Pulmonary calcification appeared in aged females, but not in young mice of either sex, and the lesions in aged breeders were more severe and frequent than in aged virgins. These results indicate that spontaneous pulmonary calcification is observed in aged females of the C3H strain. The findings of increased incidence and severity of pulmonary lesions in aged breeders suggest that pregnancy, delivery and lactation are important enhancing factors. Calcified lesions were also observed in kidney, heart, brain, ovary, choroid plexus, cornea and artery in the animals examined. PMID:4085573

  10. Peroneus longus acute calcific tendinitis: a case report

    OpenAIRE

    Mouzopoulos, George; Lasanianos, Nikolaos; Nikolaras, George; Tzurbakis, Mathaios

    2009-01-01

    Calcific tendinitis of the peroneus longus tendon is extremely rare, with only two cases described previously in the literature. Herein we discuss the diagnosis and management of a case with an acute calcific tendonitis of peroneus longus tendon.

  11. Intracranial Calcifications and Hemorrhages: Characterization with Quantitative Susceptibility Mapping

    OpenAIRE

    Chen, Weiwei; Zhu, Wenzhen; Kovanlikaya, IIhami; Kovanlikaya, Arzu; Liu, Tian; Wang, Shuai; Salustri, Carlo; Wang, Yi

    2014-01-01

    Quantitative susceptibility mapping demonstrates the negative susceptibility of calcification and the positive susceptibility of hemorrhage and is superior to phase imaging in the specific detection of intracranial calcifications and accurate detection of intracranial hemorrhages.

  12. Expression of NPP1 is regulated during atheromatous plaque calcification

    OpenAIRE

    Nitschke, Yvonne; Hartmann, Simone; Torsello, Giovanni; Horstmann, Rüdiger; Seifarth, Harald; Weissen-Plenz, Gabriele; Rutsch, Frank

    2009-01-01

    Abstract Mutations of the ENPP1 gene encoding ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) are associated with medial calcification in infancy. While the inhibitory role of matrix proteins such as osteopontin (OPN) with respect to atherosclerotic plaque calcification has been established, the role of NPP1 in plaque calcification is not known. We assessed the degree of plaque calcification (computed tomography), NPP1 and OPN localization (immunohistochemistry) and expression (RT-...

  13. Coronary artery calcification in chronic kidney disease: An update

    OpenAIRE

    Stompór, Tomasz

    2014-01-01

    Arterial calcification is a well-recognized complication of advanced atherosclerosis. Chronic kidney disease (CKD) is characterized by significantly more pronounced, disseminated and fast-progressing calcification of the vascular system, including the coronary arteries. New computed tomography-based imaging techniques allow for the noninvasive assessment and monitoring of calcification in different vascular sites. Coronary artery calcification (CAC) develops early in the course of CKD and is ...

  14. Extensive peritoneal calcifications associated with continuous ambulatory peritoneal dialysis

    International Nuclear Information System (INIS)

    Peritoneal calcification, which can lead to intestinal obstruction and potentially lethal hemoperitoneum, is a rare complication of continuous ambulatory peritoneal dialysis. We describe a case in which extensive peritoneal calcification had arisen for this reason. Although the patient was asymptomatic, extensive calcification was present on the parietal and visceral peritoneum, including the hepatic and splenic surface. (author)

  15. Calcific tendinitis of the gluteus maximus tendon (Gluteus maximus tendinitis)

    International Nuclear Information System (INIS)

    Seven cases of calcific tendinitis of the gluteus maximus tendon are presented. Awareness of the precise anatomic location of the calcific deposit is essential for the accurate diagnosis of this uncommon site of tendinitis. Clinically, the presenting complaint is that of pain. In some instances, however, the patients are asymptomatic and the calcification is an incidental finding. (orig.)

  16. Calcific tendinitis of the gluteus maximus tendon (Gluteus maximus tendinitis)

    Energy Technology Data Exchange (ETDEWEB)

    Wepfer, J.F.; Reed, J.G.; Cullen, G.M.; McDevitt, W.P.

    1983-02-01

    Seven cases of calcific tendinitis of the gluteus maximus tendon are presented. Awareness of the precise anatomic location of the calcific deposit is essential for the accurate diagnosis of this uncommon site of tendinitis. Clinically, the presenting complaint is that of pain. In some instances, however, the patients are asymptomatic and the calcification is an incidental finding.

  17. Associations between Thyroid Hormones, Calcification Inhibitor Levels and Vascular Calcification in End-Stage Renal Disease.

    Directory of Open Access Journals (Sweden)

    Christiaan Lucas Meuwese

    Full Text Available Vascular calcification is a common, serious and elusive complication of end-stage renal disease (ESRD. As a pro-calcifying risk factor, non-thyroidal illness may promote vascular calcification through a systemic lowering of vascular calcification inhibitors such as matrix-gla protein (MGP and Klotho.In 97 ESRD patients eligible for living donor kidney transplantation, blood levels of thyroid hormones (fT3, fT4 and TSH, total uncarboxylated MGP (t-ucMGP, desphospho-uncarboxylated MGP (dp-ucMGP, descarboxyprothrombin (PIVKA-II, and soluble Klotho (sKlotho were measured. The degree of coronary calcification and arterial stiffness were assessed by means of cardiac CT-scans and applanation tonometry, respectively.fT3 levels were inversely associated with coronary artery calcification (CAC scores and measures of arterial stiffness, and positively with dp-ucMGP and sKlotho concentrations. Subfractions of MGP, PIVKA-II and sKlotho did not associate with CAC scores and arterial stiffness. fT4 and TSH levels were both inversely associated with CAC scores, but not with arterial stiffness.The positive associations between fT3 and dp-ucMGP and sKlotho suggest that synthesis of MGP and Klotho is influenced by thyroid hormones, and supports a link between non-thyroidal illness and alterations in calcification inhibitor levels. However, the absence of an association between serum calcification inhibitor levels and coronary calcification/arterial stiffness and the fact that MGP and Klotho undergo post-translational modifications underscore the complexity of this association. Further studies, measuring total levels of MGP and membrane bound Klotho, should examine this proposed pathway in further detail.

  18. Association of mitral annulus calcification, aortic valve calcification with carotid intima media thickness

    Directory of Open Access Journals (Sweden)

    Scuteri Angelo

    2004-10-01

    Full Text Available Abstract Background Mitral annular calcification (MAC and aortic annular calcification (AVC may represent a manifestation of generalized atherosclerosis in the elederly. Alterations in vascular structure, as indexed by the intima media thickness (IMT, are also recognized as independent predictors of adverse cardiovascular outcomes. Aim To examine the relationship between the degree of calcification at mitral and/or aortic valve annulus and large artery structure (thickness. Methods We evaluated 102 consecutive patients who underwent transthoracic echocardiography and carotid artery echoDoppler for various indications; variables measured were: systemic blood pressure (BP, pulse pressure (PP=SBP-DBP, body mass index (BMI, fasting glucose, total, HDL, LDL chlolesterol, triglycerides, cIMT. The patients were divided according to a grading of valvular/annular lesions independent scores based on acoustic densitometry: 1 = annular/valvular sclerosis/calcification absence; 2 = annular/valvular sclerosis; 3 = annular calcification; 4 = annular-valvular calcification; 5 = valvular calcification with no recognition of the leaflets. Results Patient score was the highest observed for either valvular/annulus. Mean cIMT increased linearly with increasing valvular calcification score, ranging from 3.9 ± 0.48 mm in controls to 12.9 ± 1.8 mm in those subjects scored 5 (p 0.0001. Conclusion MAC and AVC score can identify subgroups of patients with different cIMT values which indicate different incidence and prevalence of systemic artery diseases. This data may confirm MAC-AVC as a useful important diagnostic parameter of systemic atherosclerotic disease.

  19. Differential diagnosis of disseminated periventricular calcifications

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, P.; Piepgras, U.

    1986-08-01

    Juvenile disseminated periventricular calcifications may occur in tuberous sclerosis, toxoplasmosis, cytomegaly, and in tuberculous meningitis. Cysticercosis, by contrast, does not result in corresponding intracerebral foci until an older age. Differential diagnosis is no problem if clinical findings are typical (tuberous sclerosis) or if serological verification is positive. However, any unclear clinical diagnosis can often be secured by CT.

  20. Reversible vascular calcifications associated with hypervitaminosis D.

    Science.gov (United States)

    Cirillo, Massimo; Bilancio, Giancarlo; Cirillo, Chiara

    2016-02-01

    A 64-year-old man was hospitalized in 2002 with symptoms of stupor, weakness, and renal colic. The clinical examination indicated borderline hypertension, small masses in the glutei, and polyuria. Laboratory tests evidenced high serum concentrations of creatinine, calcium, and phosphate. Imaging assessments disclosed widespread vascular calcifications, gluteal calcifications, and pelvic ectasia. Subsequent lab tests indicated suppressed serum parathyroid hormone, extremely high serum 25-hydroxy vitamin D, and normal serum 1,25-dihydroxy vitamin D. Treatment was started with intravenous infusion of saline and furosemide due to the evidence of hypercalcemia. Prednisone and omeprazole were added given the evidence of hypervitaminosis D. The treatment improved serum calcium, kidney function, and consciousness. The medical history disclosed recent treatment with exceptionally high doses of slow-release intra-muscular cholecalciferol and the recent excretion of urinary stones. The patient was discharged when it was possible to stop the intravenous treatment. The post-discharge treatment included oral hydration, furosemide, prednisone and omeprazole for approximately 6 months up to complete resolution of the hypercalcemia. The patient came back 12 years later because of microhematuria. Lab tests were normal for calcium/phosphorus homeostasis and kidney function. Imaging tests indicated only minor vascular calcifications. This is the first evidence of reversible vascular calcifications secondary to hypervitaminosis D. PMID:26318020