WorldWideScience

Sample records for basal epithelial stem

  1. Multipotent Basal Stem Cells, Maintained in Localized Proximal Niches, Support Directed Long-Ranging Epithelial Flows in Human Prostates

    Directory of Open Access Journals (Sweden)

    Mohammad Moad

    2017-08-01

    Full Text Available Sporadic mitochondrial DNA mutations serve as clonal marks providing access to the identity and lineage potential of stem cells within human tissues. By combining quantitative clonal mapping with 3D reconstruction of adult human prostates, we show that multipotent basal stem cells, confined to discrete niches in juxta-urethral ducts, generate bipotent basal progenitors in directed epithelial migration streams. Basal progenitors are then dispersed throughout the entire glandular network, dividing and differentiating to replenish the loss of apoptotic luminal cells. Rare lineage-restricted luminal stem cells, and their progeny, are confined to proximal ducts and provide only minor contribution to epithelial homeostasis. In situ cell capture from clonal maps identified delta homolog 1 (DLK1 enrichment of basal stem cells, which was validated in functional spheroid assays. This study establishes significant insights into niche organization and function of prostate stem and progenitor cells, with implications for disease.

  2. The human airway epithelial basal cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Neil R Hackett

    2011-05-01

    Full Text Available The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population.Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels.The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium.

  3. Heterogeneity of limbal basal epithelial progenitor cells.

    Science.gov (United States)

    Hayashida, Yasutaka; Li, Wei; Chen, Ying-Ting; He, Hua; Chen, Szu-yu; Kheirkah, Ahmad; Zhu, Ying-Tien; Matsumoto, Yukihiro; Tseng, Scheffer C G

    2010-11-01

    Although corneal epithelial stem cells (SCs) are located at the limbus between the cornea and the conjunctiva, not all limbal basal epithelial cells are SCs. Using 2 dispase digestions to remove different amounts of limbal basal epithelial cells for cross-sections, flat mounts, and cytospin preparations, double immunostaining to pancytokeratins (PCK) and vimentin (Vim) identified 3 p63+ epithelial progenitors such as PCK-/Vim+, PCK/Vim, and PCK-/Vim+ and 1 p63+ mesenchymal cell, PCK-/Vim+. PCK-/Vim- progenitors had the smallest cell size were 10-20 times more enriched on collagen I-coated dishes in the 5-minute rapid adherent fraction that contained the highest percentage of p63+ cells but the lowest percentage of cytokeratin12+ cells, and gave rise to high Ki67 labeling and vivid clonal growth. In contrast, PCK+/Vim+ and PCK+/Vim- progenitors were found more in the slow-adherent fraction and yielded poor clonal growth. PCK/Vim progenitors and clusters of PCK-/Vim+ mesenchymal cells, which were neither melanocytes nor Langerhans cells, were located in the limbal basal region. Therefore, differential expression of PCK and Vim helps identify small PCK-/Vim- cells as the most likely candidate for SCs among a hierarchy of heterogeneous limbal basal progenitors, and their close association with PCK-/Vim+ presumed "niche" cells.

  4. A basal stem cell signature identifies aggressive prostate cancer phenotypes

    Science.gov (United States)

    Smith, Bryan A.; Sokolov, Artem; Uzunangelov, Vladislav; Baertsch, Robert; Newton, Yulia; Graim, Kiley; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M.; Witte, Owen N.

    2015-01-01

    Evidence from numerous cancers suggests that increased aggressiveness is accompanied by up-regulation of signaling pathways and acquisition of properties common to stem cells. It is unclear if different subtypes of late-stage cancer vary in stemness properties and whether or not these subtypes are transcriptionally similar to normal tissue stem cells. We report a gene signature specific for human prostate basal cells that is differentially enriched in various phenotypes of late-stage metastatic prostate cancer. We FACS-purified and transcriptionally profiled basal and luminal epithelial populations from the benign and cancerous regions of primary human prostates. High-throughput RNA sequencing showed the basal population to be defined by genes associated with stem cell signaling programs and invasiveness. Application of a 91-gene basal signature to gene expression datasets from patients with organ-confined or hormone-refractory metastatic prostate cancer revealed that metastatic small cell neuroendocrine carcinoma was molecularly more stem-like than either metastatic adenocarcinoma or organ-confined adenocarcinoma. Bioinformatic analysis of the basal cell and two human small cell gene signatures identified a set of E2F target genes common between prostate small cell neuroendocrine carcinoma and primary prostate basal cells. Taken together, our data suggest that aggressive prostate cancer shares a conserved transcriptional program with normal adult prostate basal stem cells. PMID:26460041

  5. The Basal Cell Marker p63 and Prostate Stem Cells

    National Research Council Canada - National Science Library

    Signoretti, Sabina

    2002-01-01

    ...(s) involved in prostate carcinogenesis. The p53-homologue p63 is selectively expressed in the basal cell compartment of a variety of epithelial tissues and p63 deficient mice show severe defects in the development of epithelial organs...

  6. The Basal Cell Marker p63 and Prostate Stem Cells

    National Research Council Canada - National Science Library

    Signoretti, Sabina

    2003-01-01

    ...(s) involved in prostate carcinogenesis. The p53-homologue p63 is selectively expressed in the basal cell compartment of a variety of epithelial tissues and p63 deficient mice show severe defects in the development of epithelial organs...

  7. The Basal Cell Marker p63 and Prostate Stem Cells

    National Research Council Canada - National Science Library

    Signoretti, Sabina

    2004-01-01

    ...(s) involved in prostate carcinogenesis. The p53-homologue p63 is selectively expressed in the basal cell compartment of a variety of epithelial tissues and p63 deficient mice show severe defects in the development of epithelial organs...

  8. Deep RNA-Seq analysis reveals unexpected features of human prostate basal epithelial cells

    Directory of Open Access Journals (Sweden)

    Dingxiao Zhang

    2016-03-01

    Full Text Available Prostate cancer is the second leading cause of cancer-related deaths among American men [1]. The prostate gland mainly contains basal and luminal cells, which are constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here, for the first time, we describe a whole-genome transcriptome analysis of human benign prostatic basal and luminal populations by using deep RNA sequencing (GSE67070 [2]. Combined with comprehensive molecular and biological characterizations, we show that the differential gene expression profiles account for their distinct functional phenotypes. Strikingly, in contrast to luminal cells, basal cells preferentially express gene categories associated with stem cells, neural and neuronal development, and RNA processing. Of clinical relevance, the treatment failed castration-resistant and anaplastic prostate cancers molecularly resemble a basal-like phenotype. We also identified genes associated with patient clinical outcome. Therefore, we provide a gene expression resource for understanding human prostate epithelial lineages, and link the cell-type specific gene signatures to subtypes of prostate cancer development. Keywords: Prostate epithelial cells, Basal cells, Luminal cells, RNA-seq

  9. Expression of p75NGFR, a Proliferative and Basal Cell Marker, in the Buccal Mucosa Epithelium during Re-epithelialization

    International Nuclear Information System (INIS)

    Ishii, Akihiro; Muramatsu, Takashi; Lee, Jong-Min; Higa, Kazunari; Shinozaki, Naoshi; Jung, Han-Sung; Shibahara, Takahiko

    2014-01-01

    We investigated the expression of p75 NGFR , a proliferative and basal cell marker, in the mouse buccal mucosa epithelium during wound healing in order to elucidate the role of epithelial stem cells. Epithelial defects were generated in the epithelium of the buccal mucosa of 6-week-old mice using CO 2 laser irradiation. BrdU was immediately administered to mice following laser irradiation. They were then sacrificed after 1, 3, 7, and 14 days. Paraffin sections were prepared and the irradiated areas were analyzed using immunohistochemistry with anti-p75 NGFR , BrdU, PCNA, and CK14 antibodies. During re-epithelialization, PCNA (–)/p75 NGFR (+) cells extended to the wound, which then closed, whereas PCNA (+)/p75 NGFR (+) cells were not observed at the edge of the wound. In addition, p75 NGFR (–)/CK14 (+), which reflected the presence of post-mitotic differentiating cells, was observed in the supra-basal layers of the extended epithelium. BrdU (+)/p75 NGFR (+), which reflected the presence of epithelial stem cells, was detected sparsely in buccal basal epithelial cells after healing, and disappeared after 7 days. These results suggest that p75 NGFR (+) keratinocytes are localized in the basal layer, which contains oral epithelial stem cells, and retain the ability to proliferate in order to regenerate the buccal mucosal epithelium

  10. Estimating shrub biomass from basal stem diameters

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J K

    1976-01-01

    Stem lengths and oven dry wt of stemwood and foilage were determined for shrubs in dia classes of 0 to 0.5 cm, 0.5 to 2 cm and 2 to 5 cm in various habitat types in Idaho and Montana. The logarithm of basal stem dia was closely correlated with the logarithm of wt. Regression components are presented for estimating leaf wt and total above-ground wt of 25 woody shrub species using a linear equation relating these 2 variables. Percentage stemwood wt is given for the 3 dia classes. Dia distributions for the smallest dia class were normal except for a few species with fine twigs; distributions for the other classes were positively skewed. Applications to forest fuel studies are briefly discussed.

  11. Estimating shrub biomass from basal stem diameters

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J K

    1976-01-01

    Stem lengths and oven dry wt of stemwood and foilage were determined for shrubs in dia classes of 0 to 0.5 cm, 0.5 to 2 cm and 2 to 5 cm in various habitat types in Idaho and Montana. The logarithm of basal stem dia was closely correlated with the logarithm of wt. Regression components are presented for estimating leaf wt and total above-ground wt of 25 woody shrub species using a linear equation relating these 2 variables. Percentage stemwood wt is given for the 3 dia classes. Dia distributions for the smallest dia class were normal except for a few species with fine twigs: distributions for the other classes were positively skewed. Applications to forest fuel studies are briefly discussed.

  12. Epithelial cell polarity, stem cells and cancer

    DEFF Research Database (Denmark)

    Martin-Belmonte, Fernando; Perez-Moreno, Mirna

    2011-01-01

    , deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis.......After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related...

  13. Transcriptional profiling of putative human epithelial stem cells

    Directory of Open Access Journals (Sweden)

    Koçer Salih S

    2008-07-01

    Full Text Available Abstract Background Human interfollicular epidermis is sustained by the proliferation of stem cells and their progeny, transient amplifying cells. Molecular characterization of these two cell populations is essential for better understanding of self renewal, differentiation and mechanisms of skin pathogenesis. The purpose of this study was to obtain gene expression profiles of alpha 6+/MHCI+, transient amplifying cells and alpha 6+/MHCI-, putative stem cells, and to compare them with existing data bases of gene expression profiles of hair follicle stem cells. The expression of Major Histocompatibility Complex (MHC class I, previously shown to be absent in stem cells in several tissues, and alpha 6 integrin were used to isolate MHCI positive basal cells, and MHCI low/negative basal cells. Results Transcriptional profiles of the two cell populations were determined and comparisons made with published data for hair follicle stem cell gene expression profiles. We demonstrate that presumptive interfollicular stem cells, alpha 6+/MHCI- cells, are enriched in messenger RNAs encoding surface receptors, cell adhesion molecules, extracellular matrix proteins, transcripts encoding members of IFN-alpha family proteins and components of IFN signaling, but contain lower levels of transcripts encoding proteins which take part in energy metabolism, cell cycle, ribosome biosynthesis, splicing, protein translation, degradation, DNA replication, repair, and chromosome remodeling. Furthermore, our data indicate that the cell signaling pathways Notch1 and NF-κB are downregulated/inhibited in MHC negative basal cells. Conclusion This study demonstrates that alpha 6+/MHCI- cells have additional characteristics attributed to stem cells. Moreover, the transcription profile of alpha 6+/MHCI- cells shows similarities to transcription profiles of mouse hair follicle bulge cells known to be enriched for stem cells. Collectively, our data suggests that alpha 6+/MHCI- cells

  14. The Wnt receptor, Lrp5, is expressed by mouse mammary stem cells and is required to maintain the basal lineage.

    Directory of Open Access Journals (Sweden)

    Nisha M Badders

    2009-08-01

    Full Text Available Ectopic Wnt signaling induces increased stem/progenitor cell activity in the mouse mammary gland, followed by tumor development. The Wnt signaling receptors, Lrp5/6, are uniquely required for canonical Wnt activity. Previous data has shown that the absence of Lrp5 confers resistance to Wnt1-induced tumor development.Here, we show that all basal mammary cells express Lrp5, and co-express Lrp6 in a similar fashion. Though Wnt dependent transcription of key target genes is relatively unchanged in mammary epithelial cell cultures, the absence of Lrp5 specifically depletes adult regenerative stem cell activity (to less than 1%. Stem cell activity can be enriched by >200 fold (over 80% of activity, based on high Lrp5 expression alone. Though Lrp5 null glands have apparent normal function, the basal lineage is relatively reduced (from 42% basal/total epithelial cells to 22% and Lrp5-/- mammary epithelial cells show enhanced expression of senescence-associated markers in vitro, as measured by expression of p16(Ink4a and TA-p63.This is the first single biomarker that has been demonstrated to be functionally involved in stem cell maintenance. Together, these results demonstrate that Wnt signaling through Lrp5 is an important component of normal mammary stem cell function.

  15. Luminal epithelial cells within the mammary gland can produce basal cells upon oncogenic stress.

    Science.gov (United States)

    Hein, S M; Haricharan, S; Johnston, A N; Toneff, M J; Reddy, J P; Dong, J; Bu, W; Li, Y

    2016-03-17

    In the normal mammary gland, the basal epithelium is known to be bipotent and can generate either basal or luminal cells, whereas the luminal epithelium has not been demonstrated to contribute to the basal compartment in an intact and normally developed mammary gland. It is not clear whether cellular heterogeneity within a breast tumor results from transformation of bipotent basal cells or from transformation and subsequent basal conversion of the more differentiated luminal cells. Here we used a retroviral vector to express an oncogene specifically in a small number of the mammary luminal epithelial cells and tested their potential to produce basal cells during tumorigenesis. This in-vivo lineage-tracing work demonstrates that luminal cells are capable of producing basal cells on activation of either polyoma middle T antigen or ErbB2 signaling. These findings reveal the plasticity of the luminal compartment during tumorigenesis and provide an explanation for cellular heterogeneity within a cancer.

  16. Endothelial induced EMT in breast epithelial cells with stem cell properties.

    Directory of Open Access Journals (Sweden)

    Valgardur Sigurdsson

    Full Text Available Epithelial to mesenchymal transition (EMT is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M derived from D492, show reduced expression of keratins, a switch from E-Cadherin (E-Cad to N-Cadherin (N-Cad and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high/CD24(low ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close to the vascular rich areas show no or decreased expression of E-Cad and increased N-Cad expression suggesting EMT. Collectively, we have shown in a 3D culture model that endothelial cells are potent inducers of EMT in breast epithelial cells with stem cell properties. Furthermore, we demonstrate that basal-like breast cancer contains cells with an EMT phenotype, most prominently close to vascular rich areas of these tumors. We conclude that endothelial cells are potent inducers of EMT and may play a role in progression of basal-like breast cancer.

  17. Endothelial induced EMT in breast epithelial cells with stem cell properties.

    Science.gov (United States)

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla; Fridriksdottir, Agla J R; Ringnér, Markus; Villadsen, Rene; Borg, Ake; Agnarsson, Bjarni A; Petersen, Ole William; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2011-01-01

    Epithelial to mesenchymal transition (EMT) is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M) derived from D492, show reduced expression of keratins, a switch from E-Cadherin (E-Cad) to N-Cadherin (N-Cad) and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high)/CD24(low) ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close to the vascular rich areas show no or decreased expression of E-Cad and increased N-Cad expression suggesting EMT. Collectively, we have shown in a 3D culture model that endothelial cells are potent inducers of EMT in breast epithelial cells with stem cell properties. Furthermore, we demonstrate that basal-like breast cancer contains cells with an EMT phenotype, most prominently close to vascular rich areas of these tumors. We conclude that endothelial cells are potent inducers of EMT and may play a role in progression of basal-like breast cancer.

  18. Generation of stratified squamous epithelial progenitor cells from mouse induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Satoru Yoshida

    Full Text Available BACKGROUND: Application of induced pluripotent stem (iPS cells in regenerative medicine will bypass ethical issues associated with use of embryonic stem cells. In addition, patient-specific IPS cells can be useful to elucidate the pathophysiology of genetic disorders, drug screening, and tailor-made medicine. However, in order to apply iPS cells to mitotic tissue, induction of tissue stem cells that give rise to progeny of the target organ is required. METHODOLOGY/PRINCIPAL FINDINGS: We induced stratified epithelial cells from mouse iPS cells by co-culture with PA6 feeder cells (SDIA-method with use of BMP4. Clusters of cells positive for the differentiation markers KRT1 or KRT12 were observed in KRT14-positive colonies. We successfully cloned KRT14 and p63 double-positive stratified epithelial progenitor cells from iPS-derived epithelial cells, which formed stratified epithelial sheets consisting of five- to six-polarized epithelial cells in vitro. When these clonal cells were cultured on denuded mouse corneas, a robust stratified epithelial layer was observed with physiological cell polarity including high levels of E-cadherin, p63 and K15 expression in the basal layer and ZO-1 in the superficial layer, recapitulating the apico-basal polarity of the epithelium in vivo. CONCLUSIONS/SIGNIFICANCE: These results suggest that KRT14 and p63 double-positive epithelial progenitor cells can be cloned from iPS cells in order to produce polarized multilayer epithelial cell sheets.

  19. Following basal stem rot in young oil palm plantings.

    Science.gov (United States)

    Panchal, G; Bridge, P D

    2005-01-01

    The PCR primer GanET has previously been shown to be suitable for the specific amplification of DNA from Ganoderma boninense. A DNA extraction and PCR method has been developed that allows for the amplification of the G. boninense DNA from environmental samples of oil palm tissue. The GanET primer reaction was used in conjunction with a palm-sampling programme to investigate the possible infection of young palms through cut frond base surfaces. Ganoderma DNA was detected in frond base material at a greater frequency than would be expected by comparison with current infection levels. Comparisons are made between the height of the frond base infected, the number of frond bases infected, and subsequent development of basal stem rot. The preliminary results suggest that the development of basal stem rot may be more likely to occur when young lower frond bases are infected.

  20. Bacterial diversity of oil palm Elaeis guineensis basal stems

    Science.gov (United States)

    Amran, Afzufira; Jangi, Mohd Sanusi; Aqma, Wan Syaidatul; Yusof, Nurul Yuziana Mohd; Bakar, Mohd Faizal Abu; Isa, Mohd Noor Mat

    2016-11-01

    Oil palm, Elaeis guineensis is one of the major industrial production crops in Malaysia. Basal stem rot, caused by the white fungus, Ganoderma boninense, is a disease that reduces oil palm yields in most production areas of the world. Understanding of bacterial community that is associated with Ganoderma infection will shed light on how this bacterial community contributes toward the severity of the infection. In this preliminary study, we assessed the bacterial community that inhabit the basal stems of E. guineensis based on 16S rRNA gene as a marker using next generation sequencing platform. This result showed that a total of 84,372 operational taxonomic-units (OTUs) were identified within six samples analyzed. A total 55,049 OTUs were assigned to known taxonomy whereas 29,323 were unassigned. Cyanobacteria, Bacteroidetes, Firmicutes and Proteobacteria were the most abundant phyla found in all six samples and the unique taxonomy assigned for each infected and healthy samples were also identified. The findings from this study will further enhance our knowledge in the interaction of bacterial communities against Ganoderma infection within the oil palm host plant and for a better management of the basal stems rot disease.

  1. Lifespan Extension and Sustained Expression of Stem Cell Phenotype of Human Breast Epithelial Stem Cells in a Medium with Antioxidants

    Directory of Open Access Journals (Sweden)

    Kai-Hung Wang

    2016-01-01

    Full Text Available We have previously reported the isolation and culture of a human breast epithelial cell type with stem cell characteristics (Type I HBEC from reduction mammoplasty using the MSU-1 medium. Subsequently, we have developed several different normal human adult stem cell types from different tissues using the K-NAC medium. In this study, we determined whether this low calcium K-NAC medium with antioxidants (N-acetyl-L-cysteine and L-ascorbic acid-2-phosphate is a better medium to grow human breast epithelial cells. The results clearly show that the K-NAC medium is a superior medium for prolonged growth (cumulative population doubling levels ranged from 30 to 40 of normal breast epithelial cells that expressed stem cell phenotypes. The characteristics of these mammary stem cells include deficiency in gap junctional intercellular communication, expression of Oct-4, and the ability to differentiate into basal epithelial cells and to form organoid showing mammary ductal and terminal end bud-like structures. Thus, this new method of growing Type I HBECs will be very useful in future studies of mammary development, breast carcinogenesis, chemoprevention, and cancer therapy.

  2. Endothelial induced EMT in breast epithelial cells with stem cell properties

    DEFF Research Database (Denmark)

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla

    2011-01-01

    endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M) derived from D492, show reduced expression...... of keratins, a switch from E-Cadherin (E-Cad) to N-Cadherin (N-Cad) and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high)/CD24(low) ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D......492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close...

  3. Expression of basal cell marker revealed by RAM11 antibody during epithelial regeneration in rabbits.

    Directory of Open Access Journals (Sweden)

    Tadeusz Cichocki

    2010-06-01

    Full Text Available RAM11 is a mouse monoclonal anti-rabbit macrophage antibody recognizing connective tissue and vascular macrophages. Our previous report showed that RAM11 reacted with basal cells of stratified squamous epithelia of rabbit skin, oral mucosa and esophagus. The aim of the present study was to follow the appearance of RAM11 immunoreactivity in basal cells of regenerating oral epithelium in rabbits. No RAM11 immunostaining was observed in the regenerating epithelium examined on days 1 and 3 of wound healing. A weak immunofluorescence first appeared on day 7 in single basal cells and 32% of RAM11- positive basal cells were observed on day 14. These findings indicate that expression of the antigen recognized by RAM11 antibody is a transient event in the differentiation of oral keratinocytes which not always occurs during epithelial repair, although it is a constant feature of epithelial turnover in mature epithelium. Therefore this antigen can be regarded as basal cell marker only in mature stratified squamous epithelia.

  4. Identification of Human Cutaneous Basal Cell Carcinoma Cancer Stem Cells.

    Science.gov (United States)

    Morgan, Huw; Olivero, Carlotta; Patel, Girish K

    2018-04-20

    The cancer stem cell model states that a subset of tumor cells, called "cancer stem cells," can initiate and propagate tumor growth through self-renewal, high proliferative capacity, and their ability to recreate tumor heterogeneity. In basal cell carcinoma (BCC), we have shown that tumor cells that express the cell surface protein CD200 fulfill the cancer stem cell hypothesis. CD200+ CD45- BCC cells represent 0.05-3.96% of all BCC cells and reside in small clusters at the tumor periphery. Using a novel, reproducible in vivo xenograft growth assay, we determined that tumor-initiating cell (TIC) frequencies are approximately 1 per 1.5 million unsorted BCC cells. The CD200+ CD45- BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200+ CD45- cells, representing ~1500-fold enrichment. The methods used to identify and purify CD200+ CD45- BCC cells, as well as characterize gene expression, are described herein.

  5. Case of radiation cancer associated with spinocellular carcinoma and basal cell epithelial tumor

    Energy Technology Data Exchange (ETDEWEB)

    Oohara, K.; Ootsuka, F. (Tokyo Univ. (Japan). Faculty of Medicine); Mizoguchi, M.

    1980-12-01

    The patient was a 66 year-old male who had received radiotherapy for psoriasis vulgaris in frontal plane for 10 years since the age of 19. This radiotherapy was carried out once a week for 5 to 6 weeks and stopped for following 5 to 6 weeks. The source and the dose were unknown. Multiple superficial basal cell epithelial tumor occurred 32 to 33 years after that in the region over which radiation had been given. Moreover, 37 years after that, spinocellular carcinoma occurred in the same region. Spinocellular carcinoma in this case increased rapidly and reached the depth of frontal plane. Atypic of cancer cells was marked, and various findings were observed. Characteristics of these tumor cells were mixture of spindle cells and cells with vacuoles. Partially, findings common to basal cell epithelial tumor were coexisted, and senile keratosis was also discovered.

  6. A case of radiation cancer associated with spinocellular carcinoma and basal cell epithelial tumor

    International Nuclear Information System (INIS)

    Oohara, Kuniaki; Ootsuka, Fujio; Mizoguchi, Masako.

    1980-01-01

    The patient was a 66 year-old male who had received radiotherapy for psoriasis vulgaris in frontal plane for 10 years since the age of 19. This radiotherapy was carried out once a week for 5 to 6 weeks and stopped for following 5 to 6 weeks. The source and the dose were unknown. Multiple superficial basal cell epithelial tumor occurred 32 to 33 years after that in the region over which radiation had been given. Moreover, 37 years after that, spinocellular carcinoma occurred in the same region. Spinocellular carcinoma in this case increased rapidly and reached the depth of frontal plane. Atypic of cancer cells was marked, and various findings were observed. Characteristics of these tumor cells were mixture of spindle cells and cells with vacuoles. Partially, findings common to basal cell epithelial tumor were coexisted, and senile keratosis was also discovered. (Tsunoda, M.)

  7. Lingual Epithelial Stem Cells and Organoid Culture of Them

    Directory of Open Access Journals (Sweden)

    Hiroko Hisha

    2016-01-01

    Full Text Available As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP, were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine.

  8. Wnt Signalling in Gastrointestinal Epithelial Stem Cells

    Directory of Open Access Journals (Sweden)

    Dustin J. Flanagan

    2018-03-01

    Full Text Available Wnt signalling regulates several cellular functions including proliferation, differentiation, apoptosis and migration, and is critical for embryonic development. Stem cells are defined by their ability for self-renewal and the ability to be able to give rise to differentiated progeny. Consequently, they are essential for the homeostasis of many organs including the gastrointestinal tract. This review will describe the huge advances in our understanding of how stem cell functions in the gastrointestinal tract are regulated by Wnt signalling, including how deregulated Wnt signalling can hijack these functions to transform cells and lead to cancer.

  9. Illustration of extensive extracellular matrix at the epithelial-mesenchymal interface within the renal stem/progenitor cell niche

    Directory of Open Access Journals (Sweden)

    Minuth Will W

    2012-09-01

    Full Text Available Abstract Background Stem/progenitor cells are promising candidates to treat diseased renal parenchyma. However, implanted stem/progenitor cells are exposed to a harmful atmosphere of degenerating parenchyma. To minimize hampering effects after an implantation investigations are in progress to administer these cells within an artificial polyester interstitum supporting survival. Learning from nature the renal stem/progenitor cell niche appears as a valuable model. At this site epithelial stem/progenitor cells within the collecting duct ampulla face mesenchymal stem/progenitor cells. Both cell types do not have close contact but are separated by a wide interstitium. Methods To analyze extracellular matrix in this particular interstitium, special contrasting for transmission electron microscopy was performed. Kidneys of neonatal rabbits were fixed in solutions containing glutaraldehyde (GA or in combination with cupromeronic blue, ruthenium red and tannic acid. Results GA revealed a basal lamina at the ampulla and a bright but inconspicuously looking interstitial space. In contrast, GA containing cupromeronic blue exhibits numerous proteoglycan braces lining from the ampulla towards the interstitial space. GA containing ruthenium red or tannic acid demonstrates clouds of extracellular matrix protruding from the basal lamina of the ampulla to the surface of mesenchymal stem/progenitor cells. Conclusions The actual data show that the interstitium between epithelial and mesenchymal stem/progenitor cells contains much more and up to date unknown extracellular matrix than earlier observed by classical GA fixation.

  10. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage

    NARCIS (Netherlands)

    P. Aparicio-Domingo (Patricia); M. Romera Hernández (Mónica); J.J. Karrich (Julien J.); F.H.J. Cornelissen (Ferry); N. Papazian (Natalie); D.J. Lindenbergh-Kortleve (Dicky); J.A. Butler (James A.); L. Boon (Louis); M. Coles (Mark); J.N. Samsom (Janneke); T. Cupedo (Tom)

    2015-01-01

    textabstractDisruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence

  11. The Epithelial-to-Mesenchymal Transition in Breast Cancer: Focus on Basal-Like Carcinomas

    Directory of Open Access Journals (Sweden)

    Monica Fedele

    2017-09-01

    Full Text Available Breast cancer is a heterogeneous disease that is characterized by a high grade of cell plasticity arising from the contribution of a diverse range of factors. When combined, these factors allow a cancer cell to transition from an epithelial to a mesenchymal state through a process of dedifferentiation that confers stem-like features, including chemoresistance, as well as the capacity to migrate and invade. Understanding the complex events that lead to the acquisition of a mesenchymal phenotype will therefore help to design new therapies against metastatic breast cancer. Here, we recapitulate the main endogenous molecular signals involved in this process, and their cross-talk with paracrine factors. These signals and cross-talk include the extracellular matrix; the secretome of cancer-associated fibroblasts, macrophages, cancer stem cells, and cancer cells; and exosomes with their cargo of miRNAs. Finally, we highlight some of the more promising therapeutic perspectives based on counteracting the epithelial-to-mesenchymal transition in breast cancer cells.

  12. Reconstitution of mammary epithelial morphogenesis by murine embryonic stem cells undergoing hematopoietic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    2010-03-01

    Full Text Available Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo.To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo.Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.

  13. Genetic analysis of partial resistance to basal stem rot (Sclerotinia sclerotiorum in sunflower

    Directory of Open Access Journals (Sweden)

    Amouzadeh Masoumeh

    2013-01-01

    Full Text Available Basal stem rot, caused by Sclerotinia sclerotiorum (Lib. de Bary, is one of the major diseases of sunflower (Helianthus annuus L. in the world. Quantitative trait loci (QTLs implicated in partial resistance to basal stem rot disease were identified using 99 recombinant inbred lines (RILs from the cross between sunflower parental lines PAC2 and RHA266. The study was undertaken in a completely randomized design with three replications under controlled conditions. The RILs and their parental lines were inoculated with a moderately aggressive isolate of S. sclerotiorum (SSKH41. Resistance to disease was evaluated by measuring the percentage of necrosis area three days after inoculation. QTLs were mapped using an updated high-density SSR and SNP linkage map. ANOVA showed significant differences among sunflower lines for resistance to basal stem rot (P≤0.05. The frequency distribution of lines for susceptibility to disease showed a continuous pattern. Composite interval mapping analysis revealed 5 QTLs for percentage of necrotic area, localized on linkage groups 1, 3, 8, 10 and 17. The sign of additive effect was positive in 5 QTLs, suggesting that the additive allele for partial resistance to basal stem rot came from the paternal line (RHA266. The phenotypic variance explained by QTLs (R2 ranged from 0.5 to 3.16%. Identified genes (HUCL02246_1, GST and POD, and SSR markers (ORS338, and SSL3 encompassing the QTLs for partial resistance to basal stem rot could be good candidates for marker assisted selection.

  14. Endothelial Induced EMT in Breast Epithelial Cells with Stem Cell Properties

    OpenAIRE

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla; Fridriksdottir, Agla J. R.; Ringnér, Markus; Villadsen, Rene; Borg, Ake; Agnarsson, Bjarni A.; Petersen, Ole William; Magnusson, Magnus K.; Gudjonsson, Thorarinn

    2011-01-01

    Epithelial to mesenchymal transition (EMT) is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell proper...

  15. Establishment of a Novel Lingual Organoid Culture System: Generation of Organoids Having Mature Keratinized Epithelium from Adult Epithelial Stem Cells

    Science.gov (United States)

    Hisha, Hiroko; Tanaka, Toshihiro; Kanno, Shohei; Tokuyama, Yoko; Komai, Yoshihiro; Ohe, Shuichi; Yanai, Hirotsugu; Omachi, Taichi; Ueno, Hiroo

    2013-11-01

    Despite the strong need for the establishment of a lingual epithelial cell culture system, a simple and convenient culture method has not yet been established. Here, we report the establishment of a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Histological analyses showed that the generated organoids had both a stratified squamous epithelial cell layer and a stratum corneum. Very recently, we showed via a multicolor lineage tracing method that Bmi1-positive stem cells exist at the base of the epithelial basal layer in the interpapillary pit. Using our new culture system, we found that organoids could be generated by single Bmi1-positive stem cells and that in the established organoids, multiple Bmi1-positive stem cells were generated at the outermost layer. Moreover, we observed that organoids harvested at an early point in culture could be engrafted and maturate in the tongue of recipient mice and that the organoids generated from carcinogen-treated mice had an abnormal morphology. Thus, this culture system presents valuable settings for studying not only the regulatory mechanisms of lingual epithelium but also lingual regeneration and carcinogenesis.

  16. Protein Profiling of Isolated Leukocytes, Myofibroblasts, Epithelial, Basal, and Endothelial Cells from Normal, Hyperplastic, Cancerous, and Inflammatory Human Prostate Tissues

    Directory of Open Access Journals (Sweden)

    Zahraa I. Khamis, Kenneth A. Iczkowski, Ziad J. Sahab, Qing-Xiang Amy Sang

    2010-01-01

    Full Text Available In situ neoplastic prostate cells are not lethal unless they become invasive and metastatic. For cells to become invasive, the prostate gland must undergo degradation of the basement membrane and disruption of the basal cell layer underneath the luminal epithelia. Although the roles of proteinases in breaking down the basement membrane have been well-studied, little is known about the factors that induce basal cell layer disruption, degeneration, and its eventual disappearance in invasive cancer. It is hypothesized that microenvironmental factors may affect the degradation of the basal cell layer, which if protected may prevent tumor progression and invasion. In this study, we have revealed differential protein expression patterns between epithelial and stromal cells isolated from different prostate pathologies and identified several important epithelial and stromal proteins that may contribute to inflammation and malignant transformation of human benign prostate tissues to cancerous tissues using matrix-assisted laser desorption ionization time-of-flight mass spectrometry and proteomics methods. Cellular retinoic acid-binding protein 2 was downregulated in basal cells of benign prsotate. Caspase-1 and interleukin-18 receptor 1 were highly expressed in leukocytes of prostate cancer. Proto-oncogene Wnt-3 was downregulated in endothelial cells of prostatitis tissue and tyrosine phosphatase non receptor type 1 was only found in normal and benign endothelial cells. Poly ADP-ribose polymerase 14 was downregulated in myofibroblasts of prostatitis tissue. Interestingly, integrin alpha-6 was upregulated in epithelial cells but not detected in myofibroblasts of prostate cancer. Further validation of these proteins may generate new strategies for the prevention of basal cell layer disruption and subsequent cancer invasion.

  17. Perlecan and Dystroglycan act at the basal side of the Drosophila follicular epithelium to maintain epithelial organization

    DEFF Research Database (Denmark)

    Schneider, Martina; Khalil, Ashraf A; Poulton, John

    2006-01-01

    and the cytoskeleton. Disruption of this linkage in skeletal muscle leads to various types of muscular dystrophies. In epithelial cells, reduced expression of Dg is associated with increased invasiveness of cancer cells. We have previously shown that Dg is required for epithelial cell polarity in Drosophila......, but the mechanisms of this polarizing activity and upstream/downstream components are largely unknown. Using the Drosophila follicle-cell epithelium (FCE) as a model system, we show that the ECM molecule Perlecan (Pcan) is required for maintenance of epithelial-cell polarity. Follicle cells that lack Pcan develop...... polarity defects similar to those of Dg mutant cells. Furthermore, Dg depends on Pcan but not on Laminin A for its localization in the basal-cell membrane, and the two proteins bind in vitro. Interestingly, the Dg form that interacts with Pcan in the FCE lacks the mucin-like domain, which is thought...

  18. Epithelial Folding Driven by Apical or Basal-Lateral Modulation: Geometric Features, Mechanical Inference, and Boundary Effects.

    Science.gov (United States)

    Wen, Fu-Lai; Wang, Yu-Chiun; Shibata, Tatsuo

    2017-06-20

    During embryonic development, epithelial sheets fold into complex structures required for tissue and organ functions. Although substantial efforts have been devoted to identifying molecular mechanisms underlying epithelial folding, far less is understood about how forces deform individual cells to sculpt the overall sheet morphology. Here we describe a simple and general theoretical model for the autonomous folding of monolayered epithelial sheets. We show that active modulation of intracellular mechanics along the basal-lateral as well as the apical surfaces is capable of inducing fold formation in the absence of buckling instability. Apical modulation sculpts epithelia into shallow and V-shaped folds, whereas basal-lateral modulation generates deep and U-shaped folds. These characteristic tissue shapes remain unchanged when subject to mechanical perturbations from the surroundings, illustrating that the autonomous folding is robust against environmental variabilities. At the cellular scale, how cells change shape depends on their initial aspect ratios and the modulation mechanisms. Such cell deformation characteristics are verified via experimental measurements for a canonical folding process driven by apical modulation, indicating that our theory could be used to infer the underlying folding mechanisms based on experimental data. The mechanical principles revealed in our model could potentially guide future studies on epithelial folding in diverse systems. Copyright © 2017. Published by Elsevier Inc.

  19. Induction of KLF4 in basal keratinocytes blocks the proliferation-differentiation switch and initiates squamous epithelial dysplasia.

    Science.gov (United States)

    Foster, K Wade; Liu, Zhaoli; Nail, Clinton D; Li, Xingnan; Fitzgerald, Thomas J; Bailey, Sarah K; Frost, Andra R; Louro, Iuri D; Townes, Tim M; Paterson, Andrew J; Kudlow, Jeffrey E; Lobo-Ruppert, Susan M; Ruppert, J Michael

    2005-02-24

    KLF4/GKLF normally functions in differentiating epithelial cells, but also acts as a transforming oncogene in vitro. To examine the role of this zinc finger protein in skin, we expressed the wild-type human allele from inducible and constitutive promoters. When induced in basal keratinocytes, KLF4 rapidly abolished the distinctive properties of basal and parabasal epithelial cells. KLF4 caused a transitory apoptotic response and the skin progressed through phases of hyperplasia and dysplasia. By 6 weeks, lesions exhibited nuclear KLF4 and other morphologic and molecular similarities to squamous cell carcinoma in situ. p53 determined the patch size sufficient to establish lesions, as induction in a mosaic pattern produced skin lesions only when p53 was deficient. Compared with p53 wild-type animals, p53 hemizygous animals had early onset of lesions and a pronounced fibrovascular response that included outgrowth of subcutaneous sarcoma. A KLF4-estrogen receptor fusion protein showed tamoxifen-dependent nuclear localization and conditional transformation in vitro. The results suggest that KLF4 can function in the nucleus to induce squamous epithelial dysplasia, and indicate roles for p53 and epithelial-mesenchymal signaling in these early neoplastic lesions.

  20. Basal ganglia germinoma in children with associated ipsilateral cerebral and brain stem hemiatrophy

    Energy Technology Data Exchange (ETDEWEB)

    Ozelame, Rodrigo V.; Shroff, Manohar; Wood, Bradley; Bouffet, Eric; Bartels, Ute; Drake, James M.; Hawkins, Cynthia; Blaser, Susan [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, Ontario (Canada)

    2006-04-15

    Germinoma is the most common and least-malignant intracranial germ cell tumor, usually found in the midline. Germinoma that arises in the basal ganglia, called ectopic germinoma, is a rare and well-documented entity representing 5% to 10% of all intracranial germinomas. The association of cerebral and/or brain stem atrophy with basal ganglia germinoma on CT and MRI is found in 33% of the cases. To review the literature and describe the CT and MRI findings of basal ganglia germinoma in children, known as ectopic germinoma, with associated ipsilateral cerebral and brain stem hemiatrophy. Three brain CT and six brain MRI studies performed in four children at two institutions were retrospectively reviewed. All patients were male (case 1, 14 years; case 2, 13 years; case 3, 9 years; case 4, 13 years), with pathologically proved germinoma arising in the basal ganglia, and associated ipsilateral cerebral and/or brain stem hemiatrophy on the first imaging study. It is important to note that three of these children presented with cognitive decline, psychosis and slowly progressive hemiparesis as their indication for imaging. Imaging results on initial scans were varied. In all patients, the initial study showed ipsilateral cerebral and/or brain stem hemiatrophy, representing Wallerian degeneration. All patients who underwent CT imaging presented with a hyperdense or calcified lesion in the basal ganglia on unenhanced scans. Only one of these lesions had a mass effect on the surrounding structures. In one of these patients a large, complex, heterogeneous mass appeared 15 months later. Initial MR showed focal or diffusely increased T2 signal in two cases and heterogeneous signal in the other two. (orig.)

  1. Basal ganglia germinoma in children with associated ipsilateral cerebral and brain stem hemiatrophy

    International Nuclear Information System (INIS)

    Ozelame, Rodrigo V.; Shroff, Manohar; Wood, Bradley; Bouffet, Eric; Bartels, Ute; Drake, James M.; Hawkins, Cynthia; Blaser, Susan

    2006-01-01

    Germinoma is the most common and least-malignant intracranial germ cell tumor, usually found in the midline. Germinoma that arises in the basal ganglia, called ectopic germinoma, is a rare and well-documented entity representing 5% to 10% of all intracranial germinomas. The association of cerebral and/or brain stem atrophy with basal ganglia germinoma on CT and MRI is found in 33% of the cases. To review the literature and describe the CT and MRI findings of basal ganglia germinoma in children, known as ectopic germinoma, with associated ipsilateral cerebral and brain stem hemiatrophy. Three brain CT and six brain MRI studies performed in four children at two institutions were retrospectively reviewed. All patients were male (case 1, 14 years; case 2, 13 years; case 3, 9 years; case 4, 13 years), with pathologically proved germinoma arising in the basal ganglia, and associated ipsilateral cerebral and/or brain stem hemiatrophy on the first imaging study. It is important to note that three of these children presented with cognitive decline, psychosis and slowly progressive hemiparesis as their indication for imaging. Imaging results on initial scans were varied. In all patients, the initial study showed ipsilateral cerebral and/or brain stem hemiatrophy, representing Wallerian degeneration. All patients who underwent CT imaging presented with a hyperdense or calcified lesion in the basal ganglia on unenhanced scans. Only one of these lesions had a mass effect on the surrounding structures. In one of these patients a large, complex, heterogeneous mass appeared 15 months later. Initial MR showed focal or diffusely increased T2 signal in two cases and heterogeneous signal in the other two. (orig.)

  2. Donor-derived stem-cells and epithelial mesenchymal transition in squamous cell carcinoma in transplant recipients.

    Science.gov (United States)

    Verneuil, Laurence; Leboeuf, Christophe; Bousquet, Guilhem; Brugiere, Charlotte; Elbouchtaoui, Morad; Plassa, Louis-François; Peraldi, Marie-Noelle; Lebbé, Celeste; Ratajczak, Philippe; Janin, Anne

    2015-12-08

    Skin squamous-cell-carcinoma (SCC), is the main complication in long-term kidney-transplant recipients, and it can include donor-derived cells. Preclinical models demonstrated the involvement of epithelial mesenchymal transition (EMT) in the progression of skin SCC, and the role of Snail, an EMT transcription factor, in cancer stem-cell survival and expansion.Here, we studied stem-cells and EMT expression in SCCs and concomitant actinic keratoses (AK) in kidney-transplant recipients. In SCC and AK in 3 female recipients of male kidney-transplants, donor-derived Y chromosome in epidermal stem cells was assessed using combined XY-FISH/CD133 immunostaining, and digital-droplet-PCR on laser-microdissected CD133 expressing epidermal cells.For EMT study, double immunostainings of CD133 with vimentin or snail and slug, electron microscopy and immunostainings of keratinocytes junctions were performed. Digital droplet PCR was used to check CDH1 (E-cadherin) expression level in laser-microdissected cells co-expressing CD133 and vimentin or snail and slug.The numbers of Y-chromosome were assessed using digital droplet PCR in laser-microdissected cells co-expressing CD133 and vimentin, or snail and slug, and in CD133 positive cells not expressing any EMT maker. We identified donor-derived stem-cells in basal layers and invasive areas in all skin SCCs and in concomitant AKs, but not in surrounding normal skin.The donor-derived stem-cells expressed the EMT markers, vimentin, snail and slug in SCCs but not in AKs. The expression of the EMT transcription factor, SNAI1, was higher in stem-cells when they expressed vimentin. They were located in invasive areas of SCCs. In these areas, the expressions of claudin-1 and desmoglein 1 were reduced or absent, and within the basal layer there were features of basal membrane disappearance.Donor-derived stem cells were in larger numbers in stem cells co-expressing vimentin or snail and slug than in stem cells not expressing any EMT marker

  3. Indian hedgehog regulates intestinal stem cell fate through epithelial-mesenchymal interactions during development

    NARCIS (Netherlands)

    Kosinski, C.; Stange, D.E.; Xu, C.; Chan, A.S.; Ho, C.; Yuen, S.T.; Mifflin, R.C.; Powell, D.W.; Clevers, H.; Leung, S.Y.; Chen, X.N.

    2010-01-01

    BACKGROUND & AIMS: Intestinal stem cells (ISCs) are regulated by the mesenchymal environment via physical interaction and diffusible factors. We examined the role of Indian hedgehog (Ihh) in mesenchymal organization and the mechanisms by which perturbations in epithelial-mesenchymal interactions

  4. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells

    Science.gov (United States)

    Yang, Ruifeng; Zheng, Ying; Burrows, Michelle; Liu, Shujing; Wei, Zhi; Nace, Arben; Guo, Wei; Kumar, Suresh; Cotsarelis, George; Xu, Xiaowei

    2014-01-01

    Epithelial stem cells (EpSCs) in the hair follicle bulge are required for hair follicle growth and cycling. The isolation and propagation of human EpSCs for tissue engineering purposes remains a challenge. Here we develop a strategy to differentiate human iPSCs (hiPSCs) into CD200+/ITGA6+ EpSCs that can reconstitute the epithelial components of the hair follicle and interfollicular epidermis. The hiPSC-derived CD200+/ITGA6+ cells show a similar gene expression signature as EpSCs directly isolated from human hair follicles. Human iPSC-derived CD200+/ITGA6+ cells are capable of generating all hair follicle lineages including the hair shaft, and the inner and outer root sheaths in skin reconstitution assays. The regenerated hair follicles possess a KRT15+ stem cell population and produce hair shafts expressing hair-specific keratins. These results suggest an approach for generating large numbers of human EpSCs for tissue engineering and new treatments for hair loss, wound healing and other degenerative skin disorders.

  5. Impact of the basal metabolic ratio in predicting early deaths after allogeneic stem cell transplantation.

    Science.gov (United States)

    Nishiwaki, Satoshi; Miyamura, Koichi; Seto, Aika; Watanabe, Keisuke; Yanagisawa, Mayumi; Imahashi, Nobuhiko; Shimba, Makoto; Yasuda, Takahiko; Kuwatsuka, Yachiyo; Oba, Taku; Terakura, Seitaro; Kodera, Yoshihisa

    2009-09-01

    Early deaths after allogeneic stem cell transplantation (allo-SCT) are of major concern. On the assumption that both decreased and increased basal metabolism might relate to early deaths, we analyzed the risk factors for overall survival to days 30 (OS30) and 60 (OS60). The Harris-Benedict equation was used to calculate basal metabolism. Comparing a patient's basal metabolism (PBM) calculated from pretransplant body weight with the standard basal metabolism (SBM) calculated from standard body weight (body mass index (BMI) = 22), we defined the basal metabolic ratio (BMR) as a parameter (BMR = PBM/SBM). We retrospectively analyzed 360 adult patients transplanted between 1997 and 2006 at a single center in Japan. A multivariate analysis of OS30 showed risk factors to be: BMR BMR; LBR) (P = 0.01), BMR > 1.05 (high BMR; HBR) (P = 0.005) and non-complete remission (non-CR) (P 5 0.001), whereas a multivariate analysis of OS60 showed those risk factors to be: LBR (P = 0.02), HBR (P = 0.04), non-CR (P = 0.002), and performance status BMR BMR; ABR) (96.8 and 90.3% for ABR, 87.1 and 76.2% for LBR, and 87.8 and 81.1% for HBR). In conclusion, BMR could prove to be a predictor of early death after allo-SCT.

  6. Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity

    Directory of Open Access Journals (Sweden)

    Evelyne Beerling

    2016-03-01

    Full Text Available Forced overexpression and/or downregulation of proteins regulating epithelial-to-mesenchymal transition (EMT has been reported to alter metastasis by changing migration and stem cell capacity of tumor cells. However, these manipulations artificially keep cells in fixed states, while in vivo cells may adapt transient and reversible states. Here, we have tested the existence and role of epithelial-mesenchymal plasticity in metastasis of mammary tumors without artificially modifying EMT regulators. In these tumors, we found by intravital microscopy that the motile tumor cells have undergone EMT, while their epithelial counterparts were not migratory. Moreover, we found that epithelial-mesenchymal plasticity renders any EMT-induced stemness differences, as reported previously, irrelevant for metastatic outgrowth, because mesenchymal cells that arrive at secondary sites convert to the epithelial state within one or two divisions, thereby obtaining the same stem cell potential as their arrived epithelial counterparts. We conclude that epithelial-mesenchymal plasticity supports migration but additionally eliminates stemness-enhanced metastatic outgrowth differences.

  7. Oral epithelial stem cells – implications in normal development and cancer metastasis

    Science.gov (United States)

    Papagerakis, Silvana; Pannone, Giuseppe; Zheng, Li; About, Imad; Taqi, Nawar; Nguyen, Nghia P.T.; Matossian, Margarite; McAlpin, Blake; Santoro, Angela; McHugh, Jonathan; Prince, Mark E.; Papagerakis, Petros

    2014-01-01

    Oral mucosa is continuously exposed to environmental forces and has to be constantly renewed. Accordingly, the oral mucosa epithelium contains a large reservoir of epithelial stem cells necessary for tissue homeostasis. Despite considerable scientific advances in stem cell behavior in a number of tissues, fewer studies have been devoted to the stem cells in the oral epithelium. Most of oral mucosa stem cells studies are focused on identifying cancer stem cells (CSC) in oral squamous cell carcinomas (OSCCs) among other head and neck cancers. OSCCs are the most prevalent epithelial tumors of the head and neck region, marked by their aggressiveness and invasiveness. Due to their highly tumorigenic properties, it has been suggested that CSC may be the critical population of cancer cells in the development of OSCC metastasis. This review presents a brief overview of epithelium stem cells with implications in oral health, and the clinical implications of the CSC concept in OSCC metastatic dissemination. PMID:24803391

  8. Hypoxia is a key regulator of limbal epithelial stem cell growth and differentiation

    DEFF Research Database (Denmark)

    Bath, Chris; Yang, Sufang; Muttuvelu, Danson

    2013-01-01

    The aim of this study was to determine whether the growth and differentiation of limbal epithelial stem cell cultures could be controlled through manipulation of the oxygen tension. Limbal epithelial cells were isolated from corneoscleral disks, and cultured using either feeder cells in a growth......, progression through cell cycle, colony forming efficiency (CFE), and expression of stem cell (ABCG2 and p63α) and differentiation (CK3) markers was determined throughout the culture period of up to 18 days. Low oxygen levels favored a stem cell phenotype with a lower proliferative rate, high CFE......, and a relatively higher expression of ABCG2 and p63α, while higher levels of oxygen led not only to decreased CFE but also to increased proportion of differentiated cells positive for CK3. Hypoxic cultures may thus potentially improve stem cell grafts for cultured limbal epithelial transplantation (CLET)....

  9. A functional model for adult stem cells in epithelial tissues.

    NARCIS (Netherlands)

    Verstappen, J.; Katsaros, C.; Torensma, R.; Hoff, J.W. Von den

    2009-01-01

    Tissue turnover, regeneration, and repair take place throughout life. Stem cells are key players in these processes. The characteristics and niches of the stem cell populations in different tissues, and even in related tissues, vary extensively. In this review, stem cell differentiation and stem

  10. An Update on Ocular Surface Epithelial Stem Cells: Cornea and Conjunctiva

    Directory of Open Access Journals (Sweden)

    Tiago Ramos

    2015-01-01

    Full Text Available The human ocular surface (front surface of the eye is formed by two different types of epithelia: the corneal epithelium centrally and the conjunctival epithelium that surrounds this. These two epithelia are maintained by different stem cell populations (limbal stem cells for the corneal epithelium and the conjunctival epithelial stem cells. In this review, we provide an update on our understanding of these epithelia and their stem cells systems, including embryology, new markers, and controversy around the location of these stem cells. We also provide an update on the translation of this understanding into clinical applications for the treatment of debilitating ocular surface diseases.

  11. Roles of Wnt/β-catenin signaling in epithelial differentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Wang, Yajing; Sun, Zhaorui; Qiu, Xuefeng; Li, Yan; Qin, Jizheng; Han, Xiaodong

    2009-01-01

    Bone marrow-derived mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into epithelial lineage, but the precise mechanisms controlling this process are unclear. Our aim is to explore the roles of Wnt/β-catenin in the epithelial differentiation of MSCs. Using indirect co-culture of rat MSCs with rat airway epithelial cells (RTE), MSCs expressed several airway epithelial markers (cytokeratin 18, tight junction protein occudin, cystic fibrosis transmembrance regulator). The protein levels of some important members in Wnt/β-catenin signaling were determined, suggested down-regulation of Wnt/β-catenin with epithelial differentiation of MSCs. Furthermore, Wnt3α can inhibit the epithelial differentiation of MSCs. A loss of β-catenin induced by Dickkopf-1 can enhance MSCs differentiation into epithelial cells. Lithium chloride transiently activated β-catenin expression and subsequently decreased β-catenin level and at last inhibited MSCs to differentiate into airway epithelium. Taken together, our study indicated that RTE cells can trigger epithelial differentiation of MSCs. Blocking Wnt/β-catenin signaling may promote MSCs to differentiate towards airway epithelial cells.

  12. ER Stress Causes Rapid Loss of Intestinal Epithelial Stemness through Activation of the Unfolded Protein Response

    Directory of Open Access Journals (Sweden)

    Jarom Heijmans

    2013-04-01

    Full Text Available Stem cells generate rapidly dividing transit-amplifying cells that have lost the capacity for self-renewal but cycle for a number of times until they exit the cell cycle and undergo terminal differentiation. We know very little of the type of signals that trigger the earliest steps of stem cell differentiation and mediate a stem cell to transit-amplifying cell transition. We show that in normal intestinal epithelium, endoplasmic reticulum (ER stress and activity of the unfolded protein response (UPR are induced at the transition from stem cell to transit-amplifying cell. Induction of ER stress causes loss of stemness in a Perk-eIF2α-dependent manner. Inhibition of Perk-eIF2α signaling results in stem cell accumulation in organoid culture of primary intestinal epithelium. Our findings show that the UPR plays an important role in the regulation of intestinal epithelial stem cell differentiation.

  13. Mesenchymal Stromal Cell-Derived Interleukin-6 Promotes Epithelial-Mesenchymal Transition and Acquisition of Epithelial Stem-Like Cell Properties in Ameloblastoma Epithelial Cells.

    Science.gov (United States)

    Jiang, Chunmiao; Zhang, Qunzhou; Shanti, Rabie M; Shi, Shihong; Chang, Ting-Han; Carrasco, Lee; Alawi, Faizan; Le, Anh D

    2017-09-01

    Epithelial-mesenchymal transition (EMT), a biological process associated with cancer stem-like or cancer-initiating cell formation, contributes to the invasiveness, metastasis, drug resistance, and recurrence of the malignant tumors; it remains to be determined whether similar processes contribute to the pathogenesis and progression of ameloblastoma (AM), a benign but locally invasive odontogenic neoplasm. Here, we demonstrated that EMT- and stem cell-related genes were expressed in the epithelial islands of the most common histologic variant subtype, the follicular AM. Our results revealed elevated interleukin (IL)-6 signals that were differentially expressed in the stromal compartment of the follicular AM. To explore the stromal effect on tumor pathogenesis, we isolated and characterized both mesenchymal stromal cells (AM-MSCs) and epithelial cells (AM-EpiCs) from follicular AM and demonstrated that, in in vitro culture, AM-MSCs secreted a significantly higher level of IL-6 as compared to the counterpart AM-EpiCs. Furthermore, both in vitro and in vivo studies revealed that exogenous and AM-MSC-derived IL-6 induced the expression of EMT- and stem cell-related genes in AM-EpiCs, whereas such effects were significantly abrogated either by a specific inhibitor of STAT3 or ERK1/2, or by knockdown of Slug gene expression. These findings suggest that AM-MSC-derived IL-6 promotes tumor-stem like cell formation by inducing EMT process in AM-EpiCs through STAT3 and ERK1/2-mediated signaling pathways, implying a role in the etiology and progression of the benign but locally invasive neoplasm. Stem Cells 2017;35:2083-2094. © 2017 AlphaMed Press.

  14. Recovery of the sub-basal nerve plexus and superficial nerve terminals after corneal epithelial injury in mice.

    Science.gov (United States)

    Downie, Laura E; Naranjo Golborne, Cecilia; Chen, Merry; Ho, Ngoc; Hoac, Cam; Liyanapathirana, Dasun; Luo, Carol; Wu, Ruo Bing; Chinnery, Holly R

    2018-06-01

    Our aim was to compare regeneration of the sub-basal nerve plexus (SBNP) and superficial nerve terminals (SNT) following corneal epithelial injury. We also sought to compare agreement when quantifying nerve parameters using different image analysis techniques. Anesthetized, female C57BL/6 mice received central 1-mm corneal epithelial abrasions. Four-weeks post-injury, eyes were enucleated and processed for PGP9.5 to visualize the corneal nerves using wholemount immunofluorescence staining and confocal microscopy. The percentage area of the SBNP and SNT were quantified using: ImageJ automated thresholds, ImageJ manual thresholds and manual tracings in NeuronJ. Nerve sum length was quantified using NeuronJ and Imaris. Agreement between methods was considered with Bland-Altman analyses. Four-weeks post-injury, the sum length of nerve fibers in the SBNP, but not the SNT, was reduced compared with naïve eyes. In the periphery, but not central cornea, of both naïve and injured eyes, nerve fiber lengths in the SBNP and SNT were strongly correlated. For quantifying SBNP nerve axon area, all image analysis methods were highly correlated. In the SNT, there was poor correlation between manual methods and auto-thresholding, with a trend towards underestimating nerve fiber area using auto-thresholding when higher proportions of nerve fibers were present. In conclusion, four weeks after superficial corneal injury, there is differential recovery of epithelial nerve axons; SBNP sum length is reduced, however the sum length of SNTs is similar to naïve eyes. Care should be taken when selecting image analysis methods to compare nerve parameters in different depths of the corneal epithelium due to differences in background autofluorescence. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Different Effects of BORIS/CTCFL on Stemness Gene Expression, Sphere Formation and Cell Survival in Epithelial Cancer Stem Cells.

    Directory of Open Access Journals (Sweden)

    Loredana Alberti

    Full Text Available Cancer stem cells are cancer cells characterized by stem cell properties and represent a small population of tumor cells that drives tumor development, progression, metastasis and drug resistance. To date, the molecular mechanisms that generate and regulate cancer stem cells are not well defined. BORIS (Brother of Regulator of Imprinted Sites or CTCFL (CTCF-like is a DNA-binding protein that is expressed in normal tissues only in germ cells and is re-activated in tumors. Recent evidences have highlighted the correlation of BORIS/CTCFL expression with poor overall survival of different cancer patients. We have previously shown an association of BORIS-expressing cells with stemness gene expression in embryonic cancer cells. Here, we studied the role of BORIS in epithelial tumor cells. Using BORIS-molecular beacon that was already validated, we were able to show the presence of BORIS mRNA in cancer stem cell-enriched populations (side population and spheres of cervical, colon and breast tumor cells. BORIS silencing studies showed a decrease of sphere formation capacity in breast and colon tumor cells. Importantly, BORIS-silencing led to down-regulation of hTERT, stem cell (NANOG, OCT4, SOX2 and BMI1 and cancer stem cell markers (ABCG2, CD44 and ALDH1 genes. Conversely, BORIS-induction led to up-regulation of the same genes. These phenotypes were observed in cervical, colon and invasive breast tumor cells. However, a completely different behavior was observed in the non-invasive breast tumor cells (MCF7. Indeed, these cells acquired an epithelial mesenchymal transition phenotype after BORIS silencing. Our results demonstrate that BORIS is associated with cancer stem cell-enriched populations of several epithelial tumor cells and the different phenotypes depend on the origin of tumor cells.

  16. Dishevelled links basal body docking and orientation in ciliated epithelial cells

    Science.gov (United States)

    Vladar, Eszter K.; Axelrod, Jeffrey D.

    2014-01-01

    Some epithelia contain cells with multiple, motile cilia that beat in a concerted fashion. New tools and experimental systems have facilitated molecular studies of cilium biogenesis and of the coordinated planar polarization of cilia that leads to their concerted motility. Recent, elegant work by Park and colleagues, using embryonic frog epidermis, demonstrates that Dishevelled (Dvl), a key regulator of both the Wnt/β-catenin and Planar Cell Polarity (PCP) pathways, controls both the docking and planar polarization of ciliary basal bodies. PMID:18819800

  17. Rapid, Directed Differentiation of Retinal Pigment Epithelial Cells from Human Embryonic or Induced Pluripotent Stem Cells

    OpenAIRE

    Foltz, LP; Clegg, DO

    2017-01-01

    We describe a robust method to direct the differentiation of pluripotent stem cells into retinal pigment epithelial cells (RPE). The purpose of providing a detailed and thorough protocol is to clearly demonstrate each step and to make this readily available to researchers in the field. This protocol results in a homogenous layer of RPE with minimal or no manual dissection needed. The method presented here has been shown to be effective for induced pluripotent stem cells (iPSC) and human embry...

  18. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches.

    Science.gov (United States)

    Peterson, Shelby C; Eberl, Markus; Vagnozzi, Alicia N; Belkadi, Abdelmadjid; Veniaminova, Natalia A; Verhaegen, Monique E; Bichakjian, Christopher K; Ward, Nicole L; Dlugosz, Andrzej A; Wong, Sunny Y

    2015-04-02

    Basal cell carcinoma (BCC) is characterized by frequent loss of PTCH1, leading to constitutive activation of the Hedgehog pathway. Although the requirement for Hedgehog in BCC is well established, the identity of disease-initiating cells and the compartments in which they reside remain controversial. By using several inducible Cre drivers to delete Ptch1 in different cell compartments in mice, we show here that multiple hair follicle stem cell populations readily develop BCC-like tumors. In contrast, stem cells within the interfollicular epidermis do not efficiently form tumors. Notably, we observed that innervated Gli1-expressing progenitors within mechanosensory touch dome epithelia are highly tumorigenic. Sensory nerves activate Hedgehog signaling in normal touch domes, while denervation attenuates touch dome-derived tumors. Together, our studies identify varying tumor susceptibilities among different stem cell populations in the skin, highlight touch dome epithelia as "hot spots" for tumor formation, and implicate cutaneous nerves as mediators of tumorigenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Differentiation and molecular profiling of human embryonic stem cell-derived corneal epithelial cells.

    Science.gov (United States)

    Brzeszczynska, J; Samuel, K; Greenhough, S; Ramaesh, K; Dhillon, B; Hay, D C; Ross, J A

    2014-06-01

    It has been suggested that the isolation of scalable populations of limbal stem cells may lead to radical changes in ocular therapy. In particular, the derivation and transplantation of corneal stem cells from these populations may result in therapies providing clinical normality of the diseased or damaged cornea. Although feasible in theory, the lack of donor material in sufficient quantity and quality currently limits such a strategy. A potential scalable source of corneal cells could be derived from pluripotent stem cells (PSCs). We developed an in vitro and serum-free corneal differentiation model which displays significant promise. Our stepwise differentiation model was designed with reference to development and gave rise to cells which displayed similarities to epithelial progenitor cells which can be specified to cells displaying a corneal epithelial phenotype. We believe our approach is novel, provides a robust model of human development and in the future, may facilitate the generation of corneal epithelial cells that are suitable for clinical use. Additionally, we demonstrate that following continued cell culture, stem cell-derived corneal epithelial cells undergo transdifferentiation and exhibit squamous metaplasia and therefore, also offer an in vitro model of disease.

  20. Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity

    NARCIS (Netherlands)

    Beerling, Evelyne; Seinstra, Daniëlle; de Wit, Elzo; Kester, Lennart; van der Velden, Daphne; Maynard, Carrie; Schäfer, Ronny; van Diest, Paul; Voest, Emile; van Oudenaarden, Alexander; Vrisekoop, Nienke; van Rheenen, Jacco

    2016-01-01

    Forced overexpression and/or downregulation of proteins regulating epithelial-to-mesenchymal transition (EMT) has been reported to alter metastasis by changing migration and stem cell capacity of tumor cells. However, these manipulations artificially keep cells in fixed states, while in vivo cells

  1. Research on basal stem rot (BSR) of ornamental palms caused by basidiospores from Ganoderma boninense.

    Science.gov (United States)

    Lim, H P; Fong, Y K

    2005-01-01

    Basidiospores were isolated from the fruiting bodies of Ganoderma infecting oil palms from an estate in Johor and from ornamental palms (including oil palms) from Singapore. The spores were then germinated to obtain homokaryotic mycelia. Based on clamp connection formation in paired hyphal fusions, tester strains were identified from the homokaryons isolated. Compatibility tests were then carried out using these testers to determine the relatedness of the homokaryotic Ganoderma isolates, both from Johor and from Singapore. Results from the compatibility tests showed that Ganoderma from both locations belong to the same species, while the Ganoderma isolates from Singapore share some common alleles. The pathogenicity tests carried out on Chrysalidocarpus lutescens seedlings using inoculum growing on rubber wood blocks showed that dikaryotic mycelia can cause basal stem rot infection.

  2. Implantation of Induced Pluripotent Stem Cell-Derived Tracheal Epithelial Cells.

    Science.gov (United States)

    Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Yoshie, Susumu; Nakamura, Ryosuke; Otsuki, Koshi; Murono, Shigeyuki; Omori, Koichi

    2017-07-01

    Compared with using autologous tissue, the use of artificial materials in the regeneration of tracheal defects is minimally invasive. However, this technique requires early epithelialization on the inner side of the artificial trachea. After differentiation from induced pluripotent stem cells (iPSCs), tracheal epithelial tissues may be used to produce artificial tracheas. Herein, we aimed to demonstrate that after differentiation from fluorescent protein-labeled iPSCs, tracheal epithelial tissues survived in nude rats with tracheal defects. Red fluorescent tdTomato protein was electroporated into mouse iPSCs to produce tdTomato-labeled iPSCs. Embryoid bodies derived from these iPSCs were then cultured in differentiation medium supplemented with growth factors, followed by culture on air-liquid interfaces for further differentiation into tracheal epithelium. The cells were implanted with artificial tracheas into nude rats with tracheal defects on day 26 of cultivation. On day 7 after implantation, the tracheas were exposed and examined histologically. Tracheal epithelial tissue derived from tdTomato-labeled iPSCs survived in the tracheal defects. Moreover, immunochemical analyses showed that differentiated tissues had epithelial structures similar to those of proximal tracheal tissues. After differentiation from iPSCs, tracheal epithelial tissues survived in rat bodies, warranting the use of iPSCs for epithelial regeneration in tracheal defects.

  3. Directed differentiation of basal forebrain cholinergic neurons from human pluripotent stem cells.

    Science.gov (United States)

    Hu, Yao; Qu, Zhuang-Yin; Cao, Shi-Ying; Li, Qi; Ma, Lixiang; Krencik, Robert; Xu, Min; Liu, Yan

    2016-06-15

    Basal forebrain cholinergic neurons (BFCNs) play critical roles in learning, memory and cognition. Dysfunction or degeneration of BFCNs may connect to neuropathology, such as Alzheimer's disease, Down's syndrome and dementia. Generation of functional BFCNs may contribute to the studies of cell-based therapy and pathogenesis that is related to learning and memory deficits. Here we describe a detail method for robust generation of BFCNs from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). In this method, BFCN progenitors are patterned from hESC or hiPSC-derived primitive neuroepithelial cells, with the treatment of sonic hedgehog (SHH) or combination with its agonist Purmorphamine, and by co-culturing with human astrocytes. At day 20, ∼90% hPSC-derived progenitors expressed NKX2.1, which is a transcriptional marker for MGE. Moreover, around 40% of NKX2.1+ cells co-expressed OLIG2 and ∼15% of NKX2.1+ cells co-expressed ISLET1, which are ventral markers. At day 35, ∼40% neurons robustly express ChAT, most of which are co-labeled with NKX2.1, ISLET1 and FOXG1, indicating the basal forebrain-like identity. At day 45, these neurons express mature neuronal markers MAP2, Synapsin, and VAChT. In this method, undefined conditions including genetic modification or cell-sorting are avoided. As a choice, feeder free conditions are used to avoid ingredients of animal origin. Moreover, Purmorphamine can be substituted for SHH to induce ventral progenitors effectively and economically. We provide an efficient method to generate BFCNs from multiple hPSC lines, which offers the potential application for disease modeling and pharmacological studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Establishment of a long-term three-dimensional primary culture of mouse glandular stomach epithelial cells within the stem cell niche

    International Nuclear Information System (INIS)

    Katano, Takahito; Ootani, Akifumi; Mizoshita, Tsutomu; Tanida, Satoshi; Tsukamoto, Hironobu; Ozeki, Keiji; Ebi, Masahide; Mori, Yoshinori; Kataoka, Hiromi; Kamiya, Takeshi; Toda, Shuji; Joh, Takashi

    2013-01-01

    Highlights: ► We established a 3D culture system to allow long-term culture of stomach cells. ► In this culture system, gastric epithelial cells grew for about 3 months. ► The cultured cells differentiated into multi-units of the stomach. ► This culture method should be useful for elucidating the cause of gastric diseases. -- Abstract: Compared to the small intestine and colon, little is known about stem cells in the stomach because of a lack of specific stem cell markers and an in vitro system that allows long-term culture. Here we describe a long-term three-dimensional (3D) primary gastric culture system within the stem cell niche. Glandular stomach cells from neonatal mice cultured in collagen gel yielded expanding sphere-like structures for 3 months. The wall of the gastrospheres consisted of a highly polarized epithelial monolayer with an outer lining of myofibroblasts. The epithelial cells showed a tall columnar cell shape, basal round nuclei, and mucus-filled cytoplasm as well as expression of MUC5AC, indicating differentiation into gastric surface mucous cells. These cells demonstrated the features of fully differentiated gastric surface mucous cells such as microvilli, junctional complexes, and glycogen and secretory granules. Fewer than 1% of cultured epithelial cells differentiated into enteroendocrine cells. Active proliferation of the epithelial cells and many apoptotic cells in the inner lumen revealed the rapid cell turnover in gastrospheres in vitro. This method enables us to investigate the role of signaling between cell–cell and epithelial–mesenchymal interactions in an environment that is extremely similar to the in vivo environment

  5. Establishment of a long-term three-dimensional primary culture of mouse glandular stomach epithelial cells within the stem cell niche

    Energy Technology Data Exchange (ETDEWEB)

    Katano, Takahito [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Ootani, Akifumi [Department of Gastroenterology and GI Endoscopy Center, Shin-Kokura Hospital, Federation of National Public Service Personnel Mutual Aid Associations, 1-3-1 Kanada, Kokurakita-ku, Kitakyushu 803-0816 (Japan); Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Mizoshita, Tsutomu, E-mail: tmizoshi@med.nagoya-cu.ac.jp [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Tanida, Satoshi; Tsukamoto, Hironobu; Ozeki, Keiji; Ebi, Masahide; Mori, Yoshinori; Kataoka, Hiromi; Kamiya, Takeshi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Toda, Shuji [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Joh, Takashi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2013-03-22

    Highlights: ► We established a 3D culture system to allow long-term culture of stomach cells. ► In this culture system, gastric epithelial cells grew for about 3 months. ► The cultured cells differentiated into multi-units of the stomach. ► This culture method should be useful for elucidating the cause of gastric diseases. -- Abstract: Compared to the small intestine and colon, little is known about stem cells in the stomach because of a lack of specific stem cell markers and an in vitro system that allows long-term culture. Here we describe a long-term three-dimensional (3D) primary gastric culture system within the stem cell niche. Glandular stomach cells from neonatal mice cultured in collagen gel yielded expanding sphere-like structures for 3 months. The wall of the gastrospheres consisted of a highly polarized epithelial monolayer with an outer lining of myofibroblasts. The epithelial cells showed a tall columnar cell shape, basal round nuclei, and mucus-filled cytoplasm as well as expression of MUC5AC, indicating differentiation into gastric surface mucous cells. These cells demonstrated the features of fully differentiated gastric surface mucous cells such as microvilli, junctional complexes, and glycogen and secretory granules. Fewer than 1% of cultured epithelial cells differentiated into enteroendocrine cells. Active proliferation of the epithelial cells and many apoptotic cells in the inner lumen revealed the rapid cell turnover in gastrospheres in vitro. This method enables us to investigate the role of signaling between cell–cell and epithelial–mesenchymal interactions in an environment that is extremely similar to the in vivo environment.

  6. Isolation and functional interrogation of adult human prostate epithelial stem cells at single cell resolution.

    Science.gov (United States)

    Hu, Wen-Yang; Hu, Dan-Ping; Xie, Lishi; Li, Ye; Majumdar, Shyama; Nonn, Larisa; Hu, Hong; Shioda, Toshi; Prins, Gail S

    2017-08-01

    Using primary cultures of normal human prostate epithelial cells, we developed a novel prostasphere-based, label-retention assay that permits identification and isolation of stem cells at a single cell level. Their bona fide stem cell nature was corroborated using in vitro and in vivo regenerative assays and documentation of symmetric/asymmetric division. Robust WNT10B and KRT13 levels without E-cadherin or KRT14 staining distinguished individual stem cells from daughter progenitors in spheroids. Following FACS to isolate label-retaining stem cells from label-free progenitors, RNA-seq identified unique gene signatures for the separate populations which may serve as useful biomarkers. Knockdown of KRT13 or PRAC1 reduced sphere formation and symmetric self-renewal highlighting their role in stem cell maintenance. Pathways analysis identified ribosome biogenesis and membrane estrogen-receptor signaling enriched in stem cells with NF-ĸB signaling enriched in progenitors; activities that were biologically confirmed. Further, bioassays identified heightened autophagy flux and reduced metabolism in stem cells relative to progenitors. These approaches similarly identified stem-like cells from prostate cancer specimens and prostate, breast and colon cancer cell lines suggesting wide applicability. Together, the present studies isolate and identify unique characteristics of normal human prostate stem cells and uncover processes that maintain stem cell homeostasis in the prostate gland. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Isolation and functional interrogation of adult human prostate epithelial stem cells at single cell resolution

    Directory of Open Access Journals (Sweden)

    Wen-Yang Hu

    2017-08-01

    Full Text Available Using primary cultures of normal human prostate epithelial cells, we developed a novel prostasphere-based, label-retention assay that permits identification and isolation of stem cells at a single cell level. Their bona fide stem cell nature was corroborated using in vitro and in vivo regenerative assays and documentation of symmetric/asymmetric division. Robust WNT10B and KRT13 levels without E-cadherin or KRT14 staining distinguished individual stem cells from daughter progenitors in spheroids. Following FACS to isolate label-retaining stem cells from label-free progenitors, RNA-seq identified unique gene signatures for the separate populations which may serve as useful biomarkers. Knockdown of KRT13 or PRAC1 reduced sphere formation and symmetric self-renewal highlighting their role in stem cell maintenance. Pathways analysis identified ribosome biogenesis and membrane estrogen-receptor signaling enriched in stem cells with NF-ĸB signaling enriched in progenitors; activities that were biologically confirmed. Further, bioassays identified heightened autophagy flux and reduced metabolism in stem cells relative to progenitors. These approaches similarly identified stem-like cells from prostate cancer specimens and prostate, breast and colon cancer cell lines suggesting wide applicability. Together, the present studies isolate and identify unique characteristics of normal human prostate stem cells and uncover processes that maintain stem cell homeostasis in the prostate gland.

  8. Regulation of Pituitary Stem Cells by Epithelial to Mesenchymal Transition Events and Signaling Pathways

    Science.gov (United States)

    Cheung, Leonard Y. M.; Davis, Shannon W.; Brinkmeier, Michelle L.; Camper, Sally A.; Pérez-Millán, María Inés

    2017-01-01

    The anterior pituitary gland is comprised of specialized cell-types that produce and secrete polypeptide hormones in response to hypothalamic input and feedback from target organs. These specialized cells arise from stem cells that express SOX2 and the pituitary transcription factor PROP1, which is necessary to establish the stem cell pool and promote an epithelial to mesenchymal-like transition, releasing progenitors from the niche. The adult anterior pituitary responds to physiological challenge by mobilizing the SOX2-expressing progenitor pool and producing additional hormone-producing cells. Knowledge of the role of signaling pathways and extracellular matrix components in these processes may lead to improvements in the efficiency of differentiation of embryonic stem cells or induced pluripotent stem cells into hormone producing cells in vitro. Advances in our basic understanding of pituitary stem cell regulation and differentiation may lead to improved diagnosis and treatment for patients with hypopituitarism. PMID:27650955

  9. Application of Trichoderma harzianum in the control of basal stem rot of oil palms

    Institute of Scientific and Technical Information of China (English)

    Abdullah F; Ilias G N M

    2004-01-01

    @@ The palm, Elaeis guineensis, has its origins in Africa but is planted on a commercial basis in several countries Statistics for 2002 showed that in the lead for land mass under oil palm cultivation is Indonesia, at 3,769,000 ha, followed by Malaysia at 3,376,000 ha; however, the world' s leading producer of palm oil is still Malaysia, since the 1970's. Both countries are predicted to produce 82.4%of the world's palm oil production by the year 2005. However, the palm is susceptible to basal stem rot, a devastating disease which results in direct loss of field stands and to which no effective chemical control is yet available. Caused by Ganoderma boninense, infected palms appear symptomless, at the first sign of disease, at least 50 % of the internal trunk tissue stem would have actually rotted. This study investigated the efficacy of Trichoderma harzianum (isolate FA 1132) as a biological control agent, using 6-month old oil palm seedlings as models and the experiment performed in a greenhouse at 29-30 ℃ ambient conditions. The plants were artificially infected with G. boninense and a conidial suspension of 1 × 109-9 × 109 spores/mL was applied as a soil drench at 1L/plant every 2 weeks for 20weeks. The parameters examined were efficacy of the biocontrol agent and the effect of Trichodermaincorporated mulch in addition to the soil drench. Efficacy was assessed in terms disease severity index (DSI) where a higher percentage indicates a higher severity. Results showed that infection first sets in on untreated plants at week 12 and got worse progressively. The completely untreated plants were all infected and the DSI at 20 weeks after infection (wa. i.) was 92. 5%. Plants given only a Trichoderma -infused food base supplement without conidial suspension gave a DSI of 70% whereas those given a conidial soil drench without supplemental food base gave a DSI of 85% at 20 w.a.i.Infected plants given a conidial treatment together with a food base supplement gave a DSI

  10. Re-epithelialization resulted from prostate basal cells in canine prostatic urethra may represent the ideal healing method after two-micron laser resection of the prostate

    Directory of Open Access Journals (Sweden)

    Ying Cao

    2015-01-01

    Full Text Available The purpose of this study is to characterize the re-epithelialization of wound healing in canine prostatic urethra and to evaluate the effect of this re-epithelialization way after two-micron laser resection of the prostate (TmLRP. TmLRP and partial bladder neck mucosa were performed in 15 healthy adult male crossbred canines. Wound specimens were harvested at 3 days, and 1, 2, 3, and 4 weeks after operation, respectively. The histopathologic characteristics were observed by hematoxylin and eosin staining. The expression of cytokeratin 14 (CK14, CK5, CK18, synaptophysin (Syn, chromogranin A (CgA, uroplakin, transforming growth factor-β1 (TGF-β1 , and TGF-β type II receptor in prostatic urethra wound were examined by immunohistochemistry and real-time polymerase chain reaction, respectively. Van Gieson staining was performed to determine the expression of collagen fibers in prostatic urethra and bladder neck would. The results showed that the re-epithelialization of the prostatic urethra resulted from the mobilization of proliferating epithelial cells from residual prostate tissue under the wound. The proliferating cells expressed CK14, CK5, but not CK18, Syn, and CgA and re-epithelialize expressed uroplakin since 3 weeks. There were enhanced TGF-β1 and TGF-β type II receptor expression in proliferating cells and regenerated cells, which correlated with specific phases of re-epithelialization. Compared with the re-epithelialization of the bladder neck, re-epithelialization of canine prostatic urethra was faster, and the expression of collagen fibers was relatively low. In conclusion, re-epithelialization in canine prostatic urethra resulted from prostate basal cells after TmLRP and this re-epithelialization way may represent the ideal healing method from anatomic repair to functional recovery after injury.

  11. Draft Genome Sequence of the Phytopathogenic Fungus Ganoderma boninense, the Causal Agent of Basal Stem Rot Disease on Oil Palm.

    Science.gov (United States)

    Utomo, Condro; Tanjung, Zulfikar Achmad; Aditama, Redi; Buana, Rika Fithri Nurani; Pratomo, Antonius Dony Madu; Tryono, Reno; Liwang, Tony

    2018-04-26

    Ganoderma boninense is the dominant fungal pathogen of basal stem rot (BSR) disease on Elaeis guineensis We sequenced the nuclear genome of mycelia using both Illumina and Pacific Biosciences platforms for assembly of scaffolds. The draft genome comprised 79.24 Mb, 495 scaffolds, and 26,226 predicted coding sequences. Copyright © 2018 Utomo et al.

  12. Nerve signaling regulates basal keratinocyte proliferation in the blastema apical epithelial cap in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Satoh, Akira; Bryant, Susan V; Gardiner, David M

    2012-06-15

    The ability of adult vertebrates to repair tissue damage is widespread and impressive; however, the ability to regenerate structurally complex organs such as the limb is limited largely to the salamanders. The fact that most of the tissues of the limb can regenerate has led investigators to question and identify the barriers to organ regeneration. From studies in the salamander, it is known that one of the earliest steps required for successful regeneration involves signaling between nerves and the wound epithelium/apical epithelial cap (AEC). In this study we confirm an earlier report that the keratinocytes of the AEC acquire their function coincident with exiting the cell cycle. We have discovered that this unique, coordinated behavior is regulated by nerve signaling and is associated with the presence of gap junctions between the basal keratinocytes of the AEC. Disruption of nerve signaling results in a loss of gap junction protein, the reentry of the cells into the cell cycle, and regenerative failure. Finally, coordinated exit from the cell cycle appears to be a conserved behavior of populations of cells that function as signaling centers during both development and regeneration. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. GammaScorpion: mobile gamma-ray tomography system for early detection of basal stem rot in oil palm plantations

    Science.gov (United States)

    Abdullah, Jaafar; Hassan, Hearie; Shari, Mohamad Rabaie; Mohd, Salzali; Mustapha, Mahadi; Mahmood, Airwan Affendi; Jamaludin, Shahrizan; Ngah, Mohd Rosdi; Hamid, Noor Hisham

    2013-03-01

    Detection of the oil palm stem rot disease Ganoderma is a major issue in estate management and production in Malaysia. Conventional diagnostic techniques are difficult and time consuming when using visual inspection, and destructive and expensive when based on the chemical analysis of root or stem tissue. As an alternative, a transportable gamma-ray computed tomography system for the early detection of basal stem rot (BSR) of oil palms due to Ganoderma was developed locally at the Malaysian Nuclear Agency, Kajang, Malaysia. This system produces high quality tomographic images that clearly differentiate between healthy and Ganoderma infected oil palm stems. It has been successfully tested and used to detect the extent of BSR damage in oil palm plantations in Malaysia without the need to cut down the trees. This method offers promise for in situ inspection of oil palm stem diseases compared to the more conventional methods.

  14. Basal p53 expression is indispensable for mesenchymal stem cell integrity.

    Science.gov (United States)

    Boregowda, Siddaraju V; Krishnappa, Veena; Strivelli, Jacqueline; Haga, Christopher L; Booker, Cori N; Phinney, Donald G

    2018-03-01

    Marrow-resident mesenchymal stem cells (MSCs) serve as a functional component of the perivascular niche that regulates hematopoiesis. They also represent the main source of bone formed in adult bone marrow, and their bifurcation to osteoblast and adipocyte lineages plays a key role in skeletal homeostasis and aging. Although the tumor suppressor p53 also functions in bone organogenesis, homeostasis, and neoplasia, its role in MSCs remains poorly described. Herein, we examined the normal physiological role of p53 in primary MSCs cultured under physiologic oxygen levels. Using knockout mice and gene silencing we show that p53 inactivation downregulates expression of TWIST2, which normally restrains cellular differentiation to maintain wild-type MSCs in a multipotent state, depletes mitochondrial reactive oxygen species (ROS) levels, and suppresses ROS generation and PPARG gene and protein induction in response to adipogenic stimuli. Mechanistically, this loss of adipogenic potential skews MSCs toward an osteogenic fate, which is further potentiated by TWIST2 downregulation, resulting in highly augmented osteogenic differentiation. We also show that p53 - /- MSCs are defective in supporting hematopoiesis as measured in standard colony assays because of decreased secretion of various cytokines including CXCL12 and CSF1. Lastly, we show that transient exposure of wild-type MSCs to 21% oxygen upregulates p53 protein expression, resulting in increased mitochondrial ROS production and enhanced adipogenic differentiation at the expense of osteogenesis, and that treatment of cells with FGF2 mitigates these effects by inducing TWIST2. Together, these findings indicate that basal p53 levels are necessary to maintain MSC bi-potency, and oxygen-induced increases in p53 expression modulate cell fate and survival decisions. Because of the critical function of basal p53 in MSCs, our findings question the use of p53 null cell lines as MSC surrogates, and also implicate dysfunctional

  15. TP53 supports basal-like differentiation of mammary epithelial cells by preventing translocation of deltaNp63 into nucleoli

    Science.gov (United States)

    Munne, Pauliina M.; Gu, Yuexi; Tumiati, Manuela; Gao, Ping; Koopal, Sonja; Uusivirta, Sanna; Sawicki, Janet; Wei, Gong-Hong; Kuznetsov, Sergey G.

    2014-04-01

    Multiple observations suggest a cell type-specific role for TP53 in mammary epithelia. We developed an in vitro assay, in which primary mouse mammary epithelial cells (mMECs) progressed from lumenal to basal-like phenotypes based on expression of Krt18 or ΔNp63, respectively. Such transition was markedly delayed in Trp53-/- mMECs suggesting that Trp53 is required for specification of the basal, but not lumenal cells. Evidence from human basal-like cell lines suggests that TP53 may support the activity of ΔNp63 by preventing its translocation from nucleoplasm into nucleoli. In human lumenal cells, activation of TP53 by inhibiting MDM2 or BRCA1 restored the nucleoplasmic expression of ΔNp63. Trp53-/- mMECs eventually lost epithelial features resulting in upregulation of MDM2 and translocation of ΔNp63 into nucleoli. We propose that TP63 may contribute to TP53-mediated oncogenic transformation of epithelial cells and shed light on tissue- and cell type-specific biases observed for TP53-related cancers.

  16. Regulatory T Cells in Skin Facilitate Epithelial Stem Cell Differentiation.

    Science.gov (United States)

    Ali, Niwa; Zirak, Bahar; Rodriguez, Robert Sanchez; Pauli, Mariela L; Truong, Hong-An; Lai, Kevin; Ahn, Richard; Corbin, Kaitlin; Lowe, Margaret M; Scharschmidt, Tiffany C; Taravati, Keyon; Tan, Madeleine R; Ricardo-Gonzalez, Roberto R; Nosbaum, Audrey; Bertolini, Marta; Liao, Wilson; Nestle, Frank O; Paus, Ralf; Cotsarelis, George; Abbas, Abul K; Rosenblum, Michael D

    2017-06-01

    The maintenance of tissue homeostasis is critically dependent on the function of tissue-resident immune cells and the differentiation capacity of tissue-resident stem cells (SCs). How immune cells influence the function of SCs is largely unknown. Regulatory T cells (Tregs) in skin preferentially localize to hair follicles (HFs), which house a major subset of skin SCs (HFSCs). Here, we mechanistically dissect the role of Tregs in HF and HFSC biology. Lineage-specific cell depletion revealed that Tregs promote HF regeneration by augmenting HFSC proliferation and differentiation. Transcriptional and phenotypic profiling of T regs and HFSCs revealed that skin-resident Tregs preferentially express high levels of the Notch ligand family member, Jagged 1 (Jag1). Expression of Jag1 on Tregs facilitated HFSC function and efficient HF regeneration. Taken together, our work demonstrates that Tregs in skin play a major role in HF biology by promoting the function of HFSCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Enhancing biological control of basal stem rot disease (Ganoderma boninense) in oil palm plantations.

    Science.gov (United States)

    Susanto, A; Sudharto, P S; Purba, R Y

    2005-01-01

    Basal Stem Rot (BSR) disease caused by Ganoderma boninense is the most destructive disease in oil palm, especially in Indonesia and Malaysia. The available control measures for BSR disease such as cultural practices and mechanical and chemical treatment have not proved satisfactory due to the fact that Ganoderma has various resting stages such as melanised mycelium, basidiospores and pseudosclerotia. Alternative control measures to overcome the Ganoderma problem are focused on the use of biological control agents and planting resistant material. Present studies conducted at Indonesian Oil Palm Research Institute (IOPRI) are focused on enhancing the use of biological control agents for Ganoderma. These activities include screening biological agents from the oil palm rhizosphere in order to evaluate their effectiveness as biological agents in glasshouse and field trials, testing their antagonistic activities in large scale experiments and eradicating potential disease inoculum with biological agents. Several promising biological agents have been isolated, mainly Trichoderma harzianum, T. viride, Gliocladium viride, Pseudomonas fluorescens, and Bacillus sp. A glasshouse and field trial for Ganoderma control indicated that treatment with T. harzianum and G. viride was superior to Bacillus sp. A large scale trial showed that the disease incidence was lower in a field treated with biological agents than in untreated fields. In a short term programme, research activities at IOPRI are currently focusing on selecting fungi that can completely degrade plant material in order to eradicate inoculum. Digging holes around the palm bole and adding empty fruit bunches have been investigated as ways to stimulate biological agents.

  18. Stem cell factor expression after renal ischemia promotes tubular epithelial survival.

    Directory of Open Access Journals (Sweden)

    Geurt Stokman

    Full Text Available BACKGROUND: Renal ischemia leads to apoptosis of tubular epithelial cells and results in decreased renal function. Tissue repair involves re-epithelialization of the tubular basement membrane. Survival of the tubular epithelium following ischemia is therefore important in the successful regeneration of renal tissue. The cytokine stem cell factor (SCF has been shown to protect the tubular epithelium against apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: In a mouse model for renal ischemia/reperfusion injury, we studied how expression of c-KIT on tubular epithelium and its ligand SCF protect cells against apoptosis. Administration of SCF specific antisense oligonucleotides significantly decreased specific staining of SCF following ischemia. Reduced SCF expression resulted in impaired renal function, increased tubular damage and increased tubular epithelial apoptosis, independent of inflammation. In an in vitro hypoxia model, stimulation of tubular epithelial cells with SCF activated survival signaling and decreased apoptosis. CONCLUSIONS/SIGNIFICANCE: Our data indicate an important role for c-KIT and SCF in mediating tubular epithelial cell survival via an autocrine pathway.

  19. Overexpression of microRNA-194 suppresses the epithelial-mesenchymal transition in targeting stem cell transcription factor Sox3 in endometrial carcinoma stem cells.

    Science.gov (United States)

    Gong, Baolan; Yue, Yan; Wang, Renxiao; Zhang, Yi; Jin, Quanfang; Zhou, Xi

    2017-06-01

    The epithelial-mesenchymal transition is the key process driving cancer metastasis. MicroRNA-194 inhibits epithelial-mesenchymal transition in several cancers and its downregulation indicates a poor prognosis in human endometrial carcinoma. Self-renewal factor Sox3 induces epithelial-mesenchymal transition at gastrulation and is also involved epithelial-mesenchymal transition in several cancers. We intended to determine the roles of Sox3 in inducing epithelial-mesenchymal transition in endometrial cancer stem cells and the possible role of microRNA-194 in controlling Sox3 expression. Firstly, we found that Sox3 and microRNA-194 expressions were associated with the status of endometrial cancer stem cells in a panel of endometrial carcinoma tissue, the CD133+ cell was higher in tumorsphere than in differentiated cells, and overexpression of microRNA-194 would decrease CD133+ cell expression. Silencing of Sox3 in endometrial cancer stem cell upregulated the epithelial marker E-cadherin, downregulated the mesenchymal marker vimentin, and significantly reduced cell invasion in vitro; overexpression of Sox3 reversed these phenotypes. Furthermore, we discovered that the expression of Sox3 was suppressed by microRNA-194 through direct binding to the Sox3 3'-untranslated region. Ectopic expression of microRNA-194 in endometrial cancer stem cells induced a mesenchymal-epithelial transition by restoring E-cadherin expression, decreasing vimentin expression, and inhibiting cell invasion in vitro. Moreover, overexpression of microRNA-194 inhibited endometrial cancer stem cell invasion or metastasis in vivo by injection of adenovirus microRNA-194. These findings demonstrate the novel mechanism by which Sox3 contributes to endometrial cancer stem cell invasion and suggest that repression of Sox3 by microRNA-194 may have therapeutic potential to suppress endometrial carcinoma metastasis. The cancer stem cell marker, CD133, might be the surface marker of endometrial cancer stem

  20. Structure and barrier properties of human embryonic stem cell-derived retinal pigment epithelial cells are affected by extracellular matrix protein coating.

    Science.gov (United States)

    Sorkio, Anni; Hongisto, Heidi; Kaarniranta, Kai; Uusitalo, Hannu; Juuti-Uusitalo, Kati; Skottman, Heli

    2014-02-01

    Extracellular matrix (ECM) interactions play a vital role in cell morphology, migration, proliferation, and differentiation of cells. We investigated the role of ECM proteins on the structure and function of human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells during their differentiation and maturation from hESCs into RPE cells in adherent differentiation cultures on several human ECM proteins found in native human Bruch's membrane, namely, collagen I, collagen IV, laminin, fibronectin, and vitronectin, as well as on commercial substrates of xeno-free CELLstart™ and Matrigel™. Cell pigmentation, expression of RPE-specific proteins, fine structure, as well as the production of basal lamina by hESC-RPE on different protein coatings were evaluated after 140 days of differentiation. The integrity of hESC-RPE epithelium and barrier properties on different coatings were investigated by measuring transepithelial resistance. All coatings supported the differentiation of hESC-RPE cells as demonstrated by early onset of cell pigmentation and further maturation to RPE monolayers after enrichment. Mature RPE phenotype was verified by RPE-specific gene and protein expression, correct epithelial polarization, and phagocytic activity. Significant differences were found in the degree of RPE cell pigmentation and tightness of epithelial barrier between different coatings. Further, the thickness of self-assembled basal lamina and secretion of the key ECM proteins found in the basement membrane of the native RPE varied between hESC-RPE cultured on compared protein coatings. In conclusion, this study shows that the cell culture substrate has a major effect on the structure and basal lamina production during the differentiation and maturation of hESC-RPE potentially influencing the success of cell integrations and survival after cell transplantation.

  1. Advanced three-dimensional culture of equine intestinal epithelial stem cells.

    Science.gov (United States)

    Stewart, A Stieler; Freund, J M; Gonzalez, L M

    2018-03-01

    Intestinal epithelial stem cells are critical to epithelial repair following gastrointestinal injury. The culture of intestinal stem cells has quickly become a cornerstone of a vast number of new research endeavours that range from determining tissue viability to testing drug efficacy for humans. This study aims to describe the methods of equine stem cell culture and highlights the future benefits of these techniques for the advancement of equine medicine. To describe the isolation and culture of small intestinal stem cells into three-dimensional (3D) enteroids in horses without clinical gastrointestinal abnormalities. Descriptive study. Intestinal samples were collected by sharp dissection immediately after euthanasia. Intestinal crypts containing intestinal stem cells were dissociated from the underlying tissue layers, plated in a 3D matrix and supplemented with growth factors. After several days, resultant 3D enteroids were prepared for immunofluorescent imaging and polymerase chain reaction (PCR) analysis to detect and characterise specific cell types present. Intestinal crypts were cryopreserved immediately following collection and viability assessed. Intestinal crypts were successfully cultured and matured into 3D enteroids containing a lumen and budding structures. Immunofluorescence and PCR were used to confirm the existence of stem cells and all post mitotic, mature cell types, described to exist in the horse intestinal epithelium. Previously frozen crypts were successfully cultured following a freeze-thaw cycle. Tissues were all derived from normal horses. Application of this technique for the study of specific disease was not performed at this time. The successful culture of equine intestinal crypts into 3D "mini-guts" allows for in vitro studies of the equine intestine. Additionally, these results have relevance to future development of novel therapies that harness the regenerative potential of equine intestine in horses with gastrointestinal disease

  2. Identification of putative dental epithelial stem cells in a lizard with life-long tooth replacement.

    Science.gov (United States)

    Handrigan, Gregory R; Leung, Kelvin J; Richman, Joy M

    2010-11-01

    Most dentate vertebrates, including humans, replace their teeth and yet the process is poorly understood. Here, we investigate whether dental epithelial stem cells exist in a polyphyodont species, the leopard gecko (Eublepharis macularius). Since the gecko dental epithelium lacks a histologically distinct site for stem cells analogous to the mammalian hair follicle bulge, we performed a pulse-chase experiment on juvenile geckos to identify label-retaining cells (LRCs). We detected LRCs exclusively on the lingual side of the dental lamina, which exhibits low proliferation rates and is not involved in tooth morphogenesis. Lingual LRCs were organized into pockets of high density close to the successional lamina. A subset of the LRCs expresses Lgr5 and other genes that are markers of adult stem cells in mammals. Also similar to mammalian stem cells, the LRCs appear to proliferate in response to gain of function of the canonical Wnt pathway. We suggest that the LRCs in the lingual dental lamina represent a population of stem cells, the immediate descendents of which form the successional lamina and, ultimately, the replacement teeth in the gecko. Furthermore, their location on the non-tooth-forming side of the dental lamina implies that dental stem cells are sequestered from signals that might otherwise induce them to differentiate.

  3. Spatial statistical analysis of basal stem root disease under natural field epidemic of oil palm

    Science.gov (United States)

    Kamu, Assis; Phin, Chong Khim; Seman, Idris Abu; Wan, Hoong Hak; Mun, Ho Chong

    2015-02-01

    Oil palm or scientifically known as Elaeis guineensis Jacq. is the most important commodity crop in Malaysia and has greatly contributed to the economy growth of the country. As far as disease is concerned in the industry, Basal Stem Rot (BSR) caused by Ganoderma boninence remains the most important disease. BSR disease is the most widely studied with information available for oil palm disease in Malaysia. However, there is still limited study on the spatial as well as temporal pattern or distribution of the disease especially under natural field epidemic condition in oil palm plantation. The objective of this study is to spatially identify the pattern of BSR disease under natural field epidemic using two geospatial analytical techniques, which are quadrat analysis for the first order properties of partial pattern analysis and nearest-neighbor analysis (NNA) for the second order properties of partial pattern analysis. Two study sites were selected with different age of tree. Both sites are located in Tawau, Sabah and managed by the same company. The results showed that at least one of the point pattern analysis used which is NNA (i.e. the second order properties of partial pattern analysis) has confirmed the disease is complete spatial randomness. This suggests the spread of the disease is not from tree to tree and the age of palm does not play a significance role in determining the spatial pattern of the disease. From the spatial pattern of the disease, it would help in the disease management program and for the industry in the future. The statistical modelling is expected to help in identifying the right model to estimate the yield loss of oil palm due to BSR disease in the future.

  4. Cadmium tolerance and accumulation characteristics of mature flax, cv. Hermes: Contribution of the basal stem compared to the root

    Energy Technology Data Exchange (ETDEWEB)

    Douchiche, Olfa, E-mail: olfa.douchiche@hotmail.fr [Laboratory Glyco-MEV EA 4358, IFRMP 23, University of Rouen, 76821 Mont Saint Aignan Cedex (France); Laboratory Biologie et Physiologie Cellulaires Vegetales, Department of Biology, University of Tunis, 1060 Tunis (Tunisia); Chaiebi, Wided [Laboratory Biologie et Physiologie Cellulaires Vegetales, Department of Biology, University of Tunis, 1060 Tunis (Tunisia); Morvan, Claudine, E-mail: claudine.morvan@univ-rouen.fr [Laboratory PBS-UMR 6270 CNRS, FR 3038, University of Rouen, 76821 Mont Saint Aignan Cedex (France)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Cd accumulated in stem bottom part exceeded the defined hyperaccumulator threshold. Black-Right-Pointing-Pointer No toxic symptoms occurred and TI of all growth parameters ranged between 0.7 and 1. Black-Right-Pointing-Pointer The high level of Zn, Mn and Cu may contribute to the absence of chlorosis in stem. Black-Right-Pointing-Pointer Cd/Ca synergistic effect observed in the stem may alleviate Cd toxicity. Black-Right-Pointing-Pointer Hermes variety accumulated more Cd than the other flax varieties ever described. - Abstract: The potential of mature flax plants (cv. Hermes) to tolerate and accumulate cadmium (Cd) was studied to determine which part of the plant would be the key organ for phytoremediation purposes. After 4 month-growth on sand substrate containing 0.1 mM Cd in a greenhouse, the roots and stems were separated and the stems were divided into three parts. The effects of Cd were studied on growth parameters, histology and mineral nutrition. No visible toxic symptoms were observed. Tolerance-index values calculated from growth parameters and nutrients remained relatively high, allowing the development of the plant until maturity and formation of seeds. The roots and bottom stem accumulated the highest quantity of Cd (750 and 360 mg/kg dry matter), values which largely exceeded the threshold defined for hyperaccumulators. On the other hand, basal stem had a high bioconcentration factor (BCF = 32) and translocation factor TF Prime (2.5) but a low TF (0.5), indicating that this basal part would play a major role in phytoremediation (phytostabilization rather than phytorextraction). Therefore, the high tolerance to Cd and accumulation capacity make possible to grow Hermes flax on Cd-polluted soils.

  5. Small-Molecule Induction Promotes Corneal Epithelial Cell Differentiation from Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Alexandra Mikhailova

    2014-02-01

    Full Text Available Human induced pluripotent stem cells (hiPSCs offer unique opportunities for developing novel cell-based therapies and disease modeling. In this study, we developed a directed differentiation method for hiPSCs toward corneal epithelial progenitor cells capable of terminal differentiation toward mature corneal epithelial-like cells. In order to improve the efficiency and reproducibility of our method, we replicated signaling cues active during ocular surface ectoderm development with the help of two small-molecule inhibitors in combination with basic fibroblast growth factor (bFGF in serum-free and feeder-free conditions. First, small-molecule induction downregulated the expression of pluripotency markers while upregulating several transcription factors essential for normal eye development. Second, protein expression of the corneal epithelial progenitor marker p63 was greatly enhanced, with up to 95% of cells being p63 positive after 5 weeks of differentiation. Third, corneal epithelial-like cells were obtained upon further maturation.

  6. Epithelial WNT Ligands Are Essential Drivers of Intestinal Stem Cell Activation

    Directory of Open Access Journals (Sweden)

    Winnie Y. Zou

    2018-01-01

    Full Text Available Intestinal stem cells (ISCs maintain and repair the intestinal epithelium. While regeneration after ISC-targeted damage is increasingly understood, injury-repair mechanisms that direct regeneration following injuries to differentiated cells remain uncharacterized. The enteric pathogen, rotavirus, infects and damages differentiated cells while sparing all ISC populations, thus allowing the unique examination of the response of intact ISC compartments during injury-repair. Upon rotavirus infection in mice, ISC compartments robustly expand and proliferating cells rapidly migrate. Infection results specifically in stimulation of the active crypt-based columnar ISCs, but not alternative reserve ISC populations, as is observed after ISC-targeted damage. Conditional ablation of epithelial WNT secretion diminishes crypt expansion and ISC activation, demonstrating a previously unknown function of epithelial-secreted WNT during injury-repair. These findings indicate a hierarchical preference of crypt-based columnar cells (CBCs over other potential ISC populations during epithelial restitution and the importance of epithelial-derived signals in regulating ISC behavior.

  7. System for tracking transplanted limbal epithelial stem cells in the treatment of corneal stem cell deficiency

    Science.gov (United States)

    Boadi, J.; Sangwal, V.; MacNeil, S.; Matcher, S. J.

    2015-03-01

    The prevailing hypothesis for the existence and healing of the avascular corneal epithelium is that this layer of cells is continually produced by stem cells in the limbus and transported onto the cornea to mature into corneal epithelium. Limbal Stem Cell Deficiency (LSCD), in which the stem cell population is depleted, can lead to blindness. LSCD can be caused by chemical and thermal burns to the eye. A popular treatment, especially in emerging economies such as India, is the transplantation of limbal stem cells onto damaged limbus with hope of repopulating the region. Hence regenerating the corneal epithelium. In order to gain insights into the success rates of this treatment, new imaging technologies are needed in order to track the transplanted cells. Optical Coherence Tomography (OCT) is well known for its high resolution in vivo images of the retina. A custom OCT system has been built to image the corneal surface, to investigate the fate of transplanted limbal stem cells. We evaluate two methods to label and track transplanted cells: melanin labelling and magneto-labelling. To evaluate melanin labelling, stem cells are loaded with melanin and then transplanted onto a rabbit cornea denuded of its epithelium. The melanin displays strongly enhanced backscatter relative to normal cells. To evaluate magneto-labelling the stem cells are loaded with magnetic nanoparticles (20-30nm in size) and then imaged with a custom-built, magneto-motive OCT system.

  8. Selective interactions between epithelial tumour cells and bone marrow mesenchymal stem cells

    OpenAIRE

    Hombauer, H; Minguell, J J

    2000-01-01

    This work is a comparative study on the features displayed by an epithelial metastatic breast cancer cell line (MCF-7) when set in co-culture with human bone marrow mesenchymal stem cells (MSC) or a feeder layer of 3T3 fibroblasts. MSC, a subset of non-haematopoietic cells in the marrow stroma, display a potential for self-renewal, proliferation and differentiation into precursors for bone, cartilage, connective and muscular tissue. Adhesion of MCF-7 cells to monolayers of MSC or 3T3 was high...

  9. Leptin and Adiponectin Modulate the Self-renewal of Normal Human Breast Epithelial Stem Cells.

    Science.gov (United States)

    Esper, Raymond M; Dame, Michael; McClintock, Shannon; Holt, Peter R; Dannenberg, Andrew J; Wicha, Max S; Brenner, Dean E

    2015-12-01

    Multiple mechanisms are likely to account for the link between obesity and increased risk of postmenopausal breast cancer. Two adipokines, leptin and adiponectin, are of particular interest due to their opposing biologic functions and associations with breast cancer risk. In the current study, we investigated the effects of leptin and adiponectin on normal breast epithelial stem cells. Levels of leptin in human adipose explant-derived conditioned media positively correlated with the size of the normal breast stem cell pool. In contrast, an inverse relationship was found for adiponectin. Moreover, a strong linear relationship was observed between the leptin/adiponectin ratio in adipose conditioned media and breast stem cell self-renewal. Consistent with these findings, exogenous leptin stimulated whereas adiponectin suppressed breast stem cell self-renewal. In addition to local in-breast effects, circulating factors, including leptin and adiponectin, may contribute to the link between obesity and breast cancer. Increased levels of leptin and reduced amounts of adiponectin were found in serum from obese compared with age-matched lean postmenopausal women. Interestingly, serum from obese women increased stem cell self-renewal by 30% compared with only 7% for lean control serum. Taken together, these data suggest a plausible explanation for the obesity-driven increase in postmenopausal breast cancer risk. Leptin and adiponectin may function as both endocrine and paracrine/juxtacrine factors to modulate the size of the normal stem cell pool. Interventions that disrupt this axis and thereby normalize breast stem cell self-renewal could reduce the risk of breast cancer. ©2015 American Association for Cancer Research.

  10. Hedgehog Signaling Regulates Epithelial-Mesenchymal Transition in Pancreatic Cancer Stem-Like Cells

    Science.gov (United States)

    Wang, Feng; Ma, Ling; Zhang, Zhengkui; Liu, Xiaoran; Gao, Hongqiao; Zhuang, Yan; Yang, Pei; Kornmann, Marko; Tian, Xiaodong; Yang, Yinmo

    2016-01-01

    Hedgehog (Hh) signaling is crucially involved in tumorigenesis. This study aimed to assess the role of Hh signaling in the regulation of epithelial-mesenchymal transition (EMT), stemness properties and chemoresistance of human pancreatic Panc-1 cancer stem cells (CSCs). Panc-1 cells were transfected with recombinant lentiviral vectors to silence SMO and serum-free floating-culture system was used to isolate Panc-1 tumorspheres. The expression of CSC and EMT markers was detected by flow cytometry, real-time RT-PCR and Western blot analysis. Malignant behaviors of Panc-1 CSC were evaluated by tumorigenicity assays and nude mouse lung metastasis model. We found that tumorspheres derived from pancreatic cancer cell line Panc-1 possessed self-renewal, differentiation and stemness properties. Hh pathway and EMT were active in Panc-1 tumorspheres. Inhibition of Hh signaling by SMO knockdown inhibited self-renewal, EMT, invasion, chemoresistance, pulmonary metastasis, tumorigenesis of pancreatic CSCs. In conclusion, Hh signaling contributes to the maintenance of stem-like properties and chemoresistance of pancreatic CSC and promotes the tumorigenesis and metastasis of pancreatic cancer. Hh pathway is a potential molecular target for the development of therapeutic strategies for pancreatic CSCs. PMID:26918054

  11. Cultivate Primary Nasal Epithelial Cells from Children and Reprogram into Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Ulm, Ashley; Mayhew, Christopher N; Debley, Jason; Khurana Hershey, Gurjit K; Ji, Hong

    2016-03-10

    Nasal epithelial cells (NECs) are the part of the airways that respond to air pollutants and are the first cells infected with respiratory viruses. They are also involved in many airway diseases through their innate immune response and interaction with immune and airway stromal cells. NECs are of particular interest for studies in children due to their accessibility during clinical visits. Human induced pluripotent stem cells (iPSCs) have been generated from multiple cell types and are a powerful tool for modeling human development and disease, as well as for their potential applications in regenerative medicine. This is the first protocol to lay out methods for successful generation of iPSCs from NECs derived from pediatric participants for research purposes. It describes how to obtain nasal epithelial cells from children, how to generate primary NEC cultures from these samples, and how to reprogram primary NECs into well-characterized iPSCs. Nasal mucosa samples are useful in epidemiological studies related to the effects of air pollution in children, and provide an important tool for studying airway disease. Primary nasal cells and iPSCs derived from them can be a tool for providing unlimited material for patient-specific research in diverse areas of airway epithelial biology, including asthma and COPD research.

  12. Three-dimensional epithelial tissues generated from human embryonic stem cells.

    Science.gov (United States)

    Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A

    2009-11-01

    The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.

  13. Protein profile of basal prostate epithelial progenitor cells--stage-specific embryonal antigen 4 expressing cells have enhanced regenerative potential in vivo.

    Science.gov (United States)

    Höfner, Thomas; Klein, Corinna; Eisen, Christian; Rigo-Watermeier, Teresa; Haferkamp, Axel; Sprick, Martin R

    2016-04-01

    The long-term propagation of basal prostate progenitor cells ex vivo has been very difficult in the past. The development of novel methods to expand prostate progenitor cells in vitro allows determining their cell surface phenotype in greater detail. Mouse (Lin(-)Sca-1(+) CD49f(+) Trop2(high)-phenotype) and human (Lin(-) CD49f(+) TROP2(high)) basal prostate progenitor cells were expanded in vitro. Human and mouse cells were screened using 242 anti-human or 176 antimouse monoclonal antibodies recognizing the cell surface protein profile. Quantitative expression was evaluated at the single-cell level using flow cytometry. Differentially expressed cell surface proteins were evaluated in conjunction with the known CD49f(+)/TROP2(high) phenotype of basal prostate progenitor cells and characterized by in vivo sandwich-transplantation experiments using nude mice. The phenotype of basal prostate progenitor cells was determined as CD9(+)/CD24(+)/CD29(+)/CD44(+)/CD47(+)/CD49f(+)/CD104(+)/CD147(+)/CD326(+)/Trop2(high) of mouse as well as human origin. Our analysis revealed several proteins, such as CD13, Syndecan-1 and stage-specific embryonal antigens (SSEAs), as being differentially expressed on murine and human CD49f(+) TROP2(+) basal prostate progenitor cells. Transplantation experiments suggest that CD49f(+) TROP2(high) SSEA-4(high) human prostate basal progenitor cells to be more potent to regenerate prostate tubules in vivo as compared with CD49f(+) TROP2(high) or CD49f(+) TROP2(high) SSEA-4(low) cells. Determination of the cell surface protein profile of functionally defined murine and human basal prostate progenitor cells reveals differentially expressed proteins that may change the potency and regenerative function of epithelial progenitor cells within the prostate. SSEA-4 is a candidate cell surface marker that putatively enables a more accurate identification of the basal PESC lineage. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by

  14. Epithelial-to-mesenchymal plasticity of cancer stem cells: therapeutic targets in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Aparna Jayachandran

    2016-08-01

    Full Text Available Abstract Hepatocellular carcinoma (HCC remains one of the most common and lethal malignancies worldwide despite the development of various therapeutic strategies. A better understanding of the mechanisms responsible for HCC initiation and progression is essential for the development of more effective therapies. The cancer stem cell (CSC model has provided new insights into the development and progression of HCC. CSCs are specialized tumor cells that are capable of self-renewal and have long-term repopulation potential. As they are important mediators of tumor proliferation, invasion, metastasis, therapy resistance, and cancer relapse, the selective targeting of this crucial population of cells has the potential to improve HCC patient outcomes and survival. In recent years, the role of epithelial-to-mesenchymal transition (EMT in the advancement of HCC has gained increasing attention. This multi-step reprograming process resulting in a phenotype switch from an epithelial to a mesenchymal cellular state has been closely associated with the acquisition of stem cell-like attributes in tumors. Moreover, CSC mediates tumor metastasis by maintaining plasticity to transition between epithelial or mesenchymal states. Therefore, understanding the molecular mechanisms of the reprograming switches that determine the progression through EMT and generation of CSC is essential for developing clinically relevant drug targets. This review provides an overview of the proposed roles of CSC in HCC and discusses recent results supporting the emerging role of EMT in facilitating hepatic CSC plasticity. In particular, we discuss how these important new insights may facilitate rational development of combining CSC- and EMT-targeted therapies in the future.

  15. Cell lineage identification and stem cell culture in a porcine model for the study of intestinal epithelial regeneration.

    Directory of Open Access Journals (Sweden)

    Liara M Gonzalez

    Full Text Available Significant advances in intestinal stem cell biology have been made in murine models; however, anatomical and physiological differences between mice and humans limit mice as a translational model for stem cell based research. The pig has been an effective translational model, and represents a candidate species to study intestinal epithelial stem cell (IESC driven regeneration. The lack of validated reagents and epithelial culture methods is an obstacle to investigating IESC driven regeneration in a pig model. In this study, antibodies against Epithelial Adhesion Molecule 1 (EpCAM and Villin marked cells of epithelial origin. Antibodies against Proliferative Cell Nuclear Antigen (PCNA, Minichromosome Maintenance Complex 2 (MCM2, Bromodeoxyuridine (BrdU and phosphorylated Histone H3 (pH3 distinguished proliferating cells at various stages of the cell cycle. SOX9, localized to the stem/progenitor cells zone, while HOPX was restricted to the +4/'reserve' stem cell zone. Immunostaining also identified major differentiated lineages. Goblet cells were identified by Mucin 2 (MUC2; enteroendocrine cells by Chromogranin A (CGA, Gastrin and Somatostatin; and absorptive enterocytes by carbonic anhydrase II (CAII and sucrase isomaltase (SIM. Transmission electron microscopy demonstrated morphologic and sub-cellular characteristics of stem cell and differentiated intestinal epithelial cell types. Quantitative PCR gene expression analysis enabled identification of stem/progenitor cells, post mitotic cell lineages, and important growth and differentiation pathways. Additionally, a method for long-term culture of porcine crypts was developed. Biomarker characterization and development of IESC culture in the porcine model represents a foundation for translational studies of IESC-driven regeneration of the intestinal epithelium in physiology and disease.

  16. Induction of endoplasmic reticulum stress by deletion of Grp78 depletes Apc mutant intestinal epithelial stem cells.

    Science.gov (United States)

    van Lidth de Jeude, J F; Meijer, B J; Wielenga, M C B; Spaan, C N; Baan, B; Rosekrans, S L; Meisner, S; Shen, Y H; Lee, A S; Paton, J C; Paton, A W; Muncan, V; van den Brink, G R; Heijmans, J

    2017-06-15

    Intestinal epithelial stem cells are highly sensitive to differentiation induced by endoplasmic reticulum (ER) stress. Colorectal cancer develops from mutated intestinal epithelial stem cells. The most frequent initiating mutation occurs in Apc, which results in hyperactivated Wnt signalling. This causes hyperproliferation and reduced sensitivity to chemotherapy, but whether these mutated stem cells are sensitive to ER stress induced differentiation remains unknown. Here we examined this by generating mice in which both Apc and ER stress repressor chaperone Grp78 can be conditionally deleted from the intestinal epithelium. For molecular studies, we used intestinal organoids derived from these mice. Homozygous loss of Apc alone resulted in crypt elongation, activation of the Wnt signature and accumulation of intestinal epithelial stem cells, as expected. This phenotype was however completely rescued on activation of ER stress by additional deletion of Grp78. In these Apc-Grp78 double mutant animals, stem cells were rapidly lost and repopulation occurred by non-mutant cells that had escaped recombination, suggesting that Apc-Grp78 double mutant stem cells had lost self-renewal capacity. Although in Apc-Grp78 double mutant mice the Wnt signature was lost, these intestines exhibited ubiquitous epithelial presence of nuclear β-catenin. This suggests that ER stress interferes with Wnt signalling downstream of nuclear β-catenin. In conclusion, our findings indicate that ER stress signalling results in loss of Apc mutated intestinal epithelial stem cells by interference with the Wnt signature. In contrast to many known inhibitors of Wnt signalling, ER stress acts downstream of β-catenin. Therefore, ER stress poses a promising target in colorectal cancers, which develop as a result of Wnt activating mutations.

  17. ANTAGONISTIC EFFECT OF FOUR FUNGAL ISOLATES TO GANODERMA BONINENSE, THE CAUSAL AGENT OF BASAL STEM ROT OF OIL PALM

    Directory of Open Access Journals (Sweden)

    OKKY SETYAWATI DHARMAPUTRA

    1990-01-01

    Full Text Available Four fungal isolates from soils obtained from three sites of the oil palm plantations in North Sumatra were found antagonistic to Ganoderma boninense, the causal agent of basal stem rot of oil palm. Penicillium citrinum inhibited the growth of the pathogen and formed a zone of inhibition on the agar media. Trichoderma harzianum BIO - 1 as well as BIO - 2 and T. viride not only repressed the growth of the pathogen but also caused lysis of the hyphae, and the colony was totally overgrown by the antagonists.

  18. A supramolecular look at microenvironmental regulation of limbal epithelial stem cells and the differentiation of their progeny

    Directory of Open Access Journals (Sweden)

    Marcela Aldrovani

    Full Text Available ABSTRACT Various approaches have been taken to improve our knowledge of the microenvironmental regulation of limbal epithelial stem cells. Researchers have extensively investigated the roles of growth factors, survival factors, cytokines, enzymes, and permeable molecules secreted by the limbal cells. However, recent evidence suggests that stem cell fate (i.e., self-renewal or differentiation can also be influenced by biophysical and mechanical cues related to the supramolecular organization and the liquid crystalline (mesophase nature of the stromal extracellular matrix. These cues can be sensed by stem cells and transduced into intracellular biochemical and functional responses, a process known as mechanotransduction. The objective of this review is to offer perspectives on the supramolecular microenvironmental regulation of limbal epithelial stem cells and the differentiation of their progeny.

  19. Determinants of the epithelial-muscular axis on embryonic stem cell-derived gut-like structures.

    Science.gov (United States)

    Luo, Yi; Takaki, Miyako; Misawa, Hiromi; Matsuyoshi, Hiroko; Sasahira, Tomonori; Chihara, Yoshitomo; Fujii, Kiyomu; Ohmori, Hitoshi; Kuniyasu, Hiroki

    2010-01-01

    Dome-like structures with epithelial-muscular layers resembling the gut have been derived from mouse embryonic stem (ES) cells. These domes have been reported to show spontaneous contractions and are called ES gut. In the present study, we examined the epithelial-muscular axis of these domes by detecting differentiation markers. A normal epithelial-muscular axis was exhibited in the domes with spontaneous motility, whereas the domes without spontaneous motility showed either an inverted or obscure axis. To investigate the factors affecting the epithelial-muscular axis, we examined the expression of hedgehog signaling factors in the domes. Expression of hedgehog family factors was detected in the epithelial components of the domes with motility, whereas this expression was inverted or obscure in the domes without motility. Out of the 25 domes, 10 of the 10 motility (+) domes showed a normal epithelial-muscular axis, whereas 14 of the 15 motility (-) domes lacked a normal epithelial-muscular axis. This implies that activin A upregulated the expression of sonic hedgehog and intestinal alkaline phosphatase in the embryoid bodies. These findings suggest that the motility of the ES gut depends on the domes' epithelial-muscular axis. Copyright © 2010 S. Karger AG, Basel.

  20. Flaxseed reduces epithelial proliferation but does not affect basal cells in induced benign prostatic hyperplasia in rats.

    Science.gov (United States)

    de Amorim Ribeiro, Ilma Cely; da Costa, Carlos Alberto Soares; da Silva, Vivian Alves Pereira; Côrrea, Lanna Beatriz Neves Silva; Boaventura, Gilson Teles; Chagas, Mauricio Alves

    2017-04-01

    This study aimed to quantitatively and qualitatively evaluate the effects of a flaxseed-based diet on the histoarchitecture of the prostate of normal Wistar rats and of rats with induced BPH. The study included four experimental groups of ten animals each: casein control group (CCG), who were fed a casein-based diet; flaxseed control group (FCG), who were fed a flaxseed-based diet; hyperplasia-induced casein group (HICG), who were fed a casein-based diet; and hyperplasia-induced flaxseed group (HIFG), who were fed a flaxseed-based diet. Hyperplasia was induced by the subcutaneous implantation of silicone pellets containing testosterone propionate. After 20 weeks, the rats were euthanized and their prostate fixed in buffered formalin. Tissue sections were stained with HE, picrosirius red and immunostained for nuclear antigen p63. Histomorphometric analysis evaluated the epithelial thickness, epithelial area, individual luminal area, and total area of prostatic alveoli. The mean epithelial thickness obtained for HIFG and HICG was 16.52 ± 1.65 and 20.58 ± 2.86 µm, respectively. The mean epithelial thickness in HICG was greater than that in the other groups tested. HIFG had a smaller epithelial thickness and lower percentage of papillary projections in the prostatic alveoli. No significant difference was observed between CCG and FCG. The total area and mean alveolar area showed no significant differences between the groups. The number of cells immunostained for p63 was not significantly different between the groups evaluated. These results suggest that flaxseed has a protective effect on the prostate epithelium in BPH-induced animals.

  1. Poly(trimethylene carbonate) as an elastic biodegradable film for human embryonic stem cell-derived retinal pigment epithelial cells

    NARCIS (Netherlands)

    Sorkio, Anni; Haimi, Suvi; Verdoold, Vincent; Juuti-Uusitalo, Kati; Grijpma, Dirk; Skottman, Heli

    2017-01-01

    Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cell therapies show tremendous potential for the treatment of retinal degenerative diseases. A tissue engineering approach, where cells are delivered to the subretinal space on a biodegradable carrier as a sheet, shows great

  2. Poly(trimethylene carbonate) as an elastic biodegradable film for human embryonic stem cell-derived retinal pigment epithelial cells

    NARCIS (Netherlands)

    Sorkio, Anni; Haimi, Suvi; Verdoold, Vincent; Juuti-Uusitalo, Kati; Grijpma, Dirk; Skottman, Heli

    Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cell therapies show tremendous potential for the treatment of retinal degenerative diseases. A tissue engineering approach, where cells are delivered to the subretinal space on a biodegradable carrier as a sheet, shows great

  3. Telomerase-immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells

    International Nuclear Information System (INIS)

    Li Hongzhen; Zhou Jianjun; Miki, Jun; Furusato, Bungo; Gu Yongpeng; Srivastava, Shiv; McLeod, David G.; Vogel, Jonathan C.; Rhim, Johng S.

    2008-01-01

    Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin α2β1 hi and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetal bovine serum and 5 μg/ml insulin (DMEM + 10% FBS + Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation

  4. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  5. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    International Nuclear Information System (INIS)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing; Wang, Zehua

    2015-01-01

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs

  6. Snail1 induces epithelial-to-mesenchymal transition and tumor initiating stem cell characteristics

    International Nuclear Information System (INIS)

    Dang, Hien; Ding, Wei; Emerson, Dow; Rountree, C Bart

    2011-01-01

    Tumor initiating stem-like cells (TISCs) are a subset of neoplastic cells that possess distinct survival mechanisms and self-renewal characteristics crucial for tumor maintenance and propagation. The induction of epithelial-mesenchymal-transition (EMT) by TGFβ has been recently linked to the acquisition of TISC characteristics in breast cancer. In HCC, a TISC and EMT phenotype correlates with a worse prognosis. In this work, our aim is to elucidate the underlying mechanism by which cells acquire tumor initiating characteristics after EMT. Gene and protein expression assays and Nanog-promoter luciferase reporter were utilized in epithelial and mesenchymal phenotype liver cancer cell lines. EMT was analyzed with migration/invasion assays. TISC characteristics were analyzed with tumor-sphere self-renewal and chemotherapy resistance assays. In vivo tumor assay was performed to investigate the role of Snail1 in tumor initiation. TGFβ induced EMT in epithelial cells through the up-regulation of Snail1 in Smad-dependent signaling. Mesenchymal liver cancer post-EMT demonstrates TISC characteristics such as tumor-sphere formation but are not resistant to cytotoxic therapy. The inhibition of Snail1 in mesenchymal cells results in decreased Nanog promoter luciferase activity and loss of self-renewal characteristics in vitro. These changes confirm the direct role of Snail1 in some TISC traits. In vivo, the down-regulation of Snail1 reduced tumor growth but was not sufficient to eliminate tumor initiation. In summary, TGFβ induces EMT and TISC characteristics through Snail1 and Nanog up-regulation. In mesenchymal cells post-EMT, Snail1 directly regulates Nanog expression, and loss of Snail1 regulates tumor growth without affecting tumor initiation

  7. Aging effects on intestinal homeostasis associated with expansion and dysfunction of intestinal epithelial stem cells.

    Science.gov (United States)

    Moorefield, Emily C; Andres, Sarah F; Blue, R Eric; Van Landeghem, Laurianne; Mah, Amanda T; Santoro, M Agostina; Ding, Shengli

    2017-08-29

    Intestinal epithelial stem cells (IESCs) are critical to maintain intestinal epithelial function and homeostasis. We tested the hypothesis that aging promotes IESC dysfunction using old (18-22 months) and young (2-4 month) Sox9-EGFP IESC reporter mice. Different levels of Sox9-EGFP permit analyses of active IESC (Sox9-EGFP Low ), activatable reserve IESC and enteroendocrine cells (Sox9-EGFP High ), Sox9-EGFP Sublow progenitors, and Sox9-EGFP Negative differentiated lineages. Crypt-villus morphology, cellular composition and apoptosis were measured by histology. IESC function was assessed by crypt culture, and proliferation by flow cytometry and histology. Main findings were confirmed in Lgr5-EGFP and Lgr5-LacZ mice. Aging-associated gene expression changes were analyzed by Fluidigm mRNA profiling. Crypts culture from old mice yielded fewer and less complex enteroids. Histology revealed increased villus height and Paneth cells per crypt in old mice. Old mice showed increased numbers and hyperproliferation of Sox9-EGFP Low IESC and Sox9-EGFP High cells. Cleaved caspase-3 staining demonstrated increased apoptotic cells in crypts and villi of old mice. Gene expression profiling revealed aging-associated changes in mRNAs associated with cell cycle, oxidative stress and apoptosis specifically in IESC. These findings provide new, direct evidence for aging associated IESC dysfunction, and define potential biomarkers and targets for translational studies to assess and maintain IESC function during aging.

  8. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium.

    Directory of Open Access Journals (Sweden)

    Ryuhei Hayashi

    Full Text Available Induced pluripotent stem (iPS cells can be established from somatic cells. However, there is currently no established strategy to generate corneal epithelial cells from iPS cells. In this study, we investigated whether corneal epithelial cells could be differentiated from iPS cells. We tested 2 distinct sources: human adult dermal fibroblast (HDF-derived iPS cells (253G1 and human adult corneal limbal epithelial cells (HLEC-derived iPS cells (L1B41. We first established iPS cells from HLEC by introducing the Yamanaka 4 factors. Corneal epithelial cells were successfully induced from the iPS cells by the stromal cell-derived inducing activity (SDIA differentiation method, as Pax6(+/K12(+ corneal epithelial colonies were observed after prolonged differentiation culture (12 weeks or later in both the L1B41 and 253G1 iPS cells following retinal pigment epithelial and lens cell induction. Interestingly, the corneal epithelial differentiation efficiency was higher in L1B41 than in 253G1. DNA methylation analysis revealed that a small proportion of differentially methylated regions still existed between L1B41 and 253G1 iPS cells even though no significant difference in methylation status was detected in the specific corneal epithelium-related genes such as K12, K3, and Pax6. The present study is the first to demonstrate a strategy for corneal epithelial cell differentiation from human iPS cells, and further suggests that the epigenomic status is associated with the propensity of iPS cells to differentiate into corneal epithelial cells.

  9. Airway Basal Cell Heterogeneity and Lung Squamous Cell Carcinoma.

    Science.gov (United States)

    Hynds, Robert E; Janes, Sam M

    2017-09-01

    Basal cells are stem/progenitor cells that maintain airway homeostasis, enact repair following epithelial injury, and are a candidate cell-of-origin for lung squamous cell carcinoma. Heterogeneity of basal cells is recognized in terms of gene expression and differentiation capacity. In this Issue, Pagano and colleagues isolate a subset of immortalized basal cells that are characterized by high motility, suggesting that they might also be heterogeneous in their biophysical properties. Motility-selected cells displayed an increased ability to colonize the lung in vivo The possible implications of these findings are discussed in terms of basal cell heterogeneity, epithelial cell migration, and modeling of metastasis that occurs early in cancer evolution. Cancer Prev Res; 10(9); 491-3. ©2017 AACR See related article by Pagano et al., p. 514 . ©2017 American Association for Cancer Research.

  10. CD73 Regulates Stemness and Epithelial-Mesenchymal Transition in Ovarian Cancer-Initiating Cells

    Directory of Open Access Journals (Sweden)

    Michela Lupia

    2018-04-01

    Full Text Available Summary: Cancer-initiating cells (CICs have been implicated in tumor development and aggressiveness. In ovarian carcinoma (OC, CICs drive tumor formation, dissemination, and recurrence, as well as drug resistance, thus accounting for the high death-to-incidence ratio of this neoplasm. However, the molecular mechanisms that underlie such a pathogenic role of ovarian CICs (OCICs remain elusive. Here, we have capitalized on primary cells either from OC or from its tissues of origin to obtain the transcriptomic profile associated with OCICs. Among the genes differentially expressed in OCICs, we focused on CD73, which encodes the membrane-associated 5′-ectonucleotidase. The genetic inactivation of CD73 in OC cells revealed that this molecule is causally involved in sphere formation and tumor initiation, thus emerging as a driver of OCIC function. Furthermore, functional inhibition of CD73 via either a chemical compound or a neutralizing antibody reduced sphere formation and tumorigenesis, highlighting the druggability of CD73 in the context of OCIC-directed therapies. The biological function of CD73 in OCICs required its enzymatic activity and involved adenosine signaling. Mechanistically, CD73 promotes the expression of stemness and epithelial-mesenchymal transition-associated genes, implying a regulation of OCIC function at the transcriptional level. CD73, therefore, is involved in OCIC biology and may represent a therapeutic target for innovative treatments aimed at OC eradication. : Cavallaro et al. characterized the transcriptome of OCIC-enriched primary cultures and found CD73 as an upregulated gene. CD73 was then shown to regulate the expression of stemness and EMT-associated genes. The expression and function of CD73 in OCICs is required for tumor initiation, and CD73-targeted drugs decrease the rate of tumor take and inhibit cancer growth. Keywords: CD73, ovarian cancer, cancer-initiating cells, cancer stem cells, EMT, adenosine

  11. Transcription Factor Networks derived from Breast Cancer Stem Cells control the immune response in the Basal subtype

    DEFF Research Database (Denmark)

    da Silveira, W A; Palma, P V B; Sicchieri, R D

    2017-01-01

    Breast cancer is the most common cancer in women worldwide and metastatic dissemination is the principal factor related to death by this disease. Breast cancer stem cells (bCSC) are thought to be responsible for metastasis and chemoresistance. In this study, based on whole transcriptome analysis...... of these networks in patient tumours is predictive of engraftment success. Our findings point out a potential molecular mechanism underlying the balance between immune surveillance and EMT activation in breast cancer. This molecular mechanism may be useful to the development of new target therapies....... and IKZF3 transcription factors which correspond to immune response modulators. Immune response network expression is correlated with pathological response to chemotherapy, and in the Basal subtype is related to better recurrence-free survival. In patient-derived xenografts, the expression...

  12. The Meckel-Gruber syndrome protein TMEM67 controls basal body positioning and epithelial branching morphogenesis in mice via the non-canonical Wnt pathway

    Directory of Open Access Journals (Sweden)

    Zakia A. Abdelhamed

    2015-06-01

    Full Text Available Ciliopathies are a group of developmental disorders that manifest with multi-organ anomalies. Mutations in TMEM67 (MKS3 cause a range of human ciliopathies, including Meckel-Gruber and Joubert syndromes. In this study we describe multi-organ developmental abnormalities in the Tmem67tm1Dgen/H1 knockout mouse that closely resemble those seen in Wnt5a and Ror2 knockout mice. These include pulmonary hypoplasia, ventricular septal defects, shortening of the body longitudinal axis, limb abnormalities, and cochlear hair cell stereociliary bundle orientation and basal body/kinocilium positioning defects. The basal body/kinocilium complex was often uncoupled from the hair bundle, suggesting aberrant basal body migration, although planar cell polarity and apical planar asymmetry in the organ of Corti were normal. TMEM67 (meckelin is essential for phosphorylation of the non-canonical Wnt receptor ROR2 (receptor-tyrosine-kinase-like orphan receptor 2 upon stimulation with Wnt5a-conditioned medium. ROR2 also colocalises and interacts with TMEM67 at the ciliary transition zone. Additionally, the extracellular N-terminal domain of TMEM67 preferentially binds to Wnt5a in an in vitro binding assay. Cultured lungs of Tmem67 mutant mice failed to respond to stimulation of epithelial branching morphogenesis by Wnt5a. Wnt5a also inhibited both the Shh and canonical Wnt/β-catenin signalling pathways in wild-type embryonic lung. Pulmonary hypoplasia phenotypes, including loss of correct epithelial branching morphogenesis and cell polarity, were rescued by stimulating the non-canonical Wnt pathway downstream of the Wnt5a-TMEM67-ROR2 axis by activating RhoA. We propose that TMEM67 is a receptor that has a main role in non-canonical Wnt signalling, mediated by Wnt5a and ROR2, and normally represses Shh signalling. Downstream therapeutic targeting of the Wnt5a-TMEM67-ROR2 axis might, therefore, reduce or prevent pulmonary hypoplasia in ciliopathies and other congenital

  13. DMBT1 promotes basal and meconium-induced nitric oxide production in human lung epithelial cells in vitro

    DEFF Research Database (Denmark)

    Müller, Hanna; Weiss, Christel; Renner, Marcus

    2017-01-01

    Meconium aspiration syndrome (MAS) is characterized by surfactant inactivation and inflammation. As lung epithelial cells up-regulate nitric oxide (NO) in response to inflammation, the NO production following meconium exposition was examined in relation to expression of Deleted in Malignant Brain...... NO production than the DMBT1- cells (p = 0.0090). Meconium led in DMBT1- and DMBT1+ cells to elevated NO levels (p production in DMBT1+ cells (p = 0.0476), but NO levels remained above...... NO production from DMBT1- cells (p = 0.0289). Dexamethasone diminished NO production in DMBT1+ cells after meconium exposition (p = 0.0076). Combined addition of LPS and meconium significantly increased NO production in both cell types (p

  14. Human Adult Stem Cells Maintain a Constant Phenotype Profile Irrespective of Their Origin, Basal Media, and Long Term Cultures

    Directory of Open Access Journals (Sweden)

    Indumathi Somasundaram

    2015-01-01

    Full Text Available The study aims to identify the phenotypic marker expressions of different human adult stem cells derived from, namely, bone marrow, subcutaneous fat, and omentum fat, cultured in different media, namely, DMEM-Low Glucose, Alpha-MEM, DMEM-F12 and DMEM-KO and under long term culture conditions (>P20. We characterized immunophenotype by using various hematopoietic, mesenchymal, endothelial markers, and cell adhesion molecules in the long term cultures (Passages-P1, P3, P5, P9, P12, P15, and P20. Interestingly, data revealed similar marker expression profiles irrespective of source, basal media, and extensive culturing. This demonstrates that all adult stem cell sources mentioned in this study share similar phenotypic marker and all media seem appropriate for culturing these sources. However, a disparity was observed in the markers such as CD49d, CD54, CD117, CD29, and CD106, thereby warranting further research on these markers. Besides the aforesaid objective, it is understood from the study that immunophenotyping acts as a valuable tool to identify inherent property of each cell, thereby leading to a valuable cell based therapy.

  15. Corneal epithelial wound healing and bactericidal effect of conditioned medium from human uterine cervical stem cells.

    Science.gov (United States)

    Bermudez, Maria A; Sendon-Lago, Juan; Eiro, Noemi; Treviño, Mercedes; Gonzalez, Francisco; Yebra-Pimentel, Eva; Giraldez, Maria Jesus; Macia, Manuel; Lamelas, Maria Luz; Saa, Jorge; Vizoso, Francisco; Perez-Fernandez, Roman

    2015-01-22

    To evaluate the effect of conditioned medium from human uterine cervical stem cells (CM-hUCESCs) on corneal epithelial healing in a rat model of dry eye after alkaline corneal epithelial ulcer. We also tested the bactericidal effect of CM-hUCESCs. Dry eye was induced in rats by extraocular lacrimal gland excision, and corneal ulcers were produced using NaOH. Corneal histologic evaluation was made with hematoxylin-eosin (H&E) staining. Real-time PCR was used to evaluate mRNA expression levels of proinflammatory cytokines. We also studied the bactericidal effect of CM-hUCESCs in vitro and on infected corneal contact lenses (CLs) using Escherichia coli and Staphylococcus epidermidis bacteria. In addition, in order to investigate proteins from CM-hUCESCs that could mediate these effects, we carried out a human cytokine antibody array. After injury, dry eyes treated with CM-hUCESCs significantly improved epithelial regeneration and showed reduced corneal macrophage inflammatory protein-1 alpha (MIP-1α) and TNF-α mRNA expression as compared to untreated eyes and eyes treated with culture medium or sodium hyaluronate ophthalmic drops. In addition, we found in CM-hUCESCs high levels of proteins, such as tissue inhibitors of metalloproteinases 1 and 2, fibroblast growth factor 6 and 7, urokinase receptor, and hepatocyte growth factor, that could mediate these effects. In vitro, CM-hUCESCs showed a clear bactericidal effect on both E. coli and S. epidermidis and CLs infected with S. epidermidis. Analyses of CM-hUCESCs showed elevated levels of proteins that could be involved in the bactericidal effect, such as the chemokine (C-X-C motif) ligands 1, 6, 8, 10, and the chemokine (C-C motif) ligands 5 and 20. Treatment with CM-hUCESCs improved wound healing of alkali-injured corneas and showed a strong bactericidal effect on CLs. Patients using CLs and suffering from dry eye, allergies induced by commercial solutions, or small corneal injuries could benefit from this treatment

  16. Efflux protein expression in human stem cell-derived retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Kati Juuti-Uusitalo

    Full Text Available Retinal pigment epithelial (RPE cells in the back of the eye nourish photoreceptor cells and form a selective barrier that influences drug transport from the blood to the photoreceptor cells. At the molecular level, ATP-dependent efflux transporters have a major role in drug delivery in human RPE. In this study, we assessed the relative expression of several ATP-dependent efflux transporter genes (MRP1, -2, -3, -4, -5, -6, p-gp, and BCRP, the protein expression and localization of MRP1, MRP4, and MRP5, and the functionality of MRP1 efflux pumps at different maturation stages of undifferentiated human embryonic stem cells (hESC and RPE derived from the hESC (hESC-RPE. Our findings revealed that the gene expression of ATP-dependent efflux transporters MRP1, -3, -4, -5, and p-gp fluctuated during hESC-RPE maturation from undifferentiated hESC to fusiform, epithelioid, and finally to cobblestone hESC-RPE. Epithelioid hESC-RPE had the highest expression of MRP1, -3, -4, and P-gp, whereas the most mature cobblestone hESC-RPE had the highest expression of MRP5 and MRP6. These findings indicate that a similar efflux protein profile is shared between hESC-RPE and the human RPE cell line, ARPE-19, and suggest that hESC-RPE cells are suitable in vitro RPE models for drug transport studies. Embryonic stem cell model might provide a novel tool to study retinal cell differentiation, mechanisms of RPE-derived diseases, drug testing and targeted drug therapy.

  17. Differentiation of Pluripotent Stem Cells to Retinal Pigment Epithelial Cells: An Approach Toward Retinal Degenerative Diseases Treatment

    Directory of Open Access Journals (Sweden)

    Maryam Parvini

    2013-10-01

    Full Text Available Pluripotent stem cells as the cells with a capacity for self-renewal and differentiation into various specificcell types have been highly regarded in regenerative medicine studies. To repair the eye disease damages, thedifferentiation into retinal pigment epithelial cells of pluripotent stem cells has gained great importance inrecent decades because the inappropriate function of these cells is the main cause of degenerative diseases suchas the age-related macular degeneration. Millions of people in the world suffer this disease.To restore the damaged cells and, finally, to improve the vision, numerous studies have been conducted on usingpluripotent stem cells, their differentiation into retinal pigment epithelial cells, and finally, their applicationin cell therapy. Based on this, many researchers have attempted to produce highly efficient retinal pigmentepithelial cells, such that they show a proper function after transplant, along with the host cells. In this reviewarticle, the importance and the role of pigment epithelial cells, as well as, the studies on the in vitro productionof these cells were examined

  18. Marrow-derived mesenchymal stem cells: role in epithelial tumor cell determination.

    Science.gov (United States)

    Fierro, Fernando A; Sierralta, Walter D; Epuñan, Maria J; Minguell, José J

    2004-01-01

    Marrow stroma represents an advantageous environment for development of micrometastatic cells. Within the cellular structure of marrow stroma, mesenchymal stem cells (MSC) have been postulated as an interacting target for disseminated cancer cells. The studies reported here were performed to gain more information on the interaction of the human breast cancer cell line MCF-7 with human bone marrow-derived MSC cells and to investigate whether this interaction affects tumor cell properties. The results showed that after co-culture with MSC, changes were detected in the morphology, proliferative capacity and aggregation pattern of MCF-7 cells, but these parameters were not affected after the co-culture of MSC cells with a non-tumorigenic breast epithelial cell line, MCF-10. Since the indirect culture of MCF-7 with MSC or its products also resulted in functional changes in the tumor cells, we evaluated whether these effects could be attributed to growth factors produced by MSC cells. It was found that VEGF and IL-6 mimic the effects produced by MSC or its products on the proliferation and aggregation properties of MCF-7, cells, respectively. Thus, it seems that after entry of disseminated tumor cells into the marrow space, their proliferative and morphogenetic organization patterns are modified after interaction with distinct stromal cells and/or with specific signals from the marrow microenvironment.

  19. CD73 Regulates Stemness and Epithelial-Mesenchymal Transition in Ovarian Cancer-Initiating Cells.

    Science.gov (United States)

    Lupia, Michela; Angiolini, Francesca; Bertalot, Giovanni; Freddi, Stefano; Sachsenmeier, Kris F; Chisci, Elisa; Kutryb-Zajac, Barbara; Confalonieri, Stefano; Smolenski, Ryszard T; Giovannoni, Roberto; Colombo, Nicoletta; Bianchi, Fabrizio; Cavallaro, Ugo

    2018-04-10

    Cancer-initiating cells (CICs) have been implicated in tumor development and aggressiveness. In ovarian carcinoma (OC), CICs drive tumor formation, dissemination, and recurrence, as well as drug resistance, thus accounting for the high death-to-incidence ratio of this neoplasm. However, the molecular mechanisms that underlie such a pathogenic role of ovarian CICs (OCICs) remain elusive. Here, we have capitalized on primary cells either from OC or from its tissues of origin to obtain the transcriptomic profile associated with OCICs. Among the genes differentially expressed in OCICs, we focused on CD73, which encodes the membrane-associated 5'-ectonucleotidase. The genetic inactivation of CD73 in OC cells revealed that this molecule is causally involved in sphere formation and tumor initiation, thus emerging as a driver of OCIC function. Furthermore, functional inhibition of CD73 via either a chemical compound or a neutralizing antibody reduced sphere formation and tumorigenesis, highlighting the druggability of CD73 in the context of OCIC-directed therapies. The biological function of CD73 in OCICs required its enzymatic activity and involved adenosine signaling. Mechanistically, CD73 promotes the expression of stemness and epithelial-mesenchymal transition-associated genes, implying a regulation of OCIC function at the transcriptional level. CD73, therefore, is involved in OCIC biology and may represent a therapeutic target for innovative treatments aimed at OC eradication. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  20. A Refined Culture System for Human Induced Pluripotent Stem Cell-Derived Intestinal Epithelial Organoids

    Directory of Open Access Journals (Sweden)

    Yu Takahashi

    2018-01-01

    Full Text Available Gut epithelial organoids are routinely used to investigate intestinal biology; however, current culture methods are not amenable to genetic manipulation, and it is difficult to generate sufficient numbers for high-throughput studies. Here, we present an improved culture system of human induced pluripotent stem cell (iPSC-derived intestinal organoids involving four methodological advances. (1 We adopted a lentiviral vector to readily establish and optimize conditioned medium for human intestinal organoid culture. (2 We obtained intestinal organoids from human iPSCs more efficiently by supplementing WNT3A and fibroblast growth factor 2 to induce differentiation into definitive endoderm. (3 Using 2D culture, followed by re-establishment of organoids, we achieved an efficient transduction of exogenous genes in organoids. (4 We investigated suspension organoid culture without scaffolds for easier harvesting and assays. These techniques enable us to develop, maintain, and expand intestinal organoids readily and quickly at low cost, facilitating high-throughput screening of pathogenic factors and candidate treatments for gastrointestinal diseases.

  1. Acquired tolerance in cadmium-adapted lung epithelial cells: Roles of the c-Jun N-terminal kinase signaling pathway and basal level of metallothionein

    International Nuclear Information System (INIS)

    Lau, Andy T.Y.; Zhang Jian; Chiu, J.-F.

    2006-01-01

    Cadmium-resistant cells were developed in our laboratory with rat lung epithelial cells (LECs) by stepwise exposure of LECs to cadmium chloride from 1 μM to 20 μM after 20 passages. To investigate the Cd-resistant phenotype in a long-term perspective, cadmium-resistant cells adapted to 20 μM cadmium (Cd R ) were then cultured in the absence of cadmium for various passages [Cd R (-n)]. All these adapted cells were significantly protected from cadmium toxicity as compared to parental cadmium-sensitive LECs (Cd S ). The cadmium-resistant phenotype of adapted cells was relatively stable in the absence of cadmium for as long as 40 passages. Basal mRNA level of metallothionein-1 (MT-1) was dramatically higher in Cd R than in Cd R (-), which may account for the higher Cd-resistance of Cd R than Cd R (-). MT-1 mRNA level decreased drastically in Cd R after cadmium removal, suggesting that the high basal level of MT-1 in Cd R may be only partially responsible for cadmium-resistance. Treatment of cells with high levels of cadmium resulted in decreased phosphorylation of c-Jun N-terminal kinase (JNK1/2) in adapted cells than in sensitive cells and this cadmium-induced JNK activity was blocked by JNK inhibitor II, SP600125. Ro318220, a strong activator of JNK, reverted cadmium-sensitive phenotype in adapted cells. Taken together, our results suggest that during cadmium adaptation, cells develop tolerance to cell death, generally due to perturbation of the JNK signaling pathway and the nonresponsiveness of JNK phosphorylation is critical for the Cd-tolerance in these cells

  2. Krüppel-like factor 5 is essential for proliferation and survival of mouse intestinal epithelial stem cells

    Directory of Open Access Journals (Sweden)

    Mandayam O. Nandan

    2015-01-01

    Full Text Available Krüppel-like factor 5 (KLF5 is a pro-proliferative transcription factor that is expressed in dividing epithelial cells of the intestinal crypt. Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5 has been identified as a stem cell marker in both small intestinal and colonic epithelial cells. To determine whether KLF5 regulates proliferation of intestinal stem cells, we investigated the effects of Klf5 deletion specifically from the intestinal stem cells in adult mice. Mice with inducible intestinal stem cell-specific deletion of Klf5 (Lgr5-Klf5fl/fl were injected with tamoxifen for 5 consecutive days to induce Lgr5-driven Cre expression. Intestinal and colonic tissues were examined by immunohistochemistry at various time points up to 112 days following start of tamoxifen treatment. Klf5 is co-localized in the crypt-based columnar (CBC cells that express Lgr5. By 11 days following the start of tamoxifen treatment, Lgr5-positive crypts from which Klf5 was deleted exhibited a loss of proliferation that was accompanied by an increase in apoptosis. Beginning at 14 days following the start of tamoxifen treatment, both Klf5 expression and proliferation were re-established in the transit-amplifying epithelial cells but not in the Lgr5-positive CBC cells. By 112 days post-treatment, up to 90% of the Lgr5-positive cells from which Klf5 was deleted were lost from the intestinal crypts. These results indicate a critical role for KLF5 in the survival and maintenance of intestinal stem cells.

  3. Fluorescent labelling of intestinal epithelial cells reveals independent long-lived intestinal stem cells in a crypt

    International Nuclear Information System (INIS)

    Horita, Nobukatsu; Tsuchiya, Kiichiro; Hayashi, Ryohei; Fukushima, Keita; Hibiya, Shuji; Fukuda, Masayoshi; Kano, Yoshihito; Mizutani, Tomohiro; Nemoto, Yasuhiro; Yui, Shiro; Okamoto, Ryuichi; Nakamura, Tetsuya; Watanabe, Mamoru

    2014-01-01

    Highlights: • Lentivirus mixed with Matrigel enables direct infection of intestinal organoids. • Our original approach allows the marking of a single stem cell in a crypt. • Time-lapse imaging shows the dynamics of a single stem cell. • Our lentivirus transgene system demonstrates plural long-lived stem cells in a crypt. - Abstract: Background and aims: The dynamics of intestinal stem cells are crucial for regulation of intestinal function and maintenance. Although crypt stem cells have been identified in the intestine by genetic marking methods, identification of plural crypt stem cells has not yet been achieved as they are visualised in the same colour. Methods: Intestinal organoids were transferred into Matrigel® mixed with lentivirus encoding mCherry. The dynamics of mCherry-positive cells was analysed using time-lapse imaging, and the localisation of mCherry-positive cells was analysed using 3D immunofluorescence. Results: We established an original method for the introduction of a transgene into an organoid generated from mouse small intestine that resulted in continuous fluorescence of the mCherry protein in a portion of organoid cells. Three-dimensional analysis using confocal microscopy showed a single mCherry-positive cell in an organoid crypt that had been cultured for >1 year, which suggested the presence of long-lived mCherry-positive and -negative stem cells in the same crypt. Moreover, a single mCherry-positive stem cell in a crypt gave rise to both crypt base columnar cells and transit amplifying cells. Each mCherry-positive and -negative cell contributed to the generation of organoids. Conclusions: The use of our original lentiviral transgene system to mark individual organoid crypt stem cells showed that long-lived plural crypt stem cells might independently serve as intestinal epithelial cells, resulting in the formation of a completely functional villus

  4. Fluorescent labelling of intestinal epithelial cells reveals independent long-lived intestinal stem cells in a crypt

    Energy Technology Data Exchange (ETDEWEB)

    Horita, Nobukatsu [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan); Tsuchiya, Kiichiro, E-mail: kii.gast@tmd.ac.jp [Department of Advanced Therapeutics for Gastrointestinal Diseases, Graduate School, Tokyo Medical and Dental University (Japan); Hayashi, Ryohei [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan); Department of Gastroenterology and Metabolism, Hiroshima University (Japan); Fukushima, Keita; Hibiya, Shuji; Fukuda, Masayoshi; Kano, Yoshihito; Mizutani, Tomohiro; Nemoto, Yasuhiro; Yui, Shiro [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan); Okamoto, Ryuichi; Nakamura, Tetsuya [Department of Advanced Therapeutics for Gastrointestinal Diseases, Graduate School, Tokyo Medical and Dental University (Japan); Watanabe, Mamoru [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan)

    2014-11-28

    Highlights: • Lentivirus mixed with Matrigel enables direct infection of intestinal organoids. • Our original approach allows the marking of a single stem cell in a crypt. • Time-lapse imaging shows the dynamics of a single stem cell. • Our lentivirus transgene system demonstrates plural long-lived stem cells in a crypt. - Abstract: Background and aims: The dynamics of intestinal stem cells are crucial for regulation of intestinal function and maintenance. Although crypt stem cells have been identified in the intestine by genetic marking methods, identification of plural crypt stem cells has not yet been achieved as they are visualised in the same colour. Methods: Intestinal organoids were transferred into Matrigel® mixed with lentivirus encoding mCherry. The dynamics of mCherry-positive cells was analysed using time-lapse imaging, and the localisation of mCherry-positive cells was analysed using 3D immunofluorescence. Results: We established an original method for the introduction of a transgene into an organoid generated from mouse small intestine that resulted in continuous fluorescence of the mCherry protein in a portion of organoid cells. Three-dimensional analysis using confocal microscopy showed a single mCherry-positive cell in an organoid crypt that had been cultured for >1 year, which suggested the presence of long-lived mCherry-positive and -negative stem cells in the same crypt. Moreover, a single mCherry-positive stem cell in a crypt gave rise to both crypt base columnar cells and transit amplifying cells. Each mCherry-positive and -negative cell contributed to the generation of organoids. Conclusions: The use of our original lentiviral transgene system to mark individual organoid crypt stem cells showed that long-lived plural crypt stem cells might independently serve as intestinal epithelial cells, resulting in the formation of a completely functional villus.

  5. Enrichment of CD44 in basal-type breast cancer correlates with EMT, cancer stem cell gene profile, and prognosis

    Directory of Open Access Journals (Sweden)

    Xu HX

    2016-01-01

    Full Text Available Hanxiao Xu,1 Yijun Tian,1 Xun Yuan,1 Yu Liu,2 Hua Wu,1 Qian Liu,1 Gen Sheng Wu,3,4 Kongming Wu1 1Department of Oncology, 2Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China; 3Department of Oncology, 4Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA Abstract: Cluster of differentiation 44 (CD44 is a transmembrane glycoprotein that serves as the receptor for the extracellular matrix component hyaluronic acid. CD44 has been reported to play key roles in cell proliferation, motility, and survival, but its role in breast cancer remains controversial. In this study, we conducted a meta-analysis. A total of 23 published Gene Expression Omnibus databases were included to evaluate the association between CD44 mRNA expression and clinicopathological characteristics or prognosis of the patients with breast cancer. Our analysis revealed that CD44 expression was associated with clinicopathological features, including the histological grade, estrogen receptor status, progesterone receptor status, and human epidermal growth factor receptor-2 status. Higher levels of CD44 expression were observed in the basal subtype of breast cancer both at the mRNA and protein levels (odds ratio [OR] =2.08, 95% confidence interval [CI]: 1.72–2.52; OR =2.11, 95% CI: 1.67–2.68. Patients with CD44 overexpression exhibited significantly worse overall survival (hazard ratio =1.27; 95% CI: 1.04–1.55. Whole gene profile analysis revealed that CD44 expression was enriched in basal-type breast cancer and correlated with epithelial–mesenchymal transition and cancer stem cell gene profiles. In summary, our analyses indicated that CD44 potentially might be a prognostic marker for breast cancer and thus can serve as a therapeutic target for basal-type breast cancer. Keywords: breast cancer, CD44, survival prediction, meta

  6. Cancer Stem Cells and Epithelial-to-Mesenchymal Transition (EMT)-Phenotypic Cells: Are They Cousins or Twins?

    International Nuclear Information System (INIS)

    Kong, Dejuan; Li, Yiwei; Wang, Zhiwei; Sarkar, Fazlul H.

    2011-01-01

    Cancer stem cells (CSCs) are cells within a tumor that possess the capacity to self-renew and maintain tumor-initiating capacity through differentiation into the heterogeneous lineages of cancer cells that comprise the whole tumor. These tumor-initiating cells could provide a resource for cells that cause tumor recurrence after therapy. Although the cell origin of CSCs remains to be fully elucidated, mounting evidence has demonstrated that Epithelial-to-Mesenchymal Transition (EMT), induced by different factors, is associated with tumor aggressiveness and metastasis and these cells share molecular characteristics with CSCs, and thus are often called cancer stem-like cells or tumor-initiating cells. The acquisition of an EMT phenotype is a critical process for switching early stage carcinomas into invasive malignancies, which is often associated with the loss of epithelial differentiation and gain of mesenchymal phenotype. Recent studies have demonstrated that EMT plays a critical role not only in tumor metastasis but also in tumor recurrence and that it is tightly linked with the biology of cancer stem-like cells or cancer-initiating cells. Here we will succinctly summarize the state-of-our-knowledge regarding the molecular similarities between cancer stem-like cells or CSCs and EMT-phenotypic cells that are associated with tumor aggressiveness focusing on solid tumors

  7. Acquisition cancer stemness, mesenchymal transdifferentiation, and chemoresistance properties by chronic exposure of oral epithelial cells to arecoline.

    Science.gov (United States)

    Wang, Tung Yuan; Peng, Chih-Yu; Lee, Shiuan-Shinn; Chou, Ming-Yung; Yu, Cheng-Chia; Chang, Yu-Chao

    2016-12-20

    Oral squamous cell carcinoma (OSCC), one of the most deadliest malignancies in the world, is caused primarily by areca nut chewing in Southeast Asia. The mechanisms by which areca nut participates in OSCC tumorigenesis are not well understood. In this study, we investigated the effects of low dose long-term arecoline (10 μg/mL, 90-days), a major areca nut alkaloid, on enhancement cancer stemness of human oral epithelial (OE) cells. OE cells with chronic arecoline exposure resulted in increased ALDH1 population, CD44 positivity, stemness-related transcription factors (Oct4, Nanog, and Sox2), epithelial-mesenchymal transdifferentiation (EMT) traits, chemoresistance, migration/invasiveness/anchorage independent growth and in vivo tumor growth as compared to their untreated controls. Mechanistically, ectopic miR-145 over-expression in chronic arecoline-exposed OE (AOE) cells inhibited the cancer stemness and xenografic. In AOE cells, luciferase reporter assays further revealed that miR-145 directly targets the 3' UTR regions of Oct4 and Sox2 and overexpression of Sox2/Oct4 effectively reversed miR-145-regulated cancer stemness-associated phenomenas. Additionally, clinical results further revealed that Sox2 and Oct4 expression was inversely correlated with miR-145 in the tissues of areca quid chewing-associated OSCC patients. This study hence attempts to provide novel insight into areca nut-induced oral carcinogenesis and new intervention for the treatment of OSCC patients, especially in areca nut users.

  8. Cancer Stem Cells and Epithelial-to-Mesenchymal Transition (EMT-Phenotypic Cells: Are They Cousins or Twins?

    Directory of Open Access Journals (Sweden)

    Fazlul H. Sarkar

    2011-02-01

    Full Text Available Cancer stem cells (CSCs are cells within a tumor that possess the capacity to self-renew and maintain tumor-initiating capacity through differentiation into the heterogeneous lineages of cancer cells that comprise the whole tumor. These tumor-initiating cells could provide a resource for cells that cause tumor recurrence after therapy. Although the cell origin of CSCs remains to be fully elucidated, mounting evidence has demonstrated that Epithelial-to-Mesenchymal Transition (EMT, induced by different factors, is associated with tumor aggressiveness and metastasis and these cells share molecular characteristics with CSCs, and thus are often called cancer stem-like cells or tumor-initiating cells. The acquisition of an EMT phenotype is a critical process for switching early stage carcinomas into invasive malignancies, which is often associated with the loss of epithelial differentiation and gain of mesenchymal phenotype. Recent studies have demonstrated that EMT plays a critical role not only in tumor metastasis but also in tumor recurrence and that it is tightly linked with the biology of cancer stem-like cells or cancer-initiating cells. Here we will succinctly summarize the state-of-our-knowledge regarding the molecular similarities between cancer stem-like cells or CSCs and EMT-phenotypic cells that are associated with tumor aggressiveness focusing on solid tumors.

  9. Cellular and molecular biology of the prostate: stem cell biology.

    NARCIS (Netherlands)

    Schalken, J.A.; Leenders, G.J.L.H. van

    2003-01-01

    The normal prostate shows a high degree of cellular organization. The basal layer is populated by prostate epithelial stem cells and a population of transiently proliferating/amplifying (TP/A) cells intermediate to the stem cells and fully differentiated cells. The luminal layer is composed of fully

  10. Lung Basal Stem Cells Rapidly Repair DNA Damage Using the Error-Prone Nonhomologous End-Joining Pathway

    Science.gov (United States)

    Weeden, Clare E.; Chen, Yunshun; Ma, Stephen B.; Hu, Yifang; Ramm, Georg; Sutherland, Kate D.; Smyth, Gordon K.

    2017-01-01

    Lung squamous cell carcinoma (SqCC), the second most common subtype of lung cancer, is strongly associated with tobacco smoking and exhibits genomic instability. The cellular origins and molecular processes that contribute to SqCC formation are largely unexplored. Here we show that human basal stem cells (BSCs) isolated from heavy smokers proliferate extensively, whereas their alveolar progenitor cell counterparts have limited colony-forming capacity. We demonstrate that this difference arises in part because of the ability of BSCs to repair their DNA more efficiently than alveolar cells following ionizing radiation or chemical-induced DNA damage. Analysis of mice harbouring a mutation in the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key enzyme in DNA damage repair by nonhomologous end joining (NHEJ), indicated that BSCs preferentially repair their DNA by this error-prone process. Interestingly, polyploidy, a phenomenon associated with genetically unstable cells, was only observed in the human BSC subset. Expression signature analysis indicated that BSCs are the likely cells of origin of human SqCC and that high levels of NHEJ genes in SqCC are correlated with increasing genomic instability. Hence, our results favour a model in which heavy smoking promotes proliferation of BSCs, and their predilection for error-prone NHEJ could lead to the high mutagenic burden that culminates in SqCC. Targeting DNA repair processes may therefore have a role in the prevention and therapy of SqCC. PMID:28125611

  11. Control of Basal Stem Rot Disease in Oil Palm by Supplementation of Calcium, Copper, and Salicylic Acid.

    Science.gov (United States)

    Bivi, M Shahul Hamid Rahamah; Paiko, Adamu Saidu; Khairulmazmi, Ahmad; Akhtar, M S; Idris, Abu Seman

    2016-10-01

    Continuous supplementation of mineral nutrients and salicylic acid (SA) as foliar application could improve efficacy in controlling basal stem rot (BSR) disease in oil palm seedling. It is revealed from the results that the highest disease severity index (58.3%) was recorded in T8 treatments at 9 months after inoculation. The best disease control was achieved by T7 treatments (calcium/copper/SA [Ca/Cu/SA]) (5.0%) followed by T1 (5.5%), T5 (5.8%), T3 (8.3%), T6 (8.3%), T4 (13.3%), and T2 (15.8%) treatments. Continuous supplementation of Ca/Cu/SA was found to be the most effective in controlling the disease and the high performance liquid chromatography results showed the detection of ergosterol at very low concentration in the treated samples. Moreover, the transmission electron microscopy analysis results clearly indicated that T7 treatment was also enhancing lignification, which was responsible for the thickness of the secondary cell walls and middle lamella compared to untreated samples. It was therefore, concluded that continuous supplementation of minerals nutrients and SA could effectively suppress disease severity by reducing ergosterol activity and also improve the process of lignification in the treated plants. Furthermore, this treatment also managed to delay the onset of BSR symptoms and promote the growth of the seedlings and eventually suppress the BSR disease.

  12. Control of Basal Stem Rot Disease in Oil Palm by Supplementation of Calcium, Copper, and Salicylic Acid

    Directory of Open Access Journals (Sweden)

    M. Shahul Hamid Rahamah Bivi

    2016-10-01

    Full Text Available Continuous supplementation of mineral nutrients and salicylic acid (SA as foliar application could improve efficacy in controlling basal stem rot (BSR disease in oil palm seedling. It is revealed from the results that the highest disease severity index (58.3% was recorded in T8 treatments at 9 months after inoculation. The best disease control was achieved by T7 treatments (calcium/copper/SA [Ca/Cu/SA] (5.0% followed by T1 (5.5%, T5 (5.8%, T3 (8.3%, T6 (8.3%, T4 (13.3%, and T2 (15.8% treatments. Continuous supplementation of Ca/Cu/SA was found to be the most effective in controlling the disease and the high performance liquid chromatography results showed the detection of ergosterol at very low concentration in the treated samples. Moreover, the transmission electron microscopy analysis results clearly indicated that T7 treatment was also enhancing lignification, which was responsible for the thickness of the secondary cell walls and middle lamella compared to untreated samples. It was therefore, concluded that continuous supplementation of minerals nutrients and SA could effectively suppress disease severity by reducing ergosterol activity and also improve the process of lignification in the treated plants. Furthermore, this treatment also managed to delay the onset of BSR symptoms and promote the growth of the seedlings and eventually suppress the BSR disease.

  13. Control of Basal Stem Rot Disease in Oil Palm by Supplementation of Calcium, Copper, and Salicylic Acid

    Science.gov (United States)

    Bivi, M. Shahul Hamid Rahamah; Paiko, Adamu Saidu; Khairulmazmi, Ahmad; Akhtar, M. S.; Idris, Abu Seman

    2016-01-01

    Continuous supplementation of mineral nutrients and salicylic acid (SA) as foliar application could improve efficacy in controlling basal stem rot (BSR) disease in oil palm seedling. It is revealed from the results that the highest disease severity index (58.3%) was recorded in T8 treatments at 9 months after inoculation. The best disease control was achieved by T7 treatments (calcium/copper/SA [Ca/Cu/SA]) (5.0%) followed by T1 (5.5%), T5 (5.8%), T3 (8.3%), T6 (8.3%), T4 (13.3%), and T2 (15.8%) treatments. Continuous supplementation of Ca/Cu/SA was found to be the most effective in controlling the disease and the high performance liquid chromatography results showed the detection of ergosterol at very low concentration in the treated samples. Moreover, the transmission electron microscopy analysis results clearly indicated that T7 treatment was also enhancing lignification, which was responsible for the thickness of the secondary cell walls and middle lamella compared to untreated samples. It was therefore, concluded that continuous supplementation of minerals nutrients and SA could effectively suppress disease severity by reducing ergosterol activity and also improve the process of lignification in the treated plants. Furthermore, this treatment also managed to delay the onset of BSR symptoms and promote the growth of the seedlings and eventually suppress the BSR disease. PMID:27721689

  14. A new species of the basal "kangaroo" Balbaroo and a re-evaluation of stem macropodiform interrelationships.

    Directory of Open Access Journals (Sweden)

    Karen H Black

    Full Text Available Exceptionally well-preserved skulls and postcranial elements of a new species of the plesiomorphic stem macropodiform Balbaroo have been recovered from middle Miocene freshwater limestone deposits in the Riversleigh World Heritage Area of northwestern Queensland, Australia. This constitutes the richest intraspecific sample for any currently known basal "kangaroo", and, along with additional material referred to Balbaroo fangaroo, provides new insights into structural variability within the most prolific archaic macropodiform clade--Balbaridae. Qualitative and metric evaluations of taxonomic boundaries demonstrate that the previously distinct species Nambaroo bullockensis is a junior synonym of B. camfieldensis. Furthermore, coupled Maximum Parsimony and Bayesian phylogenetic analyses reveal that our new Balbaroo remains represent the most derived member of the Balbaroo lineage, and are closely related to the middle Miocene B. camfieldensis, which like most named balbarid species is identifiable only from isolated jaws. The postcranial elements of Balbaroo concur with earlier finds of the stratigraphically oldest balbarid skeleton, Nambaroo gillespieae, and suggest that quadrupedal progression was a primary gait mode as opposed to bipedal saltation. All Balbaroo spp. have low-crowned bilophodont molars, which are typical for browsing herbivores inhabiting the densely forested environments envisaged for middle Miocene northeastern Australia.

  15. DNMT1 Regulates Epithelial-Mesenchymal Transition and Cancer Stem Cells, Which Promotes Prostate Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Eunsohl Lee

    2016-09-01

    Full Text Available Cancer metastasis is a multistep process associated with the induction of an epithelial-mesenchymal transition (EMT and cancer stem cells (CSCs. Although significant progress has been made in understanding the molecular mechanisms regulating EMT and the CSC phenotype, little is known of how these processes are regulated by epigenetics. Here we demonstrate that reduced expression of DNA methyltransferase 1 (DNMT1 plays an important role in the induction of EMT and the CSC phenotype by prostate cancer (PCa cells, with enhanced tumorigenesis and metastasis. First, we observed that reduction of DNMT1 by 5-azacitidine (5-Aza promotes EMT induction as well as CSCs and sphere formation in vitro. Reduced expression of DNMT1 significantly increased PCa migratory potential. We showed that the increase of EMT and CSC activities by reduction of DNMT1 is associated with the increase of protein kinase C. Furthermore, we confirmed that silencing DNMT1 is correlated with enhancement of the induction of EMT and the CSC phenotype in PCa cells. Additionally, chromatin immunoprecipitation assay reveals that reduction of DNMT1 promotes the suppression of H3K9me3 and H3K27me3 on the Zeb2 and KLF4 promoter region in PCa cells. Critically, we found in an animal model that significant tumor growth and more disseminated tumor cells in most osseous tissues were observed following injection of 5-Aza pretreated–PCa cells compared with vehicle-pretreated PCa cells. Our results suggest that epigenetic alteration of histone demethylation regulated by reduction of DNMT1 may control induction of EMT and the CSC phenotype, which facilitates tumorigenesis in PCa cells and has important therapeutic implications in targeting epigenetic regulation.

  16. Lineage tracing in the adult mouse corneal epithelium supports the limbal epithelial stem cell hypothesis with intermittent periods of stem cell quiescence

    Directory of Open Access Journals (Sweden)

    Natalie J. Dorà

    2015-11-01

    Full Text Available The limbal epithelial stem cell (LESC hypothesis proposes that LESCs in the corneal limbus maintain the corneal epithelium both during normal homeostasis and wound repair. The alternative corneal epithelial stem cell (CESC hypothesis proposes that LESCs are only involved in wound repair and CESCs in the corneal epithelium itself maintain the corneal epithelium during normal homeostasis. We used tamoxifen-inducible, CreER-loxP lineage tracing to distinguish between these hypotheses. Clones of labelled cells were induced in adult CAGG-CreER;R26R-LacZ reporter mice and their distributions analysed after different chase periods. Short-lived clones, derived from labelled transient amplifying cells, were shed during the chase period and long-lived clones, derived from stem cells, expanded. At 6 weeks, labelled clones appeared at the periphery, extended centripetally as radial stripes and a few reached the centre by 14 weeks. Stripe numbers depended on the age of tamoxifen treatment. Stripes varied in length, some were discontinuous, few reached the centre and almost half had one end at the limbus. Similar stripes extended across the cornea in CAGG-CreER;R26R-mT/mG reporter mice. The distributions of labelled clones are inconsistent with the CESC hypothesis and support the LESC hypothesis if LESCs cycle between phases of activity and quiescence, each lasting several weeks.

  17. Possible sources of genetic resistance in oil palm (Elaeis guineensis Jacq.) to basal stem rot caused by Ganoderma boninense--prospects for future breeding.

    Science.gov (United States)

    Durand-Gasselin, T; Asmady, H; Flori, A; Jacquemard, J C; Hayun, Z; Breton, F; de Franqueville, H

    2005-01-01

    Oil palm estates in southeast Asia suffer from substantial losses due to basal stem rot caused by Ganoderma boninense. Field observations have been carried out in North Sumatra, Indonesia, on a series of planting materials of known origin. Differences in susceptibility to the disease have been detected within the two Elaeis species, guineensis and oleifera. Within Elaeis guineensis, material of Deli origin is highly susceptible compared to material of African origin. It is also possible to detect differences in reaction between parents and between crosses within a given origin. The variability of resistance to basal stem rot within the same cross is also illustrated by the diverse responses of clones derived from palms of the same origin. The prospects opened up by these results are discussed, and the importance of performing an early selection test is highlighted.

  18. Regulated proteolysis of Trop2 drives epithelial hyperplasia and stem cell self-renewal via β-catenin signaling.

    Science.gov (United States)

    Stoyanova, Tanya; Goldstein, Andrew S; Cai, Houjian; Drake, Justin M; Huang, Jiaoti; Witte, Owen N

    2012-10-15

    The cell surface protein Trop2 is expressed on immature stem/progenitor-like cells and is overexpressed in many epithelial cancers. However the biological function of Trop2 in tissue maintenance and tumorigenesis remains unclear. In this study, we demonstrate that Trop2 is a regulator of self-renewal, proliferation, and transformation. Trop2 controls these processes through a mechanism of regulated intramembrane proteolysis that leads to cleavage of Trop2, creating two products: the extracellular domain and the intracellular domain. The intracellular domain of Trop2 is released from the membrane and accumulates in the nucleus. Heightened expression of the Trop2 intracellular domain promotes stem/progenitor self-renewal through signaling via β-catenin and is sufficient to initiate precursor lesions to prostate cancer in vivo. Importantly, we demonstrate that loss of β-catenin or Trop2 loss-of-function cleavage mutants abrogates Trop2-driven self-renewal and hyperplasia in the prostate. These findings suggest that heightened expression of Trop2 is selected for in epithelial cancers to enhance the stem-like properties of self-renewal and proliferation. Defining the mechanism of Trop2 function in self-renewal and transformation is essential to identify new therapeutic strategies to block Trop2 activation in cancer.

  19. Mouse 3T3 fibroblasts under the influence of fibroblasts isolated from stroma of human basal cell carcinoma acquire properties of multipotent stem cells

    Czech Academy of Sciences Publication Activity Database

    Szabo, Pavol; Kolář, Michal; Dvořánková, B.; Lacina, L.; Štork, J.; Vlček, Čestmír; Strnad, Hynek; Tvrdek, M.; Smetana, K.

    2011-01-01

    Roč. 103, č. 5 (2011), s. 233-248 ISSN 0248-4900 R&D Projects: GA MŠk 2B06106; GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z50520514 Keywords : basal cell carcinoma (BCC) * stem cell * tumour stroma Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.600, year: 2011

  20. In-vivo expansion of autologous limbal stem cell using simple limbal epithelial transplantation for treatment of limbal stem cell deficiency

    OpenAIRE

    Lal, Ikeda; Panchal, Bhavik Uttam; Basu, Sayan; Sangwan, Virender S

    2013-01-01

    A 20-year-old man from Bangladesh suffered accidental alkali injury to his right eye in May 2010 leading to total limbal stem cell deficiency. An amniotic membrane graft was performed 5 days after the accident and the patient presented to our institute 6 months later. On ocular examination, his best corrected visual acuity (BCVA) was 20/50 with a 360° pannus at the periphery and central area was spared but had stromal scarring. He underwent simple limbal epithelial transplantation (SLET) taki...

  1. Canine Mammary Cancer Stem Cells are Radio- and Chemo-Resistant and Exhibit an Epithelial-Mesenchymal Transition Phenotype

    International Nuclear Information System (INIS)

    Pang, Lisa Y.; Cervantes-Arias, Alejandro; Else, Rod W.; Argyle, David J.

    2011-01-01

    Canine mammary carcinoma is the most common cancer among female dogs and is often fatal due to the development of distant metastases. In humans, solid tumors are made up of heterogeneous cell populations, which perform different roles in the tumor economy. A small subset of tumor cells can hold or acquire stem cell characteristics, enabling them to drive tumor growth, recurrence and metastasis. In veterinary medicine, the molecular drivers of canine mammary carcinoma are as yet undefined. Here we report that putative cancer stem cells (CSCs) can be isolated form a canine mammary carcinoma cell line, REM134. We show that these cells have an increased ability to form tumorspheres, a characteristic of stem cells, and that they express embryonic stem cell markers associated with pluripotency. Moreover, canine CSCs are relatively resistant to the cytotoxic effects of common chemotherapeutic drugs and ionizing radiation, indicating that failure of clinical therapy to eradicate canine mammary cancer may be due to the survival of CSCs. The epithelial to mesenchymal transition (EMT) has been associated with cancer invasion, metastasis, and the acquisition of stem cell characteristics. Our results show that canine CSCs predominantly express mesenchymal markers and are more invasive than parental cells, indicating that these cells have a mesenchymal phenotype. Furthermore, we show that canine mammary cancer cells can be induced to undergo EMT by TGFβ and that these cells have an increased ability to form tumorspheres. Our findings indicate that EMT induction can enrich for cells with CSC properties, and provide further insight into canine CSC biology

  2. Canine Mammary Cancer Stem Cells are Radio- and Chemo-Resistant and Exhibit an Epithelial-Mesenchymal Transition Phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Lisa Y., E-mail: lisa.pang@ed.ac.uk; Cervantes-Arias, Alejandro; Else, Rod W.; Argyle, David J. [Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG (United Kingdom)

    2011-03-30

    Canine mammary carcinoma is the most common cancer among female dogs and is often fatal due to the development of distant metastases. In humans, solid tumors are made up of heterogeneous cell populations, which perform different roles in the tumor economy. A small subset of tumor cells can hold or acquire stem cell characteristics, enabling them to drive tumor growth, recurrence and metastasis. In veterinary medicine, the molecular drivers of canine mammary carcinoma are as yet undefined. Here we report that putative cancer stem cells (CSCs) can be isolated form a canine mammary carcinoma cell line, REM134. We show that these cells have an increased ability to form tumorspheres, a characteristic of stem cells, and that they express embryonic stem cell markers associated with pluripotency. Moreover, canine CSCs are relatively resistant to the cytotoxic effects of common chemotherapeutic drugs and ionizing radiation, indicating that failure of clinical therapy to eradicate canine mammary cancer may be due to the survival of CSCs. The epithelial to mesenchymal transition (EMT) has been associated with cancer invasion, metastasis, and the acquisition of stem cell characteristics. Our results show that canine CSCs predominantly express mesenchymal markers and are more invasive than parental cells, indicating that these cells have a mesenchymal phenotype. Furthermore, we show that canine mammary cancer cells can be induced to undergo EMT by TGFβ and that these cells have an increased ability to form tumorspheres. Our findings indicate that EMT induction can enrich for cells with CSC properties, and provide further insight into canine CSC biology.

  3. The Role of Limbal Epithelial Stem Cells in Regulating Corneal (Lymphangiogenic Privilege and the Micromilieu of the Limbal Niche following UV Exposure

    Directory of Open Access Journals (Sweden)

    M. Notara

    2018-01-01

    Full Text Available The cornea is a clear structure, void of blood, and lymphatic vessels, functioning as our window to the world. Limbal epithelial stem cells, occupying the area between avascular cornea and vascularized conjunctiva, have been implicated in tissue border maintenance, preventing conjunctivalisation and propagation of blood and lymphatic vessels into the cornea. Defects in limbal epithelial stem cells are linked to corneal neovascularisation, including lymphangiogenesis, chronic inflammation, conjunctivalisation, epithelial abnormalities including the presence of goblet cells, breaks in Bowman’s membrane, persistent epithelial defects and ulceration, ocular surface squamous neoplasia, lipid keratopathy, pain, discomfort, and compromised vision. It has been postulated that pterygium is an example of focal limbal deficiency. Previous reports showing changes occurring in limbal epithelium during pterygium pathogenesis suggest that there is a link to stem cell damage. In this light, pterygium can serve as a model disease of UV-induced stem cell damage also characterised by corneal blood and lymphangiogenesis. This review focuses on the role of corneal and limbal epithelial cells and the stem cell niche in maintaining corneal avascularity and corneal immune privilege and how this may be deregulated following UV exposure. We present an overview of the PUBMED literature in the field as well as recent work from our laboratories.

  4. Non-toxic engineered carbon nanodiamond concentrations induce oxidative/nitrosative stress, imbalance of energy metabolism, and mitochondrial dysfunction in microglial and alveolar basal epithelial cells.

    Science.gov (United States)

    Fresta, Claudia G; Chakraborty, Aishik; Wijesinghe, Manjula B; Amorini, Angela M; Lazzarino, Giacomo; Lazzarino, Giuseppe; Tavazzi, Barbara; Lunte, Susan M; Caraci, Filippo; Dhar, Prajnaparamita; Caruso, Giuseppe

    2018-02-14

    Engineered nanoparticles are finding a wide spectrum of biomedical applications, including drug delivery and capacity to trigger cytotoxic phenomena, potentially useful against tumor cells. The full understanding of their biosafety and interactions with cell processes is mandatory. Using microglial (BV-2) and alveolar basal epithelial (A549) cells, in this study we determined the effects of engineered carbon nanodiamonds (ECNs) on cell viability, nitric oxide (NO) and reactive oxygen species (ROS) production, as well as on energy metabolism. Particularly, we initially measured decrease in cell viability as a function of increasing ECNs doses, finding similar cytotoxic ECN effects in the two cell lines. Subsequently, using apparently non-cytotoxic ECN concentrations (2 µg/mL causing decrease in cell number < 5%) we determined NO and ROS production, and measured the concentrations of compounds related to energy metabolism, mitochondrial functions, oxido-reductive reactions, and antioxidant defences. We found that in both cell lines non-cytotoxic ECN concentrations increased NO and ROS production with sustained oxidative/nitrosative stress, and caused energy metabolism imbalance (decrease in high energy phosphates and nicotinic coenzymes) and mitochondrial malfunctioning (decrease in ATP/ADP ratio).These results underline the importance to deeply investigate the molecular and biochemical changes occurring upon the interaction of ECNs (and nanoparticles in general) with living cells, even at apparently non-toxic concentration. Since the use of ECNs in biomedical field is attracting increasing attention the complete evaluation of their biosafety, toxicity and/or possible side effects both in vitro and in vivo is mandatory before these highly promising tools might find the correct application.

  5. Human stem cell-derived retinal epithelial cells activate complement via collectin 11 in response to stress

    DEFF Research Database (Denmark)

    Fanelli, Giorgia; Gonzalez-Cordero, Anai; Gardner, Peter J

    2017-01-01

    induced-pluripotent stem cell (iPSC)-derived RPE cells, particularly with regard to the complement pathway. We focused on collectin-11 (CL-11), a pattern recognition molecule that can trigger complement activation in renal epithelial tissue. We found evidence of constitutive and hypoxia-induced expression......, failed to activate complement. The presence of CL-11 in healthy murine and human retinal tissues confirmed the biological relevance of CL-11. Our data describe a new trigger mechanism of complement activation that could be important in disease pathogenesis and therapeutic interventions....

  6. A human thymic epithelial cell culture system for the promotion of lymphopoiesis from hematopoietic stem cells.

    Science.gov (United States)

    Beaudette-Zlatanova, Britte C; Knight, Katherine L; Zhang, Shubin; Stiff, Patrick J; Zúñiga-Pflücker, Juan Carlos; Le, Phong T

    2011-05-01

    A human thymic epithelial cell (TEC) line expressing human leukocyte antigen-ABC and human leukocyte antigen-DR was engineered to overexpress murine Delta-like 1 (TEC-Dl1) for the purpose of establishing a human culture system that supports T lymphopoiesis from hematopoietic progenitor cells (HPCs). Cord blood or bone marrow HPCs were co-cultured with either the parental TEC line expressing low levels of the Notch ligands, Delta-like 1 and Delta-like 4, or with TEC-Dl1 to determine if these cell lines support human lymphopoiesis. In co-cultures with cord blood or bone marrow HPCs, TEC-Dl1 cells promote de novo generation of CD7(pos)CD1a(pos) T-lineage committed cells. Most CD7(pos)CD1a(hi) cells are CD4(pos)CD8(pos) double-positive (DP). We found that TEC-Dl1 cells are insufficient to generate mature CD3(hi) CD4(pos) or CD3(hi) CD8(pos) single-positive (SP) T cells from the CD4(pos)CD8(pos) DP T cells; however, we detected CD3(lo) cells within the DP and SP CD4 and CD8 populations. The CD3(lo) SP cells expressed lower levels of interleukin-2Rα and interleukin-7Rα compared to CD3(lo) DP cells. In contrast to the TEC-Dl1 line, the parental TEC-84 line expressing low levels of human Notch ligands permits HPC differentiation to the B-cell lineage. We report for the first time a human TEC line that supports lymphopoiesis from cord blood and bone marrow HPC. The TEC cell lines described herein provide a novel human thymic stroma model to study the contribution of human leukocyte antigen molecules and Notch ligands to T-cell commitment and maturation and could be utilized to promote lymphopoiesis for immune cell therapy. Copyright © 2011 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  7. Unmasking Stem/Progenitor Cell Properties in Differentiated Epithelial Cells Using Short-term Transplantation

    National Research Council Canada - National Science Library

    Lewis, Michael T

    2006-01-01

    ...) To determine the range of mammary stem cell types participating in gland regeneration. 2) To develop the short-term transplantation assay as a means by which critical regulators of stem and progenitor cell behavior can be discovered and evaluated. Relevance: Studies will provide a direct test of prevailing stem cell models.

  8. Unmasking Stem/Progenitor Cell Properties in Differentiated Epithelial Cells Using Short-term Transplantation

    National Research Council Canada - National Science Library

    Lewis, Michael T

    2007-01-01

    ...) To determine the range of mammary stem cell types participating in gland regeneration. 2) To develop the short-term transplantation assay as a means by which critical regulators of stem and progenitor cell behavior can be discovered and evaluated. Relevance: Studies will provide a direct test of prevailing stem cell models.

  9. A Comparative Study of the Therapeutic Potential of Mesenchymal Stem Cells and Limbal Epithelial Stem Cells for Ocular Surface Reconstruction

    Czech Academy of Sciences Publication Activity Database

    Holáň, Vladimír; Trošan, Peter; Čejka, Čestmír; Javorková, Eliška; Zajícová, Alena; Heřmánková, Barbora; Chudíčková, Milada; Čejková, Jitka

    2015-01-01

    Roč. 4, č. 9 (2015), s. 1052-1063 ISSN 2157-6564 R&D Projects: GA ČR(CZ) GA14-12580S; GA MZd NT14102; GA MŠk(CZ) LO1309; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378041 Keywords : limbal stem cells * mesenchymal stem cells * alkali-injured ocular surface * corneal regeneration * stem cell-based therapy Subject RIV: FF - HEENT, Dentistry Impact factor: 4.247, year: 2015

  10. Cellular interactions via conditioned media induce in vivo nephron generation from tubular epithelial cells or mesenchymal stem cells

    International Nuclear Information System (INIS)

    Machiguchi, Toshihiko; Nakamura, Tatsuo

    2013-01-01

    Highlights: •We have attempted in vivo nephron generation using conditioned media. •Vascular and tubular cells do cross-talks on cell proliferation and tubular changes. •Tubular cells suppress these changes in mesenchymal stem cells. •Tubular cells differentiate mesenchymal stem cells into tubular cells. •Nephrons can be created from implanted tubular cells or mesenchymal stem cells. -- Abstract: There are some successful reports of kidney generation by utilizing the natural course of kidney development, namely, the use of an artificially treated metanephros, blastocyst or ureteric bud. Under a novel concept of cellular interactions via conditioned media (CMs), we have attempted in vivo nephron generation from tubular epithelial cells (TECs) or mesenchymal stem cells (MSCs). Here we used 10× CMs of vascular endothelial cells (VECs) and TECs, which is the first to introduce a CM into the field of organ regeneration. We first present stimulative cross-talks induced by these CMs between VECs and TECs on cell proliferation and morphological changes. In MSCs, TEC-CM suppressed these changes, however, induced cytokeratin expression, indicating the differentiation of MSCs into TECs. As a result, glomerular and tubular structures were created following the implantation of TECs or MSCs with both CMs. Our findings suggest that the cellular interactions via CMs might induce in vivo nephron generation from TECs or MSCs. As a promoting factor, CMs could also be applied to the regeneration of other organs and tissues

  11. Epimorphin regulates bile duct formation via effects on mitosis orientation in rat liver epithelial stem-like cells.

    Directory of Open Access Journals (Sweden)

    Junnian Zhou

    Full Text Available Understanding how hepatic precursor cells can generate differentiated bile ducts is crucial for studies on epithelial morphogenesis and for development of cell therapies for hepatobiliary diseases. Epimorphin (EPM is a key morphogen for duct morphogenesis in various epithelial organs. The role of EPM in bile duct formation (DF from hepatic precursor cells, however, is not known. To address this issue, we used WB-F344 rat epithelial stem-like cells as model for bile duct formation. A micropattern and a uniaxial static stretch device was used to investigate the effects of EPM and stress fiber bundles on the mitosis orientation (MO of WB cells. Immunohistochemistry of liver tissue sections demonstrated high EPM expression around bile ducts in vivo. In vitro, recombinant EPM selectively induced DF through upregulation of CK19 expression and suppression of HNF3alpha and HNF6, with no effects on other hepatocytic genes investigated. Our data provide evidence that EPM guides MO of WB-F344 cells via effects on stress fiber bundles and focal adhesion assembly, as supported by blockade EPM, beta1 integrin, and F-actin assembly. These blockers can also inhibit EPM-induced DF. These results demonstrate a new biophysical action of EPM in bile duct formation, during which determination of MO plays a crucial role.

  12. Effect of heme oxygenase-1 transduced bone marrow mesenchymal stem cells on damaged intestinal epithelial cells in vitro.

    Science.gov (United States)

    Cao, Yi; Wu, Ben-Juan; Zheng, Wei-Ping; Yin, Ming-Li; Liu, Tao; Song, Hong-Li

    2017-07-01

    In this study, we explored the effects of mesenchymal stem cells (MSCs) from bone marrow overexpressing heme oxygenase-1 (HO-1) on the damaged human intestinal epithelial barrier in vitro. Rat MSCs were isolated from bone marrow and transduced with rat HO-1 recombinant adenovirus (HO-MSCs) for stable expression of HO-1. Colorectal adenocarinoma 2 (Caco2) cells were treated with tumor necrosis factor-α (TNF-α) to establish a damaged colon epithelial model. Damaged Caco2 were cocultured with MSCs, Ad-MSCs, Ad-HO + MSCs or HO-MSCs. mRNA and protein expression of Zona occludens-1 (ZO-1) and human HO-1 and the release of cytokines were measured. ZO-1 and human HO-1 in Caco2 were significantly decreased after treatment with TNF-α; and this effect was reduced when coculture with MSCs from bone marrow. Expression of ZO-1 was not significantly affected by Caco2 treatment with TNF-α, Ad-HO, and MSCs. In contrast, ZO-1 and human HO-1 increased significantly when the damaged Caco2 was treated with HO-MSCs. HO-MSCs showed the strongest effect on the expression of ZO-1 in colon epithelial cells. Coculture with HO-MSCs showed the most significant effects on reducing the expression of IL-2, IL-6, IFN-γ and increasing the expression of IL-10. HO-MSCs protected the intestinal epithelial barrier, in which endogenous HO-1 was involved. HO-MSCs play an important role in the repair process by reducing the release of inflammatory cytokines and increasing the release of anti-inflammatory factors. These results suggested that HO-MSCs from bone marrow were more effective in repairing the damaged intestinal epithelial barrier, and the effectiveness of MSCs was improved by HO-1 gene transduction, which provides favorable support for the application of stem cell therapy in the intestinal diseases. © 2017 The Authors. Cell Biology International Published by John Wiley & Sons Ltd on behalf of International Federation of Cell Biology.

  13. Outcome of cataract surgery following simple limbal epithelial transplantation for lime injury-induced limbal stem cell deficiency

    Science.gov (United States)

    Nair, Dhanyasree

    2015-01-01

    A 19-year-old woman presented to us after being diagnosed elsewhere with right eye total limbal stem cell deficiency resulting from a lime burn. She was advised to undergo limbal stem cell transplantation, but failed to immediately do so. Two years later, she underwent cultivated limbal epithelial transplantation (CLET). As she had severe loss of vision with persisting conjunctival nodule and symblepharon 2 years following surgery, an impression of failed CLET was formed. Subsequently, simple limbal epithelial transplantation (SLET) was performed. Nine months later, she developed a cataract in her right eye; the cataract was extracted and posterior chamber intraocular lens implanted. The unaided visual acuity improved from light perception at presentation to 20/60 at 1-week postoperatively. At 5 months follow-up, the patient continued to maintain 20/60 visual acuity in her right eye. This case describes the outcome of cataract surgery following SLET, emphasising the need to perform cataract surgery in complicated cataracts for a better visual prognosis. PMID:26698204

  14. Amniotic membrane transplantation for reconstruction of corneal epithelial surface in cases of partial limbal stem cell deficiency.

    Directory of Open Access Journals (Sweden)

    Sangwan Virender

    2004-01-01

    Full Text Available Purpose: To assess the efficacy of amniotic membrane for treatment of partial limbal stem cell deficiency (LSCD. Methods: Medical records of four patients with partial LSCD who underwent pannus resection and amniotic membrane transplantation (AMT were reviewed for ocular surface stability and improvement in visual acuity. Clinico-histopathological correlation was done with the resected pannus tissue. Results: All the eyes exhibited stable corneal epithelial surface by an average of 7 weeks postoperatively with improvement in subjective symptoms. Best corrected visual acuity improved from preoperative (range: 6/9p-6/120 to postoperative (range: 6/6p-6/15 by an average of 4.5 lines on Snellen visual acuity charts. Histopathological examination of excised tissue showed features of conjunctivalisation. Conclusion: Amniotic membrane transplantation appears to be an effective means of reconstructing the corneal epithelial surface and for visual rehabilitation of patients with partial limbal stem cell deficiency. It may be considered as an alternative primary procedure to limbal transplantation in these cases.

  15. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.

    Science.gov (United States)

    Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-12-22

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.

  16. Epithelial-mesenchymal transition transcription factors control pluripotent adult stem cell migration in vivo in planarians

    Science.gov (United States)

    Abnave, Prasad; Aboukhatwa, Ellen; Kosaka, Nobuyoshi; Thompson, James; Hill, Mark A.

    2017-01-01

    Migration of stem cells underpins the physiology of metazoan animals. For tissues to be maintained, stem cells and their progeny must migrate and differentiate in the correct positions. This need is even more acute after tissue damage by wounding or pathogenic infection. Inappropriate migration also underpins metastasis. Despite this, few mechanistic studies address stem cell migration during repair or homeostasis in adult tissues. Here, we present a shielded X-ray irradiation assay that allows us to follow stem cell migration in planarians. We demonstrate the use of this system to study the molecular control of stem cell migration and show that snail-1, snail-2 and zeb-1 EMT transcription factor homologs are necessary for cell migration to wound sites and for the establishment of migratory cell morphology. We also observed that stem cells undergo homeostatic migration to anterior regions that lack local stem cells, in the absence of injury, maintaining tissue homeostasis. This requires the polarity determinant notum. Our work establishes planarians as a suitable model for further in-depth study of the processes controlling stem cell migration in vivo. PMID:28893948

  17. Epithelial-mesenchymal transition transcription factors control pluripotent adult stem cell migration in vivo in planarians.

    Science.gov (United States)

    Abnave, Prasad; Aboukhatwa, Ellen; Kosaka, Nobuyoshi; Thompson, James; Hill, Mark A; Aboobaker, A Aziz

    2017-10-01

    Migration of stem cells underpins the physiology of metazoan animals. For tissues to be maintained, stem cells and their progeny must migrate and differentiate in the correct positions. This need is even more acute after tissue damage by wounding or pathogenic infection. Inappropriate migration also underpins metastasis. Despite this, few mechanistic studies address stem cell migration during repair or homeostasis in adult tissues. Here, we present a shielded X-ray irradiation assay that allows us to follow stem cell migration in planarians. We demonstrate the use of this system to study the molecular control of stem cell migration and show that snail-1 , snail-2 and zeb-1 EMT transcription factor homologs are necessary for cell migration to wound sites and for the establishment of migratory cell morphology. We also observed that stem cells undergo homeostatic migration to anterior regions that lack local stem cells, in the absence of injury, maintaining tissue homeostasis. This requires the polarity determinant notum Our work establishes planarians as a suitable model for further in-depth study of the processes controlling stem cell migration in vivo . © 2017. Published by The Company of Biologists Ltd.

  18. In-vivo expansion of autologous limbal stem cell using simple limbal epithelial transplantation for treatment of limbal stem cell deficiency

    Science.gov (United States)

    Lal, Ikeda; Panchal, Bhavik Uttam; Basu, Sayan; Sangwan, Virender S

    2013-01-01

    A 20-year-old man from Bangladesh suffered accidental alkali injury to his right eye in May 2010 leading to total limbal stem cell deficiency. An amniotic membrane graft was performed 5 days after the accident and the patient presented to our institute 6 months later. On ocular examination, his best corrected visual acuity (BCVA) was 20/50 with a 360° pannus at the periphery and central area was spared but had stromal scarring. He underwent simple limbal epithelial transplantation (SLET) taking a limbal biopsy from his left eye and was prescribed steroid and antibiotic eye drops postoperatively as per the standard regimen. At 2 year follow-up, the patient's ocular surface is stable with improvement in  BCVA to 20/25 post-SLET. PMID:23704435

  19. Biology of lung cancer: genetic mutation, epithelial-mesenchymal transition, and cancer stem cells.

    Science.gov (United States)

    Aoi, Takashi

    2016-09-01

    At present, most cases of unresectable cancer cannot be cured. Genetic mutations, EMT, and cancer stem cells are three major issues linked to poor prognosis in such cases, all connected by inter- and intra-tumor heterogeneity. Issues on inter-/intra-tumor heterogeneity of genetic mutation could be resolved with recent and future technologies of deep sequencers, whereas, regarding such issues as the "same genome, different epigenome/phenotype", we expect to solve many of these problems in the future through further research in stem cell biology. We herein review and discuss the three major issues in the biology of cancers, especially from the standpoint of stem cell biology.

  20. Mesenchymal to Epithelial Transition Mediated by CDH1 Promotes Spontaneous Reprogramming of Male Germline Stem Cells to Pluripotency

    Directory of Open Access Journals (Sweden)

    Junhui An

    2017-02-01

    Full Text Available Cultured spermatogonial stem cells (GSCs can spontaneously form pluripotent cells in certain culture conditions. However, GSC reprogramming is a rare event that is largely unexplained. We show GSCs have high expression of mesenchymal to epithelial transition (MET suppressors resulting in a developmental barrier inhibiting GSC reprogramming. Either increasing OCT4 or repressing transforming growth factor β (TGF-β signaling promotes GSC reprogramming by upregulating CDH1 and boosting MET. Reducing ZEB1 also enhances GSC reprogramming through its direct effect on CDH1. RNA sequencing shows that rare GSCs, identified as CDH1+ after trypsin digestion, are epithelial-like cells. CDH1+ GSCs exhibit enhanced reprogramming and become more prevalent during the course of reprogramming. Our results provide a mechanistic explanation for the spontaneous emergence of pluripotent cells from GSC cultures; namely, rare GSCs upregulate CDH1 and initiate MET, processes normally kept in check by ZEB1 and TGF-β signaling, thereby ensuring germ cells are protected from aberrant acquisition of pluripotency.

  1. Combined influence of basal media and fibroblast growth factor on the expansion and differentiation capabilities of adipose-derived stem cells.

    Science.gov (United States)

    Ahearne, Mark; Lysaght, Joanne; Lynch, Amy P

    2014-01-01

    Interest in adipose-derived stem cells (ASCs) has increased in recent years due to their multi-linage differentiation capabilities. While much work has been done to optimize the differentiation media, few studies have focused on examining the influence of different expansion media on cell behavior. In this study, three basal media (low glucose Dulbecco's modified Eagle's medium (DMEM), high glucose DMEM and DMEM-F12) supplemented with or without fibroblast growth factor 2 (FGF) were examined to assess their suitability for expanding ASCs. Flow cytometry, colony-forming unit assays (CFU-Fs) and differentiation assays were utilized to study cell behavior. High glucose media CFU-Fs produced fewest colonies while the addition of FGF increased colony size. By passage 2, the majority of cells were positive for CD44, 45, 73, 90 and 105 and negative for CD14, 31 and 45, indicating a mesenchymal phenotype. A sub-population of CD34 positive cells was present among passage 2 cells; however, by passage 4 the cells were negative for CD34. FGF has a negative effective on passage 4 ASC adipogenesis and high glucose media plus FGF-enhanced osteogenic capacity of passage 4 ASCs. FGF supplemented basal media were most suitable for chondrogenesis. High glucose media plus FGF appeared to be the most beneficial for priming ASCs to induce a keratocyte phenotype. These findings demonstrate the reciprocal effect FGF and basal media have on ASCs. This research has implications for those interested regenerating bone, cartilage, cornea or adipose tissues.

  2. Safety of Cultivated Limbal Epithelial Stem Cell Transplantation for Human Corneal Regeneration

    Directory of Open Access Journals (Sweden)

    J. Behaegel

    2017-01-01

    Full Text Available Ex vivo cultivated limbal stem cell transplantation is a promising technique for the treatment of limbal stem cell deficiency. While the results of the clinical trials have been extensively reported since the introduction of the technique in 1997, little has been reported regarding the potential health risks associated with production processes and transplantation techniques. Culture procedures require the use of animal and/or human-derived products, which carry the potential of introducing toxic or infectious agents through contamination with known or unknown additives. Protocols vary widely, and the risks depend on the local institutional methods. Good manufacturing practice and xeno-free culture protocols could reduce potential health risks but are not yet a common practice worldwide. In this review, we focus on the safety of both autologous- and allogeneic-cultivated limbal stem cell transplantation, with respect to culture processes, surgical approaches, and postoperative strategies.

  3. Semaphorin 3 C drives epithelial-to-mesenchymal transition, invasiveness, and stem-like characteristics in prostate cells.

    Science.gov (United States)

    Tam, Kevin J; Hui, Daniel H F; Lee, Wilson W; Dong, Mingshu; Tombe, Tabitha; Jiao, Ivy Z F; Khosravi, Shahram; Takeuchi, Ario; Peacock, James W; Ivanova, Larissa; Moskalev, Igor; Gleave, Martin E; Buttyan, Ralph; Cox, Michael E; Ong, Christopher J

    2017-09-13

    Prostate cancer (PCa) is among the most commonly-occurring cancers worldwide and a leader in cancer-related deaths. Local non-invasive PCa is highly treatable but limited treatment options exist for those with locally-advanced and metastatic forms of the disease underscoring the need to identify mechanisms mediating PCa progression. The semaphorins are a large grouping of membrane-associated or secreted signalling proteins whose normal roles reside in embryogenesis and neuronal development. In this context, semaphorins help establish chemotactic gradients and direct cell movement. Various semaphorin family members have been found to be up- and down-regulated in a number of cancers. One family member, Semaphorin 3 C (SEMA3C), has been implicated in prostate, breast, ovarian, gastric, lung, and pancreatic cancer as well as glioblastoma. Given SEMA3C's roles in development and its augmented expression in PCa, we hypothesized that SEMA3C promotes epithelial-to-mesenchymal transition (EMT) and stem-like phenotypes in prostate cells. In the present study we show that ectopic expression of SEMA3C in RWPE-1 promotes the upregulation of EMT and stem markers, heightened sphere-formation, and cell plasticity. In addition, we show that SEMA3C promotes migration and invasion in vitro and cell dissemination in vivo.

  4. Wnt/β-catenin signaling in adult mammalian epithelial stem cells

    NARCIS (Netherlands)

    Kretzschmar, Kai; Clevers, Hans

    2017-01-01

    Adult stem cells self-renew and replenish differentiated cells in various organs and tissues throughout a mammal's life. Over the last 25 years an ever-growing body of knowledge has unraveled the essential regulation of adult mammalian epithelia by the canonical Wnt signaling with its key

  5. Spindle orientation bias in gut epithelial stem cell compartments is lost in precancerous tissue

    NARCIS (Netherlands)

    Quyn, A.J.; Appleton, P.L.; Carey, F.A.; Steele, R.J.; Barker, N.; Clevers, H.; Ridgway, R.A.; Sansom, O.J.; Nathke, I.S.

    2010-01-01

    The importance of asymmetric divisions for stem cell function and maintenance is well established in the developing nervous system and the skin; however, its role in gut epithelium and its importance for tumorigenesis is still debated. We demonstrate alignment of mitotic spindles perpendicular to

  6. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection

    NARCIS (Netherlands)

    Bartfeld, Sina; Bayram, Tülay; van de Wetering, Marc; Huch, Meritxell; Begthel, Harry; Kujala, Pekka; Vries, Robert; Peters, Peter J; Clevers, Hans

    BACKGROUND & AIMS: We previously established long-term, 3-dimensional culture of organoids from mouse tissues (intestine, stomach, pancreas, and liver) and human intestine and pancreas. Here we describe conditions required for long-term 3-dimensional culture of human gastric stem cells. The

  7. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells

    Science.gov (United States)

    Ding, Bi-Sen; Gomi, Kazunori; Rafii, Shahin; Crystal, Ronald G.; Walters, Matthew S.

    2015-01-01

    ABSTRACT Human airway basal cells are the stem (or progenitor) population of the airway epithelium, and play a central role in anchoring the epithelium to the basement membrane. The anatomic position of basal cells allows for potential paracrine signaling between them and the underlying non-epithelial stromal cells. In support of this, we have previously demonstrated that endothelial cells support growth of basal cells during co-culture through vascular endothelial growth factor A (VEGFA)-mediated signaling. Building on these findings, we found, by RNA sequencing analysis, that basal cells expressed multiple fibroblast growth factor (FGF) ligands (FGF2, FGF5, FGF11 and FGF13) and that only FGF2 and FGF5 were capable of functioning in a paracrine manner to activate classical FGF receptor (FGFR) signaling. Antibody-mediated blocking of FGFR1 during basal-cell–endothelial-cell co-culture significantly reduced the endothelial-cell-dependent basal cell growth. Stimulation of endothelial cells with basal-cell-derived growth factors induced endothelial cell expression of matrix metallopeptidase 14 (MMP14), and short hairpin RNA (shRNA)-mediated knockdown of endothelial cell MMP14 significantly reduced the endothelial-cell-dependent growth of basal cells. Overall, these data characterize a new growth-factor-mediated reciprocal ‘crosstalk’ between human airway basal cells and endothelial cells that regulates proliferation of basal cells. PMID:26116571

  8. Osteo-/odontogenic differentiation of induced mesenchymal stem cells generated through epithelial-mesenchyme transition of cultured human keratinocytes.

    Science.gov (United States)

    Yi, Jin-Kyu; Mehrazarin, Shebli; Oh, Ju-Eun; Bhalla, Anu; Oo, Jenessa; Chen, Wei; Lee, Min; Kim, Reuben H; Shin, Ki-Hyuk; Park, No-Hee; Kang, Mo K

    2014-11-01

    Revascularization of necrotic pulp has been successful in the resolution of periradicular inflammation; yet, several case studies suggest the need for cell-based therapies using mesenchymal stem cells (MSCs) as an alternative for de novo pulp regeneration. Because the availability of MSCs may be limited, especially in an aged population, the current study reports an alternative approach in generating MSCs from epidermal keratinocytes through a process called epithelial-mesenchymal transition (EMT). We induced EMT in primary normal human epidermal keratinocytes (NHEKs) by transient transfection of small interfering RNA targeting the p63 gene. The resulting cells were assayed for their mesenchymal marker expression, proliferation capacities as a monolayer and in a 3-dimensional collagen scaffold, and differentiation capacities. Transient transfection of p63 small-interfering RNA successfully abolished the expression of endogenous p63 in NHEKs and induced the expression of mesenchymal markers (eg, vimentin and fibronectin), whereas epithelial markers (eg, E-cadherin and involucrin) were lost. The NHEKs exhibiting the EMT phenotype acquired extended replicative potential and an increased telomere length compared with the control cells. Similar to the established MSCs, the NHEKs with p63 knockdown showed attachment onto the 3-dimensional collagen scaffold and underwent progressive proliferation and differentiation. Upon differentiation, these EMT cells expressed alkaline phosphatase activity, osteocalcin, and osteonectin and readily formed mineralized nodules detected by alizarin S red staining, showing osteo-/odontogenic differentiation. The induction of EMT in primary NHEKs by means of transient p63 knockdown allows the generation of induced MSCs from autologous sources. These cells may be used for tissues engineering purposes, including that of dental pulp. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Selective androgen receptor modulators (SARMs) negatively regulate triple-negative breast cancer growth and epithelial:mesenchymal stem cell signaling.

    Science.gov (United States)

    Narayanan, Ramesh; Ahn, Sunjoo; Cheney, Misty D; Yepuru, Muralimohan; Miller, Duane D; Steiner, Mitchell S; Dalton, James T

    2014-01-01

    The androgen receptor (AR) is the most highly expressed steroid receptor in breast cancer with 75-95% of estrogen receptor (ER)-positive and 40-70% of ER-negative breast cancers expressing AR. Though historically breast cancers were treated with steroidal androgens, their use fell from favor because of their virilizing side effects and the emergence of tamoxifen. Nonsteroidal, tissue selective androgen receptor modulators (SARMs) may provide a novel targeted approach to exploit the therapeutic benefits of androgen therapy in breast cancer. Since MDA-MB-453 triple-negative breast cancer cells express mutated AR, PTEN, and p53, MDA-MB-231 triple-negative breast cancer cells stably expressing wildtype AR (MDA-MB-231-AR) were used to evaluate the in vitro and in vivo anti-proliferative effects of SARMs. Microarray analysis and epithelial:mesenchymal stem cell (MSC) co-culture signaling studies were performed to understand the mechanisms of action. Dihydrotestosterone and SARMs, but not bicalutamide, inhibited the proliferation of MDA-MB-231-AR. The SARMs reduced the MDA-MB-231-AR tumor growth and tumor weight by greater than 90%, compared to vehicle-treated tumors. SARM treatment inhibited the intratumoral expression of genes and pathways that promote breast cancer development through its actions on the AR. SARM treatment also inhibited the metastasis-promoting paracrine factors, IL6 and MMP13, and subsequent migration and invasion of epithelial:MSC co-cultures. 1. AR stimulation inhibits paracrine factors that are important for MSC interactions and breast cancer invasion and metastasis. 2. SARMs may provide promise as novel targeted therapies to treat AR-positive triple-negative breast cancer.

  10. Selective androgen receptor modulators (SARMs negatively regulate triple-negative breast cancer growth and epithelial:mesenchymal stem cell signaling.

    Directory of Open Access Journals (Sweden)

    Ramesh Narayanan

    Full Text Available The androgen receptor (AR is the most highly expressed steroid receptor in breast cancer with 75-95% of estrogen receptor (ER-positive and 40-70% of ER-negative breast cancers expressing AR. Though historically breast cancers were treated with steroidal androgens, their use fell from favor because of their virilizing side effects and the emergence of tamoxifen. Nonsteroidal, tissue selective androgen receptor modulators (SARMs may provide a novel targeted approach to exploit the therapeutic benefits of androgen therapy in breast cancer.Since MDA-MB-453 triple-negative breast cancer cells express mutated AR, PTEN, and p53, MDA-MB-231 triple-negative breast cancer cells stably expressing wildtype AR (MDA-MB-231-AR were used to evaluate the in vitro and in vivo anti-proliferative effects of SARMs. Microarray analysis and epithelial:mesenchymal stem cell (MSC co-culture signaling studies were performed to understand the mechanisms of action.Dihydrotestosterone and SARMs, but not bicalutamide, inhibited the proliferation of MDA-MB-231-AR. The SARMs reduced the MDA-MB-231-AR tumor growth and tumor weight by greater than 90%, compared to vehicle-treated tumors. SARM treatment inhibited the intratumoral expression of genes and pathways that promote breast cancer development through its actions on the AR. SARM treatment also inhibited the metastasis-promoting paracrine factors, IL6 and MMP13, and subsequent migration and invasion of epithelial:MSC co-cultures.1. AR stimulation inhibits paracrine factors that are important for MSC interactions and breast cancer invasion and metastasis. 2. SARMs may provide promise as novel targeted therapies to treat AR-positive triple-negative breast cancer.

  11. Inhibiting glycogen synthase kinase-3 and transforming growth factor-β signaling to promote epithelial transition of human adipose mesenchymal stem cells.

    Science.gov (United States)

    Setiawan, Melina; Tan, Xiao-Wei; Goh, Tze-Wei; Hin-Fai Yam, Gary; Mehta, Jodhbir S

    2017-09-02

    This study was aimed to investigate the epithelial differentiation of human adipose-derived mesenchymal stem cells (ADSCs) by inhibiting glycogen synthase kinase-3 (GSK3) and transforming growth factor β (TGFβ) signaling. STEMPRO human ADSCs at passage 2 were treated with CHIR99021 (GSK3 inhibitor), E-616452 (TGFβ1 receptor kinase inhibitor), A-83-01 (TGFβ type 1 receptor inhibitor), valproic acid (histone deacetylase inhibitor), tranylcypromine (monoamine oxidase inhibitor) and all-trans retinoic acid for 72 h. The mesenchymal-epithelial transition was shown by down-regulation of mesenchymal genes (Slug, Zinc Finger E-box Binding Homeobox 1 ZEB1, integrin α5 ITGA5 and vimentin VIM) and up-regulation of epithelial genes (E-cadherin, Epithelial Cell Adhesion Molecule EpCAM, Zonula Occludens-1 ZO-1, occludin, deltaN p63 δNp63, Transcription Factor 4 TCF4 and Twist Family bHLH Transcription Factor TWIST), compared to untreated ADSCs. Cell morphology and stress fiber pattern were examined and the treated cells became less migratory in scratch wound closure assay. The formation of cell junction complexes was observed under transmission electron microscopy. Global gene expression using GeneChip ® Human Genome U133 Array (Affymetrix) showed that the treatment up-regulated 540 genes (containing genes for cell cycle, cytoskeleton reorganization, chemotaxis, epithelium development and regulation of cell migration) and down-regulated 483 genes. Human ADSCs were transited to epithelial lineage by inhibiting GSK3 and TGFβ signaling. It can be an adult stem cell source for epithelial cell-based therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Somatic mosaicism containing double mutations in PTCH1 revealed by generation of induced pluripotent stem cells from nevoid basal cell carcinoma syndrome.

    Science.gov (United States)

    Ikemoto, Yu; Takayama, Yoshinaga; Fujii, Katsunori; Masuda, Mokuri; Kato, Chise; Hatsuse, Hiromi; Fujitani, Kazuko; Nagao, Kazuaki; Kameyama, Kohzoh; Ikehara, Hajime; Toyoda, Masashi; Umezawa, Akihiro; Miyashita, Toshiyuki

    2017-08-01

    Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disorder characterised by developmental defects and tumorigenesis, such as medulloblastomas and basal cell carcinomas, caused by mutations of the patched-1 ( PTCH1 ) gene. In this article, we seek to demonstrate a mosaicism containing double mutations in PTCH1 in an individual with NBCCS. A de novo germline mutation of PTCH1 (c.272delG) was detected in a 31-year-old woman with NBCCS. Gene analysis of two out of four induced pluripotent stem cell (iPSC) clones established from the patient unexpectedly revealed an additional mutation, c.274delT. Deep sequencing confirmed a low-prevalence somatic mutation (5.5%-15.6% depending on the tissue) identical to the one found in iPSC clones. This is the first case of mosaicism unequivocally demonstrated in NBCCS. Furthermore, the mosaicism is unique in that the patient carries one normal and two mutant alleles. Because these mutations are located in close proximity, reversion error is likely to be involved in this event rather than a spontaneous mutation. In addition, this study indicates that gene analysis of iPSC clones can contribute to the detection of mosaicism containing a minor population carrying a second mutation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. A rapid separation of two distinct populations of mouse corneal epithelial cells with limbal stem cell characteristics by centrifugation on percoll gradient

    Czech Academy of Sciences Publication Activity Database

    Krulová, Magdalena; Pokorná, Kateřina; Lenčová, Anna; Frič, Jan; Zajícová, Alena; Filipec, Martin; Forrester, J. V.; Holáň, Vladimír

    2008-01-01

    Roč. 49, č. 9 (2008), s. 3903-3908 ISSN 0146-0404 R&D Projects: GA AV ČR KAN200520804; GA MŠk 1M0506; GA ČR GD310/08/H077 Institutional research plan: CEZ:AV0Z50520514 Keywords : limbal stem cells * Percoll gradient * corneal epithelial cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.582, year: 2008

  14. Induced pluripotent stem cell-derived limbal epithelial cells (LiPSC) as a cellular alternative for in vitro ocular toxicity testing.

    Science.gov (United States)

    Aberdam, Edith; Petit, Isabelle; Sangari, Linda; Aberdam, Daniel

    2017-01-01

    Induced pluripotent stem cells hold great potential to produce unlimited amount of differentiated cells as cellular source for regenerative medicine but also for in vitro drug screening and cytotoxicity tests. Ocular toxicity testing is mandatory to evaluate the risks of drugs and cosmetic products before their application to human patients by preventing eye irritation or insult. Since the global ban to use animals, many human-derived alternatives have been proposed, from ex-vivo enucleated postmortem cornea, primary corneal cell culture and immortalized corneal epithelial cell lines. All of them share limitations for their routine use. Using an improved protocol, we derived limbal epithelial cells from human induced pluripotent stem cells, named LiPSC, that are able to be passaged and differentiate further into corneal epithelial cells. Comparative RT-qPCR, immunofluorescence staining, flow cytometry analysis and zymography assays demonstrate that LiPSC are morphologically and molecularly similar to the adult stem cells. Moreover, contrary to HCE, LiPSC and primary limbal cells display similarly sensitive to cytotoxicity treatment among passages. Our data strongly suggest that LiPSC could become a powerful alternative cellular model for cosmetic and drug tests.

  15. Induced pluripotent stem cell-derived limbal epithelial cells (LiPSC as a cellular alternative for in vitro ocular toxicity testing.

    Directory of Open Access Journals (Sweden)

    Edith Aberdam

    Full Text Available Induced pluripotent stem cells hold great potential to produce unlimited amount of differentiated cells as cellular source for regenerative medicine but also for in vitro drug screening and cytotoxicity tests. Ocular toxicity testing is mandatory to evaluate the risks of drugs and cosmetic products before their application to human patients by preventing eye irritation or insult. Since the global ban to use animals, many human-derived alternatives have been proposed, from ex-vivo enucleated postmortem cornea, primary corneal cell culture and immortalized corneal epithelial cell lines. All of them share limitations for their routine use. Using an improved protocol, we derived limbal epithelial cells from human induced pluripotent stem cells, named LiPSC, that are able to be passaged and differentiate further into corneal epithelial cells. Comparative RT-qPCR, immunofluorescence staining, flow cytometry analysis and zymography assays demonstrate that LiPSC are morphologically and molecularly similar to the adult stem cells. Moreover, contrary to HCE, LiPSC and primary limbal cells display similarly sensitive to cytotoxicity treatment among passages. Our data strongly suggest that LiPSC could become a powerful alternative cellular model for cosmetic and drug tests.

  16. Tumor budding cells, cancer stem cells and epithelial-mesenchymal transition-type cells in pancreatic cancer.

    Science.gov (United States)

    Karamitopoulou, Eva

    2012-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4) and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with Wingless-INT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT). Emerging evidence has demonstrated that cancer stem cells (CSCs), small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion, and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5) of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric, and ampullary) carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs, and EMT-type cells in PDAC.

  17. Tumor Budding Cells, Cancer Stem Cells and Epithelial-Mesenchymal Transition-type Cells in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Eva eKaramitopoulou

    2013-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4 and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with WNT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT. Emerging evidence has demonstrated that cancer stem cells (CSCs, small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5 of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric and ampullary carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs and EMT-type cells in PDAC.

  18. Epithelial-mesenchymal transition: a hallmark in metastasis formation linking circulating tumor cells and cancer stem cells.

    Science.gov (United States)

    Książkiewicz, Magdalena; Markiewicz, Aleksandra; Zaczek, Anna J

    2012-01-01

    The occurrence of either regional or distant metastases is an indicator of poor prognosis for cancer patients. The mechanism of their formation has not yet been fully uncovered, which limits the possibility of developing new therapeutic strategies. Nevertheless, the discovery of circulating tumor cells (CTCs), which are responsible for tumor dissemination, and cancer stem cells (CSCs), required for tumor growth maintenance, shed light on the metastatic cascade. It seems that CTCs and CSCs are not necessarily separate populations of cancer cells, as CTCs generated in the process of epithelial-mesenchymal transition (EMT) can bear features characteristic of CSCs. This article describes the mechanisms of CTC and CSC formation and characterizes their molecular hallmarks. Moreover, we present different types of EMT occurring in physiological and pathological conditions, and we demonstrate its crucial role in providing CTCs with a CSC phenotype. The article delineates molecular changes acquired by cancer cells undergoing EMT that facilitate metastasis formation. Deeper understanding of those processes is of fundamental importance for the development of new strategies of early cancer detection and effective cancer treatment approaches that will be translated into clinical practice. Copyright © 2012 S. Karger AG, Basel.

  19. Polycomb Repressive Complex 2 Enacts Wnt Signaling in Intestinal Homeostasis and Contributes to the Instigation of Stemness in Diseases Entailing Epithelial Hyperplasia or Neoplasia.

    Science.gov (United States)

    Oittinen, Mikko; Popp, Alina; Kurppa, Kalle; Lindfors, Katri; Mäki, Markku; Kaikkonen, Minna U; Viiri, Keijo

    2017-02-01

    Canonical Wnt/β-catenin signaling regulates the homeostasis of intestinal epithelium by controlling the balance between intestinal stem cell self-renewal and differentiation but epigenetic mechanisms enacting the process are not known. We hypothesized that epigenetic regulator, Polycomb Repressive Complex-2 (PRC2), is involved in Wnt-mediated epithelial homeostasis on the crypt-villus axis and aberrancies therein are implicated both in celiac disease and in intestinal malignancies. We found that PRC2 establishes repressive crypt and villus specific trimethylation of histone H3 lysine 27 (H3K27me3) signature on genes responsible for, for example, nutrient transport and cell killing in crypts and, for example, proliferation and differentiation in mature villi, suggesting that PRC2 facilitates the Wnt-governed intestinal homeostasis. When celiac patients are on gluten-containing diet PRC2 is out-of-bounds active and consequently its target genes were found affected in intestinal epithelium. Significant set of effective intestinal PRC2 targets are also differentially expressed in colorectal adenoma and carcinomas. Our results suggest that PRC2 gives rise and maintains polar crypt and villus specific H3K27me3 signatures. As H3K27me3 is a mark enriched in developmentally important genes, identified intestinal PRC2 targets are possibly imperative drivers for enterocyte differentiation and intestinal stem cell maintenance downstream to Wnt-signaling. Our work also elucidates the mechanism sustaining the crypt hyperplasia in celiac disease and suggest that PRC2-dependent fostering of epithelial stemness is a common attribute in intestinal diseases in which epithelial hyperplasia or neoplasia prevails. Finally, this work demonstrates that in intestine PRC2 represses genes having both pro-stemness and pro-differentiation functions, fact need to be considered when designing epigenetic therapies including PRC2 as a drug target. Stem Cells 2017;35:445-457. © 2016 Alpha

  20. Salinomycin induces cell death and differentiation in head and neck squamous cell carcinoma stem cells despite activation of epithelial-mesenchymal transition and Akt

    International Nuclear Information System (INIS)

    Kuo, Selena Z; Blair, Katherine J; Rahimy, Elham; Kiang, Alan; Abhold, Eric; Fan, Jian-Bing; Wang-Rodriguez, Jessica; Altuna, Xabier; Ongkeko, Weg M

    2012-01-01

    Cancer stem cells (CSC) are believed to play a crucial role in cancer recurrence due to their resistance to conventional chemotherapy and capacity for self-renewal. Recent studies have reported that salinomycin, a livestock antibiotic, selectively targets breast cancer stem cells 100-fold more effectively than paclitaxel. In our study we sought to determine the effects of salinomycin on head and neck squamous cell carcinoma (HNSCC) stem cells. MTS and TUNEL assays were used to study cell proliferation and apoptosis as a function of salinomycin exposure in JLO-1, a putative HNSCC stem cell culture. MTS and trypan blue dye exclusion assays were performed to investigate potential drug interactions between salinomycin and cisplatin or paclitaxel. Stem cell-like phenotype was measured by mRNA expression of stem cell markers, sphere-forming capacity, and matrigel invasion assays. Immunoblotting was also used to determine expression of epithelial-mesenchymal transition (EMT) markers and Akt phosphorylation. Arrays by Illumina, Inc. were used to profile microRNA expression as a function of salinomycin dose. In putative HNSCC stem cells, salinomycin was found to significantly inhibit cell viability, induce a 71.5% increase in levels of apoptosis, elevate the Bax/Bcl-2 ratio, and work synergistically with cisplatin and paclitaxel in inducing cell death. It was observed that salinomycin significantly inhibited sphere forming-capability and repressed the expression of CD44 and BMI-1 by 3.2-fold and 6.2-fold, respectively. Furthermore, salinomycin reduced invasion of HNSCC stem cells by 2.1 fold. Contrary to expectations, salinomycin induced the expression of EMT markers Snail, vimentin, and Zeb-1, decreased expression of E-cadherin, and also induced phosphorylation of Akt and its downstream targets GSK3-β and mTOR. These results demonstrate that in HNSCC cancer stem cells, salinomycin can cause cell death and decrease stem cell properties despite activation of both EMT and

  1. Ocular Surface Reconstruction with Cultivated Limbal Epithelial Cells in Limbal Stem Cell Deficiency: One-year Follow-up Results

    Directory of Open Access Journals (Sweden)

    İsmet Durak

    2012-05-01

    Full Text Available Pur po se: To evaluate the 1-year follow-up results of cultivated limbal epithelial cell (CLEC transplantation in unilateral limbal stem cell deficiency (LSCD. Ma te ri al and Met hod: One-year follow-up results of five unilateral LSCD patients who had undergone CLEC transplantation were evaluated. Parameters for this evaluation were: fluorescein staining of ocular surface, corneal vascularization and status of epithelium with slit lamp, and visual acuity. 1.5-mm limbal biopsy was performed from the superior limbus of the healthy eyes, broke into two equal pieces, expanded on human amniotic membrane (hAM and inserts for 14 days until getting 20 mm in size. CLECs on hAMs were used directly, and cells on inserts were usedafter detachment procedure. The symblepharon and pannus tissues were removed, superficial keratectomy was performed. CLEC on hAMs were transplanted with the epithelial side up onto the bare corneal stroma, sutured to the conjunctiva with 10-0 nylon sutures. Free CLEC layer from insert was placed on hAM as a second layer, additional hAM was used as a protective layer all over other tissues. Re sults: Median age was 44.4 years (14-71. The etiology was chemical burn in all patients. Median duration of symptoms was 10 years (2-18, median follow-up period was 12.6 (12-12.5 months. Preoperative best corrected visual acuities (BCVA were light perception in three patients, counting fingers at 50 cm in one patient and 3/10 in one patient. Visions were improved in all patients. Postoperative BCVA 12 months after the surgery were between counting fingers at 3 meters to 6/10. There was a temporary hemorrhage between the two layers of hAMs in one patient at the early postoperative period. Peripheral corneal vascularization has occurred in three patients, in patient corneal vascularization has reached to the paracentral area. Dis cus si on: CLEC transplantation is an efficient treatment option for unilateral LSCD in mid-long term. (Turk J

  2. Moving epithelia: Tracking the fate of mammalian limbal epithelial stem cells.

    Science.gov (United States)

    Di Girolamo, Nick

    2015-09-01

    Lineage tracing allows the destiny of a stem cell (SC) and its progeny to be followed through time. In order to track their long-term fate, SC must be permanently marked to discern their distribution, division, displacement and differentiation. This information is essential for unravelling the mysteries that govern their replenishing activity while they remain anchored within their niche microenvironment. Modern-day lineage tracing uses inducible genetic recombination to illuminate cells within embryonic, newborn and adult tissues, and the advent of powerful high-resolution microscopy has enabled the behaviour of labelled cells to be monitored in real-time in a living organism. The simple structural organization of the mammalian cornea, including its accessibility and transparency, renders it the ideal tissue to study SC fate using lineage tracing assisted by non-invasive intravital microscopy. Despite more than a century of research devoted to understanding how this tissue is maintained and repaired, many limitations and controversies continue to plague the field, including uncertainties about the specificity of current SC markers, the number of SC within the cornea, their mode of division, their location, and importantly the signals that dictate cell migration. This communication will highlight historical discoveries as well as recent developments in the corneal SC field; more specifically how the progeny of these cells are mobilised to replenish this dynamic tissue during steady-state, disease and transplantation. Also discussed is how insights gleaned from animal studies can be used to advance our knowledge of the fundamental mechanisms that govern modelling and remodelling of the human cornea in health and disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Subretinal Implantation of Retinal Pigment Epithelial Cells Derived From Human Embryonic Stem Cells: Improved Survival When Implanted as a Monolayer

    Science.gov (United States)

    Diniz, Bruno; Thomas, Padmaja; Thomas, Biju; Ribeiro, Ramiro; Hu, Yuntao; Brant, Rodrigo; Ahuja, Ashish; Zhu, Danhong; Liu, Laura; Koss, Michael; Maia, Mauricio; Chader, Gerald; Hinton, David R.; Humayun, Mark S.

    2013-01-01

    Purpose. To evaluate cell survival and tumorigenicity of human embryonic stem cell–derived retinal pigment epithelium (hESC-RPE) transplantation in immunocompromised nude rats. Cells were transplanted as a cell suspension (CS) or as a polarized monolayer plated on a parylene membrane (PM). Methods. Sixty-nine rats (38 male, 31 female) were surgically implanted with CS (n = 33) or PM (n = 36). Cohort subsets were killed at 1, 6, and 12 months after surgery. Both ocular tissues and systemic organs (brain, liver, kidneys, spleen, heart, and lungs) were fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned. Every fifth section was stained with hematoxylin and eosin and analyzed histologically. Adjacent sections were processed for immunohistochemical analysis (as needed) using the following antibodies: anti-RPE65 (RPE-specific marker), anti-TRA-1-85 (human cell marker), anti-Ki67 (proliferation marker), anti-CD68 (macrophage), and anti-cytokeratin (epithelial marker). Results. The implanted cells were immunopositive for the RPE65 and TRA-1-85. Cell survival (P = 0.006) and the presence of a monolayer (P < 0.001) of hESC-RPE were significantly higher in eyes that received the PM. Gross morphological and histological analysis of the eye and the systemic organs after the surgery revealed no evidence of tumor or ectopic tissue formation in either group. Conclusions. hESC-RPE can survive for at least 12 months in an immunocompromised animal model. Polarized monolayers of hESC-RPE show improved survival compared to cell suspensions. The lack of teratoma or any ectopic tissue formation in the implanted rats bodes well for similar results with respect to safety in human subjects. PMID:23833067

  4. Mesenchymal Stem Cells Induce Epithelial to Mesenchymal Transition in Colon Cancer Cells through Direct Cell-to-Cell Contact

    Directory of Open Access Journals (Sweden)

    Hidehiko Takigawa

    2017-05-01

    Full Text Available We previously reported that in an orthotopic nude mouse model of human colon cancer, bone marrow–derived mesenchymal stem cells (MSCs migrated to the tumor stroma and promoted tumor growth and metastasis. Here, we evaluated the proliferation and migration ability of cancer cells cocultured with MSCs to elucidate the mechanism of interaction between cancer cells and MSCs. Proliferation and migration of cancer cells increased following direct coculture with MSCs but not following indirect coculture. Thus, we hypothesized that direct contact between cancer cells and MSCs was important. We performed a microarray analysis of gene expression in KM12SM colon cancer cells directly cocultured with MSCs. Expression of epithelial-mesenchymal transition (EMT–related genes such as fibronectin (FN, SPARC, and galectin 1 was increased by direct coculture with MSCs. We also confirmed the upregulation of these genes with real-time polymerase chain reaction. Gene expression was not elevated in cancer cells indirectly cocultured with MSCs. Among the EMT-related genes upregulated by direct coculture with MSCs, we examined the immune localization of FN, a well-known EMT marker. In coculture assay in chamber slides, expression of FN was seen only at the edges of cancer clusters where cancer cells directly contacted MSCs. FN expression in cancer cells increased at the tumor periphery and invasive edge in orthotopic nude mouse tumors and human colon cancer tissues. These results suggest that MSCs induce EMT in colon cancer cells via direct cell-to-cell contact and may play an important role in colon cancer metastasis.

  5. Transplantation of an LGR6+ Epithelial Stem Cell-Enriched Scaffold for Repair of Full-Thickness Soft-Tissue Defects: The In Vitro Development of Polarized Hair-Bearing Skin.

    Science.gov (United States)

    Lough, Denver M; Wetter, Nathan; Madsen, Christopher; Reichensperger, Joel; Cosenza, Nicole; Cox, Lisa; Harrison, Carrie; Neumeister, Michael W

    2016-02-01

    Recent literature has shown that full-thickness wounds, devoid of the stem cell niche, can subsequently be reconstructed with functional skin elements following migration of the LGR6 epithelial stem cell into the wound bed. In this study, the authors use a variety of LGR6 epithelial stem cell-seeded scaffolds to determine therapeutic utility and regenerative potential in the immediate reconstruction of full-thickness wounds. Isolated LGR6 epithelial stem cells were seeded onto a spectrum of acellular matrices and monitored in both in vitro and in vivo settings to determine their relative capacity to regenerate tissues and heal wounds. Wound beds containing LGR6 stem cell-seeded scaffolds showed significantly augmented rates of healing, epithelialization, and hair growth compared with controls. Gene and proteomic expression studies indicate that LGR6 stem cell-seeded constructs up-regulate WNT, epidermal growth factor, and angiogenesis pathways. Finally, the addition of stromal vascular fraction to LGR6 stem cell-seeded constructs induces polarized tissue formation, nascent hair growth, and angiogenesis within wounds. LGR6 stem cells are able to undergo proliferation, differentiation, and migration following seeding onto a variety of collagen-based scaffolding. In addition, deployment of these constructs induces epithelialization, hair growth, and angiogenesis within wound beds. The addition of stromal vascular fraction to LGR6 stem cell-containing scaffolds initiated an early form of tissue polarization, providing for the first time a clinically applicable stem cell-based construct that is capable of the repair of full-thickness wounds and hair regeneration. Therapeutic, V.

  6. Clinically relevant morphological structures in breast cancer represent transcriptionally distinct tumor cell populations with varied degrees of epithelial-mesenchymal transition and CD44+CD24- stemness.

    Science.gov (United States)

    Denisov, Evgeny V; Skryabin, Nikolay A; Gerashchenko, Tatiana S; Tashireva, Lubov A; Wilhelm, Jochen; Buldakov, Mikhail A; Sleptcov, Aleksei A; Lebedev, Igor N; Vtorushin, Sergey V; Zavyalova, Marina V; Cherdyntseva, Nadezhda V; Perelmuter, Vladimir M

    2017-09-22

    Intratumor morphological heterogeneity in breast cancer is represented by different morphological structures (tubular, alveolar, solid, trabecular, and discrete) and contributes to poor prognosis; however, the mechanisms involved remain unclear. In this study, we performed 3D imaging, laser microdissection-assisted array comparative genomic hybridization and gene expression microarray analysis of different morphological structures and examined their association with the standard immunohistochemistry scorings and CD44 + CD24 - cancer stem cells. We found that the intratumor morphological heterogeneity is not associated with chromosomal aberrations. By contrast, morphological structures were characterized by specific gene expression profiles and signaling pathways and significantly differed in progesterone receptor and Ki-67 expression. Most importantly, we observed significant differences between structures in the number of expressed genes of the epithelial and mesenchymal phenotypes and the association with cancer invasion pathways. Tubular (tube-shaped) and alveolar (spheroid-shaped) structures were transcriptionally similar and demonstrated co-expression of epithelial and mesenchymal markers. Solid (large shapeless) structures retained epithelial features but demonstrated an increase in mesenchymal traits and collective cell migration hallmarks. Mesenchymal genes and cancer invasion pathways, as well as Ki-67 expression, were enriched in trabecular (one/two rows of tumor cells) and discrete groups (single cells and/or arrangements of 2-5 cells). Surprisingly, the number of CD44 + CD24 - cells was found to be the lowest in discrete groups and the highest in alveolar and solid structures. Overall, our findings indicate the association of intratumor morphological heterogeneity in breast cancer with the epithelial-mesenchymal transition and CD44 + CD24 - stemness and the appeal of this heterogeneity as a model for the study of cancer invasion.

  7. Application of arbuscular mycorrhizal fungi with Pseudomonas aeruginosa UPMP3 reduces the development of Ganoderma basal stem rot disease in oil palm seedlings.

    Science.gov (United States)

    Sundram, Shamala; Meon, Sariah; Seman, Idris Abu; Othman, Radziah

    2015-07-01

    The effect of arbuscular mycorrhizal fungi (AMF) in combination with endophytic bacteria (EB) in reducing development of basal stem rot (BSR) disease in oil palm (Elaeis guineensis) was investigated. BSR caused by Ganoderma boninense leads to devastating economic loss and the oil palm industry is struggling to control the disease. The application of two AMF with two EB as biocontrol agents was assessed in the nursery and subsequently, repeated in the field using bait seedlings. Seedlings pre-inoculated with a combination of Glomus intraradices UT126, Glomus clarum BR152B and Pseudomonas aeruginosa UPMP3 significantly reduced disease development measured as the area under disease progression curve (AUDPC) and the epidemic rate (R L) of disease in the nursery. A 20-month field trial using similar treatments evaluated disease development in bait seedlings based on the rotting area/advancement assessed in cross-sections of the seedling base. Data show that application of Glomus intraradices UT126 singly reduced disease development of BSR, but that combination of the two AMF with P. aeruginosa UPMP3 significantly improved biocontrol efficacy in both nursery and fields reducing BSR disease to 57 and 80%, respectively. The successful use of bait seedlings in the natural environment to study BSR development represents a promising alternative to nursery trial testing in the field with shorter temporal assessment.

  8. 7-(O)-Carboxymethyl daidzein conjugated to N-t-Boc-hexylenediamine: A Novel Compound Capable of Inducing Cell Death in Epithelial Ovarian Cancer Stem Cells

    OpenAIRE

    Green, Jamie M.; Alvero, Ayesha B.; Kohen, Fortune; Mor, Gil

    2009-01-01

    One of the major difficulties in the treatment of epithelial ovarian cancer (EOC) is the high rate of recurrent disease. This is thought to be due to the survival of a population of chemo-resistant cells within the tumor, the ovarian cancer stem cells (OCSCs), that are able to regenerate the tumor following chemotherapy. Therefore, the identification of a compund that can target the OCSCs is one of the main steps in improving overall survival of ovarian cancer patients. The objective of this ...

  9. Plasma polymer-coated contact lenses for the culture and transfer of corneal epithelial cells in the treatment of limbal stem cell deficiency.

    Science.gov (United States)

    Brown, Karl David; Low, Suet; Mariappan, Indumathi; Abberton, Keren Maree; Short, Robert; Zhang, Hong; Maddileti, Savitri; Sangwan, Virender; Steele, David; Daniell, Mark

    2014-02-01

    Extensive damage to the limbal region of the cornea leads to a severe form of corneal blindness termed as limbal stem cell deficiency (LSCD). Whereas most cases of corneal opacity can be treated with full thickness corneal transplants, LSCD requires stem cell transplantation for successful ocular surface reconstruction. Current treatments for LSCD using limbal stem cell transplantation involve the use of murine NIH 3T3 cells and human amniotic membranes as culture substrates, which pose the threat of transmission of animal-derived pathogens and donor tissue-derived cryptic infections. In this study, we aimed to produce surface modified therapeutic contact lenses for the culture and delivery of corneal epithelial cells for the treatment of LSCD. This approach avoids the possibility of suture-related complications and is completely synthetic. We used plasma polymerization to deposit acid functional groups onto the lenses at various concentrations. Each surface was tested for its suitability to promote corneal epithelial cell adhesion, proliferation, retention of stem cells, and differentiation and found that acid-based chemistries promoted better cell adhesion and proliferation. We also found that the lenses coated with a higher percentage of acid functional groups resulted in a higher number of cells transferred onto the corneal wound bed in rabbit models of LSCD. Immunohistochemistry of the recipient cornea confirmed the presence of autologous, transplanted 5-bromo-2'-deoxyuridine (BrdU)-labeled cells. Hematoxylin staining has also revealed the presence of a stratified epithelium at 26 days post-transplantation. This study provides the first evidence for in vivo transfer and survival of cells transplanted from a contact lens to the wounded corneal surface. It also proposes the possibility of using plasma polymer-coated contact lenses with high acid functional groups as substrates for the culture and transfer of limbal cells in the treatment of LSCD.

  10. Enhancement of cancer stem-like and epithelial−mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: Reversal by targeting SNAIL

    International Nuclear Information System (INIS)

    Yu, Cheng-Chia; Chang, Yu-Chao

    2013-01-01

    Cigarette smoking is one of the major risk factors in the development and further progression of tumorigenesis, including oral squamous cell carcinoma (OSCC). Recent studies suggest that interplay cancer stem-like cells (CSCs) and epithelial−mesenchymal transdifferentiation (EMT) properties are responsible for the tumor maintenance and metastasis in OSCC. The aim of the present study was to investigate the effects of long-term exposure with nicotine, a major component in cigarette, on CSCs and EMT characteristics. The possible reversal regulators were further explored in nicotine-induced CSCs and EMT properties in human oral epithelial (OE) cells. Long-term exposure with nicotine was demonstrated to up-regulate ALDH1 population in normal gingival and primary OSCC OE cells dose-dependently. Moreover, long-term nicotine treatment was found to enhance the self-renewal sphere-forming ability and stemness gene signatures expression and EMT regulators in OE cells. The migration/cell invasiveness/anchorage independent growth and in vivo tumor growth by nude mice xenotransplantation assay was enhanced in long-term nicotine-stimulated OE cells. Knockdown of Snail in long-term nicotine-treated OE cells was found to reduce their CSCs properties. Therapeutic delivery of Si-Snail significantly blocked the xenograft tumorigenesis of long-term nicotine-treated OSCC cells and largely significantly improved the recipient survival. The present study demonstrated that the enrichment of CSCs coupled EMT property in oral epithelial cells induced by nicotine is critical for the development of OSCC tumorigenesis. Targeting Snail might offer a new strategy for the treatment of OSCC patients with smoking habit. -- Highlights: ► Sustained nicotine treatment induced CSCs properties of oral epithelial cells. ► Long-term nicotine treatment enhance EMT properties of oral epithelial cells. ► Long-term nicotine exposure increased tumorigenicity of oral epithelial cells. ► Si

  11. Enhancement of cancer stem-like and epithelial−mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: Reversal by targeting SNAIL

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Cheng-Chia [Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan (China); School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chang, Yu-Chao, E-mail: cyc@csmu.edu.tw [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China)

    2013-02-01

    Cigarette smoking is one of the major risk factors in the development and further progression of tumorigenesis, including oral squamous cell carcinoma (OSCC). Recent studies suggest that interplay cancer stem-like cells (CSCs) and epithelial−mesenchymal transdifferentiation (EMT) properties are responsible for the tumor maintenance and metastasis in OSCC. The aim of the present study was to investigate the effects of long-term exposure with nicotine, a major component in cigarette, on CSCs and EMT characteristics. The possible reversal regulators were further explored in nicotine-induced CSCs and EMT properties in human oral epithelial (OE) cells. Long-term exposure with nicotine was demonstrated to up-regulate ALDH1 population in normal gingival and primary OSCC OE cells dose-dependently. Moreover, long-term nicotine treatment was found to enhance the self-renewal sphere-forming ability and stemness gene signatures expression and EMT regulators in OE cells. The migration/cell invasiveness/anchorage independent growth and in vivo tumor growth by nude mice xenotransplantation assay was enhanced in long-term nicotine-stimulated OE cells. Knockdown of Snail in long-term nicotine-treated OE cells was found to reduce their CSCs properties. Therapeutic delivery of Si-Snail significantly blocked the xenograft tumorigenesis of long-term nicotine-treated OSCC cells and largely significantly improved the recipient survival. The present study demonstrated that the enrichment of CSCs coupled EMT property in oral epithelial cells induced by nicotine is critical for the development of OSCC tumorigenesis. Targeting Snail might offer a new strategy for the treatment of OSCC patients with smoking habit. -- Highlights: ► Sustained nicotine treatment induced CSCs properties of oral epithelial cells. ► Long-term nicotine treatment enhance EMT properties of oral epithelial cells. ► Long-term nicotine exposure increased tumorigenicity of oral epithelial cells. ► Si

  12. Stem cell therapy to protect and repair the developing brain: a review of mechanisms of action of cord blood and amnion epithelial derived cells

    Directory of Open Access Journals (Sweden)

    Margie eCastillo-Melendez

    2013-10-01

    Full Text Available In the research, clinical and wider community there is great interest in the use of stem cells to reduce the progression, or indeed repair brain injury. Perinatal brain injury may result from acute or chronic insults sustained during fetal development, during the process of birth, or in the newborn period. The most readily identifiable outcome of perinatal brain injury is cerebral palsy, however this is just one consequence in a spectrum of mild to severe neurological deficits. As we review, there are now clinical trials taking place worldwide targeting cerebral palsy with stem cell therapies. It will likely be many years before strong evidence-based results emerge from these trials. With such trials underway, it is both appropriate and timely to address the physiological basis for the efficacy of stem-like cells in preventing damage to, or regenerating, the newborn brain. Appropriate experimental animal models are best placed to deliver this information. Cell availability, the potential for immunological rejection, ethical and logistical considerations, together with the propensity for native cells to form terratomas, make it unlikely that embryonic or fetal stem cells will be practical. Fortunately, these issues do not pertain to the use of human amnion epithelial cells (hAECs, or umbilical cord blood (UCB stem cells that are readily and economically obtained from the placenta and umbilical cord discarded at birth. These cells have the potential for transplantation to the newborn where brain injury is diagnosed or even suspected. We will explore the novel characteristics of hAECs and undifferentiated UCB cells, as well as UCB-derived endothelial progenitor cells and mesenchymal stem cells, and how immunomodulation and anti-inflammatory properties are principal mechanisms of action that are common to these cells, and which in turn may ameliorate the cerebral hypoxia and inflammation that are final pathways in the pathogenesis of perinatal brain

  13. Human epithelial hair follicle stem cells and their progeny: current state of knowledge, the widening gap in translational research and future challenges.

    Science.gov (United States)

    Purba, Talveen S; Haslam, Iain S; Poblet, Enrique; Jiménez, Francisco; Gandarillas, Alberto; Izeta, Ander; Paus, Ralf

    2014-05-01

    Epithelial hair follicle stem cells (eHFSCs) are required to generate, maintain and renew the continuously cycling hair follicle (HF), supply cells that produce the keratinized hair shaft and aid in the reepithelialization of injured skin. Therefore, their study is biologically and clinically important, from alopecia to carcinogenesis and regenerative medicine. However, human eHFSCs remain ill defined compared to their murine counterparts, and it is unclear which murine eHFSC markers really apply to the human HF. We address this by reviewing current concepts on human eHFSC biology, their immediate progeny and their molecular markers, focusing on Keratin 15 and 19, CD200, CD34, PHLDA1, and EpCAM/Ber-EP4. After delineating how human eHFSCs may be selectively targeted experimentally, we close by defining as yet unmet key challenges in human eHFSC research. The ultimate goal is to transfer emerging concepts from murine epithelial stem cell biology to human HF physiology and pathology. © 2014 WILEY Periodicals, Inc.

  14. Preliminary Studies on the Development of Monoclonal Antibodies Against Mycelia of Ganoderma boninense, the Causal Pathogen of Basal Stem Rot of Oil Palm

    Directory of Open Access Journals (Sweden)

    Shamala, S.

    2006-01-01

    Full Text Available This study aimed to raise specific MAbs against G. boninense, the causal pathogen of basal stem rot (BSR of oil palm. Crude mycelium extract of G. boninense was used as immunogen to generate MAbs. Mycelium was harvested from liquid culture and freeze-dried followed by re-suspension in phosphate buffer saline (PBS. Two 10-week old BALB-C mice were immunized with the mycelial extract. The mice were boosted once before harvesting their spleens for fusion. The MAbs were fused with myeloma cells from BALB-C mice. Initial screening was carried out using plate-trapped antigen enzyme-linked immunosorbent assay (PTA-ELISA with mycelial immunogen of G. boninense. The MAbs with positive signals were verified via secondary screening and cloned for cross-reactivity test. Cross-reactivity testing was carried out with 2 other fungi namely; Trichoderma and Botrytis along with 2 different species of Ganoderma commonly found in oil palm plantations namely; G. zonatum, and G. miniatocinctum. This study found that the MAbs raised against G. boninense were not specific as the MAbs gave positive signals through the cross-reactivity test with all fungi tested in the cross-reactivity. Future work would be using these MAbs in a co-immunization program whereby the generated Ganoderma sp generic monoclonal antibody will be pre-mixed with the G. boninense mycelium immunogen to allow reduction in the potential cross-reactivity of newly generated antibodies with Ganoderma sp. Our efforts are also currently directed at optimizing the immunogen preparation for the production of MAbs specific to G. boninense.

  15. Skin Stem Cell Hypotheses and Long Term Clone Survival - Explored Using Agent-based Modelling

    OpenAIRE

    Li, X.; Upadhyay, A.K.; Bullock, A.J.; Dicolandrea, T.; Xu, J.; Binder, R.L.; Robinson, M.K.; Finlay, D.R.; Mills, K.J.; Bascom, C.C.; Kelling, C.K.; Isfort, R.J.; Haycock, J.W.; MacNeil, S.; Smallwood, R.H.

    2013-01-01

    Epithelial renewal in skin is achieved by the constant turnover and differentiation of keratinocytes. Three popular hypotheses have been proposed to explain basal keratinocyte regeneration and epidermal homeostasis: 1) asymmetric division (stem-transit amplifying cell); 2) populational asymmetry (progenitor cell with stochastic fate); and 3) populational asymmetry with stem cells. In this study, we investigated lineage dynamics using these hypotheses with a 3D agent-based model of the epiderm...

  16. Easy xeno-free and feeder-free method for isolating and growing limbal stromal and epithelial stem cells of the human cornea.

    Directory of Open Access Journals (Sweden)

    Djida Ghoubay-Benallaoua

    Full Text Available Epithelial and stromal stem cells are required to maintain corneal transparency. The aim of the study was to develop a new method to isolate and grow both corneal stromal (SSC and epithelial limbal (LSC stem cells from small human limbal biopsies under culture conditions in accordance with safety requirements mandatory for clinical use in humans. Superficial limbal explants were retrieved from human donor corneo-scleral rims. Human limbal cells were dissociated by digestion with collagenase A, either after epithelial scraping or with no scraping. Isolated cells were cultured with Essential 8 medium (E8, E8 supplemented with EGF (E8+ or Green's medium with 3T3 feeder-layers. Cells were characterized by immunostaining, RT-qPCR, colony forming efficiency, sphere formation, population doubling, second harmonic generation microscopy and differentiation potentials. LSC were obtained from unscraped explants in E8, E8+ and Green's media and were characterized by colony formation and expression of PAX6, ΔNP63α, Bmi1, ABCG2, SOX9, CK14, CK15 and vimentin, with a few cells positive for CK3. LSC underwent 28 population doublings still forming colonies. SSC were obtained from both scraped and unscraped explants in E8 and E8+ media and were characterized by sphere formation, expression of PAX6, SOX2, BMI1, NESTIN, ABCG2, KERATOCAN, VIMENTIN, SOX9, SOX10 and HNK1, production of collagen fibrils and differentiation into keratocytes, fibroblasts, myofibroblasts, neurons, adipocytes, chondrocytes and osteocytes. SSC underwent 48 population doublings still forming spheres, Thus, this new method allows both SSC and LSC to be isolated from small superficial limbal biopsies and to be primary cultured in feeder-free and xeno-free conditions, which will be useful for clinical purposes.

  17. Normal and malignant epithelial cells with stem-like properties have an extended G2 cell cycle phase that is associated with apoptotic resistance

    Directory of Open Access Journals (Sweden)

    Biddle Adrian

    2010-04-01

    Full Text Available Abstract Background Subsets of cells with stem-like properties have been previously isolated from human epithelial cancers and their resistance to apoptosis-inducing stimuli has been related to carcinoma recurrence and treatment failure. The aim of this study was to investigate the mechanisms of resistance to apoptosis-inducing agents of cells with stem-like properties in both normal and malignant human epithelia. Methods Cells isolated from fresh human head and neck carcinomas (n = 11, cell lines derived from head and neck, prostate and breast human carcinomas (n = 7, and from normal human oral mucosa (n = 5, were exposed to various apoptosis-inducing stimuli (UV, Tumour Necrosis Factor, Cisplatin, Etoposide, and Neocarzinostatin. Flow cytometry for CD44 and epithelial-specific antigen (ESA expression, colony morphology, tumour sphere formation and rapid adherence assays were used to identify the subset of cells with stem-like properties. Apoptosis, cell cycle and expression of various cell cycle checkpoint proteins were assessed (Western Blot, qPCR. The role of G2-checkpoint regulators Chk1 and Chk2 was investigated by use of debromohymenialdisine (DBH and siRNA. Results In both cancer biopsies and carcinoma cell lines a subset of CD44high cells showed increased clonogenicity, a significantly lower rate of apoptosis, and a significantly higher proportion of cells in the G2-phase of the cell cycle. An inverse correlation between the percentage of cells in G2-phase and the rate of apoptosis was found. Pulse-chase with iododeoxyuridine (IdU demonstrated that CD44high carcinoma cells spent longer time in G2, even in un-treated controls. These cells expressed higher levels of G2 checkpoint proteins, and their release from G2 with BDH or Chk1 siRNA increased their rate of apoptosis. Low passage cultures of normal keratinocytes were also found to contain a subset of CD44high cells showing increased clonogenicity, and a similar pattern of G2-block

  18. Normal and malignant epithelial cells with stem-like properties have an extended G2 cell cycle phase that is associated with apoptotic resistance

    International Nuclear Information System (INIS)

    Harper, Lisa J; Costea, Daniela Elena; Gammon, Luke; Fazil, Bilal; Biddle, Adrian; Mackenzie, Ian C

    2010-01-01

    Subsets of cells with stem-like properties have been previously isolated from human epithelial cancers and their resistance to apoptosis-inducing stimuli has been related to carcinoma recurrence and treatment failure. The aim of this study was to investigate the mechanisms of resistance to apoptosis-inducing agents of cells with stem-like properties in both normal and malignant human epithelia. Cells isolated from fresh human head and neck carcinomas (n = 11), cell lines derived from head and neck, prostate and breast human carcinomas (n = 7), and from normal human oral mucosa (n = 5), were exposed to various apoptosis-inducing stimuli (UV, Tumour Necrosis Factor, Cisplatin, Etoposide, and Neocarzinostatin). Flow cytometry for CD44 and epithelial-specific antigen (ESA) expression, colony morphology, tumour sphere formation and rapid adherence assays were used to identify the subset of cells with stem-like properties. Apoptosis, cell cycle and expression of various cell cycle checkpoint proteins were assessed (Western Blot, qPCR). The role of G2-checkpoint regulators Chk1 and Chk2 was investigated by use of debromohymenialdisine (DBH) and siRNA. In both cancer biopsies and carcinoma cell lines a subset of CD44 high cells showed increased clonogenicity, a significantly lower rate of apoptosis, and a significantly higher proportion of cells in the G2-phase of the cell cycle. An inverse correlation between the percentage of cells in G2-phase and the rate of apoptosis was found. Pulse-chase with iododeoxyuridine (IdU) demonstrated that CD44 high carcinoma cells spent longer time in G2, even in un-treated controls. These cells expressed higher levels of G2 checkpoint proteins, and their release from G2 with BDH or Chk1 siRNA increased their rate of apoptosis. Low passage cultures of normal keratinocytes were also found to contain a subset of CD44 high cells showing increased clonogenicity, and a similar pattern of G2-block associated with apoptotic resistance. These data

  19. Study of epithelial differentiation and protein expression of keratinocyte-mesenchyme stem cell co-cultivation on electrospun nylon/B. vulgaris extract composite scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinzadeh, Simzar [School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Soleimani, Masoud [Department of Hematology, Faculty of Medical Sciences, TarbiatModares University, Tehran (Iran, Islamic Republic of); Vossoughi, Manuchehr [Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Ranjbarvan, Parviz [Department of Tissue Engineering, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hamedi, Shokoh [Department of Persian Pharmacy, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Zamanlui, Soheila [Tissue Engineering and Regenerative Medicine Institute, Tehran Central Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Mahmoudifard, Matin, E-mail: mahmodifard@mehr.sharif.edu [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Nanotechnology and Tissue Engineering Department, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of)

    2017-06-01

    Employing of the composite electrospun scaffold containing herbal extract in conjugation with co-culturing of cells can open up new window to the design of efficient biomaterials for skin tissue regeneration. Here, we introduce the synergistic effect of composite electrospun nanofibrous scaffold of nylon66 loaded with Beta vulgaris (B. vulgaris) (extract of beet roots, a plants whose widely used in Iranian folk medicine as wound healing medicine) and co-culture of mesenchymal stem-cells (MSCs)-human keratinocyte (H-keratino) differentiation towards epithelial lineage. In vitro biocompatibility was examined through MTT assay and epithelial differentiation checked by real-time PCR and immunocytochemistry (ICC) assay after co-culturing of MSCs and H-keratino on proposed scaffold. Significant enhancement in cell proliferation was detected after cell culturing on the composite type of electrospun scaffold containing B. vulgaris. Moreover, after 14 days of co-culturing process, gene expression results revealed that both composite and non-composite nylon66 electrospun scaffold promote epithelial differentiation compared to mono-cell culturing of H-keratino in terms of several markers as Cytokeratin 10, Cytokeratin 14 and Involucrin and ICC of some dermal proteins like Cytokeratin 14 and Loricrin. To the best of our knowledge, findings of this study will introduce new way for the generation of novel biomaterials for the development of current skin tissue engineering. - Highlights: • New way for the generation of novel biomaterials for the development of current skin tissue engineering. • Fabrication of novel composite scaffold containing Beta vulgaris through electrospinning • Synergistic effect was found on epithelial differentiation through co-culture of keratinocyte and MSC on proposed composite NFM.

  20. Mesenchymal Stem Cell Conditioned Medium Promotes Proliferation and Migration of Alveolar Epithelial Cells under Septic Conditions In Vitro via the JNK-P38 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2015-11-01

    Full Text Available Background/Aims: Mesenchymal stem cell (MSC based therapies may be useful for treating acute respiratory distress syndrome (ARDS, but the underlying mechanisms are incompletely understood. We investigated the impact of human umbilical cord Wharton's jelly-derived MSC (hUC-MSC secreted factors on alveolar epithelial cells under septic conditions and determined the relevant intracellular signaling pathways. Methods: Human alveolar epithelial cells (AEC and primary human small airway epithelial cells (SAEC were subjected to lipopolysaccharide (LPS with or without the presence of hUC-MSC-conditioned medium (CM. Proliferation and migration of AEC and SAEC were determined via an MTT assay, a wound healing assay and a transwell migration assay (only for AEC. Protein phosphorylation was determined by western blot and the experiments were repeated in presence of small-molecule inhibitors. The hMSC-secretory proteins were identified by LC-MS/MS mass spectrometry. Results: MSC-CM enhanced proliferation and migration. Activation of JNK and P38, but not ERK, was required for the proliferation and migration of AEC and SAEC. Pretreatment of AEC or SAEC with SP600125, an inhibitor of JNK1 or SB200358, an inhibitor of P38, significantly reduced cell proliferation and migration. An array of proteins including TGF-beta receptor type-1, TGF-beta receptor type-2, Ras-related C3 botulinum toxin substrate 1 and Ras-related C3 botulinum toxin substrate 2 which influencing the proliferation and migration of AEC and SAEC were detected in MSC-CM. Conclusion: Our data suggest MSC promote epithelial cell repair through releasing a repertoire of paracrine factors via activation of JNK and P38 MAPK.

  1. Study of epithelial differentiation and protein expression of keratinocyte-mesenchyme stem cell co-cultivation on electrospun nylon/B. vulgaris extract composite scaffold

    International Nuclear Information System (INIS)

    Hosseinzadeh, Simzar; Soleimani, Masoud; Vossoughi, Manuchehr; Ranjbarvan, Parviz; Hamedi, Shokoh; Zamanlui, Soheila; Mahmoudifard, Matin

    2017-01-01

    Employing of the composite electrospun scaffold containing herbal extract in conjugation with co-culturing of cells can open up new window to the design of efficient biomaterials for skin tissue regeneration. Here, we introduce the synergistic effect of composite electrospun nanofibrous scaffold of nylon66 loaded with Beta vulgaris (B. vulgaris) (extract of beet roots, a plants whose widely used in Iranian folk medicine as wound healing medicine) and co-culture of mesenchymal stem-cells (MSCs)-human keratinocyte (H-keratino) differentiation towards epithelial lineage. In vitro biocompatibility was examined through MTT assay and epithelial differentiation checked by real-time PCR and immunocytochemistry (ICC) assay after co-culturing of MSCs and H-keratino on proposed scaffold. Significant enhancement in cell proliferation was detected after cell culturing on the composite type of electrospun scaffold containing B. vulgaris. Moreover, after 14 days of co-culturing process, gene expression results revealed that both composite and non-composite nylon66 electrospun scaffold promote epithelial differentiation compared to mono-cell culturing of H-keratino in terms of several markers as Cytokeratin 10, Cytokeratin 14 and Involucrin and ICC of some dermal proteins like Cytokeratin 14 and Loricrin. To the best of our knowledge, findings of this study will introduce new way for the generation of novel biomaterials for the development of current skin tissue engineering. - Highlights: • New way for the generation of novel biomaterials for the development of current skin tissue engineering. • Fabrication of novel composite scaffold containing Beta vulgaris through electrospinning • Synergistic effect was found on epithelial differentiation through co-culture of keratinocyte and MSC on proposed composite NFM

  2. Conditioned Medium from Adipose-Derived Stem Cells (ADSCs) Promotes Epithelial-to-Mesenchymal-Like Transition (EMT-Like) in Glioma Cells In vitro.

    Science.gov (United States)

    Iser, Isabele C; Ceschini, Stefanie M; Onzi, Giovana R; Bertoni, Ana Paula S; Lenz, Guido; Wink, Márcia R

    2016-12-01

    Mesenchymal stem cells (MSCs) have recently been described to home to brain tumors and to integrate into the tumor-associated stroma. Understanding the communication between cancer cells and MSCs has become fundamental to determine whether MSC-tumor interactions should be exploited as a vehicle for therapeutic agents or considered a target for intervention. Therefore, we investigated whether conditioned medium from adipose-derived stem cells (ADSCs-CM) modulate glioma tumor cells by analyzing several cell biology processes in vitro. C6 rat glioma cells were treated with ADSCs-CM, and cell proliferation, cell cycle, cell viability, cell morphology, adhesion, migration, and expression of epithelial-mesenchymal transition (EMT)-related surface markers were analyzed. ADSCs-CM did not alter cell viability, cell cycle, and growth rate of C6 glioma cells but increased their migratory capacity. Moreover, C6 cells treated with ADSC-CM showed reduced adhesion and underwent changes in cell morphology. Up-regulation of EMT-associated markers (vimentin, MMP2, and NRAS) was also observed following treatment with ADSC-CM. Our findings demonstrate that the paracrine factors released by ADSCs are able to modulate glioma cell biology. Therefore, ADSC-tumor cell interactions in a tumor microenvironment must be considered in the design of clinical application of stem cell therapy. Graphical Abstract Factors released by adipose-derived stem cells (ADSCs) may modulate the biology of C6 glioma cells. When C6 cells are exposed to a conditioned medium from adipose-derived stem cells (ADSCs-CM), some of these cells can undergo an EMT-like process and trans-differentiate into cells with a more mesenchymal phenotype, characterized by enhanced expression of EMT-related surface markers, reduced cell adhesion capacity, increased migratory capacity, as well as changes in cell and nuclei morphology.

  3. Hybrid clone cells derived from human breast epithelial cells and human breast cancer cells exhibit properties of cancer stem/initiating cells.

    Science.gov (United States)

    Gauck, Daria; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas

    2017-08-02

    The biological phenomenon of cell fusion has been associated with cancer progression since it was determined that normal cell × tumor cell fusion-derived hybrid cells could exhibit novel properties, such as enhanced metastatogenic capacity or increased drug resistance, and even as a mechanism that could give rise to cancer stem/initiating cells (CS/ICs). CS/ICs have been proposed as cancer cells that exhibit stem cell properties, including the ability to (re)initiate tumor growth. Five M13HS hybrid clone cells, which originated from spontaneous cell fusion events between M13SV1-EGFP-Neo human breast epithelial cells and HS578T-Hyg human breast cancer cells, and their parental cells were analyzed for expression of stemness and EMT-related marker proteins by Western blot analysis and confocal laser scanning microscopy. The frequency of ALDH1-positive cells was determined by flow cytometry using AldeRed fluorescent dye. Concurrently, the cells' colony forming capabilities as well as the cells' abilities to form mammospheres were investigated. The migratory activity of the cells was analyzed using a 3D collagen matrix migration assay. M13HS hybrid clone cells co-expressed SOX9, SLUG, CK8 and CK14, which were differently expressed in parental cells. A variation in the ALDH1-positive putative stem cell population was observed among the five hybrids ranging from 1.44% (M13HS-7) to 13.68% (M13HS-2). In comparison to the parental cells, all five hybrid clone cells possessed increased but also unique colony formation and mammosphere formation capabilities. M13HS-4 hybrid clone cells exhibited the highest colony formation capacity and second highest mammosphere formation capacity of all hybrids, whereby the mean diameter of the mammospheres was comparable to the parental cells. In contrast, the largest mammospheres originated from the M13HS-2 hybrid clone cells, whereas these cells' mammosphere formation capacity was comparable to the parental breast cancer cells. All M13HS

  4. [Effects of human amniotic epithelial stem cells-derived exosomes on healing of wound with full-thickness skin defect in rats].

    Science.gov (United States)

    Zhao, B; Wu, G F; Zhang, Y J; Zhang, W; Yang, F F; Xiao, D; Zeng, K X; Shi, J H; Su, L L; Hu, D H

    2017-01-20

    Objective: To investigate the effects of human amniotic epithelial stem cells-derived exosomes on healing of wound with full-thickness skin defect in rats. Methods: (1) Human amniotic epithelial stem cells were isolated from the amnion tissue of 5 full-term pregnant women in Department of Obstetrics of our hospital by the method of trypsin digestion, and their morphology was observed. The third passage of cells were stained with rhodamine-phalloidin for cytoskeleton observation. The third passage of cells were identified with flow cytometry through the detection of expressions of cell surface markers CD29, CD31, CD34, CD90, CD105, SSEA3, SSEA4 and immunity-related marker human leukocyte antigen-D related site (HLA-DR). The third passage of cells were also assessed the ability of adipogenic and osteogenic differentiation. (2) The third passage of human amniotic epithelial stem cells were cultured in DMEM medium supplemented with 10% exosome-free fetal bovine serum. Exosomes were isolated from culture supernatant by the method of ultracentrifugation and represented with scanning electron microscope for morphologic observation. (3) Six adult SD rats were anesthetized, and four 1 cm×1 cm sized wounds with full-thickness skin defect were made on the back of each rat. The wounds on the back of each rat were divided into control group, 25 μg/mL exosomes group, 50 μg/mL exosomes group, and 100 μg/mL exosomes group according to the random number table (with 6 wounds in each group), and a total volume of 100 μL phosphate buffered saline, 25 μg/mL exosomes, 50 μg/mL exosomes, and 100 μg/mL exosomes were evenly injected around the wound through multiple subcutaneous sites, respectively. The wound healing rate was calculated based on measurement on post injury day (PID) 7, 14, and 21. On PID 21, the healed wound tissue of each group was collected and stained with HE to observe and count skin accessories, and the arrangement of collagen fibers was observed with Masson

  5. DENTAL PULP STEM CELLS AND HUMAN PERIAPICAL CYST MESENCHYMAL STEM CELLS IN BONE TISSUE REGENERATION: COMPARISON OF BASAL AND OSTEOGENIC DIFFERENTIATED GENE EXPRESSION OF A NEWLY DISCOVERED MESENCHYMAL STEM CELL LINEAGE.

    Science.gov (United States)

    Tatullo, M; Falisi, G; Amantea, M; Rastelli, C; Paduano, F; Marrelli, M

    2015-01-01

    Bone regeneration is an interesting field of biomedicine. The most recent studies are aimed to achieve a bone regeneration using mesenchymal stem cells (MSCs) taken from more accessible sites: oral and dental tissues have been widely investigated as a rich accessible source of MSCs. Dental Pulp Stem Cells (DPSCs) and human Periapical Cysts Mesenchymal Stem Cells (hPCy-MSCs) represent the new generation MSCs. The aim of this study is to compare the gene expression of these two innovative cell types to highlight the advantages of their use in bone regeneration. The harvesting, culturing and differentiating of cells isolated from dental pulp as well as from periapical cystic tissue were carried out as described in previously published reports. qRT-PCR analyses were performed on osteogenic genes in undifferentiated and osteogenic differentiated cells of DPSC and hPCy-MSC lineage. Real-time RT-PCR data suggested that both DPSCs and hPCy-MSCs cultured in osteogenic media are able to differentiate into osteoblast/odontoblast-like cells: however, some differences indicated that DPSCs seem to be directed more towards dentinogenesis, while hPCy-MSCs seem to be directed more towards osteogenesis.

  6. Induced pluripotent stem cells inhibit bleomycin-induced pulmonary fibrosis in mice through suppressing TGF-β1/Smad-mediated epithelial to mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Yan Zhou

    2016-11-01

    Full Text Available Pulmonary fibrosis is a progressive and irreversible fibrotic lung disorder with high mortality and few treatment options. Recently, induced pluripotent stem (iPS cells have been considered as an ideal resource for stem cell-based therapy. Although an earlier study demonstrated the therapeutic effect of iPS cells on pulmonary fibrosis, the exact mechanisms remain obscure. The present study investigated the effects of iPS cells on inflammatory responses, transforming growth factor (TGF-β1 signaling pathway, and epithelial to mesenchymal transition (EMT during bleomycin (BLM-induced lung fibrosis. A single intratracheal instillation of BLM (5 mg/kg was performed to induce pulmonary fibrosis in C57BL/6 mice. Then, iPS cells (c-Myc-free were administrated intravenously at 24 h following BLM instillation. Three weeks after BLM administration, pulmonary fibrosis was evaluated. As expected, treatment with iPS cells significantly limited the pathological changes, edema, and collagen deposition in lung tissues of BLM-induced mice. Mechanically, treatment with iPS cells obviously repressed the expression ratios of matrix metalloproteinase-2 (MMP-2 to its tissue inhibitor -2 (TIMP-2 and MMP-9/TIMP-1 in BLM-induced pulmonary tissues. In addition, iPS cell administration remarkably suppressed BLM-induced up-regulation of pulmonary inflammatory mediators, including tumor necrosis factor-α, interleukin (IL-1β, IL-6, inducible nitric oxide synthase, nitric oxide, cyclooxygenase-2 and prostaglandin E2. We further demonstrated that transplantation of iPS cells markedly inhibited BLM-mediated activation of TGF-β1/Mothers against decapentaplegic homolog 2/3 (Smad2/3 and EMT in lung tissues through up-regulating epithelial marker E-cadherin and down-regulating mesenchymal markers including fibronectin, vimentin and α-smooth muscle actin. Moreover, in vitro, iPS cell-conditioned medium (iPSC-CM profoundly inhibited TGF-β1-induced EMT signaling pathway in mouse

  7. The Potential Role of Hedgehog Signaling in the Luminal/Basal Phenotype of Breast Epithelia and in Breast Cancer Invasion and Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Flemban, Arwa [Department of Biological, Biomedical and Analytical Sciences, Faculty of Health and Applied Sciences, University of West of England, Bristol BS16 1QY (United Kingdom); Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382 (Saudi Arabia); Qualtrough, David, E-mail: david.qualtrough@uwe.ac.uk [Department of Biological, Biomedical and Analytical Sciences, Faculty of Health and Applied Sciences, University of West of England, Bristol BS16 1QY (United Kingdom)

    2015-09-16

    The epithelium of the lactiferous ducts in the breast is comprised of luminal epithelial cells and underlying basal myoepithelial cells. The regulation of cell fate and transit of cells between these two cell types remains poorly understood. This relationship becomes of greater importance when studying the subtypes of epithelial breast carcinoma, which are categorized according to their expression of luminal or basal markers. The epithelial mesenchymal transition (EMT) is a pivotal event in tumor invasion. It is important to understand mechanisms that regulate this process, which bears relation to the normal dynamic of epithelial/basal phenotype regulation in the mammary gland. Understanding this process could provide answers for the regulation of EMT in breast cancer, and thereby identify potential targets for therapy. Evidence points towards a role for hedgehog signaling in breast tissue homeostasis and also in mammary neoplasia. This review examines our current understanding of role of the hedgehog-signaling (Hh) pathway in breast epithelial cells both during breast development and homeostasis and to assess the potential misappropriation of Hh signals in breast neoplasia, cancer stem cells and tumor metastasis via EMT.

  8. The Potential Role of Hedgehog Signaling in the Luminal/Basal Phenotype of Breast Epithelia and in Breast Cancer Invasion and Metastasis

    International Nuclear Information System (INIS)

    Flemban, Arwa; Qualtrough, David

    2015-01-01

    The epithelium of the lactiferous ducts in the breast is comprised of luminal epithelial cells and underlying basal myoepithelial cells. The regulation of cell fate and transit of cells between these two cell types remains poorly understood. This relationship becomes of greater importance when studying the subtypes of epithelial breast carcinoma, which are categorized according to their expression of luminal or basal markers. The epithelial mesenchymal transition (EMT) is a pivotal event in tumor invasion. It is important to understand mechanisms that regulate this process, which bears relation to the normal dynamic of epithelial/basal phenotype regulation in the mammary gland. Understanding this process could provide answers for the regulation of EMT in breast cancer, and thereby identify potential targets for therapy. Evidence points towards a role for hedgehog signaling in breast tissue homeostasis and also in mammary neoplasia. This review examines our current understanding of role of the hedgehog-signaling (Hh) pathway in breast epithelial cells both during breast development and homeostasis and to assess the potential misappropriation of Hh signals in breast neoplasia, cancer stem cells and tumor metastasis via EMT

  9. Cyr61/CCN1 signaling is critical for epithelial-mesenchymal transition and stemness and promotes pancreatic carcinogenesis

    Directory of Open Access Journals (Sweden)

    Van Veldhuizen Peter J

    2011-01-01

    Full Text Available Abstract Background Despite recent advances in outlining the mechanisms involved in pancreatic carcinogenesis, precise molecular pathways and cellular lineage specification remains incompletely understood. Results We show here that Cyr61/CCN1 play a critical role in pancreatic carcinogenesis through the induction of EMT and stemness. Cyr61 mRNA and protein were detected in the early precursor lesions and their expression intensified with disease progression. Cyr61/CCN1 expression was also detected in different pancreatic cancer cell lines. The aggressive cell lines, in which the expressions of mesenchymal/stem cell molecular markers are predominant; exhibit more Cyr61/CCN1 expression. Cyr61 expression is exorbitantly higher in cancer stem/tumor initiating Panc-1-side-population (SP cells. Upon Cyr61/CCN1 silencing, the aggressive behaviors are reduced by obliterating interlinking pathobiological events such as reversing the EMT, blocking the expression of stem-cell-like traits and inhibiting migration. In contrast, addition of Cyr61 protein in culture medium augments EMT and stemness features in relatively less aggressive BxPC3 pancreatic cancer cells. Using a xenograft model we demonstrated that cyr61/CCN1 silencing in Panc-1-SP cells reverses the stemness features and tumor initiating potency of these cells. Moreover, our results imply a miRNA-based mechanism for the regulation of aggressive behaviors of pancreatic cancer cells by Cyr61/CCN1. Conclusions In conclusion, the discovery of the involvement of Cyr61/CCN1 in pancreatic carcinogenesis may represent an important marker for PDAC and suggests Cyr61/CCN1 can be a potential cancer therapeutic target.

  10. Impaired epithelial differentiation of induced pluripotent stem cells from ectodermal dysplasia-related patients is rescued by the small compound APR-246/PRIMA-1MET.

    Science.gov (United States)

    Shalom-Feuerstein, Ruby; Serror, Laura; Aberdam, Edith; Müller, Franz-Josef; van Bokhoven, Hans; Wiman, Klas G; Zhou, Huiqing; Aberdam, Daniel; Petit, Isabelle

    2013-02-05

    Ectodermal dysplasia is a group of congenital syndromes affecting a variety of ectodermal derivatives. Among them, ectrodactyly, ectodermal dysplasia, and cleft lip/palate (EEC) syndrome is caused by single point mutations in the p63 gene, which controls epidermal development and homeostasis. Phenotypic defects of the EEC syndrome include skin defects and limbal stem-cell deficiency. In this study, we designed a unique cellular model that recapitulated major embryonic defects related to EEC. Fibroblasts from healthy donors and EEC patients carrying two different point mutations in the DNA binding domain of p63 were reprogrammed into induced pluripotent stem cell (iPSC) lines. EEC-iPSC from both patients showed early ectodermal commitment into K18(+) cells but failed to further differentiate into K14(+) cells (epidermis/limbus) or K3/K12(+) cells (corneal epithelium). APR-246 (PRIMA-1(MET)), a small compound that restores functionality of mutant p53 in human tumor cells, could revert corneal epithelial lineage commitment and reinstate a normal p63-related signaling pathway. This study illustrates the relevance of iPSC for p63 related disorders and paves the way for future therapy of EEC.

  11. Mesenchymal stem cells promote cell invasion and migration and autophagy-induced epithelial-mesenchymal transition in A549 lung adenocarcinoma cells.

    Science.gov (United States)

    Luo, Dan; Hu, Shiyuan; Tang, Chunlan; Liu, Guoxiang

    2018-03-01

    Mesenchymal stem cells (MSCs) are recruited into the tumour microenvironment and promote tumour growth and metastasis. Tumour microenvironment-induced autophagy is considered to suppress primary tumour formation by impairing migration and invasion. Whether these recruited MSCs regulate tumour autophagy and whether autophagy affects tumour growth are controversial. Our data showed that MSCs promote autophagy activation, reactive oxygen species production, and epithelial-mesenchymal transition (EMT) as well as increased migration and invasion in A549 cells. Decreased expression of E-cadherin and increased expression of vimentin and Snail were observed in A549 cells cocultured with MSCs. Conversely, MSC coculture-mediated autophagy positively promoted tumour EMT. Autophagy inhibition suppressed MSC coculture-mediated EMT and reduced A549 cell migration and invasion slightly. Furthermore, the migratory and invasive abilities of A549 cells were additional increased when autophagy was further enhanced by rapamycin treatment. Taken together, this work suggests that microenvironments containing MSCs can promote autophagy activation for enhancing EMT; MSCs also increase the migratory and invasive abilities of A549 lung adenocarcinoma cells. Mesenchymal stem cell-containing microenvironments and MSC-induced autophagy signalling may be potential targets for blocking lung cancer cell migration and invasion. Copyright © 2018 John Wiley & Sons, Ltd.

  12. The Use of an IL-1 Receptor Antagonist Peptide to Control Inflammation in the Treatment of Corneal Limbal Epithelial Stem Cell Deficiency

    Directory of Open Access Journals (Sweden)

    E. Fok

    2015-01-01

    Full Text Available Corneal limbal stem cell deficiency (LSCD may be treated using ex vivo limbal epithelial stem cells (LESCs derived from cadaveric donor tissue. However, continuing challenges exist around tissue availability, inflammation, and transplant rejection. Lipopolysaccharide (LPS or recombinant human IL-1β stimulated primary human keratocyte and LESC models were used to investigate the anti-inflammatory properties of a short chain, IL-1 receptor antagonist peptide for use in LESC sheet growth to control inflammation. The peptide was characterized using mass spectroscopy and high performance liquid chromatography. Peptide cytotoxicity, patterns of cell cytokine expression in response to LPS or IL-1β stimulation, and peptide suppression of this response were investigated by MTS/LDH assays, ELISA, and q-PCR. Cell differences in LPS stimulated toll-like receptor 4 expression were investigated using immunocytochemistry. A significant reduction in rIL-1β stimulated inflammatory cytokine production occurred following LESC and keratocyte incubation with anti-inflammatory peptide and in LPS stimulated IL-6 and IL-8 production following keratocyte incubation with peptide (1 mg/mL P<0.05. LESCs produced no cytokine response to LPS stimulation and showed no TLR4 expression. The peptide supported LESC growth when adhered to a silicone hydrogel contact lens indicating potential use in improved LESC grafting through suppression of inflammation.

  13. Subepithelial corneal fibrosis partially due to epithelial-mesenchymal transition of ocular surface epithelium

    Science.gov (United States)

    Kawashima, Motoko; Higa, Kazunari; Satake, Yoshiyuki; Omoto, Masahiro; Tsubota, Kazuo; Shimmura, Shigeto; Shimazaki, Jun

    2010-01-01

    Purpose To determine whether epithelial-mesenchymal transition is involved in the development of corneal subepithelial fibrosis (pannus). Methods Frozen samples of pannus tissue removed from human corneas with a diagnosis of total limbal stem cell deficiency were characterized by immunostaining for both epithelial and mesenchymal markers. We selected transformation-related protein 63 (p63) and pancytokeratin as epithelial markers and vimentin and α-smooth muscle actin (α-SMA) as mesenchymal markers. Immunostaining for β-catenin and E-cadherin was performed to determine wingless-Int (Wnt)-pathway activation. RT–PCR analysis was also performed on epithelial tissue obtained from pannus samples after dispase digestion. Results Immunohistochemistry revealed strong nuclear expression of p63 and weak intercellular expression of E-cadherin in epithelial basal cells of pannus tissue. Furthermore, translocation of β-catenin from intercellular junctions to the nucleus and cytoplasm was also observed. Double-positive cells for both p63 and α-SMA were observed in the subepithelial stroma of pannus tissue, which was supported by RT–PCR and cytospin analysis. Conclusions Epithelial-mesenchymal transition may be partially involved in the development of subepithelial corneal fibrosis due to total limbal stem cell deficiency. PMID:21179238

  14. Epigallocathechin gallate, polyphenol present in green tea, inhibits stem-like characteristics and epithelial-mesenchymal transition in nasopharyngeal cancer cell lines

    Directory of Open Access Journals (Sweden)

    Lin Chien-Hung

    2012-10-01

    Full Text Available Abstract Background Previous studies have demonstrated that the consumption of green tea inhibits the growth of various cancers. Most cancers are believed to be initiated from and maintained by a small population of cancer stem-like cells (CSC or tumor-initiating cells (TIC that are responsible for tumor relapse and chemotherapeutic resistance. Although epigallocathechin gallate (EGCG, the most abundant catechin in green tea, has been reported to induce growth inhibition and apoptosis in some cancer cells, its effect on CSC is undefined. In this study, we enriched CSC by the sphere formation, and provided an efficient model for further experiments. Using this method, we examined the effects of EGCG regulating the nasopharyngeal carcinoma (NPC CSC and attempted to elucidate the possible mechanisms. Methods NPC TW01 and TW06 cell lines were enriched by sphere formation and characterized their phenotypical properties, such as invasion capacity, epithelial-mesenchymal transition (EMT and gene expression were analyzed by quantitative real-time reverse transcription polymerase chain reaction (q-RT-PCR. EGCG-induced growth inhibition in the parental and sphere-derived cells was determined by MTT and bromodeoxyuridine (BrdU assay. EGCG-induced apoptosis was analyzed by flow cytometry with Annexin V and PI staining. The effects of EGCG on sphere-derived cell tumorigenicity, migration and invasion were determined by soft agar assay, wound healing, and cell invasion assay. The alternation of protein expression regulated by EGCG on these sphere-derived cells was assessed by immunofluorescence staining and western blot. Results NPC sphere-derived cells grown in serum-free non-adherent culture showed increased expression of stem cell markers and EMT markers compared to parental cells grown in conventional culture. Although EGCG induced growth inhibition and apoptosis in the parental cells in a dose-dependent manner, it was not as effective against spheres

  15. Porcine epidermal stem cells as a biomedical model for wound healing and normal/malignant epithelial cell propagation

    Czech Academy of Sciences Publication Activity Database

    Motlík, Jan; Klíma, Jiří; Dvořánková, B.; Smetana, K. Jr.

    2007-01-01

    Roč. 67, - (2007), s. 105-111 ISSN 0093-691X Grant - others:GA ČR(CZ) GA304/04/0171 Institutional research plan: CEZ:AV0Z50450515 Keywords : pig * stem cell * epidermis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.911, year: 2007

  16. Human stem cell-derived retinal epithelial cells activate complement via collectin 11 in response to stress

    DEFF Research Database (Denmark)

    Fanelli, Giorgia; Gonzalez-Cordero, Anai; Gardner, Peter J

    2017-01-01

    Age-related macular degeneration (AMD) is a major cause of blindness and is associated with complement dysregulation. The disease is a potential target for stem cell therapy but success is likely to be limited by the inflammatory response. We investigated the innate immune properties of human ind...

  17. Basal Cell Carcinoma

    Science.gov (United States)

    ... Kids’ zone Video library Find a dermatologist Basal cell carcinoma Overview Basal cell carcinoma: This skin cancer ... that has received years of sun exposure. Basal cell carcinoma: Overview Basal cell carcinoma (BCC) is the ...

  18. Differentiation of Neonatal Human-Induced Pluripotent Stem Cells to Prostate Epithelial Cells: A Model to Study Prostate Cancer Development

    Science.gov (United States)

    2013-06-01

    38, 40, 41]. Because these “ mela - noma stem cells” (MSC) are sometimes so numerous, some have argued that the CSC model may not apply to melanoma...40]. There are data from two groups indicating that mela - noma lesions contain a CSC subset character- ized by CD271 expression [25, 26]. In a...neuronal proteins and neuron- like differentiation has been long recognized in neoplastic melanocytes [46, 47]. Certain mela - noma cell lines that

  19. Epithelial-mesenchymal transition and cancer stem cells, mediated by a long non-coding RNA, HOTAIR, are involved in cell malignant transformation induced by cigarette smoke extract

    International Nuclear Information System (INIS)

    Liu, Yi; Luo, Fei; Xu, Yuan; Wang, Bairu; Zhao, Yue; Xu, Wenchao; Shi, Le; Lu, Xiaolin; Liu, Qizhan

    2015-01-01

    The incidence of lung diseases, including cancer, caused by cigarette smoke is increasing, but the molecular mechanisms of gene regulation induced by cigarette smoke remain unclear. This report describes a long noncoding RNA (lncRNA) that is induced by cigarette smoke extract (CSE) and experiments utilizing lncRNAs to integrate inflammation with the epithelial-mesenchymal transition (EMT) in human bronchial epithelial (HBE) cells. The present study shows that, induced by CSE, IL-6, a pro-inflammatory cytokine, leads to activation of STAT3, a transcription activator. A ChIP assay determined that the interaction of STAT3 with the promoter regions of HOX transcript antisense RNA (HOTAIR) increased levels of HOTAIR. Blocking of IL-6 with anti-IL-6 antibody, decreasing STAT3, and inhibiting STAT3 activation reduced HOTAIR expression. Moreover, for HBE cells cultured in the presence of HOTAIR siRNA for 24 h, the CSE-induced EMT, formation of cancer stem cells (CSCs), and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates HOTAIR in an autocrine manner, contributes to the EMT and to CSCs induced by CSE. These data define a link between inflammation and EMT, processes involved in the malignant transformation of cells caused by CSE. This link, mediated through lncRNAs, establishes a mechanism for CSE-induced lung carcinogenesis. - Highlights: • STAT3 directly regulates the levels of LncRNA HOTAIR. • LncRNA HOTAIR mediates the link between inflammation and EMT. • LncRNA HOTAIR is involved in the malignant transformation of cells caused by CSE

  20. Role of epimorphin in bile duct formation of rat liver epithelial stem-like cells: involvement of small G protein RhoA and C/EBPβ.

    Science.gov (United States)

    Jia, Yali; Yao, Hailei; Zhou, Junnian; Chen, Lin; Zeng, Quan; Yuan, Hongfeng; Shi, Lei; Nan, Xue; Wang, Yunfang; Yue, Wen; Pei, Xuetao

    2011-11-01

    Epimorphin/syntaxin 2 is a high conserved and very abundant protein involved in epithelial morphogenesis in various organs. We have shown recently that epimorphin (EPM), a protein exclusively expressed on the surface of hepatic stellate cells and myofibroblasts of the liver, induces bile duct formation of hepatic stem-like cells (WB-F344 cells) in a putative biophysical way. Therefore, the aim of this study was to present some of the molecular mechanisms by which EPM mediates bile duct formation. We established a biliary differentiation model by co-culture of EPM-overexpressed mesenchymal cells (PT67(EPM)) with WB-F344 cells. Here, we showed that EPM could promote WB-F344 cells differentiation into bile duct-like structures. Biliary differentiation markers were also elevated by EPM including Yp, Cx43, aquaporin-1, CK19, and gamma glutamyl transpeptidase (GGT). Moreover, the signaling pathway of EPM was analyzed by focal adhesion kinase (FAK), extracellular regulated kinase 1/2 (ERK1/2), and RhoA Western blot. Also, a dominant negative (DN) RhoA-WB-F344 cell line (WB(RhoA-DN)) was constructed. We found that the levels of phosphorylation (p) of FAK and ERK1/2 were up-regulated by EPM. Most importantly, we also showed that RhoA is necessary for EPM-induced activation of FAK and ERK1/2 and bile duct formation. In addition, a dual luciferase-reporter assay and CHIP assay was performed to reveal that EPM regulates GGT IV and GGT V expression differentially, possibly mediated by C/EBPβ. Taken together, these data demonstrated that EPM regulates bile duct formation of WB-F344 cells through effects on RhoA and C/EBPβ, implicating a dual aspect of this morphoregulator in bile duct epithelial morphogenesis. Copyright © 2011 Wiley-Liss, Inc.

  1. Polycyclic aromatic hydrocarbons modulate cell proliferation in rat hepatic epithelial stem-like WB-F344 cells

    International Nuclear Information System (INIS)

    Chramostova, Katerina; Vondracek, Jan; Sindlerova, Lenka; Vojtesek, Borivoj; Kozubik, Alois; Machala, Miroslav

    2004-01-01

    Although many polycyclic aromatic hydrocarbons (PAHs) are recognized as potent mutagens and carcinogens, relatively little is known about their role in the tumor promotion. It is known that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can induce release of rat hepatic oval epithelial cells from contact inhibition by a mechanism possibly involving the aryl hydrocarbon receptor (AhR) activation. Many PAHs are AhR ligands and are known to act as transient inducers of AhR-mediated activity. In this study, effects of 19 selected PAHs on proliferation of confluent rat liver epithelial WB-F344 cells were investigated. Non-mutagens that are weak activators or nonactivators of AhR-mediated activity had no effect on cell proliferation. Relatively strong or moderate AhR ligands with low mutagenic potencies, such as benzofluoranthenes, benz[a]anthracene, and chrysene, were found to increase cell numbers, which corresponded to an increased percentage of cells entering S-phase. Strong mutagens, including benzo[a]pyrene and dibenzo[a,l]pyrene, increased a percentage of cells in S-phase without inducing a concomitant increase in cell numbers. The treatment with mutagenic PAHs was associated with an increased DNA synthesis and induction of cell death, which corresponded with the activation of p53 tumor suppressor. Apoptosis was blocked by pifithrin-α, the chemical inhibitor of p53. Both weakly and strongly mutagenic PAHs known as AhR ligands were found to induce significant increase of cytochrome P4501A activity, suggesting a presence of functional AhR. The results of the present study seem to suggest that a release from contact inhibition could be a part of tumor promoting effects of AhR-activating PAHs; however, the genotoxic effects of some PAHs associated with p53 activation might interfere with this process

  2. Cyclin D1 affects epithelial–mesenchymal transition in epithelial ovarian cancer stem cell-like cells

    Directory of Open Access Journals (Sweden)

    Jiao J

    2013-06-01

    Full Text Available Jie Jiao,1,4 Lu Huang,1 Feng Ye,1 MinFeng Shi,2 XiaoDong Cheng,3 XinYu Wang,3 DongXiao Hu,3 Xing Xie,3 WeiGuo Lu31Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 2Department of Gynaecology and Obstetrics, Changhai Hospital, the Second Military Medical University, Shanghai, 3Women's Reproductive Health Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 4Department of Gynaecology and Obstetrics, Hangzhou First People's Hospital, Hangzhou, People's Republic of ChinaBackground: The association of cancer stem cells with epithelial–mesenchymal transition (EMT is receiving attention. We found in our previous study that EMT existed from CD24- phenotype cells to their differentiated cells. It was shown that cyclin D1 functioned in sustaining self-renewal independent of CDK4/CDK6 activation, but its effect on the EMT mechanism in ovarian cancer stem cells is unclear.Methods: The anchorage-independent spheroids from ovarian adenocarcinoma cell line 3AO were formed in a serum-free medium. CD24- and CD24+ cells were isolated by fluorescence-activated cell sorting. Cell morphology, viability, apoptosis, and migratory ability were observed. Stem-related molecule Bmi-1, Oct-4 and EMT-related marker E-cadherin, and vimentin expressions were analyzed. Cyclin D1 expression in CD24- phenotype enriched spheroids was knocked down with small interfering RNA, and its effects on cell proliferation, apoptosis, migration ability, and EMT-related phenotype after transfection were observed. Results: In our study, CD24- cells presented stronger proliferative, anti-apoptosis capacity, and migratory ability, than CD24+ cells or parental cells. CD24- cells grew with a scattered spindle-shape within 3 days of culture and transformed into a cobblestone-like shape, identical to CD24+ cells or parental cells at 7

  3. Aging is associated with an expansion of CD49fhi mammary stem cells that show a decline in function and increased transformation potential.

    Science.gov (United States)

    Dong, Qiaoxiang; Gao, Hui; Shi, Yuanshuo; Zhang, Fuchuang; Gu, Xiang; Wu, Anqi; Wang, Danhan; Chen, Yuanhong; Bandyopadhyay, Abhik; Yeh, I-Tien; Daniel, Benjamin J; Chen, Yidong; Zou, Yi; Rebel, Vivienne L; Walter, Christi A; Lu, Jianxin; Huang, Changjiang; Sun, Lu-Zhe

    2016-11-15

    Breast cancer incidence increases during aging, yet the mechanism of age-associated mammary tumorigenesis is unclear. Mammary stem cells are believed to play an important role in breast tumorigenesis, but how their function changes with age is unknown. We compared mammary epithelial cells isolated from young and old mammary glands of different cohorts of C57BL6/J and BALB/c mice, and our findings revealed that old mammary glands were characterized by increased basal cell pool comprised of mostly CD49f hi cells, altered luminal-to-basal cell ratio, and irregular ductal morphology. More interestingly, basal stem cells in old mice were increased in frequency, but showed a functional decline of differentiation and increased neoplastic transformation potential. Gene signature enrichment analysis revealed a significant enrichment of a luminal cell gene expression signature in the basal stem cell-enriched population from old mice, suggesting some luminal cells were expressing basal markers. Immunofluorescence staining confirmed the presence of luminal cells with high CD49f expression in hyperplastic lesions implicating these cells as undergoing luminal to basal phenotypic changes during aging. Whole transcriptome analysis showed elevated immune and inflammatory responses in old basal stem cells and stromal cells, which may be the underlying cause for increased CD49f hi basal-like cells in aged glands.

  4. Functional study of risk loci of stem cell-associated gene lin-28B and associations with disease survival outcomes in epithelial ovarian cancer.

    Science.gov (United States)

    Lu, Lingeng; Katsaros, Dionyssios; Mayne, Susan T; Risch, Harvey A; Benedetto, Chiara; Canuto, Emilie Marion; Yu, Herbert

    2012-11-01

    Several single-nucleotide polymorphisms (SNPs) of the stem cell-associated gene lin-28B have been identified in association with ovarian cancer and ovarian cancer-related risk factors. However, whether these SNPs are functional or might be potential biomarkers for ovarian cancer prognosis remains unknown. The purposes of this study were to investigate the functional relevance of the identified lin-28B SNPs, as well as the associations of genotype and phenotype with epithelial ovarian cancer (EOC) survival. We analyzed five SNPs and mRNA levels of lin-28B in 211 primary EOC tissues using Taqman(®) SNP genotyping assays and SYBR green-based real-time PCR, respectively. The RNA secondary structures at the region of a genome-wide association-identified intronic rs314276 were analyzed theoretically with mfold and experimentally with circular dichroism spectroscopy. We found that rs314276 was a cis-acting expression quantitative trait locus (eQTL) in both additive and dominant models, while rs7759938 and rs314277 were significant or of borderline significance in dominant models only. The rs314276 variant significantly affects RNA secondary structure. No SNPs alone were associated with patient survival. However, we found that among patients initially responding to chemotherapy, those with higher lin-28B expression had higher mortality risk (hazard ratio =3.27, 95% confidence interval: 1.63-6.56) and relapse risk (hazard ratio = 2.53, 95% confidence interval: 1.41-4.54) than those with lower expression, and these associations remained in multivariate analyses. These results suggest that rs314276 alters RNA secondary structure and thereby influences gene expression, and that lin-28B is a cancer stem cell-associated marker, which may be a pharmaceutical target in the management of EOC.

  5. Human omental adipose-derived mesenchymal stem cell-conditioned medium alters the proteomic profile of epithelial ovarian cancer cell lines in vitro

    Directory of Open Access Journals (Sweden)

    Zhang YL

    2017-03-01

    Full Text Available Yanling Zhang,1,* Weihong Dong,1,* Junjie Wang,2 Jing Cai,1 Zehua Wang1 1Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 2Department of Obstetrics and Gynecology, Renhe Hospital, China Three Gorges University, Yichang, People’s Republic of China *These authors contributed equally to this work Abstract: Mesenchymal stem cells (MSCs have been reported to participate in the formation of supportive tumor stroma. The abilities of proliferation and invasion of human epithelial ovarian cancer (EOC cells were significantly enhanced when indirectly cocultured with human omental adipose-derived MSCs (O-ADSCs in vitro. However, the underlying mechanisms remain poorly understood. In this study, EOC cells were cultured with conditioned medium (CM from O-ADSCs (O-ADSC, and the effect of O-ADSC CM on the proteomic profile of EOC cells was assessed by two-dimensional gel electrophoresis (2-DE, followed by liquid chromatography and tandem mass spectrometry. The 2-DE assays revealed a global increase in protein expression in the EOC cells treated with CM. Nine proteins were identified from 11 selected protein spots with differential expression after treatment with CM from O-ADSCs. All the nine proteins have been linked to carcinoma and apoptosis, and the migration ability of tumor cells can be regulated by these proteins. Moreover, the upregulation of prohibitin and serine/arginine-rich splicing factor 1 in EOC cells treated with CM was further confirmed by quantitative real-time polymerase chain reaction. These results suggest that O-ADSCs affect the proteomic profile of EOC cells via paracrine mechanism in favor of EOC progression. Keywords: ovarian cancer, mesenchymal stromal cells, mesenchymal stem cells, omentum, proteomic

  6. Acquisition of epithelial-mesenchymal transition and cancer stem-like phenotypes within chitosan-hyaluronan membrane-derived 3D tumor spheroids.

    Science.gov (United States)

    Huang, Yen-Jang; Hsu, Shan-Hui

    2014-12-01

    Cancer drug development has to go through rigorous testing and evaluation processes during pre-clinical in vitro studies. However, the conventional two-dimensional (2D) in vitro culture is often discounted by the insufficiency to present a more typical tumor microenvironment. The multicellular tumor spheroids have been a valuable model to provide more comprehensive assessment of tumor in response to therapeutic strategies. Here, we applied chitosan-hyaluronan (HA) membranes as a platform to promote three-dimensional (3D) tumor spheroid formation. The biological features of tumor spheroids of human non-small cell lung cancer (NSCLC) cells on chitosan-HA membranes were compared to those of 2D cultured cells in vitro. The cells in tumor spheroids cultured on chitosan-HA membranes showed higher levels of stem-like properties and epithelial-mesenchymal transition (EMT) markers, such as NANOG, SOX2, CD44, CD133, N-cadherin, and vimentin, than 2D cultured cells. Moreover, they exhibited enhanced invasive activities and multidrug resistance by the upregulation of MMP2, MMP9, BCRC5, BCL2, MDR1, and ABCG2 as compared with 2D cultured cells. The grafting densities of HA affected the tumor sphere size and mRNA levels of genes on the substrates. These evidences suggest that chitosan-HA membranes may offer a simple and valuable biomaterial platform for rapid generation of tumor spheroids in vitro as well as for further applications in cancer stem cell research and cancer drug screening. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A PiggyBac mediated approach for lactoferricin gene transfer in bovine mammary epithelial stem cells for management of bovine mastitis.

    Science.gov (United States)

    Sharma, Neelesh; Huynh, Do Luong; Kim, Sung Woo; Ghosh, Mrinmoy; Sodhi, Simrinder Singh; Singh, Amit Kumar; Kim, Nam Eun; Lee, Sung Jin; Hussain, Kafil; Oh, Sung Jong; Jeong, Dong Kee

    2017-11-28

    The antibacterial and anti-inflammatory properties of lactoferricin have been ascribed to its ability to sequester essential iron. The objective of the study was to clone bovine lactoferricin ( LFcinB ) gene into PiggyBac Transposon vector, expression study in the bovine mammary epithelial stem cells (bMESCs) and also to determine the antimicrobial property of recombinant LFcinB against bovine mastitis-causing organisms. The PiggyBac-LFcinB was transfected into bMESCs by electroporation and a three fold of LFcinB secretion was observed in the transfected bMESCs medium by ELISA assay. Furthermore, the assessment of antimicrobial activity against mastitis causing pathogens Staphylococcus aureus and Escherichia coli demonstrated convincing evidence to prove strong antibacterial activity of LFcinB with 14.0±1.0 mm and 18.0±1.5 mm zone of inhibition against both organisms, respectively. The present study provides the convincing evidence to suggest the potential of PiggyBac transposon system to transfer antibacterial peptide into bMESCs or cow mammary gland and also pave the way to use bovine mammary gland as the bioreactors. Simultaneously, it also suggest toward commercial utilization of LFcinB bioreactor system in pharmaceutical industry.

  8. Xeno-Free and Defined Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells Functionally Integrate in a Large-Eyed Preclinical Model

    Directory of Open Access Journals (Sweden)

    Alvaro Plaza Reyes

    2016-01-01

    Full Text Available Human embryonic stem cell (hESC-derived retinal pigment epithelial (RPE cells could replace lost tissue in geographic atrophy (GA but efficacy has yet to be demonstrated in a large-eyed model. Also, production of hESC-RPE has not yet been achieved in a xeno-free and defined manner, which is critical for clinical compliance and reduced immunogenicity. Here we describe an effective differentiation methodology using human laminin-521 matrix with xeno-free and defined medium. Differentiated cells exhibited characteristics of native RPE including morphology, pigmentation, marker expression, monolayer integrity, and polarization together with phagocytic activity. Furthermore, we established a large-eyed GA model that allowed in vivo imaging of hESC-RPE and host retina. Cells transplanted in suspension showed long-term integration and formed polarized monolayers exhibiting phagocytic and photoreceptor rescue capacity. We have developed a xeno-free and defined hESC-RPE differentiation method and present evidence of functional integration of clinically compliant hESC-RPE in a large-eyed disease model.

  9. ROCK inhibitor primes human induced pluripotent stem cells to selectively differentiate towards mesendodermal lineage via epithelial-mesenchymal transition-like modulation.

    Science.gov (United States)

    Maldonado, Maricela; Luu, Rebeccah J; Ramos, Michael E P; Nam, Jin

    2016-09-01

    Robust control of human induced pluripotent stem cell (hIPSC) differentiation is essential to realize its patient-tailored therapeutic potential. Here, we demonstrate a novel application of Y-27632, a small molecule Rho-associated protein kinase (ROCK) inhibitor, to significantly influence the differentiation of hIPSCs in a lineage-specific manner. The application of Y-27632 to hIPSCs resulted in a decrease in actin bundling and disruption of colony formation in a concentration and time-dependent manner. Such changes in cell and colony morphology were associated with decreased expression of E-cadherin, a cell-cell junctional protein, proportional to the increased exposure to Y-27632. Interestingly, gene and protein expression of pluripotency markers such as NANOG and OCT4 were not downregulated by an exposure to Y-27632 up to 36h. Simultaneously, epithelial-to-mesenchymal (EMT) transition markers were upregulated with an exposure to Y-27632. These EMT-like changes in the cells with longer exposure to Y-27632 resulted in a significant increase in the subsequent differentiation efficiency towards mesendodermal lineage. In contrast, an inhibitory effect was observed when cells were subjected to ectodermal differentiation after prolonged exposure to Y-27632. Collectively, these results present a novel method for priming hIPSCs to modulate their differentiation potential with a simple application of Y-27632. Copyright © 2016 Helmholtz Zentrum München. Published by Elsevier B.V. All rights reserved.

  10. ROCK inhibitor primes human induced pluripotent stem cells to selectively differentiate towards mesendodermal lineage via epithelial-mesenchymal transition-like modulation

    Directory of Open Access Journals (Sweden)

    Maricela Maldonado

    2016-09-01

    Full Text Available Robust control of human induced pluripotent stem cell (hIPSC differentiation is essential to realize its patient-tailored therapeutic potential. Here, we demonstrate a novel application of Y-27632, a small molecule Rho-associated protein kinase (ROCK inhibitor, to significantly influence the differentiation of hIPSCs in a lineage-specific manner. The application of Y-27632 to hIPSCs resulted in a decrease in actin bundling and disruption of colony formation in a concentration and time-dependent manner. Such changes in cell and colony morphology were associated with decreased expression of E-cadherin, a cell-cell junctional protein, proportional to the increased exposure to Y-27632. Interestingly, gene and protein expression of pluripotency markers such as NANOG and OCT4 were not downregulated by an exposure to Y-27632 up to 36 h. Simultaneously, epithelial-to-mesenchymal (EMT transition markers were upregulated with an exposure to Y-27632. These EMT-like changes in the cells with longer exposure to Y-27632 resulted in a significant increase in the subsequent differentiation efficiency towards mesendodermal lineage. In contrast, an inhibitory effect was observed when cells were subjected to ectodermal differentiation after prolonged exposure to Y-27632. Collectively, these results present a novel method for priming hIPSCs to modulate their differentiation potential with a simple application of Y-27632.

  11. Contacting co-culture of human retinal microvascular endothelial cells alters barrier function of human embryonic stem cell derived retinal pigment epithelial cells.

    Science.gov (United States)

    Skottman, H; Muranen, J; Lähdekorpi, H; Pajula, E; Mäkelä, K; Koivusalo, L; Koistinen, A; Uusitalo, H; Kaarniranta, K; Juuti-Uusitalo, K

    2017-10-01

    Here we evaluated the effects of human retinal microvascular endothelial cells (hREC) on mature human embryonic stem cell (hESC) derived retinal pigment epithelial (RPE) cells. The hESC-RPE cells (Regea08/017, Regea08/023 or Regea11/013) and hREC (ACBRI 181) were co-cultured on opposite sides of transparent membranes for up to six weeks. Thereafter barrier function, small molecule permeability, localization of RPE and endothelial cell marker proteins, cellular fine structure, and growth factor secretion of were evaluated. After co-culture, the RPE specific CRALBP and endothelial cell specific von Willebrand factor were appropriately localized. In addition, the general morphology, pigmentation, and fine structure of hESC-RPE cells were unaffected. Co-culture increased the barrier function of hESC-RPE cells, detected both with TEER measurements and cumulative permeability of FD4 - although the differences varied among the cell lines. Co-culturing significantly altered VEGF and PEDF secretion, but again the differences were cell line specific. The results of this study showed that co-culture with hREC affects hESC-RPE functionality. In addition, co-culture revealed drastic cell line specific differences, most notably in growth factor secretion. This model has the potential to be used as an in vitro outer blood-retinal barrier model for drug permeability testing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Human amniotic epithelial cell feeder layers maintain mouse embryonic stem cell pluripotency via epigenetic regulation of the c-Myc promoter.

    Science.gov (United States)

    Liu, Te; Cheng, Weiwei; Liu, Tianjin; Guo, Lihe; Huang, Qin; Jiang, Lizhen; Du, Xiling; Xu, Fuhui; Liu, Zhixue; Lai, Dongmei

    2010-02-01

    Mouse embryonic stem cells (ESCs) are typically cultured on a feeder layer of mouse embryonic fibroblasts (MEFs), with leukemia inhibitory factor (LIF) added to maintain them in an undifferentiated state. We have previously shown that human amniotic epithelial cells (hAECs) can be used as feeder cells to maintain mouse ESC pluripotency, but the mechanism for this is unknown. In the present study, we found that CpG islands 5' of the c-Myc gene remain hypomethylated in mouse ESCs cultured on hAECs. In addition, levels of acetylation of histone H3 and trimethylation of histone H3K4 in the c-Myc gene promoter were higher in ES cells cultured on hAECs than those in ES cells cultured on MEFs. These data suggested that hAECs can alter mouse ESC gene expression via epigenetic modification of c-Myc, providing a possible mechanism for the hAEC-induced maintenance of ESCs in an undifferentiated state.

  13. Evidence for epithelial-mesenchymal transition in cancer stem-like cells derived from carcinoma cell lines of the cervix uteri.

    Science.gov (United States)

    Lin, Jiaying; Liu, Xishi; Ding, Ding

    2015-01-01

    The cancer stem cell (CSC) paradigm is one possible way to understand the genesis of cancer, and cervical cancer in particular. We quantified and enriched ALDH1(+) cells within cervical cancer cell lines and subsequently characterized their phenotypical and functional properties like invasion capacity and epithelial-mesenchymal transition (EMT). ALDH1 expression in spheroid-derived cells (SDC) and the parental monolayer-derived cell (MDC) line was compared by flow-cytometry. Invasion capability was evaluated by Matrigel assay and expression of EMT-related genes Twist 1, Twist 2, Snail 1, Snail 2, Vimentin and E-cadherin by real-time PCR. ALDH1 expression was significantly higher in SDC. ALDH1(+) cells showed increased colony-formation. SDC expressed lower levels of E-cadherin and elevated levels of Twist 1, Twist 2, Snail 1, Snail 2 and Vimentin compared to MDC. Cervical cancer cell lines harbor potential CSC, characterized by ALDH1 expression as well as properties like invasiveness, colony-forming ability, and EMT. CSC can be enriched by anchorage-independent culture techniques, which may be important for the investigation of their contribution to therapy resistance, tumor recurrence and metastasis.

  14. Defined Conditions for the Isolation and Expansion of Basal Prostate Progenitor Cells of Mouse and Human Origin

    Directory of Open Access Journals (Sweden)

    Thomas Höfner

    2015-03-01

    Full Text Available Methods to isolate and culture primary prostate epithelial stem/progenitor cells (PESCs have proven difficult and ineffective. Here, we present a method to grow and expand both murine and human basal PESCs long term in serum- and feeder-free conditions. The method enriches for adherent mouse basal PESCs with a Lin−SCA-1+CD49f+TROP2high phenotype. Progesterone and sodium selenite are additionally required for the growth of human Lin−CD49f+TROP2high PESCs. The gene-expression profiles of expanded basal PESCs show similarities to ESCs, and NF-kB function is critical for epithelial differentiation of sphere-cultured PESCs. When transplanted in combination with urogenital sinus mesenchyme, expanded mouse and human PESCs generate ectopic prostatic tubules, demonstrating their stem cell activity in vivo. This novel method will facilitate the molecular, genomic, and functional characterization of normal and pathologic prostate glands of mouse and human origin.

  15. Bardoxolone methyl induces apoptosis and autophagy and inhibits epithelial-to-mesenchymal transition and stemness in esophageal squamous cancer cells

    Directory of Open Access Journals (Sweden)

    Wang YY

    2015-02-01

    Full Text Available Yan-Yang Wang,1,2 Yin-Xue Yang,3 Ren Zhao,1 Shu-Ting Pan,2,4 Hong Zhe,1 Zhi-Xu He,5 Wei Duan,6 Xueji Zhang,7 Tianxin Yang,8 Jia-Xuan Qiu,4 Shu-Feng Zhou2,51Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China; 4Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 5Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, People’s Republic of China; 6School of Medicine, Deakin University, Waurn Ponds, VIC, Australia; 7Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China; 8Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USAAbstract: Natural and synthetic triterpenoids have been shown to kill cancer cells via multiple mechanisms. The therapeutic effect and underlying mechanism of the synthetic triterpenoid bardoxolone methyl (C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid; CDDO-Me on esophageal cancer are unclear. Herein, we aimed to investigate the anticancer effects and underlying mechanisms of CDDO-Me in human esophageal squamous cell carcinoma (ESCC cells. Our study showed that CDDO-Me suppressed the proliferation and arrested cells in G2/M phase, and induced apoptosis in human ESCC Ec109 and KYSE70 cells. The G2/M arrest was accompanied with upregulated p21Waf1/Cip1 and p53 expression. CDDO-Me significantly decreased B-cell lymphoma-extra large (Bcl-xl, B-cell lymphoma 2 (Bcl-2

  16. Human corneal epithelial subpopulations

    DEFF Research Database (Denmark)

    Søndergaard, Chris Bath

    2013-01-01

    Corneal epithelium is being regenerated throughout life by limbal epithelial stem cells (LESCs) believed to be located in histologically defined stem cell niches in corneal limbus. Defective or dysfunctional LESCs result in limbal stem cell deficiency (LSCD) causing pain and decreased visual acuity...... subpopulations in human corneal epithelium using a combination of laser capture microdissection and RNA sequencing for global transcriptomic profiling. We compared dissociation cultures, using either expansion on γ-irradiated NIH/3T3 feeder cells in serum-rich medium or expansion directly on plastic in serum...

  17. Tumor budding cells, cancer stem cells and epithelial-mesenchymal transition-type cells in pancreatic cancer

    International Nuclear Information System (INIS)

    Karamitopoulou, Eva

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4) and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with Wingless-INT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial–mesenchymal transition (EMT). Emerging evidence has demonstrated that cancer stem cells (CSCs), small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion, and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5) of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric, and ampullary) carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs, and EMT-type cells in PDAC.

  18. Podoplanin regulates mammary stem cell function and tumorigenesis by potentiating Wnt/β-catenin signaling.

    Science.gov (United States)

    Bresson, Laura; Faraldo, Marisa M; Di-Cicco, Amandine; Quintanilla, Miguel; Glukhova, Marina A; Deugnier, Marie-Ange

    2018-02-21

    Stem cells (SCs) drive mammary development, giving rise postnatally to an epithelial bilayer composed of luminal and basal myoepithelial cells. Dysregulation of SCs is thought to be at the origin of certain breast cancers; however, the molecular identity of SCs and the factors regulating their function remain poorly defined. We identified the transmembrane protein podoplanin (Pdpn) as a specific marker of the basal compartment, including multipotent SCs, and found Pdpn localized at the basal-luminal interface. Embryonic deletion of Pdpn targeted to basal cells diminished basal and luminal SC activity and affected the expression of several Wnt/β-catenin signaling components in basal cells. Moreover, Pdpn loss attenuated mammary tumor formation in a mouse model of β-catenin-induced breast cancer, limiting tumor-initiating cell expansion and promoting molecular features associated with mesenchymal-to-epithelial cell transition. In line with the loss-of-function data, we demonstrated that mechanistically Pdpn enhances Wnt/β-catenin signaling in mammary basal cells. Overall, this study uncovers a role for Pdpn in mammary SC function and, importantly, identifies Pdpn as a new regulator of Wnt/β-catenin signaling, a key pathway in mammary development and tumorigenesis. © 2018. Published by The Company of Biologists Ltd.

  19. Impact of the Stem Extract of on the Feeding Potential and Histological Architecture of the Midgut Epithelial Tissue of Early Fourth Instars of HÜbner

    Directory of Open Access Journals (Sweden)

    Monika Mishra

    2015-01-01

    Full Text Available Helicoverpa armigera HÜbner is one of the most important agricultural crop pests in the world causing heavy crop yield losses. The continued and indiscriminate use of synthetic insecticides in agriculture for their control has received wide public apprehension because of multifarious problems, including insecticide resistance, resurgence of pest species, environmental pollution, and toxic hazards to humans and nontarget organisms. These problems have necessitated the need to explore and develop alternative strategies using eco-friendly and biodegradable plant products. In view of this, the efficacy of Thevetia neriifolia methanol stem extract was evaluated against the early fourth instars of H. armigera as an antifeedant and stomach poison agent. Feeding of larvae with the diet containing 0.005%–5.0% extract resulted in 2.06%–37.35% antifeedant index; the diet with 5.0% extract caused 54.3% reduced consumption. The negative impact of extract on larval feeding resulted in 37.5%–77.7% starvation, causing adverse effects on the larval weight. Choice between control and experimental diet resulted in feeding preference of larvae for the control diet, leading to 7.3%–42.9% reduced consumption of extract-containing diet. The only exception was the diet with 0.005% extract, which could not cause any deterrence. The midgut histological architecture of H. armigera larvae fed with 0.005%–0.05% extract-containing diet with negligible antifeedant potential showed significant damage, shrinkage, and distortion and vacuolization of gut tissues and peritrophic membrane, causing the disintegration of epithelial, goblet, and regenerative cells; the damage increased with the increase in concentration. These changes in the gut caused negative impact on the digestion and absorption of food and thus nutritional deficiency in the larvae, which could probably affect their growth and development. This study reveal the appreciable stomach poison potential of T

  20. Co-expression of putative stemness and epithelial-to-mesenchymal transition markers on single circulating tumour cells from patients with early and metastatic breast cancer.

    Science.gov (United States)

    Papadaki, Maria A; Kallergi, Galatea; Zafeiriou, Zafeiris; Manouras, Lefteris; Theodoropoulos, Panayiotis A; Mavroudis, Dimitris; Georgoulias, Vassilis; Agelaki, Sofia

    2014-09-03

    The detection of circulating tumor cells (CTCs) in peripheral blood (PB) of patients with breast cancer predicts poor clinical outcome. Cancer cells with stemness and epithelial-to-mesenchymal transition (EMT) features display enhanced malignant and metastatic potential. A new methodology was developed in order to investigate the co-expression of a stemness and an EMT marker (ALDH1 and TWIST, respectively) on single CTCs of patients with early and metastatic breast cancer. Triple immunofluorescence using anti-pancytokeratin (A45-B/B3), anti-ALDH1 and anti-TWIST antibodies was performed in cytospins prepared from hepatocellular carcinoma HepG2 cells and SKBR-3, MCF-7 and MDA.MB.231 breast cancer cell lines. Evaluation of ALDH1 expression levels (high, low or absent) and TWIST subcellular localization (nuclear, cytoplasmic or absent) was performed using the ARIOL system. Cytospins prepared from peripheral blood of patients with early (n = 80) and metastatic (n = 50) breast cancer were analyzed for CTC detection (based on pan-cytokeratin expression and cytomorphological criteria) and characterized according to ALDH1 and TWIST. CTCs were detected in 13 (16%) and 25 (50%) patients with early and metastatic disease, respectively. High ALDH1 expression (ALDH1high) and nuclear TWIST localization (TWISTnuc) on CTCs was confirmed in more patients with metastatic than early breast cancer (80% vs. 30.8%, respectively; p = 0.009). In early disease, ALDH1low/neg CTCs (p = 0.006) and TWISTcyt/neg CTCs (p = 0.040) were mainly observed. Regarding co-expression of these markers, ALDH1high/TWISTnuc CTCs were more frequently evident in the metastatic setting (76% vs. 15.4% of patients, p = 0.001; 61.5% vs. 12.9% of total CTCs), whereas in early disease ALDH1low/neg/TWISTcyt/neg CTCs were mainly detected (61.5% vs. 20% of patients, p = 0.078; 41.9% vs. 7.7% of total CTCs). A new assay is provided for the evaluation of ALDH1 and TWIST co-expression at the

  1. 7-(O)-Carboxymethyl daidzein conjugated to N-t-Boc-hexylenediamine: a novel compound capable of inducing cell death in epithelial ovarian cancer stem cells.

    Science.gov (United States)

    Green, Jamie M; Alvero, Ayesha B; Kohen, Fortune; Mor, Gil

    2009-09-01

    One of the major difficulties in the treatment of epithelial ovarian cancer (EOC) is the high rate of recurrent disease. This is thought to be due to the survival of a population of chemo-resistant cells within the tumor, the ovarian cancer stem cells (OCSCs), that are able to regenerate the tumor following chemotherapy. Therefore, the identification of a compund that can target the OCSCs is one of the main steps in improving overall survival of ovarian cancer patients. The objective of this study was to determine the effect of N-t-boc-Daidzein, a novel daidzain derivative, on OCSCs. The efficacy of this compound was evaluated in OCSC and mature ovarian cancer cell (mOCC) lines isolated from malignant ovarian cancer asicites. Cells were treated with increasing concentrations of N-t-boc-Daidzein (0.003-10 microM) and cell growth was monitored by "real time in vitro micro-imaging" using the IncuCyte system. Cell viability was measured using the CellTiter 96 Assay. Apoptosis was determined by Caspase-Glo 3/7, 8 and 9 assays. The components of the apoptotic cascade were characterized by western blot analysis. N-t-boc-Daidzein was able to significantly inhibit cell growth and decrease cell viability of OCSC as well as mOCC cells in a dose and time dependent maner. This effect was due to the induction of apoptosis, which is characterized by caspase activation, XIAP and AKT degradation, and mitochondrial depolarization. This study describes a novel compound that can target the OCSCs. These findings may provide vital aide in improving overall survival in patients with EOC.

  2. Amniotic epithelial stem cell biocompatibility for electrospun poly(lactide-co-glycolide), poly(ε-caprolactone), poly(lactic acid) scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Valentina [Faculty of Veterinary Medicine, University of Teramo, Campus Universitario Coste S. Agostino Via R. Balzarini 1, 64100 Teramo (Italy); StemTeCh Group (Italy); Tammaro, Loredana [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA (Italy); Di Marcantonio, Lisa, E-mail: ldimarcantonio@unite.it [Faculty of Veterinary Medicine, University of Teramo, Campus Universitario Coste S. Agostino Via R. Balzarini 1, 64100 Teramo (Italy); Sorrentino, Andrea [Institute for Polymers, Composite and Biomaterials (IPCB), CNR, P.le Enrico Fermi 1, I-80055 Portici, Napoli (Italy); Ancora, Massimo [Istituto Zooprofilattico Sperimentale dell' Abruzzo e del Molise ‘G. Caporale’, Teramo (Italy); Valbonetti, Luca [Faculty of Veterinary Medicine, University of Teramo, Campus Universitario Coste S. Agostino Via R. Balzarini 1, 64100 Teramo (Italy); StemTeCh Group (Italy); Turriani, Maura; Martelli, Alessandra [Faculty of Veterinary Medicine, University of Teramo, Campus Universitario Coste S. Agostino Via R. Balzarini 1, 64100 Teramo (Italy); Cammà, Cesare [Istituto Zooprofilattico Sperimentale dell' Abruzzo e del Molise ‘G. Caporale’, Teramo (Italy); Barboni, Barbara [Faculty of Veterinary Medicine, University of Teramo, Campus Universitario Coste S. Agostino Via R. Balzarini 1, 64100 Teramo (Italy); StemTeCh Group (Italy)

    2016-12-01

    Three biodegradable thermoplastic polymers, poly(ε-caprolactone) (PCL), poly(L-lactide-co-D,L-lactide) (PLA) and poly(L-lactide-co-glycolide) (PLGA), have been used to produce nonwovens scaffolds with uniform micrometer fibres. Scaffolds' physical and morphological characterization was performed by X-ray diffraction, Scanning Electron Microscopy and Contact-Angle test. Morphological investigations revealed that all produced fibres were randomly orientated with interconnected pores ranging between 5 and 12 μm in diameter. An average fibre diameter of 1.5, 0.75 and 1.2 μm was found for PCL, PLA and PLGA, respectively. Moreover, experiments were designed to verify whether the fabricated electrospun substrates were biocompatible for ovine amniotic epithelial stem cells (oAECs) under in vitro conditions. Cell adhesion, survival, spatial organization on fibres, proliferation index, and DNA quantification after 48 h culture, showed an enhanced adhesion and proliferation, especially for PLGA scaffolds. The favourable interaction between oAECs and the fibrous scaffolds was attributed to the greatly improved porosity and pore size distribution of the electrospun scaffolds. In addition, AECs can be considered ideal for tissue engineering especially when using biocompatible and opportunely produced scaffolds. - Highlights: • Scaffolds have random oriented, beadless fibres and similar wettability. • Porosity and pore size distribution are determinant on boosting cell activity. • oAECs activities are influenced by scaffold chemical and physical structure. • In PLGA oAECs showed higher spatial distribution efficiency. • PLGA seeded cells present a rise in cell proliferation activity and in DNA amount.

  3. The effect of isolation and culture methods on epithelial stem cell populations and their progeny-toward an improved cell expansion protocol for clinical application.

    Science.gov (United States)

    Lenihan, Catherine; Rogers, Caroline; Metcalfe, Anthony D; Martin, Yella H

    2014-12-01

    The use of cultured epithelial keratinocytes in the treatment of burns and skin graft donor sites is well established in clinical practice. The most widely used culture method for clinical use was originally developed by Rheinwald and Green 40 years ago. This system uses irradiated mouse dermal fibroblasts as a feeder cell layer to promote keratinocyte growth, a process that is costly and labor-intensive for health care providers. The medium formulation contains several components of animal origin, which pose further safety risks for patients. Improvements and simplification in the culturing process would lead to clear advantages: improved safety through reduction of xenobiotic components and reduction in cost for health care providers by dispensing with feeder cells. We compared the Rheinwald and Green method to culture in three commercially available, feeder-free media systems with defined/absent components of animal origin. During the isolation process, short incubation times in high-strength trypsin resulted in increased numbers of liberated keratinocyte stem cells compared with longer incubation times. All three commercially available media tested in this study could support the expansion of keratinocytes, with phenotypes comparable to cells expanded using the established Rheinwald and Green method. Growth rates varied, with two of the media displaying comparable growth rates, whereas the third was significantly slower. Our study demonstrates the suitability of such feeder-free media systems in clinical use. It further outlines a range of techniques to evaluate keratinocyte phenotype when assessing the suitability of cells for clinical application. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  4. Retinal Pigmented Epithelial Cells Obtained from Human Induced Pluripotent Stem Cells Possess Functional Visual Cycle Enzymes in Vitro and in Vivo*

    Science.gov (United States)

    Maeda, Tadao; Lee, Mee Jee; Palczewska, Grazyna; Marsili, Stefania; Tesar, Paul J.; Palczewski, Krzysztof; Takahashi, Masayo; Maeda, Akiko

    2013-01-01

    Differentiated retinal pigmented epithelial (RPE) cells have been obtained from human induced pluripotent stem (hiPS) cells. However, the visual (retinoid) cycle in hiPS-RPE cells has not been adequately examined. Here we determined the expression of functional visual cycle enzymes in hiPS-RPE cells compared with that of isolated wild-type mouse primary RPE (mpRPE) cells in vitro and in vivo. hiPS-RPE cells appeared morphologically similar to mpRPE cells. Notably, expression of certain visual cycle proteins was maintained during cell culture of hiPS-RPE cells, whereas expression of these same molecules rapidly decreased in mpRPE cells. Production of the visual chromophore, 11-cis-retinal, and retinosome formation also were documented in hiPS-RPE cells in vitro. When mpRPE cells with luciferase activity were transplanted into the subretinal space of mice, bioluminance intensity was preserved for >3 months. Additionally, transplantation of mpRPE into blind Lrat−/− and Rpe65−/− mice resulted in the recovery of visual function, including increased electrographic signaling and endogenous 11-cis-retinal production. Finally, when hiPS-RPE cells were transplanted into the subretinal space of Lrat−/− and Rpe65−/− mice, their vision improved as well. Moreover, histological analyses of these eyes displayed replacement of dysfunctional RPE cells by hiPS-RPE cells. Together, our results show that hiPS-RPE cells can exhibit a functional visual cycle in vitro and in vivo. These cells could provide potential treatment options for certain blinding retinal degenerative diseases. PMID:24129572

  5. Suprabasal expression of Ki-67 as a marker for the severity of oral epithelial dysplasia and oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Nidhi Dwivedi

    2013-01-01

    Full Text Available Background: Transition of the normal oral epithelium to dysplasia and to malignancy is featured by increased cell proliferation. To evaluate the hypothesis of distributional disturbances in proliferating and stem cells in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC. Aim: To evaluate layer wise expression of Ki-67 in oral epithelial dysplasia and in OSCC. Materials and Methods: Thirty histologically confirmed cases of oral epithelial dysplasia, fifteen cases of OSCC and five cases of normal buccal mucosa were immunohistochemically examined and nuclear expression of Ki-67 was counted according to basal, parabasal, and suprabasal layers in epithelial dysplasia and number of positive cells per 100 cells in OSCC as labeling index (LI. Results: Suprabasal expression of Ki-67 increased according to the severity of epithelial dysplasia and the difference was statistically significant ( P < 0.001. The mean Ki-67LI was 12.78 for low risk lesions, 28.68 for high risk lesions, 39.45 for OSCC and 13.6 for normal buccal mucosa. Conclusion: The results of the present study demonstrate the use of proliferative marker Ki-67 in assessing the severity of epithelial dysplasia. Suprabasal expression of Ki-67 provides an objective criteria for determining the severity of epithelial dysplasia and histological grading of OSCC.

  6. Ezh2 represses the basal cell lineage during lung endoderm development.

    Science.gov (United States)

    Snitow, Melinda E; Li, Shanru; Morley, Michael P; Rathi, Komal; Lu, Min Min; Kadzik, Rachel S; Stewart, Kathleen M; Morrisey, Edward E

    2015-01-01

    The development of the lung epithelium is regulated in a stepwise fashion to generate numerous differentiated and stem cell lineages in the adult lung. How these different lineages are generated in a spatially and temporally restricted fashion remains poorly understood, although epigenetic regulation probably plays an important role. We show that the Polycomb repressive complex 2 component Ezh2 is highly expressed in early lung development but is gradually downregulated by late gestation. Deletion of Ezh2 in early lung endoderm progenitors leads to the ectopic and premature appearance of Trp63+ basal cells that extend the entire length of the airway. Loss of Ezh2 also leads to reduced secretory cell differentiation. In their place, morphologically similar cells develop that express a subset of basal cell genes, including keratin 5, but no longer express high levels of either Trp63 or of standard secretory cell markers. This suggests that Ezh2 regulates the phenotypic switch between basal cells and secretory cells. Together, these findings show that Ezh2 restricts the basal cell lineage during normal lung endoderm development to allow the proper patterning of epithelial lineages during lung formation. © 2015. Published by The Company of Biologists Ltd.

  7. Qualitatively Monitoring Binding and Expression of the Transcription Factors Sp1 and NFI as a Useful Tool to Evaluate the Quality of Primary Cultured Epithelial Stem Cells in Tissue Reconstruction.

    Science.gov (United States)

    Le-Bel, Gaëtan; Ghio, Sergio Cortez; Larouche, Danielle; Germain, Lucie; Guérin, Sylvain L

    2018-05-27

    Electrophoretic mobility shift assays and Western blots are simple, efficient, and rapid methods to study DNA-protein interactions and protein expression, respectively. Primary cultures and subcultures of epithelial cells are widely used for the production of tissue-engineered substitutes and are gaining popularity as a model for gene expression studies. The preservation of stem cells through the culture process is essential to produce high quality substitutes. However, the increase in the number of cell passages is associated with a decrease in their ability to proliferate until senescence is reached. This process is likely to be mediated by the altered expression of nuclear-located transcription factors such as Sp1 and NFI, whose expression has been documented to be required for cell adhesion, migration, and differentiation. In some of our recent studies, we observed a correlation between reconstructed tissues exhibiting poor histological and structural characteristics and a low expression of Sp1 in their constituting epithelial cells. Therefore, monitoring both the expression and DNA binding of these transcription factors in human skin and corneal epithelial cells is a useful tool for characterizing the quality of primary cultured epithelial cells.

  8. Fibroblast growth factor receptor signaling is essential for normal mammary gland development and stem cell function.

    Science.gov (United States)

    Pond, Adam C; Bin, Xue; Batts, Torey; Roarty, Kevin; Hilsenbeck, Susan; Rosen, Jeffrey M

    2013-01-01

    Fibroblast growth factor (FGF) signaling plays an important role in embryonic stem cells and adult tissue homeostasis, but the function of FGFs in mammary gland stem cells is less well defined. Both FGFR1 and FGFR2 are expressed in basal and luminal mammary epithelial cells (MECs), suggesting that together they might play a role in mammary gland development and stem cell dynamics. Previous studies have demonstrated that the deletion of FGFR2 resulted only in transient developmental defects in branching morphogenesis. Using a conditional deletion strategy, we investigated the consequences of FGFR1 deletion alone and then the simultaneous deletion of both FGFR1 and FGFR2 in the mammary epithelium. FGFR1 deletion using a keratin 14 promoter-driven Cre-recombinase resulted in an early, yet transient delay in development. However, no reduction in functional outgrowth potential was observed following limiting dilution transplantation analysis. In contrast, a significant reduction in outgrowth potential was observed upon the deletion of both FGFR1 and FGFR2 in MECs using adenovirus-Cre. Additionally, using a fluorescent reporter mouse model to monitor Cre-mediated recombination, we observed a competitive disadvantage following transplantation of both FGFR1/R2-null MECs, most prominently in the basal epithelial cells. This correlated with the complete loss of the mammary stem cell repopulating population in the FGFR1/R2-attenuated epithelium. FGFR1/R2-null MECs were partially rescued in chimeric outgrowths containing wild-type MECs, suggesting the potential importance of paracrine mechanisms involved in the maintenance of the basal epithelial stem cells. These studies document the requirement for functional FGFR signaling in mammary stem cells during development. Copyright © 2012 AlphaMed Press.

  9. CD44 staining of cancer stem-like cells is influenced by down-regulation of CD44 variant isoforms and up-regulation of the standard CD44 isoform in the population of cells that have undergone epithelial-to-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Adrian Biddle

    Full Text Available CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44(high cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44(high population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44(high population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44(high population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that

  10. The world of epithelial sheets.

    Science.gov (United States)

    Honda, Hisao

    2017-06-01

    An epithelium is a layer of closely connected cells covering the body or lining a body cavity. In this review, several fundamental questions are addressed regarding the epithelium. (i) While an epithelium functions as barrier against the external environment, how is barrier function maintained during its construction? (ii) What determines the apical and basal sides of epithelial layer? (iii) Is there any relationship between the apical side of the epithelium and the apical membrane of an epithelial cell? (iv) Why are hepatocytes (liver cells) called epithelial, even though they differ completely from column-like shape of typical epithelial cells? Keeping these questions in mind, multiple shapes of epithelia were considered, extracting a few of their elemental processes, and constructing a virtual world of epithelia by combining them. Epithelial cells were also classified into several types based on the number of apical domains of each cell. In addition, an intracellular organelle was introduced within epithelial cells, the vacuolar apical compartment (VAC), which is produced within epithelial cells surrounded by external cell matrix (ECM). The VAC interacts with areas of cell-cell contact of the cell surface membrane and is converted to apical membrane. The properties of VACs enable us to answer the initial questions posed above. Finally, the genetic and molecular mechanisms of epithelial morphogenesis are discussed. © 2017 Japanese Society of Developmental Biologists.

  11. Epithelial-to-mesenchymal transition and estrogen receptor α mediated epithelial dedifferentiation mark the development of benign prostatic hyperplasia.

    Science.gov (United States)

    Shao, Rui; Shi, Jiandang; Liu, Haitao; Shi, Xiaoyu; Du, Xiaoling; Klocker, Helmut; Lee, Chung; Zhu, Yan; Zhang, Ju

    2014-06-01

    Epithelial-to-mesenchymal transition (EMT) has been reported involved in the pathogenesis of fibrotic disorders and associated with stemness characteristics. Recent studies demonstrated that human benign prostatic hyperplasia (BPH) development involves accumulation of mesenchymal-like cells derived from the prostatic epithelium. However, the inductive factors of EMT in the adult prostate and the cause-and-effect relationship between EMT and stemness characteristics are not yet resolved. EMT expression patterns were immunohistochemically identified in the human epithelia of normal/BPH prostate tissue and in a rat BPH model induced by estrogen/androgen (E2/T, ratio 1:100) alone or in the presence of the ER antagonist raloxifene. Gene expression profiles were analyzed in micro-dissected prostatic epithelia of rat stimulated by E2/T for 3 days. Two main morphological features both accompanied with EMT were observed in the epithelia of human BPH. Luminal cells undergoing EMT dedifferentiated from a cytokeratin (CK) CK18(+) /CK8(+) /CK19(+) to a CK18(-) /CK8(+) /CK19(-) phenotype and CK14 expression increased in basal epithelial cells. ERα expression was closely related to these dedifferentiated cells and the expression of EMT markers. A similar pattern of EMT events was observed in the E2/T induced rat model of BPH in comparison to the prostates of untreated rats, which could be prevented by raloxifene. Epithelial and mesenchymal phenotype switching is an important mechanism in the etiology of BPH. ERα mediated enhanced estrogenic effect is a crucial inductive factor of epithelial dedifferentiation giving rise to activation of an EMT program in prostate epithelium. © 2014 Wiley Periodicals, Inc.

  12. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma.

    Science.gov (United States)

    Yoon, Changhwan; Cho, Soo-Jeong; Chang, Kevin K; Park, Do Joong; Ryeom, Sandra W; Yoon, Sam S

    2017-08-01

    Rac1, a Rho GTPase family member, is dysregulated in a variety of tumor types including gastric adenocarcinoma, but little is known about its role in cancer stem-like cells (CSCs). Therefore, Rac1 activity and inhibition were examined in gastric adenocarcinoma cells and mouse xenograft models for epithelial-to-mesenchymal transition (EMT) and CSC phenotypes. Rac1 activity was significantly higher in spheroid-forming or CD44 + gastric adenocarcinoma CSCs compared with unselected cells. Rac1 inhibition using Rac1 shRNA or a Rac1 inhibitor (NSC23766) decreased expression of the self-renewal transcription factor, Sox-2, decreased spheroid formation by 78%-81%, and prevented tumor initiation in immunodeficient mice. Gastric adenocarcinoma CSCs had increased expression of the EMT transcription factor Slug, 4.4- to 8.3-fold greater migration, and 4.2- to 12.6-fold greater invasion than unselected cells, and these increases could be blocked completely with Rac1 inhibition. Gastric adenocarcinoma spheroid cells were resistant to 5-fluorouracil and cisplatin chemotherapy, and this chemotherapy resistance could be reversed with Rac1 shRNA or NSC23766. The PI3K/Akt pathway may be upstream of Rac1, and JNK may be downstream of Rac1. In the MKN-45 xenograft model, cisplatin inhibited tumor growth by 50%, Rac1 inhibition by 35%, and the combination by 77%. Higher Rac1 activity, in clinical specimens from gastric adenocarcinoma patients who underwent potentially curative surgery, correlated with significantly worse survival ( P = 0.017). In conclusion, Rac1 promotes the EMT program in gastric adenocarcinoma and the acquisition of a CSC state. Rac1 inhibition in gastric adenocarcinoma cells blocks EMT and CSC phenotypes, and thus may prevent metastasis and augment chemotherapy. Implications: In gastric adenocarcinoma, therapeutic targeting of the Rac1 pathway may prevent or reverse EMT and CSC phenotypes that drive tumor progression, metastasis, and chemotherapy resistance. Mol

  13. Sensing radiosensitivity of human epidermal stem cells

    International Nuclear Information System (INIS)

    Rachidi, Walid; Harfourche, Ghida; Lemaitre, Gilles; Amiot, Franck; Vaigot, Pierre; Martin, Michele T.

    2007-01-01

    Purpose: Radiosensitivity of stem cells is a matter of debate. For mouse somatic stem cells, both radiosensitive and radioresistant stem cells have been described. By contrast, the response of human stem cells to radiation has been poorly studied. As epidermis is a radiosensitive tissue, we evaluated in the present work the radiosensitivity of cell populations enriched for epithelial stem cells of human epidermis. Methods and materials: The total keratinocyte population was enzymatically isolated from normal human skin. We used flow cytometry and antibodies against cell surface markers to isolate basal cell populations from human foreskin. Cell survival was measured after a dose of 2 Gy with the XTT assay at 72 h after exposure and with a clonogenic assay at 2 weeks. Transcriptome analysis using oligonucleotide microarrays was performed to assess the genomic cell responses to radiation. Results: Cell sorting based on two membrane proteins, α6 integrin and the transferrin receptor CD71, allowed isolation of keratinocyte populations enriched for the two types of cells found in the basal layer of epidermis: stem cells and progenitors. Both the XTT assay and the clonogenic assay showed that the stem cells were radioresistant whereas the progenitors were radiosensitive. We made the hypothesis that upstream DNA damage signalling might be different in the stem cells and used microarray technology to test this hypothesis. The stem cells exhibited a much more reduced gene response to a dose of 2 Gy than the progenitors, as we found that 6% of the spotted genes were regulated in the stem cells and 20% in the progenitors. Using Ingenuity Pathway Analysis software, we found that radiation exposure induced very specific pathways in the stem cells. The most striking responses were the repression of a network of genes involved in apoptosis and the induction of a network of cytokines and growth factors. Conclusion: These results show for the first time that keratinocyte

  14. Metformin inhibits TGF-β1-induced epithelial-to-mesenchymal transition-like process and stem-like properties in GBM via AKT/mTOR/ZEB1 pathway.

    Science.gov (United States)

    Song, Yang; Chen, Yong; Li, Yunqian; Lyu, Xiaoyan; Cui, Jiayue; Cheng, Ye; Zhao, Liyan; Zhao, Gang

    2018-01-23

    Glioblastoma (GBM) is the most frequent and aggressive brain tumor in adults. In spite of advances in diagnosis and therapy, the prognosis is still relatively poor. The invasive property of GBM is the major cause of death in patients. Epithelial-to-mesenchymal transition-like process (EMT-like process) is considered to play an important role in the invasive property. Metformin has been reported as a regulator of EMT-like process. In this study, we confirmed that metformin inhibited TGF-β1-induced EMT-like process and EMT-associated migration and invasion in LN18 and U87 GBM cells. Our results also showed that metformin significantly suppressed self-renewal capacity of glioblastoma stem cells (GSCs), and expression of stem cell markers Bmi1, Sox2 and Musashi1, indicating that metformin can inhibit cancer stem-like properties of GBM cells. We further clarified that metformin specifically inhibited TGF-β1 activated AKT, the downstream molecular mTOR and the leading transcription factor ZEB1. Taken together, our data demonstrate that metformin inhibits TGF-β1-induced EMT-like process and cancer stem-like properties in GBM cells via AKT/mTOR/ZEB1 pathway and provide evidence of metformin for further clinical investigation targeted GBM.

  15. Andrographolide suppresses epithelial mesenchymal transition by ...

    Indian Academy of Sciences (India)

    2015-04-27

    Apr 27, 2015 ... by inhibition of MAPK signalling pathway in lens epithelial cells. FORUM KAYASTHA ... 1Iladevi Cataract and IOL Research Centre, Gurukul road, Memnagar, Ahmedabad 380 052, India ...... sition and the stem cell phenotype.

  16. Nevoid basal cell carcinoma syndrome

    Science.gov (United States)

    NBCC syndrome; Gorlin-Goltz syndrome; Basal cell nevus syndrome; BCNS; Basal cell cancer - nevoid basal cell carcinoma syndrome ... Nevoid basal cell carcinoma nevus syndrome is a rare genetic ... syndrome is known as PTCH ("patched"). The gene is passed down ...

  17. Slug controls stem/progenitor cell growth dynamics during mammary gland morphogenesis.

    Directory of Open Access Journals (Sweden)

    Mayssa Nassour

    Full Text Available Morphogenesis results from the coordination of distinct cell signaling pathways controlling migration, differentiation, apoptosis, and proliferation, along stem/progenitor cell dynamics. To decipher this puzzle, we focused on epithelial-mesenchymal transition (EMT "master genes". EMT has emerged as a unifying concept, involving cell-cell adhesion, migration and apoptotic pathways. EMT also appears to mingle with stemness. However, very little is known on the physiological role and relevance of EMT master-genes. We addressed this question during mammary morphogenesis. Recently, a link between Slug/Snai2 and stemness has been described in mammary epithelial cells, but EMT master genes actual localization, role and targets during mammary gland morphogenesis are not known and we focused on this basic question.Using a Slug-lacZ transgenic model and immunolocalization, we located Slug in a distinct subpopulation covering about 10-20% basal cap and duct cells, mostly cycling cells, coexpressed with basal markers P-cadherin, CK5 and CD49f. During puberty, Slug-deficient mammary epithelium exhibited a delayed development after transplantation, contained less cycling cells, and overexpressed CK8/18, ER, GATA3 and BMI1 genes, linked to luminal lineage. Other EMT master genes were overexpressed, suggesting compensation mechanisms. Gain/loss-of-function in vitro experiments confirmed Slug control of mammary epithelial cell luminal differentiation and proliferation. In addition, they showed that Slug enhances specifically clonal mammosphere emergence and growth, cell motility, and represses apoptosis. Strikingly, Slug-deprived mammary epithelial cells lost their potential to generate secondary clonal mammospheres.We conclude that Slug pathway controls the growth dynamics of a subpopulation of cycling progenitor basal cells during mammary morphogenesis. Overall, our data better define a key mechanism coordinating cell lineage dynamics and morphogenesis, and

  18. Characterization of Streptomyces spp. isolated from the rhizosphere of oil palm and evaluation of their ability to suppress basal stem rot disease in oil palm seedlings when applied as powder formulations in a glasshouse trial.

    Science.gov (United States)

    Shariffah-Muzaimah, S A; Idris, A S; Madihah, A Z; Dzolkhifli, O; Kamaruzzaman, S; Maizatul-Suriza, M

    2017-12-18

    Ganoderma boninense, the main causal agent of oil palm (Elaeis guineensis) basal stem rot (BSR), severely reduces oil palm yields around the world. To reduce reliance on fungicide applications to control BSR, we are investigating the efficacy of alternative control methods, such as the application of biological control agents. In this study, we used four Streptomyces-like actinomycetes (isolates AGA43, AGA48, AGA347 and AGA506) that had been isolated from the oil palm rhizosphere and screened for antagonism towards G. boninense in a previous study. The aim of this study was to characterize these four isolates and then to assess their ability to suppress BSR in oil palm seedlings when applied individually to the soil in a vermiculite powder formulation. Analysis of partial 16S rRNA gene sequences (512 bp) revealed that the isolates exhibited a very high level of sequence similarity (> 98%) with GenBank reference sequences. Isolates AGA347 and AGA506 showed 99% similarity with Streptomyces hygroscopicus subsp. hygroscopicus and Streptomyces ahygroscopicus, respectively. Isolates AGA43 and AGA48 also belonged to the Streptomyces genus. The most effective formulation, AGA347, reduced BSR in seedlings by 73.1%. Formulations using the known antifungal producer Streptomyces noursei, AGA043, AGA048 or AGA506 reduced BSR by 47.4, 30.1, 54.8 and 44.1%, respectively. This glasshouse trial indicates that these Streptomyces spp. show promise as potential biological control agents against Ganoderma in oil palm. Further investigations are needed to determine the mechanism of antagonism and to increase the shelf life of Streptomyces formulations.

  19. Tissue engineering and the use of stem/progenitor cells for airway epithelium repair

    Directory of Open Access Journals (Sweden)

    GM Roomans

    2010-06-01

    Full Text Available Stem/progenitor cells can be used to repair defects in the airway wall, resulting from e.g., tumors, trauma, tissue reactions following long-time intubations, or diseases that are associated with epithelial damage. Several potential sources of cells for airway epithelium have been identified. These can be divided into two groups. The first group consists of endogenous progenitor cells present in the respiratory tract. This group can be subdivided according to location into (a a ductal cell type in the submucosal glands of the proximal trachea, (b basal cells in the intercartilaginous zones of the lower trachea and bronchi, (c variant Clara cells (Clarav-cells in the bronchioles and (d at the junctions between the bronchioles and the alveolar ducts, and (e alveolar type II cells. This classification of progenitor cell niches is, however, controversial. The second group consists of exogenous stem cells derived from other tissues in the body. This second group can be subdivided into: (a embryonic stem (ES cells, induced pluripotent stem (iPS cells, or amniotic fluid stem cells, (b side-population cells from bone marrow or epithelial stem cells present in bone marrow or circulation and (c fat-derived mesenchymal cells. Airway epithelial cells can be co-cultured in a system that includes a basal lamina equivalent, extracellular factors from mesenchymal fibroblasts, and in an air-liquid interface system. Recently, spheroid-based culture systems have been developed. Several clinical applications have been suggested: cystic fibrosis, acute respiratory distress syndrome, chronic obstructive lung disease, pulmonary fibrosis, pulmonary edema, and pulmonary hypertension. Clinical applications so far are few, but include subglottic stenosis, tracheomalacia, bronchiomalacia, and emphysema.

  20. Epithelial topography for repetitive tooth formation

    Directory of Open Access Journals (Sweden)

    Marcia Gaete

    2015-12-01

    Full Text Available During the formation of repetitive ectodermally derived organs such as mammary glands, lateral line and teeth, the tissue primordium iteratively initiates new structures. In the case of successional molar development, new teeth appear sequentially in the posterior region of the jaw from Sox2+ cells in association with the posterior aspect of a pre-existing tooth. The sequence of molar development is well known, however, the epithelial topography involved in the formation of a new tooth is unclear. Here, we have examined the morphology of the molar dental epithelium and its development at different stages in the mouse in vivo and in molar explants. Using regional lineage tracing we show that within the posterior tail of the first molar the primordium for the second and third molar are organized in a row, with the tail remaining in connection with the surface, where a furrow is observed. The morphology and Sox2 expression of the tail retains characteristics reminiscent of the earlier stages of tooth development, such that position along the A-P axes of the tail correlates with different temporal stages. Sox9, a stem/progenitor cell marker in other organs, is expressed mainly in the suprabasal epithelium complementary with Sox2 expression. This Sox2 and Sox9 expressing molar tail contains actively proliferating cells with mitosis following an apico-basal direction. Snail2, a transcription factor implicated in cell migration, is expressed at high levels in the tip of the molar tail while E-cadherin and laminin are decreased. In conclusion, our studies propose a model in which the epithelium of the molar tail can grow by posterior movement of epithelial cells followed by infolding and stratification involving a population of Sox2+/Sox9+ cells.

  1. Molecular mechanisms of the 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced inverted U-shaped dose responsiveness in anchorage independent growth and cell proliferation of human breast epithelial cells with stem cell characteristics

    International Nuclear Information System (INIS)

    Ahn, Nam-Shik; Hu, Hongbo; Park, Jin-Sung; Park, Joon-Suk; Kim, Jong-Sik; An, Sungwhan; Kong, Gu; Aruoma, Okezie I.; Lee, Yong-Soon; Kang, Kyung-Sun

    2005-01-01

    Although 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has a variety of carcinogenic and noncarcinogenic effects in experimental animals, its role in human carcinogenicity remain controversial. A simian virus 40-immortalized cell line from normal human breast epithelial cells with stem cells and luminal characteristics (M13SV1) was used to study whether TCDD can induce AIG positive colony formation and cause increased cell numbers in a inverted U-shaped dose-response manner. TCDD activated Akt, ERK2, and increased the expression of CYP1A1, PAI-2, IL-lb mRNA, and ERK2 protein levels. TCDD was able to increased phosphorylation and expression of ERK2 in same dose-response manner as AIG positive colony formation. Thus, TCDD induced tumorigenicity in M13SV1, possibly through the phosphorylation of ERK2 and/or Akt. Further, cDNA microarray with 7448 sequence-verified clones was used to profile various gene expression patterns after treatment of TCDD. Three clear patterns could be delineated: genes that were dose-dependently up-regulated, genes expressed in either U-shape and/or inverted U-shape. The fact that these genes are intrinsically related to breast epithelial cell proliferation and survival clearly suggests that they may be involved in the TCDD-induced breast tumorigenesis

  2. Focal degeneration of basal cells and the resultant auto-immunoreactions: a novel mechanism for prostate tumor progression and invasion.

    Science.gov (United States)

    Man, Yan-Gao; Gardner, William A

    2008-01-01

    ) significantly lower p63 expression; (3) significantly higher apoptosis; and (4) significantly higher leukocyte infiltration and stromal reactions. Compared to their counterparts distant from focal disruptions or overlying non-disrupted basal cell layers, epithelial cells overlying focal basal cell layer disruptions showed the following unique features: (1) significantly higher proliferation; (2) significantly higher expression of cell cycle control-, cell growth-, and stem cell-related genes; and (3) physical continuity with adjacent invasive lesions. Together, these findings suggest that focal basal cell layer disruptions could substantially impact the molecular profile and biological presentations of the overlying epithelial cells. Based on these and other findings, we have proposed that prostate tumor invasion is triggered by a localized degeneration of aged or injured basal cells and the resultant auto-immunoreactions. Our hypothesized steps for prostate tumor invasion include the following: (1) due to inherited or environmental factors, some patients contained cell cycle control- and renewal-related defects in the basal cell population that cause elevated basal cell degenerations; (2) the degradation products of degenerated basal cells or diffusible molecules of the overlying epithelial cells attract leukocyte infiltration; (3) leukocytes discharge their digestive enzymes upon the direct physical contact, resulting in a focal disruption in the basal cell layer, which leads to several focal alterations: (a) a focal loss of tumor suppressors and paracrine inhibitory function; (b) a focal increase of the permeability for growth-required nutrients and oxygen; (c) a focal increase of growth factors; (d) direct physical contact between epithelial and stromal cells; and (e) the exposure of the overlying epithelial cells directly to the stromal tissue fluid. These alterations individually or collectively stimulate or favor a clonal proliferation and stromal invasion of tumor

  3. Destructive impact of t-lymphocytes, NK and mast cells on basal cell layers: implications for tumor invasion

    International Nuclear Information System (INIS)

    Yuan, Hongyan; Hsiao, Yi-Hsuan; Zhang, Yiyu; Wang, Jinlian; Yin, Chao; Shen, Rong; Su, Yiping

    2013-01-01

    Our previous studies have suggested that the primary impact of immune cell infiltration into the normal or pre-invasive tissue component is associated with the physical destruction of epithelial capsules, which may promote tumor progression and invasion. Our current study attempted to further verify our previous observations and determine the primary type(s) of infiltrating immune cells and the possible mechanism associated with physical destructions of the epithelial capsules. In total, the study was conducted with 250 primary breast and prostate tumors, the primary immune cell of cytotoxic T-lymphocytes (CTL), Natural killer cells (NK) and Mast cells were analyzed by immunohistochemistry, fluorescent labeling and apoptosis assay. qRT-PCR was used for gene expression analysis. Our current study assessed the physical disruption of these immune cells and potential impact on the epithelial capsule of human breast and prostate tumors. Our study yield several clinically-relevant findings that have not been studied before. (1) A vast majority of these infiltrating immune cells are distributed in the normal-appearing or pre-invasive tissue components rather than in invasive cancer tissues. (2) These cells often form rings or semilunar structures that either surround focally-disrupted basal cell layers or physically attach to the basal cells. (3) Basal cells physically associated with these immune cells generally displayed distinct signs of degeneration, including substantially elevated apoptosis, necrosis, and reduced tumor suppressor p63 expression. In contrast, luminal cells overlying focally disrupted basal cell layers had a substantially increased proliferation rate and elevated expression of stem cell markers compared to their adjacent morphologically similar counterparts that overlie a non-disrupted capsule. Our findings suggest that at the early stage of tumor invasion, CTL, NK and Mast cells are the main types of tumor infiltrating immune cells involved in focal

  4. Basal CD34+ Cell Count Predicts Peripheral Blood Stem Cell Mobilization in Healthy Donors after Administration of Granulocyte Colony-Stimulating Factor: A Longitudinal, Prospective, Observational, Single-Center, Cohort Study.

    Science.gov (United States)

    Martino, Massimo; Gori, Mercedes; Pitino, Annalisa; Gentile, Massimo; Dattola, Antonia; Pontari, Antonella; Vigna, Ernesto; Moscato, Tiziana; Recchia, Anna Grazia; Barilla', Santina; Tripepi, Giovanni; Morabito, Fortunato

    2017-07-01

    A longitudinal, prospective, observational, single-center, cohort study on healthy donors (HDs) was designed to identify predictors of CD34 + cells on day 5 with emphasis on the predictive value of the basal CD34 + cell count. As potential predictors of mobilization, age, sex, body weight, height, blood volume as well as white blood cell count, peripheral blood (PB) mononuclear cells, platelet count, hematocrit, and hemoglobin levels were considered. Two different evaluations of CD34 + cell counts were determined for each donor: baseline (before granulocyte colony-stimulating factor [G-CSF] administration) and in PB after G-CSF administration on the morning of the fifth day (day 5). A total of 128 consecutive HDs (66 males) with a median age of 43 years were enrolled. CD34 + levels on day 5 displayed a non-normal distribution, with a median value of 75.5 cells/µL. To account for the non-normal distribution of the dependent variable, a quantile regression analysis to predict CD34 + on day 5 using the baseline value of CD34 + as the key predictor was performed. On crude analysis, a baseline value of CD34 + ranging from .5 cells/µL to 1 cells/µL predicts a median value of 50 cells/µL on day 5; a value of 2 cells/µL predicts a median value of 70.7 cells/µL; a value of 3 cells/µL to 4 cells/µL predicts a median value of 91.3 cells/µL, and a value ≥ 5 predicts a median value of 112 cells/µL. In conclusion, the baseline PB CD34 + cell count correlates with the effectiveness of allogeneic PB stem cell mobilization and could be useful to plan the collection. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  5. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation

    International Nuclear Information System (INIS)

    Rauner, Gat; Barash, Itamar

    2014-01-01

    The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine's effect on defined stem cells in the mammary gland of heifers—which are candidates for increased prospective milk production following such manipulation—bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases. No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. - Highlights: • Novel “bovinized“ mouse model for exogenous effects on bovine mammary gland. • Xanthosine did not affect stem cell number/function in bovine mammary gland. • Xanthosine caused an immediate decrease in IMPDH expression in bovine mammary gland. • Xanthosine had latent negative effect on cell proliferation in bovine mammary gland. • Xanthosine administration limited mammary tumor growth

  6. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Rauner, Gat, E-mail: gat.rauner@mail.huji.ac.il [Institute of Animal Science, ARO, The Volcani Center, P.O. Box 6, Bet-Dagan, 50250 (Israel); The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem (Israel); Barash, Itamar, E-mail: itamar.barash@mail.huji.ac.il [Institute of Animal Science, ARO, The Volcani Center, P.O. Box 6, Bet-Dagan, 50250 (Israel)

    2014-10-15

    The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine's effect on defined stem cells in the mammary gland of heifers—which are candidates for increased prospective milk production following such manipulation—bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases. No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. - Highlights: • Novel “bovinized“ mouse model for exogenous effects on bovine mammary gland. • Xanthosine did not affect stem cell number/function in bovine mammary gland. • Xanthosine caused an immediate decrease in IMPDH expression in bovine mammary gland. • Xanthosine had latent negative effect on cell proliferation in bovine mammary gland. • Xanthosine administration limited mammary tumor growth.

  7. Epithelial cells derived from human embryonic stem cells display p16INK4A senescence, hypermotility, and differentiation properties shared by many P63+ somatic cell types

    DEFF Research Database (Denmark)

    Dabelsteen, Sally; Hercule, Paula; Barron, Patricia

    2009-01-01

    hESderK cells and keratinocytes a substantially extended lifespan. When exposed to transforming growth factor beta or to an incompletely processed form of Laminin-332, three lifespan-extended or immortalized hESderK lines that we studied became directionally hypermotile, a wound healing and invasion......(+)/K14(+) urothelial and tracheobronchial epithelial cells. Primary and immortalized lines of these cell types had growth requirements and hypermotility responses similar to keratinocytes and bmi1 expression facilitated their immortalization by engineering to express the catalytic subunit of telomerase...

  8. Synchrotron- and focal plane array-based Fourier-transform infrared spectroscopy differentiates the basalis and functionalis epithelial endometrial regions and identifies putative stem cell regions of human endometrial glands.

    Science.gov (United States)

    Theophilou, Georgios; Morais, Camilo L M; Halliwell, Diane E; Lima, Kássio M G; Drury, Josephine; Martin-Hirsch, Pierre L; Stringfellow, Helen F; Hapangama, Dharani K; Martin, Francis L

    2018-05-09

    The cyclical process of regeneration of the endometrium suggests that it may contain a cell population that can provide daughter cells with high proliferative potential. These cell lineages are clinically significant as they may represent clonogenic cells that may also be involved in tumourigenesis as well as endometriotic lesion development. To determine whether the putative stem cell location within human uterine tissue can be derived using vibrational spectroscopy techniques, normal endometrial tissue was interrogated by two spectroscopic techniques. Paraffin-embedded uterine tissues containing endometrial glands were sectioned to 10-μm-thick parallel tissue sections and were floated onto BaF 2 slides for synchrotron radiation-based Fourier-transform infrared (SR-FTIR) microspectroscopy and globar focal plane array-based FTIR spectroscopy. Different spectral characteristics were identified depending on the location of the glands examined. The resulting infrared spectra were subjected to multivariate analysis to determine associated biophysical differences along the length of longitudinal and crosscut gland sections. Comparison of the epithelial cellular layer of transverse gland sections revealed alterations indicating the presence of putative transient-amplifying-like cells in the basalis and mitotic cells in the functionalis. SR-FTIR microspectroscopy of the base of the endometrial glands identified the location where putative stem cells may reside at the same time pointing towards ν s PO 2 - in DNA and RNA, nucleic acids and amide I and II vibrations as major discriminating factors. This study supports the view that vibration spectroscopy technologies are a powerful adjunct to our understanding of the stem cell biology of endometrial tissue. Graphical abstract ᅟ.

  9. Primary Cutaneous Carcinosarcoma of the Basal Cell Subtype Should Be Treated as a High-Risk Basal Cell Carcinoma.

    Science.gov (United States)

    Bourgeault, Emilie; Alain, Jimmy; Gagné, Eric

    2015-01-01

    Cutaneous carcinosarcoma is a rare primary tumor of the skin, characterized by biphasic epithelial and mesenchymal differentiation. Due to the limited number of cases reported, there is no consensus regarding treatment and prognosis. Some authors suggest that cutaneous carcinosarcomas should be viewed as aggressive tumors, with ancillary imaging used to evaluate potential metastatic disease. Other reports demonstrate an indolent disease course, especially with epidermal-type cutaneous carcinosarcomas. We report a case of cutaneous carcinosarcoma, which we treated with electrodessication and curettage following a shave biopsy. The tumor had an epithelial component resembling a basal cell carcinoma and a fibrosarcomatous stroma. At 1-year follow-up, our patient did not show evidence of recurrence or metastasis. Our case suggests that a cutaneous carcinosarcoma with an epithelial component composed of basal cell carcinoma can be regarded as a high-risk nonmelanoma skin cancer. © The Author(s) 2015.

  10. Skin Stem Cell Hypotheses and Long Term Clone Survival – Explored Using Agent-based Modelling

    Science.gov (United States)

    Li, X.; Upadhyay, A. K.; Bullock, A. J.; Dicolandrea, T.; Xu, J.; Binder, R. L.; Robinson, M. K.; Finlay, D. R.; Mills, K. J.; Bascom, C. C.; Kelling, C. K.; Isfort, R. J.; Haycock, J. W.; MacNeil, S.; Smallwood, R. H.

    2013-01-01

    Epithelial renewal in skin is achieved by the constant turnover and differentiation of keratinocytes. Three popular hypotheses have been proposed to explain basal keratinocyte regeneration and epidermal homeostasis: 1) asymmetric division (stem-transit amplifying cell); 2) populational asymmetry (progenitor cell with stochastic fate); and 3) populational asymmetry with stem cells. In this study, we investigated lineage dynamics using these hypotheses with a 3D agent-based model of the epidermis. The model simulated the growth and maintenance of the epidermis over three years. The offspring of each proliferative cell was traced. While all lineages were preserved in asymmetric division, the vast majority were lost when assuming populational asymmetry. The third hypothesis provided the most reliable mechanism for self-renewal by preserving genetic heterogeneity in quiescent stem cells, and also inherent mechanisms for skin ageing and the accumulation of genetic mutation. PMID:23712735

  11. Skin stem cell hypotheses and long term clone survival--explored using agent-based modelling.

    Science.gov (United States)

    Li, X; Upadhyay, A K; Bullock, A J; Dicolandrea, T; Xu, J; Binder, R L; Robinson, M K; Finlay, D R; Mills, K J; Bascom, C C; Kelling, C K; Isfort, R J; Haycock, J W; MacNeil, S; Smallwood, R H

    2013-01-01

    Epithelial renewal in skin is achieved by the constant turnover and differentiation of keratinocytes. Three popular hypotheses have been proposed to explain basal keratinocyte regeneration and epidermal homeostasis: 1) asymmetric division (stem-transit amplifying cell); 2) populational asymmetry (progenitor cell with stochastic fate); and 3) populational asymmetry with stem cells. In this study, we investigated lineage dynamics using these hypotheses with a 3D agent-based model of the epidermis. The model simulated the growth and maintenance of the epidermis over three years. The offspring of each proliferative cell was traced. While all lineages were preserved in asymmetric division, the vast majority were lost when assuming populational asymmetry. The third hypothesis provided the most reliable mechanism for self-renewal by preserving genetic heterogeneity in quiescent stem cells, and also inherent mechanisms for skin ageing and the accumulation of genetic mutation.

  12. ROCK1-directed basement membrane positioning coordinates epithelial tissue polarity.

    Science.gov (United States)

    Daley, William P; Gervais, Elise M; Centanni, Samuel W; Gulfo, Kathryn M; Nelson, Deirdre A; Larsen, Melinda

    2012-01-01

    The basement membrane is crucial for epithelial tissue organization and function. However, the mechanisms by which basement membrane is restricted to the basal periphery of epithelial tissues and the basement membrane-mediated signals that regulate coordinated tissue organization are not well defined. Here, we report that Rho kinase (ROCK) controls coordinated tissue organization by restricting basement membrane to the epithelial basal periphery in developing mouse submandibular salivary glands, and that ROCK inhibition results in accumulation of ectopic basement membrane throughout the epithelial compartment. ROCK-regulated restriction of PAR-1b (MARK2) localization in the outer basal epithelial cell layer is required for basement membrane positioning at the tissue periphery. PAR-1b is specifically required for basement membrane deposition, as inhibition of PAR-1b kinase activity prevents basement membrane deposition and disrupts overall tissue organization, and suppression of PAR-1b together with ROCK inhibition prevents interior accumulations of basement membrane. Conversely, ectopic overexpression of wild-type PAR-1b results in ectopic interior basement membrane deposition. Significantly, culture of salivary epithelial cells on exogenous basement membrane rescues epithelial organization in the presence of ROCK1 or PAR-1b inhibition, and this basement membrane-mediated rescue requires functional integrin β1 to maintain epithelial cell-cell adhesions. Taken together, these studies indicate that ROCK1/PAR-1b-dependent regulation of basement membrane placement is required for the coordination of tissue polarity and the elaboration of tissue structure in the developing submandibular salivary gland.

  13. Shell bone histology indicates terrestrial palaeoecology of basal turtles

    OpenAIRE

    Scheyer, Torsten; Sander, P. Martin

    2009-01-01

    The palaeoecology of basal turtles from the Late Triassic was classically viewed as being semi-aquatic, similar to the lifestyle of modern snapping turtles. Lately, this view was questioned based on limb bone proportions, and a terrestrial palaeoecology was suggested for the turtle stem. Here, we present independent shell bone microstructural evidence for a terrestrial habitat of the oldest and basal most well-known turtles, i.e. the Upper Triassic Proterochersis robusta and Proganochelys que...

  14. Characterization of a naturally occurring breast cancer subset enriched in EMT and stem cell characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hennessy, Bryan T.; Gonzalez-Angulo, Ana-Maria; Stemke-Hale, Katherine; Gilcrease, Michael Z.; Krishnamurthy, Savitri; Lee, Ju-Seog; Fridlyand, Jane; Sahin, Aysegul; Agarwal, Roshan; Joy, Corwin; Liu, Wenbin; Stivers, David; Baggerly, Keith; Carey, Mark; Lluch, Ana; Monteagudo, Carlos; He, Xiaping; Weigman, Victor; Fan, Cheng; Palazzo, Juan; Hortobagyi, Gabriel N.; Nolden, Laura K.; Wang, Nicholas J.; Valero, Vicente; Gray, Joe W.; Perou, Charles M.; Mills, Gordon B.

    2009-05-19

    Metaplastic breast cancers (MBC) are aggressive, chemoresistant tumors characterized by lineage plasticity. To advance understanding of their pathogenesis and relatedness to other breast cancer subtypes, 28 MBCs were compared with common breast cancers using comparative genomic hybridization, transcriptional profiling, and reverse-phase protein arrays and by sequencing for common breast cancer mutations. MBCs showed unique DNA copy number aberrations compared with common breast cancers. PIK3CA mutations were detected in 9 of 19 MBCs (47.4%) versus 80 of 232 hormone receptor-positive cancers (34.5%; P = 0.32), 17 of 75 HER-2-positive samples (22.7%; P = 0.04), 20 of 240 basal-like cancers (8.3%; P < 0.0001), and 0 of 14 claudin-low tumors (P = 0.004). Of 7 phosphatidylinositol 3-kinase/AKT pathway phosphorylation sites, 6 were more highly phosphorylated in MBCs than in other breast tumor subtypes. The majority of MBCs displayed mRNA profiles different from those of the most common, including basal-like cancers. By transcriptional profiling, MBCs and the recently identified claudin-low breast cancer subset constitute related receptor-negative subgroups characterized by low expression of GATA3-regulated genes and of genes responsible for cell-cell adhesion with enrichment for markers linked to stem cell function and epithelial-to-mesenchymal transition (EMT). In contrast to other breast cancers, claudin-low tumors and most MBCs showed a significant similarity to a 'tumorigenic' signature defined using CD44{sup +}/CD24{sup -} breast tumor-initiating stem cell-like cells. MBCs and claudin-low tumors are thus enriched in EMT and stem cell-like features, and may arise from an earlier, more chemoresistant breast epithelial precursor than basal-like or luminal cancers. PIK3CA mutations, EMT, and stem cell-like characteristics likely contribute to the poor outcomes of MBC and suggest novel therapeutic targets.

  15. Cellular Plasticity of Epithelial Cells-Cause of Metastasis

    National Research Council Canada - National Science Library

    Sukumar, Saraswati

    2005-01-01

    .... We present a novel concept that cancer epithelial cells, possibly of stem cell origin, have inherent cellular plasticity and can differentiate into endothelial cells and form microvessels that serve...

  16. Future of newer basal insulin

    OpenAIRE

    Madhu, S. V.; Velmurugan, M.

    2013-01-01

    Basal insulin have been developed over the years. In recent times newer analogues have been added to the armanentarium for diabetes therapy. This review specifically reviews the current status of different basal insulins

  17. Distinct Upstream Role of Type I IFN Signaling in Hematopoietic Stem Cell-Derived and Epithelial Resident Cells for Concerted Recruitment of Ly-6Chi Monocytes and NK Cells via CCL2-CCL3 Cascade.

    Directory of Open Access Journals (Sweden)

    Erdenebileg Uyangaa

    Full Text Available Type I interferon (IFN-I-dependent orchestrated mobilization of innate cells in inflamed tissues is believed to play a critical role in controlling replication and CNS-invasion of herpes simplex virus (HSV. However, the crucial regulators and cell populations that are affected by IFN-I to establish the early environment of innate cells in HSV-infected mucosal tissues are largely unknown. Here, we found that IFN-I signaling promoted the differentiation of CCL2-producing Ly-6Chi monocytes and IFN-γ/granzyme B-producing NK cells, whereas deficiency of IFN-I signaling induced Ly-6Clo monocytes producing CXCL1 and CXCL2. More interestingly, recruitment of Ly-6Chi monocytes preceded that of NK cells with the levels peaked at 24 h post-infection in IFN-I-dependent manner, which was kinetically associated with the CCL2-CCL3 cascade response. Early Ly-6Chi monocyte recruitment was governed by CCL2 produced from hematopoietic stem cell (HSC-derived leukocytes, whereas NK cell recruitment predominantly depended on CC chemokines produced by resident epithelial cells. Also, IFN-I signaling in HSC-derived leukocytes appeared to suppress Ly-6Ghi neutrophil recruitment to ameliorate immunopathology. Finally, tissue resident CD11bhiF4/80hi macrophages and CD11chiEpCAM+ dendritic cells appeared to produce initial CCL2 for migration-based self-amplification of early infiltrated Ly-6Chi monocytes upon stimulation by IFN-I produced from infected epithelial cells. Ultimately, these results decipher a detailed IFN-I-dependent pathway that establishes orchestrated mobilization of Ly-6Chi monocytes and NK cells through CCL2-CCL3 cascade response of HSC-derived leukocytes and epithelium-resident cells. Therefore, this cascade response of resident-to-hematopoietic-to-resident cells that drives cytokine-to-chemokine-to-cytokine production to recruit orchestrated innate cells is critical for attenuation of HSV replication in inflamed tissues.

  18. Basal stamcellebiologi og cancer

    DEFF Research Database (Denmark)

    Porse, Bo T; Petersen, Ole W; Helin, Kristian

    2010-01-01

    The finding that tumours, like normal tissues, are endowed with varying degrees of cellular heterogeneity has far-reaching consequences for our understanding of cancer. The cancer stem cell and clonal evolution models have both been proposed to explain tumour-associated cellular heterogeneity. Here......, we briefly review these two non-exclusive models with special emphasis on how they aid our understanding of cancer and their implications for therapeutic strategies. Finally, we discuss the close association between basic stem cell biology and cancer, focusing on the role of self-renewal....

  19. Basal stamcellebiologi og cancer

    DEFF Research Database (Denmark)

    Porse, Bo T; Petersen, Ole W; Helin, Kristian

    2010-01-01

    , we briefly review these two non-exclusive models with special emphasis on how they aid our understanding of cancer and their implications for therapeutic strategies. Finally, we discuss the close association between basic stem cell biology and cancer, focusing on the role of self-renewal.......The finding that tumours, like normal tissues, are endowed with varying degrees of cellular heterogeneity has far-reaching consequences for our understanding of cancer. The cancer stem cell and clonal evolution models have both been proposed to explain tumour-associated cellular heterogeneity. Here...

  20. Human umbilical blood mononuclear cell-derived mesenchymal stem cells serve as interleukin-21 gene delivery vehicles for epithelial ovarian cancer therapy in nude mice.

    Science.gov (United States)

    Hu, Weihua; Wang, Jing; He, Xiangfeng; Zhang, Hongyi; Yu, Fangliu; Jiang, Longwei; Chen, Dengyu; Chen, Junsong; Dou, Jun

    2011-01-01

    Ovarian cancer causes more deaths than any other cancer of the female reproductive system, and its overall cure rate remains low. The present study investigated human umbilical blood mononuclear cell (UBMC)-derived mesenchymal stem cells (UBMC-MSCs) as interleukin-21 (IL-21) gene delivery vehicles for ovarian cancer therapy in nude mice. MSCs were isolated from UBMCs and the expanded cells were phenotyped by flow cytometry. Cultured UBMCs were differentiated into osteocytes and adipocytes using appropriate media and then the UBMC-MSCs were transfected with recombinant pIRES2-IL-21-enhancement green fluorescent protein. UBMC-MSCs expressing IL-21 were named as UBMC-MSC-IL-21. Mice with A2780 ovarian cancer were treated with UBMC-MSC-IL-21 intravenously, and the therapeutic efficacy was evaluated by the tumor volume and mouse survival. To address the mechanism of UBMC-MSC-IL-21 against ovarian cancer, the expression of IL-21, natural killer glucoprotein 2 domain and major histocompatibility complex class I chain-related molecules A/B were detected in UBMC-MSC-IL-21 and in the tumor sites. Interferon-γ-secreting splenocyte numbers and natural killer cytotoxicity were significantly increased in the UBMC-MSC-IL-21-treated mice as compared with the UBMC-MSCs or the UBMC-MSC-mock plasmid-treated mice. Most notably, tumor growth was delayed and survival was prolonged in ovarian-cancer-bearing mice treated with UBMC-MSC-IL-21. Our data provide important evidence that UBMC-MSCs can serve as vehicles for IL-21 gene delivery and inhibit the established tumor. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  1. Experience with basal area estimation by prisms in lodgepole pine.

    Science.gov (United States)

    James M. Trappe

    1957-01-01

    Estimation of basal area by prisms offers intriguing possibilities for reducing time and effort in making stand inventories. Increased inventory efficiency is a particular need in stands that are relatively low in value due to small stems, predominance of low value species or heavy defect. In the Pacific Northwest, lodgepole pine characteristically forms dense low-...

  2. The generation of induced pluripotent stem cells for macular degeneration as a drug screening platform: identification of curcumin as a protective agent for retinal pigment epithelial cells against oxidative stress

    Directory of Open Access Journals (Sweden)

    Yun-Ching eChang

    2014-08-01

    Full Text Available Age-related macular degeneration (AMD is one retinal aging process that may lead to irreversible vision loss in the elderly. Its pathogenesis remains unclear, but oxidative stress inducing retinal pigment epithelial (RPE cells damage is perhaps responsible for the aging sequence of retina and may play an important role in macular degeneration. In this study, we have reprogrammed T cells from patients with dry type AMD into induced pluripotent stem cells (iPSCs via integration-free episomal vectors and differentiated them into RPE cells that were used as an expandable platform for investigating pathogenesis of the AMD and in-vitro drug screening. These patient-derived RPEs with the AMD-associated background (AMD-RPEs exhibited reduced antioxidant ability, compared with normal RPE cells. Among several screened candidate drugs, curcumin caused most significant reduction of ROS in AMD-RPEs. Pre-treatment of curcumin protected these AMD-RPEs from H2O2-induced cell death and also increased the cytoprotective effect against the oxidative stress of H2O2 through the reduction of ROS levels. In addition, curcumin with its versatile activities modulated the expression of many oxidative stress-regulating genes such as PDGF, VEGF, IGFBP-2, HO1, SOD2 and GPX1. Our findings indicated that the RPE cells derived from AMD patients have decreased antioxidative defense, making RPE cells more susceptible to oxidative damage and thereby leading to AMD formation. Curcumin represented an ideal drug that can effectively restore the neuronal functions in AMD patient-derived RPE cells, rendering this drug an effective option for macular degeneration therapy and an agent against aging-associated oxidative stress.

  3. Stem cell heterogeneity revealed

    DEFF Research Database (Denmark)

    Andersen, Marianne S; Jensen, Kim B

    2016-01-01

    The skin forms a protective, water-impermeable barrier consisting of heavily crosslinked epithelial cells. However, the specific role of stem cells in sustaining this barrier remains a contentious issue. A detailed analysis of the interfollicular epidermis now proposes a model for how a composite...... of cells with different properties are involved in its maintenance....

  4. Isolation, separation, and characterization of epithelial and connective cells from rat palate

    Energy Technology Data Exchange (ETDEWEB)

    Terranova, Victor Paul [Univ. of Rochester, NY (United States)

    1979-01-01

    Epithelial and connective tissue cells were isolated from rat palate by sequential collagenase, hyaluronidase and trypsin digestion of the extracellular matrix. Differences between the two populations were noted with respect to total cell protein, total cell water, proline uptake and incorporation, percent collagen synthesized, effects of parathyroid hormone, metabolism of D-valine and cell density. Basal epithelial cells were subsequently separated from the heterogeneous epithelial cell population on shallow linear density gradients by velocity centrifugation. The type of collagen synthesized by the basal epithelial cells was compared to the type of collagen synthesized by the connective tissue cells by means of labeled amino acid incorporation ratios. Cells isolated from the epithelial and connective tissue were compared. From these studies it can be concluded that epithelial and connective tissue cells can be isolated from rat palate as viable and distinct populations with respect to the biochemical parameters examined. Furthermore, subpopulations can be separated and biochemically characterized.

  5. Limbal Stem Cell Deficiency and Treatment with Stem Cell Transplantation.

    Science.gov (United States)

    Barut Selver, Özlem; Yağcı, Ayşe; Eğrilmez, Sait; Gürdal, Mehmet; Palamar, Melis; Çavuşoğlu, Türker; Ateş, Utku; Veral, Ali; Güven, Çağrı; Wolosin, Jose Mario

    2017-10-01

    The cornea is the outermost tissue of the eye and it must be transparent for the maintenance of good visual function. The superficial epithelium of the cornea, which is renewed continuously by corneal stem cells, plays a critical role in the permanence of this transparency. These stem cells are localized at the cornea-conjunctival transition zone, referred to as the limbus. When this zone is affected/destroyed, limbal stem cell deficiency ensues. Loss of limbal stem cell function allows colonization of the corneal surface by conjunctival epithelium. Over 6 million people worldwide are affected by corneal blindness, and limbal stem cell deficiency is one of the main causes. Fortunately, it is becoming possible to recover vision by autologous transplantation of limbal cells obtained from the contralateral eye in unilateral cases. Due to the potential risks to the donor eye, only a small amount of tissue can be obtained, in which only 1-2% of the limbal epithelial cells are actually limbal stem cells. Vigorous attempts are being made to expand limbal stem cells in culture to preserve or even enrich the stem cell population. Ex vivo expanded limbal stem cell treatment in limbal stem cell deficiency was first reported in 1997. In the 20 years since, various protocols have been developed for the cultivation of limbal epithelial cells. It is still not clear which method promotes effective stem cell viability and this remains a subject of ongoing research. The most preferred technique for limbal cell culture is the explant culture model. In this approach, a small donor eye limbal biopsy is placed as an explant onto a biocompatible substrate (preferably human amniotic membrane) for expansion. The outgrowth (cultivated limbal epithelial cells) is then surgically transferred to the recipient eye. Due to changing regulations concerning cell-based therapy, the implementation of cultivated limbal epithelial transplantation in accordance with Good Laboratory Practice using

  6. Does the peritumoral stroma of basal cell carcinoma recapitulate the follicular connective tissue sheath?

    Science.gov (United States)

    Sellheyer, Klaus; Krahl, Dieter

    2011-07-01

    There are compelling embryologic and anatomic relationships within adnexal tumors. However, these are mostly perceived within the epithelial component while the stromal component of the tumors is frequently overlooked. In postnatal skin, nestin is almost exclusively expressed in the perifollicular mesenchyme. This study examines the expression of this neuroepithelial stem cell protein in trichoblastoma/trichoepithelioma and in basal cell carcinoma (BCC), which is increasingly being viewed as follicular in nature. We employed standard immunohistochemical methods with three different antibodies to examine the expression of nestin in 25 BCCs and compared the staining pattern with that of 7 trichoblastomas and 11 trichoepitheliomas. Nestin is expressed in the peritumoral stroma of all tumors examined and is limited to the immediate layer of mesenchymal cells surrounding the tumor epithelium. In BCC, nestin-immunoreactive cells are found as a sheath of thin, spindled fibroblasts, while reactive cells are plump in trichoepitheliomas/trichoblastomas. We postulate that the peritumoral stroma of BCC imitates the perifollicular connective tissue sheath, while in contrast that of trichoepithelioma/trichoblastoma is similar to the papillary and immediate peripapillary follicular mesenchyme. Further functional and animal experimental studies are needed to test this hypothesis. Copyright © 2011 John Wiley & Sons A/S.

  7. Report Card on Basal Readers.

    Science.gov (United States)

    Goodman, Kenneth S.; And Others

    This report examines the nature of the modern basal reader, its economics, and use. First, the report provides a history showing how the confluence of business principles, positivistic science, and behavioral psychology led to the transformation of reading textbooks into basal readers. Next, the report examines objectives and subjective factors…

  8. Gastrointestinal Epithelial Organoid Cultures from Postsurgical Tissues.

    Science.gov (United States)

    Hahn, Soojung; Yoo, Jongman

    2017-08-17

    An organoid is a cellular structure three-dimensionally (3D) cultured from self-organizing stem cells in vitro, which has a cell population, architectures, and organ specific functions like the originating organs. Recent advances in the 3D culture of isolated intestinal crypts or gastric glands have enabled the generation of human gastrointestinal epithelial organoids. Gastrointestinal organoids recapitulate the human in vivo physiology because of all the intestinal epithelial cell types that differentiated and proliferated from tissue resident stem cells. Thus far, gastrointestinal organoids have been extensively used for generating gastrointestinal disease models. This protocol describes the method of isolating a gland or crypt using stomach or colon tissue after surgery and establishing them into gastroids or colonoids.

  9. Tracing the fate of limbal epithelial progenitor cells in the murine cornea.

    Science.gov (United States)

    Di Girolamo, N; Bobba, S; Raviraj, V; Delic, N C; Slapetova, I; Nicovich, P R; Halliday, G M; Wakefield, D; Whan, R; Lyons, J G

    2015-01-01

    Stem cell (SC) division, deployment, and differentiation are processes that contribute to corneal epithelial renewal. Until now studying the destiny of these cells in a living mammal has not been possible. However, the advent of inducible multicolor genetic tagging and powerful imaging technologies has rendered this achievable in the translucent and readily accessible murine cornea. K14CreER(T2)-Confetti mice that harbor two copies of the Brainbow 2.1 cassette, yielding up to 10 colors from the stochastic recombination of fluorescent proteins, were used to monitor K-14(+) progenitor cell dynamics within the corneal epithelium in live animals. Multicolored columns of cells emerged from the basal limbal epithelium as they expanded and migrated linearly at a rate of 10.8 µm/day toward the central cornea. Moreover, the permanent expression of fluorophores, passed on from progenitor to progeny, assisted in discriminating individual clones as spectrally distinct streaks containing more than 1,000 cells within the illuminated area. The centripetal clonal expansion is suggestive that a single progenitor cell is responsible for maintaining a narrow corridor of corneal epithelial cells. Our data are in agreement with the limbus as the repository for SC as opposed to SC being distributed throughout the central cornea. This is the first report describing stem/progenitor cell fate determination in the murine cornea using multicolor genetic tracing. This model represents a powerful new resource to monitor SC kinetics and fate choice under homeostatic conditions, and may assist in assessing clonal evolution during corneal development, aging, wound-healing, disease, and following transplantation. © 2014 AlphaMed Press.

  10. Demonstration of intermediate cells during human prostate epithelial differentiation in situ and in vitro using triple-staining confocal scanning microscopy.

    Science.gov (United States)

    van Leenders, G; Dijkman, H; Hulsbergen-van de Kaa, C; Ruiter, D; Schalken, J

    2000-08-01

    In human prostate epithelium, morphologically basal and luminal cells can be discriminated. The basal cell layer that putatively contains progenitor cells of the secretory epithelium is characterized by the expression of keratins (K) 5 and 14. Luminal cells represent the secretory compartment of the epithelium and express K8 and 18. We developed a technique for the simultaneous analysis of K5, 14, and 18 to identify intermediate cell stages in the prostate epithelium and to study the dynamic aspects of its differentiation in vitro. Nonmalignant prostate tissue and primary epithelial cultures were immunohistochemically characterized using triple staining with antibodies for K5, K14, and K18. Antibodies for K18 and K5 were conjugated directly with fluorochromes Alexa 488 and 546. K14 was visualized indirectly with streptavidin-Cy5. Keratin expression was analyzed by confocal scanning microscopy. The occurrence of exocrine and neuroendocrine differentiation in culture was determined via antibodies to prostate-specific antigen (PSA), chromogranin A, and serotonin. We found that basal cells expressed either K5(++)/14(++)/18+ or K5(++)/18+. The majority of luminal cells expressed K18(++), but colocalization of K5+/18(++) were recognized. Epithelial monolayer cultures predominantly revealed the basal cell phenotype K5(++)/14(++)/18+, whereas intermediate subpopulations expressing K5+/14+/18(++) and K5+/18(++) were also identified. On confluence, differentiation was induced as multicellular gland-like buds, and extensions became evident on top of the monolayer. These structures were composed of K18(++)- and K5+/18(+)-positive cell clusters surrounded by phenotypically basal cells. Few multicellular structures and cells in the monolayer showed exocrine differentiation (PSA+), but expression of chromogranin A and serotonin was absent. We conclude that simultaneous evaluation of keratin expression is useful for analyzing epithelial differentiation in the prostate. During this

  11. A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells

    Science.gov (United States)

    Petrocca, Fabio; Altschuler, Gabriel; Tan, Shen Mynn; Mendillo, Marc L.; Yan, Haoheng; Jerry, D. Joseph; Kung, Andrew L.; Hide, Winston; Ince, Tan A.; Lieberman, Judy

    2013-01-01

    Summary Basal-like triple negative breast cancers (TNBC) have poor prognosis. To identify basal-like TNBC dependencies, a genome-wide siRNA lethality screen compared two human breast epithelial cell lines transformed with the same genes - basal-like BPLER and myoepithelial HMLER. Expression of the screen’s 154 BPLER dependency genes correlated with poor prognosis in breast, but not lung or colon, cancer. Proteasome genes were overrepresented hits. Basal-like TNBC lines were selectively sensitive to proteasome inhibitor drugs relative to normal epithelial, luminal and mesenchymal TNBC lines. Proteasome inhibition reduced growth of established basal-like TNBC tumors in mice and blocked tumor-initiating cell function and macrometastasis. Proteasome addiction in basal-like TNBCs was mediated by NOXA and linked to MCL-1 dependence. PMID:23948298

  12. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  13. Colorectal cancer stem cells.

    Science.gov (United States)

    Salama, Paul; Platell, Cameron

    2009-10-01

    Somatic stem cells reside at the base of the crypts throughout the colonic mucosa. These cells are essential for the normal regeneration of the colonic epithelium. The stem cells reside within a special 'niche' comprised of intestinal sub-epithelial myofibroblasts that tightly control their function. It has been postulated that mutations within these adult colonic stem cells may induce neoplastic changes. Such cells can then dissociate from the epithelium and travel into the mesenchyme and thus form invasive cancers. This theory is based on the observation that within a colon cancer, less than 1% of the neoplastic cells have the ability to regenerate the tumour. It is this group of cells that exhibits characteristics of colonic stem cells. Although anti-neoplastic agents can induce remissions by inhibiting cell division, the stem cells appear to be remarkably resistant to both standard chemotherapy and radiotherapy. These stem cells may therefore persist after treatment and form the nucleus for cancer recurrence. Hence, future treatment modalities should focus specifically on controlling the cancer stem cells. In this review, we discuss the biology of normal and malignant colonic stem cells.

  14. Lgr5-EGFP marks taste bud stem/progenitor cells in posterior tongue.

    Science.gov (United States)

    Yee, Karen K; Li, Yan; Redding, Kevin M; Iwatsuki, Ken; Margolskee, Robert F; Jiang, Peihua

    2013-05-01

    Until recently, reliable markers for adult stem cells have been lacking for many regenerative mammalian tissues. Lgr5 (leucine-rich repeat-containing G-protein-coupled receptor 5) has been identified as a marker for adult stem cells in intestine, stomach, and hair follicle; Lgr5-expressing cells give rise to all types of cells in these tissues. Taste epithelium also regenerates constantly, yet the identity of adult taste stem cells remains elusive. In this study, we found that Lgr5 is strongly expressed in cells at the bottom of trench areas at the base of circumvallate (CV) and foliate taste papillae and weakly expressed in the basal area of taste buds and that Lgr5-expressing cells in posterior tongue are a subset of K14-positive epithelial cells. Lineage-tracing experiments using an inducible Cre knockin allele in combination with Rosa26-LacZ and Rosa26-tdTomato reporter strains showed that Lgr5-expressing cells gave rise to taste cells, perigemmal cells, along with self-renewing cells at the bottom of trench areas at the base of CV and foliate papillae. Moreover, using subtype-specific taste markers, we found that Lgr5-expressing cell progeny include all three major types of adult taste cells. Our results indicate that Lgr5 may mark adult taste stem or progenitor cells in the posterior portion of the tongue. Copyright © 2013 AlphaMed Press.

  15. Nevoid basal cell carcinoma syndrome

    Directory of Open Access Journals (Sweden)

    Kannan Karthiga

    2006-01-01

    Full Text Available Binkley and Johnson first reported this syndrome in 1951. But it was in 1960, Gorlin-Goltz established the association of basal cell epithelioma, jaw cyst and bifid ribs, a combination which is now frequently known as Gorlin-Goltz syndrome as well as Nevoid Basal Cell Carcinoma Syndrome (NBCCS. NBCCS is inherited as an autosomal dominant trait with high penetrance and variable expressivity. NBCCS is characterized by variety of cutaneous, dental, osseous, opthalmic, neurologic and sexual abnormalities. One such case of Gorlin-Goltz syndrome is reported here with good illustrations.

  16. Epithelial rotation is preceded by planar symmetry breaking of actomyosin and protects epithelial tissue from cell deformations.

    Science.gov (United States)

    Viktorinová, Ivana; Henry, Ian; Tomancak, Pavel

    2017-11-01

    Symmetry breaking is involved in many developmental processes that form bodies and organs. One of them is the epithelial rotation of developing tubular and acinar organs. However, how epithelial cells move, how they break symmetry to define their common direction, and what function rotational epithelial motions have remains elusive. Here, we identify a dynamic actomyosin network that breaks symmetry at the basal surface of the Drosophila follicle epithelium of acinar-like primitive organs, called egg chambers, and may represent a candidate force-generation mechanism that underlies the unidirectional motion of this epithelial tissue. We provide evidence that the atypical cadherin Fat2, a key planar cell polarity regulator in Drosophila oogenesis, directs and orchestrates transmission of the intracellular actomyosin asymmetry cue onto a tissue plane in order to break planar actomyosin symmetry, facilitate epithelial rotation in the opposite direction, and direct the elongation of follicle cells. In contrast, loss of this rotational motion results in anisotropic non-muscle Myosin II pulses that are disorganized in plane and causes cell deformations in the epithelial tissue of Drosophila eggs. Our work demonstrates that atypical cadherins play an important role in the control of symmetry breaking of cellular mechanics in order to facilitate tissue motion and model epithelial tissue. We propose that their functions may be evolutionarily conserved in tubular/acinar vertebrate organs.

  17. Sequential cancer mutations in cultured human intestinal stem cells

    NARCIS (Netherlands)

    Drost, Jarno; van Jaarsveld, Richard H.; Ponsioen, Bas; Zimberlin, Cheryl; van Boxtel, Ruben; Buijs, Arjan; Sachs, Norman; Overmeer, René M.; Offerhaus, G. Johan; Begthel, Harry; Korving, Jeroen; van de Wetering, Marc; Schwank, Gerald; Logtenberg, Meike; Cuppen, Edwin; Snippert, Hugo J.; Medema, Jan Paul; Kops, Geert J. P. L.; Clevers, Hans

    2015-01-01

    Crypt stem cells represent the cells of origin for intestinal neoplasia. Both mouse and human intestinal stem cells can be cultured in medium containing the stem-cell-niche factors WNT, R-spondin, epidermal growth factor (EGF) and noggin over long time periods as epithelial organoids that remain

  18. Transplante de células-tronco epiteliais límbicas alógenas expandidas ex vivo sobre membrana amniótica: relato de caso Transplantation of allogenic limbal epithelial stem cells cultivated ex vivo on amniotic membrane: case report

    Directory of Open Access Journals (Sweden)

    José Álvaro Pereira Gomes

    2009-04-01

    Full Text Available Paciente apresentou falência de transplante de limbo e conjuntiva de doador vivo alógeno no olho direito após ceratoconjuntivite epidêmica. Após alguns meses, foi submetida a transplante de células-tronco epiteliais límbicas alógenas cultivadas ex vivo sobre membrana amniótica (primeiro caso no Brasil, tendo evoluído com epitelização total da córnea e melhora da acuidade visual. Após o 3º mês da cirurgia, iniciou-se neovascularização superficial periférica com piora da transparência corneana. A visão manteve-se 0,1 após um ano de cirurgia.Case report of a patient who developed failure of an allogenic living related conjunctival limbal transplantation in the right eye after an episode of epidemic keratoconjunctivitis. After a few months, she underwent transplantation of allogenic limbal epithelial stem cells cultivated ex vivo on amniotic membrane (first case in Brazil. The patient evolved with total corneal epithelialization and improvement of the visual acuity. Three months after the surgery, peripheral superficial neovascularization with worsening of the corneal transparency was observed. The vision remained 0.1 after one year of the transplantation.

  19. Nevoid Basal Cell Carcinoma Syndrome

    Science.gov (United States)

    ... starting. For more information, talk with an assisted reproduction specialist at a fertility clinic. How common is ... with NBCCS will develop medulloblastoma, a type of brain stem tumor. Researchers have studied the use of ...

  20. Partial denervation of sub-basal axons persists following debridement wounds to the mouse cornea.

    Science.gov (United States)

    Pajoohesh-Ganji, Ahdeah; Pal-Ghosh, Sonali; Tadvalkar, Gauri; Kyne, Briana M; Saban, Daniel R; Stepp, Mary Ann

    2015-11-01

    Although sensory reinnervation occurs after injury in the peripheral nervous system, poor reinnervation in the elderly and those with diabetes often leads to pathology. Here we quantify sub-basal axon density in the central and peripheral mouse cornea over time after three different types of injury. The mouse cornea is highly innervated with a dense array of sub-basal nerves that form a spiral called the vortex at the corneal center or apex; these nerves are readily detected within flat mounted corneas. After anesthesia, corneal epithelial cells were removed using either a dulled blade or a rotating burr within an area demarcated centrally with a 1.5 mm trephine. A third wound type, superficial trephination, involved demarcating the area with the 1.5 mm trephine but not removing cells. By 7 days after superficial trephination, sub-basal axon density returns to control levels; by 28 days the vortex reforms. Although axon density is similar to control 14 days after dulled blade and rotating burr wounding, defects in axon morphology at the corneal apex remain. After 14 days, axons retract from the center leaving the sub-basal axon density reduced by 37.2 and 36.8% at 28 days after dulled blade and rotating burr wounding, respectively, compared with control. Assessment of inflammation using flow cytometry shows that persistent inflammation is not a factor in the incomplete reinnervation. Expression of mRNAs encoding 22 regeneration-associated genes involved in axon targeting assessed by QPCR reveals that netrin-1 and ephrin signaling are altered after wounding. Subpopulations of corneal epithelial basal cells at the corneal apex stop expressing ki67 as early as 7 days after injury and by 14 and 28 days after wounding, many of these basal cells undergo apoptosis and die. Although sub-basal axons are restored to their normal density and morphology after superficial trephination, sub-basal axon recovery is partial after debridement wounds. The increase in corneal

  1. Epithelial-mesenchymal transition is associated with increased ...

    African Journals Online (AJOL)

    Yomi

    2011-12-16

    Dec 16, 2011 ... Key words: SMMC-7721, cancer stem cells, side population cells, invasion, epithelial-mesenchymal transition. INTRODUCTION. Invasion and metastasis are the most important biological ..... the metastatic phenotype of pancreatic cancer cells with- ... occludens-1 (ZO-1), and gain mesenchymal molecular.

  2. Biochemistry of epidermal stem cells.

    Science.gov (United States)

    Eckert, Richard L; Adhikary, Gautam; Balasubramanian, Sivaprakasam; Rorke, Ellen A; Vemuri, Mohan C; Boucher, Shayne E; Bickenbach, Jackie R; Kerr, Candace

    2013-02-01

    The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Biochemistry of epidermal stem cells☆

    Science.gov (United States)

    Eckert, Richard L.; Adhikary, Gautam; Balasubramanian, Sivaprakasam; Rorke, Ellen A.; Vemuri, Mohan C.; Boucher, Shayne E.; Bickenbach, Jackie R.; Kerr, Candace

    2014-01-01

    Background The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. Scope of review A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. Major conclusions An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. General significance Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells. PMID:22820019

  4. Incorporating crown dimensions into stem height and basal area for ...

    African Journals Online (AJOL)

    These increment models, with and without crown dimension were fitted to a modelling data set and the statistical significance of each of the crown dimensions was examined. All the models were then compared for predictive ability using an independent validation data set. The results obtained were similar for both the total ...

  5. Differential sensitivity of epithelial cells to extracellular matrix in polarity establishment.

    Directory of Open Access Journals (Sweden)

    Shigenobu Yonemura

    Full Text Available Establishment of apical-basal polarity is crucial for epithelial sheets that form a compartment in the body, which function to maintain the environment in the compartment. Effects of impaired polarization are easily observed in three-dimensional (3-D culture systems rather than in two-dimensional (2-D culture systems. Although the mechanisms for establishing the polarity are not completely understood, signals from the extracellular matrix (ECM are considered to be essential for determining the basal side and eventually generating polarity in the epithelial cells. To elucidate the common features and differences in polarity establishment among various epithelial cells, we analyzed the formation of epithelial apical-basal polarity using three cell lines of different origin: MDCK II cells (dog renal tubules, EpH4 cells (mouse mammary gland, and R2/7 cells (human colon expressing wild-type α-catenin (R2/7 α-Cate cells. These cells showed clear apical-basal polarity in 2-D cultures. In 3-D cultures, however, each cell line displayed different responses to the same ECM. In MDCK II cells, spheroids with a single lumen formed in both Matrigel and collagen gel. In R2/7 α-Cate cells, spheroids showed similar apical-basal polarity as that seen in MDCK II cells, but had multiple lumens. In EpH4 cells, the spheroids displayed an apical-basal polarity that was opposite to that seen in the other two cell types in both ECM gels, at least during the culture period. On the other hand, the three cell lines showed the same apical-basal polarity both in 2-D cultures and in 3-D cultures using the hanging drop method. The three lines also had similar cellular responses to ECM secreted by the cells themselves. Therefore, appropriate culture conditions should be carefully determined in advance when using various epithelial cells to analyze cell polarity or 3-D morphogenesis.

  6. Mammary gland stem cells

    DEFF Research Database (Denmark)

    Fridriksdottir, Agla J R; Petersen, Ole W; Rønnov-Jessen, Lone

    2011-01-01

    Distinct subsets of cells, including cells with stem cell-like properties, have been proposed to exist in normal human breast epithelium and breast carcinomas. The cellular origins of epithelial cells contributing to gland development, tissue homeostasis and cancer are, however, still poorly...... and differences between mouse and human gland development with particular emphasis on the identity and localization of stem cells, and the influence of the surrounding microenvironment. It is concluded that while recent advances in the field have contributed immense insight into how the normal mammary gland...... develops and is maintained, significant discrepancies exist between the mouse and human gland which should be taken into consideration in current and future models of mammary stem cell biology....

  7. Stem cells for tooth engineering

    Directory of Open Access Journals (Sweden)

    G Bluteau

    2008-07-01

    Full Text Available Tooth development results from sequential and reciprocal interactions between the oral epithelium and the underlying neural crest-derived mesenchyme. The generation of dental structures and/or entire teeth in the laboratory depends upon the manipulation of stem cells and requires a synergy of all cellular and molecular events that finally lead to the formation of tooth-specific hard tissues, dentin and enamel. Although mesenchymal stem cells from different origins have been extensively studied in their capacity to form dentin in vitro, information is not yet available concerning the use of epithelial stem cells. The odontogenic potential resides in the oral epithelium and thus epithelial stem cells are necessary for both the initiation of tooth formation and enamel matrix production. This review focuses on the different sources of stem cells that have been used for making teeth in vitro and their relative efficiency. Embryonic, post-natal or even adult stem cells were assessed and proved to possess an enormous regenerative potential, but their application in dental practice is still problematic and limited due to various parameters that are not yet under control such as the high risk of rejection, cell behaviour, long tooth eruption period, appropriate crown morphology and suitable colour. Nevertheless, the development of biological approaches for dental reconstruction using stem cells is promising and remains one of the greatest challenges in the dental field for the years to come.

  8. Structural changes in endometrial basal glands during menstruation.

    Science.gov (United States)

    Garry, R; Hart, R; Karthigasu, K A; Burke, C

    2010-09-01

    To prospectively observe the changes occurring in endometrial glandular morphology during menstrual shedding and regeneration. Prospective observational study. The academic gynaecological endoscopy unit of a university teaching hospital. Population Thirteen patients investigated for a variety of benign, non-infective gynaecological disorders during the active bleeding phase of the menstrual cycle. The morphological appearances of concurrent histological and scanning electron microscopic images of endometrium taken at different stages of the active bleeding phase of menstruation were studied and correlated with the simultaneous immunohistochemical expression of the Ki-67 proliferation marker and the CD68 marker of macrophage activity. Change in morphology of endometrial glands at various stages of menstruation. Endometrial glands within the basalis show evidence of apoptosis and associated macrophage activity immediately before and during menstruation. There is subsequent destruction and removal of old secretory glandular epithelial elements, and rapid replacement with new narrow glands lined with small epithelial cells. There is no evidence of mitotic cell division or expression of Ki-67 in the glandular cells during this replacement process, but there is evidence of marked macrophage activity prior to glandular cell loss. Early endometrial epithelial repair after menstruation is not a consequence of mitotic cell division. It occurs without evidence of Ki-67 expression. There is structural evidence of programmed cell death and intense macrophage activity associated with glandular remodelling. Dead epithelial cells are shed from the glands and accumulate within the endometrial cavity to be replaced by new small epithelial cells that appear to arise by differentiation of the surrounding stromal cells. We propose that these stromal cells are endometrial progenitor/stem cells.

  9. Clinical and pathological aspects of epithelial hyperplasia.

    Science.gov (United States)

    Gîrtan, Mihaela; Stăniceanu, Florica; Zurac, Sabina; Laba, Elisabeta; Forna, Norina

    2008-01-01

    In many cases, the oral health status indicates the general status of the body. 90% of the disorders of the body also manifest at the level of the oral cavity, which means that the dentist can draw the attention of a certain health problem. Diabetes mellitus is associated with a high prevalence of the lesions of the oral mucous, especially lichen planus, recurrent aphthous stomatitis or oral candidiasis. We present here a case of diabetes mellitus with hyperplasic lesion at the level of the inferior vestibule, extended to the right jugal mucosa. The lesion appeared pursuant to the application of removable prosthetics. The biopsy specimen was examined using normal and special staining (HE Hematoxiline - eosine, Van Gieson VG) and immunohistochemistry (IHC). In the HE stain, an epithelial hyperplasia was noticed as a result of the proliferation of the basal cells, associated with hyperkeratosis (parakeratosis or orthokeratosis). A moderated inflammatory limphoplasmocitary infiltrate, composed by lymphocytes and plasma cells, was present within the hyperplasic chorion. The immunohistochemical reactions revealed Ki-67 positive nuclei in the basal and suprabasal strata (indicating an increased proliferating activity); rare p53 positive nuclei in the basal stratum (indicating a suppressive action on the cell proliferation); CD3/CD8 positive cells in the inflammatory infiltrate (indicating an important number of T suppressor lymphocytes in the inflammatory infiltrate). In conclusion, diabetes mellitus is a disease which frequently determines major modifications at the level of the oral cavity. Interdisciplinary collaboration between the pathologist and the dentist is necessary for adequate diagnosis and successful treatment.

  10. Intestinal epithelial organoids fuse to form self-organizing tubes in floating collagen gels

    NARCIS (Netherlands)

    Sachs, Norman; Tsukamoto, Yoshiyuki; Kujala, Pekka; Peters, Peter J; Clevers, Hans

    2017-01-01

    Multiple recent examples highlight how stem cells can self-organize in vitro to establish organoids that closely resemble their in vivo counterparts. Single Lgr5+ mouse intestinal stem cells can be cultured under defined conditions forming ever-expanding epithelial organoids that retain cell

  11. Basal cell carcinoma-treatment with cryosurgery

    Directory of Open Access Journals (Sweden)

    Kaur S

    2003-03-01

    Full Text Available Basal cell carcinoma is a common cutaneous malignancy, frequently occurring over the face in elderly individuals. Various therapeutic modalities are available to treat these tumors. We describe three patients with basal cell carcinoma successfully treated with cryosurgery and discuss the indications and the use of this treatment modality for basal cell carcinomas.

  12. Distinct Effects of Adipose-Derived Stem Cells and Adipocytes on Normal and Cancer Cell Hierarchy.

    Science.gov (United States)

    Anjanappa, Manjushree; Burnett, Riesa; Zieger, Michael A; Merfeld-Clauss, Stephanie; Wooden, William; March, Keith; Tholpady, Sunil; Nakshatri, Harikrishna

    2016-07-01

    Adipose-derived stem cells (ASC) have received considerable attention in oncology because of the known direct link between obesity and cancer as well as the use of ASCs in reconstructive surgery after tumor ablation. Previous studies have documented how cancer cells commandeer ASCs to support their survival by altering extracellular matrix composition and stiffness, migration, and metastasis. This study focused on delineating the effects of ASCs and adipocytes on the self-renewal of stem/progenitor cells and hierarchy of breast epithelial cells. The immortalized breast epithelial cell line MCF10A, ductal carcinoma in situ (DCIS) cell lines MCF10DCIS.com and SUM225, and MCF10A-overexpressing SRC oncogene were examined using a mammosphere assay and flow cytometry for the effects of ASCs on their self-renewal and stem-luminal progenitor-differentiated cell surface marker profiles. Interestingly, ASCs promoted the self-renewal of all cell types except SUM225. ASC coculture or treatment with ASC conditioned media altered the number of CD49f(high)/EpCAM(low) basal/stem-like and CD49f(medium)/EpCAM(medium) luminal progenitor cells. Among multiple factors secreted by ASCs, IFNγ and hepatocyte growth factor (HGF) displayed unique actions on epithelial cell hierarchy. IFNγ increased stem/progenitor-like cells while simultaneously reducing the size of mammospheres, whereas HGF increased the size of mammospheres with an accompanying increase in luminal progenitor cells. ASCs expressed higher levels of HGF, whereas adipocytes expressed higher levels of IFNγ. As luminal progenitor cells are believed to be prone for transformation, IFNγ and HGF expression status of ASCs may influence susceptibility for developing breast cancer as well as on outcomes of autologous fat transplantation on residual/dormant tumor cells. This study suggests that the ratio of ASCs to adipocytes influences cancer cell hierarchy, which may impact incidence and progression. Mol Cancer Res; 14(7); 660

  13. SnapShot : Growing Organoids from Stem Cells

    NARCIS (Netherlands)

    Sato, Toshiro; Clevers, Hans

    2015-01-01

    Tissue stem cells require unique niche microenvironments. In the presence of specific combinations of niche factors, mouse and human epithelial tissues from stomach, small intestine, colon, pancreas duct, and liver bile duct efficiently form stereotypic organoids. The platform of epitheloid

  14. HER2 induced EMT and tumorigenicity in breast epithelial progenitor cells is inhibited by coexpression of EGFR.

    Science.gov (United States)

    Ingthorsson, S; Andersen, K; Hilmarsdottir, B; Maelandsmo, G M; Magnusson, M K; Gudjonsson, T

    2016-08-11

    The members of the epidermal growth factor receptor (EGFR) kinase family are important players in breast morphogenesis and cancer. EGFR2/HER2 and EGFR expression have a prognostic value in certain subtypes of breast cancer such as HER2-amplified, basal-like and luminal type B. Many clinically approved small molecular inhibitors and monoclonal antibodies have been designed to target HER2, EGFR or both. There is, however, still limited knowledge on how the two receptors are expressed in normal breast epithelium, what effects they have on cellular differentiation and how they participate in neoplastic transformation. D492 is a breast epithelial cell line with stem cell properties that can undergo epithelial to mesenchyme transition (EMT), generate luminal- and myoepithelial cells and form complex branching structures in three-dimensional (3D) culture. Here, we show that overexpression of HER2 in D492 (D492(HER2)) resulted in EMT, loss of contact growth inhibition and increased oncogenic potential in vivo. HER2 overexpression, furthermore, inhibited endogenous EGFR expression. Re-introducing EGFR in D492(HER2) (D492(HER2/EGFR)) partially reversed the mesenchymal state of the cells, as an epithelial phenotype reappeared both in 3D cultures and in vivo. The D492(HER2/EGFR) xenografts grow slower than the D492(HER2) tumors, while overexpression of EGFR alone (D492(EGFR)) was not oncogenic in vivo. Consistent with the EGFR-mediated epithelial phenotype, overexpression of EGFR drove the cells toward a myoepithelial phenotype in 3D culture. The effect of two clinically approved anti-HER2 and EGFR therapies, trastuzumab and cetuximab, was tested alone and in combination on D492(HER2) xenografts. While trastuzumab had a growth inhibitory effect compared with untreated control, the effect of cetuximab was limited. When administered in combination, the growth inhibitory effect of trastuzumab was less pronounced. Collectively, our data indicate that in HER2-overexpressing D492

  15. Migraine attacks the Basal Ganglia

    Directory of Open Access Journals (Sweden)

    Bigal Marcelo

    2011-09-01

    Full Text Available Abstract Background With time, episodes of migraine headache afflict patients with increased frequency, longer duration and more intense pain. While episodic migraine may be defined as 1-14 attacks per month, there are no clear-cut phases defined, and those patients with low frequency may progress to high frequency episodic migraine and the latter may progress into chronic daily headache (> 15 attacks per month. The pathophysiology of this progression is completely unknown. Attempting to unravel this phenomenon, we used high field (human brain imaging to compare functional responses, functional connectivity and brain morphology in patients whose migraine episodes did not progress (LF to a matched (gender, age, age of onset and type of medication group of patients whose migraine episodes progressed (HF. Results In comparison to LF patients, responses to pain in HF patients were significantly lower in the caudate, putamen and pallidum. Paradoxically, associated with these lower responses in HF patients, gray matter volume of the right and left caudate nuclei were significantly larger than in the LF patients. Functional connectivity analysis revealed additional differences between the two groups in regard to response to pain. Conclusions Supported by current understanding of basal ganglia role in pain processing, the findings suggest a significant role of the basal ganglia in the pathophysiology of the episodic migraine.

  16. Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions.

    Science.gov (United States)

    Lechuga, Susana; Baranwal, Somesh; Ivanov, Andrei I

    2015-05-01

    Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis. Copyright © 2015 the American Physiological Society.

  17. New Insights into the Crossroads between EMT and Stemness in the Context of Cancer

    Directory of Open Access Journals (Sweden)

    Isabel Fabregat

    2016-03-01

    Full Text Available The epithelial-mesenchymal transition (EMT is an example of cellular plasticity, where an epithelial cell acquires a mesenchymal-like phenotype that increases its migratory and invasive properties. Stemness is the ability of stem cells to proliferate in an asymmetric way that allows them to maintain the reservoir of undifferentiated cells with stem cell identity, but also to produce new differentiated cells. Initial works revealed that activation of the EMT program in epithelial cells induces the acquisition of stem cell properties, which in the context of cancer may contribute to the appearance of tumor initiating cells (TIC. However, a number of groups have recently reported that mesenchymal-epithelial transition (MET is required for efficient metastatic colonization and that EMT may be not necessarily associated with stemness. In this review, we summarize recent findings that extend our knowledge about the crossroads between EMT and stemness and their relevance under physiological or pathological conditions.

  18. Human nasal turbinates as a viable source of respiratory epithelial cells using co-culture system versus dispase-dissociation technique.

    Science.gov (United States)

    Noruddin, Nur Adelina Ahmad; Saim, Aminuddin B; Chua, Kien Hui; Idrus, Ruszymah

    2007-12-01

    To compare a co-culture system with a conventional dispase-dissociation method for obtaining functional human respiratory epithelial cells from the nasal turbinates for tissue engineering application. Human respiratory epithelial cells were serially passaged using a co-culture system and a conventional dispase-dissociation technique. The growth kinetics and gene expression levels of the cultured respiratory epithelial cells were compared. Four genes were investigated, namely cytokeratin-18, a marker for ciliated and secretory epithelial cells; cytokeratin-14, a marker for basal epithelial cells; MKI67, a proliferation marker; and MUC5B, a marker for mucin secretion. Immunocytochemical analysis was performed using monoclonal antibodies against the high molecular-weight cytokeratin 34 beta E12, cytokeratin 18, and MUC5A to investigate the protein expression from cultured respiratory epithelial cells. Respiratory epithelial cells cultured using both methods maintained polygonal morphology throughout the passages. At passage 1, co-cultured respiratory epithelial showed a 2.6-times higher growth rate compared to conventional dispase dissociation technique, and 7.8 times higher at passage 2. Better basal gene expression was observed by co-cultured respiratory epithelial cells compared to dispase dissociated cells. Immunocytochemical analyses were positive for the respiratory epithelial cells cultured using both techniques. Co-culture system produced superior quality of cultured human respiratory epithelial cells from the nasal turbinates as compared to dispase dissociation technique.

  19. Ovary and fimbrial stem cells: biology, niche and cancer origins.

    Science.gov (United States)

    Ng, Annie; Barker, Nick

    2015-10-01

    The mammalian ovary is covered by a single-layered epithelium that undergoes rupture and remodelling following each ovulation. Although resident stem cells are presumed to be crucial for this cyclic regeneration, their identity and mode of action have been elusive. Surrogate stemness assays and in vivo fate-mapping studies using recently discovered stem cell markers have identified stem cell pools in the ovary and fimbria that ensure epithelial homeostasis. Recent findings provide insights into intrinsic mechanisms and local extrinsic cues that govern the function of ovarian and fimbrial stem cells. These discoveries have advanced our understanding of stem cell biology in the ovary and fimbria, and lay the foundations for evaluating the contribution of resident stem cells to the initiation and progression of human epithelial ovarian cancer.

  20. Epithelial-Mesenchymal Transition in Tissue Repair and Fibrosis

    Science.gov (United States)

    Stone, Rivka C.; Pastar, Irena; Ojeh, Nkemcho; Chen, Vivien; Liu, Sophia; Garzon, Karen I.; Tomic-Canic, Marjana

    2016-01-01

    Epithelial-mesenchymal transition (EMT) describes the global process by which stationary epithelial cells undergo phenotypic changes, including loss of cell-cell adhesion and apical-basal polarity, and acquire mesenchymal characteristics which confer migratory capacity. EMT and its converse, MET (mesenchymal-to-epithelial transition), are integral stages of many physiologic processes, and as such are tightly coordinated by a host of molecular regulators. Converging lines of evidence have identified EMT as a component of cutaneous wound healing, during which otherwise stationary keratinocytes - the resident skin epithelial cells - migrate across the wound bed to restore the epidermal barrier. Moreover, EMT also plays a role in the development of scarring and fibrosis, as the matrix-producing myofibroblast arises from cells of epithelial lineage in response to injury but is pathologically sustained instead of undergoing MET or apoptosis. In this review, we summarize the role of EMT in physiologic repair and pathologic fibrosis of tissues and organs. We conclude that further investigation into the contribution of EMT to the impaired repair of fibrotic wounds may identify components of EMT signaling as common therapeutic targets for impaired healing in many tissues. PMID:27461257

  1. Epithelial-mesenchymal transition in tissue repair and fibrosis.

    Science.gov (United States)

    Stone, Rivka C; Pastar, Irena; Ojeh, Nkemcho; Chen, Vivien; Liu, Sophia; Garzon, Karen I; Tomic-Canic, Marjana

    2016-09-01

    The epithelial-mesenchymal transition (EMT) describes the global process by which stationary epithelial cells undergo phenotypic changes, including the loss of cell-cell adhesion and apical-basal polarity, and acquire mesenchymal characteristics that confer migratory capacity. EMT and its converse, MET (mesenchymal-epithelial transition), are integral stages of many physiologic processes and, as such, are tightly coordinated by a host of molecular regulators. Converging lines of evidence have identified EMT as a component of cutaneous wound healing, during which otherwise stationary keratinocytes (the resident skin epithelial cells) migrate across the wound bed to restore the epidermal barrier. Moreover, EMT plays a role in the development of scarring and fibrosis, as the matrix-producing myofibroblasts arise from cells of the epithelial lineage in response to injury but are pathologically sustained instead of undergoing MET or apoptosis. In this review, we summarize the role of EMT in physiologic repair and pathologic fibrosis of tissues and organs. We conclude that further investigation into the contribution of EMT to the faulty repair of fibrotic wounds might identify components of EMT signaling as common therapeutic targets for impaired healing in many tissues. Graphical Abstract Model for injury-triggered EMT activation in physiologic wound repair (left) and fibrotic wound healing (right).

  2. Normal morphogenesis of epithelial tissues and progression of epithelial tumors

    Science.gov (United States)

    Wang, Chun-Chao; Jamal, Leen; Janes, Kevin A.

    2011-01-01

    Epithelial cells organize into various tissue architectures that largely maintain their structure throughout the life of an organism. For decades, the morphogenesis of epithelial tissues has fascinated scientists at the interface of cell, developmental, and molecular biology. Systems biology offers ways to combine knowledge from these disciplines by building integrative models that are quantitative and predictive. Can such models be useful for gaining a deeper understanding of epithelial morphogenesis? Here, we take inventory of some recurring themes in epithelial morphogenesis that systems approaches could strive to capture. Predictive understanding of morphogenesis at the systems level would prove especially valuable for diseases such as cancer, where epithelial tissue architecture is profoundly disrupted. PMID:21898857

  3. Celiac Disease: Role of the Epithelial BarrierSummary

    Directory of Open Access Journals (Sweden)

    Michael Schumann

    2017-03-01

    Full Text Available In celiac disease (CD a T-cell–mediated response to gluten is mounted in genetically predisposed individuals, resulting in a malabsorptive enteropathy histologically highlighted by villous atrophy and crypt hyperplasia. Recent data point to the epithelial layer as an under-rated hot spot in celiac pathophysiology to date. This overview summarizes current functional and genetic evidence on the role of the epithelial barrier in CD, consisting of the cell membranes and the apical junctional complex comprising sealing as well as ion and water channel-forming tight junction proteins and the adherens junction. Moreover, the underlying mechanisms are discussed, including apoptosis of intestinal epithelial cells, biology of intestinal stem cells, alterations in the apical junctional complex, transcytotic uptake of gluten peptides, and possible implications of a defective epithelial polarity. Current research is directed toward new treatment options for CD that are alternatives or complementary therapeutics to a gluten-free diet. Thus, strategies to target an altered epithelial barrier therapeutically also are discussed. Keywords: Celiac Sprue, Gluten-Sensitive Enteropathy, Tight Junction, Epithelial Polarity, Partitioning-Defective Proteins, α-Gliadin 33mer

  4. Neutrophil migration through preexisting holes in the basal laminae of alveolar capillaries and epithelium during streptococcal pneumonia.

    Science.gov (United States)

    Walker, D C; Behzad, A R; Chu, F

    1995-11-01

    The purpose of this study was to determine whether or not there are preexisting holes in the endothelial and epithelial basal laminae of alveolar walls and to determine the path taken by neutrophils as they migrate from the capillaries to the airspace of the alveoli during inflammation. Using transmission electron microscopy and serial thin sections of normal rabbit and mouse lung, we have demonstrated the presence of slit-like holes in the capillary basal laminae and round holes in the basal laminae of type 2 pneumocytes. The slits in the capillary basal laminae were observed at the intersection of the thick and thin walls where endothelium, pericytes, and fibroblasts make close contact. The round holes in the type 2 cell basal laminae were observed at sites of close contact with fibroblasts. Neutrophils were observed to migrate through these slits and holes during streptococcal pneumonia in rabbit lungs. We conclude that during inflammation in the lung, migrating neutrophils displace pericytes and fibroblasts from the slits in the capillary basal lamina and then crawl through these slits into the alveolar interstitium. We postulate that neutrophils find their way to type 2 pneumocytes by following interstitial fibroblasts. We believe that neutrophils displace fibroblasts from their close contacts with the type 2 cells and then crawl through the holes in the basal lamina into the basal lateral space of the type 2 cells. From there, neutrophils migrate into the alveolar airspace.

  5. Positron emission tomography and basal ganglia functions

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Motohiro; Otsuka, Makoto; Taniwaki, Koukyo; Hosokawa, Shinichi; Kuwabara, Yasuo; Ichiya, Yuichi [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine

    1990-05-01

    With the advent of positron emission tomography (PET), studies on the human brain function and pathophysiology of brain damage have been extremely progressed. It is well-known that the basal ganglia plays an important role as one of the central nervous system involved in exercise regulation. More recently, the potential involvement of the basal ganglia in psychological processes, such as cognitive function, has been pointed out, receiving much attention. In spite of such a lot of studies, however, basal ganglia function remains unclear. This paper describes the relationships between PET findings and basal ganglia function. PET findings are discussed in relation to brain energy metabolism and striatal dopamine function. Pathophysiology of the basal ganglia are described in terms of the following diseases: Parkinson's disease, Parkinson's syndrome, progressive supranuclear palsy, Huntington's disease, and dystonia. Physiological backgrounds of the basal ganglia for PET images are also referred to. (N.K.) 75 refs.

  6. Positron emission tomography and basal ganglia functions

    International Nuclear Information System (INIS)

    Kato, Motohiro; Otsuka, Makoto; Taniwaki, Koukyo; Hosokawa, Shinichi; Kuwabara, Yasuo; Ichiya, Yuichi

    1990-01-01

    With the advent of positron emission tomography (PET), studies on the human brain function and pathophysiology of brain damage have been extremely progressed. It is well-known that the basal ganglia plays an important role as one of the central nervous system involved in exercise regulation. More recently, the potential involvement of the basal ganglia in psychological processes, such as cognitive function, has been pointed out, receiving much attention. In spite of such a lot of studies, however, basal ganglia function remains unclear. This paper describes the relationships between PET findings and basal ganglia function. PET findings are discussed in relation to brain energy metabolism and striatal dopamine function. Pathophysiology of the basal ganglia are described in terms of the following diseases: Parkinson's disease, Parkinson's syndrome, progressive supranuclear palsy, Huntington's disease, and dystonia. Physiological backgrounds of the basal ganglia for PET images are also referred to. (N.K.) 75 refs

  7. Probiotics promote endocytic allergen degradation in gut epithelial cells

    International Nuclear Information System (INIS)

    Song, Chun-Hua; Liu, Zhi-Qiang; Huang, Shelly; Zheng, Peng-Yuan; Yang, Ping-Chang

    2012-01-01

    Highlights: ► Knockdown of A20 compromised the epithelial barrier function. ► The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. ► Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. ► Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  8. Probiotics promote endocytic allergen degradation in gut epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chun-Hua [Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou (China); Liu, Zhi-Qiang [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Huang, Shelly [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Zheng, Peng-Yuan, E-mail: medp7123@126.com [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Yang, Ping-Chang, E-mail: yangp@mcmaster.ca [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  9. Photodynamic therapy for basal cell carcinoma.

    Science.gov (United States)

    Fargnoli, Maria Concetta; Peris, Ketty

    2015-11-01

    Topical photodynamic therapy is an effective and safe noninvasive treatment for low-risk basal cell carcinoma, with the advantage of an excellent cosmetic outcome. Efficacy of photodynamic therapy in basal cell carcinoma is supported by substantial research and clinical trials. In this article, we review the procedure, indications and clinical evidences for the use of photodynamic therapy in the treatment of basal cell carcinoma.

  10. Modern basal insulin analogs: An incomplete story

    OpenAIRE

    Singh, Awadhesh Kumar; Gangopadhyay, Kalyan Kumar

    2014-01-01

    The currently available basal insulin does not completely mimic the endogenous insulin secretion. This has continued to promote the search for ideal basal insulin. The newer basal insulin have primarily focused on increasing the duration of action, reducing variability, and reducing the incidence of hypoglycemia, particularly nocturnal. However, the changing criteria of hypoglycemia within a short span of a few years along with the surprising introduction of major cardiac events as another ou...

  11. Heat shock protein-27 protects human bronchial epithelial cells against oxidative stress–mediated apoptosis: possible implication in asthma

    Science.gov (United States)

    Merendino, Anna M.; Paul, Catherine; Vignola, Antonio M.; Costa, Maria A.; Melis, Mario; Chiappara, Giuseppina; Izzo, V.; Bousquet, J.; Arrigo, André-Patrick

    2002-01-01

    Inflammation of the human bronchial epithelium, as observed in asthmatics, is characterized by the selective death of the columnar epithelial cells, which desquamate from the basal cells. Tissue repair initiates from basal cells that resist inflammation. Here, we have evaluated the extent of apoptosis as well as the Hsp27 level of expression in epithelial cells from bronchial biopsy samples taken from normal and asthmatic subjects. Hsp27 is a chaperone whose expression protects against oxidative stress. We report that in asthmatic subjects the basal epithelium cells express a high level of Hsp27 but no apoptotic morphology. In contrast, apoptotic columnar cells are devoid of Hsp27 expression. Moreover, we observed a decreased resistance to hydrogen peroxide–induced apoptosis in human bronchial epithelial 16–HBE cells when they were genetically modified to express reduced levels of Hsp27. PMID:12482203

  12. Y-27632, a ROCK Inhibitor, Promoted Limbal Epithelial Cell Proliferation and Corneal Wound Healing.

    Directory of Open Access Journals (Sweden)

    Chi-Chin Sun

    Full Text Available Transplantation of ex vivo cultured limbal epithelial cells is proven effective in restoring limbal stem cell deficiency. The present study aimed to investigate the promoting effect of Y-27632 on limbal epithelial cell proliferation. Limbal explants isolated from human donor eyes were expanded three weeks on culture dishes and outgrowth of epithelial cells was subsequently subcultured for in vitro experiments. In the presence of Y-27632, the ex vivo limbal outgrowth was accelerated, particularly the cells with epithelial cell-like morphology. Y-27632 dose-dependently promoted the proliferation of in vitro cultured human limbal epithelial cells as examined by phase contrast microscopy and luminescent cell-viability assay 30 hours after the treatment. The colony forming efficacy determined 7 days after the treatment was enhanced by Y-27632 also in a dose-dependent manner. The number of p63- or Ki67-positive cells was dose-dependently increased in Y-27632-treated cultures as detected by immunofluorescent staining and western blotanalysis. Cell cycle analysis by flow cytometric method revealed an increase in S-phase proliferating cells. The epithelial woundclosure rate was shown to be faster in experimental group received topical treatment withY-27632 than the sham control using a rat corneal wounding model. These resultsdemonstrate that Y-27632 can promote both the ex vivo and in vitro proliferation oflimbal epithelial cell proliferation. The in vivo enhanced epithelial wound healingfurther implies that the Y-27632 may act as a new strategy for treating limbal stem cell deficiency.

  13. Functional neuroanatomy of the basal ganglia.

    Science.gov (United States)

    Lanciego, José L; Luquin, Natasha; Obeso, José A

    2012-12-01

    The "basal ganglia" refers to a group of subcortical nuclei responsible primarily for motor control, as well as other roles such as motor learning, executive functions and behaviors, and emotions. Proposed more than two decades ago, the classical basal ganglia model shows how information flows through the basal ganglia back to the cortex through two pathways with opposing effects for the proper execution of movement. Although much of the model has remained, the model has been modified and amplified with the emergence of new data. Furthermore, parallel circuits subserve the other functions of the basal ganglia engaging associative and limbic territories. Disruption of the basal ganglia network forms the basis for several movement disorders. This article provides a comprehensive account of basal ganglia functional anatomy and chemistry and the major pathophysiological changes underlying disorders of movement. We try to answer three key questions related to the basal ganglia, as follows: What are the basal ganglia? What are they made of? How do they work? Some insight on the canonical basal ganglia model is provided, together with a selection of paradoxes and some views over the horizon in the field.

  14. Acute respiratory bronchiolitis: an ultrastructural and autoradiographic study of epithelial cell injury and renewal in Rhesus monkeys exposed to ozone

    International Nuclear Information System (INIS)

    Castleman, W.L.; Dungworth, D.L.; Schwartz, L.W.; Tyler, W.S.

    1980-01-01

    The pathogenesis of acute respiratory bronchiolitis was examined in Rhesus monkeys exposed to 0.8 ppM ozone for 4 to 50 hours. Epithelial injury and renewal were qualitatively and quantitatively characterized by correlated techniques of scanning and transmission electron microscopy as well as by light-microscopic autoradiography following labeling with tritiated thymidine. Extensive degeneration and necrosis of Type 1 epithelial cells occurred on the respiratory bronchiolar wall during the initial 4 to 12 hours of exposure. Increased numbers of labeled epithelial cells were present in this region after 18 hours of exposure, and the highest labeling index (18%) was measured after 50 hours of exposure. Most (67 to 80%) of the labeled cells and all the mitotic epithelial cells (22) observed ultrastructurally were cuboidal bronchiolar epithelial cells. Of the labeled epithelial cells, 20 to 33% were Type 2 epithelial cells. After 50 hours of exposure the respiratory bronchiolar epithelium was hyperplastic. The predominant inflammatory cell in respiratory bronchiolar exudate was the alveolar macrophage. Monkeys that were exposed for 50 hours and allowed to recover in unozonized air for 7 days had incomplete resolution of respiratory bronchiolar epithelial hyperplasia. The results indicate that Type 1 epithelial cells lining respiratory bronchioles are the cell types most sensitive to injury and that both cuboidal bronchiolar epithelial cells and Type 2 epithelial cells function as stem cells in epithelial renewal

  15. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.

    Science.gov (United States)

    Sorkio, Anni; Koch, Lothar; Koivusalo, Laura; Deiwick, Andrea; Miettinen, Susanna; Chichkov, Boris; Skottman, Heli

    2018-07-01

    There is a high demand for developing methods to produce more native-like 3D corneal structures. In the present study, we produced 3D cornea-mimicking tissues using human stem cells and laser-assisted bioprinting (LaBP). Human embryonic stem cell derived limbal epithelial stem cells (hESC-LESC) were used as a cell source for printing epithelium-mimicking structures, whereas human adipose tissue derived stem cells (hASCs) were used for constructing layered stroma-mimicking structures. The development and optimization of functional bioinks was a crucial step towards successful bioprinting of 3D corneal structures. Recombinant human laminin and human sourced collagen I served as the bases for the functional bioinks. We used two previously established LaBP setups based on laser induced forward transfer, with different laser wavelengths and appropriate absorption layers. We bioprinted three types of corneal structures: stratified corneal epithelium using hESC-LESCs, lamellar corneal stroma using alternating acellular layers of bioink and layers with hASCs, and finally structures with both a stromal and epithelial part. The printed constructs were evaluated for their microstructure, cell viability and proliferation, and key protein expression (Ki67, p63α, p40, CK3, CK15, collagen type I, VWF). The 3D printed stromal constructs were also implanted into porcine corneal organ cultures. Both cell types maintained good viability after printing. Laser-printed hESC-LESCs showed epithelial cell morphology, expression of Ki67 proliferation marker and co-expression of corneal progenitor markers p63α and p40. Importantly, the printed hESC-LESCs formed a stratified epithelium with apical expression of CK3 and basal expression of the progenitor markers. The structure of the 3D bioprinted stroma demonstrated that the hASCs had organized horizontally as in the native corneal stroma and showed positive labeling for collagen I. After 7 days in porcine organ cultures, the 3D bioprinted

  16. Dysregulation of Iron Metabolism in Cholangiocarcinoma Stem-like Cells

    DEFF Research Database (Denmark)

    Raggi, Chiara; Gammella, Elena; Correnti, Margherita

    2017-01-01

    Cholangiocarcinoma (CCA) is a devastating liver tumour arising from malignant transformation of bile duct epithelial cells. Cancer stem cells (CSC) are a subset of tumour cells endowed with stem-like properties, which play a role in tumour initiation, recurrence and metastasis. In appropriate con...... compartment as a novel metabolic factor involved in CCA growth, may have implications for a better therapeutic approach....

  17. Protective effects of trehalose on the corneal epithelial cells.

    Science.gov (United States)

    Aragona, Pasquale; Colosi, Pietro; Rania, Laura; Colosi, Francesca; Pisani, Antonina; Puzzolo, Domenico; Micali, Antonio

    2014-01-01

    Aim of the present work was to evaluate the effects of the trehalose on the corneal epithelium undergoing alcohol delamination. Twelve patients undergoing laser subepithelial keratomileusis (LASEK) were consecutively included in the study. The right eyes were pretreated with 3% trehalose eye drops, whilst left eyes were used as control. Epithelial specimens were processed for cells vitality assessment, apoptosis, and light and transmission electron microscopy; a morphometric analysis was performed in both groups. In both trehalose-untreated eyes (TUE) and trehalose-treated eyes (TTE), the percentage of vital cells was similar and no apoptotic cells were observed. In TUE, the corneal epithelium showed superficial cells with reduced microfolds, wing cells with vesicles and dilated intercellular spaces, and dark basal cells with vesicles and wide clefts. In TTE, superficial and wing cells were better preserved, and basal cells were generally clear with intracytoplasmatic vesicles. The morphometric analysis showed statistically significant differences between the two groups: the TTE epithelial height was higher, the basal cells showed larger area and clearer cytoplasm. The distribution of desmosomes and hemidesmosomes was significantly different between the groups. Trehalose administration better preserved morphological and morphometric features of alcohol-treated corneal epithelium, when compared to controls.

  18. Protective Effects of Trehalose on the Corneal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Pasquale Aragona

    2014-01-01

    Full Text Available Purpose. Aim of the present work was to evaluate the effects of the trehalose on the corneal epithelium undergoing alcohol delamination. Methods. Twelve patients undergoing laser subepithelial keratomileusis (LASEK were consecutively included in the study. The right eyes were pretreated with 3% trehalose eye drops, whilst left eyes were used as control. Epithelial specimens were processed for cells vitality assessment, apoptosis, and light and transmission electron microscopy; a morphometric analysis was performed in both groups. Results. In both trehalose-untreated eyes (TUE and trehalose-treated eyes (TTE, the percentage of vital cells was similar and no apoptotic cells were observed. In TUE, the corneal epithelium showed superficial cells with reduced microfolds, wing cells with vesicles and dilated intercellular spaces, and dark basal cells with vesicles and wide clefts. In TTE, superficial and wing cells were better preserved, and basal cells were generally clear with intracytoplasmatic vesicles. The morphometric analysis showed statistically significant differences between the two groups: the TTE epithelial height was higher, the basal cells showed larger area and clearer cytoplasm. The distribution of desmosomes and hemidesmosomes was significantly different between the groups. Conclusions. Trehalose administration better preserved morphological and morphometric features of alcohol-treated corneal epithelium, when compared to controls.

  19. A novel method for isolation of epithelial cells from ovine esophagus for tissue engineering.

    Science.gov (United States)

    Macheiner, Tanja; Kuess, Anna; Dye, Julian; Saxena, Amulya K

    2014-01-01

    The yield of a critical number of basal epithelial cells with high mitotic rates from native tissue is a challenge in the field of tissue engineering. There are many protocols that use enzymatic methods for isolation of epithelial cells with unsatisfactory results for tissue engineering. This study aimed to develop a protocol for isolating a sufficient number of epithelial cells with a high Proliferating Index from ovine esophagus for tissue engineering applications. Esophageal mucosa was pretreated with dispase-collagenase solution and plated on collagen-coated culture dishes. Distinction of the various types of epithelial cells and developmental stages was done with specific primary antibodies to Cytokeratins and to Proliferating Cell Nuclear Antigen (PCNA). Up to approximately 8100 epithelial cells/mm2 of mucosa tissue were found after one week of migration. Cytokeratin 14 (CK 14) was positive identified in cells even after 83 days. At the same time the Proliferating Index was 71%. Our protocol for isolation of basal epithelial cells was successful to yield sufficient numbers of cells predominantly with proliferative character and without noteworthy negative enzymatic affection. The results at this study offer the possibility of generation critical cell numbers for tissue engineering applications.

  20. Multifocal Epithelial Hyperplasia.

    Science.gov (United States)

    Agnew, Caitlin; Alexander, Sherene; Prabhu, Neeta

    2017-01-15

    Multifocal epithelial hyperplasia is a rare disease associated with human papilloma virus types 13 and 32. Diagnosis is based on clinical and histopathological findings, and most lesions are asymptomatic and regress spontaneously with time. The purpose of this paper is to describe a five-year-old girl who presented with multiple intraoral lesions on the buccal mucosa and tongue, which regressed spontaneously in 15 months.

  1. AGE-modified basement membrane cooperates with Endo180 to promote epithelial cell invasiveness and decrease prostate cancer survival

    DEFF Research Database (Denmark)

    Rodriguez-Teja, Mercedes; Gronau, Julian H; Breit, Claudia

    2015-01-01

    Biomechanical strain imposed by age-related thickening of the basal lamina and augmented tissue stiffness in the prostate gland coincides with increased cancer risk. Here we hypothesized that the structural alterations in the basal lamina associated with age can induce mechanotransduction pathways...... in prostate epithelial cells (PECs) to promote invasiveness and cancer progression. To demonstrate this, we developed a 3D model of PEC acini in which thickening and stiffening of basal lamina matrix was induced by advanced glycation end-product (AGE)-dependent non-enzymatic crosslinking of its major......(Δ) (Ex2-6/) (Δ) (Ex2-6) mice, with constitutively exposed CTLD2 and decreased survival of men with early (non-invasive) prostate cancer with high epithelial Endo180 expression and levels of AGE. These findings indicate that AGE-dependent modification of the basal lamina induces invasive behaviour...

  2. Regulated Mucin Secretion from Airway Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Kenneth Bruce Adler

    2013-09-01

    Full Text Available Secretory epithelial cells of the proximal airways synthesize and secrete gel-forming polymeric mucins. The secreted mucins adsorb water to form mucus that is propelled by neighboring ciliated cells, providing a mobile barrier which removes inhaled particles and pathogens from the lungs. Several features of the intracellular trafficking of mucins make the airway secretory cell an interesting comparator for the cell biology of regulated exocytosis. Polymeric mucins are exceedingly large molecules (up to 3x10^6 D per monomer whose folding and initial polymerization in the ER requires the protein disulfide isomerase Agr2. In the Golgi, mucins further polymerize to form chains and possibly branched networks comprising more than 20 monomers. The large size of mucin polymers imposes constraints on their packaging into transport vesicles along the secretory pathway. Sugar side chains account for >70% of the mass of mucins, and their attachment to the protein core by O-glycosylation occurs in the Golgi. Mature polymeric mucins are stored in large secretory granules ~1 um in diameter. These are translocated to the apical membrane to be positioned for exocytosis by cooperative interactions among MARCKS, cysteine string protein (CSP, HSP70 and the cytoskeleton. Mucin granules undergo exocytic fusion with the plasma membrane at a low basal rate and a high stimulated rate. Both rates are mediated by a regulated exocytic mechanism as indicated by phenotypes in both basal and stimulated secretion in mice lacking Munc13-2, a sensor of the second messengers calcium and diacylglycerol (DAG. Basal secretion is induced by low levels of activation of P2Y2 purinergic and A3 adenosine receptors by extracellular ATP released in paracrine fashion and its metabolite adenosine. Stimulated secretion is induced by high levels of the same ligands, and possibly by inflammatory mediators as well. Activated receptors are coupled to phospholipase C by Gq, resulting in the

  3. Fusarium basal rot in the Netherlands

    NARCIS (Netherlands)

    Visser, de C.L.M.; Broek, van den R.C.F.M.; Brink, van den L.

    2006-01-01

    Fusarium basal rot of onion, caused by Fusarium oxysporum f.sp. cepae, is a steadily increasing problem in The Netherlands. Financial losses for Dutch farmers confronted with Fusarium basal rot is substantial, due to yield reduction and high storage costs. This paper describes the development and

  4. The future of basal insulin supplementation

    NARCIS (Netherlands)

    Simon, Airin C. R.; DeVries, J. Hans

    2011-01-01

    This review presents an overview of the candidates for an improved basal insulin in the pharmaceutical pipeline. The first new basal insulin to enter the market is most likely insulin degludec (IDeg), currently reporting in phase 3 of development, from Novo Nordisk (Bagsvaerd, Denmark). IDeg has a

  5. Epithelial self-healing is recapitulated by a 3D biomimetic E-cadherin junction.

    Science.gov (United States)

    Cohen, Daniel J; Gloerich, Martijn; Nelson, W James

    2016-12-20

    Epithelial monolayers undergo self-healing when wounded. During healing, cells collectively migrate into the wound site, and the converging tissue fronts collide and form a stable interface. To heal, migrating tissues must form cell-cell adhesions and reorganize from the front-rear polarity characteristic of cell migration to the apical-basal polarity of an epithelium. However, identifying the "stop signal" that induces colliding tissues to cease migrating and heal remains an open question. Epithelial cells form integrin-based adhesions to the basal extracellular matrix (ECM) and E-cadherin-mediated cell-cell adhesions on the orthogonal, lateral surfaces between cells. Current biological tools have been unable to probe this multicellular 3D interface to determine the stop signal. We addressed this problem by developing a unique biointerface that mimicked the 3D organization of epithelial cell adhesions. This "minimal tissue mimic" (MTM) comprised a basal ECM substrate and a vertical surface coated with purified extracellular domain of E-cadherin, and was designed for collision with the healing edge of an epithelial monolayer. Three-dimensional imaging showed that adhesions formed between cells, and the E-cadherin-coated MTM resembled the morphology and dynamics of native epithelial cell-cell junctions and induced the same polarity transition that occurs during epithelial self-healing. These results indicate that E-cadherin presented in the proper 3D context constitutes a minimum essential stop signal to induce self-healing. That the Ecad:Fc MTM stably integrated into an epithelial tissue and reduced migration at the interface suggests that this biointerface is a complimentary approach to existing tissue-material interfaces.

  6. MUC-1-ESA+ progenitor cells in normal benign and malignant human breast epithelial cells

    OpenAIRE

    Lu, Xinquan; Li, Huixiang; Xu, Kejia; Nesland, Jahn M.; Suo, Zhenhe

    2009-01-01

    The existence of mammary epithelial stem/progenitor cells has been demonstrated in MUC-1-/ ESA+ subpopulations of breast epithelial cells. However, knowledge about the expression and localization in benign and malignant breast lesions is unknown. Using a double-staining immunohistochemistry method, we investigated MUC-1-/ESA+ cells in 10 normal breast tissues, 49 cases with fibrocystic disease, 40 fibroadenomas, 36 invasive ductal carcinomas and the breast cancer ce...

  7. Nevoid Basal Cell Carcinoma Syndrome (Gorlin Syndrome).

    Science.gov (United States)

    Bresler, Scott C; Padwa, Bonnie L; Granter, Scott R

    2016-06-01

    Nevoid basal cell carcinoma syndrome, or basal cell nevus syndrome (Gorlin syndrome), is a rare autosomal dominantly inherited disorder that is characterized by development of basal cell carcinomas from a young age. Other distinguishing clinical features are seen in a majority of patients, and include keratocystic odontogenic tumors (formerly odontogenic keratocysts) as well as dyskeratotic palmar and plantar pitting. A range of skeletal and other developmental abnormalities are also often seen. The disorder is caused by defects in hedgehog signaling which result in constitutive pathway activity and tumor cell proliferation. As sporadic basal cell carcinomas also commonly harbor hedgehog pathway aberrations, therapeutic agents targeting key signaling constituents have been developed and tested against advanced sporadically occurring tumors or syndromic disease, leading in 2013 to FDA approval of the first hedgehog pathway-targeted small molecule, vismodegib. The elucidation of the molecular pathogenesis of nevoid basal cell carcinoma syndrome has resulted in further understanding of the most common human malignancy.

  8. Types of Stem Cells

    Science.gov (United States)

    ... Stem Cell Glossary Search Toggle Nav Types of Stem Cells Stem cells are the foundation from which all ... Learn About Stem Cells > Types of Stem Cells Stem cells Stem cells are the foundation for every organ ...

  9. Loss of Dickkopf 3 Promotes the Tumorigenesis of Basal Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Eva Lorsy

    Full Text Available Dickkopf 3 (DKK3 has been associated with tumor suppression of various tumor entities including breast cancer. However, the functional impact of DKK3 on the tumorigenesis of distinct molecular breast cancer subtypes has not been considered so far. Therefore, we initiated a study analyzing the subtype-specific DKK3 expression pattern as well as its prognostic and functional impact with respect to breast cancer subtypes. Based on three independent tissue cohorts including one in silico dataset (n = 30, n = 463 and n = 791 we observed a clear down-regulation of DKK3 expression in breast cancer samples compared to healthy breast tissue controls on mRNA and protein level. Interestingly, most abundant reduction of DKK3 expression was detected in the highly aggressive basal breast cancer subtype. Analyzing a large in silico dataset comprising 3,554 cases showed that low DKK3 mRNA expression was significantly associated with reduced recurrence free survival (RFS of luminal and basal-like breast cancer cases. Functionally, DKK3 re-expression in human breast cancer cell lines led to suppression of cell growth possibly mediated by up-regulation of apoptosis in basal-like but not in luminal-like breast cancer cell lines. Moreover, ectopic DKK3 expression in mesenchymal basal breast cancer cells resulted in partial restoration of epithelial cell morphology which was molecularly supported by higher expression of epithelial markers like E-Cadherin and down-regulation of mesenchymal markers such as Snail 1. Hence, we provide evidence that down-regulation of DKK3 especially promotes tumorigenesis of the aggressive basal breast cancer subtype. Further studies decoding the underlying molecular mechanisms of DKK3-mediated effects may help to identify novel targeted therapies for this clinically highly relevant breast cancer subtype.

  10. A comparison of basal and eye-flush tears for the analysis of cat tear proteins.

    Science.gov (United States)

    Petznick, Andrea; Evans, Margaret D M; Madigan, Michele C; Markoulli, Maria; Garrett, Qian; Sweeney, Deborah F

    2011-02-01

    To identify a rapid and effective tear collection method providing sufficient tear volume and total protein content (TPC) for analysis of individual proteins in cats. Domestic adult short-haired cats (12-37 months; 2.7-6.6 kg) were used in the study. Basal tears without stimulation and eye-flush tears after instillation of saline (10 μl) were collected using microcapillary tubes from animal eyes either unwounded control or wounded with 9-mm central epithelial debridement giving four groups with n = 3. Tear comparisons were based on total time and rate for tear collection, TPC using micro bicinchoninic acid (BCA), tear immunoglobulin A (IgA), total matrix-metalloproteinase (MMP)-9 concentration using sandwich enzyme-linked immunosorbent assay (ELISA) and MMP-9 activity. Eye-flush tears were collected significantly faster than basal tears in wounded eyes with higher rates for tear collection in unwounded control and wounded eyes. TPC was significantly lower in eye-flush tears compared to basal tears. The relative proportion of tear IgA normalized to TPC (% IgA of TPC) was not significantly different between basal and eye-flush tears. In unwounded control eyes, MMP-9 was slightly higher in eye-flush than in basal tears; activity of MMP-9 in both tear types was similar. In wounded eyes, eye-flush tears showed highest MMP-9 levels and activity on Day 1, which subsequently decreased to Day 7. MMP-9 activity in basal tears from wounded eyes did not display changes in expression. Eye-flush tears can be collected rapidly providing sufficient tear volume and TPC. This study also indicates that eye-flush tears may be more suitable than basal tears for the analysis of MMPs following corneal wounding. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.

  11. Role for Adhesion Molecules in the Spermatogonial Stem Cell Niche

    NARCIS (Netherlands)

    de Rooij, Dirk G.; Repping, S.; van Pelt, Ans M. M.

    2008-01-01

    In this issue of Cell Stem Cell, Kanatsu-Shinohara et al. (2008) show that beta 1-integrin participates in normal spermatogenesis and is required for spermatogonial stem cell (SSC) homing to the basal membrane niche. The methodology used provides a powerful tool to study the role of other factors in

  12. Bone marrow contributes to epithelial cancers in mice and humans as developmental mimicry.

    Science.gov (United States)

    Cogle, Christopher R; Theise, Neil D; Fu, Dongtao; Ucar, Deniz; Lee, Sean; Guthrie, Steven M; Lonergan, Jean; Rybka, Witold; Krause, Diane S; Scott, Edward W

    2007-08-01

    Bone marrow cells have the capacity to contribute to distant organs. We show that marrow also contributes to epithelial neoplasias of the small bowel, colon, and lung, but not the skin. In particular, epithelial neoplasias found in patients after hematopoietic cell transplantations demonstrate that human marrow incorporates into neoplasias by adopting the phenotype of the surrounding neoplastic environment. To more rigorously evaluate marrow contribution to epithelial cancer, we employed mouse models of intestinal and lung neoplasias, which revealed specifically that the hematopoietic stem cell and its progeny incorporate within cancer. Furthermore, this marrow involvement in epithelial cancer does not appear to occur by induction of stable fusion. Whereas previous claims have been made that marrow can serve as a direct source of epithelial neoplasia, our results indicate a more cautionary note, that marrow contributes to cancer as a means of developmental mimicry. Disclosure of Potential Conflicts of Interest is found at the end of this article.

  13. Polarity in Mammalian Epithelial Morphogenesis

    OpenAIRE

    Roignot, Julie; Peng, Xiao; Mostov, Keith

    2013-01-01

    Cell polarity is fundamental for the architecture and function of epithelial tissues. Epithelial polarization requires the intervention of several fundamental cell processes, whose integration in space and time is only starting to be elucidated. To understand what governs the building of epithelial tissues during development, it is essential to consider the polarization process in the context of the whole tissue. To this end, the development of three-dimensional organotypic cell culture model...

  14. Repair of tracheal epithelium by basal cells after chlorine-induced injury

    Directory of Open Access Journals (Sweden)

    Musah Sadiatu

    2012-11-01

    Full Text Available Abstract Background Chlorine is a widely used toxic compound that is considered a chemical threat agent. Chlorine inhalation injures airway epithelial cells, leading to pulmonary abnormalities. Efficient repair of injured epithelium is necessary to restore normal lung structure and function. The objective of the current study was to characterize repair of the tracheal epithelium after acute chlorine injury. Methods C57BL/6 mice were exposed to chlorine and injected with 5-ethynyl-2′-deoxyuridine (EdU to label proliferating cells prior to sacrifice and collection of tracheas on days 2, 4, 7, and 10 after exposure. Airway repair and restoration of a differentiated epithelium were examined by co-localization of EdU labeling with markers for the three major tracheal epithelial cell types [keratin 5 (K5 and keratin 14 (K14 for basal cells, Clara cell secretory protein (CCSP for Clara cells, and acetylated tubulin (AcTub for ciliated cells]. Morphometric analysis was used to measure proliferation and restoration of a pseudostratified epithelium. Results Epithelial repair was fastest and most extensive in proximal trachea compared with middle and distal trachea. In unexposed mice, cell proliferation was minimal, all basal cells expressed K5, and K14-expressing basal cells were absent from most sections. Chlorine exposure resulted in the sloughing of Clara and ciliated cells from the tracheal epithelium. Two to four days after chlorine exposure, cell proliferation occurred in K5- and K14-expressing basal cells, and the number of K14 cells was dramatically increased. In the period of peak cell proliferation, few if any ciliated or Clara cells were detected in repairing trachea. Expression of ciliated and Clara cell markers was detected at later times (days 7–10, but cell proliferation was not detected in areas in which these differentiated markers were re-expressed. Fibrotic lesions were observed at days 7–10 primarily in distal trachea. Conclusion

  15. Castration-Resistant Lgr5+ Cells Are Long-Lived Stem Cells Required for Prostatic Regeneration

    Directory of Open Access Journals (Sweden)

    Bu-er Wang

    2015-05-01

    Full Text Available The adult prostate possesses a significant regenerative capacity that is of great interest for understanding adult stem cell biology. We demonstrate that leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5 is expressed in a rare population of prostate epithelial progenitor cells, and a castration-resistant Lgr5+ population exists in regressed prostate tissue. Genetic lineage tracing revealed that Lgr5+ cells and their progeny are primarily luminal. Lgr5+ castration-resistant cells are long lived and upon regeneration, both luminal Lgr5+ cells and basal Lgr5+ cells expand. Moreover, single Lgr5+ cells can generate multilineage prostatic structures in renal transplantation assays. Additionally, Lgr5+ cell depletion revealed that the regenerative potential of the castrated adult prostate depends on Lgr5+ cells. Together, these data reveal insights into the cellular hierarchy of castration-resistant Lgr5+ cells, indicate a requirement for Lgr5+ cells during prostatic regeneration, and identify an Lgr5+ adult stem cell population in the prostate.

  16. Metastatic Basal Cell Carcinoma Accompanying Gorlin Syndrome

    Directory of Open Access Journals (Sweden)

    Yeliz Bilir

    2014-01-01

    Full Text Available Gorlin-Goltz syndrome or basal cell nevus syndrome is an autosomal dominant syndrome characterized by skeletal anomalies, numerous cysts observed in the jaw, and multiple basal cell carcinoma of the skin, which may be accompanied by falx cerebri calcification. Basal cell carcinoma is the most commonly skin tumor with slow clinical course and low metastatic potential. Its concomitance with Gorlin syndrome, resulting from a mutation in a tumor suppressor gene, may substantially change morbidity and mortality. A 66-year-old male patient with a history of recurrent basal cell carcinoma was presented with exophthalmus in the left eye and the lesions localized in the left lateral orbita and left zygomatic area. His physical examination revealed hearing loss, gapped teeth, highly arched palate, and frontal prominence. Left orbital mass, cystic masses at frontal and ethmoidal sinuses, and multiple pulmonary nodules were detected at CT scans. Basal cell carcinoma was diagnosed from biopsy of ethmoid sinus. Based on the clinical and typical radiological characteristics (falx cerebri calcification, bifid costa, and odontogenic cysts, the patient was diagnosed with metastatic skin basal cell carcinoma accompanied by Gorlin syndrome. Our case is a basal cell carcinoma with aggressive course accompanying a rarely seen syndrome.

  17. The disruption of the epithelial mesenchymal trophic unit in COPD.

    Science.gov (United States)

    Behzad, Ali R; McDonough, John E; Seyednejad, Nazgol; Hogg, James C; Walker, David C

    2009-12-01

    Progression of COPD is associated with a measurable increase in small airway wall thickness resulting from a repair and remodeling process that involves fibroblasts of the epithelial mesenchymal trophic unit (EMTU). The present study was designed to examine the organization of fibroblasts within the lamina propria of small airways with respect to their contacts with the epithelium and with each other in persons with COPD. Transmission electron microcopy (TEM) and three-dimensional (3D) reconstructions of serial TEM sections were used to estimate the frequency and determine the nature of the contacts between the epithelium and fibroblasts within the EMTU in small airways from 5 controls (smokers with normal lung function), from 6 persons with mild (GOLD-1) and 5 with moderate (GOLD-2) COPD. In airways from control lungs fibroblasts make frequent contact with cytoplasmic extensions of epithelial cells through apertures in the epithelial basal lamina, but the frequency of these fibroblast-epithelial contacts is reduced in both mild and moderate COPD compared to controls (p < 0.01). The 3D reconstructions showed that the cytoplasmic extensions of lamina propria fibroblasts form a reticulum with fibroblast-fibroblast contacts in an airway from a control subject but this reticulum may be reorganized in airways of COPD patients. Development of COPD is associated with significant disruption of the EMTU due to a reduction of contacts between fibroblasts and the epithelium.

  18. Cdc42 is crucial for the establishment of epithelial polarity during early mammalian development

    DEFF Research Database (Denmark)

    Wu, Xunwei; Li, Shaohua; Chrostek-Grashoff, Anna

    2007-01-01

    To study the role of Cdc42 in the establishment of epithelial polarity during mammalian development, we generated murine Cdc42-null embryonic stem cells and analyzed peri-implantation development using embryoid bodies (EBs). Mutant EBs developed endoderm and underlying basement membrane, but exhi......To study the role of Cdc42 in the establishment of epithelial polarity during mammalian development, we generated murine Cdc42-null embryonic stem cells and analyzed peri-implantation development using embryoid bodies (EBs). Mutant EBs developed endoderm and underlying basement membrane...

  19. Peripheral epithelial odontogenic tumor

    International Nuclear Information System (INIS)

    Carzoglio, J.; Tancredi, N.; Capurro, S.; Ravecca, T.; Scarrone, P.

    2006-01-01

    A new case of peripheral epithelial odontogenic tumor (Pindborg tumor) is reported. It is localized in the superior right gingival region, a less frequent site, and has the histopathological features previously reported. Immunochemical studies were performed, revealing a differential positive stain to cytokeratins in tumor cells deeply seated in the tumor mass, probably related to tumoral cell heterogeneity.Interestingly, in this particular case S-100 protein positive reactivity was also detected in arborescent cells intermingled with tumoral cells, resembling Langerhans cells. Even though referred in the literature in central Pindborg tumors, no references were found about their presence in peripheral tumors, like the one that is presented here

  20. Neglected Giant Scalp Basal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Anne Kristine Larsen, MD

    2014-03-01

    Full Text Available Summary: Rarely, basal cell carcinoma grows to a giant size, invading the underlying deep tissue and complicating the treatment and reconstruction modalities. A giant basal cell carcinoma on the scalp is in some cases treated with a combination of surgery and radiation therapy, resulting in local control, a satisfactory long-term cosmetic and functional result. We present a case with a neglected basal cell scalp carcinoma, treated with wide excision and postoperative radiotherapy, reconstructed with a free latissimus dorsi flap. The cosmetic result is acceptable and there is no sign of recurrence 1 year postoperatively.

  1. Basal encephalocele and morning glory syndrome.

    Science.gov (United States)

    Caprioli, J; Lesser, R L

    1983-01-01

    Basal encephaloceles are often associated with other midline anomalies such as hypertelorism, broad nasal root, cleft lip, and cleft palate. Optic disc anomalies such as pallor, dysplasia, optic pit, coLoboma, and megalopapilla have been reported to occur in patients with basal encephalocele We report a case of a child with a sphenoethmoidal encephalocele and morning glory syndrome of the optic nerve. The presence of such optic nerve anomalies with facial midline anomalies should alert the clinician to the possible presence of a basal encephalocele. Images PMID:6849854

  2. From regenerative dentistry to regenerative medicine: progress, challenges, and potential applications of oral stem cells

    Directory of Open Access Journals (Sweden)

    Xiao L

    2014-12-01

    Full Text Available Li Xiao,1 Masanori Nasu2 1Department of Pharmacology, 2Research Center, The Nippon Dental University, Tokyo, Japan Abstract: Adult mesenchymal stem cells (MSCs and epithelial stem cells play essential roles in tissue repair and self-healing. Oral MSCs and epithelial stem cells can be isolated from adult human oral tissues, for example, teeth, periodontal ligament, and gingiva. Cocultivated adult oral epithelial stem cells and MSCs could represent some developmental events, such as epithelial invagination and tubular structure formation, signifying their potentials for tissue regeneration. Oral epithelial stem cells have been used in regenerative medicine over 1 decade. They are able to form a stratified cell sheet under three-dimensional culture conditions. Both experimental and clinical data indicate that the cell sheets can not only safely and effectively reconstruct the damaged cornea in humans, but also repair esophageal ulcer in animal models. Oral MSCs include dental pulp stem cells (DPSCs, stem cells from exfoliated deciduous teeth (SHED, stem cells from apical papilla (SCAP, periodontal ligament stem cells (PDLSCs, and mesenchymal stem cells from gingiva (GMSCs. They are widely applied in both regenerative dentistry and medicine. DPSCs, SHED, and SCAP are able to form dentin–pulp complex when being transplanted into immunodeficient animals. They have been experimentally used for the regeneration of dental pulp, neuron, bone muscle and blood vessels in animal models and have shown promising results. PDLSCs and GMSCs are demonstrated to be ideal cell sources for repairing the damaged tissues of periodontal, muscle, and tendon. Despite the abovementioned applications of oral stem cells, only a few human clinical trials are now underway to use them for the treatment of certain diseases. Since clinical use is the end goal, their true regenerative power and safety need to be further examined.Keywords: oral mesenchymal stem cells, oral

  3. Stem cells

    NARCIS (Netherlands)

    Jukes, Jojanneke; Both, Sanne; Post, Janine; van Blitterswijk, Clemens; Karperien, Marcel; de Boer, Jan; van Blitterswijk, Clemens A.

    2008-01-01

    This chapter defines stem cells and their properties. It identifies the major differences between embryonic and adult stem cells. Stem cells can be defined by two properties: the ability to make identical copies of themselves and the ability to form other cell types of the body. These properties are

  4. Epithelial Cell Cultures

    Directory of Open Access Journals (Sweden)

    Imran S. Chaudhry

    2011-01-01

    Full Text Available The biological effects of only a finite number of tobacco toxins have been studied. Here, we describe exposure of cultures of human bronchial epithelial cells to low concentrations of tobacco carcinogens: nickel sulphate, benzo(bfluoranthene, N-nitrosodiethylamine, and 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK. After a 24-hour exposure, EGFR was expressed in cell membrane and cytoplasm, BCL-2 was expressed only in the irregular nuclei of large atypical cells, MKI67 was expressed in nuclei with no staining in larger cells, cytoplasmic BIRC5 with stronger nuclear staining was seen in large atypical cells, and nuclear TP53 was strongly expressed in all cells. After only a 24-hour exposure, cells exhibited atypical nuclear and cytoplasmic features. After a 48-hour exposure, EGFR staining was localized to the nucleus, BCL-2 was slightly decreased in intensity, BIRC5 was localized to the cytoplasm, and TP53 staining was increased in small and large cells. BCL2L1 was expressed in both the cytoplasm and nuclei of cells at 24- and 48-hour exposures. We illustrate that short-termexposure of a bronchial epithelial cell line to smoking-equivalent concentrations of tobacco carcinogens alters the expression of key proliferation regulatory genes, EGFR, BCL-2, BCL2L1, BIRC5, TP53, and MKI67, similar to that reported in biopsy specimens of pulmonary epithelium described to be preneoplastic lesions.

  5. Shell bone histology indicates terrestrial palaeoecology of basal turtles.

    Science.gov (United States)

    Scheyer, Torsten M; Sander, P Martin

    2007-08-07

    The palaeoecology of basal turtles from the Late Triassic was classically viewed as being semi-aquatic, similar to the lifestyle of modern snapping turtles. Lately, this view was questioned based on limb bone proportions, and a terrestrial palaeoecology was suggested for the turtle stem. Here, we present independent shell bone microstructural evidence for a terrestrial habitat of the oldest and basal most well-known turtles, i.e. the Upper Triassic Proterochersis robusta and Proganochelys quenstedti. Comparison of their shell bone histology with that of extant turtles preferring either aquatic habitats or terrestrial habitats clearly reveals congruence with terrestrial turtle taxa. Similarities in the shell bones of these turtles are a diploe structure with well-developed external and internal cortices, weak vascularization of the compact bone layers and a dense nature of the interior cancellous bone with overall short trabeculae. On the other hand, 'aquatic' turtles tend to reduce cortical bone layers, while increasing overall vascularization of the bone tissue. In contrast to the study of limb bone proportions, the present study is independent from the uncommon preservation of appendicular skeletal elements in fossil turtles, enabling the palaeoecological study of a much broader range of incompletely known turtle taxa in the fossil record.

  6. Trichoepithelioma And Multiple Basal Cell Epithelioma

    Directory of Open Access Journals (Sweden)

    Dey S.K

    1996-01-01

    Full Text Available A combination of multiple trichoepithelioma and basal cell epithelioma is reported. Although malignant degeneration of trichoepithelioma is debated, clinical and histopathological studies, in our case, hint at that. The case is reported for its rarity.

  7. Use of basal stimulation at anesthesiology department

    OpenAIRE

    MARKOVÁ, Alena

    2012-01-01

    The theme ?The Use of Basal Stimulation at the Anaesthesiology and Resuscitation Department? was chosen in order to map out the use of this nursing method by the nurses and the staff who I cooperate with. The theoretical part deals with the environment at the Anaesthesiology and Resuscitation Department where the basal stimulation is used and also with special characteristics of the nursing care. Further, it deals with monitoring patients, causes of consciousness defects occurrence and kinds ...

  8. Degludec insulin: A novel basal insulin

    OpenAIRE

    Kalra, Sanjay; Unnikrishnan, Ambika Gopalakrishnan; Baruah, Manash; Kalra, Bharti

    2011-01-01

    This paper reviews a novel insulin analogue, degludec, which has the potential to emerge as an ideal basal insulin. It reviews the limitations of existing basal insulin and analogues, and highlights the need for a newer molecule. The paper discusses the potential advantages of degludec, while reviewing its pharmacologic and clinical studies done so far. The paper assesses the potential role of insulin degludec and degludec plus in clinical diabetes practice.

  9. Germinoma originating in the basal ganglia

    International Nuclear Information System (INIS)

    Anno, Y.; Hori, T.; Watanabe, T.; Takenobu, A.; Takigawa, H.; Kishimoto, M.; Tanaka, J.

    1990-01-01

    About 5-10% of primary intracranial germ cell tumors arise in basal ganglia and thalamus, where CT studies have been made. MR of the tumors in the pineal region, and to our knowledge, from one tumor in the basal ganglia were similar. In the present case, MR produced confusion in confirming diagnosis, which may require additional evidence from the clinical course, tumor markers, and CT images. (orig.)

  10. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology

    Energy Technology Data Exchange (ETDEWEB)

    Lasalvia, Maria [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Castellani, Stefano [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy); D’Antonio, Palma [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Perna, Giuseppe [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Carbone, Annalucia [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy); Colia, Anna Laura; Maffione, Angela Bruna [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Capozzi, Vito [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Conese, Massimo, E-mail: massimo.conese@unifg.it [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy)

    2016-10-15

    The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalized airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption. - Highlights: • CF bronchial epithelial (CFBE) cells show a disorganized actin cytoskeleton. • CFBE cells present high roughness and low rigidity in

  11. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology

    International Nuclear Information System (INIS)

    Lasalvia, Maria; Castellani, Stefano; D’Antonio, Palma; Perna, Giuseppe; Carbone, Annalucia; Colia, Anna Laura; Maffione, Angela Bruna; Capozzi, Vito; Conese, Massimo

    2016-01-01

    The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalized airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption. - Highlights: • CF bronchial epithelial (CFBE) cells show a disorganized actin cytoskeleton. • CFBE cells present high roughness and low rigidity in the

  12. Basal Cell Carcinoma with Myoepithelial Differentiation: Case Report and Literature Review.

    Science.gov (United States)

    Cohen, Philip R

    2018-01-17

    Basal cell carcinoma is the most common skin cancer. Myoepithelial cells are specialized epithelial cells. Basal cell carcinoma with myoepithelial differentiation is a rare tumor. A 71-year-old man with a basal cell carcinoma with myoepithelial differentiation that presented as an asymptomatic red papule of two months duration on his forehead is described. Including the reported patient, this variant of basal cell carcinoma has been described in 16 patients: 11 men and five women. The patients ranged in age at diagnosis from 43 years to 83 years; the median age at diagnosis was 66 years. All of the tumors were located on the face-most were papules or nodules of less than 10 x 10 mm. Their pathology demonstrated two components: one was that of a typical basal cell carcinoma and the other was myoepithelioma-like in which the tumor cells were plasmacytoid or signet ring in appearance and contained abundant eosinophilic cytoplasm or hyaline inclusions or both. The myoepithelial tumor cells had variable immunohistochemical expression that included not only cytokeratin but also actin, glial fibrillary acid protein, S100, and vimentin. The most common clinical impression, prior to biopsy, was a basal cell carcinoma. The pathologic differential diagnosis included cutaneous mixed sweat gland tumor of the skin, myoepithelioma, myoepithelial carcinoma, and tumors that contain a prominent signet ring cell component (such as metastatic gastrointestinal and breast carcinoma, melanoma, plasmacytoid squamous cell carcinoma, and T-cell lymphoma). Mohs micrographic surgical excision, with complete removal of the tumor, was recommended for treatment of the carcinoma.

  13. Cancer stem cells of the digestive system.

    Science.gov (United States)

    Colvin, Hugh S; Nishida, Naohiro; Koseki, Jun; Konno, Masamitsu; Kawamoto, Koichi; Tsunekuni, Kenta; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2014-12-01

    Stem cells of the digestive system are ideal in many ways for research, given they are abundant, highly proliferative and have a uniform structural arrangement. This in turn has enormously aided the research of cancer stem cells of the digestive system, which is now shaping our understanding of cancer stem cells. In this review, the recent advances in the understanding of cancer stem cells of the digestive system have been summarized, including aspects such as their identification, origin, cell-cycle dormancy, relationship with epithelial-mesenchymal transition, cellular metabolism and the underlying molecular mechanisms. Newly acquired knowledge concerning cancer stem cells have led to the development of novel cancer therapeutics with provisional yet encouraging results. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Effects of α-particle radiation on rat tracheal epithelial cells

    International Nuclear Information System (INIS)

    Ford, J.R. Jr.

    1992-08-01

    By a combination of methods, which included flow cytometry and magnetic cell sorting, we have demonstrated that the cells of the rat tracheal epithelium which have the greatest proliferative capacity in culture and in vivo are the basal cells. Because of these findings it seems reasonable to suppose that the basal cells are the most likely target for the action of α-particle radiation in pseudostratified respiratory epithelium. This hypothesis is further supported by the finding that the basal cells are the cells which appear to respond to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. The effects of 210 Po α-particles on the survival and oncogenic transformation of rat tracheal epithelial cells in suspension were investigated. Since these effects were assayed in culture, the results pertain to the reaction of only the basal cells to irradiation. The results indicate that α-particles are extremely cytotoxic in that a track segment of 4 μm, on average, is sufficient to cause the reproductive death of basal cells. This finding is supported by similar results obtained with two cell lines, Mv1Lu and CHO-K1 BH 4 . Production of proliferating epithelial foci by α-particles was not distinguishable from control and sham treatments. These results are in direct conflict with many of the results that have been obtained with C3H 1OT1/2 cells in similar transformation assays. Some possible reasons for these disparities are discussed and supporting evidence is provided

  15. Splenic epithelial cyst

    International Nuclear Information System (INIS)

    Yousuf, M.; Jalali, U.

    2011-01-01

    Cysts of spleen are rare entities. Congenital splenic cysts are even more uncommon comprising of only 10% of benign non-parasitic cysts. We report a case of 22 years old female who presented with history of 2 years abdominal pain and gradual distension. Ultrasound and computed tomography (CT) both were suggestive of splenic cyst. Laboratory tests show thrombocytopenia with platelets count of 97000 per cubic millimeter and anemia with hemoglobin 8.7 gram per deciliter. Serological tests were negative for parasitic infection. Splenectomy was done and the weight of the spleen was found to be 1.5 kilogram. Histopathological findings are consistent with splenic epithelial cyst. The aetiology, diagnostic modalities and treatment options are discussed in the case report. (author)

  16. Mammary collective cell migration involves transient loss of epithelial features and individual cell migration within the epithelium

    Science.gov (United States)

    Ewald, Andrew J.; Huebner, Robert J.; Palsdottir, Hildur; Lee, Jessie K.; Perez, Melissa J.; Jorgens, Danielle M.; Tauscher, Andrew N.; Cheung, Kevin J.; Werb, Zena; Auer, Manfred

    2012-01-01

    Normal mammary morphogenesis involves transitions between simple and multilayered epithelial organizations. We used electron microscopy and molecular markers to determine whether intercellular junctions and apico-basal polarity were maintained in the multilayered epithelium. We found that multilayered elongating ducts had polarized apical and basal tissue surfaces both in three-dimensional culture and in vivo. However, individual cells were only polarized on surfaces in contact with the lumen or extracellular matrix. The basolateral marker scribble and the apical marker atypical protein kinase C zeta localized to all interior cell membranes, whereas PAR3 displayed a cytoplasmic localization, suggesting that the apico-basal polarity was incomplete. Despite membrane localization of E-cadherin and β-catenin, we did not observe a defined zonula adherens connecting interior cells. Instead, interior cells were connected through desmosomes and exhibited complex interdigitating membrane protrusions. Single-cell labeling revealed that individual cells were both protrusive and migratory within the epithelial multilayer. Inhibition of Rho kinase (ROCK) further reduced intercellular adhesion on apical and lateral surfaces but did not disrupt basal tissue organization. Following morphogenesis, segregated membrane domains were re-established and junctional complexes re-formed. We observed similar epithelial organization during mammary morphogenesis in organotypic culture and in vivo. We conclude that mammary epithelial morphogenesis involves a reversible, spatially limited, reduction in polarity and intercellular junctions and active individualistic cell migration. Our data suggest that reductions in polarity and adhesion during breast cancer progression might reflect partial recapitulation of a normal developmental program. PMID:22344263

  17. Epithelial Distribution and Replication of Foot-and-Mouth Disease Virus RNA in Infected Pigs

    DEFF Research Database (Denmark)

    Durand, S.; Murphy, C.; Zhang, Z.

    2008-01-01

    experimentally with FMDV serotype O UKG 34/2001 and tissue samples were collected from I to 4 clays post-infection. Samples were stored at -70 degrees C and frozen sections were prepared for in-situ hybridization (ISH). A digoxigenin-labelled RNA probe complementary to a coding part of the RNA-dependent RNA...... negative strand RNA was observed in basal cells above the basement membrane and along the dermal papillae. The basal cells therefore demonstrate the highest signal for detection of the FMDV positive and negative strand RNAs in both tongue and foot epithelium. These novel results Suggest that the epithelial...

  18. Computerized tomographic diagnosis of basal skull fracture

    International Nuclear Information System (INIS)

    Tanaka, Tokutaro; Shimoyama, Ichiro; Endoh, Mitsutoshi; Ninchoji, Toshiaki; Uemura, Kenichi.

    1984-01-01

    The diagnosis of basal skull fractures used to be difficult, particularly on the basis of routine skull roentgenography alone. We have now examined the diagnostic value of conventional computerized tomography in basal skull fractures. We studied 82 cases clinically diagnosed as basal skull fractures. We examined them based on at least one of the following computerized tomographic criteria for basal skull fractures: 1) fracture line(s), 2) intracranial air, 3) fluid in the paranasal sinuses, and 4) fluid in the middle ear, including the mastoid air cells. The signs of the fracture line and of the intracranial air are definite indications of basal skull fracture, but the signs of fluid in the paranasal sinuses and/or in the middle ear are not definite. When combined, however, with such other clinical signs as black eye, Battle's sign, CSF leakage, CSF findings, and profuse nasal or ear bleeding, the diagnosis is more reliable. Seventy cases (85.4%) in this series had basal skull fractures according to our computerized tomographic criteria. Among them , 26 cases (31.7%) were diagnosed with fracture lines, 17 cases (20.7%) with intracranial air, 16 cases (19.5%) with fluid in the paranasal sinuses, 10 cases (12.2%) with fluid in the middle ear, and one case (1.2%) with fluid in both. Twelve cases (14.6%) of the 82 cases clinically diagnosed as basal skull fractures could not have been diagnosed on our computerized tomographic criteria alone. We diagnosed them because of CSF leakage, CSF findings, surgical findings, etc. (author)

  19. Cooperation of the BTB-Zinc finger protein, Abrupt, with cytoskeletal regulators in Drosophila epithelial tumorigenesis

    Directory of Open Access Journals (Sweden)

    Nezaket Turkel

    2015-08-01

    Full Text Available The deregulation of cell polarity or cytoskeletal regulators is a common occurrence in human epithelial cancers. Moreover, there is accumulating evidence in human epithelial cancer that BTB-ZF genes, such as Bcl6 and ZBTB7A, are oncogenic. From our previous studies in the vinegar fly, Drosophila melanogaster, we have identified a cooperative interaction between a mutation in the apico-basal cell polarity regulator Scribble (Scrib and overexpression of the BTB-ZF protein Abrupt (Ab. Herein, we show that co-expression of ab with actin cytoskeletal regulators, RhoGEF2 or Src64B, in the developing eye-antennal epithelial tissue results in the formation of overgrown amorphous tumours, whereas ab and DRac1 co-expression leads to non-cell autonomous overgrowth. Together with ab, these genes affect the expression of differentiation genes, resulting in tumours locked in a progenitor cell fate. Finally, we show that the expression of two mammalian genes related to ab, Bcl6 and ZBTB7A, which are oncogenes in mammalian epithelial cancers, significantly correlate with the upregulation of cytoskeletal genes or downregulation of apico-basal cell polarity neoplastic tumour suppressor genes in colorectal, lung and other human epithelial cancers. Altogether, this analysis has revealed that upregulation of cytoskeletal regulators cooperate with Abrupt in Drosophila epithelial tumorigenesis, and that high expression of human BTB-ZF genes, Bcl6 and ZBTB7A, shows significant correlations with cytoskeletal and cell polarity gene expression in specific epithelial tumour types. This highlights the need for further investigation of the cooperation between these genes in mammalian systems.

  20. Regulation of Epithelial Sodium Transport via Epithelial Na+ Channel

    Science.gov (United States)

    Marunaka, Yoshinori; Niisato, Naomi; Taruno, Akiyuki; Ohta, Mariko; Miyazaki, Hiroaki; Hosogi, Shigekuni; Nakajima, Ken-ichi; Kusuzaki, Katsuyuki; Ashihara, Eishi; Nishio, Kyosuke; Iwasaki, Yoshinobu; Nakahari, Takashi; Kubota, Takahiro

    2011-01-01

    Renal epithelial Na+ transport plays an important role in homeostasis of our body fluid content and blood pressure. Further, the Na+ transport in alveolar epithelial cells essentially controls the amount of alveolar fluid that should be kept at an appropriate level for normal gas exchange. The epithelial Na+ transport is generally mediated through two steps: (1) the entry step of Na+ via epithelial Na+ channel (ENaC) at the apical membrane and (2) the extrusion step of Na+ via the Na+, K+-ATPase at the basolateral membrane. In general, the Na+ entry via ENaC is the rate-limiting step. Therefore, the regulation of ENaC plays an essential role in control of blood pressure and normal gas exchange. In this paper, we discuss two major factors in ENaC regulation: (1) activity of individual ENaC and (2) number of ENaC located at the apical membrane. PMID:22028593

  1. Localized basal meningeal enhancement in tuberculous meningitis

    Energy Technology Data Exchange (ETDEWEB)

    Theron, Salomine; Andronikou, Savvas; Grobbelaar, Marie; Steyn, Freda; Mapukata, Ayanda; Plessis, Jaco du [University of Stellenbosch, Department of Radiology, Tygerberg Hospital, P.O. BOX 19063, Tygerberg (South Africa)

    2006-11-15

    Focal basal meningeal enhancement may produce a confusing CT picture in children with suspected tuberculous meningitis (TBM). To demonstrate the incidence, distribution and appearance of localized basal meningeal enhancement in children with TBM. CT scans of patients with definite (culture proven) and probable (CSF suggestive) TBM were retrospectively evaluated by two observers. Localized basal enhancement was documented as involving: unilateral cistern of the lateral fossa (CLF), unilateral sylvian fissure, unilateral CLF and sylvian fissure in combination, unilateral CLF and sylvian fissure with ipsi- or contralateral ambient cistern and isolated quadrigeminal plate cistern. The study included 130 patients with TBM (aged 2 months to 13 years 9 months). Focal basal enhancement was seen in 11 patients (8.5%). The sylvian fissure was involved most commonly, followed by the lateral fossa cistern. The ambient cistern was involved in three patients and the quadrigeminal plate cistern in one. Focal areas of enhancement corresponded to the areas of infarction in every patient. Focal basal meningeal enhancement is common (8.5%) in paediatric TBM. This must be kept in mind when evaluating CT scans in children presenting with focal neurological findings, seizures or meningism in communities where TBM is endemic. (orig.)

  2. Localized basal meningeal enhancement in tuberculous meningitis

    International Nuclear Information System (INIS)

    Theron, Salomine; Andronikou, Savvas; Grobbelaar, Marie; Steyn, Freda; Mapukata, Ayanda; Plessis, Jaco du

    2006-01-01

    Focal basal meningeal enhancement may produce a confusing CT picture in children with suspected tuberculous meningitis (TBM). To demonstrate the incidence, distribution and appearance of localized basal meningeal enhancement in children with TBM. CT scans of patients with definite (culture proven) and probable (CSF suggestive) TBM were retrospectively evaluated by two observers. Localized basal enhancement was documented as involving: unilateral cistern of the lateral fossa (CLF), unilateral sylvian fissure, unilateral CLF and sylvian fissure in combination, unilateral CLF and sylvian fissure with ipsi- or contralateral ambient cistern and isolated quadrigeminal plate cistern. The study included 130 patients with TBM (aged 2 months to 13 years 9 months). Focal basal enhancement was seen in 11 patients (8.5%). The sylvian fissure was involved most commonly, followed by the lateral fossa cistern. The ambient cistern was involved in three patients and the quadrigeminal plate cistern in one. Focal areas of enhancement corresponded to the areas of infarction in every patient. Focal basal meningeal enhancement is common (8.5%) in paediatric TBM. This must be kept in mind when evaluating CT scans in children presenting with focal neurological findings, seizures or meningism in communities where TBM is endemic. (orig.)

  3. Adrenomedullin stimulates cyclic AMP production in the airway epithelial cells of guinea-pigs and in the human epithelial cell line

    Directory of Open Access Journals (Sweden)

    Takashi Kawaguchi

    1999-01-01

    Full Text Available This study was designed to examine the effects of adrenomedullin (AM on airway epithelial cells. Primary cultures of guinea-pig tracheal epithelial cells and the human bronchiolar epithelial cell line NCI-H441 were used. Intracellular cyclic adenosine monophosphate (cAMP, cyclic guanosine monophosphate (cGMP, prostaglandin E2 (PGE2, and stable end-products of nitric oxide were assayed. Adrenomedullin (10−6 mol/L stimulated cAMP production in guinea-pig epithelial cells. Indomethacin (10−5 mol/L significantly decreased the basal level of intracellular cAMP in guinea-pig epithelial cells, but not in NCI-H441 cells. However, AM did not stimulate production of PGE2, a major product that can increase cAMP formation. In the case of NCI-H441 cells, AM (10−8 – 10−6 mol/L did not significantly affect intracellular cGMP levels or nitrite content in conditioned medium. Adrenomedullin and calcitonin gene-related peptide (CGRP each stimulated cAMP production in NCI-H441 cells, but AM-stimulated cAMP production was antagonized by the CGRP fragment CGRP8–37. These findings suggest that AM stimulates cAMP production and functionally competes with CGRP for binding sites in airway epithelial cells, at least in human epithelial cells, but that it does not stimulate the release of PGE2 and nitric oxide. Though cyclooxygenase products contribute to some extent to cAMP formation in guinea-pigs, AM independently stimulates intracellular cAMP formation in airway epithelial cells.

  4. Modulation of epithelial sodium channel in human alveolar epithelial ...

    African Journals Online (AJOL)

    Modulation of epithelial sodium channel in human alveolar epithelial cells by lipoxin A4 through AhR-cAMP-dependent pathway. Bi-Huan Cheng1,2, Li-Wei Pan2, Sheng-Rong Zhang3, Bin-Yu Ying2, Ben-Ji. Wang2, Guo-Liang Lin2 and Shi-Fang Ding1*. 1Department of Critical Care Medicine, Qilu Hospital of Shandong ...

  5. Fusion of intestinal epithelial cells with bone marrow derived cells is dispensable for tissue homeostasis

    NARCIS (Netherlands)

    de Jong, Joan H.; Rodermond, Hans M.; Zimberlin, Cheryl D.; Lascano, Valeria; de Sousa E Melo, Felipe; Richel, Dick J.; Medema, Jan Paul; Vermeulen, Louis

    2012-01-01

    The epithelial lining of the intestine is characterized by an immense cellular turn-over ascertaining an extensive regenerative capacity. Multiple reports suggest that besides the local intestinal stem cell pool, circulating cells of bone marrow origin (BMDCs) contribute to this process by fusing

  6. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium

    NARCIS (Netherlands)

    Sato, T.; Stange, D.E.; Ferrante, M.; Vries, R.G.J.; van Es, J.H.; van den Brink, S.; Houdt, W.J.; Pronk, A.; van Gorp, J.; Siersema, P.D.; Clevers, H.

    2011-01-01

    BACKGROUND & AIMS: We previously established long-term culture conditions under which single crypts or stem cells derived from mouse small intestine expand over long periods. The expanding crypts undergo multiple crypt fission events, simultaneously generating villus-like epithelial domains that

  7. Oral epithelial dysplasia classification systems

    DEFF Research Database (Denmark)

    Warnakulasuriya, S; Reibel, J; Bouquot, J

    2008-01-01

    At a workshop coordinated by the WHO Collaborating Centre for Oral Cancer and Precancer in the United Kingdom issues related to potentially malignant disorders of the oral cavity were discussed by an expert group. The consensus views of the Working Group are presented in a series of papers....... In this report, we review the oral epithelial dysplasia classification systems. The three classification schemes [oral epithelial dysplasia scoring system, squamous intraepithelial neoplasia and Ljubljana classification] were presented and the Working Group recommended epithelial dysplasia grading for routine...... use. Although most oral pathologists possibly recognize and accept the criteria for grading epithelial dysplasia, firstly based on architectural features and then of cytology, there is great variability in their interpretation of the presence, degree and significance of the individual criteria...

  8. Lunatic Fringe and p53 Cooperatively Suppress Mesenchymal Stem-Like Breast Cancer

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Chung

    2017-11-01

    Full Text Available Claudin-low breast cancer (CLBC is a poor prognosis molecular subtype showing stemness and mesenchymal features. We previously discovered that deletion of a Notch signaling modulator, Lunatic Fringe (Lfng, in the mouse mammary gland induced a subset of tumors resembling CLBC. Here we report that deletion of one copy of p53 on this background not only accelerated mammary tumor development but also led to a complete penetrance of the mesenchymal stem-like phenotype. All mammary tumors examined in the Lfng/p53 compound mutant mice displayed a mesenchymal/spindloid pathology. These tumors showed high level expressions of epithelial-to-mesenchymal transition (EMT markers including Vimentin, Twist, and PDGFRα, a gene known to be enriched in CLBC. Prior to tumor onset, Lfng/p53 mutant mammary glands exhibited increased levels of Vimentin and E-cadherin, but decreased expressions of cytokeratin 14 and cytokeratin 8, accompanied by elevated basal cell proliferation and an expanded mammary stem cell-enriched population. Lfng/p53 mutant glands displayed increased accumulation of Notch3 intracellular fragment, up-regulation of Hes5 and down-regulation of Hes1. Analysis in human breast cancer datasets found the lowest HES1 and second lowest LFNG expressions in CLBC among molecular subtypes, and low level of LFNG is associated with poor survival. Immunostaining of human breast cancer tissue array found correlation between survival and LFNG immunoreactivity. Finally, patients carrying TP53 mutations express lower LFNG than patients with wild type TP53. Taken together, these data revealed genetic interaction between Lfng and p53 in mammary tumorigenesis, established a new mouse model resembling CLBC, and may suggest targeting strategy for this disease.

  9. Radiologic study of basal cell nevus syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Park, Tae Won [Dept. of Oral Radiology, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1988-11-15

    Several cases of jaw cyst-basal cell nevus-bifid rib syndrome are presented. This syndrome consists principally of multiple jaw cysts, basal cell nevi, and bifid ribs but no one component is present in all patients. The purpose of this paper is to review the multiple characteristics of this syndrome and present three cases in a family and additional 4 cases. The many malformations associated with the syndrome have variable expressively. In the cases, multiple jaw cysts, pal mar and plantar pittings, bridging of sella, temporoparietal bossing, hypertelorism, cleft palate, and dystopia canthoru m have been observed.

  10. Basal cell nevus syndrome: 2 case reports

    International Nuclear Information System (INIS)

    Kim, Jae Duk; Seo, Yo Seob; Kim, Jin Soo

    2008-01-01

    The basal cell nevus syndrome (BCNS) is an autosomal dominant disorder, characterized by basal cell carcinomas, odontogenic keratocysts and skeletal abnormalities. We experienced two cases that represented several characteristics of BCNS. Case 1: a thirty three year-old man visited CSU hospital. His radiographs showed four cystic lesions at both maxillary sinus and both mandibular angle, with bifid rib and ectopic calcification of falx cerebri. After marsupialization and enucleation, recurrent and newly developing tendency were found on his follow-up radiographs. Case 2: a seventeen year-old man had four large cystic lesions which were diagnosed as odontogenic keratocysts. He had craniofacial anomalies which included ectopic calcification and frontal bossing.

  11. Radiologic study of basal cell nevus syndrome

    International Nuclear Information System (INIS)

    Park, Tae Won

    1988-01-01

    Several cases of jaw cyst-basal cell nevus-bifid rib syndrome are presented. This syndrome consists principally of multiple jaw cysts, basal cell nevi, and bifid ribs but no one component is present in all patients. The purpose of this paper is to review the multiple characteristics of this syndrome and present three cases in a family and additional 4 cases. The many malformations associated with the syndrome have variable expressively. In the cases, multiple jaw cysts, pal mar and plantar pittings, bridging of sella, temporoparietal bossing, hypertelorism, cleft palate, and dystopia canthoru m have been observed.

  12. MRI of the basal ganglia calcification

    International Nuclear Information System (INIS)

    Maeda, Masayuki; Murata, Tetsuhito; Kimura, Hirohiko

    1992-01-01

    MR imaging was performed for 11 patients (9 in Down's syndrome and 2 in idiopathic intracerebral calcification) who showed calcifications in bilateral basal ganglia on CT. High signal intensity in the basal ganglia was found only in one patient with idiopathic intracerebral calcification on T1-weighted image. The calcified areas of all patients in Down's syndrome did not show high signal intensity on T1-weighted image. The exact reasons why MRI exhibits the different signal intensities in calcified tissue on T1-weighted image are unknown. Further clinical investigations will be needed. (author)

  13. Polarization Affects Airway Epithelial Conditioning of Monocyte-Derived Dendritic Cells

    DEFF Research Database (Denmark)

    Papazian, Dick; Chhoden, Tashi; Arge, Maria

    2015-01-01

    were allowed to polarize on filter inserts, and MDDCs were allowed to adhere to the epithelial basal side. In an optimized setup, the cell application was reversed, and the culture conditions were modified to preserve cellular polarization and integrity. These two parameters were crucial for the MDDCs....... In conclusion, we determined that AEC conditioning favoring cellular integrity leads to a tolerogenic MDDC phenotype, which is likely to be important in regulating immune responses against commonly inhaled allergens....

  14. Human airway xenograft models of epithelial cell regeneration

    Directory of Open Access Journals (Sweden)

    Puchelle Edith

    2000-10-01

    Full Text Available Abstract Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.

  15. The Epithelial-Mesenchymal Transition Factor SNAIL Paradoxically Enhances Reprogramming

    Directory of Open Access Journals (Sweden)

    Juli J. Unternaehrer

    2014-11-01

    Full Text Available Reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs entails a mesenchymal to epithelial transition (MET. While attempting to dissect the mechanism of MET during reprogramming, we observed that knockdown (KD of the epithelial-to-mesenchymal transition (EMT factor SNAI1 (SNAIL paradoxically reduced, while overexpression enhanced, reprogramming efficiency in human cells and in mouse cells, depending on strain. We observed nuclear localization of SNAI1 at an early stage of fibroblast reprogramming and using mouse fibroblasts expressing a knockin SNAI1-YFP reporter found cells expressing SNAI1 reprogrammed at higher efficiency. We further demonstrated that SNAI1 binds the let-7 promoter, which may play a role in reduced expression of let-7 microRNAs, enforced expression of which, early in the reprogramming process, compromises efficiency. Our data reveal an unexpected role for the EMT factor SNAI1 in reprogramming somatic cells to pluripotency.

  16. Ethane dimethanesulfonate (EDS) perturbs epididymal epithelial cell function in vitro

    International Nuclear Information System (INIS)

    Klinefelter, G.

    1990-01-01

    The formation of sperm granulomas in the epididymis following exposure to EDS, a Leydig cell toxicant, was reported by Cooper and Jackson in 1970. Recent work suggests that EDS may effect the epididymis directly. An in vitro system was developed to determine the nature of any direct effect. The caput epididymis from adult rats was dissected free of connective tissue and small pieces of the tissue were enzymatically digested until plaques of epididymal epithelial cells were obtained. Plaques were cultured on an extracellular matrix gelled on top of a semipermeable filter creating dual-compartment environments. The epithelial cells maintained typical morphology and protein secretion in this culture system for several days. Beginning on day 3, EDS (1 mM) was added to the basal compartment, with or without 35 S-methionine. After 24 hours, 35 S-labelled culture medium was taken from the apical compartment and analyzed by SDS-PAGE and fluorography. EDS caused decreased secretion of several proteins, including a 39 Kd molecule. Interestingly, a 39 Kd protein was also shown to disappear from sperm taken from the caput epididymidis following in vivo exposure to EDS. Unlabelled cultures were fixed and processed for light microscopy. No alterations in morphological integrity were observed. Thus, epididymal epithelial cell function is directly altered by EDS exposure

  17. An immunofluorescence assay for extracellular matrix components highlights the role of epithelial cells in producing a stable, fibrillar extracellular matrix

    Directory of Open Access Journals (Sweden)

    Omar S. Qureshi

    2017-10-01

    Full Text Available Activated fibroblasts are considered major drivers of fibrotic disease progression through the production of excessive extracellular matrix (ECM in response to signals from damaged epithelial and inflammatory cells. Nevertheless, epithelial cells are capable of expressing components of the ECM, cross-linking enzymes that increase its stability and are sensitive to factors involved in the early stages of fibrosis. We therefore wanted to test the hypothesis that epithelial cells can deposit ECM in response to stimulation in a comparable manner to fibroblasts. We performed immunofluorescence analysis of components of stable, mature extracellular matrix produced by primary human renal proximal tubular epithelial cells and renal fibroblasts in response to cytokine stimulation. Whilst fibroblasts produced a higher basal level of extracellular matrix components, epithelial cells were able to deposit significant levels of fibronectin, collagen I, III and IV in response to cytokine stimulation. In response to hypoxia, epithelial cells showed an increase in collagen IV deposition but not in response to the acute stress stimuli aristolochic acid or hydrogen peroxide. When epithelial cells were in co-culture with fibroblasts we observed significant increases in the level of matrix deposition which could be reduced by transforming growth factor beta (TGF-β blockade. Our results highlight the role of epithelial cells acting as efficient producers of stable extracellular matrix which could contribute to renal tubule thickening in fibrosis.

  18. STEM Education.

    Science.gov (United States)

    Xie, Yu; Fang, Michael; Shauman, Kimberlee

    2015-08-01

    Improving science, technology, engineering, and mathematics (STEM) education, especially for traditionally disadvantaged groups, is widely recognized as pivotal to the U.S.'s long-term economic growth and security. In this article, we review and discuss current research on STEM education in the U.S., drawing on recent research in sociology and related fields. The reviewed literature shows that different social factors affect the two major components of STEM education attainment: (1) attainment of education in general, and (2) attainment of STEM education relative to non-STEM education conditional on educational attainment. Cognitive and social psychological characteristics matter for both major components, as do structural influences at the neighborhood, school, and broader cultural levels. However, while commonly used measures of socioeconomic status (SES) predict the attainment of general education, social psychological factors are more important influences on participation and achievement in STEM versus non-STEM education. Domestically, disparities by family SES, race, and gender persist in STEM education. Internationally, American students lag behind those in some countries with less economic resources. Explanations for group disparities within the U.S. and the mediocre international ranking of US student performance require more research, a task that is best accomplished through interdisciplinary approaches.

  19. Role of contact inhibition of locomotion and junctional mechanics in epithelial collective responses to injury

    Science.gov (United States)

    Coburn, Luke; Lopez, Hender; Schouwenaar, Irin-Maya; Yap, Alpha S.; Lobaskin, Vladimir; Gomez, Guillermo A.

    2018-03-01

    Epithelial tissues form physically integrated barriers against the external environment protecting organs from infection and invasion. Within each tissue, epithelial cells respond to different challenges that can potentially compromise tissue integrity. In particular, cells collectively respond to injuries by reorganizing their cell-cell junctions and migrating directionally towards the sites of damage. Notwithstanding, the mechanisms that drive collective responses in epithelial aggregates remain poorly understood. In this work, we develop a minimal mechanistic model that is able to capture the essential features of epithelial collective responses to injuries. We show that a model that integrates the mechanics of cells at the cell-cell and cell-substrate interfaces as well as contact inhibition of locomotion (CIL) correctly predicts two key properties of epithelial response to injury as: (1) local relaxation of the tissue and (2) collective reorganization involving the extension of cryptic lamellipodia that extend, on average, up to 3 cell diameters from the site of injury and morphometric changes in the basal regions. Our model also suggests that active responses (like the actomyosin purse string and softening of cell-cell junctions) are needed to drive morphometric changes in the apical region. Therefore, our results highlight the importance of the crosstalk between junctional biomechanics, cell substrate adhesion, and CIL, as well as active responses, in guiding the collective rearrangements that are required to preserve the epithelial barrier in response to injury.

  20. Forces and dynamics in epithelial domes of controlled size and shape

    Science.gov (United States)

    Latorre-Ibars, Ernest; Casares, Laura; Gomez-Gonzalez, Manuel; Uroz, Marina; Arroyo, Marino; Trepat, Xavier

    Mechanobiology of epithelia plays a central role in morphogenesis, wound healing, and tumor progression. Its current understanding relies on mechanical measurements on flat epithelial layers. However, most epithelia in vivo exhibit a curved 3D shape enclosing a pressurized lumen. Using soft micropatterned substrates we produce massive parallel arrays of epithelial domes with controlled size and basal shape. We measure epithelial traction, tension, and luminal pressure in epithelial domes. The local stress tensor on the freestanding epithelial membrane is then mapped by combining measured luminal pressure and local curvature. We show that tension and cell shape are highly anisotropic and vary along the meridional position of the domes. Finally, we establish constitutive relations between shape, tension, and pressure during perturbations of the contractile machinery, osmotic shocks, and spontaneous fluctuations of dome volume. Our findings contradict a description of the epithelium as a fluid capillary surface. Cells in the dome are unable to relax into a uniform and isotropic tensional state through sub- and supra-cellular rearrangements. Mapping epithelial shape, tension, and pressure will enable quantitative studies of mechanobiology in 3D epithelia of controlled size and shape.

  1. Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures

    Science.gov (United States)

    Cerruti, Benedetta; Puliafito, Alberto; Shewan, Annette M.; Yu, Wei; Combes, Alexander N.; Little, Melissa H.; Chianale, Federica; Primo, Luca; Serini, Guido; Mostov, Keith E.; Celani, Antonio

    2013-01-01

    The growth of a well-formed epithelial structure is governed by mechanical constraints, cellular apico-basal polarity, and spatially controlled cell division. Here we compared the predictions of a mathematical model of epithelial growth with the morphological analysis of 3D epithelial structures. In both in vitro cyst models and in developing epithelial structures in vivo, epithelial growth could take place close to or far from mechanical equilibrium, and was determined by the hierarchy of time-scales of cell division, cell–cell rearrangements, and lumen dynamics. Equilibrium properties could be inferred by the analysis of cell–cell contact topologies, and the nonequilibrium phenotype was altered by inhibiting ROCK activity. The occurrence of an aberrant multilumen phenotype was linked to fast nonequilibrium growth, even when geometric control of cell division was correctly enforced. We predicted and verified experimentally that slowing down cell division partially rescued a multilumen phenotype induced by altered polarity. These results improve our understanding of the development of epithelial organs and, ultimately, of carcinogenesis. PMID:24145168

  2. The APC tumor suppressor is required for epithelial cell polarization and three-dimensional morphogenesis

    Science.gov (United States)

    Lesko, Alyssa C.; Goss, Kathleen H.; Yang, Frank F.; Schwertner, Adam; Hulur, Imge; Onel, Kenan; Prosperi, Jenifer R.

    2015-01-01

    The Adenomatous Polyposis Coli (APC) tumor suppressor has been previously implicated in the control of apical-basal polarity; yet, the consequence of APC loss-of-function in epithelial polarization and morphogenesis has not been characterized. To test the hypothesis that APC is required for the establishment of normal epithelial polarity and morphogenesis programs, we generated APC-knockdown epithelial cell lines. APC depletion resulted in loss of polarity and multi-layering on permeable supports, and enlarged, filled spheroids with disrupted polarity in 3D culture. Importantly, these effects of APC knockdown were independent of Wnt/β-catenin signaling, but were rescued with either full-length or a carboxy (c)-terminal segment of APC. Moreover, we identified a gene expression signature associated with APC knockdown that points to several candidates known to regulate cell-cell and cell-matrix communication. Analysis of epithelial tissues from mice and humans carrying heterozygous APC mutations further support the importance of APC as a regulator of epithelial behavior and tissue architecture. These data also suggest that the initiation of epithelial-derived tumors as a result of APC mutation or gene silencing may be driven by loss of polarity and dysmorphogenesis. PMID:25578398

  3. Proximity Interactions among Basal Body Components in Trypanosoma brucei Identify Novel Regulators of Basal Body Biogenesis and Inheritance

    Directory of Open Access Journals (Sweden)

    Hung Quang Dang

    2017-01-01

    Full Text Available The basal body shares similar architecture with centrioles in animals and is involved in nucleating flagellar axonemal microtubules in flagellated eukaryotes. The early-branching Trypanosoma brucei possesses a motile flagellum nucleated from the basal body that consists of a mature basal body and an adjacent pro-basal body. Little is known about the basal body proteome and its roles in basal body biogenesis and flagellar axoneme assembly in T. brucei. Here, we report the identification of 14 conserved centriole/basal body protein homologs and 25 trypanosome-specific basal body proteins. These proteins localize to distinct subdomains of the basal body, and several of them form a ring-like structure surrounding the basal body barrel. Functional characterization of representative basal body proteins revealed distinct roles in basal body duplication/separation and flagellar axoneme assembly. Overall, this work identified novel proteins required for basal body duplication and separation and uncovered new functions of conserved basal body proteins in basal body duplication and separation, highlighting an unusual mechanism of basal body biogenesis and inheritance in this early divergent eukaryote.

  4. Fascin Is Critical for the Maintenance of Breast Cancer Stem Cell Pool Predominantly via the Activation of the Notch Self-Renewal Pathway.

    Science.gov (United States)

    Barnawi, Rayanah; Al-Khaldi, Samiyah; Majed Sleiman, Ghida; Sarkar, Abdullah; Al-Dhfyan, Abdullah; Al-Mohanna, Falah; Ghebeh, Hazem; Al-Alwan, Monther

    2016-12-01

    An emerging dogma shows that tumors are initiated and maintained by a subpopulation of cancer cells that hijack some stem cell features and thus referred to as "cancer stem cells" (CSCs). The exact mechanism that regulates the maintenance of CSC pool remains largely unknown. Fascin is an actin-bundling protein that we have previously demonstrated to be a major regulator of breast cancer chemoresistance and metastasis, two cardinal features of CSCs. Here, we manipulated fascin expression in breast cancer cell lines and used several in vitro and in vivo approaches to examine the relationship between fascin expression and breast CSCs. Fascin knockdown significantly reduced stem cell-like phenotype (CD44 hi /CD24 lo and ALDH + ) and reversal of epithelial to mesenchymal transition. Interestingly, expression of the embryonic stem cell transcriptional factors (Oct4, Nanog, Sox2, and Klf4) was significantly reduced when fascin expression was down-regulated. Functionally, fascin-knockdown cells were less competent in forming colonies and tumorspheres, consistent with lower basal self-renewal activity and higher susceptibility to chemotherapy. Fascin effect on CSC chemoresistance and self-renewability was associated with Notch signaling. Activation of Notch induced the relevant downstream targets predominantly in the fascin-positive cells. Limiting-dilution xenotransplantation assay showed higher frequency of tumor-initiating cells in the fascin-positive group. Collectively, our data demonstrated fascin as a critical regulator of breast CSC pool at least partially via activation of the Notch self-renewal signaling pathway and modification of the expression embryonic transcriptional factors. Targeting fascin may halt CSCs and thus presents a novel therapeutic approach for effective treatment of breast cancer. Stem Cells 2016;34:2799-2813 Video Highlight: https://youtu.be/GxS4fJ_Ow-o. © 2016 AlphaMed Press.

  5. Basal cell adenocarcinoma of minor salivary and seromucous glands of the head and neck region.

    Science.gov (United States)

    Fonseca, I; Soares, J

    1996-05-01

    Basal cell adenocarcinoma of salivary glands is an uncommon and recently described entity occurring almost exclusively at the major salivary glands. This report provides an overview of the clinicopathologic profile of this neoplasm by including the personal experience on the clinical features, microscopic and ultrastructural characteristics, proliferation activity, and DNA tumor patterns of 12 lesions occurring at the minor salivary glands of the head and neck region, where basal cell adenocarcinoma is probably an underecognized entity, previously reported under different designations. Basal cell adenocarcinoma predominates at the seventh decade without sex preference. The tumors affecting the minor salivary glands occur most frequently at the oral cavity (jugal mucosa, palate) and the upper respiratory tract. The prevalent histologic tumor pattern is represented by solid neoplastic aggregates with a peripheral cell palisading arrangement frequently delineated by basement membrane-like material. The neoplastic clusters are formed by two cell populations: the small dark cell type (that predominates) and a large cell type. Necrosis, either of the comedo or the apoptotic type, is a frequent finding. Perineural growth occurs in 50% of the cases and vascular permeation in 25%. Immunohistochemistry identifies a dual differentiation with a reactivity pattern indicative of ductal epithelial and myoepithelial differentiation, which can be confirmed by electron microscopy. The differential diagnosis of the neoplasm includes its benign counterpart, the basal cell adenoma, solid variant of adenoid cystic carcinoma, undifferentiated carcinoma, and basaloid squamous carcinoma. The tumors recur more frequently than lesions originating in major salivary glands. Mortality is associated with the anatomic site of the lesion, advanced stage, residual neoplasia at surgery, and tumor recurrence. The importance of recognizing basal cell adenocarcinoma outside major salivary glands is

  6. Cellular regulation of basal and FSH-stimulated cyclic AMP production in irradiated rat testes

    International Nuclear Information System (INIS)

    Kangasniemi, M.; Kaipia, A.; Toppari, J.; Mali, P.; Huhtaniemi, I.; Parvinen, M.

    1990-01-01

    Basal and follicle-stimulating hormone (FSH)-stimulated cyclic AMP (cAMP) productions by seminiferous tubular segments from irradiated adult rats were investigated at defined stages of the epithelial cycle when specific spermatogenic cells were low in number. Seven days post-irradiation, depletion of spermatogonia did not influence the basal cAMP production, but FSH response increased in stages II-VIII. Seventeen days post-irradiation when spermatocytes were low in number, there was a small increase in basal cAMP level in stages VII-VIII and FSH-stimulated cAMP production increased in stages VII-XII and XIII-I. At 38 days when pachytene spermatocytes and round spermatids (steps 1-6) were low in number, a decreased basal cAMP production was measured in stages II-VI and IX-XII. FSH-stimulated cAMP output increased in stages VII-XII but decreased in stages II-VI. At 52 days when all spermatids were low in number, basal cAMP levels decreased in all stages of the cycle, whereas FSH response was elevated only in stages VII-XII. All spermatogenic cell types seem to have an effect on cAMP production by the seminiferous tubule in a stage-specific fashion. Germ cells appear to regulate Sertoli cell FSH response in a paracrine way, and a part of cAMP may originate from spermatids stimulated by an unknown FSH-dependent Sertoli cell factor. The FSH-dependent functions may control such phenomena as spermatogonial proliferation, final maturation of spermatids, and onset of meiosis

  7. Optical coherence tomography of basal cell carcinoma

    DEFF Research Database (Denmark)

    Yücel, D.; Themstrup, L.; Manfredi, Maddalena

    2016-01-01

    Background: Basal cell carcinoma (BCC) is the most prevalent malignancy in Caucasians. Optical coherence tomography (OCT) is a non-invasive optical imaging technology using the principle of interferometry. OCT has shown a great potential in diagnosing, monitoring, and follow-up of BCC. So far most...

  8. Neglected giant scalp Basal cell carcinoma

    DEFF Research Database (Denmark)

    Larsen, Anne Kristine; El-Charnoubi, Waseem-Asim Ghulam; Gehl, Julie

    2014-01-01

    control, a satisfactory long-term cosmetic and functional result. We present a case with a neglected basal cell scalp carcinoma, treated with wide excision and postoperative radiotherapy, reconstructed with a free latissimus dorsi flap. The cosmetic result is acceptable and there is no sign of recurrence...

  9. Basal Cell Carcinoma: 10 Years of Experience

    International Nuclear Information System (INIS)

    Cigna, E.; Tarallo, M.; Maruccia, M.; Sorvillo, V.; Pollastrini, A.; Scuderi, N.

    2011-01-01

    Introduction. Basal cell carcinoma (BCC) is a locally invasive malignant epidermal tumour. Incidence is increasing by 10% per year; incidence of metastases is minimal, but relapses are frequent (40%-50%). The complete excision of the BCC allows reduction of relapse. Materials and Methods. The study cohort consists of 1123 patients underwent surgery for basal cell carcinoma between 1999 and 2009. Patient and tumor characteristics recorded are: age; gender; localization (head and neck, trunk, and upper and lower extremities), tumor size, excisional margins adopted, and relapses. Results. The study considered a group of 1123 patients affected by basal cell carcinoma. Relapses occurred in 30 cases (2,67%), 27 out of 30 relapses occurred in noble areas, where peripheral margin was <3mm. Incompletely excised basal cell carcinoma occurred in 21 patients (1,87%) and were treated with an additional excision. Discussion. Although guidelines indicate 3mm peripheral margin of excision in BCC <2cm, in our experience, a margin of less than 5mm results in a high risk of incomplete excisions

  10. Induced resistance: an enhancement of basal resistance?

    NARCIS (Netherlands)

    Vos, M. de; Robben, C.; Pelt, J.A. van; Loon, L.C. van; Pieterse, C.M.J.

    2002-01-01

    Upon primary pathogen attack, plants activate resistance mechanisms at the site of infection. Besides this so-called basal resistance, plants have also the ability to enhance their defensive capacity against future pathogen attack. There are at least two types of biologically induced resistance.

  11. Parallel basal ganglia circuits for decision making.

    Science.gov (United States)

    Hikosaka, Okihide; Ghazizadeh, Ali; Griggs, Whitney; Amita, Hidetoshi

    2018-03-01

    The basal ganglia control body movements, mainly, based on their values. Critical for this mechanism is dopamine neurons, which sends unpredicted value signals, mainly, to the striatum. This mechanism enables animals to change their behaviors flexibly, eventually choosing a valuable behavior. However, this may not be the best behavior, because the flexible choice is focused on recent, and, therefore, limited, experiences (i.e., short-term memories). Our old and recent studies suggest that the basal ganglia contain separate circuits that process value signals in a completely different manner. They are insensitive to recent changes in value, yet gradually accumulate the value of each behavior (i.e., movement or object choice). These stable circuits eventually encode values of many behaviors and then retain the value signals for a long time (i.e., long-term memories). They are innervated by a separate group of dopamine neurons that retain value signals, even when no reward is predicted. Importantly, the stable circuits can control motor behaviors (e.g., hand or eye) quickly and precisely, which allows animals to automatically acquire valuable outcomes based on historical life experiences. These behaviors would be called 'skills', which are crucial for survival. The stable circuits are localized in the posterior part of the basal ganglia, separately from the flexible circuits located in the anterior part. To summarize, the flexible and stable circuits in the basal ganglia, working together but independently, enable animals (and humans) to reach valuable goals in various contexts.

  12. Basal cell carcinoma on the left cheek

    International Nuclear Information System (INIS)

    Jancar, B.

    2007-01-01

    A 91-year-old female patient was treated with irradiation for histologically confirmed basal cell carcinoma on the left cheek. The tumour, measuring 3 x 3 cm, with the depth of 2 cm, was extending up to the lower lid of the left eye. (author)

  13. Vulvar basal cell carcinoma, a rare location

    Directory of Open Access Journals (Sweden)

    Cornelia Nitipir

    2018-05-01

    Full Text Available Basal Cell Carcinoma is the most common human malignant neoplasm. Vulvar basal cell carcinoma is rare, accounting for less than 5% of all vulvar neoplasms. Vulvar basal cell carcinomas are usually diagnosed late because they are often asymptomatic and tend to grow at slow rates. They are usually diagnosed late because they are often asymptomatic. However, these tumours may appear in areas which are normally covered with ultraviolet light. We present the case of a 60 years old woman diagnosed with invasive breast cancer for which she underwent surgery followed by chemotherapy and radiotherapy. The patient presented to our department with an ulcerated vulvar lesion. On inspection, the tumour measured 3/2 cm and was located on the left labium majus. The biopsy confirmed the diagnosis of vulvar basal cell carcinoma and a wide local excision was performed with no relapse at one year. In conclusion, early detection of BCC’s is critical to allow complete surgical cure so any abnormality on the vulva should be biopsied. A wide safety margin of 1cm should be achieved when resecting the tumour and the physician should keep in mind that the BCC’s of the vulva has a high recurrence rate. Previous chemotherapy is not associated with this type of non-melanoma skin cancer.

  14. Neglected basal cell carcinoma on scalp

    Directory of Open Access Journals (Sweden)

    Sudip Sarkar

    2016-01-01

    Full Text Available Giant basal cell carcinoma (BCC is a very rare entity. Usually, they occur due to the negligence of the patient. Local or distant metastasis is present in most cases. Here, we present a case of giant BCC that clinically resembled squamous cell carcinoma and demonstrated no metastasis at presentation.

  15. Apico-basal polarity complex and cancer

    Indian Academy of Sciences (India)

    Loss of cell polarity is a hallmark for carcinoma, and its underlying molecular mechanism is beginning to emerge from studies on model organisms and cancer cell lines. Moreover, deregulated expression of apico-basal polarity complex components has been reported in human tumours. In this review, we provide an ...

  16. Immunosuppressive Environment in Basal Cell Carcinoma

    DEFF Research Database (Denmark)

    Omland, Silje Haukali; Nielsen, Patricia S; Gjerdrum, Lise M R

    2016-01-01

    Interaction between tumour survival tactics and anti-tumour immune response is a major determinant for cancer growth. Regulatory T cells (T-regs) contribute to tumour immune escape, but their role in basal cell carcinoma (BCC) is not understood. The fraction of T-regs among T cells was analysed b...

  17. Giant basal cell carcinoma Carcinoma basocelular gigante

    Directory of Open Access Journals (Sweden)

    Nilton Nasser

    2012-06-01

    Full Text Available The basal cell carcinoma is the most common skin cancer but the giant vegetating basal cell carcinoma reaches less than 0.5 % of all basal cell carcinoma types. The Giant BCC, defined as a lesion with more than 5 cm at its largest diameter, is a rare form of BCC and commonly occurs on the trunk. This patient, male, 42 years old presents a Giant Basal Cell Carcinoma which reaches 180 cm2 on the right shoulder and was negligent in looking for treatment. Surgical treatment was performed and no signs of dissemination or local recurrence have been detected after follow up of five years.O carcinoma basocelular é o tipo mais comum de câncer de pele, mas o carcinoma basocelular gigante vegetante não atinge 0,5% de todos os tipos de carcinomas basocelulares. O Carcinoma Basocelular Gigante, definido como lesão maior que 5 cm no maior diâmetro, é uma forma rara de carcinoma basocelular e comumente ocorre no tronco. Este paciente apresenta um Carcinoma Basocelular Gigante com 180cm² no ombro direito e foi negligente em procurar tratamento. Foi realizado tratamento cirúrgico e nenhum sinal de disseminação ou recorrência local foi detectada após 5 anos.

  18. Maintenance of Epithelial Stem Cells by Cbl Proteins

    Science.gov (United States)

    2012-09-01

    delivery of cytotoxic drugs conjugated to Trastuzumab. Trastuzumab-MCC-DM1 (T- DM1; DM1 is an anti-mitotic drug based on the Vinca alkaloid Maytansine) is...GL. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis : Novel mechanism for HIF-1-mediated vascular...factor. THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 287, NO. 35, pp. 29442–29456, August 24, 2012 © 2012 by The American Society for Biochemistry and

  19. I Remember You: Epigenetic Priming in Epithelial Stem Cells.

    Science.gov (United States)

    Novakovic, Boris; Stunnenberg, Hendrik G

    2017-12-19

    Exposure to inflammatory stimuli can remodel immune cells in a way that alters their response to future insults. In a landmark paper in Nature, Elaine Fuchs and colleagues show that memory of inflammation is not restricted to the hematopoietic lineage (Naik et al., 2017). Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Maintenance of Epithelial Stem Cells by Cbl Proteins

    Science.gov (United States)

    2013-09-01

    corresponding authors). • Mohibi S, Gurumurthy CB, Nag A, Wang J, Mirza S, Mian Y, Quinn M, Katafiasz B, Eudy J, Pandey S, Guda C, Naramura M, Band H...MMTV-polyoma middle T transgenic mice. Cancer Res 67: 167–177. doi:10.1158/0008-5472.CAN-06-3782. 41. Li G, Robinson GW, Lesche R, Martinez-Diaz H

  1. Learn About Stem Cells

    Science.gov (United States)

    ... Patient Handbook Stem Cell Glossary Search Toggle Nav Stem Cell Basics Stem cells are the foundation from which ... original cell’s DNA, cytoplasm and cell membrane. About stem cells Stem cells are the foundation of development in ...

  2. Expression of Ricinus communis receptors on epithelial cells in oral carcinomas and oral wounds.

    Science.gov (United States)

    Dabelsteen, E; Mackenzie, I C

    1978-12-01

    The histological distribution of receptors for Ricinus communis Fraction 1 (RCA1) in oral carcinomas and in oral epithelial cells during wound healing has been studied by use of fluorescein-tagged RCA1. Biopsies from 15 human oral carcinomas and adjacent normal mucosa showed RCA1 receptors at the cell membranes in the basal and spinous layer of the normal epithelium, whereas receptors could not be demonstrated in invading islands of the tumors. In healing oral wounds from eight humans and three monkeys, RCA1 receptors were demonstrated both in normal epithelium adjacent to the wounds and in the epithelial outgrowth from the wound margin. Titrations, however, showed that the epithelial outgrowth reacted more weakly than did the normal adjacent epithelium. These results support previous in vitro studies showing changes in carbohydrate composition of moving normal cells and of malignant cells, a finding that may be of interest in relation to formation of metastases.

  3. Wnt-10b promotes differentiation of skin epithelial cells in vitro

    International Nuclear Information System (INIS)

    Ouji, Yukiteru; Yoshikawa, Masahide; Shiroi, Akira; Ishizaka, Shigeaki

    2006-01-01

    To evaluate the role of Wnt-10b in epithelial differentiation, we investigated the effects of Wnt-10b on adult mouse-derived primary skin epithelial cells (MPSEC). Recombinant Wnt-10b protein (rWnt-10b) was prepared using a gene engineering technique and MPSEC were cultured in its presence, which resulted in morphological changes from cuboidal to spindle-shaped and inhibited their proliferation. Further, involvement of the canonical Wnt signal pathway was also observed. MPSEC treated with rWnt-10b showed characteristics of the hair shaft and inner root sheath of the hair follicle, in results of Ayoub Shklar staining and immunocytochemistry. Further, the cells expressed mRNA for differentiated epithelial cells, including keratin 1, keratin 2, loricrin, mHa5, and mHb5, in association with a decreased expression of the basal cell marker keratin 5. These results suggest that Wnt-10b promotes the differentiation of MPSEC

  4. Intracellular Position of Centrioles and the Direction of Homeostatic Epithelial Cell Movements in the Mouse Cornea.

    Science.gov (United States)

    Silverman, Erika; Zhao, Jin; Merriam, John C; Nagasaki, Takayuki

    2017-02-01

    Corneal epithelial cells exhibit continuous centripetal movements at a rate of about 30 µm per day, but neither the driving force nor the mechanism that determines the direction of movements is known. To facilitate the investigation of homeostatic cell movement, we examined if the intracellular position of a centriole can be used as a directional marker of epithelial cell movements in the mouse cornea. A direction of cell movements was estimated in fixed specimens from a pattern of underlying subepithelial nerve fibers. Intracellular position of centrioles was determined by gamma-tubulin immunohistology and plotted in a narrow strip along the entire diameter of a cornea from limbus to limbus. When we determined the position of centrioles in the peripheral cornea where cell movements proceed generally along a radial path, about 55% of basal epithelial cells contained a centriole in the front half of a cell. However, in the central cornea where cells exhibit a spiral pattern of movements, centrioles were distributed randomly. These results suggest that centrioles tend to be positioned toward the direction of movement in corneal basal epithelial cells when they are moving centripetally at a steady rate.

  5. Stem cells in the human breast

    DEFF Research Database (Denmark)

    Petersen, Ole William; Polyak, Kornelia

    2010-01-01

    The origins of the epithelial cells participating in the development, tissue homeostasis, and cancer of the human breast are poorly understood. However, emerging evidence suggests a role for adult tissue-specific stem cells in these processes. In a hierarchical manner, these generate the two main...... mammary cell lineages, producing an increasing number of cells with distinct properties. Understanding the biological characteristics of human breast stem cells and their progeny is crucial in attempts to compare the features of normal stem cells and cancer precursor cells and distinguish these from...... nonprecursor cells and cells from the bulk of a tumor. A historical overview of research on human breast stem cells in primary tissue and in culture reveals the progress that has been made in this area, whereas a focus on the cell-of-origin and reprogramming that occurs during neoplastic conversion provides...

  6. Stomach development, stem cells and disease

    Science.gov (United States)

    Kim, Tae-Hee; Shivdasani, Ramesh A.

    2016-01-01

    The stomach, an organ derived from foregut endoderm, secretes acid and enzymes and plays a key role in digestion. During development, mesenchymal-epithelial interactions drive stomach specification, patterning, differentiation and growth through selected signaling pathways and transcription factors. After birth, the gastric epithelium is maintained by the activity of stem cells. Developmental signals are aberrantly activated and stem cell functions are disrupted in gastric cancer and other disorders. Therefore, a better understanding of stomach development and stem cells can inform approaches to treating these conditions. This Review highlights the molecular mechanisms of stomach development and discusses recent findings regarding stomach stem cells and organoid cultures, and their roles in investigating disease mechanisms. PMID:26884394

  7. Stem cell treatment of degenerative eye disease

    Directory of Open Access Journals (Sweden)

    Ben Mead

    2015-05-01

    Full Text Available Stem cell therapies are being explored extensively as treatments for degenerative eye disease, either for replacing lost neurons, restoring neural circuits or, based on more recent evidence, as paracrine-mediated therapies in which stem cell-derived trophic factors protect compromised endogenous retinal neurons from death and induce the growth of new connections. Retinal progenitor phenotypes induced from embryonic stem cells/induced pluripotent stem cells (ESCs/iPSCs and endogenous retinal stem cells may replace lost photoreceptors and retinal pigment epithelial (RPE cells and restore vision in the diseased eye, whereas treatment of injured retinal ganglion cells (RGCs has so far been reliant on mesenchymal stem cells (MSC. Here, we review the properties of non-retinal-derived adult stem cells, in particular neural stem cells (NSCs, MSC derived from bone marrow (BMSC, adipose tissues (ADSC and dental pulp (DPSC, together with ESC/iPSC and discuss and compare their potential advantages as therapies designed to provide trophic support, repair and replacement of retinal neurons, RPE and glia in degenerative retinal diseases. We conclude that ESCs/iPSCs have the potential to replace lost retinal cells, whereas MSC may be a useful source of paracrine factors that protect RGC and stimulate regeneration of their axons in the optic nerve in degenerate eye disease. NSC may have potential as both a source of replacement cells and also as mediators of paracrine treatment.

  8. Stem cell treatment of degenerative eye disease.

    Science.gov (United States)

    Mead, Ben; Berry, Martin; Logan, Ann; Scott, Robert A H; Leadbeater, Wendy; Scheven, Ben A

    2015-05-01

    Stem cell therapies are being explored extensively as treatments for degenerative eye disease, either for replacing lost neurons, restoring neural circuits or, based on more recent evidence, as paracrine-mediated therapies in which stem cell-derived trophic factors protect compromised endogenous retinal neurons from death and induce the growth of new connections. Retinal progenitor phenotypes induced from embryonic stem cells/induced pluripotent stem cells (ESCs/iPSCs) and endogenous retinal stem cells may replace lost photoreceptors and retinal pigment epithelial (RPE) cells and restore vision in the diseased eye, whereas treatment of injured retinal ganglion cells (RGCs) has so far been reliant on mesenchymal stem cells (MSC). Here, we review the properties of non-retinal-derived adult stem cells, in particular neural stem cells (NSCs), MSC derived from bone marrow (BMSC), adipose tissues (ADSC) and dental pulp (DPSC), together with ESC/iPSC and discuss and compare their potential advantages as therapies designed to provide trophic support, repair and replacement of retinal neurons, RPE and glia in degenerative retinal diseases. We conclude that ESCs/iPSCs have the potential to replace lost retinal cells, whereas MSC may be a useful source of paracrine factors that protect RGC and stimulate regeneration of their axons in the optic nerve in degenerate eye disease. NSC may have potential as both a source of replacement cells and also as mediators of paracrine treatment. Copyright © 2015. Published by Elsevier B.V.

  9. Dissection of a stem cell hierarchy in the human breast

    DEFF Research Database (Denmark)

    Rubner Fridriksdottir, Agla Jael

    and apoptosis during each menstrual cycle. These changes are most prominent during pregnancy, lactation and involution after breast feeding. These highly dynamic changes are thought to rely on the presence of a breast epithelial stem cell population (reviewed in (Fridriksdottir et al. 2005)). Nevertheless......, cellular pathways that contribute to adult human breast gland architecture and cell lineages have not been described. Here, I identify a candidate stem cell niche in ducts, and zones containing progenitor cells in lobules (Villadsen and Fridriksdottir et al. 2007). Putative stem cells residing in ducts......-rich extracellular matrix gel. Staining for the epithelial lineage markers, cytokeratins K14 and K19, further reveals multipotent cells in the stem cell zone and three lineage- restricted cell types outside this zone. Multiparameter cell sorting and functional characterization with reference to anatomical sites...

  10. Metastatic giant basal cell carcinoma: a case report.

    Science.gov (United States)

    Bellahammou, Khadija; Lakhdissi, Asmaa; Akkar, Othman; Rais, Fadoua; Naoual, Benhmidou; Elghissassi, Ibrahim; M'rabti, Hind; Errihani, Hassan

    2016-01-01

    Basal cell carcinoma is the most common skin cancer, characterised by a slow growing behavior, metastasis are extremely rare, and it occurs in less than 0, 1% of all cases. Giant basal cell carcinoma is a rare form of basal cell carcinoma, more aggressive and defined as a tumor measuring more than 5 cm at its largest diameter. Only 1% of all basal cell carcinoma develops to a giant basal cell carcinoma, resulting of patient's negligence. Giant basal cell carcinoma is associated with higher potential of metastasis and even death, compared to ordinary basal cell carcinoma. We report a case of giant basal cell carcinoma metastaticin lung occurring in a 79 years old male patient, with a fatal evolution after one course of systemic chemotherapy. Giant basal cell carcinoma is a very rare entity, early detection of these tumors could prevent metastasis occurrence and improve the prognosis of this malignancy.

  11. Recent Advances in Intestinal Stem Cells.

    Science.gov (United States)

    McCabe, Laura R; Parameswaran, Narayanan

    2017-09-01

    The intestine is a dynamic organ with rapid stem cell division generating epithelial cells that mature and apoptose in 3-5 days. Rapid turnover maintains the epithelial barrier and homeostasis. Current insights on intestinal stem cells (ISCs) and their regulation are discussed here. The Lgr5+ ISCs maintain intestinal homeostasis by dividing asymmetrically, but also divide symmetrically to extinguish or replace ISCs. Following radiation or mucosal injury, reserve BMI1+ ISCs as well as other crypt cells can de-differentiate into Lgr5+ ISCs. ISC niche cells, including Paneth, immune and myofibroblast cells secrete factors that regulate ISC proliferation. Finally, several studies indicate that the microbiome metabolites regulate ISC growth. ISC cells can be plastic and integrate a complexity of environmental/niche cues to trigger or suppress proliferation as needed.

  12. Limbal stem cell transplantation: current perspectives

    Directory of Open Access Journals (Sweden)

    Atallah MR

    2016-04-01

    Full Text Available Marwan Raymond Atallah, Sotiria Palioura, Victor L Perez, Guillermo Amescua Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA Abstract: Regeneration of the corneal surface after an epithelial insult involves division, migration, and maturation of a specialized group of stem cells located in the limbus. Several insults, both intrinsic and extrinsic, can precipitate destruction of the delicate microenvironment of these cells, resulting in limbal stem cell deficiency (LSCD. In such cases, reepithelialization fails and conjunctival epithelium extends across the limbus, leading to vascularization, persistent epithelial defects, and chronic inflammation. In partial LSCD, conjunctival epitheliectomy, coupled with amniotic membrane transplantation, could be sufficient to restore a healthy surface. In more severe cases and in total LSCD, stem cell transplantation is currently the best curative option. Before any attempts are considered to perform a limbal stem cell transplantation procedure, the ocular surface must be optimized by controlling causative factors and comorbid conditions. These factors include adequate eyelid function or exposure, control of the ocular surface inflammatory status, and a well-lubricated ocular surface. In cases of unilateral LSCD, stem cells can be obtained from the contralateral eye. Newer techniques aim at expanding cells in vitro or in vivo in order to decrease the need for large limbal resection that may jeopardize the “healthy” eye. Patients with bilateral disease can be treated using allogeneic tissue in combination with systemic immunosuppressive therapy. Another emerging option for this subset of patients is the use of noncorneal cells such as mucosal grafts. Finally, the use of keratoprosthesis is reserved for patients who are not candidates for any of the aforementioned options, wherein the choice of the type of keratoprosthesis depends on

  13. Atrophy of the basal ganglia as the initial diagnostic sign of germinoma in the basal ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, K.; Ishikawa, K.; Takahashi, N.; Furusawa, T.; Sakai, K. [Department of Radiology, Niigata University Faculty of Medicine (Japan); Ito, J.; Tokiguchi, S. [Department of Radiology, Niigata University Faculty of Dentistry (Japan); Morii, K. [Department of Neurosurgery, Niigata University Brain Research Institute (Japan); Yamada, M. [Department of Pathology, Niigata University Brain Research Institute (Japan)

    2002-05-01

    Germ-cell tumors of the central nervous system generally develop in the midline, but the tumors can also occur in the basal ganglia and/or thalamus. However, MR images have rarely been documented in the early stage of the tumor in these regions. We retrospectively reviewed MR images obtained on admission and approximately 3 years earlier in two patients with germinoma in the basal ganglia, and compared them with CT. In addition to hyperdensity on CT, both hyperintensity on T1-weighted images and a small hyperintense lesion on T2-weighted images were commonly seen in the basal ganglia. These findings may be early MRI signs of germinoma in this region, and the earliest and most characteristic diagnostic feature on MRI was atrophy of the basal ganglia, which was recognizable before development of hemiparesis. (orig.)

  14. Autologous method for ex vivo expansion of human limbal epithelial progenitor cells based on plasma rich in growth factors technology.

    Science.gov (United States)

    Riestra, A C; Vazquez, N; Chacon, M; Berisa, S; Sanchez-Avila, R M; Orive, G; Anitua, E; Meana, A; Merayo-Lloves, J

    2017-04-01

    Develop an autologous culture method for ex vivo expansion of human limbal epithelial progenitor cells (LEPCs) using Plasma Rich in Growth Factors (PRGF) as a growth supplement and as a scaffold for the culture of LEPCs. LEPCs were cultivated in different media supplemented with 10% fetal bovine serum (FBS) or 10% PRGF. The outgrowths, total number of cells, colony forming efficiency (CFE), morphology and immunocytochemistry against p63- α and cytokeratins 3 and 12 (CK3-CK12) were analyzed. PRGF was also used to elaborate a fibrin membrane. The effects of the scaffold on the preservation of stemness and the phenotypic characterization of LEPCs were investigated through analysis of CK3-CK12, ABCG-2 and p63. LEPCs cultivated with PRGF showed a significantly higher growth area than FBS cultures. Moreover, the number of cells were also higher in PRGF than FBS, while displaying a better morphology overall. CFE was found to be also higher in PRGF groups compared to FBS, and the p63-α expression also differed between groups. LEPCs cultivated on PRGF membranes appeared as a confluent monolayer of cells and still retained p63 and ABCG-2 expression, being negative for CK3-CK12. PRGF can be used in corneal tissue engineering, supplementing the culture media, even in a basal media without any other additives, as well as providing a scaffold for the culture. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. STEM Education

    Science.gov (United States)

    & Development (LDRD) National Security Education Center (NSEC) Office of Science Programs Richard P Databases National Security Education Center (NSEC) Center for Nonlinear Studies Engineering Institute Scholarships STEM Education Programs Teachers (K-12) Students (K-12) Higher Education Regional Education

  16. Macrophages contribute to the cyclic activation of adult hair follicle stem cells

    DEFF Research Database (Denmark)

    Castellana, Donatello; Paus, Ralf; Perez-Moreno, Mirna

    2014-01-01

    Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in...

  17. Tissue-resident adult stem cell populations of rapidly self-renewing organs

    NARCIS (Netherlands)

    Barker, N.; Bartfeld, S.; Clevers, H.

    2010-01-01

    The epithelial lining of the intestine, stomach, and skin is continuously exposed to environmental assault, imposing a requirement for regular self-renewal. Resident adult stem cell populations drive this renewal, and much effort has been invested in revealing their identity. Reliable adult stem

  18. Learning Reward Uncertainty in the Basal Ganglia.

    Directory of Open Access Journals (Sweden)

    John G Mikhael

    2016-09-01

    Full Text Available Learning the reliability of different sources of rewards is critical for making optimal choices. However, despite the existence of detailed theory describing how the expected reward is learned in the basal ganglia, it is not known how reward uncertainty is estimated in these circuits. This paper presents a class of models that encode both the mean reward and the spread of the rewards, the former in the difference between the synaptic weights of D1 and D2 neurons, and the latter in their sum. In the models, the tendency to seek (or avoid options with variable reward can be controlled by increasing (or decreasing the tonic level of dopamine. The models are consistent with the physiology of and synaptic plasticity in the basal ganglia, they explain the effects of dopaminergic manipulations on choices involving risks, and they make multiple experimental predictions.

  19. Kidney stem cells in development, regeneration and cancer.

    Science.gov (United States)

    Dziedzic, Klaudyna; Pleniceanu, Oren; Dekel, Benjamin

    2014-12-01

    The generation of nephrons during development depends on differentiation via a mesenchymal to epithelial transition (MET) of self-renewing, tissue-specific stem cells confined to a specific anatomic niche of the nephrogenic cortex. These cells may transform to generate oncogenic stem cells and drive pediatric renal cancer. Once nephron epithelia are formed the view of post-MET tissue renal growth and maintenance by adult tissue-specific epithelial stem cells becomes controversial. Recently, genetic lineage tracing that followed clonal evolution of single kidney cells showed that the need for new cells is constantly driven by fate-restricted unipotent clonal expansions in varying kidney segments arguing against a multipotent adult stem cell model. Lineage-restriction was similarly maintained in kidney organoids grown in culture. Importantly, kidney cells in which Wnt was activated were traced to give significant clonal progeny indicating a clonogenic hierarchy. In vivo nephron epithelia may be endowed with the capacity akin to that of unipotent epithelial stem/progenitor such that under specific stimuli can clonally expand/self renew by local proliferation of mature differentiated cells. Finding ways to ex vivo preserve and expand the observed in vivo kidney-forming capacity inherent to both the fetal and adult kidneys is crucial for taking renal regenerative medicine forward. Some of the strategies used to achieve this are sorting human fetal nephron stem/progenitor cells, growing adult nephrospheres or reprogramming differentiated kidney cells toward expandable renal progenitors. Copyright © 2014. Published by Elsevier Ltd.

  20. Basal ganglia lesions in children and adults

    Energy Technology Data Exchange (ETDEWEB)

    Bekiesinska-Figatowska, Monika, E-mail: m.figatowska@mp.pl [Department of Diagnostic Imaging, Institute of Mother and Child, ul. Kasprzaka 17a, 01-211 Warsaw (Poland); Mierzewska, Hanna, E-mail: h.mierzewska@gmail.com [Department of Neurology of Children and Adolescents, Institute of Mother and Child, ul. Kasprzaka 17a, 01-211 Warsaw (Poland); Jurkiewicz, Elżbieta, E-mail: e-jurkiewicz@o2.pl [Department of Diagnostic Imaging, Children' s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland)

    2013-05-15

    The term “basal ganglia” refers to caudate and lentiform nuclei, the latter composed of putamen and globus pallidus, substantia nigra and subthalamic nuclei and these deep gray matter structures belong to the extrapyramidal system. Many diseases may present as basal ganglia abnormalities. Magnetic resonance imaging (MRI) and computed tomography (CT) – to a lesser degree – allow for detection of basal ganglia injury. In many cases, MRI alone does not usually allow to establish diagnosis but together with the knowledge of age and circumstances of onset and clinical course of the disease is a powerful tool of differential diagnosis. The lesions may be unilateral: in Rassmussen encephalitis, diabetes with hemichorea/hemiballism and infarction or – more frequently – bilateral in many pathologic conditions. Restricted diffusion is attributable to infarction, acute hypoxic–ischemic injury, hypoglycemia, Leigh disease, encephalitis and CJD. Contrast enhancement may be seen in cases of infarction and encephalitis. T1-hyperintensity of the lesions is uncommon and may be observed unilaterally in case of hemichorea/hemiballism and bilaterally in acute asphyxia in term newborns, in hypoglycemia, NF1, Fahr disease and manganese intoxication. Decreased signal intensity on GRE/T2*-weighted images and/or SWI indicating iron, calcium or hemosiderin depositions is observed in panthotenate kinase-associated neurodegeneration, Parkinson variant of multiple system atrophy, Fahr disease (and other calcifications) as well as with the advancing age. There are a few papers in the literature reviewing basal ganglia lesions. The authors present a more detailed review with rich iconography from the own archive.

  1. Basal ganglia lesions in children and adults

    International Nuclear Information System (INIS)

    Bekiesinska-Figatowska, Monika; Mierzewska, Hanna; Jurkiewicz, Elżbieta

    2013-01-01

    The term “basal ganglia” refers to caudate and lentiform nuclei, the latter composed of putamen and globus pallidus, substantia nigra and subthalamic nuclei and these deep gray matter structures belong to the extrapyramidal system. Many diseases may present as basal ganglia abnormalities. Magnetic resonance imaging (MRI) and computed tomography (CT) – to a lesser degree – allow for detection of basal ganglia injury. In many cases, MRI alone does not usually allow to establish diagnosis but together with the knowledge of age and circumstances of onset and clinical course of the disease is a powerful tool of differential diagnosis. The lesions may be unilateral: in Rassmussen encephalitis, diabetes with hemichorea/hemiballism and infarction or – more frequently – bilateral in many pathologic conditions. Restricted diffusion is attributable to infarction, acute hypoxic–ischemic injury, hypoglycemia, Leigh disease, encephalitis and CJD. Contrast enhancement may be seen in cases of infarction and encephalitis. T1-hyperintensity of the lesions is uncommon and may be observed unilaterally in case of hemichorea/hemiballism and bilaterally in acute asphyxia in term newborns, in hypoglycemia, NF1, Fahr disease and manganese intoxication. Decreased signal intensity on GRE/T2*-weighted images and/or SWI indicating iron, calcium or hemosiderin depositions is observed in panthotenate kinase-associated neurodegeneration, Parkinson variant of multiple system atrophy, Fahr disease (and other calcifications) as well as with the advancing age. There are a few papers in the literature reviewing basal ganglia lesions. The authors present a more detailed review with rich iconography from the own archive

  2. Linear Basal Cell Carcinoma: A Case Report

    Directory of Open Access Journals (Sweden)

    Yuko Ichinokawa

    2011-07-01

    Full Text Available Basal cell carcinoma (BCC presents with diverse clinical features, and several morphologic and histologic variants of BCC have been reported [Sexton et al.: J Am Acad Dermatol 1990;23:1118–1126]. Linear BCC was first described as a new clinical subtype in 1985 by Lewis [Int J Dematol 1985;24:124–125]. Here, we present a case of linear BCC that we recently encountered in an elderly Japanese patient, and review other cases reported in Japan.

  3. Epithelial Markers aSMA, Krt14, and Krt19 Unveil Elements of Murine Lacrimal Gland Morphogenesis and Maturation.

    Science.gov (United States)

    Kuony, Alison; Michon, Frederic

    2017-01-01

    As an element of the lacrimal apparatus, the lacrimal gland (LG) produces the aqueous part of the tear film, which protects the eye surface. Therefore, a defective LG can lead to serious eyesight impairment. Up to now, little is known about LG morphogenesis and subsequent maturation. In this study, we delineated elements of the cellular and molecular events involved in LG formation by using three epithelial markers, namely aSMA, Krt14, and Krt19. While aSMA marked a restricted epithelial population of the terminal end buds (TEBs) in the forming LG, Krt14 was found in the whole embryonic LG epithelial basal cell layer. Interestingly, Krt19 specifically labeled the presumptive ductal domain and subsequently, the luminal cell layer. By combining these markers, the Fucci reporter mouse strain and genetic fate mapping of the Krt14 + population, we demonstrated that LG epithelium expansion is fuelled by a patterned cell proliferation, and to a lesser extent by epithelial reorganization and possible mesenchymal-to-epithelial transition. We pointed out that this epithelial reorganization, which is associated with apoptosis, regulated the lumen formation. Finally, we showed that the inhibition of Notch signaling prevented the ductal identity from setting, and led to a LG covered by ectopic TEBs. Taken together our results bring a deeper understanding on LG morphogenesis, epithelial domain identity, and organ expansion.

  4. [The value of high resolution diffusion weighted imaging in differentiating benign and malignant epithelial tumors of parotid gland].

    Science.gov (United States)

    Wen, B H; Cheng, J L; Zhang, H X; Zhang, Z X; Wang, F F; Xue, K K

    2018-05-08

    Objective: To investigate the diagnostic value of RESOLVE DWI in the evaluation of benign and malignant epithelial tumors of parotid gland. Methods: A total of 106 patients in the First Affiliated Hospital of Zhengzhou University with epithelial tumors of parotid gland confirmed by pathology from July 2015 to October 2017 were retrospectively analyzed. All patients underwent preoperative routine MRI and RESOLVE DWI, the ADC average values were calculated, t test were used to compare the ADC values of benign and malignant epithelial tumors of parotid gland. Diagnostic performance of ADC value was compared using receiver operating characteristic (ROC)curves. Results: All lesions were solitary, including 69 benign epithelial tumors and 37 malignant epithelial tumors. The mean ADC values of pleomorphic adenoma and basal cell adenoma, adenolymphoma and malignant epithelial tumors were (1.47±0.16)×10(-3) mm(2)/s, (0.83±0.19)×10(-3) mm(2)/s and(1.14±0.14)×10(-3) mm(2)/s, the mean ADC value of adenolymphoma lower than the rest of the two groups, there were statistically significant differences among them ( P benign and malignant epithelial tumors of parotid gland.

  5. A high-grain diet alters the omasal epithelial structure and expression of tight junction proteins in a goat model.

    Science.gov (United States)

    Liu, Jun-Hua; Xu, Ting-Ting; Zhu, Wei-Yun; Mao, Sheng-Yong

    2014-07-01

    The omasal epithelial barrier plays important roles in maintaining nutrient absorption and immune homeostasis in ruminants. However, little information is currently available about the changes in omasal epithelial barrier function at the structural and molecular levels during feeding of a high-grain (HG) diet. Ten male goats were randomly assigned to two groups, fed either a hay diet (0% grain; n = 5) or HG diet (65% grain; n = 5). Changes in omasal epithelial structure and expression of tight junction (TJ) proteins were determined via electron microscopy and Western blot analysis. After 7 weeks on each diet, omasal contents in the HG group showed significantly lower pH (P diet showed profound alterations in omasal epithelial structure and TJ proteins, corresponding to depression of thickness of total epithelia, stratum granulosum, and the sum of the stratum spinosum and stratum basale, marked epithelial cellular damage, erosion of intercellular junctions and down-regulation in expression of the TJ proteins, claudin-4 and occludin. The study demonstrates that feeding a HG diet is associated with omasal epithelial cellular damage and changes in expression of TJ proteins. These research findings provide an insight into the possible significance of diet on the omasal epithelial barrier in ruminants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. CT brain demonstration of basal ganglion calcification in adult HIV ...

    African Journals Online (AJOL)

    brain barrier has been postulated. Calcification of the basal ganglia in encephalopathic HIV/AIDS children has been relatively well documented. Only two adult HIV cases with basal ganglion calcification (BGC) have been reported in the literature.

  7. Bovine mammary stem cells: Cell biology meets production agriculture

    Science.gov (United States)

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue ...

  8. Isolation and in vitro expansion of human colonic stem cells

    NARCIS (Netherlands)

    Jung, P.; Sato, T.; Merlos-Suarez, A.; Barriga, F.M.; Iglesias, M.; Rossell, D.; Auer, H.; Gallardo, M.; Blasco, M.A.; Sancho, E.; Clevers, H.; Batlle, E.

    2011-01-01

    Here we describe the isolation of stem cells of the human colonic epithelium. Differential cell surface abundance of ephrin type-B receptor 2 (EPHB2) allows the purification of different cell types from human colon mucosa biopsies. The highest EPHB2 surface levels correspond to epithelial colonic

  9. Quantitative analysis of epithelial papillae in patients with oral lichen planus.

    Science.gov (United States)

    López-Jornet, P; Camacho-Alonso, F; Molina-Miñano, F

    2009-06-01

    The oral mucosa is relatively vulnerable to pathological processes, and is often affected by autoimmune and malignant diseases. The oral epithelium is normally non-homogeneous, and joins to the connective tissue through interlocking of its downward projections in the form of papillae. This study aims to conduct a histomorphometric study of the epithelial papillae in patients with oral lichen planus (OLP). This study was based on 100 cheek mucosa biopsies from patients with OLP (66 white reticular and 34 atrophic-erosive) (13 males and 87 females, with a mean age of 54.95 +/- 13.64 years). A histological and morphometric evaluation was made, based on imaging analysis with MIP software 4.5 for studying the papillary structure in the patients with OLP. The mean epithelial thickness was 227.5 +/- 78.5 microm. The different papillary measures--BLS (distance from basal layer to epithelial surface), DPS (distance from dermal papilla top to epithelial surface), DPW (dermal papilla width), and DPD (interdermal papilla distance between two papillae)--yielded no statistically significant differences with respect to age, sex, smoking and clinical form. However, a significant correlation was observed in relation to papilla width and inflammatory infiltrate (P = 0.031). The application of this imaging system is useful for measuring variations in epithelial papillary architecture.

  10. Traumatic bilateral basal ganglia hematoma: A report of two cases

    OpenAIRE

    Bhargava, Pranshu; Grewal, Sarvpreet Singh; Gupta, Bharat; Jain, Vikas; Sobti, Harman

    2012-01-01

    Traumatic Basal ganglia hemorrhage is relatively uncommon. Bilateral basal ganglia hematoma after trauma is extremely rare and is limited to case reports. We report two cases of traumatic bilateral basal ganglia hemorrhage, and review the literature in brief. Both cases were managed conservatively.

  11. Basal Cell Ameloblastoma: A Rare Histological Variant of an ...

    African Journals Online (AJOL)

    Ameloblastomas are an inscrutable group of oral tumors. Basal cell ameloblastoma is a rare variant of ameloblastoma with very few cases reported until date. The tumor is composed of more primitive cells and has less conspicuous peripheral palisading. It shows remarkable similarity to basal cell carcinoma, basal cell ...

  12. Human amniotic epithelial cells combined with silk fibroin scaffold in the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Ting-gang Wang

    2016-01-01

    Full Text Available Treatment and functional reconstruction after central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artificial scaffold materials, such as fibroin, for nerve repair. However, such approaches are challenged by ethical and practical issues. Amniotic tissue, a clinical waste product, is abundant, and amniotic epithelial cells are pluripotent, have low immunogenicity, and are not the subject of ethical debate. We hypothesized that amniotic epithelial cells combined with silk fibroin scaffolds would be conducive to the repair of spinal cord injury. To test this, we isolated and cultured amniotic epithelial cells, and constructed complexes of these cells and silk fibroin scaffolds. Implantation of the cell-scaffold complex into a rat model of spinal cord injury resulted in a smaller glial scar in the damaged cord tissue than in model rats that received a blank scaffold, or amniotic epithelial cells alone. In addition to a milder local immunological reaction, the rats showed less inflammatory cell infiltration at the transplant site, milder host-versus-graft reaction, and a marked improvement in motor function. These findings confirm that the transplantation of amniotic epithelial cells combined with silk fibroin scaffold can promote the repair of spinal cord injury. Silk fibroin scaffold can provide a good nerve regeneration microenvironment for amniotic epithelial cells.

  13. Alterations in the regulatory volume decrease (RVD) and swelling-activated Cl- current associated with neuroendocrine differentiation of prostate cancer epithelial cells.

    NARCIS (Netherlands)

    Lemonnier, L.; Lazarenko, R.; Shuba, Y.; Thebault, S.C.; Roudbaraki, M.; Lepage, G.; Prevarskaya, N.; Skryma, R.

    2005-01-01

    Neuroendocrine (NE) differentiation of prostate epithelial/basal cells is a hallmark of advanced, androgen-independent prostate cancer, for which there is no successful therapy. Here we report for the first time on alterations in regulatory volume decrease (RVD) and its key determinant,

  14. Generation of Functional Thymic Epithelium from Human Embryonic Stem Cells that Supports Host T Cell Development

    OpenAIRE

    Parent, Audrey V.; Russ, Holger A.; Khan, Imran S.; LaFlam, Taylor N.; Metzger, Todd C.; Anderson, Mark S.; Hebrok, Matthias

    2013-01-01

    Inducing immune tolerance to prevent rejection is a key step toward successful engraftment of stem-cell-derived tissue in a clinical setting. Using human pluripotent stem cells to generate thymic epithelial cells (TECs) capable of supporting T cell development represents a promising approach to reach this goal; however, progress toward generating functional TECs has been limited. Here, we describe a robust in vitro method to direct differentiation of human embryonic stem cells (hESCs) into th...

  15. Tacrolimus Modulates TGF-β Signaling to Induce Epithelial-Mesenchymal Transition in Human Renal Proximal Tubule Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jason Bennett

    2016-04-01

    Full Text Available Epithelial-mesenchymal transition (EMT, a process which describes the trans-differentiation of epithelial cells into motile mesenchymal cells, is pivotal in stem cell behavior, development and wound healing, as well as contributing to disease processes including fibrosis and cancer progression. Maintenance immunosuppression with calcineurin inhibitors (CNIs has become routine management for renal transplant patient, but unfortunately the nephrotoxicity of these drugs has been well documented. HK-2 cells were exposed to Tacrolimus (FK506 and EMT markers were assessed by RT PCR and western blot. FK506 effects on TGF-β mRNA were assessed by RT PCR and TGF-β secretion was measured by ELISA. The impact of increased TGF-β secretion on Smad signaling pathways was investigated. The impact of inhibition of TGF-β signaling on EMT processes was assessed by scratch-wound assay. The results presented in this study suggest that FK506 initiates EMT processes in the HK-2 cell line, with altered expression of epithelial and myofibroblast markers evident. Additionally, the study demonstrates that FK506 activation of the TGF-β/ SMAD pathways is an essential step in the EMT process. Overall the results demonstrate that EMT is heavily involved in renal fibrosis associated with CNI nephrotoxicity.

  16. Apico-basal polarity complex and cancer

    Indian Academy of Sciences (India)

    2014-01-27

    Jan 27, 2014 ... tions (e.g. stem cell migration for renewal of skin and intes- tinal cell) .... past two decades of research on polarity complex has provided a wealth of ..... Strand D 2005 Reduced expression of Hugl-1 the human homo- logue of ...

  17. Evidence from a mouse model that epithelial cell migration and mesenchymal-epithelial transition contribute to rapid restoration of uterine tissue integrity during menstruation.

    Science.gov (United States)

    Cousins, Fiona L; Murray, Alison; Esnal, Arantza; Gibson, Douglas A; Critchley, Hilary O D; Saunders, Philippa T K

    2014-01-01

    In women dynamic changes in uterine tissue architecture occur during each menstrual cycle. Menses, characterised by the shedding of the upper functional layer of the endometrium, is the culmination of a cascade of irreversible changes in tissue function including stromal decidualisation, inflammation and production of degradative enzymes. The molecular mechanisms that contribute to the rapid restoration of tissue homeostasis at time of menses are poorly understood. A modified mouse model of menses was developed to focus on the events occurring within the uterine lining during endometrial shedding/repair. Decidualisation, vaginal bleeding, tissue architecture and cell proliferation were evaluated at 4, 8, 12, and 24 hours after progesterone (P4) withdrawal; mice received a single injection of bromodeoxyuridine (BrdU) 90 mins before culling. Expression of genes implicated in the regulation of mesenchymal to epithelial transition (MET) was determined using a RT2 PCR profiler array, qRTPCR and bioinformatic analysis. Mice exhibited vaginal bleeding between 4 and 12 hours after P4 withdrawal, concomitant with detachment of the decidualised cell mass from the basal portion of the endometrial lining. Immunostaining for BrdU and pan cytokeratin revealed evidence of epithelial cell proliferation and migration. Cells that appeared to be in transition from a mesenchymal to an epithelial cell identity were identified within the stromal compartment. Analysis of mRNAs encoding genes expressed exclusively in the epithelial or stromal compartments, or implicated in MET, revealed dynamic changes in expression, consistent with a role for reprogramming of mesenchymal cells so that they could contribute to re-epithelialisation. These studies have provided novel insights into the cellular processes that contribute to re-epithelialisation post-menses implicating both epithelial cell migration and mesenchymal cell differentiation in restoration of an intact epithelial cell layer. These

  18. Stem Cell Basics

    Science.gov (United States)

    ... Tips Info Center Research Topics Federal Policy Glossary Stem Cell Information General Information Clinical Trials Funding Information Current ... Basics » Stem Cell Basics I. Back to top Stem Cell Basics I. Introduction: What are stem cells, and ...

  19. Stem Cells

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2004-01-01

    In his influential essay on markets, An essay on framing and overflowing (1998), Michel Callon writes that `the growing complexity of industrialized societies [is] due in large part to the movements of the technosciences, which are causing connections and interdependencies to proliferate'. This p...... and tantalizing than stem cells, in research, in medicine, or as products.......'. This paper is about tech-noscience, and about the proliferation of connections and interdependencies created by it.More specifically, the paper is about stem cells. Biotechnology in general has the power to capture the imagination. Within the field of biotechnology nothing seems more provocative...

  20. An autocrine ATP release mechanism regulates basal ciliary activity in airway epithelium.

    Science.gov (United States)

    Droguett, Karla; Rios, Mariana; Carreño, Daniela V; Navarrete, Camilo; Fuentes, Christian; Villalón, Manuel; Barrera, Nelson P

    2017-07-15

    Extracellular ATP, in association with [Ca 2+ ] i regulation, is required to maintain basal ciliary beat frequency. Increasing extracellular ATP levels increases ciliary beating in airway epithelial cells, maintaining a sustained response by inducing the release of additional ATP. Extracellular ATP levels in the millimolar range, previously associated with pathophysiological conditions of the airway epithelium, produce a transient arrest of ciliary activity. The regulation of ciliary beat frequency is dependent on ATP release by hemichannels (connexin/pannexin) and P2X receptor activation, the blockage of which may even stop ciliary movement. The force exerted by cilia, measured by atomic force microscopy, is reduced following extracellular ATP hydrolysis. This result complements the current understanding of the ciliary beating regulatory mechanism, with special relevance to inflammatory diseases of the airway epithelium that affect mucociliary clearance. Extracellular nucleotides, including ATP, are locally released by the airway epithelium and stimulate ciliary activity in a [Ca 2+ ] i -dependent manner after mechanical stimulation of ciliated cells. However, it is unclear whether the ATP released is involved in regulating basal ciliary activity and mediating changes in ciliary activity in response to chemical stimulation. In the present study, we evaluated ciliary beat frequency (CBF) and ciliary beating forces in primary cultures from mouse tracheal epithelium, using videomicroscopy and atomic force microscopy (AFM), respectively. Extracellular ATP levels and [Ca 2+ ] i were measured by luminometric and fluorimetric assays, respectively. Uptake of ethidium bromide was measured to evaluate hemichannel functionality. We show that hydrolysis of constitutive extracellular ATP levels with apyrase (50 U ml -1 ) reduced basal CBF by 45% and ciliary force by 67%. The apyrase effect on CBF was potentiated by carbenoxolone, a hemichannel inhibitor, and oxidized ATP, an

  1. Expression of bcl-2 in the Epithelial Lining of Odontogenic Keratocysts

    Directory of Open Access Journals (Sweden)

    Gh. Jahanshahi

    2006-03-01

    Full Text Available Statement of Problem: The aggressive nature and high recurrence rate of Odontogenic Keratocysts (OKCs may be due to unknown factors inherent in the epithelium or because of enzymatic activity in the fibrous wall. Bcl-2 protein is characterized by its ability to inhibit apoptosis.Purpose: The aim of the present study was to analyze the expression of bcl-2 protein in OKCs and to compare it with the more common radicular and dentigerous cysts. The possible relationship between inflammation and bcl-2 expression was also investigated.Materials and Methods: Formalin fixed paraffin-embedded tissue sections of 20 OKCs, 20 radicular and 20 dentigerous cysts were immunohistochemically analyzed for immunoreactivity of the bcl-2 protein.Results: Bcl-2 expression was observed in 19 OKCs (95%, one radicular cyst (5%and one dentigerous cyst (5%. There was no statistically significant relationship between inflammation and the number of bcl-2 positive cells. Immunoreactivity was mainly noted in the basal or basal/supra basal layers.Conclusion: Considering the fact that bcl-2 over expression may lead to increased survival of epithelial cells, present study may demonstrate a possible relationship between the aggressive nature of OKC and the intrinsic growth potential of its lining epithelium. Furthermore a basal/supra basal distribution of bcl-2 positive cells was seen in some odontogenic keratocysts which may have a significant impact on the behavior of this cyst.

  2. Nonsurgical Treatment Options for Basal Cell Carcinoma

    International Nuclear Information System (INIS)

    Lien, M. H.; Sondak, V. K.; Sondak, V. K.

    2011-01-01

    Basal cell carcinoma (BCC) remains the most common form of non melanoma skin cancer (NMSC) in Caucasians, with perhaps as many as 2 million new cases expected to occur in the United States in 2010. Many treatment options, including surgical interventions and nonsurgical alternatives, have been utilized to treat BCC. In this paper, two non-surgical options, imiquimod therapy and photodynamic therapy (PDT), will be discussed. Both modalities have demonstrated acceptable disease control rates, cosmetically superior outcomes, and short-term cost-effectiveness. Further studies evaluating long-term cure rates and long-term cost effectiveness of imiquimod therapy and PDT are needed.

  3. The Basal Ganglia and Adaptive Motor Control

    Science.gov (United States)

    Graybiel, Ann M.; Aosaki, Toshihiko; Flaherty, Alice W.; Kimura, Minoru

    1994-09-01

    The basal ganglia are neural structures within the motor and cognitive control circuits in the mammalian forebrain and are interconnected with the neocortex by multiple loops. Dysfunction in these parallel loops caused by damage to the striatum results in major defects in voluntary movement, exemplified in Parkinson's disease and Huntington's disease. These parallel loops have a distributed modular architecture resembling local expert architectures of computational learning models. During sensorimotor learning, such distributed networks may be coordinated by widely spaced striatal interneurons that acquire response properties on the basis of experienced reward.

  4. Basal cell carcinoma after radiation therapy

    International Nuclear Information System (INIS)

    Shimbo, Keisuke; Terashi, Hiroto; Ishida, Yasuhisa; Tahara, Shinya; Osaki, Takeo; Nomura, Tadashi; Ejiri, Hirotaka

    2008-01-01

    We reported two cases of basal cell carcinoma (BCC) that developed after radiation therapy. A 50-year-old woman, who had received an unknown amount of radiation therapy for the treatment of intracranial germinoma at the age of 22, presented with several tumors around the radiation ulcer. All tumors showed BCC. A 33-year-old woman, who had received an unknown amount of radiation therapy on the head for the treatment of leukemia at the age of 2, presented with a black nodule within the area of irradiation. The tumor showed BCC. We discuss the occurrence of BCC after radiation therapy. (author)

  5. Mössbauer spectroscopy of Basal Ganglia

    International Nuclear Information System (INIS)

    Miglierini, Marcel; Lančok, Adriana; Kopáni, Martin; Boča, Roman

    2014-01-01

    Chemical states, structural arrangement, and magnetic features of iron deposits in biological tissue of Basal Ganglia are characterized. The methods of SQUID magnetometry and electron microscopy are employed. 57 Fe Mössbauer spectroscopy is used as a principal method of investigation. Though electron microscopy has unveiled robust crystals (1-3 μm in size) of iron oxides, they are not manifested in the corresponding 57 Fe Mössbauer spectra. The latter were acquired at 300 K and 4.2 K and resemble ferritin-like behavior

  6. Mössbauer spectroscopy of Basal Ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Miglierini, Marcel, E-mail: marcel.miglierini@stuba.sk [Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava, Slovakia and Regional Centre of Advanced Technologies and Materials (Czech Republic); Lančok, Adriana [Institute of Inorganic Chemistry AS CR, v. v. i., 250 68 Husinec-Řež 1001 (Czech Republic); Kopáni, Martin [Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Sasinkova 2, 811 08 Bratislava (Slovakia); Boča, Roman [Department of Chemistry, Faculty of Natural Sciences, University of SS. Cyril and Methodius, 917 01 Trnava (Slovakia)

    2014-10-27

    Chemical states, structural arrangement, and magnetic features of iron deposits in biological tissue of Basal Ganglia are characterized. The methods of SQUID magnetometry and electron microscopy are employed. {sup 57}Fe Mössbauer spectroscopy is used as a principal method of investigation. Though electron microscopy has unveiled robust crystals (1-3 μm in size) of iron oxides, they are not manifested in the corresponding {sup 57}Fe Mössbauer spectra. The latter were acquired at 300 K and 4.2 K and resemble ferritin-like behavior.

  7. ESC-Derived Basal Forebrain Cholinergic Neurons Ameliorate the Cognitive Symptoms Associated with Alzheimer’s Disease in Mouse Models

    Directory of Open Access Journals (Sweden)

    Wei Yue

    2015-11-01

    Full Text Available Degeneration of basal forebrain cholinergic neurons (BFCNs is associated with cognitive impairments of Alzheimer’s disease (AD, implying that BFCNs hold potentials in exploring stem cell-based replacement therapy for AD. However, studies on derivation of BFCNs from embryonic stem cells (ESCs are limited, and the application of ESC-derived BFCNs remains to be determined. Here, we report on differentiation approaches for directing both mouse and human ESCs into mature BFCNs. These ESC-derived BFCNs exhibit features similar to those of their in vivo counterparts and acquire appropriate functional properties. After transplantation into the basal forebrain of AD model mice, ESC-derived BFCN progenitors predominantly differentiate into mature cholinergic neurons that functionally integrate into the endogenous basal forebrain cholinergic projection system. The AD mice grafted with mouse or human BFCNs exhibit improvements in learning and memory performances. Our findings suggest a promising perspective of ESC-derived BFCNs in the development of stem cell-based therapies for treatment of AD.

  8. Why STEM?

    Science.gov (United States)

    Mitts, Charles R.

    2016-01-01

    The International Technology and Engineering Educators Association (ITEEA) defines STEM as a new transdisciplinary subject in schools that integrates the disciplines of science, technology, engineering, and mathematics into a single course of study. There are three major problems with this definition: There is no consensus in support of the ITEEA…

  9. Basal cell adenoma of the salivary gland: Cribriform type, a rare case with review of literature

    Directory of Open Access Journals (Sweden)

    Raghunath Prabhu

    2016-12-01

    Full Text Available Basal cell adenoma (BCA of the salivary glands is a rare benign tumor resembling pleomorphic adenoma, but with a prominent basaloid cell layer. The majority of these tumors arise in the parotid glands and account for only 1% of all salivary gland epithelial tumors. We report one such case of a swelling in the floor of the mouth in a 55-year-old female where BCA is the most likely diagnosis; however, histological variation does show a similarity to malignant adenoid cystic carcinoma, thereby making the diagnosis difficult. The incidence of malignancy is relatively higher in the submandibular, sublingual and minor salivary glands. Approximately, 85% of sublingual gland tumors are malignant. Thus, we should be more careful when making a diagnosis in minor salivary gland tumors. [Arch Clin Exp Surg 2016; 5(4.000: 246-249

  10. Phylogenetic differences of mammalian basal metabolic rate are not explained by mitochondrial basal proton leak.

    Science.gov (United States)

    Polymeropoulos, E T; Heldmaier, G; Frappell, P B; McAllan, B M; Withers, K W; Klingenspor, M; White, C R; Jastroch, M

    2012-01-07

    Metabolic rates of mammals presumably increased during the evolution of endothermy, but molecular and cellular mechanisms underlying basal metabolic rate (BMR) are still not understood. It has been established that mitochondrial basal proton leak contributes significantly to BMR. Comparative studies among a diversity of eutherian mammals showed that BMR correlates with body mass and proton leak. Here, we studied BMR and mitochondrial basal proton leak in liver of various marsupial species. Surprisingly, we found that the mitochondrial proton leak was greater in marsupials than in eutherians, although marsupials have lower BMRs. To verify our finding, we kept similar-sized individuals of a marsupial opossum (Monodelphis domestica) and a eutherian rodent (Mesocricetus auratus) species under identical conditions, and directly compared BMR and basal proton leak. We confirmed an approximately 40 per cent lower mass specific BMR in the opossum although its proton leak was significantly higher (approx. 60%). We demonstrate that the increase in BMR during eutherian evolution is not based on a general increase in the mitochondrial proton leak, although there is a similar allometric relationship of proton leak and BMR within mammalian groups. The difference in proton leak between endothermic groups may assist in elucidating distinct metabolic and habitat requirements that have evolved during mammalian divergence.

  11. Prolactin Alters the Mammary Epithelial Hierarchy, Increasing Progenitors and Facilitating Ovarian Steroid Action

    Directory of Open Access Journals (Sweden)

    Kathleen A. O'Leary

    2017-10-01

    Full Text Available Hormones drive mammary development and function and play critical roles in breast cancer. Epidemiologic studies link prolactin (PRL to increased risk for aggressive cancers that express estrogen receptor α (ERα. However, in contrast to ovarian steroids, PRL actions on the mammary gland outside of pregnancy are poorly understood. We employed the transgenic NRL-PRL model to examine the effects of PRL alone and with defined estrogen/progesterone exposure on stem/progenitor activity and regulatory networks that drive epithelial differentiation. PRL increased progenitors and modulated transcriptional programs, even without ovarian steroids, and with steroids further raised stem cell activity associated with elevated canonical Wnt signaling. However, despite facilitating some steroid actions, PRL opposed steroid-driven luminal maturation and increased CD61+ luminal cells. Our findings demonstrate that PRL can powerfully influence the epithelial hierarchy alone and temper the actions of ovarian steroids, which may underlie its role in the development of breast cancer.

  12. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells During Prostate Cancer Metastasis

    Science.gov (United States)

    Ruscetti, Marcus; Quach, Bill; Dadashian, Eman L.; Mulholland, David J.; Wu, Hong

    2015-01-01

    The epithelial-mesenchymal transition (EMT) has been postulated as a mechanism by which cancer cells acquire the invasive and stem-like traits necessary for distant metastasis. However, direct in vivo evidence for the role of EMT in the formation of cancer stem-like cells (CSC) and the metastatic cascade remains lacking. Here we report the first isolation and characterization of mesenchymal and EMT tumor cells, which harbor both epithelial and mesenchymal characteristics, in an autochthonous murine model of prostate cancer. By crossing the established Pb-Cre+/−;PtenL/L;KrasG12D/+ prostate cancer model with a vimentin-GFP reporter strain, generating CPKV mice, we were able to isolate epithelial, EMT and mesenchymal cancer cells based on expression of vimentin and EpCAM. CPKV mice (but not mice with Pten deletion alone) exhibited expansion of cells with EMT (EpCAM+/Vim-GFP+) and mesenchymal (EpCAM−/Vim-GFP+) characteristics at the primary tumor site and in circulation. These EMT and mesenchymal tumor cells displayed enhanced stemness and invasive character compared to epithelial tumor cells. Moreover, they displayed an enriched tumor-initiating capacity and could regenerate epithelial glandular structures in vivo, indicative of epithelia-mesenchyme plasticity. Interestingly, while mesenchymal tumor cells could persist in circulation and survive in the lung following intravenous injection, only epithelial and EMT tumor cells could form macrometastases. Our work extends the evidence that mesenchymal and epithelial states in cancer cells contribute differentially to their capacities for tumor initiation and metastatic seeding, respectively, and that EMT tumor cells exist with plasticity that can contribute to multiple stages of the metastatic cascade. PMID:25948589

  13. Gene transfer to primary corneal epithelial cells with an integrating lentiviral vector

    Directory of Open Access Journals (Sweden)

    Lauro Augusto de Oliveira

    2010-10-01

    Full Text Available PURPOSE: To evaluate the transfer of heterologous genes carrying a Green Fluorescent Protein (GFP reporter cassette to primary corneal epithelial cells ex vivo. METHODS: Freshly enucleated rabbit corneoscleral tissue was used to obtain corneal epithelial cell suspension via enzymatic digestion. Cells were plated at a density of 5×10³ cells/cm² and allowed to grow for 5 days (to 70-80% confluency prior to transduction. Gene transfer was monitored using fluorescence microscopy and fluorescence activated cell sorter (FACS. We evaluated the transduction efficiency (TE over time and the dose-response effect of different lentiviral particles. One set of cells were dual sorted by fluorescence activated cell sorter for green fluorescent protein expression as well as Hoechst dye exclusion to evaluate the transduction of potentially corneal epithelial stem cells (side-population phenotypic cells. RESULTS: Green fluorescent protein expressing lentiviral vectors were able to effectively transduce rabbit primary epithelial cells cultured ex vivo. Live cell imaging post-transduction demonstrated GFP-positive cells with normal epithelial cell morphology and growth. The transduction efficiency over time was higher at the 5th post-transduction day (14.1% and tended to stabilize after the 8th day. The number of transduced cells was dose-dependent, and at the highest lentivirus concentrations approached 7%. When double sorted by fluorescence activated cell sorter to isolate both green fluorescent protein positive and side population cells, transduced side population cells were identified. CONCLUSIONS: Lentiviral vectors can effectively transfer heterologous genes to primary corneal epithelial cells expanded ex vivo. Genes were stably expressed over time, transferred in a dose-dependence fashion, and could be transferred to mature corneal cells as well as presumable putative stem cells.

  14. Neural differentiation of choroid plexus epithelial cells: role of human traumatic cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Elham Hashemi

    2017-01-01

    Full Text Available As the key producer of cerebrospinal fluid (CSF, the choroid plexus (CP provides a unique protective system in the central nervous system. CSF components are not invariable and they can change based on the pathological conditions of the central nervous system. The purpose of the present study was to assess the effects of non-traumatic and traumatic CSF on the differentiation of multipotent stem-like cells of CP into the neural and/or glial cells. CP epithelial cells were isolated from adult male rats and treated with human non-traumatic and traumatic CSF. Alterations in mRNA expression of Nestin and microtubule-associated protein (MAP2, as the specific markers of neurogenesis, and astrocyte marker glial fibrillary acidic protein (GFAP in cultured CP epithelial cells were evaluated using quantitative real-time PCR. The data revealed that treatment with CSF (non-traumatic and traumatic led to increase in mRNA expression levels of MAP2 and GFAP. Moreover, the expression of Nestin decreased in CP epithelial cells treated with non-traumatic CSF, while treatment with traumatic CSF significantly increased its mRNA level compared to the cells cultured only in DMEM/F12 as control. It seems that CP epithelial cells contain multipotent stem-like cells which are inducible under pathological conditions including exposure to traumatic CSF because of its compositions.

  15. Epithelial Label-Retaining Cells Are Absent during Tooth Cycling in Salmo salar and Polypterus senegalus.

    Directory of Open Access Journals (Sweden)

    Sam Vandenplas

    Full Text Available The Atlantic salmon (Salmo salar and African bichir (Polypterus senegalus are both actinopterygian fish species that continuously replace their teeth without the involvement of a successional dental lamina. Instead, they share the presence of a middle dental epithelium: an epithelial tier enclosed by inner and outer dental epithelium. It has been hypothesized that this tier could functionally substitute for a successional dental lamina and might be a potential niche to house epithelial stem cells involved in tooth cycling. Therefore, in this study we performed a BrdU pulse chase experiment on both species to (1 determine the localization and extent of proliferating cells in the dental epithelial layers, (2 describe cell dynamics and (3 investigate if label-retaining cells are present, suggestive for the putative presence of stem cells. Cells proliferate in the middle dental epithelium, outer dental epithelium and cervical loop at the lingual side of the dental organ to form a new tooth germ. Using long chase times, both in S. salar (eight weeks and P. senegalus (eight weeks and twelve weeks, we could not reveal the presence of label-retaining cells in the dental organ. Immunostaining of P. senegalus dental organs for the transcription factor Sox2, often used as a stem cell marker, labelled cells in the zone of outer dental epithelium which grades into the oral epithelium (ODE transition zone and the inner dental epithelium of a successor only. The location of Sox2 distribution does not provide evidence for epithelial stem cells in the dental organ and, more specifically, in the middle dental epithelium. Comparison of S. salar and P. senegalus reveals shared traits in tooth cycling and thus advances our understanding of the developmental mechanism that ensures lifelong replacement.

  16. Evaluation of diagnostic and operative problems in basal meningioma by two-plane CT and angiography

    International Nuclear Information System (INIS)

    Inoue, Hiroshi; Tamura, Masaru; Kawafuchi, Jun-ichi

    1982-01-01

    Basal meningiomas were investigated using two-plane computed tomography (CT) with an ordinary section combined with a reverse section to ascertain the precise site of the origin, size, extension, properties and relation to adjacent tissue. Furthermore, with information obtained from angiography, operative difficulty and operative indications were investigated, to determine a therapeutic policy taking neurofunctional prognosis into consideration. The factors directly affecting the operative difficulty were the large size of the tumor, deformity of the hypothamus and brain stem, supratentorial or infratentorial extension, bone erosion, calcification of the tumor, direct effect on the major vessels and high vascularity. It is considered to be difficult or impossible to perform operations in cases accompanied by more than three of these factors and, in the case of posterior fossa tumors, more than two. Tumor density, extent of enhancement, perifocal low-density, ventricular dilatation, transtentorial herniation, brain or brain stem displacement, bone erosion on CT scans as well as tumor vascularity, feeding arteries, and c