Kazin, Eyal A; Blake, Chris; Padmanabhan, Nikhil
2014-01-01
We present significant improvements in cosmic distance measurements from the WiggleZ Dark Energy Survey, achieved by applying the reconstruction of the baryonic acoustic feature technique. We show using both data and simulations that the reconstruction technique can often be effective despite patchiness of the survey, significant edge effects and shot-noise. We investigate three redshift bins in the redshift range 0.2<$z$<1, and in all three find improvement after reconstruction in the detection of the baryonic acoustic feature and its usage as a standard ruler. We measure model independent distance measures $D_{\\mathrm V}(r_{\\mathrm s}^\\mathrm{fid}/r_{\\mathrm s})$ of 1716 $\\pm$ 83 Mpc, 2221 $\\pm$ 101 Mpc, 2516 $\\pm$ 86 Mpc (68% CL) at effective redshifts z = 0.44, 0.6, 0.73, respectively, where $D_{\\mathrm V}$ is the volume-average-distance, and $r_{\\mathrm s}$ is the sound horizon at the end of the baryon drag epoch. These significantly improved 4.8, 4.5 and 3.4 percent accuracy measurements are equiv...
Slepian, Zachary; Brownstein, Joel R; Chuang, Chia-Hsun; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; Percival, Will J; Ross, Ashley J; Rossi, Graziano; Seo, Hee-Jong; Slosar, Anže; Vargas-Magaña, Mariana
2016-01-01
We present the large-scale 3-point correlation function (3PCF) of the SDSS DR12 CMASS sample of $777,202$ Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance ($4.5\\sigma$) detection of Baryon Acoustic Oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to $z=0.57$ to $1.7\\%$ precision (statistical plus systematic). We find $D_{\\rm V}= 2024\\pm29\\;{\\rm Mpc\\;(stat)}\\pm20\\;{\\rm Mpc\\;(sys)}$ for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from the 2-point correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing ...
Baryon Acoustic Peak and the Squeezed Limit Bispectrum
Mirbabayi, Mehrdad; Zaldarriaga, Matias
2014-01-01
In the non-relativistic regime, pertinent to the large scale structure of the Universe, the leading effect of a long-wavelength perturbation $\\delta(\\lambda_L)$ on short distance physics is a uniform acceleration $\\propto \\lambda_L \\delta(\\lambda_L)$. Typically, this has no effect on statistical averages at equal time since a uniform acceleration results in a uniform translation -- a reasoning that has been formalized as a "consistency condition" on the cosmological correlation functions. This naive expectation fails in the presence of the baryon acoustic feature provided $\\lambda_L < \\ell_{\\rm BAO}$. We derive the squeezed limit of correlation functions in this regime.
Redshift uncertainties and baryonic acoustic oscillations
Chaves-Montero, Jonás; Hernández-Monteagudo, Carlos
2016-01-01
In the upcoming era of high-precision galaxy surveys, it becomes necessary to understand the impact of uncertain redshift estimators on cosmological observables. In this paper we present a detailed exploration of the galaxy clustering and baryonic acoustic oscillation (BAO) signal under the presence of redshift errors. We provide analytic expressions for how the monopole and the quadrupole of the redshift-space power spectrum (together with their covariances) are affected. Additionally, we discuss the modifications in the shape, signal to noise, and cosmological constraining power of the BAO signature. We show how and why the BAO contrast is $\\mathit{enhanced}$ with small redshift uncertainties, and explore in detail how the cosmological information is modulated by the interplay of redshift-space distortions, redshift errors, and the number density of the sample. We validate our results by comparing them with measurements from a ensemble of $N$-body simulations with $8100h^{-3}\\text{Gpc}^3$ aggregated volume....
Baryon Acoustic Oscillations reconstruction with pixels
Obuljen, Andrej; Castorina, Emanuele; Viel, Matteo
2016-01-01
Gravitational non-linear evolution induces a shift in the position of the baryon acoustic oscillations (BAO) peak together with a damping and broadening of its shape that bias and degrades the accuracy with which the position of the peak can be determined. BAO reconstruction is a technique developed to undo part of the effect of non-linearities. We present a new reconstruction method that consists in displacing pixels instead of galaxies and whose implementation is easier than the standard reconstruction method. We show that our method is equivalent to the standard reconstruction technique in the limit where the number of pixels becomes very large. This method is particularly useful in surveys where individual galaxies are not resolved, as in 21cm intensity mapping observations. We validate our method by reconstructing mock pixelated maps, that we build from the distribution of matter and halos in real- and redshift-space, from a large set of numerical simulations. We find that our method is able to decrease ...
Equivalence Principle and the Baryon Acoustic Peak
Baldauf, Tobias; Simonović, Marko; Zaldarriaga, Matias
2015-01-01
We study the dominant effect of a long wavelength density perturbation $\\delta(\\lambda_L)$ on short distance physics. In the non-relativistic limit, the result is a uniform acceleration, fixed by the equivalence principle, and typically has no effect on statistical averages due to translational invariance. This same reasoning has been formalized to obtain a "consistency condition" on the cosmological correlation functions. In the presence of a feature, such as the acoustic peak at $l_{\\rm BAO}$, this naive expectation breaks down for $\\lambda_L
Measuring Baryon Acoustic Oscillations from the clustering of voids
Liang, Yu; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Tao, Charling
2015-01-01
We investigate the necessary methodology to optimally measure the baryon acoustic oscillation (BAO) signal, from voids based on galaxy redshift catalogues. To this end, we study the dependency of the BAO signal on the population of voids classified by their sizes. We find for the first time the characteristic features of the correlation function of voids including the first robust detection of BAOs in mock galaxy catalogues. These show an anti-correlation around the scale corresponding to the smallest size of voids in the sample (the void exclusion effect), and dips at both sides of the BAO peak, which can be used to determine the significance of the BAO signal without any priori model. Furthermore, our analysis demonstrates that there is a scale dependent bias for different populations of voids depending on the radius, with the peculiar property that the void population with the largest BAO significance corresponds to tracers with approximately zero bias on the largest scales. We further investigate the meth...
Supersonic Relative Velocity Effect on the Baryonic Acoustic Oscillation Measurements
Yoo, Jaiyul; Seljak, Uros
2011-01-01
We investigate the effect of supersonic relative velocities between baryons and dark matter, recently shown to arise generically at high redshift, on baryonic acoustic oscillation (BAO) measurements at low redshift. The amplitude of the relative velocity effect at low redshift is model-dependent, but can be parameterized by using an unknown bias. We find that if unaccounted, the relative velocity effect can shift the BAO peak position and bias estimates of the dark energy equation-of-state due to its non-smooth, out-of-phase oscillation structure around the BAO scale. Fortunately, the relative velocity effect can be easily modeled in constraining cosmological parameters without substantially inflating the error budget. We also demonstrate that the presence of the relative velocity effect gives rise to a unique signature in the galaxy bispectrum, which can be utilized to isolate this effect. Future dark energy surveys can accurately measure the relative velocity effect and subtract it from the power spectrum a...
Baryon Acoustic Oscillation Intensity Mapping of Dark Energy
Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B.; McDonald, Patrick
2008-03-01
The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called “dark energy.” To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 109 individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.
A New Statistic for Analyzing Baryon Acoustic Oscillations
Xu, X; Padmanabhan, N; Eisenstein, D; Eckel, J; Mehta, K; Metchnik, M; Pinto, P; Seo, H -J
2010-01-01
We introduce a new statistic omega_l for measuring and analyzing large-scale structure and particularly the baryon acoustic oscillations. omega_l is a band-filtered, configuration space statistic that is easily implemented and has advantages over the traditional power spectrum and correlation function estimators. Unlike these estimators, omega_l can localize most of the acoustic information into a single dip at the acoustic scale while also avoiding sensitivity to the poorly constrained large scale power (i.e., the integral constraint) through the use of a localized and compensated filter. It is also sensitive to anisotropic clustering through pair counting and does not require any binning. We measure the shift in the acoustic peak due to nonlinear effects using the monopole omega_0 derived from subsampled dark matter catalogues as well as from mock galaxy catalogues created via halo occupation distribution (HOD) modeling. All of these are drawn from 44 realizations of 1024^3 particle dark matter simulations ...
Anderson, Lauren; Bailey, Stephen; Beutler, Florian; Bhardwaj, Vaishali; Blanton, Michael; Bolton, Adam S; Brinkmann, J; Brownstein, Joel R; Burden, Angela; Chuang, Chia-Hsun; Cuesta, Antonio J; Dawson, Kyle S; Eisenstein, Daniel J; Escoffier, Stephanie; Gunn, James E; Guo, Hong; Ho, Shirley; Honscheid, Klaus; Howlett, Cullan; Kirkby, David; Lupton, Robert H; Manera, Marc; Maraston, Claudia; McBride, Cameron K; Mena, Olga; Montesano, Francesco; Nichol, Robert C; Nuza, Sebastian E; Olmstead, Matthew D; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Parejko, John; Percival, Will J; Petitjean, Patrick; Prada, Francisco; Price-Whelan, Adrian M; Reid, Beth; Roe, Natalie A; Ross, Ashley J; Ross, Nicholas P; Sabiu, Cristiano G; Saito, Shun; Samushia, Lado; Sanchez, Ariel G; Schlegel, David J; Schneider, Donald P; Scoccola, Claudia G; Seo, Hee-Jong; Skibba, Ramin A; Strauss, Michael A; Swanson, Molly E C; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Magana, Mariana Vargas; Verde, Licia; Wake, David A; Weaver, Benjamin A; Weinberg, David H; White, Martin; Xu, Xiaoying; Yeche, Christophe; Zehavi, Idit; Zhao, Gong-Bo
2013-01-01
We present a one per cent measurement of the cosmic distance scale from the detections of the baryon acoustic oscillations in the clustering of galaxies from the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey III (SDSS-III). Our results come from the Data Release 11 (DR11) sample, containing nearly one million galaxies and covering approximately 8500 square degrees and the redshift range $0.2
Streaming Velocities and the Baryon Acoustic Oscillation Scale.
Blazek, Jonathan A; McEwen, Joseph E; Hirata, Christopher M
2016-03-25
At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the baryon acoustic oscillation (BAO) peak is dramatically enhanced (by a factor of ∼5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect, which is required to preserve Galilean invariance, greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation.
The baryon acoustic oscillation peak: a flexible standard ruler
Roukema, Boudewijn F
2016-01-01
For about a decade, the baryon acoustic oscillation (BAO) peak at about 105 Mpc/h has provided a standard ruler test of the LCDM cosmological model, a member of the Friedmann--Lemaitre--Robertson--Walker (FLRW) family of cosmological models---according to which comoving space is rigid. However, general relativity does not require comoving space to be rigid. During the virialisation epoch, when the most massive structures form by gravitational collapse, it should be expected that comoving space evolves inhomogeneous curvature as structure grows. The BAO peak standard ruler should also follow this inhomogeneous evolution if the comoving rigidity assumption is false. This "standard" ruler has now been detected to be flexible, as expected under general relativity.
Baryon Acoustic Oscillations in the Lyman Alpha Forest
Norman, Michael L; Harkness, Robert
2009-01-01
We use hydrodynamic cosmological simulations in a (600 Mpc)^3 volume to study the observability of baryon acoustic oscillations (BAO) in the intergalactic medium as probed by Lyman alpha forest (LAF) absorption. The large scale separation between the wavelength of the BAO mode (~150 Mpc) and the size of LAF absorbers (~100 kpc) makes this a numerically challenging problem. We report on several 2048^3 simulations of the LAF using the ENZO code. We adopt WMAP5 concordance cosmological parameters and power spectrum including BAO perturbations. 5000 synthetic HI absorption line spectra are generated randomly piercing the box face. We calculate the cross-correlation function between widely separated pairs. We detect the BAO signal at z=3 where theory predicts to moderate statistical significance.
Measuring baryon acoustic oscillations with future SKA surveys
Bull, Philip; Raccanelli, Alvise; Blake, Chris; Ferreira, Pedro G; Santos, Mario G; Schwarz, Dominik J
2015-01-01
The imprint of baryon acoustic oscillations (BAO) in large-scale structure can be used as a standard ruler for mapping out the cosmic expansion history, and hence for testing cosmological models. In this article we briefly describe the scientific background to the BAO technique, and forecast the potential of the Phase 1 and 2 SKA telescopes to perform BAO surveys using both galaxy catalogues and intensity mapping, assessing their competitiveness with current and future optical galaxy surveys. We find that a 25,000 sq. deg. intensity mapping survey on a Phase 1 array will preferentially constrain the radial BAO, providing a highly competitive 2% constraint on the expansion rate at z ~ 2. A 30,000 sq. deg. galaxy redshift survey on SKA2 will outperform all other planned experiments for z < 1.4.
Efficient Reconstruction of Linear Baryon Acoustic Oscillations in Galaxy Surveys
Burden, Angela; Manera, Marc; Cuesta, Antonio J; Magana, Mariana Vargas; Ho, Shirley
2014-01-01
Reconstructing an estimate of linear Baryon Acoustic Oscillations (BAO) from an evolved galaxy field has become a standard technique in recent analyses. By partially removing non-linear damping caused by bulk motions, the real-space BAO peak in the correlation function is sharpened, and oscillations in the power spectrum are visible to smaller scales. In turn these lead to stronger measurements of the BAO scale. Future surveys are being designed assuming that this improvement has been applied, and this technique is therefore of critical importance for future BAO measurements. A number of reconstruction techniques are available, but the most widely used is a simple algorithm that decorrelates large-scale and small-scale modes approximately removing the bulk-flow displacements by moving the overdensity field (Eisenstein et al. 2007; Padmanabhan, White & Cohn 2009). We consider the practical implementation of this algorithm, looking at the efficiency of reconstruction as a function of the assumptions made fo...
Is the baryon acoustic oscillation peak a cosmological standard ruler?
Roukema, Boudewijn F; Fujii, Hirokazu; Ostrowski, Jan J
2016-01-01
In the standard model of cosmology, the Universe is static in comoving coordinates; expansion occurs homogeneously and is represented by a global scale factor. The baryon acoustic oscillation (BAO) peak location is a statistical tracer that represents, in the standard model, a fixed comoving-length standard ruler. Recent gravitational collapse should modify the metric, rendering the effective scale factor, and thus the BAO standard ruler, spatially inhomogeneous. Using the Sloan Digital Sky Survey, we show to high significance (P < 0.001) that the spatial compression of the BAO peak location increases as the spatial paths' overlap with superclusters increases. Detailed observational and theoretical calibration of this BAO peak location environment dependence will be needed when interpreting the next decade's cosmological surveys.
Cosmological implications of baryon acoustic oscillation (BAO) measurements
Aubourg, Éric; Bautista, Julian E; Beutler, Florian; Bhardwaj, Vaishali; Bizyaev, Dmitry; Blanton, Michael; Blomqvist, Michael; Bolton, Adam S; Bovy, Jo; Brewington, Howard; Brinkmann, J; Brownstein, Joel R; Burden, Angela; Busca, Nicolás G; Carithers, William; Chuang, Chia-Hsun; Comparat, Johan; Cuesta, Antonio J; Dawson, Kyle S; Delubac, Timothée; Eisenstein, Daniel J; Font-Ribera, Andreu; Ge, Jian; Goff, J -M Le; Gontcho, Satya Gontcho A; Gott, J Richard; Gunn, James E; Guo, Hong; Guy, Julien; Hamilton, Jean-Christophe; Ho, Shirley; Honscheid, Klaus; Howlett, Cullan; Kirkby, David; Kitaura, Francisco S; Kneib, Jean-Paul; Lee, Khee-Gan; Long, Dan; Lupton, Robert H; Magaña, Mariana Vargas; Malanushenko, Viktor; Malanushenko, Elena; Manera, Marc; Maraston, Claudia; Margala, Daniel; McBride, Cameron K; Miralda-Escudé, Jordi; Myers, Adam D; Nichol, Robert C; Noterdaeme, Pasquier; Nuza, Sebastián E; Olmstead, Matthew D; Oravetz, Daniel; Pâris, Isabelle; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pellejero-Ibanez, Marcos; Percival, Will J; Petitjean, Patrick; Pieri, Matthew M; Prada, Francisco; Reid, Beth; Roe, Natalie A; Ross, Ashley J; Ross, Nicholas P; Rossi, Graziano; Rubiño-Martín, Jose Alberto; Sánchez, Ariel G; Samushia, Lado; Santos, Ricardo Tanausú Génova; Scóccola, Claudia G; Schlegel, David J; Schneider, Donald P; Seo, Hee-Jong; Sheldon, Erin; Simmons, Audrey; Skibba, Ramin A; Slosar, Anže; Strauss, Michael A; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Vazquez, Jose Alberto; Viel, Matteo; Wake, David A; Weaver, Benjamin A; Weinberg, David H; Wood-Vasey, W M; Yèche, Christophe; Zehavi, Idit; Zhao, Gong-Bo
2014-01-01
We derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) and Type Ia supernova (SN) data. We take advantage of high-precision BAO measurements from galaxy clustering and the Ly-alpha forest (LyaF) in the BOSS survey of SDSS-III. BAO data alone yield a high confidence detection of dark energy, and in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Combining BAO and SN data into an "inverse distance ladder" yields a 1.7% measurement of $H_0=67.3 \\pm1.1$ km/s/Mpc. This measurement assumes standard pre-recombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat LCDM cosmology is an important corroboration of this minimal cosmological model. For open LCDM, our BAO+SN+CMB combination yields $\\Omega_m=0.301 \\pm 0.008$ and curvature $\\Omega_k=-0.003 \\pm ...
Systematic treatment of non-linear effects in Baryon Acoustic Oscillations
Ivanov, Mikhail M
2016-01-01
In this contribution we will discuss the non-linear effects in the baryon acoustic oscillations and present a systematic and controllable way to account for them within time-sliced perturbation theory.
Anderson, Lauren; Bailey, Stephen; Bizyaev, Dmitry; Blanton, Michael; Bolton, Adam S; Brinkmann, J; Brownstein, Joel R; Burden, Angela; Cuesta, Antonio J; da Costa, Luiz N A; Dawson, Kyle S; de Putter, Roland; Eisenstein, Daniel J; Gunn, James E; Guo, Hong; Hamilton, Jean-Christophe; Harding, Paul; Ho, Shirley; Honscheid, Klaus; Kazin, Eyal; Kirkby, D; Kneib, Jean-Paul; Labatie, Antione; Loomis, Craig; Lupton, Robert H; Malanushenko, Elena; Malanushenko, Viktor; Mandelbaum, Rachel; Manera, Marc; Maraston, Claudia; McBride, Cameron K; Mehta, Kushal T; Mena, Olga; Montesano, Francesco; Muna, Demetri; Nichol, Robert C; Nuza, Sebastian E; Olmstead, Matthew D; Oravetz, Daniel; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John; Paris, Isabelle; Percival, Will J; Petitjean, Patrick; Prada, Francisco; Reid, Beth; Roe, Natalie A; Ross, Ashley J; Ross, Nicholas P; Samushia, Lado; Sanchez, Ariel G; Schneider, David J Schlegel Donald P; Scoccola, Claudia G; Seo, Hee-Jong; Sheldon, Erin S; Simmons, Audrey; Skibba, Ramin A; Strauss, Michael A; Swanson, Molly E C; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Magana, Mariana Vargas; Verde, Licia; Wagner, Christian; Wake, David A; Weaver, Benjamin A; Weinberg, David H; White, Martin; Xu, Xiaoying; Yeche, Christophe; Zehavi, Idit; Zhao, Gong-Bo
2012-01-01
We present measurements of galaxy clustering from the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey III (SDSS-III). These use the Data Release 9 (DR9) CMASS sample, which contains 264,283 massive galaxies covering 3275 square degrees with an effective redshift z=0.57 and redshift range 0.43 < z < 0.7. Assuming a concordance Lambda-CDM cosmological model, this sample covers an effective volume of 2.2 Gpc^3, and represents the largest sample of the Universe ever surveyed at this density, n = 3 x 10^-4 h^-3 Mpc^3. We measure the angle-averaged galaxy correlation function and power spectrum, including density-field reconstruction of the baryon acoustic oscillation (BAO) feature. The acoustic features are detected at a significance of 5\\sigma in both the correlation function and power spectrum. Combining with the SDSS-II Luminous Red Galaxy Sample, the detection significance increases to 6.7\\sigma. Fitting for the position of the acoustic features measures the ...
Non-Gaussian errors of baryonic acoustic oscillations
Ngan, Wai-Hin Wayne; Pen, Ue-Li; McDonald, Patrick; MacDonald, Ilana
2011-01-01
We revisit the uncertainty in baryon acoustic oscillation (BAO) forecasts and data analyses. In particular, we study how much the error on the measured mean and uncertainty on the dilation scale are affected by the non-Gaussianity of the non-linear density field. We examine two possible impacts of non-Gaussian analysis: 1. we derive the distance estimators from Gaussian theory, but use 1000 N-Body simulations to measure the actual errors, and compare this to the Gaussian prediction, and 2. we compute new optimal estimators, which requires the inverse of the non-Gaussian covariance matrix of the matter power spectrum. Obtaining an accurate and precise inversion is challenging, and we opted for a noise reduction technique applied on the covariance matrices. By measuring the bootstrap error on the inverted matrix, this work quantifies for the first time the significance of the non-Gaussian error corrections on the BAO dilation scale. We find that the variance (error squared) on distance measurements can deviate ...
Cosmological implications of two types of baryon acoustic oscillation data
Hu, Yazhou; Li, Nan; Wang, Shuang
2015-01-01
Aims: We explore the cosmological implications of two types of baryon acoustic oscillation (BAO) data that are extracted by using the spherically averaged one-dimensional galaxy clustering (GC) statistics (hereafter BAO1) and the anisotropic two-dimensional GC statistics (hereafter BAO2), respectively. Methods: Firstly, making use of the BAO1 and the BAO2 data, as well as the SNLS3 type Ia supernovae sample and the Planck distance priors data, we constrain the parameter spaces of the $\\Lambda$CDM, the $w$CDM, and the Chevallier-Polarski-Linder (CPL) model. Then, we discuss the impacts of different BAO data on parameter estimation, equation of state $w$, figure of merit and deceleration-acceleration transition redshift. At last, we use various dark energy diagnosis, including Hubble diagram $H(z)$, deceleration diagram $q(z)$, statefinder hierarchy $\\{S^{(1)}_3, S^{(1)}_4\\}$, composite null diagnosic (CND) $\\{S^{(1)}_3, \\epsilon(z)\\}$ and $\\{S^{(1)}_4, \\epsilon(z)\\}$, to distinguish the differences between the...
Acoustic Signal Feature Extraction of Vehicle Targets
Institute of Scientific and Technical Information of China (English)
蓝金辉; 马宝华; 李科杰
2002-01-01
Acoustic signal feature extraction is an important part of target recognition. The mechanisms for producing acoustic signals and their propagation are analyzed to extract the features of the radiated noise from different targets. Analysis of the acoustic spectra of typical vehicle targets acquired outdoors shows that the vehicles can be classified based on the acoustic spectra and amplitudes.
Baryon Acoustic Oscillations in the Ly{\\alpha} forest of BOSS DR11 quasars
Delubac, Timothée; Busca, Nicolás G; Rich, James; Kirkby, David; Bailey, Stephen; Font-Ribera, Andreu; Slosar, Anže; Lee, Khee-Gan; Pieri, Matthew M; Hamilton, Jean-Christophe; Aubourg, Éric; Blomqvist, Michael; Bovy, Jo; Brinkmann, J; Carithers, William; Dawson, Kyle S; Eisenstein, Daniel J; Kneib, Jean-Paul; Goff, J -M Le; Margala, Daniel; Miralda-Escudé, Jordi; Myers, Adam D; Nichol, Robert C; Noterdaeme, Pasquier; O'Connell, Ross; Olmstead, Matthew D; Palanque-Delabrouille, Nathalie; Pâris, Isabelle; Petitjean, Patrick; Ross, Nicholas P; Rossi, Graziano; Schlegel, David J; Schneider, Donald P; Weinberg, David H; Yèche, Christophe; York, Donald G
2014-01-01
We report a detection of the baryon acoustic oscillation (BAO) feature in the flux-correlation function of the Ly{\\alpha} forest of high-redshift quasars with a statistical significance of five standard deviations. The study uses 137,562 quasars in the redshift range $2.1\\le z \\le 3.5$ from the Data Release 11 (DR11) of the Baryon Oscillation Spectroscopic Survey (BOSS) of SDSS-III. This sample contains three times the number of quasars used in previous studies. The measured position of the BAO peak determines the angular distance, $D_A(z=2.34)$ and expansion rate, $H(z=2.34)$, both on a scale set by the sound horizon at the drag epoch, $r_d$. We find $D_A/r_d=11.28\\pm0.65(1\\sigma)^{+2.8}_{-1.2}(2\\sigma)$ and $D_H/r_d=9.18\\pm0.28(1\\sigma)\\pm0.6(2\\sigma)$ where $D_H=c/H$. The optimal combination, $\\sim D_H^{0.7}D_A^{0.3}/r_d$ is determined with a precision of $\\sim2\\%$. For the value $r_d=147.4~{\\rm Mpc}$, consistent with the CMB power spectrum measured by Planck, we find $D_A(z=2.34)=1662\\pm96(1\\sigma)~{\\rm M...
Baryon Acoustic Oscillations in the Ly-\\alpha\\ forest of BOSS quasars
Busca, Nicolás G; Rich, James; Bailey, Stephen; Font-Ribera, Andreu; Kirkby, David; Goff, J -M Le; Pieri, Matthew M; Slosar, Anze; Aubourg, Éric; Bautista, Julian E; Bizyaev, Dmitry; Blomqvist, Michael; Bolton, Adam S; Bovy, Jo; Brewington, Howard; Borde, Arnaud; Brinkmann, J; Carithers, Bill; Croft, Rupert A C; Dawson, Kyle S; Ebelke, Garrett; Eisenstein, Daniel J; Hamilton, Jean-Christophe; Ho, Shirley; Hogg, David W; Honscheid, Klaus; Lee, Khee-Gan; Lundgren, Britt; Malanushenko, Elena; Malanushenko, Viktor; Margala, Daniel; Maraston, Claudia; Mehta, Kushal; Miralda-Escudé, Jordi; Myers, Adam D; Nichol, Robert C; Noterdaeme, Pasquier; Olmstead, Matthew D; Oravetz, Daniel; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pâris, Isabelle; Percival, Will J; Petitjean, Patrick; Roe, N A; Rollinde, Emmanuel; Ross, Nicholas P; Rossi, Graziano; Schlegel, David J; Schneider, Donald P; Shelden, Alaina; Sheldon, Erin S; Simmons, Audrey; Snedden, Stephanie; Tinker, Jeremy L; Viel, Matteo; Weaver, Benjamin A; Weinberg, David H; White, Martin; Yèche, Christophe; York, Donald G; Zhao, Gong-Bo
2012-01-01
We report a detection of the baryon acoustic oscillation (BAO) feature in the three-dimensional correlation function of the transmitted flux fraction in the \\Lya forest of high-redshift quasars. The study uses 48,640 quasars in the redshift range $2.1\\le z \\le 3.5$ from the Baryon Oscillation Spectroscopic Survey (BOSS) of the third generation of the Sloan Digital Sky Survey (SDSS-III). At a mean redshift $z=2.3$, we measure the monopole and quadrupole components of the correlation function for separations in the range $20\\hMpc
Energy Technology Data Exchange (ETDEWEB)
Pober, Jonathan C.; Parsons, Aaron R.; McQuinn, Matthew; Ali, Zaki [Astronomy Department, University of California, Berkeley, CA (United States); DeBoer, David R. [Radio Astronomy Laboratory, University of California, Berkeley, CA (United States); McDonald, Patrick [Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Aguirre, James E. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Bradley, Richard F. [Astronomy Department and Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA (United States); Chang, Tzu-Ching [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan (China); Morales, Miguel F. [Department of Physics, University of Washington, Seattle, WA (United States)
2013-03-15
This work describes a new instrument optimized for a detection of the neutral hydrogen 21 cm power spectrum between redshifts of 0.5 and 1.5: the Baryon Acoustic Oscillation Broadband and Broad-beam (BAOBAB) array. BAOBAB will build on the efforts of a first generation of 21 cm experiments that are targeting a detection of the signal from the Epoch of Reionization at z {approx} 10. At z {approx} 1, the emission from neutral hydrogen in self-shielded overdense halos also presents an accessible signal, since the dominant, synchrotron foreground emission is considerably fainter than at redshift 10. The principle science driver for these observations are baryon acoustic oscillations in the matter power spectrum which have the potential to act as a standard ruler and constrain the nature of dark energy. BAOBAB will fully correlate dual-polarization antenna tiles over the 600-900 MHz band with a frequency resolution of 300 kHz and a system temperature of 50 K. The number of antennas will grow in staged deployments, and reconfigurations of the array will allow for both traditional imaging and high power spectrum sensitivity operations. We present calculations of the power spectrum sensitivity for various array sizes, with a 35 element array measuring the cosmic neutral hydrogen fraction as a function of redshift, and a 132 element system detecting the BAO features in the power spectrum, yielding a 1.8% error on the z {approx} 1 distance scale, and, in turn, significant improvements to constraints on the dark energy equation of state over an unprecedented range of redshifts from {approx}0.5 to 1.5.
Galaxy Bias and its Effects on the Baryon Acoustic Oscillations Measurements
Mehta, Kushal T; Eckel, Jonathan; Eisenstein, Daniel J; Metchnik, Marc; Pinto, Philip; Xu, Xiaoying
2011-01-01
The baryon acoustic oscillation (BAO) feature in the clustering of matter in the universe serves as a robust standard ruler and hence can be used to map the expansion history of the universe. We use high force resolution simulations to analyze the effects of galaxy bias on the measurements of the BAO signal. We apply a variety of Halo Occupation Distributions (HODs) and produce biased mass tracers to mimic different galaxy populations. We investigate whether galaxy bias changes the non-linear shifts on the acoustic scale relative to the underlying dark matter distribution presented by Seo et al (2009). For the less biased HOD models (b 3) show a shift at moderate significance (0.79% \\pm 0.31% for the most extreme case). We test the one-step reconstruction technique introduced by Eisenstein et al. (2007) in the case of realistic galaxy bias and shot noise. The reconstruction scheme increases the correlation between the initial and final (z = 1) density fields achieving an equivalent level of correlation at ne...
Galaxy bias and its effects on the Baryon acoustic oscillations measurements
Energy Technology Data Exchange (ETDEWEB)
Mehta, Kushal T. [Univ. of Arizona, Tucson, AZ (United States); Seo, Hee -Jong [Univ. of California, Berkeley, CA (United States); Fermi National Accelerator Lab., Batavia, IL (United States); Eckel, Jonathan [Univ. of Arizona, Tucson, AZ (United States); Eisenstein, Daniel J. [Univ. of Arizona, Tucson, AZ (United States); Harvard Univ., Cambridge, MA (United States); Metchnik, Marc [Univ. of Arizona, Tucson, AZ (United States); Pinto, Philip [Univ. of Arizona, Tucson, AZ (United States); Xu, Xiaoying [Univ. of Arizona, Tucson, AZ (United States)
2011-05-31
The baryon acoustic oscillation (BAO) feature in the clustering of matter in the universe serves as a robust standard ruler and hence can be used to map the expansion history of the universe. We use high force resolution simulations to analyze the effects of galaxy bias on the measurements of the BAO signal. We apply a variety of Halo Occupation Distributions (HODs) and produce biased mass tracers to mimic different galaxy populations. We investigate whether galaxy bias changes the non-linear shifts on the acoustic scale relative to the underlying dark matter distribution presented by Seo et al. (2009). For the less biased HOD models (b < 3), we do not detect any shift in the acoustic scale relative to the no-bias case, typically 0.10% ± 0.10%. However, the most biased HOD models (b > 3) show a shift at moderate significance (0.79% ± 0.31% for the most extreme case). We test the one-step reconstruction technique introduced by Eisenstein et al. (2007) in the case of realistic galaxy bias and shot noise. The reconstruction scheme increases the correlation between the initial and final (z = 1) density fields achieving an equivalent level of correlation at nearly twice the wavenumber after reconstruction. Reconstruction reduces the shifts and errors on the shifts. We find that after reconstruction the shifts from the galaxy cases and the dark matter case are consistent with each other and with no shift. The 1σ systematic errors on the distance measurements inferred from our BAO measurements with various HODs after reconstruction are about 0.07%-0.15%.
Time-Sliced Perturbation Theory II: Baryon Acoustic Oscillations and Infrared Resummation
Blas, Diego; Ivanov, Mikhail M; Sibiryakov, Sergey
2016-01-01
We use time-sliced perturbation theory (TSPT) to give an accurate description of the infrared non-linear effects affecting the baryonic acoustic oscillations (BAO) present in the distribution of matter at very large scales. In TSPT this can be done via a systematic resummation that has a simple diagrammatic representation and does not involve uncontrollable approximations. We discuss the power counting rules and derive explicit expressions for the resummed matter power spectrum up to next-to leading order and the bispectrum at the leading order. The two-point correlation function agrees well with N-body data at BAO scales. The systematic approach also allows to reliably assess the shift of the baryon acoustic peak due to non-linear effects.
The Alcock Paczy'nski test with Baryon Acoustic Oscillations: systematic effects for future surveys
Lepori, Francesca; Di Dio, Enea; Viel, Matteo; Baccigalupi, Carlo; Durrer, Ruth
2017-02-01
We investigate the Alcock Paczy'nski (AP) test applied to the Baryon Acoustic Oscillation (BAO) feature in the galaxy correlation function. By using a general formalism that includes relativistic effects, we quantify the importance of the linear redshift space distortions and gravitational lensing corrections to the galaxy number density fluctuation. We show that redshift space distortions significantly affect the shape of the correlation function, both in radial and transverse directions, causing different values of galaxy bias to induce offsets up to 1% in the AP test. On the other hand, we find that the lensing correction around the BAO scale modifies the amplitude but not the shape of the correlation function and therefore does not introduce any systematic effect. Furthermore, we investigate in details how the AP test is sensitive to redshift binning: a window function in transverse direction suppresses correlations and shifts the peak position toward smaller angular scales. We determine the correction that should be applied in order to account for this effect, when performing the test with data from three future planned galaxy redshift surveys: Euclid, the Dark Energy Spectroscopic Instrument (DESI) and the Square Kilometer Array (SKA).
Ross, Ashley J; Chuang, Chia-Hsun; Pellejero-Ibanez, Marcos; Seo, Hee-Jong; Vargas-Magana, Mariana; Cuesta, Antonio J; Percival, Will J; Burden, Angela; Sanchez, Ariel G; Grieb, Jan Niklas; Reid, Beth; Brownstein, Joel R; Dawson, Kyle S; Eisenstein, Daniel J; Ho, Shirley; Kitaura, Francisco-Shu; Nichol, Robert C; Olmstead, Matthew D; Prada, Francisco; Rodriguez-Torres, Sergio A; Saito, Shun; Salazar-Albornoz, Salvador; Schneider, Donald P; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Wang, Yuting; White, Martin; Zhao, Gong-bo
2016-01-01
We present baryon acoustic oscillation (BAO) scale measurements determined from the clustering of 1.2 million massive galaxies with redshifts 0.2 < z < 0.75 distributed over 9300 square degrees, as quantified by their redshift-space correlation function. In order to facilitate these measurements, we define, describe, and motivate the selection function for galaxies in the final data release (DR12) of the SDSS III Baryon Oscillation Spectroscopic Survey (BOSS). This includes the observational footprint, masks for image quality and Galactic extinction, and weights to account for density relationships intrinsic to the imaging and spectroscopic portions of the survey. We simulate the observed systematic trends in mock galaxy samples and demonstrate that they impart no bias on baryon acoustic oscillation (BAO) scale measurements and have a minor impact on the recovered statistical uncertainty. We measure transverse and radial BAO distance measurements in 0.2 < z < 0.5, 0.5 < z < 0.75, and (overla...
Measuring baryon acoustic oscillations with angular two-point correlation function
Alcaniz, Jailson S; Bernui, Armando; Carvalho, Joel C; Benetti, Micol
2016-01-01
The Baryon Acoustic Oscillations (BAO) imprinted a characteristic correlation length in the large-scale structure of the universe that can be used as a standard ruler for mapping out the cosmic expansion history. Here, we discuss the application of the angular two-point correlation function, $w(\\theta)$, to a sample of luminous red galaxies of the Sloan Digital Sky Survey (SDSS) and derive two new measurements of the BAO angular scale at $z = 0.235$ and $z = 0.365$. Since noise and systematics may hinder the identification of the BAO signature in the $w - \\theta$ plane, we also introduce a potential new method to localize the acoustic bump in a model-independent way. We use these new measurements along with previous data to constrain cosmological parameters of dark energy models and to derive a new estimate of the acoustic scale $r_s$.
Les Traits acoustiques (Acoustic Features)
Rossi, Mario
1977-01-01
An analysis of the theory of distinctive features advanced by Roman Jakobson, Gunnar Fant and Morris Halle in "Preliminaries to Speech Analysis." The notion of binarism, the criterion of distinctiveness and the definition of features are discussed. Questions leading to further research are raised. (Text is in French.) (AMH)
Measuring the distance-redshift relation with the baryon acoustic oscillations of galaxy clusters
Veropalumbo, Alfonso; Moscardini, Lauro; Moresco, Michele; Cimatti, Andrea
2015-01-01
We analyse the largest spectroscopic samples of galaxy clusters to date, and provide observational constraints on the distance-redshift relation from baryon acoustic oscillations. The cluster samples considered in this work have been extracted from the Sloan Digital Sky Survey at three median redshifts, $z=0.2$, $z=0.3$, and $z=0.5$. The number of objects is $12910$, $42215$, and $11816$, respectively. We detect the peak of baryon acoustic oscillations for all the three samples. The derived distance constraints are: $r_s/D_V(z=0.2)=0.18 \\pm 0.01$, $r_s/D_V(z=0.3)=0.124 \\pm 0.004$ and $r_s/D_V(z=0.5)=0.080 \\pm 0.002$. Combining these measurements, we obtain robust constraints on cosmological parameters. Our results are in agreement with the standard $\\Lambda$ cold dark matter model. Specifically, we constrain the Hubble constant in a $\\Lambda$CDM model, $H_0 = 64_{-9}^{+14} \\, \\mathrm{km} \\, \\mathrm{s}^{-1}\\mathrm{Mpc}^{-1}$, the density of curvature energy, in the $o\\Lambda$CDM context, $\\Omega_K = -0.015_{-0...
Pober, Jonathan C; DeBoer, David R; McDonald, Patrick; McQuinn, Matthew; Aguirre, James E; Ali, Zaki; Bradley, Richard F; Chang, Tzu-Ching; Morales, Miguel F
2012-01-01
This work describes a new instrument optimized for a detection of the neutral hydrogen 21cm power spectrum between redshifts of 0.5-1.5: the Baryon Acoustic Oscillation Broadband and Broad-beam (BAOBAB) Array. BAOBAB will build on the efforts of a first generation of 21cm experiments which are targeting a detection of the signal from the Epoch of Reionization at z ~ 10. At z ~ 1, the emission from neutral hydrogen in self-shielded overdense halos also presents an accessible signal, since the dominant, synchrotron foreground emission is considerably fainter than at redshift 10. The principle science driver for these observations are Baryon Acoustic Oscillations in the matter power spectrum which have the potential to act as a standard ruler and constrain the nature of dark energy. BAOBAB will fully correlate dual-polarization antenna tiles over the 600-900MHz band with a frequency resolution of 300 kHz and a system temperature of 50K. The number of antennas will grow in staged deployments, and reconfigurations...
Quasar-Lyman $\\alpha$ Forest Cross-Correlation from BOSS DR11 : Baryon Acoustic Oscillations
Font-Ribera, Andreu; Busca, Nicolas; Miralda-Escudé, Jordi; Ross, Nicholas P; Slosar, Anže; Aubourg, Éric; Bailey, Stephen; Bhardwaj, Vaishali; Bautista, Julian; Beutler, Florian; Bizyaev, Dmitry; Blomqvist, Michael; Brewington, Howard; Brinkmann, Jon; Brownstein, Joel R; Carithers, Bill; Dawson, Kyle S; Delubac, Timothée; Ebelke, Garrett; Eisenstein, Daniel J; Ge, Jian; Kinemuchi, Karen; Lee, Khee-Gan; Malanushenko, Viktor; Malanushenko, Elena; Marchante, Moses; Margala, Daniel; Muna, Demitri; Myers, Adam D; Noterdaeme, Pasquier; Oravetz, Daniel; Palanque-Delabrouille, Nathalie; Pâris, Isabelle; Petitjean, Patrick; Pieri, Matthew M; Rossi, Graziano; Schneider, Donald P; Simmons, Audrey; Viel, Matteo; Yeche, Christophe; York, Donald G
2013-01-01
We measure the large-scale cross-correlation of quasars with the Lyman alpha forest absorption, using over 164,000 quasars from Data Release 11 of the SDSS-III Baryon Oscillation Spectroscopic Survey. We extend the previous study of roughly 60,000 quasars from Data Release 9 to larger separations, allowing a measurement of the Baryonic Acoustic Oscillation (BAO) scale along the line of sight $c/(H(z=2.36) ~ r_s) = 9.0 \\pm 0.3$ and across the line of sight $D_A(z=2.36)~ / ~ r_s = 10.8 \\pm 0.4$, consistent with CMB and other BAO data. Using the best fit value of the sound horizon from Planck data ($r_s=147.49 Mpc$), we can translate these results to a measurement of the Hubble parameter of $H(z=2.36) = 226 \\pm 8 km/s$ and of the angular diameter distance of $D_A(z=2.36) = 1590 \\pm 60 Mpc$. The measured cross-correlation function and an update of the code to fit the BAO scale (baofit) are made publicly available.
The BOSS-WiggleZ overlap region I: Baryon Acoustic Oscillations
Beutler, Florian; Koda, Jun; Marin, Felipe; Seo, Hee-Jong; Cuesta, Antonio J; Schneider, Donald P
2015-01-01
We study the large-scale clustering of galaxies in the overlap region of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample and the WiggleZ Dark Energy Survey. We calculate the auto-correlation and cross-correlation functions in the overlap region of the two datasets and detect a Baryon Acoustic Oscillation (BAO) signal in each of them. The BAO measurement from the cross-correlation function represents the first such detection between two different galaxy surveys. After applying density-field reconstruction we report distance-scale measurements $D_V r_s^{\\rm fid} / r_s = (1970 \\pm 47, 2132 \\pm 67, 2100 \\pm 200)$ Mpc from CMASS, the cross-correlation and WiggleZ, respectively. We use correlated mock realizations to calculate the covariance between the three BAO constraints. The distance scales derived from the two datasets are consistent, and are also robust against switching the displacement fields used for reconstruction between the two surveys. This approach can be used to construct a correlati...
The BOSS-WiggleZ overlap region - I. Baryon acoustic oscillations
Beutler, Florian; Blake, Chris; Koda, Jun; Marín, Felipe A.; Seo, Hee-Jong; Cuesta, Antonio J.; Schneider, Donald P.
2016-01-01
We study the large-scale clustering of galaxies in the overlap region of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample and the WiggleZ Dark Energy Survey. We calculate the auto-correlation and cross-correlation functions in the overlap region of the two data sets and detect a Baryon Acoustic Oscillation (BAO) signal in each of them. The BAO measurement from the cross-correlation function represents the first such detection between two different galaxy surveys. After applying density-field reconstruction we report distance-scale measurements D_V r_s^fid / r_s = (1970 ± 45, 2132 ± 65, 2100 ± 200) Mpc from CMASS, the cross-correlation and WiggleZ, respectively. The distance scales derived from the two data sets are consistent, and are also robust against switching the displacement fields used for reconstruction between the two surveys. We use correlated mock realizations to calculate the covariance between the three BAO constraints. This approach can be used to construct a correlation matrix, permitting for the first time a rigorous combination of WiggleZ and CMASS BAO measurements. Using a volume-scaling technique, our result can also be used to combine WiggleZ and future CMASS DR12 results. Finally, we show that the relative velocity effect, a possible source of systematic uncertainty for the BAO technique, is consistent with zero for our samples.
Redshift Weights for Baryon Acoustic Oscillations : Application to Mock Galaxy Catalogs
Zhu, Fangzhou; White, Martin; Ross, Ashley J; Zhao, Gongbo
2016-01-01
Large redshift surveys capable of measuring the Baryon Acoustic Oscillation (BAO) signal have proven to be an effective way of measuring the distance-redshift relation in cosmology. Building off the work in Zhu et al. (2015), we develop a technique to directly constrain the distance-redshift relation from BAO measurements without splitting the sample into redshift bins. We parametrize the distance-redshift relation, relative to a fiducial model, as a quadratic expansion. We measure its coefficients and reconstruct the distance-redshift relation from the expansion. We apply the redshift weighting technique in Zhu et al. (2015) to the clustering of galaxies from 1000 QuickPM (QPM) mock simulations after reconstruction and achieve a 0.75% measurement of the angular diameter distance $D_A$ at $z=0.64$ and the same precision for Hubble parameter H at $z=0.29$. These QPM mock catalogs are designed to mimic the clustering and noise level of the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12). W...
Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints
Hinton, Samuel R.; Kazin, Eyal; Davis, Tamara M.; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Glazebrook, Karl; Jurek, Russell J.; Parkinson, David; Pimbblet, Kevin A.; Poole, Gregory B.; Pracy, Michael; Woods, David
2017-02-01
We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ωc h2, H(z), and DA(z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey.
A CROSS-CHECK FOR H0 FROM LYMAN- α FOREST AND BARYON ACOUSTIC OSCILLATIONS
Directory of Open Access Journals (Sweden)
V. C. Busti
2016-01-01
Full Text Available A new method is proposed to infer the Hubble constant H0 through the observed mean transmitted flux from high-redshift quasars and the baryon acoustic oscillations (BAOs. A semi-analytical model for the cosmological-independent volume density distribution function was adopted; it allowed us to obtain constraints on the cosmological parameters once a moderate knowledge of the Inter Galactic Medium (IGM parameters is assumed. Our analysis, based on two different samples of Lyman-α forest and the BAO measurement, restricts (h, Ωm to the intervals 0.19 ≤ Ωm ≤ 0.23 and 0.53 ≤ h ≤ 0.82 (1σ. Although the constraints are weaker compared with other estimates, we point out that, with a bigger sample and a better knowledge of the IGM, this method could provide complementary results to measure the Hubble constant independently of the cosmic distance ladder.
Baryon Acoustic Oscillations in 2D: Modeling Redshift-space Power Spectrum from Perturbation Theory
Taruya, Atsushi; Saito, Shun
2010-01-01
We present an improved prescription for matter power spectrum in redshift space taking a proper account of both the non-linear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the non-linear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism. We...
Simulations of Baryon Acoustic Oscillations I: Growth of Large-Scale Density Fluctuations
Takahashi, Ryuichi; Matsubara, Takahiko; Sugiyama, Naoshi; Kayo, Issha; Nishimichi, Takahiro; Shirata, Akihito; Taruya, Atsushi; Saito, Shun; Yahata, Kazuhiro; Suto, Yasushi
2008-01-01
We critically examine how well the evolution of large-scale density perturbations is followed in cosmological $N$-body simulations. We first run a large volume simulation and perform a mode-by-mode analysis in three-dimensional Fourier space. We show that the growth of large-scale fluctuations significantly deviates from linear theory predictions. The deviations are caused by {\\it nonlinear} coupling with a small number of modes at largest scales owing to finiteness of the simulation volume. We then develop an analytic model based on second-order perturbation theory to quantify the effect. Our model accurately reproduces the simulation results. For a single realization, the second-order effect appears typically as ``zig-zag'' patterns around the linear-theory prediction, which imprints artificial ``oscillations'' that lie on the real baryon-acoustic oscillations. Although an ensemble average of a number of realizations approaches the linear theory prediction, the dispersions of the realizations remain large e...
Ma, Cong
2016-01-01
We use cosmological luminosity distance ($d_L$) from the JLA Type Ia supernovae compilation and angular-diameter distance ($d_A$) based on BOSS and WiggleZ baryon acoustic oscillation measurements to test the distance-duality relation $\\eta \\equiv d_L / [ (1 + z)^2 d_A ] = 1$. The $d_L$ measurements are matched to $d_A$ redshift by a statistically-motivated compression procedure. By means of Monte Carlo methods, non-trivial and correlated distributions of $\\eta$ can be explored in a straightforward manner without resorting to a particular evolution template $\\eta(z)$. Assuming Planck cosmological parameter uncertainty, we find 5% constraints in favor of $\\eta = 1$, consistent with the weaker 7--10% constraints obtained using WiggleZ data. These results stand in contrast to previous claims that $\\eta < 1$ has been found close to or above $1\\sigma$ level.
Xu, Lixin
2012-01-01
In this paper, the holographic dark energy (HDE) model, where the future event horizon is taken as an IR cut-off, is confronted by using currently available cosmic observational data sets which include type Ia supernovae, baryon acoustic oscillation and cosmic microwave background radiation from full information of WMAP-7yr. Via the Markov Chain Monte Carlo method, we obtain the values of model parameter $c= 0.696_{- 0.0737- 0.132- 0.190}^{+ 0.0736+ 0.159+ 0.264}$ with $1,2,3\\sigma$ regions. Therefore one can conclude that at lest $3\\sigma$ level the future Universe will be dominated by phantom like dark energy. It is not consistent with positive energy condition, however this condition must be satisfied to derive the holographic bound. It implies that the current cosmic observational data points disfavor the HDE model.
A cross-check for H0 from Lyman-α Forest and Baryon Acoustic Oscillations
Busti, V. C.; Guimarães, R. N.; Lima, J. A. S.
2016-04-01
A new method is proposed to infer the Hubble constant H0 through the observed mean transmitted flux from high-redshift quasars and the baryon acoustic oscillations (BAOs). A semi-analytical model for the cosmological-independent volume density distribution function was adopted; it allowed us to obtain constraints on the cosmological parameters once a moderate knowledge of the Inter Galactic Medium (IGM) parameters is assumed. Our analysis, based on two different samples of Lyman-α forest and the BAO measurement, restricts (h, Ωm) to the intervals 0.19 ≤ Ωm ≤ 0.23 and 0.53 ≤ h ≤ 0.82 (1σ). Although the constraints are weaker compared with other estimates, we point out that, with a bigger sample and a better knowledge of the IGM, this method could provide complementary results to measure the Hubble constant independently of the cosmic distance ladder.
Blake, Chris; Beutler, Florian; Davis, Tamara; Parkinson, David; Brough, Sarah; Colless, Matthew; Contreras, Carlos; Couch, Warrick; Croom, Scott; Croton, Darren; Drinkwater, Michael J; Forster, Karl; Gilbank, David; Gladders, Mike; Glazebrook, Karl; Jelliffe, Ben; Jurek, Russell J; Li, I-hui; Madore, Barry; Martin, Chris; Pimbblet, Kevin; Poole, Gregory; Pracy, Michael; Sharp, Rob; Wisnioski, Emily; Woods, David; Wyder, Ted; Yee, Howard
2011-01-01
We present measurements of the baryon acoustic peak at redshifts z = 0.44, 0.6 and 0.73 in the galaxy correlation function of the final dataset of the WiggleZ Dark Energy Survey. We combine our correlation function with lower-redshift measurements from the 6-degree Field Galaxy Survey and Sloan Digital Sky Survey, producing a stacked survey correlation function in which the statistical significance of the detection of the baryon acoustic peak is 4.9-sigma relative to a zero-baryon model with no peak. We fit cosmological models to this combined baryon acoustic oscillation (BAO) dataset comprising six distance-redshift data points, and compare the results to similar fits to the latest compilation of supernovae (SNe) and Cosmic Microwave Background (CMB) data. The BAO and SNe datasets produce consistent measurements of the equation-of-state w of dark energy, when separately combined with the CMB, providing a powerful check for systematic errors in either of these distance probes. Combining all datasets we determ...
Novel acoustic features for speech emotion recognition
Institute of Scientific and Technical Information of China (English)
ROH Yong-Wan; KIM Dong-Ju; LEE Woo-Seok; HONG Kwang-Seok
2009-01-01
This paper focuses on acoustic features that effectively improve the recognition of emotion in human speech. The novel features in this paper are based on spectral-based entropy parameters such as fast Fourier transform (FFT) spectral entropy, delta FFT spectral entropy, Mel-frequency filter bank (MFB)spectral entropy, and Delta MFB spectral entropy. Spectral-based entropy features are simple. They reflect frequency characteristic and changing characteristic in frequency of speech. We implement an emotion rejection module using the probability distribution of recognized-scores and rejected-scores.This reduces the false recognition rate to improve overall performance. Recognized-scores and rejected-scores refer to probabilities of recognized and rejected emotion recognition results, respectively.These scores are first obtained from a pattern recognition procedure. The pattern recognition phase uses the Gaussian mixture model (GMM). We classify the four emotional states as anger, sadness,happiness and neutrality. The proposed method is evaluated using 45 sentences in each emotion for 30 subjects, 15 males and 15 females. Experimental results show that the proposed method is superior to the existing emotion recognition methods based on GMM using energy, Zero Crossing Rate (ZCR),linear prediction coefficient (LPC), and pitch parameters. We demonstrate the effectiveness of the proposed approach. One of the proposed features, combined MFB and delta MFB spectral entropy improves performance approximately 10% compared to the existing feature parameters for speech emotion recognition methods. We demonstrate a 4% performance improvement in the applied emotion rejection with low confidence score.
Model independent evidence for dark energy evolution from Baryon Acoustic Oscillations
Sahni, Varun; Starobinsky, Alexei A
2014-01-01
Baryon Acoustic Oscillations (BAO) allow us to determine the expansion history of the Universe, thereby shedding light on the nature of dark energy. Recent observations of BAO's in the SDSS DR9 and DR11 have provided us with statistically independent measurements of $H(z)$ at redshifts of 0.57 and 2.34, respectively. We show that these measurements can be used to test the cosmological constant hypothesis in a model independent manner by means of an improved version of the $Om$ diagnostic. Our results indicate that the SDSS DR11 measurement of $H(z) = 222 \\pm 7$ km/sec/Mpc at $z = 2.34$, when taken in tandem with measurements of $H(z)$ at lower redshifts, imply considerable tension with the standard $\\Lambda$CDM model. Our estimation of the new diagnostic $Omh^2$ from SDSS DR9 and DR11 data, namely $Omh^2 \\approx 0.122 \\pm 0.01$, which is equivalent to $\\Omega_{0m}h^2$ for the spatially flat $\\Lambda$CDM model, is in tension with the value $\\Omega_{0m}h^2 = 0.1426 \\pm 0.0025$ determined for $\\Lambda$CDM from P...
A detection of Baryon Acoustic Oscillations from the distribution of galaxy clusters
Hong, Tao; Wen, Z L
2015-01-01
We calculate the correlation function of 79,091 galaxy clusters in the redshift region of $0.05 \\leq z \\leq 0.5$ selected from the WH15 cluster catalog. With a weight of cluster mass, a significant baryon acoustic oscillation (BAO) peak is detected on the correlation function with a significance of $3.9 \\sigma$. By fitting the correlation function with a $\\Lambda$CDM model curve, we find $D_v(z = 0.331) r_d^{fid}/r_d = 1269.4 \\pm 58$ Mpc which is consistent with the Planck 2015 cosmology. We find that the correlation functions of the higher mass sub-samples show a higher amplitude at small scales of $r < 80~h^{-1}{\\rm Mpc}$, which is consistent with our precious result. We find a clear signal of the `Finger-of-God' effect on the 2D correlation function of the whole sample, which indicates the random peculiar motion of central bright galaxies in the gravitation potential well of clusters.
Simulations of Baryon Acoustic Oscillations II: Covariance matrix of the matter power spectrum
Takahashi, Ryuichi; Takada, Masahiro; Matsubara, Takahiko; Sugiyama, Naoshi; Kayo, Issha; Nishizawa, Atsushi J; Nishimichi, Takahiro; Saito, Shun; Taruya, Atsushi
2009-01-01
We use 5000 cosmological N-body simulations of 1(Gpc/h)^3 box for the concordance LCDM model in order to study the sampling variances of nonlinear matter power spectrum. We show that the non-Gaussian errors can be important even on large length scales relevant for baryon acoustic oscillations (BAO). Our findings are (1) the non-Gaussian errors degrade the cumulative signal-to-noise ratios (S/N) for the power spectrum amplitude by up to a factor of 2 and 4 for redshifts z=1 and 0, respectively. (2) There is little information on the power spectrum amplitudes in the quasi-nonlinear regime, confirming the previous results. (3) The distribution of power spectrum estimators at BAO scales, among the realizations, is well approximated by a Gaussian distribution with variance that is given by the diagonal covariance component. (4) For the redshift-space power spectrum, the degradation in S/N by non-Gaussian errors is mitigated due to nonlinear redshift distortions. (5) For an actual galaxy survey, the additional shot...
The C IV Forest as a Probe of Baryon Acoustic Oscillations
Pieri, Matthew M
2014-01-01
In light of recent successes in measuring baryon acoustic oscillations in quasar absorption using the Lyman-alpha (Ly-alpha) transition, I explore the possibility of using the 1548 Ang transition of triply-ionized carbon (C IV) as a tracer. While the Ly-alpha forest is a more sensitive tracer of intergalactic gas, it is limited by the fact that it can only be measured in the optical window at redshifts z > 2. Quasars are challenging to identify and observe at these high-redshifts, but the C IV forest can be probed down to redshifts z = 1.3, taking full advantage of the peak in the redshift distribution of quasars that can be targeted with high efficiency. I explore the strength of the C IV absorption signal and show that the absorbing population on the red side of the Ly-alpha emission line is dominated by C IV. As a consequence, I argue that forthcoming surveys will have a sufficient increase in quasar number density to offset the lower sensitivity of the C IV forest and provide competitive precision using b...
Testing cosmic transparency with the latest baryon acoustic oscillations and type Ia supernovae data
Institute of Scientific and Technical Information of China (English)
Jun Chen; Pu-Xun Wu; Hong-Wei Yu; Zheng-Xiang Li
2013-01-01
Observations show that Type Ia supernovae (SNe Ia) are dimmer than expected from a matter dominated Universe.It has been suggested that this observed phenomenon can also be explained using light absorption instead of dark energy.However,there is a serious degeneracy between the cosmic absorption parameter and the present matter density parameter Ωm when one tries to place constraints on the cosmic opacity using SNe Ia data.We combine the latest baryon acoustic oscillation (BAO) and Union2 SNe Ia data in order to break this degeneracy.Assuming a flat ACDM model,we find that,although an opaque Universe is favored by SNe Ia+BAO since the best fit value of the cosmic absorption parameter is larger than zero,Ωm =1 is ruled out at the 99.7％ confidence level.Thus,cosmic opacity is not sufficient to account for the present observations and dark energy or modified gravity is still required.
The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant
Beutler, Florian; Colless, Matthew; Jones, D Heath; Staveley-Smith, Lister; Campbell, Lachlan; Parker, Quentin; Saunders, Will; Watson, Fred
2011-01-01
We analyse the large-scale correlation function of the 6dF Galaxy Survey (6dFGS) and detect a Baryon Acoustic Oscillation (BAO) signal. The 6dFGS BAO detection allows us to constrain the distance-redshift relation at z_{\\rm eff} = 0.106. We achieve a distance measure of D_V(z_{\\rm eff}) = 456\\pm27 Mpc and a measurement of the distance ratio, r_s(z_d)/D_V(z_{\\rm eff}) = 0.336\\pm0.015 (4.5% precision), where r_s(z_d) is the sound horizon at the drag epoch z_d. The low effective redshift of 6dFGS makes it a competitive and independent alternative to Cepheids and low-z supernovae in constraining the Hubble constant. We find a Hubble constant of H_0 = 67\\pm3.2 km s^{-1} Mpc^{-1} (4.8% precision) that depends only on the WMAP-7 calibration of the sound horizon and on the galaxy clustering in 6dFGS. Compared to earlier BAO studies at higher redshift, our analysis is less dependent on other cosmological parameters. The sensitivity to H_0 can be used to break the degeneracy between the dark energy equation of state pa...
Hunting down systematics in baryon acoustic oscillations after cosmic high noon
Prada, Francisco; Chuang, Chia-Hsun; Yepes, Gustavo; Klypin, Anatoly A; Kitaura, Francisco-Shu; Gottlober, Stefan
2014-01-01
Future dark energy experiments will require better and more accurate theoretical predictions for the baryonic acoustic oscillations (BAO) signature in the spectrum of cosmological perturbations. Here, we use large N-body simulations of the \\LambdaCDM Planck cosmology to study any possible systematic shifts and damping in BAO due to the impact of nonlinear gravitational growth of structure, scale dependent and non-local bias, and redshift-space distortions. The effect of cosmic variance is largely reduced by dividing the tracer power spectrum by that from a BAO-free simulation starting with the same phases. This permits us to study with unprecedented accuracy (better than 0.02% for dark matter and 0.07% for low-bias halos) small shifts of the pristine BAO wavenumbers towards larger k, and non-linear damping of BAO wiggles in the power spectrum of dark matter and halo populations in the redshift range z=0-1. For dark matter, we provide an accurate parametrization of the evolution of \\alpha as a function of the ...
Measuring the 2D Baryon Acoustic Oscillation signal of galaxies in WiggleZ: Cosmological constraints
Hinton, Samuel R; Davis, Tamara M; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J; Drinkwater, Michael J; Glazebrook, Karl; Jurek, Russel J; Parkinson, David; Pimbblet, Kevin A; Poole, Gregory B; Pracy, Michael; Woods, David
2016-01-01
We present results from the 2D anisotropic Baryon Acoustic Oscillation (BAO) signal present in the final dataset from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: firstly using the full shape of the 2D correlation function and secondly focussing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalise over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of $\\Omega_c h^2$, $H(z)$, and $D_A(z)$ for three redshift ...
Valiviita, Jussi
2015-01-01
We employ the Planck 2013 CMB temperature anisotropy and lensing data, and baryon acoustic oscillation (BAO) data to constrain a phenomenological $w$CDM model, where dark matter and dark energy interact. We assume time-dependent equation of state parameter for dark energy, and treat dark matter and dark energy as fluids whose energy-exchange rate is proportional to the dark-matter density. The CMB data alone leave a strong degeneracy between the interaction rate and the physical CDM density parameter today, $\\omega_c$, allowing a large interaction rate $|\\Gamma| \\sim H_0$. However, as has been known for a while, the BAO data break this degeneracy. Moreover, we exploit the CMB lensing potential likelihood, which probes the matter perturbations at redshift $z \\sim 2$ and is very sensitive to the growth of structure, and hence one of the tools for discerning between the $\\Lambda$CDM model and its alternatives. However, we find that in the non-phantom models ($w_{\\mathrm{de}}>-1$), the constraints remain unchange...
An accurate determination of the Hubble constant from Baryon Acoustic Oscillation datasets
Cheng, Cheng
2014-01-01
Even though the Hubble constant cannot be significantly determined by the low-redshift Baryon Acoustic Oscillation (BAO) data alone, it can be tightly constrained once the high-redshift BAO data are combined. Combining BAO data from 6dFGS, BOSS DR11 clustering of galaxies, WiggleZ and $z=2.34$ from BOSS DR11 quasar Lyman-$\\alpha$ forest lines, we get $H_0=68.17^{+1.55}_{-1.56}$ km s$^{-1}$ Mpc$^{-1}$. In addition, adopting the the simultaneous measurements of $H(z)$ and $D_A(z)$ from the two-dimensional two-point correlation function from BOSS DR9 CMASS sample and two-dimensional matter power spectrum from SDSS DR7 sample, we obtain $H_0=68.11\\pm1.69$ km s$^{-1}$ Mpc$^{-1}$. Finally, combining all of the BAO datasets, we conclude $H_0=68.11\\pm 0.86$ km s$^{-1}$ Mpc$^{-1}$, a 1.3% determination.
Baryonic acoustic oscillations from 21cm intensity mapping: the Square Kilometre Array case
Villaescusa-Navarro, Francisco; Viel, Matteo
2016-01-01
We quantitatively investigate the possibility of detecting baryonic acoustic oscillations (BAO) using single-dish 21cm intensity mapping observations in the post-reionization era. We show that the telescope beam smears out the isotropic BAO signature and, in the case of the Square Kilometer Array (SKA) instrument, makes it undetectable at redshifts $z\\gtrsim1$. We however demonstrate that the BAO peak can still be detected in the radial 21cm power spectrum and describe a method to make this type of measurements. By means of numerical simulations, containing the 21cm cosmological signal as well as the most relevant Galactic and extra-Galactic foregrounds and basic instrumental effect, we quantify the precision with which the radial BAO scale can be measured in the 21cm power spectrum. We systematically investigate the signal-to-noise and the precision of the recovered BAO signal as a function of cosmic variance, instrumental noise, angular resolution and foreground contamination. We find that the expected nois...
Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys
Eisenstein, D J
2003-01-01
We show that the measurement of the baryonic acoustic oscillations in large high redshift galaxy surveys offers a precision route to the measurement of dark energy. The cosmic microwave background provides the scale of the oscillations as a standard ruler that can be measured in the clustering of galaxies, thereby yielding the Hubble parameter and angular diameter distance as a function of redshift. This, in turn, enables one to probe dark energy. We use a Fisher matrix formalism to study the statistical errors for redshift surveys up to z=3 and report errors on cosmography while marginalizing over a large number of cosmological parameters including a time-dependent equation of state. With redshifts surveys combined with cosmic microwave background satellite data, we achieve errors of 0.037 on Omega_x, 0.10 on w(z=0.8), and 0.28 on dw(z)/dz for cosmological constant model. Models with less negative w(z) permit tighter constraints. We test and discuss the dependence of performance on redshift, survey condition...
Beutler, Florian; Ross, Ashley J; McDonald, Patrick; Saito, Shun; Bolton, Adam S; Brownstein, Joel R; Chuang, Chia-Hsun; Cuesta, Antonio J; Eisenstein, Daniel J; Font-Ribera, Andreu; Grieb, Jan Niklas; Hand, Nick; Kitaura, Francisco-Shu; Modi, Chirag; Nichol, Robert C; Percival, Will J; Prada, Francisco; Rodriguez-Torres, Sergio; Roe, Natalie A; Ross, Nicholas P; Salazar-Albornoz, Salvador; Sánchez, Ariel G; Schneider, Donald P; Slosar, Anže; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A
2016-01-01
We analyse the Baryon Acoustic Oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in Fourier-space, using the power spectrum monopole and quadrupole. The dataset includes $1\\,198\\,006$ galaxies over the redshift range $0.2 < z < 0.75$. We divide this dataset into three (overlapping) redshift bins with the effective redshifts $\\zeff = 0.38$, $0.51$ and $0.61$. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as $\\sim 1000$ MultiDark-Patchy mock catalogues, which mimic the BOSS-DR12 target selection. We apply density field reconstruction to enhance the BAO signal-to-noise ratio. By including the power spectrum quadrupole we can separate the line-of-sight and angular modes, which allows us to constrain the angular diameter distance $D_A(z)$ and the Hubble parameter $H(z)$ separately. We obtain two independent $1.6\\%$ and $1.5\\%$ constraints on $D_A(z)$ and $2.9\\%$ and $2.3\\%$ constraints...
Vargas-Magaña, Mariana; Cuesta, Antonio J; O'Connell, Ross; Ross, Ashley J; Eisenstein, Daniel J; Percival, Will J; Grieb, Jan Niklas; Sánchez, Ariel G; Tinker, Jeremy L; Tojeiro, Rita; Beutler, Florian; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Prada, Francisco; Rodríguez-Torres, Sergio A; Rossi, Graziano; Seo, Hee-Jong; Brownstein, Joel R; Olmstead, Matthew; Thomas, Daniel
2016-01-01
We investigate the potential sources of theoretical systematics in the anisotropic Baryon Acoustic Oscillation (BAO) distance scale measurements from the clustering of galaxies in configuration space using the final Data Release (DR12) of the Baryon Oscillation Spectroscopic Survey (BOSS). We perform a detailed study of the impact on BAO measurements from choices in the methodology such as fiducial cosmology, clustering estimators, random catalogues, fitting templates, and covariance matrices. The theoretical systematic uncertainties in BAO parameters are found to be 0.002 in in the isotropic dilation $\\alpha$ and 0.003 in in the quadrupolar dilation $\\epsilon$. We also present BAO-only distance scale constraints from the anisotropic analysis of the correlation function. Our constraints on the angular diameter distance $D_A(z)$ and the Hubble parameter $H(z)$ including both statistical and theoretical systematic uncertainties are 1.5% and 2.8% at $z_{\\rm eff}=0.38$, 1.4% and 2.4% at $z_{\\rm eff}=0.51$, and 1....
Novel acoustic features for speech emotion recognition
Institute of Scientific and Technical Information of China (English)
ROH; Yong-Wan; KIM; Dong-Ju; LEE; Woo-Seok; HONG; Kwang-Seok
2009-01-01
This paper focuses on acoustic features that effectively improve the recognition of emotion in human speech.The novel features in this paper are based on spectral-based entropy parameters such as fast Fourier transform(FFT) spectral entropy,delta FFT spectral entropy,Mel-frequency filter bank(MFB) spectral entropy,and Delta MFB spectral entropy.Spectral-based entropy features are simple.They reflect frequency characteristic and changing characteristic in frequency of speech.We implement an emotion rejection module using the probability distribution of recognized-scores and rejected-scores.This reduces the false recognition rate to improve overall performance.Recognized-scores and rejected-scores refer to probabilities of recognized and rejected emotion recognition results,respectively.These scores are first obtained from a pattern recognition procedure.The pattern recognition phase uses the Gaussian mixture model(GMM).We classify the four emotional states as anger,sadness,happiness and neutrality.The proposed method is evaluated using 45 sentences in each emotion for 30 subjects,15 males and 15 females.Experimental results show that the proposed method is superior to the existing emotion recognition methods based on GMM using energy,Zero Crossing Rate(ZCR),linear prediction coefficient(LPC),and pitch parameters.We demonstrate the effectiveness of the proposed approach.One of the proposed features,combined MFB and delta MFB spectral entropy improves performance approximately 10% compared to the existing feature parameters for speech emotion recognition methods.We demonstrate a 4% performance improvement in the applied emotion rejection with low confidence score.
MODEL-INDEPENDENT EVIDENCE FOR DARK ENERGY EVOLUTION FROM BARYON ACOUSTIC OSCILLATIONS
Energy Technology Data Exchange (ETDEWEB)
Sahni, V. [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India); Shafieloo, A. [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Starobinsky, A. A., E-mail: varun@iucaa.ernet.in, E-mail: arman@apctp.org, E-mail: alstar@landau.ac.ru [Landau Institute for Theoretical Physics RAS, Moscow 119334 (Russian Federation)
2014-10-01
Baryon acoustic oscillations (BAOs) allow us to determine the expansion history of the universe, thereby shedding light on the nature of dark energy. Recent observations of BAOs in the Sloan Digital Sky Survey (SDSS) DR9 and DR11 have provided us with statistically independent measurements of H(z) at redshifts of 0.57 and 2.34, respectively. We show that these measurements can be used to test the cosmological constant hypothesis in a model-independent manner by means of an improved version of the Om diagnostic. Our results indicate that the SDSS DR11 measurement of H(z) = 222 ± 7 km s{sup –1} Mpc{sup –1} at z = 2.34, when taken in tandem with measurements of H(z) at lower redshifts, imply considerable tension with the standard ΛCDM model. Our estimation of the new diagnostic Omh {sup 2} from SDSS DR9 and DR11 data, namely, Omh {sup 2} ≈ 0.122 ± 0.01, which is equivalent to Ω{sub 0m} h {sup 2} for the spatially flat ΛCDM model, is in tension with the value Ω{sub 0m} h {sup 2} = 0.1426 ± 0.0025 determined for ΛCDM from Planck+WP. This tension is alleviated in models in which the cosmological constant was dynamically screened (compensated) in the past. Such evolving dark energy models display a pole in the effective equation of state of dark energy at high redshifts, which emerges as a smoking gun test for these theories.
Baryonic acoustic oscillations from 21 cm intensity mapping: the Square Kilometre Array case
Villaescusa-Navarro, Francisco; Alonso, David; Viel, Matteo
2017-04-01
We quantitatively investigate the possibility of detecting baryonic acoustic oscillations (BAO) using single-dish 21 cm intensity mapping observations in the post-reionization era. We show that the telescope beam smears out the isotropic BAO signature and, in the case of the Square Kilometre Array (SKA) instrument, makes it undetectable at redshifts z ≳ 1. We however demonstrate that the BAO peak can still be detected in the radial 21 cm power spectrum and describe a method to make this type of measurements. By means of numerical simulations, containing the 21 cm cosmological signal as well as the most relevant Galactic and extra-Galactic foregrounds and basic instrumental effect, we quantify the precision with which the radial BAO scale can be measured in the 21 cm power spectrum. We systematically investigate the signal to noise and the precision of the recovered BAO signal as a function of cosmic variance, instrumental noise, angular resolution and foreground contamination. We find that the expected noise levels of SKA would degrade the final BAO errors by ∼5 per cent with respect to the cosmic-variance limited case at low redshifts, but that the effect grows up to ∼65 per cent at z ∼ 2-3. Furthermore, we find that the radial BAO signature is robust against foreground systematics, and that the main effect is an increase of ∼20 per cent in the final uncertainty on the standard ruler caused by the contribution of foreground residuals as well as the reduction in sky area needed to avoid high-foreground regions. We also find that it should be possible to detect the radial BAO signature with high significance in the full redshift range. We conclude that a 21 cm experiment carried out by the SKA should be able to make direct measurements of the expansion rate H(z) with measure the expansion with competitive per cent level precision on redshifts z ≲ 2.5.
Beutler, Florian; Seo, Hee-Jong; Ross, Ashley J.; McDonald, Patrick; Saito, Shun; Bolton, Adam S.; Brownstein, Joel R.; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Font-Ribera, Andreu; Grieb, Jan Niklas; Hand, Nick; Kitaura, Francisco-Shu; Modi, Chirag; Nichol, Robert C.; Percival, Will J.; Prada, Francisco; Rodriguez-Torres, Sergio; Roe, Natalie A.; Ross, Nicholas P.; Salazar-Albornoz, Salvador; Sánchez, Ariel G.; Schneider, Donald P.; Slosar, Anže; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A.
2017-01-01
We analyse the baryon acoustic oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in the Fourier space, using the power spectrum monopole and quadrupole. The data set includes 1198 006 galaxies over the redshift range 0.2 < z < 0.75. We divide this data set into three (overlapping) redshift bins with the effective redshifts zeff = 0.38, 0.51 and 0.61. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as ˜1000 MultiDark-Patchy mock catalogues that mimic the BOSS-DR12 target selection. We apply density field reconstruction to enhance the BAO signal-to-noise ratio. By including the power spectrum quadrupole we can separate the line of sight and angular modes, which allows us to constrain the angular diameter distance DA(z) and the Hubble parameter H(z) separately. We obtain two independent 1.6 and 1.5 per cent constraints on DA(z) and 2.9 and 2.3 per cent constraints on H(z) for the low (zeff = 0.38) and high (zeff = 0.61) redshift bin, respectively. We obtain two independent 1 and 0.9 per cent constraints on the angular averaged distance DV(z), when ignoring the Alcock-Paczynski effect. The detection significance of the BAO signal is of the order of 8σ (post-reconstruction) for each of the three redshift bins. Our results are in good agreement with the Planck prediction within Λ cold dark matter. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.
Nishimichi, Takahiro; Nakamichi, Masashi; Taruya, Atsushi; Yahata, Kazuhiro; Shirata, Akihito; Saito, Shun; Nomura, Hidenori; Yamamoto, Kazuhiro; Suto, Yasushi
2007-01-01
An acoustic oscillation of the primeval photon-baryon fluid around the decoupling time imprints a characteristic scale in the galaxy distribution today, known as the baryon acoustic oscillation (BAO) scale. Several on-going and/or future galaxy surveys aim at detecting and precisely determining the BAO scale so as to trace the expansion history of the universe. We consider nonlinear and redshift-space distortion effects on the shifts of the BAO scale in $k$-space using perturbation theory. The resulting shifts are indeed sensitive to different choices of the definition of the BAO scale, which needs to be kept in mind in the data analysis. We present a toy model to explain the physical behavior of the shifts. We find that the BAO scale defined as in Percival et al. (2007) indeed shows very small shifts ($\\lesssim$ 1%) relative to the prediction in {\\it linear theory} in real space. The shifts can be predicted accurately for scales where the perturbation theory is reliable.
Ross, Ashley J.; Beutler, Florian; Chuang, Chia-Hsun; Pellejero-Ibanez, Marcos; Seo, Hee-Jong; Vargas-Magaña, Mariana; Cuesta, Antonio J.; Percival, Will J.; Burden, Angela; Sánchez, Ariel G.; Grieb, Jan Niklas; Reid, Beth; Brownstein, Joel R.; Dawson, Kyle S.; Eisenstein, Daniel J.; Ho, Shirley; Kitaura, Francisco-Shu; Nichol, Robert C.; Olmstead, Matthew D.; Prada, Francisco; Rodríguez-Torres, Sergio A.; Saito, Shun; Salazar-Albornoz, Salvador; Schneider, Donald P.; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Wang, Yuting; White, Martin; Zhao, Gong-bo
2017-01-01
We present baryon acoustic oscillation (BAO) scale measurements determined from the clustering of 1.2 million massive galaxies with redshifts 0.2 image quality and Galactic extinction, and weights to account for density relationships intrinsic to the imaging and spectroscopic portions of the survey. We simulate the observed systematic trends in mock galaxy samples and demonstrate that they impart no bias on BAO scale measurements and have a minor impact on the recovered statistical uncertainty. We measure transverse and radial BAO distance measurements in 0.2 < z < 0.5, 0.5 < z < 0.75, and (overlapping) 0.4 < z < 0.6 redshift bins. In each redshift bin, we obtain a precision that is 2.7 per cent or better on the radial distance and 1.6 per cent or better on the transverse distance. The combination of the redshift bins represents 1.8 per cent precision on the radial distance and 1.1 per cent precision on the transverse distance. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.
Measuring Norwegian dialect distances using acoustic features
Heeringa, Wilbert; Johnson, Keith; Gooskens, Charlotte
2009-01-01
Levenshtein distance has become a popular tool for measuring linguistic dialect distances, and has been applied to Irish Gaelic, Dutch, German and other dialect groups. The method, in the current state of the art, depends upon phonetic transcriptions, even when acoustic differences are used the numb
Hoeneisen, B
2016-01-01
We define Baryon Acoustic Oscillation (BAO) distances $\\hat{d}_\\alpha(z, z_c)$, $\\hat{d}_z(z, z_c)$, and $\\hat{d}_/(z, z_c)$ that do not depend on cosmological parameters. These BAO distances are measured as a function of redshift $z$ with the Sloan Digital Sky Survey (SDSS) data release DR12. From these BAO distances alone, or together with the correlation angle $\\theta_\\textrm{MC}$ of the Cosmic Microwave Background (CMB), we constrain the cosmological parameters in several scenarios. We find $4.3 \\sigma$ tension between the BAO plus $\\theta_\\textrm{MC}$ data and a cosmology with flat space and constant dark energy density $\\Omega_\\textrm{DE}(a)$. Releasing one and/or the other of these constraints obtains agreement with the data. We measure $\\Omega_\\textrm{DE}(a)$ as a function of $a$.
Moldenhauer, Jacob; Thompson, John; Easson, Damien A
2010-01-01
We consider recently proposed higher order gravity models where the action is built from the Einstein-Hilbert action plus a function f(G) of the Gauss-Bonnet invariant. The models were previously shown to pass physical acceptability conditions as well as solar system tests. In this paper, we compare the models to combined data sets of supernovae, baryon acoustic oscillations, and constraints from the CMB surface of last scattering. We find that the models provide fits to the data that are close to those of the LCDM concordance model. The results provide a pool of higher order gravity models that pass these tests and need to be compared to constraints from large scale structure and full CMB analysis.
Energy Technology Data Exchange (ETDEWEB)
Kirkby, David; Margala, Daniel; Blomqvist, Michael [Department of Physics and Astronomy, University of California, Irvine, 92697 (United States); Slosar, Anže [Brookhaven National Laboratory, Blgd 510, Upton NY 11375 (United States); Bailey, Stephen; Carithers, Bill [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Busca, Nicolás G.; Bautista, Julian E. [APC, Université Paris Diderot-Paris 7, CNRS/IN2P3, CEA, Observatoire de Paris, 10, rue A. Domon and L. Duquet, Paris (France); Delubac, Timothée; Rich, James; Palanque-Delabrouille, Nathalie [CEA, Centre de Saclay, IRFU, F-91191 Gif-sur-Yvette (France); Brownstein, Joel R.; Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Salt Lake City, UT 84112 (United States); Croft, Rupert A.C. [Bruce and Astrid McWilliams Center for Cosmology, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Font-Ribera, Andreu [Institute of Theoretical Physics, University of Zurich, 8057 Zurich (Switzerland); Miralda-Escudé, Jordi [Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia (Spain); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Nichol, Robert C. [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Pâris, Isabelle; Petitjean, Patrick, E-mail: dkirkby@uci.edu [Université Paris 6 et CNRS, Institut d' Astrophysique de Paris, 98bis blvd. Arago, 75014 Paris (France); and others
2013-03-01
We describe fitting methods developed to analyze fluctuations in the Lyman-α forest and measure the parameters of baryon acoustic oscillations (BAO). We apply our methods to BOSS Data Release 9. Our method is based on models of the three-dimensional correlation function in physical coordinate space, and includes the effects of redshift-space distortions, anisotropic non-linear broadening, and broadband distortions. We allow for independent scale factors along and perpendicular to the line of sight to minimize the dependence on our assumed fiducial cosmology and to obtain separate measurements of the BAO angular and relative velocity scales. Our fitting software and the input files needed to reproduce our main BOSS Data Release 9 results are publicly available.
Prediction of acoustic feature parameters using myoelectric signals.
Lee, Ki-Seung
2010-07-01
It is well-known that a clear relationship exists between human voices and myoelectric signals (MESs) from the area of the speaker's mouth. In this study, we utilized this information to implement a speech synthesis scheme in which MES alone was used to predict the parameters characterizing the vocal-tract transfer function of specific speech signals. Several feature parameters derived from MES were investigated to find the optimal feature for maximization of the mutual information between the acoustic and the MES features. After the optimal feature was determined, an estimation rule for the acoustic parameters was proposed, based on a minimum mean square error (MMSE) criterion. In a preliminary study, 60 isolated words were used for both objective and subjective evaluations. The results showed that the average Euclidean distance between the original and predicted acoustic parameters was reduced by about 30% compared with the average Euclidean distance of the original parameters. The intelligibility of the synthesized speech signals using the predicted features was also evaluated. A word-level identification ratio of 65.5% and a syllable-level identification ratio of 73% were obtained through a listening test.
Keselman, J. A.; Nusser, A.
2017-01-01
NoAM for "No Action Method" is a framework for reconstructing the past orbits of observed tracers of the large scale mass density field. It seeks exact solutions of the equations of motion (EoM), satisfying initial homogeneity and the final observed particle (tracer) positions. The solutions are found iteratively reaching a specified tolerance defined as the RMS of the distance between reconstructed and observed positions. Starting from a guess for the initial conditions, NoAM advances particles using standard N-body techniques for solving the EoM. Alternatively, the EoM can be replaced by any approximation such as Zel'dovich and second order perturbation theory (2LPT). NoAM is suitable for billions of particles and can easily handle non-regular volumes, redshift space, and other constraints. We implement NoAM to systematically compare Zel'dovich, 2LPT, and N-body dynamics over diverse configurations ranging from idealized high-res periodic simulation box to realistic galaxy mocks. Our findings are (i) Non-linear reconstructions with Zel'dovich, 2LPT, and full dynamics perform better than linear theory only for idealized catalogs in real space. For realistic catalogs, linear theory is the optimal choice for reconstructing velocity fields smoothed on scales {buildrel > over {˜}} 5 h^{-1}{Mpc}.(ii) all non-linear back-in-time reconstructions tested here, produce comparable enhancement of the baryonic oscillation signal in the correlation function.
Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J.; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J.; Ross, Ashley J.; Sánchez, Ariel G.; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo
2016-04-01
Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3 σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.
Gaztañaga, E; Castander, F; Crocce, M; Fosalba, P
2008-01-01
We present the 3-point function $\\xi_3$ and $Q_3=\\xi_3/\\xi_2^2$ for a spectroscopic volume limited sample of 40,000 luminous red galaxies (LRG) from the Sloan Digital Sky Survey DR6. We find a strong (S/N>6) detection of Q_3 on scales of 55-125 Mpc/h, with a well defined peak around 105 Mpc/h in all $\\xi_2$, $\\xi_3$ and Q_3, in excellent agreement with the predicted shape and location of the imprint of the baryon acoustic oscillations (BAO). We use very large simulations (from a cubic box of L=7680 Mpc/h) to asses and test the significance of our measurement. This detection demonstrates the non-linear growth of structure by gravitational instability between z=1000 and the present. Our measurements show the expected shape for Q_3 as a function of the triangular configuration. This provides a first direct measurement of the non-linear mode coupling coefficients of density and velocity fluctuations which, on these large scales, are independent of cosmic time, the amplitude of fluctuations or cosmological paramet...
New constraints on H_0 and Omega_M from SZE/X-RAY data and Baryon Acoustic Oscillations
Holanda, R F L; Lima, J A S
2008-01-01
The Hubble constant, $H_0$, sets the scale of the size and age of the Universe and its determination from independent methods is still worthwhile to be investigated. In this article, by using the Sunyaev-Zel`dovich effect and X-ray surface brightness data from 38 galaxy clusters observed by Bonamente {\\it{et al.}} (2006), we obtain a new estimate of $H_0$ in the context of a flat $\\Lambda$CDM model. There is a degeneracy on the mass density parameter ($\\Omega_{m}$) which is broken by applying a joint analysis involving the baryon acoustic oscillations (BAO) as given by Sloan Digital Sky Survey (SDSS). This happens because the BAO signature does not depend on $H_0$. Our basic finding is that a joint analysis involving these tests yield $H_0= 0.765^{+0.035}_{-0.033}$ km s$^{-1}$ Mpc$^{-1}$ and $\\Omega_{m}=0.27^{+0.03}_{-0.02}$. Since the hypothesis of spherical geometry assumed by Bonamente {\\it {et al.}} is questionable, we have also compared the above results to a recent work where a sample of triaxial galaxy...
Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J; Ross, Ashley J; Sánchez, Ariel G; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo
2016-04-29
Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.
Hütsi, Gert; Kolodzig, Alexander; Sunyaev, Rashid
2014-01-01
We investigate the potential of large X-ray selected AGN samples for detecting baryonic acoustic oscillations (BAO). Though AGN selection in X-ray band is very clean and efficient, it does not provide us redshift information, and thus needs to be complemented with an optical follow-up. The main focus of this study is: (i) to find necessary requirements to the quality of the optical follow-up and (ii) to formulate the optimal strategy of the X-ray survey, in order to detect the BAO. We demonstrate that redshift accuracy of sigma_0=10^{-2} and the catastrophic failure rate of <~30% are sufficient for a reliable detection of BAO in future X-ray surveys. Spectroscopic quality redshifts combined with negligible fraction of catastrophic failures will boost the confidence level of the BAO detection by a factor of ~2. For the meaningful detection of BAO, X-ray surveys of moderate depth of F_lim ~ few 10^{-15} erg/s/cm^2 covering sky area from a ~few hundred to ~ten thousand square degrees are required. The optimal...
Automatic computational models of acoustical category features: Talking versus singing
Gerhard, David
2003-10-01
The automatic discrimination between acoustical categories has been an increasingly interesting problem in the fields of computer listening, multimedia databases, and music information retrieval. A system is presented which automatically generates classification models, given a set of destination classes and a set of a priori labeled acoustic events. Computational models are created using comparative probability density estimations. For the specific example presented, the destination classes are talking and singing. Individual feature models are evaluated using two measures: The Kologorov-Smirnov distance measures feature separation, and accuracy is measured using absolute and relative metrics. The system automatically segments the event set into a user-defined number (n) of development subsets, and runs a development cycle for each set, generating n separate systems, each of which is evaluated using the above metrics to improve overall system accuracy and to reduce inherent data skew from any one development subset. Multiple features for the same acoustical categories are then compared for underlying feature overlap using cross-correlation. Advantages of automated computational models include improved system development and testing, shortened development cycle, and automation of common system evaluation tasks. Numerical results are presented relating to the talking/singing classification problem.
Cuesta, Antonio J; Beutler, Florian; Bolton, Adam S; Brownstein, Joel R; Eisenstein, Daniel J; Gil-Marín, Héctor; Ho, Shirley; McBride, Cameron K; Maraston, Claudia; Padmanabhan, Nikhil; Percival, Will J; Reid, Beth A; Ross, Ashley J; Ross, Nicholas P; Sánchez, Ariel G; Schlegel, David J; Schneider, Donald P; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Verde, Licia; White, Martin
2015-01-01
We present distance scale measurements from the baryon acoustic oscillation signal in the CMASS and LOWZ samples from the Data Release 12 of the Baryon Oscillation Spectroscopic Survey (BOSS). The total volume probed is 14.5 Gpc$^3$, a 10% increment from Data Release 11. From an analysis of the spherically averaged correlation function, we infer a distance to $z=0.57$ of $D_V(z)r^{\\rm fid}_{\\rm d}/r_ {\\rm d}=2028\\pm19$ Mpc and a distance to $z=0.32$ of $D_V(z)r^{\\rm fid}_{\\rm d}/r_{\\rm d}=1263\\pm21$ Mpc assuming a cosmology in which $r^{\\rm fid}_{\\rm d}=147.10$ Mpc. From the anisotropic analysis, we find an angular diameter distance to $z=0.57$ of $D_{\\rm A}(z)r^{\\rm fid}_{\\rm d}/r_{\\rm d}=1401\\pm19$ Mpc and a distance to $z=0.32$ of $981\\pm20$ Mpc, a 1.4% and 2.0% measurement respectively. The Hubble parameter at $z=0.57$ is $H(z)r_{\\rm d}/r^{\\rm fid}_{\\rm d}=100.3\\pm3.4$ km s$^{-1}$ Mpc$^{-1}$ and its value at $z=0.32$ is $79.2\\pm5.5$ km s$^{-1}$ Mpc$^{-1}$, a 3.4% and 6.9% measurement respectively. These c...
Lee, Jung-Won; Choi, Jeung-Yoon; Kang, Hong-Goo
2012-02-01
Knowledge-based speech recognition systems extract acoustic cues from the signal to identify speech characteristics. For channel-deteriorated telephone speech, acoustic cues, especially those for stop consonant place, are expected to be degraded or absent. To investigate the use of knowledge-based methods in degraded environments, feature extrapolation of acoustic-phonetic features based on Gaussian mixture models is examined. This process is applied to a stop place detection module that uses burst release and vowel onset cues for consonant-vowel tokens of English. Results show that classification performance is enhanced in telephone channel-degraded speech, with extrapolated acoustic-phonetic features reaching or exceeding performance using estimated Mel-frequency cepstral coefficients (MFCCs). Results also show acoustic-phonetic features may be combined with MFCCs for best performance, suggesting these features provide information complementary to MFCCs.
The Effect of Dynamic Acoustical Features on Musical Timbre
Hajda, John M.
Timbre has been an important concept for scientific exploration of music at least since the time of Helmholtz ([1877] 1954). Since Helmholtz's time, a number of studies have defined and investigated acoustical features of musical instrument tones to determine their perceptual importance, or salience (e.g., Grey, 1975, 1977; Kendall, 1986; Kendall et al., 1999; Luce and Clark, 1965; McAdams et al., 1995, 1999; Saldanha and Corso, 1964; Wedin and Goude, 1972). Most of these studies have considered only nonpercussive, or continuant, tones of Western orchestral instruments (or emulations thereof). In the past few years, advances in computing power and programming have made possible and affordable the definition and control of new acoustical variables. This chapter gives an overview of past and current research, with a special emphasis on the time-variant aspects of musical timbre. According to common observation, "music is made of tones in time" (Spaeth, 1933). We will also consider the fact that music is made of "time in tones."
Werner, Stefan
2012-01-01
Arvustus: Pärtel Lippus. The acoustic features and perception of the Estonian quantity system. Tartu : Tartu University Press, 2011. (Dissertationes philologiae estonicae Universitatis Tartuensis ; 29)
Indian Academy of Sciences (India)
Torsten Leddig
2012-11-01
From inclusive measurements, it is known that about 7% of all mesons decay into final states with baryons. In these decays, some striking features become visible compared to mesonic decays. The largest branching fractions come with quite moderate multiplicities of 3–4 hadrons. We note that two-body decays to baryons are suppressed relative to three- and four-body decays. In most of these analyses, the invariant baryon–antibaryon mass shows an enhancement near the threshold. We propose a phenomenological interpretation of this quite common feature of hadronization to baryons.
DEFF Research Database (Denmark)
Gade, Anders Christian; Siebein, G. W.; Chiang, W.
1993-01-01
A statistical analysis of architectural features and detailed objective acoustical measurements made in eight concert halls and several multi-use rooms in their concert configuration will be presented. A method for evaluating the architectural features of rooms that affect their acoustical...
Flow and acoustic features of a supersonic tapered nozzle
Gutmark, E.; Bowman, H. L.; Schadow, K. C.
1992-05-01
The acoustic and flow characteristics of a supersonic tapered jet were measured for free and shrouded flow configurations. Measurements were performed for a full range of pressure ratios including over- and underexpanded and design conditions. The supersonic tapered jet is issued from a converging-diverging nozzle with a 3∶1 rectangular slotted throat and a conical diverging section leading to a circular exit. The jet was compared to circular and rectangular supersonic jets operating at identical conditions. The distinct feature of the jet is the absence of screech tones in the entire range of operation. Its near-field pressure fluctuations have a wide band spectrum in the entire range of measurements, for Mach numbers of 1 to 2.5, for over- and underexpanded conditions. The free jet's spreading rate is nearly constant and similar to the rectangular jet, and in a shroud, the pressure drop it is inducing is linearly proportional to the primary jet Mach number. This behavior persisted in high adverse pressure gradients at overexpanded conditions, and with nozzle divergence angles of up to 35°, no inside flow separation was observed.
Page, P R
2003-01-01
We review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modelled by both the bag and flux-tube models. The low-lying hybrid baryon is N 1/2^+ with a mass of 1.5-1.8 GeV. Hybrid baryons can be produced in the glue-rich processes of diffractive gamma N and pi N production, Psi decays and p pbar annihilation.
Oset, E; Sun, Bao Xi; Vacas, M J Vicente; Ramos, A; Gonzalez, P; Vijande, J; Torres, A Martinez; Khemchandani, K
2009-01-01
In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the $\\Lambda(1405)$ resonance, as well as the prediction of one $1/2^+$ baryon state around 1920 MeV which might have been seen in the $\\gamma p \\to K^+ \\Lambda$ reaction.
Energy Technology Data Exchange (ETDEWEB)
Oset, E. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Sarkar, S. [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700064 (India); Sun Baoxi [Institute of Theoretical Physics, College of Applied Sciences, Beijing University of Technology, Beijing 100124 (China); Vicente Vacas, M.J. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Ramos, A. [Departament d' Estructura i Constituents de la Materia and Institut de Ciencies del Cosmos, Universitat de Barcelona, 08028 Barcelona (Spain); Gonzalez, P. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Vijande, J. [Departamento de Fisica Atomica Molecular y Nuclear and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Martinez Torres, A. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Khemchandani, K. [Centro de Fisica Computacional, Departamento de Fisica, Universidade de Coimbra, P-3004-516 Coimbra (Portugal)
2010-04-01
In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the {lambda}(1405) resonance, as well as the prediction of one 1/2{sup +} baryon state around 1920 MeV which might have been seen in the {gamma}p{yields}K{sup +}{lambda} reaction.
Hoeneisen, B
2016-01-01
We define Baryon Acoustic Oscillation (BAO) observables $\\hat{d}_\\alpha(z, z_c)$, $\\hat{d}_z(z, z_c)$, and $\\hat{d}_/(z, z_c)$ that do not depend on any cosmological parameter. From each of these observables we recover the BAO correlation length $d_\\textrm{BAO}$ with its respective dependence on cosmological parameters. These BAO observables are measured as a function of redshift $z$ with the Sloan Digital Sky Survey (SDSS) data release DR12. From the BAO measurements alone, or together with the correlation angle $\\theta_\\textrm{MC}$ of the Cosmic Microwave Background (CMB), we constrain the curvature parameter $\\Omega_k$ and the dark energy density $\\Omega_\\textrm{DE}(a)$ as a function of the expansion parameter $a$ in several scenarios. These observables are further constrained with external measurements of $h$ and $\\Omega_\\textrm{b} h^2$. We find some tension between the data and a cosmology with flat space and constant dark energy density $\\Omega_\\textrm{DE}(a)$.
Xu, Lixin
2013-01-01
In this paper, we use the joint measurement of geometry and growth rate from matter density perturbations to constrain the holographic dark energy model. The geometry measurement includes type Ia supernovae (SN Ia) Union2.1, full information of cosmic microwave background (CMB) from WMAP-7yr and baryon acoustic oscillation (BAO). For the growth rate of matter density perturbations, the results $f(z)\\sigma_8(z)$ measured from the redshift-space distortion (RSD) in the galaxy power spectrum are employed. Via the Markov Chain Monte Carlo method, we try to constrain the model parameters space. The jointed constraint shows that $c=0.750_{- 0.0999- 0.173- 0.226}^{+ 0.0976+ 0.215+ 0.319}$ and $\\sigma_8=0.763_{- 0.0465- 0.0826- 0.108}^{+ 0.0477+ 0.0910+ 0.120}$ with $1,2,3\\sigma$ regions. After marginalizing the other irrelevant model parameters, we show the evolution of the equation of state of HDE with respect to the redshift $z$. Though the current cosmic data points favor a phantom like HDE Universe for the mean ...
Gaztanaga, Enrique; Hui, Lam
2008-01-01
This is the 4th paper in a series where we study the clustering of LRG galaxies in the latest spectroscopic SDSS data release, DR6, which has 75000 LRG galaxies sampling 1.1 (Gpc/h)^3 to z=0.47. Here we study the 2-point correlation function, separated in perpendicular (sigma) and line-of-sight (pi) directions. We find a significant detection of a peak at r=110 Mpc/h, which shows as a circular ring in the sigma-pi plane. There is also a significant detection of the peak along the line-of-sight (LOS) direction both in sub-samples at low, z=0.15-30, and high redshifts, z=0.40-0.47. The overall shape and location of the peak is consistent with baryon acoustic oscillations (BAO). The amplitude in the line-of-sight direction, however, is larger than conventional expectations. We argue this is due to magnification bias. Because the data is shot noise dominated, a lensing boost in signal translates into a boost in S/N. We take advantage of this high S/N to produce, for the first time, a direct measurement of the Hub...
Soumagnac, M T; Sabiu, C G; Loeb, A; Ross, A J; Abdalla, F B; Balan, S T; Lahav, O
2016-01-01
Baryon Acoustic Oscillations (BAOs) in the early Universe are predicted to leave an as yet undetected signature on the relative clustering of total mass versus luminous matter. A detection of this effect would provide an important confirmation of the standard cosmological paradigm and constrain alternatives to dark matter as well as non-standard fluctuations such as Compensated Isocurvature Perturbations (CIPs). We conduct the first observational search for this effect, by comparing the number-weighted and luminosity-weighted correlation functions, using the SDSS-III BOSS Data Release 10 CMASS sample. When including CIPs in our model, we formally obtain evidence at $3.2\\sigma$ of the relative clustering signature and a limit that matches the existing upper limits on the amplitude of CIPs. However, various tests suggest that these results are not yet robust, perhaps due to systematic biases in the data. The method developed in this Letter, used with more accurate future data such as that from DESI, is likely t...
Energy Technology Data Exchange (ETDEWEB)
Farooq, Omer, E-mail: omer@phys.ksu.edu; Ratra, Bharat, E-mail: ratra@phys.ksu.edu
2013-06-10
We use the Busca et al. (2012) [11] measurement of the Hubble parameter at redshift z=2.3 in conjunction with 21 lower z measurements, from Simon, Verde, and Jimenez (2005) [81], Gaztañaga, Cabré, and Hui (2009) [33], Stern et al. (2010) [85], and Moresco et al. (2012) [52], to place constraints on model parameters of constant and time-evolving dark energy cosmological models. The inclusion of the new Busca et al. (2012) [11] measurement results in H(z) constraints significantly more restrictive than those derived by Farooq, Mania, and Ratra (2013) [31]. These H(z) constraints are now more restrictive than those that follow from current Type Ia supernova (SNIa) apparent magnitude measurements Suzuki et al. (2012) [86]. The H(z) constraints by themselves require an accelerating cosmological expansion at about 2 σ confidence level, depending on cosmological model and Hubble constant prior used in the analysis. A joint analysis of H(z), baryon acoustic oscillation peak length scale, and SNIa data favors a spatially-flat cosmological model currently dominated by a time-independent cosmological constant but does not exclude slowly-evolving dark energy density.
Feature Abstracting and Identification of Acoustic Target in the Battle Field Based on EMD
Institute of Scientific and Technical Information of China (English)
CAI Shao-chuan; ZHANG Guo-wei
2007-01-01
The method of empirical mode decomposition(EMD) was used for the signal processing and feature abstracting of acoustic target of battle field.According to the signal's characteristics of different targets, some feature vectors in token of the target properties were constructed and abstracted.In the basis of feature abstracting and statistic analysis for large amount of sample signal of the targets, using the maximum subjection classification method based on the fuzzy synthesis judgment, the three typical acoustic target helicopter, tank and traffic vehicle were recognized.
Feature extraction from time domain acoustic signatures of weapons systems fire
Yang, Christine; Goldman, Geoffrey H.
2014-06-01
The U.S. Army is interested in developing algorithms to classify weapons systems fire based on their acoustic signatures. To support this effort, an algorithm was developed to extract features from acoustic signatures of weapons systems fire and applied to over 1300 signatures. The algorithm filtered the data using standard techniques then estimated the amplitude and time of the first five peaks and troughs and the location of the zero crossing in the waveform. The results were stored in Excel spreadsheets. The results are being used to develop and test acoustic classifier algorithms.
Speech recognition based on a combination of acoustic features with articulatory information
Institute of Scientific and Technical Information of China (English)
LU Xugang; DANG Jianwu
2005-01-01
The contributions of the static and dynamic articulatory information to speech recognition were evaluated, and the recognition approaches by combining the articulatory information with acoustic features were discussed. Articulatory movements were observed by the Electromagnetic Articulographic System for reading speech, and the speech signals were recorded simultaneously. First, we conducted several speech recognition experiments by using articulatory features alone, consisting of a number of specific articulatory channels, to evaluate the contribution of each observation point on articulators. Then, the displacement information of articulatory data were combined with acoustic features directly and adopted in speech recognition. The results show that articulatory information provides with additional information for speech recognition which is not encoded in acoustic features. Furthermore, the contribution of the dynamic information of the articulatory data was evaluated by combining them in speech recognition. It is found that the second derivative of articulatory information provided quite larger contribution to speech recognition comparing with the second derivative of acoustical information. At last, the combination methods of articulatory features and acoustic ones were investigated for speech recognition. The basic approach isthat the Bayesian Network (BN) is added to each state of HMM, where the articulatory information is represented by the BN as a factor of observed signals during training the model and is marginalized as a hidden variable in recognition stage. Results based on this HMM/BN framework show a better performance than the traditional method.
Acoustic features to arousal and identity in disturbance calls of tree shrews (Tupaia belangeri).
Schehka, Simone; Zimmermann, Elke
2009-11-05
Across mammalian species, comparable morphological and physiological constraints in the production of airborne vocalisations are suggested to lead to commonalities in the vocal conveyance of acoustic features to specific attributes of callers, such as arousal and individual identity. To explore this hypothesis we examined intra- and interindividual acoustic variation in chatter calls of tree shrews (Tupaia belangeri). The calls were induced experimentally by a disturbance paradigm and related to two defined arousal states of a subject. The arousal state of an animal was primarily operationalised by the habituation of the subject to a new environment and additionally determined by behavioural indicators of stress in tree shrews (tail-position and piloerection). We investigated whether the arousal state and indexical features of the caller, namely individual identity and sex, are conveyed acoustically. Frame-by-frame videographic and multiparametric sound analyses revealed that arousal and identity, but not sex of a caller reliably predicted spectral-temporal variation in sound structure. Furthermore, there was no effect of age or body weight on individual-specific acoustic features. Similar results in another call type of tree shrews and comparable findings in other mammalian lineages provide evidence that comparable physiological and morphological constraints in the production of airborne vocalisations across mammals lead to commonalities in acoustic features conveying arousal and identity, respectively.
Combining Semantic and Acoustic Features for Valence and Arousal Recognition in Speech
DEFF Research Database (Denmark)
Karadogan, Seliz; Larsen, Jan
2012-01-01
design our own corpus that consists of 59 short movie clips with audio and text in subtitle format, rated by human subjects in arousal and valence (A-V) dimensions. For the acoustic part, we combine many features and use correlation based feature selection and apply support vector regression....... For the semantic part, we use the affective norms for English words (ANEW), that are rated also in A-V dimensions, as keywords and apply latent semantics analysis (LSA) on those words and words in the clips to estimate A-V values in the clips. Finally, the results of acoustic and semantic parts are combined. We...
Variability of Acoustic Features of Hypernasality and it’s Assessment
Directory of Open Access Journals (Sweden)
Shahina Haque
2016-09-01
Full Text Available Hypernasality (HP is observed across voiced phonemes uttered by Cleft-Palate (CP speakers with defective velopharyngeal (VP opening. HP assessment using signal processing technique is challenging due to the variability of acoustic features across various conditions such as speakers, speaking style, speaking rate, severity of HP etc. Most of the study for hypernasality (HP assessment is based on isolated sustained vowels under laboratory conditions. We measure the variability of acoustic features and detect HP using vowel /i/, /a/ and /u/ in continuous read speech with gradually increasing severity of HP of CP speakers. Linear predictive coding (LPC method is used for acoustic feature extraction. In first part of our study, we observe the variation in acoustic parameters within and across vowel category with gradually increasing HP. We observe that inter-speaker variability in spectral features among CP subjects for vowel /i/ is 0.96, /a/ has 1.13 and vowel /u/ has 2.05. The inter-speaker variability measurement suggests that high back vowel /u/ is mostly affected and has the highest variability. High front vowel /i/ is least affected and has the lowest variability with HP. In the second part, ratio of vowel space area (VSA of hypernasal and normal speech is calculated and used as a measure for HP detection. We observe that VSA spanned by CP subjects is 0.65 times less than isolated uttered Bangla nasal VSA and 0.43 times less than read speech uttered English oral VSA.
Fatigue Level Estimation of Bill Based on Acoustic Signal Feature by Supervised SOM
Teranishi, Masaru; Omatu, Sigeru; Kosaka, Toshihisa
Fatigued bills have harmful influence on daily operation of Automated Teller Machine(ATM). To make the fatigued bills classification more efficient, development of an automatic fatigued bill classification method is desired. We propose a new method to estimate bending rigidity of bill from acoustic signal feature of banking machines. The estimated bending rigidities are used as continuous fatigue level for classification of fatigued bill. By using the supervised Self-Organizing Map(supervised SOM), we estimate the bending rigidity from only the acoustic energy pattern effectively. The experimental result with real bill samples shows the effectiveness of the proposed method.
Acoustical features of two Mayan monuments at Chichen Itza: Accident or design?
Lubman, David
2002-11-01
Chichen Itza dominated the early postclassic Maya world, ca. 900-1200 C.E. Two of its colossal monuments, the Great Ball Court and the temple of Kukulkan, reflect the sophisticated, hybrid culture of a Mexicanized Maya civilization. The architecture seems intended for ceremony and ritual drama. Deducing ritual practices will advance the understanding of a lost civilization, but what took place there is largely unknown. Perhaps acoustical science can add value. Unexpected and unusual acoustical features can be interpreted as intriguing clues or irrelevant accidents. Acoustical advocates believe that, when combined with an understanding of the Maya worldview, acoustical features can provide unique insights into how the Maya designed and used theater spaces. At Chichen Itza's monuments, sound reinforcement features improve rulers and priests ability to address large crowds, and Ball Court whispering galleries permit speech communication over unexpectedly large distances. Handclaps at Kukulkan stimulate chirps that mimic a revered bird (''Kukul''), thus reinforcing cultic beliefs. A ball striking playing field wall stimulates flutter echoes at the Great Ball Court; their strength and duration arguably had dramatic, mythic, and practical significance. Interpretations of the possible mythic, magic, and political significance of sound phenomena at these Maya monuments strongly suggests intentional design.
Energy Technology Data Exchange (ETDEWEB)
Mukhopadhyay, N.C.
1986-01-01
The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)
Directory of Open Access Journals (Sweden)
Mauricio Holguín-Londoño
2016-01-01
Full Text Available Vibration and acoustic analysis actively support the nondestructive and noninvasive fault diagnostics of rotating machines at early stages. Nonetheless, the acoustic signal is less used because of its vulnerability to external interferences, hindering an efficient and robust analysis for condition monitoring (CM. This paper presents a novel methodology to characterize different failure signatures from rotating machines using either acoustic or vibration signals. Firstly, the signal is decomposed into several narrow-band spectral components applying different filter bank methods such as empirical mode decomposition, wavelet packet transform, and Fourier-based filtering. Secondly, a feature set is built using a proposed similarity measure termed cumulative spectral density index and used to estimate the mutual statistical dependence between each bandwidth-limited component and the raw signal. Finally, a classification scheme is carried out to distinguish the different types of faults. The methodology is tested in two laboratory experiments, including turbine blade degradation and rolling element bearing faults. The robustness of our approach is validated contaminating the signal with several levels of additive white Gaussian noise, obtaining high-performance outcomes that make the usage of vibration, acoustic, and vibroacoustic measurements in different applications comparable. As a result, the proposed fault detection based on filter bank similarity features is a promising methodology to implement in CM of rotating machinery, even using measurements with low signal-to-noise ratio.
Music-induced emotions can be predicted from a combination of brain activity and acoustic features.
Daly, Ian; Williams, Duncan; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Weaver, James; Miranda, Eduardo; Nasuto, Slawomir J
2015-12-01
It is widely acknowledged that music can communicate and induce a wide range of emotions in the listener. However, music is a highly-complex audio signal composed of a wide range of complex time- and frequency-varying components. Additionally, music-induced emotions are known to differ greatly between listeners. Therefore, it is not immediately clear what emotions will be induced in a given individual by a piece of music. We attempt to predict the music-induced emotional response in a listener by measuring the activity in the listeners electroencephalogram (EEG). We combine these measures with acoustic descriptors of the music, an approach that allows us to consider music as a complex set of time-varying acoustic features, independently of any specific music theory. Regression models are found which allow us to predict the music-induced emotions of our participants with a correlation between the actual and predicted responses of up to r=0.234,pemotions can be predicted by their neural activity and the properties of the music. Given the large amount of noise, non-stationarity, and non-linearity in both EEG and music, this is an encouraging result. Additionally, the combination of measures of brain activity and acoustic features describing the music played to our participants allows us to predict music-induced emotions with significantly higher accuracies than either feature type alone (p<0.01).
Meyer, Julien
2007-01-01
Whistled speech is a little studied local use of language shaped by several cultures of the world either for distant dialogues or for rendering traditional songs. This practice consists of an emulation of the voice thanks to a simple modulated pitch. It is therefore the result of a transformation of the vocal signal that implies simplifications in the frequency domain. The whistlers adapt their productions to the way each language combines the qualities of height perceived simultaneously by the human ear in the complex frequency spectrum of the spoken or sung voice (pitch, timbre). As a consequence, this practice underlines key acoustic cues for the intelligibility of the concerned languages. The present study provides an analysis of the acoustic and phonetic features selected by whistled speech in several traditions either in purely oral whistles (Spanish, Turkish, Mazatec) or in whistles produced with an instrument like a leaf (Akha, Hmong). It underlines the convergences with the strategies of the singing ...
Effect of train type on annoyance and acoustic features of the rolling noise.
Kasess, Christian H; Noll, Anton; Majdak, Piotr; Waubke, Holger
2013-08-01
This study investigated the annoyance associated with the rolling noise of different railway stock. Passbys of nine train types (passenger and freight trains) equipped with different braking systems were recorded. Acoustic features showed a clear distinction of the braking system with the A-weighted energy equivalent sound level (LAeq) showing a difference in the range of 10 dB between cast-iron braked trains and trains with disk or K-block brakes. Further, annoyance was evaluated in a psychoacoustic experiment where listeners rated the relative annoyance of the rolling noise for the different train types. Stimuli with and without the original LAeq differences were tested. For the original LAeq differences, the braking system significantly affected the annoyance with cast-iron brakes being most annoying, most likely as a consequence of the increased wheel roughness causing an increased LAeq. Contribution of the acoustic features to the annoyance was investigated revealing that the LAeq explained up to 94% of the variance. For the stimuli without differences in the LAeq, cast-iron braked train types were significantly less annoying and the spectral features explained up to 60% of the variance in the annoyance. The effect of these spectral features on the annoyance of the rolling noise is discussed.
Gudnason, Sven Bjarke
2014-01-01
We study a Skyrme-type model with a potential term motivated by Bose-Einstein condensates (BECs), which we call the BEC Skyrme model. We consider two flavors of the model, the first is the Skyrme model and the second has a sixth-order derivative term instead of the Skyrme term; both with the added BEC-motivated potential. The model contains toroidally shaped Skyrmions and they are characterized by two integers P and Q, representing the winding numbers of two complex scalar fields along the toroidal and poloidal cycles of the torus, respectively. The baryon number is B=PQ. We find stable Skyrmion solutions for P=1,2,3,4,5 with Q=1, while for P=6 and Q=1 it is only metastable. We further find that configurations with higher Q>1 are all unstable and split into Q configurations with Q=1.
Exactly solvable models of baryon structure
Bijker, R
1998-01-01
We present a qualitative analysis of the gross features of baryon spectroscopy (masses and form factors) in terms of various exactly solvable models. It is shown that a collective model, in which baryon resonances are interpreted as rotations and vibrations of an oblate symmetric top, provides a good starting point for a more detailed quantitative study.
Exactly solvable models of baryon structure
Energy Technology Data Exchange (ETDEWEB)
Bijker, R. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico. Apartado Postal 70-543, 04510 Mexico D.F. (Mexico); Leviatan, A. [Racah Institute of Physics, The Hebrew University. Jerusalem 91904, Israel (Israel)
1998-12-31
We present a qualitative analysis of the gross features of baryon spectroscopy (masses and form factors) in terms of various exactly solvable models. It is shown that a collective model, in which baryon resonances are interpreted as rotations and vibrations of an oblate symmetric top, provides a good starting point for a more detailed quantitative study. (Author)
Tripovich, J S; Charrier, I; Rogers, T L; Canfield, R; Arnould, J P Y
2008-09-01
Many territorial species have the ability to recognise neighbours from stranger individuals. If the neighbouring individual is assumed to pose less of a threat, the territorial individual responds less and avoids unnecessary confrontations with familiar individuals at established boundaries, thus avoiding the costly energy expenditure associated with fighting. Territorial male Australian fur seals respond more to strangers than to neighbouring males. The present study evaluated which acoustic features were important in the neighbour-stranger recognition process in male Australian fur seals. The results reveal that there was an increase in response strength or intensity from males when they heard more bark units, indicating the importance of repetition to detect a caller. However, lengthening and shortening the inter-unit spaces, (i.e. changing the rhythm of the call) did not appear to significantly affect an animal's response. In addition, the whole frequency spectrum was considered important to recognition with results suggesting that they may vary in their importance. A call containing the dominant and surrounding harmonics was considered important to a male's ability to recognise its neighbour. Furthermore, recognition occurs even with a partial bark, but males need to hear between 25 and 75% of each bark unit from neighbouring seals. Our study highlights which acoustic features induce stronger or weaker responses from territorial males, decoding the important features in neighbour-stranger recognition.
Directory of Open Access Journals (Sweden)
Obleser Jonas
2007-06-01
Full Text Available Abstract A central issue in speech recognition is which basic units of speech are extracted by the auditory system and used for lexical access. One suggestion is that complex acoustic-phonetic information is mapped onto abstract phonological representations of speech and that a finite set of phonological features is used to guide speech perception. Previous studies analyzing the N1m component of the auditory evoked field have shown that this holds for the acoustically simple feature place of articulation. Brain magnetic correlates indexing the extraction of acoustically more complex features, such as lip rounding (ROUND in vowels, have not been unraveled yet. The present study uses magnetoencephalography (MEG to describe the spatial-temporal neural dynamics underlying the extraction of phonological features. We examined the induced electromagnetic brain response to German vowels and found the event-related desynchronization in the upper beta-band to be prolonged for those vowels that exhibit the lip rounding feature (ROUND. It was the presence of that feature rather than circumscribed single acoustic parameters, such as their formant frequencies, which explained the differences between the experimental conditions. We conclude that the prolonged event-related desynchronization in the upper beta-band correlates with the computational effort for the extraction of acoustically complex phonological features from the speech signal. The results provide an additional biomagnetic parameter to study mechanisms of speech perception.
Masses and magnetic moments of ground-state baryons in covariant baryon chiral perturbation theory
Geng, L S; Alvarez-Ruso, L; Vicente-Vacas, M J
2012-01-01
We report on some recent developments in our understanding of the light-quark mass dependence and the SU(3) flavor symmetry breaking corrections to the magnetic moments of the ground-state baryons in a covariant formulation of baryon chiral perturbation theory, the so-called EOMS formulation. We show that this covariant ChPT exhibits some promising features compared to its heavy-baryon and infrared counterparts.
Dilatons in Dense Baryonic Matter
Lee, Hyun Kyu
2013-01-01
We discuss the role of dilaton, which is supposed to be representing a special feature of scale symmetry of QCD, trace anomaly, in dense baryonic matter. The idea that the scale symmetry breaking of QCD is responsible for the spontaneous breaking of chiral symmetry is presented along the similar spirit of Freund-Nambu model. The incorporation of dilaton field in the hidden local symmetric parity doublet model is briefly sketched with the possible role of dilaton at high density baryonic matter, the emergence of linear sigma model in dilaton limit.
Fukushima, Kenji
2014-01-01
We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.
Dowdy, Josh; Anderson, Derek T.; Luke, Robert H.; Ball, John E.; Keller, James M.; Havens, Timothy C.
2016-05-01
Explosive hazards in current and former conflict zones are a threat to both military and civilian personnel. As a result, much effort has been dedicated to identifying automated algorithms and systems to detect these threats. However, robust detection is complicated due to factors like the varied composition and anatomy of such hazards. In order to solve this challenge, a number of platforms (vehicle-based, handheld, etc.) and sensors (infrared, ground penetrating radar, acoustics, etc.) are being explored. In this article, we investigate the detection of side attack explosive ballistics via a vehicle-mounted acoustic sensor. In particular, we explore three acoustic features, one in the time domain and two on synthetic aperture acoustic (SAA) beamformed imagery. The idea is to exploit the varying acoustic frequency profile of a target due to its unique geometry and material composition with respect to different viewing angles. The first two features build their angle specific frequency information using a highly constrained subset of the signal data and the last feature builds its frequency profile using all available signal data for a given region of interest (centered on the candidate target location). Performance is assessed in the context of receiver operating characteristic (ROC) curves on cross-validation experiments for data collected at a U.S. Army test site on different days with multiple target types and clutter. Our preliminary results are encouraging and indicate that the top performing feature is the unrolled two dimensional discrete Fourier transform (DFT) of SAA beamformed imagery.
Gan, Deying; Hu, Weiping; Zhao, Bingxin
2014-10-01
By analyzing the mechanism of pronunciation, traditional acoustic parameters, including fundamental frequency, Mel frequency cepstral coefficients (MFCC), linear prediction cepstrum coefficient (LPCC), frequency perturbation, amplitude perturbation, and nonlinear characteristic parameters, including entropy (sample entropy, fuzzy entropy, multi-scale entropy), box-counting dimension, intercept and Hurst, are extracted as feature vectors for identification of pathological voice. Seventy-eight normal voice samples and 73 pathological voice samples for /a/, and 78 normal samples and 80 pathological samples for /i/ are recognized based on support vector machine (SVM). The results showed that compared with traditional acoustic parameters, nonlinear characteristic parameters could be well used to distinguish between healthy and pathological voices, and the recognition rates for /a/ were all higher than those for /i/ except for multi-scale entropy. That is why the /a/ sound data is used widely in related research at home and abroad for obtaining better identification of pathological voices. Adopting multi-scale entropy for /i/ could obtain higher recognition rate than /a/ between healthy and pathological samples, which may provide some useful inspiration for evaluating vocal compensatory function.
Applications of Wigner high-order spectra in feature extraction of acoustic emission signals
Institute of Scientific and Technical Information of China (English)
Xiao Siwen; Liao Chuanjun; Li Xuejun
2009-01-01
The characteristics of typical AE signals initiated by mechanical component damages are analyzed. Based on the extracting principle of acoustic emission(AE) signals from damaged components, the paper introduces Wigner high-order spectra to the field of feature extraction and fault diagnosis of AE signals. Some main performances of Wigner bi-nary spectra, Wigner triple spectra and Wigner-Ville distribution (WVD) are discussed, including of time-frequency resolution, energy accumulation, reduction of crossing items and noise elimination. Wigncr triple spectra is employed to the fault diagnosis of rolling bearings with AE techniques. The fault features reading from experimental data analysis are clear, accurate and intuitionistic. The validity and accuracy of Wigner high-order spectra methods proposed agree quite well with simulation results. Simulation and research results indicate that wigncr high-order spectra is quite useful for condition monitoring and fault diagnosis in conjunction with AE technique, and has very important research and applica-tion values in feature extraction and faults diagnosis based on AE signals due to mechanical component damages.
Analysis of Acoustic Features in Speakers with Cognitive Disorders and Speech Impairments
Saz, Oscar; Simón, Javier; Rodríguez, W. Ricardo; Lleida, Eduardo; Vaquero, Carlos
2009-12-01
This work presents the results in the analysis of the acoustic features (formants and the three suprasegmental features: tone, intensity and duration) of the vowel production in a group of 14 young speakers suffering different kinds of speech impairments due to physical and cognitive disorders. A corpus with unimpaired children's speech is used to determine the reference values for these features in speakers without any kind of speech impairment within the same domain of the impaired speakers; this is 57 isolated words. The signal processing to extract the formant and pitch values is based on a Linear Prediction Coefficients (LPCs) analysis of the segments considered as vowels in a Hidden Markov Model (HMM) based Viterbi forced alignment. Intensity and duration are also based in the outcome of the automated segmentation. As main conclusion of the work, it is shown that intelligibility of the vowel production is lowered in impaired speakers even when the vowel is perceived as correct by human labelers. The decrease in intelligibility is due to a 30% of increase in confusability in the formants map, a reduction of 50% in the discriminative power in energy between stressed and unstressed vowels and to a 50% increase of the standard deviation in the length of the vowels. On the other hand, impaired speakers keep good control of tone in the production of stressed and unstressed vowels.
Analysis of Acoustic Features in Speakers with Cognitive Disorders and Speech Impairments
Directory of Open Access Journals (Sweden)
Oscar Saz
2009-01-01
Full Text Available This work presents the results in the analysis of the acoustic features (formants and the three suprasegmental features: tone, intensity and duration of the vowel production in a group of 14 young speakers suffering different kinds of speech impairments due to physical and cognitive disorders. A corpus with unimpaired children's speech is used to determine the reference values for these features in speakers without any kind of speech impairment within the same domain of the impaired speakers; this is 57 isolated words. The signal processing to extract the formant and pitch values is based on a Linear Prediction Coefficients (LPCs analysis of the segments considered as vowels in a Hidden Markov Model (HMM based Viterbi forced alignment. Intensity and duration are also based in the outcome of the automated segmentation. As main conclusion of the work, it is shown that intelligibility of the vowel production is lowered in impaired speakers even when the vowel is perceived as correct by human labelers. The decrease in intelligibility is due to a 30% of increase in confusability in the formants map, a reduction of 50% in the discriminative power in energy between stressed and unstressed vowels and to a 50% increase of the standard deviation in the length of the vowels. On the other hand, impaired speakers keep good control of tone in the production of stressed and unstressed vowels.
Ogilvy, Stephen
2015-01-01
The vast amount of $c\\overline{c}$ production that can be recorded by the LHCb detector makes it an ideal environment to study the hadronic production of charmed baryons, along with the properties of their decays. We briefly describe the LHCb experiment and the triggering mechanisms it uses for recording charm production. Previous charmed baryon results from LHCb are detailed, with a description of the future plans for the charmed baryon programme.
Automatic recognition of spontaneous emotions in speech using acoustic and lexical features
Raaijmakers, S.; Truong, K.P.
2008-01-01
We developed acoustic and lexical classifiers, based on a boosting algorithm, to assess the separability on arousal and valence dimensions in spontaneous emotional speech. The spontaneous emotional speech data was acquired by inviting subjects to play a first-person shooter video game. Our acoustic
Mixed solid and cystic acoustic neuroma: MR features and differential diagnosis
Energy Technology Data Exchange (ETDEWEB)
Denys, A. [Service de Neuroradiologie-CIERM Hopital de Bicetre, Univ. de Paris Sud, 78, 94 Kremlin-Bicetre (France); Duvoisin, B. [Service de Neuroradiologie-CIERM Hopital de Bicetre, Univ. de Paris Sud, 78, 94 Kremlin-Bicetre (France)]|[Dept. of Radiodiagnosis, University Hospital, Lausanne (Switzerland); Fernandes, J.G. [Service de Neuroradiologie-CIERM Hopital de Bicetre, Univ. de Paris Sud, 78, 94 Kremlin-Bicetre (France); Doyon, D. [Service de Neuroradiologie-CIERM Hopital de Bicetre, Univ. de Paris Sud, 78, 94 Kremlin-Bicetre (France)
1991-11-01
We present a very rare case of combined cystic and solid acoustic neuroma investigated by magnetic resonance imaging (MRI). This case illustrates the value of MRI in the characterization of tumours in the posterior cranial fossa, particularly acoustic neuromas, and its diagnostic impact in unusual situations. The differential diagnosis of cystic and mixed lesions in the cerebellopontine angle is discussed. (orig.)
Naik, Paras
2016-01-01
The LHCb detector is an excellent instrument for studying the production and decay of charmed baryons in $pp$ collisions, due to efficient triggering mechanisms that capture the copious production of $c\\overline{c}$ at the Large Hadron Collider. The LHCb experiment and its charmed baryon results from LHCb are detailed, with a description of our future plans.
Kubis, B; Meißner, Ulf G; Mei{\\ss}ner, Ulf-G.
1999-01-01
We calculate the form factors of the baryon octet in the framework of heavy baryon chiral perturbation theory. The calculated charge radius of the show that kaon loop effects can play a significant role in the neutron electric form factor. Furthermore. we derive generalized Caldi-Pagels relations between various charge radii which are free of chiral loop effects.
Charmed baryons on the lattice
Padmanath, M
2015-01-01
We discuss the significance of charm baryon spectroscopy in hadron physics and review the recent developments of the spectra of charmed baryons in lattice calculations. Special emphasis is given on the recent studies of highly excited charm baryon states. Recent precision lattice measurements of the low lying charm and bottom baryons are also reviewed.
Page, P R
2000-01-01
We discuss whether a low-lying hybrid baryon should be defined as a three quark - gluon bound state or as three quarks moving on an excited adiabatic potential. We show that the latter definition becomes exact, not only for very heavy quarks, but also for specific dynamics. We review the literature on the signatures of hybrid baryons, with specific reference to strong hadronic decays, electromagnetic couplings, diffractive production and production in psi decay.
Haemorrhagic acoustic neuroma with features of a vascular malformation. A case report
Energy Technology Data Exchange (ETDEWEB)
Benhaiem-Sigaux, N. [Dept. of Pathology, Hopital Henri Mondor, Creteil (France); Ricolfi, F. [Dept. of Neuroradiology, Henri Mondor Hospital, Creteil (France); Torres-Diaz, A.; Keravel, Y. [Dept. of Neurosurgery, Henri Mondo Hospital, Creteil (France); Poirier, J. [Dept. of Histology, Pitie-Salpetriere Hospital, Paris (France)
1999-10-01
A 55-year-old man with hearing loss presented with vertigo and vomiting. CT tomography and MRI demonstrated a cerebellopontine angle mass with foci of haemorrhage. An angiomatous tumour, with large abnormal veins adhering to the capsule, was completely removed. Histologically, the tumour was an acoustic neuroma with abnormal vascularisation and limited intratumoral haemorrhage. (orig.)
Institute of Scientific and Technical Information of China (English)
詹想; 崔建华; 王宝泉; 翟忠旭; 张同杰
2014-01-01
Radial Baryon Acoustic Oscillation (RBAO)measurements,distant type Ia supernovae (SNe Ia),the observational H(z)data (OHD)and the Cosmic Microwave Background (CMB)shift parameter data are used to constrain cosmological parameters ofΛCDM and XCDM cosmologies and to further examine the role of OHD and SNe Ia data in cosmological constraints.The likelihood function over h is marginalized by integrating the probability density P∝e(-χ2/2)to obtain best fitting results and confidence regions in theΩm-ΩΛplane.Combination analysis for bothΛCDM and XCDM models reveal that confidence regions of 68.3%, 95.4% and 99.7% levels using OHD+RBAO+CMB data are in good agreement with that of SNe Ia+RBAO+CMB data which is consistent with data from Lin et al.(2009).With more OHD data,it may be possible to constrain cosmological parameters using OHD data instead of SNe Ia data in the future.%使用径向重子声学振荡(RBAO)测量遥远的 Ia型超新星(SNe Ia)、观测哈勃参量数据(OHD)和宇宙微波背景(CMB)位移参数数据来限制ΛCDM和 XCDM宇宙的宇宙学参量,进一步检查了 OHD和 SNe Ia 数据对宇宙学的约束作用.我们对似然函数的归化哈勃参数h进行了边缘化,即积分概率密度P∝e-Χ2/2,以在Ωm-ΩΛ平面获得最佳的拟合结果和置信区域.依据ΛCDM和 XCDM模型的组合分析,我们发现在置信区域为68.3%、95.4%和99.7%的置信水平上,OHD+RBAO+CMB数据和 SNe Ia+RBAO+CMB数据符合得很好.随着越来越多的 OHD数据的获得,我们或许在将来可以使用 OHD数据代替 SNe Ia数据来限制宇宙学参量.
Baryon Spectroscopy and Resonances
Energy Technology Data Exchange (ETDEWEB)
Robert Edwards
2011-12-01
A short review of current efforts to determine the highly excited state spectrum of QCD, and in particular baryons, using lattice QCD techniques is presented. The determination of the highly excited spectrum of QCD is a major theoretical and experimental challenge. The experimental investigation of the excited baryon spectrum has been a long-standing element of the hadronic-physics program, an important component of which is the search for so-called 'missing resonances', baryonic states predicted by the quark model based on three constituent quarks but which have not yet been observed experimentally. Should such states not be found, it may indicate that the baryon spectrum can be modeled with fewer effective degrees of freedom, such as in quark-diquark models. In the past decade, there has been an extensive program to collect data on electromagnetic production of one and two mesons at Jefferson Lab, MIT-Bates, LEGS, MAMI, ELSA, and GRAAL. To analyze these data, and thereby refine our knowledge of the baryon spectrum, a variety of physics analysis models have been developed at Bonn, George Washington University, Jefferson Laboratory and Mainz. To provide a theoretical determination and interpretation of the spectrum, ab initio computations within lattice QCD have been used. Historically, the calculation of the masses of the lowest-lying states, for both baryons and mesons, has been a benchmark calculation of this discretized, finite-volume computational approach, where the aim is well-understood control over the various systematic errors that enter into a calculation; for a recent review. However, there is now increasing effort aimed at calculating the excited states of the theory, with several groups presenting investigations of the low-lying excited baryon spectrum, using a variety of discretizations, numbers of quark flavors, interpolating operators, and fitting methodologies. Some aspects of these calculations remain unresolved and are the subject of
The effect of speaking context on spectral- and cepstral-based acoustic features of normal voice.
Lowell, Soren Y; Hylkema, Jennifer A
2016-01-01
The effect of speaking context on four cepstral- and spectral-based acoustic measures was investigated in 20 participants with normal voice. Speakers produced three different continuous speaking tasks that varied in duration and phonemic content. Cepstral and spectral measures that can be validly derived from continuous speech were computed across the three speaking contexts. Cepstral peak prominence (CPP), low/high spectral ratio, and the standard deviation (SD) of the low/high spectral ratio did not significantly differ across speaking contexts, and correlations for the first two measures were strong among the three speaking tasks. The SD of the CPP showed significant task differences, and relationships between the speaking contexts were generally moderate. These findings suggest that in speakers with normal voice, the differing phonemic content across several frequently used speaking stimuli minimally impacted group means for three clinically relevant cepstral- and spectral-based acoustic measures.
2015-05-31
largest marine predator. Behavioral Ecology 22: 880-888. Friedlaender A.S., G.L. Lawson, P.N. Halpin. 2009. Evidence of resource partitioning between...novaengliae). Marine Ecology Progress Scries 395: 75-89. Watkins, J.L., and A.S. Brierley. 2002. Verification of acoustic techniques used to identify...information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Directory of Open Access Journals (Sweden)
Zeguang YI
2015-08-01
Full Text Available Aiming at fault diagnosis problems caused by complex machinery parts, serious background noises and the application limitations of traditional blind signal processing algorithm to the mechanical acoustic signal processing, a failure acoustic diagnosis based on reference signal frequency domain semi-blind extraction is proposed. Key technologies are introduced: Based on frequency-domain blind deconvolution algorithm, the artificial fish swarm algorithm which is good for global optimization is used to construct improved multi-scale morphological filters which is applicable to mechanical failure in order to weaken the background noises; combining the structural parameters of parts to build a reference signal, complex components blind separation is carried out on the signals after noise reduction paragraph by paragraph by reference signal unit semi-blind extraction algorithm; then the improved KL-distance of complex independent components is employed as distance measure to resolve the permutation, and finally the mechanical fault characteristic signals are extracted and separated. The actual acoustic diagnosis of rolling bearing fault in sound field environment results proves the effectiveness of this algorithm.
Production and decay of charmed baryons
Hosaka, Atsushi; Hiyama, Emiko; Kim, SangHo; Kim, Hyun-Chul; Nagahiro, Hideko; Noumi, Hiroyuki; Oka, Makoto; Shirotori, Kotaro; Yoshida, Tetsuya; Yasui, Shigehiro
2016-10-01
In this paper, we discuss reactions involving charmed baryons to explore their unique features. A well known phenomenon, the separation of the two internal motions of the ρ and λ types of a three-quark system is revisited. First we discuss the mass spectrum of low lying excitations as function of the heavy quark mass, smoothly connecting the SU (3) and heavy quark limits. The properties of these modes can be tested in the production and decay reactions of the baryons. For production, we consider a one step process which excites dominantly λ modes. We find abundant production rates for some of the excited states. For decay, we study a pion emission process which provides a clean tool to test the structure of heavy quark systems due to the well controlled low energy dynamics of pions and quarks. Both production and decay of charmed baryons are issues for future experiments at J-PARC.
Tojeiro, Rita; Burden, Angela; Samushia, Lado; Manera, Marc; Percival, Will J; Beutler, Florian; Cuesta, Antonio J; Dawson, Kyle; Eisenstein, Daniel J; Ho, Shirley; Howett, Cullan; McBride, Cameron K; Montesano, Francisco; Parejko, John K; Reid, Beth; Sánchez, Ariel G; Schlegel, David J; Schneider, Donald P; Tinker, Jeremy L; Magaña, Mariana Vargas; White, Martin
2014-01-01
We present the distance measurement to z = 0.32 using the 11th data release of the Sloan Digital Sky Survey-III Baryon Acoustic Oscillation Survey (BOSS). We use 313,780 galaxies of the low-redshift (LOWZ) sample over 7,341 square-degrees to compute $D_V = (1264 \\pm 25)(r_d/r_{d,fid})$ - a sub 2% measurement - using the baryon acoustic feature measured in the galaxy two-point correlation function and power-spectrum. We compare our results to those obtained in DR10. We study observational systematics in the LOWZ sample and quantify potential effects due to photometric offsets between the northern and southern Galactic caps. We find the sample to be robust to all systematic effects found to impact on the targeting of higher-redshift BOSS galaxies, and that the observed north-south tensions can be explained by either limitations in photometric calibration or by sample variance, and have no impact on our final result. Our measurement, combined with the baryonic acoustic scale at z = 0.57, is used in Anderson et a...
Charmed Bottom Baryon Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Brown, Zachary S; Detmold, William; Meinel, Stefan; Orginos, Kostas
2014-11-01
The spectrum of doubly and triply heavy baryons remains experimentally unexplored to a large extent. Although the detection of such heavy particle states may lie beyond the reach of exper- iments for some time, it is interesting compute this spectrum from QCD and compare results between lattice calculations and continuum theoretical models. Several lattice calculations ex- ist for both doubly and triply charmed as well as doubly and triply bottom baryons. Here, we present preliminary results from the first lattice calculation of doubly and triply heavy baryons including both charm and bottom quarks. We use domain wall fermions for 2+1 flavors (up down and strange) of sea and valence quarks, a relativistic heavy quark action for the charm quarks, and non-relativistic QCD for the heavier bottom quarks. We present preliminary results for the ground state spectrum.
Baryonic Spectroscopy at BESIII
Liu, Fang
Based on 106 million Ψ(3686) events collected with BESIII detector at BEPCII, some results on excited baryons from the partial wave analysis are presented. In the decay of ψ(3686) to pbar{p}π 0, two new baryonic excited states, Jpc = 1/2 + N(2300) and Jpc = 5/2 - N(2570) are significant, and additional 5 well known N* excited states are observed. In ψ(3686) to pbar{p}η , an excited-nucleon state N(1535) is dominant. In ψ(3686) to K - Λ bar{Ξ} + + c.c., two hyperons Ξ(1690) and Ξ(1820) are observed. In ψ(3686) to Λ bar{Σ }π + c.c., some excited strange baryons bar{Λ }* and Σ* are measured on the Σ+π- and Λπ- mass spectra.
Liu, Keh-Fei
2016-01-01
The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.
Kazin, Eyal A; Cuesta, Antonio J; Beutler, Florian; Chuang, Chia-Hsun; Eisenstein, Daniel J; Manera, Marc; Padmanabhan, Nikhil; Percival, Will J; Prada, Francisco; Ross, Ashley J; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Xu, Xiaoying; Brinkmann, J; Joel, Brownstein; Nichol, Robert C; Schlegel, David J; Schneider, Donald P; Thomas, Daniel
2013-01-01
We analyze the 2D correlation function of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample of massive galaxies of the ninth data release to measure cosmic expansion H and the angular diameter distance D_A at a mean redshift of = 0.57. We apply, for the first time, a new correlation function technique called clustering wedges. Using a physically motivated model, the anisotropic baryonic acoustic feature in the galaxy sample is detected at a significance level of 4.7 sigma compared to a featureless model. The baryonic acoustic feature is used to obtain model independent constraints cz/H/r_s = 12.28 +- 0.82 (6.7 per-cent accuracy) and D_A/r_s = 9.05 +- 0.27 (3.0 per-cent) with a correlation coefficient of -0.5, where r_s is the sound horizon scale at the end of the baryonic drag era. We conduct thorough tests on the data and 600 simulated realizations, finding robustness of the results regardless of the details of the analysis method. Combining with r_s constraints from the Cosmic Microw...
Baryon formation and dissociation in dense hadronic and quark matter
Energy Technology Data Exchange (ETDEWEB)
Wang Jincheng [Interdisciplinary Center for Theoretical Study and Department of Modern Physics, University of Science and Technology of China, Anhui 230026 (China); Institute for Theoretical Physics, Johann Wolfgang Goethe University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Wang Qun, E-mail: qunwang@ustc.edu.cn [Interdisciplinary Center for Theoretical Study and Department of Modern Physics, University of Science and Technology of China, Anhui 230026 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049 (China); Rischke, Dirk H. [Institute for Theoretical Physics, Johann Wolfgang Goethe University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany)
2011-10-19
We study the formation of baryons as composed of quarks and diquarks in hot and dense hadronic matter in a Nambu-Jona-Lasinio (NJL)-type model. We first solve the Dyson-Schwinger equation for the diquark propagator and then use this to solve the Dyson-Schwinger equation for the baryon propagator. We find that stable baryon resonances exist only in the phase of broken chiral symmetry. In the chirally symmetric phase, we do not find a pole in the baryon propagator. In the color-superconducting phase, there is a pole, but it has a large decay width. The diquark does not need to be stable in order to form a stable baryon, a feature typical for so-called Borromean states. Varying the strength of the diquark coupling constant, we also find similarities to the properties of an Efimov state.
(Hybrid) Baryons Symmetries and Masses
Page, P R
1999-01-01
We construct (hybrid) baryons in the flux-tube model of Isgur and Paton. In the limit of adiabatic quark motion, we build proper eigenstates of orbital angular momentum and construct the flavour, spin and J^P of hybrid baryons from the symmetries of the system. The lowest mass hybrid baryon is estimated at approximately 2 GeV.
Problems in baryon spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Capstick, S. [Florida State Univ., Tallahassee, FL (United States)
1994-04-01
Current issues and problems in the physics of ground- and excited-state baryons are considered, and are classified into those which should be resolved by CEBAF in its present form, and those which may require CEBAF to undergo an energy upgrade to 8 GeV or more. Recent theoretical developments designed to address these problems are outlined.
Babu, K S; Al-Binni, U; Banerjee, S; Baxter, D V; Berezhiani, Z; Bergevin, M; Bhattacharya, S; Brice, S; Brock, R; Burgess, T W; Castellanos, L; Chattopadhyay, S; Chen, M-C; Church, E; Coppola, C E; Cowen, D F; Cowsik, R; Crabtree, J A; Davoudiasl, H; Dermisek, R; Dolgov, A; Dutta, B; Dvali, G; Ferguson, P; Perez, P Fileviez; Gabriel, T; Gal, A; Gallmeier, F; Ganezer, K S; Gogoladze, I; Golubeva, E S; Graves, V B; Greene, G; Handler, T; Hartfiel, B; Hawari, A; Heilbronn, L; Hill, J; Jaffe, D; Johnson, C; Jung, C K; Kamyshkov, Y; Kerbikov, B; Kopeliovich, B Z; Kopeliovich, V B; Korsch, W; Lachenmaier, T; Langacker, P; Liu, C-Y; Marciano, W J; Mocko, M; Mohapatra, R N; Mokhov, N; Muhrer, G; Mumm, P; Nath, P; Obayashi, Y; Okun, L; Pati, J C; Pattie, R W; Phillips, D G; Quigg, C; Raaf, J L; Raby, S; Ramberg, E; Ray, A; Roy, A; Ruggles, A; Sarkar, U; Saunders, A; Serebrov, A; Shafi, Q; Shimizu, H; Shiozawa, M; Shrock, R; Sikdar, A K; Snow, W M; Soha, A; Spanier, S; Stavenga, G C; Striganov, S; Svoboda, R; Tang, Z; Tavartkiladze, Z; Townsend, L; Tulin, S; Vainshtein, A; Van Kooten, R; Wagner, C E M; Wang, Z; Wehring, B; Wilson, R J; Wise, M; Yokoyama, M; Young, A R
2013-01-01
This report, prepared for the Community Planning Study - Snowmass 2013 - summarizes the theoretical motivations and the experimental efforts to search for baryon number violation, focussing on nucleon decay and neutron-antineutron oscillations. Present and future nucleon decay search experiments using large underground detectors, as well as planned neutron-antineutron oscillation search experiments with free neutron beams are highlighted.
Nonlinear features of ion acoustic shock waves in dissipative magnetized dusty plasma
Sahu, Biswajit; Sinha, Anjana; Roychoudhury, Rajkumar
2014-10-01
The nonlinear propagation of small as well as arbitrary amplitude shocks is investigated in a magnetized dusty plasma consisting of inertia-less Boltzmann distributed electrons, inertial viscous cold ions, and stationary dust grains without dust-charge fluctuations. The effects of dissipation due to viscosity of ions and external magnetic field, on the properties of ion acoustic shock structure, are investigated. It is found that for small amplitude waves, the Korteweg-de Vries-Burgers (KdVB) equation, derived using Reductive Perturbation Method, gives a qualitative behaviour of the transition from oscillatory wave to shock structure. The exact numerical solution for arbitrary amplitude wave differs somehow in the details from the results obtained from KdVB equation. However, the qualitative nature of the two solutions is similar in the sense that a gradual transition from KdV oscillation to shock structure is observed with the increase of the dissipative parameter.
Nonlinear features of ion acoustic shock waves in dissipative magnetized dusty plasma
Energy Technology Data Exchange (ETDEWEB)
Sahu, Biswajit, E-mail: biswajit-sahu@yahoo.co.in [Department of Mathematics, West Bengal State University, Barasat, Kolkata 700126 (India); Sinha, Anjana, E-mail: sinha.anjana@gmail.com [Department of Instrumentation Science, Jadavpur University, Kolkata 700032 (India); Roychoudhury, Rajkumar, E-mail: rroychoudhury123@gmail.com [Department of Mathematics, Visva-Bharati, Santiniketan 731204, India and Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700075 (India)
2014-10-15
The nonlinear propagation of small as well as arbitrary amplitude shocks is investigated in a magnetized dusty plasma consisting of inertia-less Boltzmann distributed electrons, inertial viscous cold ions, and stationary dust grains without dust-charge fluctuations. The effects of dissipation due to viscosity of ions and external magnetic field, on the properties of ion acoustic shock structure, are investigated. It is found that for small amplitude waves, the Korteweg-de Vries-Burgers (KdVB) equation, derived using Reductive Perturbation Method, gives a qualitative behaviour of the transition from oscillatory wave to shock structure. The exact numerical solution for arbitrary amplitude wave differs somehow in the details from the results obtained from KdVB equation. However, the qualitative nature of the two solutions is similar in the sense that a gradual transition from KdV oscillation to shock structure is observed with the increase of the dissipative parameter.
Spontaneous Baryogenesis without Baryon Isocurvature
De Simone, Andrea
2016-01-01
We propose a new class of spontaneous baryogenesis models that does not produce baryon isocurvature perturbations. The baryon chemical potential in these models is independent of the field value of the baryon-generating scalar, hence the scalar field fluctuations are blocked from propagating into the baryon isocurvature. We demonstrate this mechanism in simple examples where spontaneous baryogenesis is driven by a non-canonical scalar field. The suppression of the baryon isocurvature allows spontaneous baryogenesis to be compatible even with high-scale inflation.
Institute of Scientific and Technical Information of China (English)
李双; 冯笙琴
2012-01-01
The net-baryon number is essentially transported by valence quarks that probe the saturation regime in the target by multiple scattering. The net-baryon distributions, nuclear stopping power and gluon saturation features in the SPS and RHIC energy regions are investigated by taking advantage of the gluon saturation model with geometric scaling. Predications are made for the net-baryon rapidity distributions, mean rapidity loss and gluon saturation features in central Pb ＋ Pb collisions at LHC.
Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.
2016-09-27
A system and method for investigating rock formations outside a borehole are provided. The method includes generating a first compressional acoustic wave at a first frequency by a first acoustic source; and generating a second compressional acoustic wave at a second frequency by a second acoustic source. The first and the second acoustic sources are arranged within a localized area of the borehole. The first and the second acoustic waves intersect in an intersection volume outside the borehole. The method further includes receiving a third shear acoustic wave at a third frequency, the third shear acoustic wave returning to the borehole due to a non-linear mixing process in a non-linear mixing zone within the intersection volume at a receiver arranged in the borehole. The third frequency is equal to a difference between the first frequency and the second frequency.
Multiplicity fluctuation and correlation of identified baryons in quark combination model
Song, Jun; Wang, Rui-qin; Shao, Feng-lan
2016-01-01
The dynamical fluctuation and correlation of multiplicity distributions of identified baryons and antibaryons produced by the hadronization of the bulk quark system are systematically studied in quark combination model. Starting from the most basic dynamics of quark combination which are necessary for multiplicity study, we analyze moments (variance, skewness and kurtosis) of inclusive multiplicity distribution of identified baryons, two-baryon multiplicity correlations, and baryon-antibaryon multiplicity correlations after the hadronization of quark system with given quark number and antiquark number. We obtain a series of interesting findings, e.g., binomial behavior of multiplicity moments, coincide flavor dependent two-baryon correlation and universal baryon-antibaryon correlation, which can be regarded as general features of quark combination. We further take into account correlations and fluctuations of quark numbers before hadronization to study their influence on multiple production of baryons and ant...
Liu, Huei-Mei
2014-01-01
Research Findings: I examined the long-term association between the lexical and acoustic features of maternal utterances during book reading and the language skills of infants and children. Maternal utterances were collected from 22 mother-child dyads in picture book-reading episodes when children were ages 6-12 months and 5 years. Two aspects of…
Slepian, Zachary; Blazek, Jonathan A; Brownstein, Joel R; Chuang, Chia-Hsun; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; McEwen, Joseph E; Percival, Will J; Ross, Ashley J; Rossi, Graziano; Seo, Hee-Jong; Slosar, Anže; Vargas-Magaña, Mariana
2016-01-01
We search for a galaxy clustering bias due to a modulation of galaxy number with the baryon-dark matter relative velocity resulting from recombination-era physics. We find no detected signal and place the constraint $b_v < 0.01$ on the relative velocity bias for the CMASS galaxies. This bias is an important potential systematic of Baryon Acoustic Oscillation (BAO) method measurements of the cosmic distance scale using the 2-point clustering. Our limit on the relative velocity bias indicates a systematic shift of no more than $0.3\\%$ rms in the distance scale inferred from the BAO feature in the BOSS 2-point clustering, well below the $1\\%$ statistical error of this measurement. This constraint is the most stringent currently available and has important implications for the ability of upcoming large-scale structure surveys such as DESI to self-protect against the relative velocity as a possible systematic.
Study on After Peak Acoustic Emission Features of Rock Type Material%峰后岩石类材料的声发射特性研究
Institute of Scientific and Technical Information of China (English)
唐珺; 刘卫群; 费晓东
2011-01-01
Based on the acoustic emission test system and the rock acoustic emission theory, the uniaxial compressive tests were made on two different property rock and cement-sand grouts.The mechanics feature curve, the acoustic emission ringing numbers and the acoustic emission accumulated ringing number curve of full three sample failures' processes were obtained.A study in sections on the relationship between the deformation features and stress as well as the tinging number and time was conducted.The study showed that the acoustic emission of the rock type material would be affected by the rock strength, joint fissure and crystal grain hardness.The acoustic emission ringing number of the partial soft rock material at the elasticity and the elastic-plastic stage would be steadily increased in unit time and but when the rock material was near the peak strength, the acoustic emission occurred would be in a relative quiet phenomenon.The activity of the after peak acoustic emission would be mainly affected by the rock strength.The comparison on the acoustic emission features of the different rock failures could provide referen to evealuate the stability of natural and artificial rock projects.%基于声发射试验系统和岩石声发射理论,对2种不同性质的岩石和水泥砂浆进行了单轴压缩试验,得到了3种试样破坏全过程的力学特性曲线、声发射振铃数和累计振铃数曲线,针对其变形特征及应力、振铃数与时间的关系分阶段进行了研究.研究表明:岩石类材料声发射受岩石强度、节理裂隙和晶粒软硬大小等的影响;部分质软岩石类材料在弹性、弹塑性阶段,其单位时间声发射振铃数逐步增加,但在接近强度峰值时出现声发射相对平静现象;峰后声发射活性主要受岩石的强度影响.对比不同岩石的破坏声发射特性,可为天然和人工岩土工程稳定性评估提供参数.
Acoustic Longitudinal Field NIF Optic Feature Detection Map Using Time-Reversal & MUSIC
Energy Technology Data Exchange (ETDEWEB)
Lehman, S K
2006-02-09
We developed an ultrasonic longitudinal field time-reversal and MUltiple SIgnal Classification (MUSIC) based detection algorithm for identifying and mapping flaws in fused silica NIF optics. The algorithm requires a fully multistatic data set, that is one with multiple, independently operated, spatially diverse transducers, each transmitter of which, in succession, launches a pulse into the optic and the scattered signal measured and recorded at every receiver. We have successfully localized engineered ''defects'' larger than 1 mm in an optic. We confirmed detection and localization of 3 mm and 5 mm features in experimental data, and a 0.5 mm in simulated data with sufficiently high signal-to-noise ratio. We present the theory, experimental results, and simulated results.
Soberman, R K; Soberman, Robert K.; Dubin, Maurice
2001-01-01
A comet-like, but magnitudes smaller, extremely low albedo interstellar meteoroid population of fragile aggregates with solar type composition, measured in space and terrestrially, is most probably the universal dark matter. Although non-baryonic particles cannot be excluded, only "Big Bang" cosmology predicts an appreciable fraction of such alternate forms. As more counter-physics hypotheses are added to fit observation to the expanding universe assumption, a classical physics alternative proffers dark matter interactive red shifts normally correlated with distance. The cosmic microwave background results from size-independent thermal plateau radiation that emanates from dark matter gravitationally drawn into the Galaxy.
Dynamical Structure of Baryons
Aleksejevs, A
2013-01-01
Compton scattering offers a unique opportunity to study the dynamical structure of hadrons over a wide kinematic range, with polarizabilities characterizing the hadron active internal degrees of freedom. We present calculations and detailed analysis of electric and magnetic and the spin-dependent dynamical polarizabilities for the lowest in mass SU(3) octet of baryons. These extensive calculations are made possible by the recent implementation of semi-automatized calculations in chiral perturbation theory which allows evaluating polarizabilities from Compton scattering up to next-to-the-leading order. The dependencies for the range of photon energies covering the majority of the meson photoproduction channels are analyzed.
Pati, Jogesh C.; Salam, Abdus
We suggest that baryon-number conservation may not be absolute and that an integrally charged quark may disintegrate into two leptons and an antilepton with a coupling strength G Bmp2≲ 10-9. On the other hand, if quarks are much heavier than low-lying hadrons, the decay of a three-quark system like the proton is highly forbidden (proton lifetime ≳ 1028 y). Motivation for these ideas appears to arise within a unified theory of hadrons and leptons and their gauge interactions. We emphasize the consequences of such a possibility for real quark searches.
Stochastic isocurvature baryon fluctuations, baryon diffusion, and primordial nucleosynthesis
Kurki-Suonio, H; Mathews, G J; Kurki-Suonio, Hannu; Jedamzik, Karsten; Mathews, Grant J
1996-01-01
We examine effects on primordial nucleosynthesis from a truly random spatial distribution in the baryon-to-photon ratio (\\eta). We generate stochastic fluctuation spectra characterized by different spectral indices and root-mean-square fluctuation amplitudes. For the first time we explicitly calculate the effects of baryon diffusion on the nucleosynthesis yields of such stochastic fluctuations. We also consider the collapse instability of large-mass-scale inhomogeneities. Our results are generally applicable to any primordial mechanism producing fluctuations in \\eta which can be characterized by a spectral index. In particular, these results apply to primordial isocurvature baryon fluctuation (PIB) models. The amplitudes of scale-invariant baryon fluctuations are found to be severely constrained by primordial nucleosynthesis. However, when the \\eta distribution is characterized by decreasing fluctuation amplitudes with increasing length scale, surprisingly large fluctuation amplitudes on the baryon diffusion ...
Anomalous Dimensions of Conformal Baryons
DEFF Research Database (Denmark)
Pica, Claudio; Sannino, Francesco
2016-01-01
We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within...
Bijker, R; Leviatan, A
1993-01-01
We propose an algebraic description of the geometric structure of baryons in terms of the algebra $U(7)$. We construct a mass operator that preserves the threefold permutational symmetry and discuss a collective model of baryons with the geometry of an oblate top.
Anomalous Dimensions of Conformal Baryons
DEFF Research Database (Denmark)
Pica, Claudio; Sannino, Francesco
2016-01-01
We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within the $...
Baryon stopping probes deconfinement
Wolschin, Georg
2016-08-01
Stopping and baryon transport in central relativistic Pb + Pb and Au + Au collisions are reconsidered with the aim to find indications for the transition from hadronic to partonic processes. At energies reached at the CERN Super Proton Synchrotron ( √{s_{NN}} = 6.3-17.3 GeV) and at RHIC (62.4 GeV) the fragmentation-peak positions as obtained from the data depend linearly on the beam rapidity and are in agreement with earlier results from a QCD-based approach that accounts for gluon saturation. No discontinuities in the net-proton fragmentation peak positions occur in the expected transition region from partons to hadrons at 6-10GeV. In contrast, the mean rapidity loss is predicted to depend linearly on the beam rapidity only at high energies beyond the RHIC scale. The combination of both results offers a clue for the transition from hard partonic to soft hadronic processes in baryon stopping. NICA results could corroborate these findings.
Energy Technology Data Exchange (ETDEWEB)
Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S
2014-12-30
A system and a method for investigating rock formations includes generating, by a first acoustic source, a first acoustic signal comprising a first plurality of pulses, each pulse including a first modulated signal at a central frequency; and generating, by a second acoustic source, a second acoustic signal comprising a second plurality of pulses. A receiver arranged within the borehole receives a detected signal including a signal being generated by a non-linear mixing process from the first-and-second acoustic signal in a non-linear mixing zone within the intersection volume. The method also includes-processing the received signal to extract the signal generated by the non-linear mixing process over noise or over signals generated by a linear interaction process, or both.
Electromagnetic properties of baryons
Energy Technology Data Exchange (ETDEWEB)
Haupt, C.
2006-07-01
Static observables of bound state systems in field theoretic descriptions are usually extracted from form factors in the limit of vanishing squared four-momentum transfer of the probing exchange particle. On the other hand, static properties in nonrelativistic quantum mechanics can be formulated by means of expectation values involving essentially scalar products of wave functions. The main objective of this work is to show that a synthesis of both approaches is indeed possible - at least if certain restrictions are made to the kind of interactions between the constituents of the bound system - leading to new insights into the structure of static properties. The focus lies especially on the charge radii and magnetic moments of baryons described within a covariant constituent quark model having its field theoretic foundations in the Bethe-Salpeter equation. The current matrix element in the Breit frame between the vertex functions is derived. The charge radius and magnetic moment of a bound three-fermion system is then derived by starting from their usual definition from form factors and in case of the charge radius also from the well-known radius of a charge distribution in classical electrodynamics. In both cases the static limit at the photon point is taken analytically and subsequently the integration over the relative energy variables is done. Finally the vertex functions are replaced by Salpeter amplitudes and the expression is symmetrized over the three fermions. The final results express the charge radius and magnetic moment of the three-fermion system as expectation values with respect to Salpeter amplitudes. The numerical implementation of the analytic results is done within a covariant constituent quark model with quark confinement and a residual instanton interaction accounting for the fine structure of the observed mass spectra. The Salpeter amplitudes which where obtained by solving the Salpeter equation are used to compute the expectation values of
Lyamshev, Leonid M
2004-01-01
Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...
Energy Technology Data Exchange (ETDEWEB)
Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre -Yves; Larmat, Carene S.
2015-08-18
A method of interrogating a formation includes generating a conical acoustic signal, at a first frequency--a second conical acoustic signal at a second frequency each in the between approximately 500 Hz and 500 kHz such that the signals intersect in a desired intersection volume outside the borehole. The method further includes receiving, a difference signal returning to the borehole resulting from a non-linear mixing of the signals in a mixing zone within the intersection volume.
Progress Toward Understanding Baryon Resonances
Crede, Volker
2013-01-01
The composite nature of baryons manifests itself in the existence of a rich spectrum of excited states, in particular in the important mass region 1-2 GeV for the light-flavoured baryons. The properties of these resonances can be identified by systematic investigations using electromagnetic and strong probes, primarily with beams of electrons, photons, and pions. After decades of research, the fundamental degrees of freedom underlying the baryon excitation spectrum are still poorly understood. The search for hitherto undiscovered but predicted resonances continues at many laboratories around the world. Recent results from photo- and electroproduction experiments provide intriguing indications for new states and shed light on the structure of some of the known nucleon excitations. The continuing study of available data sets with consideration of new observables and improved analysis tools have also called into question some of the earlier findings in baryon spectroscopy. Other breakthrough measurements have be...
维吾尔语浊塞音的声学特征分析%Acoustic feature analysis of the plosives in the Uyghur language
Institute of Scientific and Technical Information of China (English)
艾斯卡尔·艾木都拉; 赛尔达尔·雅力坤; 祖丽皮亚·阿曼; 地里木拉提·吐尔逊
2013-01-01
This paper presents a statistical analysis of voiced plosives such as b,d,g that occur in 466 Uyghur single-syllable or multi-syllable words in the "Uyghur language acoustical database".The results describe the acoustical features such as the formants,sound intensity,duration,voice onset time (VOT) and the GAP (silence segment) distribution model.The acoustic phonetics are compared to identify the devoiced parametric features of the plosives and the tenuis consonants.The real speech data shows that the plosives have features of tenuis consonants devoiced.The critical acoustical parameters are identified that differentiate the plosives.%该文从实验语音学的角度出发,利用“维吾尔语语音声学参数库”,选择其中包含浊塞音b、d、g的466个单音节及多音节词,对其声学参数进行统计分析,归纳了其共振峰、音强、时长、嗓音起始时间和无声段的分布模式.根据语音学的规律对各浊塞音的声学特点进行了深入研究,通过分别对浊塞音发生清化和保持原来浊特点时的特征参数同其对立清塞音相应的特征参数进行对比,探讨了浊塞音的清化现象.该文用实验数据证明了浊塞音清化时会表现出清塞音特征,并获得了区分浊塞音的诸多声学参数.
Anomalous Dimensions of Conformal Baryons
Pica, Claudio
2016-01-01
We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small for a wide range of number of flavours. We also find that this is always smaller than the anomalous dimension of the fermion mass operator. These findings challenge the partial compositeness paradigm.
Algebraic Approach to Baryon Structure
Leviatan, A
1996-01-01
We present an algebraic approach to the internal structure of baryons in terms of three constituents. We investigate a collective model in which the nucleon is regarded as a rotating and vibrating oblate top with a prescribed distribution of charges and magnetization. We contrast the collective and single-particle descriptions of baryons and compare the predictions of the model with existing data on masses, electromagnetic elastic and transition form factors and strong decays widths.
Baryon spectrum and chiral dynamics
Glozman, L Ya
1995-01-01
New results on baryon structure and spectrum developed in collaboration with Dan Riska [1-4] are reported. The main idea is that beyond the chiral symmetry spontaneous breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks.
Galaxy Cluster Baryon Fractions Revisited
Gonzalez, Anthony H; Zabludoff, Ann I; Zaritsky, Dennis
2013-01-01
We measure the baryons contained in both the stellar and hot gas components for twelve galaxy clusters and groups at z~0.1 with M=1-5e14 Msun. This paper improves upon our previous work through the addition of XMM data, enabling measurements of the total mass and masses of each major baryonic component --- ICM, intracluster stars, and stars in galaxies --- for each system. We recover a relation for the stellar mass versus halo mass consistent with our previous result. We confirm that the partitioning of baryons between the stellar and hot gas components is a strong function of M500; the fractions of total mass in stars and X-ray gas within r500 scale as M500^-0.45 and M500^0.26, respectively. We also confirm that the combination of the BCG and intracluster stars is an increasingly important contributor to the stellar baryon budget in lower halo masses. We find a weak, but statistically significant, dependence of the total baryon fraction upon halo mass, scaling as M500^0.16. For M500>2e14, the total baryon fr...
Molecular dynamics simulation for the baryon-quark phase transition at finite baryon density
Energy Technology Data Exchange (ETDEWEB)
Akimura, Y. [Saitama University, Department of physics, Sakura-Ku, Saitama City (Japan); Japan Atomic Energy Research Institute, Advanced Science Research Center, Tokai (Japan); Maruyama, T.; Chiba, S. [Japan Atomic Energy Research Institute, Advanced Science Research Center, Tokai (Japan); Yoshinaga, N. [Saitama University, Department of physics, Sakura-Ku, Saitama City (Japan)
2005-09-01
We study the baryon-quark phase transition in the molecular dynamics (MD) of the quark degrees of freedom at finite baryon density. The baryon state at low baryon density, and the deconfined quark state at high baryon density are reproduced. We investigate the equations of state of matters with different u-d-s compositions. It is found that the baryon-quark transition is sensitive to the quark width. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Somogyi, Gabor [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Zurich Univ. (Switzerland). Inst. for Theoretical Physics; Smith, Robert E. [Zurich Univ. (Switzerland). Inst. for Theoretical Physics
2009-10-15
Baryonic Acoustic Oscillation (BAO) features are amplified for baryon and slightly damped for CDM spectra. If we compare the total matter power spectra in the 2- and 1-component fluid approaches, then we find excellent agreement, with deviations being < 0.5% throughout the evolution. Consequences: high precision modeling of the large-scale distribution of baryons in the Universe can not be achieved through an effective mean-mass 1-component fluid approximation; detection significance of BAO will be amplified in probes that study baryonic matter, relative to probes that study the CDM or total mass only. The CDM distribution can be modeled accurately at late times and the total matter at all times. This is good news for probes that are sensitive to the total mass, such as gravitational weak lensing as existing modeling techniques are good enough. Lastly, we identify an analytic approximation that greatly simplifies the evaluation of the full PT expressions, and it is better than < 1% over the full range of scales and times considered. (orig.)
Quark-Model Baryon-Baryon Interaction and its Applications to Hypernuclei
Fujiwara, Y; Suzuki, Y; Kohno, M; Miyagawa, K
2004-01-01
The quark-model baryon-baryon interaction fss2, proposed by the Kyoto-Niigata group, is a unified model for the complete baryon octet (B_8=N, Lambda, Sigma and Xi), which is formulated in a framework of the (3q)-(3q) resonating-group method (RGM) using the spin-flavor SU_6 quark-model wave functions and effective meson-exchange potentials at the quark level. Model parameters are determined to reproduce properties of the nucleon-nucleon system and the low-energy cross section data for the hyperon-nucleon scattering. Due to the several improvements including the introduction of vector-meson exchange potentials, fss2 has achieved very accurate description of the NN and YN interactions, comparable to various one-boson exchange potentials. We review the essential features of fss2 and our previous model FSS, and their predictions to few-body systems in confrontation with the available experimental data. Some characteristic features of the B_8 B_8 interactions with the higher strangeness, S=-2, -3, -4, predicted by ...
Baryons and baryonic matter in four-fermion interaction models
Energy Technology Data Exchange (ETDEWEB)
Urlichs, K.
2007-02-23
In this work we discuss baryons and baryonic matter in simple four-fermion interaction theories, the Gross-Neveu model and the Nambu-Jona-Lasinio model in 1+1 and 2+1 space-time dimensions. These models are designed as toy models for dynamical symmetry breaking in strong interaction physics. Pointlike interactions (''four-fermion'' interactions) between quarks replace the full gluon mediated interaction of quantum chromodynamics. We consider the limit of a large number of fermion flavors, where a mean field approach becomes exact. This method is formulated in the language of relativistic many particle theory and is equivalent to the Hartree-Fock approximation. In 1+1 dimensions, we generalize known results on the ground state to the case where chiral symmetry is broken explicitly by a bare mass term. For the Gross-Neveu model, we derive an exact self-consistent solution for the finite density ground state, consisting of a one-dimensional array of equally spaced potential wells, a baryon crystal. For the Nambu- Jona-Lasinio model we apply the derivative expansion technique to calculate the total energy in powers of derivatives of the mean field. In a picture akin to the Skyrme model of nuclear physics, the baryon emerges as a topological soliton. The solution for both the single baryon and dense baryonic matter is given in a systematic expansion in powers of the pion mass. The solution of the Hartree-Fock problem is more complicated in 2+1 dimensions. In the massless Gross-Neveu model we derive an exact self-consistent solution by extending the baryon crystal of the 1+1 dimensional model, maintaining translational invariance in one spatial direction. This one-dimensional configuration is energetically degenerate to the translationally invariant solution, a hint in favor of a possible translational symmetry breakdown by more general geometrical structures. In the Nambu-Jona-Lasinio model, topological soliton configurations induce a finite baryon
Quark confinement mechanism for baryons
Goncharov, Yu P
2013-01-01
The confinement mechanism proposed earlier and then successfully applied to meson spectroscopy by the author is extended over baryons. For this aim the wave functions of baryons are built as tensorial products of those corresponding to the 2-body problem underlying the confinement mechanism of two quarks. This allows one to obtain the Hamiltonian of the quark interactions in a baryon and, accordingly, the possible energy spectrum of the latter. Also one may construct the electric and magnetic form factors of baryon in a natural way which entails the expressions for the root-mean-square radius and anomalous magnetic moment. To ullustrate the formalism in the given Chapter for the sake of simplicity only symmetrical baryons (i.e., composed from three quarks of the same flavours) $\\Delta^{++}$, $\\Delta^{-}$, $\\Omega^-$ are considered. For them the masses, the root-mean-square radii and anomalous magnetic moments are expressed in an explicit analytical form through the parameters of the confining SU(3)-gluonic fi...
Baryon Transition in Holographic QCD
Li, Siwen
2015-01-01
We propose a mechanism of holographic baryon transition in the Sakai-Sugimoto (SS) model: baryons in this model can jump to different states under the mediated effect of gravitons (or glueballs by holography). We consider a time-dependent gravitational perturbation from M5-brane solution of D=11 supergravity and by employing the relations between 11D M-theory and IIA string theory, we get its 10 dimensional counterpart in the SS model. Such a perturbation is received by the D4-branes wrapped on the $S^{4}$ part of the 10D background, namely the baryon vertex. Technically, baryons in the SS model are described by BPST instanton ansatz and their dynamics can be analyzed using the quantum mechanical system in the instanton's moduli space. In this way, different baryonic states are marked by quantum numbers of moduli space quantum mechanics. By holographic spirit, the gravitational perturbation enters the Hamiltonian as a time-dependent perturbation and it is this time-dependent perturbative Hamiltonian produces ...
Density-dependent effective baryon-baryon interaction from chiral three-baryon forces
Petschauer, Stefan; Haidenbauer, Johann; Kaiser, Norbert; Meißner, Ulf-G.; Weise, Wolfram
2017-01-01
A density-dependent effective potential for the baryon-baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon-nucleon interaction. Explicit expressions for the ΛN in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the three-body force in symmetric nuclear matter and pure neutron matter on the ΛN interaction. A moderate repulsion that increases with density is found in comparison to the free ΛN interaction.
Density-dependent effective baryon-baryon interaction from chiral three-baryon forces
Petschauer, Stefan; Kaiser, Norbert; Meißner, Ulf-G; Weise, Wolfram
2016-01-01
A density-dependent effective potential for the baryon-baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon-nucleon interaction. Explicit expressions for the Lambda-nucleon in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the ...
Taddeucci, J.; Sesterhenn, J.; Scarlato, P.; Stampka, K.; Del Bello, E.; Pena Fernandez, J. J.; Gaudin, D.
2014-05-01
High-speed imaging of explosive eruptions at Stromboli (Italy), Fuego (Guatemala), and Yasur (Vanuatu) volcanoes allowed visualization of pressure waves from seconds-long explosions. From the explosion jets, waves radiate with variable geometry, timing, and apparent direction and velocity. Both the explosion jets and their wave fields are replicated well by numerical simulations of supersonic jets impulsively released from a pressurized vessel. The scaled acoustic signal from one explosion at Stromboli displays a frequency pattern with an excellent match to those from the simulated jets. We conclude that both the observed waves and the audible sound from the explosions are jet noise, i.e., the typical acoustic field radiating from high-velocity jets. Volcanic jet noise was previously quantified only in the infrasonic emissions from large, sub-Plinian to Plinian eruptions. Our combined approach allows us to define the spatial and temporal evolution of audible jet noise from supersonic jets in small-scale volcanic eruptions.
Decuplet baryons in hot medium
Azizi, K
2016-01-01
The thermal properties of the light decuplet baryons are investigated in the framework of the thermal QCD sum rules. In particular, the behavior of the mass and residue of the $\\Delta$, $\\Sigma^{*}$, $\\Xi^{*}$ and $\\Omega$ baryons with respect to temperature are analyzed taking into account the additional operators coming up in the Wilson expansion at finite temperature. It is found that the mass and residue of these particles remain overall unaffected up to $T\\simeq150~MeV$ but, after this point, they start to diminish, considerably.
Deforming baryons into confining strings
Hartnoll, S A; Hartnoll, Sean A.; Portugues, Ruben
2004-01-01
We find explicit probe D3-brane solutions in the infrared of the Maldacena-Nunez background. The solutions describe deformed baryon vertices: q external quarks are separated in spacetime from the remaining N-q. As the separation is taken to infinity we recover known solutions describing infinite confining strings in ${\\mathcal{N}}=1$ gauge theory. We present results for the mass of finite confining strings as a function of length. We also find probe D2-brane solutions in a confining type IIA geometry, the reduction of a G_2 holonomy M theory background. The interpretation of these solutions as deformed baryons/confining strings is not as straightforward.
Multiplicity fluctuation and correlation of identified baryons in a quark combination model
Song, Jun; Li, Hai-hong; Wang, Rui-qin; Shao, Feng-lan
2017-01-01
The dynamical multiplicity fluctuations and correlations of identified baryons and antibaryons produced by the hadronization of a bulk quark system are systematically studied in a quark combination model. Starting from the most basic dynamics of the quark combination which is necessary for multiplicity study, we analyze moments (variance, skewness, and kurtosis) of inclusive multiplicity distributions of identified baryons, two-baryon multiplicity correlations, and baryon-antibaryon multiplicity correlations after the hadronization of a quark system with given quark number and antiquark number. We obtain a series of interesting results, e.g., binomial behavior of multiplicity moments, coinciding flavor-dependent two-baryon correlation, and universal baryon-antibaryon correlation, which can be regarded as general features of the quark combination. We further take into account correlations and fluctuations of quark numbers before hadronization and study their influence on multiple production of baryons and antibaryons. We find that quark number fluctuations and flavor conservation lead to a series of important results such as the negative p Ω¯ + multiplicity correlation and universal two-baryon correlations. We also study the influence of resonance decays in order to compare our results with future experimental data in ultrarelativistic heavy ion collisions at the Large Hadron Collider.
Predictions for Excited Strange Baryons
Energy Technology Data Exchange (ETDEWEB)
Fernando, Ishara P.; Goity, Jose L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-04-01
An assessment is made of predictions for excited hyperon masses which follow from flavor symmetry and consistency with a 1/N c expansion of QCD. Such predictions are based on presently established baryonic resonances. Low lying hyperon resonances which do not seem to fit into the proposed scheme are discussed.
Algebraic model of baryon resonances
Bijker, R
1997-01-01
We discuss recent calculations of electromagnetic form factors and strong decay widths of nucleon and delta resonances. The calculations are done in a collective constituent model of the nucleon, in which the baryons are interpreted as rotations and vibrations of an oblate top.
Bijker, R; Leviatan, A
1997-01-01
We study strong decays of nonstrange baryons by making use of the algebraic approach to hadron structure. Within this framework we derive closed expressions for decay widths in an elementary-meson emission model and use these to analyze the experimental data for $N^* \\rightarrow N + \\pi$, $N^* + \\pi$, $\\Delta^* \\rightarrow \\Delta + \\pi$ and $\\Delta^* \\rightarrow \\Delta +
Baryon Number Current in Chiral Soliton Model
Institute of Scientific and Technical Information of China (English)
LiXiguo
2003-01-01
Last year two exotic and narrow baryons, θ+(1540) and Ξ3/2--(1862), which are pentaquark states have been reported by several group. Their minimal quark content are uudds and ddssu, respectively. The θ+(1540) baryon was observed in few independent experiments. Its hypercharge, Y=2. The exotic baryon is an isosinglet. The Ξ3/2--(1862) baryon was also observed in the Ξ-π- invariant mass spectrum in proton-proton scattering at the CERN SPS . The search of exotic baryons was motivated by the flavor SU(3) extension of
Flow and Acoustic Features of a Mach 0.9 Free Jet Using High-Frequency Excitation
Upadhyay, Puja; Alvi, Farrukh
2016-11-01
This study focuses on active control of a Mach 0.9 (ReD = 6 ×105) free jet using high-frequency excitation for noise reduction. Eight resonance-enhanced microjet actuators with nominal frequencies of 25 kHz (StD 2 . 2) are used to excite the shear layer at frequencies that are approximately an order of magnitude higher than the jet preferred frequency. The influence of control on mean and turbulent characteristics of the jet is studied using Particle Image Velocimetry. Additionally, far-field acoustic measurements are acquired to estimate the effect of pulsed injection on noise characteristics of the jet. Flow field measurements revealed that strong streamwise vortex pairs, formed as a result of control, result in a significantly thicker initial shear layer. This excited shear layer is also prominently undulated, resulting in a modified initial velocity profile. Also, the distribution of turbulent kinetic energy revealed that forcing results in increased turbulence levels for near-injection regions, followed by a global reduction for all downstream locations. Far-field acoustic measurements showed noise reductions at low to moderate frequencies. Additionally, an increase in high-frequency noise, mostly dominated by the actuators' resonant noise, was observed. AFOSR and ARO.
Directory of Open Access Journals (Sweden)
Kun-Ching Wang
2015-01-01
Full Text Available The classification of emotional speech is mostly considered in speech-related research on human-computer interaction (HCI. In this paper, the purpose is to present a novel feature extraction based on multi-resolutions texture image information (MRTII. The MRTII feature set is derived from multi-resolution texture analysis for characterization and classification of different emotions in a speech signal. The motivation is that we have to consider emotions have different intensity values in different frequency bands. In terms of human visual perceptual, the texture property on multi-resolution of emotional speech spectrogram should be a good feature set for emotion classification in speech. Furthermore, the multi-resolution analysis on texture can give a clearer discrimination between each emotion than uniform-resolution analysis on texture. In order to provide high accuracy of emotional discrimination especially in real-life, an acoustic activity detection (AAD algorithm must be applied into the MRTII-based feature extraction. Considering the presence of many blended emotions in real life, in this paper make use of two corpora of naturally-occurring dialogs recorded in real-life call centers. Compared with the traditional Mel-scale Frequency Cepstral Coefficients (MFCC and the state-of-the-art features, the MRTII features also can improve the correct classification rates of proposed systems among different language databases. Experimental results show that the proposed MRTII-based feature information inspired by human visual perception of the spectrogram image can provide significant classification for real-life emotional recognition in speech.
Fogel, Ronen; Seshia, Ashwin A.
2016-01-01
Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040
Spin-orbit interactions between two baryons
Energy Technology Data Exchange (ETDEWEB)
Takeuchi, Sachiko [Japan College of Social Work, Kiyose, Tokyo (Japan); Morimatsu, Osamu [High Energy Accelerator Research Organization, Tanashi Branch (KEK-Tanashi), Tanashi, Tokyo (Japan); Tani, Yoshihiro; Oka, Makoto [Tokyo Inst. of Tech. (Japan). Dept. of Physics
2000-04-01
The spin-orbit interactions in the quark cluster models are reviewed in this article. The observed spin-orbit force between two nucleons is strong, while that in the excited baryons or in the {lambda}N interaction is small. We try to sort out whether the quark cluster model can produce a spin-orbit force which explains these features simultaneously. Various works which include the spin-orbit force with different origins such as gluons, mesons, or coupling to other channels are compared to each other. The roles of the symmetric and anti-symmetric spin- orbit forces in the NN scattering phase shifts and in the YN low-energy cross sections and the phase shifts are investigated. (author)
How do galaxies get their baryons?
Conselice, Christopher J
2011-01-01
Understanding how galaxies obtain baryons, their stars and gas, over cosmic time is traditionally approached in two different ways - theoretically and observationally. In general, observational approaches to galaxy formation include measuring basic galaxy properties, such as luminosities, stellar masses, rotation speeds, star formation rates and how these features evolve through time. Theoretically, cosmologically based models collate the physical effects driving galaxy assembly - mergers of galaxies, accretion of gas, star formation, and feedback, amongst others, to form predictions which are matched to galaxy observables. An alternative approach is to examine directly, in an observational way, the processes driving galaxy assembly, including the effects of feedback. This is a new `third way' towards understanding how galaxies are forming from gas accretion and mergers, and directly probes these effects instead of relying on simulations designed to reproduce observations. This empirical approach towards unde...
Heavy Baryon Production and Decay
Dunietz, Isard
1998-01-01
The branching ratio B(Lambda_c -> p K- pi+) normalizes the production and decay of charmed and bottom baryons. At present, this crucial branching ratio is extracted dominantly from B.bar -> baryons analyses. This note questions several of the underlying assumptions and predicts sizable B.bar -> D(*) N N'.bar X transitions, which were traditionally neglected. It predicts B(Lambda_c -> p K- pi+) to be significantly larger (0.07 +/- 0.02) than the world average. Some consequences are briefly mentioned. Several techniques to measure B(Lambda_c -> p K- pi+) are outlined with existing or soon available data samples. By equating two recent CLEO results, an appendix obtains B(D0 -> K- pi+)= 0.035 +/- 0.002, which is somewhat smaller than the current world average.
Mathur, Smita; Williams, Rik J
2007-01-01
We review our attempts to discover lost baryons at low redshift with ``X-ray forest'' of absorption lines from the warm-hot intergalactic medium. We discuss the best evidence to date along the Mrk 421 sightline. We then discuss the missing baryons in the Local Group and the significance of the z=0 absorption systems in X-ray spectra. We argue that the debate over the Galactic vs. extragalactic origin of the z=0 systems is premature as these systems likely contain both components. Observations with next generation X-ray missions such as Constellation-X and XEUS will be crucial to map out the warm-hot intergalactic medium.
Algebraic model of baryon structure
Bijker, R
2000-01-01
We discuss properties of baryon resonances belonging to the Nucleon, Delta, Sigma, Lambda, Xi and Omega families in a collective string-like model for the nucleon, in which the radial excitations are interpreted as rotations and vibrations of the string configuration. We find good overall agreement with the available data. The main discrepancies are found for low lying S-wave states, in particular N(1535), N(1650), Sigma(1750), Lambda*(1405), Lambda(1670) and Lambda(1800).
Roberts, Craig D.; Segovia, Jorge
2016-11-01
The kernels in the tangible matter of our everyday experience are composed of light quarks. At least, they are light classically; but they don't remain light. Dynamical effects within the Standard Model of Particle Physics change them in remarkable ways, so that in some configurations they appear nearly massless, but in others possess masses on the scale of light nuclei. Modern experiment and theory are exposing the mechanisms responsible for these remarkable transformations. The rewards are great if we can combine the emerging sketches into an accurate picture of confinement, which is such a singular feature of the Standard Model; and looming larger amongst the emerging ideas is a perspective that leads to a Borromean picture of the proton and its excited states.
Transport coefficients of heavy baryons
Tolos, Laura; Torres-Rincon, Juan M.; Das, Santosh K.
2016-08-01
We compute the transport coefficients (drag and momentum diffusion) of the low-lying heavy baryons Λc and Λb in a medium of light mesons formed at the later stages of high-energy heavy-ion collisions. We employ the Fokker-Planck approach to obtain the transport coefficients from unitarized baryon-meson interactions based on effective field theories that respect chiral and heavy-quark symmetries. We provide the transport coefficients as a function of temperature and heavy-baryon momentum, and analyze the applicability of certain nonrelativistic estimates. Moreover we compare our outcome for the spatial diffusion coefficient to the one coming from the solution of the Boltzmann-Uehling-Uhlenbeck transport equation, and we find a very good agreement between both calculations. The transport coefficients for Λc and Λb in a thermal bath will be used in a subsequent publication as input in a Langevin evolution code for the generation and propagation of heavy particles in heavy-ion collisions at LHC and RHIC energies.
Landau Damping of Baryon Structure Formation in the Post Reionization Epoch
Chang, Feng-Yin
2010-01-01
It has been suggested by Chen and Lai that the proper description of the large scale structure formation of the universe in the post-reionization era, which is conventionally characterized via gas hydrodynamics, should include the plasma collective effects in the formulation. Specifically, it is the combined pressure from the baryon thermal motions and the residual long-range electrostatic potentials resulted from the imperfect Debye shielding, that fights against the gravitational collapse. As a result, at small-scales the baryons would oscillate at the ion-acoustic, instead of the conventional neutral acoustic, frequency. In this paper we extend and improve the Chen-Lai formulation with the attention to the Landau damping of the ion-acoustic oscillations. Since T_e \\sim T_i in the post-reionization era, the ion acoustic oscillations would inevitably suffer the Landau damping which severely suppresses the baryon density spectrum in the regimes of intermediate and high wavenumber k. To describe this Landau-da...
Heavy Baryons and QCD Sum Rules
Yakovlev, O I
1996-01-01
We discuss an application of QCD sum rules to the heavy baryons $\\Lambda_Q$ and $\\Sigma_Q$. The predictions for the masses of heavy baryons, residues and Isgur-Wise function are presented. The new results on two loop anomalous dimensions of baryonic currents and QCD radiative corrections (two- and three- loop contributions) to the first two Wilson coefficients in OPE are explicitly presented.
Hadronic molecules in the heavy baryon spectrum
Entem, D. R.; Ortega, P. G.; Fernández, F.
2016-01-01
We study possible baryon molecules in the non-strange heavy baryon spectrum. We include configurations with a heavy-meson and a light baryon. We find several structures, in particular we can understand the Λc(2940) as a D*N molecule with JP = 3/2- quantum numbers. We also find D(*)Δ candidates for the recently discovered Xc(3250) resonance.
Baryon Number Violation and String Topologies
Sjöstrand, Torbjörn
2003-01-01
In supersymmetric scenarios with broken R-parity, baryon number violating sparticle decays become possible. In order to search for such decays, a good understanding of expected event properties is essential. We here develop a complete framework that allows detailed studies. Special attention is given to the hadronization phase, wherein the baryon number violating vertex is associated with the appearance of a junction in the colour confinement field. This allows us to tell where to look for the extra (anti)baryon directly associated with the baryon number violating decay.
Sosa, Germán. D.; Cruz-Roa, Angel; González, Fabio A.
2015-01-01
This work addresses the problem of lung sound classification, in particular, the problem of distinguishing between wheeze and normal sounds. Wheezing sound detection is an important step to associate lung sounds with an abnormal state of the respiratory system, usually associated with tuberculosis or another chronic obstructive pulmonary diseases (COPD). The paper presents an approach for automatic lung sound classification, which uses different state-of-the-art sound features in combination with a C-weighted support vector machine (SVM) classifier that works better for unbalanced data. Feature extraction methods used here are commonly applied in speech recognition and related problems thanks to the fact that they capture the most informative spectral content from the original signals. The evaluated methods were: Fourier transform (FT), wavelet decomposition using Wavelet Packet Transform bank of filters (WPT) and Mel Frequency Cepstral Coefficients (MFCC). For comparison, we evaluated and contrasted the proposed approach against previous works using different combination of features and/or classifiers. The different methods were evaluated on a set of lung sounds including normal and wheezing sounds. A leave-two-out per-case cross-validation approach was used, which, in each fold, chooses as validation set a couple of cases, one including normal sounds and the other including wheezing sounds. Experimental results were reported in terms of traditional classification performance measures: sensitivity, specificity and balanced accuracy. Our best results using the suggested approach, C-weighted SVM and MFCC, achieve a 82.1% of balanced accuracy obtaining the best result for this problem until now. These results suggest that supervised classifiers based on kernel methods are able to learn better models for this challenging classification problem even using the same feature extraction methods.
Baryon Form Factors at Threshold
Energy Technology Data Exchange (ETDEWEB)
Baldini Ferroli, Rinaldo [Museo Storico della Fisica e Centro Studi e Ricerche ' E. Fermi' , Rome (Italy); INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Pacetti, Simone [INFN and Dipartimento di Fisica, Universita di Perugia, Perugia (Italy)
2012-04-15
An extensive study of the e{sup +}e{sup -}{yields}pp{sup Macron }BABAR cross section data is presented. Two unexpected outcomes have been found: the modulus of the proton form factor is normalized to one at threshold, i.e.: |G{sup p}(4M{sub p}{sup 2})|=1, as a pointlike fermion, and the resummation factor in the Sommerfeld formula is not needed. Other e{sup +}e{sup -} {yields} baryon-antibaryon cross sections show a similar behavior near threshold.
CP violation in multibody decays of beauty baryons
Durieux, Gauthier
2016-01-01
Beauty baryons are being observed in large number in the LHCb detector. The rich kinematics of their multibody decays are therefore becoming accessible and provide us with new opportunities to search for CP violation. We analyse the angular distributions of some three- and four-body decays of spin-$1/2$ baryons using the Jacob-Wick helicity formalism. The asymmetries that provide access to small differences of CP-odd phases between decay amplitudes of identical CP-even phases are notably discussed. The understanding gained on processes featuring specific resonant intermediate states allows us to establish which asymmetries are relevant for what purpose. It is for instance shown that some CP-odd angular asymmetries measured by the LHCb collaboration in the $\\Lambda_b \\to \\Lambda\\,\\varphi \\to p\\,\\pi\\, K^+ K^-$ decay are expected to vanish identically.
CP violation in multibody decays of beauty baryons
Durieux, Gauthier
2016-10-01
Beauty baryons are being observed in large numbers in the LHCb detector. The rich kinematic distributions of their multibody decays are therefore becoming accessible and provide us with new opportunities to search for CP violation. We analyse the angular distributions of some three- and four-body decays of spin-1/2 baryons using the Jacob-Wick helicity formalism. The asymmetries that provide access to small differences of CP-odd phases between decay amplitudes of identical CP-even phases are notably discussed. The understanding gained on processes featuring specific resonant intermediate states allows us to establish which asymmetries are relevant for what purpose. It is for instance shown that some CP-odd angular asymmetries measured by the LHCb collaboration in the Λ b → Λ φ → p π K + K - decay are expected to vanish identically.
Baryon and lepton violation in astrophysics.
Kolb, E. W.
The cosmological and astrophysical significance of baryon and lepton number violating process is the subject of this paper. The possibility of baryon-number violating processes in the electroweak transition in the early universe is reviewed. The implications of lepton-number violation via Nambu-Goldstone bosons are discussed in detail.
Baryon spectroscopy and the omega minus
Energy Technology Data Exchange (ETDEWEB)
Samios, N.P.
1994-12-31
In this report, I will mainly discuss baryon resonances with emphasis on the discovery of the {Omega}{sup {minus}}. However, for completeness, I will also present some data on the meson resonances which together with the baryons led to the uncovering of the SU(3) symmetry of particles and ultimately to the concept of quarks.
Baryon number violation in future accelerators
Energy Technology Data Exchange (ETDEWEB)
Tracas, N.D.; Zoupanos, G.
1989-03-30
As a demonstration of the possibility to observe baryon number violation in the next generation of accelerators we present a semirealistic GUT in which proton decay is forbidden and the unification scale is at approx. = 10/sup 3-4/ TeV, leading therefore to observable baryon number violating processes.
(Hybrid) Baryons Quantum Numbers and Adiabatic Potentials
Page, P R
1999-01-01
We construct (hybrid) baryons in the flux-tube model of Isgur and Paton. In the limit of adiabatic quark motion, we build proper eigenstates of orbital angular momentum and indicate the flavour, spin, chirality and J^P of (hybrid) baryons. The adiabatic potential is calculated as a function of the quark positions.
Pathways to Rare Baryonic B Decays
Hou Wei Shu; Hou, Wei-Shu
2001-01-01
We point out new ways to search for charmless baryonic B decays: baryon pair production in association with $\\eta^\\prime$ is very likely as large as or even a bit larger than two body $K\\pi/\\pi\\pi$ modes. We extend our argument, in weaker form, to $B\\to \\gamma + X_s$ and $\\ell\
A rotating string model versus baryon spectra
Sonnenschein, Jacob
2014-01-01
We continue our program of describing hadrons as rotating strings with massive endpoints. In this paper we propose models of baryons and confront them with the baryon Regge trajectories. We show that these are best fitted by a model of a single string with a quark at one endpoint and a diquark at the other. This model is preferred over the Y-shaped string model with a quark at each endpoint. We show how the model follows from a stringy model of the holographic baryon which includes a baryonic vertex connected with $N_c$ strings to flavor probe branes. From fitting to baryonic data we find that there is no clear evidence for a non-zero baryonic vertex mass, but if there is such a mass it should be located at one of the string endpoints. The available baryon trajectories in the angular momentum plane $(J,M^2)$, involving light, strange, and charmed baryons, are rather well fitted when adding masses to the string endpoints, with a single universal slope $\\alp = 0.95$ GeV$^{-2}$. Most of the results for the quark...
Baryon form factors in chiral perturbation theory
Kubis, B; Kubis, Bastian; Meissner, Ulf-G.
2001-01-01
We analyze the electromagnetic form factors of the ground state baryon octet to fourth order in relativistic baryon chiral perturbation theory. Predictions for the \\Sigma^- charge radius and the \\Lambda-\\Sigma^0 transition moment are found to be in excellent agreement with the available experimental information. Furthermore, the convergence behavior of the hyperon charge radii is shown to be more than satisfactory.
Exploring the simplest purely baryonic decay processes
Geng, C Q; Rodrigues, Eduardo
2016-01-01
We propose to search for purely baryonic decay processes at the LHCb experiment. In particular, we concentrate on the decay $\\Lambda_b^0\\to p\\bar pn$, which is the simplest purely baryonic decay mode, with solely spin-1/2 baryons involved. We predict its decay branching ratio to be ${\\cal B}(\\Lambda_b^0\\to p\\bar pn)=(2.0^{+0.3}_{-0.2})\\times 10^{-6}$, which is sufficiently large to make the decay mode accessible to LHCb. Though not considered in general, purely baryonic decays could shed light on the puzzle of the baryon number asymmetry in the universe by means of a better understanding of the baryonic nature of our matter world. As such, they constitute a yet unexplored class of decay processes worth investigating. Our study can be extended to the purely baryonic decays of $\\Lambda_b^0\\to p\\bar p \\Lambda$, $\\Lambda_b^0\\to \\Lambda \\bar p\\Lambda$ and $\\Lambda_b^0\\to \\Lambda\\bar \\Lambda\\Lambda$, as well as other similar anti-triplet $b$-baryon decays, such as $\\Xi_b^{0,-}$.
Gitterman, Y.
2012-04-01
time delays clearly separated for the shot of IMI explosives (characterized by much higher detonation velocity than ANFO). Additionally acoustic records at close distances from WSMR explosions Distant Image (2440 tons of ANFO) and Minor Uncle (2725 tons of ANFO) were used to extend the charge and distance range for the SS delay scaled relationship, that showed consistency with SMR ANFO shots. The developed specific charge design contributed to the success of this unique dual Sayarim explosion experiment, providing the strongest GT0 sources since the establishment of the IMS network, that demonstrated clearly the most favorable westward/ eastward infrasound propagation up to 3400/6250 km according to appropriate summer/winter weather pattern and stratospheric wind directions, respectively, and thus verified empirically common models of infrasound propagation in the atmosphere. The research was supported by the CTBTO, Vienna, and the Israel Ministry of Immigrant Absorption.
Baryon symmetric big bang cosmology
Stecker, F. W.
1978-01-01
Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.
Pion mean fields and heavy baryons
Yang, Ghil-Seok; Polyakov, Maxim V; Praszałowicz, Michał
2016-01-01
We show that the masses of the lowest-lying heavy baryons can be very well described in a pion mean-field approach. We consider a heavy baryon as a system consisting of the $N_c-1$ light quarks that induce the pion mean field, and a heavy quark as a static color source under the influence of this mean field. In this approach we derive a number of \\textit{model-independent} relations and calculate the heavy baryon masses using those of the lowest-lying light baryons as input. The results are in remarkable agreement with the experimental data. In addition, the mass of the $\\Omega_b^*$ baryon is predicted.
Strangeness in the baryon ground states
Semke, A
2012-01-01
We compute the strangeness content of the baryon ground states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-$N_c$ sum rule estimates of the counter terms relevant for the baryon masses at N$^3$LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.
Gluon saturation and baryon stopping in the SPS,RHIC, and LHC energy regions
Institute of Scientific and Technical Information of China (English)
LI Shuang; FENG Sheng-Qin
2012-01-01
A new geometrical scaling method with a gluon saturation rapidity limit is proposed to study the gluon saturation feature of the central rapidity region of relativistic nuclear collisions.The net-baryon number is essentially transported by valence quarks that probe the saturation regime in the target by multiple scattering.We take advantage of the gluon saturation model with geometric scaling of the rapidity limit to investigate net baryon distributions,nuclear stopping power and gluon saturation features in the SPS and RHIC energy regions.Predictions for net-baryon rapidity distributions,mean rapidity loss and gluon saturation feature in central Pb+Pb collisions at the LHC are made in this paper.
Ross, Ashley J; Burden, Angela; Percival, Will J; Tojeiro, Rita; Manera, Marc; Beutler, Florian; Brinkmann, J; Brownstein, Joel R; Carnero, Aurelio; da Costa, Luiz A N; Eisenstein, Daniel J; Guo, Hong; Ho, Shirley; Maia, Marcio A G; Montesano, Francesco; Muna, Demitri; Nichol, Robert C; Nuza, Sebastian E; Sanchez, Ariel G; Schneider, Donald P; Skibba, Ramin A; Sobreira, Flavia; Streblyanska, Alina; Swanson, Molly E C; Thomas, Daniel; Tinker, Jeremy L; Wake, David A; Zehavi, Idit; Zhao, Gong-bo
2013-01-01
We study the clustering of galaxies, as a function of their colour, from Data Release Ten (DR10) of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). We select 122,967 galaxies with 0.43 < z < 0.7 into a "Blue" sample and 131,969 into a "Red" sample based on k+e corrected (to z=0.55) r-i colours and i band magnitudes. The samples are chosen to each contain more than 100,000 galaxies, have similar redshift distributions, and maximize the difference in clustering amplitude. The Red sample has a 40% larger bias than the Blue (b_Red/b_Blue = 1.39+-0.04), implying the Red galaxies occupy dark matter halos with an average mass that is 0.5 log Mo greater. Spherically averaged measurements of the correlation function, \\xi 0, and the power spectrum are used to locate the position of the baryon acoustic oscillation (BAO) feature of both samples. Using \\xi 0, we obtain distance scales, relative to our reference LCDM cosmology, of 1.010+-0.027 for the Red sample and 1.005+-0.031 for the Blue. After apply...
Alam, Shadab; Bailey, Stephen; Beutler, Florian; Bizyaev, Dmitry; Blazek, Jonathan A; Bolton, Adam S; Brownstein, Joel R; Burden, Angela; Chuang, Chia-Hsun; Comparat, Johan; Cuesta, Antonio J; Dawson, Kyle S; Eisenstein, Daniel J; Escoffier, Stephanie; Gil-Marín, Héctor; Grieb, Jan Niklas; Hand, Nick; Ho, Shirley; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco; Malanushenko, Elena; Malanushenko, Viktor; Maraston, Claudia; McBride, Cameron K; Nichol, Robert C; Olmstead, Matthew D; Oravetz, Daniel; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pellejero-Ibanez, Marcos; Percival, Will J; Petitjean, Patrick; Prada, Francisco; Price-Whelan, Adrian M; Reid, Beth A; Rodríguez-Torres, Sergio A; Roe, Natalie A; Ross, Ashley J; Ross, Nicholas P; Rossi, Graziano; Rubiño-Martín, Jose Alberto; Sánchez, Ariel G; Saito, Shun; Salazar-Albornoz, Salvador; Samushia, Lado; Satpathy, Siddharth; Scóccola, Claudia G; Schlegel, David J; Schneider, Donald P; Seo, Hee-Jong; Simmons, Audrey; Slosar, Anže; Strauss, Michael A; Swanson, Molly E C; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Magaña, Mariana Vargas; Vazquez, Jose Alberto; Verde, Licia; Wake, David A; Wang, Yuting; Weinberg, David H; White, Martin; Wood-Vasey, W Michael; Yèche, Christophe; Zehavi, Idit; Zhai, Zhongxu; Zhao, Gong-Bo
2016-01-01
We present cosmological results from the final galaxy clustering data set of the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. Our combined galaxy sample comprises 1.2 million massive galaxies over an effective area of 9329 deg^2 and volume of 18.7 Gpc^3, divided into three partially overlapping redshift slices centred at effective redshifts 0.38, 0.51, and 0.61. We measure the angular diameter distance DM and Hubble parameter H from the baryon acoustic oscillation (BAO) method after applying reconstruction to reduce non-linear effects on the BAO feature. Using the anisotropic clustering of the pre-reconstruction density field, we measure the product DM*H from the Alcock-Paczynski (AP) effect and the growth of structure, quantified by f{\\sigma}8(z), from redshift-space distortions (RSD). We combine measurements presented in seven companion papers into a set of consensus values and likelihoods, obtaining constraints that are tighter and more robust than those from any one m...
Springer handbook of acoustics
2014-01-01
Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays and acoustic emission. Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...
Baryons and baryonic matter in the large Nc and heavy quark limits
Cohen, Thomas D; Ndousse, Kamal K
2011-01-01
This paper explores properties of baryons and finite density baryonic matter in an artificial world in which Nc, the number of colors, is large and the quarks of all species are degenerate and much larger than {\\Lambda}_QCD. It has long been known that in large Nc QCD, baryons composed entirely of heavy quarks are accurately described in the mean-field approximation. However, the detailed properties of baryons in the combined large Nc and heavy quark limits have not been fully explored. Here some basic properties of baryons are computed using a variational approach. At leading order in both the large Nc and heavy quark expansions the baryon mass is computed explicitly as is the baryon form factor. Baryonic matter, the analog of nuclear matter in this artificial world, should also be well described in the mean-field approximation. In the special case where all baryons have an identical spin flavor structure, it is shown that in the formal heavy quark and large Nc limit interactions between baryons are strictly...
The Baryon Oscillation Spectroscopic Survey of SDSS-III
Dawson, Kyle S; Ahn, Christopher P; Anderson, Scott F; Aubourg, Eric; Bailey, Stephen; Barkhouser, Robert H; Bautista, Julian E; Beifiori, Alessandra; Berlind, Andreas A; Bhardwaj, Vaishali; Bizyaev, Dmitry; Blake, Cullen H; Blanton, Michael R; Blomqvist, Michael; Bolton, Adam S; Borde, Arnaud; Bovy, Jo; Brandt, W N; Brewington, Howard; Brinkmann, Jon; Brown, Peter J; Brownstein, Joel R; Bundy, Kevin; Busca, N G; Carithers, William; Carnero, Aurelio R; Carr, Michael A; Chen, Yanmei; Comparat, Johan; Connolly, Natalia; Cope, Frances; Croft, Rupert A C; Cuesta, Antonio J; da Costa, Luiz N; Davenport, James R A; Delubac, Timothee; de Putter, Roland; Dhital, Saurav; Ealet, Anne; Ebelke, Garrett L; Eisenstein, Daniel J; Escoffier, S; Fan, Xiaohui; Ak, N Filiz; Finley, Hayley; Font-Ribera, Andreu; Genova-Santos, R; Gunn, James E; Guo, Hong; Haggard, Daryl; Hall, Patrick B; Hamilton, Jean-Christophe; Harris, Ben; Harris, David W; Ho, Shirley; Hogg, David W; Holder, Diana; Honscheid, Klaus; Huehnerhoff, Joe; Jordan, Beatrice; Jordan, Wendell P; Kauffmann, Guinevere; Kazin, Eyal A; Kirkby, David; Klaene, Mark A; Kneib, Jean-Paul; Goff, Jean-Marc Le; Lee, Khee-Gan; Long, Daniel C; Loomis, Craig P; Lundgren, Britt; Lupton, Robert H; Maia, Marcio A G; Makler, Martin; Malanushenko, Elena; Malanushenko, Viktor; Mandelbaum, Rachel; Manera, Marc; Maraston, Claudia; Margala, Daniel; Masters, Karen L; McBride, Cameron K; McDonald, Patrick; McGreer, Ian D; Mena, Olga; Miralda-Escude, Jordi; Montero-Dorta, Antonio D; Montesano, Francesco; Muna, Demitri; Myers, Adam D; Naugle, Tracy; Nichol, Robert C; Noterdaeme, Pasquier; Olmstead, Matthew D; Oravetz, Audrey; Oravetz, Daniel J; Owen, Russell; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John K; Paris, Isabelle; Percival, Will J; Perez-Fournon, Ismael; Perez-Rafols, Ignasi; Petitjean, Patrick; Pfaffenberger, Robert; Pforr, Janine; Pieri, Matthew M; Prada, Francisco; Price-Whelan, Adrian M; Raddick, M Jordan; Rebolo, Rafael; Rich, James; Richards, Gordon T; Rockosi, Constance M; Roe, Natalie A; Ross, Ashley J; Ross, Nicholas P; Rossi, Graziano; Rubino-Martin, J A; Samushia, Lado; Sanchez, Ariel G; Sayres, Conor; Schmidt, Sarah J; Schneider, Donald P; Scoccola, C G; Seo, Hee-Jong; Shelden, Alaina; Sheldon, Erin; Shen, Yue; Shu, Yiping; Slosar, Anze; Smee, Stephen A; Snedden, Stephanie A; Stauffer, Fritz; Steele, Oliver; Strauss, Michael A; Suzuki, Nao; Swanson, Molly E C; Tal, Tomer; Tanaka, Masayuki; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Tremonti, Christy A; Magana, M Vargas; Verde, Licia; Viel, Matteo; Wake, David A; Watson, Mike; Weaver, Benjamin A; Weinberg, David H; Weiner, Benjamin J; West, Andrew A; White, Martin; Wood-Vasey, W M; Yeche, Christophe; Zehavi, Idit; Zhao, Gong-Bo; Zheng, Zheng
2012-01-01
The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses luminous galaxies to measure BAO to redshifts z<0.7 and observations of neutral hydrogen in the Lyman alpha forest in quasar spectra to constrain BAO over the redshift range 2.15
Light baryons and their excitations
Eichmann, Gernot; Fischer, Christian S.; Sanchis-Alepuz, Hèlios
2016-11-01
We study ground states and excitations of light octet and decuplet baryons within the framework of Dyson-Schwinger and Faddeev equations. We improve upon similar approaches by explicitly taking into account the momentum-dependent dynamics of the quark-gluon interaction that leads to dynamical chiral symmetry breaking. We perform calculations in both the three-body Faddeev framework and the quark-diquark approximation in order to assess the impact of the latter on the spectrum. Our results indicate that both approaches agree well with each other. The resulting spectra furthermore agree one-to-one with experiment, provided well-known deficiencies of the rainbow-ladder approximation are compensated for. We also discuss the mass evolution of the Roper and the excited Δ with varying pion mass and analyze the internal structure in terms of their partial wave decompositions.
Diffuse baryonic matter beyond 2020
Markevitch, M; Nulsen, P; Rasia, E; Vikhlinin, A; Kravtsov, A; Forman, W; Brunetti, G; Sarazin, C; Elvis, M; Fabbiano, G; Hornschemeier, A; Brissenden, R
2009-01-01
The hot, diffuse gas that fills the largest overdense structures in the Universe -- clusters of galaxies and a web of giant filaments connecting them -- provides us with tools to address a wide array of fundamental astrophysical and cosmological questions via observations in the X-ray band. Clusters are sensitive cosmological probes. To utilize their full potential for precision cosmology in the following decades, we must precisely understand their physics -- from their cool cores stirred by jets produced by the central supermassive black hole (itself fed by inflow of intracluster gas), to their outskirts, where the infall of intergalactic medium (IGM) drives shocks and accelerates cosmic rays. Beyond the cluster confines lies the virtually unexplored warm IGM, believed to contain most of the baryonic matter in the present-day Universe. As a depository of all the matter ever ejected from galaxies, it carries unique information on the history of energy and metal production in the Universe. Currently planned ma...
Holography, charge and baryon asymmetry
Mongan, T R
2009-01-01
The holographic principle indicates the finite number of bits of information available on the particle horizon describes all physics within the horizon. Linking information on the horizon with Standard Model particles requires a holographic model describing constituents (preons) of Standard Model particles in terms of bits of information on the horizon. Standard Model particles have charges 0, 1/3, 2/3 or 1 in units of the electron charge e, so bits in a preon model must be identified with fractional charge. Energy must be transferred to change the state of a bit, and labeling the low energy state of a bit e/3n and the high energy state -e/3n amounts to defining electric charge. Any such charged preon model will produce more protons than anti-protons at the time of baryogenesis and require baryon asymmetry. It will also produce more positrons than electrons, as suggested by astrophysical measurements.
Analysis of Mutation Acoustic Feature%变声期嗓音的声学特征分析
Institute of Scientific and Technical Information of China (English)
李晓慧; 单春光; 郝芳
2012-01-01
Objective To analysis the voice characteristics and differences between genders and ages of mutation period. Methods The voice samples were collected from 1 028 subjects that during the mutation period without voice disorders. They were divided into three groups according to the agc:127 male and 132 female aged between 10 ~12 years in the prcmutation group, 234 male and 233 female aged between 13~16 years in the mutation group, 122 male and 180 female aged between 17~20 years in the post mutation group. The objective parameters ,including fundamental frequency (F0), jitter, shimmer, amplitude perturbation quotient (APQ) and noise to harmonic ratio (NHR) were measured mainly on a sustained vowel / a:/ were recorded on a windows software named Kay. Results The values of F0 were different significantly between male and female . The normal reference values of F0: the prcmutation period: male 270. 90 + 27. 39,-female 287. 54 + 25. 51 ;group A of mutation period: male 197. 74 + 43. 09, female 259. 54 + 25. 99; group B: male 178. 38 + 46. 75, female 254. 91+22. 24 ;postmutation period: male 148. 97 + 25. 08,female 255. 45 + 25. 01. Jitt had obvious diffcrcncc(P<0. 05) between male and female of the same age in addition to the group A. The values of female were greater than that of male. NHR had obvious diffcrcncc(P<0. 01) between the group A and the group B of the same sex in the mutation period. The values of the group A were greater than that of the group B. Conclusion From the prcmutation period F0 had a significant difference between male and female. Although NHR showed no gender diffcrencs, it was an important parameter to judge the vioce feature.%目的 分析变声期各年龄段嗓音声学特点和差异.方法 1 028例变声期无嗓音疾病的青少年根据年龄分为三组,变声前期组(10~12岁)259例,男127例,女132例;变声中期组(13~16岁)467例,男234例,女233例,该组再分为A组(发声轻度沙哑、音调不稳定者,男66例,女70
Baryon-Baryon Interactions ---Nijmegen Extended-Soft-Core Models---
Rijken, T. A.; Nagels, M. M.; Yamamoto, Y.
We review the Nijmegen extended-soft-core (ESC) models for the baryon-baryon (BB) interactions of the SU(3) flavor-octet of baryons (N, Lambda, Sigma, and Xi). The interactions are basically studied from the meson-exchange point of view, in the spirit of the Yukawa-approach to the nuclear force problem [H. Yukawa, ``On the interaction of Elementary Particles I'', Proceedings of the Physico-Mathematical Society of Japan 17 (1935), 48], using generalized soft-core Yukawa-functions. These interactions are supplemented with (i) multiple-gluon-exchange, and (ii) structural effects due to the quark-core of the baryons. We present in some detail the most recent extended-soft-core model, henceforth referred to as ESC08, which is the most complete, sophisticated, and successful interaction-model. Furthermore, we discuss briefly its predecessor the ESC04-model [Th. A. Rijken and Y. Yamamoto, Phys. Rev. C 73 (2006), 044007; Th. A. Rijken and Y. Yamamoto, Ph ys. Rev. C 73 (2006), 044008; Th. A. Rijken and Y. Yamamoto, nucl-th/0608074]. For the soft-core one-boson-exchange (OBE) models we refer to the literature [Th. A. Rijken, in Proceedings of the International Conference on Few-Body Problems in Nuclear and Particle Physics, Quebec, 1974, ed. R. J. Slobodrian, B. Cuec and R. Ramavataram (Presses Universitè Laval, Quebec, 1975), p. 136; Th. A. Rijken, Ph. D. thesis, University of Nijmegen, 1975; M. M. Nagels, Th. A. Rijken and J. J. de Swart, Phys. Rev. D 17 (1978), 768; P. M. M. Maessen, Th. A. Rijken and J. J. de Swart, Phys. Rev. C 40 (1989), 2226; Th. A. Rijken, V. G. J. Stoks and Y. Yamamoto, Phys. Rev. C 59 (1999), 21; V. G. J. Stoks and Th. A. Rijken, Phys. Rev. C 59 (1999), 3009]. All ingredients of these latter models are also part of ESC08, and so a description of ESC08 comprises all models so far in principle. The extended-soft-core (ESC) interactions consist of local- and non-local-potentials due to (i) one-boson-exchanges (OBE), which are the members of nonets of
Holographic heavy ion collisions with baryon charge
Casalderrey-Solana, Jorge; van der Schee, Wilke; Triana, Miquel
2016-01-01
We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15\\%. %The rapidity profile of the charge is wider than the profile of the local energy density. We find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.
More about the light baryon spectrum
Eichmann, Gernot
2016-01-01
We discuss the light baryon spectrum obtained from a recent quark-diquark calculation, implementing non-pointlike diquarks that are self-consistently calculated from their Bethe-Salpeter equations. We examine the orbital angular momentum content in the baryons' rest frame and highlight the fact that baryons carry all possible values of L compatible with their spin, without the restriction P=(-1)^L which is only valid nonrelativistically. We furthermore investigate the meaning of complex conjugate eigenvalues of Bethe-Salpeter equations, their possible connection with 'anomalous' states, and we propose a method to eliminate them from the spectrum.
More About the Light Baryon Spectrum
Eichmann, Gernot
2017-03-01
We discuss the light baryon spectrum obtained from a recent quark-diquark calculation, implementing non-pointlike diquarks that are self-consistently calculated from their Bethe-Salpeter equations. We examine the orbital angular momentum content in the baryons' rest frame and highlight the fact that baryons carry all possible values of L compatible with their spin, without the restriction P=(-1)^L which is only valid nonrelativistically. We furthermore investigate the meaning of complex conjugate eigenvalues of Bethe-Salpeter equations, their possible connection with `anomalous' states, and we propose a method to eliminate them from the spectrum.
Pire, Bernard; Szymanowski, Lech
2010-01-01
We construct a spectral representation for the transition distribution amplitudes (TDAs), i.e. matrix elements of three quark correlators which arise e.g. in the description of baryon to meson and baryon to photon transitions within the factorization approach to hard exclusive reactions. We generalize for these quantities the notion of double distributions introduced in the context of generalized parton distributions. We propose the generalization of A.Radyushkin's factorized Ansatz for the case of baryon to meson and baryon to photon TDAs. Our construction opens the way to modeling of baryon to meson and baryon to photon TDAs in their complete domain of definition and quantitative estimates of cross-sections for various hard exclusive reactions.
Raichoor, A.; Comparat, J.; Delubac, T.; Kneib, J.-P.; Yèche, Ch.; Zou, H.; Abdalla, F. B.; Dawson, K.; de la Macorra, A.; Fan, X.; Fan, Z.; Jiang, Z.; Jing, Y.; Jouvel, S.; Lang, D.; Lesser, M.; Li, C.; Ma, J.; Newman, J. A.; Nie, J.; Palanque-Delabrouille, N.; Percival, W. J.; Prada, F.; Shen, S.; Wang, J.; Wu, Z.; Zhang, T.; Zhou, X.; Zhou, Z.
2016-01-01
We present a new selection technique of producing spectroscopic target catalogues for massive spectroscopic surveys for cosmology. This work was conducted in the context of the extended Baryon Oscillation Spectroscopic Survey (eBOSS), which will use ~200 000 emission line galaxies (ELGs) at 0.6 ≤ zspec ≤ 1.0 to obtain a precise baryon acoustic oscillation measurement. Our proposed selection technique is based on optical and near-infrared broad-band filter photometry. We used a training sample to define a quantity, the Fisher discriminant (linear combination of colours), which correlates best with the desired properties of the target: redshift and [Oii] flux. The proposed selections are simply done by applying a cut on magnitudes and this Fisher discriminant. We used public data and dedicated SDSS spectroscopy to quantify the redshift distribution and [Oii] flux of our ELG target selections. We demonstrate that two of our selections fulfil the initial eBOSS/ELG redshift requirements: for a target density of 180 deg-2, ~70% of the selected objects have 0.6 ≤ zspec ≤ 1.0 and only ~1% of those galaxies in the range 0.6 ≤ zspec ≤ 1.0 are expected to have a catastrophic zspec estimate. Additionally, the stacked spectra and stacked deep images for those two selections show characteristic features of star-forming galaxies. The proposed approach using the Fisher discriminant could, however, be used to efficiently select other galaxy populations, based on multi-band photometry, providing that spectroscopic information isavailable. This technique could thus be useful for other future massive spectroscopic surveys such as PFS, DESI, and 4MOST.
Applications of AdS/QCD and Light-Front Holography to Baryon Physics
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC; de Teramond, Guy F.; /Costa Rica U.
2011-08-22
The correspondence between theories in anti-de Sitter space and field theories in physical space-time leads to an analytic, semiclassical model for strongly-coupled QCD which has scale invariance at short distances and color confinement at large distances. These equations, for both mesons and baryons, give a very good representation of the observed hadronic spectrum, including a zero mass pion. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. The meson and baryon wavefunctions derived from light-front holography and AdS/QCD also have remarkable phenomenological features, including predictions for the electromagnetic form factors and decay constants. The approach can be systematically improved using light-front Hamiltonian methods. Some novel features of QCD for baryon physics are also discussed.
Suppression of Baryon Diffusion and Transport in a Baryon Rich Strongly Coupled Quark-Gluon Plasma.
Rougemont, Romulo; Noronha, Jorge; Noronha-Hostler, Jacquelyn
2015-11-13
Five dimensional black hole solutions that describe the QCD crossover transition seen in (2+1)-flavor lattice QCD calculations at zero and nonzero baryon densities are used to obtain predictions for the baryon susceptibility, baryon conductivity, baryon diffusion constant, and thermal conductivity of the strongly coupled quark-gluon plasma in the range of temperatures 130 MeV≤T≤300 MeV and baryon chemical potentials 0≤μ(B)≤400 MeV. Diffusive transport is predicted to be suppressed in this region of the QCD phase diagram, which is consistent with the existence of a critical end point at larger baryon densities. We also calculate the fourth-order baryon susceptibility at zero baryon chemical potential and find quantitative agreement with recent lattice results. The baryon transport coefficients computed in this Letter can be readily implemented in state-of-the-art hydrodynamic codes used to investigate the dense QGP currently produced at RHIC's low energy beam scan.
Baryon asymmetry from primordial black holes
Hamada, Yuta
2016-01-01
We propose a new scenario of the baryogenesis from primordial black holes (PBH). Assuming presence of a microscopic baryon (or lepton) number violation and a CP violating operator such as $\\partial_\\alpha F(\\mathcal{R_{....}} ) J^\\alpha$ where $F(\\mathcal{R_{....}})$ is a scalar function of the Riemann tensor, time evolution of an evaporating black hole generates baryonic (leptonic) chemical potential at the horizon; consequently PBH enumerates asymmetric Hawking radiation between baryons (leptons) and anti-baryons (leptons). Though the operator is higher dimensional and largely suppressed by a high mass scale $M_*$, we show that sufficient amount of asymmetry can be generated for wide range of parameters of the PBH mass $M_{\\rm PBH}$, its abundance $\\Omega_{\\rm PBH}$, and the scale $M_*$.
Baryonic torii: Toroidal baryons in a generalized Skyrme model
Gudnason, Sven Bjarke; Nitta, Muneto
2015-02-01
We study a Skyrme-type model with a potential term motivated by Bose-Einstein condensates (BECs), which we call the BEC Skyrme model. We consider two flavors of the model: the first is the Skyrme model, and the second has a sixth-order derivative term instead of the Skyrme term, both with the added BEC-motivated potential. The model contains toroidally shaped Skyrmions, and they are characterized by two integers P and Q , representing the winding numbers of two complex scalar fields along the toroidal and poloidal cycles of the torus, respectively. The baryon number is B =P Q . We find stable Skyrmion solutions for P =1 ,2 ,3 ,4 ,5 with Q =1 , while for P =6 and Q =1 , it is only metastable. We further find that configurations with higher Q >1 are all unstable and split into Q configurations with Q =1 . Finally we discover a phase transition, possibly of first order, in the mass parameter of the potential under study.
Heavy Flavor Baryons at the Tevatron
Energy Technology Data Exchange (ETDEWEB)
Kuhr, Thomas
2011-09-01
The Tevatron experiments CDF and D0 have filled many empty spots in the spectrum of heavy baryons over the last few years. The most recent results are described in this article: The first direct observation of the {Xi}{sub b}{sup 0}, improved measurements of {Sigma}{sub b} properties, a new measurement of the {Lambda}{sub b} {yields} J/{psi}{Lambda} branching ratio, and a high-statistics study of charm baryons.
The baryon content of the Cosmic Web
Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline
2015-01-01
Big-Bang nucleosynthesis indicates that baryons account for 5% of the Universe’s total energy content[1]. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two[2,3]. Cosmological simulations indicate that the missing baryons have not yet condensed into virialised halos, but reside throughout the filaments of the cosmic web: a low-density plasma at temperature 105–107 K known as the warm-hot intergalactic medium (WHIM)[3,4,5,6]. There have been previous claims of the detection of warm baryons along the line of sight to distant blazars[7,8,9,10] and hot gas between interacting clusters[11,12,13,14]. These observations were however unable to trace the large-scale filamentary structure, or to estimate the total amount of warm baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of ten-million-degree gas associated with the galaxy cluster Abell 2744. Previous observations of this cluster[15] were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we reveal hot gas structures that are coherent over 8 Mpc scales. The filaments coincide with over-densities of galaxies and dark matter, with 5-10% of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. PMID:26632589
Spin-flavor composition of excited baryons
Fernando, Ishara; Goity, Jose
2015-10-01
The excited baryon masses are analyzed in the framework of the 1 /Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU (6) × O (3) , where the [ 56 ,lP =0+ ] ground state and excited baryons, and the [ 56 ,2+ ] and [ 70 ,1- ] excited states are analyzed. The analyses are carried out to O 1 /Nc and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubo and Equal Spacing relations, as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. Predictions for physically unknown states for each multiplet are obtained. From the quark-mass dependence of the coefficients in the baryon mass formulas an increasingly simpler picture of the spin-flavor composition of the baryons is observed with increasing pion mass (equivalently, increasing mu , d masses), as measured by the number of significant mass operators. This work was supported in part by DOE Contract No. DE-AC05-06OR23177 under which JSA operates the Thomas Jefferson National Accelerator Facility (J. L. G.), and by the NSF (USA) through Grant PHY-0855789 and PHY-1307413 (I. P. F and J. L. G).
Theories relating baryon asymmetry and dark matter: a Mini review
Directory of Open Access Journals (Sweden)
Stefano eMorisi
2014-01-01
Full Text Available The nature of dark matter and the origin of the baryon asymmetry are two of the deepest mysteries of modern particle physics. In the absence of hints regarding a possible solution to these mysteries, many approaches have been developed to tackle them simultaneously { leading to very diverse and rich models}. We give a short review where we describe the general features of some of these models and an overview on the general problem. We also propose a diagrammatic notation to label the different models.
Disentanglement of Electromagnetic Baryon Properties
Sadasivan, Daniel; Doring, Michael
2017-01-01
Through recent advances in experimental techniques, the precise extraction of the spectrum of baryonic resonances and their properties becomes possible. Helicity couplings at the resonance pole are fundamental parameters describing the electromagnetic properties of resonances and enabling the comparison of theoretical models with data. We have extracted them from experiments carried out at Jefferson Lab and other facilities using a multipole analysis within the Julich-Bonn framework. Special attention has been paid to the uncertainties and correlations of helicity couplings. Using the world data on the reaction γp -> ηp , we have calculated, for the first time, the covariance matrix. Our results are useful in several ways. They quantify uncertainties but also correlations of helicity couplings. Second, they can tell us quantitatively how useful a given polarization measurement is. Third, they can tell us how the measurement of a new observable would constrain and disentangle the resonance properties which could be helpful in the design of new experiments. Finally, on the subject of the missing resonance problem, model selection techniques and statistical tests allow us to quantify the significance of whether a resonance exists. Supported by NSF CAREER Grant No. PHY-1452055, NSF PIF Grant No. 1415459, by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177, and by Research Center Julich through the HPC grant jikp07.
Jensen, Finn B; Porter, Michael B; Schmidt, Henrik
2011-01-01
Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...
Search for doubly charmed baryons and study of charmed strange baryons at Belle
Energy Technology Data Exchange (ETDEWEB)
Kato, Y.; Iijima, T.; Adachi, I.; Aihara, H.; Asner, D. M.; Aushev, T.; Bakich, A. M.; Bala, A.; Ban, Y.; Bhardwaj, V.; Bhuyan, B.; Bobrov, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Chobanova, V.; Choi, Y.; Cinabro, D.; Dalseno, J.; Danilov, M.; Doležal, Z.; Drásal, Z.; Drutskoy, A.; Dutta, D.; Dutta, K.; Eidelman, S.; Farhat, H.; Fast, J. E.; Ferber, T.; Gaur, V.; Gabyshev, N.; Ganguly, S.; Garmash, A.; Gillard, R.; Goh, Y. M.; Golob, B.; Haba, J.; Hayasaka, K.; Hayashii, H.; He, X. H.; Horii, Y.; Hoshi, Y.; Hou, W. -S.; Hsiung, Y. B.; Inami, K.; Ishikawa, A.; Iwasaki, Y.; Iwashita, T.; Jaegle, I.; Julius, T.; Kang, J. H.; Kato, E.; Kawasaki, T.; Kiesling, C.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, J. H.; Kim, M. J.; Kim, Y. J.; Klucar, J.; Ko, B. R.; Kodyš, P.; Korpar, S.; Krokovny, P.; Kuhr, T.; Kuzmin, A.; Kwon, Y. -J.; Lee, S. -H.; Li, J.; Li, Y.; Li Gioi, L.; Libby, J.; Liu, Y.; Liventsev, D.; Matvienko, D.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Moll, A.; Muramatsu, N.; Mussa, R.; Nagasaka, Y.; Nakano, E.; Nakao, M.; Nakazawa, H.; Nayak, M.; Nedelkovska, E.; Ng, C.; Niiyama, M.; Nisar, N. K.; Nishida, S.; Nitoh, O.; Ogawa, S.; Okuno, S.; Pakhlov, P.; Pakhlova, G.; Park, C. W.; Park, H.; Park, H. K.; Pedlar, T. K.; Peng, T.; Pestotnik, R.; Petrič, M.; Piilonen, L. E.; Ritter, M.; Röhrken, M.; Rostomyan, A.; Sahoo, H.; Saito, T.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sanuki, T.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Semmler, D.; Senyo, K.; Seon, O.; Shapkin, M.; Shen, C. P.; Shibata, T. -A.; Shiu, J. -G.; Shwartz, B.; Sibidanov, A.; Sohn, Y. -S.; Sokolov, A.; Solovieva, E.; Stanič, S.; Starič, M.; Steder, M.; Sumihama, M.; Sumiyoshi, T.; Tamponi, U.; Tanida, K.; Tatishvili, G.; Teramoto, Y.; Uchida, M.; Uehara, S.; Uglov, T.; Unno, Y.; Uno, S.; Van Hulse, C.; Vanhoefer, P.; Varner, G.; Vinokurova, A.; Vorobyev, V.; Wagner, M. N.; Wang, C. H.; Wang, M. -Z.; Wang, P.; Watanabe, M.; Watanabe, Y.; Williams, K. M.; Won, E.; Yamashita, Y.; Yashchenko, S.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.
2014-03-17
We report results of a study of doubly charmed baryons and charmed strange baryons. The analysis is performed using a 980 fb^{-1} data sample collected with the Belle detector at the KEKB asymmetric-energy e^{+}e^{-} collider.
Baryon-baryon bound states in a (2+1)-dimensional lattice QCD model
Faria da Veiga, Paulo A.; O'Carroll, Michael; Schor, Ricardo
2003-08-01
We consider bound states of two baryons (antibaryons) in lattice QCD in a Euclidean formulation. For simplicity, we analyze an SU(3) theory with a single flavor in 2+1 dimensions and two-dimensional Dirac matrices. For a small hopping parameter 0<κ≪1 and large glueball mass, we recently showed the existence of a (anti)baryonlike particle, with an asymptotic mass of the order of -3 ln κ and with an isolated dispersion curve, i.e., an upper gap property persisting up to near the meson-baryon threshold, which is of order -5 ln κ. Here, we show that there is no baryon-baryon (or antibaryon-antibaryon) bound state solution to the Bethe-Salpeter equation up to the two-baryon threshold, which is approximately -6 ln κ.
Heavy baryon spectroscopy from the lattice
Energy Technology Data Exchange (ETDEWEB)
Bowler, K.C.; Kenway, R.D.; Oliveira, O.; Richards, D.G.; Ueberholz, P. [Department of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ (Scotland); Lellouch, L.; Nieves, J.; Sachrajda, C.T.; Stella, N.; Wittig, H. [Physics Department, The University, Southampton SO17 1BJ (United Kingdom)
1996-09-01
The results of an exploratory lattice study of heavy baryon spectroscopy are presented. We have computed the full spectrum of the eight baryons containing a single heavy quark, on a 24{sup 3}{times}48 lattice at {beta}=6.2, using an {ital O}({ital a})-improved fermion action. We discuss the lattice baryon operators and give a method for isolating the contributions of the spin doublets ({Sigma},{Sigma}{sup {asterisk}}), ({Xi}{sup {prime}},{Xi}{sup {asterisk}}), and ({Omega},{Omega}{sup {asterisk}}) to the correlation function of the relevant operator. We compare our results with the available experimental data and find good agreement in both the charm and the {ital b}-quark sectors, despite the long extrapolation in the heavy quark mass needed in the latter case. We also predict the masses of several undiscovered baryons. We compute the {Lambda}-pseudoscalar meson and {Sigma}-{Lambda} mass splittings. Our results, which have errors in the range 10{endash}30{percent}, are in good agreement with the experimental numbers. For the {Sigma}{sup {asterisk}}-{Sigma} mass splitting, we find results considerably smaller than the experimental values for both the charm and the {ital b}-flavored baryons, although in the latter case the experimental results are still preliminary. This is also the case for the lattice results for the hyperfine splitting for the heavy mesons. {copyright} {ital 1996 The American Physical Society.}
Strong decays of baryons and missing resonances
Bijker, R.; Ferretti, J.; Galatà, G.; García-Tecocoatzi, H.; Santopinto, E.
2016-10-01
We provide results for the open-flavor strong decays of strange and nonstrange baryons into a baryon-vector/pseudoscalar meson pair. The decay amplitudes are computed in the 3P0 pair-creation model, where s s ¯ pair-creation suppression is included for the first time in the baryon sector, in combination with the U (7 ) and hypercentral models. The effects of this s s ¯ suppression mechanism cannot be reabsorbed in a redefinition of the model parameters or in a different choice of the 3P0 model vertex factor. Our results for the decay amplitudes are compared with the existing experimental data and previous 3P0 and elementary meson emission model calculations. In this respect, we show that distinct quark models differ in the number of missing resonances they predict and also in the quantum numbers of states. Therefore, future experimental results will be important in order to disentangle different models of baryon structure. Finally, in the appendixes, we provide some details of our calculations, including the derivation of all relevant flavor couplings with strangeness suppression. This derivation may be helpful to calculate the open-flavor decay amplitudes starting from other models of baryons.
Institute of Scientific and Technical Information of China (English)
刘辉; 杨俊安; 王一
2011-01-01
为解决目前声目标识别面临的鲁棒性不足问题，提出将流形学习应用到声目标的特征提取中，在经典流形学习算法的基础上，研究讨论了目标声信号频域中存在的低维流形，通过两种实际的地面和低空飞行声目标数据集进行对比识别实验，分析了基于流形学习的声目标特征提取方法的性能，结果表明基于流形学习的特征提取方法可以发现声信号的本质特征，提高了声目标识别系统的准确性和鲁棒性．%In order to overcome the deficiency of robustness of low altitude passive acoustic target recognition, the manifold learning is applied to the feature extraction of acoustic targets. Based on the classical algorithm of manifold learning, in the paper we study and discuss the low-dimensional manifold in the frequency-domain of acoustic signals. This method is used to solve the target recognition problem with two data sets to verify its effectiveness, after which the performance is analyzed. The result indicates that the manifold learning can discover the intrinsic feature and increase the accuracy and the robustness of low altitude passive acoustic target recognition system.
Papastergis, Emmanouil; Huang, Shan; Giovanelli, Riccardo; Haynes, Martha P
2012-01-01
We use both an HI-selected and an optically-selected galaxy sample to directly measure the abundance of galaxies as a function of their "baryonic" mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey (SDSS) and atomic gas masses are calculated using atomic hydrogen (HI) emission line data from the Arecibo Legacy Fast ALFA (ALFALFA) survey. By using the technique of abundance matching, we combine the measured baryonic function (BMF) of galaxies with the dark matter halo mass function in a LCDM universe, in order to determine the galactic baryon fraction as a function of host halo mass. We find that the baryon fraction of low-mass halos is much smaller than the cosmic value, even when atomic gas is taken into account. We find that the galactic baryon deficit increases monotonically with decreasing halo mass, in contrast with previous studies which suggested an approximately constant baryon fraction at the low-mass end. We argue that the observed baryon...
Heavy Baryons in a Quark Model
Energy Technology Data Exchange (ETDEWEB)
Winston Roberts; Muslema Pervin
2007-11-14
A quark model is applied to the spectrum of baryons containing heavy quarks. The model gives masses for the known heavy baryons that are in agreement with experiment, but for the doubly-charmed baryon $\\Xi_{cc}$, the model prediction is too heavy. Mixing between the $\\Xi_Q$ and $\\Xi_Q^\\prime$ states is examined and is found to be small for the lowest lying states. In contrast with this, mixing between the $\\Xi_{bc}$ and $\\Xi_{bc}^\\prime$ states is found to be large, and the implication of this mixing for properties of these states is briefly discussed. We also examine heavy-quark spin-symmetry multiplets, and find that many states in the model can be placed in such multiplets.
Compressed Baryonic Matter: from Nuclei to Pulsars
Xu, Renxin
2013-01-01
Our world is wonderful because of the negligible baryonic part although unknown dark matter and dark energy dominate the Universe. Those nuclei in the daily life are forbidden to fuse by compression due to the Coulomb repulse, nevertheless, it is usually unexpected in extraterrestrial extreme-environments: the gravity in a core of massive evolved star is so strong that all the other forces (including the Coulomb one) could be neglected. Compressed baryonic matter is then produced after supernova, manifesting itself as pulsar-like stars observed. The study of this compressed baryonic matter can not only be meaningful in fundamental physics (e.g., the elementary color interaction at low-energy scale, testing gravity theories, detecting nano-Hertz background gravitational waves), but has also profound implications in engineering applications (including time standard and navigation), and additionally, is focused by Chinese advanced telescopes, either terrestrial or in space. Historically, in 1930s, L. Landau spec...
Spectroscopy of charmed baryons from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Padmanath, M. [Univ. of Graz (Austria). Inst. of Physics; Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mathur, Nilmani [Tata Institute of Fundamental Research, Bombay (India); Peardon, Michael [Trinity College, Dublin (Ireland)
2015-01-01
We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) x O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses.
Dark Matter and the Baryon Asymmetry
Farrar, G R; Farrar, Glennys R.; Zaharijas, Gabrijela
2006-01-01
We present a mechanism to generate the baryon asymmetry of the Universe which preserves the net baryon number created in the Big Bang. If dark matter particles carry baryon number $B_X$, and $\\sigma^{\\rm annih}_{\\bar{X}} < \\sigma^{\\rm annih}_{X} $, the $\\bar{X}$'s freeze out at a higher temperature and have a larger relic density than $X$'s. If $m_X \\lsi 4.5 B_X $GeV and the annihilation cross sections differ by $\\mathcal{O}$(10%) or more, this type of scenario naturally explains the observed $\\Omega_{DM} \\approx 5 \\Omega_b$. Two concrete examples are given, one of which can be excluded on observational grounds.
DEFF Research Database (Denmark)
Blauert, Jens
Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....
Exciting Baryons: now and in the future
Pennington, M R
2011-01-01
This is the final talk of NSTAR2011 conference. It is not a summary talk, but rather a looking forward to what still needs to be done in excited baryon physics. In particular, we need to hone our tools connecting experimental inputs with QCD. At present we rely on models that often have doubtful connections with the underlying theory, and this needs to be dramatically improved, if we are to reach definitive conclusions about the relevant degrees of freedom of excited baryons. Conclusions that we want to have by NSTAR2021.
Decuplet baryons in a hot medium
Energy Technology Data Exchange (ETDEWEB)
Azizi, K.; Bozkir, G. [Dogus Univ., Istanbul (Turkey). Dept. of Physics
2016-10-15
The thermal properties of the light decuplet baryons are investigated in the framework of the thermal QCD sum rules. In particular, the behavior of the mass and residue of the Δ, Σ*, Ξ*, and Ω baryons with respect to temperature are analyzed taking into account the additional operators appearing in the Wilson expansion at finite temperature. It is found that the mass and residue of these particles remain overall unaffected up to T ≅ 150 MeV but, beyond this point, they start to diminish considerably. (orig.)
Constructing Hybrid Baryons with Flux Tubes
Capstick, Simon; Capstick, Simon; Page, Philip R.
1999-01-01
Hybrid baryon states are described in quark potential models as having explicit excitation of the gluon degrees of freedom. Such states are described in a model motivated by the strong coupling limit of Hamiltonian lattice gauge theory, where three flux tubes meeting at a junction play the role of the glue. The adiabatic approximation for the quark motion is used, and the flux tubes and junction are modeled by beads which are attracted to each other and the quarks by a linear potential, and vibrate in various string modes. Quantum numbers and estimates of the energies of the lightest hybrid baryons are provided.
Heavy flavor baryons in hypercentral model
Indian Academy of Sciences (India)
Bhavin Patel; Ajay Kumar Rai; P C Vinodkumar
2008-05-01
Heavy flavor baryons containing single and double charm (beauty) quarks with light flavor combinations are studied using the hypercentral description of the three-body problem. The confinement potential is assumed as hypercentral Coulomb plus power potential with power index . The ground state masses of the heavy flavor, $J^{P} = \\dfrac{1}{2}^{+}$ and $\\dfrac{3}{2}^{+}$ baryons are computed for different power indices, starting from 0.5 to 2.0. The predicted masses are found to attain a saturated value in each case of quark combinations beyond the power index = 1.0.
Meson Production and Baryon Resonances at CLAS
Energy Technology Data Exchange (ETDEWEB)
Volker Burkert
2011-02-01
I give a brief overview of the exploration of baryon properties in meson photo- and electroproduction. These processes provide ample information for the study of electromagnetic couplings of baryon resonances and to search for states, yet to be discovered. The CLAS detector, combined with the use of energy-tagged polarized photons and polarized electrons, as well as polarized targets and the measurement of recoil polarization, provide the tools for a comprehensive nucleon resonance program. I briefly present the status of this program, prospects for the next few years, and plans for the Jefferson Lab 12 GeV upgrade.
Acoustic streaming with heat exchange
Gubaidullin, A. A.; Pyatkova, A. V.
2016-10-01
Acoustic streaming in a cylindrical cavity with heat exchange is numerically investigated. The cavity is filled with air. The boundaries of the cavity are maintained at constant temperature. The features of acoustic streaming manifesting with the decrease in the frequency of vibration in comparison with the resonant frequency are determined. The influence of the nonlinearity of process on acoustic streaming is shown. The nonlinearity is caused by the increase of the vibration amplitude.
National Oceanic and Atmospheric Administration, Department of Commerce — To determine movements of green turtles in the nearshore foraging areas, we deployed acoustic tags and determined their movements through active and passive acoustic...
Heavy Baryon Transitions in a Relativistic Three-Quark Model
Ivanov, M A; Kroll, P; Lyubovitskij, V E
1997-01-01
Exclusive semileptonic decays of bottom and charm baryons are considered within a relativistic three-quark model with a Gaussian shape for the baryon-three-quark vertex and standard quark propagators. We calculate the baryonic Isgur-Wise functions, decay rates and asymmetry parameters.
Algebraic Treatment of Collective Excitations in Baryon Spectroscopy
Bijker, R
1993-01-01
We present an algebraic U(7) model for baryons which encompasses both single-particle and collective forms of quark dynamics. The mass operator by construction preserves the permutation symmetry between identical quarks. The underlying geometric structure of baryons is discussed in terms of a rigid rotating and vibrating oblate top shape. The model is applied to the mass spectrum of nonstrange baryons.
Strangeness -2 and -3 Baryons in a Constituent Quark Model
Energy Technology Data Exchange (ETDEWEB)
Muslema Pervin; Winston Roberts
2007-09-19
We apply a quark model developed in earlier work to the spectrum of baryons with strangeness -2 and -3. The model describes a number of well-established baryons successfully, and application to cascade baryons allows the quantum numbers of some known states to be deduced.
Rodríguez-Torres, Sergio A.; Chuang, Chia-Hsun; Prada, Francisco; Guo, Hong; Klypin, Anatoly; Behroozi, Peter; Hahn, Chang Hoon; Comparat, Johan; Yepes, Gustavo; Montero-Dorta, Antonio D.; Brownstein, Joel R.; Maraston, Claudia; McBride, Cameron K.; Tinker, Jeremy; Gottlöber, Stefan; Favole, Ginevra; Shu, Yiping; Kitaura, Francisco-Shu; Bolton, Adam; Scoccimarro, Román; Samushia, Lado; Schlegel, David; Schneider, Donald P.; Thomas, Daniel
2016-08-01
We present a study of the clustering and halo occupation distribution of Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxies in the redshift range 0.43 body simulation of a flat Λ cold dark matter Planck cosmology. We compare the observational data with the simulated ones on a light cone constructed from 20 subsequent outputs of the simulation. Observational effects such as incompleteness, geometry, veto masks and fibre collisions are included in the model, which reproduces within 1σ errors the observed monopole of the two-point correlation function at all relevant scales: from the smallest scales, 0.5 h-1 Mpc, up to scales beyond the baryon acoustic oscillation feature. This model also agrees remarkably well with the BOSS galaxy power spectrum (up to k ˜ 1 h Mpc-1), and the three-point correlation function. The quadrupole of the correlation function presents some tensions with observations. We discuss possible causes that can explain this disagreement, including target selection effects. Overall, the standard HAM model describes remarkably well the clustering statistics of the CMASS sample. We compare the stellar-to-halo mass relation for the CMASS sample measured using weak lensing in the Canada-France-Hawaii Telescope Stripe 82 Survey with the prediction of our clustering model, and find a good agreement within 1σ. The BigMD-BOSS light cone including properties of BOSS galaxies and halo properties is made publicly available.
Energy Technology Data Exchange (ETDEWEB)
Knippschild, Bastian
2012-03-05
Quantum Chromodynamics (QCD) is the theory of strong interactions, one of the four fundamental forces in our Universe. It describes the interaction of gluons and quarks which build up hadrons like protons and neutrons. Most of the visible matter in our universe is made of protons and neutrons. Hence, we are interested in their fundamental properties like their masses, their distribution of charge and their shape. The only known theoretical, non-perturbative and ab initio method to investigate hadron properties at low energies is lattice Quantum Chromodynamics (lattice QCD). However, up-to-date simulations (especially for baryonic quantities) do not achieve the accuracy of experiments. In fact, current simulations do not even reproduce the experimental values for the form factors. The question arises wether these deviations can be explained by systematic effects in lattice QCD simulations. This thesis is about the computation of nucleon form factors and other hadronic quantities from lattice QCD. So called Wilson fermions are used and the u- and d-quarks are treated fully dynamically. The simulations were performed using gauge ensembles with a range of lattice spacings, volumes and pion masses. First of all, the lattice spacing was set to be able to make contact between the lattice results and their experimental complement and to be able to perform a continuum extrapolation. The light quark mass has been computed and found to be m{sub ud}{sup MS}(2 GeV)=3.03(17)(38) MeV. This value is in good agreement with values from experiments and other lattice determinations. Electro-magnetic and axial form factors of the nucleon have been calculated. From these form factors the nucleon radii and the coupling constants were computed. The different ensembles enabled us to investigate systematically the dependence of these quantities on the volume, the lattice spacing and the pion mass. Finally we perform a continuum extrapolation and chiral extrapolations to the physical point
Acoustic Ground-Impedance Meter
Zuckerwar, A. J.
1983-01-01
Helmoltz resonator used in compact, portable meter measures acoustic impedance of ground or other surfaces. Earth's surface is subject of increasing acoustical investigations because of its importance in aircraft noise prediction and measurment. Meter offers several advantages. Is compact and portable and set up at any test site, irrespective of landscape features, weather or other environmental condition.
The CMU Baryon Amplitude Analysis Program
Bellis, Matt
2007-05-01
The PWA group at Carnegie Mellon University has developed a comprehensive approach and analysis package for the purpose of extracting the amplitudes for photoproduced baryon resonances. The end goal is to identify any missing resonances that are predicted by the constituent quark model, but not definitively observed in experiments. The data comes from the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab.
Multiinstanton ladders in baryon number violating processes
Lazarides, G
1995-01-01
We estimate the contribution of a class of multiinstanton ladder graphs to baryon and lepton number violating processes in the standard model. We find that this contribution is negligible and does not alter the high energy behavior of the leading semiclassical approximation.
Beauty baryon decays: a theoretical overview
Wang, Yu-Ming
2014-11-01
I overview the theoretical status and recent progress on the calculations of beauty baryon decays focusing on the QCD aspects of the exclusive semi-leptonic Λb → plμ decay at large recoil and theoretical challenges of radiative and electro-weak penguin decays Λb → Λγ,Λl+l-.
Baryon Ratios in Quark-Gluon Plasma
Institute of Scientific and Technical Information of China (English)
MA Zhong-Biao; MIAO Hong; GAO Chong-Shou
2003-01-01
A way to calculate ratios of baryon produced from quark gluon plasma in relativistic heavyion collisionsis presented. It is assumed that at the beginning of the hadronization there are diquarks and anti-diquarks in the quarkmatter. The number of three-quark states is distributed between the corresponding multiplets, and hadronic decays aretaken into account. The results are shown at last.
Baryons in the unquenched quark model
Bijker, R; Lopez-Ruiz, M A; Santopinto, E
2016-01-01
In this contribution, we present the unquenched quark model as an extension of the constituent quark model that includes the effects of sea quarks via a $^{3}P_{0}$ quark-antiquark pair-creation mechanism. Particular attention is paid to the spin and flavor content of the proton, magnetic moments and $\\beta$ decays of octet baryons.
Light element synthesis in baryon isocurvature models
Kumar, D L P
2006-01-01
The prejudice against baryon isocurvature models is primarily because of their inconsistency with early universe light element nucleosynthesis results. We propose that incipient low metallicity (Pop II) star forming regions can be expected to have environments conducive to Deuterium production by spallation, up to levels observed in the universe.
Baryons in a chiral constituent quark model
Glozman, L Ya
1998-01-01
In the low-energy regime light and strange baryons should be considered as systems of constituent quarks with confining interaction and a chiral interaction that is mediated by Goldstone bosons as well as by vector and scalar mesons. The flavor-spin structure and sign of the short-range part of the spin-spin force reduces the $SU(6)_{FS}$ symmetry down to $SU(3)_F \\times SU(2)_S$, induces hyperfine splittings and provides correct ordering of the lowest states with positive and negative parity. There is a cancellation of the tensor force from pseudoscalar- and vector-exchanges in baryons. The spin-orbit interactions from $\\rho$-like and $\\omega$-like exchanges also cancel each other in baryons while they produce a big spin-orbit force in NN system. A unified description of light and strange baryon spectra calculated in a semirelativistic framework is presented. It is demonstrated that the same short-range part of spin-spin interaction between the constituent quarks induces a strong short-range repulsion in $NN...
Valley Singularities and Baryon Number Violation
Provero, P
1994-01-01
We consider the valley--method computation of the inclusive cross section of baryon number violating processes in the Standard Model. We show that any physically correct model of the valley action should present a singularity in the saddle point valley parameters as functions of the energy of the process. This singularity prevents the saddle point configuration from collapsing into the perturbative vacuum.
Dense baryonic matter: constraints from recent neutron star observations
Hell, Thomas
2014-01-01
Updated constraints from neutron star masses and radii impose stronger restrictions on the equation of state for baryonic matter at high densities and low temperatures. The existence of two-solar-mass neutron stars rules out many soft equations of state with prominent "exotic" compositions. The present work reviews the conditions required for the pressure as a function of baryon density in order to satisfy these new constraints. Several scenarios for sufficiently stiff equations of state are evaluated. The common starting point is a realistic description of both nuclear and neutron matter based on a chiral effective field theory approach to the nuclear many-body problem. Possible forms of hybrid matter featuring a quark core in the center of the star are discussed using a three-flavor Polyakov--Nambu--Jona-Lasinio (PNJL) model. It is found that a conventional equation of state based on nuclear chiral dynamics meets the astrophysical constraints. Hybrid matter generally turns out to be too soft unless addition...
Predicting and auralizing acoustics in classrooms
DEFF Research Database (Denmark)
Christensen, Claus Lynge
2005-01-01
Although classrooms have fairly simple geometries, this type of room is known to cause problems when trying to predict their acoustics using room acoustics computer modeling. Some typical features from a room acoustics point of view are: Parallel walls, low ceilings (the rooms are flat), uneven...
Magnetic moments of negative-parity baryons in QCD
Aliev, T M
2014-01-01
Using the most general form of the interpolating current for the octet baryons, the magnetic moments of the negative-parity baryons are calculated within the light-cone sum rules. The contributions coming from diagonal transitions of the positive-parity baryons, and also from non-diagonal transition between positive and negative-parity baryons are eliminated by considering the combinations of different sum rules corresponding to the different Lorentz structures. A comparison of our results on magnetic moments of the negative-parity baryons with the other approaches existing in literature is presented.
Baryon number violation catalysed by grand unified monopoles
Ellis, Jonathan Richard; Olive, Keith A
1982-01-01
It has been recognized for some time that grand unified monopoles may catalyze Delta B not=0 processes. The authors obtain model-independent upper bounds on the rates for such reactions from the survival of the baryon number generated in the early Universe and from present-day baryon stability. These constraints are compatible with recent estimates of large baryon number violating monopole cross sections, but a monopole flux close to present experimental upper limits could be detectable in forthcoming baryon decay experiments. The authors mention signatures for monopole-induced baryon 'decay' and point out that it could be used to solve the energy crisis.
Holographic black hole engineering at finite baryon chemical potential
Rougemont, Romulo
2016-01-01
This is a contribution for the Proceedings of the Conference Hot Quarks 2016, held at South Padre Island, Texas, USA, 12-17 September 2016. I briefly review some thermodynamic and baryon transport results obtained from a bottom-up Einstein-Maxwell-Dilaton holographic model engineered to describe the physics of the quark-gluon plasma at finite temperature and baryon density. The results for the equation of state, baryon susceptibilities, and the curvature of the crossover band are in quantitative agreement with the corresponding lattice QCD results with $2+1$ flavors and physical quark masses. Baryon diffusion is predicted to be suppressed by increasing the baryon chemical potential.
Can the Baryon Asymmetry Arise From Initial Conditions?
Krnjaic, Gordan
2016-01-01
In this letter, we quantify the challenge of explaining the baryon asymmetry using initial conditions in a universe that undergoes inflation. Contrary to lore, we find that such an explanation is possible if net $B-L$ number is stored in a light bosonic field with hyper-Planckian initial displacement and a delicately chosen field velocity prior to inflation. However, such a construction may require extremely tuned coupling constants to ensure that this asymmetry is viably communicated to the Standard Model after reheating; the large field displacement required to overcome inflationary dilution must not induce masses for Standard Model particles or generate dangerous washout processes. While these features are inelegant, this counterexample nonetheless shows that there is no theorem against such an explanation. We also comment on potential observables in the double $\\beta$-decay spectrum and on model variations that may allow for more natural realizations.
Can the Baryon Asymmetry Arise From Initial Conditions?
Energy Technology Data Exchange (ETDEWEB)
Krnjaic, Gordan [Fermilab
2016-06-16
In this letter, we quantify the challenge of explaining the baryon asymmetry using initial conditions in a universe that undergoes inflation. Contrary to lore, we find that such an explanation is possible if net $B-L$ number is stored in a light bosonic field with hyper-Planckian initial displacement and a delicately chosen field velocity prior to inflation. However, such a construction may require extremely tuned coupling constants to ensure that this asymmetry is viably communicated to the Standard Model after reheating; the large field displacement required to overcome inflationary dilution must not induce masses for Standard Model particles or generate dangerous washout processes. While these features are inelegant, this counterexample nonetheless shows that there is no theorem against such an explanation. We also comment on potential observables in the double $\\beta$-decay spectrum and on model variations that may allow for more natural realizations.
Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging
2012-01-01
The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging
Exotic baryon resonances in the Skyrme model
Diakonov, Dmitri
2008-01-01
We outline how one can understand the Skyrme model from the modern perspective. We review the quantization of the SU(3) rotations of the Skyrmion, leading to the exotic baryons that cannot be made of three quarks. It is shown that in the limit of large number of colours the lowest-mass exotic baryons can be studied from the kaon-Skyrmion scattering amplitudes, an approach known after Callan and Klebanov. We follow this approach and find, both analytically and numerically, a strong Theta+ resonance in the scattering amplitude that is traced to the rotational mode. The Skyrme model does predict an exotic resonance Theta+ but grossly overestimates the width. To understand better the factors affecting the width, it is computed by several methods giving, however, identical results. In particular, we show that insofar as the width is small, it can be found from the transition axial constant. The physics leading to a narrow Theta+ resonance is briefly reviewed and affirmed.
Two Baryons with Twisted Boundary Conditions
Energy Technology Data Exchange (ETDEWEB)
Briceno, Raul [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Davoudi, Zohreh [Univ. of Washington, Seattle, WA (United States) and Institute for Nuclear Theory, Seattle, WA (United States); Luu, Thomas [Lawrence Livermore National Laboratory, Livermore, CA (United States); Savage, Martin [Univ. of Washington, Seattle, WA (United States) and Institute for Nuclear Theory, Seattle, WA (United States)
2014-04-01
The quantization condition for two particle systems with arbitrary number of two-body open coupled-channels, spin and masses in a finite cubic volume is presented. The condition presented is in agreement with all previous studies of two-body systems in a finite volume. The result is fully relativistic and holds for all momenta below inelastic thresholds and is exact up to exponential volume corrections that are governed by m{sub {pi}} L, where m{sub {pi}} is the pion mass and L is the spatial extent of my box. Its implication for the studies of coupled-channel baryon-baryon systems is discussed, and the necessary tools for implementing the formalism are review.
Baryon Spectrum Analysis using Covariant Constraint Dynamics
Whitney, Joshua; Crater, Horace
2012-03-01
The energy spectrum of the baryons is determined by treating each of them as a three-body system with the interacting forces coming from a set of two-body potentials that depend on both the distance between the quarks and the spin and orbital angular momentum coupling terms. The Two Body Dirac equations of constraint dynamics derived by Crater and Van Alstine, matched with the quasipotential formalism of Todorov as the underlying two-body formalism are used, as well as the three-body constraint formalism of Sazdjian to integrate the three two-body equations into a single relativistically covariant three body equation for the bound state energies. The results are analyzed and compared to experiment using a best fit method and several different algorithms, including a gradient approach, and Monte Carlo method. Results for all well-known baryons are presented and compared to experiment, with good accuracy.
The Baryonic Tully-Fisher Relation.
McGaugh; Schombert; Bothun; de Blok WJ
2000-04-20
We explore the Tully-Fisher relation over five decades in stellar mass in galaxies with circular velocities ranging over 30 less, similarVc less, similar300 km s-1. We find a clear break in the optical Tully-Fisher relation: field galaxies with Vc less, similar90 km s-1 fall below the relation defined by brighter galaxies. These faint galaxies, however, are very rich in gas; adding in the gas mass and plotting the baryonic disk mass Md=M*+Mgas in place of luminosity restores the single linear relation. The Tully-Fisher relation thus appears fundamentally to be a relation between rotation velocity and total baryonic mass of the form Md~V4c.
A Schwarzschild-like model for baryons
Singleton, D.; Yoshida, A.
2002-06-01
We present a toy model of baryons using singular solutions of the SU(2) Yang-Mill-Higgs (YMH) field equations, which bears some similarity to the Schwarzschild solution of general relativity. The SU (2) solutions are used as a background field into which a scalar, SU (2) test particle is placed. This can be compared to placing an electrically charged particle in a Coulomb background field, except the SU (2) YMH solutions are singular on a spherical membrane thus trapping (confining) the test particle inside the sphere in a manner similar to certain bag models of baryons. An interesting consequence of this model is that the composite system is a fermion even though the original Lagrangian contains only bosonic fields.
Effective Degrees of Freedom in Baryon Spectroscopy
Santopinto, E.; Ferretti, J.
2016-10-01
Three quark and quark-diquark models are characterized by several missing resonances, even if in the latter case the state space is a reduced one. Moreover, even quark-diquark models show some differences in their predictions for missing states. After several years of discussion, we still do not know whether baryons can be completely described in terms of three quark models or if diquark correlations have to be taken into account; another possibility, suggested in Santopinto (Phys Rev C 72:022201, 2005), Ferretti et al. (Phys Rev C 83:065204, 2011) and Galatà and Santopinto (Phys Rev C 86:045202, 2012), is that the previous pictures (three-quark and quark-diquark) represent the dominant descriptions of baryons at different energy scales. New experiments may be planned at Jlab (JLab12), Bes, Belle and LHCb in order to answer this fundamental open question.
Baryon and time asymmetries of the universe
Barnaveli, A T; Barnaveli, Andro; Gogberashvili, Merab
1995-01-01
This paper is devoted to the investigation of connection between two apparent asymmetries of the nature --- time-asymmetry and Baryon Asymmetry of the Universe (BAU). The brief review of this subjects is given. We consider the particle behavior in curved space-time and the possibility of T- and CPT-violation by the universe expansion. If these symmetries are violated we can dispense with the nonequilibrium condition which is usualy considered as the one of necessary ingredients for BAU-generation. Such mechanism of GUT-scale baryogenesis can provide the observed value of baryon asymmetry. We show this on the example of minimal SU(5) model which usually fails to explain the observed BAU without taking into account gravitational effects. Predominance of matter over antimatter and the cosmological arrow of time (the time-direction in which the Universe expands) seem to be connected facts and, possibly, BAU is the one of observable facts of CPT-violation in nature.
Baryon-antibaryon asymmetry in central rapidity region at LHC with the ALICE experiment
Broz, Michal
The Large Hadron Collider (LHC) provided the first proton-proton collisions in the period of November-December 2009. Since then, a large data sample has been recorded by all LHC experiments. This event sample allows us to study more and more exotic particles and events. The ALICE (A Large Ion Collider Experiment) experiment, though designed primarily to study heavy ion collisions, has a rich proton-proton physics program. The characteristic features of ALICE are its very low-momentum cut-off, the low material budget and the excellent particle identification (PID) and vertexing capabilities. In this thesis, I discuss the results from the analysis of proton-proton collisions at the different LHC energies (√s = 900 GeV, 2.76 TeV and 7 TeV). I concentrate on the antibaryon-to-baryon ratio study which is of great importance for description of baryon number transport and it can allow to determine the carrier of the baryon number as well as to give an information on baryon structure itself. In particular, the mult...
Nayak, Rajkishore
2016-01-01
This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.
Fogel, Ronen; Limson, Janice; Seshia, Ashwin A.
2016-01-01
Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of ...
A Heavy Quark Symmetry Approach to Baryons
Energy Technology Data Exchange (ETDEWEB)
Albertus, C. [Departamento de Fisica Moderna. Facultad de Ciencias, Universidad de Granada, E-18071 Granada (Spain); Amaro, J.E. [Departamento de Fisica Moderna. Facultad de Ciencias, Universidad de Granada, E-18071 Granada (Spain); Hernandez, E. [Grupo de Fisica Nuclear. Facultad de Ciencias, Universidad de Salamanca, E-37008 Salamanca (Spain); Nieves, J. [Departamento de Fisica Moderna. Facultad de Ciencias, Universidad de Granada, E-18071 Granada (Spain)
2005-06-13
We evaluate different properties of baryons with a heavy c or b quark. The use of Heavy Quark Symmetry (HQS) provides with an important simplification of the non relativistic three body problem which can be solved by means of a simple variational approach. This scheme is able to reproduce previous results obtained with more involved Faddeev calculations. The resulting wave functions are parametrized in a simple manner, and can be used to calculate further observables.
Baryon currents in QCD with compact dimensions
Lucini, B; Pica, C; Lucini, Biagio; Patella, Agostino; Pica, Claudio
2007-01-01
On a compact space with non-trivial cycles, for sufficiently small values of the radii of the compact dimensions, SU(N) gauge theories coupled with fermions in the fundamental representation spontaneously break charge conjugation, time reversal and parity. We show at one loop in perturbation theory that physical signature for this phenomenon is a non-zero baryonic current wrapping around the compact directions. The persistence of this current beyond the perturbative regime is checked by lattice simulations.
Understanding the baryon and meson spectra
Energy Technology Data Exchange (ETDEWEB)
Pennington, Michael R. [JLAB
2013-10-01
A brief overview is given of what we know of the baryon and meson spectra, with a focus on what are the key internal degrees of freedom and how these relate to strong coupling QCD. The challenges, experimental, theoretical and phenomenological, for the future are outlined, with particular reference to a program at Jefferson Lab to extract hadronic states in which glue unambiguously contributes to their quantum numbers.
Baryon spectroscopy with polarization observables from CLAS
Energy Technology Data Exchange (ETDEWEB)
Strauch, Steffen [Univ. of South Carolina, Columbia, SC (United States)
2016-08-01
Meson photoproduction is an important tool in the study of baryon resonances. The spectrum of broad and overlapping nucleon excitations can be greatly clarified by use of polarization observables. The N* program at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) includes experimental studies with linearly and circularly polarized tagged photon beams, longitudinally and transversely polarized nucleon targets, and recoil polarizations. An overview of these experimental studies and recent results will be given.
An algebraic model of baryon spectroscopy
Bijker, R
1999-01-01
We discuss recent calculations of the mass spectrum, electromagnetic and strong couplings of baryon resonances. The calculations are done in a collective constituent model for the nucleon, in which the resonances are interpreted as rotations and vibrations of a symmetric top with a prescribed distribution of the charge and magnetization. We analyze recent data on eta-photo- and eta-electroproduction, and the tensor analyzing power in deuteron scattering.
Screened potential and the baryon spectrum
Vijande, J; Garcilazo, H; Valcarce, A
2003-01-01
We show that in a quark model scheme the use of a screened potential, suggested by lattice QCD, instead of an infinitely rising one with the interquark distance, provides a more adequate description of the high-energy baryon spectrum. In particular an almost perfect parallelism between the predicted and observed number of states comes out throwing new light about the so-called missing resonance problem.
Baryons in chiral constituent quark model
Glozman, L Ya
1996-01-01
Beyond the spontaneous chiral symmetry breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a flavor-spin chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks. One cannot exclude, however, the possibility that this flavor-spin interaction has an appreciable vector- and higher meson exchange component.
Charmed bottom baryon spectroscopy from lattice QCD
Brown, Zachary S; Meinel, Stefan; Orginos, Kostas
2014-01-01
We calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with $J^P = \\frac12^+$ and $J^P = \\frac32^+$. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physical pion mass using $SU(4|2)$ heavy-hadron chiral perturbation theory including $1/m_Q$ and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.
Baryons, Neutrinos, Feedback and Weak Gravitational Lensing
Harnois-Déraps, Joachim; Viola, Massimo; Heymans, Catherine
2014-01-01
(Abridged) The effect of baryonic feedback on the dark matter mass distribution is generally considered to be a nuisance to weak gravitational lensing. Measurements of cosmological parameters are affected as feedback alters the cosmic shear signal on angular scales smaller than a few arcminutes. Recent progress on the numerical modelling of baryon physics has shown that this effect could be so large that, rather than being a nuisance, the effect can be constrained with current weak lensing surveys, hence providing an alternative astrophysical insight on one of the most challenging questions of galaxy formation. In order to perform our analysis, we construct an analytic fitting formula that describes the effect of the baryons on the mass power spectrum. This fitting formula is based on three scenarios of the OWL hydrodynamical simulations. It is specifically calibrated for $z<1.5$, where it models the simulations to an accuracy that is better than $2\\%$ for scales $k<10 h\\mbox{Mpc}^{-1}$ and better than ...
Tidal Dwarf Galaxies and Missing Baryons
Directory of Open Access Journals (Sweden)
Frederic Bournaud
2010-01-01
Full Text Available Tidal dwarf galaxies form during the interaction, collision, or merger of massive spiral galaxies. They can resemble “normal” dwarf galaxies in terms of mass, size, and become dwarf satellites orbiting around their massive progenitor. They nevertheless keep some signatures from their origin, making them interesting targets for cosmological studies. In particular, they should be free from dark matter from a spheroidal halo. Flat rotation curves and high dynamical masses may then indicate the presence of an unseen component, and constrain the properties of the “missing baryons,” known to exist but not directly observed. The number of dwarf galaxies in the Universe is another cosmological problem for which it is important to ascertain if tidal dwarf galaxies formed frequently at high redshift, when the merger rate was high, and many of them survived until today. In this paper, “dark matter” is used to refer to the nonbaryonic matter, mostly located in large dark halos, that is, CDM in the standard paradigm, and “missing baryons” or “dark baryons” is used to refer to the baryons known to exist but hardly observed at redshift zero, and are a baryonic dark component that is additional to “dark matter”.
Institute of Scientific and Technical Information of China (English)
李银玲
2012-01-01
文从声学语音学的角度出发，提出将声学语音学中辅音的声学特征应用到非母语汉语塞擦音测试中来。利用Praat语音分析软件，提取留学生汉语塞擦音噪音起始时间（VOT）、送气时长、送气时长与韵母时长的比值三个参量，并和标准音进行对比，结合主观评分方法，试图量化CAP三级评判标准假设，探讨一种客观语音评分方法，同时诊断出留学生汉语塞擦音语音偏误，并对对外汉语语音教学提出建议。%Starting from the perspective of acoustic phonetics This thesis proposes a diagnosing pronunciation test of Chinese affricates based on the acoustic features of consonants. By using Praat, three major acoustic parameters, voice onset time (VOT), aspiration duration (AD), and the ratio of AD to vowel duration (VD) are extracted and compared with the standard pronunciation. Combined with CAP--the hypothesized three-level rating scale, this study will also attempt to quantify CAP and further diagnose the pronunciation errors of non-native Chinese learners and relative pronunciation teaching suggestions are proposed.
Directory of Open Access Journals (Sweden)
Brandon LaBelle
2012-06-01
Full Text Available Experiences of listening can be appreciated as intensely relational, bringing us into contact with surrounding events, bodies and things. Given that sound propagates and expands outwardly, as a set of oscillations from a particular source, listening carries with it a sensual intensity, whereby auditory phenomena deliver intrusive and disruptive as well as soothing and assuring experiences. The physicality characteristic of sound suggests a deeply impressionistic, locational "knowledge structure" – that is, the ways in which listening affords processes of exchange, of being in the world, and from which we extend ourselves. Sound, as physical energy reflecting and absorbing into the materiality around us, and even one's self, provides a rich platform for understanding place and emplacement. Sound is always already a trace of location.Such features of auditory experience give suggestion for what I may call an acoustical paradigm – how sound sets in motion not only the material world but also the flows of the imagination, lending to forces of signification and social structure, and figuring us in relation to each other. The relationality of sound brings us into a steady web of interferences, each of which announces the promise or problematic of being somewhere.
Vayenas, Constantinos G; Grigoriou, Dimitrios P
2016-01-01
We discuss the common features between the Standard Model taxonomy of particles, based on electric charge, strangeness and isospin, and the taxonomy emerging from the key structural elements of the rotating neutrino model, which describes baryons as bound states formed by three highly relativistic electrically polarized neutrinos forming a symmetric ring rotating around a central electrically charged or polarized lepton. It is shown that the two taxonomies are fully compatible with each other.
Fragmentation Functions for Heavy Baryons in the Recombination Model
Institute of Scientific and Technical Information of China (English)
彭茹
2011-01-01
Using the shower parton distributions determined by the recombination model, we predict the fragmentation functions for heavy baryons. Then we obtain the completed fragmentation functions of heavy quarks (c and b) splitting into their hadrons (mesons and baryons containing one heavy valence quark). The calculated process shows that the fragmentation functions for mesons and baryons are not independent if the hadronization of the shower partons is taken into account.%Using the shower parton distributions determined by the recombination model,we predict the fragmentation functions for heavy baryons.Then we obtain the completed fragmentation functions of heavy quarks(c and b)splitting into their hadrons(mesons and baryons containing one heavy valence quark).The calculated process shows that the fragmentation functions for mesons and baryons are not independent if the hadronization of the shower partons is taken into account.
High statistics analysis using anisotropic clover lattices: (III) Baryon-baryon interactions
Energy Technology Data Exchange (ETDEWEB)
Beane, S; Detmold, W; Lin, H; Luu, T; Orginos, K; Savage, M; Torok, A; Walker-Loud, A
2010-01-19
Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m{sub {pi}} {approx} 390 MeV, a spatial volume of L{sup 3} {approx} (2.5 fm){sup 3}, and a spatial lattice spacing of b {approx} 0.123 fm. Luescher's method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The isospin-3/2 N{Sigma} interactions are found to be highly spin-dependent, and the interaction in the {sup 3}S{sub 1} channel is found to be strong. In contrast, the N{Lambda} interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is {Lambda}{Lambda}, indicating that the {Lambda}{Lambda} interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting is explored. In particular, focus is placed on the window of time slices for which the signal-to-noise ratio does not degrade exponentially, as this provides the opportunity to extract quantitative information about multi-baryon systems.
Baryons as Fock states of 3,5,... Quarks
Energy Technology Data Exchange (ETDEWEB)
Dmitri Diakonov; Victor Petrov
2004-09-01
We present a generating functional producing quark wave functions of all Fock states in the octet, decuplet and antidecuplet baryons in the mean field approximation, both in the rest and infinite momentum frames. In particular, for the usual octet and decuplet baryons we get the SU(6)-symmetric wave functions for their 3-quark component but with specific corrections from relativism and from additional quark-antiquark pairs. For the exotic antidecuplet baryons we obtain the 5-quark wave function.
Calculating Masses of Pentaquarks Composed of Baryons and Mesons
Directory of Open Access Journals (Sweden)
M. Monemzadeh
2016-01-01
Full Text Available We consider an exotic baryon (pentaquark as a bound state of two-body systems composed of a baryon (nucleon and a meson. We used a baryon-meson picture to reduce a complicated five-body problem to simple two-body problems. The homogeneous Lippmann-Schwinger integral equation is solved in configuration space by using one-pion exchange potential. We calculate the masses of pentaquarks θc(uuddc¯ and θb(uuddb¯.
Spectroscopy of singly, doubly, and triply bottom baryons
Wei, Ke-Wei; Liu, Na; Wang, Qian-Qian; Guo, Xin-Heng
2016-01-01
Recently, many singly bottom baryons have been established experimentally, but no doubly or triply bottom baryon has been observed. Under the Regge phenomenology, the mass of a ground state unobserved doubly or triply bottom baryon is expressed as a function of masses of the well established light baryons and singly bottom baryons. (For example, we write the mass of $\\Omega_{bbb}$ as a function of the masses of well established light baryons ($\\Sigma^{*}$, $\\Xi^{*}$, $\\Omega$) and singly bottom baryons ($\\Sigma_b^{*}$, $\\Xi_b^{*}$), and give its value to be 14788$\\pm$80 MeV.) After that, we calculate the values of Regge slopes and Regge intercepts for singly, doubly, and triply bottom baryons. (Regge intercepts and slopes, which are usually regarded as fundamental constants of hadron dynamics, are useful for many spectral and nonspectral purposes.) Then, masses of the orbitally excited singly, doubly, and triply bottom baryons are estimated. The isospin splitting is also determined, $M_{\\Xi_{bb}^{-}}-M_{\\Xi_{...
Hypermagnetic Fields and Baryon Asymmetry from Pseudoscalar Inflation
Anber, Mohamed M
2015-01-01
We show that maximally helical hypermagnetic fields produced during pseudoscalar inflation can generate the observed baryon asymmetry of the universe via the B+L anomaly in the Standard Model. We find that most of the parameter space of pseudoscalar inflation that explains the cosmological data leads to baryon overproduction, hence the models of natural inflation are severely constrained. We also point out a connection between the baryon number and topology of the relic magnetic fields. Both the magnitude and sign of magnetic helicity can be detected in future diffuse gamma ray data. This will be a smoking gun evidence for a link between inflation and the baryon asymmetry of the Universe.
Notes on exotic anti-decuplet of baryons
Polyakov, M V
2004-01-01
We emphasize the importance of identifying non-exotic SU(3) partners of the Theta^+ pentaquark, and indicate possible ways how to do it. We also use the soliton picture of baryons to relate Reggeon couplings of various baryons. These relations are used to estimate the Theta^+ production cross section in high energy processes. We show that the corresponding cross sections are significantly suppressed relative to the production cross sections of usual baryons. Finally, we present spin non-flip form factors of the anti-decuplet baryons in the framework of the chiral quark soliton model.
Magnetic Moments of Baryons with a Heavy Quark
Weigel, H
2003-01-01
We compute magnetic moments of baryons with a heavy quark in the bound state approach for heavy baryons. In this approach the heavy baryon is considered as a heavy meson bound to a light baryon. The latter is represented as a soliton excitation of light meson fields. We obtain the magnetic moments by sandwiching pertinent components of the electromagnetic current operator between the bound state wave--functions. We extract this current operator from the coupling to the photon field after extending the action to be gauge invariant.
Search for CP violation in baryon decays at LHCb
CERN. Geneva
2016-01-01
The phenomenon of CP violation has been observed in the K- and B-meson systems, but not yet with any baryonic particle. We report on searches for CP violation in baryon decays at LHCb using Run I data. We find evidence for CP violation in Lambda0b -> p pi- pi+ pi- decays with a statistical significance corresponding to 3.3 standard deviations, including systematic uncertainties. This represents the first evidence of CP violation in the baryon sector. An overview of other recent results of baryon decays will be presented, along with some highlights of the charmless B-decay programme.
Dark Matter in Lepto-Baryonic Left-Right Theories
Patra, Sudhanwa
2015-01-01
A Lepto-Baryonic Left-Right symmetric theory is considered where leptons and baryons are local gauge symmetries. These theories are generally anomalous and the possible gauge anomaly free solutions for these theories are presented here. This paper also shows different ways in which Lepto-Baryonic Left-Right theories are broken down to Standard Model gauge group which further breaks down to low energy by SM Higgs boson. It is found that the neutral component of fermion triplets can be a viable dark matter candidate originally introduced for gauge anomaly cancellation. The other dark matter possibilities within this Lepto-Baryonic Left-Right symmetric theories are also presented.
One-loop corrections to the baryon axial vector current
Indian Academy of Sciences (India)
M A Hernández-Ruíz
2012-10-01
The symmetry breaking corrections to the pion–baryon couplings vanish to first order in $1/N_{c}$, where $N_{c}$ is the number of colours. Loop graphs with octet and decuplet intermediate states cancel to various orders in $N_{c}$ as a consequence of the large-$N_{c}$ spin-flavour symmetry of QCD baryons. The baryon axial vector current is computed at one-loop order in heavy baryon chiral perturbation theory in the large Nc limit. $1/N_{c}$ corrections in the case of $g_{A}$ in QCD are presented here.
Quark-Pauli effects in three octet-baryons
Nakamoto, C
2016-01-01
To sustain a neutron star with about two times the solar mass, multi baryons including hyperons are expected to produce repulsive effects in the interior of its high baryon-density region. To examine possible quark-Pauli repulsion among the baryons, we solve the eigenvalue problem of the quark antisymmetrizer for three octet-baryons that are described by most compact spatial configurations. We find that the Pauli blocking effect is weak in the $\\Lambda nn$ system, while it is strong in the $\\Sigma^-nn$ system. The appearance of the $\\Sigma^-$ hyperon is suppressed in the neutron star interior but no quark-Pauli repulsion effectively works for the $\\Lambda$ hyperon.
Sanchez, Ariel G; Salazar-Albornoz, Salvador; Alam, Shadab; Beutler, Florian; Ross, Ashley J; Brownstein, Joel R; Chuang, Chia-Hsun; Cuesta, Antonio J; Eisenstein, Daniel J; Kitaura, Francisco-Shu; Percival, Will J; Prada, Francisco; Rodriguez-Torres, Sergio; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Vazquez, Jose A; Zhao, Gong-Bo
2016-01-01
The cosmological information contained in anisotropic galaxy clustering measurements can often be compressed into a small number of parameters whose posterior distribution is well described by a Gaussian. We present a general methodology to combine these estimates into a single set of consensus constraints that encode the total information of the individual measurements, taking into account the full covariance between the different methods. We illustrate this technique by applying it to combine the results obtained from different clustering analyses, including measurements of the signature of baryon acoustic oscillations (BAO) and redshift-space distortions (RSD), based on a set of mock catalogues of the final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our results show that the region of the parameter space allowed by the consensus constraints is smaller than that of the individual methods, highlighting the importance of performing multiple analyses on galaxy surveys even when the measurements a...
Semileptonic Decays of Heavy Lambda Baryons in a Quark Model
Energy Technology Data Exchange (ETDEWEB)
Winston Roberts; Muslema Pervin; Simon Capstick
2005-03-01
The semileptonic decays of {Lambda}{sub c} and {Lambda}{sub b} are treated in the framework of a constituent quark model. Both nonrelativistic and semirelativistic Hamiltonians are used to obtain the baryon wave functions from a fit to the spectra, and the wave functions are expanded in both the harmonic oscillator and Sturmian bases. The latter basis leads to form factors in which the kinematic dependence on q{sup 2} is in the form of multipoles, and the resulting form factors fall faster as a function of q{sup 2} in the available kinematic ranges. As a result, decay rates obtained in the two models using the Sturmian basis are significantly smaller than those obtained using the harmonic oscillator basis. In the case of the {Lambda}{sub c}, decay rates calculated using the Sturmian basis are closer to the experimentally reported rates. However, we find a semileptonic branching fraction for the {Lambda}{sub c} to decay to excited {Lambda}* states of 11% to 19%, in contradiction with what is assumed in available experimental analyses. Our prediction for the {Lambda}{sub b} semileptonic decays is that decays to the ground state {Lambda}{sub c} provide a little less than 70% of the total semileptonic decay rate. For the decays {Lambda}{sub b} {yields} {Lambda}{sub c}, the analytic form factors we obtain satisfy the relations expected from heavy-quark effective theory at the non-recoil point, at leading and next-to-leading orders in the heavy-quark expansion. In addition, some features of the heavy-quark limit are shown to naturally persist as the mass of the heavy quark in the daughter baryon is decreased.
基于声学上下文的语音情感特征提取与分析%Speech Emotion Feature Based on Acoustic Context Extraction and Analysis
Institute of Scientific and Technical Information of China (English)
白李娟; 赵小蕾; 毛启容; 吴宝凤
2013-01-01
针对语句之间的情感存在相互关联的特性,本文从声学角度提出了上下文动态情感特征、上下文差分情感特征、上下文边缘动态情感特征和上下文边缘差分情感特征共四类268维语音情感上下文特征以及这四类情感特征的提取方法,该方法是从当前情感语句与其前面若干句的合并句中提取声学特征,建立上下文特征模型,以此辅助传统特征所建模型来提高识别率.最后,将该方法应用于语音情感识别,实验结果表明,加入新的上下文语音情感特征后,六类典型情感的平均识别率为82.78％,比原有特征模型的平均识别率提高了约8.89％.%According to the emotional correlation among the adjective emotional sentences,this paper based on acoustic characteristics proposes four types of speech emotional contextual features including the contextual dynamic emotional feature,the contextual differential emotional feature,the contextual edge dynamic emotional feature and the contextual edge differential emotional feature,totally 268-dimensions,and their extracted method.In this method,features are extracted from the combined emotional sentence,which is formed by jointing the current emotional sentence and the several sentences in front of it.Then use them to establish a Context Feature Model that assists the model which is formed by traditional features to improve recognition rate.Finally,the method is applied to speech emotion recognition.And the experimental result shows that average recognition rate of six typical emotions is 82.78％ after adding the new contextual speech emotional features,which performs better than the original by 8.89％.
Search for doubly charmed baryons and study of charmed strange baryons at Belle
Kato, Y; Adachi, I; Aihara, H; Asner, D M; Aushev, T; Bakich, A M; Bala, A; Ban, Y; Bhardwaj, V; Bhuyan, B; Bobrov, A; Bonvicini, G; Bozek, A; Bračko, M; Browder, T E; Červenkov, D; Chekelian, V; Chen, A; Cheon, B G; Chilikin, K; Chistov, R; Cho, K; Chobanova, V; Choi, Y; Cinabro, D; Dalseno, J; Danilov, M; Doležal, Z; Drásal, Z; Drutskoy, A; Dutta, D; Dutta, K; Eidelman, S; Farhat, H; Fast, J E; Ferber, T; Gaur, V; Gabyshev, N; Ganguly, S; Garmash, A; Gillard, R; Goh, Y M; Golob, B; Haba, J; Hayasaka, K; Hayashii, H; He, X H; Horii, Y; Hoshi, Y; Hou, W -S; Hsiung, Y B; Inami, K; Ishikawa, A; Iwasaki, Y; Iwashita, T; Jaegle, I; Julius, T; Kang, J H; Kato, E; Kawasaki, T; Kiesling, C; Kim, D Y; Kim, H J; Kim, J B; Kim, J H; Kim, M J; Kim, Y J; Klucar, J; Ko, B R; Kodyš, P; Korpar, S; Krokovny, P; Kuhr, T; Kuzmin, A; Kwon, Y -J; Lee, S -H; Li, J; Li, Y; Gioi, L Li; Libby, J; Liu, Y; Liventsev, D; Matvienko, D; Miyabayashi, K; Miyata, H; Mizuk, R; Moll, A; Muramatsu, N; Mussa, R; Nagasaka, Y; Nakano, E; Nakao, M; Nayak, M; Nedelkovska, E; Ng, C; Niiyama, M; Nisar, N K; Nishida, S; Nitoh, O; Ogawa, S; Okuno, S; Pakhlov, P; Pakhlova, G; Park, C W; Park, H; Park, H K; Pedlar, T K; Peng, T; Pestotnik, R; Petrič, M; Piilonen, L E; Ritter, M; Röhrken, M; Rostomyan, A; Sahoo, H; Saito, T; Sakai, Y; Sandilya, S; Santelj, L; Sanuki, T; Savinov, V; Schneider, O; Schnell, G; Schwanda, C; Semmler, D; Senyo, K; Seon, O; Shapkin, M; Shen, C P; Shibata, T -A; Shiu, J -G; Shwartz, B; Sibidanov, A; Sohn, Y -S; Sokolov, A; Solovieva, E; Stanič, S; Starič, M; Steder, M; Sumihama, M; Sumiyoshi, T; Tamponi, U; Tanida, K; Tatishvili, G; Teramoto, Y; Uchida, M; Uehara, S; Uglov, T; Unno, Y; Uno, S; Van Hulse, C; Vanhoefer, P; Varner, G; Vinokurova, A; Vorobyev, V; Wagner, M N; Wang, C H; Wang, M -Z; Wang, P; Watanabe, M; Watanabe, Y; Williams, K M; Won, E; Yamashita, Y; Yashchenko, S; Zhang, Z P; Zhilich, V; Zhulanov, V; Zupanc, A
2013-01-01
We report results of a study of doubly charmed baryons and charmed strange baryons. The analysis is performed using a 980 fb^-1 data sample collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. We search for doubly charmed baryons Xi_cc^+(+) with the Lambda_c^+K^-pi^+(pi^+) and Xi_c^0pi^+(pi^+) final states. No significant signal is observed. We also search for two excited charmed strange baryons, Xi_c(3055)^+ and Xi_c(3123)^+ with the Sigma_c^++(2455)K^- and Sigma_c^++(2520)K^- final states. The Xi_c(3055)^+ signal is observed with a significance of 6.6 standard deviations including systematic uncertainty, while no signature of the Xi_c(3123)^+ is seen. We also study properties of the Xi_c(2645)^+ and measure a width of 2.6 +- 0.2 (stat) +- 0.4 (syst) MeV/c^2, which is the first significant determination.
Papastergis, Emmanouil; Cattaneo, Andrea; Huang, Shan; Giovanelli, Riccardo; Haynes, Martha P.
2012-01-01
We use both an HI-selected and an optically-selected galaxy sample to directly measure the abundance of galaxies as a function of their "baryonic" mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey (SDSS) and atomic gas masses are calcula
a Relativistic Calculation of Baryon Masses
Giammarco, Joseph Michael
1990-01-01
We calculate ground state baryon masses using a saddle-point variational (SPV) method, which permits us the use of fully relativistic 4-component Dirac spinors without the need for positive energy projection operators. This variational approach has been shown to work in the relativistic domain for one particle in an external potential (Dirac equation). We have extended its use to the relativistic 3-body Breit equation. Our procedure is as follows: we pick a trial wave function having the appropriate spin, flavor and color dependence. This can be accomplished with a non-symmetric relativistic spatial wave function having two different size parameters if the the first two quarks are always chosen to be identical. We than calculate an energy eigenvalue for the particle state and vary the parameters in our wave function to search for a "saddle-point". We minimize the energy with respect to the two size parameters and maximize with respect to two parameters that measure the contribution from the negative-energy states. This gives the baryon's mass as a function of four input parameters: the masses of the up, down and strange quarks (m_{u=d },m_{s}), and the strength of the coupling constants for the potentials ( alpha_{s},mu). We do this for the eight Baryon ground states and fit these to experimental data. This fit gives the values of the input parameters. For the potentials we use a coulombic term to represent one-gluon exchange and a linear term for confinement. For both terms we include a retardation term required by relativity. We also add delta function and spin-spin terms to account for the large contribution of the coulomb interaction at the origin. The results we obtain from our SPV method are in good agreement with experimental data. The actual search for the saddle-point parameters and the fitting of the quark masses and the values of the coupling strengths was done on a CDC Cyber 860.
Flavour Oscillations in Dense Baryonic Matter
Filip, Peter
2017-01-01
We suggest that fast neutral meson oscillations may occur in a dense baryonic matter, which can influence the balance of s/¯s quarks in the nucleus-nucleus and proton-nucleus interactions, if primordial multiplicities of neutral K 0, mesons are sufficiently asymmetrical. The phenomenon can occur even if CP symmetry is fully conserved, and it may be responsible for the enhanced sub-threshold production of multi-strange hyperons observed in the low-energy A+A and p+A interactions.
Non-baryonic dark matter in cosmology
Del Popolo, A.
2013-07-01
This paper is based on lectures given at the IX Mexican School on Gravitation and Mathematical Physics. The lectures (as the paper) were a broad-band review of the current status of non-baryonic dark matter research. I start with a historical overview of the evidences of dark matter existence, then I discuss how dark matter is distributed from small scale to large scale, and I then verge the attention to dark matter nature: dark matter candidates and their detection. I finally discuss some of the limits of the ΛCDM model, with particular emphasis on the small scale problems of the paradigm.
SU(3) flavour breaking and baryon structure
Energy Technology Data Exchange (ETDEWEB)
Cooke, A.N.; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich GmbH (Germany). Juelich Supercomputing Centre (JSC); Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Shanahan, P.; Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, School of Chemistry and Physics; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Collaboration: QCDSF/UKQCD Collaboration
2013-11-15
We present results from the QCDSF/UKQCD collaboration for hyperon electromagnetic form factors and axial charges obtained from simulations using N{sub f}=2+1 flavours of O(a)-improved Wilson fermions. We also consider matrix elements relevant for hyperon semileptonic decays. We find flavour-breaking effects in hyperon magnetic moments which are consistent with experiment, while our results for the connected quark spin content indicates that quarks contribute more to the spin of the {Xi} baryon than they do to the proton.
Baryon instability search in large detectors
Energy Technology Data Exchange (ETDEWEB)
Moscoso, L. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee
1996-08-01
Nucleon decay appears as a consequence of models trying to explain the baryon-antibaryon asymmetry. This has motivated 15 years ago many underground experiments devoted to the search of proton and neutron decay. A very large number of decay channels have been investigated and no evidence has been found yielding lower limits on lifetime which rule out the minimal SU(5) Grand Unified Theory predictions and put severe constraints on more complicated models. Next generation experiments like Super-Kamiokande, which is starting to take data now, ICARUS, whose a 600 ton prototype is under construction, will be sensitive to more complicated models predicting larger lifetimes. (author). 16 refs.
Magnetic Polarizability of Diquarks in Baryons
Filip, Peter
2014-01-01
We study the response of diquark wave function in \\Lambda-type baryons to strong magnetic fields. It is found that quantum state of J=0 diquark (ud) in the magnetic field changes due to magnetic polarizability, and constituent quarks in (ud) diquark become polarized. The phenomenon influences polarized quark distribution functions \\Delta u(x) and \\Delta d(x), which therefore may be sensitive to the internal electromagnetic fields in hypernuclei. We also speculate, that strange quark polarization in nucleon may originate from the interaction of virtual (ss') quark pairs with the intrinsic magnetic field of nucleon B $\\approx$ 10^13 T.
Baryons in Massive Gross-Neveu Models
Thies, M; Thies, Michael; Urlichs, Konrad
2005-01-01
Baryons in the large N limit of (1+1)-dimensional Gross-Neveu models with either discrete or continuous chiral symmetry have long been known. We generalize their construction to the case where the symmetry is explicitly broken by a bare mass term in the Lagrangian. In the discrete symmetry case, the exact solution is found for arbitrary bare fermion mass, using the Hartree-Fock approach. In the continuous symmetry case, a derivative expansion allows us to rederive a formerly proposed Skyrme-type model and to compute systematically corrections to the leading order description based on an effective sine-Gordon theory.
Non-Baryonic Dark Matter in Cosmology
Del Popolo, A
2014-01-01
This paper is a broad-band review of the current status of non-baryonic dark matter research. I start with a historical overview of the evidences of dark matter existence, then I discuss how dark matter is distributed from small scale to large scale, and I then verge the attention to dark matter nature: dark matter candidates and their detection. I finally discuss some of the limits of the $\\Lambda$CDM model, with particular emphasis on the small scale problems of the paradigm.
High Statistics Analysis using Anisotropic Clover Lattices: (III) Baryon-Baryon Interactions
Energy Technology Data Exchange (ETDEWEB)
Beane, Silas [Univ. of New Hampshire, Durham, NH (United States); Detmold, William [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Huey-Wen [Univ. of Washington, Seattle, WA (United States); Luu, Thomas C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Orginos, Kostas [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Savage, Martin [Univ. of Washington, Seattle, WA (United States); Torok, Aaron M. [Indiana Univ., Bloomington, IN (United States). Dept. of Physics; Walker-Loud, Andre [College of William and Mary, Williamsburg, VA (United States)
2010-03-01
Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m_pi ~ 390 MeV, a spatial volume of L^3 ~ (2.5 fm)^3, and a spatial lattice spacing of b ~ 0.123 fm. Luscher’s method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The N-Sigma interactions are found to be highly spin-dependent, and the interaction in the ^3 S _1 channel is found to be strong. In contrast, the N-Lambda interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is Lambda-Lambda, indicating that the Lambda-Lambda interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of the NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting
RESOLVE and ECO: The Halo Mass-Dependent Shape of Galaxy Stellar and Baryonic Mass Functions
Eckert, Kathleen D; Stark, David V; Moffett, Amanda J; Berlind, Andreas A; Norris, Mark A
2016-01-01
In this work, we present galaxy stellar and baryonic (stars plus cold gas) mass functions (SMF and BMF) and their halo mass dependence for two volume-limited data sets. The first, RESOLVE-B, coincides with the Stripe 82 footprint and is extremely complete down to baryonic mass Mbary ~ 10^9.1 Msun, probing the gas-rich dwarf regime below Mbary ~ 10^10 Msun. The second, ECO, covers a ~40 times larger volume (containing RESOLVE-A) and is complete to Mbary ~ 10^9.4 Msun. To construct the SMF and BMF we implement a new "cross-bin sampling" technique with Monte Carlo sampling from the full likelihood distributions of stellar or baryonic mass. Our SMFs exhibit the "plateau" feature starting below Mstar ~ 10^10 Msun that has been described in prior work. However, the BMF fills in this feature and rises as a straight power law below ~10^10 Msun, as gas-dominated galaxies become the majority of the population. Nonetheless, the low-mass slope of the BMF is not as steep as that of the theoretical dark matter halo MF. Mor...
Akiyama, Iwaki
2009-01-01
The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...
Damarla, Thyagaraju
2015-01-01
This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...
National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....
Kuttruff, Heinrich; Mommertz, Eckard
The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.
Baryon octet distribution amplitudes in Wandzura-Wilczek approximation
Energy Technology Data Exchange (ETDEWEB)
Anikin, I.V. [Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Manashov, A.N. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2015-12-15
We study higher twist distribution amplitudes for the SU{sub F}(3) baryon octet. We identify independent functions for all baryons in the isospin symmetry limit and calculate the Wandzura-Wilczek contributions to the twist-4 and 5 distributions amplitudes.
Baryon magnetic moments in the effective quark Lagrangian approach
Simonov, YA; Tjon, JA; Weda, J; Simonov, Yu A.
2002-01-01
An effective quark Lagrangian is derived from first principles through bilocal gluon field correlators. It is used to write down equations for baryons, containing both perturbative and nonperturbative fields. As a result one obtains magnetic moments of octet and decuplet baryons without the introduc
Evidence for chiral logarithms in the baryon spectrum
Walker-Loud, Andre
2011-01-01
Using precise lattice QCD computations of the baryon spectrum, we present the first direct evidence for the presence of contributions to the baryon masses which are non-analytic in the light quark masses; contributions which are often denoted "chiral logarithms". We isolate the poor convergence of SU(3) baryon chiral perturbation theory to the flavor-singlet mass combination. The flavor-octet baryon mass splittings, which are corrected by chiral logarithms at next to leading order in SU(3) chiral perturbation theory, yield baryon-pion axial coupling constants D, F, C and H consistent with QCD values; the first evidence of chiral logarithms in the baryon spectrum. The Gell-Mann--Okubo relation, a flavor-27 baryon mass splitting, which is dominated by chiral corrections from light quark masses, provides further evidence for the presence of non-analytic light quark mass dependence in the baryon spectrum; we simultaneously find the GMO relation to be inconsistent with the first few terms in a taylor expansion in ...
(Hybrid) Baryons in the Flux-Tube Model
Page, P R
1999-01-01
We construct baryons and hybrid baryons in the non-relativistic flux-tube model of Isgur and Paton. The motion of the flux-tube with the three quark positions fixed, except for centre of mass corrections, is discussed. It is shown that the problem can to an excellent approximation be reduced to the independent motion of a junction and strings.
Finite Volume Effect of Baryons in Strange Hadronic Matter
Institute of Scientific and Technical Information of China (English)
SUN Bao-Xi; LI Lei; NING Ping-Zhi; ZHAO En-Guang
2001-01-01
The finite volume effect of baryons in strange hadronic matter (SHM) is studied within the framework of relativistic mean-field theory. As this effect is concerned, the saturation density of SHM turns lower, and the binding energy per baryon decreases. Its influence to the compression modulus of SHM is also discussed.
Baryon masses with dynamical twisted mass fermions
Alexandrou, C; Koutsou, G; Baron, R; Guichon, P; Brinet, M; Carbonell, J; Drach, V; Liu, Z; Pène, O; Urbach, C
2007-01-01
We present results on the mass of the nucleon and the $\\Delta$ using two dynamical degenerate twisted mass quarks. The evaluation is performed at four quark masses corresponding to a pion mass in the range of 690-300 MeV on lattices of size 2.1 fm and 2.7 fm. We check for cutoff effects by evaluating these baryon masses on lattices of spatial size 2.1 fm with lattice spacings $a(\\beta=3.9)=0.0855(6)$ fm and $a(\\beta=4.05)=0.0666(6)$ fm, determined from the pion sector and find them to be within our statistical errors. Lattice results are extrapolated to the physical limit using continuum chiral perturbation theory. The nucleon mass at the physical point provides a determination of the lattice spacing. Using heavy baryon chiral perturbation theory at ${\\cal O}(p^3)$ we find $a(\\beta=3.9)=0.0879(12)$ fm, with a systematic error due to the chiral extrapolation estimated to be about the same as the statistical error. This value of the lattice spacing is in good agreement with the value determined from the pion se...
The Compressed Baryonic Matter Experiment at FAIR
Energy Technology Data Exchange (ETDEWEB)
Heuser, Johann M.
2013-05-02
The Compressed Baryonic Matter (CBM) experiment will explore the phase diagram of strongly interacting matter in the region of high net baryon densities. The experiment is being laid out for nuclear collision rates from 0.1 to 10 MHz to access a unique wide spectrum of probes, including rarest particles like hadrons containing charm quarks, or multi-strange hyperons. The physics programme will be performed with ion beams of energies up to 45 GeV/nucleon. Those will be delivered by the SIS-300 synchrotron at the completed FAIR accelerator complex. Parts of the research programme can already be addressed with the SIS-100 synchrotron at the start of FAIR operation in 2018. The initial energy range of up to 11 GeV/nucleon for heavy nuclei, 14 GeV/nucleon for light nuclei, and 29 GeV for protons, allows addressing the equation of state of compressed nuclear matter, the properties of hadrons in a dense medium, the production and propagation of charm near the production threshold, and exploring the third, strange dimension of the nuclide chart. In this article we summarize the CBM physics programme, the preparation of the detector, and give an outline of the recently begun construction of the Facility for Antiproton and Ion Research.
Predictions for masses of bottom baryons
Karliner, Marek; Lipkin, Harry J; Rosner, Jonathan L
2007-01-01
The recent observation of Sigma_b^{+-} (uub and ddb) and Xi_b^- (dsb) baryons at the Tevatron within 2 MeV of our theoretical predictions provides a strong motivation for applying the same theoretical approach, based on modeling the color hyperfine interaction, to predict the masses of other bottom baryons which might be observed in the foreseeable future. For S-wave qqb states we predict M(Omega_b) = 6052.1+-5.6 MeV, M(Omega^*_b) = 6082.8+-5.6 MeV, and M(Xi_b^0) = 5786.7 +- 3.0 MeV. For states with one unit of orbital angular momentum between the b quark and the two light quarks we predict M(Lambda_{b[1/2]}) = 5929+-2 MeV, M(Lambda_{b[3/2]}) = 5940+-2 MeV, M(Xi_{b[1/2]}) = 6106+-4 MeV, and M(Xi_{b[3/2]}) = 6115+-4 MeV.
The Quark Model and $b$ Baryons
Karliner, Marek; Lipkin, Harry J; Rosner, Jonathan L
2008-01-01
The recent observation at the Tevatron of $\\Sigma_b^{\\pm}$ ($uub$ and $ddb$) baryons within 2 MeV of the predicted $\\Sigma_b - \\Lambda_b$ splitting and of $\\Xi_b^-$ $(dsb)$ baryons at the Tevatron within a few MeV of predictions has provided strong confirmation for a theoretical approach based on modeling the color hyperfine interaction. The prediction of $M(\\Xi^-_b) = 5790$ to 5800 MeV is reviewed and similar methods used to predict the masses of the excited states $\\Xi_b^\\prime$ and $\\Xi_b^*$. The main source of uncertainty is the method used to estimate the mass difference $m_b - m_c$ from known hadrons. We verify that corrections due to the details of the interquark potential and to $\\Xi_b$--$\\Xi_b^\\prime$ mixing are small. For S-wave $qqb$ states we predict $M(\\Omega_b) = 6052.1 \\pm 5.6$ MeV, $M(\\Omega^*_b) = 6082.8 \\pm 5.6$ MeV, and $M(\\Xi_b^0) = 5786.7 \\pm 3.0$ MeV. For states with one unit of orbital angular momentum between the $b$ quark and the two light quarks we predict $M(\\Lambda_{b[1/2]}) = 5929...
Electroproduction of Baryon Resonances and Strangeness Suppression
Santopinto, E; Tecocoatzi, H Garcia
2016-01-01
We describe the electroproduction ratios of baryon-meson states from nucleon using an extension of the quark model that takes into account the sea. As a result we provide, with no adjustable parameters, the predictions of ratios of exclusive meson-baryon final states: Lambda K , Sigma K, p pion, and n pion. These predictions are in agreement with the new Jlab experimental data showing that sea quarks play an important role in the electroproduction. We also predicted further ratios of exclusive reactions that can be measured and tested in future experiments. In particular, we suggested new experiments on deuterium and tritium. Such measurements can provide crucial test of different predictions concerning the structure of nucleon and its sea quarks helping to solve an outstanding problem. Finally, we computed the so called strangeness suppression factor, lambda s, that is the suppression of strange quark-antiquarks compared to nonstrange pairs, and we found that our finding with this simple extension of the qua...
Doubly heavy baryon spectra guided by lattice QCD
Garcilazo, H; Vijande, J
2016-01-01
This paper provides results for the ground state and excited spectra of three-flavored doubly heavy baryons, $bcn$ and $bcs$. We take advantage of the spin-independent interaction recently obtained to reconcile the lattice SU(3) QCD static potential and the results of nonperturbative lattice QCD for the triply heavy baryon spectra. We show that the spin-dependent potential might be constrained on the basis of nonperturbative lattice QCD results for the spin splittings of three-flavored doubly heavy baryons. Our results may also represent a challenge for future lattice QCD work, because a smaller lattice error could help in distinguishing between different prescriptions for the spin-dependent part of the interaction. Thus, by comparing with the reported baryon spectra obtained with parameters estimated from lattice QCD, one can challenge the precision of lattice calculations. The present work supports a coherent description of singly, doubly and triply heavy baryons with the same Cornell-like interacting poten...
Spectrum of heavy baryons in the quark model
Yoshida, Tetsuya; Hosaka, Atsushi; Oka, Makoto; Sadato, Katsunori
2015-01-01
Single- and double- heavy baryons are studied in the constituent quark model. The model Hamiltonian is chosen as a standard one with two exceptions : (1) The color-Coulomb term depend on quark masses, and (2) an antisymmetric $LS$ force is introduced. Model parameters are fixed by the strange baryon spectra, $\\Lambda$ and $\\Sigma$ baryons. The masses of the observed charmed and bottomed baryons are, then, fairly well reproduced. Our focus is on the low-lying negative-parity states, in which the heavy baryons show specific excitation modes reflecting the mass differences of heavy and light quarks. By changing quark masses from the SU(3) limit to the strange quark mass, further to the charm and bottom quark masses, we demonstrate that the spectra change from the SU(3) symmetry patterns to the heavy quark symmetry ones.
Octet Baryon Electromagnetic Form Factors in a Relativistic Quark Model
Energy Technology Data Exchange (ETDEWEB)
Gilberto Ramalho, Kazuo Tsushima
2011-09-01
We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.
Octet baryon electromagnetic form factors in a relativistic quark model
Ramalho, G
2011-01-01
We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.
Strange baryon spectroscopy in the relativistic quark model
Faustov, R N
2015-01-01
Mass spectra of strange baryons are calculated in the framework of the relativistic quark model based on the quasipotential approach. Baryons are treated as the relativistic quark-diquark bound systems. It is assumed that two quarks with equal constituent masses form a diquark. The diquark excitations and its internal structure are consistently taken into account. Calculations are performed up to rather high orbital and radial excitations of strange baryons. On this basis the Regge trajectories are constructed. The obtained results are compared with available experimental data and previous predictions. It is found that all masses of the 4- and 3-star, as well as most of the 2- and 1-star states of strange baryons with established quantum numbers are well reproduced. The developed relativistic quark-diquark model predicts less excited states than three-quark models of strange baryons.
Strange baryon spectroscopy in the relativistic quark model
Faustov, R. N.; Galkin, V. O.
2015-09-01
Mass spectra of strange baryons are calculated in the framework of the relativistic quark model based on the quasipotential approach. Baryons are treated as relativistic quark-diquark bound systems. It is assumed that two quarks with equal constituent masses form a diquark. The diquark excitations and its internal structure are consistently taken into account. Calculations are performed up to rather high orbital and radial excitations of strange baryons. On this basis the Regge trajectories are constructed. The obtained results are compared with available experimental data and previous predictions. It is found that all masses of the 4- and 3-star states of strange baryons with established quantum numbers, as well as most of the 2- and 1-star states, are well reproduced. The developed relativistic quark-diquark model predicts less excited states than three-quark models of strange baryons.
Prakash, Abhishek; SDSS-IV/eBOSS
2017-01-01
SDSS-IV/eBOSS survey will allow a ˜1% measurement of the Baryon Acoustic Oscillation (BAO) scale and a 4.0%Redshift Space Distortion (RSD) measurement using a relatively uniform set of luminous, early-type galaxies in the redshift range 0.6 image both wider areas and deeper volumes than would be possible with spectroscopy, allowing one to probe both larger scales and larger volumes. The ability to make precise clustering measurements with photometric data has been well demonstrated by Padmanabhan et al. (2007).
Aspects of baryon structure in lattice QCD
Babich, Ronald
Despite the long success of Quantum Chromodynamics (QCD) as the theory of the strong interactions, there remains much to be understood about the structure of hadrons and the consequences of QCD in the nonperturbative regime. Lattice gauge theory, a framework nearly as old as QCD itself, makes calculations in this regime possible, starting from first principles. With advances in theoretical understanding, methods, and computer technology, the lattice has found application to an ever-widening range of problems. In this dissertation, I consider two such problems having to do with the structure of baryons. The first concerns the contribution of sea quarks, and the strange quark in particular, to form factors of the nucleon. This has been a long-standing challenge for the lattice, because such contributions involve the insertion of a current on a quark loop, demanding the full inversion of the discretized Dirac operator, conceptually a large sparse matrix. I discuss methods for addressing this challenge and present a calculation of the strange scalar form factor and the related parameter fTs. The latter is of great theoretical interest, since it enters into the cross section for the scattering of dark matter off nuclei in supersymmetric extensions of the standard model. As such, it represents a major uncertainty in the interpretation of direct detection experiments. I also present results for the strange quark contribution to the nucleon's axial and electromagnetic form factors, which are themselves the subject of active experimental programs. These calculations were performed using the Wilson fermion formulation on a 243 x 64 anisotropic lattice. In the second part of the dissertation, I turn to the valence sector and address the role of diquark correlations in the observed spectrum of hadrons and their properties. A diquark is a correlated pair of quarks, thought to play an important role in certain phenomenological models of hadrons. I present results for baryon wave
Hyperon Single-Particle Potentials Calculated from SU6 Quark-Model Baryon-Baryon Interactions
Kohno, M; Fujita, T; Nakamoto, C; Suzuki, Y
2000-01-01
Using the SU6 quark-model baryon-baryon interaction recently developed by the Kyoto-Niigata group, we calculate NN, Lambda N and Sigma N G-matrices in ordinary nuclear matter. This is the first attempt to discuss the Lambda and Sigma single-particle potentials in nuclear medium, based on the realistic quark-model potential. The Lambda potential has the depth of more than 40 MeV, which is more attractive than the value expected from the experimental data of Lambda-hypernuclei. The Sigma potential turns out to be repulsive, the origin of which is traced back to the strong Pauli repulsion in the Sigma N (I=3/2) ^3S_1 state.
The SDSS-IV extended Baryonic Oscillation Spectroscopic Survey: Quasar Target Selection
Myers, Adam D; Prakash, Abhishek; Pâris, Isabelle; Yeche, Christophe; Dawson, Kyle S; Bovy, Jo; Lang, Dustin; Schlegel, David J; Newman, Jeffrey A; Petitjean, Patrick; Kneib, Jean Paul; Laurent, Pierre; Percival, Will J; Ross, Ashley J; Seo, Hee-Jong; Tinker, Jeremy L; Armengaud, Eric; Brownstein, Joel; Burtin, Etienne; Cai, Zheng; Comparat, Johan; Kasliwal, Mansi; Kulkarni, Shrinivas R; Laher, Russ; Levitan, David; McBride, Cameron K; McGreer, Ian D; Miller, Adam A; Nugent, Peter; Ofek, Eran; Rossi, Graziano; Ruan, John; Schneider, Donald P; Sesar, Branimir; Streblyanska, Alina; Surace, Jason
2015-01-01
As part of the SDSS-IV the extended Baryon Oscillation Spectroscopic Survey (eBOSS) will perform measurements of the cosmological distance scale via application of the Baryon Acoustic Oscillation (BAO) method to samples of quasars and galaxies. Quasar surveys are particularly useful in the BAO context as they can trace extremely large volumes back to moderately high redshift. eBOSS will adopt two approaches to target quasars over a 7500 sq. deg. area. First, z > 2.1 quasars will be targeted to improve BAO measurements in the Lyman-Alpha Forest. Second, a homogeneously selected "CORE" sample of quasars at 0.9 2.1 quasars. A supplemental selection based on variability of quasars in multi-epoch imaging from the Palomar Transient Factory should recover an additional ~3-4 per sq. deg. z > 2.1 quasars to g 500,000 new spectroscopically confirmed quasars and > 500,000 uniformly selected spectroscopically confirmed 0.9 < z < 2.2 quasars. At the conclusion of SDSS-IV, the SDSS will have provided unique spectra...
Baryon oscillations in galaxy and matter power-spectrum covariance matrices
Neyrinck, Mark C
2007-01-01
We investigate large-amplitude baryon acoustic oscillations (BAO's) in off-diagonal entries of cosmological power-spectrum covariance matrices. These covariance-matrix BAO's describe the increased attenuation of power-spectrum BAO's caused by upward fluctuations in large-scale power. We derive an analytic approximation to covariance-matrix entries in the BAO regime, and check the analytical predictions using N-body simulations. These BAO's look much stronger than the BAO's in the power spectrum, but seem detectable only at about a one-sigma level in gigaparsec-scale galaxy surveys. In estimating cosmological parameters using matter or galaxy power spectra, including the covariance-matrix BAO's can have a several-percent effect on error-bar widths for some parameters directly related to the BAO's, such as the baryon fraction. Also, we find that including the numerous galaxies in small haloes in a survey can reduce error bars in these cosmological parameters more than the simple reduction in shot noise might su...
The Multi-Object, Fiber-Fed Spectrographs for SDSS and the Baryon Oscillation Spectroscopic Survey
Smee, Stephen; Uomoto, Alan; Roe, Natalie; Schlegel, David; Rockosi, Constance M; Carr, Michael A; Leger, French; Dawson, Kyle S; Olmstead, Matthew D; Brinkmann, Jon; Owen, Russell; Barkhouser, Robert H; Honscheid, Klaus; Harding, Paul; Long, Dan; Lupton, Robert H; Loomis, Craig; Anderson, Lauren; Annis, James; Bernardi, Mariangela; Bhardwaj, Vaishali; Bizyaev, Dmitry; Bolton, Adam S; Brewington, Howard; Briggs, John W; Burles, Scott; Burns, James G; Castander, Francisco; Connolly, Andrew; Davenport, James R; Ebelke, Garrett; Epps, Harland; Feldman, Paul D; Friedman, Scott; Frieman, Joshua; Heckman, Timothy; Hull, Charles L; Knapp, Gillian R; Lawrence, David M; Loveday, Jon; Mannery, Edward J; Malanushenko, Elena; Malanushenko, Viktor; Merrelli, Aronne; Muna, Demitri; Newman, Peter; Nichol, Robert C; Oravetz, Daniel; Pan, Kaike; Pope, Adrian C; Ricketts, Paul G; Shelden, Alaina; Sandford, Dale; Siegmund, Walter; Simmons, Audrey; Smith, D; Snedden, Stephanie; Schneider, Donald P; Strauss, Michael; SubbaRao, Mark; Tremonti, Christy; Waddell, Patrick; York, Donald G
2012-01-01
We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-$\\alpha$ absorption of 160,000 high redshift quasars over 10,000 square degrees of sky, making percent level measurements of the absolute cosmic distance scale of the Universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber sp...
The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Overview and Early Data
Dawson, Kyle S; Percival, Will J; Alam, Shadab; Albareti, Franco D; Anderson, Scott F; Armengaud, Eric; Aubourg, Eric; Bailey, Stephen; Bautista, Julian E; Berlind, Andreas A; Bershady, Matthew A; Beutler, Florian; Bizyaev, Dmitry; Blanton, Michael R; Blomqvist, Michael; Bolton, Adam S; Bovy, Jo; Brandt, W N; Brinkmann, Jon; Brownstein, Joel R; Burtin, Etienne; Busca, N G; Cai, Zheng; Chuang, Chia-Hsun; Clerc, Nicolas; Comparat, Johan; Cope, Frances; Croft, Rupert A C; Cruz-Gonzalez, Irene; da Costa, Luiz N; Cousinou, Marie-Claude; Darling, Jeremy; de la Torre, Sylvain; Delubac, Timothee; Bourboux, Helion du Mas des; Dwelly, Tom; Ealet, Anne; Eisenstein, Daniel J; Eracleous, Michael; Escoffier, S; Fan, Xiaohui; Finoguenov, Alexis; Font-Ribera, Andreu; Frinchaboy, Peter; Gaulme, Patrick; Georgakakis, Antonis; Green, Paul; Guo, Hong; Guy, Julien; Ho, Shirley; Holder, Diana; Huehnerhoff, Joe; Hutchinson, Timothy; Jing, Yipeng; Jullo, Eric; Kamble, Vikrant; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco-Shu; Klaene, Mark A; Laher, Russ R; Lang, Dustin; Laurent, Pierre; Goff, Jean-Marc Le; Li, Cheng; Liang, Yu; Lima, Marcos; Lin, Qiufan; Lin, Weipeng; Lin, Yen-Ting; Long, Daniel C; Lundgren, Britt; MacDonald, Nicholas; Maia, Marcio Antonio Geimba; Malanushenko, Elena; Malanushenko, Viktor; Mariappan, Vivek; McBride, Cameron K; McGreer, Ian D; Menard, Brice; Merloni, Andrea; Meza, Andres; Montero-Dorta, Antonio D; Muna, Demitri; Myers, Adam D; Nandra, Kirpal; Naugle, Tracy; Newman, Jeffrey A; Noterdaeme, Pasquier; Nugent, Peter; Ogando, Ricardo; Olmstead, Matthew D; Oravetz, Audrey; Oravetz, Daniel J; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John K; Paris, Isabelle; Peacock, John A; Petitjean, Patrick; Pieri, Matthew M; Pisani, Alice; Prada, Francisco; Prakash, Abhishek; Raichoor, Anand; Reid, Beth; Rich, James; Ridl, Jethro; Rodriguez-Torres, Sergio; Rosell, Aurelio Carnero; Ross, Ashley J; Rossi, Graziano; Ruan, John; Salvato, Mara; Sayres, Conor; Schneider, Donald P; Schlegel, David J; Seljak, Uros; Seo, Hee-Jong; Sesar, Branimir; Shandera, Sarah; Shu, Yiping; Slosar, Anze; Sobreira, Flavia; Strauss, Michael A; Streblyanska, Alina; Suzuki, Nao; Tao, Charling; Tinker, Jeremy L; Tojeiro, Rita; Vargas-Magana, Mariana; Wang, Yuting; Weaver, Benjamin A; Weinberg, David H; White, Martin; Wood-Vasey, W M; Yeche, Christophe; Zhai, Zhongxu; Zhao, Cheng; Zhao, Gong-bo; Zheng, Zheng; Zhu, Guangtun Ben; Zou, Hu
2015-01-01
The Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. Observations will be simultaneous with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. eBOSS will use four different tracers to measure the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z=0.72, we project that eBOSS will yield measurements of $d_A(z)$ to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z>0.6 sample of BOSS galaxies. With ~195,000 new emission line galaxy redshifts, we expect BAO measurements of $d_A(z)$ to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z= 0.87. A sample of more than 500,000 spectroscop...
Mirage in Temporal Correlation functions for Baryon-Baryon Interactions in Lattice QCD
Iritani, Takumi; Aoki, Sinya; Gongyo, Shinya; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji
2016-01-01
Single state saturation of the temporal correlation function is a key condition to extract physical observables such as energies and matrix elements of hadrons from lattice QCD simulations. A method commonly employed to check the saturation is to seek for a plateau of the observables for large Euclidean time. Identifying the plateau in the cases having nearby states, however, is non-trivial and one may even be misled by a fake plateau. Such a situation takes place typically for the system with two or more baryons. In this study, we demonstrate explicitly the danger from a possible fake plateau in the temporal correlation functions mainly for two baryons ($\\Xi\\Xi$ and $NN$), and three and four baryons ($^3{\\rm He}$ and $^4{\\rm He})$ as well, employing (2+1)-flavor lattice QCD at $m_{\\pi}=0.51$ GeV on four lattice volumes with $L=$ 2.9, 3.6, 4.3 and 5.8 fm. Caution is given for drawing conclusion on the bound $NN$, $3N$ and $4N$ systems only based on the temporal correlation functions.
Baryon transition form factors at the pole
Tiator, L.; Döring, M.; Workman, R. L.; Hadžimehmedović, M.; Osmanović, H.; Omerović, R.; Stahov, J.; Švarc, A.
2016-12-01
Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the GM, GE, and GC form factors for the Δ (1232 ) resonance excitation at the Breit-Wigner resonance and pole positions up to Q2=5 GeV2 . We also explore the E /M and S /M ratios as functions of Q2. For pole and residue extraction, we apply the Laurent + Pietarinen method.
Baryon transition form factors at the pole
Tiator, L; Workman, R L; Hadžimehmedović, M; Osmanović, H; Omerović, R; Stahov, J; Švarc, A
2016-01-01
Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the $G_M$, $G_E$, and $G_C$ form factors for the $\\Delta(1232)$ resonance excitation at the Breit-Wigner resonance and pole positions up to $Q^2=5$ GeV$^2$. We also explore the $E/M$ and $S/M$ ratios as functions of $Q^2$. For pole and residue extraction, we apply the Laurent + Pietarinen method.
Cluster outskirts and the missing baryons
Eckert, D.
2016-06-01
Galaxy clusters are located at the crossroads of intergalactic filaments and are still forming through the continuous merging and accretion of smaller structures from the surrounding cosmic web. Deep, wide-field X-ray studies of the outskirts of the most massive clusters bring us valuable insight into the processes leading to the growth of cosmic structures. In addition, cluster outskirts are privileged sites to search for the missing baryons, which are thought to reside within the filaments of the cosmic web. I will present the XMM cluster outskirts project, a VLP that aims at mapping the outskirts of 13 nearby clusters. Based on the results obtained with this program, I will then explore ideas to exploit the capabilities of XMM during the next decade.
Quark-mass dependence of baryon resonances
Energy Technology Data Exchange (ETDEWEB)
Lutz, M.F.M. [Gesellschaft fuer Schwerionenforschung (GSI), Planck Str. 1, D-64291 Darmstadt (Germany) and Institut fuer Kernphysik, TU Darmstadt, D-64289 Darmstadt (Germany)]. E-mail: m.lutz@gsi.de; Garcia-Recio, C. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada (Spain); Kolomeitsev, E.E. [Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Nieves, J. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada (Spain)
2005-05-30
We study the quark-mass dependence of JP=12- s-wave and JP=32- d-wave baryon resonances. Parameter-free results are obtained in terms of the leading order chiral Lagrangian. In the 'heavy' SU(3) limit with m{pi}=mK{approx}500 MeV the s-wave resonances turn into bound states forming two octets plus a singlet representations of the SU(3) group. Similarly the d-wave resonances turn into bound states forming an octet and a decuplet in this limit. A contrasted result is obtained in the 'light' SU(3) limit with m{pi}=mK{approx}140 MeV for which no resonances exist.
Examining CP Symmetry in Strange Baryon Decays
Luk, K B
2000-01-01
Non-conservation of CP symmetry can manisfest itself in non-leptonic hyperon decays as a difference in the decay parameter between the strange-baryon decay and its charge conjugate. By comparing the decay distribution in the $\\Lambda$ helicity frame for the decay sequence $\\Xi^{-} \\to \\Lambda \\pi^{-}$, $\\Lambda \\to p \\pi^{-}$ with that of $\\bar{\\Xi}^{+}$ decay, E756 at Fermilab did not observe any CP-odd effect at the $10^{-2}$ level. The status of a follow-up experiment, HyperCP (FNAL E871), to search for CP violation in charged $\\Xi-\\Lambda$ decay with a sensitivity of $10^{-4}$ is also presented.
Leptogenesis and gravity: Baryon asymmetry without decays
McDonald, J. I.; Shore, G. M.
2017-03-01
A popular class of theories attributes the matter-antimatter asymmetry of the Universe to CP-violating decays of super-heavy BSM particles in the Early Universe. Recently, we discovered a new source of leptogenesis in these models, namely that the same Yukawa phases which provide the CP violation for decays, combined with curved-spacetime loop effects, lead to an entirely new gravitational mechanism for generating an asymmetry, driven by the expansion of the Universe and independent of the departure of the heavy particles from equilibrium. In this Letter, we build on previous work by analysing the full Boltzmann equation, exploring the full parameter space of the theory and studying the time-evolution of the asymmetry. Remarkably, we find regions of parameter space where decays play no part at all, and where the baryon asymmetry of the Universe is determined solely by gravitational effects.
On light baryons and their excitations
Eichmann, Gernot; Sanchis-Alepuz, Helios
2016-01-01
We study ground states and excitations of light octet and decuplet baryons within the framework of Dyson-Schwinger and Faddeev equations. We improve upon similar approaches by explicitly taking into account the momentum-dependent dynamics of the quark-gluon interaction that leads to dynamical chiral symmetry breaking. We perform calculations in both the three-body Faddeev framework and the quark-diquark approximation in order to assess the impact of the latter on the spectrum. Our results indicate that both approaches agree well with each other. The resulting spectra furthermore agree one-to-one with experiment, provided well-known deficiencies of the rainbow-ladder approximation are compensated for. We also discuss the mass evolution of the Roper and the excited Delta with varying pion mass and analyse the internal structure in terms of their partial wave decompositions.
Observation of excited $\\Lambda^0_b$ baryons
Aaij, R; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Craik, D; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hoballah, M; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li, Y; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McCarthy, J; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Vesterinen, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A
2012-01-01
Using $pp$ collision data corresponding to 1.0~fb^{-1} integrated luminosity collected by the LHCb detector, two narrow states are observed in the $\\Lambda_b^0\\pi^+\\pi^-$ spectrum with masses $5911.95\\pm 0.12(\\mbox{stat})\\pm 0.03(\\mbox{syst})\\pm 0.66(\\Lambda_b^0\\mbox{ mass})$ MeV/$c^2$ and $5919.76\\pm 0.07(\\mbox{stat})\\pm 0.02(\\mbox{syst})\\pm 0.66(\\Lambda_b^0\\mbox{ mass})$ MeV/$c^2$. The significances of the observations are 4.9 and 10.1 standard deviations, respectively. These states are interpreted as the orbitally-excited $\\Lambda_b^0$ baryons, $\\Lambda_b^{*0}(5912)$ and $\\Lambda_b^{*0}(5920)$.
Baryon transition form factors at the pole
Energy Technology Data Exchange (ETDEWEB)
Tiator, L.; Döring, M.; Workman, R. L.; Hadžimehmedović, M.; Osmanović, H.; Omerović, R.; Stahov, J.; Švarc, A.
2016-12-01
Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the $G_M$, $G_E$, and $G_C$ form factors for the $\\Delta(1232)$ resonance excitation at the Breit-Wigner resonance and pole positions up to $Q^2=5$ GeV$^2$. We also explore the $E/M$ and $S/M$ ratios as functions of $Q^2$. For pole and residue extraction, we apply the Laurent + Pietarinen method.
Observation of a new charmed baryon
Albrecht, H.; Ehrlichmann, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Nau, A.; Nowak, S.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Hast, C.; Kapitza, H.; Kolanoski, H.; Kosche, A.; Lange, A.; Lindner, A.; Mankel, R.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Wegener, D.; Bittner, M.; Eckstein, P.; Paulini, M.; Reim, K.; Wegener, H.; Eckmann, R.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Khan, S.; Knöpfle, K. T.; Seeger, M.; Spengler, J.; Britton, D. I.; Charlesworth, C. E. K.; Edwards, K. W.; Hyatt, E. R. F.; Krieger, P.; Macfarlane, D. B.; Patel, P. M.; Prentice, J. D.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Reβing, D.; Schmidtler, M.; Schneider, M.; Schubert, K. R.; Strahl, K.; Waldi, R.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Balagura, V.; Belyaev, I.; Chechelnitsky, S.; Danilov, M.; Droutskoy, A.; Gershtein, Yu.; Golutvin, A.; Korolko, I.; Kostina, G.; Litvintsev, D.; Lubimov, V.; Pakhlov, P.; Semenov, S.; Snizhko, A.; Tichomirov, I.; Zaitsev, Yu.; Argus Collaboration
1993-11-01
Using the ARGUS detector at the e+e- storage ring DORIS II at DESY, we have observed a new charmed baryon state in the channel Λc+π+π-. (All references to a specific charged state also imply the charge conjugate state.) The mass of this state was measured to be (2626.6 ± 0.5 ± 1.5) MeV/ c2. The product of the production cross section and branching ratio for this channel was determined to be (11.5 ± 2.5 ± 3.0) pb, and the natural width estimated to be smaller than 3.2 MeV/ c2 at 90% CL.
Quantum Operator Design for Lattice Baryon Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Lichtl, Adam [Carnegie Mellon Univ., Pittsburgh, PA (United States)
2006-09-07
A previously-proposed method of constructing spatially-extended gauge-invariant three-quark operators for use in Monte Carlo lattice QCD calculations is tested, and a methodology for using these operators to extract the energies of a large number of baryon states is developed. This work is part of a long-term project undertaken by the Lattice Hadron Physics Collaboration to carry out a first-principles calculation of the low-lying spectrum of QCD. The operators are assemblages of smeared and gauge-covariantly-displaced quark fields having a definite flavor structure. The importance of using smeared fields is dramatically demonstrated. It is found that quark field smearing greatly reduces the couplings to the unwanted high-lying short-wavelength modes, while gauge field smearing drastically reduces the statistical noise in the extended operators.
First observation of doubly charmed baryons
Energy Technology Data Exchange (ETDEWEB)
M. A. Moinester et al.
2003-09-25
The SELEX experiment (E781) at Fermilab has observed two statistically compelling high mass states near 3.6 GeV/c{sup 2}, decaying to {Lambda}{sub c}{sup +} K{sup -} {pi}{sup +} and {Lambda}{sub c}{sup +} K{sup -} {pi}{sup +}{pi}{sup +}. These final states are Cabibbo-allowed decay modes of doubly charmed baryons {Xi}{sub cc}{sup +} and {Xi}{sub cc}{sup ++}, respectively. The masses are in the range expected from theoretical considerations, but the spectroscopy is surprising. SELEX also has weaker preliminary evidence for a state near 3.8 GeV/c{sup 2}, a high mass state decaying to {Lambda}{sub c}{sup +} K{sup -} {pi}{sup +}{pi}{sup +}, possibly an excited {Xi}{sub cc}{sup ++} (ccu*). Data are presented and discussed.
Institute of Scientific and Technical Information of China (English)
江泉; 张渊; 张新书
2010-01-01
目的 研究乳腺纤维腺瘤和乳腺癌的超声造影表现,初步探讨超声造影在乳腺良恶性肿瘤鉴别诊断中的应用价值.方法 回顾性分析18例乳腺纤维腺瘤和12例乳腺癌的超声造影表现,对比造影前后肿块的超声表现.结果 造影后,14例乳腺纤维腺瘤大小测值无明显变化,4例测值增大,5例乳腺癌大小测值无明显变化,7例乳腺癌者大小测值增大;造影后,纤维腺瘤肿块内血管数大部分无明显变化,血管形态较狭窄平直,沿肿块周边走行,乳腺癌肿块内血管数明显增多增粗、迂曲,并有血管进入肿块内.结论 超声造影对显示肿块实际大小优于普通超声,造影后肿块大小测值变大、血管数增多、血管不规则走行等以乳腺癌多见.超声造影有利于提高乳腺癌的正确诊断率.%Objective To study the ultrasonographic and acoustic contrast features of breast fibroadenoma and breast cancer and explore the value of contrast enhanced ultrasonography in the differential diagnosis of benign and malignant breast tumors. Method A retrospective analysis of 18 cases breast fibroadenoma and 12 cases breast cancer in the performance of contrast-enhanced ultrasound was done. Results After contrast agent injection, tumor dimension increased in 4 cases with breast fibroadenoma and 7 cases with breast cancer. The ultrasonographic and acoustic contrast features of breast fibroadenoma showed no significant changes. They showed stenosis, perpendicular and circumambulates vascular shape. The breast cancers significantly increased the number of tumor blood vessels with the thicker,tortuous blood vessels into the tumor. Conclusions The contrast enhanced ultrasonography assessed more accurate size of tumors. The image displayed grown sizes, more vascularity and bending vascular shape in the breast cancer. It was more accurate than gray-scale ultrasound on diagnosing breast cancer.
Institute of Scientific and Technical Information of China (English)
张浩; 刘碧龙; 苏正涛
2015-01-01
Sound absorption features of double-layered steel structures coated with acoustic absorption layers were investigated.By introducing the interface area factor into the wave propagating theory of multiple-layered medium,the sound absorption features of acoustic coating were investigated with the improved transfer matrix method.Numerical results showed that for a double-layered steel structure with a water cavity in the middle,the coating on the inner plate can reduce the effect of cavity resonance of water between two steel plates and improve the structure’s sound absorption coefficient significantly within a lower frequency range,while the coating on the outer plate has little effect on the water cavity resonance.%利用改进的传递矩阵模型研究了双层钢结构敷设声学覆盖层的吸声特性。在分层介质传递矩阵模型的基础上，引入界面面积因素，使模型可以定性计算具有内部空腔的覆盖层吸声性能。计算结果表明：对于中间有水层的双层钢结构，仅在外层钢板敷设覆盖层，水层引起的共振将显著降低其低频吸声性能。若同时在内层钢板敷设覆盖层，则可显著提高其低频吸声性能。外层覆盖层对第一阶吸声峰值内下的频段和高频段吸声影响显著，而对第一阶吸声谷值频率附近的吸声性能影响很小。内层覆盖层则能显著提高第一阶吸声谷值频率附近的吸声系数。
Institute of Scientific and Technical Information of China (English)
李鹏; 岑锦添; 黎志诚; 张革化
2010-01-01
目的 探讨听神经病在纯音听阈测听及声导抗检查中的临床听力学特点及诊断要点.方法 回顾性分析中山大学附属第三医院耳鼻喉科收治的17例(32耳)听神经病确诊患者在纯音听阈测听、声导抗检查中的听力学特点.结果 17例患者中15例为双侧发病,呈左右对称性听力曲线;26耳以轻至中度低频感音性聋为主(听力图上升型);病程5年的听力损失主要为重度、极重度听力障碍.16例(31耳)声导抗为"A"型鼓室图,15例(30耳)同侧及交叉镫骨肌声反射均未引出,2例(2耳)镫骨肌声反射阈值升高.结论 听神经病在纯音听阔测听及声导抗检查中主要表现为:(1)为双侧对称性、渐进性听力下降;(2)早期为低频上升型听力图,后期为全频听力下降;(3)呈"A"型鼓室图,镫骨肌声反射阈值升高或引不出;(4)患耳无响度重振现象.%Objective To analyze the clinical characteristics of auditory neuropathy under pure tone audiometry and acoustic immitance examination.Methods Seventeen patients (32 ears) diagnosed as having auditory neuropathy were examined for audiology features by pure tone audiometry and acoustic immitance.Results Bilateral and symmetrical hearing loss was found in 15 patients and low-frequency sensorineural hearing loss was noted in 26 ears.Seventeen ears with a course of disease less than 5 years presented light or moderate dysaudia,and those with more than 5 years presented grave loss of aural comprehension.16 patients (31 ears) in the acoustic immitance examination showed type A tympanogram,and absence of stapedius muscle reflex was found in 15 patients (30 ears).The threshold of acoustic stapedius reflex increased in 2 patients (2 ears).Conclusion Auditory neuropathy primarily presents bilateral and symmetrical hearing loss,low-frequency hearing loss at the initial stage and total-frequency hearing loss finally,absence of stapedius muscle reflex and type A tympanogram,and absence of
Smallness of tree-dominated charmless two-body baryonic B decay rates
Cheng, Hai-Yang; Chua, Chun-Khiang
2015-02-01
The long-awaited baryonic B decay B¯0→p p ¯ was recently observed by LHCb with a branching fraction of order 1 0-8. All the earlier model predictions are too large compared with experiment. In this work, we point out that for a given tree operator Oi, the contribution from its Fiertz transformed operator, an effect often missed in the literature, tends to cancel the internal W -emission amplitude induced from Oi. The wave function of low-lying baryons is symmetric in momenta and the quark flavor with the same chirality but antisymmetric in color indices. Using these symmetry properties and the chiral structure of weak interactions, we find that half of the Feynman diagrams responsible for internal W emission cancel. Since this feature holds in the charmless modes but not in the charmful ones, we advocate that the partial cancellation accounts for the smallness of the tree-dominated charmless two-body baryonic B decays. This also explains why most previous model calculations predicted too large rates as the above consideration was not taken into account. Finally, we emphasize that, contrary to the claim in the literature, the internal W -emission tree amplitude should be proportional to the Wilson coefficient c1+c2 rather than c1-c2.
On the smallness of Tree-dominated Charmless Two-body Baryonic $B$ Decay Rates
Cheng, Hai-Yang
2014-01-01
The long awaited baryonic $B$ decay $\\bar B{}^0\\to p\\bar p$ was recently observed by LHCb with a branching fraction of order $10^{-8}$. All the earlier model predictions are too large compared with experiment. In this work, we point out that for a given tree operator $O_i$, the contribution from its Fiertz transformed operator, an effect often missed in the literature, tends to cancel the internal $W$-emission amplitude induced from $O_i$. The wave function of low-lying baryons are symmetric in momenta and the quark flavor with the same chirality, but antisymmetric in color indices. Using these symmetry properties and the chiral structure of weak interactions, we find that half of the Feynman diagrams responsible for internal $W$-emission cancel. Since this feature holds in the charmless modes but not in the charmful ones, we advocate that the partial cancellation accounts for the smallness of the tree-dominated charmless two-body baryonic $B$ decays. This also explains why most previous model calculations pr...
Parreno, Assumpta; Tiburzi, Brian C; Wilhelm, Jonas; Chang, Emmanuel; Detmold, William; Orginos, Kostas
2016-01-01
Lattice QCD calculations with background magnetic fields are used to determine the magnetic moments of the octet baryons. Computations are performed at the physical value of the strange quark mass, and two values of the light quark mass, one corresponding to the SU(3) flavor-symmetric point, where the pion mass is ~ 800 MeV, and the other corresponding to a pion mass ~ 450 MeV. The moments are found to exhibit only mild pion-mass dependence when expressed in terms of appropriately chosen magneton units---the natural baryon magneton. This suggests that simple extrapolations can be used to determine magnetic moments at the physical point, and extrapolated results are found to agree with experiment within uncertainties. A curious pattern is revealed among the anomalous baryon magnetic moments which is linked to the constituent quark model, however, careful scrutiny exposes additional features. Relations expected to hold in the large-Nc limit of QCD are studied; and, in one case, the quark model prediction is sig...
Dahan, Raphael; Carmon, Tal
2015-01-01
Contrary to their capillary resonances (Rayleigh, 1879) and their optical resonances (Ashkin, 1977), droplets acoustical resonances were rarely considered. Here we experimentally excite, for the first time, the acoustical resonances of a droplet that relies on sound instead of capillary waves. Droplets vibrations at 37 MHz rates and 100 quality factor are optically excited and interrogated at an optical threshold of 68 microWatt. Our vibrations span a spectral band that is 1000 times higher when compared with drops previously-studied capillary vibration.
Relativistic five-quark equations and hybrid baryon spectroscopy
Gerasyuta, S M
2002-01-01
The relativistic five-quark equations are found in the framework of the dispersion relation technique. The Behavior of the low-energy five-particle amplitude is determined by its leading singularities in the pair invariant masses. The solutions of these equations using the method based on the extraction leading singularities of the amplitudes are obtained. The mass spectra of nucleon and delta-isobar hybrid baryons are calculated. The calculations of hybrid baryon amplitudes estimate the contributions of four subamplitudes. The main contributions to the hybrid baryon amplitude are determined by the subamplitudes, which include the excited gluon states.
Diquark correlations in baryons: the Interacting Quark Diquark Model
Santopinto, E
2015-01-01
A review of the underlying ideas of the Interacting Quark Diquark Model (IQDM) that asses the baryon spectroscopy in terms of quark diquark degrees of freedom is given, together with a discussion of the missing resonances problem. Some ideas about its generalization the heavy baryon spectroscopy is given.s of freedom is given, together with a discussion of the missing resonances problem. Some ideas about its generalization the heavy baryon spectroscopy is given.The results are compared to the existing experimental data.
Dynamically generated open charmed baryons beyond the zero range approximation
Jimenez-Tejero, C E; Vidaña, I
2009-01-01
The interaction of the low lying pseudo-scalar mesons with the ground state baryons in the charm sector is studied within a coupled channel approach using a t-channel vector-exchange driving force. The amplitudes describing the scattering of the pseudo-scalar mesons off the ground-state baryons are obtained by solving the Lippmann--Schwinger equation. We analyze in detail the effects of going beyond the $t=0$ approximation. Our model predicts the dynamical generation of several open charmed baryon resonances in different isospin and strangeness channels, some of which can be clearly identified with recently observed states.
Dark Matter and the Baryon Asymmetry of the Universe
Farrar, G R; Farrar, Glennys R.; Zaharijas, Gabrijela
2004-01-01
We present a mechanism to generate the baryon asymmetry of the Universe which preserves the net baryon number created in the Big Bang. If dark matter particles carry baryon number $B_X$, and $\\sigma^{\\rm annih}_{\\bar{X}} < \\sigma^{\\rm annih}_{X} $, the $\\bar{X}$'s freeze out at a higher temperature and have a larger relic density than $X$'s. If $m_X \\lsi 4.5 B_X $GeV and the annihilation cross sections differ by $\\gsi 10%$, this type of scenario naturally explains the observed $\\Omega_{DM} \\approx 5 \\Omega_b$.
Medium modifications of baryon properties in nuclear matter and hypernuclei
Liang, J S
2013-01-01
We study the medium modifications of baryon properties in nuclear many-body systems, especially in $\\Lambda$ hypernuclei. The nucleon and the $\\Lambda$ hyperon are described in the Friedberg-Lee model as nontopological solitons which interact through the self-consistent exchange of scalar and vector mesons. The quark degrees of freedom are explicitly considered in the model, so that the medium effects on baryons could be investigated. It is found that the model can provide reasonable descriptions for nuclear matter, finite nuclei, and $\\Lambda$ hypernuclei. The present model predicts a significant increase of the baryon radius in nuclear medium.
Missing Baryons and the Warm-Hot Intergalactic Medium
Nicastro, F; Elvis, Martin
2007-01-01
Stars and gas in galaxies, hot intracluster medium, and intergalactic photo-ionized gas make up at most half of the baryons that are expected to be present in the universe. The majority of baryons are still missing and are expected to be hidden in a web of warm-hot intergalactic medium. This matter was shock-heated during the collapse of density perturbations that led to the formation of the relaxed structures that we see today. Finding the missing baryons and thereby producing a complete inventory of possibly the only detectable component of the energy-mass budget of the universe is crucial to validate or invalidate our standard cosmological model.
Are narrow mesons, baryons and dibaryons evidence for multiquark states?
Energy Technology Data Exchange (ETDEWEB)
Tatischeff, B.; Yonnet, J. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire
2000-07-01
Several narrow structures have been progressively observed since the last fifteen years, in di-baryonic invariant mass spectra or in missing mass spectra. More recently, narrow structures were observed in baryonic and now in mesonic mass spectra. Since these small peaks appear at fixed masses, independently of the experiment, they are associated with real states. There is no room to explain these states within classical nuclear physics taking into account baryonic and mesonic degrees of freedom. An interpretation is proposed, which associate these narrow structures with two coloured quark clusters. (authors)
Stability issues with baryons in AdS/CFT
Sfetsos, Konstadinos
2008-01-01
We consider baryon vertices within the gauge/gravity correspondence for a class of curved backgrounds. The holographic description based on the N=4 SYM theory for SU(N) allows classical solutions representing bound states of k-quarks with k less than or equal to N. We construct the corresponding classical configurations and perform a stability analysis. We present the details for the theory at the conformal point and at finite temperature and show that there is a critical value of k, below which there is instability. This may also arise when the baryon reaches a critical size. We also extend our treatment to magnetically charged baryon vertices.
Skyrmions, half-skyrmions and nucleon mass in dense baryonic matter
Ma, Yong-Liang; Harada, Masayasu; Lee, Hyun Kyu; Oh, Yongseok; Rho, Mannque
2014-04-01
We explore the hadron properties in dense baryonic matter in a unified way by using a Skyrme model constructed with an effective Lagrangian which includes the ρ and ω vector mesons as hidden gauge bosons and is valid up to O(p4) in chiral expansion including the homogeneous Wess-Zumino terms. With the two input values of pion decay constant and the lowest lying vector meson mass which can be fixed in free space, all the other low energy constants in the effective Lagrangian are determined by their master formulas derived from holographic QCD models, which allows us to study the baryonic matter properties with no additional free parameters and thus without ambiguities. We find that the ω field that figures in the homogeneous Wess-Zumino term plays a crucial role in the skyrmion structure and its matter properties. The most striking and intriguing observation is that the pion decay constant that smoothly drops with increasing density in the Skyrmion phase stops decreasing at n1/2 at which the skyrmions in medium fractionize into half-skyrmions and remains nearly constant in the half-skyrmion phase. In accordance with the large Nc consideration, the baryon mass also stays non-scaling in the half-skyrmion phase. This feature is supported by the nuclear effective field theory with the parameters of the Lagrangian scaling modified at the skyrmion-half-skyrmion phase transition. Our exploration also uncovers the crucial role of the ω meson in multi-baryon systems as well as in the structure of a single skyrmion.
Baryons and Low-Density Baryonic Matter in 1+1 Dimensional Large N_c QCD with Heavy Quarks
Adhikari, Prabal; Jamgochian, Arec; Kumar, Nilay
2012-01-01
This paper studies baryons and baryonic matter in the combined large N_c and heavy quark mass limits of QCD in 1+1 dimension. In this non-relativistic limit, baryons are composed of N_c quarks that interact, at leading order in N_c, through a color Coulomb potential. Using variational techniques, very accurate calculations of single baryon masses and interaction energies of low-density baryon crystal are performed. These results are used to cross-check a general numerical approach applicable for arbitrary quark masses and baryon densities recently proposed by Bringoltz, which is based on a lattice in a finite box with periodic boundary conditions. The Bringoltz method differs from a previous approach of Salcedo, et al. in its treatment of a finite box effect - namely gauge configurations that wind around the box. One might expect these effects to be small for large enough boxes, in which the baryon density approaches zero to high accuracy at the edges. However, the effects of these windings appear to be quite...
Institute of Scientific and Technical Information of China (English)
张文林; 牛铜; 屈丹; 李弼程; 裴喜龙
2015-01-01
从语音信号声学特征空间的非线性流形结构特点出发,利用流形上的压缩感知原理,构建新的语音识别声学模型.将特征空间划分为多个局部区域,对每个局部区域用一个低维的因子分析模型进行近似,从而得到混合因子分析模型.将上下文相关状态的观测矢量限定在该非线性低维流形结构上,推导得到其观测概率模型.最终,每个状态由一个服从稀疏约束的权重矢量和若干个服从标准正态分布的低维局部因子矢量所决定.文中给出了局部区域潜在维数的确定准则及模型参数的迭代估计算法.基于RM 语料库的连续语音识别实验表明,相比于传统的高斯混合模型(Gaussian mixture model, GMM)和子空间高斯混合模型(Subspace Gaussian mixture model, SGMM),新声学模型在测试集上的平均词错误率(Word error rate, WER)分别相对下降了33.1%和9.2%.%Based on nonlinear manifold structure of acoustic feature space of speech signal, a new type of acoustic model for speech recognition is developed using compressive sensing. The feature space is divided into multiple local areas, with each area approximated by a low dimensional factor analysis model, so that in a mixture of factor analyzers is obtained. By restricting the observation vectors to be located on that nonlinear manifold, the probabilistic model of each context dependent state can be derived. Each state is determined by a sparse weight vector and several low-dimensional factors which follow standard Gaussian distributions. The principle for selection of the dimension for each local area is given, and iterated estimation methods for various model parameters are presented. Continuous speech recognition experiments on the RM corpus show that compared with the conventional Gaussian mixture model (GMM) and the subspace Gaussian mixture model (SGMM), the new acoustic model reduces the word error rate (WER) by 33.1%and 9.2%respectively.
Acoustic constituents of prosodic typology
Komatsu, Masahiko
Different languages sound different, and considerable part of it derives from the typological difference of prosody. Although such difference is often referred to as lexical accent types (stress accent, pitch accent, and tone; e.g. English, Japanese, and Chinese respectively) and rhythm types (stress-, syllable-, and mora-timed rhythms; e.g. English, Spanish, and Japanese respectively), it is unclear whether these types are determined in terms of acoustic properties, The thesis intends to provide a potential basis for the description of prosody in terms of acoustics. It argues for the hypothesis that the source component of the source-filter model (acoustic features) approximately corresponds to prosody (linguistic features) through several experimental-phonetic studies. The study consists of four parts. (1) Preliminary experiment: Perceptual language identification tests were performed using English and Japanese speech samples whose frequency spectral information (i.e. non-source component) is heavily reduced. The results indicated that humans can discriminate languages with such signals. (2) Discussion on the linguistic information that the source component contains: This part constitutes the foundation of the argument of the thesis. Perception tests of consonants with the source signal indicated that the source component carries the information on broad categories of phonemes that contributes to the creation of rhythm. (3) Acoustic analysis: The speech samples of Chinese, English, Japanese, and Spanish, differing in prosodic types, were analyzed. These languages showed difference in acoustic characteristics of the source component. (4) Perceptual experiment: A language identification test for the above four languages was performed using the source signal with its acoustic features parameterized. It revealed that humans can discriminate prosodic types solely with the source features and that the discrimination is easier as acoustic information increases. The
Mass spectra and Regge trajectories of , , and baryons
Shah, Zalak; Thakkar, Kaushal; Rai, Ajay Kumar; Vinodkumar, P. C.
2016-12-01
We calculate the mass spectra of the singly charmed baryons (, , and ) using the hypercentral constituent quark model (hCQM). The hyper color Coulomb plus linear potential is used to calculate the masses of positive (up to ) and negative (up to ) parity excited states. The spin-spin, spin-orbital and tensor interaction terms are also incorporated for mass spectra. We have compared our results with other theoretical and lattice QCD predictions for each baryon. Moreover, the known experimental results are also reasonably close to our predicted masses. By using the radial and orbital excitation, we construct Regge trajectories for the baryons in the (n, M2) plane and find their slopes and intercepts. Other properties of these baryons, like magnetic moments, radiative transitions and radiative decay widths, are also calculated successfully. Supported in part (A. K. Rai) by DST, India (SERB Fast Track Scheme SR/FTP/PS-152/2012)
Dirac's Covariant Constraint Dynamics Applied to the Baryon Spectrum
Whitney, Joshua; Crater, Horace
2010-02-01
A baryon is a hadron containing three quarks in a combination of up, down, strange, charm, or bottom. For prediction of the baryon energy spectrum, a baryon is modeled as a three-body system with the interacting forces coming from a set of two-body potentials that depend on the distance between the quarks, the spin-spin and spin-orbit angular momentum coupling terms, and a tensor term. Techniques and equations are derived from Todorov's work on constraint dynamics and the quasi-potential equation together with Two Body Dirac equations developed by Crater and Van Alstine, and adapted to this specific problem by further use of Sazdjian's N-body constraints dynamics for general confined systems. Baryon spectroscopy results are presented and compared with experiment. Typically, a best fit method is used in the analyses that employ several different algorithms, including a gradient approach, Monte Carlo modeling, and simulated annealing methods. )
Baryon production in $e^{+}e^{-}$-annihilation at PETRA
Bartel, Wulfrin; Dittmann, P; Eichler, R; Felst, R; Haidt, Dieter; Krehbiel, H; Meier, K; Naroska, Beate; O'Neill, L H; Steffen, P; Wenninger, Horst; Zhang, Y; Elsen, E E; Helm, M; Petersen, A; Warming, P; Weber, G; Bethke, Siegfried; Drumm, H; Heintze, J; Heinzelmann, G; Hellenbrand, K H; Heuer, R D; Von Krogh, J; Lennert, P; Kawabata, S; Matsumura, H; Nozaki, T; Olsson, J; Rieseberg, H; Wagner, A; Bell, A; Foster, F; Hughes, G; Wriedt, H; Allison, J; Ball, A H; Bamford, G; Barlow, R; Bowdery, C K; Duerdoth, I P; Hassard, J F; King, B T; Loebinger, F K; MacBeth, A A; McCann, H; Mills, H E; Murphy, P G; Prosper, H B; Stephens, K; Clarke, D; Goddard, M C; Marshall, R; Pearce, G F; Kobayashi, T; Komamiya, S; Koshiba, M; Minowa, M; Nozaki, M; Orito, S; Sato, A; Suda, T; Takeda, H; Totsuka, Y; Watanabe, Y; Yamada, S; Yanagisawa, C
1981-01-01
Data on p and Lambda production by e/sup +/e/sup -/-annihilation at CM energies between 30 and 36 GeV are presented. Indication for an angular anticorrelation in events with baryon-antibaryon pairs is seen.
Two-Baryon Correlation Functions in 2-flavour QCD
Francis, Anthony; Rae, Thomas D; Wittig, Hartmut
2013-01-01
We present first results for two-baryon correlation functions, computed using $N_f=2$ flavours of O($a$) improved Wilson quarks, with the aim of explaining potential dibaryon bound states, specifically the H-dibaryon. In particular, we use a GEVP to isolate the groundstate using two-baryon (hyperon-hyperon) correlation functions $\\big(\\langle C_{XY}(t)C_{XY}(0) \\rangle$, where $XY=\\Lambda\\Lambda, \\Sigma\\Sigma, N\\Xi, \\cdots\\big)$, each of which has an overlap with the H-dibaryon. We employ a `blocking' algorithm to handle the large number of contractions, which may easily be extended to N-baryon correlation functions. We also comment on its application to the analysis of single baryon masses ($n$, $\\Lambda$, $\\Xi$, $\\cdots$). This study is performed on an isotropic lattice with $m_\\pi = 460$ MeV, $m_\\pi L = 4.7$ and $a = 0.063$ fm.
Meson-Baryon Interactions in Unitarized Chiral Perturbation Theory
García-Recio, C; Ruiz-Arriola, E; Vacas, M J V
2003-01-01
Meson-Baryon Interactions can be successfully described using both Chiral Symmetry and Unitarity. The $s-$wave meson-baryon scattering amplitude is analyzed in a Bethe-Salpeter coupled channel formalism incorporating Chiral Symmetry in the potential. Two body coupled channel unitarity is exactly preserved. The needed two particle irreducible matrix amplitude is taken from lowest order Chiral Perturbation Theory in a relativistic formalism. Off-shell behavior is parameterized in terms of low energy constants. The relation to the heavy baryon limit is discussed. The position of the complex poles in the second Riemann sheet of the scattering amplitude determine masses and widths baryonic resonances of the N(1535), N(1670), $\\Lambda (1405)$ and $\\Lambda(1670)$ resonances which compare well with accepted numbers.
Chiral Dynamics of Baryons in a Lorentz Covariant Quark Model
Faessler, A; Lyubovitskij, V E; Pumsa-ard, K; Faessler, Amand; Gutsche, Th.
2006-01-01
We develop a manifestly Lorentz covariant chiral quark model for the study of baryons as bound states of constituent quarks dressed by a cloud of pseudoscalar mesons. The approach is based on a non-linear chirally symmetric Lagrangian, which involves effective degrees of freedom - constituent quarks and the chiral (pseudoscalar meson) fields. In a first step, this Lagrangian can be used to perform a dressing of the constituent quarks by a cloud of light pseudoscalar mesons and other heavy states using the calculational technique of infrared dimensional regularization of loop diagrams. We calculate the dressed transition operators with a proper chiral expansion which are relevant for the interaction of quarks with external fields in the presence of a virtual meson cloud. In a second step, these dressed operators are used to calculate baryon matrix elements. Applications are worked out for the masses of the baryon octet, the meson-nucleon sigma terms, the magnetic moments of the baryon octet, the nucleon charge...
Electromagnetic form factors of baryons in an algebraic approach
Energy Technology Data Exchange (ETDEWEB)
Bijker, R. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510 Mexico D.F. (Mexico); Leviatan, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)
1999-07-01
We present a simultaneous analysis of elastic and transition form factors of the nucleon. The calculations are performed in the framework of an algebraic model of baryons. Effects of meson cloud couplings are considered. (Author)
Electromagnetic form factors of baryons in an algebraic approach
Bijker, R
1999-01-01
We present a simultaneous analysis of elastic and transition form factors of the nucleon. The calculations are performed in the framework of an algebraic model of baryons. Effects of meson cloud couplings are considered.
Octet baryon electromagnetic form factors in nuclear medium
Ramalho, G; Thomas, A W
2012-01-01
We study the octet baryon electromagnetic form factors in nuclear matter using the covariant spectator quark model extended to the nuclear matter regime. The parameters of the model in vacuum are fixed by the study of the octet baryon electromagnetic form factors. In nuclear matter the changes in hadron properties are calculated by including the relevant hadron masses and the modification of the pion-baryon coupling constants calculated in the quark-meson coupling model. In nuclear matter the magnetic form factors of the octet baryons are enhanced in the low $Q^2$ region, while the electric form factors show a more rapid variation with $Q^2$. The results are compared with the modification of the bound proton electromagnetic form factors observed at Jefferson Lab. In addition, the corresponding changes for the bound neutron are predicted.
Energy Technology Data Exchange (ETDEWEB)
Guillet, T.
2010-09-23
Observations of weak gravitational lensing will provide strong constraints on the cosmic expansion history and the growth rate of large scale structure, yielding clues to the properties and nature of dark energy. Their interpretation is impacted by baryonic physics, which are expected to modify the total matter distribution at small scales. My work has focused on determining and modeling the impact of baryons on the statistics of the large scale matter distribution in the Universe. Using numerical simulations, I have extracted the effect of baryons on the power spectrum, variance and skewness of the total density field as predicted by these simulations. I have shown that a model based on the halo model construction, featuring a concentrated central component to account for cool condensed baryons, is able to reproduce accurately, and down to very small scales, the measured amplifications of both the variance and skewness of the density field. Because of well-known issues with baryons in current cosmological simulations, I have extended the central component model to rely on as many observation-based ingredients as possible. As an application, I have studied the effect of baryons on the predictions of the upcoming Euclid weak lensing survey. During the course of this work, I have also worked at developing and extending the RAMSES code, in particular by developing a parallel self-gravity solver, which offers significant performance gains, in particular for the simulation of some astrophysical setups such as isolated galaxy or cluster simulations. (author) [French] Les observations de lentilles faibles gravitationnelles sont en mesure de fournir des pistes quant a la nature de l'energie noire et ses proprietes. Leur interpretation est rendue plus difficile par la physique des baryons qui modifie la distribution totale de matiere a petite echelle. Mon travail s'est axe sur la determination et la modelisation des effets des baryons sur les statistiques de la
Chiral extrapolations and strangeness in the baryon ground states
Lutz, Matthias F M
2013-01-01
We review the quark-mass dependence of the baryon octet and decuplet masses as obtained from recent lattice simulations of the BMW, PACS-CS, LHPC, HSC and QCDSF-UKQCD groups. Our discussion relies on the relativistic chiral Lagrangian and large-$N_c$ sum rule estimates of the counter terms relevant for the baryon masses at N$^3$LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. In our analysis the physical masses are reproduced exactly by means of a suitable set of linear constraints. A quantitative and simultaneous description of all lattice results is achieved in terms of a six parameter fit, where the symmetry conserving counter term that are relevant at N$^3$LO are not yet being used. For pion masses larger than 300 MeV there appears to be an approximate linear pion-mass dependence of all octet and decuplet baryon masses. We discuss the pion- and strangeness sigma terms of the baryon octet states.
Study of ψ(3770 decaying to baryon anti-baryon pairs
Directory of Open Access Journals (Sweden)
Li-Gang Xia
2016-05-01
Full Text Available To study the decays of ψ(3770 going to baryon anti-baryon pairs (BB¯, all available experiments of measuring the cross sections of e+e−→BB¯ at center-of-mass energy ranging from 3.0 GeV to 3.9 GeV are combined. To relate the baryon octets, a model based on the SU(3 flavor symmetry is used and the SU(3 breaking effects are also considered. Assuming the electric and magnetic form factors are equal (|GE|=|GM|, a global fit including the interference between the QED process and the resonant process is performed. The branching fraction of ψ(3770→BB¯ is determined to be (2.4±0.8±0.3×10−5, (1.7±0.6±0.1×10−5, (4.5±0.9±0.1×10−5, (4.5±0.9±0.1×10−5, (2.0±0.7±0.1×10−5, and (2.0±0.7±0.1×10−5 for B=p,Λ,Σ+,Σ0,Ξ− and Ξ0, respectively, where the first uncertainty is from the global fit and the second uncertainty is the systematic uncertainty due to the assumption |GE|=|GM|. They are at least one order of magnitude larger than a simple scaling of the branching fraction of J/ψ/ψ(3686→BB¯.
Possible hidden-charm molecular baryons composed of an anti-charmed meson and a charmed baryon
Institute of Scientific and Technical Information of China (English)
YANG Zhong-Cheng; SUN Zhi-Feng; HE Jun; LIU Xiang; ZHU Shi-Lin
2012-01-01
Using the one-boson-exchange model,we studied the possible existence of very loosely bound hidden-charm molecular baryons composed of an anti-charmed meson and a charmed baryon.Our numerical results indicate that the ∑c(D)* and ∑c(D) states exist,but that the ∑c(D) and ∑c(D)* molecular states do not.
Heavy baryons as polarimeters at colliders
Galanti, Mario; Grossman, Yuval; Kats, Yevgeny; Stamou, Emmanuel; Zupan, Jure
2015-01-01
In new-physics processes that produce b or c jets, a measurement of the initial b or c-quark polarization could provide crucial information about the structure of new physics. In the heavy-quark limit, the b and c-quark polarizations are preserved in the lightest baryons they hadronize into, Lambda_b and Lambda_c, respectively. We revisit the prediction for the polarization retention after the hadronization process and extend it to the case of transverse polarization. We show how ATLAS and CMS can measure the b-quark polarization using semileptonic Lambda_b decays, and the c-quark polarization using Lambda_c+ -> p K- pi+ decays. For calibrating both measurements we suggest to use ttbar samples in which the polarizations can be measured with a precision of order 10% using 100/fb of data in Run 2 of the LHC. LHCb measurements of the transverse polarization in QCD events are motivated as well. An existing LHCb analysis can be significantly improved for this purpose.
Conformal symmetry and light flavor baryon spectra
Kirchbach, M
2010-01-01
The degeneracy among parity pairs systematically observed in the N and Delta spectra is interpreted as signature for conformal symmetry realization in the light flavor baryon sector in consequence of AdS/CFT. The case is made by showing that all the observed N and Delta resonances with masses below 2500 MeV distribute fairly well over the first levels of a unitary representation of the conformal group, a representation that covers the spectrum of a quark-diquark system, placed directly on the AdS_5 cone, conformally compactified to R^1*S^3. The free geodesic motion on the S^3 manifold is described by means of the scalar conformal equation there, which is of the Klein-Gordon type. The equation is then gauged by the "curved" Coulomb potential that has the form of a cotangent function. Conformal symmetry is not exact, this because the gauge potential slightly modifies the conformal centrifugal barrier of the free geodesic motion. Thanks to this, the degeneracy between P11-S11 pairs from same level is relaxed, wh...
BASE - The Baryon Antibaryon Symmetry Experiment
Smorra, C.; Blaum, K.; Bojtar, L.; Borchert, M.; Franke, K. A.; Higuchi, T.; Leefer, N.; Nagahama, H.; Matsuda, Y.; Mooser, A.; Niemann, M.; Ospelkaus, C.; Quint, W.; Schneider, G.; Sellner, S.; Tanaka, T.; Van Gorp, S.; Walz, J.; Yamazaki, Y.; Ulmer, S.
2015-11-01
The Baryon Antibaryon Symmetry Experiment (BASE) aims at performing a stringent test of the combined charge parity and time reversal (CPT) symmetry by comparing the magnetic moments of the proton and the antiproton with high precision. Using single particles in a Penning trap, the proton/antiproton g-factors, i.e. the magnetic moment in units of the nuclear magneton, are determined by measuring the respective ratio of the spin-precession frequency to the cyclotron frequency. The spin precession frequency is measured by non-destructive detection of spin quantum transitions using the continuous Stern-Gerlach effect, and the cyclotron frequency is determined from the particle*s motional eigenfrequencies in the Penning trap using the invariance theorem. By application of the double Penning-trap method we expect that in our measurements a fractional precision of δg/g 10-9 can be achieved. The successful application of this method to the antiproton will consist a factor 1000 improvement in the fractional precision of its magnetic moment. The BASE collaboration has constructed and commissioned a new experiment at the Antiproton Decelerator (AD) of CERN. This article describes and summarizes the physical and technical aspects of this new experiment.
First observation of a baryonic Bc+ decay.
Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, Rf; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Giani', S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A
2014-10-10
A baryonic decay of the B(c)(+) meson, B(c)(+) → J/ψppπ(+), is observed for the first time, with a significance of 7.3 standard deviations, in pp collision data collected with the LHCb detector and corresponding to an integrated luminosity of 3.0 fb(-1) taken at center-of-mass energies of 7 and 8 TeV. With the B(c)(+) → J/ψπ(+) decay as the normalization channel, the ratio of branching fractions is measured to be B(B(c)(+) → J/ψppπ(+))/B(B(c)(+) → J/ψπ(+)) = 0.143(-0.034)(+0.039)(stat) ± 0.013(syst). The mass of the B(c)(+) meson is determined as M(B(c)(+) = 6274.0 ± 1.8(stat) ± 0.4(syst) MeV/c(2), using the B(c)(+) → J/ψppπ(+) channel.
The Photon-Baryon Governed Universe
Directory of Open Access Journals (Sweden)
Laszlo A. Marosi
2012-01-01
Full Text Available In a previous paper we postulated that the repulsive force responsible for the universal expansion is associated with the excitation of the empty space (quantum vacuum and the excitation energy is represented by the energy of the cosmic microwave background (CMB. In this paper, we show that the concept of the repulsive space expanding photon field (i can successfully be applied to explain the local velocity anomaly of the Milky Way Galaxy as shown by Faber and Burstein (1998 and Tully (1998, (ii offers a convincing explanation of the still disputed question of the cosmological expansion on local and intergalactic scales discussed by Cooperstock et al. (1998, and (iii explains the redshift (RS of the CMB in accordance with the law of energy conservation without the need for dark matter (DM and dark energy (DE. Probably the most remarkable result of this model (abbreviated as photon/baryon: PB model in the following discussion is that the individual voids building up the soup-bubble- (SB- like galaxy distribution are the governing dynamical components of the universal expansion. Further consequence implies that the universe is considerably older than the interpretation of the Hubble constant as expansion velocity suggests.
Structure and reactions of pentaquark baryons
Indian Academy of Sciences (India)
Atsushi Hosaka
2006-04-01
We review the current status of the exotic pentaquark baryons. After a brief look at experiments of both positive and negative results, we discuss theoretical methods to study the structure and reactions for the pentaquarks. First we introduce the quark model and the chiral soliton model, where we discuss the relation of mass spectrum and parity with some emphasis on the role of chiral symmetry. It is always useful to picture the structure of the pentaquarks in terms of quarks. As for other methods, we discuss a model-independent method, and briefly mention the results from the lattice and QCD sum rule. Decay properties are then studied in some detail, which is one of the important properties of +. We investigate the relation between the decay width and the quark structure having certain spin-parity quantum numbers. Through these analyses, we consider as plausible quantum numbers of +, = 3/2-. In the last part of this note, we discuss production reactions of + which provide links between the theoretical models and experimental information. We discuss photoproductions and hadron-induced reactions which are useful to explore the nature of +.
BASE - The Baryon Antibaryon Symmetry Experiment
Smorra, C; Bojtar, L.; Borchert, M.; Franke, K.A.; Higuchi, T.; Leefer, N.; Nagahama, H.; Matsuda, Y.; Mooser, A.; Niemann, M.; Ospelkaus, C.; Quint, W.; Schneider, G.; Sellner, S.; Tanaka, T.; Van Gorp, S.; Walz, J.; Yamazaki, Y.; Ulmer, S.
2015-01-01
The Baryon Antibaryon Symmetry Experiment (BASE) aims at performing a stringent test of the combined charge parity and time reversal (CPT) symmetry by comparing the magnetic moments of the proton and the antiproton with high precision. Using single particles in a Penning trap, the proton/antiproton $g$-factors, i.e. the magnetic moment in units of the nuclear magneton, are determined by measuring the respective ratio of the spin-precession frequency to the cyclotron frequency. The spin precession frequency is measured by non-destructive detection of spin quantum transitions using the continuous Stern-Gerlach effect, and the cyclotron frequency is determined from the particle's motional eigenfrequencies in the Penning trap using the invariance theorem. By application of the double Penning-trap method we expect that in our measurements a fractional precision of $\\delta g/g$ 10$^{-9}$ can be achieved. The successful application of this method to the antiproton will represent a factor 1000 improvement in the frac...
Numerical investigation of acoustic solitons
Lombard, Bruno; Richoux, Olivier
2014-01-01
Acoustic solitons can be obtained by considering the propagation of large amplitude sound waves across a set of Helmholtz resonators. The model proposed by Sugimoto and his coauthors has been validated experimentally in previous works. Here we examine some of its theoretical properties: low-frequency regime, balance of energy, stability. We propose also numerical experiments illustrating typical features of solitary waves.
Acoustic dose and acoustic dose-rate.
Duck, Francis
2009-10-01
Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Expressions for acoustic dose and acoustic dose-rate are given for plane-wave conditions, including temporal and frequency dependencies of energy deposition. The relationship between the acoustic dose-rate and the resulting temperature increase is explored, as is the relationship between acoustic dose-rate and radiation force. Energy transfer from the wave to the medium by means of acoustic cavitation is considered, and an approach is proposed in principle that could allow cavitation to be included within the proposed definitions of acoustic dose and acoustic dose-rate.
Instructive discussion of effective block algorithm for baryon-baryon correlators
Nemura, Hidekatsu
2015-01-01
We describe a fairly specific idea to calculate efficiently a large number of four-point correlation functions, which are primary quantities to study the nuclear force and hyperonic nuclear forces from lattice QCD, for various baryon-baryon (BB) channels. We discuss how the effective block algorithm significantly reduces the number of iterations with considering the four-point correlator of proton-$\\Lambda$ system as a specific example. The effective block algorithm is applied to calculate the 52 channels of four-point correlation functions from nucleon-nucleon to $\\Xi-\\Xi$, in order to study the complete set of isospin symmetric BB interactions. The elapsed times measured on hybrid parallel computation on BlueGene/Q show reasonable performances at various combinations of the number of OpenMP threads and the number of MPI nodes. The numerical results are benchmarked with the results from the unified contraction algorithm for all of computed sites of 52 four-point correlators.
Instructive discussion of an effective block algorithm for baryon-baryon correlators
Nemura, Hidekatsu
2016-10-01
We describe an approach for the efficient calculation of a large number of four-point correlation functions for various baryon-baryon (BB) channels, which are the primary quantities for studying the nuclear and hyperonic nuclear forces from lattice quantum chromodynamics. Using the four-point correlation function of a proton- Λ system as a specific example, we discuss how an effective block algorithm significantly reduces the number of iterations. The effective block algorithm is applied to calculate 52 channels of the four-point correlation functions from nucleon-nucleon to Ξ- Ξ, in order to study the complete set of isospin symmetric BB interactions. The elapsed times measured for hybrid parallel computation on BlueGene/Q demonstrate that the performance of the present algorithm is reasonable for various combinations of the number of OpenMP threads and the number of MPI nodes. The numerical results are compared with the results obtained using the unified contraction algorithm for all computed sites of the 52 four-point correlators.
Structure of charmed baryons studied by pionic decays
Nagahiro, Hideko; Hosaka, Atsushi; Oka, Makoto; Noumi, Hiroyuki
2016-01-01
We investigate the decays of the charmed baryons aiming at the systematic understanding of hadron internal structures based on the quark model by paying attention to heavy quark symmetry. We evaluate the decay widths from the one pion emission for the known excited states, \\Lambda_c^*(2595), \\Lambda_c^*(2625), \\Lambda_c^*(2765), \\Lambda_c^*(2880) and \\Lambda_c^*(2940), as well as for the ground states \\Sigma_c(2455) and \\Sigma_c^*(2520). The decay properties of the lower excited charmed baryons are well explained, and several important predictions for higher excited baryons are given. We find that the axial-vector type coupling of the pion to the light quarks is essential, which is expected from chiral symmetry, to reproduce the decay widths especially of the low lying \\Lambda_c^* baryons. We emphasize the importance of the branching ratios of \\Gamma(\\Sigma_c^*\\pi)/\\Gamma(\\Sigma_c\\pi) for the study of the nature of higher excited \\Lambda_c^* baryons.
Propagation of heavy baryons in heavy-ion collisions
Das, Santosh K.; Torres-Rincon, Juan M.; Tolos, Laura; Minissale, Vincenzo; Scardina, Francesco; Greco, Vincenzo
2016-12-01
The drag and diffusion coefficients of heavy baryons (Λc and Λb ) in the hadronic phase created in the latter stage of the heavy-ion collisions at RHIC and LHC energies have been evaluated recently. In this work we compute some experimental observables, such as the nuclear suppression factor RA A and the elliptic flow v2 of heavy baryons at RHIC and LHC energies, highlighting the role of the hadronic phase contribution to these observables, which are going to be measured at Run 3 of LHC. For the time evolution of the heavy quarks in the quark and gluon plasma (QGP) and heavy baryons in the hadronic phase, we use the Langevin dynamics. For the hadronization of the heavy quarks to heavy baryons we employ Peterson fragmentation functions. We observe a strong suppression of both the Λc and Λb . We find that the hadronic medium has a sizable impact on the heavy-baryon elliptic flow whereas the impact of hadronic medium rescattering is almost unnoticeable on the nuclear suppression factor. We evaluate the Λc/D ratio at RHIC and LHC. We find that the Λc/D ratio remains unaffected due to the hadronic phase rescattering which enables it as a nobel probe of QGP phase dynamics along with its hadronization.
Spectroscopy of doubly charmed baryons from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Padmanath, M. [Univ. of Graz, Graz (Austria); Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mathur, Nilmani [Tata Inst. of Fundamental Research, Mumbai (India); Peardon, Michael [Trinity College, Dublin (Ireland)
2015-05-06
This study presents the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 16³ × 128, with inverse spacing in temporal direction a_{t}⁻¹=5.67(4) GeV and with a pion mass of about 390 MeV. A large set of baryonic operators that respect the symmetries of the lattice yet which retain a memory of their continuum analogues are used. These operators transform as irreducible representations of SU(3)_{F} symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) for spatial symmetry. The distillation method is utilized to generate baryon correlation functions which are analyzed using the variational fitting method to extract excited states. The lattice spectra obtained have baryonic states with well-defined total spins up to 7/2 and the pattern of low-lying states does not support the diquark picture for doubly charmed baryons. On the contrary the calculated spectra are remarkably similar to the expectations from models with an SU(6)×O(3) symmetry. Various spin-dependent energy splittings between the extracted states are also evaluated.
Another source of baryons in B meson decays
Dunietz, Isard; Falk, A F; Wise, M B; Isard Dunietz; Peter S Cooper; Adam F Falk; Mark B Wise
1994-01-01
It is usually assumed that the production of baryons in B meson decays is induced primarily by the quark level process b\\to c\\bar ud, where the charm quark hadronizes into a charmed baryon. With this assumption, the \\Lambda_c momentum spectrum would indicate that the transition B\\to\\Lambda_c X is dominated by multi-body B decays. However, a closer examination of the momentum spectrum reveals that the mass m_X against which the \\Lambda_c is recoiling almost always satisfies m_X\\agt m_{\\Xi_c}. This fact leads us to examine the hypothesis that the production of charmed baryons in B decays is in fact dominated by the underlying transition b\\to c\\bar cs, and is seen primarily in modes with two charmed baryons in the final state. We propose a number of tests of this hypothesis. If this mechanism is indeed important in baryon production, then there are interesting consequences and applications, including potentially important implications for the ``charm deficit'' in B decays.
Spectrum and Structure of Excited Baryons with CLAS
Burkert, Volker D.
2017-01-01
In this contribution I discuss recent results in light quark baryon spectroscopy involving CLAS data and higher level analysis results from the partial wave analysis by the Bonn-Gatchina group. New baryon states were discovered largely based on the open strangeness production channels γp → K+Λ and γp → K+Σ0. The data illustrate the great potential of the kaon-hyperon channel in the discovery of higher mass baryon resonances in s-channel production. Other channels with discovery potential, such as γp → pω and γp → ϕp are also discussed. In the second part I will demonstrate on data the sensitivity of meson electroproduction to expose the active degrees of freedom underlying resonance transitions as a function of the probed distance scale. For several of the prominent excited states in the lower mass range the short distance behavior is described by a core of three dressed-quarks with running quark mass, and meson-baryon contributions make up significant parts of the excitation strength at large distances. Finally, I give an outlook of baryon resonance physics at the 12 GeV CEBAF electron accelerator. Talk presented at the CRC-16 Symposium, Bonn University, June 6-9, 2016.
Spectrum and Structure of Excited Baryons with CLAS*
Directory of Open Access Journals (Sweden)
Burkert Volker D.
2017-01-01
Full Text Available In this contribution I discuss recent results in light quark baryon spectroscopy involving CLAS data and higher level analysis results from the partial wave analysis by the Bonn-Gatchina group. New baryon states were discovered largely based on the open strangeness production channels γp → K+Λ and γp → K+Σ0. The data illustrate the great potential of the kaon-hyperon channel in the discovery of higher mass baryon resonances in s-channel production. Other channels with discovery potential, such as γp → pω and γp → ϕp are also discussed. In the second part I will demonstrate on data the sensitivity of meson electroproduction to expose the active degrees of freedom underlying resonance transitions as a function of the probed distance scale. For several of the prominent excited states in the lower mass range the short distance behavior is described by a core of three dressed-quarks with running quark mass, and meson-baryon contributions make up significant parts of the excitation strength at large distances. Finally, I give an outlook of baryon resonance physics at the 12 GeV CEBAF electron accelerator.
Excited state mass spectra of singly charmed baryons
Energy Technology Data Exchange (ETDEWEB)
Shah, Zalak; Kumar Rai, Ajay [Sardar Vallabhbhai National Institute of Technology, Department of Applied Physics, Surat, Gujarat (India); Thakkar, Kaushal [GIDC Degree Engineering College, Department of Applied Sciences and Humanities, Abrama (India); Vinodkumar, P.C. [Sardar Patel University, Department of Physics, V.V. Nagar (India)
2016-10-15
Mass spectra of excited states of the singly charmed baryons are calculated using the hypercentral description of the three-body system. The baryons consist of a charm quark and light quarks (u, d and s) are studied in the framework of QCD motivated constituent quark model. The form of the confinement potential is hyper-Coloumb plus power potential with potential index ν, varying from 0.5 to 2.0. The first-order correction to the confinement potential is also incorporated in this approach. The radial as well as orbital excited state masses of Σ{sub c}{sup ++}, Σ{sub c}{sup +}, Σ{sub c}{sup 0}, Ξ{sub c}{sup +}, Ξ{sub c}{sup 0}, Λ{sub c}{sup +}, Ω{sub c}{sup 0} baryons, are reported in this paper. We have incorporated spin-spin, spin-orbit and tensor interactions perturbatively in the present study. The semi-electronic decay of Ω{sub c} and Ξ{sub c} are also calculated using the spectroscopic parameters of these baryons. The computed results are compared with other theoretical predictions as well as with the available experimental observations. We also construct the Regge trajectory in (n{sub r},M{sup 2}) and (J,M{sup 2}) planes for these baryons. (orig.)
The segregation of baryons and dark matter during halo assembly
Liao, Shihong; Frenk, Carlos S; Guo, Qi; Wang, Jie
2016-01-01
The standard galaxy formation theory assumes that baryons and dark matter are initially well-mixed before becoming segregated due to radiative cooling. We use non-radiative hydrodynamical simulations to explicitly examine this assumption and find that baryons and dark matter can also be segregated during the build-up of the halo. As a result, baryons in many haloes do not originate from the same Lagrangian region as the dark matter. When using the fraction of corresponding dark matter and gas particles in the initial conditions (the "paired fraction") as a proxy of the dark matter and gas segregation strength of a halo, on average about $25$ percent of the baryonic and dark matter of the final halo are segregated in the initial conditions. A consequence of this effect is that the baryons and dark matter of the same halo initially experience different tidal torques and thus their angular momentum vectors are often misaligned. This is at odds with the assumption of the standard galaxy formation model, and chall...
Decays of J/psi (3100) to baryon final states
Energy Technology Data Exchange (ETDEWEB)
Eaton, M.W.
1982-05-01
We present results for the decays of psi(3100) into baryon and hyperon final states. The sample studied here consists of 1.3 million produced psi decays. The decays into nonstrange baryons agree well with currently established results, but with better statistics. In addition, significant resonance formation in multibody final states is observed. The decay psi ..-->.. anti pp..gamma.., the first direct photon decay of the psi involving baryons in the final state, is presented and the theoretical implications of the decays are briefly explored. Several new decays of the psi involving strange baryons are explored, including the first observations of three body final states involving hyperons. The I-spin symmetry of the strong decay psi ..-->.. baryons has clearly been observed. The reduced matrix elements for psi ..-->.. B anti B are presented for final states of different SU(3) content. The B/sub 8/ anti B/sub 8/ results are in excellent agreement with the psi being an SU(3) singlet as are the results for psi ..-->.. B/sub 10/ anti B/sub 10/. We present the first evidence for the SU(3) violating decays of the type psi ..-->.. B/sub 8/ anti B/sub 10/ + c.c.. Angular distributions for psi ..-->.. B/sub 8/ anti B/sub 8/ are presented and compared with theoretical predictions. Statistics are limited, but the data tends to prefer other than a 1 + Cos/sup 2/theta distribution.
Acoustic resonance for nonmetallic mine detection
Energy Technology Data Exchange (ETDEWEB)
Kercel, S.W.
1998-04-01
The feasibility of acoustic resonance for detection of plastic mines was investigated by researchers at the Oak Ridge National Laboratory`s Instrumentation and Controls Division under an internally funded program. The data reported in this paper suggest that acoustic resonance is not a practical method for mine detection. Representative small plastic anti-personnel mines were tested, and were found to not exhibit detectable acoustic resonances. Also, non-metal objects known to have strong acoustic resonances were tested with a variety of excitation techniques, and no practical non-contact method of exciting a consistently detectable resonance in a buried object was discovered. Some of the experimental data developed in this work may be useful to other researchers seeking a method to detect buried plastic mines. A number of excitation methods and their pitfalls are discussed. Excitation methods that were investigated include swept acoustic, chopped acoustic, wavelet acoustic, and mechanical shaking. Under very contrived conditions, a weak response that could be attributed to acoustic resonance was observed, but it does not appear to be practical as a mine detection feature. Transfer properties of soil were investigated. Impulse responses of several representative plastic mines were investigated. Acoustic leakage coupling, and its implications as a disruptive mechanism were investigated.
Acoustic Mechanical Feedthroughs
Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea
2013-01-01
Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be
Rodríguez-Torres, Sergio A; Chuang, Chia-Hsun; Guo, Hong; Klypin, Anatoly; Behroozi, Peter; Hahn, Chang Hoon; Comparat, Johan; Yepes, Gustavo; Montero-Dorta, Antonio D; Brownstein, Joel R; Maraston, Claudia; McBride, Cameron K; Tinker, Jeremy; Gottlöber, Stefan; Favole, Ginevra; Shu, Yiping; Kitaura, Francisco-Shu; Bolton, Adam; Scoccimarro, Román; Samushia, Lado; Schlegel, David; Schneider, Donald P; Thomas, Daniel
2015-01-01
We present a study of the clustering and halo occupation distribution of BOSS CMASS galaxies in the redshift range 0.43 < z < 0.7 drawn from the Final SDSS-III Data Release. We compare the BOSS results with the predictions of a halo abundance matching (HAM) clustering model that assigns galaxies to dark matter halos selected from the large BigMultiDark N-body simulation of a flat $\\Lambda$CDM Planck cosmology. We compare the observational data with the simulated ones on a light-cone constructed from 20 subsequent outputs of the simulation. Observational effects such as incompleteness, geometry, veto masks and fiber collisions are included in the model, which reproduces within 1-$\\sigma$ errors the observed monopole of the 2-point correlation function at all relevant scales{: --} from the smallest scales, 0.5 $h^{-1}$Mpc , up to scales beyond the Baryonic Acoustic Oscillation feature. This model also agrees remarkably well with the BOSS galaxy power spectrum (up to $k\\sim1$ $h$ Mpc$^{-1}$), and the three...
Non-singlet Baryons in Less Supersymmetric Backgrounds
Giataganas, Dimitrios; Picos, Marco; Siampos, Konstadinos
2012-01-01
We analyze the holographic description of non-singlet baryons in various backgrounds with reduced supersymmetries and/or confining. We show that they exist in all AdS_5xY_5 backgrounds with Y_5 an Einstein manifold bearing five form flux, for a number of quarks 5N/8< k< N, independently on the supersymmetries preserved. This result still holds for gamma_i deformations. In the confining Maldacena-Nunez background non-singlet baryons also exist, although in this case the interval for the number of quarks is reduced as compared to the conformal case. We generalize these configurations to include a non-vanishing magnetic flux such that a complementary microscopical description can be given in terms of lower dimensional branes expanding into fuzzy baryons. This description is a first step towards exploring the finite 't Hooft coupling region.
Measurement of the Lifetime of b-baryons
Abreu, P; Adye, T; Adzic, P; Albrecht, Z; Alderweireld, T; Alekseev, G D; Alemany, R; Allmendinger, T; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Anassontzis, E G; Andersson, P; Andreazza, A; Andringa, S; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbiellini, Guido; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Bizouard, M A; Bloch, D; Blom, H M; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Branchini, P; Brenke, T; Brenner, R A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camporesi, T; Canale, V; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cieslik, K; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crépé, S; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Dris, M; Duperrin, A; Durand, J D; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Fenyuk, A; Ferrari, P; Ferrer, A; Ferrer-Ribas, E; Fichet, S; Firestone, A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gamblin, S; Gandelman, M; García, C; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Grimm, H J; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Hansen, J; Harris, F J; Hedberg, V; Heising, S; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hughes, G J; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Kersevan, Borut P; Khomenko, B A; Khovanskii, N N; Kiiskinen, A P; King, B J; Kinvig, A; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kriznic, E; Krstic, J; Krumshtein, Z; Kubinec, P; Kurowska, J; Kurvinen, K L; Lamsa, J; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Leinonen, L; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; López-Fernandez, R; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Malychev, V; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Meroni, C; Meyer, W T; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Moch, M; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Morton, G A; Müller, U; Münich, K; Mulders, M; Mulet-Marquis, C; Muresan, R; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neufeld, N; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nikolenko, M; Nomokonov, V P; Normand, Ainsley; Nygren, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rakoczy, D; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Royon, C; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Schneider, H; Schwemling, P; Schwickerath, U; Schyns, M A E; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Sekulin, R L; Shellard, R C; Sheridan, A; Siebel, M; Simard, L C; Simonetto, F; Sissakian, A N; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sopczak, André; Sosnowski, R; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tegenfeldt, F; Terranova, F; Thomas, J; Timmermans, J; Tinti, N; Tkatchev, L G; Todorova-Nová, S; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Van Vulpen, I B; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Vollmer, C F; Voulgaris, G; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G R; Winter, M; Witek, M; Wolf, G; Yi, J; Yushchenko, O P; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G
1999-01-01
The average lifetime of weakly decaying $b$-baryons was studied using 3.6 million $Z^0$ hadronic decays collected by the DELPHI detector at LEP. The measurement of the proper decay time distribution of secondary vertices was used on three complementary samples. The first sample consisted of events with a fully reconstructed $\\Lambda_c^+$ and an opposite charge lepton, or an oppositely charged lepton pair accompanied by a $\\Lambda^0$. The other two samples were more inclusive, where $b$-baryon semileptonic decays were recognized by the presence of either a proton identified by the RICH detector or a $\\Lambda^0$ and a lepton of charge opposite to that of the proton. The combined result was: \\begin{eqnarray*} \\tau(b\\mathrm{-baryon}) = 1.14\\pm0.08 \\; (stat)\\pm0.04 \\; (syst) \\; \\mathrm{ps} \\; . \\end{eqnarray*} It updates and replaces all previous results published by the DELPHI collaboration.
Accurate initial conditions in mixed Dark Matter--Baryon simulations
Valkenburg, Wessel
2016-01-01
We quantify the error in the results of mixed baryon--dark-matter hydrodynamic simulations, stemming from outdated approximations for the generation of initial conditions. The error at redshift 0 in contemporary large simulations, is of the order of few to ten percent in the power spectra of baryons and dark matter, and their combined total-matter power spectrum. After describing how to properly assign initial displacements and peculiar velocities to multiple species, we review several approximations: (1) {using the total-matter power spectrum to compute displacements and peculiar velocities of both fluids}, (2) scaling the linear redshift-zero power spectrum back to the initial power spectrum using the Newtonian growth factor ignoring homogeneous radiation, (3) using longitudinal-gauge velocities with synchronous-gauge densities, and (4) ignoring the phase-difference in the Fourier modes for the offset baryon grid, relative to the dark-matter grid. Three of these approximations do not take into account that ...
Baryons as relativistic three-quark bound states
Eichmann, Gernot; Williams, Richard; Alkofer, Reinhard; Fischer, Christian S
2016-01-01
We review the spectrum and electromagnetic properties of baryons described as relativistic three-quark bound states within QCD. The composite nature of baryons results in a rich excitation spectrum, whilst leading to highly non-trivial structural properties explored by the coupling to external (electromagnetic and other) currents. Both present many unsolved problems despite decades of experimental and theoretical research. We discuss the progress in these fields from a theoretical perspective, focusing on nonperturbative QCD as encoded in the functional approach via Dyson-Schwinger and Bethe-Salpeter equations. We give a systematic overview as to how results are obtained in this framework and explain technical connections to lattice QCD. We also discuss the mutual relations to the quark model, which still serves as a reference to distinguish 'expected' from 'unexpected' physics. We confront recent results on the spectrum of non-strange and strange baryons, their form factors and the issues of two-photon proce...
Accounting for Baryons in Cosmological Constraints from Cosmic Shear
Zentner, Andrew R; Dodelson, Scott; Eifler, Tim; Krause, Elisabeth; Hearin, Andrew P
2012-01-01
One of the most pernicious theoretical systematics facing upcoming gravitational lensing surveys is the uncertainty introduced by the effects of baryons on the power spectrum of the convergence field. One method that has been proposed to account for these effects is to allow several additional parameters (that characterize dark matter halos) to vary and to fit lensing data to these halo parameters concurrently with the standard set of cosmological parameters. We test this method. In particular, we use this technique to model convergence power spectrum predictions from a set of cosmological simulations. We estimate biases in dark energy equation of state parameters that would be incurred if one were to fit the spectra predicted by the simulations either with no model for baryons, or with the proposed method. We show that neglecting baryonic effect leads to biases in dark energy parameters that are several times the statistical errors for a survey like the Dark Energy Survey. The proposed method to correct for ...
Impact of finite density on spectroscopic parameters of decuplet baryons
Azizi, K; Sundu, H
2016-01-01
The decuplet baryons, $\\Delta$, $\\Sigma^{*}$, $\\Xi^{*}$ and $\\Omega^{-}$, are studied in nuclear matter by using the in-medium QCD sum rules. By fixing the three momentum of the particles under consideration at the rest frame of the medium, the negative energy contributions are removed. It is obtained that the parameters of the $\\Delta$ baryon are more affected by the medium against the $\\Omega^{-}$ state, containing three strange quarks, whose mass and residue do not affected by the medium, considerably. We also find the vector and scalar self energies of these baryons in nuclear matter. By the recent progresses at $\\bar{P}$ANDA experiment at FAIR it may be possible to study the in-medium properties of such states even the multi-strange $\\Xi^{*}$ and $\\Omega^{-}$ systems in near future.
Observation of the sigma_b baryons at CDF
Energy Technology Data Exchange (ETDEWEB)
Pursley, Jennifer M.; /Johns Hopkins U.
2007-03-01
We present a measurement of four new bottom baryons in proton-antiproton collisions with a center of mass energy of 1.96 TeV. Using 1.1 fb{sup -1} of data collected by the CDF II detector, we observe four {Lambda}{sup 0}{sub b}{pi}{+-} resonances in the fully reconstructed decay mode {Lambda}{sup 0}{sub b} {yields} {Lambda}{sup +}{sub c}{pi}{sup -}, where {Lambda}{sup +}{sub c} {yields} pK{sup -}{pi}{sup +}. The probability for the background to produce a similar or larger signal is less than 8.3 x 10{sup -8}, corresponding to a significance of greater than 5.2 {sigma}. We interpret these baryons as the {Sigma}{sub b}{sup (*){+-}} baryons.
Study of Baryon Spectroscopy Using a New Potential Form
Directory of Open Access Journals (Sweden)
L. I. Abou-Salem
2014-01-01
Full Text Available In the present work, the nonrelativistic quark model is applied to study baryon systems, where the constituent quarks are bound by a suitable hyper central potential. We proposed a new phenomenological form of the interaction potential, digamma-type potential. Using the Jacobi coordinates, the three-body wave equation is solved numerically to calculate the resonance states of the N, Δ, Λ, and Σ baryon systems. The present model contains only two adjustable parameters in addition to the quark masses. Our theoretical calculations are compared to the available experimental data and Cornell potential results. The description of the spectrum shows that the ground states of the considered light and strange baryon spectra are in general well reproduced.
Interactions between Octet Baryons in the SU_6 Quark model
Fujiwara, Y; Nakamoto, C; Suzuki, Y
2001-01-01
The baryon-baryon interactions for the complete baryon octet (B_8) are investigated in a unified framework of the resonating-group method, in which the spin-flavor SU_6 quark-model wave functions are employed. Model parameters are determined to reproduce properties of the nucleon-nucleon system and the low-energy cross section data for the hyperon-nucleon interaction. We then proceed to explore B_8 B_8 interactions in the strangeness S=-2, -3 and -4 sectors. The S-wave phase-shift behavior and total cross sections are systematically understood by 1) the spin-flavor SU_6 symmetry, 2) the special role of the pion exchange, and 3) the flavor symmetry breaking.
Baryon stopping and saturation physics at RHIC and LHC
Mehtar-Tani, Yacine
2009-01-01
We investigate baryon transport in relativistic heavy-ion collisions at energies reached at the CERN Super Proton Synchrotron, BNL Relativistic Heavy-Ion Collider (RHIC), and CERN LHC in the model of saturation. An analytical scaling law is derived within the color glass condensate framework based on small-coupling QCD. Transverse momentum spectra, net-baryon rapidity distributions and their energy, mass and centrality dependences are well described. In a comparison with RHIC data in Au + Au collisions at sqrt (s_NN) = 62.4 GeV and 200 GeV, the gradual approach to the gluon saturation regime is investigated, and limits for the saturation-scale exponent are determined. Predictions for net-baryon rapidity spectra and the mean rapidity loss in central Pb + Pb collisions at LHC energies of sqrt (s_NN) = 5.52 TeV are made.
Measurement of b-Baryons with the CDF II detector
Energy Technology Data Exchange (ETDEWEB)
Heuser, Joachim; /Karlsruhe U., EKP
2007-10-01
We report the observation of new bottom baryon states. The most recent result is the observation of the baryon {Xi}{sub b}{sup -} through the decay {Xi}{sub b}{sup -} {yields} J/{psi}{Xi}{sup -}. The significance of the signal corresponds to 7.7{sigma} and the {Xi}{sub b}{sup -} mass is measured to be 5792.9{+-}2.5(stat.){+-}1.7(syst.) MeV/c{sup 2}. In addition we observe four resonances in the {Lambda}{sub b}{sup 0}{pi}{sup {+-}} spectra, consistent with the bottom baryons {Sigma}{sub b}{sup (*){+-}}. All observations are in agreement with theoretical expectations.
Baryon electric dipole moments from strong CP violation
Guo, Feng-Kun; Meißner, Ulf-G.
2012-12-01
The electric dipole form factors and moments of the ground state baryons are calculated in chiral perturbation theory at next-to-leading order. We show that the baryon electric dipole form factors at this order depend only on two combinations of low-energy constants. We also derive various relations that are free of unknown low-energy constants. We use recent lattice QCD data to calculate all baryon EDMs. In particular, we find d n = -2 .9 ± 0 .9 and d p = 1 .1 ± 1 .1 in units of 10-16 e θ 0 cm. Finite volume corrections to the electric dipole moments are also worked out. We show that for a precision extraction from lattice QCD data, the next-to-leading order terms have to be accounted for.
Moduli induced cogenesis of baryon asymmetry and dark matter
Dhuria, Mansi; Sarkar, Utpal
2015-01-01
We study a cogenesis mechanism in which the observed baryon asymmetry of the universe and the dark matter abundance can be produced simultaneously at low reheating temperature without violating baryon number in the fundamental vertex. In particular, we consider a model which could be realized in the context of type IIB large volume string compactifications. The matter superfields in this model include additional pairs of color triplet and singlet superfields in addition to the Minimal Supersymmetric Standard Model (MSSM) superfields. Assuming that the mass of the additional singlet fermions is O(GeV) and color triplet fermions is O(TeV), we show that the modulus dominantly decays into the additional color triplet superfields. After soft supersymmetry (SUSY) breaking, the lightest eigenstate of scalar component of color triplet superfield further decays into fermionic component of singlet superfield and quarks without violating baryon number. Assuming R-parity conservation, it follows that the singlet superfie...
Meson/Baryon/Tetraquark Supersymmetry from Superconformal Algebra and Light-Front Holography
Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter Lorcé, Cédric
Superconformal algebra leads to remarkable connections between the masses of mesons and baryons of the same parity - supersymmetric relations between the bosonic and fermionic bound states of QCD. Supercharges connect the mesonic eigenstates to their baryonic superpartners, where the mesons have internal angular momentum one unit higher than the baryons: LM = LB + 1. The dynamics of the superpartner hadrons also match; for example, the power-law fall-off of the form factors are the same for the mesonic and baryonic superpartners, in agreement with twist counting rules. An effective supersymmetric light-front Hamiltonian for hadrons composed of light quarks can be constructed by embedding superconformal quantum mechanics into AdS space. This procedure also generates a spin-spin interaction between the hadronic constituents. A specific breaking of conformal symmetry inside the graded algebra determines a unique quark-confining light-front potential for light hadrons in agreement with the soft-wall AdS/QCD approach and light-front holography. Only one mass parameter ? appears; it sets the confinement mass scale, a universal value for the slope of all Regge trajectories, the nonzero mass of the proton and other hadrons in the chiral limit, as well as the length scale which underlies their structure. The mass for the pion eigenstate vanishes in the chiral limit. When one includes the constituent quark masses using the Feynman-Hellman theorem, the predictions are consistent with the empirical features of the light-quark hadronic spectra. Our analysis can be consistently applied to the excitation spectra of the π, ρ, K, K* and ø meson families as well as to the N, Δ, Λ, Σ, Σ*, Ξ and Ξ* baryons. We also predict the existence of tetraquarks which are degenerate in mass with baryons with the same angular momentum. The mass-squared of the light hadrons can be expressed in a universal and frame-independent decomposition of contributions from the constituent kinetic
Faessler, A; Holstein, Barry R; Lyubovitskij, V E; Nicmorus, D; Pumsa-ard, K; Faessler, Amand; Gutsche, Thomas; Holstein, Barry R.; Lyubovitskij, Valery E.; Nicmorus, Diana; Pumsa-ard, Kem
2006-01-01
We calculate magnetic moments of light baryons and N -> Delta gamma transition characteristics using a manifestly Lorentz covariant chiral quark approach for the study of baryons as bound states of constituent quarks dressed by a cloud of pseudoscalar mesons.
Magnetic Moments of Baryons containing all heavy quarks in Quark-Diquark Model
Thakkar, Kaushal; Vinodkumar, P C
2016-01-01
The triply heavy flavour baryons are studied using the Quark-diquark description of the three-body system. The confinement potential for present study of triply heavy flavour baryons is assumed as coulomb plus power potential with power index $\
Study of Doubly Heavy Baryon Spectrum via QCD Sum Rules
Institute of Scientific and Technical Information of China (English)
TANG Liang; YUAN Xu-Hao; QIAO Cong-Feng; LI Xue-Qian
2012-01-01
In this work, we calculate the mass spectrum of doubly heavy baryons with the diquaxk model in terms of the QCD sum rules. The interpolating currents are composed of a heavy diquaxk field and a light quark field. Contributions of the operators up to dimension six are taken into account in the operator product expansion. Within a reasonable error tolerance, our numerical results axe compatible with other theoretical predictions. This indicates that the diquaxk picture reflects the reality and is applicable to the study of doubly heavy baryons.
Baryon inhomogeneities in a charged quark gluon plasma
Energy Technology Data Exchange (ETDEWEB)
Ray, Avijeet [Indian Institute of Technology Roorkee, Uttarakhand, 247667 (India); Sanyal, Soma, E-mail: sossp@uohyd.ernet.in [School of Physics, University of Hyderabad, Gachibowli, Hyderabad, 500046 (India)
2013-10-07
We study the generation of baryon inhomogeneities in regions of the quark gluon plasma which have a charge imbalance. We find that the overdensity in the baryon lumps for positively charged particles is different from the overdensity due to the negatively charged particles. Since quarks are charged particles, the probability of forming neutrons or protons in the lumps would thus be changed. The probability of forming hadrons having quarks of the same charges would be enhanced. This might have interesting consequences for the inhomogeneous nucleosynthesis calculations.
Transition magnetic moments between negative parity heavy baryons
Aliev, T M; Savci, M
2015-01-01
The transition magnetic moments between negative parity, spin-1/2 heavy baryons are studied in framework of the light cone QCD sum rules. By constructing the sum rules for different Lorentz structures, the unwanted contributions coming from negative (positive) to positive (negative) parity transitions are removed. It is found that the magnetic moments between neutral negative parity heavy $\\Xi_Q^{\\prime 0}$ and $\\Xi_Q^0$ baryons are very small. Magnetic moments of the $\\Sigma_Q \\to \\Lambda_Q$ and $ \\Xi_Q^{\\prime \\pm} \\to \\Xi_Q^\\pm$ transitions are quite large and can be measured in further experiments.
Baryon Wave Functions in Covariant Relativistic Quark Models
Dillig, M
2002-01-01
We derive covariant baryon wave functions for arbitrary Lorentz boosts. Modeling baryons as quark-diquark systems, we reduce their manifestly covariant Bethe-Salpeter equation to a covariant 3-dimensional form by projecting on the relative quark-diquark energy. Guided by a phenomenological multigluon exchange representation of a covariant confining kernel, we derive for practical applications explicit solutions for harmonic confinement and for the MIT Bag Model. We briefly comment on the interplay of boosts and center-of-mass corrections in relativistic quark models.
Baryon Asymmetry, Neutrino Mixing and Supersymmetric SO(10) Unification
Plümacher, Michael
1998-01-01
The baryon asymmetry of the universe can be explained by the out-of-equilibrium decays of heavy right-handed neutrinos. We analyse this mechanism in the framework of a supersymmetric extension of the Standard Model and show that lepton number violating scatterings are indispensable for baryogenesis, even though they may wash-out a generated asymmetry. By assuming a similar pattern of mixings and masses for neutrinos and up-type quarks, as suggested by SO(10) unification, we can generate the observed baryon asymmetry without any fine tuning, if (B-L) is broken at the unification scale preferred by the MSW solution to the solar neutrino deficit.
On Exotic Systems of Baryons in Chiral Soliton Models
Kopeliovich, Vladimir
2016-01-01
The role of zero mode quantum corrections to the energy of baryonic systems with exotic quantum numbers (strangeness) is discussed. A simple expression for the contribution depending on strange inertia is obtained in the $SU(3)-$collective coordinate quantization approach, and it is shown that this correction stabilizes the systems the stronger the greater their baryon number is. Furthemore, systems are considered which could be interpreted in the quark model language as containing additional $q\\bar q-$pairs. It is argued that a strange skyrmion crystal should have additional binding in comparison with the $SU(2)-$quantized neutron crystal.
Baryon symmetric big-bang cosmology. [matter-antimatter symmetry
Stecker, F. W.
1978-01-01
The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.
Diquark correlations in baryons on the lattice with overlap quarks
Energy Technology Data Exchange (ETDEWEB)
Babich, R.; Howard, J.; Rebbi, C. [Boston Univ., MA (United States). Dept. of Physics; Garron, N. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Hoelbling, C. [Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik; Lellouch, L. [CNRS Luminy, Marseille (France). Centre de Physique Theorique]|[Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik
2007-01-15
We evaluate baryon wave functions in both the Coulomb and Landau gauge in lattice QCD. These are constructed from quark propagators calculated with the overlap Dirac operator on quenched gauge configurations at {beta}=6. By comparing baryon states that differ in their diquark content, we find evidence for enhanced correlation in the scalar diquark channel, as favored by quark models. We also summarize earlier results for diquark masses in the Landau gauge, casting them in a form more easily compared with subsequent studies. (orig.)
Effect of higher orbital angular momenta in the baryon spectrum
Garcilazo, H; Fernández, F
2001-01-01
We have performed a Faddeev calculation of the baryon spectrum for the chiral constituent quark model including higher orbital angular momentum states. We have found that the effect of these states is important, although a description of the baryon spectrum of the same quality as the one given by including only the lowest-order configurations can be obtained. We have studied the effect of the pseudoscalar quark-quark interaction on the relative position of the positive- and negative-parity excitations of the nucleon as well as the effect of varying the strength of the color-magnetic interaction.
Pulsed-Source Interferometry in Acoustic Imaging
Shcheglov, Kirill; Gutierrez, Roman; Tang, Tony K.
2003-01-01
A combination of pulsed-source interferometry and acoustic diffraction has been proposed for use in imaging subsurface microscopic defects and other features in such diverse objects as integrated-circuit chips, specimens of materials, and mechanical parts. A specimen to be inspected by this technique would be mounted with its bottom side in contact with an acoustic transducer driven by a continuous-wave acoustic signal at a suitable frequency, which could be as low as a megahertz or as high as a few hundred gigahertz. The top side of the specimen would be coupled to an object that would have a flat (when not vibrating) top surface and that would serve as the acoustical analog of an optical medium (in effect, an acoustical "optic").
Magnetic moments of heavy baryons in the relativistic three-quark model
Faessler, A; Ivanov, M A; Körner, J G; Lyubovitskij, V E; Nicmorus, D; Pumsa-ard, K; Faessler, Amand; Gutsche, Th.
2006-01-01
The magnetic moments of ground state single, double and triple heavy baryons containing charm or bottom quarks are calculated in a relativistic three-quark model, which, in the heavy quark limit, is consistent with Heavy Quark Effective Theory and Heavy Hadron Chiral Perturbation Theory. The internal quark structure of baryons is modeled by baryonic three-quark currents with a spin-flavor structure patterned according to standard covariant baryonic wave functions and currents used in QCD sum rule calculations.
Li, Hao-Song; Chen, Xiao-Lin; Deng, Wei-Zhen; Zhu, Shi-Lin
2016-01-01
We have systematically investigated the magnetic moments and magnetic form factors of the decuplet baryons to the next-to-next-leading order in the framework of the heavy baryon chiral perturbation theory. Our calculation includes the contributions from both the intermediate decuplet and octet baryon states in the loops. We also calculate the charge and magnetic dipole form factors of the decuplet baryons. Our results may be useful to the chiral extrapolation of the lattice simulations of the decuplet electromagnetic properties.
Institute of Scientific and Technical Information of China (English)
徐锋; 赵明忠; 刘云飞
2011-01-01
To identify the different damage types of plywood, a feature extraction method of plywood acoustic emission signal based on time-frequency and proportion of energy is proposed by combining wavelet-packet time-frequency analysis with energy spectrum. The research indicates that dilatational wave and flexural wave are main modes of plywood matrix cracks signal with wide frequency spectrum, and the energy of signal is mainly concentrated in the first, second, third, fourth and seventh-band of the wavelet power spectrum. Delamination and fiber fracture signals of five-story plywood are mainly dominated by dilatational wave and flexural wave mode respectively, the former frequency is unitary and amplitude is higher, the latter energy mostly focus on the first, second band. Degumming signal waveform are composed of dilatational wave and flexural wave, and the flexural wave is dominant, whose signal energy focus on the first, second, third and fourth band of the wavelet power spectrum. An intelligent pattern classifier with BP neural network was used in recognition of those four kinds of AE signals, the recognition accuracy of flaws amounted to 92. 6%.%为识别胶合板的不同损伤类型,将小波包时频分析与能量谱相结合,提出基于时频和频段能量占比的胶合板损伤声发射信号特征提取方法.研究得出胶合板基体开裂信号以膨胀波和弯曲波模式并举,频谱较宽,能量主要集中在小波能量谱的第一、二、三、四和七频段；分层信号频率单一,幅值较高,并以膨胀波为主；纤维断裂主要以弯曲波模式为主,频率较低；脱胶信号波形为膨胀波和弯曲波的混合型,以弯曲波为主,能量多集中于第一、二、三、四频段.用小波包提取的能量占比作为由BP神经网络构成的智能化模式分类器的输入样本,对4种声发射信号进行识别,正确率达到92.6％.
Use of acoustic vortices in acoustic levitation
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller
2009-01-01
Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...
Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray
1990-01-01
An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.
On the quark-mass dependence of baryon ground-state masses
Energy Technology Data Exchange (ETDEWEB)
Semke, Alexander
2010-02-17
Baryon masses of the flavour SU(3) octet and decuplet baryons are calculated in the framework of the Chiral Perturbations Theory - the effective field theory of the strong interaction. The chiral extrapolation to the higher meson (quark) masses is carried out. The comparison with the recent results on the baryon masses from lattice calculations are presented. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.
2003-08-01
Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.
Airy acoustical-sheet spinner tweezers
Mitri, F. G.
2016-09-01
The Airy acoustical beam exhibits parabolic propagation and spatial acceleration, meaning that the propagation bending angle continuously increases before the beam trajectory reaches a critical angle where it decays after a propagation distance, without applying any external bending force. As such, it is of particular importance to investigate its properties from the standpoint of acoustical radiation force, spin torque, and particle dynamics theories, in the development of novel particle sorting techniques and acoustically mediated clearing systems. This work investigates these effects on a two-dimensional (2D) circular absorptive structure placed in the field of a nonparaxial Airy "acoustical-sheet" (i.e., finite beam in 2D), for potential applications in surface acoustic waves and acousto-fluidics. Based on the characteristics of the acoustic field, the beam is capable of manipulating the circular cylindrical fluid cross-section and guides it along a transverse or parabolic trajectory. This feature of Airy acoustical beams could lead to a unique characteristic in single-beam acoustical tweezers related to acoustical sieving, filtering, and removal of particles and cells from a section of a small channel. The analysis developed here is based on the description of the nonparaxial Airy beam using the angular spectrum decomposition of plane waves in close association with the partial-wave series expansion method in cylindrical coordinates. The numerical results demonstrate the ability of the nonparaxial Airy acoustical-sheet beam to pull, propel, or accelerate a particle along a parabolic trajectory, in addition to particle confinement in the transverse direction of wave propagation. Negative or positive radiation force and spin torque causing rotation in the clockwise or the anticlockwise direction can occur depending on the nondimensional parameter ka (where k is the wavenumber and a is the radius) and the location of the cylinder in the beam. Applications in
Dense baryonic matter in the hidden local symmetry approach: Half-skyrmions and nucleon mass
Ma, Yong-Liang; Harada, Masayasu; Lee, Hyun Kyu; Oh, Yongseok; Park, Byung-Yoon; Rho, Mannque
2013-07-01
Hadron properties in dense medium are treated in a unified way in a skyrmion model constructed with an effective Lagrangian, in which the ρ and ω vector mesons are introduced as hidden gauge bosons, valid up to O(p4) terms in chiral expansion including the homogeneous Wess-Zumino terms. All the low energy constants of the Lagrangian—apart from the pion decay constant and the vector meson mass—are fixed by the master formula derived from the relation between the five-dimensional holographic QCD and the four-dimensional hidden local symmetry Lagrangian. This Lagrangian allows one to pin down the density n1/2 at which the skyrmions in medium fractionize into half-skyrmions, bringing in a drastic change in the equation of state of dense baryonic matter. We find that the U(1) field that figures in the Chern-Simons term in the five-dimensional holographic QCD action or equivalently the ω field in the homogeneous Wess-Zumino term in the dimensionally reduced hidden local symmetry action plays a crucial role in the half-skyrmion phase. The importance of the ω degree of freedom may be connected to what happens in the instanton structure of elementary baryon noticed in holographic QCD. The most striking and intriguing in what is found in the model is that the pion decay constant that smoothly drops with increasing density in the skyrmion phase stops decreasing at n1/2 and remains nearly constant in the half-skyrmion phase. In accordance with the large Nc consideration, the baryon mass also stays nonscaling in the half-skyrmion phase. This feature which is reminiscent of the parity-doublet baryon model with a chirally invariant mass m0 is supported by the nuclear effective field theory with the parameters of the Lagrangian scaling modified at the skyrmion-half-skyrmion phase transition. It also matches with one-loop renormalization group analysis based on hidden local symmetry. A link between a nonvanishing m0 and the origin of nucleon mass distinctive from
Acoustic space dimensionality selection and combination using the maximum entropy principle
Abdel-Haleem, Yasser H.; Renals, Steve; Lawrence, Neil D.
2004-01-01
In this paper we propose a discriminative approach to acoustic space dimensionality selection based on maximum entropy modelling. We form a set of constraints by composing the acoustic space with the space of phone classes, and use a continuous feature formulation of maximum entropy modelling to select an optimal feature set. The suggested approach has two steps: (1) the selection of the best acoustic space that efficiently and economically represents the acoustic data and its variability;...
Three Baryon Interaction Generated by Determinant Interaction of Quarks
Ohnishi, Akira; Morita, Kenji
2016-01-01
We discuss the three-baryon interaction generated by the determinant interaction of quarks, known as the Kobayashi-Maskawa-'t Hooft (KMT) interaction. The expectation value of the KMT interaction operator is calculated in fully-antisymmetrized quark-cluster model wave functions for one-, two- and three-octet baryon states. The three-baryon potential from the KMT interaction is found to be repulsive for $NN\\Lambda$ and $N\\Lambda\\Lambda$ systems, while it is zero for the $NNN$ system. The strength and range of the three-baryon potential are found to be comparable to those for the $NNN$ three-body potential obtained in lattice QCD simulations. The contribution to the $\\Lambda$ single particle potential in nuclear matter is found to be 0.28 MeV and 0.73 MeV in neutron matter and symmetric nuclear matter at normal nuclear density, respectively. These repulsive forces are not enough to solve the hyperon puzzle, but may be measured in high-precision hyperisotope experiments.
The baryon fraction in hydrodynamical simulations of galaxy clusters
Ettori, S; Borgani, S; Murante, G
2006-01-01
We study the baryon mass fraction in a set of hydrodynamical simulations of galaxy clusters performed using the Tree+SPH code GADGET-2. We investigate the dependence of the baryon fraction upon the radiative cooling, star formation, feedback through galactic winds, conduction and redshift. Both the cold stellar component and the hot X-ray emitting gas have narrow distributions that, at large cluster-centric distances r>R500, are nearly independent of the physics included in the simulations. Only the non-radiative runs reproduce the gas fraction inferred from observations of the inner regions (r ~ R2500) of massive clusters. When cooling is turned on, the excess star formation is mitigated by the action of galactic winds, but yet not by the amount required by observational data. The baryon fraction within a fixed overdensity increases slightly with redshift, independent of the physical processes involved in the accumulation of baryons in the cluster potential well. In runs with cooling and feedback, the increa...
Baryomorphosis: Relating the Baryon Asymmetry to the "WIMP Miracle"
McDonald, John
2010-01-01
We present a generic framework, "baryomorphosis", which modifies the baryon asymmetry to be naturally of the order of a typical thermal relic WIMP density. We consider a simple scalar-based model to show how this is possible. This model introduces a sector in which a large initial baryon asymmetry is injected into particles ("annihilons"), phi_{B}, phi_{B, hat}, of mass ~ 100 GeV - 1 TeV. phi_{B}-phi_{B, hat} annihilations convert the initial phi_{B}, phi_{B, hat} asymmetry to a final asymmetry with a thermal relic WIMP-like density. This subsequently decays to a conventional baryon asymmetry whose magnitude is naturally related to the density of thermal relic WIMP dark matter. In this way the two coincidences of baryons and dark matter i.e. why their densities are similar to each other and why they are both similar to a WIMP thermal relic density (the "WIMP miracle"), may be understood. The model can be tested by the production of annihilons at colliders.
First Observation of a Baryonic B-c(+) Decay
Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M. -O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjornstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Perez, D. Campora; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Akiba, K. Carvalho; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S. -F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cojocariu, L.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Torres, M. Cruz; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Deleage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. -M.; Evans, T.; Falabella, A.; Faerber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R. F.; Ferguson, D.; Fernandez Albor, V.; Rodrigues, F. Ferreira; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Pardinas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gavrilov, G.; Geraci, A.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Goebel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Gandara, M. Grabalosa; Graciani Diaz, R.; Cardoso, L. A. Granado; Grauges, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Gruenberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Hess, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J. -P.; Lefevre, R.; Leflat, A.; Lefrancois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Maerki, R.; Marks, J.; Martellotti, G.; Martens, A.; Sanchez, A. Martin; Martinelli, M.; Santos, D. Martinez; Martinez Vidal, F.; Tostes, D. Martins; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; Mcnab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M. -N.; Moggi, N.; Rodriguez, J. Molina; Monteil, S.; Morandin, M.; Morawski, P.; Morda, A.; Morello, M. J.; Moron, J.; Morris, A. -B.; Mountain, R.; Muheim, F.; Mueller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Goicochea, J. M. Otalora; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Altarelli, M. Pepe; Perazzini, S.; Perez Trigo, E.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilar, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Romero, D. A. Roa; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Perez, P. Rodriguez; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Silva, J. J. Saborido; Sagidova, N.; Sail, P.; Saitta, B.; Guimaraes, V. Salustino; Mayordomo, C. Sanchez; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M. -H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Coutinho, R. Silva; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; De Paula, B. Souza; Spaan, B.; Sparkes, A.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Garcia, M. Ubeda; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Vazquez Regueiro, P.; Sierra, C. Vzquez; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, C.; Voss, H.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.
2014-01-01
A baryonic decay of the B-c(+) meson, B-c(+) -> J/psi p (p) over bar pi(+) is observed for the first time, with a significance of 7.3 standard deviations, in pp collision data collected with the LHCb detector and corresponding to an integrated luminosity of 3.0 fb(-1) taken at center-of-mass energie
The inner regions of disk galaxies: a constant baryonic fraction?
Lelli, Federico
2014-01-01
For disk galaxies (spirals and irregulars), the inner circular-velocity gradient (inner steepness of the rotation curve) correlates with the central surface brightness with a slope of ~0.5. This implies that the central dynamical mass density scales almost linearly with the central baryonic density. Here I show that this empirical relation is consistent with a simple model where the central baryonic fraction f_bar(0) is fixed to 1 (no dark matter) and the observed scatter is due to differences in the baryonic mass-to-light ratio M_bar/L (ranging from 1 to 3 in the R-band) and in the characteristic thickness of the central stellar component dz (ranging from 100 to 500 pc). Models with lower baryonic fractions are possible, although they require some fine-tuning in the values of M_bar/L and dz. Regardless of the actual value of f_bar(0), the fact that different types of galaxies do not show strong variations in f_bar(0) is surprising, and may represent a challenge for models of galaxy formation in a LCDM cosmol...
Pion photo- and electroproduction in relativistic baryon ChPT
Directory of Open Access Journals (Sweden)
Tiator Lothar
2014-06-01
Full Text Available We present a calculation of pion photo- and electroproduction in manifestly Lorentz-invariant baryon chiral perturbation theory up to and including order q4. We fix the low-energy constants by fitting experimental data in all available reaction channels. Our results can be accessed via a web interface, the so-called chiral MAID.
Observation of Two New Xi(-)(b) Baryon Resonances
Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M. -O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjornstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Akiba, K. Carvalho; Casanova Mohr, R. C. M.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S. -F.; Chiapolini, N.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A. C.; Torres, M. Cruz; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C. -T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Deleage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Domenico, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. -M.; Evans, T.; Falabella, A.; Faerber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Pardinas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gastaldi, U.; Gauld, R.; Gavardi, L.; Gazzoni, U.; Geraci, A.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Goebel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Gandara, M. Grabalosa; Graciani Diaz, R.; Cardoso, L. A. Granado; Grauges, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griftith, P.; Grillo, L.; Gruenberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Hess, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; Van Leerdam, J.; Lees, J. -P.; Lefevre, R.; Leflat, A.; Lefrancois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lowdon, P.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Benito, C. Mann; Marino, P.; Maerki, R.; Marks, J.; Martellotti, G.; Martinelli, M.; Santos, D. Martinez; Vidal, F. Martinez; Martin Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M. -N.; Moggi, N.; Rodriguez, J. Molina; Monteil, S.; Morandin, M.; Morawski, P.; Morda, A.; Morello, M. J.; Moron, J.; Morris, A. -B.; Mountain, R.; Muheim, F.; Mueller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obratsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Orlandea, M.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Altarelli, M. Pepe; Perazzini, S.; Perret, P.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilar, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Perez, P. Rodriguez; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M. -H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Sena, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Sheychenko, V.; Shires, A.; Coutinho, R. Silva; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; Van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Garcia, M. Ubeda; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Vazquez Regueiro, P.; Vazquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Barbosa, J. V. V. B. Viana; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, C.; de Vries, J. A.; Wraldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M. P.; Williams, M.; Wilschut, H. W.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyae, M.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.
2015-01-01
Two structures are observed close to the kinematic threshold in the Xi(0)(b)pi(-) mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb(-1), recorded by the LEICb experiment. In the quark model, two baryonic resonances with quark content bds a
Radiative decays of negative parity heavy baryons in QCD
Agamaliev, A K; Savcı, M
2016-01-01
The transition form factors responsible for the radiative $\\Sigma_Q \\to \\Lambda_Q \\gamma$ and $\\Xi_Q^\\prime \\to \\Xi \\gamma$ decays of the negative parity baryons are examined within light cone QCD sum rules. The decay widths of the radiative transitions are calculated using the obtained results of the form factors.
Spectrum and Structure of Excited Baryons with CLAS
Burkert, Volker D
2016-01-01
In this contribution we discuss recent results in light quark baryon spectroscopy involving CLAS data and higher level analysis results from the partial wave analysis by the Bonn-Gatchina group. New baryon states were discovered largely based on the open strangeness production channels $\\gamma p \\to K^+ \\Lambda$ and $\\gamma p \\to K^+ \\Sigma^0$. The data illustrate the great potential of the kaon-hyperon channel in the discovery of higher mass baryon resonances in s-channel production. Other channels with discovery potential, such as $\\gamma p \\to p \\omega$ and $\\gamma p \\to \\phi p$ are also discussed. In the second part I will demonstrate on data the sensitivity of meson electroproduction to expose the active degrees of freedom underlying resonance transitions as a function of the probed distance scale. For several of the prominent excited states in the lower mass range the short distance behavior is described by a core of three dressed-quarks with running quark mass, and meson-baryon contributions make up si...
Algebraic models of hadron structure I. Nonstrange baryons
Bijker, R; Leviatan, A
1994-01-01
We introduce an algebraic framework for the description of baryons. Within this framework we study a collective string-like model and show that this model gives a good overall description of the presently available data. We discuss in particular masses and electromagnetic couplings, including the transition form factors that can be measured at new electron facilities.
Algebraic Models of Hadron Structure; 2, Strange Baryons
Bijker, R; Leviatan, A
2000-01-01
The algebraic treatment of baryons is extended to strange resonances. Within this framework we study a collective string-like model in which the radial excitations are interpreted as rotations and vibrations of the strings. We derive a mass formula and closed expressions for strong and electromagnetic decay widths and use these to analyze the available experimental data.
Algebraic models of hadron structure. I. Nonstrange baryons
Energy Technology Data Exchange (ETDEWEB)
Bijker, R. [Univ. of Utrecht (Netherlands); Iachello, F. [Yale Univ., New Haven, CT (United States); Leviatan, A. [Hebrew Univ., Jerusalem (Israel)
1994-11-15
The authors introduce an algebraic framework for the description of baryons. Within this framework they study a collective string-like model and show that this model gives a good overall description of the presently available data. They discuss in particular masses and electromagnetic couplings, including the transition form factors that can be measured at new electron facilities. 44 refs., 15 figs., 11 tabs.
Dense baryonic matter in strong coupling lattice gauge theory
Bringoltz, B
2004-01-01
We investigate the strong coupling limit of lattice QCD in the Hamiltonian formulation for systems with non-zero baryon density. In leading order the Hamiltonian looks like an antiferromagnet that is invariant under global U(N_f)xU(N_f) and local SU(N_c). Physically it describes meson dynamics with a fixed background of baryon density. We study this Hamiltonian with several baryon number distributions, and concentrate on the global symmetries of the ground state and on the properties of low lying excitations. In particular, for uniform non-zero baryon density we write the partition function as a path integral that is tractable in the limit of large N_c. We find that the ground state spontaneously breaks chiral symmetry as well as discrete lattice rotations in a way that depends on N_f and the density. The low energy excitations include type I and type II Goldstone bosons. The energies of the latter are of order 1/N_c, and are quadratic in momentum. Bosons of either type can develop anisotropic dispersion rela...
Constraining Dark Matter-Baryon Scattering with Linear Cosmology
Dvorkin, Cora; Kamionkowski, Marc
2013-01-01
We derive constraints on elastic scattering between baryons and dark matter using the cosmic microwave background (CMB) data from the Planck satellite and the Lyman-alpha forest data from the Sloan Digital Sky Survey. Elastic scattering allows baryons and dark matter to exchange momentum, affecting the dynamics of linear density perturbations in the early Universe. We derive constraints to scattering cross sections of the form sigma \\propto v^n, allowing for a wide range of velocity dependencies with n between -4 and 2. We improve and correct previous estimates where they exist, including velocity-independent cross section as well as dark matter millicharge and electromagnetic dipole moments. Lyman-alpha forest data dominates the constraints for n>-3, where the improvement over CMB data alone can be several orders of magnitude. Dark matter-baryon scattering cannot affect the halo mass function on mass scales M>10^{12} M_{solar}. Our results imply, model-independently, that a baryon in the halo of a galaxy lik...
New Observations of beauty baryon decays at LHCb
Vitaly, Andreev
2014-01-01
This report describes the work I have done during my summer student association with the LHCb (Large Hadron Collider Beauty Experiment) collaboration at CERN from 30.06 till 26.09.2014. The project was performed in a team with two other summer students. In this report I concentrate on my contribution to the team work. In addition, one section is dedicated to the management framework called “scrum” which we used to collaborate as a team. The goal of my task was to analyze yet unobserved decays of the beauty Lambda-b-0 baryon. This is interesting since the CP violation still remains unobserved in baryons and beauty baryons are generally not well-known yet. LHCb is the first detector where these heavy baryons can be analyzed in detail. In addition these decays may play an important role in other processes and one can gain new insights into the strong interaction. The analysis presented here was performed on the full 2011-2012 LHC run data and includes several decays which are observed for the first time.
Factorization of heavy-to-light baryonic transitions in SCET
Energy Technology Data Exchange (ETDEWEB)
Wang, Wei
2011-12-15
In the framework of the soft-collinear effective theory, we demonstrate that the leading-power heavy-to-light baryonic form factors at large recoil obey the heavy quark and large energy symmetries. Symmetry breaking effects have several origins but all of them are suppressed by {lambda}/m{sub b} or {lambda}/E, where {lambda} is the hadronic scale, m{sub b} is the b quark mass and E{proportional_to}m{sub b} is the energy of light baryon in the final state. Including the energy release dependence, we derive the scaling law for form factors {xi}{sub {lambda}}{sub ,p}{proportional_to}{lambda}{sup 2} /E{sup 2}, which is in accordance with the implication from the experimental measurement on the branching ratio of {lambda}{sub b} {yields} p{pi}{sup -}. At leading order in {alpha}{sub s}, the leading-power baryonic form factors can factorize into the soft and collinear matrix elements without encountering any divergence. A leading-power factorization formula for nonleptonic b-baryon decays is also established. (orig.)
The Inner Regions of Disk Galaxies: A Constant Baryonic Fraction?
Directory of Open Access Journals (Sweden)
Federico Lelli
2014-07-01
Full Text Available For disk galaxies (spirals and irregulars, the inner circular-velocity gradient dRV0 (inner steepness of the rotation curve correlates with the central surface brightness ∑*,0 with a slope of ~0.5. This implies that the central dynamical mass density scales almost linearly with the central baryonic density. Here I show that this empirical relation is consistent with a simple model where the central baryonic fraction ƒbar,0 is fixed to 1 (no dark matter and the observed scatter is due to differences in the baryonic mass-to-light ratio Mbar / LR (ranging from 1 to 3 in the R-band and in the characteristic thickness of the central stellar component Δz (ranging from 100 to 500 pc. Models with lower baryonic fractions are possible, although they require some fine-tuning in the values of Mbar/LR and Δz. Regardless of the actual value of ƒbar,0, the fact that different types of galaxies do not show strong variations in ƒbar,0 is surprising, and may represent a challenge for models of galaxy formation in a Λ Cold Dark Matter (ΛCDM cosmology.
Criticality of the net-baryon number probability distribution at finite density
Directory of Open Access Journals (Sweden)
Kenji Morita
2015-02-01
Full Text Available We compute the probability distribution P(N of the net-baryon number at finite temperature and quark-chemical potential, μ, at a physical value of the pion mass in the quark-meson model within the functional renormalization group scheme. For μ/T<1, the model exhibits the chiral crossover transition which belongs to the universality class of the O(4 spin system in three dimensions. We explore the influence of the chiral crossover transition on the properties of the net baryon number probability distribution, P(N. By considering ratios of P(N to the Skellam function, with the same mean and variance, we unravel the characteristic features of the distribution that are related to O(4 criticality at the chiral crossover transition. We explore the corresponding ratios for data obtained at RHIC by the STAR Collaboration and discuss their implications. We also examine O(4 criticality in the context of binomial and negative-binomial distributions for the net proton number.
Constituent quark models and pentaquark baryons
Maltman, K
2004-01-01
We discuss certain general features of the pentaquark picture for the theta, its 10bar_F partner, Xi_{3/2}, and possible heavy quark analogues. Models employing spin-dependent interactions based on either effective Goldstone boson exchange or effective color magnetic exchange are also used to shed light on possible corrections to the Jaffe-Wilczek and Karliner-Lipkin scenarios. Some model-dependent features of the pentaquark picture (splitting patterns and relative decay couplings) are also discussed in the context of these models.
Thermodynamics of Hot Hadronic Gases at Finite Baryon Densities
Albright, Michael Glenn
In this thesis we investigate equilibrium and nonequilibrium thermodynamic properties of Quantum Chromodynamics (QCD) matter at finite baryon densities. We begin by constructing crossover models for the thermodynamic equation of state. These use switching functions to smoothly interpolate between a hadronic gas model at low energy densities to a perturbative QCD equation of state at high energy densities. We carefully design the switching function to avoid introducing first-, second-, or higher-order phase transitions which lattice QCD indicates are not present at small baryon chemical potentials. We employ three kinds of hadronic models in the crossover constructions, two of which include repulsive interactions via an excluded volume approximation while one model does not. We find that the three crossover models are in excellent agreement with accurate lattice QCD calculations of the equation of state over a wide range of temperatures and baryon chemical potentials. Hence, the crossover models should be very useful for parameterizing the equation of state at finite baryon densities, which is needed to build next-generation hydrodynamic simulations of heavy-ion collisions. We next calculate the speed of sound and baryon number fluctuations predicted by the crossover models. We find that crossover models with hadronic repulsion are most successful at reproducing the lattice results, while the model without repulsion is less successful, and hadron (only) models show poor agreement. We then compare the crossover models to net-proton fluctuation measurements from the STAR Collaboration at the Relativistic Heavy Ion Collider (RHIC). The comparisons suggest baryon number fluctuations freeze-out well below the chemical freeze-out temperature. We also search for signs of critical fluctuations in the STAR data, but we find no evidence for them at this time. Finally, we derive kinetic theory formulas for the shear and bulk viscosity and thermal conductivity of hot hadronic
The search for exotic baryons at the HERMES experiment
Energy Technology Data Exchange (ETDEWEB)
Deconinck, Wouter
2008-07-15
One of the interesting questions of Quantum Chromodynamics, the theory that governs the interactions between quarks and gluons, has been whether it is possible to observe hadrons which can not be explained as a combination of only two or three valence quarks. In numerous searches the existence of these exotic hadrons could not be confirmed. Recently, calculations based on the quark soliton model predicted the narrow exotic baryons {theta}{sup +} and {xi}{sup --}. A narrow resonance identified as the {theta}{sup +} was observed by several experiments at the predicted mass of 1540 MeV, but later followed by several dedicated experiments that could not confirm these positive results. At the HERMES experiment a search for the quasi-real photoproduction of the exotic baryon {theta}{sup +} on a deuterium target and the subsequent decay through pK{sup 0}{sub S} {yields} p{pi}{sup +}{pi}{sup -} revealed a narrow resonance in the pK{sup 0}{sub S} invariant mass distribution at 1528 MeV. In the search for the corresponding antiparticle {xi}{sup --} the result is consistent with zero events. In this thesis we present the search for the exotic baryon {xi}{sup --} on a deuterium target in the data sample used for the observation of the {theta}{sup +}. An upper limit on the cross section of the exotic baryon {xi}{sup --} is determined. The search for the exotic baryon {theta}{sup +} on hydrogen and deuterium targets at the HERMES experiment is extensively discussed. The event mixing method can be used to estimate the distribution of background events. Several difficulties with this method were addressed, but the background description in the case of the exotic baryon {theta}{sup +} remains unconvincing. Between the years 2002 and 2005 the HERMES experiment operated with a magnetic holding field around the hydrogen target. A method for the reconstruction of displaced vertices in this field was developed. The data collected during the years 2006 and 2007 offer an integrated
Beutler, Florian; Seo, Hee-Jong; Saito, Shun; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Gil-Marín, Héctor; Grieb, Jan Niklas; Hand, Nick; Kitaura, Francisco-Shu; Modi, Chirag; Nichol, Robert C.; Olmstead, Matthew D.; Percival, Will J.; Prada, Francisco; Sánchez, Ariel G.; Rodriguez-Torres, Sergio; Ross, Ashley J.; Ross, Nicholas P.; Schneider, Donald P.; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana
2017-04-01
We investigate the anisotropic clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 sample, which consists of 1198 006 galaxies in the redshift range 0.2 measure redshift-space distortions simultaneously with the Alcock-Paczynski effect and the baryon acoustic oscillation scale. We include the power-spectrum monopole, quadrupole and hexadecapole in our analysis and compare our measurements with a perturbation-theory-based model, while properly accounting for the survey window function. To evaluate the reliability of our analysis pipeline, we participate in a mock challenge, which results in systematic uncertainties significantly smaller than the statistical uncertainties. While the high-redshift constraint on fσ8 at zeff = 0.61 indicates a small (∼1.4σ) deviation from the prediction of the Planck ΛCDM (Λ cold dark matter) model, the low-redshift constraint is in good agreement with Planck ΛCDM. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.
The impact of the supersonic baryon-dark matter velocity difference on the z~20 21cm background
McQuinn, Matthew
2012-01-01
Recently, Tseliakhovich and Hirata (2010) showed that during the cosmic Dark Ages the baryons were typically moving supersonically with respect to the dark matter with a spatially variable Mach number. Such supersonic motion may source shocks that heat the Universe. This motion may also suppress star formation in the first halos. Even a small amount of coupling of the 21cm signal to this motion has the potential to vastly enhance the 21cm brightness temperature fluctuations at 15
Raichoor, A; Delubac, T; Kneib, J -P; Yèche, C; Zou, H; Abdalla, F B; Dawson, K; Fan, X; Fan, Z; Jiang, Z; Jing, Y; Jouvel, S; Lang, D; Lesser, M; Li, C; Ma, J; Newman, J A; Nie, J; Olszewski, E; Palanque-Delabrouille, N; Percival, W; Prada, F; Shen, S; Wang, J; Wu, Z; Zhang, T; Zhou, X; Zhou, Z
2015-01-01
We present a new selection technique to produce spectroscopic target catalogues for massive spectroscopic surveys for cosmology. This work was conducted in the context of the extended Baryon Oscillation Spectroscopic Survey (eBOSS), which will use 200,000 emission line galaxies (ELGs) at 0.6
Sánchez, Ariel G.; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; Alam, Shadab; Beutler, Florian; Ross, Ashley J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Kitaura, Francisco-Shu; Percival, Will J.; Prada, Francisco; Rodríguez-Torres, Sergio; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A.; Zhao, Gong-Bo
2017-01-01
The cosmological information contained in anisotropic galaxy clustering measurements can often be compressed into a small number of parameters whose posterior distribution is well described by a Gaussian. We present a general methodology to combine these estimates into a single set of consensus constraints that encode the total information of the individual measurements, taking into account the full covariance between the different methods. We illustrate this technique by applying it to combine the results obtained from different clustering analyses, including measurements of the signature of baryon acoustic oscillations and redshift-space distortions, based on a set of mock catalogues of the final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our results show that the region of the parameter space allowed by the consensus constraints is smaller than that of the individual methods, highlighting the importance of performing multiple analyses on galaxy surveys even when the measurements are highly correlated. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The methodology presented here is used in Alam et al. to produce the final cosmological constraints from BOSS.
Bautista, Julian E; Font-Ribera, Andreu; Pieri, Matthew M; Busca, Nicolás G; Miralda-Escudé, Jordi; Palanque-Delabrouille, Nathalie; Rich, James; Dawson, Kyle; Feng, Yu; Ge, Jian; Gontcho, Satya Gontcho A; Ho, Shirley; Goff, Jean Marc Le; Noterdaeme, Pasquier; Pâris, Isabelle; Rossi, Graziano; Schlegel, David
2014-01-01
We describe mock data-sets generated to simulate the high-redshift quasar sample in Data Release 11 (DR11) of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). The mock spectra contain Ly{\\alpha} forest correlations useful for studying the 3D correlation function including Baryon Acoustic Oscillations (BAO). They also include astrophysical effects such as quasar continuum diversity and high-density absorbers, instrumental effects such as noise and spectral resolution, as well as imperfections introduced by the SDSS pipeline treatment of the raw data. The Ly{\\alpha} forest BAO analysis of the BOSS collaboration, described in Delubac et al. 2014, has used these mock data-sets to develop and cross-check analysis procedures prior to performing the BAO analysis on real data, and for continued systematic cross checks. Tests presented here show that the simulations reproduce sufficiently well important characteristics of real spectra. These mock data-sets will be made available together with the data at t...
Simultaneous Generation of WIMP Miracle-like Densities of Baryons and Dark Matter
McDonald, John
2012-09-01
The observed density of dark matter is of the magnitude expected for a thermal relic weakly-interacting massive particle (WIMP). In addition, the observed baryon density is within an order of magnitude of the dark matter density. This suggests that the baryon density is physically related to a typical thermal relic WIMP dark matter density. We present a model which simultaneously generates thermal relic WIMP-like densities for both baryons and dark matter by modifying a large initial baryon asymmetry. Production of unstable scalars carrying baryon number at the LHC would be a clear signature of the model.
Generation of WIMP Miracle-like Densities of Baryons and Dark Matter
McDonald, John
2012-01-01
The observed density of dark matter is of the magnitude expected for a thermal relic weakly-interacting massive particle (WIMP). In addition, the observed baryon density is within an order of magnitude of the dark matter density. This suggests that the baryon density is physically related to a typical thermal relic WIMP dark matter density. We present a model which simultaneously generates thermal relic WIMP-like densities for both baryons and dark matter by modifying a large initial baryon asymmetry. Production of unstable scalars carrying baryon number at the LHC would be a clear signature of the model.
Magnetic Moments of Octet Baryons in Hot and Dense Nuclear Matter
Singh, Harpreet; Dahiya, Harleen
2016-01-01
We have calculated the in-medium magnetic moments of octet baryons in the presence of hot and dense symmetric nuclear matter. Effective magnetic moments of baryons have been derived from medium modified quark masses within chiral SU(3) quark mean field model.Further, for better insight of medium modification of baryonic magnetic moments, we have considered the explicit contributions from the valence as well as sea quark effects. These effects have been successful in giving the description of baryonic magnetic moments in vacuum. The magnetic moments of baryons are found to vary significantly as a function of density of nuclear medium.
Intriguing aspects in baryon production at relativistic heavy-ion collider
Indian Academy of Sciences (India)
Huan Zhong Huang
2003-05-01
We review experimental results on baryon production at mid-rapidity in nucleus–nucleus collisions at RHIC. Outstanding physics issues include the mechanism for baryon–anti-baryon production from thermally equilibrated partons, the dynamics of baryon number transport and the evolution dynamics of baryons during hadronic expansion before the ﬁnal freeze-out. We highlight recent measurements on the production of protons, lambdas and their anti-particles in terms of these physics issues. We propose a physical mechanism of topological baryon formation through gluon junction hadronization and future measurements, which can test this hypothesis experimentally.
DEFF Research Database (Denmark)
Peters, Brady; Tamke, Martin; Nielsen, Stig Anton;
2011-01-01
Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....
Springer Handbook of Acoustics
Rossing, Thomas D
2007-01-01
Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...
Fujiwara, Y; Suzuki, Y
2006-01-01
We calculate Lambda alpha, Sigma alpha and Xi alpha potentials from the nuclear-matter G-matrices of the SU6 quark-model baryon-baryon interaction. The alpha-cluster wave function is assumed to be a simple harmonic-oscillator shell-model wave function. A new method is proposed to derive the direct and knock-on terms of the interaction Born kernel from the hyperon-nucleon G-matrices, with explicit treatments of the nonlocality and the center-of-mass motion between the hyperon and alpha. We find that the SU6 quark-model baryon-baryon interactions, FSS and fss2, yield a reasonable bound-state energy for 5 He Lambda, -3.18 -- -3.62 MeV, in spite of the fact that they give relatively large depths for the Lambda single-particle potentials, 46 -- 48 MeV, in symmetric nuclear matter. An equivalent local potential derived from the Wigner transform of the nonlocal Lambda alpha kernel shows a strong energy dependence for the incident Lambda-particle, indicating the importance of the strangeness-exchange process in the o...
Haidenbauer, J.; Meißner, Ulf-G.; Petschauer, S.
2016-10-01
The strangeness S = - 2 baryon-baryon interaction is studied in chiral effective field theory up to next-to-leading order. The potential at this order consists of contributions from one- and two-pseudoscalar-meson exchange diagrams and from four-baryon contact terms without and with two derivatives. SU(3) flavor symmetry is imposed for constructing the interaction in the S = - 2 sector. Specifically, the couplings of the pseudoscalar mesons to the baryons are fixed by SU(3) symmetry and, in general, also the contact terms are related via SU(3) symmetry to those determined in a previous study of the S = - 1 hyperon-nucleon interaction. The explicit SU(3) symmetry breaking due to the physical masses of the pseudoscalar mesons (π, K, η) is taken into account. It is argued that the ΞN interaction has to be relatively weak to be in accordance with available experimental constraints. In particular, the published values and upper bounds for the Ξ- p elastic and inelastic cross sections apparently rule out a somewhat stronger attractive ΞN force and, specifically, disfavor any near-threshold deuteron-like bound states in that system.
Appelquist, Thomas; Brower, Richard C; Buchoff, Michael I; Fleming, George T; Kiskis, Joe; Kribs, Graham D; Lin, Meifeng; Neil, Ethan T; Osborn, James C; Rebbi, Claudio; Rinaldi, Enrico; Schaich, David; Schroeder, Chris; Syritsyn, Sergey; Voronov, Gennady; Vranas, Pavlos; Weinberg, Evan; Witzel, Oliver
2014-01-01
We present the spectrum of baryons in a new SU(4) gauge theory with fundamental fermion constituents. The spectrum of these bosonic baryons is of significant interest for composite dark matter theories. Here, we compare the spectrum and properties of SU(3) and SU(4) baryons, and then compute the dark-matter direct detection cross section via Higgs boson exchange for TeV-scale composite dark matter arising from a confining SU(4) gauge sector. Comparison with the latest LUX results leads to tight bounds on the fraction of the constituent-fermion mass that may arise from electroweak symmetry breaking. Lattice calculations of the dark matter mass spectrum and the Higgs-dark matter coupling are performed on quenched $16^{3} \\times 32$, $32^{3} \\times 64$, $48^{3} \\times 96$, and $64^{3} \\times128$ lattices with three different lattice spacings, using Wilson fermions with moderate to heavy pseudoscalar meson masses. Our results lay a foundation for future analytic and numerical study of composite baryonic dark matt...