WorldWideScience

Sample records for baryon electromagnetic form

  1. Baryon electromagnetic form factors at BESIII

    Directory of Open Access Journals (Sweden)

    Dbeyssi Alaa

    2017-01-01

    Full Text Available Electromagnetic form factors are fundamental quantities which parameterize the electric and magnetic structure of hadrons. This contribution reports on the measurements of baryon electromagnetic form factors at the BESIII experiment in Beijing. The Beijing e+e− collider BEPCII is a double-ring symmetric collider running at √s between 2.0 and 4.6 GeV. Baryon electromagnetic form factors can be measured at BESIII in direct e+e−-annihilation and in initial state radiation processes. Based on the data collected by the BESIII detector at 12 center of mass energies between 2.23 and 3.67 GeV, the e+e− → p̄p cross section and the time-like proton form factor is measured. Preliminary results from the analysis of the initial state radiation process e+e− → p̄pγ using a data set of 7.408 fb−1 collected at center-of-mass energies between 3.773 and 4.6 GeV, are also presented. The cross section for e+e−→Λ¯Λ${e^ + }{e^ - } \\to \\bar \\Lambda \\Lambda $ is measured based on 40.5 pb−1 data collected at 4 energy points from the threshold up to 3.08 GeV. Preliminary results on the total cross section and the Λ effective form factor are shown. Ongoing analysis based on the high luminosity energy scan from 2015 and from radiative return at different √s are also described.

  2. Baryon octet electromagnetic form factors in a confining NJL model

    Directory of Open Access Journals (Sweden)

    Manuel E. Carrillo-Serrano

    2016-08-01

    Full Text Available Electromagnetic form factors of the baryon octet are studied using a Nambu–Jona-Lasinio model which utilizes the proper-time regularization scheme to simulate aspects of colour confinement. In addition, the model also incorporates corrections to the dressed quarks from vector meson correlations in the t-channel and the pion cloud. Comparison with recent chiral extrapolations of lattice QCD results shows a remarkable level of consistency. For the charge radii we find the surprising result that rEp

  3. Predictions of baryon form factors for the electromagnetic and weak interaction

    International Nuclear Information System (INIS)

    Kiehlmann, H.D.

    1978-05-01

    The electromagnetic and weak form factors of the baryon matrix elements (with B the nucleon or the Λ(1232)-resonance) are determined via sumrules by the experimentally known form factors of the nucleon matrix element for momentum transfers 0 2 2 . The operator Jμ denotes either the electromagnetic current or the weak hypercharge-conserving current of the I. class. The sumrules are derived from the superconvergence of properly chosen reaction amplitudes. The results allow an absolute determination of the cross sections of a series of peripheral reactions. An important and interesting consequence for the considered matrix elements of the weak current is that the properties of CVC of PCAC follow from the sumrules without additional assumptions. Finally the predictions of relativistic SU(6)-models are checked. One gets surprisingly a good confirmation of the essential results of these models, the reliability of which has almost been unknown on account of a series of speculative assumptions. (orig.) [de

  4. Measurement of time-like baryon electro-magnetic form factors in BESIII

    Energy Technology Data Exchange (ETDEWEB)

    Morales Morales, Cristina; Dbeyssi, Alaa [Helmholtz-Institut Mainz (Germany); Ahmed, Samer Ali Nasher; Lin, Dexu; Rosner, Christoph; Wang, Yadi [Helmholtz-Institut Mainz (Germany); Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany); Maas, Frank [Helmholtz-Institut Mainz (Germany); Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany); PRISMA Cluster of Excellence, Johannes Gutenberg-Universitaet Mainz (Germany); Collaboration: BESIII-Collaboration

    2016-07-01

    BEPCII is a symmetric electron-positron collider located in Beijing running at center-of-mass energies between 2.0 and 4.6 GeV. This energy range allows BESIII experiment to measure baryon form factors both from direct electron-positron annihilation and from initial state radiation processes. We present results on direct electron-positron annihilation into proton anti-proton and preliminary results on direct electron-positron annihilation into lambda anti-lambda based on data collected by BESIII in 2011 and 2012. Finally, expectations on the measurement of nucleon and hyperon electro-magnetic form factors from the BESIII high luminosity energy scan in 2015 and from initial state radiation processes at different center-of-mass energies are also shown.

  5. Extended vector meson dominance model for the baryon octet electromagnetic form factors

    International Nuclear Information System (INIS)

    Williams, R.A.; Puckett-Truman, C.

    1996-01-01

    An unresolved issue in the present understanding of nucleon structure is the effect of hidden strangeness on electromagnetic observables such as G n E (q 2 ). Previously, we have shown that G n E (q 2 ) is sensitive to small φNN couplings. A complementary approach for understanding effects due to strangeness content and the Okubo-Zweig-Iizuka (OZI) rule is to investigate the electromagnetic structure of hyperons. We apply Sakurai close-quote s universality limit of the SU(3) F symmetry relations and a prescription based on the OZI rule to calculate the electromagnetic form factors of the baryon octet states (p,n,Λ,Σ + ,Σ 0 ,Σ - ,Ξ 0 ,Ξ - ) within the framework of an extended vector meson dominance model. To provide additional motivation for experimental investigation, we discuss the possibility of extracting the ratio G M Λ (q 2 )/G M ΣΛ (q 2 ) from the Λ/Σ polarization ratio in kaon electroproduction experiments. copyright 1996 The American Physical Society

  6. Electromagnetic properties of baryons

    Energy Technology Data Exchange (ETDEWEB)

    Haupt, C.

    2006-07-01

    Static observables of bound state systems in field theoretic descriptions are usually extracted from form factors in the limit of vanishing squared four-momentum transfer of the probing exchange particle. On the other hand, static properties in nonrelativistic quantum mechanics can be formulated by means of expectation values involving essentially scalar products of wave functions. The main objective of this work is to show that a synthesis of both approaches is indeed possible - at least if certain restrictions are made to the kind of interactions between the constituents of the bound system - leading to new insights into the structure of static properties. The focus lies especially on the charge radii and magnetic moments of baryons described within a covariant constituent quark model having its field theoretic foundations in the Bethe-Salpeter equation. The current matrix element in the Breit frame between the vertex functions is derived. The charge radius and magnetic moment of a bound three-fermion system is then derived by starting from their usual definition from form factors and in case of the charge radius also from the well-known radius of a charge distribution in classical electrodynamics. In both cases the static limit at the photon point is taken analytically and subsequently the integration over the relative energy variables is done. Finally the vertex functions are replaced by Salpeter amplitudes and the expression is symmetrized over the three fermions. The final results express the charge radius and magnetic moment of the three-fermion system as expectation values with respect to Salpeter amplitudes. The numerical implementation of the analytic results is done within a covariant constituent quark model with quark confinement and a residual instanton interaction accounting for the fine structure of the observed mass spectra. The Salpeter amplitudes which where obtained by solving the Salpeter equation are used to compute the expectation values of

  7. Electromagnetic corrections to baryon masses

    International Nuclear Information System (INIS)

    Durand, Loyal; Ha, Phuoc

    2005-01-01

    We analyze the electromagnetic contributions to the octet and decuplet baryon masses using the heavy-baryon approximation in chiral effective field theory and methods we developed in earlier analyses of the baryon masses and magnetic moments. Our methods connect simply to Morpurgo's general parametrization of the electromagnetic contributions and to semirelativistic quark models. Our calculations are carried out including the one-loop mesonic corrections to the basic electromagnetic interactions, so to two loops overall. We find that to this order in the chiral loop expansion there are no three-body contributions. The Coleman-Glashow relation and other sum rules derived in quark models with only two-body terms therefore continue to hold, and violations involve at least three-loop processes and can be expected to be quite small. We present the complete formal results and some estimates of the matrix elements here. Numerical calculations will be presented separately

  8. Baryon form factors in chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, B.; Meissner, U.G. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik

    2001-01-01

    We analyze the electromagnetic form factors of the ground state baryon octet to fourth order in relativistic baryon chiral perturbation theory. Predictions for the {sigma}{sup -} charge radius and the {lambda}-{sigma}{sup 0} transition moment are found to be in excellent agreement with the available experimental information. Furthermore, the convergence behavior of the hyperon charge radii is shown to be more than satisfactory. (orig.)

  9. Electromagnetic matrix elements in baryons

    International Nuclear Information System (INIS)

    Lipkin, H.J.; Moinester, M.A.

    1992-01-01

    Some simple symmetry relations between matrix elements of electromagnetic operators are investigated. The implications are discussed for experiments to study hyperon radiative transitions and polarizabilities and form factors. (orig.)

  10. Baryons electromagnetic mass splittings in potential models

    International Nuclear Information System (INIS)

    Genovese, M.; Richard, J.-M.; Silvestre-Brac, B.; Varga, K.

    1998-01-01

    We study electromagnetic mass splittings of charmed baryons. We point out discrepancies among theoretical predictions in non-relativistic potential models; none of these predictions seems supported by experimental data. A new calculation is presented

  11. Disentanglement of Electromagnetic Baryon Properties

    Science.gov (United States)

    Sadasivan, Daniel; Doring, Michael

    2017-01-01

    Through recent advances in experimental techniques, the precise extraction of the spectrum of baryonic resonances and their properties becomes possible. Helicity couplings at the resonance pole are fundamental parameters describing the electromagnetic properties of resonances and enabling the comparison of theoretical models with data. We have extracted them from experiments carried out at Jefferson Lab and other facilities using a multipole analysis within the Julich-Bonn framework. Special attention has been paid to the uncertainties and correlations of helicity couplings. Using the world data on the reaction γp -> ηp , we have calculated, for the first time, the covariance matrix. Our results are useful in several ways. They quantify uncertainties but also correlations of helicity couplings. Second, they can tell us quantitatively how useful a given polarization measurement is. Third, they can tell us how the measurement of a new observable would constrain and disentangle the resonance properties which could be helpful in the design of new experiments. Finally, on the subject of the missing resonance problem, model selection techniques and statistical tests allow us to quantify the significance of whether a resonance exists. Supported by NSF CAREER Grant No. PHY-1452055, NSF PIF Grant No. 1415459, by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177, and by Research Center Julich through the HPC grant jikp07.

  12. Electromagnetic properties of baryons in the constituent quark model

    International Nuclear Information System (INIS)

    Warns, M.

    1992-01-01

    The electromagnetic properties of baryons are investigated in the framework of a relativized quark model. The model includes beyond the usual single quark transition ansatz relativistic effects due to the strong interaction and confinement forces between the quarks. Furthermore the center-of-mass motion of the three-quark system is separated off in a Lorentz-invariant way. All relativistic correction terms are obtained by expanding the corresponding relativistic expressions in powers of the quark velocity. In this way recoil effects on the electromagnetic interaction between the photon and the baryon could be explicitly studied. Using the harmonic oscillator wavefunctions with the configuration mixing from the Isgur-Karl model, the form factors of the nucleon and the electromagnetic transition amplitudes both for longitudinally and transversely polarized photons are calculated for the most important baryon resonances. An extension to baryons involving strange quarks is also considered. Comparisons are made with the results of the nonrelativistic quark model and with some other approaches. (orig.)

  13. Unitarization of Koerner-Kuroda model of electromagnetic structure of octet 1/2+ baryons

    International Nuclear Information System (INIS)

    Dubnicka, S.; Dubnickova, A.Z.

    1994-10-01

    The Koerner-Kuroda model of the electromagnetic structure of octet 1/2 + baryons is restored on a more topical physical basis. Electromagnetic radii of baryons under consideration are calculated and compared with other model predictions. By an incorporation of a two-cut approximation of correct form factor analytic properties and nonzero vector-meson widths, the Koerner-Kuroda model is unitarized, providing in this manner imaginary parts of the octet 1/2 + baryon form factors to be nonzero just starting from a branch point corresponding to the lowest threshold. (author). 32 refs, 16 figs, 2 tabs

  14. Weak form factors of beauty baryons

    International Nuclear Information System (INIS)

    Ivanov, M.A.; Lyubovitskij, V.E.

    1992-01-01

    Full analysis of semileptonic decays of beauty baryons with J p =1/2 2 and J p =3/2 2 into charmed ones within the Quark Confinement Model is reported. Weak form factors and decay rates are calculated. Also the heavy quark limit m Q →∞ (Isgur-Wise symmetry) is examined. The weak heavy-baryon form factors in the Isgur-Wise limit and 1/m Q -corrections to them are computered. The Ademollo-Gatto theorem is spin-flavour symmetry of heavy quarks is checked. 33 refs.; 1 fig.; 9 tabs

  15. Electromagnetic properties of light and heavy baryons in the relativistic quark model

    International Nuclear Information System (INIS)

    Nicmorus Marinescu, Diana

    2007-01-01

    One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N→Δγ transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit within this

  16. Electromagnetic properties of light and heavy baryons in the relativistic quark model

    Energy Technology Data Exchange (ETDEWEB)

    Nicmorus Marinescu, Diana

    2007-06-14

    One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N{yields}{delta}{gamma} transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit

  17. Electromagnetic splitting for mesons and baryons using dressed constituent quarks

    International Nuclear Information System (INIS)

    Silvestre-Brac, Bernard; Brau, Fabian; Semay, Claude

    2003-01-01

    Electromagnetic splittings for mesons and baryons are calculated in a formalism where the constituent quarks are considered as dressed quasiparticles. The electromagnetic interaction, which contains coulomb, contact and hyperfine terms, is folded with the quark electrical density. Two different types of strong potentials are considered. Numerical treatment is done very carefully and several approximations are discussed in detail. Our model contains only one free parameter and the agreement with experimental data is reasonable although it seems very difficult to obtain a perfect description in any case

  18. On the electromagnetic properties of the baryon octet

    International Nuclear Information System (INIS)

    Leinweber, D.B.; Woloshyn, R.M.; Draper, T.

    1990-11-01

    A numerical simulation of quenched QCD on a 24x12x12x24 lattice at β=5.9 is used to calculate the electric and magnetic form factors of the baryon octet. Magnetic moments, electric radii, magnetic radii, and magnetic transition moments are extracted from the form factors. (Author) (4 refs., 4 figs.)

  19. Disconnected electromagnetic form factors

    International Nuclear Information System (INIS)

    Wilcox, Walter

    2001-01-01

    Preliminary results of a calculation of disconnected nucleon electromagnetic factors factors on the lattice are presented. The implementation of the numerical subtraction scheme is outlined. A comparison of results for electric and magnetic disconnected form factors on two lattice sizes with those of the Kentucky group is presented. Unlike previous results, the results found in this calculation are consistent with zero in these sectors

  20. Electromagnetic form factors

    International Nuclear Information System (INIS)

    Desplanques, B.

    1987-01-01

    Electromagnetic form factors, in first approximation, are sensitive to spatial distribution of nucleons and to their current. In second approximation, more precise effects are concerned, whose role is increasing with momentum transfer and participating essentially of short range nuclei description. They concern of course the nucleon-nucleon interaction while approaching each other and keeping their free-state identity, but also mutually polarizing one the other. In this last effect, radial and orbital excitations of nucleon, the nucleon mesonic cloud modification and the nucleon antinucleon pair excitation are included. In this paper, these contributions are discussed while trying to find the important elements for a good description of form factors. Current questions are also discussed. Light nuclei are essentially concerned [fr

  1. Nucleon Electromagnetic Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

    2007-10-01

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

  2. Chiral analysis of baryon form factors

    Energy Technology Data Exchange (ETDEWEB)

    Gail, T.A.

    2007-11-08

    This work presents an extensive theoretical investigation of the structure of the nucleon within the standard model of elementary particle physics. In particular, the long range contributions to a number of various form factors parametrizing the interactions of the nucleon with an electromagnetic probe are calculated. The theoretical framework for those calculations is chiral perturbation theory, the exact low energy limit of Quantum Chromo Dynamics, which describes such long range contributions in terms of a pion-cloud. In this theory, a nonrelativistic leading one loop order calculation of the form factors parametrizing the vector transition of a nucleon to its lowest lying resonance, the {delta}, a covariant calculation of the isovector and isoscalar vector form factors of the nucleon at next to leading one loop order and a covariant calculation of the isoscalar and isovector generalized vector form factors of the nucleon at leading one loop order are performed. In order to perform consistent loop calculations in the covariant formulation of chiral perturbation theory an appropriate renormalization scheme is defined in this work. All theoretical predictions are compared to phenomenology and results from lattice QCD simulations. These comparisons allow for a determination of the low energy constants of the theory. Furthermore, the possibility of chiral extrapolation, i.e. the extrapolation of lattice data from simulations at large pion masses down to the small physical pion mass is studied in detail. Statistical as well as systematic uncertainties are estimated for all results throughout this work. (orig.)

  3. Electromagnetic Hadronic Form-Factors

    International Nuclear Information System (INIS)

    Edwards, Robert G.

    2005-01-01

    We present a calculation of the nucleon electromagnetic form-factors as well as the pion and rho to pion transition form-factors in a hybrid calculation with domain wall valence quarks and improved staggered (Asqtad) sea quarks

  4. Differential forms on electromagnetic networks

    CERN Document Server

    Balasubramanian, N V; Sen Gupta, D P

    2013-01-01

    Differential Forms on Electromagnetic Networks deals with the use of combinatorial techniques in electrical circuit, machine analysis, and the relationship between circuit quantities and electromagnetic fields. The monograph is also an introduction to the organization of field equations by the methods of differential forms. The book covers topics such as algebraic structural relations in an electric circuit; mesh and node-pair analysis; exterior differential structures; generalized Stoke's theorem and tensor analysis; and Maxwell's electromagnetic equation. Also covered in the book are the app

  5. Low-energy analysis of the nucleon electromagnetic form factors

    International Nuclear Information System (INIS)

    Kubis, Bastian.; Meissner, Ulf-G.

    2001-01-01

    We analyze the electromagnetic form factors of the nucleon to fourth order in relativistic baryon chiral perturbation theory. We employ the recently proposed infrared regularization scheme and show that the convergence of the chiral expansion is improved as compared to the heavy-fermion approach. We also discuss the inclusion of vector mesons and obtain an accurate description of all four-nucleon form factors for momentum transfer squared up to Q 2 ≅0.4 GeV 2

  6. Neutron electromagnetic form factors

    International Nuclear Information System (INIS)

    Finn, J.M.; Madey, R.; Eden, T.; Markowitz, P.; Rutt, P.M.; Beard, K.; Anderson, B.D.; Baldwin, A.R.; Keane, D.; Manley, D.M.; Watson, J.W.; Zhang, W.M.; Kowalski, S.; Bertozzi, W.; Dodson, G.; Farkhondeh, M.; Dow, K.; Korsch, W.; Tieger, D.; Turchinetz, W.; Weinstein, L.; Gross, F.; Mougey, J.; Ulmer, P.; Whitney, R.; Reichelt, T.; Chang, C.C.; Kelly, J.J.; Payerle, T.; Cameron, J.; Ni, B.; Spraker, M.; Barkhuff, D.; Lourie, R.; Verst, S.V.; Hyde-Wright, C.; Jiang, W.-D.; Flanders, B.; Pella, P.; Arenhoevel, H.

    1992-01-01

    Nucleon form factors provide fundamental input for nuclear structure and quark models. Current knowledge of neutron form factors, particularly the electric form factor of the neutron, is insufficient to meet these needs. Developments of high-duty-factor accelerators and polarization-transfer techniques permit new experiments that promise results with small sensitivities to nuclear models. We review the current status of the field, our own work at the MIT/Bates linear accelerator, and future experimental efforts

  7. Electromagnetic form factors of hadrons

    International Nuclear Information System (INIS)

    Zidell, V.S.

    1976-01-01

    A vector meson dominance model of the electromagnetic form factors of hadrons is developed which is based on the use of unstable particle propagators. Least-square fits are made to the proton, neutron, pion and kaon form factor data in both the space and time-like regions. A good fit to the low-energy nucleon form factor data is obtained using only rho, ω, and phi dominance, and leads to a determination of the vector meson resonance parameters in good agreement with experiment. The nucleon-vector meson coupling constants obey simple sum rules indicating that there exists no hard core contribution to the form factors within theoretical uncertainties. The prediction for the electromagnetic radii of the proton is in reasonable agreement with recent experiments. The pion and kaon charge form factors as deduced from the nucleon form factors assuming vector meson universality are compared to the data. The pion form factor agrees with the data in both the space and time-like regions. The pion charge radius is in agreement with the recent Dubna result, but the isovector P-wave pion-pion phase shift calculated from the theory disagrees with experiment. A possible contribution to the form factors from a heavy rho meson is also evaluated

  8. From quarks and gluons to baryon form factors.

    Science.gov (United States)

    Eichmann, Gernot

    2012-04-01

    I briefly summarize recent results for nucleon and [Formula: see text] electromagnetic, axial and transition form factors in the Dyson-Schwinger approach. The calculation of the current diagrams from the quark-gluon level enables a transparent discussion of common features such as: the implications of dynamical chiral symmetry breaking and quark orbital angular momentum, the timelike structure of the form factors, and their interpretation in terms of missing pion-cloud effects.

  9. Electromagnetic form factors of the Ω- in lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.; Korzec, T.; Koutsou, G.; Negele, J. W.; Proestos, Y.

    2010-01-01

    We present results on the omega baryon (Ω - ) electromagnetic form factors using N f =2+1 domain-wall fermion configurations for three pion masses in the range of about 350 to 300 MeV. We compare results obtained using domain-wall fermions with those of a mixed-action (hybrid) approach, which combines domain-wall valence quarks on staggered sea quarks, for a pion mass of about 350 MeV. We pay particular attention in the evaluation of the subdominant electric quadrupole form factor to sufficient accuracy to exclude a zero value, by constructing a sequential source that isolates it from the dominant form factors. The Ω - magnetic moment, μ Ω - , and the electric charge and magnetic radius, E0/M1 2 >, are extracted for these pion masses. The electric quadrupole moment is determined for the first time using dynamical quarks.

  10. 1/M corrections to baryonic form factors in the quark model

    International Nuclear Information System (INIS)

    Cheng, H.; Tseng, B.

    1996-01-01

    Weak current-induced baryonic form factors at zero recoil are evaluated in the rest frame of the heavy parent baryon using the nonrelativistic quark model. Contrary to previous similar work in the literature, our quark model results do satisfy the constraints imposed by heavy quark symmetry for heavy-heavy baryon transitions at the symmetric point v·v'=1 and are in agreement with the predictions of the heavy quark effective theory for antitriplet-antitriplet heavy baryon form factors at zero recoil evaluated to order 1/m Q . Furthermore, the quark model approach has the merit that it is applicable to any heavy-heavy and heavy-light baryonic transitions at maximum q 2 . Assuming a dipole q 2 behavior, we have applied the quark model form factors to nonleptonic, semileptonic, and weak radiative decays of the heavy baryons. It is emphasized that the flavor suppression factor occurring in many heavy-light baryonic transitions, which is unfortunately overlooked in most literature, is very crucial towards an agreement between theory and experiment for the semileptonic decay Λ c →Λe + ν e . Predictions for the decay modes Λ b →J/ψΛ, Λ c →pφ, Λ b →Λγ, Ξ b →Ξγ, and for the semileptonic decays of Λ b , Ξ b, c, and Ω b are presented. copyright 1996 The American Physical Society

  11. Delta and Omega electromagnetic form factors in a Dyson-Schwinger/Bethe-Salpeter approach

    Energy Technology Data Exchange (ETDEWEB)

    Diana Nicmorus, Gernot Eichmann, Reinhard Alkofer

    2010-12-01

    We investigate the electromagnetic form factors of the Delta and the Omega baryons within the Poincare-covariant framework of Dyson-Schwinger and Bethe-Salpeter equations. The three-quark core contributions of the form factors are evaluated by employing a quark-diquark approximation. We use a consistent setup for the quark-gluon dressing, the quark-quark bound-state kernel and the quark-photon interaction. Our predictions for the multipole form factors are compatible with available experimental data and quark-model estimates. The current-quark mass evolution of the static electromagnetic properties agrees with results provided by lattice calculations.

  12. Calculation of nucleon electromagnetic form factors

    International Nuclear Information System (INIS)

    Renner, D.B.; Brower, R.; Dolgov, D.; Eicker, N.; Lippert, Th.; Negele, J.W.; Pochinsky, A.; Schilling, K.

    2003-01-01

    The formalism is developed to express nucleon matrix elements of the electromagnetic current in terms of form factors consistent with the translational, rotational, and parity symmetries of a cubic lattice. We calculate the number of these form factors and show how appropriate linear combinations approach the continuum limit

  13. Baryons on the lattice

    International Nuclear Information System (INIS)

    Bali, G.S.

    2005-01-01

    I comment on progress of lattice QCD techniques and calculations. Recent results on pentaquark masses as well as of the spectrum of excited baryons are summarized and interpreted. The present state of calculations of quantities related to the nucleon structure and of electromagnetic transition form factors is surveyed

  14. Differential form representation of stochastic electromagnetic fields

    Directory of Open Access Journals (Sweden)

    M. Haider

    2017-09-01

    Full Text Available In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.

  15. Differential form representation of stochastic electromagnetic fields

    Science.gov (United States)

    Haider, Michael; Russer, Johannes A.

    2017-09-01

    In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM) is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.

  16. Electric form factors of the octet baryons from lattice QCD and chiral extrapolation

    International Nuclear Information System (INIS)

    Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M.; Pleiter, D.; Stueben, H.

    2014-03-01

    We apply a formalism inspired by heavy baryon chiral perturbation theory with finite-range regularization to dynamical 2+1-flavor CSSM/QCDSF/UKQCD Collaboration lattice QCD simulation results for the electric form factors of the octet baryons. The electric form factor of each octet baryon is extrapolated to the physical pseudoscalar masses, after finite-volume corrections have been applied, at six fixed values of Q 2 in the range 0.2-1.3 GeV 2 . The extrapolated lattice results accurately reproduce the experimental form factors of the nucleon at the physical point, indicating that omitted disconnected quark loop contributions are small. Furthermore, using the results of a recent lattice study of the magnetic form factors, we determine the ratio μ p G E p /G M p . This quantity decreases with Q 2 in a way qualitatively consistent with recent experimental results.

  17. Chiral-model of weak-interaction form factors and magnetic moments of octet baryons

    International Nuclear Information System (INIS)

    Kubodera, K.; Kohyama, Y.; Tsushima, K.; Yamaguchi, T.

    1989-01-01

    For baryon spectroscopy, magnetic moments and weak interaction form factors provide valuable information, and the impressive amount of available experimental data on these quantities for the octet baryons invites detailed investigations. The authors of this paper have made extensive studies of the weak-interaction form factors and magnetic moments of the octet baryons within the framework of the volume-type cloudy-bag model (v-type CBM). The clouds of all octet mesons have been included. Furthermore, we have taken into account in a unified framework various effects that were so far only individually discussed in the literature. Thus, the gluonic effects, center-of-mass (CM0 corrections, and recoil corrections have been included). In this talk, after giving a brief summary of some salient features of the results, we discuss a very interesting application of our model to the problem of the spin content of nucleons

  18. Nucleon electromagnetic form factors with Wilson fermions

    International Nuclear Information System (INIS)

    Goeckeler, M.; Haegler, P.; Horsley, R.

    2007-10-01

    The nucleon electromagnetic form factors continue to be of major interest for experimentalists and phenomenologists alike. They provide important insights into the structure of nuclear matter. For a range of interesting momenta they can be calculated on the lattice. The limiting factor continues to be the value of the pion mass. We present the latest results of the QCDSF collaboration using gauge configurations with two dynamical, non-perturbatively improved Wilson fermions at pion masses as low as 350 MeV. (orig.)

  19. Nucleon electromagnetic form factors with Wilson fermions

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)

    2007-10-15

    The nucleon electromagnetic form factors continue to be of major interest for experimentalists and phenomenologists alike. They provide important insights into the structure of nuclear matter. For a range of interesting momenta they can be calculated on the lattice. The limiting factor continues to be the value of the pion mass. We present the latest results of the QCDSF collaboration using gauge configurations with two dynamical, non-perturbatively improved Wilson fermions at pion masses as low as 350 MeV. (orig.)

  20. Electromagnetic form factors of a massive neutrino

    International Nuclear Information System (INIS)

    Dvornikov, M.S.; Studenikin, A.I.

    2004-01-01

    Electromagnetic form factors of a massive neutrino are studied in a minimally extended standard model in an arbitrary R ξ gauge and taking into account the dependence on the masses of all interacting particles. The contribution from all Feynman diagrams to the electric, magnetic, and anapole form factors, in which the dependence of the masses of all particles as well as on gauge parameters is accounted for exactly, are obtained for the first time in explicit form. The asymptotic behavior of the magnetic form factor for large negative squares of the momentum of an external photon is analyzed and the expression for the anapole moment of a massive neutrino is derived. The results are generalized to the case of mixing between various flavors of the neutrino. Explicit expressions are obtained for the electric, magnetic, and electric dipole and anapole transitional form factors as well as for the transitional electric dipole moment

  1. Recent Studies of Nucleon Electromagnetic Form Factors

    International Nuclear Information System (INIS)

    Gilad, Shalev

    2010-01-01

    The electromagnetic form factors of nucleons are fundamental quantities in nucleon structure. As such, they have been studied extensively both theoretically and experimentally. Significant progress has been made with new measurements at Jlab, MAMI and MIT-Bates, with emphases on expanding the momentum-transfer range and on higher precision. In this paper, we describe the status of this field and present new results from measurements at both low and high momentum transfers. We also compare the experimental data to model predictions, and mention possible implications of the new results to other fields.

  2. Medium modifications of nucleon electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Horikawa, T. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Bentz, W. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan)]. E-mail: bentz@keyaki.cc.u-tokai.ac.jp

    2005-11-28

    We use the Nambu-Jona-Lasinio model as an effective quark theory to investigate the medium modifications of the nucleon electromagnetic form factors. By using the equation of state of nuclear matter derived in this model, we discuss the results based on the naive quark-scalar diquark picture, the effects of finite diquark size, and the meson cloud around the constituent quarks. We apply this description to the longitudinal response function for quasielastic electron scattering. RPA correlations, based on the nucleon-nucleon interaction derived in the same model, are also taken into account in the calculation of the response function.

  3. Electromagnetic form factors of composite systems

    International Nuclear Information System (INIS)

    Nowak, E.J.

    1978-01-01

    Electromagnetic form factors are examined for a spin-zero, two-body composite system with emphasis on the case of small momentum transfer and/or deep (relativistic) binding. Perturbation theory calculations are first performed using spin-zero and then spin-one-half constituents. A dispersion representation of the bound-state vertex function is conjectured first for scalar and then for fermion constituents. Then a relativistic effective range approximation (RERA) is developed for each case and applied to the calculation of the electromagnetic form factor. The approach is applied to the study of the charge radii of the K 0 and K + mesons. The K/sub l3/ form factor is calculated in the fermion constituent RERA model, and restrictions are imposed on the model parameters from available experimental data. With these restrictions the limits 0.24fm less than or equal to √[abs. value ( 2 >/sub K 0 /)] less than or equal to = 0.36fm and 0.66fm less than or equal to = √( 2 >/sub K + /) less than or equal to 0.79fm are obtained for the kaon charge radii, and -.22 less than or equal to xi less than or equal to -.13 is found for the ratio of the neutral to charged kaon charge radius squared

  4. Nucleon electromagnetic form factors from lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.; Koutsou, G.; Negele, J. W.; Tsapalis, A.

    2006-01-01

    We evaluate the isovector nucleon electromagnetic form factors in quenched and unquenched QCD on the lattice using Wilson fermions. In the quenched theory we use a lattice of spatial size 3 fm at β=6.0 enabling us to reach low momentum transfers and a lowest pion mass of about 400 MeV. In the unquenched theory we use two degenerate flavors of dynamical Wilson fermions on a lattice of spatial size 1.9 fm at β=5.6 and lowest pion mass of about 380 MeV enabling comparison with the results obtained in the quenched theory. that unquenching effects are small for the pion masses considered in this work. We compare our lattice results to the isovector part of the experimentally measured form factors

  5. Electric form factors of the octet baryons from lattice QCD and chiral extrapolation

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M. [Adelaide Univ., SA (Australia). ARC Centre of Excellence in Particle Physics at the Terascale and CSSM; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich (Germany). JSC; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Collaboration: CSSM and QCDSF/UKQCD Collaborations

    2014-03-15

    We apply a formalism inspired by heavy baryon chiral perturbation theory with finite-range regularization to dynamical 2+1-flavor CSSM/QCDSF/UKQCD Collaboration lattice QCD simulation results for the electric form factors of the octet baryons. The electric form factor of each octet baryon is extrapolated to the physical pseudoscalar masses, after finite-volume corrections have been applied, at six fixed values of Q{sup 2} in the range 0.2-1.3 GeV{sup 2}. The extrapolated lattice results accurately reproduce the experimental form factors of the nucleon at the physical point, indicating that omitted disconnected quark loop contributions are small. Furthermore, using the results of a recent lattice study of the magnetic form factors, we determine the ratio μ{sub p}G{sub E}{sup p}/G{sub M}{sup p}. This quantity decreases with Q{sup 2} in a way qualitatively consistent with recent experimental results.

  6. Strange and charge symmetry violating electromagnetic form factors of the nucleon

    International Nuclear Information System (INIS)

    Shanahan, P.E.

    2016-01-01

    We summarise recent work based on lattice QCD simulations of the electromagnetic form factors of the octet baryons from the CSSM/QCDSF/UKQCD collaborations. After an analysis of the simulation results using techniques to approach the infinite volume limit and the physical pseudoscalar masses at non-zero momentum transfer, the extrapolated proton and neutron form factors are found to be in excellent agreement with those extracted from experiment. Given the success of these calculations, we describe how the strange electromagnetic form factors may be estimated from these results under the same assumption of charge symmetry used in experimental determinations of those quantities. Motivated by the necessity of that assumption, we explore a method for determining the size of charge symmetry breaking effects using the same lattice results. (author)

  7. The electromagnetic Sigma-to-Lambda hyperon transition form factors at low energies

    International Nuclear Information System (INIS)

    Granados, Carlos; Leupold, Stefan; Perotti, Elisabetta

    2017-01-01

    Using dispersion theory the low-energy electromagnetic form factors for the transition of a Sigma to a Lambda hyperon are related to the pion vector form factor. The additionally required input, i.e. the two-pion-Sigma-Lambda amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the baryons from the octet and optionally from the decuplet. Pion rescattering is again taken into account by dispersion theory. It turns out that the inclusion of decuplet baryons is not an option but a necessity to obtain reasonable results. The electric transition form factor remains very small in the whole low-energy region. The magnetic transition form factor depends strongly on one not very well determined low-energy constant of the NLO Lagrangian. One obtains reasonable predictive power if this low-energy constant is determined from a measurement of the magnetic transition radius. Such a measurement can be performed at the future Facility for Antiproton and Ion Research (FAIR). (orig.)

  8. The electromagnetic Sigma-to-Lambda hyperon transition form factors at low energies

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos [Uppsala Universitet, Institutionen foer Fysik och Astronomi (Sweden); Jefferson Lab, Newport News, VA (United States); Leupold, Stefan; Perotti, Elisabetta [Uppsala Universitet, Institutionen foer Fysik och Astronomi (Sweden)

    2017-06-15

    Using dispersion theory the low-energy electromagnetic form factors for the transition of a Sigma to a Lambda hyperon are related to the pion vector form factor. The additionally required input, i.e. the two-pion-Sigma-Lambda amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the baryons from the octet and optionally from the decuplet. Pion rescattering is again taken into account by dispersion theory. It turns out that the inclusion of decuplet baryons is not an option but a necessity to obtain reasonable results. The electric transition form factor remains very small in the whole low-energy region. The magnetic transition form factor depends strongly on one not very well determined low-energy constant of the NLO Lagrangian. One obtains reasonable predictive power if this low-energy constant is determined from a measurement of the magnetic transition radius. Such a measurement can be performed at the future Facility for Antiproton and Ion Research (FAIR). (orig.)

  9. General analysis of weak decay form factors in heavy to heavy and heavy to light baryon transitions

    International Nuclear Information System (INIS)

    Hussain, F.; Liu Dongsheng; Kraemer, M.; Koerner, J.G.; Tawfiq, S.

    1992-01-01

    We present a complete analysis of the heavy to heavy and heavy to light baryon semi-leptonic decays in the heavy quark effective theory within the framework of a Bethe-Salpeter (BS) approach and demonstrate the equivalence of this approach to other work in the field. We present in a compact form the baryon BS amplitudes which incorporate the symmetries manifest in the heavy quark limit and which also show clearly the light quark dynamics. A similar form of the BS amplitude is presented for light baryons. Using the BS amplitudes, the heavy to heavy and heavy to light semi-leptonic baryon decays are considered. As expected there is a dramatic reduction in the number of form factors. An advantage of our BS approach is demonstrated where the form factors are written as loop integrals which in principle can be calculated. (orig.)

  10. Baryon structure from lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.

    2009-01-01

    We present recent lattice results on the baryon spectrum, nucleon electromagnetic and axial form factors, nucleon to Δ transition form factors as well as the Δ electromagnetic form factors. The masses of the low lying baryons and the nucleon form factors are calculated using two degenerate flavors of twisted mass fermions down to pion mass of about 270 MeV. We compare to the results of other collaborations. The nucleon to Δ transition and Δ form factors are calculated in a hybrid scheme, which uses staggered sea quarks and domain wall valence quarks. The dominant magnetic dipole nucleon to Δ transition form factor is also evaluated using dynamical domain wall fermions. The transverse density distributions of the Δ in the infinite momentum frame are extracted using the form factors determined from lattice QCD. (author)

  11. arXiv Electromagnetic dipole moments of charged baryons with bent crystals at the LHC

    CERN Document Server

    Bagli, E.; Cavoto, G.; Guidi, V.; Henry, L.; Marangotto, D.; Martinez Vidal, F.; Mazzolari, A.; Merli, A.; Neri, N.; Ruiz Vidal, J.

    2017-12-05

    We propose a unique program of measurements of electric and magnetic dipole moments of charm, beauty and strange charged baryons at the LHC, based on the phenomenon of spin precession of channeled particles in bent crystals. Studies of crystal channeling and spin precession of positively- and negatively-charged particles are presented, along with feasibility studies and expected sensitivities for the proposed experiment using a layout based on the LHCb detector.

  12. Electromagnetic dipole moments of charged baryons with bent crystals at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bagli, E.; Bandiera, L.; Guidi, V.; Mazzolari, A. [Universita di Ferrara, Ferrara (Italy); INFN, Sezione di Ferrara (Italy); Cavoto, G. [' ' Sapienza' ' Universita di Roma, Rome (Italy); INFN, Sezione di Roma (Italy); Henry, L.; Martinez Vidal, F.; Ruiz Vidal, J. [IFIC, Universitat de Valencia-CSIC, Valencia (Spain); Marangotto, D. [Universita di Milano, Milan (Italy); INFN, Sezione di Milano (Italy); Merli, A.; Neri, N. [Universita di Milano, Milan (Italy); CERN, Geneva (Switzerland); INFN, Sezione di Milano (Italy)

    2017-12-15

    We propose a unique program of measurements of electric and magnetic dipole moments of charm, beauty and strange charged baryons at the LHC, based on the phenomenon of spin precession of channeled particles in bent crystals. Studies of crystal channeling and spin precession of positively- and negatively-charged particles are presented, along with feasibility studies and expected sensitivities for the proposed experiment using a layout based on the LHCb detector. (orig.)

  13. Baryons with functional methods

    International Nuclear Information System (INIS)

    Fischer, Christian S.

    2017-01-01

    We summarise recent results on the spectrum of ground-state and excited baryons and their form factors in the framework of functional methods. As an improvement upon similar approaches we explicitly take into account the underlying momentum-dependent dynamics of the quark-gluon interaction that leads to dynamical chiral symmetry breaking. For light octet and decuplet baryons we find a spectrum in very good agreement with experiment, including the level ordering between the positive- and negative-parity nucleon states. Comparing the three-body framework with the quark-diquark approximation, we do not find significant differences in the spectrum for those states that have been calculated in both frameworks. This situation is different in the electromagnetic form factor of the Δ, which may serve to distinguish both pictures by comparison with experiment and lattice QCD.

  14. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    International Nuclear Information System (INIS)

    Xu Da; Liu Xuesong; Fang Kun; Fang Hongyuan

    2010-01-01

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  15. Infrared photons and gluons and the electromagnetic quark form factor

    International Nuclear Information System (INIS)

    Scholz, B.

    1982-01-01

    A method for a consistent treatment of the infrared behaviour of QED and QCD is presented. As an application of the method the calculation of the electromagnetic quark form factor is discussed. (M.F.W.)

  16. Calculations of electromagnetic nucleon form factors and electroexcitation amplitudes of isobars

    International Nuclear Information System (INIS)

    Warns, M.; Schroeder, H.; Pfeil, W.; Rollnik, H.

    1989-03-01

    In this paper, we present numerical results for electroproduction amplitudes of proton resonances and electromagnetic nucleon form factors calculated in a relativized quark model. Interactions with both transversely and longitudinally polarized virtual photons were considered. Contributions of the different effects included in our approach have been analysed through a sample comparison with the available data. We also discuss the validity of the usual single-quark transition ansatz and possible parametrizations of the potential acting between the constituent quarks of the baryon. Impressive agreement is obtained with the nucleon form factor data up to squared momentum transfers of 2.5 GeV 2 , but still some problems remain with the Δ(1232) and higher resonances. (orig.)

  17. Low-energy analysis of the nucleon electromagnetic form factors[12.39.Fe; 13.40.Gp; 14.20.Dh; Nucleon electromagnetic form factors; Chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, Bastian. E-mail: b.kubis@fz-juelich.de; Meissner, Ulf-G. E-mail: Ulf-G.Meissner@fz-juelich.de

    2001-01-01

    We analyze the electromagnetic form factors of the nucleon to fourth order in relativistic baryon chiral perturbation theory. We employ the recently proposed infrared regularization scheme and show that the convergence of the chiral expansion is improved as compared to the heavy-fermion approach. We also discuss the inclusion of vector mesons and obtain an accurate description of all four-nucleon form factors for momentum transfer squared up to Q{sup 2}{approx_equal}0.4 GeV{sup 2}.

  18. Baryonic Dark Matter

    OpenAIRE

    Silk, Joseph

    1994-01-01

    In the first two of these lectures, I present the evidence for baryonic dark matter and describe possible forms that it may take. The final lecture discusses formation of baryonic dark matter, and sets the cosmological context.

  19. CEBAF at higher energies and the kaon electromagnetic form factor

    Energy Technology Data Exchange (ETDEWEB)

    Baker, O.K.

    1994-04-01

    The electromagnetic production of strangeness, the physics of exciting systems having strangeness degrees of freedom (production of hadrons with one or more strange constituent quarks) using electromagnetic probes (real or virtual photons), is one of the frontier areas of research which will be investigated at the Continuous Electron Beam Accelerator Facility (CEBAF) when it becomes operational. CEBAF is expected to have an important impact upon this field of research using its specialized set of detection instruments and high quality electron beam. This paper focusses upon one aspect of the associated production of strangeness - the determination of the kaon electromagnetic form factor at high squared momentum transfers.

  20. On conservation of the baryon chirality in the processes with large momentum transfer

    International Nuclear Information System (INIS)

    Ioffe, B.L.

    1976-01-01

    The hypothesis of the baryon chirality conservation in the processes with large momentum transfer is suggested and some arguments in its favour are made. Experimental implicatiosns of this assumption for weak and electromagnetic form factors of transitions in the baryon octet and of transitions N → Δ, N → Σsup(*) are considered

  1. Weak electric and magnetic form factors for semileptonic baryon decays in an independent-quark model

    International Nuclear Information System (INIS)

    Barik, N.; Dash, B.K.; Das, M.

    1985-01-01

    Weak electric and magnetic form factors for semileptonic baryon decays are calculated in a relativistic quark model based on the Dirac equation with the independent-quark confining potential of the form (1+γ 0 )V(r). The values obtained for (g 2 /g 1 ), for various decay modes in a model with V(r) = a'r 2 , are roughly of the same order as those predicted in the MIT bag model. However in a similar model with V(r) = (a/sup nu+1/r/sup ν/+V 0 ), the (g 2 /g 1 ) values agree with the nonrelativistic results of Donoghue and Holstein. Incorporating phenomenologically the effect of nonzero g 2 in the ratio (g 1 /f 1 ), we have estimated the values for (f 2 /f 1 ) for various semileptonic transitions. It is observed that SU(3)-symmetry breaking does not generate significant departures in (f 2 /f 1 ) values from the corresponding Cabibbo values

  2. Effects of an electromagnetic quark form factor on meson properties

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.

    2002-01-01

    A form factor is introduced in the quark electromagnetic current. Its effect is analyzed on charge mean square radii and form factors in the mesonic sector. The decay of a vector meson into lepton-antilepton pair is also affected. Two different expressions for the form factors, and two different types of quark potential are tested and some relativistic kinematical corrections are proposed. In any case the introduction of a quark form factor greatly improves the agreement with experimental data

  3. Perturbative QCD and electromagnetic form factors

    International Nuclear Information System (INIS)

    Carlson, C.E.; Gross, F.

    1987-01-01

    We calculate nucleon magnetic form factors using perturbative QCD for several distribution amplitudes including a general one given in terms of Appell polynomials. We find that the magnitude and sign of both nucleon magnetic form factors can be explained within perturbative QCD. The observed normalization of G/sub Mp/ requires that the distribution amplitude be broader than its superhigh momentum transfer limit, and the G/sub Mn//G/sub Mp/ data may require the distribution amplitude to be asymmetric, in accord with distribution amplitudes derived from QCD sum rules. Some speculation as to how an asymmetric distribution amplitude can come about is offered. Finally, we show that the soft contributions corresponding to the particular distribution amplitudes we use need not be bigger than the data. 16 refs., 6 figs

  4. Comments on electromagnetic form factors of the nucleon

    International Nuclear Information System (INIS)

    Sachs, R.G.; Wali, K.C.

    1989-01-01

    This paper draws the concept of nucleon form factors further to consider the electromagnetic aspect based on the magnetic moment of the nucleon. These are seen as valid physical interpretations of form factors in electron-nucleon interactions. A linear combination of two functions, associated with charge radius, is derived, which agreed well with experimental results. The paper also expands the specific form to include relativistic cases and consider appropriate frames of reference. (UK)

  5. Asymptotical behaviour of pion electromagnetic form factor in QCD

    International Nuclear Information System (INIS)

    Efremov, A.V.; Radyushkin, A.V.

    1978-01-01

    In the framework of the renormalizable quantum field theory a new approach is developed to the investigation of asymptotical behaviour of two-particle bound state electromagnetic form factor. It is shown that the behaviour of the pion EM form factor in quantum chromodynamics at sufficiently large momentum transfers is controlled by the short-distance dynamics only. The formula is obtained which expresses the asymptotical behaviour of the pion form factor in terms of the fundamental constants of the theory

  6. Electromagnetic form factors in the light-front dynamics

    International Nuclear Information System (INIS)

    Karmanov, V.A.; Smirnov, A.V.

    1992-01-01

    It is shown that the electromagnetic vertex of a nucleus (and of any bound system), expressed through the wave function in the light-front dynamics at relativistic values of momentum transfer, contains a contribution of nonphysical form factors which increases the total number of invariant form factors (for the deuteron from 3 up to 11). This fact explains an ambiguity in the form factors calculated previously. The physical and nonphysical form factors are covariantly separated. Explicit expressions for physical form factors of systems with spin 0, 1/2 and 1 through the vertex functions are obtained. (orig.)

  7. Strange nucleon electromagnetic form factors from lattice QCD

    Science.gov (United States)

    Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, C.; Koutsou, G.; Avilés-Casco, A. Vaquero

    2018-05-01

    We evaluate the strange nucleon electromagnetic form factors using an ensemble of gauge configurations generated with two degenerate maximally twisted mass clover-improved fermions with mass tuned to approximately reproduce the physical pion mass. In addition, we present results for the disconnected light quark contributions to the nucleon electromagnetic form factors. Improved stochastic methods are employed leading to high-precision results. The momentum dependence of the disconnected contributions is fitted using the model-independent z-expansion. We extract the magnetic moment and the electric and magnetic radii of the proton and neutron by including both connected and disconnected contributions. We find that the disconnected light quark contributions to both electric and magnetic form factors are nonzero and at the few percent level as compared to the connected. The strange form factors are also at the percent level but more noisy yielding statistical errors that are typically within one standard deviation from a zero value.

  8. Baryonic and Non-Baryonic Dark Matter

    OpenAIRE

    Carr, Bernard

    2000-01-01

    Cosmological nucleosynthesis calculations imply that there should be both non-baryonic and baryonic dark matter. Recent data suggest that some of the non-baryonic dark matter must be "hot" (i.e. massive neutrinos) and there may also be evidence for "cold" dark matter (i.e. WIMPs). If the baryonic dark matter resides in galactic halos, it is likely to be in the form of compact objects (i.e. MACHOs) and these would probably be the remnants of a first generation of pregalactic or protogalactic P...

  9. Baryon structure

    International Nuclear Information System (INIS)

    Morsch, H.P.; Forschungszentrum Juelich GmbH

    1993-01-01

    A brief review on the theoretical and experimental situation of baryon spectroscopy is first given. Then, the radial structure of baryons, related to the ground state form factors and the baryonic compressibility, is discussed. An experiment has been performed at Saturne laboratory (France) in which for the first time a compression of the nucleon is observed, exciting the P 11 (1440 MeV) resonance (Roper resonance) by α-particles. The analysis of the data indicates that this excitation covers a large fraction of the available monopole strength in the nucleon. The derived compressibility is discussed as well as the consequence for other fields, as nuclear medium effects on baryon properties, high density phenomena in nuclear collisions as well as colour transparency. In the last point the spin-flip structure of the P 11 (1440 MeV) resonance is discussed. The possibility to determine isoscalar spin-flip strength by polarized deuteron scattering is contrasted with first preliminary results from photon-induced reactions studied at Mainz which indicate a non-negligible M1 excitation of the Roper resonance. (author) 10 figs., 31 refs

  10. Describing the nucleon electromagnetic form factors at high momentum transfers

    International Nuclear Information System (INIS)

    Theussl, L.; Desplanques, B.; Silvestre-Brac, B.; Varga, K.

    1999-01-01

    Electromagnetic form factors of the nucleon are calculated within the framework of a non-relativistic constituent-quark model. The emphasis is put on the reliability and accuracy of present day numerical methods used to solve the three-body problem. The high-q 2 behaviour of the form factors is determined by the form of the wave function at short distances and, due to the small absolute values that one deals with, an accurate solution is essential. Refs. 5, figs. 2 (author)

  11. QCD constraints for the electromagnetic form factor of the pion

    International Nuclear Information System (INIS)

    Machet, B.

    1980-07-01

    Using the modulus representation, we derive constraints for the behaviour of the electromagnetic form factor of the pion in the time like region [1 GeV 2 , + infinity[, from information given by perturbative QCD in the space like region [-μ 2 , - infinity[. A phenomenological μ dependent upper bound for the exponent of the first non leading logarithmic correction is deduced. Restrictions and problems of the method are discussed

  12. Excited baryon form-factors at high momentum transfer at CEBAF at higher energies

    Energy Technology Data Exchange (ETDEWEB)

    Stoler, P. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1994-04-01

    The possibilities of measuring the properties of excited nucleons at high Q{sup 2} by means of exclusive single meson production at CEBAF with an electron energy of 8 GeV is considered. The motivation is to access short range phenomena in baryon structure, and to investigate the transition from the low Q{sup 2} non-perturbative QCD regime, where constituent quark models are valid, to higher Q{sup 2} where it is believed perturbative QCD plays an increasingly important role. It is found that high quality baryon decay angular distributions can be obtained for the most prominent states up to Q{sup 2} {approximately} 12 GeV{sup 2}/c{sup 2} using a set of moderate resolution, large solid angle magnetic spectrometers.

  13. Dispersion-theoretical analysis of the nucleon electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Belushkin, M.

    2007-09-29

    The structure of the proton and the neutron is of fundamental importance for the study of the strong interaction dynamics over a wide range of momentum transfers. The nucleon form factors encode information on the internal structure of the nucleon as probed by the electromagnetic interaction, and, to a certain extent, reflect the charge and magnetisation distributions within the proton and the neutron. In this thesis we report on our investigation of the electromagnetic form factors of the proton and the neutron with dispersion relation techniques, including known experimental input on the {pi}{pi}, K anti K and the {rho}{pi} continua and perturbative QCD constraints. We include new experimental data on the pion form factor and the nucleon form factors in our simultaneous analysis of all four form factors in both the space- and the timelike regions for all momentum transfers, and perform Monte- Carlo sampling in order to obtain theoretical uncertainty bands. Finally, we discuss the implications of our results on the pion cloud of the nucleon, the nucleon radii and the Okubo-Zweig-Iizuka rule, and present our results of a model-independent approach to estimating two-photon effects in elastic electron-proton scattering. (orig.)

  14. Dispersion-theoretical analysis of the nucleon electromagnetic form factors

    International Nuclear Information System (INIS)

    Belushkin, M.

    2007-01-01

    The structure of the proton and the neutron is of fundamental importance for the study of the strong interaction dynamics over a wide range of momentum transfers. The nucleon form factors encode information on the internal structure of the nucleon as probed by the electromagnetic interaction, and, to a certain extent, reflect the charge and magnetisation distributions within the proton and the neutron. In this thesis we report on our investigation of the electromagnetic form factors of the proton and the neutron with dispersion relation techniques, including known experimental input on the ππ, K anti K and the ρπ continua and perturbative QCD constraints. We include new experimental data on the pion form factor and the nucleon form factors in our simultaneous analysis of all four form factors in both the space- and the timelike regions for all momentum transfers, and perform Monte- Carlo sampling in order to obtain theoretical uncertainty bands. Finally, we discuss the implications of our results on the pion cloud of the nucleon, the nucleon radii and the Okubo-Zweig-Iizuka rule, and present our results of a model-independent approach to estimating two-photon effects in elastic electron-proton scattering. (orig.)

  15. Quark-diquark approximation of the three-quark structure of baryons in the quark confinement model

    International Nuclear Information System (INIS)

    Efimov, G.V.; Ivanov, M.A.; Lyubovitskij, V.E.

    1990-01-01

    Octet (1 + /2) and decuplet (3 + /2) of baryons as relativistic three-quark states are investigated in the quark confinement model (QCM), the relativistic quark model, based on some assumptions about hadronization and quark confinement. The quark-diquark approximation of the three-quark structure of baryons is proposed. In the framework of this approach the description of the main low-energy characteristics of baryons as magnetic moments, electromagnetic radii and form factors, ratio of axial and vector constants in semileptonic baryon octet decays, strong form factors and decay widths is given. The obtained results are in agreement with experimental data. 31 refs.; 4 figs.; 5 tabs

  16. Electromagnetic form factors at large momenta from lattice QCD

    Science.gov (United States)

    Chambers, A. J.; Dragos, J.; Horsley, R.; Nakamura, Y.; Perlt, H.; Pleiter, D.; Rakow, P. E. L.; Schierholz, G.; Schiller, A.; Somfleth, K.; Stüben, H.; Young, R. D.; Zanotti, J. M.; Qcdsf/Ukqcd/Cssm Collaborations

    2017-12-01

    Accessing hadronic form factors at large momentum transfers has traditionally presented a challenge for lattice QCD simulations. Here, we demonstrate how a novel implementation of the Feynman-Hellmann method can be employed to calculate hadronic form factors in lattice QCD at momenta much higher than previously accessible. Our simulations are performed on a single set of gauge configurations with three flavors of degenerate mass quarks corresponding to mπ≈470 MeV . We are able to determine the electromagnetic form factors of the pion and nucleon up to approximately 6 GeV2 , with results for the ratio of the electric and magnetic form factors of the proton at our simulated quark mass agreeing well with experimental results.

  17. Hyperons: Insights into baryon structures

    International Nuclear Information System (INIS)

    Lach, J.

    1991-08-01

    The baryon octet is composed mainly of hyperons. Modern high energy hyperon beams provide a tool for the study of hyperon static properties and interactions. Experiments with these beams have provided new insights into hyperon rare decays, magnetic moments, and interactions. These experiments provide us with insights into the strong, weak, and electromagnetic structure of the baryons. 65 refs., 45 figs., 5 tabs

  18. Electromagnetic forming - a potentially viable technique for accelerator technology

    International Nuclear Information System (INIS)

    Rajawat, R.K.; Desai, S.V.; Kulkarni, M.R.; Dolly Rani; Nagesh, K.V.; Sethi, R.C.

    2003-01-01

    Modern day accelerator development encompasses a myriad technologies required for their diverse needs. Whereas RF, high voltage, vacuum, cryogenics etc., technologies meet their functional requirements, high finish lapping processes, ceramic-metal joining, oven brazing, spark erosion or wire cutting etc., are a must to meet their fabrication requirements. Electromagnetic (EM) forming technique falls in the latter category and is developed as a special technology. It is currently catering to the development as a nuclear reactor technology, but has the potential to meet accelerator requirements too. This paper highlights the general principle of its working, simple design guidelines, advantages, and suggests some specific areas where this could benefit accelerator technologies

  19. Nucleon electromagnetic form factors in twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.; Jansen, K.; Korzec, T.; Humboldt Univ. Berlin

    2011-02-01

    We present results on the nucleon electromagnetic form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cut-off effects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm. The nucleon magnetic moment, Dirac and Pauli radii are obtained in the continuum limit and chirally extrapolated to the physical pion mass allowing for a comparison with experiment. (orig.)

  20. Nucleon electromagnetic form factors in twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.; Brinet, M.; Carbonell, J.; Harraud, P. A.; Papinutto, M.; Guichon, P.; Jansen, K.; Korzec, T.; Constantinou, M.

    2011-01-01

    We present results on the nucleon electromagnetic form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cutoff effects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm. The nucleon magnetic moment, Dirac and Pauli radii are obtained in the continuum limit and chirally extrapolated to the physical pion mass allowing for a comparison with experiment.

  1. Electromagnetic form factors at large momenta from lattice QCD

    International Nuclear Information System (INIS)

    Chambers, Alexander J.; Dragos, J.; Michigan State Univ., East Lansing, MI; Horsley, R.

    2017-01-01

    Accessing hadronic form factors at large momentum transfers has traditionally presented a challenge for lattice QCD simulations. Here we demonstrate how a novel implementation of the Feynman-Hellmann method can be employed to calculate hadronic form factors in lattice QCD at momenta much higher than previously accessible. Our simulations are performed on a single set of gauge configurations with three flavours of degenerate mass quarks corresponding to m_π∼470 MeV. We are able to determine the electromagnetic form factors of the pion and nucleon up to approximately 6 GeV"2, with results for G_E/G_M in the proton agreeing well with experimental results.

  2. Baryon resonances in nuclei

    International Nuclear Information System (INIS)

    Arenhoevel, H.

    1977-01-01

    The field of baryon resonances in nuclei is reviewed. Theoretical developments and experimental evidence as well are discussed. Special emphasis is laid on electromagnetic processes for the two nucleon system. Some aspects of real isobars in nuclei are touched upon. (orig.) [de

  3. Baryon form factors at high momentum transfer and generalized parton distributions

    International Nuclear Information System (INIS)

    Stoler, Paul

    2002-01-01

    Nucleon form factors at high momentum transfer t are treated in the framework of generalized parton distributions (GPD's). The possibility of obtaining information about parton high transverse momentum components by application of GPD's to form factors is discussed. This is illustrated by applying an ad hoc 2-body parton wave function to elastic nucleon form factors F 1 and F 2 , the N→Δ transition magnetic form factor G M * , and the wide angle Compton scattering form factor R 1

  4. Heavy baryons

    International Nuclear Information System (INIS)

    Koerner, J.G.

    1994-06-01

    We review the experimental and theoretical status of baryons containing one heavy quark. The charm and bottom baryon states are classified and their mass spectra are listed. The appropriate theoretical framework for the description of heavy baryons is the Heavy Quark Effective Theory, whose general ideas and methods are introduced and illustrated in specific examples. We present simple covariant expressions for the spin wave functions of heavy baryons including p-wave baryons. The covariant spin wave functions are used to determine the Heavy Quark Symmetry structure of flavour-changing current-induced transitions between heavy baryons as well as one-pion and one-photon transitions between heavy baryons of the same flavour. We discuss 1/m Q corrections to the current-induced transitions as well as the structure of heavy to light baryon transitions. Whenever possible we attempt to present numbers to compare with experiment by making use of further model-dependent assumptions as e.g. the constituent picture for light quarks. We highlight recent advances in the theoretical understanding of the inclusive decays of hadrons containing one heavy quark including polarization. For exclusive semileptonic decays we discuss rates, angular decay distributions and polarization effects. We provide an update of the experimental and theoretical status of lifetimes of heavy baryons and of exclusive nonleptonic two body decays of charm baryons. (orig.)

  5. Matter in the form of toroidal electromagnetic vortices

    Science.gov (United States)

    Hagen, Wilhelm F.

    2015-09-01

    The creation of charged elementary particles from neutral photons is explained as a conversion process of electromagnetic (EM) energy from linear to circular motion at the speed of light into two localized, toroidal shaped vortices of trapped EM energy that resist change of motion, perceptible as particles with inertia and hence mass. The photon can be represented as a superposition of left and right circular polarized transverse electric fields of opposite polarity originating from a common zero potential axis, the optical axis of the photon. If these components are separated by interaction with a strong field (nucleon) they would curl up into two electromagnetic vortices (EMV) due to longitudinal magnetic field components forming toroids. These vortices are perceptible as opposite charged elementary particles e+/- . These spinning toroids generate extended oscillating fields that interact with stationary field oscillations. The velocity-dependent frequency differences cause beat signals equivalent to matter waves, leading to interference. The extended fields entangled with every particle explain wave particle duality issues. Spin and magnetic moment are the natural outcome of these gyrating particles. As the energy and hence mass of the electron increases with acceleration so does its size shrink proportional to its reduced wavelength. The artificial weak and strong nuclear forces can be easily explained as different manifestations of the intermediate EM forces. The unstable neutron consists of a proton surrounded by a contracted and captured electron. The associated radial EM forces represent the weak nuclear force. The deuteron consists of two axially separated protons held together by a centrally captured electron. The axial EM forces represent the strong nuclear force, providing stability for "neutrons" only within nucleons. The same principles were applied to determine the geometries of force-balanced nuclei. The alpha-particle emerges as a very compact

  6. Baryon Resonances

    International Nuclear Information System (INIS)

    Oset, E.; Sarkar, S.; Sun Baoxi; Vicente Vacas, M.J.; Ramos, A.; Gonzalez, P.; Vijande, J.; Martinez Torres, A.; Khemchandani, K.

    2010-01-01

    In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the Λ(1405) resonance, as well as the prediction of one 1/2 + baryon state around 1920 MeV which might have been seen in the γp→K + Λ reaction.

  7. Baryonic dark matter

    International Nuclear Information System (INIS)

    Uson, Juan M.

    2000-01-01

    Many searches for baryonic dark matter have been conducted but, so far, all have been unsuccessful. Indeed, no more than 1% of the dark matter can be in the form of hydrogen burning stars. It has recently been suggested that most of the baryons in the universe are still in the form of ionized gas so that it is possible that there is no baryonic dark matter. Although it is likely that a significant fraction of the dark matter in the Milky Way is in a halo of non-baryonic matter, the data do not exclude the possibility that a considerable amount, perhaps most of it, could be in a tenuous halo of diffuse ionized gas

  8. Meson-baryon-baryon vertex function and the Ward-Takahashi identity

    International Nuclear Information System (INIS)

    Wang, S.; Banerjee, M.K.

    1996-01-01

    Ohta proposed a solution for the well-known difficulty of satisfying the Ward-Takahashi identity for a photo-meson-baryon-baryon amplitude (γMBB) when a dressed meson-baryon-baryon (MBB) vertex function is present. He obtained a form for the γMBB amplitude which contained, in addition to the usual pole terms, longitudinal seagull terms which were determined entirely by the MBB vertex function. He arrived at his result by using a Lagrangian which yields the MBB vertex function at tree level. We show that such a Lagrangian can be neither Hermitian nor charge conjugation invariant. We have been able to reproduce Ohta close-quote s result for the γMBB amplitude using the Ward-Takahashi identity and no other assumption, dynamical or otherwise, and the most general form for the MBB and γMBB vertices. However, contrary to Ohta close-quote s finding, we find that the seagull terms are not robust. The seagull terms extracted from the γMBB vertex occur unchanged in tree graphs, such as in an exchange current amplitude. But the seagull terms which appear in a loop graph, as in the calculation of an electromagnetic form factor, are, in general, different. The whole procedure says nothing about the transverse part of the (γMBB) vertex and its contributions to the amplitudes in question. copyright 1996 The American Physical Society

  9. 3-D Modelling of Electromagnetic, Thermal, Mechanical and Metallurgical Couplings in Metal Forming Processes

    International Nuclear Information System (INIS)

    Chenot, Jean-Loup; Bay, Francois

    2007-01-01

    The different stages of metal forming processes often involve - beyond the mechanical deformations processes - other physical coupled problems, such as heat transfer, electromagnetism or metallurgy. The purpose of this paper is to focus on problems involving electromagnetic couplings. After a brief recall on electromagnetic modeling, we shall then focus on induction heating processes and present some results regarding heat transfer, as well as mechanical couplings. A case showing coupling for metallurgic microstructure evolution will conclude this paper

  10. Analytical and unitary approach in mesons electromagnetic form factor applications

    International Nuclear Information System (INIS)

    Liptaj, A.

    2010-07-01

    In the dissertation thesis we address several topics related to the domain of particle physics. All of them represent interesting open problems that can be connected to the elastic or transition electromagnetic form factors of mesons, the form factors being the main objects of our interest. Our ambition is to contribute to the solution of these problems and use for that purpose known analytic properties of the form factors and the unitarity condition. These two tools are very powerful in the low energy domain (such as bound states of partons), where the perturbative QCD looses its validity. This is the motivation for construction of the unitary and analytic (U and A) models of studied form factors, that enable us to get the majority of our results. We use the U and A model to evaluate the contribution of the processes e"+e"- → Pγ, P = π"0, η, η to the muon magnetic anomaly a_μ in the lowest order of the hadronic vacuum polarization. For the contribution a_μ"h"a"d","L"O (π"+π"-) we demonstrate, that the use of the model leads to a dramatic error reduction with respect to the results of other authors. We also get a shift in the central value in the 'correct' direction, that brings the theoretical value closer to the experimental one. This results encourages us to use the model also for the evaluation of a_μ"h"a"d","L"O (P_γ). These contributions are smaller, however the precision of the experiment makes their evaluation necessary. We further use the U and A model of the transition form factors of π"0, η and η"' mesons to predict the partial decay widths of these particles Γ_π_"0_→_γ_γ and Γ_η_→_γ_γ and Γ_η_"'_→_γ_γ. In this way we make an independent cross check of the PDG table values. We find an agreement in the case of Γ_η_→_γ_γ and Γ_η_"'_→_γ_γ, even a smaller uncertainty for Γ_η_"'_→_γ_γ. In the case of Γ_π_"0_→_γ_γ we find a disagreement that points to an interesting problem. We wonder whether it could be

  11. Charming baryons

    International Nuclear Information System (INIS)

    Garcia-Recio, C.; Salcedo, L.L.; Gamermann, D.; Nieves, J.; Romanets, O.; Tolos, L.

    2014-01-01

    We study odd-parity baryonic resonances with one heavy and three light flavors, dynamically generated by meson-baryon interactions. Special attention is paid to Heavy Quark Spin Symmetry (HQSS), hence pseudoscalar and vector mesons and baryons with J π = 1/2 + and 3/2 + are considered as constituent hadrons. For the hidden-charm sector (N c = N c ¯ = 1), the meson-baryon Lagrangian with Heavy Flavor Symmetry is constructed by a minimal extension of the SU(3) Weinberg-Tomozawa (WT) Lagrangian to fulfill HQSS, such that not new parameters are needed. This interaction can be presented in different formal ways: as a Field Lagrangian, as Hadron creation-annihilation operators, as SU(6)×HQSS group projectors and as multichannel matrices. The multichannel Bethe-Salpeter equation is solved for odd-parity light baryons, hidden-charm N and Δ and Beauty Baryons (Λ b ). Results of calculations with this model are shown in comparison with other models and experimental values for baryonic resonances. (author)

  12. SU(3) flavour breaking and baryon structure

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, A.N.; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich GmbH (Germany). Juelich Supercomputing Centre (JSC); Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Shanahan, P.; Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, School of Chemistry and Physics; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Collaboration: QCDSF/UKQCD Collaboration

    2013-11-15

    We present results from the QCDSF/UKQCD collaboration for hyperon electromagnetic form factors and axial charges obtained from simulations using N{sub f}=2+1 flavours of O(a)-improved Wilson fermions. We also consider matrix elements relevant for hyperon semileptonic decays. We find flavour-breaking effects in hyperon magnetic moments which are consistent with experiment, while our results for the connected quark spin content indicates that quarks contribute more to the spin of the {Xi} baryon than they do to the proton.

  13. Strange Baryon Physics in Full Lattice QCD

    International Nuclear Information System (INIS)

    Huey-Wen Lin

    2007-01-01

    Strange baryon spectra and form factors are key probes to study excited nuclear matter. The use of lattice QCD allows us to test the strength of the Standard Model by calculating strange baryon quantities from first principles

  14. GRINDING OF SURFACES WITH COATINGS FORMED BY ELECTROMAGNETIC FACING WITH SURFACE PLASTIC DEFORMATION

    Directory of Open Access Journals (Sweden)

    Zh. A. Mrochek

    2011-01-01

    Full Text Available The paper presents investigation results on machining of surfaces having a coating formed by electromagnetic facing with surface plastic deformation and using abrasive and diamond wheels having a porous metal binder with orientated drains.

  15. The proton electromagnetic form factor F2 and quark orbital angular ...

    Indian Academy of Sciences (India)

    Protein; electromagnetic form factors; perturbative QCD; quark orbital angular momentum. ... Failures of the ASD approach to correctly predict ex- perimental ... The success of the formalism is the correct prediction of the Q2 scaling behavior of ...

  16. Baryonic dark matter

    International Nuclear Information System (INIS)

    Lynden-Bell, D.; Gilmore, G.

    1990-01-01

    Dark matter, first definitely found in the large clusters of galaxies, is now known to be dominant mass in the outer parts of galaxies. All the mass definitely deduced could be made up of baryons, and this would fit well with the requirements of nucleosynthesis in a big bang of small Ω B . However, if inflation is the explanation of the expansion and large scale homogeneity of the universe and of baryon synthesis, and if the universe did not have an infinite extent at the big bang, then Ω should be minutely greater than unity. It is commonly hypothesized that most mass is composed of some unknown, non-baryonic form. This book first discusses the known forms, comets, planets, brown dwarfs, stars, gas, galaxies and Lyman α clouds in which baryons are known to exist. Limits on the amount of dark matter in baryonic form are discussed in the context of the big bang. Inhomogeneities of the right type alleviate the difficulties associated with Ω B = 1 cosmological nucleosynthesis

  17. Compressed Baryonic Matter of Astrophysics

    OpenAIRE

    Guo, Yanjun; Xu, Renxin

    2013-01-01

    Baryonic matter in the core of a massive and evolved star is compressed significantly to form a supra-nuclear object, and compressed baryonic matter (CBM) is then produced after supernova. The state of cold matter at a few nuclear density is pedagogically reviewed, with significant attention paid to a possible quark-cluster state conjectured from an astrophysical point of view.

  18. Zeros in the electromagnetic and hadronic form factors

    International Nuclear Information System (INIS)

    Martini, A.F.; Menon, M.J.; Montanha, J.

    2004-01-01

    We discuss the evidences for the existence of zeros in the electric and in the hadronic form factors of the proton. We show that the shape of both form factors are similar, but there is indication that the hadronic form factors can depend on the energy. (author)

  19. Radiative decays of single heavy flavour baryons

    International Nuclear Information System (INIS)

    Majethiya, Ajay; Patel, Bhavin; Vinodkumar, P.C.

    2009-01-01

    The electromagnetic transitions between (J P =(3)/(2) + ) and (J P =(1)/(2) + ) baryons are important decay modes to observe new hadronic states experimentally. For the estimation of these transitions widths, we employ a non-relativistic quark potential model description with color Coulomb plus linear confinement potential. Such a description has been employed to compute the ground-state masses and magnetic moments of the single heavy flavor baryons. The magnetic moments of the baryons are obtained using the spin-flavor structure of the constituting quark composition of the baryon. Here, we also define an effective constituent mass of the quarks (ecqm) by taking into account the binding effects of the quarks within the baryon. The radiative transition widths are computed in terms of the magnetic moments of the baryon and the photon energy. Our results are compared with other theoretical models. (orig.)

  20. Baryonic Dark Matter

    OpenAIRE

    De Paolis, F.; Jetzer, Ph.; Ingrosso, G.; Roncadelli, M.

    1997-01-01

    Reasons supporting the idea that most of the dark matter in galaxies and clusters of galaxies is baryonic are discussed. Moreover, it is argued that most of the dark matter in galactic halos should be in the form of MACHOs and cold molecular clouds.

  1. Problems in baryon spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Capstick, S. [Florida State Univ., Tallahassee, FL (United States)

    1994-04-01

    Current issues and problems in the physics of ground- and excited-state baryons are considered, and are classified into those which should be resolved by CEBAF in its present form, and those which may require CEBAF to undergo an energy upgrade to 8 GeV or more. Recent theoretical developments designed to address these problems are outlined.

  2. Baryons and QCD

    International Nuclear Information System (INIS)

    Nathan Isgur

    1997-01-01

    The author presents an idiosyncratic view of baryons which calls for a marriage between quark-based and hadronic models of QCD. He advocates a treatment based on valence quark plus glue dominance of hadron structure, with the sea of q pairs (in the form of virtual hadron pairs) as important corrections

  3. Nucleon form factors in dispersively improved chiral effective field theory. II. Electromagnetic form factors

    Science.gov (United States)

    Alarcón, J. M.; Weiss, C.

    2018-05-01

    We study the nucleon electromagnetic form factors (EM FFs) using a recently developed method combining chiral effective field theory (χ EFT ) and dispersion analysis. The spectral functions on the two-pion cut at t >4 Mπ2 are constructed using the elastic unitarity relation and an N /D representation. χ EFT is used to calculate the real functions J±1(t ) =f±1(t ) /Fπ(t ) (ratios of the complex π π →N N ¯ partial-wave amplitudes and the timelike pion FF), which are free of π π rescattering. Rescattering effects are included through the empirical timelike pion FF | Fπ(t) | 2 . The method allows us to compute the isovector EM spectral functions up to t ˜1 GeV2 with controlled accuracy (leading order, next-to-leading order, and partial next-to-next-to-leading order). With the spectral functions we calculate the isovector nucleon EM FFs and their derivatives at t =0 (EM radii, moments) using subtracted dispersion relations. We predict the values of higher FF derivatives, which are not affected by higher-order chiral corrections and are obtained almost parameter-free in our approach, and explain their collective behavior. We estimate the individual proton and neutron FFs by adding an empirical parametrization of the isoscalar sector. Excellent agreement with the present low-Q2 FF data is achieved up to ˜0.5 GeV2 for GE, and up to ˜0.2 GeV2 for GM. Our results can be used to guide the analysis of low-Q2 elastic scattering data and the extraction of the proton charge radius.

  4. Measurement of the Charged Pion Electromagnetic Form Factor

    International Nuclear Information System (INIS)

    J. Volmer; David Abbott; H. Anklin; Chris Armstrong; John Arrington; K. Assamagan; Steven Avery; Oliver K. Baker; Henk Blok; C. Bochna; Ed Brash; Herbert Breuer; Nicholas Chant; Jim Dunne; Tom Eden; Rolf Ent; David Gaskell; Ron Gilman; Kenneth Gustafsson; Wendy Hinton; Garth Huber; Hal Jackson; Mark K. Jones; Cynthia Keppel; P.H. Kim; Wooyoung Kim; Andi Klein; Doug Koltenuk; Meme Liang; George Lolos; Allison Lung; David Mack; D. McKee; David Meekins; Joseph Mitchell; H. Mkrtchian; B. Mueller; Gabriel Niculescu; Ioana Niculescu; D. Pitz; D. Potterveld; Liming Qin; Juerg Reinhold; I.K. Shin; Stepan Stepanyan; V. Tadevosian; L.G. Tang; R.L.J. van der Meer; K. Vansyoc; D. Van Westrum; Bill Vulcan; Stephen Wood; Chen Yan; W.X. Zhao; Beni Zihlmann

    2001-01-01

    Separated longitudinal and transverse structure functions for the reaction 1H(e,eprime pi+)n were measured in the momentum transfer region Q2=0.6-1.6 (GeV/c)**2 at a value of the invariant mass W=1.95 GeV. New values for the pion charge form factor were extracted from the longitudinal cross section by using a recently developed Regge model. The results indicate that the pion form factor in this region is larger than previously assumed and is consistent with a monopole parameterization fitted to very low Q2 elastic data

  5. The question of baryon conservation

    International Nuclear Information System (INIS)

    Goldhaber, M.

    1983-01-01

    A modern version of the law of baryon conservation might read: the net number of baryons (ΣB-ΣB-bar) does not change spontaneously or in any known interactions. For a long time it was believed that protons are absolutely stable, and neutrons sufficiently strongly bound by nuclei were also considered absolutely stable. Then a few years ago the grand unified theories were proposed in which strong, weak and electromagnetic interactions are combined, leading to the possibility that protons decay. Their lifetime is predictable in some of these theories. An experiment by the Irvine-Michigan-Brookhaven Collaboration to detect proton decays is described. (UK)

  6. On electromagnetic forming processes in finitely strained solids: Theory and examples

    Science.gov (United States)

    Thomas, J. D.; Triantafyllidis, N.

    2009-08-01

    The process of electromagnetic forming (EMF) is a high velocity manufacturing technique that uses electromagnetic (Lorentz) body forces to shape sheet metal parts. EMF holds several advantages over conventional forming techniques: speed, repeatability, one-sided tooling, and most importantly considerable ductility increase in several metals. Current modeling techniques for EMF processes are not based on coupled variational principles to simultaneously account for electromagnetic and mechanical effects. Typically, separate solutions to the electromagnetic (Maxwell) and motion (Newton) equations are combined in staggered or lock-step methods, sequentially solving the mechanical and electromagnetic problems. The present work addresses these issues by introducing a fully coupled Lagrangian (reference configuration) least-action variational principle, involving magnetic flux and electric potentials and the displacement field as independent variables. The corresponding Euler-Lagrange equations are Maxwell's and Newton's equations in the reference configuration, which are shown to coincide with their current configuration counterparts obtained independently by a direct approach. The general theory is subsequently simplified for EMF processes by considering the eddy current approximation. Next, an application is presented for axisymmetric EMF problems. It is shown that the proposed variational principle forms the basis of a variational integration numerical scheme that provides an efficient staggered solution algorithm. As an illustration a number of such processes are simulated, inspired by recent experiments of freely expanding uncoated and polyurea-coated aluminum tubes.

  7. Electromagnetic form factors and vertex constants for 6Li

    International Nuclear Information System (INIS)

    Blokhintsev, L.D.; Shvarts, I.A.

    1977-01-01

    It has been assumed that the main contribution to the rapidly changing part of the charge form factor of 6 Li provides the amplitude of the triangle diagram containing virtual lines of deuteron and α particle. The vertex constant G 2 for the 6 Li→α+d decay is expressed through the nuclear charge radii for 6 Li, d, and α. Taking into account coulomb interaction in the vertex of the 6 Li→α+d reaction increases G 2 by about a factor of two. The account of virtuality of a deuteron cluster also leads to an increase in G 2

  8. Remarks on electromagnetic form factors of hadrons in the quark model

    International Nuclear Information System (INIS)

    Vainshtein, A.I.; Zakharov, V.I.

    1977-01-01

    Relations between the transversal and longitudinal parts of elastic and quasielastic form factors are studied within the quark model. It is shown that for an even number of the constituent quarks the longitudinal part dominates while for an odd number the transversal part is the largest one. Consequences form this result are considered for deuteron form factor and for matrix elements of the electromagnetic transitions between π, rho, A 1 mesons

  9. Excited baryons

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested

  10. Excited baryons

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)

  11. Disconnected-Sea Quarks Contribution to Nucleon Electromagnetic Form Factors

    Science.gov (United States)

    Sufian, Raza Sabbir

    We present comprehensive analysis of the light and strange disconnected-sea quarks contribution to the nucleon electric and magnetic form factors. The lattice QCD estimates of strange quark magnetic moment GsM (0) = -0.064(14)(09) microN and the mean squared charge radius E = -0.0043(16)(14) fm2 are more precise than any existing experimental measurements and other lattice calculations. The lattice QCD calculation includes ensembles across several lattice volumes and lattice spacings with one of the ensembles at the physical pion mass. We have performed a simultaneous chiral, infinite volume, and continuum extrapolation in a global fit to calculate results in the continuum limit. We find that the combined light-sea and strange quarks contribution to the nucleon magnetic moment is -0.022(11)(09) microN and to the nucleon mean square charge radius is -0.019(05)(05) fm 2. The most important outcome of this lattice QCD calculation is that while the combined light-sea and strange quarks contribution to the nucleon magnetic moment is small at about 1%, a negative 2.5(9)% contribution to the proton charge radius and a relatively larger positive 16.3(6.1)% contribution to the neutron charge radius come from the sea quarks in the nucleon. For the first time, by performing global fits, we also give predictions of the light-sea and strange quarks contributions to the nucleon electric and magnetic form factors at the physical point and in the continuum and infinite volume limits in the momentum transfer range of 0 ≤ Q2 ≤ 0.5 GeV2.

  12. Chiral dynamics of baryons in the perturbative chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Pumsa-ard, K.

    2006-07-01

    In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints

  13. A relativized quark model for radiative baryon transitions

    International Nuclear Information System (INIS)

    Warns, M.; Schroeder, H.; Pfeil, W.; Rollnik, H.

    1989-03-01

    In this paper we investigate the electromagnetic form factors of baryons and their resonances using the framework of a relativized constituent quark model. Beyond the usual single-quark transition ansatz, we incorporate relativistic corrections which are well-determined by the intrinsic strong interaction and confinement forces between the quarks. Furthermore we separate off for the compound three-quark system the relativistic center-of-mass motion by an approximately Lorentz-invariant approach. In this way for the first time recoil effects could be explicitly studied. Using the harmonic oscillator wavefunctions with the configuration mixing as derived in the Isgur-Karl model, after restoring gauge invariance our relativized interaction hamiltonian can be used to calculate the transversely and longitudinally polarized photon transition form factors of the baryons. (orig.)

  14. The proton electromagnetic form factor F2 and quark orbital angular ...

    Indian Academy of Sciences (India)

    We analyse the proton electromagnetic form factor ratio (2)= 2(2)/1(2) as a function of momentum transfer 2 within perturbative QCD. We find that the prediction for (2) at large momentum transfer depends on the exclusive quark wave functions, which are unknown. For a wide range of wave functions we ...

  15. Nucleon electromagnetic form factors in a relativistic quark model with chiral symmetry

    International Nuclear Information System (INIS)

    Barik, N.

    1987-01-01

    The nucleon electromagnetic form factors are computed in an independent quark model based on the Dirac equation. Corrections for centre-of-mass motion and pion-cloud effects are incorporated. Results for static quantities are in reasonable agreement with the experimental data. (author)

  16. Nucleon electromagnetic form factors in a relativistic quark model with chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N; Das, M

    1987-05-01

    The nucleon electromagnetic form factors are computed in an independent quark model based on the Dirac equation. Corrections for centre-of-mass motion and pion-cloud effects are incorporated. Results for static quantities are in reasonable agreement with the experimental data.

  17. EFFECTS OF NEUTRINO ELECTROMAGNETIC FORM FACTORS ON NEUTRINO INTERACTION WITH FINITE TEMPERATURE ELECTRON MATTERS

    Directory of Open Access Journals (Sweden)

    Anto Sulaksono

    2011-11-01

    Full Text Available The differential cross-section of neutrino interaction with dense and warm electron gasses has been calculated by takinginto account the neutrino electromagnetic form factors. The significant effect of electromagnetic properties of neutrinocan be found if the neutrino dipole moment, μ ν , is ≥ 5.10-9 μB and neutrino charge radius, Rv, is ≥ 5.10-6 MeV-1. Theimportance of the retarded correction, detailed balance and Pauli blocking factors is shown and analyzed. Many-bodyeffects on the target matter which are included via random phase approximation (RPA correlation as well as photoneffective mass are also investigated.

  18. Study of the electromagnetic form factors of Helium-3 and Tritium nuclei by electron scattering

    International Nuclear Information System (INIS)

    Amroun, A.

    1989-01-01

    Accurate measurements of the tritium electromagnetic form factor demonstrated that, when the exchange currents are included, the theoretical and the experimental data are in agreement. Similar calculations carried out on helium-3 were not satisfactory. In this investigation, a new electromagnetic form factor of helium-3 is measured. The transfer zone of the diffraction spectra concerning the first minimum and the second maximum is considered. The aim of the study is to test on both nuclei the validity and the uncertainties of the models. The scattering of electrons on helium-3 is analyzed. The experiment was performed in the Saclay linear accelerator. The isoscalar and isovector form factors could be differentiated. By comparing the theoretical and the experimental data, it is demonstrated that the use of three body forces in the calculations has no effect on the form factor results [fr

  19. Baryonic dark matter and Machos

    International Nuclear Information System (INIS)

    Griest, K.

    2000-01-01

    A brief description of the status of baryons in the Universe is given, along with recent results from the MACHO collaboration and their meaning. A dark matter halo consisting of baryons in the form of Machos is ruled out, leaving an elementary particle as the prime candidate for the dark matter. The observed microlensing events may make up around 20% of the dark matter in the Milky Way, or may indicate an otherwise undetected component of the Large Magellanic Cloud

  20. Spectroscopy of doubly heavy baryons

    International Nuclear Information System (INIS)

    Gershtein, S.S.; Kiselev, V.V.; Likhoded, A.K.; Onishchenko, A.I.

    2000-01-01

    Within a nonrelativistic quark model featuring a QCD-motivated Buchmueller-Tye potential, the mass spectra for the families of doubly heavy baryons are calculated by assuming the quark-diquark structure of the baryon wave functions and by taking into account spin-dependent splitting. Physically motivated evidence that, in the case where heavy quarks have identical flavors, quasistationary excited states may be formed in the heavy-diquark subsystem is analyzed

  1. Electromagnetic form factors of the ρ meson in light cone QCD sum rules

    International Nuclear Information System (INIS)

    Aliev, T.M.; Savci, M.

    2004-01-01

    We investigate the electromagnetic form factors of the ρ meson in light cone QCD sum rules. We find that the ratio of the magnetic and charge form factors is larger than 2 at all values of Q 2 (Q 2 ≥0.5 GeV 2 ). The values of the individual form factors at fixed values of Q 2 predicted by the light cone QCD sum rules are quite different compared to the results of other approaches. These results can be checked in the future, when more precise data on ρ meson form factors is available

  2. Electromagnetic and Scalar Pion form factor in the Kroll-Lee-Zumino model

    International Nuclear Information System (INIS)

    Dominguez, C.A.; Jottar, J.I.; Loewe, M.; Willers, B.

    2009-01-01

    The renormalizable Abelian quantum field theory model of Kroll, Lee, and Zumino is used at the one loop level to compute vertex corrections to the tree-level, Vector Meson Dominance (VMD) electromagnetic pion form factor. These corrections, together with the one-loop vacuum polarization contribution, imply a resulting electromagnetic pion form factor in excellent agreement with data in the whole range of accessible momentum transfers in the space-like region. The time-like form factor, which reproduces the Gounaris-Sakurai formula at and near the rho-meson peak, is unaffected by the vertex correction at order O(g 2 ). The KLZ model is also used to compute the scalar radius of the pion at the one loop level, finding π 2 > S =0.40fm 2 . This value implies for the low energy constant of chiral perturbation theory l-bar 4 =3.4

  3. Are baryonic galactic halos possible

    International Nuclear Information System (INIS)

    Olive, K.A.; Hegyi, D.J.

    1986-01-01

    There is little doubt from the rotation curves of spiral galaxies that galactic halos must contain large amounts of dark matter. In this contribution, the authors review arguments which indicate that it is very unlikely that galactic halos contain substantial amounts of baryonic matter. While the authors would like to be able to present a single argument which would rule out baryonic matter, at the present time they are only able to present a collection of arguments each of which argues against one form of baryonic matter. These include: 1) snowballs; 2) gas; 3) low mass stars and Jupiters; 4) high mass stars; and 5) high metalicity objects such as rooks or dust. Black holes, which do not have a well defined baryon number, are also a possible candidate for halo matter. They briefly discuss black holes

  4. The scalar and electromagnetic form factors of the nucleon in dispersively improved Chiral EFT

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Jose Manuel [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-04-01

    We present a method for calculating the nucleon form factors of G-parity-even operators. This method combines chiral effective field theory (χEFT) and dispersion theory. Through unitarity we factorize the imaginary part of the form factors into a perturbative part, calculable with χEFT, and a non-perturbative part, obtained through other methods. We consider the scalar and electromagnetic (EM) form factors of the nucleon. The results show an important improvement compared to standard chiral calculations, and can be used in analysis of the low-energy properties of the nucleon.

  5. On the stability with respect to the form of scalar charged solitons with allowance for an electromagnetic field

    International Nuclear Information System (INIS)

    Rybakov, Yu.P.; Chakrabarti, S.

    1981-01-01

    Stability by the form of scalar charged solitons with account of electromagnetic field is studied by the Lyapunov method. Conditions of stability for the Sing model are investigated. The model is shown to admit the existence of pointless spherically-symmetric solitons in the absence of the electromagnetic field. Perturbation theory by a non-dimensional parameter is applied for evaluating the effect of electromagnetic field on the stability of pointless solitons [ru

  6. Effects of dispersion on electromagnetic parameters of tape-helix Blumlein pulse forming line of accelerator

    International Nuclear Information System (INIS)

    Zhang, Y.; Liu, J.L.; Feng, J.H.

    2012-01-01

    In this paper, the tape-helix model is introduced in the field of intense electron beam accelerator to analyze the dispersion effects on the electromagnetic parameters of helical Blumlein pulse forming line (PFL). Work band and dispersion relation of the PFL are analyzed, and the normalized coefficients of spatial harmonics are calculated. Dispersion effects on the important electromagnetic parameters of PFL, such as phase velocity, slow-wave coefficient, electric length and pulse duration, are analyzed as the central topic. In the PFL, electromagnetic waves with different frequencies in the work band of PFL have almost the same phase velocity. When de-ionized water, transformer oil and air are used as the PFL filling dielectric, respectively, the pulse duration of the helical Blumlein PFL is calculated as 479.6 ns, 81.1 ns and 53.1 ns in order. Electromagnetic wave simulation and experiments are carried out to demonstrate the theoretical calculations of the electric length and pulse duration which directly describe the phase velocity and dispersion of the PFL. Simulation results prove the theoretical analysis and calculation on pulse duration. Experiment is carried out based on the tape-helix Blumlein PFL and magnetic switch system. Experimental results show that the pulse durations are tested as 460 ns, 79 ns and 49 ns in order when de-ionized water, transformer oil and air are used respectively. Experimental results basically demonstrate the theoretical calculations and the analyses of dispersion. (authors)

  7. Electromagnetic Form Factors of Hadrons in Dual-Large Nc QCD

    International Nuclear Information System (INIS)

    Dominguez, C. A.

    2011-01-01

    In this talk, results are presented of determinations of electromagnetic form factors of hadrons (pion, proton, and Δ(1236)) in the framework of Dual-Large N c QCD (Dual-QCD ∞ ). This framework improves considerably tree-level VMD results by incorporating an infinite number of zero-width resonances, with masses and couplings fixed by the dual-resonance (Veneziano-type) model.

  8. Dependence of electromagnetic form factors of hadrons on light-cone frames

    International Nuclear Information System (INIS)

    Weber, H.J.; Xu Xiaoming; Chinese Acad. of Sci., Shanghai

    1996-01-01

    A constituent quark model is developed for an arbitrary light-cone direction so that the light-front time is x LF + =ω.x with a constant lightlike four-vector ω. Form factors are obtained from free one-body electromagnetic current matrix elements. They are found to be ω-independent for spin-0 mesons, nucleons and the Λ-hyperon, while there is an ω-dependence for spin-1 systems like the deuteron. (orig.)

  9. Calm Multi-Baryon Operators

    Directory of Open Access Journals (Sweden)

    Berkowitz Evan

    2018-01-01

    Full Text Available There are many outstanding problems in nuclear physics which require input and guidance from lattice QCD calculations of few baryons systems. However, these calculations suffer from an exponentially bad signal-to-noise problem which has prevented a controlled extrapolation to the physical point. The variational method has been applied very successfully to two-meson systems, allowing for the extraction of the two-meson states very early in Euclidean time through the use of improved single hadron operators. The sheer numerical cost of using the same techniques in two-baryon systems has so far been prohibitive. We present an alternate strategy which offers some of the same advantages as the variational method while being significantly less numerically expensive. We first use the Matrix Prony method to form an optimal linear combination of single baryon interpolating fields generated from the same source and different sink interpolating fields. Very early in Euclidean time this optimal linear combination is numerically free of excited state contamination, so we coin it a calm baryon. This calm baryon operator is then used in the construction of the two-baryon correlation functions.To test this method, we perform calculations on the WM/JLab iso-clover gauge configurations at the SU(3 flavor symmetric point with mπ~ 800 MeV — the same configurations we have previously used for the calculation of two-nucleon correlation functions. We observe the calm baryon significantly removes the excited state contamination from the two-nucleon correlation function to as early a time as the single-nucleon is improved, provided non-local (displaced nucleon sources are used. For the local two-nucleon correlation function (where both nucleons are created from the same space-time location there is still improvement, but there is significant excited state contamination in the region the single calm baryon displays no excited state contamination.

  10. Electromagnetism

    CERN Document Server

    Grant, Ian S

    1990-01-01

    The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scient

  11. Proton electromagnetic form factors: present status and future perspectives at PANDA

    Directory of Open Access Journals (Sweden)

    Tomasi-Gustafsson E.

    2015-01-01

    Full Text Available Data and models on electromagnetic proton form factors are reviewed, highlighting the contribution foreseen by the PANDA collaboration. Electromagnetic hadron form factors contain essential information on the internal structure of hadrons. Precise and surprising data have been obtained at electron accelerators, applying the polarization method in electron-proton elastic scattering. At electron-positron colliders, using initial state radiation, BABAR measured proton time-like form factors in a wide time-like kinematical region and the BESIII collaboration will measure very precisely proton and neutron form factors in the threshold region. In the next future an antiproton beam with momentum up to 15 GeV/c will be available at FAIR (Darmstadt. Measurements of the reaction p̅ + p → e+ + e− by the PANDA collaboration will contribute to the individual determination of electric and magnetic form factors in the time-like region of momentum transfer squared, as well as to their first determination in the unphysical region (below the kinematical threshold, through the reaction p̅ + p → e+ + e− + π0. From the discussion on feasibility studies at PANDA, we focus on the consequences of such measurements in view of an unified description of form factors in the full kinematical region. We present models which have the necessary analytical requirements and apply to the data in the whole kinematical region.

  12. Charge symmetry violation in the electromagnetic form factors of the proton

    International Nuclear Information System (INIS)

    Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M.; Pleiter, D.; Stueben, H.

    2015-03-01

    Experimental tests of QCD through its predictions for the strange-quark content of the proton have been drastically restricted by our lack of knowledge of the violation of charge symmetry (CSV). We find unexpectedly tiny CSV in the proton's electromagnetic form factors by performing the first extraction of these quantities based on an analysis of lattice QCD data. The resulting values are an order of magnitude smaller than current bounds on proton strangeness from parity violating electron-proton scattering experiments. This result paves the way for a new generation of experimental measurements of the proton's strange form factors to challenge the predictions of QCD.

  13. Quark color-hyperfine interactions in baryons

    International Nuclear Information System (INIS)

    Anselmino, M.; Lichtenberg, D.B.

    1990-01-01

    We consider the contribution from the color-hyperfine interaction to the energies of groundstate hadrons, with an emphasis on baryons. We use experimental information about how the color-hyperfine term depends on flavor to make predictions about the masses of baryons containing a heavy quark. We then generalize some relations between color-hyperfine matrix elements in mesons and baryons to obtain a number of additional predictions about the masses of as-yet unobserved baryons. Most of our predictions are in the form of inequalities. (orig.)

  14. Nucleon electromagnetic form factors using lattice simulations at the physical point

    International Nuclear Information System (INIS)

    Alexandrou, C.; Cyprus Univ., Nicosia; Constantinou, M.; Hadjiyiannakou, K.; Kallidonis, C.; Koutsou, G.; Jansen, K.; Vaquero Aviles-Casco, A.

    2017-01-01

    We present results for the nucleon electromagnetic form factors using an ensemble of maximally twisted mass clover-improved fermions with pion mass of about 130 MeV. We use multiple sink-source separations and three analysis methods to probe ground-state dominance. We evaluate both the connected and disconnected contributions to the nucleon matrix elements. We find that the disconnected quark loop contributions to the isoscalar matrix elements are small giving an upper bound of up to 2% of the connected and smaller than its statistical error. We present results for the isovector and isoscalar electric and magnetic Sachs form factors and the corresponding proton and neutron form factors. By fitting the momentum dependence of the form factors to a dipole form or to the z-expansion we extract the nucleon electric and magnetic radii, as well as, the magnetic moment. We compare our results to experiment as well as to other recent lattice QCD calculations.

  15. Future Measurements of the Nucleon Elastic Electromagnetic Form Factors at Jefferson Lab

    Science.gov (United States)

    Gilfoyle, Gerard

    2018-01-01

    The elastic, electromagnetic form factors are fundamental observables that describe the internal structure of protons, neutrons, and atomic nuclei. Jefferson Lab in the United States has completed the 12 GeV Upgrade that will open new opportunities to study the form factors. A campaign to measure all four nucleon form factors (electric and magnetic ones for both proton and neutron) has been approved consisting of seven experiments in Halls A, B, and C. The increased energy of the electron beam will extend the range of precision measurements to higher Q2 for all four form factors together. This combination of measurements will allow for the decomposition of the results into their quark components and guide the development of a QCD-based understanding of nuclei in the non-perturbative regime. I will present more details on the 12 GeV Upgrade, the methods used to measure the form factors, and what we may learn.

  16. Nucleon electromagnetic form factors using lattice simulations at the physical point

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, C. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Constantinou, M. [Temple Univ., Philadelphia, PA (United States). Dept. of Physics; Hadjiyiannakou, K.; Kallidonis, C.; Koutsou, G. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Vaquero Aviles-Casco, A. [Utah Univ., Salt Lake City, UT (United States). Dept. of Physics and Astronomy

    2017-09-20

    We present results for the nucleon electromagnetic form factors using an ensemble of maximally twisted mass clover-improved fermions with pion mass of about 130 MeV. We use multiple sink-source separations and three analysis methods to probe ground-state dominance. We evaluate both the connected and disconnected contributions to the nucleon matrix elements. We find that the disconnected quark loop contributions to the isoscalar matrix elements are small giving an upper bound of up to 2% of the connected and smaller than its statistical error. We present results for the isovector and isoscalar electric and magnetic Sachs form factors and the corresponding proton and neutron form factors. By fitting the momentum dependence of the form factors to a dipole form or to the z-expansion we extract the nucleon electric and magnetic radii, as well as, the magnetic moment. We compare our results to experiment as well as to other recent lattice QCD calculations.

  17. Feasibility studies of time-like proton electromagnetic form factors at PANDA-FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Dbeyssi, Alaa; Capozza, Luigi; Deiseroth, Malte; Froehlich, Bertold; Khaneft, Dmitry; Mora Espi, Maria Carmen; Noll, Oliver; Rodriguez Pineiro, David; Valente, Roserio; Zambrana, Manuel; Zimmermann, Iris [Helmholtz-Institut Mainz, Mainz (Germany); Maas, Frank [Helmholtz-Institut Mainz, Mainz (Germany); Institute of Nuclear Physics, Mainz (Germany); PRISMA Cluster of Excellence, Mainz (Germany); Marchand, Dominique; Tomasi-Gustafsson, Egle; Wang, Ying [Institut de Physique Nucleaire, Orsay (France); Collaboration: PANDA-Collaboration

    2015-07-01

    Electromagnetic form factors are fundamental quantities which describe the intrinsic electric and magnetic distributions of hadrons. Time-like proton form factors are experimentally accessible through the annihilation processes anti p+p <-> e{sup +}+e{sup -}. Their measurement in the time-like region had been limited by the low statistics achieved by the experiments. This contribution reports on the results of Monte Carlo simulations for future measurements of electromagnetic proton form factors at PANDA (antiProton ANnihilation at DArmstadt). In frame of the PANDARoot software, the statistical precision at which the proton form factors will be determined is estimated. The signal (anti p+p → e{sup +}+e{sup -}) identification and the suppression of the main background process (anti p+p → π{sup +}+π{sup -}) are studied. Different methods have been used and/or developed to generate and analyse the processes of interest. The results show that time-like proton form factors will be measured at PANDA with unprecedented statistical accuracy.

  18. New Forming Limits For Light Alloys By Means Of Electromagnetic Forming And Numerical Simulation Of The Process

    International Nuclear Information System (INIS)

    Jimbert, P.; Fernandez, J. I.; Eguia, I.; Gutierrez, M.; Ulacia, I.; Hurtado, I.

    2007-01-01

    It is well known that one of the main advantages of the high speed forming (HSF) processes is the improvement in the forming limits of the used materials.Using the Electromagnetic Forming (EMF) technology two materials have been tested with different mechanical and physical properties: the AA5754 aluminium and the AZ31B magnesium alloys.The EMF process principle can be described as follows: A significant amount of electrical energy is stored in a bank of capacitors which are suddenly discharged releasing all the stored energy. This electric discharge runs through a coil which generates an intense transient magnetic field. At the same time transient Eddy currents are induced in the electrically conductive part placed some millimetres far from the coil. Another intense magnetic field is generated due to those Eddy currents but on the opposite direction as the one generated by the coil. A big magnetic repulsion force is created between the part and the coil. This magnetic repulsion between both fields is used to launch the blank with no physical contact and obtain the desired deformation on it.The Forming Limit Diagrams (FLD) obtained in the EMF experiments were them compared to the ones obtained with the 'Nakazima' method at conventional deformation speed for both alloys. In parallel to these physical experiments, some simulations were carried out. But trying to simulate this process by FEM is a though work. There are several physics and many factors to take into account in a few microseconds deformation process. And all these factors are tightly related with each other, that is why to this date there is no commercial software able to simulate the EMF process accurately.From LABEIN-Tecnalia we are working with to different softwares to simulate the whole process: Maxwell 3D for the electromagnetic part and PAM-STAMP2G for the mechanical part of the problem

  19. The good, the bad, and the baryon

    International Nuclear Information System (INIS)

    Ball, R.D.

    1990-01-01

    We describe the incorporation of baryons into an effective theory of QCD at low energies. The baryon is not a Skyrmion, rather it consists of three valence quarks bound by effective gluon exchanges, enveloped in a meson cloud, which may possibly take the form of a chiral soliton. Some of the physical implications of these results are also discussed. (orig.)

  20. Proton electromagnetic form factors: Basic notions, present achievements and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Pacetti, Simone, E-mail: simone.pacetti@pg.infn.it [Dipartimento di Fisica e Geologia dell’Universitá degli Studi di Perugia and INFN Sezione di Perugia, 06123 Perugia (Italy); Baldini Ferroli, Rinaldo [INFN, Laboratori Nazionali di Frascati, 00044 Frascati (Italy); Tomasi-Gustafsson, Egle [CEA, IRFU, SPhN, Saclay, 91191 Gif-sur-Yvette Cedex (France); CNRS/IN2P3, Institut de Physique Nucléaire, UMR 8608, 91406 Orsay (France)

    2015-01-20

    The aim of this report is to give basic notions on electromagnetic hadron form factors (FFs), as they are understood at the present time, to summarize and analyze the present experimental results and available theoretical models and to open a view on future perspectives. FFs are fundamental quantities, which describe the internal, dynamical structure of hadrons. Although the theoretical formalism was settled in the middle of last century, as well as the first experiments in electron–proton elastic scattering for which R. Hofstadter got the Nobel prize in 1961, a renewed activity is due to recent, surprising results and to the opening of new experimental possibilities. An elegant formalism was built on the assumption of a hadron electromagnetic interaction based on the exchange of a virtual photon of four-momentum q{sup 2}. In this case FFs are analytic functions of only one variable, q{sup 2}, and the electromagnetic vertex γ{sup ∗}hh (h is any hadron) is defined by two structure functions, which, in turn, are expressed in terms of (2S+1) FFs, S being the hadron spin, assuming parity and time-invariance. Our aim is to anticipate the potentiality contained in the future data, combined with the present knowledge, to point out the relevant observables and the most significative measurements, and to give predictions to be compared to the data when they will be available.

  1. Proton electromagnetic form factors: Basic notions, present achievements and future perspectives

    International Nuclear Information System (INIS)

    Pacetti, Simone; Baldini Ferroli, Rinaldo; Tomasi-Gustafsson, Egle

    2015-01-01

    The aim of this report is to give basic notions on electromagnetic hadron form factors (FFs), as they are understood at the present time, to summarize and analyze the present experimental results and available theoretical models and to open a view on future perspectives. FFs are fundamental quantities, which describe the internal, dynamical structure of hadrons. Although the theoretical formalism was settled in the middle of last century, as well as the first experiments in electron–proton elastic scattering for which R. Hofstadter got the Nobel prize in 1961, a renewed activity is due to recent, surprising results and to the opening of new experimental possibilities. An elegant formalism was built on the assumption of a hadron electromagnetic interaction based on the exchange of a virtual photon of four-momentum q 2 . In this case FFs are analytic functions of only one variable, q 2 , and the electromagnetic vertex γ ∗ hh (h is any hadron) is defined by two structure functions, which, in turn, are expressed in terms of (2S+1) FFs, S being the hadron spin, assuming parity and time-invariance. Our aim is to anticipate the potentiality contained in the future data, combined with the present knowledge, to point out the relevant observables and the most significative measurements, and to give predictions to be compared to the data when they will be available

  2. Baryons and baryonic matter in the large Nc and heavy quark limits

    International Nuclear Information System (INIS)

    Cohen, Thomas D.; Kumar, Nilay; Ndousse, Kamal K.

    2011-01-01

    This paper explores properties of baryons and finite density baryonic matter in an artificial world in which N c , the number of colors, is large and the quarks of all species are degenerate and much larger than Λ QCD . It has long been known that in large N c quantum chromodynamics (QCD), baryons composed entirely of heavy quarks are accurately described in the mean-field approximation. However, the detailed properties of baryons in the combined large N c and heavy-quark limits have not been fully explored. Here some basic properties of baryons are computed using a variational approach. At leading order in both the large N c and heavy-quark expansions the baryon mass is shown to be M baryon ≅N c M Q (1-0.054 26α-tilde s 2 ), where α-tilde s ≡N c α s . The baryon form factor is also computed. Baryonic matter, the analog of nuclear matter in this artificial world, should also be well described in the mean-field approximation. In the special case where all baryons have an identical spin-flavor structure, it is shown that in the formal heavy-quark and large N c limit interactions between baryons are strictly repulsive at low densities. The energy per baryon is computed in this limit and found to be exponentially small. It is shown that when the restriction to baryons with an identical spin-flavor structure is dropped, a phase of baryonic matter exists with a density of 2N f times that for the restricted case but with the same energy (where N f is the number of degenerate flavors). It is shown that this phase is at least metastable.

  3. Weak radiative baryonic decays of B mesons

    International Nuclear Information System (INIS)

    Kohara, Yoji

    2004-01-01

    Weak radiative baryonic B decays B→B 1 B 2 -barγ are studied under the assumption of the short-distance b→sγ electromagnetic penguin transition dominance. The relations among the decay rates of various decay modes are derived

  4. Relativistic quark model and behaviour of the meson electromagnetic form factors at small and intermediate momentum transfer Q2

    International Nuclear Information System (INIS)

    Bagdasaryan, A.S.; Esaybegyan, S.V.; Ter-Isaakyan, N.L.

    1982-01-01

    In a model of hadrons composed of relativistic quarks a description of meson static characteristics and pion electromagnetic form factor in the range of small and intermediate values of momentum transfer 0 2 2 have obtained. It is shown that in such a model the data available on the pion electromagnetic form factor may be described basing on a simplest quark without gluon exchange. The contribution of a one-gluon exchange diagram in such a model cannot exceed 30%

  5. Electroweak form factors of the Skyrmion

    International Nuclear Information System (INIS)

    Braaten, E.; Sze-Man Tse; Willcox, C.

    1986-01-01

    The electroweak form factors of baryons are studied in the semiclassical approximation to the Skyrme model. General expressions for the form factors are given for arbitrary choices of the Skyrme-model Lagrangian. They are applied to the original two-parameter Skyrme model to compute the electric, magnetic, and axial-vector form factors of the nucleon and the electromagnetic nucleon-Δ transition form factors. The dependence of the form factors on the momentum transfer is compared with phenomenological dipole parametrizations

  6. arXiv Measurement of the $\\pi^0$ electromagnetic transition form factor slope

    CERN Document Server

    Lazzeroni, C.; Romano, A.; Blazek, T.; Koval, M.; Ceccucci, A.; Danielsson, H.; Falaleev, V.; Gatignon, L.; Goy Lopez, S.; Hallgren, B.; Maier, A.; Peters, A.; Piccini, M.; Riedler, P.; Frabetti, P.L.; Gersabeck, E.; Kekelidze, V.; Madigozhin, D.; Misheva, M.; Molokanova, N.; Movchan, S.; Potrebenikov, Yu.; Shkarovskiy, S.; Zinchenko, A.; Rubin, P.; Baldini, W.; Cotta Ramusino, A.; Dalpiaz, P.; Fiorini, M.; Gianoli, A.; Norton, A.; Petrucci, F.; Savrié, M.; Wahl, H.; Bizzeti, A.; Bucci, F.; Iacopini, E.; Lenti, M.; Veltri, M.; Antonelli, A.; Moulson, M.; Raggi, M.; Spadaro, T.; Eppard, K.; Hita-Hochgesand, M.; Kleinknecht, K.; Renk, B.; Wanke, R.; Winhart, A.; Winston, R.; Bolotov, V.; Duk, V.; Gushchin, E.; Ambrosino, F.; Di Filippo, D.; Massarotti, P.; Napolitano, M.; Palladino, V.; Saracino, G.; Anzivino, G.; Imbergamo, E.; Piandani, R.; Sergi, A.; Cenci, P.; Pepe, M.; Costantini, F.; Doble, N.; Giudici, S.; Pierazzini, G.; Sozzi, M.; Venditti, S.; Balev, S.; Collazuol, G.; DiLella, L.; Gallorini, S.; Goudzovski, E.; Lamanna, G.; Mannelli, I.; Ruggiero, G.; Cerri, C.; Fantechi, R.; Kholodenko, S.; Kurshetsov, V.; Obraztsov, V.; Semenov, V.; Yushchenko, O.; D'Agostini, G.; Leonardi, E.; Serra, M.; Valente, P.; Fucci, A.; Salamon, A.; Bloch-Devaux, B.; Peyaud, B.; Engelfried, J.; Coward, D.; Kozhuharov, V.; Litov, L.; Arcidiacono, R.; Bifani, S.; Biino, C.; Dellacasa, G.; Marchetto, F.; Numao, T.; Retière, F.

    2017-05-10

    The NA62 experiment collected a large sample of charged kaon decays in 2007 with a highly efficient trigger for decays into electrons. A measurement of the $\\pi^{0}$ electromagnetic transition form factor slope parameter from $1.11\\times10^{6}$ fully reconstructed $K^\\pm \\to \\pi^\\pm \\pi^0_D, \\; \\pi^0_D \\to e^+ e^- \\, \\gamma$ events is reported. The measured value $a = \\left(3.68 \\pm 0.57\\right)\\times 10^{-2}$ is in good agreement with theoretical expectations and previous measurements, and represents the most precise experimental determination of the slope in the time-like momentum transfer region.

  7. Feasibility studies of time-like proton electromagnetic form factors at overlinePANDA at FAIR

    Science.gov (United States)

    Singh, B.; Erni, W.; Krusche, B.; Steinacher, M.; Walford, N.; Liu, B.; Liu, H.; Liu, Z.; Shen, X.; Wang, C.; Zhao, J.; Albrecht, M.; Erlen, T.; Fink, M.; Heinsius, F.; Held, T.; Holtmann, T.; Jasper, S.; Keshk, I.; Koch, H.; Kopf, B.; Kuhlmann, M.; Kümmel, M.; Leiber, S.; Mikirtychyants, M.; Musiol, P.; Mustafa, A.; Pelizäus, M.; Pychy, J.; Richter, M.; Schnier, C.; Schröder, T.; Sowa, C.; Steinke, M.; Triffterer, T.; Wiedner, U.; Ball, M.; Beck, R.; Hammann, C.; Ketzer, B.; Kube, M.; Mahlberg, P.; Rossbach, M.; Schmidt, C.; Schmitz, R.; Thoma, U.; Urban, M.; Walther, D.; Wendel, C.; Wilson, A.; Bianconi, A.; Bragadireanu, M.; Caprini, M.; Pantea, D.; Patel, B.; Czyzycki, W.; Domagala, M.; Filo, G.; Jaworowski, J.; Krawczyk, M.; Lisowski, F.; Lisowski, E.; Michałek, M.; Poznański, P.; Płażek, J.; Korcyl, K.; Kozela, A.; Kulessa, P.; Lebiedowicz, P.; Pysz, K.; Schäfer, W.; Szczurek, A.; Fiutowski, T.; Idzik, M.; Mindur, B.; Przyborowski, D.; Swientek, K.; Biernat, J.; Kamys, B.; Kistryn, S.; Korcyl, G.; Krzemien, W.; Magiera, A.; Moskal, P.; Pyszniak, A.; Rudy, Z.; Salabura, P.; Smyrski, J.; Strzempek, P.; Wronska, A.; Augustin, I.; Böhm, R.; Lehmann, I.; Nicmorus Marinescu, D.; Schmitt, L.; Varentsov, V.; Al-Turany, M.; Belias, A.; Deppe, H.; Dzhygadlo, R.; Ehret, A.; Flemming, H.; Gerhardt, A.; Götzen, K.; Gromliuk, A.; Gruber, L.; Karabowicz, R.; Kliemt, R.; Krebs, M.; Kurilla, U.; Lehmann, D.; Löchner, S.; Lühning, J.; Lynen, U.; Orth, H.; Patsyuk, M.; Peters, K.; Saito, T.; Schepers, G.; Schmidt, C. J.; Schwarz, C.; Schwiening, J.; Täschner, A.; Traxler, M.; Ugur, C.; Voss, B.; Wieczorek, P.; Wilms, A.; Zühlsdorf, M.; Abazov, V.; Alexeev, G.; Arefiev, V. A.; Astakhov, V.; Barabanov, M. Yu.; Batyunya, B. V.; Davydov, Y.; Dodokhov, V. Kh.; Efremov, A.; Fechtchenko, A.; Fedunov, A. G.; Galoyan, A.; Grigoryan, S.; Koshurnikov, E. K.; Lobanov, Y. Yu.; Lobanov, V. I.; Makarov, A. F.; Malinina, L. V.; Malyshev, V.; Olshevskiy, A. G.; Perevalova, E.; Piskun, A. A.; Pocheptsov, T.; Pontecorvo, G.; Rodionov, V.; Rogov, Y.; Salmin, R.; Samartsev, A.; Sapozhnikov, M. G.; Shabratova, G.; Skachkov, N. B.; Skachkova, A. N.; Strokovsky, E. A.; Suleimanov, M.; Teshev, R.; Tokmenin, V.; Uzhinsky, V.; Vodopianov, A.; Zaporozhets, S. A.; Zhuravlev, N. I.; Zorin, A. G.; Branford, D.; Glazier, D.; Watts, D.; Böhm, M.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Dobbs, S.; Seth, K.; Tomaradze, A.; Xiao, T.; Bettoni, D.; Carassiti, V.; Cotta Ramusino, A.; Dalpiaz, P.; Drago, A.; Fioravanti, E.; Garzia, I.; Savrie, M.; Akishina, V.; Kisel, I.; Kozlov, G.; Pugach, M.; Zyzak, M.; Gianotti, P.; Guaraldo, C.; Lucherini, V.; Bersani, A.; Bracco, G.; Macri, M.; Parodi, R. F.; Biguenko, K.; Brinkmann, K.; Di Pietro, V.; Diehl, S.; Dormenev, V.; Drexler, P.; Düren, M.; Etzelmüller, E.; Galuska, M.; Gutz, E.; Hahn, C.; Hayrapetyan, A.; Kesselkaul, M.; Kühn, W.; Kuske, T.; Lange, J. S.; Liang, Y.; Metag, V.; Nanova, M.; Nazarenko, S.; Novotny, R.; Quagli, T.; Reiter, S.; Rieke, J.; Rosenbaum, C.; Schmidt, M.; Schnell, R.; Stenzel, H.; Thöring, U.; Ullrich, M.; Wagner, M. N.; Wasem, T.; Wohlfahrt, B.; Zaunick, H.; Ireland, D.; Rosner, G.; Seitz, B.; Deepak, P. N.; Kulkarni, A.; Apostolou, A.; Babai, M.; Kavatsyuk, M.; Lemmens, P. J.; Lindemulder, M.; Loehner, H.; Messchendorp, J.; Schakel, P.; Smit, H.; Tiemens, M.; van der Weele, J. C.; Veenstra, R.; Vejdani, S.; Dutta, K.; Kalita, K.; Kumar, A.; Roy, A.; Sohlbach, H.; Bai, M.; Bianchi, L.; Büscher, M.; Cao, L.; Cebulla, A.; Dosdall, R.; Gillitzer, A.; Goldenbaum, F.; Grunwald, D.; Herten, A.; Hu, Q.; Kemmerling, G.; Kleines, H.; Lehrach, A.; Nellen, R.; Ohm, H.; Orfanitski, S.; Prasuhn, D.; Prencipe, E.; Pütz, J.; Ritman, J.; Schadmand, S.; Sefzick, T.; Serdyuk, V.; Sterzenbach, G.; Stockmanns, T.; Wintz, P.; Wüstner, P.; Xu, H.; Zambanini, A.; Li, S.; Li, Z.; Sun, Z.; Xu, H.; Rigato, V.; Isaksson, L.; Achenbach, P.; Corell, O.; Denig, A.; Distler, M.; Hoek, M.; Karavdina, A.; Lauth, W.; Liu, Z.; Merkel, H.; Müller, U.; Pochodzalla, J.; Sanchez, S.; Schlimme, S.; Sfienti, C.; Thiel, M.; Ahmadi, H.; Ahmed, S.; Bleser, S.; Capozza, L.; Cardinali, M.; Dbeyssi, A.; Deiseroth, M.; Feldbauer, F.; Fritsch, M.; Fröhlich, B.; Jasinski, P.; Kang, D.; Khaneft, D.; Klasen, R.; Leithoff, H. H.; Lin, D.; Maas, F.; Maldaner, S.; Martínez, M.; Michel, M.; Mora Espí, M. C.; Morales Morales, C.; Motzko, C.; Nerling, F.; Noll, O.; Pflüger, S.; Pitka, A.; Rodríguez Piñeiro, D.; Sanchez-Lorente, A.; Steinen, M.; Valente, R.; Weber, T.; Zambrana, M.; Zimmermann, I.; Fedorov, A.; Korjik, M.; Missevitch, O.; Boukharov, A.; Malyshev, O.; Marishev, I.; Balanutsa, V.; Balanutsa, P.; Chernetsky, V.; Demekhin, A.; Dolgolenko, A.; Fedorets, P.; Gerasimov, A.; Goryachev, V.; Chandratre, V.; Datar, V.; Dutta, D.; Jha, V.; Kumawat, H.; Mohanty, A. K.; Parmar, A.; Roy, B.; Sonika, G.; Fritzsch, C.; Grieser, S.; Hergemöller, A.; Hetz, B.; Hüsken, N.; Khoukaz, A.; Wessels, J. P.; Khosonthongkee, K.; Kobdaj, C.; Limphirat, A.; Srisawad, P.; Yan, Y.; Barnyakov, M.; Barnyakov, A. Yu.; Beloborodov, K.; Blinov, A. E.; Blinov, V. E.; Bobrovnikov, V. S.; Kononov, S.; Kravchenko, E. A.; Kuyanov, I. A.; Martin, K.; Onuchin, A. P.; Serednyakov, S.; Sokolov, A.; Tikhonov, Y.; Atomssa, E.; Kunne, R.; Marchand, D.; Ramstein, B.; van de Wiele, J.; Wang, Y.; Boca, G.; Costanza, S.; Genova, P.; Montagna, P.; Rotondi, A.; Abramov, V.; Belikov, N.; Bukreeva, S.; Davidenko, A.; Derevschikov, A.; Goncharenko, Y.; Grishin, V.; Kachanov, V.; Kormilitsin, V.; Levin, A.; Melnik, Y.; Minaev, N.; Mochalov, V.; Morozov, D.; Nogach, L.; Poslavskiy, S.; Ryazantsev, A.; Ryzhikov, S.; Semenov, P.; Shein, I.; Uzunian, A.; Vasiliev, A.; Yakutin, A.; Tomasi-Gustafsson, E.; Roy, U.; Yabsley, B.; Belostotski, S.; Gavrilov, G.; Izotov, A.; Manaenkov, S.; Miklukho, O.; Veretennikov, D.; Zhdanov, A.; Makonyi, K.; Preston, M.; Tegner, P.; Wölbing, D.; Bäck, T.; Cederwall, B.; Rai, A. K.; Godre, S.; Calvo, D.; Coli, S.; De Remigis, P.; Filippi, A.; Giraudo, G.; Lusso, S.; Mazza, G.; Mignone, M.; Rivetti, A.; Wheadon, R.; Balestra, F.; Iazzi, F.; Introzzi, R.; Lavagno, A.; Olave, J.; Amoroso, A.; Bussa, M. P.; Busso, L.; De Mori, F.; Destefanis, M.; Fava, L.; Ferrero, L.; Greco, M.; Hu, J.; Lavezzi, L.; Maggiora, M.; Maniscalco, G.; Marcello, S.; Sosio, S.; Spataro, S.; Birsa, R.; Bradamante, F.; Bressan, A.; Martin, A.; Calen, H.; Ikegami Andersson, W.; Johansson, T.; Kupsc, A.; Marciniewski, P.; Papenbrock, M.; Pettersson, J.; Schönning, K.; Wolke, M.; Galnander, B.; Diaz, J.; Pothodi Chackara, V.; Chlopik, A.; Kesik, G.; Melnychuk, D.; Slowinski, B.; Trzcinski, A.; Wojciechowski, M.; Wronka, S.; Zwieglinski, B.; Bühler, P.; Marton, J.; Steinschaden, D.; Suzuki, K.; Widmann, E.; Zmeskal, J.

    2016-10-01

    Simulation results for future measurements of electromagnetic proton form factors at overlinePANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel bar{p}p→ e+e- is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. bar{p}p→ π+π-, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance.

  8. Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B. [Aligarth Muslim Univ., Aligarth (India). Physics Dept.; Erni, W.; Krusche, B. [Basel Univ. (Switzerland); Collaboration: The PANDA Collaboration; and others

    2016-10-15

    Simulation results for future measurements of electromagnetic proton form factors at PANDA(FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel anti pp → e{sup +}e{sup -} is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. anti pp → π{sup +}π{sup -}, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance. (orig.)

  9. Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    CERN Document Server

    Singh, B.; Krusche, B.; Steinacher, M.; Walford, N.; Liu, B.; Liu, H.; Liu, Z.; Shen, X.; Wang, C.; Zhao, J.; Albrecht, M.; Erlen, T.; Fink, M.; Heinsius, F.; Held, T.; Holtmann, T.; Jasper, S.; Keshk, I.; Koch, H.; Kopf, B.; Kuhlmann, M.; Kümmel, M.; Leiber, S.; Mikirtychyants, M.; Musiol, P.; Mustafa, A.; Pelizäus, M.; Pychy, J.; Richter, M.; Schnier, C.; Schröder, T.; Sowa, C.; Steinke, M.; Triffterer, T.; Wiedner, U.; Ball, M.; Beck, R.; Hammann, C.; Ketzer, B.; Kube, M.; Mahlberg, P.; Rossbach, M.; Schmidt, C.; Schmitz, R.; Thoma, U.; Urban, M.; Walther, D.; Wendel, C.; Wilson, A.; Bianconi, A.; Bragadireanu, M.; Caprini, M.; Pantea, D.; Patel, B.; Czyzycki, W.; Domagala, M.; Filo, G.; Jaworowski, J.; Krawczyk, M.; Lisowski, F.; Lisowski, E.; Michałek, M.; Poznański, P.; Płażek, J.; Korcyl, K.; Kozela, A.; Kulessa, P.; Lebiedowicz, P.; Pysz, K.; Schäfer, W.; Szczurek, A.; Fiutowski, T.; Idzik, M.; Mindur, B.; Przyborowski, D.; Swientek, K.; Biernat, J.; Kamys, B.; Kistryn, S.; Korcyl, G.; Krzemien, W.; Magiera, A.; Moskal, P.; Pyszniak, A.; Rudy, Z.; Salabura, P.; Smyrski, J.; Strzempek, P.; Wronska, A.; Augustin, I.; Böhm, R.; Lehmann, I.; Marinescu, D. Nicmorus; Schmitt, L.; Varentsov, V.; Al-Turany, M.; Belias, A.; Deppe, H.; Dzhygadlo, R.; Ehret, A.; Flemming, H.; Gerhardt, A.; Götzen, K.; Gromliuk, A.; Gruber, L.; Karabowicz, R.; Kliemt, R.; Krebs, M.; Kurilla, U.; Lehmann, D.; Löchner, S.; Lühning, J.; Lynen, U.; Orth, H.; Patsyuk, M.; Peters, K.; Saito, T.; Schepers, G.; Schmidt, C.J.; Schwarz, C.; Schwiening, J.; Täschner, A.; Traxler, M.; Ugur, C.; Voss, B.; Wieczorek, P.; Wilms, A.; Zühlsdorf, M.; Abazov, V.; Alexeev, G.; Arefiev, V.A.; Astakhov, V.; Barabanov, M. Yu.; Batyunya, B.V.; Davydov, Y.; Dodokhov, V. Kh.; Efremov, A.; Fechtchenko, A.; Fedunov, A.G.; Galoyan, A.; Grigoryan, S.; Koshurnikov, E.K.; Lobanov, Y. Yu.; Lobanov, V.I.; Makarov, A.F.; Malinina, L.V.; Malyshev, V.; Olshevskiy, A.G.; Perevalova, E.; Piskun, A.A.; Pocheptsov, T.; Pontecorvo, G.; Rodionov, V.; Rogov, Y.; Salmin, R.; Samartsev, A.; Sapozhnikov, M.G.; Shabratova, G.; Skachkov, N.B.; Skachkova, A.N.; Strokovsky, E.A.; Suleimanov, M.; Teshev, R.; Tokmenin, V.; Uzhinsky, V.; Vodopianov, A.; Zaporozhets, S.A.; Zhuravlev, N.I.; Zorin, A.G.; Branford, D.; Glazier, D.; Watts, D.; Böhm, M.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Dobbs, S.; Seth, K.; Tomaradze, A.; Xiao, T.; Bettoni, D.; Carassiti, V.; Cotta Ramusino, A.; Dalpiaz, P.; Drago, A.; Fioravanti, E.; Garzia, I.; Savrie, M.; Akishina, V.; Kisel, I.; Kozlov, G.; Pugach, M.; Zyzak, M.; Gianotti, P.; Guaraldo, C.; Lucherini, V.; Bersani, A.; Bracco, G.; Macri, M.; Parodi, R.F.; Biguenko, K.; Brinkmann, K.; Di Pietro, V.; Diehl, S.; Dormenev, V.; Drexler, P.; Düren, M.; Etzelmüller, E.; Galuska, M.; Gutz, E.; Hahn, C.; Hayrapetyan, A.; Kesselkaul, M.; Kühn, W.; Kuske, T.; Lange, J.S.; Liang, Y.; Metag, V.; Nanova, M.; Nazarenko, S.; Novotny, R.; Quagli, T.; Reiter, S.; Rieke, J.; Rosenbaum, C.; Schmidt, M.; Schnell, R.; Stenzel, H.; Thöring, U.; Ullrich, M.; Wagner, M.N.; Wasem, T.; Wohlfahrt, B.; Zaunick, H.; Ireland, D.; Rosner, G.; Seitz, B.; Deepak, P.N.; Kulkarni, A.; Apostolou, A.; Babai, M.; Kavatsyuk, M.; Lemmens, P.J.; Lindemulder, M.; Loehner, H.; Messchendorp, J.; Schakel, P.; Smit, H.; Tiemens, M.; van der Weele, J.C.; Veenstra, R.; Vejdani, S.; Dutta, K.; Kalita, K.; Kumar, A.; Roy, A.; Sohlbach, H.; Bai, M.; Bianchi, L.; Büscher, M.; Cao, L.; Cebulla, A.; Dosdall, R.; Gillitzer, A.; Goldenbaum, F.; Grunwald, D.; Herten, A.; Hu, Q.; Kemmerling, G.; Kleines, H.; Lehrach, A.; Nellen, R.; Ohm, H.; Orfanitski, S.; Prasuhn, D.; Prencipe, E.; Pütz, J.; Ritman, J.; Schadmand, S.; Sefzick, T.; Serdyuk, V.; Sterzenbach, G.; Stockmanns, T.; Wintz, P.; Wüstner, P.; Xu, H.; Zambanini, A.; Li, S.; Li, Z.; Sun, Z.; Rigato, V.; Isaksson, L.; Achenbach, P.; Corell, O.; Denig, A.; Distler, M.; Hoek, M.; Karavdina, A.; Lauth, W.; Merkel, H.; Müller, U.; Pochodzalla, J.; Sanchez, S.; Schlimme, S.; Sfienti, C.; Thiel, M.; Ahmadi, H.; Ahmed, S.; Bleser, S.; Capozza, L.; Cardinali, M.; Dbeyssi, A.; Deiseroth, M.; Feldbauer, F.; Fritsch, M.; Fröhlich, B.; Jasinski, P.; Kang, D.; Khaneft, D.; Klasen, R.; Leithoff, H.H.; Lin, D.; Maas, F.; Maldaner, S.; Marta, M.; Michel, M.; Espí, M. C. Mora; Morales Morales, C.; Motzko, C.; Nerling, F.; Noll, O.; Pflüger, S.; Pitka, A.; Piñeiro, D. Rodríguez; Sanchez-Lorente, A.; Steinen, M.; Valente, R.; Weber, T.; Zambrana, M.; Zimmermann, I.; Fedorov, A.; Korjik, M.; Missevitch, O.; Boukharov, A.; Malyshev, O.; Marishev, I.; Balanutsa, V.; Balanutsa, P.; Chernetsky, V.; Demekhin, A.; Dolgolenko, A.; Fedorets, P.; Gerasimov, A.; Goryachev, V.; Chandratre, V.; Datar, V.; Dutta, D.; Jha, V.; Kumawat, H.; Mohanty, A.K.; Parmar, A.; Roy, B.; Sonika, G.; Fritzsch, C.; Grieser, S.; Hergemöller, A.; Hetz, B.; Hüsken, N.; Khoukaz, A.; Wessels, J.P.; Khosonthongkee, K.; Kobdaj, C.; Limphirat, A.; Srisawad, P.; Yan, Y.; Barnyakov, M.; Barnyakov, A. Yu.; Beloborodov, K.; Blinov, A.E.; Blinov, V.E.; Bobrovnikov, V.S.; Kononov, S.; Kravchenko, E.A.; Kuyanov, I.A.; Martin, K.; Onuchin, A.P.; Serednyakov, S.; Sokolov, A.; Tikhonov, Y.; Atomssa, E.; Kunne, R.; Marchand, D.; Ramstein, B.; van de Wiele, J.; Wang, Y.; Boca, G.; Costanza, S.; Genova, P.; Montagna, P.; Rotondi, A.; Abramov, V.; Belikov, N.; Bukreeva, S.; Davidenko, A.; Derevschikov, A.; Goncharenko, Y.; Grishin, V.; Kachanov, V.; Kormilitsin, V.; Levin, A.; Melnik, Y.; Minaev, N.; Mochalov, V.; Morozov, D.; Nogach, L.; Poslavskiy, S.; Ryazantsev, A.; Ryzhikov, S.; Semenov, P.; Shein, I.; Uzunian, A.; Vasiliev, A.; Yakutin, A.; Tomasi-Gustafsson, E.; Roy, U.; Yabsley, B.; Belostotski, S.; Gavrilov, G.; Izotov, A.; Manaenkov, S.; Miklukho, O.; Veretennikov, D.; Zhdanov, A.; Makonyi, K.; Preston, M.; Tegner, P.; Wölbing, D.; Bäck, T.; Cederwall, B.; Rai, A.K.; Godre, S.; Calvo, D.; Coli, S.; De Remigis, P.; Filippi, A.; Giraudo, G.; Lusso, S.; Mazza, G.; Mignone, M.; Rivetti, A.; Wheadon, R.; Balestra, F.; Iazzi, F.; Introzzi, R.; Lavagno, A.; Olave, J.; Amoroso, A.; Bussa, M.P.; Busso, L.; De Mori, F.; Destefanis, M.; Fava, L.; Ferrero, L.; Greco, M.; Hu, J.; Lavezzi, L.; Maggiora, M.; Maniscalco, G.; Marcello, S.; Sosio, S.; Spataro, S.; Birsa, R.; Bradamante, F.; Bressan, A.; Martin, A.; Calen, H.; Andersson, W. Ikegami; Johansson, T.; Kupsc, A.; Marciniewski, P.; Papenbrock, M.; Pettersson, J.; Schönning, K.; Wolke, M.; Galnander, B.; Diaz, J.; Chackara, V. Pothodi; Chlopik, A.; Kesik, G.; Melnychuk, D.; Slowinski, B.; Trzcinski, A.; Wojciechowski, M.; Wronka, S.; Zwieglinski, B.; Bühler, P.; Marton, J.; Steinschaden, D.; Suzuki, K.; Widmann, E.; Zmeskal, J.

    2016-01-01

    The results of simulations for future measurements of electromagnetic form factors at \\PANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision at which the proton form factors can be determined is estimated. The signal channel $\\bar p p \\to e^+ e^-$ is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. the $\\bar p p \\to \\pi^+ \\pi^-$, is studied. Furthermore, the background versus signal efficiency, statistic and systematic uncertainties on the extracted proton form factors are evaluated using to the two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam condition and detector performances.

  10. New large-Nc relations for the electromagnetic nucleon-to-Δ form factors

    International Nuclear Information System (INIS)

    Vladimir Pascalutsa; Marc Vanderhaeghen

    2006-01-01

    We establish relations which express the three N → Δ transition form factors in terms of the nucleon form factors. These relations are based on the known large-N c relation between the N → Δ electric quadrupole moment and the neutron charge radius, and a newly derived large-N c relation between the electric quadrupole (E2) and Coulomb quadrupole (C2) transitions. Namely, in the large-N c limit we find C2=E2. We show that these relations provide predictions for the N → Δ electromagnetic form factors which are found to be in very good agreement with experiment for moderate momentum transfers. They also provide constraints for the N → Δ GPDs

  11. Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    International Nuclear Information System (INIS)

    Singh, B.

    2016-01-01

    Simulation results for future measurements of electromagnetic proton form factors at PANDA(FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel anti pp → e + e - is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. anti pp → π + π - , is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance. (orig.)

  12. Baryonic matter and beyond

    OpenAIRE

    Fukushima, Kenji

    2014-01-01

    We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.

  13. Baryon Chiral Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Becher,

    2002-08-08

    After contrasting the low energy effective theory for the baryon sector with one for the Goldstone sector, I use the example of pion nucleon scattering to discuss some of the progress and open issues in baryon chiral perturbation theory.

  14. Numerical simulation for the magnetic force distribution in electromagnetic forming of small size flat sheet

    Science.gov (United States)

    Chen, Xiaowei; Wang, Wenping; Wan, Min

    2013-12-01

    It is essential to calculate magnetic force in the process of studying electromagnetic flat sheet forming. Calculating magnetic force is the basis of analyzing the sheet deformation and optimizing technical parameters. Magnetic force distribution on the sheet can be obtained by numerical simulation of electromagnetic field. In contrast to other computing methods, the method of numerical simulation has some significant advantages, such as higher calculation accuracy, easier using and other advantages. In this paper, in order to study of magnetic force distribution on the small size flat sheet in electromagnetic forming when flat round spiral coil, flat rectangular spiral coil and uniform pressure coil are adopted, the 3D finite element models are established by software ANSYS/EMAG. The magnetic force distribution on the sheet are analyzed when the plane geometries of sheet are equal or less than the coil geometries under fixed discharge impulse. The results showed that when the physical dimensions of sheet are less than the corresponding dimensions of the coil, the variation of induced current channel width on the sheet will cause induced current crowding effect that seriously influence the magnetic force distribution, and the degree of inhomogeneity of magnetic force distribution is increase nearly linearly with the variation of induced current channel width; the small size uniform pressure coil will produce approximately uniform magnetic force distribution on the sheet, but the coil is easy to early failure; the desirable magnetic force distribution can be achieved when the unilateral placed flat rectangular spiral coil is adopted, and this program can be take as preferred one, because the longevity of flat rectangular spiral coil is longer than the working life of small size uniform pressure coil.

  15. Baryon-baryon mixing in hypernuclei

    International Nuclear Information System (INIS)

    Gibson, B.F.

    1998-01-01

    Implications of few-body hypernuclei for the understanding of the baryon-baryon interaction are examined. Octet-octet coupling effects not present in conventional, non strange nuclei are the focus. The need to identify strangeness -2 hypernuclei to test model predictions is emphasized

  16. Baryon symmetric big bang cosmology

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1978-01-01

    It is stated that the framework of baryon symmetric big bang (BSBB) cosmology offers our greatest potential for deducting the evolution of the Universe because its physical laws and processes have the minimum number of arbitrary assumptions about initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the Universe and how galaxies and galaxy clusters are formed. BSBB cosmology also provides the only acceptable explanation at present for the origin of the cosmic γ-ray background radiation. (author)

  17. High-precision calculation of the strange nucleon electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Green, Jeremy [Johannes Gutenberg Univ., Mainz (Germany); Meinel, Stefan [Univ. of Arizona, Tucson, AZ (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Engelhardt, Michael G. [New Mexico State Univ., Las Cruces, NM (United States); Krieg, Stefan [Bergische Univ., Wuppertal (Germany); Julich Supercomputing Centre, Julich (Germany); Laeuchli, Jesse [College of William and Mary, Williamsburg, VA (United States); Negele, John W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pochinsky, Andrew [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Syritsyn, Sergey [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-08-26

    We report a direct lattice QCD calculation of the strange nucleon electromagnetic form factors GsE and GsM in the kinematic range 0 ≤ Q2 ≤ 1.2GeV2. For the first time, both GsE and GsM are shown to be nonzero with high significance. This work uses closer-to-physical lattice parameters than previous calculations, and achieves an unprecented statistical precision by implementing a recently proposed variance reduction technique called hierarchical probing. We perform model-independent fits of the form factor shapes using the z-expansion and determine the strange electric and magnetic radii and magnetic moment. As a result, we compare our results to parity-violating electron-proton scattering data and to other theoretical studies.

  18. In-Medium K^+ Electromagnetic Form Factor with a Symmetric Vertex in a Light Front Approach

    Science.gov (United States)

    Yabusaki, George H. S.; de Melo, J. P. B. C.; de Paula, Wayne; Tsushima, K.; Frederico, T.

    2018-05-01

    Using the light-front K^ +-Meson wave function based on a Bethe-Salpeter amplitude model for the Quark-Antiquark bound state, we study the Electromagnetic Form Factor (EMFF) of the K^ +-Meson in nuclear medium within the framework of light-front field theory. The K^ +-Meson model we adopt is well constrained by previous and recent studies to explain its properties in vacuum. The in-medium K^ +-Meson EMFF is evaluated for the plus-component of the electromagnetic current, J^+, in the Breit frame. In order to consistently incorporate the constituent up and antistrange Quarks of the K^ +-Meson immersed in symmetric nuclear matter, we use the Quark-Meson coupling model, which has been widely applied to various hadronic and nuclear phenomena in a nuclear medium with success. We predict the in-medium modification of the K^ +-Meson EMFF in symmetric nuclear matter. It is found that, after a fine tuning of the regulator mass, i.e. m_R = 0.600 GeV, the model is suitable to fit the available experimental data in vacuum within the theoretical uncertainties, and based on this we predict the in-medium modification of the K^ +-Meson EMFF.

  19. How well do we know the electromagnetic form factors of the proton?

    International Nuclear Information System (INIS)

    Arrington, J.

    2003-01-01

    Several experiments have extracted proton electromagnetic form factors from elastic cross section measurements using the Rosenbluth technique. Global analyses of these measurements indicate approximate scaling of the electric and magnetic form factors (μ p G E p /G M p ≅1), in contrast to recent polarization transfer measurements from Jefferson Lab. We present here a global reanalysis of the cross section data aimed at understanding the disagreement between the Rosenbluth extraction and the polarization transfer data. We find that the individual cross section measurements are self-consistent, and that the new global analysis yields results that are still inconsistent with polarization measurements. This discrepancy indicates a fundamental problem in one of the two techniques, or a significant error in polarization transfer or cross section measurements. An error in the polarization data would imply a large error in the extracted electric form factor, while an error in the cross sections implies an uncertainty in the extracted form factors, even if the form factor ratio is measured exactly

  20. Theory Support for the Excited Baryon Analysis Program at the JLAB 12 GeV Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Burkert, Volker; Lee, Tsung-Shung; Mokeev, Viktor; Aznauryan, Inna; Braun, Vladimir; Capstick, Simon; Cloet, Ian; Edwards, Robert; Gianinni, M.; Lin, Huey-Wen; Roberts, C.D.; Stoler, Paul; Zhao, Qiang; Zou, Bing-Song

    2009-01-01

    This document summarizes the contributions of the Electromagnetic $\\gamma_vNN^*$ Transition Form Factors workshop participants that provide theoretical support of the excited baryon program at the 12 GeV energy upgrade at JLab. The main objectives of the workshop were (a) review the status of the $\\gamma_vNN^*$ transition form factors extracted from the meson electroproduction data, (b) call for the theoretical interpretations of the extracted $N$-$N^*$ transition form factors, that enable access to the mechanisms responsible for the N* formation and to their emergence from QCD.

  1. Electromagnetic Transition Form Factor of the η meson with WASA-at-COSY

    Science.gov (United States)

    Goswami, A.

    2016-11-01

    In this work we present a study of the Dalitz decay η → γe+e-. The aim of this work is to measure the transition form factor of the η meson. The transition form factor of the η meson describes the electromagnetic structure of the meson. The study of the Dalitz decay helps to calculate the transition form factor of the η meson. When a particle is point-like it's decay rate can be calculated within QED. However, the complex structure of the meson modifies its decay rate. The transition form factor is determined by comparing the lepton-antilepton invariant mass distribution with QED. For this study data on proton-proton reaction at a beam energy of 1.4 GeV has been collected with WASA-at-COSY detector at Forschungszentrum Juelich, Germany. In the higher invariant mass region recent theoretical calculations slightly deviate from the fit to the data. We expect better results in the higher invariant mass region than previous measurements. The preliminary results of the analysis will be presented.

  2. Electromagnetic Transition Form Factor of the η meson with WASA-at-COSY

    Directory of Open Access Journals (Sweden)

    Goswami A.

    2016-01-01

    Full Text Available In this work we present a study of the Dalitz decay η → γe+e−. The aim of this work is to measure the transition form factor of the η meson. The transition form factor of the η meson describes the electromagnetic structure of the meson. The study of the Dalitz decay helps to calculate the transition form factor of the η meson. When a particle is point-like it’s decay rate can be calculated within QED. However, the complex structure of the meson modifies its decay rate. The transition form factor is determined by comparing the lepton-antilepton invariant mass distribution with QED. For this study data on proton-proton reaction at a beam energy of 1.4 GeV has been collected with WASA-at-COSY detector at Forschungszentrum Juelich, Germany. In the higher invariant mass region recent theoretical calculations slightly deviate from the fit to the data. We expect better results in the higher invariant mass region than previous measurements. The preliminary results of the analysis will be presented.

  3. Baryons and baryon resonances in nuclear matter

    Science.gov (United States)

    Lenske, Horst; Dhar, Madhumita; Gaitanos, Theodoros; Cao, Xu

    2018-01-01

    Theoretical approaches to the production of hyperons and baryon resonances in elementary hadronic reactions and heavy ion collisions are reviewed. The focus is on the production and interactions of baryons in the lowest SU(3) flavor octet and states from the next higher SU(3) flavor decuplet. Approaches using the SU(3) formalism for interactions of mesons and baryons and effective field theory for hyperons are discussed. An overview of application to free space and in-medium baryon-baryon interactions is given and the relation to a density functional theory is indicated. The intimate connection between baryon resonances and strangeness production is shown first for reactions on the nucleon. Pion-induced hypernuclear reactions are shown to proceed essentially through the excitation of intermediate nucleon resonances. Transport theory in conjunction with a statistical fragmentation model is an appropriate description of hypernuclear production in antiproton and heavy ion induced fragmentation reactions. The excitation of subnuclear degrees of freedom in peripheral heavy ion collisions at relativistic energies is reviewed. The status of in-medium resonance physics is discussed.

  4. Control of microstructure and mechanical properties of laser solid formed Inconel 718 superalloy by electromagnetic stirring

    Science.gov (United States)

    Liu, Fencheng; Cheng, Hongmao; Yu, Xiaobin; Yang, Guang; Huang, Chunping; Lin, Xin; Chen, Jing

    2018-02-01

    The coarse columnar grains and special interface in laser solid formed (LSFed) Inconel 718 superalloy workpieces seriously affect their mechanical properties. To improve the microstructure and mechanical properties of LSFed Inconel 718 superalloy, electromagnetic stirring (EMS) was introduced to alter the solidification process of the molten pool during LSF. The results show that EMS could not completely eliminate the epitaxially growing columnar grains, however, the strong convection of liquid metals can effectively influence the solid-liquid interface growing mode. The segregation of alloying elements on the front of solid-liquid interface is inhibited and the degree of constitutional supercooling decreases correspondingly. Comparing the microstructures of samples formed under different process parameters, the size and amount of the γ+Laves eutectic phases formed in interdendritic area decrease along with the increasing magnetic field intensity, resulting in more uniformly distributed alloying elements. The residual stress distribution is proved to be more uniform, which is beneficial to the grain refinement after recrystallilzaiton. Mechanical properties testing results show an improvement of 100 MPa in tensile strength and 22% in elongation was obtained after EMS was used. The high cycle fatigue properties at room temperature was also improved from 4.09 × 104 cycles to 8.21 × 104 cycles for the as-deposited samples, and from 5.45 × 104 cycles to 12.73 × 104 cycles for the heat treated samples respectively.

  5. Study of the baryon-baryon interaction in nucleon-nucleon and pion-deuteron scattering

    International Nuclear Information System (INIS)

    Fuchs, M.

    1993-01-01

    After the definition of the Hamiltonian in general form by meson production and absorption the transition to operators pursued, which connect only spaces with definite meson numbers. In this approximation first the self-energy of a single baryon was calculated in its full energy and momentum dependence. Then the formal expressions for the T matrices of nucleon-nucleon and pion-deuteron scattering were derived. The essential components of these expressions are the baryon-baryon T matrix ant transition amplitudes from pion-deuteron channels to baryon-baryon states. The central chapter dealt with the calculation of the baryon-baryon interaction for the general form of the vertices, with the solution of the binding problem and the baryon-baryon T matrix. Finally followed the results on the nucleon-nucleon and pion-deuteron scattering. For this first the transition amplitudes from pion-deuteron states to intermediate baryon-baryon states and the Born graphs of the pion-deuteron scattering had to be calculated. After some remarks to the transition from partial-wave decomposed T matrices to scattering observables an extensive representation of the total, partial, and differential cross sections and a series of spin observables (analyzing powers and spin correlations) for the elastic proton-proton, neutron-proton, and pion-deuteron scattering as well for the fusion reaction pp→πd and the breakup reaction πd→pp follows. Thereby the energies reached from the nucleon-nucleon respectively pion-deuteron threshold up to 100 MeV above the delta resonance

  6. Searching for baryons

    International Nuclear Information System (INIS)

    Majumdar, Subhabrata

    2015-01-01

    The current precision cosmological measurements, in agreement with big bang nucleosynthesis studies, tell us that approximately 95 percent of the Universe is 'dark' and only 5 percent of the Universe is 'visible' which comprises of baryons. However, observations reveal only a small fraction of this baryon budget. A key cosmological question arises as to 'where are these missing baryons?'. Simulations and past observations suggest that some of these are in the diffuse cosmic web. Recently, they have been observed, and speculated, to be hiding in the outskirts of massive halos, from Milky Way type galaxies to clusters. Upcoming surveys have the potential to unravel the mystery of the missing baryons. (author)

  7. Measurement of the electromagnetic form factors of $\\pi$ and $K$ mesons at the SPS

    CERN Multimedia

    2002-01-01

    This experiment will measure the electro-magnetic form factors of $\\pi$ and K mesons by determining the elastic scattering cross sections of these particles from stationary electrons in a liquid hydrogen target. It is planned to use an incident beam momentum of 300 GeV/c which corresponds to a maximum four momentum transfer of 0.29 (GeV/c)$^{2}$ for $\\pi$-e scattering and of 0.17 (GeV/c)$^{2}$ for K-e scattering. \\\\ \\\\ The apparatus will consist of the forward spectrometer of the NA1 experiment as described in proposal SPSC/74-15/P6 and addenda, preceded by modules of multiwire proportional chambers which determine the trajectories of the incident and scattered particles. The event trigger will be produced by scintillation counters arranged to discriminate against the strong interaction background and by the identification of one of the scattered particles as an electron by the photon detectors which form part of the forward spectrometer.

  8. Electromagnetic pion production in manifestly Lorentz invariant baryonic chiral perturbation theory; Elektromagnetische Pionproduktion in manifest Lorentz-invarianter baryonischer chiraler Stoerungstheorie

    Energy Technology Data Exchange (ETDEWEB)

    Lehnhart, B.C.

    2007-05-15

    This thesis is concerned with electromagnetic pion production within manifestly Lorentz-invariant chiral perturbation theory using the assumption of isospin symmetry. In a one-loop calculation up to the chiral order O(q{sup 4}), 105 Feynman diagrams contribute, consisting of 20 tree graphs and 85 loop diagrams. The tree graphs are classified as 16 pole diagrams and 4 contact graphs. Of the 85 loop diagrams, 50 diagrams are of order three and 35 diagrams are of fourth order. To calculate the pion production amplitude algorithms are developed on the basis of the Mathematica package FeynCalc. The one-photon-exchange approximation allows one to parametrise the pion production amplitude as the product of the polarisation vector of the (virtual) photon and the matrix element of the transition current. The polarisation vector is related to the leptonic vertex and the photon propagator and is well-known from QED. The dependence of the amplitude on the strong interaction is contained in the matrix element of the transition current, and we use chiral perturbation theory to describe this matrix element. The transition current can be expressed in terms of six gauge invariant amplitudes, each of which can again be decomposed into three isospin amplitudes. Linear combinations of these amplitudes allow us to describe the physical amplitudes. The one-loop integrals appearing within this calculation are determined numerically by the program LoopTools. In the case of tensorial integrals it is required to perform the method of Passarino and Veltman first. Furthermore, we apply the reformulated infrared regularisation which ensures that the results fulfill the chiral power counting. For this purpose algorithms are developed which determine the subtraction terms automatically. The obtained isospin amplitudes are integrated in the program MAID. As tests the s-wave multipoles E{sub 0+} and L{sub 0+} (using results up to chiral order O(q{sup 3})) are calculated in the threshold region

  9. The baryonic mass function of galaxies.

    Science.gov (United States)

    Read, J I; Trentham, Neil

    2005-12-15

    In the Big Bang about 5% of the mass that was created was in the form of normal baryonic matter (neutrons and protons). Of this about 10% ended up in galaxies in the form of stars or of gas (that can be in molecules, can be atomic, or can be ionized). In this work, we measure the baryonic mass function of galaxies, which describes how the baryonic mass is distributed within galaxies of different types (e.g. spiral or elliptical) and of different sizes. This can provide useful constraints on our current cosmology, convolved with our understanding of how galaxies form. This work relies on various large astronomical surveys, e.g. the optical Sloan Digital Sky Survey (to observe stars) and the HIPASS radio survey (to observe atomic gas). We then perform an integral over our mass function to determine the cosmological density of baryons in galaxies: Omega(b,gal)=0.0035. Most of these baryons are in stars: Omega(*)=0.0028. Only about 20% are in gas. The error on the quantities, as determined from the range obtained between different methods, is ca 10%; systematic errors may be much larger. Most (ca 90%) of the baryons in the Universe are not in galaxies. They probably exist in a warm/hot intergalactic medium. Searching for direct observational evidence and deeper theoretical understanding for this will form one of the major challenges for astronomy in the next decade.

  10. Static properties of baryons in the SU(3) Skyrme model

    International Nuclear Information System (INIS)

    Sriram, M.S.; Mani, H.S.; Ramachandran, R.

    1984-01-01

    We study the SU(3) x SU(3) Skyrme model with explicit chiral- and flavor-symmetry-breaking terms. We evaluate the SU(3)-symmetric meson-baryon coupling-constant ratio α, SU(3) mass breaking in the octet and decuplet, and the ΔI = 1 part of the electromagnetic mass splitting in baryons. The theoretical numbers are in reasonable agreement with the experimental values

  11. Diquark structure of baryons

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.

    1987-01-01

    Three body calculations for studying the baryons are performed in a non-relativistic treatment with three quarks interacting via Bhaduri's potential. From the resulting wave functions, it is analysed under which conditions can a diquark structure occurs. Several photos showing quark distributions inside the baryons are presented and discussed in details

  12. Outlook for baryon spectroscopy

    International Nuclear Information System (INIS)

    Tripp, R.D.

    1976-09-01

    The review of baryon spectroscopy includes a number of new generation experiments with greatly improved statistics which have emerged and are enhancing experimental knowledge of baryon resonances. The future research directions are pointed out, and some problems and deficiencies which can be resolved with contemporary techniques are mentioned

  13. B decays to baryons

    Indian Academy of Sciences (India)

    We note that two-body decays to baryons are suppressed relative to three- and four-body decays. In most of these analyses, the invariant baryon–antibaryon mass shows an enhancement near the threshold. We propose a phenomenological interpretation of this quite common feature of hadronization to baryons.

  14. Design and strength evaluation of structural joint made by electro-magnetic forming (EMF)

    International Nuclear Information System (INIS)

    Park, Young-Bae; Oh, Soo-Ik; Kim, Heon-Young

    2004-01-01

    Recently, weight reduction of vehicles has been of great interest, and consequently, the use of low-density materials in the automotive industry is increasing every year. Materials should not be substituted such a way that material of component parts is simply changed because there is a problem in achieving stiffness and strength. To achieve these requirements, the automobile should be redesigned totally. Aluminum spaceframe is rapidly being adopted as a body structure for accommodating lightness, stiffness and strength requirement. In aluminum spaceframe manufacturing, it is often required to join aluminum tube. But there are few suitable methods for joining aluminum tube, so that much interest has been focused on testing suitable joining methods. Joining by electromagnetic forming(EMF) can be useful method in joining aluminum tube, which offers some advantages compared with the conventional joining method. In this paper, joining by EMF was investigated as a pre-study for applying an automotive spaceframe. Finite element simulations and strength tests were performed to analyze the influence of geometric parameters on joint strength. Based on these results, configurations of axial joint and torque joint were suggested and guidelines for designing EMF joint were established

  15. Baryons and dual unitarization

    International Nuclear Information System (INIS)

    Konishi, K.-I.

    1977-05-01

    Processes involving baryons are discussed in the scheme of dual unitarization. In particular, the topological expansion is generalized to any hadronic S-matrix elements involving baryons and/or mesons. The expansion is based on a model for the baryon propagator, which is a set of three planar Feynman diagrams joined at a junction line. The resulting expansion is a double expansion in 1/N (N = the number of quark flavours) and in the number of baryon loops. Based on this, several new observations are made in phenomenological problems, and a unifying point of view in stressed. The scheme is evidently crossing invariant, and unitarity constraints are imposed order by order in 1/N and in the baryon loop number. (author)

  16. Lagrangian and energy forms for retrieving the impulse response of the Earth due to random electromagnetic forcing.

    Science.gov (United States)

    Slob, Evert; Weiss, Chester J

    2011-08-01

    We distinguish between trivial and nontrivial differences in retrieving the real or imaginary parts of the Green's function. Trivial differences come from different Green's function definitions. The energy and lagrangian forms constitute nontrivial differences. Magnetic noise sources suffice to extract the quasistatic electromagnetic-field Earth impulse response in the lagrangian form. This is of interest for Earth subsurface imaging. A numerical example demonstrates that all source vector components are necessary to extract a single-field vector component.

  17. From Theory to Experiment: Hadron Electromagnetic Form Factors in Space-like and Time-like Regions

    International Nuclear Information System (INIS)

    Tomasi-Gustafsson, E.; Gakh, G.I.; Rekalo, A.P.

    2007-01-01

    Hadron electromagnetic form factors contain information on the intrinsic structure of the hadrons. The pioneering work developed at the Kharkov Physical-Technical Institute in the 60's on the relation between the polarized cross section and the proton form factors triggered a number of experiments. Such experiments could be performed only recently due to the progress in accelerator and polarimetry techniques. The principle of these measurements is recalled and surprise and very precise results obtained on proton are presented. The actual status of nucleon electromagnetic form factors is reviewed, with special attention to the basic work done in Kharkov Physical-Technical Institute. This Paper is devoted to the memory of Prof. M.P. Rekalo

  18. N → Δ (1232) electromagnetic transition form factor and pion-nucleon dynamics at moderate energies

    International Nuclear Information System (INIS)

    Jurewicz, A.

    1980-01-01

    The dependence of the electromagnetic N → Δ (1232) transition form factor G/sup asterisk//sub M/(q 2 ) on q 2 , the four-momentum transfer squared, has been calculated with the use of relativistic dispersion relations supplemented with some dynamical assumptions. In the first place, they regard the phase of the magnetic dipole amplitude of electroproduction of pions on nucleons in the p 33 final state beyond the region of elastic unitarity. Namely, over the range from the lowest inelastic threshold up to 1780 MeV pion-nucleon c.m. energy, the phase in question has been identified with the real part of the respective phase shift of pion-nucleon scattering. Secondly, contributions to the dispersion integral from the higher energy region have been neglected. Finally, the polynomial ambiguity which appears in the problem has been fixed by requiring that the foregoing amplitude of electroproduction vanishes, independently of q 2 , at the upper end of the integration interval as defined above. These assumptions which preserve unitarity were shown previously to lead to very good results when applied to the calculation of the multipole amplitudes M/sup() 3/2/ 1 /sub +/ and E/sup() 3/2/ 1 /sub +/ of photopion production on nucleons in the Δ (1232) region. Now it is also shown that G/sup asterisk//sub M/(q 2 ) calculated in that fashion follows remarkably well the data over the whole range 0 2 2 currently covered by quantitative experimental studies. Some speculation concerning a possible dynamical rooting of the foregoing assumptions is presented

  19. Baryons with chromodynamics

    International Nuclear Information System (INIS)

    Isgur, N.

    1981-01-01

    Many of the phenomenological difficulties of the non-relativistic quark model for baryons are overcome when some current prejudices from chromodynamics about quark forces are imposed. The effects of flavour independent confinement, symmetry breaking through quark masses, and colour hyperfine interactions are most prominent, leading to a satisfactory understanding of both the spectroscopy of low-lying baryons and of the signs and magnitudes of baryon couplings. The previously worrisome absence in partial wave analyses of a large number of the states expected in the nonrelativistic quark model is explained in terms of decouplings of the resonances from their elastic channels

  20. Baryons in the chiral regime

    Energy Technology Data Exchange (ETDEWEB)

    Knippschild, Bastian

    2012-03-05

    Quantum Chromodynamics (QCD) is the theory of strong interactions, one of the four fundamental forces in our Universe. It describes the interaction of gluons and quarks which build up hadrons like protons and neutrons. Most of the visible matter in our universe is made of protons and neutrons. Hence, we are interested in their fundamental properties like their masses, their distribution of charge and their shape. The only known theoretical, non-perturbative and ab initio method to investigate hadron properties at low energies is lattice Quantum Chromodynamics (lattice QCD). However, up-to-date simulations (especially for baryonic quantities) do not achieve the accuracy of experiments. In fact, current simulations do not even reproduce the experimental values for the form factors. The question arises wether these deviations can be explained by systematic effects in lattice QCD simulations. This thesis is about the computation of nucleon form factors and other hadronic quantities from lattice QCD. So called Wilson fermions are used and the u- and d-quarks are treated fully dynamically. The simulations were performed using gauge ensembles with a range of lattice spacings, volumes and pion masses. First of all, the lattice spacing was set to be able to make contact between the lattice results and their experimental complement and to be able to perform a continuum extrapolation. The light quark mass has been computed and found to be m{sub ud}{sup MS}(2 GeV)=3.03(17)(38) MeV. This value is in good agreement with values from experiments and other lattice determinations. Electro-magnetic and axial form factors of the nucleon have been calculated. From these form factors the nucleon radii and the coupling constants were computed. The different ensembles enabled us to investigate systematically the dependence of these quantities on the volume, the lattice spacing and the pion mass. Finally we perform a continuum extrapolation and chiral extrapolations to the physical point

  1. Baryons in the chiral regime

    International Nuclear Information System (INIS)

    Knippschild, Bastian

    2012-01-01

    Quantum Chromodynamics (QCD) is the theory of strong interactions, one of the four fundamental forces in our Universe. It describes the interaction of gluons and quarks which build up hadrons like protons and neutrons. Most of the visible matter in our universe is made of protons and neutrons. Hence, we are interested in their fundamental properties like their masses, their distribution of charge and their shape. The only known theoretical, non-perturbative and ab initio method to investigate hadron properties at low energies is lattice Quantum Chromodynamics (lattice QCD). However, up-to-date simulations (especially for baryonic quantities) do not achieve the accuracy of experiments. In fact, current simulations do not even reproduce the experimental values for the form factors. The question arises whether these deviations can be explained by systematic effects in lattice QCD simulations. This thesis is about the computation of nucleon form factors and other hadronic quantities from lattice QCD. So called Wilson fermions are used and the u- and d-quarks are treated fully dynamically. The simulations were performed using gauge ensembles with a range of lattice spacings, volumes and pion masses. First of all, the lattice spacing was set to be able to make contact between the lattice results and their experimental complement and to be able to perform a continuum extrapolation. The light quark mass has been computed and found to be m ud MS (2 GeV)=3.03(17)(38) MeV. This value is in good agreement with values from experiments and other lattice determinations. Electro-magnetic and axial form factors of the nucleon have been calculated. From these form factors the nucleon radii and the coupling constants were computed. The different ensembles enabled us to investigate systematically the dependence of these quantities on the volume, the lattice spacing and the pion mass. Finally we perform a continuum extrapolation and chiral extrapolations to the physical point. In

  2. Strong interactions and electromagnetism in low-energy hadron physics

    International Nuclear Information System (INIS)

    Kubis, B.

    2002-10-01

    In the present work, we study various aspects of the entanglement of the strong and electromagnetic interactions as it is manifest in low-energy hadron physics. In the framework of chiral perturbation theory, two aspects are investigated: the test of the structure of baryons as probed by external electromagnetic currents, and the modification of reactions mediated by the strong interactions in the presence of internal (virtual) photons. In the first part of this work, we study the electromagnetic form factors of nucleons and the ground state baryon octet, as well as strangeness form factors of the nucleon. Emphasis is put on the comparison of a new relativistic scheme for the calculation of loop diagrams to the heavy-baryon formalism, and on the convergence of higher-order corrections in both schemes. The new scheme is shown to yield both a phenomenologically more successful description of the data and better convergence behaviour. In the second part, we study isospin violation in pion-kaon scattering as mediated by virtual photon effects and the light quark mass difference. This investigation is of particular importance for the extraction of scattering lengths from measurements of lifetime and energy levels in pion-kaon atoms. The isospin breaking corrections are shown to be small and sufficiently well under control. (orig.)

  3. Flavor structure of the nucleon electromagnetic form factors and transverse charge densities in the chiral quark-soliton model

    Science.gov (United States)

    Silva, António; Urbano, Diana; Kim, Hyun-Chul

    2018-02-01

    We investigate the flavor decomposition of the electromagnetic form factors of the nucleon, based on the chiral quark-soliton model (χQSM) with symmetry-conserving quantization. We consider the rotational 1/N_c and linear strange-quark mass (ms) corrections. We discuss the results of the flavor-decomposed electromagnetic form factors in comparison with the recent experimental data. In order to see the effects of the strange quark, we compare the SU(3) results with those of SU(2). Finally, we discuss the transverse charge densities for both unpolarized and polarized nucleons. The transverse charge density inside a neutron turns out to be negative in the vicinity of the center within the SU(3) χQSM, which can be explained by the contribution of the strange quark.

  4. Lifetime and production rate of beauty baryons from Z decays

    CERN Document Server

    Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Allport, P P; Almehed, S; Alvsvaag, S J; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barate, R; Barbiellini, Guido; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bocci, V; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Buys, A; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carrilho, P; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Daum, A; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; De Boeck, H; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Djama, F; Dolbeau, J; Dönszelmann, M; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Dupont, F; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrer, A; Filippas-Tassos, A; Firestone, A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fürstenau, H; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gibbs, M; Gillespie, D; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Gracco, Valerio; Graziani, E; Grosdidier, G; Gunnarsson, P; Günther, M; Guy, J; Haedinger, U; Hahn, F; Hahn, M; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Ioannou, P; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kalmus, George Ernest; Kapusta, F; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Köhne, J H; Köne, B; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Kramer, P H; Krammer, Manfred; Kreuter, C; Królikowski, J; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Lokajícek, M; Loken, J G; López, J M; López-Fernandez, A; López-Aguera, M A; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, M; McNulty, M; Medbo, J; Meroni, C; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Negri, P; Némécek, S; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Ostankov, A P; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schneider, H; Schyns, M A E; Sciolla, G; Scuri, F; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Squarcia, S; Stäck, H; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stepaniak, K; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Torassa, E; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Überschär, S; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Wehr, A; Weierstall, M; Weilhammer, Peter; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wormser, G; Woschnagg, K; Yip, K; Zach, F; Zacharatou-Jarlskog, C; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G

    1995-01-01

    The production and decay of beauty baryons (b-baryons) have been studied using 1.7 \\times 10^6 Z hadronic decays collected by the DELPHI detector at LEP. Three different techniques were used to identify the b-baryons. The first method used pairs of a \\Lambda and a lepton to tag the b-baryon decay. The second method associated fully reconstructed \\Lambda_c baryons with leptons. The third analysis reconstructed the b-baryon decay points by forming secondary vertices from identified protons and muons of opposite sign. Using these methods the following production rates were measured: \\begin{eqnarray*} f(\\qb \\ra \\Bb) \\times \\BR(\\Bb \\ra \\mLs \\ell\\bar{\

  5. Isospin splittings of baryons

    International Nuclear Information System (INIS)

    Varga, Kalman; Genovese, Marco; Richard, Jean-Marc; Silvestre-Brac, Bernard

    1998-01-01

    We discuss the isospin-breaking mass differences among baryons, with particular attention in the charm sector to the Σ c + -Σ c 0 , Σ c ++ -Σ c 0 , and Ξ c + -Ξ c 0 splittings. Simple potential models cannot accommodate the trend of the available data on charm baryons. More precise measurements would offer the possibility of testing how well potential models describe the non-perturbative limit of QCD

  6. Achieving maximum baryon densities

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1984-01-01

    In continuing work on nuclear stopping power in the energy range E/sub lab/ approx. 10 GeV/nucleon, calculations were made of the energy and baryon densities that could be achieved in uranium-uranium collisions. Results are shown. The energy density reached could exceed 2 GeV/fm 3 and baryon densities could reach as high as ten times normal nuclear densities

  7. Phenomenology of Baryon Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Doring, Michael [George Washington Univ., Washington, DC (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Landay, Justin [George Washington Univ., Washington, DC (United States); Mai, Maxim [George Washington Univ., Washington, DC (United States); Molina, Raquel [Univ. of Sao Paulo (Brazil); Ronchen, Deborah [Univ. of Bonn (Germany)

    2018-04-01

    Results for light baryon spectroscopy by different collaborations and the state of the art in the subfield is reviewed. Highlights contain common efforts of different phenomenology groups and the impact of recent high-precision data from ELSA, JLab, MAMI, and other facilities. Questions will be addressed, on one side, of how to proceed to reach conclusive answers in baryon spectroscopy, and, on the other side, how phenomenology can be connected to theory in a meaningful way.

  8. Heavy baryon transitions and the heavy quark effective theory

    International Nuclear Information System (INIS)

    Hussain, F.

    1992-01-01

    Heavy baryon decays are studied in the context of the Bethe-Salpeter approach to the heavy quark effective theory. A drastic reduction, in the number of independent form factors, is found. Results are presented both for heavy to heavy and heavy to light baryon decays. (orig.)

  9. Emission of ultrashort electromagnetic pulses from electron bunches formed and accelerated by laser beams with tilted amplitude fronts

    International Nuclear Information System (INIS)

    Galkin, A.L.; Korobkin, V.V.; Romanovsky, M.Yu.; Shiryaev, O.B.; Trofimov, V.A.

    2013-01-01

    The dynamics of an electron in a standing wave generated by a pair of counterpropagating linearly polarized relativistically intense laser pulses and the emission of electromagnetic radiation by the electron are analyzed. The pulses are assumed to have tilted amplitude fronts and asymmetric focal spots. The analysis of the dynamics is performed by solving numerically the Newton equation with the corresponding Lorentz force, and the emission of radiation is simulated based on the Lienard-Wiechert potentials. The electrons are accelerated by the direct action of the standing wave field and are shown to form a small short bunch. For relativistic intensities, the energies gained by the electrons reach several GeV. It is demonstrated that the radiation emitted by the electrons in the bunch is a single electromagnetic pulse confined to a narrow solid angle and having an attosecond duration. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Excited baryon program at the Bonn electron stretcher accelerator ELSA

    International Nuclear Information System (INIS)

    Menze, D.

    1989-01-01

    The Bonn electron stretcher accelerator ELSA is the first of a new generation of continuous beam machines in the GeV region. It is qualified for experiments with tagged photons and with polarized electrons on polarized nucleons to investigate the electromagnetic properties of excited baryon resonances

  11. Photoproduction of hermaphrodite baryons

    International Nuclear Information System (INIS)

    Barnes, T.; Close, F.E.

    1983-02-01

    It is shown that photoexcitation of the lightest hermaphrodite baryons is strongly suppressed from proton targets but allowed from neutrons, a result that is reminiscent of a quark model selection rule due to Moorhouse (Phys. Rev. Lett.; 16:772 (1966)). This is consistent with suggestions that the P 11 (1710) is the lightest q 3 G baryon and eliminates the possibility that the Roper resonance is dominantly an hermaphrodite state. Magnetic moments do not constrain the possibility of considerable mixing of q 3 G into the nucleon and delta's Fock space wavefunctions. (author)

  12. Baryon symmetric big-bang cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Stecker, F.W.

    1978-04-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.

  13. Baryon symmetric big-bang cosmology

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1978-04-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation

  14. Polarization observables in the process d + p → d+ X and electromagnetic form factors of N → N* transitions

    International Nuclear Information System (INIS)

    Rekalo, M.P.; Tomasi-Gustafsson, E.

    1996-01-01

    We analyze the properties of the inclusive d + p-reactions, with particular interest in the domain of nucleonic resonances excitation. The calculated cross section and polarization observables show that it is possible to disentangle the different reaction mechanisms (ω-,σ-, n- exchange) and bring new information about the electromagnetic form factors of the deuteron as well as of the nucleonic resonances excitation. Existing data on the tensor analyzing power are in agreement with the predictions based on the ω-exchange model. (authors)

  15. Baryon production in proton-proton collisions

    International Nuclear Information System (INIS)

    Liu, F.M.; Werner, K.

    2002-01-01

    Motivated by the recent rapidity spectra of baryons and antibaryons in pp collisions at 158 GeV and the Ω-bar/Ω ratio discussion, we reviewed string formation mechanism and some string models. This investigation told us how color strings are formed in ultrarelativistic proton-proton collisions

  16. Baryon asymmetry, dark matter and local baryon number

    International Nuclear Information System (INIS)

    Fileviez Pérez, Pavel; Patel, Hiren H.

    2014-01-01

    We propose a new mechanism to understand the relation between baryon and dark matter asymmetries in the universe in theories where the baryon number is a local symmetry. In these scenarios the B−L asymmetry generated through a mechanism such as leptogenesis is transferred to the dark matter and baryonic sectors through sphalerons processes which conserve total baryon number. We show that it is possible to have a consistent relation between the dark matter relic density and the baryon asymmetry in the universe even if the baryon number is broken at the low scale through the Higgs mechanism. We also discuss the case where one uses the Stueckelberg mechanism to understand the conservation of baryon number in nature.

  17. Baryons and ladders

    International Nuclear Information System (INIS)

    Ball, R.D.

    1990-01-01

    By formal manipulation of the QCD functional integral we arrive at a relativistic low energy effective theory of non-local color singlet mesons and baryons, which at tree level sums up ladders of effective glue exchange between constituent quarks. (orig.)

  18. Diquarks in rotating baryons

    International Nuclear Information System (INIS)

    Martin, A.

    1989-01-01

    This paper shows that the minimum energy three-quark classical configuration for a given angular momentum and linear two-body potentials between the quarks is a quark-diquark system. The authors deduce from this that baryons at large angular momentum have a quark-diquark structure. Explicit calculations by Flack, Richard and Silvestre-Brac show this effect

  19. Precision Measurements of the Proton Electromagnetic Form Factors in the Time-Like Region and Vector Meson Spectroscopy

    CERN Multimedia

    2002-01-01

    The aim of this experiment is to measure with precision the electromagnetic form factors of the proton in the time-like region via the reaction: .ce @*p @A e|+e|- with antiprotons of momenta between 0 and 2 GeV/c. Up to @= 800 MeV/c, a continuous energy scan in @= 2 MeV (@]s) bins will be performed. The form factor !G(E)! and !G(M)! will be determined separately since large statistics can be collected with LEAR antiproton beams, so that angular distributions can be obtained at many momenta.\\\\ \\\\ In addition, e|+e|- pairs produced via the reaction: .ce @*p @A V|0 + neutrals, .ce !@A e|+e|- where the antiprotons are at rest, will be detected allowing the vector meson mass spectrum between @= 1 GeV and @= 1.7 GeV to be obtained with high statistics and in one run. \\\\ \\\\ The proposed apparatus consists of a central detector, surrounded by a gas Cerenkov counter, wire chambers, hodoscopes, and an electromagnetic calorimeter. The central detector consists of several layers of proportional chambers around a liquid-h...

  20. Multifunctional Merkel cells: their roles in electromagnetic reception, finger-print formation, Reiki, epigenetic inheritance and hair form.

    Science.gov (United States)

    Irmak, M Kemal

    2010-08-01

    Merkel cells are located in glabrous and hairy skin and in some mucosa. They are characterized by dense-core secretory granules and cytoskeletal filaments. They are attached to neighboring keratinocytes by desmosomes and contain melanosomes similar to keratinocytes. They are excitable cells in close contact with sensory nerve endings but their function is still unclear. In this review, following roles are attributed for the first time to the Merkel cells: (1) melanosomes in Merkel cells may be involved in mammalian magnetoreception. In this model melanosome as a biological magnetite is connected by cytoskeletal filaments to mechanically gated ion channels embedded in the Merkel cell membrane. The movement of melanosome with the changing electromagnetic field may open ion channels directly producing a receptor potential that can be transmitted to brain via sensory neurons. (2) Merkel cells may be involved in finger-print formation: Merkel cells in glabrous skin are located at the base of the epidermal ridges the type of which defines the finger-print pattern. Finger-print formation starts at the 10th week of pregnancy after the arrival of Merkel cells. Keratinocyte proliferation and the buckling process observed in the basal layer of epidermis resulting in the epidermal ridges may be controlled and formed by Merkel cells. (3) Brain-Merkel cell connection is bi-directional and Merkel cells not only absorb but also radiate the electromagnetic frequencies. Hence, efferent aspects of the palmar and plantar Merkel nerve endings may form the basis of the biofield modalities such as Reiki, therapeutic touch and telekinesis. (4) Adaptive geographic variations such as skin color, craniofacial morphology and hair form result from interactions between environmental factors and epigenetic inheritance system. While environmental factors produce modifications in the body, they simultaneously induce epigenetic modifications in the oocytes and in this way adaptive changes could be

  1. Entropy per baryon in a 'many-worlds' cosmology

    International Nuclear Information System (INIS)

    Clutton-Brock, M.

    1977-01-01

    The universe is imagined split into infinitely many branches, or 'worlds', only one of which can be observed. The world has an entropy per baryon xi approximately 10 9 : other worlds can have all possible values of entropy per baryon. High-entropy worlds with xi > 5x10 11 do not form galaxies, but only giant black holes. Low entropy worlds with xi 5 do form galaxies, but only metal-poor dwarf galaxies with no planets. Life can evolve only in worlds with entropy per baryon in the range 3x10 5 11 , and life is abundant only in a much narrower range. (Auth.)

  2. Heavy quark effective theory and heavy baryon transitions

    International Nuclear Information System (INIS)

    Hussain, F.

    1992-01-01

    The heavy quark effective theory (HQET) is applied to study the weak decay of heavy mesons and heavy baryons and to predict the form factors for heavy to heavy and heavy to light transitions. 28 refs, 10 figs, 2 tabs

  3. A measurement of the space-like pion electromagnetic form factor

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Badelek, B.; Batignani, G.; Bedeschi, F.; Bertolucci, E.; Bettoni, D.; Bosisio, L.; Bradaschia, C.; Dell'Orso, M.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Scribano, A.; Tonelli, G.; Triggiani, G.; Codino, A.; Enorini, M.; Fabbri, F.L.; Laurelli, P.; Satta, L.; Spillantini, P.; Zallo, A.

    1986-01-01

    The pion form factor has been measured in the space-like q 2 region 0.014 to 0.26 (GeV/c) 2 by scattering 300 GeV pions from the electrons of a liquid hydrogen target. A detailed description is given of the apparatus, data analysis and corrections to the data. The mean square charge radius extracted from the data is model-dependent. We find that a form which includes a realistic description of the form factor phase gives a similar result to the naive pole form, and conclude π 2 >=0.439±0.008 fm 2 . (orig.)

  4. Heavy quark symmetry at large recoil: The case of baryons

    International Nuclear Information System (INIS)

    Koerner, J.G.; Kroll, P.

    1992-02-01

    We analyze the large recoil behaviour of heavy baryon transition form factors in semi-leptonic decays. We use a generalized Brodsky-Lepage hard scattering formalism where diquarks are considered as quasi-elementary constituents of baryons. In the limit of infinitely heavy quark masses the large recoil form factors exhibit a new model-independent heavy quark symmetry which is reminiscent but not identical to the Isgur-Wise symmetry at low recoil. (orig.)

  5. Photoproduction of charmed baryons

    International Nuclear Information System (INIS)

    Russell, J.J.

    1980-01-01

    The results of a search for the photoproduction of charmed baryons in the broad-band neutral beam at Fermi National Accelerator Laboratory are reported. The lowest lying charmed baryon (Λ/sub c/ + ) is observed through its decay to p-anti K 0 . The cross section times branching ratio of γ + C → Λ/sub c/ + + X, γ + C → p + anti K 0 is measured to be sigma B = 3 nanobarns/nucleon. The total error on this measurement is estimated to be -20% to +40%. The mass of the Λ/sub c/ + is found to be 2.284 +- 0.001 GeV/c 2 , in good agreement with the Mark II result from SPEAR. Upper limits (90% confidence level) are set on sigma B for the modes Λ 0 π, Λ 0 πππ, pKπ

  6. Baryonic dark matter

    Science.gov (United States)

    Silk, Joseph

    1991-01-01

    Both canonical primordial nucleosynthesis constraints and large-scale structure measurements, as well as observations of the fundamental cosmological parameters, appear to be consistent with the hypothesis that the universe predominantly consists of baryonic dark matter (BDM). The arguments for BDM to consist of compact objects that are either stellar relics or substellar objects are reviewed. Several techniques for searching for halo BDM are described.

  7. Baryons as solitons

    International Nuclear Information System (INIS)

    Walliser, Hans

    2000-01-01

    Chiral Lagrangians as effective field theories of QCD are successfully applied to meson physics in the framework of chiral perturbation theory. Because of their nonlinear structure these Lagrangians allow for static soliton solutions interpreted as baryons. Their semiclassical quantization, which provides the leading order in an 1/N C expansion with N C the number of colors, turned out to be insufficient to obtain satisfactory agreement with empirical baryon observables. However with N C =3, large corrections are expected in the next-to-leading order carried by mesonic fluctuations around the soliton background, which require renormalization to 1-loop. In contrast to chiral perturbation theory, the low-energy Lagrangian proves inapt and terms with an arbitrary number of gradients may in principle contribute. Assumptions about the a priori unknown higher chiral orders are tested by the scale-dependence of the results. For example, in the simple Sine-Gordon model with 1 scalar field in 1+1 dimensions, knowledge of the low-energy behavior together with the mere existence of an underlying 1-loop renormalizable scale-independent solitonic theory is sufficient to regain the full solution. Baryonic observables calculated within that framework generally lead to better agreement with experiment except for the axial quantities. For these quantities the 1/N C expansion does not converge sufficiently fast because the current algebra mixes different N C orders

  8. Recent soft-core baryon-baryon interactions

    International Nuclear Information System (INIS)

    Rijken, Th.A.; Yamamoto, Y.

    2005-01-01

    We present recent results obtained with the extended soft-core (ESC) interactions. This ESC-model, henceforth called ESC03, describes nucleon-nucleon (NN), hyperon-nucleon (YN), and hyperon-hyperon (YY), in a unified manner using (broken) SUf(3)-symmetry. Novel ingredients are the inclusion of (i) the axial-vector meson potentials (ii) a zero in the scalar-meson form-factors. With these innovations, it proved possible for the first time to keep the parameters of the model closely to the predictions of the P03 quark-pair-creation model (QPC). This is the case for the meson-baryon coupling constants and F/(F+D)-ratio's as well. Also, the YN and YY results for this model are rather excellent

  9. Electromagnetic and axial-vector form factors of the quarks and nucleon

    Science.gov (United States)

    Dahiya, Harleen; Randhawa, Monika

    2017-11-01

    In light of the improved precision of the experimental measurements and enormous theoretical progress, the nucleon form factors have been evaluated with an aim to understand how the static properties and dynamical behavior of nucleons emerge from the theory of strong interactions between quarks. We have analyzed the vector and axial-vector nucleon form factors (GE,Mp,n(Q2) and GAp,n(Q2)) using the spin observables in the chiral constituent quark model (χCQM) which has made a significant contribution to the unraveling of the internal structure of the nucleon in the nonperturbative regime. We have also presented a comprehensive analysis of the flavor decomposition of the form factors (GEq(Q2), GMq(Q2) and GAq(Q2) for q = u,d,s) within the framework of χCQM with emphasis on the extraction of the strangeness form factors which are fundamental to determine the spin structure and test the chiral symmetry breaking effects in the nucleon. The Q2 dependence of the vector and axial-vector form factors of the nucleon has been studied using the conventional dipole form of parametrization. The results are in agreement with the available experimental data.

  10. Precise determination of low-Q nucleon electromagnetic form factors and their impact on parity-violating e-p elastic scattering

    International Nuclear Information System (INIS)

    Arrington, John; Sick, Ingo

    2007-01-01

    The extraction of the strangeness form factors from parity-violating elastic electron-proton scattering is sensitive to the electromagnetic form factors at low Q 2 . We provide parametrizations for the form factors and uncertainties, including the effects of two-photon exchange corrections to the extracted electromagnetic form factors. We study effect of the correlations between different form factors, in particular as they impact the parity-violating asymmetry and the extraction of the strangeness form factors. We provide a prescription to extract the strangeness form factors from the asymmetry that provides an excellent approximation of the full two-photon correction. The corrected form factors are also appropriate as input for other low-Q analyses, although the effects of correlations and two-photon exchange corrections may be different

  11. Data on the electromagnetic pion form factor and p-wave

    International Nuclear Information System (INIS)

    Dubnicka, S.; Meshcheryakov, V.A.; Milko, J.

    1980-01-01

    The pion form factor absolute value data (free of the omega meson contribution) are unified with the P-wave isovector ππ phase shift. The resultant real and imaginary parts of the pion form factor are described by means of the Pade approximation. All the data, which involve the pion form factor experimental points from the range of momenta - 0.8432 GeV 2 2 , the pion charge radius, and the P-wave isovector ππ phase shift in the elastic region (including also the generally accepted value of the scattering length) are mutually consistent. The data themselves through the Pade approximation reveal that the aforementioned consistency can be achieved only if the pion form factor left-hand cut from the second Riemann sheet is taken into account. Almost in all of the considered Pade approximations one stable pion form factor zero is found in the space-like region, which might indicate the existence of a diffraction minimum in the differential cross section for elastic e - π scattering as a consequence of the constituent structure of the pion like in the case of the electron elastic scattering on nuclei

  12. Effects of core polarization and meson exchange currents on electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Arima, Akito [Tokyo Univ. (Japan). Dept. of Physics; Ikegami, Hidetsugu; Muraoka, Mitsuo [eds.; Osaka Univ., Suita (Japan). Research Center for Nuclear Physics

    1980-01-01

    Magnetic form factors observed by electron scattering provide good evidence for core polarization and meson exchange currents. Their effects are discussed by taking /sup 17/O, /sup 51/V, /sup 207/Pb /sup 208/Pb, /sup 209/Bi and /sup 12/C.

  13. Electromagnetic transition form factor of the η meson with WASA-at-COSY

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, Ankita [Indian Institute of Technology Indore, Indore (India); Collaboration: WASA-at-COSY-Collaboration

    2015-07-01

    The aim of this work is to measure the transition form factor of the η meson. The transition form factor describes the internal structure of a particle. The precise determination of the transition form factor of the η meson is possible through the η→γe{sup +} e{sup -} Dalitz decay. When a particle is point-like then its decay rate can be calculated within QED. However, the complex structure of the particle modifies its decay rate. The transition form factor is determined by comparing the lepton-antilepton invariant mass distribution with QED. η mesons are produced using the reaction pp→ppη at a beam kinetic energy of 1.4 GeV at the COSY accelerator of Forschungszentrum Juelich and decay particles of the η meson are detected with the WASA detector. In the higher invariant mass region recent theoretical calculations slightly deviate from the the data. With the high statistics dataset we expect precise results in the higher invariant mass region. The status of the analysis is reported.

  14. Baryons in the heavy quark effective theory

    International Nuclear Information System (INIS)

    Mannel, T.; Roberts, W.; Ryzak, Z.

    1990-08-01

    We show how to incorporate baryons in the heavy quark effective theory. A convenient formalism is exhibited and applied to semileptonic weak decays of heavy baryons and to exclusive production of heavy baryons in e + e - annihilation. (orig.)

  15. Asymptotics of pion electromagnetics form factor in scale invariant quark model

    International Nuclear Information System (INIS)

    Efremov, A.V.; Radyushkin, A.V.

    1976-01-01

    A consistent relativistic approach is proposed to the investigation of asymptotic behaviour of form factor of a system, composed of two spinor particles, interacting with the vector of (pseudo) scalar neutral field. It is shown that the assumption of finite and small asymptotical value of quark-gluon interaction invariant charge at small distances (g 9 2 9 2 ln(-Q 2 ) 2 values (Q 2 is squared momentum)

  16. A diquark model for baryons containing one heavy quark

    International Nuclear Information System (INIS)

    Ebert, D.; Feldmann, T.; Kettner, C.; Reinhardt, H.

    1995-06-01

    We present a phenomenological ansatz for coupling a heavy quark with two light quarks to form a heavy baryon. The heavy quark is treated in the heavy mass limit, and the light quark dynamics is approximated by propagating scalar and axial vector 'diquarks'. The resulting effective lagrangian, which incorporates heavy quark and chiral symmetry, describes interactions of heavy baryons with Goldstone bosons in the low energy region. As an application, the Isgur-Wise formfactors are estimated. (orig.)

  17. Transition mixing among baryons

    International Nuclear Information System (INIS)

    Faiman, D.

    1976-01-01

    A degenerate perturbation theory model for mass splitting within the 70,1 - baryon multiplet is proposed. It is found that dominance of the lowest-lying two-body 56x35 intermediate states produces mixing angles in fair approximation to those previously deduced from SU(6)sub(W) analysis of decay data. The prediction of the couplings of all hitherto undetected members of the multiplet and of mass were made. The results call into question the nature of Λ (1405). (author)

  18. Unstable baryons without Guts

    International Nuclear Information System (INIS)

    Uschersohn, J.; Elbaz, E.

    1983-01-01

    In the rishon model the leptons and the quarks can be classified in either doublets or quadruplets of a SU(2) group. Gauge invariance leads to different charged current interactions in the doublet and the quadruplet cases. Demanding that the neutral currents be the same in the two cases, one obtains relations between the different charged current couplings to leptons and quark; moreover, if these transform as linear combinations of doublets and quadruplets, one can estimate the mass of the gauge boson responsible for baryon decay to be not larger than 10 5 GeV. A SU(2)sub(L) x U(1) model is treated in detail

  19. Baryon spectroscopy at KAON

    Energy Technology Data Exchange (ETDEWEB)

    Comyn, Martin

    1992-07-01

    The unique opportunities for the study of baryon spectroscopy at the TRIUMF KAON Factory are outlined. Related issues in other areas of hadron spectroscopy are discussed. The complex of accelerators that comprise the TRIUMF KAON Factory, and the properties of the separated beams that will be available to experimenters, are described. Initial design considerations for detectors to be used in the study of hadron spectroscopy are presented, along with a proposed detector configuration. The progress towards realization of the TRIUMF KAON Factory is examined, and the timetable for the determination of the initial experimental programme and facilities is explained. 23 refs., 4 figs., 5 tabs.

  20. The impact of s- anti s asymmetry on the strange electromagnetic form factor

    Energy Technology Data Exchange (ETDEWEB)

    Ghasempour Nesheli, Ali [Islamic Azad University, Department of Physics, Shiraz Branch, Shiraz (Iran, Islamic Republic of)

    2016-09-15

    The existence of the strange quark asymmetry in the nucleon sea has been indicated by both the experimental and theoretical analyses. Although it is well known that the s- anti s asymmetry is important for some processes in high-energy hadron collisions, it has also been indicated that it can be related to the strange Dirac form factor F{sub 1}{sup s}. In this work, we have studied the impact of s- anti s asymmetry and its uncertainty from various modern parton distribution functions (PDFs) on F{sub 1} {sup s} and compared the obtained results with the available experimental information. As a result, we found that the uncertainty in F{sub 1}{sup s}(t) due to the s(x) - anti s (x) distribution is rather large so that it dominates the model uncertainty at all values of the squared momentum transfer t. However, taking into account the uncertainties, the theoretical predictions of F{sub 1}{sup s}(t) are fully compatible with the estimate extracted from experiment. We concluded that the future accurate experimental data of the strange Dirac form factor might be used to put direct constraints on the strange content of the proton and reduce its uncertainty that has always been a challenge. (orig.)

  1. Anomalous Dimensions of Conformal Baryons

    DEFF Research Database (Denmark)

    Pica, Claudio; Sannino, Francesco

    2016-01-01

    We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within...

  2. Power correction to the asymptotics of the pion electromagnetic form factor

    International Nuclear Information System (INIS)

    Geshkenbein, B.V.; Terentyev, M.V.

    1982-01-01

    The contribution of the power correction approximately (μ 2 /Q 2 ) 2 enhanced by the factor approximately μ 2 /anti m 2 , to the pion form factor (FF) is calculated (here μ is the pion mass, anti m=1/2(msub(u)+msub(α)) is the mean value of the u- and d-quark masses, Q 2 =-(p-p') 2 > 0, where p, p' are meson momenta at initial and final state. It is shown that the only source of large corrections is due to the contribution of the local pseudoscalar current. The main (approximately 1/Q 2 ) asymptotics of FF associated with the axial current contribution, is derived. The contribution (approximately 1/Q 4 ) of the pseudoscalar current is calculated

  3. Electromagnetic mass differences of hadrons with SU(6)/sub W/ x O(3) couplings and form factors

    International Nuclear Information System (INIS)

    Sood, S.; Mitra, A.N.

    1976-01-01

    A systematiUsing these for account of a few typical electromagnetic mass differences of hadrons (N, Σ; K, π) is presented within the framework provided by a broken-SU(6)/sub W/ x O(3) model of hadron couplings. The model, which has specified combinations of couplings of ''magnetic'' and ''charge'' origin, is characterized by the supermultiplet form factors at the hadron vertices. The parameters of these functions on the mass shell have been determined recently via a study of the decay widths of the resonances. By use of these form factors, suitably extended off the mass shell of the vector meson so as to render the calculations formally free from series and integral divergences, the coupling scheme is found to provide a reasonable description of the mass differences through the twin mechanisms of dominance of magnetic contribution over charge contribution and that of (L + 1) wave couplings over (L - 1). A formal connection of this approach with the more conventional dispersion-theoretic one can be established through the observation that the subtraction term (necessary for ΔI = 1 cases of mass differences) finds a close parallel to the couplings of magnetic origin (which have extra momentum dependence vis-a-vis the charge couplings) the magnetic couplings are thus made relatively more important for the ΔI = 1 cases according to Harari's interpretation. The model is not so successful for ΔI = 2 mass differences which are dominated by the (weaker) charge couplings

  4. e+e--annihilation into baryon-antibaryon pairs

    International Nuclear Information System (INIS)

    Koerner, J.G.; Kuroda, M.

    1976-07-01

    Using GVDM-type form factors we calculate the e + -e - production cross sections for the reactions e + e - → 1 + /2 - anti(1 +- /2), 1 + /2 - anti(3 +- /2), 1 + /2 - anti(5 + /2) and 3 + /2 - anti(3 + /2) including all prominent baryon resonances at energies of present and planned e + -e - storage ring machines. We also evaluate the cross section of charmed baryon pair production. Near their respective thresholds charmed and uncharmed baryon pair production are predicted to constitute comparable fractions of the total hadronic cross section. The calculated cross sections indicate that the interference of direct and 1-photon decay of the PSI-particles into baryon pairs is small. (orig.) [de

  5. Strange sea quark effects for low lying baryons

    International Nuclear Information System (INIS)

    Upadhyay, A.; Batra, Meenakshi

    2013-01-01

    Assuming hadrons as an ensemble of quark-gluon Fock states, contributions from sea quarks and gluons can be studied in detail for ground state baryons. Spin crisis of nucleons say that only a small fraction of proton spin is carried by valence quarks. Rest part is distributed among gluons and sea which includes both strange and non-strange quark-anti-quark pairs. This necessitates the study of strange sea quark contribution for other baryons too due to higher mass and presence of strange quark in valence part. Recent studies have also studied strange sea contribution for baryons using different models. We implement the statistical modeling techniques to compute strange sea quark content for baryon octet. Statistical model has already been applied to study sea quark content for nucleons in the form of scalar, vector and tensor sea. In our present work the same idea has been extended for strange sea to probe the structure in more detail. (author)

  6. Neutral Hydrogen Optical Depth near Star-forming Galaxies at z ≈ 2.4 in the Keck Baryonic Structure Survey

    Science.gov (United States)

    Rakic, Olivera; Schaye, Joop; Steidel, Charles C.; Rudie, Gwen C.

    2012-06-01

    We study the interface between galaxies and the intergalactic medium by measuring the absorption by neutral hydrogen in the vicinity of star-forming galaxies at z ≈ 2.4. Our sample consists of 679 rest-frame UV-selected galaxies with spectroscopic redshifts that have impact parameters advantage of all available Lyman series lines. The median optical depth, and hence the median density of atomic hydrogen, drops by more than an order of magnitude around 100 kpc, which is similar to the virial radius of the halos thought to host the galaxies. The median remains enhanced, at the >3σ level, out to at least 2.8 Mpc (i.e., >9 comoving Mpc), but the scatter at a given distance is large compared with the median excess optical depth, suggesting that the gas is clumpy. Within 100 (200) kpc, and over ±165 km s-1, the covering fraction of gas with Lyα optical depth greater than unity is 100+0 - 32% (66% ± 16%). Absorbers with τLyα > 0.1 are typically closer to galaxies than random. The mean galaxy overdensity around absorbers increases with the optical depth and also as the length scale over which the galaxy overdensity is evaluated is decreased. Absorbers with τLyα ~ 1 reside in regions where the galaxy number density is close to the cosmic mean on scales >=0.25 Mpc. We clearly detect two types of redshift space anisotropies. On scales 3σ significance), an effect that we attribute to large-scale infall (i.e., the Kaiser effect). Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  7. Spontaneous violation of chiral symmetry in QCD vacuum is the origin of baryon masses and determines baryon magnetic moments and their other static properties

    International Nuclear Information System (INIS)

    Ioffe, B. L.

    2009-01-01

    A short review is presented of the spontaneous violation of chiral symmetry in QCD vacuum. It is demonstrated that this phenomenon is the origin of baryon masses in QCD. The value of nucleon mass is calculated, as well as the masses of hyperons and some baryonic resonances, and expressed mainly through the values of quark condensates - , q = u, d, s,-the vacuum expectation values (v.e.v.) of quark field. The concept of v.e.v. induced by external fields is introduced. It is demonstrated that such v.e.v. induced by static electromagnetic field results in quark condensate magnetic susceptibility, which plays the main role in determination of baryon magnetic moments. The magnetic moments of proton, neutron, and hyperons are calculated. The results of calculation of baryon octet β-decay constants are also presented.

  8. Coincidence of features of emitted THz electromagnetic wave power form a single Josephson junction and different current components

    Science.gov (United States)

    Hamdipour, Mohammad

    2017-12-01

    By applying a voltage to a Josephson junction, the charge in superconducting layers (S-layers) will oscillate. Wavelength of the charge oscillations in S-layers is related to external current in junction, by increasing the external current, the wavelength will decrease which cause in some currents the wavelength be incommensurate with width of junction, so the CVC shows Fiske like steps. External current throwing along junction has some components, resistive, capacitive and superconducting current, beside these currents there is a current in lateral direction of junction, (x direction). On the other hand, the emitted electromagnetic wave power in THz region is related to AC component of electric field in junction, which itself is related to charge density in S-layers, which is related to currents in the system. So we expect that features of variation of current components reflect the features of emitted THz power form junction. Here we study in detail the superconductive current in a long Josephson junction (JJ), the current voltage characteristics (CVC) of junction and emitted THz power from the system. Then we compare the results. Comparing the results we see that there is a good qualitative coincidence in features of emitted THz power and supercurrent in junction.

  9. Tidal Dwarf Galaxies and Missing Baryons

    Directory of Open Access Journals (Sweden)

    Frederic Bournaud

    2010-01-01

    Full Text Available Tidal dwarf galaxies form during the interaction, collision, or merger of massive spiral galaxies. They can resemble “normal” dwarf galaxies in terms of mass, size, and become dwarf satellites orbiting around their massive progenitor. They nevertheless keep some signatures from their origin, making them interesting targets for cosmological studies. In particular, they should be free from dark matter from a spheroidal halo. Flat rotation curves and high dynamical masses may then indicate the presence of an unseen component, and constrain the properties of the “missing baryons,” known to exist but not directly observed. The number of dwarf galaxies in the Universe is another cosmological problem for which it is important to ascertain if tidal dwarf galaxies formed frequently at high redshift, when the merger rate was high, and many of them survived until today. In this paper, “dark matter” is used to refer to the nonbaryonic matter, mostly located in large dark halos, that is, CDM in the standard paradigm, and “missing baryons” or “dark baryons” is used to refer to the baryons known to exist but hardly observed at redshift zero, and are a baryonic dark component that is additional to “dark matter”.

  10. Baryon-Baryon Interactions ---Nijmegen Extended-Soft-Core Models---

    Science.gov (United States)

    Rijken, T. A.; Nagels, M. M.; Yamamoto, Y.

    pseudo-scalar-, vector-, scalar-, and axial-mesons, (ii) diffractive (i.e. multiple-gluon) exchanges, (iii) two pseudo-scalar exchange (PS-PS), and (iv) meson-pair-exchange (MPE). The OBE- and pair-vertices are regulated by gaussian form factors producing potentials with a soft behavior near the origin. The assignment of the cutoff masses for the BBM-vertices is dependent on the SU(3)-classification of the exchanged mesons for OBE, and a similar scheme for MPE. The ESC-models ESC04 and ESC08 describe the nucleon-nucleon (NN), hyperon-nucleon (YN), and hyperon-hyperon (YY) interactions in a unified way using broken SU(3)-symmetry. Novel ingredients in the OBE-sector in the ESC-models are the inclusion of (i) the axial-vector meson potentials, (ii) a zero in the scalar- and axial-vector meson form factors. These innovations made it possible for the first time to keep the meson coupling parameters of the model qualitatively in accordance with the predictions of the (3P_0) quark-antiquark creation (QPC) model. This is also the case for the F/(F+D)-ratios. Furthermore, the introduction of the zero helped to avoid the occurrence of unwanted bound states in Lambda N. Broken SU(3)-symmetry serves to connect the NN and the YN channels, which leaves after fitting NN only a few free parameters for the determination of the YN-interactions. In particular, the meson-baryon coupling constants are calculated via SU(3) using the coupling constants of the NN oplus YN-analysis as input. In ESC04 medium strong flavor-symmetry-breaking (FSB) of the coupling constants was investigated, using the (3}P_{0) -model with a Gell-Mann-Okubo hypercharge breaking for the BBM-coupling. In ESC08 the couplings are kept SU(3)-symmetric. The charge-symmetry-breaking (CSB) in the Lambda p and Lambda n channels, which is an SU(2) isospin breaking, is included in the OBE-, TME-, and MPE-potentials. In ESC04 and ESC08 simultaneous fits to the NN- and the YN- scattering data have been achieved, using different

  11. On the baryon magnetic moments

    International Nuclear Information System (INIS)

    Ferreira, P.L.

    1976-01-01

    In the context of quark confinement ideas, the baryon magnetic moments are calculated by assuming a SU(3) breaking due to the inequalities of the quark masses (m sub(p) different m sub(n) different m lambda ). The modified SU(6) result for the ratio of the magnetic moments of the neutron and proton is obtained. The p-quark is found heavier than the n-quark by circa 15 MeV. and alternative way of evaluating the baryon magnetic moments by means of simple physical considerations based on the properties of the SU(6) baryon S-waves functions is given

  12. Chiral soliton models for baryons

    International Nuclear Information System (INIS)

    Weigel, H.

    2008-01-01

    This concise research monograph introduces and reviews the concept of chiral soliton models for baryons. In these models, baryons emerge as (topological) defects of the chiral field. The many applications shed light on a number of baryon properties, ranging from static properties via nucleon resonances and deep inelastic scattering to even heavy ion collisions. As far as possible, the theoretical investigations are confronted with experiment. Conceived to bridge the gap between advanced graduate textbooks and the research literature, this volume also features a number of appendices to help nonspecialist readers to follow in more detail some of the calculations in the main text. (orig.)

  13. Baryon distribution in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Wong, C.

    1984-01-01

    In order to determine whether a pure quark-gluon plasma with no net baryon density can be formed in the central rapidity region in relativistic heavy-ion collisions, we estimate the baryon distribution by using a Glauber-type multiple-collision model in which the nucleons of one nucleus degrade in energy as they make collisions with nucleons in the other nucleus. As a test of this model, we study first nucleon-nucleus collisions at 100 GeV/c and compare the theoretical results with the experimental data of Barton et al. The results are then generalized to study the baryon distribution in nucleus-nucleus collisions. It is found that in the head-on collision of two heavy nuclei (A> or approx. =100), the baryon rapidity distributions have broad peaks and extend well into the central rapidity region. The energy density of the baryon in the central rapidity region is about 5--6 % of the total energy density at a center-of-mass energy of 30 GeV per nucleon and decreases to about 2--3 % at a center-of-mass energy of 100 GeV per nucleon. The stopping power for a baryon in nuclear matter is extracted

  14. Analysis of dynamical corrections to baryon magnetic moments

    International Nuclear Information System (INIS)

    Ha, Phuoc; Durand, Loyal

    2003-01-01

    We present and analyze QCD corrections to the baryon magnetic moments in terms of the one-, two-, and three-body operators which appear in the effective field theory developed in our recent papers. The main corrections are extended Thomas-type corrections associated with the confining interactions in the baryon. We investigate the contributions of low-lying angular excitations to the baryon magnetic moments quantitatively and show that they are completely negligible. When the QCD corrections are combined with the nonquark model contributions of the meson loops, we obtain a model which describes the baryon magnetic moments within a mean deviation of 0.04 μ N . The nontrivial interplay of the two types of corrections to the quark-model magnetic moments is analyzed in detail, and explains why the quark model is so successful. In the course of these calculations, we parametrize the general spin structure of the j=(1/2) + baryon wave functions in a form which clearly displays the symmetry properties and the internal angular momentum content of the wave functions, and allows us to use spin-trace methods to calculate the many spin matrix elements which appear in the expressions for the baryon magnetic moments. This representation may be useful elsewhere

  15. Baryonic Higgs at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, Michael [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Fileviez Perez, Pavel [Case Western Reserve Univ., Cleveland, OH (United States). CERCA, Physics Dept.; Smirnov, Juri [INFN, Sezione di Firenze (Italy); Florence Univ., Sesto Fiorentino (Italy). Dept. of Physics and Astronomy

    2017-04-15

    We investigate the possible collider signatures of a new Higgs in simple extensions of the Standard Model where baryon number is a local symmetry spontaneously broken at the low scale. We refer to this new Higgs as ''Baryonic Higgs''. This Higgs has peculiar properties since it can decay into all Standard Model particles, the leptophobic gauge boson, and the vector-like quarks present in these theories to ensure anomaly cancellation. We investigate in detail the constraints from the γγ, Zγ, ZZ, and WW searches at the Large Hadron Collider, needed to find a lower bound on the scale at which baryon number is spontaneously broken. The di-photon channel turns out to be a very sensitive probe in the case of small scalar mixing and can severely constrain the baryonic scale. We also study the properties of the leptophobic gauge boson in order to understand the testability of these theories at the LHC.

  16. Non-baryonic dark matter

    International Nuclear Information System (INIS)

    Berkes, I.

    1996-01-01

    This article discusses the nature of the dark matter and the possibility of the detection of non-baryonic dark matter in an underground experiment. Among the useful detectors the low temperature bolometers are considered in some detail. (author)

  17. Excitations of strange bottom baryons

    Energy Technology Data Exchange (ETDEWEB)

    Woloshyn, R.M. [TRIUMF, Vancouver, British Columbia (Canada)

    2016-09-15

    The ground-state and first-excited-state masses of Ω{sub b} and Ω{sub bb} baryons are calculated in lattice QCD using dynamical 2 + 1 flavour gauge fields. A set of baryon operators employing different combinations of smeared quark fields was used in the framework of the variational method. Results for radial excitation energies were confirmed by carrying out a supplementary multiexponential fitting analysis. Comparison is made with quark model calculations. (orig.)

  18. Adiabatic Transformation of Gravitational Stabilization Waves of the Crystalline Vacuum Space Into Baryons at the Big Bang

    Science.gov (United States)

    Montemayor-Aldrete, J. A.; Morones-Ibarra, J. R.; Morales-Mori, A.; Ugalde-Velez, P.; Mendoza-Allende, A.; Cabrera-Bravo, E.; Montemayor-Varela, A.

    2013-03-01

    It is shown that the entropy of the low density monochromatic gravitational waves which stabilize gravitationally the crystalline structure of vacuum cosmic space varies with the volume in the same way as the entropy of an ideal gas formed by particles. This implies that close enough to the local Big-Bang event the energy of all the gravitational waves which stabilizes the crystalline structure of vacuum space behaves thermodynamically as though it is consisted of a number of independent energy or matter quanta (neutrons). Also it is shown that the diminishing in the gravitational energy of the waves which stabilize the crystalline vacuum space structure is the source of energy required to produce the electromagnetic radiation which is responsible for the hot matter expansion through a preexisting infinite cosmic space. Matter and antimatter is produced in equal quantities at the Big Bang region and there are no annihilation events between them during their initial stage of expansion through vacuum cosmic space due to the gravitational stress gradient pattern existing around the source region which has zero gravitational stress all the matter travels globally in one direction (For instance pointing to the long range tension gravitational stress cell-region) and all the antimatter corresponding to the contiguous compressed cell-region travels in the opposite direction. The obtained expression for the volumetric electromagnetic energy density resembles the classical one proportional to , obtained for the black body radiation in equilibrium conditions at temperature ; and at thermal equilibrium with baryons for the decoupling temperature between photons and matter, , electromagnetic energy of radiation has a value of photons per baryon. Also the evaluation of the Gibbs ´s free energy for the adiabatic compression process of transformation of gravitational stabilization waves of the crystalline vacuum space into baryons at the Big Bang gives a value of zero for the

  19. Molecular dynamics simulation for the baryon-quark phase transition at finite baryon density

    International Nuclear Information System (INIS)

    Akimura, Y.; Maruyama, T.; Chiba, S.; Yoshinaga, N.

    2005-01-01

    We study the baryon-quark phase transition in the molecular dynamics (MD) of the quark degrees of freedom at finite baryon density. The baryon state at low baryon density, and the deconfined quark state at high baryon density are reproduced. We investigate the equations of state of matters with different u-d-s compositions. It is found that the baryon-quark transition is sensitive to the quark width. (orig.)

  20. Flavor-singlet baryons in the graded symmetry approach to partially quenched QCD

    Science.gov (United States)

    Hall, Jonathan M. M.; Leinweber, Derek B.

    2016-11-01

    Progress in the calculation of the electromagnetic properties of baryon excitations in lattice QCD presents new challenges in the determination of sea-quark loop contributions to matrix elements. A reliable estimation of the sea-quark loop contributions represents a pressing issue in the accurate comparison of lattice QCD results with experiment. In this article, an extension of the graded symmetry approach to partially quenched QCD is presented, which builds on previous theory by explicitly including flavor-singlet baryons in its construction. The formalism takes into account the interactions among both octet and singlet baryons, octet mesons, and their ghost counterparts; the latter enables the isolation of the quark-flow disconnected sea-quark loop contributions. The introduction of flavor-singlet states enables systematic studies of the internal structure of Λ -baryon excitations in lattice QCD, including the topical Λ (1405 ).

  1. Solvable light-front model of the electromagnetic form factor of the relativistic two-body bound state in 1+1 dimensions

    International Nuclear Information System (INIS)

    Mankiewicz, L.; Sawicki, M.

    1989-01-01

    Within a relativistically correct yet analytically solvable model of light-front quantum mechanics we construct the electromagnetic form factor of the two-body bound state and we study the validity of the static approximation to the full form factor. Upon comparison of full form factors calculated for different values of binding energy we observe an unexpected effect that for very strongly bound states further increase in binding leads to an increase in the size of the bound system. A similar effect is found for another quantum-mechanical model of relativistic dynamics

  2. The effect of sequential coupling on radial displacement accuracy in electromagnetic inside-bead forming: simulation and experimental analysis using Maxwell and ABAQUS software

    Energy Technology Data Exchange (ETDEWEB)

    Chaharmiri, Rasoul; Arezoodar, Alireza Fallahi [Amirkabir University, Tehran (Iran, Islamic Republic of)

    2016-05-15

    Electromagnetic forming (EMF) is a high strain rate forming technology which can effectively deform and shape high electrically conductive materials at room temperature. In this study, the electromagnetic and mechanical parts of the process simulated using Maxwell and ABAQUS software, respectively. To provide a link between the software, two approaches include 'loose' and 'sequential' coupling were applied. This paper is aimed to investigate how sequential coupling would affect radial displacement accuracy, as an indicator of tube final shape, at various discharge voltages. The results indicated a good agreement for the both approaches at lower discharge voltages with more accurate results for sequential coupling, but at high discharge voltages, there was a non-negligible overestimation of about 43% for the loose coupling reduced to only 8.2% difference by applying sequential coupling in the case studied. Therefore, in order to reach more accurate predictions, applying sequential coupling especially at higher discharge voltages is strongly recommended.

  3. Baryons and baryonic matter in four-fermion interaction models

    International Nuclear Information System (INIS)

    Urlichs, K.

    2007-01-01

    In this work we discuss baryons and baryonic matter in simple four-fermion interaction theories, the Gross-Neveu model and the Nambu-Jona-Lasinio model in 1+1 and 2+1 space-time dimensions. These models are designed as toy models for dynamical symmetry breaking in strong interaction physics. Pointlike interactions (''four-fermion'' interactions) between quarks replace the full gluon mediated interaction of quantum chromodynamics. We consider the limit of a large number of fermion flavors, where a mean field approach becomes exact. This method is formulated in the language of relativistic many particle theory and is equivalent to the Hartree-Fock approximation. In 1+1 dimensions, we generalize known results on the ground state to the case where chiral symmetry is broken explicitly by a bare mass term. For the Gross-Neveu model, we derive an exact self-consistent solution for the finite density ground state, consisting of a one-dimensional array of equally spaced potential wells, a baryon crystal. For the Nambu- Jona-Lasinio model we apply the derivative expansion technique to calculate the total energy in powers of derivatives of the mean field. In a picture akin to the Skyrme model of nuclear physics, the baryon emerges as a topological soliton. The solution for both the single baryon and dense baryonic matter is given in a systematic expansion in powers of the pion mass. The solution of the Hartree-Fock problem is more complicated in 2+1 dimensions. In the massless Gross-Neveu model we derive an exact self-consistent solution by extending the baryon crystal of the 1+1 dimensional model, maintaining translational invariance in one spatial direction. This one-dimensional configuration is energetically degenerate to the translationally invariant solution, a hint in favor of a possible translational symmetry breakdown by more general geometrical structures. In the Nambu-Jona-Lasinio model, topological soliton configurations induce a finite baryon number. In contrast

  4. Baryons and baryonic matter in four-fermion interaction models

    Energy Technology Data Exchange (ETDEWEB)

    Urlichs, K.

    2007-02-23

    In this work we discuss baryons and baryonic matter in simple four-fermion interaction theories, the Gross-Neveu model and the Nambu-Jona-Lasinio model in 1+1 and 2+1 space-time dimensions. These models are designed as toy models for dynamical symmetry breaking in strong interaction physics. Pointlike interactions (''four-fermion'' interactions) between quarks replace the full gluon mediated interaction of quantum chromodynamics. We consider the limit of a large number of fermion flavors, where a mean field approach becomes exact. This method is formulated in the language of relativistic many particle theory and is equivalent to the Hartree-Fock approximation. In 1+1 dimensions, we generalize known results on the ground state to the case where chiral symmetry is broken explicitly by a bare mass term. For the Gross-Neveu model, we derive an exact self-consistent solution for the finite density ground state, consisting of a one-dimensional array of equally spaced potential wells, a baryon crystal. For the Nambu- Jona-Lasinio model we apply the derivative expansion technique to calculate the total energy in powers of derivatives of the mean field. In a picture akin to the Skyrme model of nuclear physics, the baryon emerges as a topological soliton. The solution for both the single baryon and dense baryonic matter is given in a systematic expansion in powers of the pion mass. The solution of the Hartree-Fock problem is more complicated in 2+1 dimensions. In the massless Gross-Neveu model we derive an exact self-consistent solution by extending the baryon crystal of the 1+1 dimensional model, maintaining translational invariance in one spatial direction. This one-dimensional configuration is energetically degenerate to the translationally invariant solution, a hint in favor of a possible translational symmetry breakdown by more general geometrical structures. In the Nambu-Jona-Lasinio model, topological soliton configurations induce a finite baryon

  5. A topological model for baryon production in jets

    International Nuclear Information System (INIS)

    Ellis, J.; Kowalski, H.

    1988-01-01

    We present a conceptual model for baryon production in jets, inspired by the Skyrme picture of baryons as topological defects in a chiral quark-antiquark condensate. High energy collisions produce ''hot'' partons which split perturbatively into showers of ''cool'' partons which hadronize non-perturbatively. We visualize each of these as corresponding to a connected domain with a common orientation of the chiral condensate. Topological defects, namely baryons, are formed when there are mismatches in the orientations of adjacent field domains, rather as cosmic strings or monopoles are formed in the early Universe. Our model gives a good qualitative description of various salient features of baryon production in jets, which previously could be described only with a large number of free parameters. In particular, we give a qualitative explanation of the high baryon production rate in Υ decays compared to the e + e - continuum. When combined with a perturbative QCD parton shower Monte Carlo it could become a basis for a fully-fledged fragmentation model. (orig.)

  6. Entropy per baryon in a 'many-worlds' cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Clutton-Brock, M [Manitoba Univ., Winnipeg (Canada)

    1977-04-01

    The universe is imagined split into infinitely many branches, or 'worlds', only one of which can be observed. The world has an entropy per baryon xi approximately 10/sup 9/: other worlds can have all possible values of entropy per baryon. High-entropy worlds with xi > 5x10/sup 11/ do not form galaxies, but only giant black holes. Low entropy worlds with xi < 3x10/sup 5/ do form galaxies, but only metal-poor dwarf galaxies with no planets. Life can evolve only in worlds with entropy per baryon in the range 3x10/sup 5/ < xi < 5x10/sup 11/, and life is abundant only in a much narrower range.

  7. Parity doubling in the baryon string model

    International Nuclear Information System (INIS)

    Khokhlachev, S.B.

    1990-01-01

    The nature of parity doubling of baryon states with non-zero angular momentum is considered. The idea of explaining this phenomenon lies in the fact that the rotation of the gluon string leads to a centrifugal potential for quarks. The quarks on the string form a quark-diquark system. Quark tunneling from one end of the string to the other is not probable for systems with large angular momentum due to a large centrifugal potential, and the smallness of the underbarrier transition amplitude explains the small mass difference of the states with opposite parity. (orig.)

  8. QCD string in the baryon

    International Nuclear Information System (INIS)

    Kalashnikova, Yu.S.; Nefediev, A.V.

    1997-01-01

    The QCD-motivated constituent string model is extended to consider the baryon. The system of three quarks propagating in the confining background field is studied in the Wilson loop approach, and the effective action is obtained. The resulting Lagrangian at large interquark distances corresponds to the Mercedes Benz string configuration. Assuming the quarks to be heavy enough to allow the adiabatic separation of quark and string junction motion and using the hyperspherical expansion for the quark subsystem we write out and solve the classical equation of motion for the junction. We quantize the motion of the junction and demonstrate that the account of these modes leads to the effective swelling of baryon in comparison with standard potential picture. The effects of finite gluonic correlation length which do not affect the excited states but appear to be substantial for the baryonic ground state, reducing the swelling considerably is discussed

  9. Investigation of the Dalitz decays and the electromagnetic form factors of the {eta} and {pi}{sup 0}-meson

    Energy Technology Data Exchange (ETDEWEB)

    Berghaeuser, Henning

    2010-08-20

    In this thesis the Dalitz decays of the {pi}{sup 0}, {eta} and {omega}-meson have been studied in photon induced reactions off the proton: {gamma}+p {yields} {pi}{sup 0}+p{yields} e{sup +}e{sup -}{gamma}+p, {gamma}+p {yields} {eta}+p{yields}e{sup +}e{sup -}{gamma}+p, and {gamma}+p {yields} {omega}+p{yields} e{sup +}e{sup -}{pi}{sup 0}+p. The main aim has been to determine the electromagnetic transition form factor of the {eta}-meson. Beside the Dalitz decays other decay modes of the {eta} and the {omega}-meson were analyzed and the branching ratios of the decays {eta} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup 0}, {eta}{yields} e{sup +}e{sup -}{gamma} and {omega} {yields} {gamma}{sup +}{pi}{sup 0} were determined. Furthermore the cross section of {eta}-production as well as the cross section of {pi}{sup 0}-{eta}-production in photon induced reactions off the proton were determined. Another aspect of this work was to investigate the possibility of separating electrons and positrons from charged pions with the Crystal Ball and TAPS detector systems at MAMI-C in Mainz. It was shown in this work, that an accurate separation and identification of those particles is possible by exploiting the full kinematic information available in exclusive analyses. Thereby Dalitz decays were identified. The background from charged pions was suppressed further. The probability for the misidentification of a {pi}{sup +}{pi}{sup -} pair as an e{sup +}e{sup -}-pair is less than 3.10{sup -7}. A new analysis program called AR{sub HB}2v3 was developed in C++. In all analyses the detection of the meson and the recoiling proton was required; thus the full kinematic information could be exploited. Cuts were applied on the energy balance, momentum balance, missing mass and the coplanarity. Depending on the particular decay channel further cuts were applied on the relative angle between particles, the incident energy, the {theta}-angle of the proton and if applicable on the cluster sizes of the

  10. Investigation of the Dalitz decays and the electromagnetic form factors of the η and π0-meson

    International Nuclear Information System (INIS)

    Berghaeuser, Henning

    2010-01-01

    In this thesis the Dalitz decays of the π 0 , η and ω-meson have been studied in photon induced reactions off the proton: γ+p → π 0 +p→ e + e - γ+p, γ+p → η+p→e + e - γ+p, and γ+p → ω+p→ e + e - π 0 +p. The main aim has been to determine the electromagnetic transition form factor of the η-meson. Beside the Dalitz decays other decay modes of the η and the ω-meson were analyzed and the branching ratios of the decays η → π + π - π 0 , η→ e + e - γ and ω → γ + π 0 were determined. Furthermore the cross section of η-production as well as the cross section of π 0 -η-production in photon induced reactions off the proton were determined. Another aspect of this work was to investigate the possibility of separating electrons and positrons from charged pions with the Crystal Ball and TAPS detector systems at MAMI-C in Mainz. It was shown in this work, that an accurate separation and identification of those particles is possible by exploiting the full kinematic information available in exclusive analyses. Thereby Dalitz decays were identified. The background from charged pions was suppressed further. The probability for the misidentification of a π + π - pair as an e + e - -pair is less than 3.10 -7 . A new analysis program called AR HB 2v3 was developed in C++. In all analyses the detection of the meson and the recoiling proton was required; thus the full kinematic information could be exploited. Cuts were applied on the energy balance, momentum balance, missing mass and the coplanarity. Depending on the particular decay channel further cuts were applied on the relative angle between particles, the incident energy, the θ-angle of the proton and if applicable on the cluster sizes of the charged hits. The applied cuts were verified by displaying each variable under the constraint of all other cuts. The slope parameter of the associated transition form factor was determined as b=(dF)/(dq 2 ) vertical stroke q 2 =0=Λ -2 =1.84 +0

  11. Aharonov–Bohm protection of black hole's baryon/skyrmion hair

    Energy Technology Data Exchange (ETDEWEB)

    Dvali, Gia [Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität, 80333 München (Germany); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Gußmann, Alexander, E-mail: alexander.gussmann@physik.uni-muenchen.de [Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität, 80333 München (Germany)

    2017-05-10

    The baryon/skyrmion correspondence implies that the baryon number is encoded into a topological surface integral. Under certain conditions that we clarify, this surface integral can be measured by an asymptotic observer in form of an Aharonov–Bohm phase-shift in an experiment in which the skyrmion passes through a loop of a probe string. In such a setup the baryon/skyrmion number must be respected by black holes, despite the fact that it produces no long-range classical field. If initially swallowed by a black hole, the baryon number must resurface in form of a classical skyrmion hair, after the black hole evaporates below a certain critical size. Needless to say, the respect of the baryon number by black holes is expected to have potentially-interesting astrophysical consequences.

  12. Aharonov–Bohm protection of black hole's baryon/skyrmion hair

    Directory of Open Access Journals (Sweden)

    Gia Dvali

    2017-05-01

    Full Text Available The baryon/skyrmion correspondence implies that the baryon number is encoded into a topological surface integral. Under certain conditions that we clarify, this surface integral can be measured by an asymptotic observer in form of an Aharonov–Bohm phase-shift in an experiment in which the skyrmion passes through a loop of a probe string. In such a setup the baryon/skyrmion number must be respected by black holes, despite the fact that it produces no long-range classical field. If initially swallowed by a black hole, the baryon number must resurface in form of a classical skyrmion hair, after the black hole evaporates below a certain critical size. Needless to say, the respect of the baryon number by black holes is expected to have potentially-interesting astrophysical consequences.

  13. Multistrange Meson-Baryon Dynamics and Resonance Generation

    Science.gov (United States)

    Khemchandani, K. P.; Martínez Torres, A.; Hosaka, A.; Nagahiro, H.; Navarra, F. S.; Nielsen, M.

    2018-05-01

    In this talk I review our recent studies on meson-baryon systems with strangeness - 1 and - 2. The motivation of our works is to find resonances generated as a consequence of coupled channel meson-baryon interactions. The coupled channels are all meson-baryon systems formed by combining a pseudoscalar or a vector meson with an octet baryon such that the system has the strange quantum number equal to - 1 or - 2. The lowest order meson-baryon interaction amplitudes are obtained from Lagrangians based on the chiral and the hidden local symmetries related to the vector mesons working as the gauge bosons. These lowest order amplitudes are used as an input to solve the Bethe-Salpeter equation and a search for poles is made in the resulting amplitudes, in the complex plane. In case of systems with strangeness - 1, we find evidence for the existence of some hyperons such as: Λ(2000), Σ(1750), Σ(1940), Σ(2000). More recently, in the study of strangeness - 2 systems we have found two narrow resonances which can be related to Ξ (1690) and Ξ(2120). In this latter work, we have obtained the lowest order amplitudes relativistically as well as in the nonrelativistic approximation to solve the scattering equations. We find that the existence of the poles in the complex plane does not get affected by the computation of the scattering equation with the lowest order amplitudes obtained in the nonrelativistic approximation.

  14. Excited state mass spectra of singly charmed baryons

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Zalak; Kumar Rai, Ajay [Sardar Vallabhbhai National Institute of Technology, Department of Applied Physics, Surat, Gujarat (India); Thakkar, Kaushal [GIDC Degree Engineering College, Department of Applied Sciences and Humanities, Abrama (India); Vinodkumar, P.C. [Sardar Patel University, Department of Physics, V.V. Nagar (India)

    2016-10-15

    Mass spectra of excited states of the singly charmed baryons are calculated using the hypercentral description of the three-body system. The baryons consist of a charm quark and light quarks (u, d and s) are studied in the framework of QCD motivated constituent quark model. The form of the confinement potential is hyper-Coloumb plus power potential with potential index ν, varying from 0.5 to 2.0. The first-order correction to the confinement potential is also incorporated in this approach. The radial as well as orbital excited state masses of Σ{sub c}{sup ++}, Σ{sub c}{sup +}, Σ{sub c}{sup 0}, Ξ{sub c}{sup +}, Ξ{sub c}{sup 0}, Λ{sub c}{sup +}, Ω{sub c}{sup 0} baryons, are reported in this paper. We have incorporated spin-spin, spin-orbit and tensor interactions perturbatively in the present study. The semi-electronic decay of Ω{sub c} and Ξ{sub c} are also calculated using the spectroscopic parameters of these baryons. The computed results are compared with other theoretical predictions as well as with the available experimental observations. We also construct the Regge trajectory in (n{sub r},M{sup 2}) and (J,M{sup 2}) planes for these baryons. (orig.)

  15. Baryonic spectroscopy and its immediate future

    International Nuclear Information System (INIS)

    Dalitz, R.H.

    1975-01-01

    The quark model is reviewed briefly for baryons and the various versions of SU(6) symmetry which were proposed and used in connection with baryon spectroscopy are reviewed. A series of basic questions are reviewed which experimental work in this field should aim to settle, as a minimal program. One also heralds the beginning of a new baryon spectroscopy associated with psi physics

  16. Chiral gravitational waves and baryon superfluid dark matter

    Science.gov (United States)

    Alexander, Stephon; McDonough, Evan; Spergel, David N.

    2018-05-01

    We develop a unified model of darkgenesis and baryogenesis involving strongly interacting dark quarks, utilizing the gravitational anomaly of chiral gauge theories. In these models, both the visible and dark baryon asymmetries are generated by the gravitational anomaly induced by the presence of chiral primordial gravitational waves. We provide a concrete model of an SU(2) gauge theory with two massless quarks. In this model, the dark quarks condense and form a dark baryon charge superfluid (DBS), in which the Higgs-mode acts as cold dark matter. We elucidate the essential features of this dark matter scenario and discuss its phenomenological prospects.

  17. Diquark correlations in baryons on the lattice with overlap quarks

    Energy Technology Data Exchange (ETDEWEB)

    Babich, R.; Howard, J.; Rebbi, C. [Boston Univ., MA (United States). Dept. of Physics; Garron, N. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Hoelbling, C. [Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik; Lellouch, L. [CNRS Luminy, Marseille (France). Centre de Physique Theorique]|[Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik

    2007-01-15

    We evaluate baryon wave functions in both the Coulomb and Landau gauge in lattice QCD. These are constructed from quark propagators calculated with the overlap Dirac operator on quenched gauge configurations at {beta}=6. By comparing baryon states that differ in their diquark content, we find evidence for enhanced correlation in the scalar diquark channel, as favored by quark models. We also summarize earlier results for diquark masses in the Landau gauge, casting them in a form more easily compared with subsequent studies. (orig.)

  18. Baryon symmetric big-bang cosmology. [matter-antimatter symmetry

    Science.gov (United States)

    Stecker, F. W.

    1978-01-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.

  19. Diquark correlations in baryons on the lattice with overlap quarks

    International Nuclear Information System (INIS)

    Babich, R.; Howard, J.; Rebbi, C.; Hoelbling, C.; Lellouch, L.; Wuppertal Univ.

    2007-01-01

    We evaluate baryon wave functions in both the Coulomb and Landau gauge in lattice QCD. These are constructed from quark propagators calculated with the overlap Dirac operator on quenched gauge configurations at β=6. By comparing baryon states that differ in their diquark content, we find evidence for enhanced correlation in the scalar diquark channel, as favored by quark models. We also summarize earlier results for diquark masses in the Landau gauge, casting them in a form more easily compared with subsequent studies. (orig.)

  20. Fragmentation production of Ωccc baryons at LHC energies

    International Nuclear Information System (INIS)

    Saleev, V.A.

    2000-01-01

    Within the nonrelativistic quark-diquark model for heavy baryons, the fragmentation functions for the transitions of a c-quark and a doubly charmed vector diquark into an Ω ccc baryon are calculated in the leading order of perturbative QCD. The cross section for Ω ccc production in high-energy hadron interactions is estimated. It is assumed that Ω ccc baryons are formed via the fragmentation of a c quark or a vector (cc) diquark produced in the partonic subprocesses gg → cc-bar, qq-bar → cc-bar, gg → (cc) + c-bar + c-bar, and qq-bar → (cc) + c-bar + c-bar

  1. Factorization of heavy-to-light baryonic transitions in SCET

    International Nuclear Information System (INIS)

    Wang Wei

    2012-01-01

    In the framework of the soft-collinear effective theory, we demonstrate that the leading-power heavy-to-light baryonic form factors at large recoil obey the heavy quark and large energy symmetries. Symmetry breaking effects are suppressed by Λ/m b or Λ/E, where Λ is the hadronic scale, m b is the b quark mass and E∼m b is the energy of light baryon in the final state. At leading order, the leading power baryonic form factor ξ Λ,p (E), in which two hard-collinear gluons are exchanged in the baryon constituents, can factorize into the soft and collinear matrix elements convoluted with a hard-kernel of order α s 2 . Including the energy release dependence, we derive the scaling law ξ Λ,p (E)∼Λ 2 /E 2 . We also find that this form factor ξ Λ (E) is numerically smaller than the form factor governed by soft processes, although the latter is formally power-suppressed.

  2. Closed worlds and baryon asymmetry of the visible Universe

    International Nuclear Information System (INIS)

    Beletsky, Yu.A.

    1980-01-01

    In the early Universe the large scale perturbations of energy density can form closed worlds (topological decay of the initial Universe). Due to fluctuations of density of baryonic charge these closed worlds are charge asymmetrical even if the initial Universe was symmetric [ru

  3. Study of the p(e,e'π+)n electro-production reaction: form factor and electromagnetic radius of pion

    International Nuclear Information System (INIS)

    Michel, Bernard

    1977-01-01

    After having recalled the definitions and theoretical knowledge on the form factor and electromagnetic radius of hadron and pion, and discussed the relationship between electro-production and form factor for the pion, this research thesis recalls some theoretical aspects of the electro-production process. The author discusses the reaction kinematics and shows how the electro-production cross section can be broken down in terms of photon polarization. Then, he focuses on the cross section dynamic structure. After having recalled the different possible choices for amplitudes, he studies their behaviour, firstly within the framework of the Born approximation, and then within the framework of commonly used models, notably to take the resonant part of the phenomenon into account. The limits of the different models are outlined. The second part addresses the study of forward electro-production. The author shows how the pion form factor can be simply optimized. The author describes the experimental arrangement: electron beam and liquid hydrogen target, detection system, normalisation device, data acquisition logics. In the next chapter, the author describes how data are recorded until the obtainment of N electro-production events. Results are then interpreted in terms of form factor and electromagnetic radius. They are also compared with published results obtained with other electro-production experiments or measurements based on other processes [fr

  4. Isospin Splittings in the Light-Baryon Octet from Lattice QCD and QED

    Science.gov (United States)

    Borsanyi, Sz.; Dürr, S.; Fodor, Z.; Frison, J.; Hoelbling, C.; Katz, S. D.; Krieg, S.; Kurth, Th.; Lellouch, L.; Lippert, Th.; Portelli, A.; Ramos, A.; Sastre, A.; Szabo, K.; Budapest-Marseille-Wuppertal Collaboration

    2013-12-01

    While electromagnetic and up-down quark mass difference effects on octet baryon masses are very small, they have important consequences. The stability of the hydrogen atom against beta decay is a prominent example. Here, we include these effects by adding them to valence quarks in a lattice QCD calculation based on Nf=2+1 simulations with five lattice spacings down to 0.054 fm, lattice sizes up to 6 fm, and average up-down quark masses all the way down to their physical value. This allows us to gain control over all systematic errors, except for the one associated with neglecting electromagnetism in the sea. We compute the octet baryon isomultiplet mass splittings, as well as the individual contributions from electromagnetism and the up-down quark mass difference. Our results for the total splittings are in good agreement with experiment.

  5. Magnetic monopoles and baryon decay

    International Nuclear Information System (INIS)

    Pak, N.; Panagiotakopoulos, C.; Shafi, Q.

    1982-08-01

    The scattering of a non-relativistic quark from a GUT monopole is affected by the anomalous magnetic moment of the quark. In order that monopole catalysis of baryon decay can occur, it must be assumed that the anomalous magnetic moment decreases sufficiently rapidly below the QCD scale. (author)

  6. Baryon production from cluster hadronisation

    Energy Technology Data Exchange (ETDEWEB)

    Gieseke, Stefan; Kirchgaesser, Patrick [Karlsruhe Institute of Technology, Institute for Theoretical Physics, Karlsruhe (Germany); Plaetzer, Simon [University of Vienna, Particle Physics, Faculty of Physics, Vienna (Austria)

    2018-02-15

    We present an extension to the colour reconnection model in the Monte Carlo event generator Herwig to account for the production of baryons and compare it to a series of observables for soft physics. The new model is able to improve the description of charged-particle multiplicities and hadron flavour observables in pp collisions. (orig.)

  7. Predictions for Excited Strange Baryons

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Ishara P.; Goity, Jose L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-04-01

    An assessment is made of predictions for excited hyperon masses which follow from flavor symmetry and consistency with a 1/N c expansion of QCD. Such predictions are based on presently established baryonic resonances. Low lying hyperon resonances which do not seem to fit into the proposed scheme are discussed.

  8. Charmed baryonic resonances in medium

    Directory of Open Access Journals (Sweden)

    Tolos Laura

    2015-01-01

    Full Text Available We discuss the behavior of dynamically-generated charmed baryonic resonances in matter within a unitarized coupled-channel model consistent with heavy-quark spin symmetry. We analyze the implications for the formation of D-meson bound states in nuclei and the propagation of D mesons in heavy-ion collisions from RHIC to FAIR energies.

  9. Non-baryonic dark matter

    OpenAIRE

    Berezinsky, Veniamin Sergeevich; Bottino, A; Mignola, G

    1996-01-01

    The best particle candidates for non--baryonic cold dark matter are reviewed, namely, neutralino, axion, axino and Majoron. These particles are considered in the context of cosmological models with the restrictions given by the observed mass spectrum of large scale structures, data on clusters of galaxies, age of the Universe etc.

  10. Beauty baryons: Recent CDF results

    International Nuclear Information System (INIS)

    Tseng, J.

    1996-12-01

    Using data collected between 1992 and 1995 at the Fermilab Tevatron, CDF has searched for the Λ b baryon through both semileptonic and hadronic decay channels. This presentation reviews measurements of the Λ b mass, lifetime, and production and decay rates performed with this data

  11. Current status of baryon spectroscopy

    International Nuclear Information System (INIS)

    Wali, K.C.

    1975-08-01

    In this review of baryon spectroscopy, the basic ideas of some of the current models and the experimental data for their claims to success are discussed including realistic or constituent quark models, experimental comparison, the experimental and theoretical basis for the assignments, algebraic quark models, and confinement schemes

  12. Baryon spectroscopy and SU(6)

    International Nuclear Information System (INIS)

    Litchfield, P.

    1977-09-01

    An elementary account of the SU(6) formalism for baryons is given. The assignment of the known resonances to SU(6) multiplets is discussed and an experimental scheme given for the spectrum of SU(6) x 0(2) multiplets. (author)

  13. Baryon observables and color confinement

    International Nuclear Information System (INIS)

    Jackson, A.D.

    1987-01-01

    Calculations of baryon observables within the framework of the chiral bag model are reviewed. The results of such calculations are found to be remarkably insensitive to the radius of color confinement and indicate the difficulty of finding unambiguous evidence for quarks in nuclei. 13 refs.; 5 figs

  14. Fine structure of the electromagnetic fields formed by backward surface waves in an azimuthally symmetric surface wave-excited plasma source

    International Nuclear Information System (INIS)

    Kousaka, Hiroyuki; Ono, Kouichi

    2003-01-01

    The electromagnetic fields and plasma parameters have been studied in an azimuthally symmetric surface wave-excited plasma (SWP) source, by using a two-dimensional numerical analysis based on the finite-difference time-domain (FDTD) approximation to Maxwell's equations self-consistently coupled with a fluid model for plasma evolution. The FDTD/fluid hybrid simulation was performed for different gas pressures in Ar and different microwave powers at 2.45 GHz, showing that the surface waves (SWs) occur along the plasma-dielectric interfaces to sustain overdense plasmas. The numerical results indicated that the electromagnetic SWs consist of two different waves, Wave-1 and Wave-2, having relatively shorter and longer wavelengths. The Wave-1 was seen to fade away with increasing pressure and increasing power, while the Wave-2 remained relatively unchanged over the range of pressure and power investigated. The numerical results revealed that the Wave-1 propagates as backward SWs whose phase velocity and group velocity point in the opposite directions. In contrast, the Wave-2 appeared to form standing waves, being ascribed to a superposition of forward SWs whose phase and group velocities point in the same direction. The fadeaway of the Wave-1 or backward SWs at increased pressures and increased powers was seen with the damping rate increasing in the axial direction, being related to the increased plasma electron densities. A comparison with the conventional FDTD simulation indicated that such fine structure of the electromagnetic fields of SWs is not observed in the FDTD simulation with spatially uniform and time-independent plasma distributions; thus, the FDTD/fluid hybrid model should be employed in simulating the electromagnetic fields and plasma parameters in SWPs with high accuracy

  15. Effect on cosmic microwave background polarization of coupling of quintessence to pseudoscalar formed from the electromagnetic field and its dual.

    Science.gov (United States)

    Liu, Guo-Chin; Lee, Seokcheon; Ng, Kin-Wang

    2006-10-20

    We present the full set of power spectra of cosmic microwave background (CMB) temperature and polarization anisotropies due to the coupling between quintessence and pseudoscalar of electromagnetism. This coupling induces a rotation of the polarization plane of the CMB, thus resulting in a nonvanishing B mode and parity-violating TB and EB modes. Using the BOOMERANG data from the flight of 2003, we derive the most stringent constraint on the coupling strength. We find that in some cases the rotation-induced B mode can confuse the hunting for the gravitational lensing-induced B mode.

  16. Electromagnetic shielding

    International Nuclear Information System (INIS)

    Tzeng, Wen-Shian V.

    1991-01-01

    Electromagnetic interference (EMI) shielding materials are well known in the art in forms such as gaskets, caulking compounds, adhesives, coatings and the like for a variety of EMI shielding purposes. In the past, where high shielding performance is necessary, EMI shielding has tended to use silver particles or silver coated copper particles dispersed in a resin binder. More recently, aluminum core silver coated particles have been used to reduce costs while maintaining good electrical and physical properties. (author). 8 figs

  17. Factorization of heavy-to-light baryonic transitions in SCET

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei

    2011-12-15

    In the framework of the soft-collinear effective theory, we demonstrate that the leading-power heavy-to-light baryonic form factors at large recoil obey the heavy quark and large energy symmetries. Symmetry breaking effects have several origins but all of them are suppressed by {lambda}/m{sub b} or {lambda}/E, where {lambda} is the hadronic scale, m{sub b} is the b quark mass and E{proportional_to}m{sub b} is the energy of light baryon in the final state. Including the energy release dependence, we derive the scaling law for form factors {xi}{sub {lambda}}{sub ,p}{proportional_to}{lambda}{sup 2} /E{sup 2}, which is in accordance with the implication from the experimental measurement on the branching ratio of {lambda}{sub b} {yields} p{pi}{sup -}. At leading order in {alpha}{sub s}, the leading-power baryonic form factors can factorize into the soft and collinear matrix elements without encountering any divergence. A leading-power factorization formula for nonleptonic b-baryon decays is also established. (orig.)

  18. Modified skyrmion in a baryonic matter

    International Nuclear Information System (INIS)

    Mishustin, I.N.

    1990-01-01

    A unified field model describing individual baryons and baryonic matter is developed. The model is based on a chiral-symmetry Lagrangian including the scalar, pion and vector fields interacting with the scalar density and the 4-current of baryons (linear σ-model supplemented by a vector field). Essentially inhomogeneous soliton solutions of the topological type (skirmions) correspond to the individual baryons, whereas homogeneous field configurations correspond to baryonic matter. Estimations show that the model predicts a correct scale of changes of the effective mass (15%) and the radius for the baryon for a normal nuclear matter density. For high baryon densities the model with a massive vector field predicts a phase transition which results in the restoration of chiral symmetry. The new state of the system is characterized by a homogeneous distribution of the meson fields and energy

  19. Flavour and spin structure of linear baryons

    International Nuclear Information System (INIS)

    Kawarabayashi, K.; Kitakado, S.; Inami, T.

    1979-01-01

    Based on the string picture, a phenomenological model for baryons is constructed and their flavour symmetry, exchange degeneracy pattern and spin structure are studied. Baryons on leading trajectories are assumed to have the configuration of two quarks being attached to the ends of a linear string and the third sitting in the middle, called linear baryons. For such linear baryons, a unitarization scheme can be constructed in a manner similar to the dual unitarity scheme for mesons but without recourse to the 1/N expansion. It is found that the interchange interaction of the middle quark with one of the other two quarks at the ends of the string can give rise to a larger exchange degeneracy breaking of the baryon spectrum. With this non-planar correction, the model of linear baryons can account for the observed pattern of leading baryon states. (Auth.)

  20. Electromagnetic form factors for nucleons and pions at positive and negative q2 in the model of quark-gluon strings

    International Nuclear Information System (INIS)

    Kaidalov, A.B.; Kondratyuk, L.A.; Tchekin, D.V.

    2000-01-01

    The electromagnetic form factors for pions and nucleons are considered within the model of quark-gluon strings, where the momentum-transfer dependence of hadronic form factors is determined by the intercepts of the corresponding Regge trajectories and by the Sudakov form factor. Analytic expressions found for form factors in the timelike region admit an analytic continuation to the spacelike region. The resulting form factors for pions and nucleons comply well with experimental data both for positive and for negative values of the squared momentum transfer q 2 . It is shown that the distinctions between the absolute values of the pion and nucleon form factors F π (q 2 ), G m (q 2 ), and F 2 (q 2 ) at positive values of q 2 and those at negative values of this variable are associated with the analytic properties of the double-logarithmic term in the exponent of the Sudakov form factor. The spin structure of the amplitudes for quark transitions into hadrons that is proposed in the present study makes it possible to describe fairly well available experimental data on the Pauli form factor F 2 and on the ratio G e /G m

  1. Observation of the doubly strange b-Baryon (Omega)b-

    International Nuclear Information System (INIS)

    Hernandez Orduna, Jose de Jesus

    2011-01-01

    This thesis reports the first experimental evidence of the doubly strange b-baryon (Omega) b - (ssb) following the decay channel (Omega) b - → J/ψ(1S) μ + μ - (Omega) - Λ K - p π - in p(bar p) collisions at √s = 1.96 Tev. Using approximately 1.3 fb -1 of data collected with the D0 detector at the Fermilab Tevatron Collider, they observe 17.8 ± 4.9(stat) ± 0.8(syst) (Omega) b - signal events at 6.165 ± 0.010(stat) ± 0.013(syst) GeV/c 2 with a corresponding significance of 5.4 σ, meaning that the probability of the signal coming from a fluctuation in the background is 6.7 x 10 -8 . The theoretical model we have to describe what we believe are the building blocks of nature and the interactions between them, is known as Standard Model. The Standard Model is the combination of Electroweak Theory and Quantum Chromodynamics into a single core in the attempt to include all interactions of subatomic particles except those due to gravity in a simple framework. This model has proved highly accurate in predicting certain interactions, but it does not explain all aspects of subatomic particles. For example, it cannot say how many particles there should be or what their masses are. The search goes on for a more complete theory, and in particular an unified field theory describing the strong, weak, and electromagnetic forces. Twelve elementary particles are known in the Standard Model: the Fermions. They have spin -1/2 and obey the Pauli Exclusion Principle. Fermions are divided into six Quarks: up u, down d, charm c, strange s, top t and, bottom b; and six Leptons: electron e, muon μ, tau τ, electron neutrino ν e , muon neutrino ν μ and, tau neutrino ν τ . Quarks interact via the strong force because they carry color charge, electromagnetically because of their electric charge and via the weak nuclear interaction because of the weak isospin. Quarks form color-neutral composite particles known as Hadrons which are divided in Mesons, containing a quark and an

  2. Center-vortex baryonic area law

    International Nuclear Information System (INIS)

    Cornwall, John M.

    2004-01-01

    We correct an unfortunate error in an earlier work of the author, and show that in the center-vortex picture of QCD [gauge group SU(3)] the asymptotic quenched baryonic area law is the so-called Y law, described by a minimal area with three surfaces spanning the three quark world lines and meeting at a central Steiner line joining the two common meeting points of the world lines. (The earlier claim was that this area law was a so-called Δ law, involving three extremal areas spanning the three pairs of quark world lines.) By asymptotic we mean the Y law holds at asymptotically large quark separations from each other; at separations of the order of the gauge-theory scale length, there may be Δ-like contributions. We give a preliminary discussion of the extension of these results to SU(N),N>3. These results are based on the (correct) baryonic Stokes' theorem given in the earlier work claiming a Δ law. The Y-form area law for SU(3) is in agreement with the most recent lattice calculations

  3. Shedding light on baryonic dark matter

    Science.gov (United States)

    Silk, Joseph

    1991-01-01

    Halo dark matter, if it is baryonic, may plausibly consist of compact stellar remnants. Jeans mass clouds containing 10 to the 6th to 10 to the 8th solar masses could have efficiently formed stars in the early universe and could plausibly have generated, for a suitably top-heavy stellar initial mass function, a high abundance of neutron stars as well as a small admixture of long-lived low mass stars. Within the resulting clusters of dark remnants, which eventually are tidally disrupted when halos eventually form, captures of neutron stars by nondegenerate stars resulted in formation of close binaries. These evolve to produce, by the present epoch, an observable X-ray signal associated with dark matter aggregations in galaxy cluster cores.

  4. Baryon physics in holographic QCD

    Directory of Open Access Journals (Sweden)

    Alex Pomarol

    2009-03-01

    Full Text Available In a simple holographic model for QCD in which the Chern–Simons term is incorporated to take into account the QCD chiral anomaly, we show that baryons arise as stable solitons which are the 5D analogs of 4D skyrmions. Contrary to 4D skyrmions and previously considered holographic scenarios, these solitons have sizes larger than the inverse cut-off of the model, and therefore they are predictable within our effective field theory approach. We perform a numerical determination of several static properties of the nucleons and find a satisfactory agreement with data. We also calculate the amplitudes of “anomalous” processes induced by the Chern–Simons term in the meson sector, such as ω→πγ and ω→3π. A combined fit to baryonic and mesonic observables leads to an agreement with experiments within 16%.

  5. Exotic heavy baryons at LHC

    International Nuclear Information System (INIS)

    Biro, T.S.; Zimanyi, J.

    1993-06-01

    A heavy bottom-charm six-quark baryon is considered. A semiclassical and a Gaussian estimate show that the octet-octet bbb-ccc configuration can be favoured energetically rather than the singlet-singlet one. This result suggests that a confined bbb-ccc six-quark state may exist. Such objects may be produced in suitable amounts by heavy-ion collisions at Large Hadronic Collider energies. (R.P.) 8 refs. 1 fig

  6. The Compressed Baryonic Matter experiment

    Directory of Open Access Journals (Sweden)

    Seddiki Sélim

    2014-04-01

    Full Text Available The Compressed Baryonic Matter (CBM experiment is a next-generation fixed-target detector which will operate at the future Facility for Antiproton and Ion Research (FAIR in Darmstadt. The goal of this experiment is to explore the QCD phase diagram in the region of high net baryon densities using high-energy nucleus-nucleus collisions. Its research program includes the study of the equation-of-state of nuclear matter at high baryon densities, the search for the deconfinement and chiral phase transitions and the search for the QCD critical point. The CBM detector is designed to measure both bulk observables with a large acceptance and rare diagnostic probes such as charm particles, multi-strange hyperons, and low mass vector mesons in their di-leptonic decay. The physics program of CBM will be summarized, followed by an overview of the detector concept, a selection of the expected physics performance, and the status of preparation of the experiment.

  7. Engineering Electromagnetics

    International Nuclear Information System (INIS)

    Kim, Se Yun

    2009-01-01

    This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.

  8. Baryon string model

    International Nuclear Information System (INIS)

    Klimenko, S.V.; Kochin, V.N.; Plyushchaj, M.S.; Pron'ko, G.P.; Razumov, A.V.; Samarin, A.V.

    1985-01-01

    Partial solutions to classical equations of three-string motion are considered. Simplest solutions, when three-string center moving with high velocity, are co nsidered. Single-mode solutions are studied. Explicit form of their parametrization is obtained and three-string dynamics visualization is made. Means of graphic packet ''Atom'' were used for visualization. A set of processes for graphic representation of multiparametric functions is developed. Peculiarity of these processes is a wide class of functions, which are represented by parametric, coordinate and functional isolines

  9. Microstructure of Semi-Solid Billets Produced by Electromagnetic Stirring and Behavior of Primary Particles during the Indirect Forming Process

    Directory of Open Access Journals (Sweden)

    Chul Kyu Jin

    2018-04-01

    Full Text Available An A356 alloy semi-solid billet was fabricated using electromagnetic stirring. After inserting the semi-solid billet into an indirect die, a thin plate of 1.2 mm thickness was fabricated by applying compression. The microstructure of the semi-solid billets fabricated in various stirring conditions (solid fraction and stirring force were analyzed. The deformation and behavior of the primary α-Al particles were analyzed for various parameters (solid fraction, die friction, compression rate, and compression pressure. In the stirred billets, a globular structure was dominant, while a dendrite structure was dominant in the unstirred billets. As the solid fraction decreased and the stirring current increased, the equivalent diameter and roundness of the primary α-Al particles decreased. The primary α-Al particle sizes were reduced as the compressing velocity increased, while a greater number of particles could move as the compressing pressure increased. As the path over which the motion occurred became smoother, the fluidity of the particles improved. Under compression, bonded primary α-Al particles became separated into individual particles again, as the bonds were broken. As wearing caused by friction and collisions between the particles during this motion occurred, the particle sizes were reduced, and the particle shapes become increasingly spheroid.

  10. Determination of baryon and baryonic resonance masses from QCD sum rules. Strange baryons

    International Nuclear Information System (INIS)

    Belyaev, V.M.; Ioffe, B.L.

    1982-01-01

    The mass differences in baryonic octet Jsup(P)=1/2sup(+), decuplet Jsup(P)=3/2sup(+) and in octet Jsup(P)=3/2sup(-) are calculated basing on the QCD sum rules. The mass differences are expressed through two QCD parameters: the strange current qUark mass and the value of the quark condensate. At the properly chosen values of these parameters all of the mass differences are in a good agreement with experiment

  11. The Heavy Baryon Physics by means LEP

    International Nuclear Information System (INIS)

    Lesiak, T.

    2000-07-01

    This report describes the experimental research about the heavy baryons which were obtained in the last decade at LEP. The most important among them concern the lifetimes of beauty baryons. The methods of theoretical description of heavy hadrons together with the LEP experimental apparatus are also discussed. Heavy baryon studies are shown in a broader perspective of other LEP results: the test of the standard model and the latest measurements concerning the beauty mesons. (author)

  12. Random walk of the baryon number

    International Nuclear Information System (INIS)

    Kazaryan, A.M.; Khlebnikov, S.Y.; Shaposhnikov, M.E.

    1989-01-01

    A new approach is suggested for the anomalous nonconservation of baryon number in the electroweak theory at high temperatures. Arguments are presented in support of the idea that the baryon-number changing reactions may be viewed as random Markov processes. Making use of the general theory of Markov processes, the Fokker--Planck equation for the baryon-number distribution density is obtained and kinetic coefficients are calculated

  13. Baryon exchange effects in dual unitarisation

    International Nuclear Information System (INIS)

    Hong-Mo, C.; Tsun, T.S.

    1976-05-01

    The effects of baryon exchanges in the renormalisation of Regge trajectories are studied in the dual unitarisation scheme. The main results are that: (i) the Pomeron is boosted above α = 1, giving rising total cross sections beyond baryon-antibaryon thresholds, and (ii) the ω-trajectory remains approximately at α = .5 but acquires a sizeable admixture of the exotic antiq antiq qq state, which enhances its coupling to baryons. There are in addition a number of other interesting predictions. (author)

  14. Baryon asymmetry, inflation and squeezed states

    International Nuclear Information System (INIS)

    Bambah, Bindu A.; Chaitanya, K.V.S. Shiv; Mukku, C.

    2007-01-01

    We use the general formalism of squeezed rotated states to calculate baryon asymmetry in the wake of inflation through parametric amplification. We base our analysis on a B and CP violating Lagrangian in an isotropically expanding universe. The B and CP violating terms originate from the coupling of complex fields with non-zero baryon number to a complex background inflaton field. We show that a differential amplification of particle and antiparticle modes gives rise to baryon asymmetry

  15. Layers of deformed instantons in holographic baryonic matter

    Energy Technology Data Exchange (ETDEWEB)

    Preis, Florian [Institut für Theoretische Physik, Technische Universität Wien,1040 Vienna (Austria); Schmitt, Andreas [Mathematical Sciences and STAG Research Centre, University of Southampton,Southampton SO17 1BJ (United Kingdom)

    2016-07-01

    We discuss homogeneous baryonic matter in the decompactified limit of the Sakai-Sugimoto model, improving existing approximations based on flat-space instantons. We allow for an anisotropic deformation of the instantons in the holographic and spatial directions and for a density-dependent distribution of arbitrarily many instanton layers in the bulk. Within our approximation, the baryon onset turns out to be a second-order phase transition, at odds with nature, and there is no transition to quark matter at high densities, at odds with expectations from QCD. This changes when we impose certain constraints on the shape of single instantons, motivated by known features of holographic baryons in the vacuum. Then, a first-order baryon onset and chiral restoration at high density are possible, and at sufficiently large densities two instanton layers are formed dynamically. Our results are a further step towards describing realistic, strongly interacting matter over a large density regime within a single model, desirable for studies of compact stars.

  16. Baryon number violation and string topologies

    International Nuclear Information System (INIS)

    Sjoestrand, T.; Skands, P.Z.

    2003-01-01

    In supersymmetric scenarios with broken R-parity, baryon number violating sparticle decays become possible. In order to search for such decays, a good understanding of expected event properties is essential. We here develop a complete framework that allows detailed studies. Special attention is given to the hadronization phase, wherein the baryon number violating vertex is associated with the appearance of a junction in the colour confinement field. This allows us to tell where to look for the extra (anti)baryon directly associated with the baryon number violating decay

  17. Search for diquark clustering in baryons

    International Nuclear Information System (INIS)

    Fleck, S.; Silvestre-Brac, B.; Richard, J.M.

    1988-03-01

    In the framework of the non-relativistic quark model, we examine to which extent baryons consist of a quark bound to a localized cluster of two quarks simulating a diquark. We consider ground states and orbital excitations for various flavour combinations. A striking clustering shows up sometimes especially for the leading Regge trajectory of the nucleon and single flavoured baryons or for the ground state of baryons bearing two heavy flavours. This is, however, far from being a general pattern and there are clear differences between the three-quark description of baryons and the quark-diquark model

  18. Electromagnetic Reciprocity.

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories

  19. Lagrangian and energy forms for retrieving the impulse response of the Earth due to random electromagnetic forcing

    NARCIS (Netherlands)

    Slob, E.C.; Weiss, C.J.

    2011-01-01

    We distinguish between trivial and nontrivial differences in retrieving the real or imaginary parts of the Green's function. Trivial differences come from different Green's function definitions. The energy and Lagrangian forms constitute nontrivial differences. Magnetic noise sources suffice to

  20. Gauge unified theories and the problem of origin of Universe baryon asymmetry

    International Nuclear Information System (INIS)

    Ignat'ev, A.Yu.; Kuz'min, V.A.; Shaposhnikov, M.E.

    1981-01-01

    Explanation of origin of the Universe baryon asymmetry (UBA) has been attempted within the framework of united gauge theories (UGT) of strong, electromagnetic and weak interactions. Different approaches to the UBA formation problem have been discussed. Considered was the most natural approach from the point of view of particle physics: the singular state of the baryon-antibaryon system is symmetrical but the baryon number and CP invariance are not retained and UBA arises in processes with elementary particles at the thermodynamically nonequilibrium stage of the Universe expansion. A UBA generation mechanism based on a hypothesis of the thermodynamic equilibrium in the expanded Universe at the expense of quantum-gravitational interactions is suggested. A problem of the explanation of the UBA existence with the synthesis of UGT and of the theory of the hot Universe was investigated in detail. Macroscopic factors of the baryon asymmetry suppression in deacys of vector and scalar particles have been determined. The baryon asymmetry calculations have been performed within the framework of the SU(5) model with the Higgs expanded sector. In is concluded that within the framework of UGT, on the assumptions of scalar particle masses, a possibility for explaining the asymmetry value, the calculated value of which is close to the value observed experimentally, appears [ru

  1. On the search for the electric dipole moment of strange and charm baryons at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Botella, F.J.; Garcia Martin, L.M.; Martinez Vidal, F.; Oyanguren, A.; Ruiz Vidal, J. [Universitat de Valencia-CSIC, Instituto de Fisica Corpuscular (IFIC), Valencia (Spain); Marangotto, D.; Merli, A.; Neri, N. [INFN Sezione di Milano, Milan (Italy); Milano Univ., Milan (Italy)

    2017-03-15

    Permanent electric dipole moments (EDMs) of fundamental particles provide powerful probes for physics beyond the Standard Model. We propose to search for the EDM of strange and charm baryons at LHC, extending the ongoing experimental program on the neutron, muon, atoms, molecules and light nuclei. The EDM of strange Λ baryons, selected from weak decays of charm baryons produced in pp collisions at LHC, can be determined by studying the spin precession in the magnetic field of the detector tracking system. A test of CPT symmetry can be performed by measuring the magnetic dipole moment of Λ and anti Λ baryons. For short-lived Λ{sup +}{sub c} and Ξ{sup +}{sub c} baryons, to be produced in a fixed-target experiment using the 7 TeV LHC beam and channeled in a bent crystal, the spin precession is induced by the intense electromagnetic field between crystal atomic planes. The experimental layout based on the LHCb detector and the expected sensitivities in the coming years are discussed. (orig.)

  2. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  3. Study of ψ(3770 decaying to baryon anti-baryon pairs

    Directory of Open Access Journals (Sweden)

    Li-Gang Xia

    2016-05-01

    Full Text Available To study the decays of ψ(3770 going to baryon anti-baryon pairs (BB¯, all available experiments of measuring the cross sections of e+e−→BB¯ at center-of-mass energy ranging from 3.0 GeV to 3.9 GeV are combined. To relate the baryon octets, a model based on the SU(3 flavor symmetry is used and the SU(3 breaking effects are also considered. Assuming the electric and magnetic form factors are equal (|GE|=|GM|, a global fit including the interference between the QED process and the resonant process is performed. The branching fraction of ψ(3770→BB¯ is determined to be (2.4±0.8±0.3×10−5, (1.7±0.6±0.1×10−5, (4.5±0.9±0.1×10−5, (4.5±0.9±0.1×10−5, (2.0±0.7±0.1×10−5, and (2.0±0.7±0.1×10−5 for B=p,Λ,Σ+,Σ0,Ξ− and Ξ0, respectively, where the first uncertainty is from the global fit and the second uncertainty is the systematic uncertainty due to the assumption |GE|=|GM|. They are at least one order of magnitude larger than a simple scaling of the branching fraction of J/ψ/ψ(3686→BB¯.

  4. Gamma-rays and the case for baryon symmetric big-bang cosmology

    Science.gov (United States)

    Stecker, F. W.

    1977-01-01

    The baryon symmetric big-bang cosmologies offer an explanation of the present photon-baryon ratio in the universe, the best present explanation of the diffuse gamma-ray background spectrum in the 1-200 MeV range, and a mechanism for galaxy formation. In regard to He production, evidence is discussed that nucleosynthesis of He may have taken place after the galaxies were formed.

  5. Search for Nφ(1960) baryon

    International Nuclear Information System (INIS)

    Balatz, M.Ya.; Belyaev, I.M.; Dorofeev, V.A.

    1993-01-01

    In the experiments at the SPHINX facility in the 70 GeV proton beam of the IHEP accelerator the diffractive production reactions p + N → [Σ(1385) 0 K + ] + N and p + N → [Σ(1385) 0 K + ] + N + (neutral particles) were studied. In the effective mass spectra of the [Σ(1385) 0 K + ] system in these processes there were no signals from the anomalously narrow baryon state N φ (1960), which had been observed earlier in the measurement at the BIS-2 setup. 6 refs., 7 figs

  6. Search for Nφ(1960) baryon

    International Nuclear Information System (INIS)

    Balatz, M.Ya.; Belyaev, I.M.; Dorofeev, V.A.; Dzubenko, G.B.; Filimonov, I.M.; Frolov, S.V.; Golovkin, S.V.; Grishkin, Yu.L.; Gritzuk, M.V.; Kamenskii, A.D.; Kliger, G.K.; Kolganov, V.Z.; Konstantinov, A.S.; Korchagin, Yu.V.; Kozevnikov, A.P.; Kubarovskii, V.P.; Kulman, N.Yu.; Kulyavtsev, A.I.; Kurshetsov, V.F.; Kushnirenko, A.E.; Lakaev, V.S.; Landsberg, L.G.; Lomkatzi, G.S.; Molchanov, V.V.; Mukhin, V.A.; Nilov, A.P.; Novoghilov, Yu.B.; Prutskoi, V.A.; Sitnikov, A.I.; Smolyankin, V.T.; Solyanik, V.I.; Vavilov, D.V.; Victorov, V.A.; Vishnyakov, V.E.

    1994-01-01

    In the experiments at the SPHINX facility in the 70 GeV proton beam of the IHEP accelerator the diffractive production reactions p+N→[Σ(1385) 0 K + ]+N and p+N→[Σ(1385) 0 K + ]+N+ (neutral particles) were studied. In the effective mass spectra of the [Σ(1385) 0 K + ] system in these processes there were no signals from the anomalously narrow baryon state N φ (1960) which had been observed earlier in the measurement at the BIS-2 setup. (orig.)

  7. Gluon field distribution in baryons

    International Nuclear Information System (INIS)

    Bissey, F.; Cao, F-G.; Kitson, A.; Lasscock, B.G.; Leinweber, D.B.; Signal, A.I.; Williams, A.G.; Zanotti, J.M.

    2005-01-01

    Methods for revealing the distribution of gluon fields within the three-quark static-baryon potential are presented. In particular, we outline methods for studying the sensitivity of the source on the emerging vacuum response for the three-quark system. At the same time, we explore the possibility of revealing gluon-field distributions in three-quark systems in QCD without the use of gauge-dependent smoothing techniques. Renderings of flux tubes from a preliminary high-statistics study on a 12 3 x 24 lattice are presented

  8. Effects of pseudoscalar-baryon channels in the dynamically generated vector-baryon resonances

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, E.J.; Oset, E. [Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Departamento de Fisica Teorica and IFIC, Valencia (Spain)

    2012-01-15

    We study the interaction of vector mesons with the octet of stable baryons in the framework of the local hidden gauge formalism using a coupled-channels unitary approach, including also the pseudoscalar-baryon channels which couple to the same quantum numbers. We examine the scattering amplitudes and their poles, which can be associated to the known J{sup P}=1/2{sup -}, 3/2{sup -} baryon resonances, and determine the role of the pseudoscalar-baryon channels, changing the width and eventually the mass of the resonances generated with only the basis of vector-baryon states. (orig.)

  9. Heavy flavor baryons in hypercentral model

    Indian Academy of Sciences (India)

    Keywords. Hypercentral constituent quark model; charmed and beauty baryons; hyper-Coulomb plus power potential. Abstract. Heavy flavor baryons containing single and double charm (beauty) quarks with light flavor combinations are studied using the hypercentral description of the three-body problem. The confinement ...

  10. Baryon spectroscopy and the omega minus

    Energy Technology Data Exchange (ETDEWEB)

    Samios, N.P.

    1994-12-31

    In this report, I will mainly discuss baryon resonances with emphasis on the discovery of the {Omega}{sup {minus}}. However, for completeness, I will also present some data on the meson resonances which together with the baryons led to the uncovering of the SU(3) symmetry of particles and ultimately to the concept of quarks.

  11. Baryon spectroscopy and the omega minus

    International Nuclear Information System (INIS)

    Samios, N.P.

    1994-01-01

    In this report, I will mainly discuss baryon resonances with emphasis on the discovery of the Ω - . However, for completeness, I will also present some data on the meson resonances which together with the baryons led to the uncovering of the SU(3) symmetry of particles and ultimately to the concept of quarks

  12. Baryon bags in strong coupling QCD

    Science.gov (United States)

    Gattringer, Christof

    2018-04-01

    We discuss lattice QCD with one flavor of staggered fermions and show that in the path integral the baryon contributions can be fully separated from quark and diquark contributions. The baryonic degrees of freedom (d.o.f.) are independent of the gauge field, and the corresponding free fermion action describes the baryons through the joint propagation of three quarks. The nonbaryonic dynamics is described by quark and diquark terms that couple to the gauge field. When evaluating the quark and diquark contributions in the strong coupling limit, the partition function completely factorizes into baryon bags and a complementary domain. Baryon bags are regions in space-time where the dynamics is described by a single free fermion made out of three quarks propagating coherently as a baryon. Outside the baryon bags, the relevant d.o.f. are monomers and dimers for quarks and diquarks. The partition sum is a sum over all baryon bag configurations, and for each bag, a free fermion determinant appears as a weight factor.

  13. Heavy baryons in the relativistic quark model

    International Nuclear Information System (INIS)

    Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P.; Saleev, V.A.

    1996-07-01

    In the framework of the relativistic quasipotential quark model the mass spectrum of baryons with two heavy quarks is calculated. The quasipotentials for interactions of two quarks and of a quark with a scalar and axial vector diquark are evaluated. The bound state masses of baryons with J P =1/2 + , 3/2 + are computed. (orig.)

  14. Baryon excitations in the bag model

    International Nuclear Information System (INIS)

    Jaffe, R.L.

    1976-07-01

    Two recent spectroscopic applications of the bag model are discussed. The first is a study of the place of multiquark states in meson and baryon spectroscopy, and the second is an attempt to sort out the P-wave baryon excitations in a bag model. 33 references

  15. Strange baryon production in Z hadronic decays

    CERN Document Server

    Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Allport, P P; Almehed, S; Alvsvaag, S J; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Anykeyev, V B; Apel, W D; Arnoud, Y; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barate, R; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bocci, V; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brunet, J M; Brückman, P; Bugge, L; Buran, T; Buys, A; Bärring, O; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carrilho, P; Carroll, L; Caso, Carlo; Cassio, V; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chikilev, O G; Chliapnikov, P V; Chochula, P; Chorowicz, V; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Almagne, B; Da Silva, W; Dahl-Jensen, Erik; Dahm, J; Dam, M; Damgaard, G; Daum, A; Dauncey, P D; Davenport, Martyn; De Angelis, A; De Boeck, H; De Brabandere, S; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Defoix, C; Della Ricca, G; Delpierre, P A; Demaria, N; Di Ciaccio, Lucia; Dijkstra, H; Djama, F; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Dupont, F; Dönszelmann, M; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Ferrer, A; Filippas-Tassos, A; Firestone, A; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Föth, H; Fürstenau, H; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gillespie, D; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Gracco, Valerio; Grard, F; Graziani, E; Grosdidier, G; Gunnarsson, P; Guy, J; Guz, Yu; Górski, M; Günther, M; Haedinger, U; Hahn, F; Hahn, M; Hahn, S; Haider, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Ioannou, P; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Joram, Christian; Juillot, P; Jönsson, L B; Jönsson, P E; Kaiser, M; Kalmus, George Ernest; Kapusta, F; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kramer, P H; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Królikowski, J; Kubinec, P; Kucewicz, W; Kurvinen, K L; Kuznetsov, O; Köhne, J H; Köne, B; La Vaissière, C de; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lokajícek, M; Loken, J G; Loukas, D; Lutz, P; Lyons, L; López, J M; López-Aguera, M A; López-Fernandez, A; Lörstad, B; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martí i García, S; Martínez-Rivero, C; Martínez-Vidal, F; Maréchal, B; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Meroni, C; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Monge, M R; Morettini, P; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Mönig, K; Møller, R; Müller, H; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Némécek, S; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Pape, L; Parodi, F; Passeri, A; Pegoraro, M; Pennanen, J; Peralta, L; Pernegger, H; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Rídky, J; Rückstuhl, W; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sannino, M; Schneider, H; Schyns, M A E; Sciolla, G; Scuri, F; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stepaniak, K; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Stäck, H; Szczekowski, M; Szeptycka, M; Sánchez, J; Tabarelli de Fatis, T; Tavernet, J P; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tuuva, T; Tyapkin, I A; Tyndel, M; Tzamarias, S; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van Doninck, W K; Van Eldik, J; Van der Velde, C; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Voutilainen, M; Vrba, V; Wahlen, H; Walck, C; Waldner, F; Wehr, A; Weierstall, M; Weilhammer, Peter; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wormser, G; Woschnagg, K; Yip, K; Yu, L; Yushchenko, O P; Zach, F; Zacharatou-Jarlskog, C; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zhigunov, V P; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G; de Boer, Wim; van Apeldoorn, G W; van Dam, P; Åsman, B; Österberg, K; Überschär, B; Überschär, S

    1995-01-01

    A study of the production of strange octet and decuplet baryons in hadronic decays of the Z recorded by the DELPHI detector at LEP is presented. This includes the first measurement of the \\Sigma^\\pm average multiplicity. The total and differential cross sections, the event topology and the baryon-antibaryon correlations are compared with current hadronization models.

  16. Modified three-pole VMD model with two-branch-point analytic structure and approved asymptotic behaviour for the pion electromagnetic form factor

    International Nuclear Information System (INIS)

    Dubnicka, S.; Furdik, I.; Meshcheryakov, V.A.

    1987-01-01

    A modification of three-pole VMD model for electromagnetic pion form factor was carried out, first by means of its transformation into the pion c.m. momentum variable and subsequently by using the inverse Zhukovsky transformation into another variable. In such a procedure a common normalized factor for all three vector mesons, ρ(770), ρ'(1250) and ρ''(1600), is singled out, by means of which it is possible to settle a specific freedom in the choice of the pion form factor asymptotic behaviour. An explicit incorporation of nonzero vector meson widths creates a real analytic model, defined on the four-sheeted Riemann surface. It includes inelastic contributions effectively, depends just on the parameters with a clear physical meaning, conserves the normalization of the original VMD parametrization, and provides a perfect fit of all existing pion form factor data, in which all parameters of the model are determined and the presence of ρ'(1250) in e + e - → π + π - is again established

  17. Investigation of nucleon electromagnetic form factors in the unphysical region by means of the N bar N → πl+l- reactions

    International Nuclear Information System (INIS)

    Dubnickova, A.Z.; Dubnicka, S.; Rekalo, M.P.

    1995-01-01

    A theoretical investigation of N bar N → πl + l - processes is carried out. First, the general structure of the differential probability of annihilation of very slow antinucleons on nucleons at rest into pion and lepton pairs is derived, then the structure of the electromagnetic current of N bar N → πγ * transition in case of the S-state annihilation is restored and general properties of the corresponding form factors are demonstrated. Next, by using the three-diagram approximation of the amplitude, those form factors are calculated explicitly and for the special process (p bar p) → π 0 γ * → π 0 l + l - they are shown to be completely described by the magnetic form factor of the proton in the unphysical region. Finally, the effective mass spectra of lepton pairs and the integral coefficients of internal conversion for the p bar p → π 0 l + l - and p bar n → π - l + l - processes are predicted. 15 refs., 7 figs

  18. Equation of state of dense baryonic matter

    International Nuclear Information System (INIS)

    Weber, F.; Weigel, M.K.

    1989-01-01

    In a previous investigation we treated nuclear matter as well as neutron matter at zero and finite temperatures in the frame of different relativistic field theoretical models, but with the restriction to nucleons as the only present baryons. This approach is extended by including a larger fraction of baryons and mesons, necessary for a description of baryon matter under extreme conditions. The equation of state (EOS) is calculated in both the Hartree and Hartree-Fock (HF) approximations for dense nuclear as well as neutron matter. Self-interactions of the σ field up to fourth order have been taken into account. For the treatment of many-baryon matter in the HF approach the parameters of the theory had to be readjusted. A phase transition of both many-baryon systems (neutron as well as nuclear matter) in the high-pressure and high-energy-density region has been found. (author)

  19. Baryon destruction by asymmetric dark matter

    International Nuclear Information System (INIS)

    Davoudiasl, Hooman; Morrissey, David E.; Tulin, Sean; Sigurdson, Kris

    2011-01-01

    We investigate new and unusual signals that arise in theories where dark matter is asymmetric and carries a net antibaryon number, as may occur when the dark matter abundance is linked to the baryon abundance. Antibaryonic dark matter can cause induced nucleon decay by annihilating visible baryons through inelastic scattering. These processes lead to an effective nucleon lifetime of 10 29 -10 32 yrs in terrestrial nucleon decay experiments, if baryon number transfer between visible and dark sectors arises through new physics at the weak scale. The possibility of induced nucleon decay motivates a novel approach for direct detection of cosmic dark matter in nucleon decay experiments. Monojet searches (and related signatures) at hadron colliders also provide a complementary probe of weak-scale dark-matter-induced baryon number violation. Finally, we discuss the effects of baryon-destroying dark matter on stellar systems and show that it can be consistent with existing observations.

  20. Search for Baryons with Two Charm Quarks

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, Mark Edward [Carnegie Mellon U.

    2002-01-01

    Using data from the SELEX experiment, we searched for baryons having two charm quarks. No one has yet observed a doubly-charmed baryon. We investigated the reconstruction $\\Lambda^+_c K⁻ \\pi^+\\pi^+$, a decay mode consistent with a baryon having $ccu$ quarks. We observe an excess of 20 events above an expected background of 31 events, at a mass of 3.76 GeV/$c^2$. We observe differences between the signal events and the background. The mass resolution, mass, and decay mode are consistent with a $ccu$ baryon. The mass and production are higher than theoretical predictions for the ground state $\\Xi^{++}_{cc}$. If the signal is real and not a doubly-charmed baryon, then it is not accounted for by current physics

  1. Baryon symmetric big bang cosmology

    Science.gov (United States)

    Stecker, F. W.

    1978-01-01

    Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.

  2. The classical electromagnetic field

    CERN Document Server

    Eyges, Leonard

    2010-01-01

    This excellent text covers a year's course in advanced theoretical electromagnetism, first introducing theory, then its application. Topics include vectors D and H inside matter, conservation laws for energy, momentum, invariance, form invariance, covariance in special relativity, and more.

  3. Investigation of doubly heavy baryon production at e+e- colliders

    International Nuclear Information System (INIS)

    Ma, J.P.; Si, Z.G.

    2004-01-01

    In this talk, we investigate the doubly heavy baryon production by factorizing nonperturbative- and perturbative effects: A pair of heavy quarks can be produced perturbatively and then the pair is transformed into the baryon. The transformation is nonperturbative. Since a heavy quark moves with a small velocity in the baryon in its rest frame, NRQCD can be used to describe the transformation. At the leading order, the baryon is found to be formed from two states of the heavy-quark pair, one state is with the pair in 3 S 1 state and in color 3-bar, another is with the pair in 1 S 0 state and in color 6. Two matrix elements are defined for the transformation from the two states, and their perturbative coefficients in the contribution to the cross-section at a e + e - collider are calculated. (author)

  4. Quasi-elastic production of charmed baryons in neutrino-nUcleon interactions

    International Nuclear Information System (INIS)

    Zhizhin, E.D.; Nikitin, Yu.P.; Fanchenko, M.S.

    1983-01-01

    Quasielastic production of charmed baryons Λsub(c)sup(+), Σsub(c)sup(+), and Σsub(c)sup(++) in neutrino reactions on nucleons is studied. Differential and total cross sections are calculated for two sets of the parameters Msub(V), Msub(A) which determine the form factors of weak transitions of nucleons into charmed baryons. The chosen parameter values allow to obtain the cross sections which overlap the entire uncertainty range of theoretical predictions. The authors pay attention to an important kinematical effect that for monochromatic neutrino beams the values of the charmed baryon emission angles are limited (THETA < THETAsub(max)) and the differential cross section dσ/dΩ strongly increases in the vicinity of the angles THETA=THETAsub(max). Possibilities in experimental studying of the above processes and in extracting unique information on the structure of charmed baryons from experimental data are

  5. Measurement of beauty baryons production and lifetime in Z0 hadronic decays

    International Nuclear Information System (INIS)

    Bianchi, F.

    1994-01-01

    A study of the production of beauty baryons in Z 0 decays is reported. The analysis is based on 1 Million Z 0 hadronic events collected by the DELPHI detector in the 1990-92 data taking. Beauty baryon signals are obtained with three complementary methods: search of Λ (Λ-bar) correlated to a high p T l - (l + ) in the same jet; the presence of a secondary vertex formed by a fast proton (p>5 GeV/c) and a lepton of opposite sign; the presence of Λ c baryon associated with a high p T lepton in the same jet. From these signals, the average lifetime of beauty baryons and inclusive branching fractions have been measured. (author). 5 refs., 4 figs

  6. Study of the in-medium nucleon electromagnetic form factors using a light-front nucleon wave function combined with the quark-meson coupling model

    Science.gov (United States)

    de Araújo, W. R. B.; de Melo, J. P. B. C.; Tsushima, K.

    2018-02-01

    We study the nucleon electromagnetic (EM) form factors in symmetric nuclear matter as well as in vacuum within a light-front approach using the in-medium inputs calculated by the quark-meson coupling model. The same in-medium quark properties are used as those used for the study of in-medium pion properties. The zero of the proton EM form factor ratio in vacuum, the electric to magnetic form factor ratio μpGEp (Q2) /GMp (Q2) (Q2 = -q2 > 0 with q being the four-momentum transfer), is determined including the latest experimental data by implementing a hard constituent quark component in the nucleon wave function. A reasonable fit is achieved for the ratio μpGEp (Q2) /GMp (Q2) in vacuum, and we predict that the Q02 value to cross the zero of the ratio to be about 15 GeV2. In addition the double ratio data of the proton EM form factors in 4He and H nuclei, [GEp4He (Q2) /G4HeMp (Q2) ] / [GEp1H (Q2) /GMp1H (Q2) ], extracted by the polarized (e → ,e‧ p →) scattering experiment on 4He at JLab, are well described. We also predict that the Q02 value satisfying μpGEp (Q02) /GMp (Q0 2) = 0 in symmetric nuclear matter, shifts to a smaller value as increasing nuclear matter density, which reflects the facts that the faster falloff of GEp (Q2) as increasing Q2 and the increase of the proton mean-square charge radius. Furthermore, we calculate the neutron EM form factor double ratio in symmetric nuclear matter for 0.1 neutron double ratio is enhanced relative to that in vacuum, while for the proton it is quenched, and agrees with an existing theoretical prediction.

  7. Electromagnetic form factors for the 14.39 and 17.50 MeV levels of 9Be

    International Nuclear Information System (INIS)

    Nascimento, I.C.; Wong, C.F.; Caplan, H.S.

    1974-01-01

    The form factors for the 14.39 and 17.50 MeV levels of 9 Be have been measured for momentum transfer in the range between 0.47 and 1.08 fm -1 . Radiative widths for the transitions and the transition radii were also obtained. The results are consistent with the attribution of an M1 transition to the 14.39 MeV level and an M2 to the 17.50 MeV level [pt

  8. Deuteron electromagnetic form factors in the transitional region between nucleon-meson and quark-gluon pictures

    International Nuclear Information System (INIS)

    Kobushkin, A.P.; Syamtomov, A.I.

    1994-01-01

    Experimental observables of the elastic ed-scattering in the region of intermediate energies are discussed. We offer the numerical analysis of the available experimental data, which reproduces the results of the calculations with popular NN-potentials at low energies (Q 2 2 ), but, at the same time, provides the right asymptotic behavior of the deuteron e.m. form factors, following from the quark counting rules, at high energies (Q 2 >>1(GeV/c) 2 ). The numerical analysis developed allows to make certain estimations of the characteristic energy scale, at what the consideration of quark-gluon degrees of freedom in the deuteron becomes essential. (author). 18 refs., 2 tab., 10 figs

  9. Electromagnetic production of associated strangeness

    Energy Technology Data Exchange (ETDEWEB)

    David, J C [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire; [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d` Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l` Instrumentation Associee; Fayard, C; Lamot, G H [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire; Saghai, B [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d` Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l` Instrumentation Associee

    1996-04-01

    A formalism, based on an isobaric approach using Feynman diagram techniques, which includes the nucleonic (spin {<=} 5/2), hyperonic (spin 1/2) and kaonic resonances, is developed. Using this formalism, a thorough investigation of electromagnetic strangeness processes is performed. A reaction mechanism, describing well enough the data, is found to include a reasonable number of baryonic resonances among a very large number of potential candidates. Predictions for the upcoming photoproduction polarization and electroproduction observables are presented, and their sensitivity to the phenomenological models ingredients are emphasized. (K.A.). 70 refs.; Submitted to Physical Review, C (US).

  10. Electromagnetic production of associated strangeness

    International Nuclear Information System (INIS)

    David, J.C.; CEA Centre d'Etudes de Saclay, 91 - Gif-sur-Yvette; Fayard, C.; Lamot, G.H.; Saghai, B.

    1996-04-01

    A formalism, based on an isobaric approach using Feynman diagram techniques, which includes the nucleonic (spin ≤ 5/2), hyperonic (spin 1/2) and kaonic resonances, is developed. Using this formalism, a thorough investigation of electromagnetic strangeness processes is performed. A reaction mechanism, describing well enough the data, is found to include a reasonable number of baryonic resonances among a very large number of potential candidates. Predictions for the upcoming photoproduction polarization and electroproduction observables are presented, and their sensitivity to the phenomenological models ingredients are emphasized. (K.A.)

  11. Quark model calculation of charmed baryon production by neutrinos

    International Nuclear Information System (INIS)

    Avilez, C.; Kobayashi, T.; Koerner, J.G.

    1976-11-01

    We study the neutrino production of 25 low-lying charmed baryon resonances in the four flavour quark model. The mass difference of ordinary and charmed quarks is explicitly taken into account. The quark model is used to determine the spectrum of the charmed baryon resonances and the q 2 = 0 values of the weak current transition matrix elements. These transition matrix elements are then continued to space-like q 2 -values by a generalized meson dominance ansatz for a set of suitably chosen invariant form factors. We find that the production of the L = 0 states C 0 , C 1 and C 1 * is dominant, with the C 0 produced most copiously. For L = 1, 2 the Jsup(P) = 3/2 - 5/2 + charm states are dominant. We give differential cross sections, total cross sections and energy integrated total cross sections using experimental neutrino fluxes. (orig./BJ) [de

  12. Study of Charm Baryons with the BaBar Experiment

    International Nuclear Information System (INIS)

    Petersen, Brian Aa.

    2006-01-01

    The authors report on several studies of charm baryon production and decays by the BABAR collaboration. They confirm previous observations of the Ξ' c 0/+ , Ξ c (2980) + and Ξ c (3077) + baryons, measure branching ratios for Cabibbo-suppressed Λ c + decays and use baryon decays to study the properties of the light-quark baryons, (Omega) - and Ξ(1690) 0

  13. CP violation in the baryon sector

    CERN Document Server

    Smith, Eluned Anne

    2017-01-01

    The study of CP violation in the baryon sector is still a relatively new field and offers the possibility to make many CP measurements which could complement those performed in the meson sector. This is especially true of late given the large number of baryons currently being produced at the LHC. Such measurements could help further over-constrain the CKM unitary triangle, as well as furthering our understand of baryongenesis. These proceedings will give an overview of the current state of the search for CP violation in the baryon sector.

  14. Analysis of Baryon Angular Correlations with Pythia

    CERN Document Server

    Mccune, Amara

    2017-01-01

    Our current understanding of baryon production is encompassed in the framework of the Lund String Fragmentation Model, which is then encoded in the Monte Carlo event generator program Pythia. In proton-proton collisions, daughter particles of the same baryon number produce an anti-correlation in $\\Delta\\eta\\Delta\\varphi$ space in ALICE data, while Pythia programs predict a correlation. To understand this unusual effect, where it comes from, and where our models of baryon production go wrong, correlation functions were systematically generated with Pythia. Effects of energy scaling, color reconnection, and popcorn parameters were investigated.

  15. Inside charged black holes. II. Baryons plus dark matter

    International Nuclear Information System (INIS)

    Hamilton, Andrew J.S.; Pollack, Scott E.

    2005-01-01

    This is the second of two companion papers on the interior structure of self-similar accreting charged black holes. In the first paper, the black hole was allowed to accrete only a single fluid of charged baryons. In this second paper, the black hole is allowed to accrete in addition a neutral fluid of almost noninteracting dark matter. Relativistic streaming between outgoing baryons and ingoing dark matter leads to mass inflation near the inner horizon. When enough dark matter has been accreted that the center-of-mass frame near the inner horizon is ingoing, then mass inflation ceases and the fluid collapses to a central singularity. A null singularity does not form on the Cauchy horizon. Although the simultaneous presence of ingoing and outgoing fluids near the inner horizon is essential to mass inflation, reducing one or the other of the ingoing dark matter or outgoing baryonic streams to a trace relative to the other stream makes mass inflation more extreme, not the other way around as one might naively have expected. Consequently, if the dark matter has a finite cross section for being absorbed into the baryonic fluid, then the reduction of the amount of ingoing dark matter merely makes inflation more extreme, the interior mass exponentiating more rapidly and to a larger value before mass inflation ceases. However, if the dark matter absorption cross section is effectively infinite at high collision energy, so that the ingoing dark matter stream disappears completely, then the outgoing baryonic fluid can drop through the Cauchy horizon. In all cases, as the baryons and the dark matter voyage to their diverse fates inside the black hole, they only ever see a finite amount of time pass by in the outside universe. Thus the solutions do not depend on what happens in the infinite past or future. We discuss in some detail the physical mechanism that drives mass inflation. Although the gravitational force is inward, inward means opposite direction for ingoing and

  16. Calculation of baryon sum rules and SU(4) mass formulae for mesons and baryons

    International Nuclear Information System (INIS)

    Bongardt, K.

    1976-01-01

    Light cone coordinates and field-field anticommutators for the free quark model on the light cone are introduced and light cone charges and light cone currents for the free quark model as well as sum rules for the meson and quark states are derived. The derivation of sum rules for the baryons is attempted. It is seen that it is possible formally to derive the same sum rules for the baryons and for the quarks. The baryon sums were derived through the symmetry properties of the baryon fields. Explicit assumptions about the spatial distribution of the three quarks in the baryons were not utilized. The meson-baryon Σ-terms, Zweig's rules in the SU (4) and a number of properties of the M-matrix are discussed. (BJ) [de

  17. Quark interchange model of baryon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.

  18. Quark interchange model of baryon interactions

    International Nuclear Information System (INIS)

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers

  19. Measuring baryon-(anti-)baryon interaction cross-sections with femtoscopy in Heavy-Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Kisiel, A.

    2016-12-15

    Two-particle correlations at low relative momentum (femtoscopy) are used to study the space-time dynamics of the source created in heavy-ion collisions. The same method can be used in a novel way to study the Final State Interaction potential for various particle pairs. The parameters are also directly related to the relevant interaction cross-sections. Of special interest are correlations of baryons, where the strong interaction often dominates. The femtoscopic technique offers a unique opportunity to study this interaction in such systems. In this work we discuss the similarities and differences of such measurement for baryon-baryon and baryon-antibaryon pairs.

  20. Determination of baryon-baryon elastic scattering phase shift from finite volume spectra in elongated boxes

    Science.gov (United States)

    Li, Ning; Wu, Ya-Jie; Liu, Zhan-Wei

    2018-01-01

    The relations between the baryon-baryon elastic scattering phase shifts and the two-particle energy spectrum in the elongated box are established. We studied the cases with both the periodic boundary condition and twisted boundary condition in the center of mass frame. The framework is also extended to the system of nonzero total momentum with periodic boundary condition in the moving frame. Moreover, we discussed the sensitivity functions σ (q ) that represent the sensitivity of higher scattering phases. Our analytical results will be helpful to extract the baryon-baryon elastic scattering phase shifts in the continuum from lattice QCD data by using elongated boxes.

  1. Semileptonic *DELTA*S=1 decays of baryons with boosted bags

    International Nuclear Information System (INIS)

    Eeg, J.O.; Lie-Svendsen, Oe.

    1984-03-01

    Recoil effects for strangeness-changing semileptonic decays of baryons by means of boosted quark mode solutions of the MIT bag model is calculated. Both the quark and the psevdoscalar part of the axial current is considered. It is shown that the induced scalar form factor f*sb3* and the ''weak electric'' form factor g*sb2* are proportional to the mass difference of the final and initial baryon. Moreover, it is shown that the quark wave function mismatch, which decreases the conventional vector form factor f*sb1*, can be compensated by recoil effects. Thus a better agreement with experiment seems to be achieved. (Auth.)

  2. CONSEQUENCES OF SYMMETRY GROUPS FOR ELECTROMAGNETIC PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, A. J.; Sudarshan, E. C.G.

    1963-06-15

    The electromagnetic properties of SU/sub 3/ supermultiplets are obtained formally by a unitary transformation of a theory whose SU/sub 3/ invariant strong interactions are perturbed by merely charge-independent interactions. Several new results are presented, but the emphasis is on the simplicity and power of the method. Electromagnetic properties of the first and second kinds are distinguished, the former being independent of the precise manner in which the particular electromagnetic property depends on the electric charge current density. It is shown that all except two relations between the magnetic moments of the baryon octet hold equally well for other electromagnetic properties like self energies and Compton scattering amplitudes. (auth)

  3. Baryon density in alternative BBN models

    International Nuclear Information System (INIS)

    Kirilova, D.

    2002-10-01

    We present recent determinations of the cosmological baryon density ρ b , extracted from different kinds of observational data. The baryon density range is not very wide and is usually interpreted as an indication for consistency. It is interesting to note that all other determinations give higher baryon density than the standard big bang nucleosynthesis (BBN) model. The differences of the ρ b values from the BBN predicted one (the most precise today) may be due to the statistical and systematic errors in observations. However, they may be an indication of new physics. Hence, it is interesting to study alternative BBN models, and the possibility to resolve the discrepancies. We discuss alternative cosmological scenarios: a BBN model with decaying particles (m ∼ MeV, τ ∼ sec) and BBN with electron-sterile neutrino oscillations, which permit to relax BBN constraints on the baryon content of the Universe. (author)

  4. Heavy flavor baryons in hypercentral model

    Indian Academy of Sciences (India)

    periments have generated much interest in the spectroscopy of heavy flavor baryons ... the point of view of simple systems to study three-body problems. ..... One of the authors (PCV) acknowledges the financial support from the University.

  5. Polarization in pp → p(baryon)

    International Nuclear Information System (INIS)

    Castillo-Vallejo, Victor M.; Felix, Julian

    2003-01-01

    It's introduced a calculation, which is based on symmetries followed by high energy hadronic interactions, of resonance polarization and specific angular momentum state polarization created in pp → p(baryon)

  6. Current algebra, baryons and quark confinement

    International Nuclear Information System (INIS)

    Witten, E.

    1983-01-01

    It is shown that ordinary baryons can be understood as solitons in current algebra effective lagrangiangs. The formation of color flux tubes can also be seen in current algebra, under certain conditions. (orig.)

  7. Unified Chiral models of mesons and baryons

    International Nuclear Information System (INIS)

    Mendez-Galain, R.; Ripka, G.

    1990-01-01

    Unified Chiral models of mesons and baryons are presented. Emphasis is placed on the underlying quark structure of hadrons including the Skyrmion. The Nambu Jona-Lasinio model with vector mesons is discussed

  8. Baryon number transfer in hadronic interactions

    International Nuclear Information System (INIS)

    Arakelyan, G.H.; Capella, A.; Kaidalov, A.B.; Shabelski, Yu.M.

    2002-01-01

    The process of baryon number transfer due to string junction propagation in rapidity space is analyzed. It has a significant effect on the net baryon production in pp collisions at mid-rapidities and an even larger effect in the forward hemisphere in the cases of πp and γp interactions. The results of numerical calculations in the framework of the quark-gluon string model are in reasonable agreement with the data. (orig.)

  9. Production of baryons with large transverse momentum

    International Nuclear Information System (INIS)

    Landshoff, P.V.; Polkinghorne, J.C.; Scott, D.M.

    1975-01-01

    The multiple scattering of constituent quarks provides a natural mechanism for fairly copious production of large-transverse-momentum baryons in nucleon--nucleon collisions. The predicted scaling law agrees well with available data, and the mechanism provides a qualitative explanation of nuclear-target effects. In comparison with previous parton models, correlations are predicted to be qualitatively different, and large-p/sub T/ baryon production by meson beams is relatively suppressed

  10. Theoretical status of baryon magnetic moments

    Science.gov (United States)

    Franklin, Jerrold

    1989-05-01

    This talk given at the Eighth International Symposium on High-Energy Spin Physics in Minneapolis, Minnesota (September 12-17, 1988), is a short summary of theoretical results for baryon magnetic moments. Results from the static bag model and pion exchange effects are summarized and compared with experimental data. A list of references for various models and properties effecting the baryon magnetic moments is given at the end of the article. (AIP)

  11. Theoretical status of baryon magnetic moments

    International Nuclear Information System (INIS)

    Franklin, J.

    1989-01-01

    This talk given at the Eighth International Symposium on High-Energy Spin Physics in Minneapolis, Minnesota (September 12--17, 1988), is a short summary of theoretical results for baryon magnetic moments. Results from the static bag model and pion exchange effects are summarized and compared with experimental data. A list of references for various models and properties effecting the baryon magnetic moments is given at the end of the article

  12. Search for Popcorn Mesons in Events with Two Charmed Baryons

    Energy Technology Data Exchange (ETDEWEB)

    Hartfiel, Brandon; /SLAC

    2006-07-07

    The physics of this note is divided into two parts. The first part measures the {Lambda}{sub c} {yields} {pi}kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c. The data sample consists of 15,400 {Lambda}{sub c} baryons from 9.46 fb{sup -1} of integrated luminosity. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the {Lambda}{sub c} {yields} K{sup 0}p mode, and look for events with a {Lambda}{sub c}{sup +} and a {bar {Lambda}}{sub c}{sup -} in order to look for ''popcorn'' mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb{sup -1}. We find 619 events after background subtraction. After a subtraction of 1.06 {+-} .09 charged pions coming from decays of known resonances to {Lambda}{sub c} + {eta}{pi}, we are left with 2.63 {+-} .21 additional charged pions in each of these events. This is significantly higher than the .5 popcorn mesons per baryon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.

  13. The baryon content of the Cosmic Web

    Science.gov (United States)

    Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline

    2015-01-01

    Big-Bang nucleosynthesis indicates that baryons account for 5% of the Universe’s total energy content[1]. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two[2,3]. Cosmological simulations indicate that the missing baryons have not yet condensed into virialised halos, but reside throughout the filaments of the cosmic web: a low-density plasma at temperature 105–107 K known as the warm-hot intergalactic medium (WHIM)[3,4,5,6]. There have been previous claims of the detection of warm baryons along the line of sight to distant blazars[7,8,9,10] and hot gas between interacting clusters[11,12,13,14]. These observations were however unable to trace the large-scale filamentary structure, or to estimate the total amount of warm baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of ten-million-degree gas associated with the galaxy cluster Abell 2744. Previous observations of this cluster[15] were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we reveal hot gas structures that are coherent over 8 Mpc scales. The filaments coincide with over-densities of galaxies and dark matter, with 5-10% of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. PMID:26632589

  14. Precombination Cloud Collapse and Baryonic Dark Matter

    Science.gov (United States)

    Hogan, Craig J.

    1993-01-01

    A simple spherical model of dense baryon clouds in the hot big bang 'strongly nonlinear primordial isocurvature baryon fluctuations' is reviewed and used to describe the dependence of cloud behavior on the model parameters, baryon mass, and initial over-density. Gravitational collapse of clouds before and during recombination is considered including radiation diffusion and trapping, remnant type and mass, and effects on linear large-scale fluctuation modes. Sufficiently dense clouds collapse early into black holes with a minimum mass of approx. 1 solar mass, which behave dynamically like collisionless cold dark matter. Clouds below a critical over-density, however, delay collapse until recombination, remaining until then dynamically coupled to the radiation like ordinary diffuse baryons, and possibly producing remnants of other kinds and lower mass. The mean density in either type of baryonic remnant is unconstrained by observed element abundances. However, mixed or unmixed spatial variations in abundance may survive in the diffuse baryon and produce observable departures from standard predictions.

  15. Electron-muon puzzle and the electromagnetic coupling constant

    International Nuclear Information System (INIS)

    Jehle, H.

    1977-01-01

    On the basis of a heuristic model we argued in an earlier paper (paper C of this series) electric field (and of course the magnetic field, too) of a lepton or of a quark may be formulated in terms of a closed loop of quantized magnetic flux whose alternative forms (''loopforms'') are superposed with probability amplitudes so as to represent the electromagnetic field of that lepton or quark. The Zitterbewegung of a single stationary (''elementary'') particle suggests a kind of quasiextension, which is assumed, in the present theory, to permit concepts of structuralization of the electromagnetic field even for leptons. Mesons and baryons may be represented by linked quantized flux loops, i.e., quark loops (as in paper B). The central problem now (in this paper D) is to formulate those probability-amplitude distributions in terms of wave functions to characterize the internal structure of the lepton or quark in question. As probability-amplitude functions one may choose bases of irreducible representations of the group with respect to which the model is to be invariant. It is seen that this implies the SO(4) group. As both the electron-muon mass ratio and the electromagnetic coupling constant depend, in this flux-quantization model, on the correct formulation of the structuralization of probability-amplitude distributions, we should expect to get an insight into both these puzzles from finding the right probability-amplitude wave functions. Furthermore, it is seen that this same structuralization of probability-amplitude distributions also permits one to estimate the rate of weak interactions, thus relating them to electromagnetic interactions

  16. Dark Galaxies and Lost Baryons (IAU S244)

    Science.gov (United States)

    Davies, Jonathan I.; Disney, Michael J.

    2008-05-01

    ; Numerical simulation of the dwarf companions of giant galaxies A. Nelson and P. Williams; Delayed galaxies C. Struck, M. Hancock, B. Smith, P. Appleton, V. Charmandaris and M. Giroux; Probe of dark galaxies via disturbed/lopsided isolated galaxies I. Karachentsev, V. Karachentseva, W. Huchtmeier, D. Makarov and S. Kaisin; Star formation thresholds J. Schaye; Scaling relations of dwarf galaxies without supernova-driven winds K. Tassis, A. Kravtsov and N. Gnedin; Star formation in massive low surface brightness galaxies K. O'Neil; Linking clustering properties and the evolution of low surface brightness galaxies D. Bomans and S. Rosenbaum; Too small to form a galaxy: how the UV background determines the baryon fraction M. Hoeft, G. Yepes and S. Gottlober; Star formation in damped Lyman selected galaxies L. Christensen; Dark-matter content of early-type galaxies with planetary nebulae N. Napolitano et al.; Hunting for ghosts: low surface brightnesses from pixels R. Scaramella and S. Sabatini; Baryonic properties of the darkest galaxies E. Grebel; The dwarf low surface brightness population in different environments of the local universe S. Sabatini, J. Davies, S. Roberts and R. Scaramella; Mass modelling of dwarf spheroidal galaxies J. Klimentowski et al.; Evolution of dwarf galaxies in the Centaurus A Group L. Makarova and D. Makarov; A flat faint end of the Fornax cluster galaxy luminosity function S. Mieske, M. Hilker, L. Infante and C. Mendes de Oliveira; Can massive dark halos destroy the discs of dwarf galaxies? B. Fuchs and O. Esquivel; 'Dark galaxies' and local very metal-poor gas-rich galaxies: possible interrelations S. Pustilnik; Morphology and environment of dwarf galaxies in the local universe H. Ann; Arecibo survey of HI emission from disk galaxies at redshift z 0.2 B. Catinella, M. Haynes, J. Gardner, A. Connolly and R. Giovanelli; AGES observations of

  17. On the effective quark potential in baryons

    International Nuclear Information System (INIS)

    Gromes, D.

    1977-01-01

    The splitting of the non-strange members of the first excited level [70,1 - ] 1 of baryon resonances is analysed. The spin-dependent forces (spin-spin, spin-orbit, tensor) are supposed to arise from the Coulomb term due to one-gluon exchange, from the long-range linearly rising part of the potential, and from additional 'hard-core' spin-spin terms which may be generated by higher-order graphs contributing to the qq kernel. For the long range part it is assumed either that it comes from a superposition of a vector and a scalar kernel of the form epsilon(γsup(μ) X γsub(μ) X 1) + (1 - epsilon)(1 X 1 X 1) (+ permutations), or, alternatively, that it arises from a vector exchange with an anomalous moment kappa in the quark-gluon vertex. Values of epsilon approximately 0 or kappa approximately -1 turn out to be favoured. The strong coupling constant and the slope of the linear potential come out in the correct order of magnitude. Very large hard-core spin-spin terms are needed. This fact makes the determination of the effective potential from the underlying theory of quantum chromodynamics as well as the phenomenological analysis of the observed spectra rather problematic. (Auth.)

  18. Strangeness S = -2 baryon-baryon interactions using chiral effective field theory

    NARCIS (Netherlands)

    Polinder, H.; Haidenbauer, J.; Meissner, U.G.

    2007-01-01

    We derive the leading order strangeness S =−2 baryon–baryon interactions in chiral effective field theory. The potential consists of contact terms without derivatives and of one-pseudoscalar-meson exchanges. The contact terms and the couplings of the pseudoscalar mesons to the baryons are related

  19. Baryon stopping and strangeness baryon production in a parton cascade model

    International Nuclear Information System (INIS)

    Nara, Yasushi

    1999-01-01

    A parton cascade model which is based on pQCD incorporating hard partonic scattering and dynamical hadronization scheme describes the space-time evolution of parton/hadron system produced by ultra-relativistic nuclear collisions. Hadron yield, baryon stopping and transverse momentum distribution are calculated and compared with experimental data at SPS energies. Using new version of parton cascade code VNI in which baryonic cluster formation is implemented, we calculate the net baryon number distributions and Λ yield. It is found that baryon stopping behavior at SPS energies is well accounted for within the parton cascade picture. As a consequence of the production of the baryon (u and d quark) rich parton matter, parton coalescence naturally explains the enhanced yield of Λ particle which has been observed in experiment. (author)

  20. Electromagnetic structure of nuclei

    International Nuclear Information System (INIS)

    Arnold, R.G.

    1986-07-01

    A brief review is given of selected topics in the electromagnetic structure of nucleons and nuclei, including nucleon form factors from both quantum chromodynamics and electron scattering data, measurements of the deuteron and triton form factors, quasi-elastic scattering, and the EMC effect. 47 refs., 13 figs

  1. Baryon Wilson loop area law in QCD

    International Nuclear Information System (INIS)

    Cornwall, J.M.

    1996-01-01

    There is still confusion about the correct form of the area law for the baryonic Wilson loop (BWL) of QCD. Strong-coupling (i.e., finite lattice spacing in lattice gauge theory) approximations suggest the form exp[-KA Y ], where K is the q bar q string tension and A Y is the global minimum area, generically a three-bladed area with the blades joined along a Steiner line (Y configuration). However, the correct answer is exp[-(K/2)(A 12 +A 13 +A 23 )], where, e.g., A 12 is the minimal area between quark lines 1 and 2 (Δ configuration). This second answer was given long ago, based on certain approximations, and is also strongly favored in lattice computations. In the present work, we derive the Δ law from the usual vortex-monopole picture of confinement, and show that, in any case, because of the 1/2 in the Δ law, this law leads to a larger value for the BWL (smaller exponent) than does the Y law. We show that the three-bladed, strong-coupling surfaces, which are infinitesimally thick in the limit of zero lattice spacing, survive as surfaces to be used in the non-Abelian Stokes close-quote theorem for the BWL, which we derive, and lead via this Stokes close-quote theorem to the correct Δ law. Finally, we extend these considerations, including perturbative contributions, to gauge groups SU(N), with N>3. copyright 1996 The American Physical Society

  2. Few-baryon systems in the SU(2)-Skyrme model

    International Nuclear Information System (INIS)

    Nikolaev, V.A.; Tkachev, O.G.

    1989-01-01

    The classically stable solitons with baryon number 1, 2, 3, 4 have been investigated in the framework of the very general assumption about the form of the solutions for the Skyrme model equations. Some of the solitons have the toroidal structure and some of them are more complicated. The effective quantum-mechanical Hamiltonian and its spectrum are obtained by using the collective variable method. All the states with quantum numbers of light nuclei have the binding energy greater than the experimental one. Some of the calculated states containing antibaryons as substructure units should appear in the experiments with stopped antibaryons as compound nuclear states. 16 refs.; 7 figs.; 5 tabs

  3. Renormalization and applications of baryon distribution amplitudes QCD

    Energy Technology Data Exchange (ETDEWEB)

    Rohrwild, Juergen Holger

    2009-07-17

    Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N{sup *}(1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N{sup *} distribution amplitudes. (orig.)

  4. Renormalization and applications of baryon distribution amplitudes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Rohrwild, Juergen Holger

    2009-07-17

    Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N{sup *}(1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N* distribution amplitudes. (orig.)

  5. Renormalization and applications of baryon distribution amplitudes in QCD

    International Nuclear Information System (INIS)

    Rohrwild, Juergen Holger

    2009-01-01

    Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N * (1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N* distribution amplitudes. (orig.)

  6. Renormalization and applications of baryon distribution amplitudes QCD

    International Nuclear Information System (INIS)

    Rohrwild, Juergen Holger

    2009-01-01

    Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N * (1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N * distribution amplitudes. (orig.)

  7. Quark-diquark model description for double charm baryons

    International Nuclear Information System (INIS)

    Majethiya, A.; Patel, B.; Vinodkumar, P. C.

    2010-01-01

    We report here the mass spectrum and magnetic moments of ccq(q (implied by) u, d, s) systems in the potential model framework by assuming the inter-quark potential as the colour coulomb plus power form with power index ν varying between 0.1 to 2.0. Here the two charm quarks are considered for the diquark states. The conventional one gluon exchange interaction has been employed to get the hyperfine and the fine structure between different states. We have predicted many low-lying states whose experimental verification can exclusively support the quark-diquark structure of the baryons. (authors)

  8. Applied Electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, H; Marinova, I; Cingoski, V [eds.

    2002-07-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics.

  9. Applied Electromagnetics

    International Nuclear Information System (INIS)

    Yamashita, H.; Marinova, I.; Cingoski, V.

    2002-01-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics

  10. Electromagnetic interactions

    International Nuclear Information System (INIS)

    Bosanac, Slobodan Danko

    2016-01-01

    This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.

  11. Dark matter assimilation into the baryon asymmetry

    International Nuclear Information System (INIS)

    D'Eramo, Francesco; Fei, Lin; Thaler, Jesse

    2012-01-01

    Pure singlets are typically disfavored as dark matter candidates, since they generically have a thermal relic abundance larger than the observed value. In this paper, we propose a new dark matter mechanism called a ssimilation , which takes advantage of the baryon asymmetry of the universe to generate the correct relic abundance of singlet dark matter. Through assimilation, dark matter itself is efficiently destroyed, but dark matter number is stored in new quasi-stable heavy states which carry the baryon asymmetry. The subsequent annihilation and late-time decay of these heavy states yields (symmetric) dark matter as well as (asymmetric) standard model baryons. We study in detail the case of pure bino dark matter by augmenting the minimal supersymmetric standard model with vector-like chiral multiplets. In the parameter range where this mechanism is effective, the LHC can discover long-lived charged particles which were responsible for assimilating dark matter

  12. Novel baryon resonances in the Skyrme model

    International Nuclear Information System (INIS)

    Hussain, F.; Sri Ram, M.S.

    1985-01-01

    We predict a novel family of baryons with or without the charm quantum number by quantizing the ''maximal solitons'' in the SU(4) Skyrme model. The baryon number B of these solitons can take any integer value. The low-lying states with B = 1 belong to 4( with spin (3/2), 20( with spin (1/2), (3/2), (5/2), or (7/2), and 20('' with spin (3/2), (5/2), or (9/2). The charm-zero states among them could correspond to some of the observed resonances in meson-baryon scattering between 1.5--2 GeV. The lowest among the dibaryon states is an SU(3) singlet contained in the 10( of SU(4) with spin 1, with mass in the range 2.5--3 GeV

  13. Two-body nonleptonic decays of charmed baryons

    International Nuclear Information System (INIS)

    Kohara, Y.

    1998-01-01

    Decay amplitudes of charmed baryons Λ c + , Ξ c 0 to an octet baryon and a pseudoscalar meson are calculated on the basis of the quark diagram scheme. restrictions imposed on the quark diagram amplitudes are also studied

  14. The origin of baryon number and related problems

    International Nuclear Information System (INIS)

    Schramm, D.N.; Turner, M.S.

    1980-01-01

    The possibility of cosmological baryon production, as motivated by grand unification, is discussed. It is postulated that the application of grand unified theories of particle interactions may explain the origin of baryons in the universe. (C.F.)

  15. Chiral properties of baryon interpolating fields

    International Nuclear Information System (INIS)

    Nagata, Keitaro; Hosaka, Atsushi; Dmitrasinovic, V.

    2008-01-01

    We study the chiral transformation properties of all possible local (non-derivative) interpolating field operators for baryons consisting of three quarks with two flavors, assuming good isospin symmetry. We derive and use the relations/identities among the baryon operators with identical quantum numbers that follow from the combined color, Dirac and isospin Fierz transformations. These relations reduce the number of independent baryon operators with any given spin and isospin. The Fierz identities also effectively restrict the allowed baryon chiral multiplets. It turns out that the non-derivative baryons' chiral multiplets have the same dimensionality as their Lorentz representations. For the two independent nucleon operators the only permissible chiral multiplet is the fundamental one, ((1)/(2),0)+(0,(1)/(2)). For the Δ, admissible Lorentz representations are (1,(1)/(2))+((1)/(2),1) and ((3)/(2),0)+(0,(3)/(2)). In the case of the (1,(1)/(2))+((1)/(2),1) chiral multiplet, the I(J)=(3)/(2)((3)/(2)) Δ field has one I(J)=(1)/(2)((3)/(2)) chiral partner; otherwise it has none. We also consider the Abelian (U A (1)) chiral transformation properties of the fields and show that each baryon comes in two varieties: (1) with Abelian axial charge +3; and (2) with Abelian axial charge -1. In case of the nucleon these are the two Ioffe fields; in case of the Δ, the (1,(1)/(2))+((1)/(2),1) multiplet has an Abelian axial charge -1 and the ((3)/(2),0)+(0,(3)/(2)) multiplet has an Abelian axial charge +3. (orig.)

  16. On the phase strucutre of baryonic matter

    International Nuclear Information System (INIS)

    Heide, E.; Ellis, P.J.

    1991-01-01

    We have studied the phase structure of baryonic matter in a model which includes nucleons and delta resonances interacting with σ- and ω-mesons. In the mean-field approximation, the existence of phase transitions to delta matter and to a baryon-antibaryon plasma was strongly dependent on the values chosen for the equilibrium effective mass and compression modulus. When vacuum fluctuations were included, the physically acceptable solutions only yielded a liquid-gas phase transition. Further, these solutions were restricted to rather large values of the effective mass and compression modulus which did not include the currently accepted values. (orig.)

  17. Heavy flavor baryons in hypercentral model

    International Nuclear Information System (INIS)

    Patel, Bhavin; Vinodkumar, P.C.; Rai, Ajay Kumar

    2008-01-01

    Heavy flavor baryons containing single and double charm (beauty) quarks with light flavor combinations are studied using the hypercentral description of the three- body problem. The confinement potential is assumed as hypercentral Coulomb plus power potential with power index υ. The ground state masses of the heavy flavor, J P = 1/2 + and 3/2 + baryons are computed for different power indices, υ starting from 0.5 to 2.0. The predicted masses are found to attain a saturated value in each case of quark combinations beyond the power index υ = 1.0. (author)

  18. Physical properties of the chiral quantum baryon

    International Nuclear Information System (INIS)

    Mignaco, A.J.; Wulck, S.

    1989-01-01

    It is presented an account to understand the quantum chiral baryon, which a stable chiral soliton with baryon number one obtained after first quantization by collective coordinates. Starting from the exact series solution to the non-linear sigma model with the hedge-hog configuration, the values of several physical quantities (mass, axial weak coupling, gyromagnetic ratios and radii) as a function of the order of Pade approximants used as approximanted representations of the solution, are calculated. It turns out that consistent results may be obtained, but a better approximation should be developed. (author) [pt

  19. Baryon Anomaly in Heavy-Ion Collisions and Colour Correlations in QGP

    CERN Document Server

    Levin, Eugene M; Ryskin, Mikhail G; Safarik, Karel

    2013-01-01

    A baryon anomaly – an increased baryon-to-meson production ratio at intermediate pT in heavyion collisions when compared to pp collisions – is observed at RHIC and the LHC. This effect is usually explained by recombination of constituent quarks during QGP hadronization, or as a consequence of a strong radial flow developed during the heavy-ion collision. In this contribution, an additional mechanism to favour baryon over meson production is proposed: when hadrons are formed in the recombination of nearby quarks and antiquarks, only colour-singlet combinations can be chosen. Hadron formation, in particular the probability to create baryons or mesons, depends on the distribution of colour charges among quarks. If the distribution is random – a reasonable assumption for Quark–Gluon Plasma (QGP) – the baryon-to-meson ratio is nearly twice higher than in the situation where quark colours are pre-arranged to obtain a white hadron in the combination of nearest quarks and antiquarks. The correlation of colo...

  20. Electromagnetic processes and interactions

    International Nuclear Information System (INIS)

    Scheck, F.

    1983-01-01

    The electron and muon are important tools in testing the structure of the fundamental electromagnetic interactions. On the other hand, if these interactions are known, they serve as ideal probes for the internal structure of complex hadronic targets such as nucleons and nuclei. Purely electromagnetic interactions play a distinctive role, for obvious experimental reasons: At low and intermediate energies the effective electromagnetic coupling is larger by many orders of magnitude than the weak couplings, so that electromagnetic processes are measurable to much higher accuracy than purely weak processes. The present chapter deals primarily with applications of charged leptons to problems of nucleon and nuclear structure, and to selected precision tests of quantum electrodynamics (QED) at low momentum transfers. In most of these applications the electromagnetic interactions effectively appear in the form of external fields in the leptonic particle's Dirac equation. This is the domain where the physics of (electromagnetically) interacting leptons can still be described in the framework of an effective, though relativistic, single particle theory. (orig.)

  1. Covariant electromagnetic field lines

    Science.gov (United States)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  2. Electromagnetic cellular interactions.

    Science.gov (United States)

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Non-charm hadronic decays of bottom baryons

    International Nuclear Information System (INIS)

    Kohara, Y.

    1999-01-01

    Two-body decay amplitudes of antitriplet bottom baryons Λ 0b , Θ 0 b and Θ -b to a decuplet baryon and a pseudoscalar meson are analyzed on the basis of the quark diagram scheme. Relations among the various decay rates to decuplet baryons are derived

  4. Quark-diagram analysis of charmed-baryon decays

    International Nuclear Information System (INIS)

    Kohara, Y.

    1991-01-01

    The Cabibbo-allowed two-body nonleptonic decays of charmed baryons to a SU(3)-octet (or -decuplet) baryon and a pseudoscalar meson are examined on the basis of the quark-diagram scheme. Some relations among the decay amplitudes or rates of various decay modes are derived. The decays of Ξ c + to a decuplet baryon are forbidden

  5. Gamma rays and the case for baryon symmetric big-bang cosmology

    Science.gov (United States)

    Stecker, F. W.

    1977-01-01

    The baryon symmetric big-bang cosmologies offer an explanation of the present photon-baryon ratio in the universe, the best present explanation of the diffuse gamma-ray background spectrum in the 1 to 200 MeV range, and a mechanism for galaxy formation. In the context of an open universe model, the value of omega which best fits the present gamma-ray data is omega equals approx. 0.1 which does not conflict with upper limits on Comptonization distortion of the 3K background radiation. In regard to He production, evidence is discussed that nucleosynthesis of He may have taken place after the galaxies were formed.

  6. Polarization effects in the reaction of charm baryon production on colliding electron-positron beams

    International Nuclear Information System (INIS)

    Rekalo, M.P.; Korzh, A.P.; Barannik, V.P.

    1980-01-01

    To calculate energy and angular distributions of various decay products of charm baAyons, which are prodUced in reactions on colliding e + e - beams, it is necessary to know the differential cross sections of the e + e - → C+anti C process which correspond to different polarized states of produced C and anti C (C - charm baryon). These differential cross sections are calculated for a single-photon mechanism with respect to the contribution of the anapole and electric dipole form factors of C-baryon. Polarizations of colliding electron-positron beams are taken into account in a full volume

  7. Gamma rays and the case for baryon symmetric big-bang cosmology

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1977-01-01

    The baryon symmetric big-bang cosmologies offer an explanation of the present photon-baryon ratio in the universe, the best present explanation of the diffuse γ-ray background spectrum in the 1-200 MeV range, and a mechanism for galaxy formation. In the context of an open universe model, the value of Ω which best fits the present γ-ray data is Ω approximately equal to 0.1 which does not conflict with upper limits on comptonization distortion of the 3K background radiation. In regard to He production, evidence is discussed that nucleosynthesis of He may have taken place after the galaxies were formed

  8. A New Method for Obtaining the Baryons Mass under the Killingbeck Plus Isotonic Oscillator Potentials

    Directory of Open Access Journals (Sweden)

    Nasrin Salehi

    2016-01-01

    Full Text Available The spectrum of ground state and excited baryons (N, Δ, Λ, Σ, Ξ, and Ω particles has been investigated by using nonrelativistic quantum mechanics under the Killingbeck plus isotonic oscillator potentials. Using the Jacobi coordinates, anzast method, and generalized Gürsey Radicati (GR mass formula the three-body-wave equation is solved to calculate the different states of the considered baryons. A comparison between our calculations and the available experimental data shows that the position of the Roper resonances of the nucleon, the ground states, and the excited multiplets up to three GeV are in general well reproduced. Also one can conclude that the interaction between the quark constituents of baryon resonances could be described adequately by using the combination of Killingbeck and isotonic oscillator potentials form.

  9. Measurement of the {Lambda}{sub c} charmed baryon production and the study of the {Lambda}{sub c} baryon semi-leptonic decays by the DELPHI experiment at LEP; Mesure de la production du baryon charme {Lambda}{sub c} et etude des desintegrations semi-leptoniques de baryon {Lambda}{sub c} par l`experience DELPHI au LEP

    Energy Technology Data Exchange (ETDEWEB)

    Bertini, D [Lyon-1 Univ., 69 (France)

    1997-04-24

    By using the data accumulated in the DELPHI experiment from 1992 to 1994 we present the results of the production rate measurement of {Lambda}{sub c} charmed baryons generated in the bb-bar and cc-bar events. For these measurements we reconstructed entirely the {Lambda}{sub c} baryons decaying in pK{pi}. Then we select a set of bottom baryons {Lambda}{sub b}{sup 0} by means of its semi-leptonic decays in {Lambda}{sub c}{sup +}l{sup -}{nu}{sub l}-bar. The study of distribution of these events as a function of the transfer momentum allowed estimating for the first time the slope of the {Lambda}{sub b}{sup 0} form factor. (author) 93 refs.

  10. On a model for baryons based on a Dirac equation with confining potentials

    International Nuclear Information System (INIS)

    Ferreira, P.L.

    1977-06-01

    An independent particle model for baryons is studied in which the quarks obey a Dirac equation with an average potential of the form V(r) = 1/2 (1 + β)(V 0 + lambda r - γ/r). A numerical solution is obtained for S-waves. Several properties of the 1/2 + baryons such as the ratio (G sub(A)/G sub(V)) sub (N) for nucleons and baryon magnetic moments are analysed in terms of the model. A comparison with the case of a pure linear potential and with a pure harmonic oscillator is made, showing that it is possible to obtain a better agreement with the data in the present case

  11. Compression of dark halos by baryon infall - Self-similar solutions

    International Nuclear Information System (INIS)

    Ryden, B.S.

    1991-01-01

    The compression of dissipationless halos by dissipative baryon infall is examined through the use of self-similar models. The models are spherically symmetric, with asymptotic density profiles of given form. A fraction f of the matter consists of freely falling baryons; the remainder of the matter, consisting of dark matter with initial dispersion anisotropy beta is gravitationally compressed by the infalling baryons. Analytic results are presented in the limiting cases f = 1 and f = 0. Numerical results are given for halos with varying values of alpha, beta, and f. The compression of the dark matter is found to be adiabatic and has a Mach number less than 1 throughout the halo. 10 refs

  12. Semileptonic decays of Λ{sub c} baryons in the relativistic quark model

    Energy Technology Data Exchange (ETDEWEB)

    Faustov, R.N.; Galkin, V.O. [Institute of Informatics in Education, FRC CSC RAS, Moscow (Russian Federation)

    2016-11-15

    Motivated by recent experimental progress in studying weak decays of the Λ{sub c} baryon we investigate its semileptonic decays in the framework of the relativistic quark model based on the quasipotential approach with the QCD-motivated potential. The form factors of the Λ{sub c} → Λlν{sub l} and Λ{sub c} → nlν{sub l} decays are calculated in the whole accessible kinematical region without extrapolations and additional model assumptions. Relativistic effects are systematically taken into account including transformations of baryon wave functions from the rest to moving reference frame and contributions of the intermediate negative-energy states. Baryon wave functions found in the previous mass spectrum calculations are used for the numerical evaluation. Comprehensive predictions for decay rates, asymmetries and polarization parameters are given. They agree well with available experimental data. (orig.)

  13. Gravitation and electromagnetism

    CERN Document Server

    Apsel, D

    1979-01-01

    Through an examination of the Bohm-Aharonov experiment, a new theory of gravitation and electromagnetism is proposed. The fundamental assumption of the theory is that the motion of a particle in a combination of gravitational and electromagnetic fields is determined from a variational principle of the form delta integral /sub A//sup B /d tau =0. The form of the physical time is determined from an examination of the Maxwell-Einstein action function. The field and motion equations are formally identical to those of Maxwell-Einstein theory. The theory predicts that even in a field-free region of space, electromagnetic potentials can alter the phase of a wave function and the lifetime of a charged particle. The phase alteration has been observed in the Bohm-Aharonov experiment. There is an indication that the lifetime alteration has shown up in a recent CERN storage ring experiment. Experimental tests are proposed. (11 refs).

  14. Neutron-antineutron oscillation and baryonic majoron: low scale spontaneous baryon violation

    Energy Technology Data Exchange (ETDEWEB)

    Berezhiani, Zurab [Universita dell' Aquila, Dipartimento delle Scienze Fisiche e Chimiche, L' Aquila (Italy); INFN, Laboratori Nazionali Gran Sasso, L' Aquila (Italy)

    2016-12-15

    We discuss the possibility that baryon number B is spontaneously broken at low scales, of the order of MeV or even smaller, inducing the neutron-antineutron oscillation at the experimentally accessible level. An associated Goldstone particle-baryonic majoron can have observable effects in neutron to antineutron transitions in nuclei or dense nuclear matter. By extending baryon number to an anomaly-free B - L symmetry, the baryo-majoron can be identified with the ordinary majoron associated with the spontaneous breaking of lepton number, and it can have interesting implications for neutrinoless 2β decay with the majoron emission. We also discuss the hypothesis that baryon number can be spontaneously broken by QCD itself via the six-quark condensates. (orig.)

  15. Semileptonic Decays of Heavy Omega Baryons in a Quark Model

    International Nuclear Information System (INIS)

    Muslema Pervin; Winston Roberts; Simon Capstick

    2006-01-01

    The semileptonic decays of (Omega) c and (Omega) b are treated in the framework of a constituent quark model developed in a previous paper on the semileptonic decays of heavy Λ baryons. Analytic results for the form factors for the decays to ground states and a number of excited states are evaluated. For (Omega) b to (Omega) c the form factors obtained are shown to satisfy the relations predicted at leading order in the heavy-quark effective theory at the non-recoil point. A modified fit of nonrelativistic and semirelativistic Hamiltonians generates configuration-mixed baryon wave functions from the known masses and the measured Λ c + → Λe + ν rate, with wave functions expanded in both harmonic oscillator and Sturmian bases. Decay rates of (Omega) b to pairs of ground and excited (Omega) c states related by heavy-quark symmetry calculated using these configuration-mixed wave functions are in the ratios expected from heavy-quark effective theory, to a good approximation. Our predictions for the semileptonic elastic branching fraction of (Omega) Q vary minimally within the models we use. We obtain an average value of (84 ± 2%) for the fraction of (Omega) c → Ξ (*) decays to ground states, and 91% for the fraction of (Omega) c → (Omega) (*) decays to the ground state (Omega). The elastic fraction of (Omega) b → (Omega) c ranges from about 50% calculated with the two harmonic-oscillator models, to about 67% calculated with the two Sturmian models

  16. Electromagnetic shield

    International Nuclear Information System (INIS)

    Miller, J.S.

    1987-01-01

    An electromagnetic shield is described comprising: closed, electrically-conductive rings, each having an open center; and binder means for arranging the rings in a predetermined, fixed relationship relative to each other, the so-arranged rings and binder means defining an outer surface; wherein electromagnetic energy received by the shield from a source adjacent its outer surface induces an electrical current to flow in a predetermined direction adjacent and parallel to the outer surface, through the rings; and wherein each ring is configured to cause source-induced alternating current flowing through the portion of the ring closest to the outer surface to electromagnetically induce an oppositely-directed current in the portion of the ring furthest from the surface, such oppositely-directed current bucking any source-induced current in the latter ring portion and thus reducing the magnitude of current flowing through it, whereby the electromagnetic shielding effected by the shield is enhanced

  17. Engineering electromagnetics

    CERN Document Server

    Thomas, David T; Hartnett, James P; Hughes, William F

    1973-01-01

    The applications involving electromagnetic fields are so pervasive that it is difficult to estimate their contribution to the industrial output: generation of electricity, power transmission lines, electric motors, actuators, relays, radio, TV and microwave transmission and reception, magnetic storage, and even the mundane little magnet used to hold a paper note on the refrigerator are all electromagnetic in nature. One would be hard pressed to find a device that works without relaying on any electromagnetic principle or effect. This text provides a good theoretical understanding of the electromagnetic field equations but also treats a large number of applications. In fact, no topic is presented unless it is directly applicable to engineering design or unless it is needed for the understanding of another topic. In electrostatics, for example, the text includes discussions of photocopying, ink-jet printing, electrostatic separation and deposition, sandpaper production, paint spraying, and powder coating. In ma...

  18. Towards relativistic atomic physics. Part 1. The rest-frame instant form of dynamics and a canonical transformation for a system of charged particles plus the electromagnetic field

    International Nuclear Information System (INIS)

    Alba, D.; Crater, H.W.; Lusanna, L.

    2010-01-01

    A complete exposition of the rest-frame instant form of dynamics for arbitrary isolated systems (particles, fields, strings, fluids) admitting a Lagrangian description is given. The starting point is the parametrized Minkowski theory describing the system in arbitrary admissible noninertial frames in Minkowski space-time, which allows one to define the energy-momentum tensor of the system and to show the independence of the description from the clock synchronization convention and from the choice of the 3-coordinates. The restriction to the inertial rest frame, centered on the inertial observer having the Fokker-Pryce center-of-inertia world-line, and the study of relativistic collective variables replacing the nonrelativistic center of mass lead to the description of the isolated system as a decoupled globally defined noncovariant canonical external center of mass carrying a pole-dipole structure (the invariant mass M and the rest spin S¯ of the system) and an external realization of the Poincare group. Mc and S¯ are the energy and angular momentum of a unfaithful internal realization of the Poincare group built with the energy-momentum tensor of the system and acting inside the instantaneous Wigner 3-spaces where all the 3-vectors are Wigner covariant. The vanishing of the internal 3-momentum and of the internal Lorentz boosts eliminate the internal 3-center of mass inside the Wigner 3-spaces, so that at the end the isolated system is described only by Wigner-covariant canonical internal relative variables. Then an isolated system of positive-energy charged scalar articles with mutual Coulomb interaction plus a transverse electromagnetic field in the radiation gauge is investigated as a classical background for defining relativistic atomic physics. The electric charges of the particles are Grassmann-valued to regularize the self-energies. The external and internal realizations of the Poincare algebra in the rest-frame instant form of dynamics are found. This

  19. Study of the diffractive production of baryon states and search for cryptoexotic baryons with hidden strangeness

    Energy Technology Data Exchange (ETDEWEB)

    Balatz, M.Ya.; Belyaev, I.M.; Dorofeev, V.A.; Dzyubenko, G.B.; Filimonov, I.M.; Frolov, S.V.; Golovkin, S.V.; Grishkin, Yu.L.; Gritzuk, M.V.; Jilin, A.V.; Kamenskii, A.D.; Kliger, G.K.; Kolganov, V.Z.; Konstantinov, A.S.; Korchagin, Yu.V.; Kozhevnikov, A.P.; Kubarovskii, V.P.; Kulman, N.Yu.; Kulyavtsev, A.I.; Kurshetsov, V.F.; Kushnirenko, A.E.; Lakaev, V.S.; Landsberg, L.G.; Lebedev, A.A.; Lomkatzi, G.S.; Molchanov, V.V.; Mukhin, V.A.; Nilov, A.F.; Novoghilov, Yu.B.; Prutskoi, V.A.; Sitnikov, A.I.; Smolyankin, V.T.; Solyanik, V.I.; Vavilov, D.V.; Victorov, V.A.; Vishnyakov, V.E. (Inst. for High Energy Physics, Protvino (Russian Federation) Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation) Moscow State Univ. (Russian Federation)); SPHINX Collaboration

    1994-02-01

    The reactions of baryon diffractive production p + N [yields] (pK[sup +] K[sup -]) + N, p + N [yields] (p[Phi]) + N, p + N [yields] [Lambda](1520) K[sup +] + N and p + N [yields] [Sigma](1385) K[sup +] + N in the 70 GeV proton beam were studied. Very sensitive upper limits for the production cross sections of heavy narrow cryptoexotic baryon resonances with hidden strangeness were obtained. (orig.)

  20. Study of the diffractive production of baryon states and search for cryptoexotic baryons with hidden strangeness

    International Nuclear Information System (INIS)

    Balatz, M.Ya.; Belyaev, I.M.; Dorofeev, V.A.

    1993-01-01

    The reactions of baryon diffractive production p + N → (pK + K - ) + N, p + N → (pφ) + N, p + N → [Λ(1520)K + ] + N and p + N → [Σ(1385) 0 K + ] + N in the 70 GeV proton beam were studied. Very sensitive upper limits for the production cross sections of heavy narrow cryptoexotic baryon resonances with hidden strangeness were obtained

  1. Multiquark baryons with broken flavour symmetry 1

    International Nuclear Information System (INIS)

    Wroldsen, J.

    The calculation of the spectrum of 4qq multiquark baryons is carried out, taking into account that SU(3) flavour is broken. To handle this problem, which includes manipulation of giant expressions for the wavefunctions, methods suitable for programming in SCHOONSCHIP are developed and employed. (Auth)

  2. The baryonic self similarity of dark matter

    International Nuclear Information System (INIS)

    Alard, C.

    2014-01-01

    The cosmological simulations indicates that dark matter halos have specific self-similar properties. However, the halo similarity is affected by the baryonic feedback. By using momentum-driven winds as a model to represent the baryon feedback, an equilibrium condition is derived which directly implies the emergence of a new type of similarity. The new self-similar solution has constant acceleration at a reference radius for both dark matter and baryons. This model receives strong support from the observations of galaxies. The new self-similar properties imply that the total acceleration at larger distances is scale-free, the transition between the dark matter and baryons dominated regime occurs at a constant acceleration, and the maximum amplitude of the velocity curve at larger distances is proportional to M 1/4 . These results demonstrate that this self-similar model is consistent with the basics of modified Newtonian dynamics (MOND) phenomenology. In agreement with the observations, the coincidence between the self-similar model and MOND breaks at the scale of clusters of galaxies. Some numerical experiments show that the behavior of the density near the origin is closely approximated by a Einasto profile.

  3. Missing baryonic resonances in the Hagedorn spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Man Lo, Pok [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); GSI, Extreme Matter Institute EMMI, Darmstadt (Germany); Marczenko, Michal; Sasaki, Chihiro [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); Redlich, Krzysztof [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); GSI, Extreme Matter Institute EMMI, Darmstadt (Germany); Duke University, Department of Physics, Durham, NC (United States)

    2016-08-15

    The hadronic medium of QCD is modeled as a gas of point-like hadrons, with its composition determined by the Hagedorn mass spectrum. The spectrum consists of a discrete and a continuous part. The former is determined by the experimentally confirmed resonances tabulated by the Particle Data Group (PDG), while the latter can be extracted from the existing lattice data. This formulation of the hadron resonance gas (HRG) provides a transparent framework to relate the fluctuation of conserved charges as calculated in the lattice QCD approach to the particle content of the medium. A comparison of the two approaches shows that the equation of state is well described by the standard HRG model, which includes only a discrete spectrum of known hadrons. The corresponding description in the strange sector, however, shows clear discrepancies, thus a continuous spectrum is added to incorporate the effect of missing resonances. We propose a method to extract the strange-baryon spectrum from the lattice data. The result is consistent with the trend set by the unconfirmed strange baryons resonances listed by the PDG, suggesting that most of the missing interaction strength for the strange baryons reside in the S = 1 sector. This scenario is also supported by recent lattice calculations, and might be important in the energy region covered by the NICA accelerator in Dubna, where in the heavy-ion collisions, baryons are the dominating degrees of freedom in the final state. (orig.)

  4. Baryons in the unquenched quark model

    Energy Technology Data Exchange (ETDEWEB)

    Bijker, R.; Díaz-Gómez, S. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, AP 70-543, 04510 Mexico DF (Mexico); Lopez-Ruiz, M. A. [Physics Department and Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States); Santopinto, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova, via Dodecaneso 33, I-16146 Italy (Italy)

    2016-07-07

    In this contribution, we present the unquenched quark model as an extension of the constituent quark model that includes the effects of sea quarks via a {sup 3}P{sub 0} quark-antiquark pair-creation mechanism. Particular attention is paid to the spin and flavor content of the proton, magnetic moments and β decays of octet baryons.

  5. On gauged Baryon and Lepton numbers

    International Nuclear Information System (INIS)

    Rajpoot, S.

    1990-01-01

    The observation that Baryon number and Lepton number are conserved in nature provides strong motivation for associating gauge symmetries to these conserved numbers. This endeavor requires that the gauge group of electroweak interactions be extended from SU(2) L X U(1) Y to SU(2) L X U(1) R X U(1) Lepton where U(1) R couples only to the right-handed quarks and leptons. If it furthur postulated that right-handed currents exist on par with the left-handed ones, then the full electroweak symmetry is SU(2) L X SU(2) R X U(1) Baryon X U(1) Lepton . The SU(2) L X SU(2) R X U(1) Baryon X U(1) Lepton model is described in some detail. The triangle anomalies of the three families of quarks and leptons in the model are cancelled invoking leptoquark matter which is new fermionic matter that carries baryon as well as lepton numbers. In addition to the standard neutral boson (Z degree), the theory predicts two neutral gauge bosons with mass lower bounds of 120 GeV and 210 GeV which makes these particles prospective candidates for production at LEP, the TEVATRON and the SSC

  6. CP asymmetries in Strange Baryon Decays

    Science.gov (United States)

    Bigi, I. I.; Kang, Xian-Wei; Li, Hai-Bo

    2018-01-01

    While indirect and direct CP violation (CPV) has been established in the decays of strange and beauty mesons, no CPV has yet been found for baryons. There are different paths to finding CP asymmetry in the decays of strange baryons; they are all highly non-trivial. The HyperCP Collaboration has probed CPV in the decays of single Ξ and Λ [1]. We discuss future lessons from {{{e}}}+{{{e}}}- collisions at BESIII/BEPCII: probing decays of pairs of strange baryons, namely Λ, Σ and Ξ. Realistic goals are to learn about non-perturbative QCD. One can hope to find CPV in the decays of strange baryons; one can also dream of finding the impact of New Dynamics. We point out that an important new era will start with the BESIII/BEPCII data accumulated by the end of 2018. This also supports new ideas to trigger {{J}}/{{\\psi }}\\to \\bar{{{Λ }}}{{Λ }} at the LHCb collaboration. Supported by National Science Foundation (PHY-1520966), National Natural Science Foundation of China (11335009, 11125525), Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (U1532257), the National Key Basic Research Program of China (2015CB856700), Key Research Program of Frontier Sciences, CAS, (QYZDJ-SSW-SLH003), XWK’s work is also supported by MOST (Taiwan) (104-2112-M-001-022)

  7. Baryon number violation and particle collider experiments

    International Nuclear Information System (INIS)

    Klinkhamer, F.R.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

    1992-09-01

    Baryon number non-conservation, due to non-perturbative effects (sphalerons) in the standard model, may have been important in the early Universe. In this paper the possibility is discussed that similar effects could show up at future particle collider experiments. (author). 16 refs.; 3 figs

  8. Baryon asymmetry from Planck-scale physics

    International Nuclear Information System (INIS)

    Gelmini, G.; Holman, R.; Carnegie-Mellon Univ., Pittsburgh, PA

    1992-06-01

    It has been noted recently that Planck scale physics may induce the explicit breaking of global symmetries. We point out that in Majoron models, these explicit breakings, combined with sphaleron induced violation of B + L can give rise to the baryon asymmetry of the Universe

  9. Large N baryons, strong coupling theory, quarks

    International Nuclear Information System (INIS)

    Sakita, B.

    1984-01-01

    It is shown that in QCD the large N limit is the same as the static strong coupling limit. By using the static strong coupling techniques some of the results of large N baryons are derived. The results are consistent with the large N SU(6) static quark model. (author)

  10. Beauty baryons produced in pp interactions

    International Nuclear Information System (INIS)

    Fridman, A.

    1996-01-01

    For pp interactions, we discuss the beauty-baryon (N b ), production and decay, using cross-section estimates at a c.m. energy corresponding to the LHC project (√s ≅ 14 TeV). The polarization measurement of N b as well as the search for CP violation effects in their decays is discussed. (orig.)

  11. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Jørgensen, Stina Marie Hasse

    2015-01-01

    Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015.......Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015....

  12. Holographic black hole engineering at finite baryon chemical potential

    International Nuclear Information System (INIS)

    Rougemont, Romulo

    2017-01-01

    This is a contribution for the Proceedings of the Conference Hot Quarks 2016, held at South Padre Island, Texas, USA, 12-17 September 2016. I briefly review some thermodynamic and baryon transport results obtained from a bottom-up Einstein-Maxwell-Dilaton holographic model engineered to describe the physics of the quark-gluon plasma at finite temperature and baryon density. The results for the equation of state, baryon susceptibilities, and the curvature of the crossover band are in quantitative agreement with the corresponding lattice QCD results with 2 + 1 flavors and physical quark masses. Baryon diffusion is predicted to be suppressed by increasing the baryon chemical potential. (paper)

  13. Unified Origin for Baryonic Visible Matter and Antibaryonic Dark Matter

    International Nuclear Information System (INIS)

    Davoudiasl, Hooman; Morrissey, David E.; Tulin, Sean; Sigurdson, Kris

    2010-01-01

    We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.

  14. Unified origin for baryonic visible matter and antibaryonic dark matter.

    Science.gov (United States)

    Davoudiasl, Hooman; Morrissey, David E; Sigurdson, Kris; Tulin, Sean

    2010-11-19

    We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.

  15. Baryon mass splittings in chiral perturbation theory

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Milana, J.

    1995-01-01

    Baryon masses are calculated in chiral perturbation theory at the one-loop O(p 3 ) level in chiral expansion and to leading order in the heavy baryon expansion. Ultraviolet divergences occur requiring the introduction of counterterms. Despite this necessity, no knowledge of the counterterms is required to determine the violations of the Gell-Mann--Okubo mass relation for the baryon octet or of the decuplet equal-mass-spacing rule, as all divergences cancel exactly at this order. For the same reason all references to an arbitrary scale μ are absent. Neither of these features continue to higher powers in the chiral expansion. We also discuss critically the absolute necessity of simultaneously going beyond the leading-order heavy baryon expansion, if one goes beyond the one-loop O(p 3 ) level. We point out that these corrections in 1/M B generate new divergences ∝m 4 /M 10 . These divergences together with the divergences occurring in one-loop O(p 4 ) graphs of chiral perturbation theory are taken care of by the same set of counterterms. Because of these unknown counterterms one cannot predict the baryon mass splittings at the one-loop O(p 4 ) level even if the parameters of all scrL 1 πN terms are known. We point out another serious problem of going to the one-loop O(p 4 ) level. When the decuplet is off its mass shell there are additional πNΔ and πΔΔ interaction terms. These interactions contribute to the divergent terms ∝(m 4 /M 10 ), and also to nonanalytic terms such as ∝(m 4 /M 10 )ln(m/M 10 ). Without knowledge of the coupling constants appearing in these interactions, one cannot carry out a consistent one-loop O(p 4 ) level calculation

  16. High baryon and energy densities achievable in heavy-ion collisions at √{sN N}=39 GeV

    Science.gov (United States)

    Ivanov, Yu. B.; Soldatov, A. A.

    2018-02-01

    Baryon and energy densities, which are reached in central Au+Au collisions at collision energy of √{sN N}= 39 GeV, are estimated within the model of three-fluid dynamics. It is shown that the initial thermalized mean proper baryon and energy densities in a sizable central region approximately are nB/n0≈ 10 and ɛ ≈ 40 GeV/fm3, respectively. The study indicates that the deconfinement transition at the stage of interpenetration of colliding nuclei makes the system quite opaque. The final fragmentation regions in these collisions are formed not only by primordial fragmentation fireballs, i.e., the baryon-rich matter passed through the interaction region (containing approximately 30% of the total baryon charge), but also by the baryon-rich regions of the central fireball pushed out to peripheral rapidities by the subsequent almost one-dimensional expansion of the central fireball along the beam direction.

  17. Gas-Rich Mergers in LCDM: Disk Survivability and the Baryonic Assembly of Galaxies

    International Nuclear Information System (INIS)

    Stewart, K.

    2009-01-01

    We use N-body simulations and observationally-normalized relations between dark matter halo mass, stellar mass, and cold gas mass to derive robust expectations about the baryonic content of major mergers out to redshift z ∼ 2. First, we find that the majority of major mergers (m/M > 0.3) experienced by Milky Way size dark matter halos should have been gas-rich, and that gas-rich mergers are increasingly common at high redshift. Though the frequency of major mergers into galaxy halos in our simulations greatly exceeds the observed late-type galaxy fraction, the frequency of gas-poor major mergers is consistent with the observed fraction of bulge-dominated galaxies across the halo mass range M DM ∼ 10 11 - 10 13 M · . These results lend support to the conjecture that mergers with high baryonic gas fractions play an important role in building and/or preserving disk galaxies in the universe. Secondly, we find that there is a transition mass below which a galaxy's past major mergers were primarily gas-rich and above which they were gas poor. The associated stellar mass scale corresponds closely to that marking the observed bimodal division between blue, star-forming, disk-dominated systems and red, bulge-dominated systems with old populations. Finally, we find that the overall fraction of a galaxy's cold baryons deposited directly via major mergers is substantial. Approximately 30% of the cold baryonic material in M star ∼ 10 10 M · (M DM ∼ 10 11.5 M · ) galaxies is accreted as cold gas in major mergers. For more massive galaxies with M star ∼ 10 11 M · (M DM ∼ 10 13 M · the fraction of baryons amassed in mergers is even higher, ∼ 50%, but most of these accreted baryons are delivered directly in the form of stars. This baryonic mass deposition is almost unavoidable, and provides a limit on the fraction of a galaxy's cold baryons that can originate in cold flows or from hot halo cooling

  18. Gas-Rich Mergers in LCDM: Disk Survivability and the Baryonic Assembly of Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kyle R.; Bullock, James S.; /UC, Irvine; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC; Maller, Ariyeh H.; /New York City Coll. Tech.

    2009-08-03

    We use N-body simulations and observationally-normalized relations between dark matter halo mass, stellar mass, and cold gas mass to derive robust expectations about the baryonic content of major mergers out to redshift z {approx} 2. First, we find that the majority of major mergers (m/M > 0.3) experienced by Milky Way size dark matter halos should have been gas-rich, and that gas-rich mergers are increasingly common at high redshift. Though the frequency of major mergers into galaxy halos in our simulations greatly exceeds the observed late-type galaxy fraction, the frequency of gas-poor major mergers is consistent with the observed fraction of bulge-dominated galaxies across the halo mass range M{sub DM} {approx} 10{sup 11} - 10{sup 13} M{sub {circle_dot}}. These results lend support to the conjecture that mergers with high baryonic gas fractions play an important role in building and/or preserving disk galaxies in the universe. Secondly, we find that there is a transition mass below which a galaxy's past major mergers were primarily gas-rich and above which they were gas poor. The associated stellar mass scale corresponds closely to that marking the observed bimodal division between blue, star-forming, disk-dominated systems and red, bulge-dominated systems with old populations. Finally, we find that the overall fraction of a galaxy's cold baryons deposited directly via major mergers is substantial. Approximately 30% of the cold baryonic material in M{sub star} {approx} 10{sup 10} M{sub {circle_dot}} (M{sub DM} {approx} 10{sup 11.5} M{sub {circle_dot}}) galaxies is accreted as cold gas in major mergers. For more massive galaxies with M{sub star} {approx} 10{sup 11} M{sub {circle_dot}} (M{sub DM} {approx} 10{sup 13} M{sub {circle_dot}} the fraction of baryons amassed in mergers is even higher, {approx} 50%, but most of these accreted baryons are delivered directly in the form of stars. This baryonic mass deposition is almost unavoidable, and provides a

  19. The exchange of correlated pions and kaons in the baryon-baryon interaction

    International Nuclear Information System (INIS)

    Reuber, A.G.

    1995-09-01

    The exchange of two correlated pions or kaons provides the main part of the intermediate-range attraction between two baryons. In this work, a dynamical model for correlated two-pion and two-kaon exchange in the baryon-baryon interaction is presented, both in the scalar-isoscalar (σ) and the vector-isovector (ρ) channel. The contribution of correlated ππ and K anti K exchange is derived from the amplitudes for the transition of a baryon-antibaryon state (B anti B') to a ππ or K anti K state in the pseudophysical region by applying dispersion theory and unitarity. For the B anti B'→ππ, K anti K amplitudes a microscopic model is constructed, which is based on the hadron-exchange picture. The Born terms include contributions from baryon-exchange as well as ρ-pole diagrams. The correlations between the two pseudoscalar mesons are taken into account exactly by means of ππ-K anti K amplitudes derived likewise from a meson-exchange model, which is in line with the empirical ππ data. The parameters of the B anti B'→ππ, K anti K model, which are related to each other by the assumption of SU(3) symmetry, are determined by the adjustment to the quasiempirical N anti N→ππ amplitudes in the pseudophysical region. It is found that correlated K anti K exchange being negligible in the NN interaction plays an important role in the σ-channel for baryon-baryon states with non-vanishing strangeness. The strength of correlated ππ plus K anti K exchange in the σ-channel decreases with the strangeness of the baryon-baryon system becoming more negative. Due to the admixture of baryon-exchange processes to the SU(3)-symmetric ρ-pole contributions the results for correlated ππ-exchange in the vector-isovector channel deviate from what is expected in the naive SU(3) picture for genuine ρ-exchange. (orig.)

  20. Nucleon Resonance Transition Form factors

    Energy Technology Data Exchange (ETDEWEB)

    Burkert, Volker D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mokeev, Viktor I. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Aznauryan, Inna G. [Yerevan Physics Inst. (YerPhI) (Armenia)

    2016-08-01

    We discuss recent results from CLAS on electromagnetic resonance transition amplitudes and their dependence on the distance scale (Q2). From the comparison of these results with most advanced theoretical calculations within QCD-based approaches there is clear evidence that meson-baryon contributions are present and important at large distances, i.e. small Q2, and that quark core contributions dominate the short distance behavior.

  1. Excited baryon form factors at high Q2

    International Nuclear Information System (INIS)

    Paul Stoler; Gary Adams; Abdellah Ahmidouch; Chris Armstrong; K. Assamagan; Steven Avery; K. Baker; Peter Bosted; Volker Burkert; Jim Dunne; Tom Eden; Rolf Ent; V. Frolov; David Gaskell; P. Gueye; Wendy Hinton; Cynthia Keppel; Wooyoung Kim; Michael Klusman; Doug Koltenuk; David Mack; Richard Madey; David Meekins; Ralph Minehart; Joseph Mitchell; Hamlet Mkrtchyan; James Napolitano; Gabriel Niculescu; Ioana Niculescu; Mina Nozar; John Price; Paul Stoler; Vardan Tadevosyan; Liguang Tang; Michael Witkowski; Stephen Wood

    1998-01-01

    The role of resonance electroproduction at high Q 2 is discussed in the context of exclusive reactions, as well as the alternative theoretical models which are proposed to treat exclusive reactions in the few GeV 2 /c 2 region of momentum transfer. Jefferson Lab experiment 94-014, which measured the excitation of the Delta (1232) and S 11 (1535) via the reactions p(e,e ' p)pi 0 and p(e,e ' p)eta respectively at Q 2 ∼ 2.8 and 4 GeV 2 /c 2 is described, and the state of analysis reported

  2. Electromagnetic structure of the deuteron

    International Nuclear Information System (INIS)

    Gilman, R.; Gross, Franz

    2001-01-01

    Recent measurements of the deuteron electromagnetic structure functions A, B, and T 20 extracted from high energy elastic ed scattering, and the cross sections and asymmetries extracted from high energy photodisintegration gamma + d to n + p, are reviewed and compared to theory. The theoretical calculations range from nonrelativistic and relativistic models using the traditional meson and baryon degrees of freedom, to effective field theories, to models based on the underlying quark and gluon degrees of freedom of QCD, including nonperturbative quark cluster models and perturbative QCD. We review what has been learned from these experiments, and discuss why elastic ed scattering and photodisintegration seem to require very different theoretical approaches, even though they are closely related experimentally

  3. Fits of the baryon magnetic moments to the quark model and spectrum-generating SU(3)

    International Nuclear Information System (INIS)

    Bohm, A.; Teese, R.B.

    1982-01-01

    We show that for theoretical as well as phenomenological reasons the baryon magnetic moments that fulfill simple group transformation properties should be taken in intrinsic rather than nuclear magnetons. A fit of the recent experimental data to the reduced matrix elements of the usual octet electromagnetic current is still not good, and in order to obtain acceptable agreement, one has to add correction terms to the octet current. We have texted two kinds of corrections: U-spin-scalar terms, which are singles out by the model-independent algebraic properties of the hadron electromagnetic current, and octet U-spin vectors, which could come from quark-mass breaking in a nonrelativistic quark model. We find that the U-spin-scalar terms are more important than the U-spin vectors for various levels of demanded theoretical accuracy

  4. Applied electromagnetic scattering theory

    CERN Document Server

    Osipov, Andrey A

    2017-01-01

    Besides classical applications (radar and stealth, antennas, microwave engineering), scattering and diffraction are enabling phenomena for some emerging research fields (artificial electromagnetic materials or metamaterials, terahertz technologies, electromagnetic aspects of nano-science). This book is a tutorial for advanced students who need to study diffraction theory. The textbook gives fundamental knowledge about scattering and diffraction of electromagnetic waves and provides some working examples of solutions for practical high-frequency scattering and diffraction problems. The book focuses on the most important diffraction effects and mechanisms influencing the scattering process and describes efficient and physically justified simulation methods - physical optics (PO) and the physical theory of diffraction (PTD) - applicable in typical remote sensing scenarios. The material is presented in a comprehensible and logical form, which relates the presented results to the basic principles of electromag...

  5. Electromagnetic pump

    International Nuclear Information System (INIS)

    Ito, Koji; Suetake, Norio; Aizawa, Toshie; Nakasaki, Masayoshi

    1998-01-01

    The present invention provides an electromagnetic pump suitable to a recycling pump for liquid sodium as coolants of an FBR type reactor. Namely, a stator module of the electromagnetic pump of the present invention comprises a plurality of outer laminate iron core units and outer stator modules stacked alternately in the axial direction. With such a constitution, even a long electromagnetic pump having a large number of outer stator coils can be manufactured without damaging electric insulation of the outer stator coils. In addition, the inner circumferential surface of the outer laminate iron cores is urged and brought into contact with the outer circumferential surface of the outer duct by an elastic material. With such a constitution, Joule loss heat generated in the outer stator coils and internal heat generated in the outer laminate iron cores can be released to an electroconductive fluid flowing the inner circumference of the outer duct by way of the outer duct. (I.S.)

  6. Semileptonic Decays of Heavy Lambda Baryons in a Quark Model

    Energy Technology Data Exchange (ETDEWEB)

    Winston Roberts; Muslema Pervin; Simon Capstick

    2005-03-01

    The semileptonic decays of {Lambda}{sub c} and {Lambda}{sub b} are treated in the framework of a constituent quark model. Both nonrelativistic and semirelativistic Hamiltonians are used to obtain the baryon wave functions from a fit to the spectra, and the wave functions are expanded in both the harmonic oscillator and Sturmian bases. The latter basis leads to form factors in which the kinematic dependence on q{sup 2} is in the form of multipoles, and the resulting form factors fall faster as a function of q{sup 2} in the available kinematic ranges. As a result, decay rates obtained in the two models using the Sturmian basis are significantly smaller than those obtained using the harmonic oscillator basis. In the case of the {Lambda}{sub c}, decay rates calculated using the Sturmian basis are closer to the experimentally reported rates. However, we find a semileptonic branching fraction for the {Lambda}{sub c} to decay to excited {Lambda}* states of 11% to 19%, in contradiction with what is assumed in available experimental analyses. Our prediction for the {Lambda}{sub b} semileptonic decays is that decays to the ground state {Lambda}{sub c} provide a little less than 70% of the total semileptonic decay rate. For the decays {Lambda}{sub b} {yields} {Lambda}{sub c}, the analytic form factors we obtain satisfy the relations expected from heavy-quark effective theory at the non-recoil point, at leading and next-to-leading orders in the heavy-quark expansion. In addition, some features of the heavy-quark limit are shown to naturally persist as the mass of the heavy quark in the daughter baryon is decreased.

  7. Magnetic moments of the lowest-lying singly heavy baryons

    Science.gov (United States)

    Yang, Ghil-Seok; Kim, Hyun-Chul

    2018-06-01

    A light baryon is viewed as Nc valence quarks bound by meson mean fields in the large Nc limit. In much the same way a singly heavy baryon is regarded as Nc - 1 valence quarks bound by the same mean fields, which makes it possible to use the properties of light baryons to investigate those of the heavy baryons. A heavy quark being regarded as a static color source in the limit of the infinitely heavy quark mass, the magnetic moments of the heavy baryon are determined entirely by the chiral soliton consisting of a light-quark pair. The magnetic moments of the baryon sextet are obtained by using the parameters fixed in the light-baryon sector. In this mean-field approach, the numerical results of the magnetic moments of the baryon sextet with spin 3/2 are just 3/2 larger than those with spin 1/2. The magnetic moments of the bottom baryons are the same as those of the corresponding charmed baryons.

  8. Conformal Symmetry Patterns in Baryon Spectra

    International Nuclear Information System (INIS)

    Kirchbach, Mariana; Compean, Cliffor B

    2011-01-01

    Attention is drawn to the fact that the spectra of the baryons of the lightest flavors, the nucleon and the Δ, carry quantum numbers characteristic for an unitary representation of the conformal group. We show that the above phenomenon is well explained for baryons whose internal structure is dominated by a quark-diquark configuration that resides in a conformally compactified Minkowski space time, R 1 x S 3 , and is described by means of the conformal scale equation there. The R 1 x S 3 space-time represents the boundary of the conformally compactified AdS 5 , on which one expects to encounter a conformal theory in accord with the gauge-gravity duality. Within this context, our model is congruent with AdS 5 /CFT 4 .

  9. Search for narrow four-baryon states

    International Nuclear Information System (INIS)

    Badelek, B.

    1981-01-01

    Highly excited (4.10 2 ) four-baryon resonances have been searched for in the missing-mass spectrum of the reaction π - + 4 He → π - + X at 5 GeV/c in the region of small four-momentum transfer (0.005 2 ), where one of the decay products of the X is either proton or deuteron or triton. No resonance signal is seen in the mass spectrum of X. Within our limited acceptance, the cross section for the production of a narrow (GAMMA approx. 20 MeV/c 2 ) four-baryon state with mass 4.9 GeV/c 2 is estimated to be smaller than approx. 100 nb. (orig.)

  10. Baryon magnetic moments: Symmetries and relations

    Energy Technology Data Exchange (ETDEWEB)

    Parreno, Assumpta [University of Barcelona; Savage, Martin [Univ. of Washington, Seattle, WA (United States); Tiburzi, Brian [City College of New York, NY (United States); City Univ. (CUNY), NY (United States); Wilhelm, Jonas [Justus-Liebig-Universitat Giessen, Giessen, Germany; Univ. of Washington, Seattle, WA (United States); Chang, Emmanuel [Univ. of Washington, Seattle, WA (United States); Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-04-01

    Magnetic moments of the octet baryons are computed using lattice QCD in background magnetic fields, including the first treatment of the magnetically coupled Σ0- Λ system. Although the computations are performed for relatively large values of the up and down quark masses, we gain new insight into the symmetries and relations between magnetic moments by working at a three-flavor mass-symmetric point. While the spinflavor symmetry in the large Nc limit of QCD is shared by the naïve constituent quark model, we find instances where quark model predictions are considerably favored over those emerging in the large Nc limit. We suggest further calculations that would shed light on the curious patterns of baryon magnetic moments.

  11. Odd-parity baryons: progress and problems

    International Nuclear Information System (INIS)

    Cutkosky, R.E.

    1981-01-01

    The odd-parity baryons have provided a graveyard for many cherished ideas about hadrons. The simple quark shell model, with QCD-inspired phenomenological perturbations, is the only model able to describe the states with even partial qualitative success. There are also important unexplained residual dynamical effects. Resonance decays can be accounted for, provided the usual spectator model is abandoned. Better experimental data could help to sort out the many remaining puzzles

  12. Candidates for non-baryonic dark matter

    International Nuclear Information System (INIS)

    Fornengo, Nicolao

    2002-01-01

    This report is a brief review of the efforts to explain the nature of non-baryonic dark matter and of the studies devoted to the search for relic particles. Among the different dark matter candidates, special attention is devoted to relic neutralinos, by giving an overview of the recent calculations of its relic abundance and detection rates in a wide variety of supersymmetric schemes

  13. Candidates for non-baryonic dark matter

    OpenAIRE

    Fornengo, Nicolao

    2002-01-01

    This report is a brief review of the efforts to explain the nature of non-baryonic dark matter and of the studies devoted to the search for relic particles. Among the different dark matter candidates, special attention is devoted to relic neutralinos, by giving an overview of the recent calculations of its relic abundance and detection rates in a wide variety of supersymmetric schemes.

  14. The compressed baryonic matter experiment at FAIR

    International Nuclear Information System (INIS)

    Senger, Peter

    2015-01-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At top RHIC and LHC energies, the QCD phase diagram is studied at very high temperatures and very low net-baryon densities. These conditions presumably existed in the early universe about a microsecond after the big bang. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure such as a critical point, a first order phase transition between hadronic and partonic matter, or new phases like quarkyonic matter. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. The Compressed Baryonic Matter (CBM) experiment will be one of the major scientific pillars of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The goal of the CBM research program is to explore the QCD phase diagram in the region of high baryon densities using high-energy nucleus-nucleus collisions. This includes the study of the equation-of-state of nuclear matter at neutron star core densities, and the search for the deconfinement and chiral phase transitions. The CBM detector is designed to measure rare diagnostic probes such as multi-strange hyperons, charmed particles and vector mesons decaying into lepton pairs with unprecedented precision and statistics. Most of these particles will be studied for the first time in the FAIR energy range. In order to achieve the required precision, the measurements will be performed at very high reaction rates of 100 kHz to 10 MHz. This requires very fast and radiation-hard detectors, and a novel data read-out and analysis concept based on free streaming front-end electronics and a high-performance computing cluster for online event selection. The layout, the physics performance, and the status of the proposed CBM experimental facility

  15. Negative parity non-strange baryons

    International Nuclear Information System (INIS)

    Stancu, F.; Stassart, P.

    1991-01-01

    Our previous study is extended to negative parity baryon resonances up to J=(9/2) - . The framework is a semi-relativistic constituent quark model. The quark-quark interaction contains a Coulomb plus linear confinement terms and a short distance spin-spin and tensor terms. It is emphasized that a linear confinement potential gives too large a mass to the D 35 (1930) resonance. (orig.)

  16. Heavy baryon spectroscopy with relativistic kinematics

    International Nuclear Information System (INIS)

    Valcarce, A.; Garcilazo, H.; Vijande, J.

    2014-01-01

    We present a comparative Faddeev study of heavy baryon spectroscopy with nonrelativistic and relativistic kinematics. We show results for different standard hyperfine interactions with both kinematics in an attempt to learn about the light quark dynamics. We highlight the properties of particular states accessible in nowadays laboratories that would help in discriminating between different dynamical models. The advance in the knowledge of light quark dynamics is a key tool for the understanding of the existence of exotic hadrons.

  17. Charmed baryons photoproduced in FOCUS at Fermilab

    CERN Document Server

    Ratti, S P

    2001-01-01

    FOCUS collected over 7 * 10/sup 7/ triggers and more than 10/sup 6/ fully reconstructed charm particles in a photoproduction experiment at Fermilab. The experimental setup is an upgraded version of a multiparticle spectrometer used in the previous experiment E687. Data on charmed meson spectroscopy have been presented by F.L Fabbri in this Section. Here data on photoproduction of charmed baryons are presented.

  18. Determining properties of baryon resonances in nuclei

    International Nuclear Information System (INIS)

    Johnson, M.B.; Chen, C.M.; Ernst, D.J.; Jiang, M.F.

    1996-01-01

    Meson-nucleus and photon-nucleus interactions are important sources of information about the medium modifications of baryon resonances in nuclei. Indications of how large the medium effects are for resonances above the Δ 33 (1232) are provided by it combined analysis of photonuclear and pion cross sections in the GeV range of energies. Tile existing data indicate a possible 10-20% renormalization of the pion coupling to higher-lying resonances in nuclei

  19. Critical Opalescence in Baryonic QCD Matter

    OpenAIRE

    Antoniou, N. G.; Diakonos, F. K.; Kapoyannis, A. S.; Kousouris, K. S.

    2006-01-01

    We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behaviour is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associ...

  20. Baryon production in e+e- annihilation

    International Nuclear Information System (INIS)

    Saxon, D.H.

    1988-11-01

    The phenomenology of baryon production in high energy e + e - annihilation is described. Much can be understood in terms of mass effects. Comparisons with the rates for different flavours and spins, with momentum and transverse momentum spectra and with particle correlations are used to confront models. Diquark models give good descriptions, except for the on/off Υ(1s) rates. Areas for experimental and theoretical development are indicated. (author)

  1. Theoretical perspective for baryon number violation

    International Nuclear Information System (INIS)

    Langacker, P.

    1982-01-01

    In this talk I describe the theoretical predictions for proton decay and other baryon number violating processes, emphasizing that there are many models and theories involving baryon number violation and that it is an experimental problem to distinguish between them. I first review the the theoretical predictions for the unification mass M/sub X/ and for the weak angle sin 2 theta/sub W/. It will be seen that the class of models involving an Su 3 x SU 2 x U 1 invariant desert between M/sub W/ and M/sub X/ are strongly favored. I then turn to baryon number violation. The proton lifetime and branching ratio predictions for the SU 5 and other 3-2-1 desert models are reviewed, with emphasis on distinguishing between models and on the implications of the small value of the QCD parameter lambda/sub anti MS/ that seems to be favored by the data. I then discuss the consequences of low energy supersymmetry for proton decay, nuclear effects, and models with low mass scales. Finally, I mention possible implications of the anomalously large flux of cosmic ray antiprotons that has recently been reported

  2. Odd-parity light baryon resonances

    International Nuclear Information System (INIS)

    Gamermann, D.; Garcia-Recio, C.; Salcedo, L. L.; Nieves, J.

    2011-01-01

    We use a consistent SU(6) extension of the meson-baryon chiral Lagrangian within a coupled channel unitary approach in order to calculate the T matrix for meson-baryon scattering in the s wave. The building blocks of the scheme are the π and N octets, the ρ nonet and the Δ decuplet. We identify poles in this unitary T matrix and interpret them as resonances. We study here the nonexotic sectors with strangeness S=0, -1, -2, -3 and spin J=(1/2), (3/2) and (5/2). Many of the poles generated can be associated with known N, Δ, Σ, Λ, Ξ and Ω resonances with negative parity. We show that most of the low-lying three and four star odd-parity baryon resonances with spin (1/2) and (3/2) can be related to multiplets of the spin-flavor symmetry group SU(6). This study allows us to predict the spin-parity of the Ξ(1620), Ξ(1690), Ξ(1950), Ξ(2250), Ω(2250) and Ω(2380) resonances, which have not been determined experimentally yet.

  3. Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago.

    Science.gov (United States)

    Genzel, R; Schreiber, N M Förster; Übler, H; Lang, P; Naab, T; Bender, R; Tacconi, L J; Wisnioski, E; Wuyts, S; Alexander, T; Beifiori, A; Belli, S; Brammer, G; Burkert, A; Carollo, C M; Chan, J; Davies, R; Fossati, M; Galametz, A; Genel, S; Gerhard, O; Lutz, D; Mendel, J T; Momcheva, I; Nelson, E J; Renzini, A; Saglia, R; Sternberg, A; Tacchella, S; Tadaki, K; Wilman, D

    2017-03-15

    In the cold dark matter cosmology, the baryonic components of galaxies-stars and gas-are thought to be mixed with and embedded in non-baryonic and non-relativistic dark matter, which dominates the total mass of the galaxy and its dark-matter halo. In the local (low-redshift) Universe, the mass of dark matter within a galactic disk increases with disk radius, becoming appreciable and then dominant in the outer, baryonic regions of the disks of star-forming galaxies. This results in rotation velocities of the visible matter within the disk that are constant or increasing with disk radius-a hallmark of the dark-matter model. Comparisons between the dynamical mass, inferred from these velocities in rotational equilibrium, and the sum of the stellar and cold-gas mass at the peak epoch of galaxy formation ten billion years ago, inferred from ancillary data, suggest high baryon fractions in the inner, star-forming regions of the disks. Although this implied baryon fraction may be larger than in the local Universe, the systematic uncertainties (owing to the chosen stellar initial-mass function and the calibration of gas masses) render such comparisons inconclusive in terms of the mass of dark matter. Here we report rotation curves (showing rotation velocity as a function of disk radius) for the outer disks of six massive star-forming galaxies, and find that the rotation velocities are not constant, but decrease with radius. We propose that this trend arises because of a combination of two main factors: first, a large fraction of the massive high-redshift galaxy population was strongly baryon-dominated, with dark matter playing a smaller part than in the local Universe; and second, the large velocity dispersion in high-redshift disks introduces a substantial pressure term that leads to a decrease in rotation velocity with increasing radius. The effect of both factors appears to increase with redshift. Qualitatively, the observations suggest that baryons in the early (high

  4. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Hasse, Stina

    2015-01-01

    Electromagnetic Landscape demonstrates in direct, tangible and immediate ways effects of the disruption of the familiar. An ubiquitous technological medium, FM radio, is turned into an alien and unfamiliar one. Audience participation, the environment, radio signals and noise create a site...

  5. Dark matter, baryon asymmetry, and spontaneous B and L breaking

    International Nuclear Information System (INIS)

    Dulaney, Timothy R.; Wise, Mark B.; Perez, Pavel Fileviez

    2011-01-01

    We investigate the dark matter and the cosmological baryon asymmetry in a simple theory where baryon (B) and lepton (L) number are local gauge symmetries that are spontaneously broken. In this model, the cold dark matter candidate is the lightest new field with baryon number and its stability is an automatic consequence of the gauge symmetry. Dark matter annihilation is either through a leptophobic gauge boson whose mass must be below a TeV or through the Higgs boson. Since the mass of the leptophobic gauge boson has to be below the TeV scale, one finds that in the first scenario there is a lower bound on the elastic cross section of about 5x10 -46 cm 2 . Even though baryon number is gauged and not spontaneously broken until the weak scale, a cosmologically acceptable baryon excess is possible. There can be a tension between achieving both the measured baryon excess and the dark matter density.

  6. Baryon superfluids in AdS/CFT with flavor

    Energy Technology Data Exchange (ETDEWEB)

    Hoyos, Carlos [Department of Physics, Universidad de Oviedo,Avda. Calvo Sotelo 18, ES-33007 Oviedo (Spain); Itsios, Georgios [Department of Physics, Universidad de Oviedo,Avda. Calvo Sotelo 18, ES-33007 Oviedo (Spain); Instituto de Física Teórica, UNESP-Universidade Estadual Paulista,R. Dr. Bento T. Ferraz 271, Bl. II, Sao Paulo 01140-070, SP (Brazil); Vasilakis, Orestis [Department of Physics, Universidad de Oviedo,Avda. Calvo Sotelo 18, ES-33007 Oviedo (Spain)

    2017-01-31

    Baryonic matter is notoriously difficult to deal with in the large-N limit, as baryons become operators of very large dimension with N fields in the fundamental representation. This issue is also present in gauge/gravity duals as baryons are described by very heavy localized objects. There are however alternative large-N extrapolations of QCD where small baryonic operators exist and can be treated on an equal footing to mesons. We explore the possibility of turning on a finite density of “light” baryons in a theory with a hadronic mass gap using a gauge/gravity construction based on the D3/D7 intersection. We find a novel phase with spontaneous breaking of baryon symmetry at zero temperature.

  7. Baryonic pinching of galactic dark matter halos

    International Nuclear Information System (INIS)

    Gustafsson, Michael; Fairbairn, Malcolm; Sommer-Larsen, Jesper

    2006-01-01

    High resolution cosmological N-body simulations of four galaxy-scale dark matter halos are compared to corresponding N-body/hydrodynamical simulations containing dark matter, stars and gas. The simulations without baryons share features with others described in the literature in that the dark matter density slope continuously decreases towards the center, with a density ρ DM ∝r -1.3±0.2 , at about 1% of the virial radius for our Milky Way sized galaxies. The central cusps in the simulations which also contain baryons steepen significantly, to ρ DM ∝r -1.9±0.2 , with an indication of the inner logarithmic slope converging. Models of adiabatic contraction of dark matter halos due to the central buildup of stellar/gaseous galaxies are examined. The simplest and most commonly used model, by Blumenthal et al., is shown to overestimate the central dark matter density considerably. A modified model proposed by Gnedin et al. is tested and it is shown that, while it is a considerable improvement, it is not perfect. Moreover, it is found that the contraction parameters in their model not only depend on the orbital structure of the dark-matter-only halos but also on the stellar feedback prescription which is most relevant for the baryonic distribution. Implications for dark matter annihilation at the galactic center are discussed and it is found that, although our simulations show a considerable reduced dark matter halo contraction as compared to the Blumenthal et al. model, the fluxes from dark matter annihilation are still expected to be enhanced by at least a factor of a hundred, as compared to dark-matter-only halos. Finally, it is shown that, while dark-matter-only halos are typically prolate, the dark matter halos containing baryons are mildly oblate with minor-to-major axis ratios of c/a=0.73±0.11, with their flattening aligned with the central baryonic disks

  8. Multi baryons with flavors in the Skyrme model

    Energy Technology Data Exchange (ETDEWEB)

    Schat, Carlos L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Scoccola, Norberto N. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. of Physics

    1999-07-01

    We investigate the possible existence of multi baryons with heavy flavor quantum numbers using the bound state approach to the topological soliton model and the recently proposed approximation for multi skyrmion fields based on rational maps. We use an effective interaction Lagrangian which consistently incorporates both chiral symmetry and the heavy quark symmetry including the corrections up to order {omicron}(1/m{sub Q}). The model predicts some narrow heavy flavored multi baryon states with baryon number four and seven. (author)

  9. Multi baryons with flavors in the Skyrme model

    International Nuclear Information System (INIS)

    Schat, Carlos L.; Scoccola, Norberto N.

    1999-07-01

    We investigate the possible existence of multi baryons with heavy flavor quantum numbers using the bound state approach to the topological soliton model and the recently proposed approximation for multi skyrmion fields based on rational maps. We use an effective interaction Lagrangian which consistently incorporates both chiral symmetry and the heavy quark symmetry including the corrections up to order ο(1/m Q ). The model predicts some narrow heavy flavored multi baryon states with baryon number four and seven. (author)

  10. Electromagnetic decay widths for L=1, Jsup(PC)=1-- T-baryonia: II

    International Nuclear Information System (INIS)

    Ellis, R.G.; McKellar, B.H.J.; Joshi, G.C.

    1981-01-01

    The electromagnetic decay widths of the Jsup(PC)=1 -- , L=1 T-baryonia in the 1-5 GeV region are estimated. The Van Royen-Weisskopf technique is extended to baryonia within the framework of the QCD potential model. The diquark and antidiquark are assumed to have finite extent. Potential dependent coefficients are scaled from known baryon and mesons

  11. Relativistic chiral SU(3) symmetry, large Nc sum rules and meson-baryon scattering

    International Nuclear Information System (INIS)

    Lutz, M.F.M.; Kolomeitsev, E.E.

    2001-05-01

    The relativistic chiral SU(3) Lagrangian is used to describe kaon-nucleon scattering imposing constraints from the pion-nucleon sector and the axial-vector coupling constants of the baryon octet states. We solve the covariant coupled-channel Bethe-Salpeter equation with the interaction kernel truncated at chiral order Q 3 where we include only those terms which are leading in the large N c limit of QCD. The baryon decuplet states are an important explicit ingredient in our scheme, because together with the baryon octet states they form the large N c baryon ground states of QCD. Part of our technical developments is a minimal chiral subtraction scheme within dimensional regularization, which leads to a manifest realization of the covariant chiral counting rules. All SU(3) symmetry-breaking effects are well controlled by the combined chiral and large N c expansion, but still found to play a crucial role in understanding the empirical data. We achieve an excellent description of the data set typically up to laboratory momenta of p lab ≅ 500 MeV. (orig.)

  12. Weak decays of doubly heavy baryons. The 1/2 → 1/2 case

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Zhao, Zhen-Xing [Shanghai Jiao Tong University, INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, School of Physics and Astronomy, Shanghai (China); Yu, Fu-Sheng [Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China)

    2017-11-15

    Very recently, the LHCb collaboration has observed in the final state Λ{sub c}{sup +}K{sup -}π{sup +}π{sup +} a resonant structure that is identified as the doubly charmed baryon Ξ{sub cc}{sup ++}. Inspired by this observation, we investigate the weak decays of doubly heavy baryons Ξ{sub cc}{sup ++}, Ξ{sub cc}{sup +}, Ω{sub cc}{sup +}, Ξ{sub bc}{sup (')+}, Ξ{sub bc}{sup (')0}, Ω{sub bc}{sup (')0}, Ξ{sub bb}{sup 0}, Ξ{sub bb}{sup -} and Ω{sub bb}{sup -} and focus on the decays into spin 1/2 baryons in this paper. At the quark level these decay processes are induced by the c → d/s or b → u/c transitions, and the two spectator quarks can be viewed as a scalar or axial vector diquark. We first derive the hadronic form factors for these transitions in the light-front approach and then apply them to predict the partial widths for the semileptonic and nonleptonic decays of doubly heavy baryons. We find that the number of decay channels is sizable and can be examined in future measurements at experimental facilities like LHC, Belle II and CEPC. (orig.)

  13. Nonleptonic decays of 1/2+-baryons and pseudo-connected-line diagrams, 1

    International Nuclear Information System (INIS)

    Abe, Yoshikazu; Fujii, Kanji

    1978-01-01

    Under the SU(4)-20''-spurion dominance in nonleptonic weak decays, we investigate algebraic structures of the effective Hamiltonian H sub(eff) which describes the main features of the nonleptonic weak decays of ordinary baryons. When H sub(eff) is written by using 20'-baryon (1/2 + ) wave function of the form B sub(α)sup([βγ]), one can select out of H sub(eff) two terms which describe most simply the main features of the P-wave amplitudes for ordinary baryons. Only these terms are s-u dual in the sense of 'pseudo-connected-line diagrams' (pseudo-CLD's) obtained by writing CLD's with 4- and 4*-lines corresponding directly to the lower and the upper indices of B sub(α)sup([βγ]). By assuming Lee-Sugawara relation and s-u dual property of the P-wave amplitudes, various relations among ordinary and charmed baryon decays are derived. Comments on the parity-violating amplitudes are also given. (auth.)

  14. The baryon vector current in the combined chiral and 1/Nc expansions

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Mendieta, Ruben; Goity, Jose L [JLAB

    2014-12-01

    The baryon vector current is computed at one-loop order in large-Nc baryon chiral perturbation theory, where Nc is the number of colors. Loop graphs with octet and decuplet intermediate states are systematically incorporated into the analysis and the effects of the decuplet-octet mass difference and SU(3) flavor symmetry breaking are accounted for. There are large-Nc cancellations between different one-loop graphs as a consequence of the large-Nc spin-flavor symmetry of QCD baryons. The results are compared against the available experimental data through several fits in order to extract information about the unknown parameters. The large-Nc baryon chiral perturbation theory predictions are in very good agreement both with the expectations from the 1/Nc expansion and with the experimental data. The effect of SU(3) flavor symmetry breaking for the |Delta S|=1 vector current form factors f1(0) results in a reduction by a few percent with respect to the corresponding SU(3) symmetric values.

  15. Gauge theory for baryon and lepton numbers with leptoquarks.

    Science.gov (United States)

    Duerr, Michael; Fileviez Pérez, Pavel; Wise, Mark B

    2013-06-07

    Models where the baryon (B) and lepton (L) numbers are local gauge symmetries that are spontaneously broken at a low scale are revisited. We find new extensions of the standard model which predict the existence of fermions that carry both baryon and lepton numbers (i.e., leptoquarks). The local baryonic and leptonic symmetries can be broken at a scale close to the electroweak scale and we do not need to postulate the existence of a large desert to satisfy the experimental constraints on baryon number violating processes like proton decay.

  16. Search for CP violation in baryon decays at LHCb

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The phenomenon of CP violation has been observed in the K- and B-meson systems, but not yet with any baryonic particle. We report on searches for CP violation in baryon decays at LHCb using Run I data. We find evidence for CP violation in Lambda0b -> p pi- pi+ pi- decays with a statistical significance corresponding to 3.3 standard deviations, including systematic uncertainties. This represents the first evidence of CP violation in the baryon sector. An overview of other recent results of baryon decays will be presented, along with some highlights of the charmless B-decay programme.

  17. Self-energies of octet and decuplet baryons due to the coupling to the baryon-meson continuum

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Tecocoatzi, H. [INFN, Sezione di Genova, Genova (Italy); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico (Mexico); Bijker, R. [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico (Mexico); Ferretti, J. [Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing (China); Dipartimento di Fisica, Universita di Roma Sapienza, Roma (Italy); INFN, Roma (Italy); Santopinto, E. [INFN, Sezione di Genova, Genova (Italy)

    2017-06-15

    We present an unquenched quark model calculation of the mass shifts of ground-state octet and decuplet baryons due to the coupling to the meson-baryon continuum. All ground-state baryons and pseudoscalar mesons are included in our calculation as intermediate states. The q anti q pair creation effects are taken explicitly into account through a microscopic, QCD-inspired, quark-antiquark pair creation mechanism. (orig.)

  18. Electromagnetic probes of the QGP

    Directory of Open Access Journals (Sweden)

    Bratkovskaya E. L.

    2015-01-01

    Full Text Available We investigate the properties of the QCD matter across the deconfinement phase transition in the scope of the parton-hadron string dynamics (PHSD transport approach. We present here in particular the results on the electromagnetic radiation, i.e. photon and dilepton production, in relativistic heavy-ion collisions. By comparing our calculations for the heavy-ion collisions to the available data, we determine the relative importance of the various production sources and address the possible origin of the observed strong elliptic flow v2 of direct photons. We argue that the different centrality dependence of the hadronic and partonic sources for direct photon production in nucleusnucleus collisions can be employed to shed some more light on the origin of the photon v2 “puzzle”. While the dilepton spectra at low invariant mass show in-medium effects like an enhancement from multiple baryonic resonance formation or a collisional broadening of the vector meson spectral functions, the dilepton yield at high invariant masses (above 1.1 GeV is dominated by QGP contributions for central heavy-ion collisions at ultra-relativistic energies. This allows to have an independent view on the parton dynamics via their electromagnetic massive radiation.

  19. Intriguing aspects in baryon production at relativistic heavy-ion collider

    Indian Academy of Sciences (India)

    nucleus collisions at RHIC. Outstanding physics issues include the mechanism for baryon–anti-baryon production from thermally equilibrated partons, the dynamics of baryon number transport and the evolution dynamics of baryons during ...

  20. Electromagnetic Hammer for Metalworking

    Science.gov (United States)

    Anderson, S. A.; Brunet, F.; Dowd, A.; Durham, R.; Ezell, J.; Gorr, G.; Hartley, D.; Jackson, F.; Marchand, J.; Macfarlane, W.; hide

    1986-01-01

    High eddy currents apply pressure for cold-forming. Coil housing constructed for mechanical strength to hold coil against magnetic force, to maintain electrical contact with coil ends, and to maintain insulation between coil turns. Drilled holes placed to facilitate release of bubbles during potting. In contrast with mechanical hammers, electromagnetic hammer requires no dynamic material contact with workpiece; consequently, produces almost no change in metal grain structure.

  1. Engineering electromagnetics

    CERN Document Server

    Ida, Nathan

    2015-01-01

    This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps – a short, introductory chapter followed by a second chapter with in-depth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems  and summaries.   The new edition includes: updated end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The weal...

  2. A direct measurement of the baryonic mass function of galaxies & implications for the galactic baryon fraction

    NARCIS (Netherlands)

    Papastergis, Emmanouil; Cattaneo, Andrea; Huang, Shan; Giovanelli, Riccardo; Haynes, Martha P.

    2012-01-01

    We use both an HI-selected and an optically-selected galaxy sample to directly measure the abundance of galaxies as a function of their "baryonic" mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey (SDSS) and atomic gas masses are

  3. Density-dependent effective baryon–baryon interaction from chiral three-baryon forces

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, Stefan, E-mail: stefan.petschauer@ph.tum.de [Physik Department, Technische Universität München, D-85747 Garching (Germany); Haidenbauer, Johann [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Kaiser, Norbert [Physik Department, Technische Universität München, D-85747 Garching (Germany); Meißner, Ulf-G. [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, D-53115 Bonn (Germany); Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Weise, Wolfram [Physik Department, Technische Universität München, D-85747 Garching (Germany)

    2017-01-15

    A density-dependent effective potential for the baryon–baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon–nucleon interaction. Explicit expressions for the ΛN in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the three-body force in symmetric nuclear matter and pure neutron matter on the ΛN interaction. A moderate repulsion that increases with density is found in comparison to the free ΛN interaction.

  4. Meson-baryon components in the states of the baryon decuplet

    Energy Technology Data Exchange (ETDEWEB)

    Aceti, F.; Oset, E. [Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Departamento de Fisica Teorica y IFIC, Valencia (Spain); Kavli Institute for Theoretical Physics China, Beijing (China); Dai, L.R. [Liaoning Normal University, Department of Physics, Dalian (China); Kavli Institute for Theoretical Physics China, Beijing (China); Geng, L.S. [Beihang University, School of Physics and Nuclear Energy Engineering and International Research Center for Nuclei and Particles in the Cosmos, Beijing (China); Zhang, Y. [Liaoning Normal University, Department of Physics, Dalian (China)

    2014-03-15

    We apply an extension of the Weinberg compositeness condition on partial waves of L = 1 and resonant states to determine the weight of the meson-baryon component in the Δ(1232) resonance and the other members of the J{sup P} = (3)/(2){sup +} baryon decuplet. We obtain an appreciable weight of πN in the Δ(1232) wave function, of the order of 60%, which looks more natural when one recalls that experiments on deep inelastic and Drell Yan give a fraction of πN component of 34% for the nucleon. We also show that, as we go to higher energies in the members of the decuplet, the weights of the meson-baryon component decrease and they already show a dominant part for a genuine, non-meson-baryon, component in the wave function. We write a section to interpret the meaning of the Weinberg sum rule when it is extended to complex energies and another one for the case of an energy-dependent potential. (orig.)

  5. Dynamical twisted mass fermions and baryon spectroscopy

    International Nuclear Information System (INIS)

    Drach, V.

    2010-06-01

    The aim of this work is an ab initio computation of the baryon masses starting from quantum chromodynamics (QCD). This theory describes the interaction between quarks and gluons and has been established at high energy thanks to one of its fundamental properties: the asymptotic freedom. This property predicts that the running coupling constant tends to zero at high energy and thus that perturbative expansions in the coupling constant are justified in this regime. On the contrary the low energy dynamics can only be understood in terms of a non perturbative approach. To date, the only known method that allows the computation of observables in this regime together with a control of its systematic effects is called lattice QCD. It consists in formulating the theory on an Euclidean space-time and to evaluating numerically suitable functional integrals. First chapter is an introduction to the QCD in the continuum and on a discrete space time. The chapter 2 describes the formalism of maximally twisted fermions used in the European Twisted Mass (ETM) collaboration. The chapter 3 deals with the techniques needed to build hadronic correlator starting from gauge configuration. We then discuss how we determine hadron masses and their statistical errors. The numerical estimation of functional integral is explained in chapter 4. It is stressed that it requires sophisticated algorithm and massive parallel computing on Blue-Gene type architecture. Gauge configuration production is an important part of the work realized during my Ph.D. Chapter 5 is a critical review on chiral perturbation theory in the baryon sector. The two last chapter are devoted to the analysis in the light and strange baryon sector. Systematics and chiral extrapolation are extensively discussed. (author)

  6. Subhalo demographics in the Illustris simulation: effects of baryons and halo-to-halo variation

    Science.gov (United States)

    Chua, Kun Ting Eddie; Pillepich, Annalisa; Rodriguez-Gomez, Vicente; Vogelsberger, Mark; Bird, Simeon; Hernquist, Lars

    2017-12-01

    We study the abundance of subhaloes in the hydrodynamical cosmological simulation Illustris, which includes both baryons and dark matter in a cold dark matter volume 106.5 Mpc a side. We compare Illustris to its dark-matter only (DMO) analogue, Illustris-Dark and quantify the effects of baryonic processes on the demographics of subhaloes in the host mass range 1011-3 × 1014 M⊙. We focus on both the evolved (z = 0) subhalo cumulative mass functions (SHMF) and the statistics of subhaloes ever accreted, i.e. infall SHMF. We quantify the variance in subhalo abundance at fixed host mass and investigate the physical reasons responsible for such scatter. We find that in Illustris, baryonic physics impacts both the infall and z = 0 subhalo abundance by tilting the DMO function and suppressing the abundance of low-mass subhaloes. The breaking of self-similarity in the subhalo abundance at z = 0 is enhanced by the inclusion of baryonic physics. The non-monotonic alteration of the evolved subhalo abundances can be explained by the modification of the concentration-mass relation of Illustris hosts compared to Illustris-Dark. Interestingly, the baryonic implementation in Illustris does not lead to an increase in the halo-to-halo variation compared to Illustris-Dark. In both cases, the normalized intrinsic scatter today is larger for Milky Way-like haloes than for cluster-sized objects. For Milky Way-like haloes, it increases from about eight per cent at infall to about 25 per cent at the current epoch. In both runs, haloes of fixed mass formed later host more subhaloes than early formers.

  7. Critical opalescence in baryonic QCD matter.

    Science.gov (United States)

    Antoniou, N G; Diakonos, F K; Kapoyannis, A S; Kousouris, K S

    2006-07-21

    We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behavior is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associated with the search for the QCD critical point in experiments with nuclei at high energies.

  8. STRANGE BARYONIC MATTER AND KAON CONDENSATION

    Czech Academy of Sciences Publication Activity Database

    Gazda, Daniel; Friedman, E.; Gal, A.; Mareš, Jiří

    2011-01-01

    Roč. 26, 3-4 (2011), s. 567-569 ISSN 0217-751X. [11th International Workshop on Meson Production, Properties and Interaction. Krakow, 10.06.2010-15.06.2010] R&D Projects: GA ČR GA202/09/1441 Institutional research plan: CEZ:AV0Z10480505 Keywords : (K)over-bar-nuclear bound states * strange baryonic matter * kaon condensation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.053, year: 2011

  9. Formulation of baryon number violating collisions

    International Nuclear Information System (INIS)

    Funakubo, Koichi; Otsuki, Shoichiro; Takenaga, Kazunori; Toyoda, Fumihiko.

    1992-01-01

    A new formalism based on path-integral expression of time-evolution operator during tunneling is presented. Instead of instanton calculus in the LSZ formalism, a classical bounce solution leading to sphaleron (instanton action) at high (low) energies is adopted as the tunneling configuration. The formalism is applied to O(3) nonlinear sigma model in two dimensions. For the coupling constant g 2 ≅ 0.1, which may be physical in the sense that the number of produced particles ≅ 100, comparable with that of electroweak theory, the baryon number violating cross section is smaller by orders of magnitude than the so-called unitarity bound. (author)

  10. Protecting the axion with local baryon number

    Science.gov (United States)

    Duerr, Michael; Schmidt-Hoberg, Kai; Unwin, James

    2018-05-01

    The Peccei-Quinn (PQ) solution to the Strong CP Problem is expected to fail unless the global symmetry U(1)PQ is protected from Planck-scale operators up to high mass dimension. Suitable protection can be achieved if the PQ symmetry is an automatic consequence of some gauge symmetry. We highlight that if baryon number is promoted to a gauge symmetry, the exotic fermions needed for anomaly cancellation can elegantly provide an implementation of the Kim-Shifman-Vainshtein-Zakharov 'hidden axion' mechanism with a PQ symmetry protected from Planck-scale physics.

  11. Critical Opalescence in Baryonic QCD Matter

    Science.gov (United States)

    Antoniou, N. G.; Diakonos, F. K.; Kapoyannis, A. S.; Kousouris, K. S.

    2006-07-01

    We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behavior is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associated with the search for the QCD critical point in experiments with nuclei at high energies.

  12. Critical Opalescence in Baryonic QCD Matter

    International Nuclear Information System (INIS)

    Antoniou, N. G.; Diakonos, F. K.; Kapoyannis, A. S.; Kousouris, K. S.

    2006-01-01

    We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behavior is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associated with the search for the QCD critical point in experiments with nuclei at high energies

  13. Baryonic effects in cosmic shear tomography: PCA parametrization and importance of extreme baryonic models

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Irshad [Fermilab; Gnedin, Nickolay Y. [Fermilab

    2017-07-07

    Baryonic effects are amongst the most severe systematics to the tomographic analysis of weak lensing data which is the principal probe in many future generations of cosmological surveys like LSST, Euclid etc.. Modeling or parameterizing these effects is essential in order to extract valuable constraints on cosmological parameters. In a recent paper, Eifler et al. (2015) suggested a reduction technique for baryonic effects by conducting a principal component analysis (PCA) and removing the largest baryonic eigenmodes from the data. In this article, we conducted the investigation further and addressed two critical aspects. Firstly, we performed the analysis by separating the simulations into training and test sets, computing a minimal set of principle components from the training set and examining the fits on the test set. We found that using only four parameters, corresponding to the four largest eigenmodes of the training set, the test sets can be fitted thoroughly with an RMS $\\sim 0.0011$. Secondly, we explored the significance of outliers, the most exotic/extreme baryonic scenarios, in this method. We found that excluding the outliers from the training set results in a relatively bad fit and degraded the RMS by nearly a factor of 3. Therefore, for a direct employment of this method to the tomographic analysis of the weak lensing data, the principle components should be derived from a training set that comprises adequately exotic but reasonable models such that the reality is included inside the parameter domain sampled by the training set. The baryonic effects can be parameterized as the coefficients of these principle components and should be marginalized over the cosmological parameter space.

  14. Calculation of baryon chemical potential and strangeness chemical potential in resonance matter

    International Nuclear Information System (INIS)

    Fu Yuanyong; Hu Shouyang; Lu Zhongdao

    2006-01-01

    Based on the high energy heavy-ion collisions statistical model, the baryon chemical potential and strangeness chemical potential are calculated for resonance matter with net baryon density and net strangeness density under given temperature. Furthermore, the relationship between net baryon density, net strangeness density and baryon chemical potential, strangeness chemical potential are analyzed. The results show that baryon chemical potential and strangeness chemical potential increase with net baryon density and net strangeness density increasing, the change of net baryon density affects baryon chemical potential and strangeness chemical potential more strongly than the change of net strangeness density. (authors)

  15. Baryons in and beyond the quark-diquark model

    International Nuclear Information System (INIS)

    Eichmann, G.; Alkofer, R.; Krassnigg, A.; Fischer, C. S.; Nicmorus, D.

    2011-01-01

    We examine the nucleon's electromagnetic form factors in a Poincare-covariant Faddeev framework. The three-quark core contributions to the form factors are obtained by employing a quark-diquark approximation. We implement the self-consistent solution for the quark-photon vertex from its inhomogeneous Bethe-Salpeter equation. We find that the resulting transverse parts which add to the Ball-Chiu vertex have no significant impact on nucleon magnetic moments. The current-quark mass evolution of the form factors agrees with results from lattice QCD.

  16. Baryon - antibaryon asymmetry in central rapidity region at LHC ALICE

    International Nuclear Information System (INIS)

    Broz, M.

    2008-01-01

    Study of asymmetry in number of baryons and antibaryons in central rapidity region is important for clarification of baryon number carriers character. Effect we are interested in is small, can be hidden by systematical processes of particle track reconstruction and identification. To make corrections on these effects is the aim of this thesis. (author)

  17. Galaxy Formation by Cosmic Strings and Cooling of Baryonic Matter

    OpenAIRE

    Mizuo, IZAWA; Humitaka, SATO; Department of Physics, University of Tokyo; Department of Physics, Kyoto University

    1987-01-01

    Cooling and contraction of baryonic matter are investigated ina galaxy formation scenario by string loops. It is found that ~3% of virialized baryonic matter has cooled down and contracted. This virialized object may have a disk-halo structure and be considered a galaxy.

  18. Baryon considered as a soliton in loop space

    International Nuclear Information System (INIS)

    Kazakov, V.A.; Migdal, A.A.

    1981-01-01

    The baryon mass for large N is expressed in QCD in terms of the collective field in loop space, which satisfies the nonlinear functional-integral equation. This collective loop field is a relativistic generalization of the self-consistent Witten field. Our approach confirms Witten's idea that a baryon is a soliton in 1/N expansion

  19. Finite Volume Effect of Baryons in Strange Hadronic Matter

    Institute of Scientific and Technical Information of China (English)

    SUN Bao-Xi; LI Lei; NING Ping-Zhi; ZHAO En-Guang

    2001-01-01

    The finite volume effect of baryons in strange hadronic matter (SHM) is studied within the framework of relativistic mean-field theory. As this effect is concerned, the saturation density of SHM turns lower, and the binding energy per baryon decreases. Its influence to the compression modulus of SHM is also discussed.

  20. Diquark structure in heavy quark baryons in a geometric model

    International Nuclear Information System (INIS)

    Paria, Lina; Abbas, Afsar

    1996-01-01

    Using a geometric model to study the structure of hadrons, baryons having one, two and three heavy quarks have been studied here. The study reveals diquark structure in baryons with one and two heavy quarks but not with three heavy identical quarks. (author). 15 refs., 2 figs., 2 tabs

  1. Massive pions, anomalies and baryons in holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, O. [Departament de Fisica and IFAE, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Panico, G., E-mail: panico@phys.ethz.c [Institute for Theoretical Physics, ETH Zurich, 8093 Zurich (Switzerland); Wulzer, A. [Institut de Theorie des Phenomenes Physiques, EPFL, CH-1015 Lausanne (Switzerland)

    2011-03-01

    We consider a holographic model of QCD, obtained by a very simple modification of the original construction, which describes at the same time the pion mass, the QCD anomalies and the baryons as topological solitons. We study in detail its phenomenological implications in both the mesonic and baryonic sectors and compare with the observations.

  2. Search for strange baryon electric dipole moment at LHCb

    CERN Document Server

    Lewis, Daniel James

    2017-01-01

    A search for the EDM of $\\Lambda$ baryons using the LHCb detector is proposed. In order to perform this search, the reconstruction of $\\Lambda$ baryons using T tracks must be possible. This note presents the reconstruction techniques and resolution studies that demonstrate that this is indeed feasible.

  3. Symmetry mappings concomitant to particle-number-conservation-baryon-number conservation

    International Nuclear Information System (INIS)

    Davis, W.R.

    1977-01-01

    Four theorem serve to demonstrate that matter fields in space-time admit certain timelike symmetry mappings concomitant to the familiar notion of particle number conservation, which can be more fundamentally accounted for by a type of projective invariance principle. These particular symmetry mappings include a family of symmetry properties that may be admitted by Riemannian space-times. In their strongest form, the results obtained provide some insight relating to the conservation of baryon number

  4. Baryon-to-dark matter ratio from random angular fields

    International Nuclear Information System (INIS)

    McDonald, John

    2013-01-01

    We consider the baryon-to-dark matter ratio in models where the dark matter and baryon densities depend on angular fields θ d and θ b according to ρ d ∝θ d α and ρ b ∝θ b β , with all values of θ d and θ b being equally probable in a given randomly-selected domain. Under the assumption that anthropic selection depends primarily on the baryon density in galaxies at spherical collapse, we show that the probability density function for the baryon-to-dark matter ratio r = Ω B /Ω DM is purely statistical in nature and is independent of anthropic selection. We compute the probability density function for r as a function of α and β and show that the observed value of the baryon-to-dark matter ratio, r ≈ 1/5, is natural in this framework

  5. Bi-local baryon interpolating fields with two flavors

    Energy Technology Data Exchange (ETDEWEB)

    Dmitrasinovic, V. [Belgrade University, Institute of Physics, Pregrevica 118, Zemun, P.O. Box 57, Beograd (RS); Chen, Hua-Xing [Institutos de Investigacion de Paterna, Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Valencia (Spain); Peking University, Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China)

    2011-02-15

    We construct bi-local interpolating field operators for baryons consisting of three quarks with two flavors, assuming good isospin symmetry. We use the restrictions following from the Pauli principle to derive relations/identities among the baryon operators with identical quantum numbers. Such relations that follow from the combined spatial, Dirac, color, and isospin Fierz transformations may be called the (total/complete) Fierz identities. These relations reduce the number of independent baryon operators with any given spin and isospin. We also study the Abelian and non-Abelian chiral transformation properties of these fields and place them into baryon chiral multiplets. Thus we derive the independent baryon interpolating fields with given values of spin (Lorentz group representation), chiral symmetry (U{sub L}(2) x U{sub R}(2) group representation) and isospin appropriate for the first angular excited states of the nucleon. (orig.)

  6. The Compressed Baryonic Matter Experiment at FAIR

    International Nuclear Information System (INIS)

    Heuser, Johann M.

    2013-01-01

    The Compressed Baryonic Matter (CBM) experiment will explore the phase diagram of strongly interacting matter in the region of high net baryon densities. The experiment is being laid out for nuclear collision rates from 0.1 to 10 MHz to access a unique wide spectrum of probes, including rarest particles like hadrons containing charm quarks, or multi-strange hyperons. The physics programme will be performed with ion beams of energies up to 45 GeV/nucleon. Those will be delivered by the SIS-300 synchrotron at the completed FAIR accelerator complex. Parts of the research programme can already be addressed with the SIS-100 synchrotron at the start of FAIR operation in 2018. The initial energy range of up to 11 GeV/nucleon for heavy nuclei, 14 GeV/nucleon for light nuclei, and 29 GeV for protons, allows addressing the equation of state of compressed nuclear matter, the properties of hadrons in a dense medium, the production and propagation of charm near the production threshold, and exploring the third, strange dimension of the nuclide chart. In this article we summarize the CBM physics programme, the preparation of the detector, and give an outline of the recently begun construction of the Facility for Antiproton and Ion Research

  7. The Compressed Baryonic Matter experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Höhne Claudia

    2018-01-01

    Full Text Available The CBM experiment will investigate highly compressed baryonic matter created in A+A collisions at the new FAIR research center. With a beam energy range up to 11 AGeV for the heaviest nuclei at the SIS 100 accelerator, CBM will investigate the QCD phase diagram in the intermediate range, i.e. at moderate temperatures but high net-baryon densities. This intermediate range of the QCD phase diagram is of particular interest, because a first order phase transition ending in a critical point and possibly new highdensity phases of strongly interacting matter are expected. In this range of the QCD phase diagram only exploratory measurements have been performed so far. CBM, as a next generation, high-luminosity experiment, will substantially improve our knowledge of matter created in this region of the QCD phase diagram and characterize its properties by measuring rare probes such as multi-strange hyperons, dileptons or charm, but also with event-by-event fluctuations of conserved quantities, and collective flow of identified particles. The experimental preparations with special focus on hadronic observables and strangeness is presented in terms of detector development, feasibility studies and fast track reconstruction. Preparations are progressing well such that CBM will be ready with FAIR start. As quite some detectors are ready before, they will be used as upgrades or extensions of already running experiments allowing for a rich physics program prior to FAIR start.

  8. Finite temperature system of strongly interacting baryons

    International Nuclear Information System (INIS)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.

    1976-07-01

    A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc 2 /k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10 11 0 K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light

  9. Analysis of the photocouplings of baryon resonances

    Energy Technology Data Exchange (ETDEWEB)

    Bando, M; Toya, M [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, Hiroshi

    1978-02-01

    The typical features of the photocouplings of the 70 L=1 and 56 L=2 baryon resonances are discussed in view of the recently reported experimental data. It is emphasized that our relativistic quark model is very convenient for the phenomenological study on the photocouplings and also is suitable for a simple physical interpretation. The phenomenological analysis of the photocoupling data based on our model concludes that the transition from the quark state (jsup(P)=1/2/sup +/, lambda=1/2) to (j=L + 1/2, lambda=3/2) is dominant in the photo-transitions from nucleons to the excited baryons in both cases L=1 and 2. Our result implies the non-negligible magnitude of the value of delta L sub(z)=2 term. The experimental data on A sub(1/2)sup(p)(P/sub 13/) and A sub(3/2)sup(p)(P/sub 13/) is crucial to confirm the strength of delta L sub(z)=2 term.

  10. Finite temperature system of strongly interacting baryons

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.

    1976-07-01

    A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc/sup 2//k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10/sup 11/ /sup 0/K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light.

  11. Histories electromagnetism

    International Nuclear Information System (INIS)

    Burch, Aidan

    2004-01-01

    Working within the HPO (History Projection Operator) Consistent Histories formalism, we follow the work of Savvidou on (scalar) field theory [J. Math. Phys. 43, 3053 (2002)] and that of Savvidou and Anastopoulos on (first-class) constrained systems [Class. Quantum Gravt. 17, 2463 (2000)] to write a histories theory (both classical and quantum) of Electromagnetism. We focus particularly on the foliation-dependence of the histories phase space/Hilbert space and the action thereon of the two Poincare groups that arise in histories field theory. We quantize in the spirit of the Dirac scheme for constrained systems

  12. Baryon-baryon bound states from first principles in 3+1 lattice QCD with two flavors and strong coupling

    International Nuclear Information System (INIS)

    Faria da Veiga, Paulo A.; O'Carroll, Michael

    2006-01-01

    We determine baryon-baryon bound states in (3+1)-dimensional SU(3) lattice QCD with two flavors, 4x4 spin matrices, and in an imaginary time formulation. For small hopping parameter κ>0 and large glueball mass (strong coupling), we show the existence of three-quark isospin 1/2 particles (proton and neutron) and isospin 3/2 baryons (delta particles), with asymptotic masses -3lnκ and isolated dispersion curves. Baryon-baryon bound states of isospin zero are found with binding energy of order κ 2 , using a ladder approximation to a lattice Bethe-Salpeter equation. The dominant baryon-baryon interaction is an energy-independent spatial range-one attractive potential with an O(κ 2 ) strength. There is also attraction arising from gauge field correlations associated with six overlapping bonds, but it is counterbalanced by Pauli repulsion to give a vanishing zero-range potential. The overall range-one potential results from a quark, antiquark exchange with no meson exchange interpretation; the repulsive or attractive nature of the interaction depends on the isospin and spin of the two-baryon state

  13. Electromagnetic drift modes in an inhomogeneous electron gas

    DEFF Research Database (Denmark)

    Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens

    1986-01-01

    A pair of nonlinear equations is derived which describes the dynamics of the electromagnetic drift oscillations in a nonuniform magnetized electron gas. It is shown that the nonlinear electromagnetic drift modes can propagate in the form of dipole vortices...

  14. Electromagnetic wave in a relativistic magnetized plasma

    International Nuclear Information System (INIS)

    Krasovitskiy, V. B.

    2009-01-01

    Results are presented from a theoretical investigation of the dispersion properties of a relativistic plasma in which an electromagnetic wave propagates along an external magnetic field. The dielectric tensor in integral form is simplified by separating its imaginary and real parts. A dispersion relation for an electromagnetic wave is obtained that makes it possible to analyze the dispersion and collisionless damping of electromagnetic perturbations over a broad parameter range for both nonrelativistic and ultrarelativistic plasmas.

  15. Massive black holes and light-element nucleosynthesis in a baryonic universe

    Science.gov (United States)

    Gnedin, Nickolay Y.; Ostriker, Jeremiah P.; Rees, Martin J.

    1995-01-01

    We reexamine the model proposed by Gnedin & Ostriker (1992) in which Jeans mass black holes (M(sub BH) approximately = 10(exp 6) solar mass) form shortly after decoupling. There is no nonbaryonic dark matter in this model, but we examine the possibility that Omega(sub b) is considerably larger than given by normal nucleosynthesis. Here we allow for the fact that much of the high baryon-to-photon ratio material will collapse leaving the universe of remaining material with light-element abundances more in accord with the residual baryonic density (approximately = 10(exp -2)) than with Omega(sub 0) and the initial baryonic density (approximately = 10(exp -1)). We find that no reasonable model can be made with random-phase density fluctuations, if the power on scales smaller than 10(exp 6) solar mass is as large as expected. However, phase-correlated models of the type that might occur in connection with topological singularities can be made with Omega(sub b) h(exp 2) = 0.013 +/- 0.001, 0.15 approximately less than Omega(sub 0) approximately less than 0.4, which are either flat (Omega(sub lambda) = 1 - Omega(sub 0)) or open (Omega(sub lambda) = 0) and which satisfy all the observational constraints which we apply, including the large baryon-to-total mass ratio found in the X-ray clusters. The remnant baryon density is thus close to that obtained in the standard picture (Omega(sub b) h(exp 2) = 0.0125 +/- 0.0025; Walker et al. 1991). The spectral index implied for fluctuations in the baryonic isocurvature scenario, -1 less than m less than 0, is in the range expected by other arguments based on large-scale structure and microwave fluctuation constraints. The dark matter in this picture is in the form of massive black holes. Accretion onto them at early epochs releases high-energy photons which significantly heat and reionize the universe. But photodissociation does not materially change light-element abundances. A typical model gives bar-y approximately = 1 x 10(exp -5

  16. Study of the pion electromagnetic form factor in the timelike region, from the production threshold to 900 MeV in the center of mass

    International Nuclear Information System (INIS)

    Quenzer, A.

    1977-01-01

    The pion form factor is measured in the reaction e + e - →π + π - for center of mass energies in the range 480-900 MeV. The results are first analysed in terms of the conventional Vector Meson Dominance formalism, and then taking into account the ωπ inelastic channel. The results of this later formalisms is a pion form factor (F) which fits quite well all the existing data on F both in the timelike and spacelike regions, and a pion mean square radius [fr

  17. SU(3) chiral symmetry for baryons

    International Nuclear Information System (INIS)

    Dmitrasinovic, V.

    2011-01-01

    Three-quark nucleon interpolating fields in QCD have well-defined SU L (3)xSU R (3) and U A (1) chiral transformation properties, viz. [(6,3)+(3,6)], [(3,3-bar)+(3-bar,3)], [(8,1)+(1,8)] and their 'mirror' images. It has been shown (phenomenologically) in Ref. [2] that mixing of the [(6,3)+(3,6)] chiral multiplet with one ordinary ('naive') and one 'mirror' field belonging to the [(3,3-bar)+(3-bar,3)], [(8,1)+(1,8)] multiplets can be used to fit the values of the isovector (g A (3) ) and the flavor-singlet (isoscalar) axial coupling (g A (0) ) of the nucleon and then predict the axial F and D coefficients, or vice versa, in reasonable agreement with experiment. In an attempt to derive such mixing from an effective Lagrangian, we construct all SU L (3)xSU R (3) chirally invariant non-derivative one-meson-baryon interactions and then calculate the mixing angles in terms of baryons' masses. It turns out that there are (strong) selection rules: for example, there is only one non-derivative chirally symmetric interaction between J 1/2 fields belonging to the [(6,3)+(3,6)] and the [(3,3-bar)+(3-bar,3)] chiral multiplets, that is also U A (1) symmetric. We also study the chiral interactions of the [(3,3-bar)+(3-bar,3)] and [(8,1)+(1,8)] nucleon fields. Again, there are selection rules that allow only one off-diagonal non-derivative chiral SU L (3)xSU R (3) interaction of this type, that also explicitly breaks the U A (1) symmetry. We use this interaction to calculate the corresponding mixing angles in terms of baryon masses and fit two lowest lying observed nucleon (resonance) masses, thus predicting the third (J = 1/2, I = 3/2)Δ resonance, as well as one or two flavor-singlet Λ hyperon(s), depending on the type of mixing. The effective chiral Lagrangians derived here may be applied to high density matter calculations.

  18. Probing sub-GeV dark matter-baryon scattering with cosmological observables

    Science.gov (United States)

    Xu, Weishuang Linda; Dvorkin, Cora; Chael, Andrew

    2018-05-01

    We derive new limits on the elastic scattering cross section between baryons and dark matter using cosmic microwave background data from the Planck satellite and measurements of the Lyman-alpha forest flux power spectrum from the Sloan Digital Sky Survey. Our analysis addresses generic cross sections of the form σ ∝vn , where v is the dark matter-baryon relative velocity, allowing for constraints on the cross section independent of specific particle physics models. We include high-ℓ polarization data from Planck in our analysis, improving over previous constraints. We apply a more careful treatment of dark matter thermal evolution than previously done, allowing us to extend our constraints down to dark matter masses of ˜MeV . We show in this work that cosmological probes are complementary to current direct detection and astrophysical searches.

  19. Mirage in temporal correlation functions for baryon-baryon interactions in lattice QCD

    International Nuclear Information System (INIS)

    Iritani, T.; Doi, T.; Aoki, S.; Gongyo, S.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Ishii, N.; Murano, K.; Nemura, H.; Sasaki, K.

    2016-01-01

    Single state saturation of the temporal correlation function is a key condition to extract physical observables such as energies and matrix elements of hadrons from lattice QCD simulations. A method commonly employed to check the saturation is to seek for a plateau of the observables for large Euclidean time. Identifying the plateau in the cases having nearby states, however, is non-trivial and one may even be misled by a fake plateau. Such a situation takes place typically for a system with two or more baryons. In this study, we demonstrate explicitly the danger from a possible fake plateau in the temporal correlation functions mainly for two baryons (ΞΞ and NN), and three and four baryons ("3He and "4He) as well, employing (2+1)-flavor lattice QCD at m_π=0.51 GeV on four lattice volumes with L= 2.9, 3.6, 4.3 and 5.8 fm. Caution is required when drawing conclusions about the bound NN, 3N and 4N systems based only on the standard plateau fitting of the temporal correlation functions.

  20. Quantum Operator Design for Lattice Baryon Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lichtl, Adam [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2006-09-07

    A previously-proposed method of constructing spatially-extended gauge-invariant three-quark operators for use in Monte Carlo lattice QCD calculations is tested, and a methodology for using these operators to extract the energies of a large number of baryon states is developed. This work is part of a long-term project undertaken by the Lattice Hadron Physics Collaboration to carry out a first-principles calculation of the low-lying spectrum of QCD. The operators are assemblages of smeared and gauge-covariantly-displaced quark fields having a definite flavor structure. The importance of using smeared fields is dramatically demonstrated. It is found that quark field smearing greatly reduces the couplings to the unwanted high-lying short-wavelength modes, while gauge field smearing drastically reduces the statistical noise in the extended operators.