WorldWideScience

Sample records for barton-4 reactor

  1. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  2. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  3. Reactor

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1976-01-01

    Object: To provide a boiling water reactor which can enhance a quake resisting strength and flatten power distribution. Structure: At least more than four fuel bundles, in which a plurality of fuel rods are arranged in lattice fashion which upper and lower portions are supported by tie-plates, are bundled and then covered by a square channel box. The control rod is movably arranged within a space formed by adjoining channel boxes. A spacer of trapezoidal section is disposed in the central portion on the side of the channel box over substantially full length in height direction, and a neutron instrumented tube is disposed in the central portion inside the channel box. Thus, where a horizontal load is exerted due to earthquake or the like, the spacers come into contact with each other to support the channel box and prevent it from abnormal vibrations. (Furukawa, Y.)

  4. Reactor

    International Nuclear Information System (INIS)

    Evans, R.M.

    1976-01-01

    Disclosed is a neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch. 1 claim, 16 figures

  5. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  6. Nuclear reactors

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-10-01

    After some remarks on the nuclear fuel, on the chain reaction control, on fuel loading and unloading, this article proposes descriptions of the design, principles and operations of different types of nuclear reactors as well as comments on their presence and use in different countries: pressurized water reactors (design of the primary and secondary circuits, volume and chemistry control, backup injection circuits), boiling water reactors, heavy water reactors, graphite and boiling water reactors, graphite-gas reactors, fast breeder reactors, and fourth generation reactors (definition, fast breeding). For these last ones, six concepts are presented: sodium-cooled fast reactor, lead-cooled fast reactor, gas-cooled fast reactor, high temperature gas-cooled reactor, supercritical water-cooled reactor, and molten salt reactor

  7. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  8. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  9. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  10. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  11. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  12. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  13. Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Frederick H. [Argonne National Laboratory; Jacobson, Norman H.

    1968-09-01

    This booklet discusses research reactors - reactors designed to provide a source of neutrons and/or gamma radiation for research, or to aid in the investigation of the effects of radiation on any type of material.

  14. Nuclear reactors

    International Nuclear Information System (INIS)

    Middleton, J.E.

    1977-01-01

    Reference is made to water cooled reactors and in particular to the cooling system of steam generating heavy water reactors (SGHWR). A two-coolant circuit is described for the latter. Full constructural details are given. (U.K.)

  15. Reactor Neutrinos

    OpenAIRE

    Kim, Soo-Bong; Lasserre, Thierry; Wang, Yifang

    2013-01-01

    We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very ...

  16. BOILING REACTORS

    Science.gov (United States)

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  17. Reactor vessel

    NARCIS (Netherlands)

    Makkee, M.; Kapteijn, F.; Moulijn, J.A.

    1999-01-01

    A reactor vessel (1) comprises a reactor body (2) through which channels (3) are provided whose surface comprises longitudinal inwardly directed parts (4) and is provided with a catalyst (6), as well as buffer bodies (8, 12) connected to the channels (3) on both sides of the reactor body (2) and

  18. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  19. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Ronen, Y.; Elias, E.

    1994-01-01

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  20. Research reactors

    International Nuclear Information System (INIS)

    Merchie, Francois

    2015-10-01

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  1. Reactor container

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Nagatomi, Shozo.

    1976-01-01

    Object: To provide a jet and missile protective wall of a configuration being inflated toward the center of a reactor container on the inside of a body of the reactor container disposed within a biological shield wall to thereby increase safety of the reactor container. Structure: A jet and missile protective wall comprised of curved surfaces internally formed with a plurality of arch inflations filled with concrete between inner and outer iron plates and shape steel beam is provided between a reactor container surrounded by a biological shield wall and a thermal shield wall surrounding the reactor pressure vessel, and an adiabatic heat insulating material is filled in space therebetween. (Yoshino, Y.)

  2. Research reactors

    International Nuclear Information System (INIS)

    Kowarski, L.

    1955-01-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  3. Hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1980-01-01

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of 233 U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m -2 , and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid

  4. Heterogeneous reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Nair, R.P.K.

    1979-08-01

    The microscopic study of a cell is meant for the determination of the infinite multiplication factor of the cell, which is given by the four factor formula: K(infinite) = n(epsilon)pf. The analysis of an homogeneous reactor is similar to that of an heterogeneous reactor, but each factor of the four factor formula can not be calculated by the formulas developed in the case of an homogeneous reactor. A great number of methods was developed for the calculation of heterogeneous reactors and some of them are discussed. (Author) [pt

  5. Nuclear reactor

    International Nuclear Information System (INIS)

    Mysels, K.J.; Shenoy, A.S.

    1976-01-01

    A nuclear reactor is described in which the core consists of a number of fuel regions through each of which regulated coolant flows. The coolant from neighbouring fuel regions is combined in a manner which results in an averaging of the coolant temperature at the outlet of the core. By this method the presence of hot streaks in the reactor is reduced. (UK)

  6. Nuclear reactor

    International Nuclear Information System (INIS)

    Tilliette, Z.

    1975-01-01

    A description is given of a nuclear reactor and especially a high-temperature reactor in which provision is made within a pressure vessel for a main cavity containing the reactor core and a series of vertical cylindrical pods arranged in spaced relation around the main cavity and each adapted to communicate with the cavity through two collector ducts or headers for the primary fluid which flows downwards through the reactor core. Each pod contains two superposed steam-generator and circulator sets disposed in substantially symmetrical relation on each side of the hot primary-fluid header which conveys the primary fluid from the reactor cavity to the pod, the circulators of both sets being mounted respectively at the bottom and top ends of the pod

  7. SLOWPOKE reactor

    International Nuclear Information System (INIS)

    Evans, D.J.R.; Downs, W.E.

    1974-01-01

    The SLOWPOKE reactor is described, which is a small pool type with thermal neutron fluxes ranging from 10 11 -10 12 n cm -2 sec -1 . It differs in many ways from conventional pool type, namely small critical mass, beryllium reflector and a closed reactor container. The reactor is designed as small and simply as possible, and consistently with safety and good operating practice. Access to the present model is via pneumatic irradiation tubes only, which limits the use of the facility to activation analysis, tracer production and training. (Mori, K.)

  8. Nuclear reactor

    International Nuclear Information System (INIS)

    Rau, P.

    1980-01-01

    The reactor core of nuclear reactors usually is composed of individual elongated fuel elements that may be vertically arranged and through which coolant flows in axial direction, preferably from bottom to top. With their lower end the fuel elements gear in an opening of a lower support grid forming part of the core structure. According to the invention a locking is provided there, part of which is a control element that is movable along the fuel element axis. The corresponding locking element is engaged behind a lateral projection in the opening of the support grid. The invention is particularly suitable for breeder or converter reactors. (orig.) [de

  9. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  10. Reactor Neutrinos

    Directory of Open Access Journals (Sweden)

    Soo-Bong Kim

    2013-01-01

    Full Text Available We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very recently the most precise determination of the neutrino mixing angle θ13. This paper provides an overview of the upcoming experiments and of the projects under development, including the determination of the neutrino mass hierarchy and the possible use of neutrinos for society, for nonproliferation of nuclear materials, and geophysics.

  11. REACTOR SHIELD

    Science.gov (United States)

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  12. NEUTRONIC REACTOR

    Science.gov (United States)

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  13. Chemical Reactors.

    Science.gov (United States)

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  14. Reactor technology

    International Nuclear Information System (INIS)

    Erdoes, P.

    1977-01-01

    This is one of a series of articles discussing aspects of nuclear engineering ranging from a survey of various reactor types for static and mobile use to mention of atomic thermo-electric batteries of atomic thermo-electric batteries for cardiac pacemakers. Various statistics are presented on power generation in Europe and U.S.A. and economics are discussed in some detail. Molten salt reactors and research machines are also described. (G.M.E.)

  15. Propulsion reactors

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    A nuclear reactor equips the recently constructed French aircraft- carrier Charles-De-Gaulle, in a few months the second nuclear submarine (SNLE) of new generation will be operational. In last october the government launched the program Barracuda which consists of 6 submarines (SNA) whose series head will be operational in 2010. The main asset of nuclear propulsion is to allow an almost unlimited autonomy: soft water, air are produced inside the submarine and the maximum time spent underwater is only limited by human capacity to cope with confinement. CEA has 3 missions concerning country defence. First the designing, the fabrication and the maintenance of weapons, secondly the supplying of fissile materials and thirdly the nuclear propulsion. A new generation of propulsion reactors is being studied and a ground installation involving a test reactor equivalent to that on board is being built. This test reactor (RES) will simulate any type of on-board reactors by adjusting temperature, pressure, flowrate and even equipment such as steam generator. This reactor will validate the technological choices for the Barracuda program. (A.C.)

  16. Research reactors - an overview

    International Nuclear Information System (INIS)

    West, C.D.

    1997-01-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs

  17. Nuclear reactors

    International Nuclear Information System (INIS)

    Prescott, R.F.; George, B.V.; Baglin, C.J.

    1978-01-01

    Reference is made to thermal insulation on the inner surfaces of containment vessels of fluid cooled nuclear reactors and particularly in situations where the thermal insulation must also serve a structural function and transmit substantial load forces to the surface which it covers. An arrangement is described that meets this requirement and also provides for core support means that favourably influences the flow of hot coolant from the lower end of the core into a plenum space in the hearth of the reactor. The arrangement comprises a course of thermally insulating bricks arranged as a mosaic covering a wall of the reactor and a course of thermally insulating tiles arranged as a mosaic covering the course of bricks. Full constructional details are given. (UK)

  18. Reactor utilization

    International Nuclear Information System (INIS)

    Zecevic, V.

    1963-01-01

    In 1962, the RA reactor was operated almost three times more than in 1961, producing total of 25 555 MWh. Diagram containing comparative data about reactor operation for 1960, 1961, and 1962, percent of fuel used and U-235 burnup shows increase in reactor operation. Number of samples irradiated was 659, number of experiments done was 16. mean powered level was 5.93 MW. Fuel was added into the core twice during the reporting year. In fact the core was increased from 56 to 68 fuel channels and later to 84 fuel channels. Fuel was added to the core when the reactivity worth decreased to the minimum operation level due to burnup. In addition to this 5 central fuel channels were exchanged with fresh fuel in february for the purpose of irradiation in the VISA-2 channel

  19. Bioconversion reactor

    Science.gov (United States)

    McCarty, Perry L.; Bachmann, Andre

    1992-01-01

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  20. Thermonuclear reactor

    International Nuclear Information System (INIS)

    Araki, Takao; Saito, Yasushi.

    1987-01-01

    Purpose: To reduce the seismic wave responsivity of an exhaust duct shields thereby preventing the release of tritium in an evacuating device due to failures upon earthquakes. Constitution: The ends on the cutting side of upper outer exhaust duct shields of a thermonuclear reactor are connected with a plurality of support beams. In a case where seismic vibrations are exerted to such a thermonuclear reactor, since the ends on the cutting side are coupled with the support beams, vibrations of the upper outer exhaust duct shields are greatly restricted. Thus, since there is no more such a possibility, for example, that an exhaust duct connected to the upper portion of a reactor main body is greatly distorted due to the seismic response of the upper outside exhaust duct shields to result in the failure of the connection portion with a vacuum pump, the release of tritium due to failure of the evacuating device can be prevented. (Yoshino, Y.)

  1. Nuclear reactor

    International Nuclear Information System (INIS)

    Gilroy, J.E.

    1980-01-01

    An improved cover structure for liquid metal cooled fast breeder type reactors is described which it is claimed reduces the temperature differential across the intermediate grid plate of the core cover structure and thereby reduces its subjection to thermal stresses. (UK)

  2. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    The method of operating a water-cooled neutronic reactor having a graphite moderator is described which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40--60 volume percent of the mixture, in contact with the graphite moderator. 2 claims, 4 figures

  3. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield

  4. Reactor licensing

    International Nuclear Information System (INIS)

    Harvie, J.D.

    2002-01-01

    This presentation discusses reactor licensing and includes the legislative basis for licensing, other relevant legislation , the purpose of the Nuclear Safety and Control Act, important regulations, regulatory document, policies, and standards. It also discusses the role of the CNSC, its mandate and safety philosophy

  5. Neutronic reactor

    International Nuclear Information System (INIS)

    Carleton, J.T.

    1977-01-01

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment. 3 claims, 6 figures

  6. Reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Sasagawa, Masaru; Masuda, Hiroyuki; Mogi, Toshihiko; Kanazawa, Nobuhiro.

    1994-01-01

    In a reactor core, a fuel inventory at an outer peripheral region is made smaller than that at a central region. Fuel assemblies comprising a small number of large-diameter fuel rods are used at the central region and fuel assemblies comprising a great number of smalldiameter fuel rods are used at the outer peripheral region. Since a burning degradation rate of the fuels at the outer peripheral region can be increased, the burning degradation rate at the infinite multiplication factor of fuels at the outer region can substantially be made identical with that of the fuels in the inner region. As a result, the power distribution in the direction of the reactor core can be flattened throughout the entire period of the burning cycle. Further, it is also possible to make the degradation rate of fuels at the outer region substantially identical with that of fuels at the inner side. A power peak formed at the outer circumferential portion of the reactor core of advanced burning can be lowered to improve the fuel integrity, and also improve the reactor safety and operation efficiency. (N.H.)

  7. Nuclear reactor

    International Nuclear Information System (INIS)

    Gibbons, J.F.; McLaughlin, D.J.

    1978-01-01

    In the pressure vessel of the water-cooled nuclear reactor there is provided an internal flange on which the one- or two-part core barrel is hanging by means of an external flange. A cylinder is extending from the reactor vessel closure downwards to a seat on the core cupport structure and serves as compression element for the transmission of the clamping load from the closure head to the core barrel (upper guide structure). With the core barrel, subject to tensile stress, between the vessel internal flange and its seat on one hand and the compression of the cylinder resp. hold-down element between the closure head and the seat on the other a very strong, elastic sprung structure is obtained. (DG) [de

  8. Nuclear reactor

    International Nuclear Information System (INIS)

    Aleite, W.; Bock, H.W.; Struensee, S.

    1976-01-01

    The invention concerns the use of burnable poisons in a nuclear reactor, especially in PWRs, in order to improve the controllability of the reactor. An unsymmetrical arrangement in the lattice is provided, if necessary also by insertion of special rods for these additions. It is proposed to arrange the burnable poisons in fuel elements taken over from a previous burn-up cycle and to distribute them, going out from the side facing the control rods, over not more than 20% of the lenth of the fuel elements. It seems sufficient, for the burnable poisons to bind an initial reactivity of only 0.1% and to become ineffective after normal operation of 3 to 4 months. (ORU) [de

  9. Reactor container

    International Nuclear Information System (INIS)

    Otsuka, Hiroaki; Yoshida, Takashi.

    1979-01-01

    Purpose: To prevent rain water falling along the outer wall of the container during the construction work of an atomic power plant from making ingress into the inner part of a reactor container through a large size material carry-in port. Constitution: A weir for preventing the ingress of rain water is provided on the border between the foot floor of a large material carry-in port provided on the side surface at the bottom part of the reactor container and the floor surface of the building. This weir is of a semi-circular plate shape, and formed so that the lower semi-circular part of the carry-in port is tightly closed. (Kamimura, M.)

  10. Reactor container

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Saba, Kazuhisa.

    1979-01-01

    Purpose: To improve the earthquake resistance as well as reduce the size of a container for a nuclear reactor with no adverse effects on the decrease of impact shock to the container and shortening of construction step. Constitution: Reinforcing profile steel materials are welded longitudinally and transversely to the inner surface of a container, and inner steel plates are secured to the above profile steel materials while keeping a gap between the materials and the container. Reactor shielding wall planted to the base concrete of the container is mounted to the pressure vessel, and main steam pipeways secured by the transverse beams and led to the outside of container is connected. This can improve the rigidity earthquake strength and the safetiness against the increase in the inside pressure upon failures of the container. (Yoshino, Y.)

  11. Reactor container

    International Nuclear Information System (INIS)

    Oyamada, Osamu; Furukawa, Hideyasu; Uozumi, Hiroto.

    1979-01-01

    Purpose: To lower the position of an intermediate slab within a reactor container and fitting a heat insulating material to the inner wall of said intermediate slab, whereby a space for a control rod exchanging device and thermal stresses of the inner peripheral wall are lowered. Constitution: In the pedestal at the lower part of a reactor pressure vessel there is formed an intermediate slab at a position lower than diaphragm floor slab of the outer periphery of the pedestal thereby to secure a space for providing automatic exchanging device of a control rod driving device. Futhermore, a heat insulating material is fitted to the inner peripheral wall at the upper side of the intermediate slab part, and the temperature gradient in the wall thickness direction at the time of a piping rupture trouble is made gentle, and thermal stresses at the inner peripheral wall are lowered. (Sekiya, K.)

  12. Neutronic reactor

    International Nuclear Information System (INIS)

    Lewis, W.R.

    1978-01-01

    Disclosed is a graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels

  13. Nuclear reactor

    International Nuclear Information System (INIS)

    Shirakawa, Toshihisa.

    1979-01-01

    Purpose: To prevent cladding tube injuries due to thermal expansion of each of the pellets by successively extracting each of the control rods loaded in the reactor core from those having less number of notches, as well as facilitate the handling work for the control rods. Constitution: A recycle flow control device is provided to a circulation pump for forcibly circulating coolants in the reactor container and an operational device is provided for receiving each of the signals concerning number of notches for each of the control rods and flow control depending on the xenon poisoning effect obtained from the signals derived from the in-core instrument system connected to the reactor core. The operational device is connected with a control rod drive for moving each of the control rods up and down and a recycle flow control device. The operational device is set with a pattern for the aimed control rod power and the sequence of extraction. Upon extraction of the control rods, they are extracted successively from those having less notch numbers. (Moriyama, K.)

  14. Reactor building

    International Nuclear Information System (INIS)

    Ebata, Sakae.

    1990-01-01

    At least one valve rack is disposed in a reactor building, on which pipeways to a main closure valve, valves and bypasses of turbines are placed and contained. The valve rack is fixed to the main body of the building or to a base mat. Since the reactor building is designed as class A earthquake-proofness and for maintaining the S 1 function, the valve rack can be fixed to the building main body or to the base mat. With such a constitution, the portions for maintaining the S 1 function are concentrated to the reactor building. As a result, the dispersion of structures of earthquake-proof portion corresponding to the reference earthquake vibration S 1 can be prevented. Accordingly, the conditions for the earthquake-proof design of the turbine building and the turbine/electric generator supporting rack are defined as only the class B earthquake-proof design conditions. In view of the above, the amount of building materials can be saved and the time for construction can be shortened. (I.S.)

  15. Nuclear research reactors

    International Nuclear Information System (INIS)

    1985-01-01

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.) [pt

  16. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  17. Photocatalytic reactor

    Science.gov (United States)

    Bischoff, Brian L.; Fain, Douglas E.; Stockdale, John A. D.

    1999-01-01

    A photocatalytic reactor for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane.

  18. Nuclear reactor

    International Nuclear Information System (INIS)

    Anthony, A.J.; Gruber, E.A.

    1979-01-01

    A nuclear reactor with control rods in channels between fuel assemblies wherein the fuel assemblies incorporate guide rods which protrude outwardly into the control rod channels to prevent the control rods from engaging the fuel elements. The guide rods also extend back into the fuel assembly such that they are relatively rigid members. The guide rods are tied to the fuel assembly end or support plates and serve as structural members which are supported independently of the fuel element. Fuel element spacing and support means may be attached to the guide rods. 9 claims

  19. D and DR Reactors

    Data.gov (United States)

    Federal Laboratory Consortium — The world's second full-scale nuclear reactor was the D Reactor at Hanford which was built in the early 1940's and went operational in December of 1944.D Reactor ran...

  20. Reactor core fuel management

    International Nuclear Information System (INIS)

    Silvennoinen, P.

    1976-01-01

    The subject is covered in chapters, entitled: concepts of reactor physics; neutron diffusion; core heat transfer; reactivity; reactor operation; variables of core management; computer code modules; alternative reactor concepts; methods of optimization; general system aspects. (U.K.)

  1. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  2. Reactor container

    International Nuclear Information System (INIS)

    Oikawa, Hirohide; Otonari, Jun-ichiro; Tozaki, Yuka.

    1993-01-01

    Partition walls are disposed between a reactor pressure vessel and a suppression chamber to separate a dry well to an upper portion and a lower portion. A communication pipe is disposed to the partition walls. One end of the communication pipe is opened in an upper portion of the dry well at a position higher than a hole disposed to a bent tube of the suppression chamber. When coolants overflow from a depressurization valve by an erroneous operation of an emergency reactor core cooling device, the coolants accumulate in the upper portion of the dry well. When the pipeline is ruptured at the upper portion of the pressure vessel, only the inside of the pressure vessel and the upper portion of the dry well are submerged in water. In this case, the water level of the coolants does not elevate to the opening of the commuication pipe but they flow into the suppression chamber from the hole disposed to the bent tube. Since the coolants do not flow out to the lower portion of the dry well, important equipments such as control rod drives disposed at the lower portion of the dry wall can be prevented from submerging in water. (I.N.)

  3. Reactor container

    Energy Technology Data Exchange (ETDEWEB)

    Oikawa, Hirohide; Otonari, Jun-ichiro; Tozaki, Yuka.

    1993-09-07

    Partition walls are disposed between a reactor pressure vessel and a suppression chamber to separate a dry well to an upper portion and a lower portion. A communication pipe is disposed to the partition walls. One end of the communication pipe is opened in an upper portion of the dry well at a position higher than a hole disposed to a bent tube of the suppression chamber. When coolants overflow from a depressurization valve by an erroneous operation of an emergency reactor core cooling device, the coolants accumulate in the upper portion of the dry well. When the pipeline is ruptured at the upper portion of the pressure vessel, only the inside of the pressure vessel and the upper portion of the dry well are submerged in water. In this case, the water level of the coolants does not elevate to the opening of the commuication pipe but they flow into the suppression chamber from the hole disposed to the bent tube. Since the coolants do not flow out to the lower portion of the dry well, important equipments such as control rod drives disposed at the lower portion of the dry wall can be prevented from submerging in water. (I.N.).

  4. Reactor monitor

    International Nuclear Information System (INIS)

    Takada, Tamotsu.

    1992-01-01

    The device of the present invention monitors a reactor so that each of the operations for the relocation of fuel assemblies and the withdrawal and the insertion of control rods upon exchange of fuel assemblies and control rods in the reactor. That is, when an operator conducts relocating operation by way of a fuel assembly operation section, the device of the present invention judges whether the operation indication is adequate or not, based on the information of control rod arrangement in a control rod memory section. When the operation indication is wrong, a stop signal is sent to a fuel assembly relocating device. Further, when the operator conducts control rod operation by way of a control rod operation section, the device of the present invention judges in the control rod withdrawal judging section, as to whether the operation indication given by the operator is adequate or not by comparing it with fuel assembly arrangement information. When the operation indication is wrong, a stop signal is sent to control rod drives. With such procedures, increase of nuclear heating upon occurrence of erroneous operation can be prevented. (I.S.)

  5. Nuclear reactor

    International Nuclear Information System (INIS)

    Schabert, H.P.; Weber, R.; Bauer, A.

    1975-01-01

    The refuelling of a PWR power reactor of about 1,200 MWe is performed by a transport pipe in the containment leading from an external to an internal fuel pit. A wagon to transport the fuel elements can go from a vertical loading position to an also vertical deloading position in the inner fuel pit via guide rollers. The necessary horizontal movement is effected by means of a cable line through the transport pipe which is inclined at least 10 0 . Gravity thus helps in the movement to the deloading position. The cable line with winch is fastened outside the containment. Swivelling devices tip the wagon from the horizontal to the vertical position or vice versa. Loading and deloading are done laterally. (TK/LH) [de

  6. NEUTRONIC REACTOR

    Science.gov (United States)

    McGarry, R.J.

    1958-04-22

    Fluid-cooled nuclear reactors of the type that utilize finned uranium fuel elements disposed in coolant channels in a moderater are described. The coolant channels are provided with removable bushings composed of a non- fissionable material. The interior walls of the bushings have a plurality of spaced, longtudinal ribs separated by grooves which receive the fins on the fuel elements. The lands between the grooves are spaced from the fuel elements to form flow passages, and the size of the now passages progressively decreases as the dlstance from the center of the core increases for the purpose of producing a greater cooling effect at the center to maintain a uniform temperature throughout the core.

  7. Nuclear reactor

    International Nuclear Information System (INIS)

    Schweiger, F.; Glahe, E.

    1976-01-01

    In a nuclear reactor of the kind which is charged with spherical reaction elements and in which control rods are arranged to be thrust directly into the charge, each control rod has at least one screw thread on its external surface so that as the rod is thrust into the charge it is caused to rotate and thus make penetration easier. The length of each control rod may have two distinct portions, a latter portion which carries a screw thread and a lead-in portion which is shorter than the latter portion and which may carry a thread of greater pitch than that on the latter portion or may have a number of axially extending ribs instead of a thread

  8. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  9. Department of reactor technology

    International Nuclear Information System (INIS)

    1980-01-01

    The activities of the Department of Reactor Technology at Risoe during 1979 are described. The work is presented in five chapters: Reactor Engineering, Reactor Physics and Dynamics, Heat Transfer and Hydraulics, The DR 1 Reactor, and Non-Nuclear Activities. A list of the staff and of publications is included. (author)

  10. Survey of research reactors

    International Nuclear Information System (INIS)

    Boek, H.; Villa, M.

    2004-06-01

    A survey of reasearch reactors based on the IAEA Nuclear Research Reactor Data Base (RRDB) was done. This database includes information on 273 operating research reactors ranging in power from zero to several hundred MW. From these 273 operating research reactors 205 reactors have a power level below 5 MW, the remaining 68 reactors range from 5 MW up to several 100 MW thermal power. The major reactor types with common design are: Siemens Unterrichtsreaktors, 1.2 Argonaut reactors, Slowpoke reactors, the miniature neutron source reactors, TRIGA reactors, material testing reactors and high flux reactors. Technical data such as: power, fuel material, fuel type, enrichment, maximum neutron flux density and experimental facilities for each reactor type as well as a description of their utilization in physics and chemistry, medicine and biology, academic research and teaching, training purposes (students and physicists, operating personnel), industrial application (neutron radiography, silicon neutron transmutation doping facilities) are provided. The geographically distribution of these reactors is also shown. As conclusions the author discussed the advantages (low capital cost, low operating cost, low burn up, simple to operate, safe, less restrictive containment and sitting requirements, versatility) and disadvantages (lower sensitivity for NAA, limited radioisotope production, limited use of neutron beams, limited access to the core, licensing) of low power research reactors. 24 figs., refs. 15, Tab. 1 (nevyjel)

  11. FBR type reactor

    International Nuclear Information System (INIS)

    Kimura, Kimitaka; Fukuie, Ken; Iijima, Tooru; Shimpo, Masakazu.

    1994-01-01

    In an FBR type reactor for exchanging fuels by pulling up reactor core upper mechanisms, a connection mechanism is disposed for connecting the top of the reactor core and the lower end of the reactor core upper mechanisms. In addition, a cylindrical body is disposed surrounding the reactor core upper mechanisms, and a support member is disposed to the cylindrical body for supporting an intermediate portion of the reactor core upper mechanisms. Then, the lower end of the reactor core upper mechanisms is connected to the top of the reactor core. Same displacements are caused to both of them upon occurrence of earthquakes and, as a result, it is possible to eliminate mutual horizontal displacement between a control rod guide hole of the reactor core upper mechanisms and a control rod insertion hole of the reactor core. In addition, since the intermediate portion of the reactor core upper mechanisms is supported by the support member disposed to the cylindrical body surrounding the reactor core upper mechanisms, deformation caused to the lower end of the reactor core upper mechanisms is reduced, so that the mutual horizontal displacement with respect to the control rod insertion hole of the reactor core can be reduced. As a result, performance of control rod insertion upon occurrence of the earthquakes is improved, so that reactor shutdown is conducted more reliably to improve reactor safety. (N.H.)

  12. Fast breeder reactors

    International Nuclear Information System (INIS)

    Heinzel, V.

    1975-01-01

    The author gives a survey of 'fast breeder reactors'. In detail the process of breeding, the reasons for the development of fast breeders, the possible breeder reactors, the design criteria, fuels, cladding, coolant, and safety aspects are reported on. Design data of some experimental reactors already in operation are summarized in stabular form. 300 MWe Prototype-Reactors SNR-300 and PFR are explained in detail and data of KWU helium-cooled fast breeder reactors are given. (HR) [de

  13. Determining Reactor Neutrino Flux

    OpenAIRE

    Cao, Jun

    2011-01-01

    Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understa...

  14. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    A nuclear reactor coolant channel is described that is suitable for sub-cooled reactors as in pressurised water reactors as well as for bulk boiling, as in boiling water reactors and steam generating nuclear reactors. The arrangement aims to improve heat transfer between the fuel elements and the coolant. Full constructional details are given. See also other similar patents by the author. (U.K.)

  15. Nuclear reactor

    International Nuclear Information System (INIS)

    Irion, L.; Tautz, J.; Ulrych, G.

    1976-01-01

    This additional patent complements the arrangement of non-return valves to prevent loss of cooling water on fracture of external tubes in the main coolant circuit (according to PS 24 24 427.7) by ensuring that the easily movable valves only operate in case of a fault, but do not flutter in operation, because the direction of flow is not the same at each location where they are installed. The remedy for this undesirable effect consists of allocating 1 non-return valve unit with 5 to 10 valves to each (of several) ducts for the cooling water intake. These units are installed in the annular space between the reactor vessel and the pressure vessel below the inlet of the ducts. Due to flow guidance surfaces in the same space, the incoming cooling water is deflected downwards and as the guiding surfaces are closed at the sides, must pass parallel to the valves of the non-return valve unit. On fracture of the external cooling water inlet pipe concerned, all valves of this unit close due to reversal of flow on the outlet side. (TK) [de

  16. Reactor container

    International Nuclear Information System (INIS)

    Kagawa, Tatsuo; Yanai, Ryoichi.

    1976-01-01

    Object: To provide a reactor container which is free from water shock action or condensing vibrations and cannot be readily broken by a missile from a pump impeller, pipe whipping, steam jet reaction, etc., and which also quickly condenses issuing steam and possesses a large vibration-proof strength. Structure: A high pressure containment vessel accommodating a pressure container includes a plurality of pressurized water tanks arranged along its inner periphery, and a pneumatic valve is provided in a lower portion of each of these pressurized water tanks. If an accident occurs, vapor is caused to issue from the pressure container into the vessel. When a certain value is reached, the pneumatic valves are opened, whereby the gas within the pressurized water tanks causes pressurized water to flow through the pipe and be ejected from spray nozzles to cause condensation of water within the vessel. Further, water of a pool within the container is circulated to allow heat release to the outside. (Horiuchi, T.)

  17. Reactor Physics Training

    International Nuclear Information System (INIS)

    Baeten, P.

    2007-01-01

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  18. The fast breeder reactor

    International Nuclear Information System (INIS)

    Collier, J.

    1990-01-01

    The arguments for and against the fast breeder reactor are debated. The case for the fast reactor is that the world energy demand will increase due to increasing population over the next forty years and that the damage to the global environment from burning fossil fuels which contribute to the greenhouse effect. Nuclear fission is the only large scale energy source which can achieve a cut in the use of carbon based fuels although energy conservation and renewable sources will also be important. Fast reactors produce more energy from uranium than other types of (thermal) reactors such as AGRs and PWRs. Fast reactors would be important from about 2020 onwards especially as by then many thermal reactors will need to be replaced. Fast reactors are also safer than normal reactors. The arguments against fast reactors are largely economic. The cost, especially the capital cost is very high. The viability of the technology is also questioned. (UK)

  19. Safeguarding research reactors

    International Nuclear Information System (INIS)

    Powers, J.A.

    1983-03-01

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  20. Nuclear reactor instrumentation at research reactor renewal

    International Nuclear Information System (INIS)

    Baers, B.; Pellionisz, P.

    1981-10-01

    The paper overviews the state-of-the-art of research reactor renewals. As a case study the instrumentation reconstruction of the Finnish 250 kW TRIGA reactor is described, with particular emphasis on the nuclear control instrumentation and equipment which has been developed and manufactured by the Central Research Institute for Physics, Budapest. Beside the presentation of the nuclear instrument family developed primarily for research reactor reconstructions, the quality assurance policy conducted during the manufacturing process is also discussed. (author)

  1. Reactor Physics Programme

    International Nuclear Information System (INIS)

    De Raedt, C.

    2000-01-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies

  2. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  3. Research reactor instrumentation

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2001-02-01

    This is a textbook on research reactor instrumentation for training purposes, it gives a survey on research reactor instrumentation requirements and eight exercises covering the major aspects of this topic are presented. (author)

  4. Nuclear reactors; graphical symbols

    International Nuclear Information System (INIS)

    1987-11-01

    This standard contains graphical symbols that reveal the type of nuclear reactor and is used to design graphical and technical presentations. Distinguishing features for nuclear reactors are laid down in graphical symbols. (orig.) [de

  5. Hybrid plasmachemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lelevkin, V. M., E-mail: lelevkin44@mail.ru; Smirnova, Yu. G.; Tokarev, A. V. [Kyrgyz-Russian Slavic University (Kyrgyzstan)

    2015-04-15

    A hybrid plasmachemical reactor on the basis of a dielectric barrier discharge in a transformer is developed. The characteristics of the reactor as functions of the dielectric barrier discharge parameters are determined.

  6. Ship propulsion reactors technology

    International Nuclear Information System (INIS)

    Fribourg, Ch.

    2002-01-01

    This paper takes the state of the art on ship propulsion reactors technology. The french research programs with the corresponding technological stakes, the reactors specifications and advantages are detailed. (A.L.B.)

  7. Fusion reactor design studies

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Santarius, J.F.

    1990-01-01

    This report discusses the following topics on the ARIES tokamak: systems; plasma power balance; impurity control and fusion ash removal; fusion product ripple loss; energy conversion; reactor fueling; first wall design; shield design; reactor safety; and fuel cost and resources

  8. Reactor shutdown method

    International Nuclear Information System (INIS)

    Nishino, Yoshitaka; Sawa, Toshio; Matsumoto, Takayuki; Osumi, Katsumi; Usui, Naoshi.

    1991-01-01

    A device for injecting a hydrogen gas, a chelating agent or a reducing agent is disposed in a reactor water recycling system. Upon reactor shutdown, the hydrogen gas, the chelating agent or the reducing agent is injected to primary coolants. With such a procedure, radioactive ions formed by the dissolution of oxide layers at the surface of pipelines and equipments in a reactor water recycling system and a reactor water cleanup system are removed from the primary coolants by a reactor water cleanup device. Accordingly, since the dose rate at the surface of the pipelines can be reduced, the operator's radiation dose can be reduced upon periodical inspection for a power plant. Further, the inner pressure of the reactor is kept higher than the saturated steam pressure at the reactor water temperature to suppress boiling of the reactor water. This can suppress the peeling of cruds deposited to the surface of the fuel cladding tube. (I.N.)

  9. Undergraduate reactor control experiment

    International Nuclear Information System (INIS)

    Edwards, R.M.; Power, M.A.; Bryan, M.

    1992-01-01

    A sequence of reactor and related experiments has been a central element of a senior-level laboratory course at Pennsylvania State University (Penn State) for more than 20 yr. A new experiment has been developed where the students program and operate a computer controller that manipulates the speed of a secondary control rod to regulate TRIGA reactor power. Elementary feedback control theory is introduced to explain the experiment, which emphasizes the nonlinear aspect of reactor control where power level changes are equivalent to a change in control loop gain. Digital control of nuclear reactors has become more visible at Penn State with the replacement of the original analog-based TRIGA reactor control console with a modern computer-based digital control console. Several TRIGA reactor dynamics experiments, which comprise half of the three-credit laboratory course, lead to the control experiment finale: (a) digital simulation, (b) control rod calibration, (c) reactor pulsing, (d) reactivity oscillator, and (e) reactor noise

  10. Reactor System Design

    International Nuclear Information System (INIS)

    Chi, S. K.; Kim, G. K.; Yeo, J. W.

    2006-08-01

    SMART NPP(Nuclear Power Plant) has been developed for duel purpose, electricity generation and energy supply for seawater desalination. The objective of this project IS to design the reactor system of SMART pilot plant(SMART-P) which will be built and operated for the integrated technology verification of SMART. SMART-P is an integral reactor in which primary components of reactor coolant system are enclosed in single pressure vessel without connecting pipes. The major components installed within a vessel includes a core, twelve steam generator cassettes, a low-temperature self pressurizer, twelve control rod drives, and two main coolant pumps. SMART-P reactor system design was categorized to the reactor coe design, fluid system design, reactor mechanical design, major component design and MMIS design. Reactor safety -analysis and performance analysis were performed for developed SMART=P reactor system. Also, the preparation of safety analysis report, and the technical support for licensing acquisition are performed

  11. Nuclear reactor shutdown system

    International Nuclear Information System (INIS)

    Mangus, J.D.; Cooper, M.H.

    1982-01-01

    An improved nuclear reactor shutdown system is described comprising a temperature sensitive device connected to control the electric power supply to a magnetic latch holding a body of a neutron absorbing material. The temperature sensitive device is exposed to the reactor coolant so that when the reactor coolant temperature rises above a specific level, the temperature sensitive device will cause deenergization of the magnetic latch to allow the body of neutron absorbing material to enter the reactor core. (author)

  12. PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Masood, Z.

    2016-01-01

    The PUSPATI TRIGA Reactor is the only research reactor in Malaysia. This 1 MW TRIGA Mk II reactor first reached criticality on 28 June 1982 and is located at the Malaysian Nuclear Agency premise in Bangi, Malaysia. This reactor has been mainly utilised for research, training and education and isotope production. Over the years several systems have been refurbished or modernised to overcome ageing and obsolescence problems. Major achievements and milestones will also be elaborated in this paper. (author)

  13. Reactor power measuring device

    International Nuclear Information System (INIS)

    Izumi, Mikio; Sano, Yuji; Seki, Eiji; Yoshida, Toshifumi; Ito, Toshiaki.

    1993-01-01

    The present invention provides a self-powered long detector having a sensitivity over the entire length of a reactor core as an entire control rod withdrawal range of a BWR type reactor, and a reactor power measuring device using a gamma ray thermometer which scarcely causes sensitivity degradation. That is, a hollow protection pipe is disposed passing through the reactor core from the outside of a reactor pressure vessel. The self-powered long detectors and the gamma ray thermometers are inserted and installed in the protection pipe. An average reactor power in an axial direction of the reactor relative to a certain position in the horizontal cross section of the reactor core is determined based on the power of the self-powered long detector over the entire length of the reactor core. Since the response of the self-powered detector relative to a local power change is rapid, the output is used as an input signal to a safety protection device of the reactor core. Further, a gamma ray thermometer secured in the reactor and having scarce sensitivity degradation is used instead of an incore travelling neutron monitor used for relative calibration of an existent neutron monitor secured in the reactor. (I.S.)

  14. Ulysse, mentor reactor

    International Nuclear Information System (INIS)

    Bouquin, B.; Rio, I.; Safieh, J.

    1997-01-01

    On July 23, 1961, the ULYSSE reactor began its first power rise. Designed at that time to train nuclear engineering students and reactor operators, this reactor still remains an indispensable tool for nuclear teaching and a choice instrument for scientists. (author)

  15. Towards nuclear fusion reactors

    International Nuclear Information System (INIS)

    1993-11-01

    The results of nuclear fusion researches in JAERI are summarized. In this report, following themes are collected: the concept of fusion reactor (including ITER), fusion reactor safety, plasma confinement, fusion reactor equipment, and so on. Includes glossary. (J.P.N.)

  16. Refuelling nuclear reactors

    International Nuclear Information System (INIS)

    Stacey, J.; Webb, J.; White, W.P.; McLaren, N.H.

    1981-01-01

    An improved nuclear reactor refuelling machine is described which can be left in the reactor vault to reduce the off-load refuelling time for the reactor. The system comprises a gripper device rangeable within a tubular chute, the gripper device being movable by a pantograph. (U.K.)

  17. The Jules Horowitz reactor

    International Nuclear Information System (INIS)

    2003-01-01

    The Jules Horowitz reactor is the future european reactor for irradiation. It will be used for materials and new fuels irradiation. Experiments for the safety and the validation of neutronics calculation will be also realized. This paper presents the design and the performance of the reactor and the schedule of the remaining design studies. (A.L.B.)

  18. Thorium fueled reactor

    Science.gov (United States)

    Sipaun, S.

    2017-01-01

    Current development in thorium fueled reactors shows that they can be designed to operate in the fast or thermal spectrum. The thorium/uranium fuel cycle converts fertile thorium-232 into fissile uranium-233, which fissions and releases energy. This paper analyses the characteristics of thorium fueled reactors and discusses the thermal reactor option. It is found that thorium fuel can be utilized in molten salt reactors through many configurations and designs. A balanced assessment on the feasibility of adopting one reactor technology versus another could lead to optimized benefits of having thorium resource.

  19. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  20. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  1. Fundamentals of reactor chemistry

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1981-12-01

    In the Nuclear Engineering School of JAERI, many courses are presented for the people working in and around the nuclear reactors. The curricula of the courses contain also the subject material of chemistry. With reference to the foreign curricula, a plan of educational subject material of chemistry in the Nuclear Engineering School of JAERI was considered, and the fundamental part of reactor chemistry was reviewed in this report. Since the students of the Nuclear Engineering School are not chemists, the knowledge necessary in and around the nuclear reactors was emphasized in order to familiarize the students with the reactor chemistry. The teaching experience of the fundamentals of reactor chemistry is also given. (author)

  2. Generation III+ Reactor Portfolio

    International Nuclear Information System (INIS)

    2010-03-01

    While the power generation needs of utilities are unique and diverse, they are all faced with the double challenge of meeting growing electricity needs while curbing CO 2 emissions. To answer these diverse needs and help tackle this challenge, AREVA has developed several reactor models which are briefly described in this document: The EPR TM Reactor: designed on the basis of the Konvoi (Germany) and N4 (France) reactors, the EPRTM reactor is an evolutionary model designed to achieve best-in-class safety and operational performance levels. The ATMEA1 TM reactor: jointly designed by Mitsubishi Heavy Industries and AREVA through ATMEA, their common company. This reactor design benefits from the competencies and expertise of the two mother companies, which have commissioned close to 130 reactor units. The KERENA TM reactor: Designed on the basis of the most recent German BWR reactors (Gundremmingen) the KERENA TM reactor relies on proven technology while also including innovative, yet thoroughly tested, features. The optimal combination of active and passive safety systems for a boiling water reactor achieves a very low probability of severe accident

  3. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  4. Reactor power monitoring device

    International Nuclear Information System (INIS)

    Dogen, Ayumi; Ozawa, Michihiro.

    1983-01-01

    Purpose: To significantly improve the working efficiency of a nuclear reactor by reflecting the control rod history effect on thermal variants required for the monitoring of the reactor operation. Constitution: An incore power distribution calculation section reads the incore neutron fluxes detected by neutron detectors disposed in the reactor to calculate the incore power distribution. A burnup degree distribution calculation section calculates the burnup degree distribution in the reactor based on the thus calculated incore power distribution. A control rod history date store device supplied with the burnup degree distribution renews the stored control rod history data based on the present control rod pattern and the burnup degree distribution. Then, thermal variants of the nuclear reactor are calculated based on the thus renewed control rod history data. Since the control rod history effect is reflected on the thermal variants required for the monitoring of the reactor operation, the working efficiency of the nuclear reactor can be improved significantly. (Seki, T.)

  5. Reactor power control device

    International Nuclear Information System (INIS)

    Ishii, Yoshihiko; Arita, Setsuo; Miyamoto, Yoshiyuki; Fukazawa, Yukihisa; Ishii, Kazuhiko

    1998-01-01

    The present invention provides a reactor power control device capable of enhancing an operation efficiency while keeping high reliability and safety in a BWR type nuclear power plant. Namely, the device of the present invention comprises (1) a means for inputting a set value of a generator power and a set value of a reactor power, (2) a means for controlling the reactor power to either smaller one of the reactor power corresponding to the set value of the generator power and the set value of the reactor power. With such procedures, even if the nuclear power plant is set so as to operate it to make the reactor power 100%, when the generator power reaches the upper limit, the reactor power is controlled with a preference given to the upper limit value of the generator power. Accordingly, safety and reliability are not deteriorated. The operation efficiency of the plant can be improved. (I.S.)

  6. One piece reactor removal

    International Nuclear Information System (INIS)

    Chia, Wei-Min; Wang, Song-Feng

    1993-01-01

    The strategy of Taiwan Research Reactor Renewal plan is to remove the old reactor block with One Piece Reactor Removal (OPRR) method for installing a new research reactor in original building. In this paper, the engineering design of each transportation works including the work method, the major equipments, the design policy and design criteria is described and discussed. In addition, to ensure the reactor block is safety transported for storage and to guarantee the integrity of reactor base mat is maintained for new reactor, operation safety is drawn special attention, particularly under seismic condition, to warrant safe operation of OPRR. ALARA principle and Below Regulatory Concern (BRC) practice were also incorporated in the planning to minimize the collective dose and the total amount of radioactive wastes. All these activities are introduced in this paper. (J.P.N.)

  7. Reactor coolant pump for a nuclear reactor

    International Nuclear Information System (INIS)

    Burkhardt, W.; Richter, G.

    1976-01-01

    The invention deals with disengaging the coupling of a reactor coolant pump of a nuclear reactor feeding pressurized coolant. The disengaging coupling has two parts joined by bolts, at least one of them containing a driving agent within a bore. This is provided with a speed-depending ignition device in such manner that, if the critical speed is reached, the driving charge is ignited and the coupling is disengaged by destroying the bolts. (UWI) [de

  8. Neutron fluxes in test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  9. Thai research reactor

    International Nuclear Information System (INIS)

    Aramrattana, M.

    1987-01-01

    The Office of Atomic Energy for Peace (OAEP) was established in 1962, as a reactor center, by the virtue of the Atomic Energy for Peace Act, under operational policy and authority of the Thai Atomic Energy for Peace Commission (TAEPC); and under administration of Ministry of Science, Technology and Energy. It owns and operates the only Thai Research Reactor (TRR-1/M1). The TRR-1/M1 is a mixed reactor system constituting of the old MTR type swimming pool, irradiation facilities and cooling system; and TRIGA Mark III core and control instrumentation. The general performance of TRR-1/M1 is summarized in Table I. The safe operation of TRR-1/M1 is regulated by Reactor Safety Committee (RSC), established under TAEPC, and Health Physics Group of OAEP. The RCS has responsibility and duty to review of and make recommendations on Reactor Standing Orders, Reactor Operation Procedures, Reactor Core Loading and Requests for Reactor Experiments. In addition,there also exist of Emergency Procedures which is administered by OAEP. The Reactor Operation Procedures constitute of reactor operating procedures, system operating procedures and reactor maintenance procedures. At the level of reactor routine operating procedures, there is a set of Specifications on Safety and Operation Limits and Code of Practice from which reactor shift supervisor and operators must follow in order to assure the safe operation of TRR-1/M1. Table II is the summary of such specifications. The OAEP is now upgrading certain major components of the TRR-1/M1 such as the cooling system, the ventilation system and monitoring equipment to ensure their adequately safe and reliable performance under normal and emergency conditions. Furthermore, the International Atomic Energy Agency has been providing assistance in areas of operation and maintenance and safety analysis. (author)

  10. Hybrid reactors. [Fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.

    1980-09-09

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.

  11. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  12. Multipurpose research reactors

    International Nuclear Information System (INIS)

    1988-01-01

    The international symposium on the utilization of multipurpose research reactors and related international co-operation was organized by the IAEA to provide for information exchange on current uses of research reactors and international co-operative projects. The symposium was attended by about 140 participants from 36 countries and two international organizations. There were 49 oral presentations of papers and 24 poster presentations. The presentations were divided into 7 sessions devoted to the following topics: neutron beam research and applications of neutron scattering (6 papers and 1 poster), reactor engineering (6 papers and 5 posters), irradiation testing of fuel and material for fission and fusion reactors (6 papers and 10 posters), research reactor utilization programmes (13 papers and 4 posters), neutron capture therapy (4 papers), neutron activation analysis (3 papers and 4 posters), application of small reactors in research and training (11 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  13. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Matsuura, Shojiro; Nakahara, Yasuaki; Takano, Hideki

    1982-09-01

    Research and development activities in the Division of Reactor Engineering in fiscal 1981 are described. The work of the Division is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committee on Reactor Physics. (author)

  14. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    1985-08-01

    Research and development activities in the Department of Reactor Engineering in fiscal 1984 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, reactor physics experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, safeguards technology, and activities of the Committee on Reactor Physics. (author)

  15. Spectral shift reactor control method

    International Nuclear Information System (INIS)

    Impink, A.J. Jr.

    1981-01-01

    A method of operating a nuclear reactor having a core and coolant displacer elements arranged in the core wherein is established a reator coolant temperature set point at which it is desired to operate said reactor and first reactor coolant temperature band limits are provided within which said set point is located and it is desired to operate said reactor charactrized in that said reactor coolant displacer elements are moved relative to the reactor core for adjusting the volume of reactor coolant in said core as said reactor coolant temperature approaches said first band limits thereby to maintain said reactor coolant temperature near said set point and within said first band limits

  16. Seals in nuclear reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The aim of this invention is the provision of improved seals for reactor vessels in which fuel assemblies are located together with inlets and outlets for the circulation of a coolant. The object is to provide a seal arrangement for the rotatable plugs of nuclear reactor closure heads which has good sealing capacities over a wide gap during operation of the reactor but which also permits uninhibited rotation of the plugs for maintenance. (U.K.)

  17. Power reactors operational diagnosis

    International Nuclear Information System (INIS)

    Dach, K.; Pecinka, L.

    1976-01-01

    The definition of reactor operational diagnostics is presented and the fundamental trends of research are determined. The possible sources of power reactor malfunctions, the methods of defect detection, the data evaluation and the analysis of the results are discussed in detail. In view of scarcity of a theoretical basis and of insufficient in-core instrumentation, operational diagnostics cannot be as yet incorporated in a computer-aided reactor control system. (author)

  18. Pressurised water reactor operation

    International Nuclear Information System (INIS)

    Birnie, S.; Lamonby, J.K.

    1987-01-01

    The operation of a pressurized water reactor (PWR) is described with respect to the procedure for a unit start-up. The systems details and numerical data are for a four loop PWR station of the design proposed for Sizewell-'B', United Kingdom. A description is given of: the initial conditions, filling the reactor coolant system (RCS), heat-up and pressurisation of the RCS, secondary system preparations, reactor start-up, and reactivity control at power. (UK)

  19. Reactor BR2

    International Nuclear Information System (INIS)

    Gubel, P.

    2000-01-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported

  20. Reactor BR2

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2000-07-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported.

  1. TRIGA reactor characteristics

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2007-01-01

    This module describes the general design, characteristics and parameters of TRIGA reactors and fuels. It is recommended that most of this information should be incorporated into any reactor operator training program and, in many cases, the facility Safety Analysis Report. It is oriented to teach the basics of the physics and mechanical design of the TRIGA fuel as well as its unique operational characteristics and the differences between TRIGA fuels and others more traditional reactor fuels. (nevyjel)

  2. The replacement research reactor

    International Nuclear Information System (INIS)

    Cameron, R.

    1999-01-01

    As a consequences of the government decision in September 1997. ANSTO established a replacement research reactor project to manage the procurement of the replacement reactor through the necessary approval, tendering and contract management stages This paper provides an update of the status of the project including the completion of the Environmental Impact Statement. Prequalification and Public Works Committee processes. The aims of the project, management organisation, reactor type and expected capabilities are also described

  3. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1988-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics. 3 refs., 4 figs., 1 tab

  4. New reactor concepts

    International Nuclear Information System (INIS)

    Meskens, G.; Govaerts, P.; Baugnet, J.-M.; Delbrassine, A.

    1998-11-01

    The document gives a summary of new nuclear reactor concepts from a technological point of view. Belgium supports the development of the European Pressurized-Water Reactor, which is an evolutionary concept based on the European experience in Pressurized-Water Reactors. A reorientation of the Belgian choice for this evolutionary concept may be required in case that a decision is taken to burn plutonium, when the need for flexible nuclear power plants arises or when new reactor concepts can demonstrate proved benefits in terms of safety and cost

  5. Remote Reactor Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dazeley, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dobie, Doug [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marleau, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brennan, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerling, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sumner, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sweany, Melinda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-21

    The overall goal of the WATCHMAN project is to experimentally demonstrate the potential of water Cerenkov antineutrino detectors as a tool for remote monitoring of nuclear reactors. In particular, the project seeks to field a large prototype gadolinium-doped, water-based antineutrino detector to demonstrate sensitivity to a power reactor at ~10 kilometer standoff using a kiloton scale detector. The technology under development, when fully realized at large scale, could provide remote near-real-time information about reactor existence and operational status for small operating nuclear reactors out to distances of many hundreds of kilometers.

  6. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Conceptual design studies were made of fusion reactors based on the three current mirror-confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fuel for fission reactors. We have designed a large commercial hybrid and a small pilot-plant hybrid based on standard mirror confinement. Tandem mirror designs include a commercial 1000-MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single-cell pilot plant

  7. Multi purpose research reactor

    International Nuclear Information System (INIS)

    Raina, V.K.; Sasidharan, K.; Sengupta, Samiran; Singh, Tej

    2006-01-01

    At present Dhruva and Cirus reactors provide the majority of research reactor based facilities to cater to the various needs of a vast pool of researchers in the field of material sciences, physics, chemistry, bio sciences, research and development work for nuclear power plants and production of radio isotopes. With a view to further consolidate and expand the scope of research and development in nuclear and allied sciences, a new 20 MWt multi purpose research reactor is being designed. This paper describes some of the design features and safety aspects of this reactor

  8. Trench reactor: an overview

    International Nuclear Information System (INIS)

    Spinrad, B.I.; Rohach, A.F.; Razzaque, M.M.; Sankoorikal, J.T.; Schmidt, R.S.; Lofshult, J.; Ramin, T.; Sokmen, N.; Lin, L.C.

    1988-01-01

    Recent fast, sodium-cooled reactor designs reflect new conditions. In nuclear energy these conditions are (a) emphasis on maintainability and operability, (b) design for more transparent safety, and (c) a surplus of uranium and enrichment availability that eases concerns about light water reactor fueling costs. In utility practice the demand is for less capital exposure, short construction time, smaller new unit sizes, and low capital cost. The PRISM, SAFR, and integral fast reactor (IFR) concepts are responses to these conditions. Fast reactors will not soon be deployed commercially, so more radical designs can be considered. The trench reactor is the product of such thinking. Its concepts are intended as contributions to the literature, which may be picked up by one of the existing programs or used in a new experimental project. The trench reactor is a thin-slab, pool-type reactor operated at very low power density and- for sodium-modest temperature. The thin slab is repeated in the sodium tank and the reactor core. The low power density permits a longer than conventional core height and a large-diameter fuel pin. Control is by borated steel slabs that can be lowered between the core and lateral sodium reflector. Shutdown is by semaphore slabs that can be swung into place just outside the control slabs. The paper presents major characteristics of the trench reactor that have been changed since the last report

  9. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed

  10. Nuclear reactor safety systems

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1980-01-01

    A safety system for shutting down a nuclear reactor under overload conditions is described. The system includes a series of parallel-connected computer memory type look-up tables each of which receives data on a particular reactor parameter and in each of which a precalculated functional value for that parameter is stored indicative of the percentage of maximum reactor load that the parameter contributes. The various functional values corresponding to the actual measured parameters are added together to provide a control signal used to shut down the reactor under overload conditions. (U.K.)

  11. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1978-01-01

    We have carried out conceptual design studies of fusion reactors based on the three current mirror confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fission fuel for fission reactors. We have designed a large commercial hybrid based on standard mirror confinement, and also a small pilot plant hybrid. Tandem mirror designs include a commercial 1000 MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single cell pilot plant

  12. Nuclear reactor internals arrangement

    International Nuclear Information System (INIS)

    Frisch, E.; Andrews, H.N.

    1976-01-01

    A nuclear reactor internals arrangement is disclosed which facilitates reactor refueling. A reactor vessel and a nuclear core is utilized in conjunction with an upper core support arrangement having means for storing withdrawn control rods therein. The upper core support is mounted to the underside of the reactor vessel closure head so that upon withdrawal of the control rods into the upper core support, the closure head, the upper core support and the control rods are removed as a single unit thereby directly exposing the core for purposes of refueling

  13. Reactor core monitor for nuclear reactor

    International Nuclear Information System (INIS)

    Azekura, Kazuo; Kurihara, Kunitoshi.

    1992-01-01

    The device of the present invention provides a various information of a wide adaptability, such as a power distribution, to an operator by determining a reactor core performance of the reactor by a performance calculation with improved accuracy. That is, a calculation means determines a neutron flux distribution of the reactor and coolant temperature based on the neutron flux distribution. A measuring means measures a cooled temperature of a reactor core inlet and a temperature at the exit of a fuel assembly. The result of coolant temperature by the measuring means and the result of the calculation by the calculation means are compared. The result of the calculation for the neutron flux distribution obtained by the calculation means is corrected based on the result of the comparison. The calculation means introduces calculation at higher accuracy by adopting two-dimensional balance in the fuel assembly. Further, a more accurate three-dimensional neutron diffusion calculation model is introduced in an on-line computer. Then, the accuracy of the calculation for the neutron flux distribution, power distribution, temperature distribution, etc. is improved. In view of the above, adaptability of a reactor core monitor is widened. (I.S.)

  14. RB Research nuclear reactor RB reactor, Annual report for 2000

    International Nuclear Information System (INIS)

    Milosevic, M.

    2000-12-01

    Report on RB reactor operation during 2000 contains 3 parts. Part one contains a brief description of reactor operation and reactor components, relevant dosimetry data and radiation protection issues, personnel and financial data. Part two is devoted to maintenance of the reactor components, namely, fuel, heavy water, reactor vessel, heavy water circulation system, absorption rods and heavy water level-meters, maintenance of electronic, mechanical, electrical and auxiliary equipment. Part three contains data concerned with reactor operation and utilization with a comprehensive list of publications resulting from experiments done at the RB reactor. It contains data about reactor operation during previous 14 years, i.e. from 1986 - 2000

  15. Technical specifications, Hanford production reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, W.D. [comp.

    1962-06-25

    These technical specifications are applicable to the eight operating production reactor facilities, B, C, D, DR, F, H, KE, and KW. Covered are operating and performance restrictions and administrative procedures. Areas covered by the operating and performance restrictions are reactivity, reactor control and safety elements, power level, temperature and heat flux, reactor fuel loadings, reactor coolant systems, reactor confinement, test facilities, code compliance, and reactor scram set points. Administrative procedures include process control procedures, training programs, audits and inspections, and reports and records.

  16. A nuclear power reactor

    International Nuclear Information System (INIS)

    Borrman, B.E.; Broden, P.; Lundin, N.

    1979-12-01

    The invention consists of shock absorbing support beams fastened to the underside of the reactor tank lid of a BWR type reactor, whose purpose is to provide support to the steam separator and dryer unit against accelerations due to earthquakes, without causing undue thermal stresses in the unit due to differential expansion. (J.I.W.)

  17. Reactor cost driving items

    International Nuclear Information System (INIS)

    Spears, W.R.

    1987-01-01

    Assuming that the design solutions presently perceived for NET can be extrapolated for use in a power reactor, and using costing experience with present day fusion experiments and with fission power plants, the major components of the cost of a tokamak fusion power reactor are described. The analysis shows the emphasis worth placing on various areas of plant design to reduce costs

  18. Reactor Materials Research

    International Nuclear Information System (INIS)

    Van Walle, E.

    2001-01-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  19. CAREM 25 nuclear reactor

    International Nuclear Information System (INIS)

    Rossini, A.A.; Ordonez, J.P.; Rajoy, J.E.; Durione, C.

    1990-01-01

    This work describes the CAREM project reactor, its design philosophy, its main characteristics and its advantages with respect to similar reactors. The main objective is to use the nuclear energy at lower costs than those applied up to now. (Author) [es

  20. Molten salt reactor concept

    International Nuclear Information System (INIS)

    Sood, D.D.

    1980-01-01

    Molten salt reactor is an advanced breeder concept which is suited for the utilization of thorium for nuclear power production. This reactor is based on the use of solutions of uranium or plutonium fluorides in LiF-BeF 2 -ThF 4 as fuel. Unlike the conventional reactors, no external coolant is used in the reactor core and the fuel salt itself is circulated through heat exchangers to transfer the fission produced heat to a secondary salt (NaF-NaBF 4 ) for steam generation. A part of the fuel stream is continuously processed to isolate 233 Pa, so that it can decay to fissile 233 U without getting converted to 234 Pa, and for the removal of neutron absorbing fission products. This on-line processing scheme makes this reactor concept to achieve a breeding ratio of 1.07 which is the highest for any thermal breeder reactor. Experimental studies at the Bhabha Atomic Research Centre, Bombay, have established the use of plutonium as fuel for this reactor. This molten salt reactor concept is described and the work conducted at the Bhabha Atomic Research Centre is summarised. (auth.)

  1. International thermal reactor development

    International Nuclear Information System (INIS)

    Zebroski, E.L.

    1977-01-01

    The worldwide development of nuclear power plants is reviewed. Charts are presented which show the commitment to light-water reactor capacity construction with breakdown by region and country. Additional charts show the major nuclear research centers which have substantial scope in light water reactor development and extensive international activities

  2. The fusion reactor

    International Nuclear Information System (INIS)

    Brennan, M.H.

    1974-01-01

    Basic principles of the fusion reactor are outlined. Plasma heating and confinement schemes are described. These confinement systems include the linear Z pinch, magnetic mirrors and Tokamaks. A fusion reactor is described and a discussion is given of its environmental impact and its fuel situation. (R.L.)

  3. Advanced converter reactors

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1979-01-01

    Advanced converter reactors (ACRs) of primary US interest are those which can be commercialized within about 20 years, and are: Advanced Light-Water Reactors, Spectral-Shift-Control Reactors, Heavy-Water Reactors (CANDU type), and High-Temperature Gas-Cooled Reactors. These reactors can operate on uranium, thorium, or uranium-thorium fuel cycles, but have the greatest fuel utilization on thorium type cycles. The water reactors tend to operate more economically on uranium cycles, while the HTGR is more economical on thorium cycles. Thus, the HTGR had the greatest practical potential for improving fuel utilization. If the US has 3.4 to 4 million tons U 3 O 8 at reasonable costs, ACRs can make important contributions to maintaining a high nuclear power level for many decades; further, they work well with fast breeder reactors in the long term under symbiotic fueling conditions. Primary nuclear data needs of ACRs are integral measurements of reactivity coefficients and resonance absorption integrals

  4. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  5. Space Nuclear Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  6. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Lineberry, M.J.

    1990-01-01

    Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs

  7. Nuclear reactor instrumentation method

    International Nuclear Information System (INIS)

    Handa, Hiroyuki; Hayashi, Katsumi; Nemesawa, Shigeki; Nemoto, Yuji; Ohashi, Masahisa.

    1993-01-01

    The present invention can appropriately monitor the state of a reactor core in an FBR type reactor which has a system of storing spent fuel assemblies in a reactor container while reducing the weight and making the structure compact in the reactor. That is, a fuel assembly having a shield lacking portion in upper axial shields is disposed. The shield lacking portion defines neutrons' leaking path from the reactor core. The leakage of neutrons from the path is detected by a neutron monitor disposed just above the fuel assembly. With such a constitution, influence of neutrons from stored spent fuel assemblies disposed to the out side of the radial shields can be reduced by a shielding effect of the existent radial shields around the reactor core. Further, if a shield lacking portion is locally disposed in the region of the upper axial shields just below the neutron monitor, neutrons from the reactor core can be monitored while suppressing excessive neutron leakage. As a result, it is unnecessary to dispose shields on the outer side of the spent fuel assembly disposed in the reactor core. (I.S.)

  8. Reactor building for a nuclear reactor

    International Nuclear Information System (INIS)

    Haidlen, F.

    1976-01-01

    The invention concerns the improvement of the design of a liner, supported by a latticed steel girder structure and destined for guaranteeing a gastight closure for the plant compartments in the reactor building of a pressurized water reactor. It is intended to provide the steel girder structure on their top side with grates, being suited for walking upon, and to hang on their lower side diaphragms in modular construction as a liner. At the edges they may be sealed with bellows in order to avoid thermal stresses. The steel girder structure may at the same time serve as supports for parts of the steam pipe. (RW) [de

  9. Reactor coolant pump for a nuclear reactor

    International Nuclear Information System (INIS)

    Burkhardt, W.; Richter, G.

    1976-01-01

    An improvement is proposed concerning the easier disengagement of the coupling at the reactor coolant pump for a nuclear reactor transporting a pressurized coolant. According to the invention the disengaging coupling consists of two parts separated by screws. At least one of the screws contains a propellent charge ananged within a bore and provided with a speed-dependent ignition device in such a way that by separation of the screws at overspeeds the coupling is disengaged. The sub-claims are concerned with the kind of ignition ot the propellent charge. (UWI) [de

  10. Mirror reactor surface study

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A. L.; Damm, C. C.; Futch, A. H.; Hiskes, J. R.; Meisenheimer, R. G.; Moir, R. W.; Simonen, T. C.; Stallard, B. W.; Taylor, C. E.

    1976-09-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included.

  11. Iris reactor conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Carelli, M.D.; Conway, L.E.; Petrovic, B.; Paramonov, D.V. [Westinghouse Electric Comp., Pittsburgh, PA (United States); Galvin, M.; Todreas, N.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Lombardi, C.V.; Maldari, F.; Ricotti, M.E. [Politecnico di Milano, Milan (Italy); Cinotti, L. [Ansaldo SpA, Genoa (Italy)

    2001-07-01

    IRIS (International Reactor Innovative and Secure) is a modular, integral, light water cooled, low-to-medium power (100-350 MWe) reactor which addresses the requirements defined by the US DOE for Generation IV reactors, i.e., proliferation resistance, enhanced safety, improved economics and fuel cycle sustainability. It relies on the proven technology of light water reactors and features innovative engineering, but it does not require new technology development. This paper discusses the current reference IRIS design, which features a 1000 MWt thermal core with proven 5%-enriched uranium oxide fuel and five-year long straight burn fuel cycle, integral reactor vessel housing helical tube steam generators and immersed spool pumps. Other major contributors to the high level of safety and economic attractiveness are the safety by design and optimized maintenance approaches, which allow elimination of some classes of accidents, lower capital cost, long operating cycle, and high capacity factors. (author)

  12. Reactor control device

    International Nuclear Information System (INIS)

    Fukami, Haruo; Morimoto, Yoshinori.

    1981-01-01

    Purpose: To operate a reactor always with safety operation while eliminating the danger of tripping. Constitution: In a reactor control device adapted to detect the process variants of a reactor, control a control rod drive controlling system based on the detected signal to thereby control the driving the control rods, control the reactor power and control the electric power generated from an electric generator by the output from the reactor, detection means is provided for the detection of the electric power from said electric generator, and a compensation device is provided for outputting control rod driving compensation signals to the control rod driving controlling system in accordance with the amount of variation in the detected value. (Seki, T.)

  13. Mirror reactor surface study

    International Nuclear Information System (INIS)

    Hunt, A.L.; Damm, C.C.; Futch, A.H.; Hiskes, J.R.; Meisenheimer, R.G.; Moir, R.W.; Simonen, T.C.; Stallard, B.W.; Taylor, C.E.

    1976-01-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included

  14. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  15. Reactor power control device

    International Nuclear Information System (INIS)

    Kobayashi, Akira.

    1980-01-01

    Purpose: To prevent misoperation in a control system for the adjustment of core coolant flow rate, and the increase in the neutron flux density caused from the misoperation in BWR type reactors. Constitution: In a reactor power control system adapted to control the reactor power by the adjustment of core flow rate, average neutron flux signals of a reactor core, entire core flow rate signals and operation state signals for coolant recycling system are inputted to a microcomputer. The outputs from the computer are sent to a recycling MG set speed controller to control the reactor core flow rate. The computer calculates the change ratio with time in the average neutron flux signals, correlation between the average neutron flux signals and the entire core flow rate signals, change ratio with time in the operation state signals for the coolant recycling system and the like and judges the abnormality in the coolant recycling system based on the calculated results. (Ikeda, J.)

  16. Status of French reactors

    International Nuclear Information System (INIS)

    Ballagny, A.

    1997-01-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm 3 . The OSIRIS reactor has already been converted to LEU. It will use U 3 Si 2 as soon as its present stock of UO 2 fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU

  17. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    1984-08-01

    Research and development activities in the Department of Reactor Engineering in fiscal 1983 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and safeguards technology, and activities of the Committee on Reactor Physics. (author)

  18. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Hirota, Jitsuya; Asaoka, Takumi; Suzuki, Tomoo; Mitani, Hiroshi; Akino, Fujiyoshi

    1977-09-01

    Research activities in the Division of Reactor Engineering in fiscal 1976 are described. Works of the division concern mainly the development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and the development of Liquid Metal Fast Breeder Reactor in Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and activities of the Committee on Reactor Physics. (auth.)

  19. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1976-09-01

    Research activities conducted in Reactor Engineering Division in fiscal 1975 are summarized in this report. Works in the division are closely related to the development of multi-purpose High-temperature Gas Cooled Reactor, the development of Liquid Metal Fast Breeder Reactor by Power Reactor and Nuclear Fuel Development Corporation, and engineering research of thermonuclear fusion reactor. Many achievements are described concerning nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of the Committee on Reactor Physics. (auth.)

  20. Mirror reactor studies

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Bender, D.J.

    1977-01-01

    Design studies of a fusion mirror reactor, a fusion-fission mirror reactor, and two small mirror reactors are summarized. The fusion reactor uses 150-keV neutral-beam injectors based on the acceleration of negative ions. The injectors provide over 1 GW of continuous power at an efficiency greater than 80%. The fusion reactor has three-stage, modularized, Venetian blind, plasma direct converter with a predicted efficiency of 59% and a new concept for removal of the lune-shaped blanket: a crane is brought between the two halves of the Yin-Yang magnet, which are separated by a float. The design has desirable features such as steady-state operation, minimal impurity problems, and low first-wall thermal stress. The major disadvantage is low Q resulting in high re-circulating power and hence high cost of electrical power. However, the direct capital cost per unit of gross electrical power is reasonable [$1000/kW(e)]. By contrast, the fusion-fission reactor design is not penalized by re-circulating power and uses relatively near-term fusion technology being developed for the fusion power program. New results are presented on the Th- 233 U and the U- 239 Pu fuel cycles. The purpose of this hybrid is fuel production, with projected costs at $55/g of Pu or $127/g of 233 U. Blanket and cooling system designs, including an emergency cooling system, by General Atomic Company, lead us to the opinion that the reactor can meet expected safety standards for licensing. The smallest mirror reactor having only a shield between the plasma and the coil is the 4.2-m long fusion engineering research facility (FERF) designed for material irradiation. The smallest mirror reactor having both a blanket and shield is the 7.5-m long experimental power reactor (EPR), which has both a fusion and a fusion-fission version. (author)

  1. Multi-purpose reactor

    International Nuclear Information System (INIS)

    1991-05-01

    The Multi-Purpose-Reactor (MPR), is a pool-type reactor with an open water surface and variable core arrangement. Its main feature is plant safety and reliability. Its power is 22MW t h, cooled by light water and moderated by beryllium. It has platetype fuel elements (MTR type, approx. 20%. enriched uranium) clad in aluminium. Its cobalt (Co 60 ) production capacity is 50000 Ci/yr, 200 Ci/gr. The distribution of the reactor core and associated control and safety systems is essentially based on the following design criteria: - upwards cooling flow, to waive the need for cooling flow inversion in case the reactor is cooled by natural convection if confronted with a loss of pumping power, and in order to establish a superior heat transfer potential (a higher coolant saturation temperature); - easy access to the reactor core from top of pool level with the reactor operating at full power, in order to facilitate actual implementation of experiments. Consequently, mechanisms associated to control and safety rods s,re located underneath the reactor tank; - free access of reactor personnel to top of pool level with the reactor operating at full power. This aids in the training of personnel and the actual carrying out of experiments, hence: - a vast water column was placed over the core to act as radiation shielding; - the core's external area is cooled by a downwards flow which leads to a decay tank beyond the pool (for N 16 to decay); - a small downwards flow was directed to stream downwards from above the reactor core in order to drag along any possibly active element; and - a stagnant hot layer system was placed at top of pool level so as to minimize the upwards coolant flow rising towards pool level

  2. Reactor performance calculations for water reactors

    International Nuclear Information System (INIS)

    Hicks, D.

    1970-04-01

    The principles of nuclear, thermal and hydraulic performance calculations for water cooled reactors are discussed. The principles are illustrated by describing their implementation in the UKAEA PATRIARCH scheme of computer codes. This material was originally delivered as a course of lectures at the Technical University of Helsinki in Summer of 1969.

  3. Reactor scram device for FBR type reactor

    International Nuclear Information System (INIS)

    Kumasaka, Katsuyuki; Arashida, Genji; Itooka, Satoshi.

    1991-01-01

    In a control rod attaching structure in a reactor scram device of an FBR type reactor, an anti-rising mechanism proposed so far against external upward force upon occurrence of earthquakes relies on the engagement of a mechanical structure but temperature condition is not taken into consideration. Then, in the present invention, a material having curie temperature characteristics and which exhibits ferromagnetism only under low temperature condition and a magnet device are disposed to one of a movable control rod and a portion secured to the reactor. Alternatively, a bimetal member or a shape memory alloy which actuates to fix to the mating member only under low temperature condition is secured. The fixing device is adapted to operate so as to secure the control rods when the low temperature state is caused depending on the temperature condition. With such a constitution, when the control rods are separated from a driving device, they are prevented from rising even if they undergo external upward force due to earthquakes and so on, which can improve the reactor safety. (N.H.)

  4. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    1993-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1992 (April 1, 1992-March 31, 1993). The major Department's programs promoted in the year are the assessment of the high conversion light water reactor, the design activities of advanced reactor system and development of a high energy proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project were also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  5. Reactor engineering department annual report

    International Nuclear Information System (INIS)

    1990-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1989 (April 1, 1989 - March 31, 1990). One of major Department's programs is the assessment of the high conversion light water reactor and the design activities of advanced reactor system. Development of a high energy proton linear accelerator for the nuclear engineering including is also TRU incineration promoted. Other major tasks of the Department are various basic researches on nuclear data and group constants, theoretical methods and code development, on reactor physics experiments and analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics, technology assessment of nuclear energy and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  6. Reactor water sampling device

    International Nuclear Information System (INIS)

    Sakamaki, Kazuo.

    1992-01-01

    The present invention concerns a reactor water sampling device for sampling reactor water in an in-core monitor (neutron measuring tube) housing in a BWR type reactor. The upper end portion of a drain pipe of the reactor water sampling device is attached detachably to an in-core monitor flange. A push-up rod is inserted in the drain pipe vertically movably. A sampling vessel and a vacuum pump are connected to the lower end of the drain pipe. A vacuum pump is operated to depressurize the inside of the device and move the push-up rod upwardly. Reactor water in the in-core monitor housing flows between the drain pipe and the push-up rod and flows into the sampling vessel. With such a constitution, reactor water in the in-core monitor housing can be sampled rapidly with neither opening the lid of the reactor pressure vessel nor being in contact with air. Accordingly, operator's exposure dose can be reduced. (I.N.)

  7. Reactor safety protection system

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Yokoyama, Tsuguo.

    1989-01-01

    A plurality of neutron detectors are disposed around a reactor core and detection signals from optional two neutron detectors are inputted into a ratio calculation device. If the ratio between both of the neutron flux level signals exceeds a predetermined value, a reactor trip signal is generated from an alarm setting device. Further, detection signals from all of the neutron detection devices are inputted into an average calculation device and the reactor trip signal is generated also in a case where the average value exceeds a predetermined set value. That is, when the reactor core power is increased locally, the detection signal from the neutron detector nearer to the point of power increase is greater than the increase rate for the entire reactor core power, while the detection signal from the neutron detector remote from the point of power increase is smaller. Thus, the local power increase ratio in the FBR reactor core can be detected efficiently by calculating the ratio for the neutron flux level signals from two neutron detectors, thereby enabling to exactly recognize the local power increase rate in the reactor core. (N.H.)

  8. Reactor power control device

    International Nuclear Information System (INIS)

    Imaruoka, Hiromitsu.

    1994-01-01

    A high pressure water injection recycling system comprising injection pipelines of a high pressure water injection system and a flow rate control means in communication with a pool of a pressure control chamber is disposed to a feedwater system of a BWR type reactor. In addition, the flow rate control means is controlled by a power control device comprising a scram impossible transient event judging section, a required injection flow rate calculation section for high pressure water injection system and a control signal calculation section. Feed water flow rate to be supplied to the reactor is controlled upon occurrence of a scram impossible transient event of the reactor. The scram impossible transient event is judged based on reactor output signals and scram operation demand signals and injection flow rate is calculated based on a predetermined reactor water level, and condensate storage tank water or pressure control chamber pool water is injected to the reactor. With such procedures, water level can be ensured and power can be suppressed. Further, condensate storage tank water of low enthalpy is introduced to the pressure suppression chamber pool to directly control elevation of water temperature and ensure integrity of the pressure vessel and the reactor container. (N.H.)

  9. Nuclear reactor containing facility

    International Nuclear Information System (INIS)

    Hidaka, Masataka; Murase, Michio.

    1994-01-01

    In a reactor containing facility, a condensation means is disposed above the water level of a cooling water pool to condensate steams of the cooling water pool, and return the condensated water to the cooling water pool. Upon occurrence of a pipeline rupture accident, steams generated by after-heat of a reactor core are caused to flow into a bent tube, blown from the exit of the bent tube into a suppression pool and condensated in a suppression pool water, thereby suppressing the pressure in the reactor container. Cooling water in the cooling water pool is boiled by heat conduction due to the condensation of steams, then the steams are exhausted to the outside of the reactor container to remove the heat of the reactor container to the outside of the reactor. In addition, since cooling water is supplied to the cooling water pool quasi-permanently by gravity as a natural force, the reactor container can be cooled by the cooling water pool for a long period of time. Since the condensation means is constituted with a closed loop and interrupted from the outside, radioactive materials are never released to the outside. (N.H.)

  10. Reactor Safety Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1981-07-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  11. The integral fast reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the integral fast reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics also makes possible a simplified close fuel cycle and waste process improvements. The paper describes the IFR concept, the inherent safety, tests, and status of IFR development today

  12. Water cooled nuclear reactors

    International Nuclear Information System (INIS)

    Donaldson, A.J.

    1989-01-01

    In order to reduce any loss of primary water coolant from around a reactor core of a water cooled nuclear reactor caused by any failure of a pressure vessel, an inner vessel is positioned within and spaced from the pressure vessel. The reactor core and main portion of the primary water coolant circuit and a heat exchanger are positioned within the inner vessel to maintain some primary water coolant around the reactor core and to allow residual decay heat to be removed from the reactor core by the heat exchanger. In the embodiment shown an aperture at the upper region of the inner vessel is dimensioned configured and arranged to prevent steam from a steam space of an integral pressurised water cooled nuclear reactor for a ship entering the main portion of the primary water coolant circuit in the inner vessel if the longitudinal axis of the nuclear reactor is displaced from its normal substantially vertical position to an abnormal position at an angle to the vertical direction. Shields are integral with the inner vessel. (author)

  13. Slurry reactor design studies

    Energy Technology Data Exchange (ETDEWEB)

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. (Bechtel Group, Inc., San Francisco, CA (USA)); Akgerman, A. (Texas A and M Univ., College Station, TX (USA)); Smith, J.M. (California Univ., Davis, CA (USA))

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  14. Reactor monitoring device

    International Nuclear Information System (INIS)

    Kono, Shigehiro.

    1996-01-01

    The device of the present invention monitors the stability of a power of a BWR type reactor by using each of recycling flow rates in addition to a reactor core flow rate to improve monitoring accuracy. Namely, a set value registering means is disposed for registering reactor core flow rate set values corresponding to the number of recycling flow rates not reaching a reference value for each of the recycling flow rates. A reactor flow rate take-out means judges whether each of the recycling flow rates reaches the reference value or not. The set values of the set value registering means are taken out based on the number of each of the recycling flow rate signals not reaching the reference values. The taken out set value and calculated reactor core flow rate value are compared by an abnormal alarm means. When calculated value is smaller than the set value, abnormality is informed. The accuracy for the monitoring is improved by monitoring the reactor power by using each of recycling flow rates in addition to the reactor core flow rate. (I.S.)

  15. Nuclear reactor control column

    International Nuclear Information System (INIS)

    Bachovchin, D.M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest crosssectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor

  16. The integral fast reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two dramatic demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the Integral Fast Reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics and also makes possible a simplified closed fuel cycle and waste process improvements

  17. Reactor container cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1995-11-10

    The device of the present invention efficiently lowers pressure and temperature in a reactor container upon occurrence of a severe accident in a BWR-type reactor and can cool the inside of the container for a long period of time. That is, (1) pipelines on the side of an exhaustion tower of a filter portion in a filter bent device of the reactor container are in communication with pipelines on the side of a steam inlet of a static container cooling device by way of horizontal pipelines, (2) a back flow check valve is disposed to horizontal pipelines, (3) a steam discharge valve for a pressure vessel is disposed closer to the reactor container than the joint portion between the pipelines on the side of the steam inlet and the horizontal pipelines. Upon occurrence of a severe accident, when the pressure vessel should be ruptured and steams containing aerosol in the reactor core should be filled in the reactor container, the inlet valve of the static container cooling device is closed. Steams are flown into the filter bent device of the reactor container, where the aerosols can be removed. (I.S.).

  18. Reactor safety device

    International Nuclear Information System (INIS)

    Okada, Yasumasa.

    1987-01-01

    Purpose: To scram control rods by processing signals from a plurality of temperature detectors and generating abnormal temperature warning upon occurrence of abnormal temperature in a nuclear reactor. Constitution: A temperature sensor comprising a plurality of reactors each having a magnetic body as the magnetic core having a curie point different from each other and corresponding to the abnormal temperature against which reactor core fuels have to be protected is disposed in an identical instrumentation well near the reactor core fuel outlet/inlet of a reactor. A temperature detection device actuated upon detection of an abnormal temperature by the abrupt reduction of the reactance of each of the reactors is disposed. An OR circuit and an AND circuit for conducting OR and AND operations for each of the abnormal temperature detection signals from the temperature detection device are disposed. The output from the OR circuit is used as the abnormal temperature warning signal, while the output from the AND circuit is utilized as a signal for actuating the scram operation of control rod drive mechanisms. Accordingly, it is possible to improve the reliability of the reactor scram system, particularly, improve the reliability under a high temperature atmosphere. (Kamimura, M.)

  19. Inherently safe reactors

    International Nuclear Information System (INIS)

    Maartensson, Anders

    1992-01-01

    A rethinking of nuclear reactor safety has created proposals for new designs based on inherent and passive safety principles. Diverging interpretations of these concepts can be found. This article reviews the key features of proposed advanced power reactors. An evaluation is made of the degree of inherent safety for four different designs: the AP-600, the PIUS, the MHTGR and the PRISM. The inherent hazards of today's most common reactor principles are used as reference for the evaluation. It is concluded that claims for the new designs being inherently, naturally or passively safe are not substantiated by experience. (author)

  20. Reactor safety assessment system

    International Nuclear Information System (INIS)

    Sebo, D.E.; Bray, M.A.; King, M.A.

    1987-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system under development for the United States Nuclear Regulatory Commission (USNRC). RSA is designed for use at the USNRC Operations Center in the event of a serious incident at a licensed nuclear power plant. RSAS is a situation assessment expert system which uses plant parametric data to generate conclusions for use by the NRC Reactor Safety Team. RSAS uses multiple rule bases and plant specific setpoint files to be applicable to all licensed nuclear power plants in the United States. RSAS currently covers several generic reactor categories and multiple plants within each category

  1. Fast breeder reactors

    International Nuclear Information System (INIS)

    1978-01-01

    The subject of this invention is a liquid metal cooled nuclear reactor construction in which a concrete pit is lagged to protect it from the heat radiated from the reactor in normal operation but in which the efficiency of the lagging is reduced in case of emergency to allow the excess heat generated by the reactor to be dissipated throughout the pit. The lagging is in two layers, the first covering the internal surface of the pit wall is impermeable to the liquid metal, whilst the second layer over the first is permeable [fr

  2. Reactor shutdown device

    International Nuclear Information System (INIS)

    Masuda, Hiroyuki.

    1983-01-01

    Purpose : To provide a reactor shutdown device suitable to the low temperature shutdown of a heavy water-moderated type nuclear reactor and capable of ensuring an adequate shutdown margin. Constitution : Xenon reactivity is calculated based on the detection signals for reactor neutrons, the temperature reactivity is calculated based on the temperature of the moderators and of the coolants and, further, poisons in the moderators are detected. Injection amount of the poisons is calculated based on the result of the calculation and the detection, and the calculated amount of poisons is injected into the moderators. (Kamimura, M.)

  3. Mirror machine reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1976-01-01

    Recent mirror reactor conceptual design studies are described. Considered in detail is the design of ''standard'' Yin-Yang fusion power reactors with classical and enhanced confinement. It is shown that to be economically competitive with estimates for other future energy sources, mirror reactors require a considerable increase in Q, or major design simplifications, or preferably both. These improvements may require a departure from the ''standard'' configuration. Two attractive possibilities, both of which would use much of the same physics and technology as the ''standard'' mirror, are the field reversed mirror and the end-stoppered mirror

  4. Reactor flux calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lhuillier, D. [Commissariat à l' Énergie Atomique et aux Énergies Alternatives, Centre de Saclay, IRFU/SPhN, 91191 Gif-sur-Yvette (France)

    2013-02-15

    The status of the prediction of reactor anti-neutrino spectra is presented. The most accurate method is still the conversion of total β spectra of fissionning isotopes as measured at research reactors. Recent re-evaluations of the conversion process led to an increased predicted flux by few percent and were at the origin of the so-called reactor anomaly. The up to date predictions are presented with their main sources of error. Perspectives are given on the complementary ab-initio predictions and upcoming experimental cross-checks of the predicted spectrum shape.

  5. Reactor pressure tank

    International Nuclear Information System (INIS)

    Dorner, H.; Scholz, M.; Jungmann, A.

    1975-01-01

    In a reactor pressure tank for a nuclear reactor, self-locking hooks engage a steel ring disposed over the removable cover of the steel vessel. The hooks exert force upon the cover to maintain the cover in a closed position during operation of the reactor pressure tank. The force upon the removal cover is partly the result of the increasing temperature and thermal expansion of the steel vessel during operation. The steel vessel is surrounded by a reinforced-concrete tank. (U.S.)

  6. Licensed operating reactors

    International Nuclear Information System (INIS)

    1990-04-01

    The Operating Units Status Report --- Licensed Operating Reactors provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management from the Headquarters staff on NRC's Office of Enforcement (OE), from NRC's Regional Offices, and from utilities. The three sections of the report are: monthly highlights and statistics for commercial operating units, and errata from previously reported data; a compilation of detailed information on each unit, provided by NRC's Regional Offices, OE Headquarters and the utilities; and an appendix for miscellaneous information such as spent fuel storage capability, reactor-years of experience and non- power reactors in the US

  7. Reactor BR2: Introduction

    International Nuclear Information System (INIS)

    Gubel, P.

    2000-01-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. A safety audit was conduced by the IAEA, the conclusions of which demonstrated the excellent performance of the plant in terms of operational safety. In 1999, the CALLISTO facility was extensively used for various programmes involving LWR pressure vessel materials, IASCC of LWR structural materials, fusion reactor materials and martensic steels for use in ADS systems. In 1999, BR2's commercial programmes were further developed

  8. Nuclear reactor theory

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi

    2007-09-01

    This textbook is composed of two parts. Part 1 'Elements of Nuclear Reactor Theory' is composed of only elements but the main resource for the lecture of nuclear reactor theory, and should be studied as common knowledge. Much space is therefore devoted to the history of nuclear energy production and to nuclear physics, and the material focuses on the principles of energy production in nuclear reactors. However, considering the heavy workload of students, these subjects are presented concisely, allowing students to read quickly through this textbook. (J.P.N.)

  9. Power reactor design trends

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1985-01-01

    Cascade and Pulse Star represent new trends in ICF power reactor design that have emerged in the last few years. The most recent embodiments of these two concepts, and that of the HYLIFE design with which they will compare them, are shown. All three reactors depend upon protecting structural elements from neutrons, x rays and debris by injecting massive amounts of shielding material inside the reaction chamber. However, Cascade and Pulse Star introduce new ideas to improve the economics, safety, and environmental impact of ICF reactors. They also pose different development issues and thus represent technological alternatives to HYLIFE

  10. Reactor power control system

    International Nuclear Information System (INIS)

    Tomisawa, Teruaki.

    1981-01-01

    Purpose: To restore reactor-power condition in a minimum time after a termination of turbine bypass by reducing the throttling of the reactor power at the time of load-failure as low as possible. Constitution: The transient change of the internal pressure of condenser is continuously monitored. When a turbine is bypassed, a speed-control-command signal for a coolant recirculating pump is generated according as the internal pressure of the condenser. When the signal relating to the internal pressure of the condenser indicates insufficient power, a reactor-control-rod-drive signal is generated. (J.P.N.)

  11. Research reactor support

    International Nuclear Information System (INIS)

    2005-01-01

    Research reactors (RRs) have been used in a wide range of applications including nuclear power development, basic physics research, education and training, medical isotope production, geology, industry and other fields. However, many research reactors are fuelled with High Enriched Uranium (HEU), are underutilized and aging, and have significant quantities of spent fuel. HEU inventories (fresh and spent) pose security risks Unavailability of a high-density-reprocessable fuel hinders conversion and limits back-end options and represents a survival dilemma for many RRs. Improvement of interim spent fuel storage is required at some RRs. Many RRs are under-utilized and/or inadequately funded and need to find users for their services, or permanently shut down and eventually decommission. Reluctance to decommission affect both cost and safety (loss of experienced staff ) and many shut down but not decommissioned RR with fresh and/or spent fuel at the sites invoke serious concern. The IAEA's research reactor support helps to ensure that research reactors can be operated efficiently with fuels and targets of lower proliferation and security concern and that operators have appropriate technology and options to manage RR fuel cycle issues, especially on long term interim storage of spent research reactor fuel. Availability of a high-density-reprocessable fuel would expand and improve back end options. The International Atomic Energy Agency provides assistance to Member States to convert research reactors from High Enriched Uranium fuel and targets (for medical isotope production) to qualified Low Enriched Uranium fuel and targets while maintaining reactor performance levels. The assistance includes provision of handbooks and training in the performance of core conversion studies, advice for the procurement of LEU fuel, and expert services for LEU fuel acceptance. The IAEA further provides technical and administrative support for countries considering repatriation of its

  12. Reactors of the world

    International Nuclear Information System (INIS)

    1971-01-01

    Basic data relating to 127 power reactors in 15 countries which are expected to be in operation at the end of this year, with a total installed electrical generating capacity of 35 340.15 MW(e), and a listing of 361 research reactors in 46 countries are given in the 1971 edition of the IAEA handbook, Power and Research Reactors in Member States, which has just been published. This edition, the fourth, was prepared especially for the Fourth International Conference on the Peaceful Uses of Atomic Energy. (author)

  13. Elmo Bumpy Torus Reactor

    International Nuclear Information System (INIS)

    McAlees, D.G.; Uckan, N.A.; Lidsky, L.M.

    1976-01-01

    In the Elmo Bumpy Torus Reactor (EBTR) study the feasibility of achieving a fusion power plant based on the EBT confinement concept was evaluated. If the present understanding of the physics can be extrapolated to reactor scale devices the reactor could operate at high beta, high power density, and at steady state. The high aspect ratio of the device eases the accessibility, structural design and remote maintenance problems which are common to low aspect ratio machines. A version of the EBTR reference design described here could be constructed with only minor extrapolations in available technology

  14. Nuclear reactor safety system

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1983-01-01

    The invention provides a safety system for a nuclear reactor which uses a parallel combination of computer type look-up tables each of which receives data on a particular parameter (from transducers located in the reactor system) and each of which produces the functional counterpart of that particular parameter. The various functional counterparts are then added together to form a control signal for shutting down the reactor. The functional counterparts are developed by analysis of experimental thermal and hydraulic data, which are used to form expressions that define safe conditions

  15. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the behaviour of fusion reactor materials and components during and after irradiation. Ongoing projects include: the study of the mechanical behaviour of structural materials under neutron irradiation; the investigation of the characteristics of irradiated first wall material such as beryllium; the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; and the study of dismantling and waste disposal strategy for fusion reactors. Progress and achievements in these areas in 2000 are discussed

  16. First Algerian research reactor

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    In 1985, both the Algerian Commissariat of New Energies and the Argentine National Atomic Energy Commission plus the firm INVAP S.E., started a series of mutual visits aimed at defining the mechanisms for cooperation in the nuclear field. Within this framework, a commercial contract was undersigned covering the supply of a low-power reactor (RUN), designed for basic and applied research in the fields of reactor physics and nuclear engineering. The reactor may also be used for performing experiences with neutron beams, for the irradiation of several materials and for the training of technicians, scientists and operators [es

  17. Fast Breeder Reactor studies

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts

  18. NUCLEAR REACTOR FUEL SYSTEMS

    Science.gov (United States)

    Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

    1959-09-15

    Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

  19. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  20. Fusion reactor radioactive waste management

    International Nuclear Information System (INIS)

    Kaser, J.D.; Postma, A.K.; Bradley, D.J.

    1976-01-01

    Quantities and compositions of non-tritium radioactive waste are estimated for some current conceptual fusion reactor designs, and disposal of large amounts of radioactive waste appears necessary. Although the initial radioactivity of fusion reactor and fission reactor wastes are comparable, the radionuclides in fusion reactor wastes are less hazardous and have shorter half-lives. Areas requiring further research are discussed

  1. Special lecture on nuclear reactor

    International Nuclear Information System (INIS)

    Jo, Nam Jin

    1993-08-01

    This book gives a special lecture on nuclear reactor, which is divided into two parts. The first part has explanation on nuclear design of nuclear reactor and analysis of core with theories of integral transports, diffusion Nodal, transports Nodal and Monte Carlo skill parallel computer and nuclear calculation and speciality of transmutation reactor. The second part deals with speciality of nuclear reactor and control with nonlinear stabilization of nuclear reactor, nonlinear control of nuclear reactor, neural network and control of nuclear reactor, control theory of observer and analysis method of Adomian.

  2. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1975-11-01

    Research activities in fiscal 1974 in Reactor Engineering Division of eight laboratories and computing center are described. Works in the division are closely related with the development of a multi-purpose High-temperature Gas Cooled Reactor, the development of a Liquid Metal Fast Breeder Reactor in Power Reactor and Nuclear Fuel Development Corporation, and engineering of thermonuclear fusion reactors. They cover nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and aspects of the computing center. (auth.)

  3. RA Reactor applications, Annex A

    International Nuclear Information System (INIS)

    Cupac, S.; Vukadin, Z.

    2000-01-01

    Full text: In 2000 Ra reactor was not operated. New instrumentation is not complete, without it, it is not possible to think about reactor start-up. Since 1985, when reactor operation was forbidden, there are 480 fuel elements left in 48 fuel channels in the reactor core. Heavy water was removed from the reactor core because of the repair of the heavy water pumps in 1986. The old instrumentation was removed. Eleven years after being left to its own destiny, it would be difficult to imagine that anybody would think of reactor restart without examining the state of reactor vessel and other vital reactor components. Maintaining the reactor under existing conditions without final decision about restart or permanent shutdown is destructive for this nuclear facility. The existing state that pertains for more than 10 years would have only one result, destruction of the RA reactor [sr

  4. RA Reactor applications, Annex A

    International Nuclear Information System (INIS)

    Cupac, S.; Vukadin, Z.

    1998-01-01

    Full text: In 1998 Ra reactor was not operated. New instrumentation is not complete, without it, it is not possible to think about reactor start-up. Since 1985, when reactor operation was forbidden, there are 480 fuel elements left in 48 fuel channels in the reactor core. Heavy water was removed from the reactor core because of the repair of the heavy water pumps in 1986. The old instrumentation was removed. Eleven years after being left to its own destiny, it would be difficult to imagine that anybody would think of reactor restart without examining the state of reactor vessel and other vital reactor components. Maintaining the reactor under existing conditions without final decision about restart or permanent shutdown is destructive for this nuclear facility. The existing state that pertains for more than 10 years would have only one result, destruction of the RA reactor [sr

  5. RA Reactor applications, Annex A

    International Nuclear Information System (INIS)

    Cupac, S.; Vukadin, Z.

    1996-01-01

    Full text: In 2000 Ra reactor was not operated. New instrumentation is not complete, without it, it is not possible to think about reactor start-up. Since 1985, when reactor operation was forbidden, there are 480 fuel elements left in 48 fuel channels in the reactor core. Heavy water was removed from the reactor core because of the repair of the heavy water pumps in 1986. The old instrumentation was removed. Eleven years after being left to its own destiny, it would be difficult to imagine that anybody would think of reactor restart without examining the state of reactor vessel and other vital reactor components. Maintaining the reactor under existing conditions without final decision about restart or permanent shutdown is destructive for this nuclear facility. The existing state that pertains for more than 10 years would have only one result, destruction of the RA reactor [sr

  6. Nuclear reactor container

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki.

    1987-01-01

    Purpose: To improve the earthquake proofness and also increase the safety to a nuclear reactor container by preventing bucklings upon earthquake. Constitution: A device for absorbing the deformation exerted from nuclear reactor buildings is disposed to a suppression chamber constituting a reactor container. When a nclear power plant encounters earthquakes, the entire reactor buildings are shaken and deformations of buildings are transmitted by way of building shell walls to a container and the forcive deforming forces are absorbed in the deformation absorbing device. That is, bellows are formed at the base of the container, which are deformed by the deforming forces to absorb the forcive deforming amount to moderate the stresses resulted to the suppression chamber. Thus, the rigidity to the bending of the container can be reduced and allowable displacement to the bucklings can be increased to prevent the buckling, by which earthquake proofness is improved and the safety is increased. (Kamimura, M.)

  7. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1981-01-01

    An array of rods comprising zirconium alloy sheathed nuclear fuel pellets assembled to form a fuel element for a pressurised water reactor is claimed. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  8. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1984-01-01

    The fuel elements for a pressurised water reactor comprise arrays of rods of zirconium alloy sheathed nuclear fuel pellets. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  9. Nuclear reactor (1960)

    International Nuclear Information System (INIS)

    Maillard, M.L.

    1960-01-01

    The first French plutonium-making reactors G1, G2 and G3 built at Marcoule research center are linked to a power plant. The G1 electrical output does not offset the energy needed for operating this reactor. On the contrary, reactors G2 and G3 will each generate a net power of 25 to 30 MW, which will go into the EDF grid. This power is relatively small, but the information obtained from operation is great and will be helpful for starting up the power reactor EDF1, EDF2 and EDF3. The paper describes how, previous to any starting-up operation, the tests performed, especially those concerned with the power plant and the pressure vessel, have helped to bring the commissioning date closer. (author) [fr

  10. Backfitting of research reactors

    International Nuclear Information System (INIS)

    Delrue, R.; Noesen, T.

    1985-01-01

    The backfitting of research reactors covers a variety of activities. 1. Instrumentation and control: Control systems have developed rapidly and many reactor operators wish to replace obsolete equipment by new systems. 2. Pool liners: Some pools are lined internally with ceramic tiles. These may become pervious with time necessitating replacement, e.g. by a new stainless steel liner. 3. Heat removal system: Deficiencies can occur in one or more of the cooling system components. Upgrading may require modifications of the system such as addition of primary loops, introduction of deactivation tanks, pump replacement. Recent experience in such work has shown that renewal, backfitting and upgrading of an existing reactor is economically attractive since the related costs and delivery times are substantially lower than those required to install a new research reactor

  11. Ageing of research reactors

    International Nuclear Information System (INIS)

    Ciocanescu, M.

    2001-01-01

    Historically, many of the research institutions were centred on a research reactor facility as main technological asset and major source of neutrons for research. Important achievements were made in time in these research institutions for development of nuclear materials technology and nuclear safety for nuclear energy. At present, ageing of nuclear research facilities among these research reactors and ageing of staff are considerable factors of reduction of competence in research centres. The safe way of mitigation of this trend deals with ageing management by so called, for power reactors, Plant Life Management and new investments in staff as investments in research, or in future resources of competence. A programmatic approach of ageing of research reactors in correlation with their actual and future utilisation, will be used as a basis for safety evaluation and future spending. (author)

  12. Integrated nuclear reactor

    International Nuclear Information System (INIS)

    Pales, I.; Hasko, V.

    1984-01-01

    The reactor is provided with an integrated circuit of primary medium circulation with hydraulic pump drive. The pump drive which is a blade hydraulic facility is placed in the reactor vessel together with the pump. The primary medium flows through the core and enters the inter-tube space of the secondary circuit heat exchanger. The secondary circuit medium is supplied under the bottom tube plate with a supply pipe. From it the flow of secondary medium is directed to the blades of the hydraulic facility, e.g. the turbine. The turbine drives the pump which transports the primary medium to the reactor core. The secondary medium enters the heat exchanger tubes and through their walls receives the heat from the primary medium. This design reduces capital costs of the reactor and increases its safety. (E.S.)

  13. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2001-04-01

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given.

  14. Inertial thermonuclear reactors

    International Nuclear Information System (INIS)

    Madarame, Haruki; Oomura, Hiroshi; Nakamura, Norio.

    1984-01-01

    Purpose: To improve the durability of the first wall. Constitution: A reactor cavity for performing inertial thermofusion is defined within a vessel of a thermonuclear reactor, and the first wall of a tubular structure flowing coolants for taking out thermonuclear energy generated in the reactor cavity as the heat energy to the outside of the reactor is disposed, in which jet nozzles are disposed to the inside of the first wall that pulse-width jet coolants to form coolant membranes on the inner circumferential surface of the first wall to thereby surround the fire ball by the membrane of the coolants. Thus, the energy of the fire ball can be reduced by the membrane of the coolants, whereby the thermal loads and impact loads to the first wall can be moderated to substantially increase the working life and improve the safety of the first wall for which the greatest stress load is expected. (Yoshihara, H.)

  15. Reactor pressure vessel support

    International Nuclear Information System (INIS)

    Butti, J.P.

    1978-01-01

    A link and pin support system provides the primary vertical and lateral support for a nuclear reactor pressure vessel without restricting thermally induced radial and vertical expansion and contraction

  16. Pressure tube reactor

    International Nuclear Information System (INIS)

    Matsumoto, Tomoyuki; Fujino, Michihira.

    1980-01-01

    Purpose: To equalize heavy water flow distribution by providing a nozzle for externally injecting heavy water from a vibration preventive plate to the upper portion to feed the heavy water in a pressure tube reactor and swallowing up heavy water in a calandria tank to supply the heavy water to the reactor core above the vibration preventive plate. Constitution: A moderator injection nozzle is mounted on the inner wall of a calandria tank. Heavy water is externally injected above the vibration preventive plate, and heavy water in the calandria tank is swallowed up to supply the heavy water to the core reactor above the vibration preventive plate. Therefore, the heavy water flow distribution can be equalized over the entire reactor core, and the distribution of neutron absorber dissolved in the heavy water is equalized. (Yoshihara, H.)

  17. Nuclear reactor core catcher

    International Nuclear Information System (INIS)

    1977-01-01

    A nuclear reactor core catcher is described for containing debris resulting from an accident causing core meltdown and which incorporates a method of cooling the debris by the circulation of a liquid coolant. (U.K.)

  18. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1985-01-01

    During the past two years, scientists from Argonne have developed an advanced breeder reactor with a closed self contained fuel cycle. The Integral Fast Reactor (IFR) is a new reactor concept, adaptable to a variety of designs, that is based on a fuel cycle radically different from the CRBR line of breeder development. The essential features of the IFR are metal fuel, pool layout, and pyro- and electro-reprocessing in a facility integral with the reactor plant. The IFR shows promise to provide an inexhaustible, safe, economic, environmentally acceptable, and diversion resistant source of nuclear power. It shows potential for major improvement in all of the areas that have led to concern about nuclear power

  19. Reactor BR2. Introduction

    International Nuclear Information System (INIS)

    Gubel, P.

    2002-01-01

    The BR2 materials testing reactor is one of SCK-CEN's most important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. In 2001, the reactor was operated for a total of 123 days at a mean power of 59 MW in order to satisfy the irradiation conditions of the internal and external programmes using mainly the CALLISTO PWR loop. The mean consumption of fresh fuel elements was 5.26 per 1000 MWd. Main achievements in 2001 included the development of a three-dimensional full-scale model of the BR2 reactor for simulation and prediction of irradiation conditions for various experiments; the construction of the FUTURE-MT device designed for the irradiation of fuel plates under representative conditions of geometry, neutron spectrum, heat flux and thermal-hydraulic conditions and the development of in-pile instrumentation and a data acquisition system

  20. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2002-04-01

    The BR2 materials testing reactor is one of SCK-CEN's most important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. In 2001, the reactor was operated for a total of 123 days at a mean power of 59 MW in order to satisfy the irradiation conditions of the internal and external programmes using mainly the CALLISTO PWR loop. The mean consumption of fresh fuel elements was 5.26 per 1000 MWd. Main achievements in 2001 included the development of a three-dimensional full-scale model of the BR2 reactor for simulation and prediction of irradiation conditions for various experiments; the construction of the FUTURE-MT device designed for the irradiation of fuel plates under representative conditions of geometry, neutron spectrum, heat flux and thermal-hydraulic conditions and the development of in-pile instrumentation and a data acquisition system.

  1. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  2. Reactor vessel sealing plug

    International Nuclear Information System (INIS)

    Dooley, R.A.

    1986-01-01

    This invention relates to an apparatus and method for sealing the cold leg nozzles of a nuclear reactor pressure vessel from a remote location during maintenance and inspection of associated steam generators and pumps while the pressure vessel and refueling canal are filled with water. The apparatus includes a sealing plug for mechanically sealing the cold leg nozzle from the inside of a reactor pressure vessel. The sealing plugs include a primary and a secondary O-ring. An installation tool is suspended within the reactor vessel and carries the sealing plug. The tool telescopes to insert the sealing plug within the cold leg nozzle, and to subsequently remove the plug. Hydraulic means are used to activate the sealing plug, and support means serve to suspend the installation tool within the reactor vessel during installation and removal of the sealing plug

  3. Small reactor operating mode

    International Nuclear Information System (INIS)

    Snell, V.G.

    1997-01-01

    There is a potential need for small reactors in the future for applications such as district heating, electricity production at remote sites, and desalination. Nuclear power can provide these at low cost and with insignificant pollution. The economies required by the small scale application, and/or the remote location, require a review of the size and location of the operating staff. Current concepts range all the way from reactors which are fully automatic, and need no local attention for days or weeks, to those with reduced local staff. In general the less dependent a reactor is on local human intervention, the greater its dependence on intrinsic safety features such as passive decay heat removal, low-stored energy and limited reactivity speed and depth in the control systems. A case study of the design and licensing of the SLOWPOKE Energy System heating reactor is presented. (author)

  4. New reactor type proposed

    CERN Multimedia

    2003-01-01

    "Russian scientists at the Research Institute of Nuclear Power Engineering in Moscow are hoping to develop a new reactor that will use lead and bismuth as fuel instead of uranium and plutonium" (1/2 page).

  5. Pulsed fusion reactors

    International Nuclear Information System (INIS)

    1975-01-01

    This summer school specialized in examining specific fusion center systems. Papers on scientific feasibility are first presented: confinement of high-beta plasma, liners, plasma focus, compression and heating and the use of high power electron beams for thermonuclear reactors. As for technological feasibility, lectures were on the theta-pinch toroidal reactors, toroidal diffuse pinch, electrical engineering problems in pulsed magnetically confined reactors, neutral gas layer for heat removal, the conceptual design of a series of laser fusion power plants with ''Saturn'', implosion experiments and the problem of the targets, the high brightness lasers for plasma generation, and topping and bottoming cycles. Some problems common to pulsed reactors were examined: energy storage and transfer, thermomechanical and erosion effects in the first wall and blanket, the problems of tritium production, radiation damage and neutron activation in blankets, and the magnetic and inertial confinement

  6. Pressurized water reactor systems

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1975-01-01

    Design and mode of operation of the main PWR components are described: reactor core, pressure vessel and internals, cooling systems with pumps and steam generators, ancillary systems, and waste processing. (TK) [de

  7. K-Reactor readiness

    International Nuclear Information System (INIS)

    Rice, P.D.

    1991-01-01

    This document describes some of the more significant accomplishments in the reactor restart program and details the magnitude and extent of the work completed to bring K-Reactor to a state of restart readiness. The discussion of restart achievements is organized into the three major categories of personnel, programs, and plant. Also presented is information on the scope and extent of internal and external oversight of the efforts, as well as some details on the startup plan

  8. Polymeric Membrane Reactors

    OpenAIRE

    José M. Sousa; Luís M. Madeira; João C. Santos; Adélio Mendes

    2008-01-01

    The aim of this chapter is the study of membrane reactors with polymeric membranes, particularly catalytic polymeric membranes. After an introduction where the main advantages and disadvantages of the use of polymeric membranes are summarised, a review of the main areas where they have been applied, integrated in chemical reactors, is presented. This excludes the field of bio-membranes processes, which is analysed in a specific chapter of this book. Particular attention is then given to model...

  9. Alternative breeder reactor technologies

    International Nuclear Information System (INIS)

    Spinrad, B.I.

    1978-01-01

    The significance of employing breeder reactors to stretch the world resources of nuclear fuels is briefly discussed, and the various types of breeder concepts are described. General descriptions, advantages, and disadvantages of the liquid metal cooled fast breeder, gas cooled fast breeder, molten salt breeder, thermal breeders, and spectral-shift control reactors are presented. Aspects of safeguarding fissile material connected with breeder operation are examined. 31 references

  10. Reactor Neutron Sources

    International Nuclear Information System (INIS)

    Aksenov, V.L.

    1994-01-01

    The present status and the prospects for development of reactor neutron sources for neutron scattering research in the world are considered. The fields of application of neutron scattering relative to synchrotron radiation, the creation stages of reactors (steady state and pulsed) and their position in comparison with spallation neutron sources at present and in the foreseen future are discussed. (author). 15 refs.; 8 figs.; 3 tabs

  11. KS-150 reactor control

    International Nuclear Information System (INIS)

    Wagner, K.

    1974-01-01

    A thorough description is presented of the control and protection system of the Bohunice A-1 reactor. The system including auxiliary facilities was developed, manufactured and installed at the reactor by the SKODA Works, Plzen. The system parameters are listed and a brief account is also given of the development efforts and of the physical and power start-up of the A-1 nuclear power plant. (L.O.)

  12. The replacement research reactor

    International Nuclear Information System (INIS)

    Cameron, R.; Horlock, K.

    2001-01-01

    The contract for the design, construction and commissioning of the Replacement Research Reactor was signed in July 2000. This was followed by the completion of the detailed design and an application for a construction licence was made in May 2001. This paper will describe the main elements of the design and their relation to the proposed applications of the reactor. The future stages in the project leading to full operation are also described

  13. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Butterfield, C.E.; Waite, E.

    1982-01-01

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  14. OECD Halden reactor project

    International Nuclear Information System (INIS)

    1978-01-01

    This report summarizes the activities of the OECD Halden Reactor Project for the year 1976. The main items reported on are: a) the process supervision and control which have focused on core monitoring and control, and operator-process communication; b) the fuel performance and safety behavior which have provided data and analytical descriptions of the thermal, mechanical and chemical behavior of fuel under various operating conditions; c) the reactor operations and d) the administration and finance

  15. Generation IV reactors: economics

    International Nuclear Information System (INIS)

    Dupraz, B.; Bertel, E.

    2003-01-01

    The operating nuclear reactors were built over a short period: no more than 10 years and today their average age rounds 18 years. EDF (French electricity company) plans to renew its reactor park over a far longer period : 30 years from 2020 to 2050. According to EDF this objective implies 3 constraints: 1) a service life of 50 to 60 years for a significant part of the present operating reactors, 2) to be ready to built a generation 3+ unit in 2020 which infers the third constraint: 3) to launch the construction of an EPR (European pressurized reactor) prototype as soon as possible in order to have it operating in 2010. In this scheme, generation 4 reactor will benefit the feedback experience of generation 3 and will take over in 2030. Economic analysis is an important tool that has been used by the generation 4 international forum to select the likely future reactor systems. This analysis is based on 4 independent criteria: the basic construction cost, the construction time, the operation and maintenance costs and the fuel cycle cost. This analysis leads to the evaluation of the global cost of electricity generation and of the total investment required for each of the reactor system. The former defines the economic competitiveness in a de-regulated energy market while the latter is linked to the financial risk taken by the investor. It appears, within the limits of the assumptions and models used, that generation 4 reactors will be characterized by a better competitiveness and an equivalent financial risk when compared with the previous generation. (A.C.)

  16. Department of Reactor Technology

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included.......The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included....

  17. Regulations for RA reactor operation

    International Nuclear Information System (INIS)

    1980-09-01

    Regulations for RA reactor operation are written in accordance with the legal regulations defined by the Law about radiation protection and related legal acts, as well as technical standards according to the IAEA recommendations. The contents of this book include: fundamental data about the reactor; legal regulations for reactor operation; organizational scheme for reactor operation; general and detailed instructions for operation, behaviour in the reactor building, performing experiments; operating rules for operation under steady state and accidental conditions [sr

  18. Reactor of the XXI century

    International Nuclear Information System (INIS)

    Zhotabaev, Zh.R.; Solov'ev, Yu.A.

    2001-01-01

    The advantages of both molten salt reactors (MSR) and homogenous molten salt reactors (HMSR) are illuminated. It is noted that the MSR possess accident probability A=10 -6 1/reactor.years and the HMSR with integral configuration has A=10 -7 1/reactor.years. The methods for these reactors technological problems solution - tritium removal, salt melt circulation and capacity pick up - are discussed

  19. Licensing of nuclear reactor operators

    International Nuclear Information System (INIS)

    1979-09-01

    Recommendations are presented for the licensing of nuclear reactor operators in units licensed according to the legislation in effect. They apply to all physical persons designated by the Operating Organization of the nuclear reactor or reactors to execute any of the following functional activities: a) to manipulate the controls of a definite reactor b) to direct the authorized activities of the reactor operators licesed according to the present recommendations. (F.E.) [pt

  20. Reactor power measuring device

    International Nuclear Information System (INIS)

    Ichige, Masayuki; Ishige, Takanori.

    1997-01-01

    The present invention provides a device for measuring a power such as of a nuclear fission reactor or a thermonuclear reactor by utilizing a light emitting phenomenon by radiation rays of gases. Namely, a measuring vessel sealed with a gas scintillator is inserted to the inside of a reactor. The measuring vessel is optically connected to a photoelectric convertor. The photoelectric convertor is electrically connected with a signal processing device. With such a constitution, gases sealed in the measuring vessel are ionized by radiation rays released in proportion to the power of the reactor to cause scintillation emission. The light is converted into electric signals by the photoelectric convertor. Reactor power can be monitored by the signal processing device having the electric signals as an input. According to the present invention, since the gas scintillation detector is used, the device is simplified and time responsiveness can be improved. As a result, the function of the reactor power measuring device can be improved. (I.S.)

  1. Materials for fusion reactors

    International Nuclear Information System (INIS)

    Ehrlich, K.; Kaletta, D.

    1978-03-01

    The following report describes five papers which were given during the IMF seminar series summer 1977. The purpose of this series was to discuss especially the irradiation behaviour of materials intended for the first wall of future fusion reactors. The first paper deals with the basic understanding of plasma physics relating to the fusion reactor and presents the current state of art of fusion technology. The next two talks discuss the metals intended for the first wall and structural components of a fusion reactor. Since 14 MeV neutrons play an important part in the process of irradiation damage their role is discussed in detail. The question which machines are presently available to simulate irradiation damage under conditions similar to the ones found in a fusion reactor are investigated in the fourth talk which also presents the limitations of the different methods of simulation. In this context also discussed is the importance future intensive neutron sources and materials test reactors will have for this problem area. The closing paper has as a theme the review of the present status of research of metallic and non-metallic materials in view of the quite different requirements for different fusion systems; a closing topic is the world supply on rare materials required for fusion reactors. (orig) [de

  2. Fast breeder reactors

    International Nuclear Information System (INIS)

    Waltar, A.E.; Reynolds, A.B.

    1981-01-01

    This book describes the major design features of fast breeder reactors and the methods used for their design and analysis. The foremost objective of this book is to fulfill the need for a textbook on Fast Breeder Reactor (FBR) technology at the graduate level or the advanced undergraduate level. It is assumed that the reader has an introductory understanding of reactor theory, heat transfer, and fluid mechanics. The book is expected to be used most widely for a one-semester general course on fast breeder reactors, with the extent of material covered to vary according to the interest of the instructor. The book could also be used effectively for a two-quarter or a two-semester course. In addition, the book could serve as a text for a course on fast reactor safety since many topics other than those appearing in the safety chapters relate to FBR safety. Methodology in fast reactor design and analysis, together with physical descriptions of systems, is emphasized in this text more than numerical results. Analytical and design results continue to change with the ongoing evolution of FBR design whereas many design methods have remained fundamentally unchanged for a considerable time

  3. Nuclear reactors to come

    International Nuclear Information System (INIS)

    Lung, M.

    2002-01-01

    The demand for nuclear energy will continue to grow at least till 2050 because of mainly 6 reasons: 1) the steady increase of the world population, 2) China, India and Indonesia will reach higher social standard and their energy consumption will consequently grow, 3) fossil energy resources are dwindling, 4) coal will be little by little banned because of its major contribution to the emission of green house effect gas, 5) renewable energies need important technological jumps to be really efficient and to take the lead, and 6) fusion energy is not yet ready to take over. All these reasons draw a promising future for nuclear energy. Today 450 nuclear reactors are operating throughout the world producing 17% of the total electrical power demand. In order to benefit fully of this future, nuclear industry has to improve some characteristics of reactors: 1) a more efficient use of uranium (it means higher burnups), 2) a simplification and automation of reprocessing-recycling chain of processes, 3) efficient measures against proliferation and against any misuse for terrorist purposes, and 4) an enhancement of safety for the next generation of reactors. The characteristics of fast reactors and of high-temperature reactors will likely make these kinds of reactors the best tools for energy production in the second half of this century. (A.C.)

  4. BWR type reactor

    International Nuclear Information System (INIS)

    Watanabe, Shoichi

    1988-01-01

    Purpose: To inhibit the lowering of the neutron moderation effect due to voids in the upper portion of the reactor core, thereby flatten the axial power distribution. Constitution: Although it has been proposed to enlarge the diameter at the upper portion of a water rod thereby increasing the moderator in the upper portion, since the water rod situates within the channel box, the increase in the capacity thereof is has certain limit. In the present invention, it is designed such that the volume of the region at the outside of the channel box for the fuel assembly to which non-boiling water in the non-boiling water region can enter is made greater in the upper portion than in the lower portion of the reactor core. Thus, if the moderator density in the upper portion of the reactor core should be decreased due to the generation of the voids, the neutron moderating effect in the upper portion of the reactor core is not lowered as compared with the lower portion of the reactor core and, accordingly, the axial power distribution can be flattening more as compared with that in the conventional nuclear reactors. (Takahashi, M.)

  5. Reactor operation method

    International Nuclear Information System (INIS)

    Osumi, Katsumi; Miki, Minoru.

    1979-01-01

    Purpose: To prevent stress corrosion cracks by decreasing the dissolved oxygen and hydrogen peroxide concentrations in the coolants within a reactor container upon transient operation such as at the start-up or shutdown of bwr type reactors. Method: After a condensate has been evacuated, deaeration operation is conducted while opening a main steam drain line, as well as a main steam separation valve and a by-pass valve in a turbine by-pass line connecting the main steam line and the condenser without by way of a turbine, and the reactor is started-up by the extraction of control rods after the concentration of dissolved oxygen in the cooling water within a pressure vessel has been decreased below a predetermined value. Nuclear heating is started after the reactor water has been increased to about 150 0 C by pump heating after the end of the deaeration operation for preventing the concentration of hydrogen peroxide and oxygen in the reactor water from temporarily increasing immediately after the start-up. The corrosive atmosphere in the reactor vessel can thus be moderated. (Horiuchi, T.)

  6. LMFBR type reactor

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Kawashima, Katsuyuki; Kurihara, Kunitoshi.

    1988-01-01

    Purpose: To flatten the power distribution while maintaining the flattening in the axial power distribution in LMFBR type reactors. Constitution: Main system control rods are divided into control rods used for the operation and starting rods used for the starting of the reactor, and the starting rods are disposed in the radial periphery of the reactor core, while the control rods are disposed to the inside of the starting rods. With such a constitution, adjusting rods can be disposed in the region where the radial power peaking is generated to facilitate the flattening of the power distribution even in such a design that the ratio of the number of control rods to that of fuel assemblies is relatively large. That is, in this reactor, the radial power peaking is reduced by about 10% as compared with the conventional reactor core. As a result, the maximum linear power density during operation is reduced by about 10% to increase the thermal margin of the reactor core. If the maximum linear power density is set identical, the number of the fuel assemblies can be decreased by about 10%, to thereby reduce the fuel production cost. (K.M.)

  7. OECD Halden reactor project

    International Nuclear Information System (INIS)

    1979-01-01

    This is the nineteenth annual Report on the OECD Halden Reactor Project, describing activities at the Project during 1978, the last year of the 1976-1978 Halden Agreement. Work continued in two main fields: test fuel irradiation and fuel research, and computer-based process supervision and control. Project research on water reactor fuel focusses on various aspects of fuel behavior under normal, and off-normal transient conditions. In 1978, participating organisations continued to submit test fuel for irradiation in the Halden boiling heavy-water reactor, in instrumented test assemblies designed and manufactured by the Project. Work included analysis of the impact of fuel design and reactor operating conditions on fuel cladding behavior. Fuel performance modelling included characterization of thermal and mechanical behavior at high burn-up, of fuel failure modes, and improvement of data qualification procedures to reduce and quantify error bands on in-reactor measurements. Instrument development yielded new or improved designs for measuring rod temperature, internal pressure, axial neutron flux shape determination, and for detecting cladding defects. Work on computer-based methods of reactor supervision and control included continued development of a system for predictive core surveillance, and of special mathematical methods for core power distribution control

  8. The reactor antineutrino anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Haser, Julia; Buck, Christian; Lindner, Manfred [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2016-07-01

    Major discoveries were made in the past few years in the field of neutrino flavour oscillation. Nuclear reactors produce a clean and intense flux of electron antineutrinos and are thus an essential neutrino source for the determination of oscillation parameters. Most currently the reactor antineutrino experiments Double Chooz, Daya Bay and RENO have accomplished to measure θ{sub 13}, the smallest of the three-flavour mixing angles. In the course of these experiments two anomalies emerged: (1) the reanalysis of the reactor predictions revealed a deficit in experimentally observed antineutrino flux, known as the ''reactor antineutrino anomaly''. (2) The high precision of the latest generation of neutrino experiments resolved a spectral shape distortion relative to the expected energy spectra. Both puzzles are yet to be solved and triggered new experimental as well as theoretical studies, with the search for light sterile neutrinos as most popular explanation for the flux anomaly. This talk outlines the two reactor antineutrino anomalies. Discussing possible explanations for their occurrence, recent and upcoming efforts to solve the reactor puzzles are highlighted.

  9. The reactor Cabri

    International Nuclear Information System (INIS)

    Ailloud, J.; Millot, J.P.

    1964-01-01

    It has become necessary to construct in France a reactor which would permit the investigation of the conditions of functioning of future installations, the choice, the testing and the development of safety devices to be adopted. A water reactor of a type corresponding to the latest CEA constructions in the field of laboratory or university reactors was decided upon: it appeared important to be able to evaluate the risks entailed and to study the possibilities of increasing the power, always demanded by the users; on the other hand, it is particularly interesting to clarify the phenomena of power oscillation and the risks of burn out. The work programme for CABRI will be associated with the work carried out on the American Sperts of the same type, during its construction, very useful contacts were made with the American specialists who designed the se reactors. A brief description of the reactor is given in the communication as well as the work programme for the first years with respect to the objectives up to now envisaged. Rough description of the reactor. CABRI is an open core swimming-pool reactor without any lateral protection, housed in a reinforced building with controlled leakage, in the Centre d'Etudes Nucleaires de Cadarache. It lies alone in the middle of an area whose radius is 300 meters long. Control and measurements equipment stand out on the edge of that zone. It consumes MTR fuel elements. The control-safety rods are propelled by compressed air. The maximum flow rate of cooling circuit is 1500 m 3 /h. Transient measurements are recorded in a RW330 unit. Aims and work programme. CABRI is meant for: - studies on the safety of water reactors - for the definition of the safety margins under working conditions: research of maximum power at which a swimming-pool reactor may operate with respect to a cooling accident, of local boiling effect on the nuclear behaviour of the reactor, performances of the control and safety instruments under exceptional

  10. SM-2 reactor potentialities for investigation of fusion reactor materials

    International Nuclear Information System (INIS)

    Tsykanov, V.A.; Samsonov, B.V.; Markina, N.V.; Polyakov, Yu.N.; Sluzhaev, V.I.; Losev, N.P.; Lobanov, G.P.

    1981-01-01

    The possibility of utilization of the SM-2 type reactors for fusion reactor (FR) materials testing is discussed. The measuring and calculational results, while estimating irradiation conditions in the SM-2 reactor channels, are given. The basic characteristics, necessary for correct simulation of FR parameters in fission reactors such as neutron flux density, radiation damage in the shift per atom values, gas accumulation, are considered. The characteristics of existing and tested in the SM-2 reactor investigational methods for studying structural and isolation materials are given. The conclusion about the possibility of SM-2 reactor utilization for the FR materials testing is made [ru

  11. Materials for nuclear reactors

    International Nuclear Information System (INIS)

    Banerjee, S.; Kamath, H.S.

    2005-01-01

    The improved performance of present generation nuclear reactors and the realization of advanced reactor concepts, both, require development of better materials. Physical metallurgy/materials science principles which have been exploited in meeting the exacting requirements of nuclear reactor materials (fuels and structural materials), are outlined citing a few specific examples. While the incentive for improvement of traditional fuels (e.g., UO 2 fuel) is primarily for increasing the average core burn up, the development of advanced fuels (e.g., MOX, mixed carbide, nitride, silicide and dispersion fuels) are directed towards better utilization of fissile and fertile inventories through adaptation of innovative fuel cycles. As the burn up of UO 2 fuel reaches higher levels, a more detailed and quantitative understanding of the phenomena such as fission gas release, fuel restructuring induced by radiation and thermal gradients and pellet-clad interaction is being achieved. Development of zirconium based alloys for both cladding and pressure tube applications is discussed with reference to their physical metallurgy, fabrication techniques and in-reactor degradation mechanisms. The issue of radiation embrittlement of reactor pressure vessels (RPVs) is covered drawing a comparison between the western and eastern specifications of RPV steels. The search for new materials which can stand higher rates of atomic displacement due to radiation has led to the development of swelling resistant austenitic and ferritic stainless steels for fast reactor applications as exemplified by the development of the D-9 steel for Indian fast breeder reactor. The presentation will conclude by listing various materials related phenomena, which have a strong bearing on the successful development of future nuclear energy systems. (author)

  12. Method of operating a reactor

    International Nuclear Information System (INIS)

    Oosumi, Katsumi; Yamamoto, Michiyoshi.

    1980-01-01

    Purpose: To prevent stress corrosion cracking in the structural material of a reactor pressure vessel. Method: Prior to the starting of a reactor, the reactor pressure vessel is evacuated to carry out degassing of reactor water, and, at the same time, reactor water is heated. After reactor water is heated to a predetermined temperature, control rods are extracted to start nuclear heating. While the temperature of the reactor water is in a temperature range where elution of a metal which is a structural material of the reactor pressure vessel becomes vigorous and the sensitivity to the stress corrosion cracks increases, the reactor is operated at the maximum permissible temperature raising speed or maximum permissible cooling speed. (Aizawa, K.)

  13. Sodium-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Berthoud, Georges; Ducros, Gerard; Feron, Damien; Guerin, Yannick; Latge, Christian; Limoge, Yves; Santarini, Gerard; Seiler, Jean-Marie; Vernaz, Etienne; Guidez, Joel; Andrieux, Catherine; Baque, Francois; Bonin, Bernard; Boullis, Bernard; Cabet, Celine; Carre, Frank; Dufour, Philippe; Gauche, Francois; Grouiller, Jean-Paul; Jeannot, Jean-Philippe; Le Flem, Marion; Le Coz, Pierre; Martin, Laurent; Masson, Michel; Mathonniere, Gilles; Nokhamzon, Jean-Guy; Pelletier, Michel; Rodriguez, Gilles; Saez, Manuel; Seran, Jean-Louis; Varaine, Frederic; Zaetta, Alain; Behar, Christophe; Provitina, Olivier; Lecomte, Michael; Forestier, Alain; Bender, Alexandra; Parisot, Jean-Francois; Finot, Pierre

    2014-01-01

    This book first explains the choice of sodium-cooled reactors by outlining the reasons of the choice of fast neutron reactors (fast neutrons instead of thermal neutrons, recycling opportunity for plutonium, full use of natural uranium, nuclear waste optimization, flexibility of fast neutron reactors in nuclear material management, fast neutron reactors as complements of water-cooled reactors), and by outlining the reasons for the choice of sodium as heat-transfer material. Physical, chemical, and neutron properties of sodium are presented. The second part of the book first presents the main design principles for sodium-cooled fast neutron reactors and their core. The third part proposes an historical overview and an assessment of previously operated sodium-cooled fast neutron reactors (French reactors from Rapsodie to Superphenix, other reactors in the world), and an assessment of the main incidents which occurred in these reactors. It also reports the experience and lessons learned from the dismantling of various sodium-cooled fast breeder reactors in the world. The next chapter addresses safety issues (technical and safety aspects related to the use of sodium) and environmental issues (dosimetry, gaseous and liquid releases, solid wastes, and cooling water). Then, various technological aspects of these reactors are addressed: the energy conversion system, main components, sodium chemistry, sodium-related technology, advances in in-service inspection, materials used in reactors and their behaviour, and fuel system. The next chapter addresses the fuel cycle in these reactors: its integrated specific character, report of the French experience in fast neutron reactor fuel processing, description of the transmutation of minor actinides in these reactors. The last chapter proposes an overview of reactors currently projected or under construction in the world, presents the Astrid project, and gives an assessment of the economy of these reactors. A glossary and an index

  14. BR2 Reactor: Introduction

    International Nuclear Information System (INIS)

    Moons, F.

    2007-01-01

    The irradiations in the BR2 reactor are in collaboration with or at the request of third parties such as the European Commission, the IAEA, research centres and utilities, reactor vendors or fuel manufacturers. The reactor also contributes significantly to the production of radioisotopes for medical and industrial applications, to neutron silicon doping for the semiconductor industry and to scientific irradiations for universities. Along the ongoing programmes on fuel and materials development, several new irradiation devices are in use or in design. Amongst others a loop providing enhanced cooling for novel materials testing reactor fuel, a device for high temperature gas cooled fuel as well as a rig for the irradiation of metallurgical samples in a Pb-Bi environment. A full scale 3-D heterogeneous model of BR2 is available. The model describes the real hyperbolic arrangement of the reactor and includes the detailed 3-D space dependent distribution of the isotopic fuel depletion in the fuel elements. The model is validated on the reactivity measurements of several tens of BR2 operation cycles. The accurate calculations of the axial and radial distributions of the poisoning of the beryllium matrix by 3 He, 6 Li and 3T are verified on the measured reactivity losses used to predict the reactivity behavior for the coming decades. The model calculates the main functionals in reactor physics like: conventional thermal and equivalent fission neutron fluxes, number of displacements per atom, fission rate, thermal power characteristics as heat flux and linear power density, neutron/gamma heating, determination of the fission energy deposited in fuel plates/rods, neutron multiplication factor and fuel burn-up. For each reactor irradiation project, a detailed geometry model of the experimental device and of its neighborhood is developed. Neutron fluxes are predicted within approximately 10 percent in comparison with the dosimetry measurements. Fission rate, heat flux and

  15. Radiation detectors for reactors

    International Nuclear Information System (INIS)

    Balagi, V.

    2005-01-01

    Detection and measurement of radiation plays a vital role in nuclear reactors from the point of view of control and safety, personnel protection and process control applications. Various types of radiation are measured over a wide range of intensity. Consequently a variety of detectors find use in nuclear reactors. Some of these devices have been developed in Electronics Division. They include gas-filled detectors such as 10 B-lined proportional counters and chambers, fission detectors and BF 3 counters are used for the measurement of neutron flux both for reactor control and safety, process control as well as health physics instrumentation. In-core neutron flux instrumentation employs the use detectors such as miniature fission detectors and self-powered detectors. In this development effort, several indigenous materials, technologies and innovations have been employed to suit the specific requirement of nuclear reactor applications. This has particular significance in view of the fact that several new types of reactors such as P-4, PWR and AHWR critical facilities, FBTR, PFBR as well as the refurbishment of old units like CIRUS are being developed. The development work has sought to overcome some difficulties associated with the non-availability of isotopically enriched neutron-sensing materials, achieving all-welded construction etc. The present paper describes some of these innovations and performance results. (author)

  16. Reactors PMT backlog

    International Nuclear Information System (INIS)

    Olson, H.P.

    1986-01-01

    The overall backlog of action items within the Reactors Priority Maintenance Tracking Systems (PMT) is similar to that resulting from Reactor Incident Reports. At least 1000 open action items are being tracked (excluding procedure revisions); the exact number is not obvious because some items are being tracked in more than one tracking document. About 20 to 25% of the incomplete items are directly related to reactor safety. About 70% of these were initiated within the last two years. A few of the remaining 30% date back to the 1977-1980 time frame. The tracking systems that are in place serve particular needs but they are unconnected and do not provide a means to understand and manage the overall Reactors PMT backlog. Shortcomings are summarized. Several initiatives are in progress or planned by Reactors PMT to facilitate improved tracking of backlog items with computer software systems. Under consideration is the Integrated Living Schedule (ILS) approach to prioritize work items and schedule resources to manage the backlog in the most effective way. ILS systems are being used effectively by a number of nuclear power utilities. 6 refs., 6 figs., 1 tab

  17. Generalities about nuclear reactors

    International Nuclear Information System (INIS)

    Jaouen, C.; Beroux, P.

    2012-01-01

    From Zoe, the first nuclear reactor, till the current EPR, the French nuclear industry has always advanced by profiting from the feedback from dozens of years of experience and operations, in particular by drawing lessons from the most significant events in its history, such as the Fukushima accident. The new generations of reactors must improve safety and economic performance so that the industry maintain its legitimacy and its share in the production of electricity. This article draws the history of nuclear power in France, gives a brief description of the pressurized water reactor design, lists the technical features of the different versions of PWR that operate in France and compares them with other types of reactors. The feedback experience concerning safety, learnt from the major nuclear accidents Three Miles Island (1979), Chernobyl (1986) and Fukushima (2011) is also detailed. Today there are 26 third generation reactors being built in the world: 4 EPR (1 in Finland, 1 in France and 2 in China); 2 VVER-1200 in Russia, 8 AP-1000 (4 in China and 4 in the Usa), 8 APR-1400 (4 in Korea and 4 in UAE), and 4 ABWR (2 in Japan and 2 in Taiwan)

  18. Mirror reactor studies

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Bender, D.J.

    1976-01-01

    Design studies of a fusion mirror reactor, a fusion-fission mirror reactor, and two small mirror reactors are summarized. The fusion reactor uses 150-keV neutral-beam injectors based on the acceleration of negative ions. The injectors provide over 1 GW of continuous power at an efficiency greater than 80 percent. The fusion reactor has three-stage, modularized, Venetian blind, plasma direct converter with a predicted efficiency of 59 percent and a new concept for removal of the lune-shaped blanket: a crane is brought between the two halves of the Yin-Yang magnet, which are separated by a float. The design has desirable features such as steady-state operation, minimal impurity problems, and low first-wall thermal stress. The major disadvantage is low Q resulting in high recirculating power and hence high cost of electrical power. However, the direct capital cost per unit of gross electrical power is reasonable [$1000/kW(e)

  19. Reactor core control device

    International Nuclear Information System (INIS)

    Sano, Hiroki

    1998-01-01

    The present invention provides a reactor core control device, in which switching from a manual operation to an automatic operation, and the control for the parameter of an automatic operation device are facilitated. Namely, the hysteresis of the control for the operation parameter by an manual operation input means is stored. The hysteresis of the control for the operation parameter is collected. The state of the reactor core simulated by an operation control to which the collected operation parameters are manually inputted is determined as an input of the reactor core state to the automatic input means. The record of operation upon manual operation is stored as a hysteresis of control for the operation parameter, but the hysteresis information is not only the result of manual operation of the operation parameter. This is results of operation conducted by a skilled operator who judge the state of the reactor core to be optimum. Accordingly, it involves information relevant to the reactor core state. Then, it is considered that the optimum automatic operation is not deviated greatly from the manual operation. (I.S.)

  20. Reactor physics computations

    International Nuclear Information System (INIS)

    Shapiro, A.

    1977-01-01

    Those reactor-core calculations which provide the effective multiplication factor (or eigenvalue) and the stationary (or fundamental mode) neutron-flux distribution at selected times during the lifetime of the core are considered. The multiplication factor is required to establish the nuclear composition and configuration which satisfy criticality and control requirements. The steady-state flux distribution must be known to calculate reaction rates and power distributions which are needed for the thermal, mechanical and shielding design of the reactor, as well as for evaluating refueling requirements. The calculational methods and techniques used for evaluating the nuclear design information vary with the type of reactor and with the preferences and prejudices of the reactor-physics group responsible for the calculation. Additionally, new methods and techniques are continually being developed and made operational. This results in a rather large conglomeration of methods and computer codes which are available for reactor analysis. The author provides the basic calculational framework and discusses the more prominent techniques which have evolved. (Auth.)

  1. Nuclear reactor apparatus

    International Nuclear Information System (INIS)

    Braun, H.E.; Bonnet, H.P.

    1978-01-01

    The reactor and its containment, instead of being supported on a solid concrete pad, are supported on a truss formed of upper and lower reinforced horizontal plates and vertical walls integrated into a rigid structure. The plates and walls from chambers within which the auxiliary components of the reactor, such as valves, pumping equipment and various tanks, are disposed. Certain of the chambers are also access passages for personnel, pipe chases, valve chambers and the like. In particular the truss includes an annular chamber. This chamber is lined and sealed by a corrosion-resistant liner and contains coolant and serves as a refueling cooling storage tank. This tank is directly below the primary-coolant conductor loops which extend from the reactor above the upper plate. The upper plate includes a sump connected to the tank through which coolant flows into the tank in the event of the occurrence of a loss-of-coolant accident. The truss extends beyond the containment and has chambers in the extending annulus. Pumps for circulating the coolant between the refueling coolant storage tank and the reactor are provided in certain of these chambers. The pumps are connected to the reactor by relatively short coolant conductors. Access to these pumps is readily afforded through hatches in the extending annulus

  2. Reactor power control device

    International Nuclear Information System (INIS)

    Nishiyama, Hiroyuki.

    1991-01-01

    The device of the present invention prevents unnecessary automatic reactor shutdown, without increasing operator's burden by automatic insertion of selected control rods in case if a recycling pump in a BWR reaction should stop. That is, the device of the present invention comprises (1) a means for detecting that at least one recycling pump stops, (2) a means for judging region for inserting the selected control rods based on the reactor power and the recycling flowrate of driving water, and (3) a means for calculating a logic product of output signals sent from both of the means described above and outputting a selected control rod insertion signal. With such a constitution, if at least one recycling pump stops, the means (1) detects it. Further, the means (2) judges the regions for inserting the selected control rods. Then, the means (3) outputs a signal for inserting the selected control rods. As a result, since a group of control rods selected previously are inserted into the reactor rapidly, the reactor power is suppressed, to avoid the automatic reactor shutdown. (I.N.)

  3. Tandem mirror reactors

    International Nuclear Information System (INIS)

    Logan, B.G.; Barr, W.L.; Bender, D.J.

    1978-01-01

    We have made preliminary designs of tandem mirror fusion reactors burning D-T fuel and of fusion-fission (hybrid) tandem mirrors producing both fissile fuel and electricity. For the hybrid reactor, we find that by using stream-stabilized, 2XIIB-like plugs and by injecting 200-keV deuterium beams into a tritium-plasma target confined electrostatically in the solenoid (two-component operation), we obtain a useful Q (fusion power/injection power) near unity. The D-T tandem reactor parameters are optimized to obtain the minimum capital cost per kW(e) net. For $200/kW(e) of 1200-keV neutral beam injection power in the plugs and a solenoid cost of about $3 million per metre length, the optimum Q is near 5. To allow for more expensive injector costs, a higher D-T reactor Q of 10 is obtainable with either increased power output or decreased neutron wall loading. Fokker--Planck calculations show steady-state Q approximately 5 for D-D tandem reactors burning only deuterium fuel and its reaction products, with most of the charged-particle fusion power recovered in a direct converter

  4. Reactor shutdown device

    International Nuclear Information System (INIS)

    Matsumiya, Hirohito; Endo, Hiroshi; Tsuboi, Yasushi.

    1993-01-01

    The present invention concerns a reactor shutdown device capable of suppressing change of a core insertion amount relative to temperature change during normal operation and having a great extension amount due to thermal expansion and high mechanical strength. A control rod main body is contained vertically movably in a guide tube disposed in a reactor core. An extension member extends upward from the upper end of a control rod main body and suspends the control rod main body. A shrinkable member intervenes at a midway of the extension member and is made shrinkable. A temperature sensitive member contains coolants at the inside and surrounds the shrinkable member. Thus, if the temperature of external coolants rises abruptly, the shrinkable member is extended by thermal expansion of the coolants in the temperature sensitive member. Upon usual reactor startup, the coolants in the temperature sensitive member cause no substantial thermal expansion by temperature elevation from a cold shutdown temperature to a rated power operation temperature, and the shrinkable member maintains its original state, so that the control rod main body is not inserted into the reactor core. However, upon abrupt temperature elevation, the control rod main body is inserted into the reactor core. (I.S.)

  5. FBR type reactors

    International Nuclear Information System (INIS)

    Maemoto, Junko.

    1985-01-01

    Purpose: To moderate abrupt temperature change near the inner walls of a suspended body thereby prevent thermal shocks and thermal deformations to structural materials. Constitution: High temperature coolants during ordinary operation of the nuclear reactor flow from the reactor core through the flow holes of the suspended body and from the upper plenum into an intermediate heat exchanger. The temperature of the coolants is lowered with heat exchanging effect with secondary coolants in the heat exchange and the coolants are then flow through the lower plenum into the reactor core and heated again. Upon generation of reactor scram, the temperature of the coolants at the exit of the reactor core is reduced abruptly and the flow rate is lowered due to the pump coast down. However, mixing of the coolants in the suspended body is accelerated by the coolants at high temperature flowing out of the flow holes and the coolants at the low temperature flowing from the flow hole group, to reduce the temperature difference and moderate the stratification flow forming an abrupt temperature slope. (Yoshihara, H.)

  6. RB research reactor Safety Report

    International Nuclear Information System (INIS)

    Sotic, O.; Pesic, M.; Vranic, S.

    1979-04-01

    This RB reactor safety report is a revised and improved version of the Safety report written in 1962. It contains descriptions of: reactor building, reactor hall, control room, laboratories, reactor components, reactor control system, heavy water loop, neutron source, safety system, dosimetry system, alarm system, neutron converter, experimental channels. Safety aspects of the reactor operation include analyses of accident causes, errors during operation, measures for preventing uncontrolled activity changes, analysis of the maximum possible accident in case of different core configurations with natural uranium, slightly and highly enriched fuel; influence of possible seismic events

  7. Mimic of OSU research reactor

    International Nuclear Information System (INIS)

    Lu, Hong; Miller, D.W.

    1991-01-01

    The Ohio State University research reactor (OSURR) is undergoing improvements in its research and educational capabilities. A computer-based digital data acquisition system, including a reactor system mimic, will be installed as part of these improvements. The system will monitor the reactor system parameters available to the reactor operator either in digital parameters available to the reactor operator either in digital or analog form. The system includes two computers. All the signals are sent to computer 1, which processes the data and sends the data through a serial port to computer 2 with a video graphics array VGA monitor, which is utilized to display the mimic system of the reactor

  8. Reactor Structural Materials: Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, R

    2000-07-01

    The objectives of SCK-CEN's R and D programme on Rector Pressure Vessel (RPV) Steels are:(1) to complete the fracture toughness data bank of various reactor pressure vessel steels by using precracked Charpy specimens that were tested statically as well as dynamically; (2) to implement the enhanced surveillance approach in a user-friendly software; (3) to improve the existing reconstitution technology by reducing the input energy (short cycle welding) and modifying the stud geometry. Progress and achievements in 1999 are reported.

  9. Reactor Structural Materials: Reactor Pressure Vessel Steels

    International Nuclear Information System (INIS)

    Chaouadi, R.

    2000-01-01

    The objectives of SCK-CEN's R and D programme on Rector Pressure Vessel (RPV) Steels are:(1) to complete the fracture toughness data bank of various reactor pressure vessel steels by using precracked Charpy specimens that were tested statically as well as dynamically; (2) to implement the enhanced surveillance approach in a user-friendly software; (3) to improve the existing reconstitution technology by reducing the input energy (short cycle welding) and modifying the stud geometry. Progress and achievements in 1999 are reported

  10. Reactor safety analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    Risk assessments of nuclear installations require accurate safety and reliability analyses to estimate the consequences of accidental events and their probability of occurrence. The objective of the work performed in this field at the Belgian Nuclear Research Centre SCK-CEN is to develop expertise in probabilistic and deterministic reactor safety analysis. The four main activities of the research project on reactor safety analysis are: (1) the development of software for the reliable analysis of large systems; (2) the development of an expert system for the aid to diagnosis; (3) the development and the application of a probabilistic reactor-dynamics method, and (4) to participate in the international PHEBUS-FP programme for severe accidents. Progress in research during 1997 is described

  11. Reactor for exothermic reactions

    Science.gov (United States)

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  12. Refueling of nuclear reactors

    International Nuclear Information System (INIS)

    Meuschke, R.E.

    1987-01-01

    This patent describes the unrodded refueling of a nuclear reactor having fuel assemblies and upper internals with apparatus including a lifting rig and a lift plate. The upper internals of the reactor are secured to the lifting rig. A method is given of reinserting in the fuel assemblies of the reactor the rods which penetrate into the fuel assemblies, such as control rods and/or coolant-displacement rods. The penetrating rods are connected to drive rods, the drive rods and penetrating rods being suspended from the lift plate, the lift plate and the drive rods and penetrating rods suspended therefrom being supported on a removable support in an upper position on the lifting rig

  13. Nuclear reactor safety device

    Science.gov (United States)

    Hutter, Ernest

    1986-01-01

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  14. The nuclear reactor systems

    International Nuclear Information System (INIS)

    Bacher, P.

    2008-01-01

    This paper describes the various nuclear reactor systems, starting with the Generation II, then the present development of the Generation III and the stakes and challenges of the future Generation IV. Some have found appropriate to oppose reactor systems or generations one to another, especially by minimizing the enhancements of generation III compared to generation II or by expecting the earth from generation IV (meaning that generation III is already obsolete). In the first part of the document (chapter 2), some keys are given to the reader to develop its proper opinion. Chapter 3 describes more precisely the various reactor systems and generations. Chapter 4 discusses the large industrial manoeuvres around the generation III, and the last chapter gives some economical references, taking into account, for the various means of power generation, the impediments linked to climate protection

  15. Reactor control device

    International Nuclear Information System (INIS)

    Araki, Takao; Inoue, Toyokazu.

    1981-01-01

    Purpose: To protect the reactor floor by alleviating the shock imparted to the reactor floor by a dropped control rod when a wire rope accidentally breaks. Constitution: A control rod is hung by wire rope from a control rod drive, and shock absorbers are mounted at the upper and lower portions of the control rod. The outer diameter of the upper shock absorber is made larger than the inner diameter of a control rod inserting hole formed in the reactor core. If the control rod drops, the upper absorber is stopped at the upper tapered portion of the inserting hole. Thus, the dropping energy of the control rod can be sufficiently absorbed by the upper and lower shock absorbers. (Kamimura, M.)

  16. Licensed operating reactors

    International Nuclear Information System (INIS)

    1989-08-01

    THE OPERATING UNITS STATUS REPORT - LICENSED OPERATING REACTORS provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management from the Headquarters staff of NRC's Office of Enforcement (OE), from NRC's Regional Offices, and from utilities. The three sections of the report are: monthly highlights and statistics for commercial operating units, and errata from previously reported data; a compilation of detailed information on each unit, provided by NRC's Regional Offices, OE Headquarters and the utilities; and an appendix for miscellaneous information such as spent fuel storage capability, reactor-years of experience and non-power reactors in the US

  17. Nuclear reactor risk assessment

    International Nuclear Information System (INIS)

    Higson, D.J.

    1982-01-01

    Experience has shown that reactors can be operated safely. Accidents have occurred, but the probability of physical health detriment to members of the public has been negligible. Methods for the quantitative evaluation of the probabilities of serious accidents are described, and some results are quoted which show that the estimated frequency of harmful effects is small when compared with other risks already accepted by society. Attempts have been made to justify the acceptance of nuclear reactor risks by relating them to the benefits which are derived from reactor operation and comparing them quantitatively with the risks from alternative methods of deriving the same benefits. This approach takes no account of the perceptions which people have of risk

  18. Breazeale Reactor Modernization Program

    International Nuclear Information System (INIS)

    Davison, C. C.

    2003-01-01

    The Penn State Breazeale Nuclear Reactor is the longest operating licensed research reactor in the nation. The facility has played a key role in educating scientists, engineers and in providing facilities and services to researchers in many different disciplines. In order to remain a viable and effective research and educational institution, a multi-phase modernization project was proposed. Phase I was the replacement of the 25-year old reactor control and safety system along with associated wiring and hardware. This phase was fully funded by non-federal funds. Tasks identified in Phases II-V expand upon and complement the work done in Phase I to strategically implement state-of-the-art technologies focusing on identified national needs and priorities of the future

  19. Fusion reactor materials

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Burn, G.L.; Knee', S.S.; Dowker, C.L.

    1994-02-01

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  20. MERCHANT MARINE SHIP REACTOR

    Science.gov (United States)

    Mumm, J.F.; North, D.C. Jr.; Rock, H.R.; Geston, D.K.

    1961-05-01

    A nuclear reactor is described for use in a merchant marine ship. The reactor is of pressurized light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The foregoing design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass.

  1. Utilization of research reactors

    International Nuclear Information System (INIS)

    1962-01-01

    About 200 research reactors are now in operation in different parts of the world, and at least 70 such facilities, which are in advanced stages of planning and construction, should be critical within the next two or three years. In the process of this development a multitude of problems are being encountered in formulating and carrying out programs for the proper utilization of these facilities, especially in countries which have just begun or are starting their atomic energy work. An opportunity for scientific personnel from different Member States to discuss research reactor problems was given at an international symposium on the Programing and Utilization of Research Reactors organized by the Agency almost immediately after the General Conference session. Two hundred scientists from 35 countries, as well as from the European Nuclear Energy Agency and EURATOM, attended the meeting which was held in Vienna from 16 to 21 October 1961

  2. Compact stellarators as reactors

    International Nuclear Information System (INIS)

    Lyon, J.F.; Valanju, P.; Zarnstorff, M.C.; Hirshman, S.; Spong, D.A.; Strickler, D.; Williamson, D.E.; Ware, A.

    2001-01-01

    Two types of compact stellarators are examined as reactors: two- and three-field-period (M=2 and 3) quasi-axisymmetric devices with volume-average =4-5% and M=2 and 3 quasi-poloidal devices with =10-15%. These low-aspect-ratio stellarator-tokamak hybrids differ from conventional stellarators in their use of the plasma-generated bootstrap current to supplement the poloidal field from external coils. Using the ARIES-AT model with B max =12T on the coils gives Compact Stellarator reactors with R=7.3-8.2m, a factor of 2-3 smaller R than other stellarator reactors for the same assumptions, and neutron wall loadings up to 3.7MWm -2 . (author)

  3. Reactor container facility

    International Nuclear Information System (INIS)

    Saito, Takashi; Nagasaka, Hideo.

    1990-01-01

    A dry-well pool for spontaneously circulating stored pool water and a suppression pool for flooding a pressure vessel by feeding water, when required, to a flooding gap by means of spontaneous falling upto the flooding position, thereby flooding the pressure vessel are contained at the inside of a reactor container. Thus, when loss of coolant accidents such as caused by main pipe rupture accidents should happen, pool water in the suppression pool is supplied to the flooding gap by spontaneously falling. Further, if the flooding water uprises exceeding a predetermined level, the flooding gap is in communication with the dry-well pool at the upper and the lower portions respectively. Accordingly, flooding water at high temperature heated by the after-heat of the reactor core is returned again into the flooding gap to cool the reactor core repeatedly. (T.M.)

  4. International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Blevins, J.D.; Stasko, R.R.

    1989-09-01

    An international design team comprised of members from Canada, Europe, Japan, the Soviet Union, and the United States of America, are designing an experimental fusion test reactor. The engineering and testing objectives of this International Thermonuclear Experimental Reactor (ITER) are to validate the design and to demonstrate controlled ignition, extended burn of a deuterium and tritium plasma, and achieve steady state using technology expected to be available by 1990. The concept maximizes flexibility while allowing for a variety of plasma configurations and operating scenarios. During physics phase operation, the machine produces a 22 MA plasma current. In the technology phase, the machine can be reconfigured with a thicker shield and a breeding blanket to operate with an 18 MA plasma current at a major radius of 5.5 meters. Canada's involvement in the areas of safety, facility design, reactor configuration and maintenance builds on our internationally recognized design and operational expertise in developing tritium processes and CANDU related technologies

  5. BWR type reactor system

    International Nuclear Information System (INIS)

    Morooka, Shin-ichi.

    1980-01-01

    Purpose: To reduce the internal structure in a reactor by rapidly and efficiently transferring heat generated in a reactor core out of the reactor and eliminating the danger of radiation exposure. Constitution: Steam generated in a pressure vessel is introduced into heat pipe group by inserting the heat pipe group into the steam dome of the pressure vessel. The introduced steam is condensed in the heat pipes to transfer the heat of the steam to the heat pipe group. The transferred heat is transmitted to a heat exchanger provided out of a containment vessel to generate steam to operate a turbine. Thus, it is not necessary to introduce the steam including radioactive substance externally and can remove only the heat so as to carry out the desired purpose. (Kamimura, M.)

  6. Licensed operating reactors

    International Nuclear Information System (INIS)

    1989-08-01

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  7. Licensed operating reactors

    International Nuclear Information System (INIS)

    1990-01-01

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  8. Licensed operating reactors

    International Nuclear Information System (INIS)

    Hartfield, R.A.

    1990-03-01

    The US Nuclear Regulatory Commission's monthly Licensed Operating Reactors Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  9. Nuclear reactor containment device

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu.

    1980-01-01

    Purpose: To reduce the volume of a containment shell and decrease the size of a containment equipment for BWR type reactors by connecting the containment shell and a suppression pool with slanted vent tubes to thereby shorten the vent tubes. Constitution: A pressure vessel containing a reactor core is installed at the center of a building and a containment vessel for the nuclear reactor that contains the pressure vessel forms a cabin. To a building situated below the containment shell, is provided a suppression chamber in which cooling water is charged to form a suppression pool. The suppression pool is communicated with vent tubes that pass through the partition wall of the containment vessel. The vent tubes are slanted and their lower openings are immersed in coolants. Therefore, if accident is resulted and fluid at high temperature and high pressure is jetted from the pressure vessel, the jetting fluid is injected and condensated in the cooling water. (Moriyama, K.)

  10. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  11. Reactor power distribution monitor

    International Nuclear Information System (INIS)

    Hoizumi, Atsushi.

    1986-01-01

    Purpose: To grasp the margin for the limit value of the power distribution peaking factor inside the reactor under operation by using the reactor power distribution monitor. Constitution: The monitor is composed of the 'constant' file, (to store in-reactor power distributions obtained from analysis), TIP and thermocouple, lateral output distribution calibrating apparatus, axial output distribution synthesizer and peaking factor synthesizer. The lateral output distribution calibrating apparatus is used to make calibration by comparing the power distribution obtained from the thermocouples to the power distribution obtained from the TIP, and then to provide the power distribution lateral peaking factors. The axial output distribution synthesizer provides the power distribution axial peaking factors in accordance with the signals from the out-pile neutron flux detector. These axial and lateral power peaking factors are synthesized with high precision in the three-dimensional format and can be monitored at any time. (Kamimura, M.)

  12. AREVA's nuclear reactors portfolio

    International Nuclear Information System (INIS)

    Marincic, A.

    2009-01-01

    A reasonable assumption for the estimated new build market for the next 25 years is over 340 GWe net. The number of prospect countries is growing almost each day. To address this new build market, AREVA is developing a comprehensive portfolio of reactors intended to meet a wide range of power requirements and of technology choices. The EPR reactor is the flagship of the fleet. Intended for large power requirements, the four first EPRs are being built in Finland, France and China. Other countries and customers are in view, citing just two examples: the Usa where the U.S. EPR has been selected as the technology of choice by several U.S utilities; and the United Kingdom where the Generic Design Acceptance process of the EPR design submitted by AREVA and EDF is well under way, and where there is a strong will to have a plant on line in 2017. For medium power ranges, the AREVA portfolio includes a boiling water reactor and a pressurized water reactor which both offer all of the advantages of an advanced plant design, with excellent safety performance and competitive power generation cost: -) KERENA (1250+ MWe), developed in collaboration with several European utilities, and in particular with Eon; -) ATMEA 1 (1100+ MWe), a 3-loop evolutionary PWR which is being developed by AREVA and Mitsubishi. AREVA is also preparing the future and is deeply involved into Gen IV concepts. It has developed the ANTARES modular HTR reactor (pre-conceptual design completed) and is building upon its vast Sodium Fast Reactor experience to take part into the development of the next prototype. (author)

  13. Oscillatory flow chemical reactors

    Directory of Open Access Journals (Sweden)

    Slavnić Danijela S.

    2014-01-01

    Full Text Available Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles, providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles. This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.

  14. Reactor Materials Research

    International Nuclear Information System (INIS)

    Van Walle, E.

    2002-01-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel

  15. ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    Steiner, D.; Embrechts, M.

    1990-07-01

    This is a status report on technical progress relative to the tasks identified for the fifth year of Grant No. FG02-85-ER52118. The ARIES tokamak reactor study is a multi-institutional effort to develop several visions of the tokamak as an attractive fusion reactor with enhanced economic, safety, and environmental features. The ARIES study is being coordinated by UCLA and involves a number of institutions, including RPI. The RPI group has been pursuing the following areas of research in the context of the ARIES-I design effort: MHD equilibrium and stability analyses; plasma-edge modeling and blanket materials issues. Progress in these areas is summarized herein

  16. Nuclear reactor core assembly

    International Nuclear Information System (INIS)

    Baxi, C.B.

    1978-01-01

    The object of the present invention is to provide a fast reactor core assembly design for use with a fluid coolant such as liquid sodium or carbon monoxide incorporating a method of increasing the percentage of coolant flow though the blanket elements relative to the total coolant flow through the blanket and fuel elements during shutdown conditions without using moving parts. It is claimed that deterioration due to reactor radiation or temperature conditions is avoided and ready modification or replacement is possible. (U.K.)

  17. Particle bed reactor modeling

    Science.gov (United States)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  18. Advanced reactors: A retrospective

    International Nuclear Information System (INIS)

    Starr, C.

    1989-01-01

    The objectives for nuclear power have always emphasized competitive costs, reliability, and public safety. During its initial two decades, the nuclear reactor program was enthusiastically and generously supported by the public, government, and industry. In the subsequent decades this external support was substantially eroded by the growing public fears of catastrophic accidents, poor economic performance of many nuclear plants, regulatory constraints, and a plethora of engineering issues disclosed by plant operations. The technical and institutional histories are discussed with particular relevance to their influence on the framework for future development of the several proposed advance reactors

  19. Nuclear reactor constructions

    International Nuclear Information System (INIS)

    Aspden, G.J.

    1980-01-01

    A nuclear reactor construction comprising a reactor core submerged in a pool of liquid metal coolant in a primary vessel which is suspended from the roof structure of a containment vault. Control rods supported from the roof structure are insertable in the core which is carried on a support structure from the wall of the primary vessel. To prevent excessive relaxation of the support structure whereby the control rods would be displaced relative to the core, the support structure incorporates a normally inactive secondary structure designed to become effective in bracing the primary structure against further relaxation beyond a predetermined limit. (author)

  20. Reactor pressure vessel materials

    International Nuclear Information System (INIS)

    Suzuki, K.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. Chapter 3 offers a detailed treatment of the selection criteria and properties of reactor pressure vessel materials. The main attention is directed towards steel and ingot making and the subsequent material processing

  1. Australia's new nuclear reactor

    International Nuclear Information System (INIS)

    Kemeny, L.

    2007-01-01

    On 19 and 20 April 2007, the Australian Nuclear Science and Technology Organisation (ANSTO) celebrated the recent commissioning of its new, world-class, OPAL (Open Pool Australian Lightwater) research reactor at the Lucas Heights. On the 19th, scientists, business leaders and academics were introduced to the reactor and its technical capacity for the manufacture of radiopharmaceuticals, its material science applications, its environmental services and its neutron scattering facilities for business applications. The formal OPAL opening function took place that evening and, on the 20th, Prime Minister John Howard visited ANSTO to be briefed about OPAL and to be shown the work being carried out at Lucas Heights

  2. Netherlands Interuniversity Reactor Institut

    International Nuclear Information System (INIS)

    1978-01-01

    This is the annual report of the Interuniversity Reactor Institute in the Netherlands for the Academic Year 1977-78. Activities of the general committee, the daily committee and the scientific advice board are presented. Detailed reports of the scientific studies performed are given under five subjects - radiation physics, reactor physics, radiation chemistry, radiochemistry and radiation hygiene and dosimetry. Summarised reports of the various industrial groups are also presented. Training and education, publications and reports, courses, visits and cooperation with other institutes in the area of scientific research are mentioned. (C.F.)

  3. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  4. Perspectives on reactor safety

    International Nuclear Information System (INIS)

    Haskin, F.E.

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course

  5. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised

  6. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised.

  7. Perspectives on reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  8. Fast quench reactor method

    Science.gov (United States)

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

    1999-08-10

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

  9. Nuclear reactor pressure vessel

    International Nuclear Information System (INIS)

    McDonald, B.N.

    1976-01-01

    In nuclear power reactor systems which have a reactor core inside a pressure vessel, the feedwater inlet pipe and steam discharge nozzle usually require separate pressure vessel penetrations. This requirement involves a great deal of expensive high quality special machining, welding and weld joint testing. The invention overcomes most of these problems by nestling the feedwater inlet pipe inside the steam discharge nozzle. At the same time the individual heat exchanger modules are supported from the pressure vessel at the same location as the nested feedwater inlet pipe and steam discharge nozzle combination, thus eliminating the need to accomodate troublesome differential thermal expansion problems through special structures within the pressure vessel

  10. Computerized reactor monitor and control for research reactors

    International Nuclear Information System (INIS)

    Buerger, L.; Vegh, E.

    1981-09-01

    The computerized process control system developed in the Central Research Institute for Physics, Budapest, Hungary, is described together with its special applications at research reactors. The nuclear power of the Hungarian research reactor is controlled by this computerized system, too, while in Lybia many interesting reactor-hpysical calculations are built into the computerized monitor system. (author)

  11. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  12. The market for research reactors

    International Nuclear Information System (INIS)

    Roegler, H.J.

    1986-01-01

    The assay deals with some basic questions if there is an international market for research reactors at all, which influencing factors affect this market, and if research reactors have any effects on the future market for nuclear engineering. (UA) [de

  13. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    Matsuura, S.; Nakahara, Y.; Takano, H.

    1983-09-01

    Research and development activities in the Department of Reactor Engineering in fiscal 1982 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Since fiscal 1982, Systematic research and development work on safeguards technology has been added to the activities of the Department. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and safeguards technology, and activities of the Committee on Reactor Physics. (author)

  14. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  15. Reactor operation safety information document

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  16. Nuclear reactors for the future

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Kamble, M.T.; Dulera, I.V.

    2013-01-01

    For the sustainable development of nuclear power plants with enhanced safety features, economic competitiveness, proliferation resistance and physical protection, several advanced reactor developments have been initiated world-wide. The major advanced reactor initiatives and the proposed advanced reactor concepts have been briefly reviewed along with their advantages and challenges. Various advanced reactor designs being pursued in India have also been briefly described in the paper. (author)

  17. Fusion reactor development: A review

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This paper is a review of the current prospects for fusion reactor development based upon the present status in plasma physics research, fusion technology development and reactor conceptual design for the tokamak magnetic confinement concept. Recent advances in tokamak plasma research and fusion technology development are summarized. The direction and conclusions of tokamak reactor conceptual design are discussed. The status of alternate magnetic confinement concept research is reviewed briefly. A feasible timetable for the development of fusion reactors is presented

  18. Inertial confinement fusion reactor systems

    International Nuclear Information System (INIS)

    Frank, T.G.; Bohachevsky, I.O.; Pendergrass, J.H.

    1980-01-01

    A variety of reactor cavity concepts, drivers, and energy conversion mechanisms are being considered to realize commercial applications of ICF. Presented in this paper are: (1) a review of reactor concepts with estimates of practically achievable pulse repetition rates; (2) a survey of drivers with estimates of the requirements on reactor conditions imposed by beam propagation characteristics; and (3) an assessment of compatible driver-reactor combinations

  19. REACTOR FUEL ELEMENTS TESTING CONTAINER

    Science.gov (United States)

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  20. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    ... improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is discussed. Some examples where performance enhancement was realized by catalyst design, appropriate choice of reactor, better injection and dispersion strategies ...

  1. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-04-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis

  2. Fast reactors: potential for power

    International Nuclear Information System (INIS)

    1983-02-01

    The subject is discussed as follows: basic facts about conventional and fast reactors; uranium economy; plutonium and fast reactors; cooling systems; sodium coolant; safety engineering; handling and recycling plutonium; safeguards; development of fast reactors in Britain and abroad; future progress. (U.K.)

  3. Digital control of research reactors

    International Nuclear Information System (INIS)

    Crump, J.C. III.; Richards, W.J.; Heidel, C.C.

    1991-01-01

    Research reactors provide an important service for the nuclear industry. Developments and innovations used for research reactors can be later applied to larger power reactors. Their relatively inexpensive cost allows research reactors to be an excellent testing ground for the reactors of tomorrow. One area of current interest is digital control of research reactor systems. Digital control systems offer the benefits of implementation and superior system response over their analog counterparts. At McClellan Air Force Base in Sacramento, California, the Stationary Neutron Radiography System (SNRS) uses a 1,000-kW TRIGA reactor for neutron radiography and other nuclear research missions. The neutron radiography beams generated by the reactor are used to detect corrosion in aircraft structures. While the use of the reactor to inspect intact F-111 wings is in itself noteworthy, there is another area in which the facility has applied new technology: the instrumentation and control system (ICS). The ICS developed by General Atomics (GA) contains several new and significant items: (a) the ability to servocontrol on three rods, (b) the ability to produce a square wave, and (c) the use of a software configurator to tune parameters affected by the actual reactor core dynamics. These items will probably be present in most, if not all, future research reactors. They were developed with increased control and overall usefulness of the reactor in mind

  4. Reactor component automatic grapple

    International Nuclear Information System (INIS)

    Greenaway, P.R.

    1982-01-01

    A grapple for handling nuclear reactor components in a medium such as liquid sodium which, upon proper seating and alignment of the grapple with the component as sensed by a mechanical logic integral to the grapple, automatically seizes the component. The mechanical logic system also precludes seizure in the absence of proper seating and alignment. (author)

  5. LMFBR type reactor

    International Nuclear Information System (INIS)

    Kumaoka, Yoshio; Kawamura, Yutaka.

    1990-01-01

    A main vessel support skirt is supported by a base mat of reactor buildings and the base mat is supported by means of an earthquake-proof device on concretes of a lower raft disposed on ground rocks. The earthquake-proof device is constituted by alternately stacking, laminating and press-bonding thin steel plates together with thin rubber layers between an upper flange and a lower raft. Thus, for the horizontal seismic vibrations, the period of the swinging in the horizontal direction of the buildings is made greater than the swinging period of earthquakes by the earthquake-proof device to reduce the impact shocks of earthquakes. Further, for the vertical seismic vibrations, the input seismic movements are not amplified during transmission from the base mat of the buildings to the reactor structure by way of the support skirt of the main vessel, due to the shortened load transmission path and the seismic power design to the reactor structure can be moderated sufficiently. A safety LMFBR type reactor with reduced construction cost and improved reliability can be attained. (N.H.)

  6. Nuclear reactor constructions

    International Nuclear Information System (INIS)

    Baddley, A.H.

    1981-01-01

    A method of constructing a radiation shielding plug for use in the roof of the coolant containment vault of liquid metal cooled fast breeder reactors is described. The construction allows relative movement of that part of service cables and pipes which are carried by the fixed roof and that part which is carried by the rotatable plug. (U.K.)

  7. The reactor vessel steels

    International Nuclear Information System (INIS)

    Bilous, W.; Hajewska, E.; Szteke, W.; Przyborska, M.; Wasiak, J.; Wieczorkowski, M.

    2005-01-01

    In the paper the fundamental steels using in the construction of pressure vessel water reactor are discussed. The properties of these steels as well as the influence of neutron irradiation on its degradation in the time of exploitation are also done. (authors)

  8. Thermal Reactor Safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  9. Thermal Reactor Safety

    International Nuclear Information System (INIS)

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods

  10. Hydrodynamic Cavitation Reactors contd…

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Hydrodynamic Cavitation Reactors contd… Reservoir: 10 L capacity. Centrifugal Pump :1.5kW). Orifice plate (different configurations in terms of number and diameter of the holes). Bypass line (for controlling the inlet pressure and the flow rate into the cavitation ...

  11. Reactor power distribution monitor

    International Nuclear Information System (INIS)

    Sekimizu, Koichi

    1980-01-01

    Purpose: To improve the performance and secure the safety of a nuclear reactor by rapidly computing and display the power density in the nuclear reactor by using a plurality of processors. Constitution: Plant data for a nuclear reactor containing the measured values from a local power monitor LPRM are sent and recorded in a magnetic disc. They are also sent to a core performance computer in which burn-up degree distribution and the like are computed, and the results are sent and recorded in the magnetic disc. A central processors loads programs to each of the processors and applies data recorded in the magnetic disc to each of the processors. Each of the processors computes the corresponding power distribution in four fuel assemblies surrounding the LPRM string by the above information. The central processor compiles the computation results and displays them on a display. In this way, power distribution in the fuel assemblies can rapidly be computed to thereby secure the improvement of the performance and safety of the reactor. (Seki, T.)

  12. Reactor instrumentation and control

    International Nuclear Information System (INIS)

    Wach, D.; Beraha, D.

    1980-01-01

    The methods for measuring radiation are shortly reviewed. The instrumentation for neutron flux measurement is classified into out-of-core and in-core instrumentation. The out-of-core instrumentation monitors the operational range from the subcritical reactor to full power. This large range is covered by several measurement channels which derive their signals from counter tubes and ionization chambers. The in-core instrumentation provides more detailed information on the power distribution in the core. The self-powered neutron detectors and the aeroball system in PWR reactors are discussed. Temperature and pressure measurement devices are briefly discussed. The different methods for leak detection are described. In concluding the plant instrumentation part some new monitoring systems and analysis methods are presented: early failure detection methods by noise analysis, acoustic monitoring and vibration monitoring. The presentation of the control starts from an qualitative assessment of the reactor dynamics. The chosen control strategy leads to the definition of the part-load diagram, which provides the set-points for the different control systems. The tasks and the functions of these control systems are described. In additiion to the control, a number of limiting systems is employed to keep the reactor in a safe operating region. Finally, an outlook is given on future developments in control, concerning mainly the increased application of process computers. (orig./RW)

  13. Nuclear Reactor Sharing Program

    International Nuclear Information System (INIS)

    1994-01-01

    The Ohio State University Research Reactor (OSURR) is licensed to operate at a maximum power level of 500 kW. A pool-type reactor using flat-plate, low enriched fuel elements, the OSURR provides several experimental facilities including two 6-inch i.d. beam ports, a graphite thermal column, several graphite-isotope-irradiation elements, a pneumatic transfer system (Rabbit), various dry tubes, and a Central Irradiation Facility (CIF). The core arrangement and accessibility facilitates research programs involving material activation or core parameter studies. The OSURR control room is large enough to accommodate laboratory groups which can use control instrumentation for monitoring of experiments. The control instrumentation is relatively simple, without a large amount of duplication. This facilitates opportunities for hands-on experience in reactor operation by nuclear engineering students making reactor parameter measurements. For neutron activation analysis and analyses of natural environmental radioactivity, the NRL maintains the gamma ray spectroscopy system (GRSS). It is comprised of two PC-based 8192-channel multichannel analyzers (MCAs) with all the required software for quantitative analysis. A 3 double-prime x 3 double-prime NaI(Tl), a 14 percent Ge(Li), and a High Purity Germanium detector are currently available for use with the spectroscopy system

  14. The Chernobyl reactor accident

    International Nuclear Information System (INIS)

    1986-01-01

    The documentation abstracted contains a complete survey of the broadcasts transmitted by the Russian wire service of the Deutsche Welle radio station between April 28 and Mai 15, 1986 on the occasion of the Chernobyl reactor accident. Access is given to extracts of the remarkable eastern and western echoes on the broadcasts of the Deutsche Welle. (HP) [de

  15. Nuclear power reactor physics

    International Nuclear Information System (INIS)

    Barjon, Robert

    1975-01-01

    The purpose of this book is to explain the physical working conditions of nuclear reactors for the benefit of non-specialized engineers and engineering students. One of the leading ideas of this course is to distinguish between two fundamentally different concepts: - a science which could be called neutrodynamics (as distinct from neutron physics which covers the knowledge of the neutron considered as an elementary particle and the study of its interactions with nuclei); the aim of this science is to study the interaction of the neutron gas with real material media; the introduction will however be restricted to its simplified expression, the theory and equation of diffusion; - a special application: reactor physics, which is introduced when the diffusing and absorbing material medium is also multiplying. For this reason the chapter on fission is used to introduce this section. In practice the section on reactor physics is much longer than that devoted to neutrodynamics and it is developed in what seemed to be the most relevant direction: nuclear power reactors. Every effort was made to meet the following three requirements: to define the physical bases of neutron interaction with different materials, to give a correct mathematical treatment within the limit of necessary simplifying hypotheses clearly explained; to propose, whenever possible, numerical applications in order to fix orders of magnitude [fr

  16. Reactor control system. PWR

    International Nuclear Information System (INIS)

    2009-01-01

    At present, 23 units of PWR type reactors have been operated in Japan since the start of Mihama Unit 1 operation in 1970 and various improvements have been made to upgrade operability of power stations as well as reliability and safety of power plants. As the share of nuclear power increases, further improvements of operating performance such as load following capability will be requested for power stations with more reliable and safer operation. This article outlined the reactor control system of PWR type reactors and described the control performance of power plants realized with those systems. The PWR control system is characterized that the turbine power is automatic or manually controlled with request of the electric power system and then the nuclear power is followingly controlled with the change of core reactivity. The system mainly consists of reactor automatic control system (control rod control system), pressurizer pressure control system, pressurizer water level control system, steam generator water level control system and turbine bypass control system. (T. Tanaka)

  17. Reactor vessel stud tensioner

    International Nuclear Information System (INIS)

    Malandra, L.J.; Beer, R.W.; Salton, R.B.; Spiegelman, S.R.; Cognevich, M.L.

    1982-01-01

    A quick-acting stud tensioner, for facilitating the loosening or tightening of a stud nut on a reactor vessel stud, has gripper jaws which when the tensioner is lowered into engagement with the upper end of the stud are moved inwards to grip the upper end and which when the tensioner is lifted move outward to release the upper end. (author)

  18. Fossil fuel furnace reactor

    Science.gov (United States)

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  19. Fast reactor programme

    International Nuclear Information System (INIS)

    Plakman, J.C.

    1982-01-01

    This progress report summarizes the fast reactor research carried out by ECN during the period covering the year 1980. This research is mainly concerned with the cores of sodium-cooled breeders, in particular the SNR-300, and its related safety aspects. It comprises six items: A programme to determine relevant nuclear data of fission- and corrosion-products; A fuel performance programme comprising in-pile cladding failure experiments and a study of the consequences of loss-of-cooling and overpower; Basic research on fuel; Investigation of the changes in the mechanical properties of austenitic stainless steel DIN 1.4948 due to fast neutron doses, this material has been used in the manufacture of the reactor vessel and its internal components; Study of aerosols which could be formed at the time of a fast reactor accident and their progressive behaviour on leaking through cracks in the concrete containment; Studies on heat transfer in a sodium-cooled fast reactor core. As fast breeders operate at high power densities, an accurate knowledge of the heat transfer phenomena under single-phase and two-phase conditions is sought. (Auth.)

  20. Reactor operational transient analysis

    International Nuclear Information System (INIS)

    Shin, W.K.; Chae, S.K.; Han, K.I.; Yang, K.S.; Chung, H. D.; Kim, H.G.; Moon, H.J.; Ryu, Y.H.

    1983-01-01

    To build up efficient capability of safety review and inspection for the nuclear power plants, four area of studies have performed as follows: 1) In order to search the most optimized operating method during load follow operating schemes, automatic control and normal control, are compared each other under the CAOC condition. The analysis performed by DDID code has shown that the reactor has to be controlled by the operator manually during load follow operation. 2) Through the sensitivity analysis by COBRA code, the operating parameters, such as coolant pressure, flow rate, inlet temperature, and power distribution are shown to be important to the determination of DNBR. Expecially, inlet temperature of primary coolant system is appeared as the most senstive parameter on DNBR. 3) FRAPCON code is adapted to study the sensitivity of several operational parameters on the mechanical properties of reactor fuel rod. 4) The calculations procedure which is required to be obtained the neutron fluence at the reactor vessel and the spectrum at the surveillance capsule is established. The results of computation are conpared with those of FSAR and SWRI report and proved its applicability to reactor surveillance program. (Author)

  1. Fusion reactor materials

    International Nuclear Information System (INIS)

    Sethi, V.K.; Scholz, R.; Nolfi, F.V. Jr.; Turner, A.P.L.

    1980-01-01

    Data are given for each of the following areas: (1) effects of irradiation on fusion reactor materials, (2) hydrogen permeation and materials behavior in alloys, (3) carbon coatings for fusion applications, (4) surface damage of TiB 2 coatings under energetic D + and 4 He + irradiations, and (5) neutron dosimetry

  2. Reactor physics of CANFLEX

    International Nuclear Information System (INIS)

    Sim, K. S.; Min, Byung Joo.

    1997-07-01

    Characteristic of reactor physics for CANFLEX-NU fuel core were calculated using final fuel design data. The results of analysis showed that there was no impact on reactor operations and safety. The above results of calculations and analysis were described in the physics design for CANFLEX-NU core. Various fuel models were evaluated for selecting high burnup fuel using recovered uranium. It is judged to be worse effects for reactor safety. Hence, the use of graphite within fuel was proposed and its results showed to be better. The analysis system of reactor physics for design and analysis of high burnup fuel was evaluated. Lattice codes and core code were reviewed. From the results, the probability of WIMS-AECL and HELIOS is known to be high for analysis of high burnup fuel. For the core code, RFSP, it was evaluated that the simplified 2 group equation should be replaced by explicit 2 group equation. This report also describes about the status of critical assemblies in other countries. (author). 58 refs., 41 tabs., 126 figs

  3. WATER BOILER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1960-11-22

    As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

  4. Cermet fuel reactors

    International Nuclear Information System (INIS)

    Cowan, C.L.; Palmer, R.S.; Van Hoomissen, J.E.; Bhattacharyya, S.K.; Barner, J.O.

    1987-09-01

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs

  5. Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1993-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1992. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R ampersand D

  6. Nuclear reactor vessels

    International Nuclear Information System (INIS)

    Sato, Yoshimi; Fukuda, Yoshio.

    1987-01-01

    Purpose: To improve the strength and reliability by moderating thermal stresses produced to the furnace walls of a reactor vessel by the thermal shocks upon reactor shutdown and tripping and reducing the generation of developing thermal ratchet strains produced upon repeating thermal shocks. Constitution: Upon occurrence of reactor shutdown or tripping, the temperature is detected and the pressure of the cover gas is controlled such that the axial temperature slope is decreased to displace the liquid surface in an annular vessel. Then, for attaining the stress reducing temperature, control is so conducted that the temperature of the lower portion is not higher than the upper portion in the axial temperature distribution of the reactor vessel. By controlling the pressure of the cover gas in the annular vessel in this way, the liquid level can be raised to a cover gas portion remaining at a high temperature state. Further, the temperature of the furnace wall can always be decreased to a temperature of the high temperature plenum thereby enabling to moderate the thermal stresses. (Yoshihara, H.)

  7. Studies on reactor physics

    International Nuclear Information System (INIS)

    1960-01-01

    Most of the peaceful applications of atomic energy are inherently dependent on advances in the science and technology of nuclear reactors, and aspects of this development are part of a major programme of the International Atomic Energy Agency. The most useful role that the Agency can play is as a co-ordinating body or central forum where the trends can be reviewed and the results assessed. Some of the basic studies are carried out by members of the Agency's own scientific staff. The Agency also convenes groups of experts from different countries to examine a particular problem in detail and make any necessary recommendations. Some of the important subjects are discussed at international scientific meetings held by the Agency. One of the subjects covered by such studies is the physics of nuclear reactors and a specific topic recently discussed was Codes for Reactor Computations, on which a seminar was held in Vienna in April this year. Another The members of the Panel described the development of heavy water reactors, the equipment and methods of research currently used, and plans for further development in their respective countries meeting of Panel of Experts on Heavy Water Lattices was held in Vienna in August 1959

  8. University Reactor Instrumentation Program

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    1992-11-01

    Recognizing that the University Reactor Instrumentation Program was developed in response to widespread needs in the academic community for modernization and improvement of research and training reactors at institutions such as the University of Florida, the items proposed to be supported by this grant over its two year period have been selected as those most likely to reduce foreed outages, to meet regulatory concerns that had been expressed in recent years by Nuclear Regulatory Commission inspectors or to correct other facility problems and limitations. Department of Energy Grant Number DE-FG07-90ER129969 was provided to the University of Florida Training Reactor(UFTR) facility through the US Department of Energy's University Reactor Instrumentation Program. The original proposal submitted in February, 1990 requested support for UFTR facility instrumentation and equipment upgrades for seven items in the amount of $107,530 with $13,800 of this amount to be the subject of cost sharing by the University of Florida and $93,730 requested as support from the Department of Energy. A breakdown of the items requested and total cost for the proposed UFTR facility instrumentation and equipment improvements is presented

  9. Fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  10. Method of reactor operation

    International Nuclear Information System (INIS)

    Nakajima, Takeshi

    1988-01-01

    Purpose: To minimize the power change due to the increase in xenone and power distribution after reaching the rated power in the case of using fresh fuels no requiring conditioning operation thereby starting the nuclear reactor in a short period of time and stably. Method: When control rods are entirely inserted only with a purpose for the compensation of the reactivity in a xenon-unsaturated state such as upon starting of the nuclear reactor, peaking is generated in the lower portion of the reactor core. Therefore, it is necessary to insert control rods for additionally suppressing the peaking in the lower portion of the reactor core to a relatively shallow level. In view of the above, a plurality of control rods are divided into a first control rod group finally inserted in the rated power state and a second control rod group other than the above. Then, the power is once elevated to the rated power level by means of such an intermediate control rod pattern that the ratio of the total extraction amount between the first control rod group and the second control rod group is made constant. Then, the control rods are extracted stepwise while setting the ratio of the total extraction amount constant in accordance with the change of the accumulating amount of xenone, to thereby obtain the purpose. (kamimura, M.)

  11. Integral Fast Reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path.

  12. Integral Fast Reactor concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path

  13. Tandem mirror reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Carlson, G.A.

    1977-01-01

    A parametric analysis and a preliminary conceptual design for a 1000 MWe Tandem Mirror Reactor (TMR) are described. The concept is sufficiently attractive to encourage further work, both for a pure fusion TMR and a low technology TMR Fusion-Fission Hybrid

  14. Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  15. Orphee reactor experimental equipment

    International Nuclear Information System (INIS)

    1987-01-01

    Experimental equipment around the ORPHEE reactor is presented. The neutron source; and the spectrometers and sample environment (inelastic and quasi-elastic scattering, elastic scattering, spread scattering, small angle scattering) are described. An experiment proposal and reports guide is supplied [fr

  16. NEUTRONIC REACTOR FUEL PUMP

    Science.gov (United States)

    Cobb, W.G.

    1959-06-01

    A reactor fuel pump is described which offers long life, low susceptibility to radiation damage, and gaseous fission product removal. An inert-gas lubricated bearing supports a journal on one end of the drive shsft. The other end has an impeller and expansion chamber which effect pumping and gas- liquid separation. (T.R.H.)

  17. Mirror reactor blankets

    International Nuclear Information System (INIS)

    Lee, J.D.; Barmore, W.L.; Bender, D.J.; Doggett, J.N.; Galloway, T.R.

    1976-01-01

    The general requirements of a breeding blanket for a mirror reactor are described. The following areas are discussed: (1) facility layout and blanket maintenance, (2) heat transfer and thermal conversion system, (3) materials, (4) tritium containment and removal, and (5) nuclear performance

  18. Low Power Reactor Comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Homeyer, W. G. [General Atomics Site, San Diego, CA (United States)

    1969-02-21

    Studies were made of a number of low power (< 300 kWe) thermionic reactors containing flashlight or unit cell thermionic fuel elements. The objective of these studies was to determine the feasibility of producing a net power of 50 to 100 kWe with a power plant weighing 3000 to 4000 lb (1360 to 1820 kg).

  19. Brazilian multipurpose reactor

    International Nuclear Information System (INIS)

    2014-01-01

    The Brazilian Multipurpose Reactor (RMB) Project is an action of the Federal Government, through the Ministry of Science Technology and Innovation (MCTI) and has its execution under the responsibility of the Brazilian National Nuclear Energy Commission (CNEN). Within the CNEN, the project is coordinated by the Research and Development Directorate (DPD) and developed through research units of this board: Institute of Nuclear Energy Research (IPEN); Nuclear Engineering Institute (IEN); Centre for Development of Nuclear Technology (CDTN); Regional Center of Nuclear Sciences (CRCN-NE); and Institute of Radiation Protection and Dosimetry (IRD). The Navy Technological Center in Sao Paulo (CTMSP) and also the participation of other research centers, universities, laboratories and companies in the nuclear sector are important and strategic partnerships. The conceptual design and the safety analysis of the reactor and main facilities, related to nuclear and environmental licensing, are performed by technicians of the research units of DPD / CNEN. The basic design was contracted to engineering companies as INTERTHECNE from Brazil and INVAP from Argentine. The research units from DPD/CNEN are also responsible for the design verification on all engineering documents developed by the contracted companies. The construction and installation should be performed by specific national companies and international partnerships. The Nuclear Reactor RMB will be a open pool type reactor with maximum power of 30 MW and have the OPAL nuclear reactor of 20 MW, built in Australia and designed by INVAP, as reference. The RMB reactor core will have a 5x5 configuration, consisting of 23 elements fuels (EC) of U 3 Si 2 dispersion-type Al having a density of up to 3.5 gU/cm 3 and enrichment of 19.75% by weight of 23 5 U. Two positions will be available in the core for materials irradiation devices. The main objectives of the RMB Reactor and the other nuclear and radioactive facilities are

  20. Research reactors compared with power reactors as terrorist targets

    International Nuclear Information System (INIS)

    Bunn, G.; Zaitseva, L.; Steinhaeusler, F.

    2002-01-01

    Full text: Concerns about nuclear terrorism have focused on nuclear power reactors more than research reactors. Yet fuel from many research reactors could be used to make nuclear weapons, and the same is not true of power reactors. Radioactive materials from both could be used by terrorists to make 'dirty bombs'. But the used fuel from research reactors is typically easier to transport and easier to use in making a dirty bomb without becoming overcome by its radiation. Moreover, research reactors tend to be less well protected than power reactors from thieves and terrorists by guards, barriers, locks and sensors. The well-intended 'Atoms for Peace Program' initiated by US president Eisenhower in 1953 provided research reactors with weapon-usable highly-enriched uranium to countries all around the world. At the end of the Gulf War, Iraqi scientists were making a nuclear weapon from highly-enriched uranium from a research reactor supplied pursuant to a Soviet research reactor program modeled after the American one. An American program to bring home the US-supplied weapon-usable uranium from around the world has made great progress but is only about half completed. A comparable Russian return program is just beginning. Research reactors with weapon-usable uranium remain in many countries around the world. (author)

  1. Research in nuclear reactor theory and experimental reactors

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.

    1978-01-01

    The paper is devoted to the possibilities of using experimental reactors for scientific research in nuclear power with a stress on problems in nuclear reactor theory. The stationary and nonstationary neutron fields, burnup prediction and analyses as well as fuel element development and the corresponding role of test-reactors were dealt with. It was shown that the investigations in nuclear reactor theory in Yugoslavia were developing continuously and in a useful interaction with experiments on research reactors. The needs for continuing the work on fundamental problems in neutron transport theory and on improving the calculation methods for thermal power reactors, together with the improvement of performances of existing research systems, were pointed out. A new quality in scientific work could be obtained dealing with the problems connected to a possible introduction of test-reactors, and fast systems later on. It was also pleaded for the corresponding orientations in fundamental sciences. (author) [sr

  2. The tokamak hybrid reactor

    International Nuclear Information System (INIS)

    Kelly, J.L.; Rose, R.P.

    1981-01-01

    At a time when the potential benefits of various energy options are being seriously evaluated in many countries through-out the world, it is both timely and important to evaluate the practical application of fusion reactors for their economical production of nuclear fissile fuels from fertile fuels. The fusion hybrid reactor represents a concept that could assure the availability of adequate fuel supplies for a proven nuclear technology and have the potential of being an electrical energy source as opposed to an energy consumer as are the present fuel enrichment processes. Westinghouse Fusion Power Systems Department, under Contract No. EG-77-C-02-4544 with the Department of Energy, Office of Fusion Energy, has developed a preliminary conceptual design for an early twenty-first century fusion hybrid reactor called the commercial Tokamak Hybrid Reactor (CTHR). This design was developed as a first generation commercial plant producing fissile fuel to support a significant number of client Light Water Reactor (LWR) Plants. To the depth this study has been performed, no insurmountable technical problems have been identified. The study has provided a basis for reasonable cost estimates of the hybrid plants as well as the hybrid/LWR system busbar electricity costs. This energy system can be optimized to have a net cost of busbar electricity that is equivalent to the conventional LWR plant, yet is not dependent on uranium ore prices or standard enrichment costs, since the fusion hybrid can be fueled by numerous fertile fuel resources. A nearer-term concept is also defined using a beam driven fusion driver in lieu of the longer term ignited operating mode. (orig.)

  3. Prospects for inherently safe reactors

    International Nuclear Information System (INIS)

    Barkenbus, J.N.

    1988-01-01

    Public fears over nuclear safety have led some within the nuclear community to investigate the possibility of producing inherently safe nuclear reactors; that is, reactors that are transparently incapable of producing a core melt. While several promising designs of such reactors have been produced, support for large-scale research and development efforts has not been forthcoming. The prospects for commercialization of inherently safe reactors, therefore, are problematic; possible events such as further nuclear reactor accidents and superpower summits, could alter the present situation significantly. (author)

  4. Reactor core simulations in Canada

    International Nuclear Information System (INIS)

    Roy, R.; Koclas, J.; Shen, W.; Jenkins, D. A.; Altiparmakov, D.; Rouben, B.

    2004-01-01

    This review will address the current simulation flow-chart currently used for reactor-physics simulations in the Canadian industry. The neutron behaviour in heavy-water moderated power reactors is quite different from that in other power reactors, thus the core physics approximations are somewhat different Some codes used are particular to the context of heavy-water reactors, and the paper focuses on this aspect. The paper also shows simulations involving new design features of the Advanced Candu Reactor TM (ACR TM), and provides insight into future development, expected in the coming years. (authors)

  5. The integral fast reactor concept

    International Nuclear Information System (INIS)

    Chang, Yoon I.; Marchaterre, J.F.

    1987-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) an integral fuel cycle, based on pyrometallurgical processing and injection-cast fuel fabrication, with the fuel cycle facility collocated with the reactor, if so desired. This paper gives a review of the IFR concept

  6. Reactor water level control device

    International Nuclear Information System (INIS)

    Utagawa, Kazuyuki.

    1993-01-01

    A device of the present invention can effectively control fluctuation of a reactor water level upon power change by reactor core flow rate control operation. That is, (1) a feedback control section calculates a feedwater flow rate control amount based on a deviation between a set value of a reactor water level and a reactor water level signal. (2) a feed forward control section forecasts steam flow rate change based on a reactor core flow rate signal or a signal determining the reactor core flow rate, to calculate a feedwater flow rate control amount which off sets the steam flow rate change. Then, the sum of the output signal from the process (1) and the output signal from the process (2) is determined as a final feedwater flow rate control signal. With such procedures, it is possible to forecast the steam flow rate change accompanying the reactor core flow rate control operation, thereby enabling to conduct preceding feedwater flow rate control operation which off sets the reactor water level fluctuation based on the steam flow rate change. Further, a reactor water level deviated from the forecast can be controlled by feedback control. Accordingly, reactor water level fluctuation upon power exchange due to the reactor core flow rate control operation can rapidly be suppressed. (I.S.)

  7. CER. Research reactors in France

    Energy Technology Data Exchange (ETDEWEB)

    Estrade, Jerome [CEA, DEN, DER, Saint-Paul-lez-Durance (France). Jules Horowitz Reactor (JHR)

    2012-10-15

    Networking and the establishment of coalitions between research reactors are important to guarantee a high technical quality of the facility, to assure well educated and trained personnel, to harmonize the codes of standards and the know-ledge of the personnel as well as to enhance research reactor utilization. In addition to the European co-operation, country-specific working groups have been established for many years, such as the French research reactor Club d'Exploitants des Reacteurs (CER). It is the association of French research reactors representing all types of research reactors from zero power up to high flux reactors. CER was founded in 1990 and today a number of 14 research reactors meet twice a year for an exchange of experience. (orig.)

  8. Methanogenesis in Thermophilic Biogas Reactors

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1995-01-01

    Methanogenesis in thermophilic biogas reactors fed with different wastes is examined. The specific methanogenic activity with acetate or hydrogen as substrate reflected the organic loading of the specific reactor examined. Increasing the loading of thermophilic reactors stabilized the process...... as indicated by a lower concentration of volatile fatty acids in the effluent from the reactors. The specific methanogenic activity in a thermophilic pilot-plant biogas reactor fed with a mixture of cow and pig manure reflected the stability of the reactor. The numbers of methanogens counted by the most...... against Methanothrix soehngenii or Methanothrix CALS-I in any of the thermophilic biogas reactors examined. Studies using 2-14C-labeled acetate showed that at high concentrations (more than approx. 1 mM) acetate was metabolized via the aceticlastic pathway, transforming the methyl-group of acetate...

  9. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1975-02-01

    This report summarizes main research achievements in the 48th fiscal year which were made by Reactor Engineering Division consisted of eight laboratories and Computing Center. The major research and development projects, with which the research programmes in the Division are associated, are development of High Temperature Gas Cooled Reactor for multi-purpose use, development of Liquid Metal Fast Breeder Reactor conducted by Power Reactor and Nuclear Fuel Development Corporation, and Engineering Research Programme for Thermonuclear Fusion Reactor. Many achievements are reported in various research items such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of Computing Center. (auth.)

  10. Nuclear reactor operation control process

    International Nuclear Information System (INIS)

    Doi, T.; Hiranuma, H.; Nishida, C.; Suematsu, S.

    1981-01-01

    A process for controlling operation of a nuclear reactor is described in which first control means is operated to cause reactor power to rise to a level at which a pellet-clad-mechanical-interaction begins to take place between a cladding and pellets of a fuel element. After interrupting the operation of the first control means, second control means is operated to cause the reactor power to rise to a preset level, the second control means being capable of effecting finer control of the reactor power than the first control means. When the reactor power deviates from the preset level with the progress of the reactor operation in the preset level, the second control means is operated so as to maintain the reactor power at the preset level

  11. Mirror hybrid reactor optimization studies

    International Nuclear Information System (INIS)

    Bender, D.J.

    1976-01-01

    A system model of the mirror hybrid reactor has been developed. The major components of the model include (1) the reactor description, (2) a capital cost analysis, (3) various fuel management schemes, and (4) an economic analysis that includes the hybrid plus its associated fission burner reactors. The results presented describe the optimization of the mirror hybrid reactor, the objective being to minimize the cost of electricity from the hybrid fission-burner reactor complex. We have examined hybrid reactors with two types of blankets, one containing natural uranium, the other thorium. The major difference between the two optimized reactors is that the uranium hybrid is a significant net electrical power producer, whereas the thorium hybrid just about breaks even on electrical power. Our projected costs for fissile fuel production are approximately 50 $/g for 239 Pu and approximately 125 $/g for 233 U

  12. Safety of nuclear power reactors

    International Nuclear Information System (INIS)

    MacPherson, H.G.

    1982-01-01

    Safety is the major public issue to be resolved or accommodated if nuclear power is to have a future. Probabilistic Risk Analysis (PRA) of accidental releases of low-level radiation, the spread and activity of radiation in populated areas, and the impacts on public health from exposure evolved from the earlier Rasmussen Reactor Safety Study. Applications of the PRA technique have identified design peculiarities in specific reactors, thus increasing reactor safety and establishing a quide for evaluating reactor regulations. The Nuclear Regulatory Commission and reactor vendors must share with utilities the responsibility for reactor safety in the US and for providing reasonable assurance to the public. This entails persuasive public education and information that with safety a top priority, changes now being made in light water reactor hardware and operations will be adequate. 17 references, 2 figures, 2 tables

  13. Nuclear reactors: physics and materials

    Energy Technology Data Exchange (ETDEWEB)

    Yadigaroglu, G

    2005-07-01

    In the form of a tutorial addressed to non-specialists, the article provides an introduction to nuclear reactor technology and more specifically to Light Water Reactors (LWR); it also shows where materials and chemistry problems are encountered in reactor technology. The basics of reactor physics are reviewed, as well as the various strategies in reactor design and the corresponding choices of materials (fuel, coolant, structural materials, etc.). A brief description of the various types of commercial power reactors follows. The design of LWRs is discussed in greater detail; the properties of light water as coolant and moderator are put in perspective. The physicochemical and metallurgical properties of the materials impose thermal limits that determine the performance and the maximum power a reactor can deliver. (author)

  14. Reactor simulator development. Workshop material

    International Nuclear Information System (INIS)

    2001-01-01

    The International Atomic Energy Agency (IAEA) has established a programme in nuclear reactor simulation computer programs to assist its Member States in education and training. The objective is to provide, for a variety of advanced reactor types, insight and practice in reactor operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the supply or development of simulation programs and training material, sponsors training courses and workshops, and distributes documentation and computer programs. This publication consists of course material for workshops on development of such reactor simulators. Participants in the workshops are provided with instruction and practice in the development of reactor simulation computer codes using a model development system that assembles integrated codes from a selection of pre-programmed and tested sub-components. This provides insight and understanding into the construction and assumptions of the codes that model the design and operational characteristics of various power reactor systems. The main objective is to demonstrate simple nuclear reactor dynamics with hands-on simulation experience. Using one of the modular development systems, CASSIM tm , a simple point kinetic reactor model is developed, followed by a model that simulates the Xenon/Iodine concentration on changes in reactor power. Lastly, an absorber and adjuster control rod, and a liquid zone model are developed to control reactivity. The built model is used to demonstrate reactor behavior in sub-critical, critical and supercritical states, and to observe the impact of malfunctions of various reactivity control mechanisms on reactor dynamics. Using a PHWR simulator, participants practice typical procedures for a reactor startup and approach to criticality. This workshop material consists of an introduction to systems used for developing reactor simulators, an overview of the dynamic simulation

  15. Feasible reactor power cutback logic development for an integral reactor

    International Nuclear Information System (INIS)

    Han, Soon-Kyoo; Lee, Chung-Chan; Choi, Suhn; Kang, Han-Ok

    2013-01-01

    Major features of integral reactors that have been developed around the world recently are simplified operating systems and passive safety systems. Even though highly simplified control system and very reliable components are utilized in the integral reactor, the possibility of major component malfunction cannot be ruled out. So, feasible reactor power cutback logic is required to cope with the malfunction of components without inducing reactor trip. Simplified reactor power cutback logic has been developed on the basis of the real component data and operational parameters of plant in this study. Due to the relatively high rod worth of the integral reactor the control rod assembly drop method which had been adapted for large nuclear power plants was not desirable for reactor power cutback of the integral reactor. Instead another method, the control rod assembly control logic of reactor regulating system controls the control rod assembly movements, was chosen as an alternative. Sensitivity analyses and feasibility evaluations were performed for the selected method by varying the control rod assembly driving speed. In the results, sensitivity study showed that the performance goal of reactor power cutback system could be achieved with the limited range of control rod assembly driving speed. (orig.)

  16. Seals in nuclear reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The seals described are for use in a nuclear reactor where there are fuel assemblies in a vessel, an inlet and an outlet for circulating a coolant in heat transfer relationship with the fuel assemblies and a closure head on the vessel in a tight fluid relationship. The closure head comprises rotatable plugs which have mechanical seals disposed in the annulus around each plug while allowing free rotation of the plug when the seal is not actuated. The seal is usually an elastomer or copper. A means of actuating the seal is attached for drawing it vertically into the annulus for sealing. When the reactor coolant is liquid sodium, contact with oxygen must be avoided and argon cover gas fills the space between the bottom of the closure head and the coolant liquid level and the annuli in the closure head. (U.K.)

  17. Fusion reactor wastes

    International Nuclear Information System (INIS)

    Young, J.R.

    1976-01-01

    The fusion reactor currently is being developed as a clean source of electricity with an essentially infinite source of fuel. These reactors are visualized as using a fusion reaction to generate large quantities of high temperature energy which can be used as process heat or for the generation of electricity. The energy would be created primarily as the kinetic energy of neutrons or other reaction products. Neutron energy could be converted to high-temperature heat by moderation and capture of the neutrons. The energy of other reaction products could be converted to high-temperature heat by capture, or directly to electricity by direct conversion electrostatic equipment. An analysis to determine the wastes released as a result of operation of fusion power plants is presented

  18. Actinide recycling in reactors

    International Nuclear Information System (INIS)

    Kuesters, H.; Wiese, H.W.; Krieg, B.

    1995-01-01

    The objective is an assessment of the transmutation of long-lived actinides and fission products and the incineration of plutonium for reducing the risk potential of radioactive waste from reactors in comparison to direct waste disposal. The contribution gives an interim account on homogeneous and heterogeneous recycling of 'risk nuclides' in thermal and fast reactors. Important results: - A homogeneous 5 percent admixture of minor actinides (MA) from N4-PWRs to EFR fuel would allow a transmutation not only of the EFR MA, but in addition of the MA from 5 or 6 PWRs of equal power. However, the incineration is restricted by safety considerations. - LWR have only a very low MA incineration potential, due to their disadvantageous neutron capture/fission ratio. - In order to keep the Cm inventory at a low level, it is advantageous to concentrate the Am heterogeneously in particular fuel elements or rods. (orig./HP)

  19. Advanced boiling water reactor

    International Nuclear Information System (INIS)

    Nishimura, N.; Nakai, H.; Ross, M.A.

    1999-01-01

    In the Boiling Water Reactor (BWR) system, steam generated within the nuclear boiler is sent directly to the main turbine. This direct cycle steam delivery system enables the BWR to have a compact power generation building design. Another feature of the BWR is the inherent safety that results from the negative reactivity coefficient of the steam void in the core. Based on the significant construction and operation experience accumulated on the BWR throughout the world, the ABWR was developed to further improve the BWR characteristics and to achieve higher performance goals. The ABWR adopted 'First of a Kind' type technologies to achieve the desired performance improvements. The Reactor Internal Pump (RIP), Fine Motion Control Rod Drive (FMCRD), Reinforced Concrete Containment Vessel (RCCV), three full divisions of Emergency Core Cooling System (ECCS), integrated digital Instrumentation and Control (I and C), and a high thermal efficiency main steam turbine system were developed and introduced into the ABWR. (author)

  20. Water cooled nuclear reactor

    International Nuclear Information System (INIS)

    1975-01-01

    A description is given of a cooling water intake collector for a nuclear reactor. It includes multiple sub-collectors extending out in a generally parallel manner to each other, each one having a first end and a second one separated along their length, and multiple water outlets for connecting each one to a corresponding pressure tube of the reactor. A first end tube and a second one connect the sub-collector tubes together to their first and second ends respectively. It also includes multiple collector tubes extending transversely by crossing over the sub-collector tubes and separated from each other in the direction of these tubes. Each collector tubes has a water intake for connecting to a water pump and multiple connecting tubes separated over its length and connecting each one to the corresponding sub-collector [fr

  1. Moderator for nuclear reactor

    International Nuclear Information System (INIS)

    Milgram, M.S.; Dunn, J.T.; Hart, R.S.

    1995-01-01

    This invention relates to a moderator for a nuclear reactor and more specifically, to a composite moderator. A moderator is designed to slow down, or thermalize, neutrons which are released during nuclear reactions in the reactor fuel. Pure or almost pure materials like light water, heavy water, beryllium or graphite are used singly as moderators at present. All these materials, are used widely. Graphite has a good mechanical strength at high temperatures encountered in the nuclear core and therefore is used as both the moderator and core structural material. It also exhibits a low neutron-capture cross section and high neutron scattering cross section. However, graphite is susceptible to attach by carbon dioxide and/or oxygen where applicable, and releases stress energy under certain circumstances, although under normal operating conditions these reactions can be controlled. (author). 1 tab

  2. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    1975-01-01

    A description is given of a nuclear reactor fuel assembly comprising a cluster of fuel elements supported by transversal grids so that their axes are parallel to and at a distance from each other, in order to establish interstices for the axial flow of a coolant. At least one of the interstices is occupied by an axial duct reserved for an auxiliary cooling fluid and is fitted with side holes through which the auxiliary cooling fluid is sprayed into the cluster. Deflectors extend as from a transversal grid in a position opposite the holes to deflect the cooling fluid jet towards those parts of the fuel elements that are not accessible to the auxiliary coolant. This assembly is intended for reactors cooled by light or heavy water [fr

  3. HOMOGENEOUS NUCLEAR REACTOR

    Science.gov (United States)

    Hammond, R.P.; Busey, H.M.

    1959-02-17

    Nuclear reactors of the homogeneous liquid fuel type are discussed. The reactor is comprised of an elongated closed vessel, vertically oriented, having a critical region at the bottom, a lower chimney structure extending from the critical region vertically upwardly and surrounded by heat exchanger coils, to a baffle region above which is located an upper chimney structure containing a catalyst functioning to recombine radiolyticallydissociated moderator gages. In operation the liquid fuel circulates solely by convection from the critical region upwardly through the lower chimney and then downwardly through the heat exchanger to return to the critical region. The gases formed by radiolytic- dissociation of the moderator are carried upwardly with the circulating liquid fuel and past the baffle into the region of the upper chimney where they are recombined by the catalyst and condensed, thence returning through the heat exchanger to the critical region.

  4. FBR type reactors

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Azekura, Kazuo; Inoue, Kotaro.

    1981-01-01

    Purpose: To decrease power fluctuations due to burning of blanket fuel element clusters by partially replacing the fertile materials in the blanket fuel element clusters with fissile materials. Constitution: Fertile materials in the radial blanket fuel element clusters disposed to the outside or inside of the reactor core are partially replaced with fissile materials. Since the power density of the fissile materials is at the maximum in the initial burning stage and decreases as the burning proceeds, the power density of the materials which is smaller in the initial burning stage and becomes greater with the burning by the neutron-accumulated plutonium is offset. Accordingly, the power fluctuations in the blanket fuel element clusters due to the burning made smaller thereby enable to form a reactor core with less power fluctuations due to burning under the constant coolant flow rate depending on the power in the final burning stage where the blanket power is maximum. (Moriyama, K.)

  5. Compact fusion reactors

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  6. Decommissioning a nuclear reactor

    International Nuclear Information System (INIS)

    Montoya, G.M.

    1991-01-01

    The process of decommissioning a facility such as a nuclear reactor or reprocessing plant presents many waste management options and concerns. Waste minimization is a primary consideration, along with protecting a personnel and the environment. Waste management is complicated in that both radioactive and chemical hazardous wastes must be dealt with. This paper presents the general decommissioning approach of a recent project at Los Alamos. Included are the following technical objectives: site characterization work that provided a thorough physical, chemical, and radiological assessment of the contamination at the site; demonstration of the safe and cost-effective dismantlement of a highly contaminated and activated nuclear-fuelded reactor; and techniques used in minimizing radioactive and hazardous waste. 12 figs

  7. Reactor vessel sealing plug

    International Nuclear Information System (INIS)

    Dooley, R.A.

    1986-01-01

    An apparatus is described for sealing a cold leg nozzle of a nuclear reactor pressure vessel from a remote location comprising: at least one sealing plug for mechanically sealing the nozzle from the inside of the reactor pressure vessel. The sealing plug includes a plate and a cone assembly having an end part receptive in the nozzle, the plate being axially moveable relative to the cone assembly. The plate and cone assembly have confronting bevelled edges defining an opening therebetween. A primary O-ring is disposed about the opening and is supported on the bevelled edges, the plate being guidably mounted to the cone assembly for movement toward the cone assembly to radially expand the primary O-ring into sealing engagement with the nozzle. A means is included for providing relative movement between the outer plate and the cone assembly

  8. Halden reactor project

    International Nuclear Information System (INIS)

    1980-01-01

    The research programme at the Halden Project is focused on the following three areas: 1. In-core behavior of reactor fuel, particularly reliability and safety aspects, which is studied through irradiation of test fuel elements. 2. Prediction, surveillance and control of fuel and core performance for which models of fuel and core behavior are developed. 3. Applications of process computers to power plant control, for which prototype software systems and hardware arrangements are developed

  9. The Chernobyl reactor accident

    International Nuclear Information System (INIS)

    Rassow, J.

    1986-01-01

    The documentation aims at giving a clearly arranged account of facts, interrelations and comparative evaluations of general interest. It deals with the course of events, atmospheric dispersion and fallout of the substances released and discusses the basic principles of the metering of radioactive radiation, the calculation of body doses and comparative evaluations with the radioactive exposure and risks involved by other sources. The author intends to contribute to an objective discussion about the Chernobyl reactor accident and nuclear energy as such. (DG) [de

  10. Improvement to reactor vessel

    International Nuclear Information System (INIS)

    1974-01-01

    The vessel described includes a prestressed concrete vessel containing a chamber and a removable cover closing this chamber. The cover is in concrete and is kept in its closed position by main and auxiliary retainers, comprising fittings integral with the concrete of the vessel. The auxiliary retainers pass through the concrete of the cover. This improvement may be applied to BWR, PWR and LMFBR type reactor vessel [fr

  11. Polarized advanced fuel reactors

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1987-07-01

    The d- 3 He reaction has the same spin dependence as the d-t reaction. It produces no neutrons, so that if the d-d reactivity could be reduced, it would lead to a neutron-lean reactor. The current understanding of the possible suppression of the d-d reactivity by spin polarization is discussed. The question as to whether a suppression is possible is still unresolved. Other advanced fuel reactions are briefly discussed. 11 refs

  12. The pressurized water reactor

    International Nuclear Information System (INIS)

    Gallagher, J.L.

    1987-01-01

    Pressurized water reactor technology has reached a maturity that has engendered a new surge of innovation, which in turn, has led to significant advances in the technology. These advances, characterized by bold thinking but conservative execution, are resulting in nuclear plant designs which offer significant performance and safety improvements. This paper describes the innovations which are being designed into mainstream PWR technology as well as the desings which are resulting from such innovations. (author)

  13. Damping of reactor internals

    International Nuclear Information System (INIS)

    Singleton, N.R.; Bohm, G.J.

    1977-01-01

    This paper presents and discusses the results of a study of internals damping using data obtained from wave analysis of PWR plant flow tests, and shaker tests. The damping values were obtained from vibration data taken during the pre-operational testing of several reactor plants and some in air shaker tests. Parameters available in the data include the presence of the core, the presence and position of the control rod drive line, reactor coolant temperature, and combination of reactor coolant pumps in operation. Modal damping values for the structures reported were obtained from the decay of autocorrellograms or from the modal response half-power bandwidths of frequency spectra. For the lower frequency core barrel-reactor vessel beam modes 2% to 5% damping values were found for minimum damping values. Significantly higher values are found in the data when, for example, intermittent contact occurs at the core barrel level supports. Core barrel and thermal shield shell modes having natural frequencies in the frequency range of interest for seismic response calculations exhibit damping values generally on the order of 1% to 2%. Higher frequency, very low amplitude, shell modes of these structures can have damping values of less than 1%. Damping values for guide tubes were found to have minimum values of 2% to 5% depending on their core location. The cross flow velocity and thus the floor turbulence excited amplitude is higher for guide tubes in core locations near the outlet nozzles. Information on the damping of upper support columns which are similarly excited is also given. Damping values reported are suitable for normal operation design conditions, i.e., for oscillatory behavior and relatively small amplitudes. The extrapolation of the data to obtain realistic values for large seismic events and for loss of coolant accidents is also discussed

  14. Measurement device for reactor

    International Nuclear Information System (INIS)

    Sakamoto, M.

    1982-02-01

    A measurement device for a reactor is described. It consists of closed end guide tubes positioned vertically beneath each of the fuel assemblies; the ends of these tubes are immersed in the core coolant fluid. A ''free space'' in-pile detector and a detection device are enclosed in each of the guide tubes. The state of the core is characterized by output signals delivered by the in-pile detectors. These detectors are of the acoustic type [fr

  15. Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Van de Velde, J.; Fabry, A.; Van Walle, E.; Chaoudi, R

    1998-07-01

    SCK-CEN's R and D programme on Reactor Pressure Vessel (RPV) Steels in performed in support of the RVP integrity assessment. Its main objectives are: (1) to develop enhanced surveillance concepts by applying micromechanics and fracture-toughness tests to small specimens, and by performing damage modelling and microstructure characterization; (2) to demonstrate the applied methodology on a broad database; (3) to achieve regulatory acceptance and industrial use. Progress and achievements in 1999 are reported.

  16. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Moons, F.

    1998-01-01

    SCK-CEN's programme on fusion reactor materials includes studies (1) to investigate fracture mechanics of neutron-irradiated beryllium; (2) to describe the helium behaviour in irradiated beryllium at atomic scale; (3) to define the kinetics of beryllium reacting with air or steam; (3) to perform a feasibility study for the testing of integrated blanket modules under neutron irradiation. Progress and achievements in 1997 are reported

  17. Privatized multipurpose reactor initiative

    International Nuclear Information System (INIS)

    Davis, G.A.

    1995-01-01

    ABB Combustion Engineering (ABB CE) and seven other companies have submitted a plan to the DOE for deploying a multipurpose reactor at the Savannah River Plant. The facility would consume excess plutonium as fuel, irradiate tritium producing targets, and generate electricity. The plan proposes to establish a consortium that would privately finance and own two System 80+ nuclear units and a mixed oxide fuel fabrication facility

  18. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Wilson, J.F.; Sherwood, D.G.

    1982-01-01

    A mechanical spectral shift reactor comprises a reactive core having fuel assemblies accommodating both water displacer elements and neutron absorbing control rods for selectively changing the volume of water-moderator in the core. The fuel assemblies with displacer and control rods are arranged in alternating fashion so that one displacer element drive mechanism may move displacer elements in more than one fuel assembly without interfering with the movement of control rods of a corresponding control rod drive mechanisms. (author)

  19. Fission reactor container

    International Nuclear Information System (INIS)

    Akagawa, Katsuhiko.

    1991-01-01

    Cooling water is sent without using dynamic equipments upon loss of coolants accident in a pressure vessel by improving an arrangement of a nuclear reactor pressure vessel. That is, a containing space is formed at the center of a suppression chamber for storing cooling water while being partitioned with each other, in which the pressure vessel is placed. Further, a water reservoir is formed above the pressure vessel. Then a water discharge pipe is connected to the reservoir for submerging the stored water over the pressure vessel upon occurrence of loss of coolants accident. Further, a water injection pipe is disposed between the pressure suppression chamber and the pressure vessel for injecting the cooling water in the pressure suppression chamber to the reactor core of the pressure vessel by the difference of a water head upon loss of coolants accident. With such a constitution, the pressure vessel has high earthquake proofness. Further, upon loss of coolants accident of the pressure vessel, the cooling water in the reservoir is discharged to submerge and cool the pressure vessel efficiently. Further, the reactor core of the pressure vessel can certainly be cooled by the cooling water of the pressure suppression chamber without relying on dynamic equipments. (I.S.)

  20. Reactor primary containment vessel

    International Nuclear Information System (INIS)

    Kodama, Tasuku

    1986-01-01

    Purpose: To insure safety by preventing the radioactivity release to outside environments in the event of an unforeseen accident when the gas temperature in the reactor container is high. Constitution: In the event of any unforeseen accident, a high-temperature gas in the reactor container will be discharged from a discharge port into the pool water through a suction piping system and a discharge piping system, and after being cooled with the pool water, the gas will be discharged into the reactor building. Thereafter, the cooled gas will be drawn into an emergency gas processing device through the suction piping system and removed of radioactivity, finally being discharged out into the external environment. Soluble radioactive maters will be absorbed and removed into the pool water while they are in contact with the gas in the pool water. This, therefore, can contribute much more toward the control of discharge of the radioactivity. Where it is required to improve solubility, a methyl iodine solution can be used as the pool water. A fuel storage pool may be used as the pool. (Kamimura, M.)

  1. BWR type reactor core

    International Nuclear Information System (INIS)

    Tatemichi, Shin-ichiro.

    1981-01-01

    Purpose: To eliminate the variation in the power distribution of a BWR type reactor core in the axial direction even if the flow rate is increased or decreased by providing a difference in the void coefficient between the upper part and the lower parts of the reactor core, and increasing the void coefficient at the lower part of the reactor core. Constitution: The void coefficient of the lower region from the center to the lower part along the axial direction of a nuclear fuel assembly is increased to decrease the dependence on the flow rate of the axial power distribution of the nuclear fuel assembly. That is, a water/fuel ratio is varied, the water in non-boiled region is increased or the neutron spectrum is varied so as to vary the void coefficient. In order to exemplify it, the rate of the internal pellets of the fuel rod of the nuclear fuel assembly or the shape of the channel box is varied. Accordingly, the power does not considerably vary even if the flow rate is altered since the power is varied in the power operation. (Yoshihara, H.)

  2. Nuclear reactor building

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Nobuaki.

    1991-08-09

    The secondary container in a nuclear reactor building is made of a transparent structure having a shielding performance such as lead glass, by which the inside of the secondary container can be seen without undergoing radiation exposure. In addition, an operator transportation facility capable of carrying about 5 to 10 operators at one time is disposed, and the side of the facility on the secondary container is constituted with a transparent material such as glass, to provide a structure capable of observing the inside of the secondary container. The ventilation and air conditioning in the operator's transportation facility is in communication with the atmosphere of a not-controlled area. Accordingly, operators at the outside of the reactor building can reach the operator's transportation facility without taking and procedures for entering the controlled area and without undergoing radiation exposure. The inside of the secondary container in the reactor building can be seen from various directions through the transparent structure having the shielding performance. (N.H.).

  3. OECD Halden Reactor Project

    International Nuclear Information System (INIS)

    1988-01-01

    The OECD Halden Reactor project is an agreement between OECD member countries. It was first signed in 1958 and since then regularly renewed every third year. The activities at the Project is centred around the Halden heavy water rector, the HBWR. The reseach programme comprizes studies of fuel performance under various operating conditions, and the application of computers for process control. The HBWR is equipped for exposing fuel rods to temperatures and pressures, and at heat ratings met in modern BWR's and PWR's. A range of in-core instruments are available, permitting detailed measurements of the reactions of the fuel, including mechanical deformations, thermal behaviour, fission gas release, and corrosion. In the area of computer application, the studies of the communication between operator and process, and the surveillance and control of the reactor core, are of particular interst for reactor operation. 1988 represents the 30th year since the Project was started, and this publication is produced to mark this event. It gives and account of the activities and achievements of the Project through the years 1958-1988

  4. Nuclear reactor sealing system

    International Nuclear Information System (INIS)

    McEdwards, J.A.

    1983-01-01

    A liquid metal-cooled nuclear reactor sealing system is disclosed. The nuclear reactor includes a vessel sealed at its upper end by a closure head. The closure head comprises at least two components, one of which is rotatable; and the two components define an annulus therebetween. The sealing system includes at least a first and second inflatable seal disposed in series in an upper portion of the annulus. The system further includes a dip seal extending into a body of insulation located adjacent a bottom portion of the closure head. The dip seal comprises a trough formed by a lower portion of one of the components, and a seal blade pendently supported from the other component and extending downwardly into the trough. A body of liquid metal is contained in the trough which submerges a portion of the seal blade. The seal blade is provided with at least one aperture located above the body of liquid metal for providing fluid communication between the annulus intermediate the dip seal and the inflatable seals, and a body of cover gas located inside the vessel. There also is provided means for introducing a purge gas into the annulus intermediate the inflatable seals and the seal blade. The purge gas is introduced in an amount sufficient to substantially reduce diffusion of radioactive cover gas or sodium vapor up to the inflatable seals. The purge gas mixes with the cover gas in the reactor vessel where it can be withdrawn from the vessel for treatment and recycle to the vessel

  5. Numerical reactor evaluation

    International Nuclear Information System (INIS)

    Venter, A.M.

    1973-08-01

    A short discussion is given of the physics of a nuclear reactor and the parameters which are used in the study of neutron transport. The mathematical formulation and detailed derivation is given of the neutron diffusion and transport equations. A description is given of the computer programmes, FIRE-5 and PELSN, developed at Pelindaba for the evaluation of both thermal and fast reactor systems. It is indicated how these computer programmes have been applied in the study of the PELINDUNA-O and other known critical facilities. The application of Lie-series to the solution of the neutron diffusion equation is discussed in detail. The time dependence of the variables is removed by means of a Laplacetransformation and the semi-analytical solution is written in terms of a transfer matrix. A complete set of recursion formulae, applicable to both homogeneous and heterogeneous reactor systems, is derived. The method used in the evaluation of the effective multiplication factor, k-eff, and the alpha-eigen-value is described. A computer programme was written to solve the neutron diffusion equation in terms of the Lie-series. The results are compared with the TIMOC and PELSN computer programmes. A method is suggested in which the Lie-series are used to solve the neutron transport equation. The transfer matrix for this case, is derived. A complete discussion is given of the solution to the space and time dependent diffusion equation in the presence of a delta source [af

  6. Licensed operating reactors

    International Nuclear Information System (INIS)

    1989-06-01

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. Since all of the data concerning operation of the units are provided by the utility operators less than two weeks after the end of the month, necessary corrections to published information are shown on the ERRATA page. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  7. SP-100 reactor design

    International Nuclear Information System (INIS)

    Armijo, J.S.; Atwell, J.; Pluta, P.R.; Smith, M.A.; Solorzano, E.R.

    1987-01-01

    The SP-100 space reactor power system is being designed and developed as part of the Ground Engineering System (GES) contract between General Electric Company as the system developer and the Department of Energy. Other key participants in the GES program include Westinghouse Hanford Company (site operator), Los Alamos National Laboratory (fuel development and production), Oak Ridge National Laboratory (materials), and Westinghouse, Advanced Energy Systems Division (shield, HTS equipment). The GES Program includes two major elements. First, the development of a Reference Flight System design at 100 kWe output to the user, and second the validation of the Reference Flight System design by analysis and by testing. Development of key technologies along with component and system testing is an essential part of the validation program. The nuclear subsystem validation includes the design, manufacture, assembly and operational testing of a Ground Reactor Test Assembly. The subject of this paper is the reactor design for the Reference Flight System. The reference flight design is in the preliminary design stage and will evolve over the next year

  8. Small propulsion reactor design based on particle bed reactor concept

    International Nuclear Information System (INIS)

    Ludewig, H.; Lazareth, O.; Mughabghab, S.; Perkins, K.; Powell, J.R.

    1989-01-01

    In this paper Particle Bed Reactor (PBR) designs are discussed which use 233 U and /sup 242m/Am as fissile materials. A constant total power of 100MW is assumed for all reactors in this study. Three broad aspects of these reactors is discussed. First, possible reactor designs are developed, second physics calculations are outlined and discussed and third mass estimates of the various candidates reactors are made. It is concluded that reactors with a specific mass of 1 kg/MW can be envisioned of 233 U is used and approximately a quarter of this value can be achieved if /sup 242m/Am is used. If this power level is increased by increasing the power density lower specific mass values are achievable. The limit will be determined by uncertainties in the thermal-hydraulic analysis. 5 refs., 5 figs., 6 tabs

  9. Backfitting of the FRG reactors

    International Nuclear Information System (INIS)

    Krull, W.

    1990-01-01

    The FRG-research reactors The GKSS-research centre is operating two research reactors of the pool type fueled with MTR-type type fuel elements. The research reactors FRG-1 and FRG-2 having power levels of 5 MW and 15 MW are in operation for 31 year and 27 years respectively. They are comparably old like other research reactors. The reactors are operating at present at approximately 180 days (FRG-1) and between 210 and 250 days (FRG-2) per year. Both reactors are located in the same reactor hall in a connecting pool system. Backfitting measures are needed for our and other research reactors to ensure a high level of safety and availability. The main backfitting activities during last ten years were concerned with: comparison of the existing design with today demands (criteria, guidelines, standards etc.); and probability approach for events from outside like aeroplane crashes and earthquakes; the main accidents were rediscussed like startup from low and full power, loss of coolant flow, loss of heat sink, loss of coolant and fuel plate melting; a new reactor protection system had to be installed, following today's demands; a new crane has been installed in the reactor hall. A cold neutron source has been installed to increase the flux of cold neutrons by a factor of 14. The FRG-l is being converted from 93% enriched U with Alx fuel to 20% enriched U with U 3 Si 2 fuel. Both cooling towers were repaired. Replacement of instrumentation is planned

  10. Physical security at research reactors

    International Nuclear Information System (INIS)

    Clark, R.A.

    1977-01-01

    Of the 84 non-power research facilities licensed under 10 CFR Part 50, 73 are active (two test reactors, 68 research reactors and three critical facilities) and are required by 10 CFR Part 73.40 to provide physical protection against theft of SNM and against industrial sabotage. Each licensee has developed a security plan required by 10 CFR Part 50.34(c) to demonstrate the means of compliance with the applicable requirements of 10 CFR Part 73. In 1974, the Commission provided interim guidance for the organization and content of security plans for (a) test reactors, (b) medium power research and training reactors, and (c) low power research and training reactors. Eleven TRIGA reactors, with power levels greater than 250 kW and all other research and training reactors with power levels greater than 100 kW and less than or equal to 5,000 kW are designated as medium power research and training reactors. Thirteen TRIGA reactors with authorized power levels less than 250 kW are considered to be low power research and training reactors. Additional guidance for complying with the requirements of 73.50 and 73.60, if applicable, is provided in the Commission's Regulatory Guides. The Commission's Office of Inspection and Enforcement inspects each licensed facility to assure that an approved security plan is properly implemented with appropriate procedures and physical protection systems

  11. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  12. Nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias

    2011-01-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  13. Reactor water level control device

    International Nuclear Information System (INIS)

    Hiramatsu, Yohei.

    1980-01-01

    Purpose: To increase the rapid response of the waterlevel control converting a reactor water level signal into a non-linear type, when the water level is near to a set value, to stabilize the water level reducting correlatively the reactor water level variation signal to stabilize greatly from the set value, and increasing the variation signal. Constitution: A main vapor flow quality transmitter detects the vapor flow generated in a reactor and introduced into a turbine. A feed water flow transmitter detects the quantity of a feed water flow from the turbine to the reactor, this detected value is sent to an addition operating apparatus. On the other hand, the power signal of the reactor water level transmitter is sent to the addition operating apparatus through a non-linear water level signal converter. The addition operation apparatus generates a signal for requesting the feed water flow quantity from both signals. Upon this occasion, the reactor water level signal converter makes small the reactor water level variation when the reactor level is close the set value, and when the water level deviates greatly from the set value, the reactor water level variation is made large thereby to improve the rapid response of the reactor coater level control. (Yoshino, Y.)

  14. Comparison between TRU burning reactors and commercial fast reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Sanda, Toshio; Ogawa, Takashi

    2001-03-01

    Research and development for stabilizing or shortening the radioactive wastes including in spent nuclear fuel are widely conducted in view point of reducing the environmental impact. Especially it is effective way to irradiate and transmute long-lived TRU by fast reactors. Two types of loading way were previously proposed. The former is loading relatively small amount of TRU in all commercial fast reactors and the latter is loading large amount of TRU in a few TRU burning reactors. This study has been intended to contribute to the feasibility studies on commercialized fast reactor cycle system. The transmutation and nuclear characteristics of TRU burning reactors were evaluated and compared with those of conventional transmutation system using commercial type fast reactor based upon the investigation of technical information about TRU burning reactors. Major results are summarized as follows. (1) Investigation of technical information about TRU burning reactors. Based on published reports and papers, technical information about TRU burning reactor concepts transmutation system using convectional commercial type fast reactors were investigated. Transmutation and nuclear characteristics or R and D issue were investigated based on these results. Homogeneously loading of about 5 wt% MAs on core fuels in the conventional commercial type fast reactor may not cause significant impact on the nuclear core characteristics. Transmutation of MAs being produced in about five fast reactors generating the same output is feasible. The helium cooled MA burning fast reactor core concept propose by JAERI attains criticality using particle type nitride fuels which contain more than 60 wt% MA. This reactor could transmute MAs being produced in more than ten 1000 MWe-LWRs. Ultra-long life core concepts attaining more than 30 years operation without refueling by utilizing MA's nuclear characteristics as burnable absorber and fertile nuclides were proposed. Those were pointed out that

  15. Nuclear Reactor RA Safety Report, Vol. 4, Reactor

    International Nuclear Information System (INIS)

    1986-11-01

    RA research reactor is thermal heavy water moderated and cooled reactor. Metal uranium 2% enriched fuel elements were used at the beginning of its operation. Since 1976, 80% enriched uranium oxide dispersed in aluminium fuel elements were gradually introduced into the core and are the only ones presently used. Reactor core is cylindrical, having diameter 40 cm and 123 cm high. Reaktor core is made up of 82 fuel elements in aluminium channels, lattice is square, lattice pitch 13 cm. Reactor vessel is cylindrical made of 8 mm thick aluminium, inside diameter 140 cm and 5.5 m high surrounded with neutron reflector and biological shield. There is no containment, the reactor building is playing the shielding role. Three pumps enable circulation of heavy water in the primary cooling circuit. Degradation of heavy water is prevented by helium cover gas. Control rods with cadmium regulate the reactor operation. There are eleven absorption rods, seven are used for long term reactivity compensation, two for automatic power regulation and two for safety shutdown. Total anti reactivity of the rods amounts to 24%. RA reactor is equipped with a number of experimental channels, 45 vertical (9 in the core), 34 in the graphite reflector and two in the water biological shield; and six horizontal channels regularly distributed in the core. This volume include detailed description of systems and components of the RA reactor, reactor core parameters, thermal hydraulics of the core, fuel elements, fuel elements handling equipment, fuel management, and experimental devices [sr

  16. Reactor technology: power conversion systems and reactor operation and maintenance

    International Nuclear Information System (INIS)

    Powell, J.R.

    1977-01-01

    The use of advanced fuels permits the use of coolants (organic, high pressure helium) that result in power conversion systems with good thermal efficiency and relatively low cost. Water coolant would significantly reduce thermal efficiency, while lithium and salt coolants, which have been proposed for DT reactors, will have comparable power conversion efficiencies, but will probably be significantly more expensive. Helium cooled blankets with direct gas turbine power conversion cycles can also be used with DT reactors, but activation problems will be more severe, and the portion of blanket power in the metallic structure will probably not be available for the direct cycle, because of temperature limitations. A very important potential advantage of advanced fuel reactors over DT fusion reactors is the possibility of easier blanket maintenance and reduced down time for replacement. If unexpected leaks occur, in most cases the leaking circuit can be shut off and a redundant cooling curcuit will take over the thermal load. With the D-He 3 reactor, it appears practical to do this while the reactor is operating, as long as the leak is small enough not to shut down the reactor. Redundancy for Cat-D reactors has not been explored in detail, but appears feasible in principle. The idea of mobile units operating in the reactor chamber for service and maintenance of radioactive elements is explored

  17. TU Electric reactor physics model verification: Power reactor benchmark

    International Nuclear Information System (INIS)

    Willingham, C.E.; Killgore, M.R.

    1988-01-01

    Power reactor benchmark calculations using the advanced code package CASMO-3/SIMULATE-3 have been performed for six cycles of Prairie Island Unit 1. The reload fuel designs for the selected cycles included gadolinia as a burnable absorber, natural uranium axial blankets and increased water-to-fuel ratio. The calculated results for both startup reactor physics tests (boron endpoints, control rod worths, and isothermal temperature coefficients) and full power depletion results were compared to measured plant data. These comparisons show that the TU Electric reactor physics models accurately predict important measured parameters for power reactors

  18. Reactor neutron flux measuring device

    International Nuclear Information System (INIS)

    Okutani, Yasushi; Hayakawa, Toshifumi.

    1994-01-01

    The present invention concerns a device for displaying an approximate neutron flux distribution to recognize the neutron flux distribution of the whole reactor in a short period of time. The device of the present invention displays, the results of measurement for neutron fluxes collected by a data collecting section on every results of the measurements at measuring points situating at horizontally identical positions of the reactor core. In addition, every results of the measurements at the measuring points situating at the identical height in the reactor core are accumulated, and the results of the integration are graphically displayed. With such procedures, the neutron flux distribution in the entire reactor is approximately displayed. Existent devices could not recognize the neutron flux distribution of the entire reactor at a glance and it took much time for the recognition. The device of the present invention can recognize the neutron flux distribution of the entire reactor in a short period of time. (I.S.)

  19. Nuclear reactor kinetics and control

    International Nuclear Information System (INIS)

    Lewins, J.

    1978-01-01

    A consistent, integrated account of modern developments in the study of nuclear reactor kinetics and the problem of their efficient and safe control. It aims to prepare the student for advanced study and research or practical work in the field. Special features include treatments of noise theory, reliability theory and safety related studies. It covers all aspects of the operation and control of nuclear reactors, power and research and is complete in providing physical data methods of calculation and solution including questions of equipment reliability. The work uses illustrations of the main types of reactors in use in the UK, USA and Europe. Each chapter contains problems and worked examples suitable for course work and study. The subject is covered in chapters, entitled: introductory review; neutron and precursor equations; elementary solutions at low power; linear reactor process dynamics with feedback; power reactor control systems; fluctuations and reactor noise; safety and reliability; nonlinear systems (safety and control); analogue computing. (author)

  20. FFTF and CRBRP reactor vessels

    International Nuclear Information System (INIS)

    Morgan, R.E.

    1977-01-01

    The Fast Flux Test Facility (FFTF) reactor vessel and the Clinch River Breeder Reactor Plant (CRBRP) reactor vessel each serve to enclose a fast spectrum reactor core, contain the sodium coolant, and provide support and positioning for the closure head and internal structure. Each vessel is located in its reactor cavity and is protected by a guard vessel which would ensure continued decay heat removal capability should a major system leak develop. Although the two plants have significantly different thermal power ratings, 400 megawatts for FFTF and 975 megawatts for CRBRP, the two reactor vessels are comparable in size, the CRBRP vessel being approximately 28% longer than the FFTF vessel. The FFTF vessel diameter was controlled by the space required for the three individual In-Vessel Handling Machines and Instrument Trees. Utilization of the triple rotating plug scheme for CRBRP refueling enables packaging of the larger CRBRP core in a vessel the same diameter as the FFTF vessel

  1. Power reactors in member states

    International Nuclear Information System (INIS)

    1975-01-01

    This is the first issue of a periodical computer-based listing of civilian nuclear power reactors in the Member States of the IAEA, presenting the situation as of 1 April 1975. It is intended as a replacement for the Agency's previous annual publication of ''Power and Research Reactors in Member States''. In the new format, the listing contains more information about power reactors in operation, under construction, planned and shut down. As far as possible all the basic design data relating to reactors in operation have been included. In future these data will be included also for other power reactors, so that the publication will serve to give a clear picture of the technical progress achieved. Test and research reactors and critical facilities are no longer listed. Of interest to nuclear power planners, nuclear system designers, nuclear plant operators and interested professional engineers and scientists

  2. Graphite materials for nuclear reactors

    International Nuclear Information System (INIS)

    Oku, Tatsuo

    1991-01-01

    Graphite materials have been used in the nuclear fission reactors from the beginning of the reactor development for the speed reduction and reflection of neutron. Graphite materials are used both as a moderator and as a reflector in the core of high temperature gas-cooled reactors, and both as a radiation shielding material and as a reflector in the surrounding of the core for the fast breeder reactor. On the other hand, graphite materials are being positively used as a first wall of plasma as it is known that low Z materials are useful for holding high temperature plasma in the nuclear fusion devices. In this paper the present status of the application of graphite materials to the nuclear fission reactors and fusion devices (reactors) is presented. In addition, a part of results on the related properties to the structural design and safety evaluation and results examined on the subjects that should be done in the future are also described. (author)

  3. Thorium utilisation in thermal reactors

    International Nuclear Information System (INIS)

    Balakrishnan, K.

    1997-01-01

    It is now more or less accepted that the best way to use thorium is in thermal reactors. This is due to the fact that U233 is a good material in the thermal spectrum. Studies of different thorium cycles in various reactor concepts had been carried out in the early days of nuclear power. After three decades of neglect, the world is once again looking at thorium with some interest. We in India have been studying thorium cycles in most of the existing thermal reactor concepts, with greater emphasis on heavy water reactors. In this paper, we report some of the work done in India on different thorium cycles in the Indian pressurized heavy water reactor (PHWR), and also give a description of the design of the advanced heavy water reactor (AHWR). (author). 1 ref., 2 tabs., 5 figs

  4. Nuclear reactors safety issues

    International Nuclear Information System (INIS)

    Barre, Francois; Seiler, Nathalie

    2008-01-01

    Full text of publication follows: Since the seventies, economic incentives have led the utilities to drive a permanent evolution of the light water reactor (LWR). The evolution deals with the reactor designs as well as the way to operate them in a more flexible manner. It is for instance related to the fuel technologies and management. On the one hand, the technologies are in continuous evolution, such as the fuel pellets (MOX, Gd fuel, or Cr doped fuels..) as well as advanced cladding materials (M5 TM , MDA or ZIRLO). On the other hand, the fuel management is also subject to continuous evolution in particular in terms of increasing the level of burn-up, the reactor (core) power, the enrichment, as well as the duration of reactor cycles. For instance, in a few years in France, the burn-up has raised beyond the value of 39 GWj/t, initially authorized up to 52 GWj/t for the UO 2 fuel. In the near future, utilities foreseen to reach fuel burn-up of 60 GWj/t for MOX fuel and 70 GWj/t for UO 2 fuel. Furthermore, the future reactor of fourth generation will use new fuels of advanced conception. Furthermore with the objective of improving the safety margins, methods and calculation tools used by the utilities in the elaboration of their safety demonstrations submitted to the Safety Authority, are in movement. The margin evaluation methodologies often consist of a calculation chain of best-estimate multi-field simulations (e.g. various codes being coupled to simulate in a realistic way the evolution of the thermohydraulic, neutronic and mechanic state of the reactor). The statistical methods are more and more sophisticated and the computer codes are integrating ever-complex physical models (e.g. three-dimensional at fine scale). Following this evolution, the Institute of Radioprotection and Nuclear Safety (IRSN), whose one of the roles is to examine the safety records and to rend a technical expertise, considers the necessity of reevaluating the safety issues for advanced

  5. Turning points in reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-09-01

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems.

  6. Spiral-shaped disinfection reactors

    KAUST Repository

    Ghaffour, Noreddine

    2015-08-20

    This disclosure includes disinfection reactors and processes for the disinfection of water. Some disinfection reactors include a body that defines an inlet, an outlet, and a spiral flow path between the inlet and the outlet, in which the body is configured to receive water and a disinfectant at the inlet such that the water is exposed to the disinfectant as the water flows through the spiral flow path. Also disclosed are processes for disinfecting water in such disinfection reactors.

  7. Inorganic membranes and catalytic reactors

    OpenAIRE

    Rangel, Maria do Carmo

    1997-01-01

    Membrane reactors are reviewed with emphasis in their applications in catalysis field. The basic principles of these systems are presented as well as a historical development. The several kinds of catalytic membranes and their preparations are discussed including the problems, needs and challenges to be solved in order to use these reactors in commercial processes. Some applications of inorganic membrane reactors are also shown. It was concluded that these systems have a great potential for i...

  8. Generation IV reactors: international projects

    International Nuclear Information System (INIS)

    Carre, F.; Fiorini, G.L.; Kupitz, J.; Depisch, F.; Hittner, D.

    2003-01-01

    Generation IV international forum (GIF) was initiated in 2000 by DOE (American department of energy) in order to promote nuclear energy in a long term view (2030). GIF has selected 6 concepts of reactors: 1) VHTR (very high temperature reactor system, 2) GHR (gas-cooled fast reactor system), 3) SFR (sodium-cooled fast reactor system, 4) SCWR (super-critical water-cooled reactor system), 5) LFR (lead-cooled fast reactor system), and 6) MFR (molten-salt reactor system). All these 6 reactor systems have been selected on criteria based on: - a better contribution to sustainable development (through their aptitude to produce hydrogen or other clean fuels, or to have a high energy conversion ratio...) - economic profitability, - safety and reliability, and - proliferation resistance. The 6 concepts of reactors are examined in the first article, the second article presents an overview of the results of the international project on innovative nuclear reactors and fuel cycles (INPRO) within IAEA. The project finished its first phase, called phase-IA. It has produced an outlook into the future role of nuclear energy and defined the need for innovation. The third article is dedicated to 2 international cooperations: MICANET and HTR-TN. The purpose of MICANET is to propose to the European Commission a research and development strategy in order to develop the assets of nuclear energy for the future. Future reactors are expected to be more multiple-purposes, more adaptable, safer than today, all these developments require funded and coordinated research programs. The aim of HTR-TN cooperation is to promote high temperature reactor systems, to develop them in a long term perspective and to define their limits in terms of burn-up and operating temperature. (A.C.)

  9. Turning points in reactor design

    International Nuclear Information System (INIS)

    Beckjord, E.S.

    1995-01-01

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems

  10. Hydrogen Production in Fusion Reactors

    OpenAIRE

    S., Sudo; Y., Tomita; S., Yamaguchi; A., Iiyoshi; H., Momota; O., Motojima; M., Okamoto; M., Ohnishi; M., Onozuka; C., Uenosono

    1993-01-01

    As one of methods of innovative energy production in fusion reactors without having a conventional turbine-type generator, an efficient use of radiation produced in a fusion reactor with utilizing semiconductor and supplying clean fuel in a form of hydrogen gas are studied. Taking the candidates of reactors such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a concept of plant system are investigated.

  11. Power reactors in Member States. 1978 edition

    International Nuclear Information System (INIS)

    1978-01-01

    The computer-based reactor listing gives information on reactor core characteristics and plant systems for all power reactors in operation under construction and planned. The following two tables are included to give a general picture of the overall situation: Reactor types and net electrical power; Reactor units and net electrical power by country and cumulated by year

  12. Review of fusion DEMO reactor study

    International Nuclear Information System (INIS)

    Seki, Yasushi

    1996-01-01

    Fusion DEMO Reactor is defined and the Steady State Tokamak Reactor (SSTR) concept is introduced as a typical example of a DEMO reactor. Recent DEMO reactor studies in Japan and abroad are introduced. The DREAM Reactor concept is introduced as an ultimate target of fusion research. (author)

  13. Mirror Advanced Reactor Study (MARS)

    International Nuclear Information System (INIS)

    Logan, B.G.

    1983-01-01

    Progress in a two year study of a 1200 MWe commercial tandem mirror reactor (MARS - Mirror Advanced Reactor Study) has reached the point where major reactor system technologies are identified. New design features of the magnets, blankets, plug heating systems and direct converter are described. With the innovation of radial drift pumping to maintain low plug density, reactor recirculating power fraction is reduced to 20%. Dominance of radial ion and impurity losses into the halo permits gridless, circular direct converters to be dramatically reduced in size. Comparisons of MARS with the Starfire tokamak design are made

  14. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1983-01-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  15. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-05-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  16. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-08-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  17. Improvement of research reactor sustainability

    International Nuclear Information System (INIS)

    Ciocanescu, M.; Paunoiu, C.; Toma, C.; Preda, M.; Ionila, M.

    2010-01-01

    The Research Reactors as is well known have numerous applications in a wide range of science technology, nuclear power development, medicine, to enumerate only the most important. The requirements of clients and stack-holders are fluctuating for the reasons out of control of Research Reactor Operating Organization, which may ensure with priority the safety of facility and nuclear installation. Sustainability of Research Reactor encompasses several aspects which finally are concentrated on safety of Research Reactor and economical aspects concerning operational expenses and income from external resources. Ensuring sustainability is a continuous, permanent activity and also it requests a strategic approach. The TRIGA - 14 MW Research Reactor detains a 30 years experience of safe utilization with good performance indicators. In the last 4 years the reactor benefited of a large investment project for modernization, thus ensuring the previous performances and opening new perspectives for power increase and for new applications. The previous core conversion from LEU to HEU fuel accomplished in 2006 ensures the utilization of reactor based on new qualified European supplier of TRIGA LEU fuel. Due to reduction of number of performed research reactors, the 14 MW TRIGA modernized reactor will play a significant role for the following two decades. (author)

  18. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1983-03-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  19. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-11-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  20. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-07-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  1. Fundamentals of pressurized water reactors

    International Nuclear Information System (INIS)

    Murray, L.

    1982-01-01

    In many countries, the pressurized water reactor (PWR) is the most widely used, even though it requires enrichment of the uranium to about 3% in U-235 and the moderator-coolant must be maintained at a high pressure, about 2200 pounds per square inch. Our objective in this series of seven lectures is to describe the design and operating characteristics of the PWR system, discuss the reactor physics methods used to evaluate performance, examine the way fuel is consumed and produced, study the instrumentation system, review the physics measurements made during initial startup of the reactor, and outline the administrative aspects of starting up a reactor and operating it safely and effectively

  2. Nuclear reactor power supply

    International Nuclear Information System (INIS)

    Cook, B.M.

    1984-01-01

    The redundant signals from the sensor assemblies measuring the process parameters of a nuclear reactor power supply are transmitted each in its turn to a protection system which operates to actuate the protection apparatus for signals indicating off-process conditions. Each sensor assembly includes a number of like sensors measuring the same parameters. The protection system has a number of separate protection units, each unit receiving the process signals from the like sensors of each assembly in its turn. The sets of process signals derived from the sensor parameter assemblies are each in its turn transmitted from the protection system to the control system which impresses control signals on the reactor or its components to counteract the tendency for conditions to drift off-normal status requiring operation of the protection system. A parameter signal selector is interposed between the protection system and the control system. This selector prevents a parameter signal of a set of signals, which differs from the other parameter signals of the set by more than twice the allowable variation of the sensors which produce the set, from passing to the control system. The connection between the protection units and the selector is four separate fiber optic channels so that electrical interaction between the protection units and the selector or control system is precluded. The selectors include a pair of signal selection units, one unit sending selected process signals to primary control channels and the other sending selected process signals to back-up control channels. Test signals are periodically impressed on a selected pair of a selected unit and control channels. When test signals are so impressed the selected control channel is disabled from transmitting control signals to the reactor and/or its associated components

  3. Nuclear reactor plant

    International Nuclear Information System (INIS)

    Schabert, H.P.; Laurer, E.

    1977-01-01

    The invention is concerned with a quick-closing valve on the main-steam pipe of a nuclear reactor plant. The quick-closing valve serves as isolating valve and as safety valve permitting depressurization in case of an accident. For normal operation a tube-shaped gate valve is provided as valve disc, enclosing an auxiliary valve disc to be used in case of accidents and which is opened at increased pressure to provide a smaller flow cross-section. The design features are described in detail. (RW) [de

  4. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E. D.

    1984-01-01

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value

  5. Nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, E. D.

    1984-10-16

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value.

  6. Reactor coolant pump flywheel

    Science.gov (United States)

    Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

    2013-11-26

    A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

  7. SODIUM DEUTERIUM REACTOR

    Science.gov (United States)

    Oppenheimer, E.D.; Weisberg, R.A.

    1963-02-26

    This patent relates to a barrier system for a sodium heavy water reactor capable of insuring absolute separation of the metal and water. Relatively cold D/sub 2/O moderator and reflector is contained in a calandria into which is immersed the fuel containing tubes. The fuel elements are cooled by the sodium which flows within the tubes and surrounds the fuel elements. The fuel containing tubes are surrounded by concentric barrier tubes forming annular spaces through which pass inert gases at substantially atmospheric pressure. Header rooms above and below the calandria are provided for supplying and withdrawing the sodium and inert gases in the calandria region. (AEC)

  8. Nuclear Reactor Safety; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    This publication announces on an monthly basis the current worldwide information available on all safety-related aspects of reactors, including: accident analysis, safety systems, radiation protection, decommissioning and dismantling, and security measures. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are other US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Technology Data Exchange, the International Atomic Energy Agency's International Nuclear Information System, or government-to-government agreements.

  9. The Oklo reactors

    International Nuclear Information System (INIS)

    Skytte Jensen, B.

    1982-01-01

    The Oklo reactors comprise up to nine 235-U depleted zones in an uranium ore in the Republic of Gabon in West Africa. The depletion in fissile U-235 has been proved to have caused by nuclear chain reactions. The study of the Oklo phenomenon indicates that very efficient retardation mechanisms may operate in nature - at least under special conditions. A closer study of these processes ought to be made to establish the limitations to their occurrence. The Oklo sandstone formation today would probably be considered unacceptable as a host rock for a repository. (EG)

  10. Iris reactor development

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, D.V.; Carelli, M.D. [Westinghouse Electric Corp., Baltimore, MD (United States); Miller, K. [BNFL, Inc., (United Kingdom); Lombardi, C.V.; Ricotti, M.E. [Polytechnic of Milan, Polimi (Italy); Todreas, N.E. [Masachussets Institute of Technology, MIT (United States); Greenspan, E. [University of California at Berkeley, UCB (United States); Yamamoto, K. [JAPC Japan Atomic Power Co., Tokyo (Japan); Nagano, A. [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Ninokata, H. [Tokyo Institut of Technology, TIT (Japan); Robertson, J. [Westinghouse and bechtel (United States); Oriolo, F. [Pisa Univ. (Italy)

    2001-07-01

    The development progress of the IRIS (International Reactor Innovative and Secure) nuclear power system is presented. IRIS is currently being developed by an international consortium of industry, laboratory, university and utility establishments, led by Westinghouse. It is aimed at achieving the four major objectives of the Generation IV nuclear systems, i.e., proliferation resistance, enhanced safety, economic competitiveness and reduced waste. The project first year activities, which are summarized here, were focused on core neutronics, in-vessel configuration, steam generator and containment design, safety approach and economic performance. Details of these studies are provided in parallel papers in these proceedings. (author)

  11. Nuclear reactor facility

    International Nuclear Information System (INIS)

    Wampole, N.C.

    1978-01-01

    In order to improve the performance of manitenance and inspections it is proposed for a nuclear reactor facility with a primary circuit containing liquid metal to provide a thermally insulated chamber, within which are placed a number of components of the primary circuit, as e.g. valves, recirculation pump, heat exchangers. The isolated placement permit controlled preheating on one hand, but prevents undesirable heating of adjacent load-bearing elements on the other. The chamber is provided with heating devices and, on the outside, with cooling devices; it is of advantage to fill it with an inert gas. (UWI) 891 HP [de

  12. CANDU nuclear reactor technology

    International Nuclear Information System (INIS)

    Kakaria, B. K.

    1994-01-01

    AECL has over 40 years of experience in the nuclear field. Over the past 20 years, this unique Canadian nuclear technology has made a worldwide presence, In addition to 22 CANDU reactors in Canada, there are also two in India, one in Pakistan, one in Argentina, four in Korea and five in Romania. CANDU advancements are based on evolutionary plant improvements. They consist of system performance improvements, design technology improvements and research and development in support of advanced nuclear power. Given the good performance of CANOU plants, it is important that this CANDU operating experience be incorporated into new and repeat designs

  13. Atomic hydrogen reactor

    International Nuclear Information System (INIS)

    Massip de Turville, C.M.D.

    1982-01-01

    Methods are discussed of generating heat in an atomic hydrogen reactor which involve; the production of atomic hydrogen by an electrical discharge, the capture of nascent neutrons from atomic hydrogen in a number of surrounding steel alloy tubes having a high manganese content to produce 56 Mn, the irradiation of atomic hydrogen by the high energy antineutrinos from the beta decay of 56 Mn to yield nascent neutrons, and the removal of the heat generated by the capture of nascent neutrons by 55 Mn and the beta decay of 56 Mn. (U.K.)

  14. Fast breeder reactors

    International Nuclear Information System (INIS)

    Ollier, J.L.

    1987-01-01

    The first industrial-scale fast breeder reactor (FBR) is the Superphenix I at Crays-Melville. It was designed and built by Novatome, a French company, and Ansaldo, an Italian company. The advantages of FBRs are summarized. The status of Superphenix and the testing schedule is given. The stages in its power escalation in 1986 are given. The article is optimistic about the future for FBRs and expects FBRs to take over from PWRs at the beginning of the 21st Century. To achieve economic viability, European financial cooperation for the research and development programme is advocated. (UK)

  15. Licensed operating reactors

    International Nuclear Information System (INIS)

    1989-11-01

    The US Nuclear Regulatory Commission's monthly Licensed Operating Reactors Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. Since all of the data concerning operation of the units is provided by the utility operators less than two weeks after the end of the month, necessary corrections to published information are shown on the errata page

  16. The Oklo reactor

    International Nuclear Information System (INIS)

    McNeil, Russell

    1986-01-01

    The construction of a reactor, capable of producing a controlled nuclear chain reaction, has been one of the most complex achievements of modern science. That a similar reaction might take place in nature did not play a role in the thinking of the nuclear scientists responsible for it. Yet, 14 years ago, French scientists discovered that just such a phenomenon apparently occurred in western Africa almost 2 billion years ago. In this article Russell McNeil describes this fascinating curiosity and a recent attempt to model it mathematically

  17. Nuclear reactor operator licensing

    International Nuclear Information System (INIS)

    Bursey, R.J.

    1978-01-01

    The Atomic Energy Act of 1954, which was amended in 1974 by the Energy Reorganization Act, established the requirement that individuals who had the responsibility of operating the reactors in nuclear power plants must be licensed. Section 107 of the act states ''the Commission shall (1) prescribe uniform conditions for licensing individuals; (2) determine the qualifications of such individuals; and (3) issue licenses to such individuals in such form as the Commission may prescribe.'' The article discusses the types of licenses, the selection and training of individuals, and the administration of the Nuclear Regulatory Commission licensing examinations

  18. Neutronic reactor thermal shield

    International Nuclear Information System (INIS)

    Lowe, P.E.

    1976-01-01

    A shield for a nuclear reactor includes at least two layers of alternating wide and narrow rectangular blocks so arranged that the spaces between blocks in adjacent layers are out of registry, each block having an opening therein equally spaced from the sides of the blocks and nearer the top of the block than the bottom, the distance from the top of the block to the opening in one layer being different from this distance in adjacent layers, openings in blocks in adjacent layers being in registry. 1 claim, 7 drawing figures

  19. Virtual nuclear reactor for education of nuclear reactor physics

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Narabayashi, Takashi; Shimazu, Youichiro

    2008-01-01

    As one of projects that were programmed in the cultivation program for human resources in nuclear engineering sponsored by the Ministry of Economy, Trade and Industry, the development of a virtual reactor for education of nuclear reactor physics started in 2007. The purpose of the virtual nuclear reactor is to make nuclear reactor physics easily understood with aid of visualization. In the first year of this project, the neutron slowing down process was visualized. The data needed for visualization are provided by Monte Carlo calculations; The flights of the respective neutrons generated by nuclear fissions are traced through a reactor core until they disappear by neutron absorption or slow down to a thermal energy. With this visualization and an attached supplement textbook, it is expected that the learners can learn more clearly the physical implication of neutron slowing process that is mathematically described by the Boltzmann neutron transport equation. (author)

  20. Nuclear power reactors: reactor safety and military and civil defence

    International Nuclear Information System (INIS)

    Hvinden, T.

    1976-01-01

    The formation of fission products and plutonium in reactors is briefly described, followed by a short general discussion of reactor safety. The interaction of reactor safety and radioactive release considerations with military and civil defence is thereafter discussed. Reactors and other nuclear plants are factors which must be taken into account in the defence of the district around the site, and as potential targets of both conventional and guerilla attacks and sabotage, requiring special defence. The radiological hazards arising from serious damage to a power reactor by conventional weapons are briefly discussed, and the benefits of underground siting evaluated. Finally the author discusses the significance of the IAEA safeguards work as a preventive factor. (JIW)

  1. Design guide for Category III reactors: pool type reactors

    International Nuclear Information System (INIS)

    Brynda, W.J.; Lobner, P.R.; Powell, R.W.; Straker, E.A.

    1978-11-01

    The Department of Energy (DOE) in the ERDA Manual requires that all DOE-owned reactors be sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate consideration to health and safety factors. Specific guidance pertinent to the safety of DOE-owned reactors is found in Chapter 0540 of the ERDA Manual. The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification, operation, maintenance, and decommissioning of DOE-owned reactors be in accordance with generally uniform standards, guides, and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission (NRC). This Design Guide deals principally with the design and functional requirement of Category III reactor structures, components, and systems

  2. Improvements in or relating to nuclear reactors

    International Nuclear Information System (INIS)

    Timofeev, A.V.; Batjukov, V.I.; Fadeev, A.I.; Shapkin, A.F.; Shikhiyan, T.G.; Ordynsky, G.V.; Drachev, V.P.; Pogodin, E.N.

    1980-01-01

    A refuelling installation for nuclear reactor complexes is described for recharging the reactor vessels of such complexes with new fuel assemblies and for removing spent fuel assemblies from the reactor vessel. (U.K.)

  3. Manufacture of components for Canadian reactor programs

    International Nuclear Information System (INIS)

    Perry, L.P.

    Design features, especially those relating to calandrias, are pointed out for many CANDU-type reactors and the Taiwan research reactor. The special requirements shouldered by the Canadian suppliers of heavy reactor components are analyzed. (E.C.B.)

  4. Overview of the US stellarator reactor study

    International Nuclear Information System (INIS)

    Lyon, J.F.; Gulec, K.; Miller, R.L.; El-Guebaly, L.

    1993-01-01

    This study, which uses a cost-minimization code that incorporates the ARIES costing and reactor component models with a I-D energy transport calculation, shows that a torsatron reactor could be competitive with a tokamak reactor

  5. Control rod drive of nuclear reactor

    International Nuclear Information System (INIS)

    Zhuchkov, I.I.; Gorjunov, V.S.; Zaitsev, B.I.

    1980-01-01

    This invention relates to nuclear reactors and, more particularly, to a drive of a control rod of a nuclear reactor and allows power control, excess reactivity compensation, and emergency shut-down of a reactor. (author)

  6. Hybrid Reactor Simulation of Boiling Water Reactor Power Oscillations

    International Nuclear Information System (INIS)

    Huang Zhengyu; Edwards, Robert M.

    2003-01-01

    Hybrid reactor simulation (HRS) of boiling water reactor (BWR) instabilities, including in-phase and out-of-phase (OOP) oscillations, has been implemented on The Pennsylvania State University TRIGA reactor. The TRIGA reactor's power response is used to simulate reactor neutron dynamics for in-phase oscillation or the fundamental mode of the reactor modal kinetics for OOP oscillations. The reactor power signal drives a real-time boiling channel simulation, and the calculated reactivity feedback is in turn fed into the TRIGA reactor via an experimental changeable reactivity device. The thermal-hydraulic dynamics, together with first harmonic mode power dynamics, is digitally simulated in the real-time environment. The real-time digital simulation of boiling channel thermal hydraulics is performed by solving constitutive equations for different regions in the channel and is realized by a high-performance personal computer. The nonlinearity of the thermal-hydraulic model ensures the capability to simulate the oscillation phenomena, limit cycle and OOP oscillation, in BWR nuclear power plants. By adjusting reactivity feedback gains for both modes, various oscillation combinations can be realized in the experiment. The dynamics of axially lumped power distribution over the core is displayed in three-dimensional graphs. The HRS reactor power response mimics the BWR core-wide power stability phenomena. In the OOP oscillation HRS, the combination of reactor response and the simulated first harmonic power using shaping functions mimics BWR regional power oscillations. With this HRS testbed, a monitoring and/or control system designed for BWR power oscillations can be experimentally tested and verified

  7. Reactor fuel rod

    International Nuclear Information System (INIS)

    Inui, Mitsuhiro; Mori, Kazuma.

    1990-01-01

    In a high burnup degree reactor core, a problem of fuel can corrosion caused by coolants occurs due to long stay in a reactor. Then, the use of fuel cladding tubes with improved corrosion resistance is now undertaken and use of corrosion resistant alloys is attempted. However, since the conventional TIG welding melts the entire portion, the welded portion does not remain only in the corrosive resistant alloy but it forms new alloys of the corrosion resistant alloy and zircaloy as the matrix material or inter-metallic compounds, which degrades the corrosion resistance. In the present invention, a cladding tube comprising a dual layer structure using a corrosion resistant alloy only for a required thickness and an end plug made of the same material as the corrosion resistant alloy are welded at the junction portion by using resistance welding. Then, they are joined under welding by the heat generated to the junction surfaces between both of them, to provide corrosion resistant alloys substantially at the outside of the welded portion as well. Accordingly, the corrosion resistance is not degradated. (T.M.)

  8. Nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Duncombe, E.; McGonigal, G.

    1976-01-01

    Reference is made to the instrumentation of liquid metal cooled fast reactors. In order to ensure the safe operation of such reactors it is necessary to constantly monitor the coolant flowing through the fuel assemblies for temperature and rate of flow, requiring a large number of sensors. An improved and simplified arrangement is claimed in which the fuel assemblies feed a fraction of coolant to three instrument units arranged to sense the temperature and rate of flow of samples of coolant. Each instrument unit comprises a sleeve housing a sensing unit and has a number of inlet ducts arranged for receiving coolant from a fuel assembly together with a single outlet. The sensing unit has three thermocouple hot junctions connected in series, the hot junctions and inlet ducts being arranged in pairs. Electromagnetic windings around an inductive core are arranged to sense variation in flow of liquid metal by flux distortion. Fission product sensing means may also be provided. Full constructional details are given. (U.K.)

  9. OECD Halden reactor project

    International Nuclear Information System (INIS)

    1977-01-01

    The activities of the OECD Halden Reactor Project for the year 1975 are summarized. The period under review is the last year of the three year joint programme which commenced on 1st January, 1973. The main items reported upon are: process supervision and control, test fuel irradiation and fuel research, reactor operations, and administration and finance. The process supervision and control work has been concentrated in two fields: methods development for core surveillance and control, and systems development for operator-process communication. As for fuel test, investigations of the densification phenomenon have continued through irradiations to a maximum of about 16000MWd/tUO 2 . Axial and radial deformations of fuel rods are studied, with the effect of power transients upon the dimensional stability of fuel rods, and fuel-cladding heat transfer and fuel temperature. Thermal models for steady state and transient heat transfer in fuel rods have been developed and the work on thermomechanical models of claddings shows considerable promise

  10. Molten salt reactor type

    International Nuclear Information System (INIS)

    1977-01-01

    This document is one of the three parts of a first volume devoted to the compilations of American data on the molten salt reactor concept. Emphasize is put essentially on the fuel salt of the primary circuit inside which fission reactions occur. The reasons why the (LiF-BeF 2 -ThF 4 -UF 4 ) salt was chosen for the M.S.B.R. concept are examined; the physical, physicochemical and chemical properties of this salt are discussed with its interactions with the structural materials and its evolution in time. An important part of this volume is devoted to the continuous reprocessing of the active salt, the project designers having deemed advisable to take advantage at best from the availability of a continuous purification, in a thermal breeding. The problem of tritium formation and distribution inside the reactor is also envisaged and the fundamentals of the chemistry of the secondary coolant salt are given. The solutions proposed are: the hydrogen scavenging of the primary circuit, a reduction in metal permeability by an oxyde layer deposition on the side in contact with the vapor, and tritium absorption through an isotope exchange with the hydroxifluoroborate [fr

  11. Multimegawatt Space Reactor Safety

    International Nuclear Information System (INIS)

    Stanley, M.L.

    1989-01-01

    The Multimegawatt (MMW) Space Reactor Project supports the Strategic Defense Initiative Office requirement to provide reliable, safe, cost-effective, electrical power in the MMW range. Specifically, power may be used for neutral particle beams, free electron lasers, electromagnetic launchers, and orbital transfer vehicles. This power plant technology may also apply to the electrical power required for other uses such as deep-space probes and planetary exploration. The Multimegawatt Space Reactor Project, the Thermionic Fuel Element Verification Program, and Centaurus Program all support the Multimegawatt Space Nuclear Power Program and form an important part of the US Department of Energy's (DOE's) space and defense power systems activities. A major objective of the MMW project is the development of a reference flight system design that provides the desired levels of public safety, health protection, and special nuclear material (SNM) protection when used during its designated missions. The safety requirements for the MMW project are a hierarchy of requirements that consist of safety requirements/regulations, a safety policy, general safety criteria, safety technical specifications, safety design specifications, and the system design. This paper describes the strategy and philosophy behind the development of the safety requirements imposed upon the MMW concept developers. The safety organization, safety policy, generic safety issues, general safety criteria, and the safety technical specifications are discussed

  12. FBR type reactor

    International Nuclear Information System (INIS)

    Nagai, Fumio.

    1979-01-01

    Purpose: To unify the temperature distribution in a nuclear reactor vessel by the provision of a gas recycle path for pressurizing a cover gas to recycle the cover gas and thus stir the gas in a cover gas chamber. Constitution: A plurality of gas inlet tubes and gas discharge tubes are provided to the wall of a cover gas chamber above the liquid level of coolants in a nuclear reactor vessel and the cover gas is recycled through the tubes. The plurality of gas inlet tubes are each provided at their tops with nozzles opening circumferentially and communicated to the outlet of a compressor. While on the other hand, the plurality of gas discharge tubes are communicated to the inlet of a compressor. Upon operation of the compressor, the pressurized cover gas is jetted out from the nozzles, swirls along the inner circumferential surface of the vessel and interrupts and stirs the vertical thermal convection. The gas, after swirling one-half of the inner circumferential surface of the vessel, automatically flows out of the gas discharging tubes opening behind the nozzles and then flows into the inlet of the compressor. (Seki, T.)

  13. PIUS reactor progress summary

    International Nuclear Information System (INIS)

    Hannerz, K.; Nilsson, L.

    1989-01-01

    Operating excellence is becoming the key concept for assuring the safety of the present generation of light water reactors (LWRs). Human excellence is a scarce commodity, however, and in uncertain supply and of questionable durability. The basis for ABB Atom's long-term development program is a firm conviction that a truly large-scale future expansion of nuclear power must be based on a technology in which safe operation makes much reduced demands on this scarce commodity. The present goal in the United States is to obtain U.S. Nuclear Regulatory Commission design certification by the mid-1990s with lead plant construction closely following. The difference in principle between PIUS and other (existing or proposed) LWR concepts is explained. In other LWR concepts, protection of core integrity, and thereby avoidance of accidents with significant environmental impact, depends on the necessarily uncertain status of safety equipment and on the actions of plant operators. In contrast, in PIUS, core integrity in transients is ensured by the reactor system configuration itself and the resulting self-protective thermohydraulic feedback mechanism. Extended core cooling by submergence in water is assured without any external intervention in spite of any credible structural failures. the safety of an operating core becomes practically invulnerable to human mistake or mischief

  14. Reactor system on barge

    International Nuclear Information System (INIS)

    Hayashi, Kingo; Yamada, Nobuyuki

    1987-01-01

    Floating electrical power plants or power plant barges add new dimensions to utility planners and agencies in the world. Intrinsically safe and economical reactors (ISER) employ steel reactor pressure vessels, which significantly reduce the weight as compared with PIUS, and provide siting versatility including barge-mounted plants. In this paper, the outline of power plant barges and barge-mounted ISERs is described. Besides their mobility, power plant barges have the salient advantages such as short delivery time and better quality control due to the outfitting in shipyards. These power plant barges may be temporarily moored or permanently grounded in shallow water at the centers of industrial complexes or the suitable areas adjacent to them, and satisfy the increasing needs for electric power. A cost-effective and technically perfect barge positioning system should be designed to meet the specific requirement for the location and its condition. Offshore siting away from coast may be applicable only to large plants of 1,000 MWe or more, and inshore siting and coastal or river siting are considered for an ISER-200 barge-mounted plant. The system of a barge-mounted ISER plant is discussed in the case of a floating type and the type on a seismic base isolator. (Kako, I.)

  15. Canada's reactor exports

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1981-01-01

    A brief sketch of the development of Canada's nuclear exports is presented and some of the factors which influence the ability to export reactors have been identified. The potential market for CANDUs is small and will develop slowly. The competition will be tough. There are few good prospects for immediate export orders in the next two or three years. Nonetheless there are reasonable opportunities for CANDU exports, especially in the mid-to-late 1980s. Such sales could be of great benefit to Canada and could do much to sustain the domestic nuclear industry. Apart from its excellent economic and technical performance, the main attraction of the CANDU seems to be the autonomy it confers on purchasing countries, the effectiveness with which the associated technology can be transferred, and the diversification it offers to countries which wish to reduce their dependence on the major industrial suppliers. Each sales opportunity is unique, and marketing strategy will have to be tailored to the customer's needs. Over the next decade, the factors susceptible to Canadian government action which are most likely to influence CANDU exports will be the political commitment of the government to those reactor exports, the performance established by the four 600 MWe CANDUs now nearing completion, the continuing successful operation of the nuclear program in Ontario, and the co-ordination of the different components of Canada's nuclear program (AECL, nuclear industry, utilities, and government) in putting forth a coherent marketing effort and following through with effective project management

  16. Reactor shutdown device

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Yuji; Sakamoto, Sadao.

    1992-01-27

    In control rod drives, the attracting portion between an electromagnet and a magnetic material is formed into a shape engagable to each other, and a protrusion is disposed at the outer circumferential surface. In addition, a recess is disposed at the lower portion of the electromagnet, and a protrusion to be inserted into the recess is formed at the upper portion of the magnetic member. A universal coupling is disposed at the upper portion of a control rod, and when horizontal vibrations are caused by earthquakes or by the behavior of coolants, the horizontal vibrations are moderated by the universal coupling. In this structure, since the attracting portion between the electromagnet and the magnetic member is formed into a shape like that of a receptable structure and the attracting portion is always brought into contact with each other, shearing loads are extremely reduced. Accordingly, a stress tending to separate the attracting portion is not exerted even upon occurrence of earthquakes. That is, it is possible to prevent erroneous operation of the reactor scram performance attributable to causes other than normal scram operation of dropping control rods by positively eliminating the attracting force of the electromagnet to conduct reactor scram. (N.H.).

  17. Reactor refueling machine simulator

    International Nuclear Information System (INIS)

    Rohosky, T.L.; Swidwa, K.J.

    1987-01-01

    This patent describes in combination: a nuclear reactor; a refueling machine having a bridge, trolley and hoist each driven by a separate motor having feedback means for generating a feedback signal indicative of movement thereof. The motors are operable to position the refueling machine over the nuclear reactor for refueling the same. The refueling machine also has a removable control console including means for selectively generating separate motor signals for operating the bridge, trolley and hoist motors and for processing the feedback signals to generate an indication of the positions thereof, separate output leads connecting each of the motor signals to the respective refueling machine motor, and separate input leads for connecting each of the feedback means to the console; and a portable simulator unit comprising: a single simulator motor; a single simulator feedback signal generator connected to the simulator motor for generating a simulator feedback signal in response to operation of the simulator motor; means for selectively connecting the output leads of the console to the simulator unit in place of the refueling machine motors, and for connecting the console input leads to the simulator unit in place of the refueling machine motor feedback means; and means for driving the single simulator motor in response to any of the bridge, trolley or hoist motor signals generated by the console and means for applying the simulator feedback signal to the console input lead associated with the motor signal being generated by the control console

  18. Test reactor risk assessment methodology

    International Nuclear Information System (INIS)

    Jennings, R.H.; Rawlins, J.K.; Stewart, M.E.

    1976-04-01

    A methodology has been developed for the identification of accident initiating events and the fault modeling of systems, including common mode identification, as these methods are applied in overall test reactor risk assessment. The methods are exemplified by a determination of risks to a loss of primary coolant flow in the Engineering Test Reactor

  19. Chemical-vapor-deposition reactor

    Science.gov (United States)

    Chern, S.

    1979-01-01

    Reactor utilizes multiple stacked trays compactly arranged in paths of horizontally channeled reactant gas streams. Design allows faster and more efficient deposits of film on substrates, and reduces gas and energy consumption. Lack of dead spots that trap reactive gases reduces reactor purge time.

  20. Tendencies in operating power reactors

    International Nuclear Information System (INIS)

    Brinckmann, H.F.

    1987-01-01

    A survey is given about new tendencies in operating power reactors. In order to meet the high demands for control and monitoring of power reactors modern procedures are applicated such as the incore-neutron flux detection by means of electron emission detectors and multi-component activation probes, the noise diagnostics as well as high-efficient automation systems

  1. Conceptual innovations in hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Miley, G.H.

    1980-01-01

    A number of innovations in the conception of fusion-fission hybrid reactors, including the blanket, the fusion driver, the coupling of the fusion and the fission components as well as the application of hybrid reactors are described, and their feasibility assessed

  2. Survey of research reactor applications

    International Nuclear Information System (INIS)

    Boeck, H.

    2002-06-01

    This report is a revision of the report AIAU 21305 (Survey of research reactors), it was performed in June 2002. Specific applications of the research reactors such as neutron activation analysis (NAA), boron neutron capture therapy, argon geochronology, fission track geochronology, neutron transmutation doping (NTD) of silicon, gemstone coloration, neutron radiography positron source, material structure studies, education and training are briefly described. (nevyjel)

  3. Enrichment reduction for research reactors

    International Nuclear Information System (INIS)

    Krull, W.

    1982-01-01

    The worldwide activities on enrichment reduction for research reactors are reviewed and the national and international programs are described. Especially the following points are discussed: Benchmark calculations, reactor safety, fuel element development, irradiation tests, post irradiation examinations, full core demonstrations, activities of the GKSS and economical questions. (orig.) [de

  4. Test reactor risk assessment methodology

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, R.H.; Rawlins, J.K.; Stewart, M.E.

    1976-04-01

    A methodology has been developed for the identification of accident initiating events and the fault modeling of systems, including common mode identification, as these methods are applied in overall test reactor risk assessment. The methods are exemplified by a determination of risks to a loss of primary coolant flow in the Engineering Test Reactor.

  5. Radioactive waste management for reactors

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1974-01-01

    Radioactive waste management practices at nuclear power plants are summarized. The types of waste produced and methods for treating various types of wastes are described. The waste management systems, including simplified flow diagrams, for typical boiling water reactors and pressurized water reactors are discussed. (U.S.)

  6. DOE/university reactor sharing

    International Nuclear Information System (INIS)

    Young, H.H.

    1985-01-01

    The objective of the US Department of Energy's program of reactor sharing is to strengthen nuclear science and engineering instruction and nuclear research opportunities in non-reactor-owning colleges and universities. The benefits of the program and need for the continuation of the program in the future are discussed

  7. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    on selectivity can make substantial impact on process viability and economics. Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so ...

  8. Fast reactor programme in India

    Indian Academy of Sciences (India)

    2015-09-04

    Sep 4, 2015 ... The FBR programme since 1985 till 2030 is highlighted focussing on the current status and future direction of fast breeder test reactor (FBTR), prototype fast breeder reactor (PFBR) and FBR-1 and 2. Design and technological challenges of PFBR and design and safety targets with means to achieve the ...

  9. Status of Japanese university reactors

    International Nuclear Information System (INIS)

    Fujita, Yoshiaki

    1999-01-01

    Status of Japanese university reactors, their role and value in research and education, and the spent fuel problem are presented. Some of the reactors are now faced by severe difficulties in continuing their operation services. The point of measures to solve the difficulties is suggested. (author)

  10. Brookhaven leak reactor to close

    CERN Multimedia

    MacIlwain, C

    1999-01-01

    The DOE has announced that the High Flux Beam Reactor at Brookhaven is to close for good. Though the news was not unexpected researchers were angry the decision had been taken before the review to assess the impact of reopening the reactor had been concluded (1 page).

  11. Broad-Application Test Reactor

    International Nuclear Information System (INIS)

    Motloch, C.G.

    1992-05-01

    This report is about a new, safe, and operationally efficient DOE reactor of nuclear research and testing proposed for the early to mid- 21st Century. Dubbed the Broad-Application Test Reactor (BATR), the proposed facility incorporates a multiple-application, multiple-mission design to support DOE programs such as naval reactors and space power and propulsion, as well as research in medical, science, isotope, and electronics arenas. DOE research reactors are aging, and implementing major replacement projects requires long lead times. Primary design drivers include safety, low risk, minimum operation cost, mission flexibility, waste minimization, and long life. Scientists and engineers at the Idaho National Engineering Laboratory are evaluating possible fuel forms, structural materials, reactor geometries, coolants, and moderators

  12. RADIATION FACILITY FOR NUCLEAR REACTORS

    Science.gov (United States)

    Currier, E.L. Jr.; Nicklas, J.H.

    1961-12-12

    A radiation facility is designed for irradiating samples in close proximity to the core of a nuclear reactor. The facility comprises essentially a tubular member extending through the biological shield of the reactor and containing a manipulatable rod having the sample carrier at its inner end, the carrier being longitudinally movable from a position in close proximity to the reactor core to a position between the inner and outer faces of the shield. Shield plugs are provided within the tubular member to prevent direct radiation from the core emanating therethrough. In this device, samples may be inserted or removed during normal operation of the reactor without exposing personnel to direct radiation from the reactor core. A storage chamber is also provided within the radiation facility to contain an irradiated sample during the period of time required to reduce the radioactivity enough to permit removal of the sample for external handling. (AEC)

  13. Reactor pressure vessel status report

    International Nuclear Information System (INIS)

    Strosnider, J.; Wichman, K.; Elliot, B.

    1994-12-01

    This report gives a brief description of the reactor pressure vessel (RPV), followed by a discussion of the radiation embrittlement of RPV beltline materials and the two indicators for measuring embrittlement, the end-of-license (EOL) reference temperature and the EOL upper-shelf energy. It also summarizes the GL 92-01 effort and presents, for all 37 boiling water reactor plants and 74 pressurized water reactor plants in the United States, the current status of compliance with regulatory requirements related to ensuring RPV integrity. The staff has evaluated the material data needed to predict neutron embrittlement of the reactor vessel beltline materials. These data will be stored in a computer database entitled the reactor vessel integrity database (RVID). This database will be updated annually to reflect the changes made by the licensees in future submittals and will be used by the NRC staff to assess the issues related to vessel structural integrity

  14. The breeder reactor and Europe

    International Nuclear Information System (INIS)

    Daglish, J.

    1979-01-01

    A report is given of a conference on the breeder reactor and Europe held in Lucerne, Switzerland from 14 - 17 October 1979 sponsored by the Swiss Association for Atomic Energy and the Association of European Atomic Forums. The underlying theme of the conference was the question that if nuclear power is to play a major role in meeting world energy needs in the long term, thermal reactors must in time be complemented with more advanced reactor systems that conserve uranium resources which are huge but not unlimited. This is not questioned; disagreement begins with discussion of the desirability of the breeder, and how fast and how far the introduction of such reactors should go. Aspects considered at the conference which are especially dealt with in this review are; why breed, commercial aspects, alternatives to the LMFBR, how to build a fast reactor, the breeder programmes in Europe, Britain, the Soviet Union, Japan and the United States. (U.K.)

  15. OECD high temperature reactor project Dragon

    International Nuclear Information System (INIS)

    1975-01-01

    Information is presented concerning the Dragon reactor support studies and fuel irradiation programs, HTGR and fuel graphite studies, primary circuit materials, reactor safety evaluation, and administration

  16. Advanced Reactors Around the World

    International Nuclear Information System (INIS)

    Majumdar, Debu

    2003-01-01

    At the end of 2002, 441 nuclear power plants were operating around the globe and providing 17% of the world's electricity. Although the rate of population growth has slowed, recent United Nations data suggest that two billion more people will be added to the world by 2050. A special report commissioned by the Intergovernmental Panel on Climate Change estimated that electricity demand would grow almost eight-fold from 2000 to 2050 in a high economic grown scenario and more than double in a low-growth scenario. There is also a global aspiration to keep the environment pristine. Because of these reasons, it is expected that a large number of new nuclear reactors may be operating by 2050. Realization of this has created an impetus for the development of a new generation of reactors in several countries. The goal is to make nuclear power cost-competitive with other resources and to enhance safety to a level that no evacuation outside a plant site would be necessary. It should also generate less waste, prevent materials diversion for weapons production, and be sustainable. This article discusses the status of next-generation reactors under development around the world. Specifically highlighted are efforts related to the Generation IV International Forum (GIF) and its six reactor concepts for research and development: Very High Temperature Reactor (VHTR); Gas-Cooled Fast Reactor (GFR); Supercritical Water-Cooled Reactor (SCWR); Sodium-Cooled Fast Reactor (SFR); Lead-Cooled Fast Reactor (LFR); and Molten Salt Reactor (MSR). Also highlighted are nuclear activities specific to Russia and India

  17. Strategic planning for research reactors. Guidance for reactor managers

    International Nuclear Information System (INIS)

    2001-04-01

    The purpose of this publication is to provide guidance on how to develop a strategic plan for a research reactor. The IAEA is convinced of the need for research reactors to have strategic plans and is issuing a series of publications to help owners and operators in this regard. One of these covers the applications of research reactors. That report brings together all of the current uses of research reactors and enables a reactor owner or operator to evaluate which applications might be possible with a particular facility. An analysis of research reactor capabilities is an early phase in the strategic planning process. The current document provides the rationale for a strategic plan, outlines the methodology of developing such a plan and then gives a model that may be followed. While there are many purposes for research reactor strategic plans, this report emphasizes the use of strategic planning in order to increase utilization. A number of examples are given in order to clearly illustrate this function

  18. Reactor protection systems for the Replacement Research Reactor, ANSTO

    International Nuclear Information System (INIS)

    Morris, C.R.

    2003-01-01

    The 20-MW Replacement Research Reactor Project which is currently under construction at ANSTO will have a combination of a state of the art triplicated computer based reactor protection system, and a fully independent, and diverse, triplicated analogue reactor protection system, that has been in use in the nuclear industry, for many decades. The First Reactor Protection System (FRPS) consists of a Triconex triplicated modular redundant system that has recently been approved by the USNRC for use in the USA?s power reactor program. The Second Reactor Protection System is a hardwired analogue system supplied by Foxboro, the Spec 200 system, which is also Class1E qualified. The FRPS is used to drop the control rods when its safety parameter setpoints have been reached. The SRPS is used to drain the reflector tank and since this operation would result in a reactor poison out due to the time it would take to refill the tank the FRPS trip setpoints are more limiting. The FRPS and SRPS have limited hardwired indications on the control panels in the main control room (MCR) and emergency control centre (ECC), however all FRPS and SRPS parameters are capable of being displayed on the reactor control and monitoring system (RCMS) video display units. The RCMS is a Foxboro Series I/A control system which is used for plant control and monitoring and as a protection system for the cold neutron source. This paper will provide technical information on both systems, their trip logics, their interconnections with each other, and their integration into the reactor control and monitoring system and control panels. (author)

  19. Reactor core design of Gas Turbine High Temperature Reactor 300

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Katanishi, Shoji; Takada, Shoji; Yan Xing; Tsuji, Nobumasa

    2004-01-01

    Japan Atomic Energy Research Institute (JAERI) has been designing Japan's original gas turbine high temperature reactor, Gas Turbine High Temperature Reactor 300 (GTHTR300). The greatly simplified design based on salient features of the High Temperature Gas-cooled Reactor (HTGR) with a closed helium gas turbine enables the GTHTR300 a highly efficient and economically competitive reactor to be deployed in early 2010s. Also, the GTHTR300 fully taking advantage of various experiences accumulated in design, construction and operation of the High Temperature Engineering Test Reactor (HTTR) and existing fossil fired gas turbine systems reduces technological development concerning a reactor system and electric generation system. Original design features of this system are the reactor core design based on a newly proposed refueling scheme named sandwich shuffling, conventional steel material usage for a reactor pressure vessel (RPV), an innovative coolant flow scheme and a horizontally installed gas turbine unit. The GTHTR300 can be continuously operated without the refueling for 2 years. Due to these salient features, the capital cost of the GTHTR300 is less than a target cost of 200,000 yen (1667 US$)/kW e, and the electric generation cost is close to a target cost of 4 yen (3.3 US cents)/kW h. This paper describes the original design features focusing on the reactor core design and the in-core structure design, including the innovative coolant flow scheme for cooling the RPV. The present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan

  20. Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR) are compared

    International Nuclear Information System (INIS)

    Greneche, D.

    2014-01-01

    This article compares the 2 types of light water reactors that are used to produce electricity: the Pressurized Water Reactor (PWR) and the Boiling Water Reactor (BWR). Historically the BWR concept was developed after the PWR concept. Today 80% of light water reactors operating in the world are of PWR-type. This comparison is comprehensive and detailed. First the main technical features are reviewed and compared: reactor architecture, core and fuel design, reactivity control, reactor vessel, cooling systems and reactor containment. Secondly, various aspects concerning reactor operations like reactor control, fuel management, maintenance, inspections, radiation protection, waste generation and reactor reliability are presented and compared for both reactors. As for the issue of safety, it is highlighted that the accidental situations are too different for the 2 reactors to be compared. The main features of reactor safety are explained for both reactors