WorldWideScience

Sample records for barringer meteor crater

  1. Creation of High Resolution Terrain Models of Barringer Meteorite Crater (Meteor Crater) Using Photogrammetry and Terrestrial Laser Scanning Methods

    Science.gov (United States)

    Brown, Richard B.; Navard, Andrew R.; Holland, Donald E.; McKellip, Rodney D.; Brannon, David P.

    2010-01-01

    Barringer Meteorite Crater or Meteor Crater, AZ, has been a site of high interest for lunar and Mars analog crater and terrain studies since the early days of the Apollo-Saturn program. It continues to be a site of exceptional interest to lunar, Mars, and other planetary crater and impact analog studies because of its relatively young age (est. 50 thousand years) and well-preserved structure. High resolution (2 meter to 1 decimeter) digital terrain models of Meteor Crater in whole or in part were created at NASA Stennis Space Center to support several lunar surface analog modeling activities using photogrammetric and ground based laser scanning techniques. The dataset created by this activity provides new and highly accurate 3D models of the inside slope of the crater as well as the downslope rock distribution of the western ejecta field. The data are presented to the science community for possible use in furthering studies of Meteor Crater and impact craters in general as well as its current near term lunar exploration use in providing a beneficial test model for lunar surface analog modeling and surface operation studies.

  2. Investigation of impact materials around Barringer Meteor Crater by SEMEDX and micro-PIXE techniques

    International Nuclear Information System (INIS)

    Complete text of publication follows. Up to date (2008), 174 terrestrial impact craters have been explored on the Earth's surface. They were created by hitting asteroids, meteorites and/or comets. The most famous and well-preserved meteorite crater is the Barringer Meteor Crater in Arizona, USA which is approximately 50,000 years old. It was created by an iron meteorite. In recent years, much effort has been devoted to the elemental characterization of various impact materials collected in its near environment by the leadership of the late Prof. Gyula Szoeor. Especially, their Fe-rich inclusions were studied supposedly originated from the projectile of the impacted meteorite. In this report, results for some non-spherical, aggregate-like specimens are shown. The application of Scanning Electron Microscope combined with Energy Dispersive Xray Analysis (SEM-EDX) and a Scanning Nuclear Microprobe (SNM) is a powerful technique for the complex characterization of such materials. SEM provides the fine textural information and the concentration of the major elements. SNM with Particle Induced X-ray Emission (PIXE) method serves for the determination of both the major constituents and the important minor and trace elements such as the Platinum Group Elements (PGEs): Ru, Rh, Pd, etc. In this report analytical data are presented for S-Fe-Ni-Cu systems in order to feature the major characteristics of impact metamorphism of materials. A part of the work was presented in the 11th Int. Conf. on Nuclear Microprobe Technology and Applications (Hungary) and 71st Annual Meeting of the Meteoritical Society (Japan) conferences. Detailed results are under publication in a NIM B volume. Acknowledgements Support from the EU co-funded Economic Competitiveness Operative Programme GVOP- 3.2.1.-2004-04-0402/3.0, the Hungarian-Slovenian intergovernmental S and T cooperation program (SLO-16/2005 GVOP) as well as from the Hungarian Research Foundation (OTKA) under contract No T046579 are

  3. Investigation of impact materials around Barringer Meteor Crater by SEM-EDX and micro-PIXE techniques

    Energy Technology Data Exchange (ETDEWEB)

    Uzonyi, I. [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Department of Electrostatic Accelerators, H-4026 Debrecen, Bem ter 18/C (Hungary)], E-mail: uzonyi@atomki.hu; Szoeor, Gy.; Rozsa, P. [Department of Mineralogy and Geology, University of Debrecen, H-4010 Debrecen, Egyetem ter 1 (Hungary); Pelicon, P.; Simcic, J. [Jozef Stefan Institute, Microanalytical Center, Jamova 39, P.P. 3000, SI-1001 Ljubljana (Slovenia); Cserhati, C.; Daroczi, L. [Department of Solid State Physics, University of Debrecen, H-4032 Debrecen, Bem ter 18/b (Hungary); Kiss, A.Z. [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Department of Electrostatic Accelerators, H-4026 Debrecen, Bem ter 18/C (Hungary)

    2009-06-15

    Impact materials collected at the Barringer Meteor Crater have been characterized by SEM-EDX and micro-PIXE techniques. Fine textural and true elemental images were created. As a main feature silica-bearing shell and an S-Fe-Ni-Cu core could be distinguished. Three different types of S-Fe-Ni-Cu systems were identified such as chalcopyrite, pentlandite and pyrrhotite.

  4. Ground Penetrating Radar Field Studies of Lunar-Analog Geologic Settings and Processes: Barringer Meteor Crater and Northern Arizona Volcanics

    Science.gov (United States)

    Russell, P. S.; Grant, J. A.; Williams, K. K.; Bussey, B.

    2010-12-01

    Ground-Penetrating Radar (GPR) data from terrestrial analog environments can help constrain models for evolution of the lunar surface, aid in interpretation of orbital SAR data, and help predict what might be encountered in the subsurface during future, landed, scientific or engineering operations on the Moon. GPR can yield insight into the physical properties, clast-size distribution, and layering of the subsurface, granting a unique view of the processes affecting an area over geologic time. The purpose of our work is to demonstrate these capabilities at sites at which geologic processes, settings, and/or materials are similar to those that may be encountered on the moon, especially lava flows, impact-crater ejecta, and layered materials with varying properties. We present results from transects obtained at Barringer Meteor Crater, SP Volcano cinder cone, and Sunset Crater Volcano National Monument, all in northern Arizona. Transects were taken at several sites on the ejecta of Meteor Crater, all within a crater radius (~400 m) of the crater rim. Those taken across ejecta lobes or mounds reveal the subsurface contact of the ejecta upper surface and overlying, embaying sediments deposited by later alluvial, colluvial, and/or aeolian processes. Existing mine shafts and pits on the south side of the crater provide cross sections of the subsurface against which we compare adjacent GPR transects. The ‘actual’ number, size, and depth of clasts in the top 1-2 m of the subsurface are estimated from photos of the exposed cross sections. In GPR radargrams, reflections attributed to blocks in the top 2-5 m of the subsurface are counted, and their depth distribution noted. Taking GPR measurements along a transect at two frequencies (200 and 400 MHz) and to various depths, we obtain the ratio of the actual number of blocks in the subsurface to the number detectable with GPR, as well as an assessment of how GPR detections in ejecta decline with depth and depend on antenna

  5. Meteor Crater, AZ

    Science.gov (United States)

    2002-01-01

    The Barringer Meteorite Crater (also known as 'Meteor Crater') is a gigantic hole in the middle of the arid sandstone of the Arizona desert. A rim of smashed and jumbled boulders, some of them the size of small houses, rises 50 m above the level of the surrounding plain. The crater itself is nearly a 1500 m wide, and 180 m deep. When Europeans first discovered the crater, the plain around it was covered with chunks of meteoritic iron - over 30 tons of it, scattered over an area 12 to 15 km in diameter. Scientists now believe that the crater was created approximately 50,000 years ago. The meteorite which made it was composed almost entirely of nickel-iron, suggesting that it may have originated in the interior of a small planet. It was 50 m across, weighed roughly 300,000 tons, and was traveling at a speed of 65,000 km per hour. This ASTER 3-D perspective view was created by draping an ASTER bands 3-2-1image over a digital elevation model from the US Geological Survey National Elevation Dataset.This image was acquired on May 17, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along

  6. Impact melt- and projectile-bearing ejecta at Barringer Crater, Arizona

    Science.gov (United States)

    Osinski, Gordon R.; Bunch, Ted E.; Flemming, Roberta L.; Buitenhuis, Eric; Wittke, James H.

    2015-12-01

    Our understanding of the impact cratering process continues to evolve and, even at well-known and well-studied structures, there is still much to be learned. Here, we present the results of a study on impact-generated melt phases within ejecta at Barringer Crater, Arizona, one of the first impact craters on Earth to be recognized and arguably the most famous. We report on previously unknown impact melt-bearing breccias that contain dispersed fragments of the projectile as well as impact glasses that contain a high proportion of projectile material - higher than any other glasses previously reported from this site. These glasses are distinctly different from so-called "melt beads" that are found as a lag deposit on the present-day erosion surface and that we also study. It is proposed that the melts in these impact breccias were derived from a more constrained sub-region of the melt zone that was very shallow and that also had a larger projectile contribution. In addition to low- and high-Fe melt beads documented previously, we document Ca-Mg-rich glasses and calcite globules within silicate glass that provide definitive evidence that carbonates underwent melting during the formation of Barringer Crater. We propose that the melting of dolomite produces Ca-Mg-rich melts from which calcite is the dominant liquidus phase. This explains the perhaps surprising finding that despite dolomite being the dominant rock type at many impact sites, including Barringer Crater, calcite is the dominant melt product. When taken together with our estimate for the amount of impact melt products dispersed on, and just below, the present-day erosional surface, it is clear that the amount of melt produced at Barringer Crater is higher than previously estimated and is more consistent with recent numerical modeling studies. This work adds to the growing recognition that sedimentary rocks melt during hypervelocity impact and do not just decompose and/or devolatilize as was previously thought

  7. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    International Nuclear Information System (INIS)

    A computational approach used for subsurface explosion cratering was extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for the first computer simulation because it is one of the most thoroughly studied craters. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s, meteorite mass of 1.67 x 108 kg, with a corresponding kinetic energy of 1.88 x 1016 J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation, a Tillotson equation-of-state description for iron and limestone was used with no shear strength. Results obtained for this preliminary calculation of the formation of Meteor Crater are in good agreement with field measurements. A color movie based on this calculation was produced using computer-generated graphics. 19 figures, 5 tables, 63 references

  8. Impact mechanics at Meteor Crater, Arizona

    Science.gov (United States)

    Shoemaker, Eugene Merle

    1959-01-01

    Meteor Crator is a bowl-shaped depression encompassed by a rim composed chiefly of debris stacked in layers of different composition. Original bedrock stratigraphy is preserved, inverted, in the debris. The debris rests on older disturbed strata, which are turned up at moderate to steep angles in the wall of the crater and are locally overturned near the contact with the debris. These features of Meteor Crater correspond closely to those of a crater produced by nuclear explosion where depth of burial of the device was about 1/5 the diameter of the resultant crater. Studies of craters formed by detonation of nuclear devices show that structures of the crater rims are sensitive to the depth of explosion scaled to the yield of the device. The structure of Meteor Crater is such as would be produced by a very strong shock originating about at the level of the present crater floor, 400 feet below the original surface. At supersonic to hypersonic velocity an impacting meteorite penetrates the ground by a complex mechanism that includes compression of the target rocks and the meteorite by shock as well as hydrodynamic flow of the compressed material under high pressure and temperature. The depth of penetration of the meteorite, before it loses its integrity as a single body, is a function primarily of the velocity and shape of the meteorite and the densities and equations of state of the meteorite and target. The intensely compressed material then becomes dispersed in a large volume of breccia formed in the expanding shock wave. An impact velocity of about 15 km/sec is consonant with the geology of Meteor Crater in light of the experimental equation of state of iron and inferred compressibility of the target rocks. The kinetic energy of the meteorite is estimated by scaling to have been from 1.4 to 1.7 megatons TNT equivalent.

  9. Fractal Fragmentation triggered by meteor impact: The Ries Crater (Germany)

    Science.gov (United States)

    Paredes Marino, Joali; Perugini, Diego; Rossi, Stefano; Kueppers, Ulrich

    2015-04-01

    FRACTAL FRAGMENTATION TRIGGERED BY METEOR IMPACT: THE RIES CRATER (GERMANY) Joali Paredes (1), Stefano Rossi (1), Diego Perugini (1), Ulrich Kueppers (2) 1. Department of Physics and Geology, University of Perugia, Italy 2. Department of Earth and Environmental Sciences, University of Munich, Germany The Nördlinger Ries is a large circular depression in western Bavaria, Germany. The depression was caused by a meteor impact, which occurred about 14.3 million-14.5 million years ago. The original crater rim had an estimated diameter of 24 kilometers. Computer modeling of the impact event indicates that the impact or probably had diameters of about 1.5 kilometers and impacted the target area at an angle around 30 to 50 degrees from the surface in a west- southwest to east-northeast direction. The impact velocity is thought to have been about 20 km/s. The meteor impact generated extensive fragmentation of preexisting rocks. In addition, melting of these rocks also occurred. The impact melt was ejected at high speed provoking its extensive fragmentation. Quenched melt fragments are ubiquitous in the outcrops. Here we study melt fragment size distributions with the aim of understanding the style of melt fragmentation during ejection and to constrain the rheological properties of such melts. Digital images of suevite (i.e. the rock generated after deposition and diagenesis of ash and fragments produced by the meteor impact) were obtained using a high-resolution optical scanner. Successively, melt fragments were traced by image analysis and the images segmented in order to obtain binary images on which impact melt fragments are in black color, embedded on a white background. Hence, the size of fragments was determined by image analysis. Fractal fragmentation theory has been applied to fragment size distributions of melt fragments in the Ries crater. Results indicate that melt fragments follow fractal distributions indicating that fragmentation of melt generated by the

  10. Thermoluminescence measurements on shock-metamorphosed sandstone and dolomite from meteor crater, Arizona. I - Shock dependence of thermoluminescence properties. II Thermoluminescence age of meteor crater

    Science.gov (United States)

    Sutton, S. R.

    1985-04-01

    Information on the temperature and relative pressures experienced by shock-metamorphosed Coconino sandstone and Kaibab dolomite from Meteor Crater, Arizona using thermoluminescence (TL) studies is reported. The TL sensitivity of the sandstone decreases systematically with increasing shock. Equivalent dose generally falls rapidly with increasing shock up to a level above which the dose becomes relatively constant. The shock threshold for TL resetting in sandstone correponds to pertrographic shock class two as defined by Kieffer (1971). TL ages obtained for four sandstones and four dolomites ranged from 37,700 and 53,600 years BP. The mean ages for sandstones and dolomites, 50,400 and 46,000 years, respectively, were reasonably concordant. The final TL age for Meteor Crater was 49,000 with an uncertainty of 3000 years.

  11. Geochemical and C, O, Sr, and U-series isotopic evidence for the meteoric origin of calcrete at Solitario Wash, Crater Flat, Nevada, USA

    Science.gov (United States)

    Neymark, L. A.; Paces, J. B.; Marshall, B. D.; Peterman, Z. E.; Whelan, J. F.

    2005-08-01

    Calcite-rich soils (calcrete) in alluvium and colluvium at Solitario Wash, Crater Flat, Nevada, USA, contain pedogenic calcite and opaline silica similar to soils present elsewhere in the semi-arid southwestern United States. Nevertheless, a ground-water discharge origin for the Solitario Wash soil deposits was proposed in a series of publications proposing elevation-dependent variations of carbon and oxygen isotopes in calcrete samples. Discharge of ground water in the past would raise the possibility of future flooding in the unsaturated zone at Yucca Mountain, Nevada, site of a proposed high-level nuclear waste repository. New geochemical and carbon, oxygen, strontium, and uranium-series isotopic data disprove the presence of systematic elevation-isotopic composition relations, which are the main justification given for a proposed ground-water discharge origin of the calcrete deposits at Solitario Wash. Values of δ13C (-4.1 to -7.8 per mil [‰]), δ18O (23.8-17.2‰), 87Sr/86Sr (0.71270-0.71146), and initial 234U/238U activity ratios of about 1.6 in the new calcrete samples are within ranges previously observed in pedogenic carbonate deposits at Yucca Mountain and are incompatible with a ground-water origin for the calcrete. Variations in carbon and oxygen isotopes in Solitario Wash calcrete likely are caused by pedogenic deposition from meteoric water under varying Quaternary climatic conditions over hundreds of thousands of years.

  12. Video Meteor Fluxes

    Science.gov (United States)

    Campbell-Brown, M. D.; Braid, D.

    2011-01-01

    The flux of meteoroids, or number of meteoroids per unit area per unit time, is critical for calibrating models of meteoroid stream formation and for estimating the hazard to spacecraft from shower and sporadic meteors. Although observations of meteors in the millimetre to centimetre size range are common, flux measurements (particularly for sporadic meteors, which make up the majority of meteoroid flux) are less so. It is necessary to know the collecting area and collection time for a given set of observations, and to correct for observing biases and the sensitivity of the system. Previous measurements of sporadic fluxes are summarized in Figure 1; the values are given as a total number of meteoroids striking the earth in one year to a given limiting mass. The Gr n et al. (1985) flux model is included in the figure for reference. Fluxes for sporadic meteoroids impacting the Earth have been calculated for objects in the centimeter size range using Super-Schmidt observations (Hawkins & Upton, 1958); this study used about 300 meteors, and used only the physical area of overlap of the cameras at 90 km to calculate the flux, corrected for angular speed of meteors, since a large angular speed reduces the maximum brightness of the meteor on the film, and radiant elevation, which takes into account the geometric reduction in flux when the meteors are not perpendicular to the horizontal. They bring up corrections for both partial trails (which tends to increase the collecting area) and incomplete overlap at heights other than 90 km (which tends to decrease it) as effects that will affect the flux, but estimated that the two effects cancelled one another. Halliday et al. (1984) calculated the flux of meteorite-dropping fireballs with fragment masses greater than 50 g, over the physical area of sky accessible to the MORP fireball cameras, counting only observations in clear weather. In the micron size range, LDEF measurements of small craters on spacecraft have been used to

  13. Formation of Craters in Sand

    Directory of Open Access Journals (Sweden)

    Vanissra Boonyaleepun

    2007-06-01

    Full Text Available The diameter of craters formed by spheres of varying mass dropped into sand at low speed was studied. The relationship between the diameter of the crater formed and the kinetic energy of the projectile at impact was found to be of the same general form as that for planetary meteor craters. The relationship is shown to be a power law with exponent 0.17.

  14. Crater in Marte Vallis

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-566, 6 December 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a streamlined tail-pointing toward the upper right (northeast)--in the lee of a meteor impact crater in Marte Vallis, a large valley and channel complex southeast and east of the Elysium volcanic region. The fluid that went through Marte Vallis, whether water, mud, lava, or otherwise, created this form as it moved from the lower left (southwest) toward the upper right. The crater is located near 19.0oN, 174.9oW. The image covers an area 3 km (1.9 mi) wide and is illuminated from the left.

  15. Marte Valles Crater 'Island'

    Science.gov (United States)

    2004-01-01

    10 April 2004 Marte Valles is an outflow channel system that straddles 180oW longitude between the region south of Cerberus and far northwestern Amazonis. The floor of the Marte valleys have enigmatic platy flow features that some argue are formed by lava, others suggest they are remnants of mud flows. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an island created in the middle of the main Marte Valles channel as fluid---whether lava or mud---flowed past two older meteor impact craters. The craters are located near 21.5oN, 175.3oW. The image covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the lower left.

  16. Proceedings of the Geophysical Laboratory - Lawrence Radiation Laboratory Cratering Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Nordyke, M. D.

    1961-10-01

    The geological papers in this morning's session will deal descriptively with surficial features and end products of impact craters caused by meteorite falls. Such items as breccia, structural deformation, normal and inverse stratigraphy, glass (fused rock), and coesite will frequently be mentioned. Meteor and explosion crater data are presented.

  17. Optical electronics for meteor observations

    Science.gov (United States)

    Shafiev, R. I.; Mukhamednazarov, S.; Atamas, I. A.

    1987-01-01

    Spectral observations of meteors have been carried out for several years using an optical electronics facility. Interest has centered on faint meteors and their trails in the period of intensive meteor showers. Over 800 meteors were registered during the observation period, with spectrograms obtained for 170 of these. A total of 86 meteors were photographed from two sites and for 25 of these spectrograms of the meteors as well as their trails were obtained. All meteors have undergone routine processing in order to determine atmospheric characteristics. Results are discussed.

  18. Modeling of radio meteors

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, A.V.; Sidorov, V.V.; Tereshin, S.N. [Kazan State Univ., Tatarstan (Russian Federation)

    1995-11-01

    A modified version of a computer model of radio meteors, based on empirical data for the arrival of meteoric material in circumterrestrial space, is presented. Good agreement with the experimental data for the Moscow-Kazan radio link is obtained. Results of calculations of the angular sizes of the reflection area for the St. Petersburg-Kazan radio link are presented. The reflection area is shown to be a sufficiently compact object with angular sizes 34.6{degrees}{+-}2.1{degrees} in the azimuthal plane and 12.7{degrees}{+-}1.2{degrees} in the vertical plane.

  19. Crater Chains

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] The large crater at the top of this THEMIS visible image has several other craters inside of it. Most noticeable are the craters that form a 'chain' on the southern wall of the large crater. These craters are a wonderful example of secondary impacts. They were formed when large blocks of ejecta from an impact crashed back down onto the surface of Mars. Secondaries often form radial patterns around the impact crater that generated them, allowing researchers to trace them back to their origin.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Image information: VIS instrument. Latitude 19.3, Longitude 347.5 East (12.5 West). 19 meter/pixel resolution.

  20. Meteor signature interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.

    1997-01-01

    Meteor signatures contain information about the constituents of space debris and present potential false alarms to early warnings systems. Better models could both extract the maximum scientific information possible and reduce their danger. Accurate predictions can be produced by models of modest complexity, which can be inverted to predict the sizes, compositions, and trajectories of object from their signatures for most objects of interest and concern.

  1. Spectroscopic Analysis of Geminid Meteors

    Czech Academy of Sciences Publication Activity Database

    Borovička, Jiří

    Paris: International Meteor Organization, 2010 - (Rendtel, J.), s. 42-51 ISBN 978-2-87355-021-9. [International Meteor Conference, Bereges, France. Bareges (FR), 07.06.2007-10.06.2007] R&D Projects: GA ČR GA205/05/0543 Institutional research plan: CEZ:AV0Z10030501 Keywords : Geminid meteors * spectroscopic analysis Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  2. Meteors in Australian Aboriginal Dreamings

    Science.gov (United States)

    Hamacher, Duane W.; Norris, Ray P.

    2010-06-01

    We present a comprehensive analysis of Australian Aboriginal accounts of meteors. The data used were taken from anthropological and ethnographic literature describing oral traditions, ceremonies, and Dreamings of 97 Aboriginal groups representing all states of modern Australia. This revealed common themes in the way meteors were viewed between Aboriginal groups, focusing on supernatural events, death, omens, and war. The presence of such themes around Australia was probably due to the unpredictable nature of meteors in an otherwise well-ordered cosmos.

  3. The Production of Small Primary Craters on Mars and the Moon

    OpenAIRE

    Williams, Jean-Pierre; Pathare, Asmin V.; Aharonson, Oded

    2013-01-01

    We model the primary crater production of small (D < 100 m) primary craters on Mars and the Moon using the observed annual flux of terrestrial fireballs. From the size-frequency distribution (SFD) of meteor diameters, with appropriate velocity distributions for Mars and the Moon, we are able to reproduce martian and lunar crater-count chronometry systems (isochrons) in both slope and magnitude. We include an atmospheric model for Mars that accounts for the deceleration, ablation, and fragment...

  4. The EISCAT meteor code

    Directory of Open Access Journals (Sweden)

    G. Wannberg

    2008-08-01

    Full Text Available The EISCAT UHF system has the unique capability to determine meteor vector velocities from the head echo Doppler shifts measured at the three sites. Since even meteors spending a very short time in the common volume produce analysable events, the technique lends itself ideally to mapping the orbits of meteors arriving from arbitrary directions over most of the upper hemisphere.

    A radar mode optimised for this application was developed in 2001/2002. A specially selected low-sidelobe 32-bit pseudo-random binary sequence is used to binary phase shift key (BPSK the transmitted carrier. The baud-length is 2.4 μs and the receiver bandwidth is 1.6 MHz to accommodate both the resulting modulation bandwidth and the target Doppler shift. Sampling is at 0.6 μs, corresponding to 90-m range resolution. Target range and Doppler velocity are extracted from the raw data in a multi-step matched-filter procedure. For strong (SNR>5 events the Doppler velocity standard deviation is 100–150 m/s. The effective range resolution is about 30 m, allowing very accurate time-of-flight velocity estimates. On average, Doppler and time-of-flight (TOF velocities agree to within about one part in 103. Two or more targets simultaneously present in the beam can be resolved down to a range separation <300 m as long as their Doppler shifts differ by more than a few km/s.

  5. Tv meteor streams searching

    OpenAIRE

    Jopek, Tadeusz J.

    1993-01-01

    Using a modified D-criterion (threshold Do=0.2), among 531 TV meteor orbits, 23 streams has been identified. Adout 30% of the orbits belongs to the stream component. Only 3 streams have orbits inclined more than 30deg. Four streams have reciprocal orbits. The major stream Herculids shown to be a complex structure, sensitive on the choice of the D- threshold value. The Taurids complex differs slightly from the photographic one. The theta Piscids stream has very small orbit, the mean semi-major...

  6. Primordial Cratering Regimes on Planets

    Science.gov (United States)

    Hartmann, W. K.

    2004-11-01

    Understanding of planetary surface evolution (and possibly biological evolution) is hampered by a longstanding uncertainty over the nature of impact cratering and interplanetary debris in the first 600 My of solar system history. On the one hand, a number of researchers (1-3) treat a cataclysmic spike in cratering 3.9 Gy ago as an observational fact, arguing that little or no cratering occurred from 4.5 to 4.0 Gy ago, and that all multi-ring lunar basins formed 3.85 to 4.0 Gy ago. On the other hand, dynamical theorists have had problems trying to explain the a large impactor spike, as reviewed in (4). Worse yet, meteorite evidence on lunar and asteroidal impact melts (3,5) fail to confirm the strong spike in Apollo-sample impact melts at 3.9 Gy. A semi-quantitative model has been suggested to reconcile the findings (5). References: (1) Tera, F., D.A. Papanastassiou, G. J. Wasserberg 1974. Isotopic evidence for a terminal Lunar cataclysm, Earth Planet. Sci. Lett. 22, 1-21. (2) Stoeffler, D., G. Ryder 2001. "Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System," in Chronology and Evolution of Mars, Eds. R. Kallenbach, J. Geiss, W. K. Hartmann. Kluwer Academic Publishers, Netherlands, pp. 105-164. (3) Cohen, B. A., T. D. Swindle, D. A. Kring 2000. Support for the Lunar Cataclysm Hypothesis from Lunar Meteorite Impact Melt Ages. Science 290, 1754-1756. (4) Hartmann, W. K., G. Ryder, L. Dones, D. Grinspoon 2000. The Time-Dependent Intense Bombardment of the Primordial Earth/Moon System. In Origin of the Earth and Moon, Eds. R. M. Canup, K. Righter (Tucson: Univ. Arizona Press), pp. 493-512. (5) Hartmann, W. K. 2003. Megaregolith evolution and cratering cataclysm models - Lunar cataclysm as a misconception (28 years later). Meteor. Planet. Sci. 38, 579-593.

  7. Letter - Reply: Meteors in Australian Aboriginal Dreamings

    Science.gov (United States)

    Hamacher, Duane W.

    2011-06-01

    In response to the letter by Gorelli (2010) about Hamacher & Norris (2010), he is quite right about Aboriginal people witnessing impact events in Australia. There are several oral traditions regarding impact sites, some of which were probably witnessed, as Gorelli pointed out. The Henbury craters he mentions, with a young age of only ∼ 4200 years, have oral traditions that seem to describe a cosmic impact, including an aversion to drinking water that collects in the craters in fear that the fire-devil (which came from the sun, according to an Elder) would rain iron in them again. Other impact sites, such as Gosse's Bluff crater (Tnorala in the Arrernte language) and Wolfe Creek crater (Kandimalal in the Djaru language) have associated impact stories, despite their old ages (142 Ma and ∼0.3 Ma, respectively). In addition, many fireball and airburst events are described in Aboriginal oral traditions, a number of which seem to indicate impact events that are unknown to Western science. I have published a full treatise of meteorite falls and impact events in Australian Aboriginal culture that I would like to bring to the attention of Gorelli and WGN readers (Hamacher & Norris, 2009). Although our paper was published in the 2009 volume of Archaeoastronomy, it did not appear in print until just recently, which is probably why it has gone unnoticed. Recent papers describing the association between meteorites and Aboriginal cosmology (Hamacher, 2011) and comets in Aboriginal culture (Hamacher & Norris, 2011) have also been published, and would likely be of interest to WGN readers. I heartily agree with Gorelli that oral traditions are fast disappearing, taking with them a wealth of information about not only that peoples' culture, but also about past geologic and astronomical events, such as meteorite falls and cosmic impacts (a branch of the growing field of Geomythology). There is an old saying that "when a man dies, a library goes with him". This is certainly the

  8. Meteor showers an annotated catalog

    CERN Document Server

    Kronk, Gary W

    2014-01-01

    Meteor showers are among the most spectacular celestial events that may be observed by the naked eye, and have been the object of fascination throughout human history. In “Meteor Showers: An Annotated Catalog,” the interested observer can access detailed research on over 100 annual and periodic meteor streams in order to capitalize on these majestic spectacles. Each meteor shower entry includes details of their discovery, important observations and orbits, and gives a full picture of duration, location in the sky, and expected hourly rates. Armed with a fuller understanding, the amateur observer can better view and appreciate the shower of their choice. The original book, published in 1988, has been updated with over 25 years of research in this new and improved edition. Almost every meteor shower study is expanded, with some original minor showers being dropped while new ones are added. The book also includes breakthroughs in the study of meteor showers, such as accurate predictions of outbursts as well ...

  9. Coded continuous wave meteor radar

    Science.gov (United States)

    Vierinen, Juha; Chau, Jorge L.; Pfeffer, Nico; Clahsen, Matthias; Stober, Gunter

    2016-03-01

    The concept of a coded continuous wave specular meteor radar (SMR) is described. The radar uses a continuously transmitted pseudorandom phase-modulated waveform, which has several advantages compared to conventional pulsed SMRs. The coding avoids range and Doppler aliasing, which are in some cases problematic with pulsed radars. Continuous transmissions maximize pulse compression gain, allowing operation at lower peak power than a pulsed system. With continuous coding, the temporal and spectral resolution are not dependent on the transmit waveform and they can be fairly flexibly changed after performing a measurement. The low signal-to-noise ratio before pulse compression, combined with independent pseudorandom transmit waveforms, allows multiple geographically separated transmitters to be used in the same frequency band simultaneously without significantly interfering with each other. Because the same frequency band can be used by multiple transmitters, the same interferometric receiver antennas can be used to receive multiple transmitters at the same time. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large-scale multi-static network of meteor radar transmitters and receivers. Such a system would be useful for increasing the number of meteor detections to obtain improved meteor radar data products.

  10. Crater chains on Mercury

    Science.gov (United States)

    Shevchenko, V.; Skobeleva, T.

    After discovery of disruption comet Shoemaker-Levy 9 into fragment train before it's collision with Jupiter there was proposed that linear crater chains on the large satellites of Jupiter and on the Moon are impact scars of past tidally disrupted comets.It's known that radar images have revealed the possible presence of water ice deposits in polar regions of Mercury. Impacts by a few large comets seem to provide the best explanation for both the amount and cleanliness of the ice deposits on Mercury because they have a larger volatile content that others external sources, for example, asteroid. A number of crater chains on the surface of Mercury are most likely the impact tracks of "fragment trains" of comets tidally disrupted by Sun or by Mercury and are not secondary craters. Mariner 10 image set (the three Mariner 10 flybys in 1974-1975) was used to recognize the crater chains these did not associate with secondary crater ejecta from observed impact structures. As example, it can be shown such crater chain located near crater Imhotep and crater Ibsen (The Kuiper Quadrangle of Mercury). Resolution of the Mariner 10 image is about 0.54 km/pixel. The crater chain is about 50 km long. It was found a similar crater chain inside large crater Sophocles (The Tolstoj Quadrangle of Mercury). The image resolution is about 1.46 km/pixel. The chain about 50 km long is located in northen part of the crater. Image resolution limits possibility to examine the form of craters strongly. It seems the craters in chains have roughly flat floor and smooth form. Most chain craters are approximately circular. It was examined many images from the Mariner 10 set and there were identified a total 15 crater chains and were unable to link any of these directly to any specific large crater associated with ejecta deposits. Chain craters are remarkably aligned. All distinguished crater chains are superposed on preexisting formations. A total of 127 craters were identified in the 15 recognized

  11. Layers and Boulders in Crater Wall, Nepenthes Mensae Region

    Science.gov (United States)

    1999-01-01

    Peering down into craters offers Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) scientists an opportunity to examine one of the few landforms that Mars shares in common with the other planets and moons of our Solar System.The picture on the left (above) is a MOC context frame taken at the same time as the MOC high resolution image on the right. The white box on the left shows the location of the high resolution view. The high resolution image was targeted on a 3 kilometers (1.9 miles) wide impact crater on the floor of a larger crater in the Nepenthes Mensae region (near 3oS, 239oW). The context image is about 115 km (71 mi) across, the high-resolution image is 3 km (1.9 mi) across, and both are illuminated from the left/lower left.The 3 km diameter crater in the MOC image on the right is three times wider than the famous Meteor Crater in northern Arizona, USA. The high resolution image shows many small windblown drifts or dunes in the low areas both within the crater and outside on the surrounding terrain. Some portions of the crater's walls exhibit outcrops of bare, layered rock. Large boulders have been dislodged from the walls and have tumbled down the slopes to the crater floor. Many of these boulders are bigger than school buses and automobiles.

  12. Bolidozor - Distributed radio meteor detection system

    CERN Document Server

    Kakona, Jakub; Kakona, Martin

    2016-01-01

    Most of the meteor radioastronomical radars are backscatter radars which cover only a small area of the atmosphere. Therefore a daytime meteor flux models are based on sparse data collected by only a few radar systems. To solve this issue, a radar system with a wide coverage is required. We present a new approach of open-source multi-static radio meteor detection system which could be distributed over a large area. This feature allows us to detect meteor events taking place over a larger area as well and gather more uniform data about meteor flux and possibly about meteor trajectories.

  13. Coded continuous wave meteor radar

    Directory of Open Access Journals (Sweden)

    J. Vierinen

    2015-07-01

    Full Text Available The concept of coded continuous wave meteor radar is introduced. The radar uses a continuously transmitted pseudo-random waveform, which has several advantages: coding avoids range aliased echoes, which are often seen with commonly used pulsed specular meteor radars (SMRs; continuous transmissions maximize pulse compression gain, allowing operation with significantly lower peak transmit power; the temporal resolution can be changed after performing a measurement, as it does not depend on pulse spacing; and the low signal to noise ratio allows multiple geographically separated transmitters to be used in the same frequency band without significantly interfering with each other. The latter allows the same receiver antennas to be used to receive multiple transmitters. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large scale multi-static network of meteor radar transmitters and receivers. This would, for example, provide higher spatio-temporal resolution for mesospheric wind field measurements.

  14. Coded continuous wave meteor radar

    Science.gov (United States)

    Vierinen, J.; Chau, J. L.; Pfeffer, N.; Clahsen, M.; Stober, G.

    2015-07-01

    The concept of coded continuous wave meteor radar is introduced. The radar uses a continuously transmitted pseudo-random waveform, which has several advantages: coding avoids range aliased echoes, which are often seen with commonly used pulsed specular meteor radars (SMRs); continuous transmissions maximize pulse compression gain, allowing operation with significantly lower peak transmit power; the temporal resolution can be changed after performing a measurement, as it does not depend on pulse spacing; and the low signal to noise ratio allows multiple geographically separated transmitters to be used in the same frequency band without significantly interfering with each other. The latter allows the same receiver antennas to be used to receive multiple transmitters. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large scale multi-static network of meteor radar transmitters and receivers. This would, for example, provide higher spatio-temporal resolution for mesospheric wind field measurements.

  15. Meteors And Showers A Millennium Ago

    CERN Document Server

    Ahn, S H

    2003-01-01

    Meteors can be classified into either sporadic meteors or showery meteors. We compile the meteor records in the astronomical archives in the Chronicle of the Koryo dynasty (918-1392), and investigate the spatial distribution of meteor streams along the orbit of the Earth from the 10th century to the 14th century. We see that meteors from meteor streams signalize themselves over noisy sporadic meteors, and that the seasonal activity of sporadic meteors was apparently regular. We discover the presence of a few meteor streams by analysing about 700 meteors in the Koryo period. We also compile the records of meteor showers and storms in the chronicles of Korea, Japan, China, Arab, and Europe, and compare their appearance dates with those of showers obtained above, as well as with the modern observations. We confirm that the three sets of data are in agreement with each other. The representative meteor showers are the Perseids, the Leonids, and the $\\eta$-Aquarids/Orionids pair formed by Halley's comet. The other ...

  16. The IAU Meteor Shower Nomenclature Rules

    Science.gov (United States)

    Jenniskens, Peter

    2008-06-01

    The International Astronomical Union at its 2006 General Assembly in Prague has adopted a set of rules for meteor shower nomenclature, a working list with designated names (with IAU numbers and three-letter codes), and established a Task Group for Meteor Shower Nomenclature in Commission 22 (Meteors and Interplanetary Dust) to help define which meteor showers exist from well defined groups of meteoroids from a single parent body.

  17. New trends in meteor radio receivers

    Science.gov (United States)

    Rault, Jean-Louis

    2014-01-01

    Recent progresses in low cost—but performing—SDR (software defined radio) technology presents a major breakthrough in the domain of meteor radio observations. Their performances are now good enough for meteor work and should therefore encourage newcomers to join the meteor radio community.

  18. Cratering on Asteroids

    Science.gov (United States)

    Marchi, S.; Chapman, C. R.; Barnouin, O. S.; Richardson, J. E.; Vincent, J.-B.

    Impact craters are a ubiquitous feature of asteroid surfaces. On a local scale, small craters puncture the surface in a way similar to that observed on terrestrial planets and the Moon. At the opposite extreme, larger craters often approach the physical size of asteroids, thus globally affecting their shapes and surface properties. Crater measurements are a powerful means of investigation. Crater spatial and size distributions inform us of fundamental processes, such as asteroid collisional history. A paucity of craters, sometimes observed, may be diagnostic of mechanisms of erasure that are unique on low-gravity asteroids. Byproducts of impacts, such as ridges, troughs, and blocks, inform us of the bulk structure. In this chapter we review the major properties of crater populations on asteroids visited by spacecraft. In doing so we provide key examples to illustrate how craters affect the overall shape and can be used to constrain asteroid surface ages, bulk properties, and impact-driven surface evolution.

  19. Catalogue of representative meteor spectra

    Czech Academy of Sciences Publication Activity Database

    Vojáček, Vlastimil; Borovička, Jiří; Koten, Pavel; Spurný, Pavel; Štork, Rostislav

    2015-01-01

    Roč. 580, August (2015), A67/1-A67/31. ISSN 0004-6361 R&D Projects: GA ČR(CZ) GAP209/11/1382 Institutional support: RVO:67985815 Keywords : meteorites * meteors * meteoroids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  20. Meteors Without Borders: a global campaign

    Science.gov (United States)

    Heenatigala, T.

    2012-01-01

    "Meteors Without Borders" is a global project, organized by Astronomers Without Borders and launched during the Global Astronomy Month in 2010 for the Lyrid meteor shower. The project focused on encouraging amateur astronomy groups to hold public outreach events for major meteor showers, conduct meteor-related classroom activities, photography, poetry and art work. It also uses social-media platforms to connect groups around the world to share their observations and photography, live during the events. At the International Meteor Conference 2011, the progress of the project was presented along with an extended invitation for collaborations for further improvements of the project.

  1. The ALTAIR Meteor Measurements Program

    Science.gov (United States)

    Cooke, William J.

    2007-01-01

    Established in late 2006, the Meteor Measurements Program is in the process of using the ALTAIR radar located on Kwajelein Atoll to obtain radar observations of sporadic and shower meteoroids. The goals are to determine meteoroid masses, orbits, ballistic coefficients and densities, which shall be provided to the Meteoroid Environment Office (MEO) at Marshall Space Flight Center. These data and analyses shall then be used by the MEO to 1) Add a realistic density distribution to the new Meteoroid Engineering Model (MEM), which is the specified environment for vehicle design in the NASA Constellation (return to Moon) program. This program is the implementation of President Bush's Vision for Space Exploration (VSE). 2) Investigate the meteoroid velocity distribution at smaller masses. 3) Strive to understand the differences (biases) in meteoroid observations produced by systems like ALTAIR and those of the meteor patrol radars, such as the University of Western Ontario's CMOR system. This paper outlines the program details and its progress.

  2. Meteor velocity determination with plasma physics

    Directory of Open Access Journals (Sweden)

    L. P. Dyrud

    2004-01-01

    Full Text Available Understanding the global meteor flux at Earth requires the measurement of meteor velocities. While several radar methods exist for measuring meteor velocity, they may be biased by plasma reflection mechanisms. This paper presents a new method for deriving meteoroid velocity from the altitudinal extent of non-specular trails. This method employs our recent discoveries on meteor trail plasma instability. Dyrud et al. (2002 demonstrated that meteor trails are unstable over a limited altitude range, and that the precise altitudes of instability are dependent on the meteoroid that generated the trail. Since meteor trail instability results in field aligned irregularities (FAI that allow for radar reflection, non-specular trail observations may be used to derive velocity. We use ALTAIR radar data of combined head echos and non-specular trails to test non-specular trail derived velocity against head echo velocities. Meteor velocities derived from non-specular trail altitudinal width match to within 5 km/s when compared with head echo range rates from the same meteor. We apply this technique to Piura radar observations of hundreds of non-specular trails to produce histograms of occurrence of meteor velocity based solely on this non-specular trails width criterion. The results from this study show that the most probable velocity of meteors seen by the Piura radar is near 50 km/s, which is comparable with modern head echo studies.

  3. Meteor velocity determination with plasma physics

    Directory of Open Access Journals (Sweden)

    L. P. Dyrud

    2004-02-01

    Full Text Available Understanding the global meteor flux at Earth requires the measurement of meteor velocities. While several radar methods exist for measuring meteor velocity, they may be biased by plasma reflection mechanisms. This paper presents a new method for deriving meteoroid velocity from the altitudinal extent of non-specular trails. This method employs our recent discoveries on meteor trail plasma instability. Dyrud et al. (2002 demonstrated that meteor trails are unstable over a limited altitude range, and that the precise altitudes of instability are dependent on the meteoroid velocity that generated the trail. Since meteor trail instability results in field aligned irregularities (FAI that allow for radar reflection, non-specular trail observations may be used to derive velocity. We use ALTAIR radar data of combined head echos and non-specular trails to test non-specular trail derived velocity against head echo velocities. Meteor velocities derived from non-specular trail altitudinal width match to within 5 km/s when compared with head echo range rates from the same meteor. We apply this technique to Piura radar observations of hundreds of non-specular trails to produce histograms of occurrence of meteor velocity based solely on this non-specular trails width criterion. The results from this study show that the most probable velocity of meteors seen by the Piura radar is near 50 km/s which is comparable with modern head echo studies.

  4. Meteor burst communications improvement study

    Science.gov (United States)

    Peterson, David

    1993-07-01

    Two identical Meteor Burst Radio Terminals were developed, fabricated, and delivered to the Air Force. Each is controlled by a PC computer in a menu driven manner. The mode of operation is full duplex. The RF frequency range is 40 to 60 MHz with tuning increments of 25 KHz. Data rates are 4, 8, 16, 32, 64, 128, 256, and 512 kbps. Modulation is coherent Binary Phase Shift Keying (BPSK) and incoherent Differential Phase Shift Keying (DPSK). Protocol includes Automatic Repeat Request (ARQ) with source and destination addressing, message number, start of message, and end of message. Messages are packetized, and Reed Solomon (R-S) coding is an option. The ARQ is under the control of a Cyclic Redundancy Check Code (CRCC) which detects binary errors within each packet. The terminal is intended to increase meteor trail availability and data throughput by several orders of magnitude--by operating with new antennas that provide much higher gains without sacrificing meteor trail acquisition performance.

  5. Formation age and geomorphologic history of the Lonar impact crater deduced from in- situ cosmogenic 10Be and 26Al

    Science.gov (United States)

    Nakamura, A.; Yokoyama, Y.; Sekine, Y.; Goto, K.; Komatsu, G.; Kumar, P.; Matsuzaki, H.; Matsui, T.

    2013-12-01

    -studied Barringer crater in Arizona (Nishiizumi et al, 1991, Phillips et al., 1991), highlighting the different geomorphologic processes of the two craters due to the different climatic and lithologic settings between the two.

  6. Big data era in meteor science

    Science.gov (United States)

    Vinković, D.; Gritsevich, M.; Srećković, V.; Pečnik, B.; Szabó, G.; Debattista, V.; Škoda, P.; Mahabal, A.; Peltoniemi, J.; Mönkölä, S.; Mickaelian, A.; Turunen, E.; Kákona, J.; Koskinen, J.; Grokhovsky, V.

    2016-01-01

    Over the last couple of decades technological advancements in observational techniques in meteor science have yielded drastic improvements in the quality, quantity and diversity of meteor data, while even more ambitious instruments are about to become operational. This empowers meteor science to boost its experimental and theoretical horizons and seek more advanced science goals. We review some of the developments that push meteor science into the big data era that requires more complex methodological approaches through interdisciplinary collaborations with other branches of physics and computer science. We argue that meteor science should become an integral part of large surveys in astronomy, aeronomy and space physics, and tackle the complexity of micro-physics of meteor plasma and its interaction with the atmosphere.

  7. Small simple impact craters

    CERN Document Server

    Sparavigna, Amelia Carolina

    2010-01-01

    The paper discusses some examples of image processing applied to improve optical satellite imagery of small craters (Kamil, Veevers, Haviland). The examples show that image processing can be quite useful for further in-situ researches, because the resultant imagery helps to have a better picture of the crater shape and of the distribution of debris about it. The paper is also disclosing an interesting underwater structure, with shape and size of a small crater, located on the coast-line of Sudan.

  8. Testing Crater Counting Assumptions with the Cratered Terrain Evolution Model

    Science.gov (United States)

    Minton, D. A.; Richardson, J. E.; Fassett, C. I.

    2015-05-01

    Using CTEM to answer the questions; 1) How close to Poisson-distributed are crater count uncertainties? and 2) How does observed clustering in crater count densities of large craters relate to the changes in the impactor flux?

  9. Experimental impact crater morphology

    Science.gov (United States)

    Dufresne, A.; Poelchau, M. H.; Hoerth, T.; Schaefer, F.; Thoma, K.; Deutsch, A.; Kenkmann, T.

    2012-04-01

    The research group MEMIN (Multidisciplinary Experimental and Impact Modelling Research Network) is conducting impact experiments into porous sandstones, examining, among other parameters, the influence of target pore-space saturation with water, and projectile velocity, density and mass, on the cratering process. The high-velocity (2.5-7.8 km/s) impact experiments were carried out at the two-stage light-gas gun facilities of the Fraunhofer Institute EMI (Germany) using steel, iron meteorite (Campo del Cielo IAB), and aluminium projectiles with Seeberg Sandstone as targets. The primary objectives of this study within MEMIN are to provide detailed morphometric data of the experimental craters, and to identify trends and characteristics specific to a given impact parameter. Generally, all craters, regardless of impact conditions, have an inner depression within a highly fragile, white-coloured centre, an outer spallation (i.e. tensile failure) zone, and areas of arrested spallation (i.e. spall fragments that were not completely dislodged from the target) at the crater rim. Within this general morphological framework, distinct trends and differences in crater dimensions and morphological characteristics are identified. With increasing impact velocity, the volume of craters in dry targets increases by a factor of ~4 when doubling velocity. At identical impact conditions (steel projectiles, ~5km/s), craters in dry and wet sandstone targets differ significantly in that "wet" craters are up to 76% larger in volume, have depth-diameter ratios generally below 0.19 (whereas dry craters are almost consistently above this value) at significantly larger diameters, and their spallation zone morphologies show very different characteristics. In dry craters, the spall zone surfaces dip evenly at 10-20° towards the crater centre. In wet craters, on the other hand, they consist of slightly convex slopes of 10-35° adjacent to the inner depression, and of sub-horizontal tensile

  10. Lunar Regolith Maturity Controlled By Ilmenite Content And Micro-Meteor Flux Variability

    Science.gov (United States)

    Schmitt, H. H.

    2013-12-01

    Synthesis of Is/FeO maturity indexes for Apollo 17 regolith samples in the valley of Taurus-Littrow on the Moon indicate that high levels of ilmenite in the samples significantly reduces the level of this indicator of space exposure. The analysis, along with consideration of regolith glass characteristics, also discloses that micro-meteor fluxes vary over geologic time, presumably in response to significant impact events in the Asteroid Belt. Surface samples of ilmenite-poor, silicate-rich regolith have about 80-90% higher maturity indexes than surface samples of ilmenite-rich, basaltic regolith of comparable exposure. For comparison of the history of various regolith exposures to the space environment, Taurus-Littrow's light mantle avalanche deposit, the youngest large area stratigraphic unit, provides a specific time horizon. For at least the last ~110 million years, the currently estimated age of the light mantle avalanche, most near surface (upper 1-5cm) regolith has had approximately the same exposure to micro-meteors. The surface of the largely ilmenite-rich basalt fill in the valley has been exposed to space at least as long or possibly 30 million years longer than the light mantle, based on exposure ages for large boulder ejecta in the Camelot cluster of craters. High apparent maturity (Is/FeO >80), however, exists only on three types of regolith surfaces: (1) the North Massif apron (e.g., 77431), (2) the light mantle avalanche deposit (e.g., 72161), and (3) low ilmenite basalt (e.g., 72150). Only intermediate to low maturity (Is/FeO orange ash, has exceptionally low maturity (8% agglutinates and Is/FeO = 5) but an unusually high amount of "ropy" glass (14-18%). (Ropy glass normally constitutes less than on percent of new Taurus-Littrow regolith. It forms within fresh impact craters as a result of macro-meteor impacts, but the current flux of micro-meteors disaggregates such glass within a million years or less.) The light mantle avalanche deposit protected

  11. Impact and cratering rates onto Pluto

    Science.gov (United States)

    Greenstreet, Sarah; Gladman, Brett; McKinnon, William B.

    2015-09-01

    The New Horizons spacecraft fly-through of the Pluto system in July 2015 will provide humanity's first data for the crater populations on Pluto and its binary companion, Charon. In principle, these surfaces could be dated in an absolute sense, using the observed surface crater density (# craters/km2 larger than some threshold crater diameter D). Success, however, requires an understanding of both the cratering physics and absolute impactor flux. The Canada-France Ecliptic Plane Survey (CFEPS) L7 synthetic model of classical and resonant Kuiper belt populations (Petit, J.M. et al. [2011]. Astron. J. 142, 131-155; Gladman, B. et al. [2012]. Astron. J. 144, 23-47) and the scattering object model of Kaib et al. (Kaib, N., Roškar, R., Quinn, T. [2011]. Icarus 215, 491-507) calibrated by Shankman et al. (Shankman, C. et al. [2013]. Astrophys. J. 764, L2-L5) provide such impact fluxes and thus current primary cratering rates for each dynamical sub-population. We find that four sub-populations (the q 100km) connects to smaller projectiles, we compute cratering rates using five model impactor size distributions: a single power-law, a power-law with a knee, a power-law with a divot, as well as the "wavy" size distributions described in Minton et al. (Minton, D.A. et al. [2012]. Asteroids Comets Meteors Conf. 1667, 6348) and Schlichting et al. (Schlichting, H.E., Fuentes, C.I., Trilling, D.E. [2013]. Astron. J. 146, 36-42). We find that there is only a small chance that Pluto has been hit in the past 4 Gyr by even one impactor with a diameter larger than the known break in the projectile size distribution (d ≈ 100km) which would create a basin on Pluto (D ⩾ 400km in diameter). We show that due to present uncertainties in the impactor size distribution between d = 1-100km , computing absolute ages for the surface of Pluto is entirely dependent on the extrapolation to small sizes and thus fraught with uncertainty. We show, however, what the ages would be for several cases

  12. Venus Crater Database

    Data.gov (United States)

    National Aeronautics and Space Administration — This web page leads to a database of images and information about the 900 or so impact craters on the surface of Venus by diameter, latitude, and name.

  13. Radio Meteors Observations Techniques at RI NAO

    Science.gov (United States)

    Vovk, Vasyl; Kaliuzhnyi, Mykola

    2016-07-01

    The Solar system is inhabited with large number of celestial bodies. Some of them are well studied, such as planets and vast majority of big asteroids and comets. There is one group of objects which has received little attention. That is meteoroids with related to them meteors. Nowadays enough low-technology high-efficiency radio-technical solutions are appeared which allow to observe meteors daily. At RI NAO three methodologies for meteor observation are developed: single-station method using FM-receiver, correlation method using FM-receiver and Internet resources, and single-station method using low-cost SDR-receiver.

  14. Meteor heights during the recent solar minimum

    OpenAIRE

    Jacobi, Ch.

    2014-01-01

    Average meteor heights have been continuously observed using a SKiYMET VHF radar at Collm (51.3° N, 13.0° E) since late summer of 2004. Initially, the daily mean meteor height was about 89.4 km. Since that time, average meteor heights have decreased. This is consistent with earlier results on middle atmosphere temperature change from the literature and from earlier results of low-frequency reflection height changes measured at Kühlungsborn and Collm. During the recent solar ...

  15. The KUT meteor radar: An educational low cost meteor observation system by radio forward scattering

    Science.gov (United States)

    Madkour, W.; Yamamoto, M.

    2016-01-01

    The Kochi University of Technology (KUT) meteor radar is an educational low cost observation system built at Kochi, Japan by successive graduate students since 2004. The system takes advantage of the continuous VHF- band beacon signal emitted from Fukui National College of Technology (FNCT) for scientific usage all over Japan by receiving the forward scattered signals. The system uses the classical forward scattering setup similar to the setup described by the international meteor organization (IMO), gradually developed from the most basic single antenna setup to the multi-site meteor path determination setup. The primary objective is to automate the observation of the meteor parameters continuously to provide amounts of data sufficient for statistical analysis. The developed software system automates the observation of the astronomical meteor parameters such as meteor direction, velocity and trajectory. Also, automated counting of meteor echoes and their durations are used to observe mesospheric ozone concentration by analyzing the duration distribution of different meteor showers. The meteor parameters observed and the methodology used for each are briefly summarized.

  16. Comparison with Russian analyses of meteor impact

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.

    1997-06-01

    The inversion model for meteor impacts is used to discuss Russian analyses and compare principal results. For common input parameters, the models produce consistent estimates of impactor parameters. Directions for future research are discussed and prioritized.

  17. Monte Carlo modeling and meteor showers

    International Nuclear Information System (INIS)

    Prediction of short lived increases in the cosmic dust influx, the concentration in lower thermosphere of atoms and ions of meteor origin and the determination of the frequency of micrometeor impacts on spacecraft are all of scientific and practical interest and all require adequate models of meteor showers at an early stage of their existence. A Monte Carlo model of meteor matter ejection from a parent body at any point of space was worked out by other researchers. This scheme is described. According to the scheme, the formation of ten well known meteor streams was simulated and the possibility of genetic affinity of each of them with the most probable parent comet was analyzed. Some of the results are presented

  18. Monte Carlo modeling and meteor showers

    Science.gov (United States)

    Kulikova, N. V.

    1987-08-01

    Prediction of short lived increases in the cosmic dust influx, the concentration in lower thermosphere of atoms and ions of meteor origin and the determination of the frequency of micrometeor impacts on spacecraft are all of scientific and practical interest and all require adequate models of meteor showers at an early stage of their existence. A Monte Carlo model of meteor matter ejection from a parent body at any point of space was worked out by other researchers. This scheme is described. According to the scheme, the formation of ten well known meteor streams was simulated and the possibility of genetic affinity of each of them with the most probable parent comet was analyzed. Some of the results are presented.

  19. A Meteor Shower Origin for Martian Methane

    Science.gov (United States)

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.; Steele, A.; Treiman, A.

    2015-07-01

    We present and discuss the hypothesis that martian methane arises from a meteor shower source. Infall material produces methane by UV photolysis, generating localized plumes that occur after Mars/comet orbit interactions. This hypothesis is testable.

  20. Meteors in the Maori Astronomical Traditions of New Zealand

    CERN Document Server

    Britton, Tui R

    2013-01-01

    We review the literature for perceptions of meteors in the Maori cultures of New Zealand. We examine representations of meteors in religion, story, and ceremony. We find that meteors are sometimes personified as gods or children, or are seen as omens of death and destruction. The stories we found highlight the broad perception of meteors found throughout the Maori culture and demonstrate that some early scholars conflated the terms comet and meteor.

  1. Analysis of ALTAIR 1998 Meteor Radar Data

    Science.gov (United States)

    Zinn, J.; Close, S.; Colestock, P. L.; MacDonell, A.; Loveland, R.

    2011-01-01

    We describe a new analysis of a set of 32 UHF meteor radar traces recorded with the 422 MHz ALTAIR radar facility in November 1998. Emphasis is on the velocity measurements, and on inferences that can be drawn from them regarding the meteor masses and mass densities. We find that the velocity vs altitude data can be fitted as quadratic functions of the path integrals of the atmospheric densities vs distance, and deceleration rates derived from those fits all show the expected behavior of increasing with decreasing altitude. We also describe a computer model of the coupled processes of collisional heating, radiative cooling, evaporative cooling and ablation, and deceleration - for meteors composed of defined mixtures of mineral constituents. For each of the cases in the data set we ran the model starting with the measured initial velocity and trajectory inclination, and with various trial values of the quantity mPs 2 (the initial mass times the mass density squared), and then compared the computed deceleration vs altitude curves vs the measured ones. In this way we arrived at the best-fit values of the mPs 2 for each of the measured meteor traces. Then further, assuming various trial values of the density Ps, we compared the computed mass vs altitude curves with similar curves for the same set of meteors determined previously from the measured radar cross sections and an electrostatic scattering model. In this way we arrived at estimates of the best-fit mass densities Ps for each of the cases. Keywords meteor ALTAIR radar analysis 1 Introduction This paper describes a new analysis of a set of 422 MHz meteor scatter radar data recorded with the ALTAIR High-Power-Large-Aperture radar facility at Kwajalein Atoll on 18 November 1998. The exceptional accuracy/precision of the ALTAIR tracking data allow us to determine quite accurate meteor trajectories, velocities and deceleration rates. The measurements and velocity/deceleration data analysis are described in Sections

  2. Tritium concentrations in the active Pu'u O'o crater, Kilauea volcano, Hawaii: implications for cold fusion in the Earth's interior

    Science.gov (United States)

    Quick, J.E.; Hinkley, T.K.; Reimer, G.M.; Hedge, C.E.

    1991-01-01

    The assertion that deuterium-deuterium fusion may occur at low temperature suggests a potential new source of geothermal heat. If a cold-fusion-like process occurs within the Earth, then a test for its existence would be a search for anomalous tritium in volcanic emissions. The Pu'u O'o crater is the first point at which large amounts of water are degassed from the magma that feeds the Kilauea system. The magma is probably not contaminated by meteoric-source ground water prior to degassing at Pu'u O'o, although mixing of meteoric and magmatic H2O occurs within the crater. Tritium contents of samples from within the crater are lower than in samples taken simultaneously from the nearby upwind crater rim. These results provide no evidence in support of a cold-fusion-like process in the Earth's interior. ?? 1991.

  3. Dynamics and mass balance of El Chichón crater lake, Mexico.

    OpenAIRE

    Rouwet, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Taran, Y.; Instituto de Geofisica, UNAM, Coyoacan, Mexico, D.F. 04510; Inguaggiato, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Varley, N.; Universidad de Colima, Colima, México

    2004-01-01

    The mass balance of El Chichón crater lake is controlled by precipitations, evaporation and seepage through the lake bottom. The main non-meteoric source of water and Cl for the lake is a boiling spring (Soap Pool) discharging saline and neutral water with a variable flow rate from 0 to 30 kg/s inside the El Chichón crater. Variations in lake volume over time were approximately determined from digitized photographic views of the lake using an empirical relationship between depth of t...

  4. Dynamics and mass balance of El Chichón crater lake, Mexico

    OpenAIRE

    Dmitri Rouwet; Yuri A. Taran; Nicholas R. Varley

    2004-01-01

    The mass balance of El Chichón crater lake is controlled by precipitations, evaporation and seepage through the lake bottom. The main non-meteoric source of water and Cl for the lake is a boiling spring (Soap Pool) discharging saline and neutral water with a variable flow rate from 0 to 30 kg/s inside the El Chichón crater. Variations in lake volume over time were approximately determined from digitized photographic views of the lake using an empirical relationship between depth of the lake a...

  5. METEOR v1.0 - User's Guide

    International Nuclear Information System (INIS)

    This script is a User's Guide for the software package METEOR for statistical analysis of meteorological data series. The original version of METEOR have been developed by Ph.D. Elena Palomo, CIEMAT-IER, GIMASE. It is built by linking programs and routines written in FORTRAN 77 and it adds the graphical capabilities of GNUPLOT. The shape of this toolbox was designed following the criteria of modularity, flexibility and agility criteria. All the input, output and analysis options are structured in three main menus: i) the first is aimed to evaluate the quality of the data set; ii) the second is aimed for pre-processing of the data; and iii) the third is aimed towards the statistical analyses and for creating the graphical outputs. Actually the information about METEOR is constituted by three documents written in spanish: 1) METEOR v1.0: User's guide; 2) METEOR v1.0: A usage example; 3) METEOR v1.0: Design and structure of the software package. (Author)

  6. Results of Lunar Impact Observations During Geminid Meteor Shower Events

    Science.gov (United States)

    Suggs, R. J.; Suggs, R. M.

    2015-01-01

    Meteoroids are natural particles with origins from comets, asteroids, and planets from within the solar system. On average, 33 metric tons (73,000 lb) of meteoroids hit Earth everyday with velocities ranging between 20 and 72 km/s. However, the vast majority of these meteoroids disintegrate in the atmosphere and never make it to the ground. The Moon also encounters the same meteoroid flux, but has no atmosphere to stop them from striking the surface. At such speeds even a small meteoroid has incredible energy. A meteoroid with a mass of only 5 kg can excavate a crater over 9 m across, hurling 75 metric tons (165,000 lb) of lunar soil and rock on ballistic trajectories above the lunar surface. Meteoroids with particle sizes as small as 100 micrometer (1 Microgram) can do considerable damage to spacecraft in Earth's orbit and beyond. Impacts can damage thermal protection systems, radiators, windows, and pressurized containers. Secondary effects might include partial penetration or pitting, local deformation, and surface degradation that can cause a failure upon reentry. The speed, mass, density, and flux of meteoroids are important factors for design considerations and mitigation during operations. Lunar operations (unmanned and manned) are also adversely affected by the meteoroid flux. Ejecta from meteoroid impacts is also part of the lunar environment and must be characterized. Understanding meteoroid fluxes and the associated risk of meteoroids impacting spacecraft traveling in and beyond Earth's orbit is the objective of the Meteoroid Environment Office (MEO) located at Marshall Space Flight Center (MSFC). One of the MEO's programs is meteoroid impact monitoring of the Moon. The large collecting area of the night side of the lunar disk provides statistically significant counts of meteoroids that can provide useful information about the flux of meteoroids in the hundreds of grams to kilograms size range. This information is not only important for characterizing

  7. CAMS confirmation of previously reported meteor showers

    Science.gov (United States)

    Jenniskens, P.; Nénon, Q.; Gural, P. S.; Albers, J.; Haberman, B.; Johnson, B.; Holman, D.; Morales, R.; Grigsby, B. J.; Samuels, D.; Johannink, C.

    2016-03-01

    Leading up to the 2015 IAU General Assembly, the International Astronomical Union's Working List of Meteor Showers included 486 unconfirmed showers, showers that are not certain to exist. If confirmed, each shower would provide a record of past comet or asteroid activity. Now, we report that 41 of these are detected in the Cameras for Allsky Meteor Surveillance (CAMS) video-based meteor shower survey. They manifest as meteoroids arriving at Earth from a similar direction and orbit, after removing the daily radiant drift due to Earth's motion around the Sun. These showers do exist and, therefore, can be moved to the IAU List of Established Meteor Showers. This adds to 31 previously confirmed showers from CAMS data. For each shower, finding charts are presented based on 230,000 meteors observed up to March of 2015, calculated by re-projecting the drift-corrected Sun-centered ecliptic coordinates into more familiar equatorial coordinates. Showers that are not detected, but should have, and duplicate showers that project to the same Sun-centered ecliptic coordinates, are recommended for removal from the Working List.

  8. Optical Meteor Systems Used by the NASA Meteoroid Environment Office

    Science.gov (United States)

    Kingery, A. M.; Blaauw, R. C.; Cooke, W. J.; Moser, D. E.

    2015-01-01

    The NASA Meteoroid Environment Office (MEO) uses two main meteor camera networks to characterize the meteoroid environment: an all sky system and a wide field system to study cm and mm size meteors respectively. The NASA All Sky Fireball Network consists of fifteen meteor video cameras in the United States, with plans to expand to eighteen cameras by the end of 2015. The camera design and All-Sky Guided and Real-time Detection (ASGARD) meteor detection software [1, 2] were adopted from the University of Western Ontario's Southern Ontario Meteor Network (SOMN). After seven years of operation, the network has detected over 12,000 multi-station meteors, including meteors from at least 53 different meteor showers. The network is used for speed distribution determination, characterization of meteor showers and sporadic sources, and for informing the public on bright meteor events. The NASA Wide Field Meteor Network was established in December of 2012 with two cameras and expanded to eight cameras in December of 2014. The two camera configuration saw 5470 meteors over two years of operation with two cameras, and has detected 3423 meteors in the first five months of operation (Dec 12, 2014 - May 12, 2015) with eight cameras. We expect to see over 10,000 meteors per year with the expanded system. The cameras have a 20 degree field of view and an approximate limiting meteor magnitude of +5. The network's primary goal is determining the nightly shower and sporadic meteor fluxes. Both camera networks function almost fully autonomously with little human interaction required for upkeep and analysis. The cameras send their data to a central server for storage and automatic analysis. Every morning the servers automatically generates an e-mail and web page containing an analysis of the previous night's events. The current status of the networks will be described, alongside with preliminary results. In addition, future projects, CCD photometry and broadband meteor color camera

  9. IAU Meteor Data Center | the shower database: a status report

    CERN Document Server

    Jopek, Tadeusz Jan

    2016-01-01

    Currently, the meteor shower part of Meteor Data Center database includes: 112 established showers, 563 in the working list, among them 36 have pro tempore status and 23 will be removed from the list. The list of shower complexes contains 25 groups, 3 have established status and 1 has pro tempore status. In the past three years, new meteor showers submitted to the MDC database were detected amongst meteors observed by CAMS stations (Cameras for Allsky Meteor Surveillance), meteors included in the EDMOND (European viDeo MeteOr Network Database), meteors collected by Japanese SonotaCo Network, meteors recorded in IMO (International Meteor Organization) database, amongst meteors observed by Croatian Meteor Network and meteors observed on the Southern Hemisphere by the SAAMER radar. During the XXIXth General Assembly of the IAU in Honolulu, Hawaii in 2015, the names of 18 showers were o?cially accepted and moved to the list of established showers. Also, one shower already o?cially named (3/SIA the Southern iota A...

  10. Meteor head echoes - observations and models

    Directory of Open Access Journals (Sweden)

    A. Pellinen-Wannberg

    2005-01-01

    Full Text Available Meteor head echoes - instantaneous echoes moving with the velocities of the meteors - have been recorded since 1947. Despite many attempts, this phenomenon did not receive a comprehensive theory for over 4 decades. The High Power and Large Aperture (HPLA features, combined with present signal processing and data storage capabilities of incoherent scatter radars, may give an explanation for the old riddle. The meteoroid passage through the radar beam can be followed with simultaneous spatial-time resolution of about 100m-ms class. The current views of the meteor head echo process will be presented and discussed. These will be related to various EISCAT observations, such as dual-frequency target sizes, altitude distributions and vector velocities.

  11. Evaporation of high speed sporadic meteors

    Directory of Open Access Journals (Sweden)

    E. Murad

    2004-01-01

    Full Text Available Recent measurements conducted at the Arecibo Observatory report high-speed sporadic meteors having velocities near 50 km/s. The results seem to indicate a bimodal velocity distribution in the sporadic meteors (maxima at ~20 km/s and ~50 km/s. The particles have a maximum mass of ~1µg. This paper will present an analysis of the ablation of 1µg meteoroids having velocities of 20, 30, 50, and 70 km/s. The calculations show that there is fractionation even for the fast meteoroids, the effect being particularly noticeable for the 1µg sporadic particles, and less so for the heavier particles. The relevance of the calculations to the radar observations of the sporadic meteors will be discussed.

  12. Advances in Meteoroid and Meteor Science

    CERN Document Server

    Trigo-Rodríguez, J. M; Llorca, J; Janches, D

    2008-01-01

    This volume is a compilation of articles that summarize the most recent results in meteor, meteoroid and related fields presented at the Meteoroids 2007 conference held at the impressive CosmoCaixa Science Museum in Barcelona, Spain. The conference took place between the 11th and the 15th of June and was organized by the Institute of Space Sciences (Consejo Superior de Investigaciones Científicas, CSIC) and the Institut d'Estudis Espacials de Catalunya (IEEC). Researchers in meteor science and supporting fields representing more than 20 countries participated at this international conference. The papers contained in this volume underwent the rigorous refereeing process, and they are good examples of the continuous progress being made in this research field. Technological advances in meteor and metoroid detection, the ever-increasing sophistication of computer modeling, and the proliferation of autonomous monitoring stations continue to create new niches for exciting research on meteoroids and their parent bo...

  13. Observation of meteors by MST radar

    Science.gov (United States)

    Jones, William; Kingsley, S. P.

    1992-01-01

    The observation of meteor trails by a vertical mesosphere - stratosphere - troposphere (MST) radar beam has the advantage of good height resolution and an approximate knowledge of the zenith angle since the trails are horizontal or near-horizontal. An extension of the ablation theory of meteors was developed for near horizontal trails which takes into account the curvature of the earth. Observations of the Geminid meteor shower by MST radar reveal the 'diffusion heights' to be in fair agreement with the true height, but with some discrepancies that can amount to 4 km. The true heights are almost entirely confined to the range 87-91 km, although the upper limit is attributed to the coherent integration time of the existing MST radar processing.

  14. Various meteor scenes I: the perception and the conception of a 'meteor shower'

    Science.gov (United States)

    Koseki, Masahiro

    2014-10-01

    Not all 'established showers' are recognisable by every method. Some might be lost ('dead') or have recurrent (periodic) nature and are not observable annually. Some are dominated by faint meteors and not observable visually but by radar systems. Other showers are rich in fireballs and their low meteor rates make them a good target for video and photographic observations, while visual observers may not notice their activity because of the low rates. The perception limit in magnitude differs between the observing methods on the one hand, but depends on the magnitude ratios of shower meteors on the other hand. Differences in the definition of a 'meteor shower'/'meteoroid stream' work important roles composing the shower list and we need to know how much various researchers' definitions differ. Depending whether we use observational raw data of the visible meteor shower or orbital elements of the meteoroid stream this may lead to either an obvious meteor showers or an undetectable stream. This paper (paper I) describes the reasons why we can see a meteor shower and why not, Paper II proves the condition by the example of Cygnid-Draconid complex, especially for the κ-Cygnids, and Paper III looks at the different views of several minor showers from the different kind observations.

  15. Modern Meteor Science An Interdisciplinary View

    CERN Document Server

    Hawkes, Robert; Brown, Peter

    2005-01-01

    This volume represents a blend of leading edge research and authoritative reviews in meteor science. It provides a comprehensive view of meteoroid research including the dynamics, sources and distribution of these bodies, and their chemistry and physical processes in the interplanetary medium and the Earth’s atmosphere. Techniques for investigation of meteor phenomena in the book include conventional and large aperture radar systems, spacecraft detection, optical systems, spectral measurements, and laboratory based interplanetary dust particle studies. The book will be of interest to researchers and students in astronomy, astrophysics, cosmochemistry, space engineering and space science. Cover photograph was taken by Masayuki Toda.

  16. The Radio Meteor Zoo: a citizen science project

    Science.gov (United States)

    Calders, S.; Verbeeck, C.; Lamy, H.; Martínez Picar, A.

    2016-01-01

    Scientists from the BRAMS radio meteor network have started a citizen science project called Radio Meteor Zoo in collaboration with Zooniverse in order to identify meteor reflections in BRAMS spectrograms. First, a small-scale version of the Radio Meteor Zoo was carried out with a sample of meteor identifications in 12 spectrograms by 35 volunteers. Results are presented here and allowed us to define a method that reliably detects meteor reflections based on the identifications by the volunteers. It turns out that, if each spectrogram is inspected by 10 volunteers, hit and false detection percentages of 95% respectively 6% are expected. The Radio Meteor Zoo is online at https://www.zooniverse.org/projects/zooniverse/radio-meteor-zoo. Citizen scientists are kindly invited to inspect spectrograms.

  17. Independent identification of meteor showers in EDMOND database

    Science.gov (United States)

    Rudawska, R.; Matlovič, P.; Tóth, J.; Kornoš, L.

    2015-12-01

    Cooperation and data sharing among national networks and International Meteor Organization Video Meteor Database (IMO VMDB) resulted in European viDeo MeteOr Network Database (EDMOND). The current version of the database (EDMOND 5.0) contains 144 749 orbits collected from 2001 to 2014. This paper presents the results obtained by a proposed new independent method of meteor showers identification, which is applied to the current version of the database (EDMOND 5.0). In the first step of the survey we used the DSH criterion to find groups around each meteor within the similarity threshold. Mean parameters of the groups were calculated and compared using a new function DX based on geocentric parameters (λ⊙, α, δ, and Vg). Similar groups were merged into final clusters (representing meteor showers), and compared with the IAU Meteor Data Center list of meteor showers.

  18. Independent identification of meteor showers in EDMOND database

    CERN Document Server

    Rudawska, R; Tóth, J; Kornoš, L

    2014-01-01

    Cooperation and data sharing among national networks and International Meteor Organization Video Meteor Database (IMO VMDB) resulted in European viDeo MeteOr Network Database (EDMOND). The current version of the database (EDMOND 5.0) contains 144 751 orbits collected from 2001 to 2014. In our survey we used EDMOND database in order to identify existing and new meteor showers in the database. In the first step of the survey, using Dsh criterion we found groups around each meteor within similarity threshold. Mean parameters of the groups were calculated and compared using a new function based on geocentric parameters (solar longitude, right ascension, declination, and geocentric velocity). Similar groups were merged into final clusters (representing meteor showers), and compared with IAU Meteor Data Center list of meteor showers. This paper presents the results obtained by the proposed methodology.

  19. Meteor Search by Spirit, Sol 668

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Annotated Meteor Search by Spirit, Sol 668 The panoramic cameras on NASA's Mars Exploration Rovers are about as sensitive as the human eye at night. The cameras can see the same bright stars that we can see from Earth, and the same patterns of constellations dot the night sky. Scientists on the rover team have been taking images of some of these bright stars as part of several different projects. One project is designed to try to capture 'shooting stars,' or meteors, in the martian night sky. 'Meteoroids' are small pieces of comets and asteroids that travel through space and eventually run into a planet. On Earth, we can sometimes see meteoroids become brilliant, long 'meteors' streaking across the night sky as they burn up from the friction in our atmosphere. Some of these meteors survive their fiery flight and land on the surface (or in the ocean) where, if found, they are called 'meteorites.' The same thing happens in the martian atmosphere, and Spirit even accidentally discovered a meteor while attempting to obtain images of Earth in the pre-dawn sky back in March, 2004 (see http://marsrovers.jpl.nasa.gov/gallery/press/spirit/20040311a.html, and Selsis et al. (2005) Nature, vol 435, p. 581). On Earth, some meteors come in 'storms' or 'showers' at predictable times of the year, like the famous Perseid meteor shower in August or the Leonid meteor shower in November. These 'storms' happen when Earth passes through the same parts of space where comets sometimes pass. The meteors we see at these times are from leftover debris that was shed off of these comets. The same kind of thing is predicted for Mars, as well. Inspired by calculations about Martian meteor storms by meteor scientists from the University of Western Ontario in Canada and the Centre de Recherche en Astrophysique de Lyon in France, and also aided by other meteor research colleagues from NASA's Marshall Space Flight Center, scientists on the rover team

  20. 47 CFR 90.250 - Meteor burst communications.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Meteor burst communications. 90.250 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.250 Meteor burst communications. Meteor burst communications may be authorized for the use of private radio stations subject...

  1. Automated Meteor Fluxes with a Wide-Field Meteor Camera Network

    Science.gov (United States)

    Blaauw, R. C.; Campbell-Brown, M. D.; Cooke, W.; Weryk, R. J.; Gill, J.; Musci, R.

    2013-01-01

    Within NASA, the Meteoroid Environment Office (MEO) is charged to monitor the meteoroid environment in near ]earth space for the protection of satellites and spacecraft. The MEO has recently established a two ]station system to calculate automated meteor fluxes in the millimeter ]size ]range. The cameras each consist of a 17 mm focal length Schneider lens on a Watec 902H2 Ultimate CCD video camera, producing a 21.7 x 16.3 degree field of view. This configuration has a red ]sensitive limiting meteor magnitude of about +5. The stations are located in the South Eastern USA, 31.8 kilometers apart, and are aimed at a location 90 km above a point 50 km equidistant from each station, which optimizes the common volume. Both single station and double station fluxes are found, each having benefits; more meteors will be detected in a single camera than will be seen in both cameras, producing a better determined flux, but double station detections allow for non ]ambiguous shower associations and permit speed/orbit determinations. Video from the cameras are fed into Linux computers running the ASGARD (All Sky and Guided Automatic Real ]time Detection) software, created by Rob Weryk of the University of Western Ontario Meteor Physics Group. ASGARD performs the meteor detection/photometry, and invokes the MILIG and MORB codes to determine the trajectory, speed, and orbit of the meteor. A subroutine in ASGARD allows for the approximate shower identification in single station meteors. The ASGARD output is used in routines to calculate the flux in units of #/sq km/hour. The flux algorithm employed here differs from others currently in use in that it does not assume a single height for all meteors observed in the common camera volume. In the MEO system, the volume is broken up into a set of height intervals, with the collecting areas determined by the radiant of active shower or sporadic source. The flux per height interval is summed to obtain the total meteor flux. As ASGARD also

  2. Commission 22: Meteors, Meteorites and Interplanetary Dust

    Czech Academy of Sciences Publication Activity Database

    Watanabe, J.; Jenniskens, P.; Spurný, Pavel; Borovička, Jiří; Campbell-Brown, M.; Consolmagno, G.; Jopek, T.; Vaubaillon, J.; Williams, I.P.; Zhu, J.

    Cambridge: Cambridge University Press, 2010 - (Corbett, I.), s. 177-179. (Proceedings of the International Astronomical Union. IAU Transactions. 27B). ISBN 978-0-521-76831-3 Institutional research plan: CEZ:AV0Z10030501 Keywords : meteors * meteorites * interplanetary dust Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  3. Formation of molecules in bright meteors

    Czech Academy of Sciences Publication Activity Database

    Berezhnoy, A.A.; Borovička, Jiří

    2010-01-01

    Roč. 210, č. 1 (2010), s. 150-157. ISSN 0019-1035 R&D Projects: GA AV ČR IAA300030813 Institutional research plan: CEZ:AV0Z10030501 Keywords : meteors * atmospheres * Earth Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.813, year: 2010

  4. Detection of meteors by the MAIA system

    Czech Academy of Sciences Publication Activity Database

    Koten, Pavel; Páta, P.; Fliegel, K.; Vítek, S.

    Poznan: Wydawnictwo naukowe, 2014 - (Jopek, T.), s. 53-56 ISBN 9788323227267. [Meteoroids 2013. Poznan (PL), 26.08.2013-30.08.2013] R&D Projects: GA ČR GA205/09/1302 Institutional support: RVO:67985815 Keywords : meteors * automatic video observation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  5. BRAMS --- the Belgian RAdio Meteor Stations

    Science.gov (United States)

    Lamy, H.; Ranvier, S.; Martinez Picar, A.; Gamby, E.; Calders, S.; Anciaux, M.; De Keyser, J.

    2014-07-01

    BRAMS is a new radio observing facility developed by the Belgian Institute for Space Aeronomy (BISA) to detect and characterize meteors using forward scattering. It consists of a dedicated beacon located in the south-east of Belgium and in 25 identical receiving stations spread over the Belgian territory. The beacon transmits a pure sinusoidal wave at a frequency of 49.97 MHz with a power of 150 watts. A complete description of the BRAMS network and the data produced will be provided. The main scientific goals of the project are to compute fluxes, retrieve trajectories of individual objects, and determine physical parameters (speed, ionization, mass) for some of the observed meteor echoes. All these goals require a good knowledge of the radiation patterns of the transmitting and receiving antennas. Simulations have been made and will be validated with in-situ measurements using a UAV/drone equipped with a transmitter flying in the far-field region. The results will be provided. Each receiving station generates around 1 GB of data per day with typical numbers of sporadic meteor echoes of 1500--2000. An automatic detection method of these meteor echoes is therefore mandatory but is complicated by spurious echoes mostly due to airplanes. The latest developments of this automatic detection method will be presented and compared to manual counts for validation. Strong and weak points of the method will be presented as well as a possible alternative method using neural networks.

  6. Impact Cratering Calculations

    Science.gov (United States)

    Ahrens, Thomas J.

    2001-01-01

    We examined the von Mises and Mohr-Coulomb strength models with and without damage effects and developed a model for dilatancy. The models and results are given in O'Keefe et al. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting with the bolide in the atmosphere produce final crater profiles having the major features found in the field measurements. These features included a central uplift, an inner ring, circular terracing and faulting. This was accomplished with undamaged surface strengths of approximately 0.1 GPa and at depth strengths of approximately 1.0 GPa. We modeled the damage in geologic materials using a phenomenological approach, which coupled the Johnson-Cook damage model with the CTH code geologic strength model. The objective here was not to determine the distribution of fragment sizes, but rather to determine the effect of brecciated and comminuted material on the crater evolution, fault production, ejecta distribution, and final crater morphology.

  7. Impacts into Sandstone: Crater Morphology, Crater Scaling and the Effects of Porosity

    Science.gov (United States)

    Poelchau, M. H.; Dufresne, A.; Kenkmann, T.

    2011-03-01

    Crater morphology results from impact cratering experiments in sandstone within the MEMIN program are presented and compared to other brittle materials. The effects of porosity on crater shape, volume and cratering efficiency are analyzed.

  8. Analysis of historical meteor and meteor shower records: Korea, China, and Japan

    CERN Document Server

    Yang, H J; Park, M G; Yang, Hong-Jin; Park, Changbom; Park, Myeong-Gu

    2005-01-01

    We have compiled and analyzed historical Korean meteor and meteor shower records in three Korean official history books, Samguksagi which covers the three Kingdoms period (57 B.C -- A.D. 935), Goryeosa of Goryeo dynasty (A.D. 918 -- 1392), and Joseonwangjosillok of Joseon dynasty (A.D. 1392 -- 1910). We have found 3861 meteor and 31 meteor shower records. We have confirmed the peaks of Perseids and an excess due to the mixture of Orionids, north-Taurids, or Leonids through the Monte-Carlo test. The peaks persist from the period of Goryeo dynasty to that of Joseon dynasty, for almost one thousand years. Korean records show a decrease of Perseids activity and an increase of Orionids/north-Taurids/Leonids activity. We have also analyzed seasonal variation of sporadic meteors from Korean records. We confirm the seasonal variation of sporadic meteors from the records of Joseon dynasty with the maximum number of events being roughly 1.7 times the minimum. The Korean records are compared with Chinese and Japanese re...

  9. Oblique View of Eros' Crater

    Science.gov (United States)

    2000-01-01

    This image, showing an oblique view of Eros' large central crater, was taken at a resolution of about 20 meters (65 feet) per pixel. The brightness or albedo patterns on the walls of this crater are clearly visible, with the brighter materials near the tops of the walls and darker materials on the lower walls. Boulders are seen inside this crater and the smaller nearby craters. The higher density of craters to the left of the large crater implies that this region is older than the smoother area seen associated with the saddle region on the opposite side of the asteroid.Built and managed by The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, NEAR was the first spacecraft launched in NASA's Discovery Program of low-cost, small-scale planetary missions. See the NEAR web page at http://near.jhuapl.edu for more details.

  10. Crater Count Ages of Young Martian Ray Craters: a Successful Test of the Crater Chronometry System

    Science.gov (United States)

    Hartmann, William K.; Quantin, C.; Werner, S. C.; Popova, O.

    2008-09-01

    McEwen et al. (2005) developed a useful test of crater-count chronometry systems [1]. They argued that fresh-looking, Zunil-style Martian ray craters are the youngest or near-youngest craters in their size ranges. The "McEwen et al. test" is that crater-count ages from small craters (D 10-25 m), superimposed on these "Zunils," should be comparable to the expected formation intervals of these host Zunil-style primaries themselves, typically 1 to a few My. McEwen et al., however, found few or no small superposed craters in MOC frames, and concluded that crater chronometry systems are in error by factors of 700 to 2000. Since then, Malin et al. discovered that 10-25m craters form at essentially the rate we used in our isochron system [2,3,4]. Thus, 10-25m craters should be usable for dating these "Zunils." We re-evaluate the "McEwen et al. test" with HiRise images, studying three young craters they discussed, and five others. In every case we found small-crater populations, giving approximately the expected ages. We conclude that the alleged large errors are incorrect. The semi-independent crater count systems of Neukum and of Hartmann agree with the Malin cratering rate, are internally consistent, and appear to give valid age information within about a factor 2 to 4. We thank the International Space Science Institute (ISSI), Bern, for hosting our working group. [1] McEwen et al. 2005 Icarus,176, 351-381. [2] Malin, M. et al. 2006 Science 314, 1573-1557. [3] Hartmann, W.K. 2007 Icarus, 189, 274-278. [4] Kreslavsky, M.A. 2007 7th Internatl. Conf. on Mars, Abstract 3325.

  11. Meteor detection on ST (MST) radars

    Science.gov (United States)

    Avery, S. K.

    1987-01-01

    The ability to detect radar echoes from backscatter due to turbulent irregularities of the radio refractive index in the clear atmosphere has lead to an increasing number of established mesosphere - stratosphere - troposphere (MST or ST) radars. Humidity and temperature variations are responsible for the echo in the troposphere and stratosphere and turbulence acting on electron density gradients provides the echo in the mesosphere. The MST radar and its smaller version, the ST radar, are pulsed Doppler radars operating in the VHF - UHF frequency range. These echoes can be used to determine upper atmosphere winds at little extra cost to the ST radar configuration. In addition, the meteor echoes can supplement mesospheric data from an MST radar. The detection techniques required on the ST radar for delineating meteor echo returns are described.

  12. The Swedish Allsky Meteor Network: first results

    Science.gov (United States)

    Stempels, E.; Kero, E.

    2016-01-01

    The Swedish Allsky Meteor Network started operations with two cameras in early 2014 and has since grown steadily. Currently, seven stations are active and several more will come online in the near future. The network to a large degree relies on low-cost stations run by private individuals or small societies of amateur astronomers. Originally based on the Danish meteor network Stjerneskud, the central node of Uppsala University provides the network with the necessary infrastructure, such as a continually updated software distribution and automatic processing of data from all stations. Although covering a very large land mass with relatively low resources is challenging, there have up to now been several well-observed events, often in collaboration with observations from neighboring countries. We give a short overview of the network's current status, chosen technical solutions, and some results.

  13. Morphology of Experimental Impact Craters into Sandstone

    Science.gov (United States)

    Dufresne, A.; Poelchau, M. H.; Kenkmann, T.; Deutsch, A.; Hoerth, T.; Schaefer, F.

    2012-03-01

    Detailed morphometric crater analyses of hypervelocity impact experiments were carried out to investigate the influence of impact velocity and target pore space saturation on crater size and morphology.

  14. A Global Atmospheric Model of Meteoric Iron

    Science.gov (United States)

    Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Hoffner, Josef; Yi, Fan; Plane, John M. C.

    2013-01-01

    The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+ concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.

  15. Exploration Zone in Newton Crater

    Science.gov (United States)

    Laine, P. E.

    2015-10-01

    Newton is a large crater (300 km) located in Terra Sirenum. This region is heavily cratered, preserves crustal magnetism, and has ground ice present. Within this EZ there are many potential science and resource ROIs, e.g. indicatives of past water.

  16. The return of the Andromedids meteor shower

    CERN Document Server

    Wiegert, Paul A; Weryk, Robert J; Wong, Daniel K

    2012-01-01

    The Andromedid meteor shower underwent spectacular outbursts in 1872 and 1885, producing thousands of visual meteors per hour and described as `stars fell like rain' in Chinese records of the time. The shower originates from comet 3D/Biela whose disintegration in the mid-1800's is linked to the outbursts, but the shower has been weak or absent since the late 19th Century. This shower returned in December 2011 with a zenithal hourly rate of approximately 50, the strongest return in over a hundred years. Some 122 probable Andromedid orbits were detected by the Canadian Meteor Orbit Radar. The shower outburst occurred during 2011 Dec 3-5. The radiant at RA +$18\\degree$ and Dec +$56\\degree$ is typical of the `classical' Andromedids of the early 1800's, whose radiant was actually in Cassiopeia. The orbital elements indicate that the material involved was released before 3D/Biela's breakup prior to 1846. The observed shower in 2011 had a slow geocentric speed (16 km s$^{-1}$) and was comprised of small particles: t...

  17. The Unexpected 2012 Draconid Meteor Storm

    CERN Document Server

    Ye, Quanzhi; Brown, Peter G; Campbell-Brown, Margaret D; Weryk, Robert J

    2013-01-01

    An unexpected intense outburst of the Draconid meteor shower was detected by the Canadian Meteor Orbit Radar (CMOR) on October 8, 2012. The peak flux occurred at ~16:40 UT on October 8 with a maximum of 2.4 +/- 0.3 hr-1 km-2 (appropriate to meteoroid mass larger than 10-7 kg), equivalent to a ZHRmax = 9000 +/- 1000 using 5-minute intervals, using a mass distribution index of s = 1.88 +/- 0.01 as determined from the amplitude distribution of underdense Draconid echoes. This makes the out- burst among the strongest Draconid returns since 1946 and the highest flux shower since the 1966 Leonid meteor storm, assuming a constant power-law distribution holds from radar to visual meteoroid sizes. The weighted mean geocentric radiant in the time interval of 15-19h UT, Oct 8, 2012 was {\\alpha}g = 262.4 +/- 0.1 deg, {\\delta}g = 55.7 +/- 0.1 deg (epoch J2000.0). Visual observers also reported increased activity around the peak time, but with a much lower rate (ZHR 200), suggesting that the magnitude-cumulative num- ber r...

  18. The unexpected 2012 Draconid meteor storm

    Science.gov (United States)

    Ye, Quanzhi; Wiegert, Paul A.; Brown, Peter G.; Campbell-Brown, Margaret D.; Weryk, Robert J.

    2014-02-01

    An unexpected intense outburst of the Draconid meteor shower was detected by the Canadian Meteor Orbit Radar on 2012 October 8. The peak flux occurred at ˜16:40 UT on October 8 with a maximum of 2.4 ± 0.3 h-1 km-2 (appropriate to meteoroid mass larger than 10-7 kg), equivalent to a ZHRmax ≈ 9000 ± 1000 using 5-min intervals, using a mass distribution index of s = 1.88 ± 0.01 as determined from the amplitude distribution of underdense Draconid echoes. This makes the outburst among the strongest Draconid returns since 1946 and the highest flux shower since the 1966 Leonid meteor storm, assuming that a constant power-law distribution holds from radar to visual meteoroid sizes. The weighted mean geocentric radiant in the time interval of 15-19 h UT, 2012 October 8, was αg = 262.4° 4 ± 0.1°, δg = 55.7° ± 0.1° (epoch J2000.0). Visual observers also reported increased activity around the peak time, but with a much lower rate (ZHR ˜ 200), suggesting that the magnitude-cumulative number relationship is not a simple power law. Ablation modelling of the observed meteors as a population does not yield a unique solution for the grain size and distribution of Draconid meteoroids, but is consistent with a typical Draconid meteoroid of mtotal between 10-6 and 10-4 kg being composed of 10-100 grains. Dynamical simulations indicate that the outburst was caused by dust particles released during the 1966 perihelion passage of the parent comet, 21P/Giacobini-Zinner, although there are discrepancies between the modelled and observed timing of the encounter, presumably caused by approaches of the comet to Jupiter during 1966-1972. Based on the results of our dynamical simulation, we predict possible increased activity of the Draconid meteor shower in 2018, 2019, 2021 and 2025.

  19. THE RETURN OF THE ANDROMEDIDS METEOR SHOWER

    International Nuclear Information System (INIS)

    The Andromedid meteor shower underwent spectacular outbursts in 1872 and 1885, producing thousands of visual meteors per hour and described as ''stars fell like rain'' in Chinese records of the time. The shower originates from comet 3D/Biela whose disintegration in the mid-1800's is linked to the outbursts, but the shower has been weak or absent since the late 19th century. This shower returned in 2011 December with a zenithal hourly rate of approximately 50, the strongest return in over a hundred years. Some 122 probable Andromedid orbits were detected by the Canadian Meteor Orbit Radar while one possible brighter Andromedid member was detected by the Southern Ontario Meteor Network and several single station possible Andromedids by the Canadian Automated Meteor Observatory. The shower outburst occurred during 2011 December 3-5. The radiant at R.A. +18° and decl. +56° is typical of the ''classical'' Andromedids of the early 1800s, whose radiant was actually in Cassiopeia. Numerical simulations of the shower were necessary to identify it with the Andromedids, as the observed radiant differs markedly from the current radiant associated with that shower. The shower's orbital elements indicate that the material involved was released before 3D/Biela's breakup prior to 1846. The observed shower in 2011 had a slow geocentric speed (VG = 16 km s–1) and was comprised of small particles: the mean measured mass from the radar is ∼5 × 10–7 kg, corresponding to radii of 0.5 mm at a bulk density of 1000 kg m–3. Numerical simulations of the parent comet indicate that the meteoroids of the 2011 return of the Andromedids shower were primarily ejected during 3D/Biela's 1649 perihelion passage. The orbital characteristics, radiant, and timing as well as the absence of large particles in the streamlet are all broadly consistent with simulations. However, simulations of the 1649 perihelion passage necessitate going back five Lyapunov times (which is only 25 yr for the

  20. Survivability of meteor burst communication under adverse operating conditions.

    OpenAIRE

    Gates, Mark A.

    1992-01-01

    Approved for public release; distribution is unlimited This thesis is a study of the survivability and reliability issues associated with operating meteor burst communication systems under adverse conditions. Meteor burst communication relies on the phenomenon of reflecting radio waves off the ionized trails left by meteors as they enter the atmosphere and disintegrate. The system's rapid deployment capability, mobility, and operating characteristics make it ideal for disast...

  1. SOFTWARE AND HARDWARE SYSTEMS FOR SOUNDING METEOR TRAILS

    Directory of Open Access Journals (Sweden)

    Lebedeva, A.A.

    2016-06-01

    Full Text Available The article describes the basic physical principles of meteor radio. A block diagram of hardware and software for sensing meteor trails. The principles of software-defined radio system lies at the heart of the complex. The paper presents a functional diagram of a digital oscillator, as well as software description with an example of the received data. This complex allows eliminating a number of shortcomings meteor radio, as well as increasing its range and security.

  2. Nonextensive Statistical Analysis of Meteor Showers and Lunar Flashes

    OpenAIRE

    Betzler, Alberto S.; Borges, Ernesto P.

    2014-01-01

    The distribution of meteor magnitudes is usually supposed to be described by power-laws. However, this relationship is not able to model the whole data set, and the parameters are considered to be dependent on the magnitude intervals. We adopt a statistical distribution derived from Tsallis nonextensive statistical mechanics which is able to model the whole magnitude range. We combined meteor data from various sources, ranging from telescopic meteors to lunar impactors. Our analysis shows tha...

  3. Treating Bony craters by osseous resection in periodontics: Crater therapy

    OpenAIRE

    V. Selahi Moghadam

    1989-01-01

    Treating bony craters by surgical method needs elimination or reduction of bony lesions as well as providing sufficient bone by minimum osteotomy in order to preserve supporting bone. Furcation preservation is very important. Most mandibular molars are overtreated from buccal aspect that leads to inverted morphology and affects buccal forcation. Identifying anatomical structures and their relation to lesions is essential. In crater therapy, furcation and tooth trunk are two ...

  4. A Global Model of Meteoric Sodium

    Science.gov (United States)

    Marsh, Daniel R.; Janches, Diego; Feng, Wuhu; Plane, John M. C.

    2013-01-01

    A global model of sodium in the mesosphere and lower thermosphere has been developed within the framework of the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model (WACCM). The standard fully interactive WACCM chemistry module has been augmented with a chemistry scheme that includes nine neutral and ionized sodium species. Meteoric ablation provides the source of sodium in the model and is represented as a combination of a meteoroid input function (MIF) and a parameterized ablation model. The MIF provides the seasonally and latitudinally varying meteoric flux which is modeled taking into consideration the astronomical origins of sporadic meteors and considers variations in particle entry angle, velocity, mass, and the differential ablation of the chemical constituents. WACCM simulations show large variations in the sodium constituents over time scales from days to months. Seasonality of sodium constituents is strongly affected by variations in the MIF and transport via the mean meridional wind. In particular, the summer to winter hemisphere flow leads to the highest sodium species concentrations and loss rates occurring over the winter pole. In the Northern Hemisphere, this winter maximum can be dramatically affected by stratospheric sudden warmings. Simulations of the January 2009 major warming event show that it caused a short-term decrease in the sodium column over the polar cap that was followed by a factor of 3 increase in the following weeks. Overall, the modeled distribution of atomic sodium in WACCM agrees well with both ground-based and satellite observations. Given the strong sensitivity of the sodium layer to dynamical motions, reproducing its variability provides a stringent test of global models and should help to constrain key atmospheric variables in this poorly sampled region of the atmosphere.

  5. Meteor orbit determination with improved accuracy

    Science.gov (United States)

    Dmitriev, Vasily; Lupovla, Valery; Gritsevich, Maria

    2015-08-01

    Modern observational techniques make it possible to retrive meteor trajectory and its velocity with high accuracy. There has been a rapid rise in high quality observational data accumulating yearly. This fact creates new challenges for solving the problem of meteor orbit determination. Currently, traditional technique based on including corrections to zenith distance and apparent velocity using well-known Schiaparelli formula is widely used. Alternative approach relies on meteoroid trajectory correction using numerical integration of equation of motion (Clark & Wiegert, 2011; Zuluaga et al., 2013). In our work we suggest technique of meteor orbit determination based on strict coordinate transformation and integration of differential equation of motion. We demonstrate advantage of this method in comparison with traditional technique. We provide results of calculations by different methods for real, recently occurred fireballs, as well as for simulated cases with a priori known retrieval parameters. Simulated data were used to demonstrate the condition, when application of more complex technique is necessary. It was found, that for several low velocity meteoroids application of traditional technique may lead to dramatically delusion of orbit precision (first of all, due to errors in Ω, because this parameter has a highest potential accuracy). Our results are complemented by analysis of sources of perturbations allowing to quantitatively indicate which factors have to be considered in orbit determination. In addition, the developed method includes analysis of observational error propagation based on strict covariance transition, which is also presented.Acknowledgements. This work was carried out at MIIGAiK and supported by the Russian Science Foundation, project No. 14-22-00197.References:Clark, D. L., & Wiegert, P. A. (2011). A numerical comparison with the Ceplecha analytical meteoroid orbit determination method. Meteoritics & Planetary Science, 46(8), pp. 1217

  6. A new method of discovering new meteor showers from the IMO single-station video meteor database

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It has been found that unknown meteor showers could be efficiently discovered from the single station video meteor database of the International Meteor Organization(IMO) by assuming the geocentric velocity and adjusting it within the dynamically permitted range. The mean geocentric velocities of new meteor showers can be obtained,as well as the coordinates of the radiants. The activity period and maximum time can also be obtained if there are sufficient shower meteors. All single station video meteor observations between February 13 and 17(from 2000 to 2005) in IMO’s database are processed with this method. As a result,two new meteor showers,one near RA=245.10°,Dec=41.82° in Hercules and the other near RA=233.03°,Dec=17.04° in Serpenids,are discovered. Some dynamical characteristics of the new meteor showers are also determined. Considering the random nature on the selection of period in this work,it is expected that there are some more potential new meteor showers in IMO’s video database.

  7. Degradation of Victoria Crater, Mars

    Science.gov (United States)

    Wilson, Sharon A.; Grant, John A.; Cohen, Barbara A.; Golombek, Mathew P.; Geissler, Paul E.; Sullivan, Robert J.; Kirk, Randolph L.; Parker, Timothy J.

    2008-01-01

    The $\\sim$750 m diameter and $\\sim$75 m deep Victoria crater in Meridiani Planum, Mars, presents evidence for significant degradation including a low, serrated, raised rim characterized by alternating alcoves and promontories, a surrounding low relief annulus, and a floor partially covered by dunes. The amount and processes of degradation responsible for the modified appearance of Victoria crater were evaluated using images obtained in situ by the Mars Exploration Rover Opportunity in concert with a digital elevation model created using orbital HiRISE images. Opportunity traversed along the north and northwest rim and annulus, but sufficiently characterized features visible in the DEM to enable detailed measurements of rim relief, ejecta thickness, and wall slopes around the entire degraded, primary impact structure. Victoria retains a 5 m raised rim consisting of 1-2 m of uplifted rocks overlain by 3 m of ejecta at the rim crest. The rim is $\\sim$120 to 220 m wide and is surrounded by a dark annulus reaching an average of 590 m beyond the raised rim. Comparison between observed morphology and that expected for pristine craters 500 to 750 m across indicate the original, pristine crater was close to 600 m in diameter. Hence, the crater has been erosionally widened by approximately 150 m and infilled by about 50 m of sediments. Eolian processes are responsible for modification at Victoria, but lesser contributions from mass wasting or other processes cannot be ruled out. Erosion by prevailing winds is most significant along the exposed rim and upper walls and accounts for $\\sim$50 m widening across a WNW-ESE diameter. The volume of material eroded from the crater walls and rim is $\\sim$20% less than the volume of sediments partially filling the crater, indicating eolian infilling from sources outside the crater over time. The annulus formed when $\\sim$1 m deflation of the ejecta created a lag of more resistant hematite spherules that trapped darker, regional

  8. Geology of Lofn Crater, Callisto

    Science.gov (United States)

    Greeley, Ronald; Heiner, Sarah; Klemaszewski, James E.

    2001-01-01

    Lofn crater is a 180-km-diameter impact structure in the southern cratered plains of Callisto and is among the youngest features seen on the surface. The Lofn area was imaged by the Galileo spacecraft at regional-scale resolutions (875 m/pixel), which enable the general geology to be investigated. The morphology of Lofn crater suggests that (1) it is a class of impact structure intermediate between complex craters and palimpsests or (2) it formed by the impact of a projectile which fragmented before reaching the surface, resulting in a shallow crater (even for Callisto). The asymmetric pattern of the rim and ejecta deposits suggests that the impactor entered at a low angle from the northwest. The albedo and other characteristics of the ejecta deposits from Lofn also provide insight into the properties of the icy lithosphere and subsurface configuration at the time of impact. The "target" for the Lofn impact is inferred to have included layered materials associated with the Adlinda multiring structure northwest of Loh and ejecta deposits from the Heimdall crater area to the southeast. The Lofn impact might have penetrated through these materials into a viscous substrate of ductile ice or possibly liquid water. This interpretation is consistent with models of the current interior of Callisto based on geophysical information obtained from the Galileo spacecraft.

  9. Distant Secondary Craters from Lyot Crater, Mars, and Implications for Ages of Planetary Bodies

    Science.gov (United States)

    Robbins, S. J.; Hynek, B. M.

    2011-03-01

    We identified thousands of secondary craters in distinct clusters up to 5200 km from their primary crater, Lyot, on Mars. Their properties, relation to Lyot, and broader implications to secondary cratering and planetary ages will be discussed.

  10. Meteor trails observed by the Sloan Digital Sky Survey

    Science.gov (United States)

    Cikota, A.; Bektešević, D.; Cikota, S.; Weaver, B.; Jevremović, D.; Vinković, D.

    2014-07-01

    Scientific observation of meteors is not simple because they have large angular size and random appearance in time and position on the sky. Bright meteors can be easily observed by naked eye or by video cameras in low resolution, but the luminosity distribution of meteors at their fainter end, the actual column diameter of the radiating zone, meteor fragmentation and the microstructure of lightcurves (especially when a meteor is detected through several color filters, as it happened in SDSS) is not well investigated. However, wide-field surveys, such as SDSS or the future LSST, with long time coverage over a significant fraction of sky might be helpful in collecting a scientifically relevant sample of low-brightness meteors. We used a custom designed Python script to detect linear features in SDSS images. The detection is performed in two steps: 1) we detect stars with Source Extractor [1] and blend them out; 2) we define a threshold so as to analyze 10000 points over the threshold; 3) we apply RANSAC [2] to detect points forming a line. We detected trails in over 15000 calibrated and sky-subtracted ''frame'' images in two filters so far. The drift scan in imaging survey mode of SDSS enables simple distinction between "apparently fast" meteors and other "slow" linear features caused by satellites and space debris, so that around 4000 frames could be eliminated as obvious satellites. Here we discuss the detection method, show some interesting preliminary results of the analysis of detected meteors, and discuss implications for other surveys.

  11. On the interaction of radio waves with meteoric plasma

    OpenAIRE

    Foschini, Luigi

    1998-01-01

    In this paper, a meteoric plasma is analyzed from a physical viewpoint, with particular emphasis on its interaction with radio waves. The attention is drawn to some macroscopic characteristics of a meteoric plasma and it is shown that the electron-ion collision frequency is not negligible, as commonly thought.

  12. THE RETURN OF THE ANDROMEDIDS METEOR SHOWER

    Energy Technology Data Exchange (ETDEWEB)

    Wiegert, Paul A.; Brown, Peter G.; Weryk, Robert J.; Wong, Daniel K., E-mail: pwiegert@uwo.ca [Department of Physics and Astronomy, University of Western Ontario, London N6A3K7 (Canada)

    2013-03-15

    The Andromedid meteor shower underwent spectacular outbursts in 1872 and 1885, producing thousands of visual meteors per hour and described as ''stars fell like rain'' in Chinese records of the time. The shower originates from comet 3D/Biela whose disintegration in the mid-1800's is linked to the outbursts, but the shower has been weak or absent since the late 19th century. This shower returned in 2011 December with a zenithal hourly rate of approximately 50, the strongest return in over a hundred years. Some 122 probable Andromedid orbits were detected by the Canadian Meteor Orbit Radar while one possible brighter Andromedid member was detected by the Southern Ontario Meteor Network and several single station possible Andromedids by the Canadian Automated Meteor Observatory. The shower outburst occurred during 2011 December 3-5. The radiant at R.A. +18 Degree-Sign and decl. +56 Degree-Sign is typical of the ''classical'' Andromedids of the early 1800s, whose radiant was actually in Cassiopeia. Numerical simulations of the shower were necessary to identify it with the Andromedids, as the observed radiant differs markedly from the current radiant associated with that shower. The shower's orbital elements indicate that the material involved was released before 3D/Biela's breakup prior to 1846. The observed shower in 2011 had a slow geocentric speed (V{sub G} = 16 km s{sup -1}) and was comprised of small particles: the mean measured mass from the radar is {approx}5 Multiplication-Sign 10{sup -7} kg, corresponding to radii of 0.5 mm at a bulk density of 1000 kg m{sup -3}. Numerical simulations of the parent comet indicate that the meteoroids of the 2011 return of the Andromedids shower were primarily ejected during 3D/Biela's 1649 perihelion passage. The orbital characteristics, radiant, and timing as well as the absence of large particles in the streamlet are all broadly consistent with simulations. However

  13. First results on video meteors from Crete, Greece

    Science.gov (United States)

    Maravelias, G.

    2012-01-01

    This work presents the first systematic video meteor observations from a, forthcoming permanent, station in Crete, Greece, operating as the first official node within the International Meteor Organization's Video Network. It consists of a Watec 902 H2 Ultimate camera equipped with a Panasonic WV-LA1208 (focal length 12mm, f/0.8) lens running MetRec. The system operated for 42 nights during 2011 (August 19-December 30, 2011) recording 1905 meteors. It is significantly more performant than a previous system used by the author during the Perseids 2010 (DMK camera 21AF04.AS by The Imaging Source, CCTV lens of focal length 2.8 mm, UFO Capture v2.22), which operated for 17 nights (August 4-22, 2010) recording 32 meteors. Differences - according to the author's experience - between the two softwares (MetRec, UFO Capture) are discussed along with a small guide to video meteor hardware.

  14. 'Lyell' Panorama inside Victoria Crater

    Science.gov (United States)

    2008-01-01

    During four months prior to the fourth anniversary of its landing on Mars, NASA's Mars Exploration Rover Opportunity examined rocks inside an alcove called 'Duck Bay' in the western portion of Victoria Crater. The main body of the crater appears in the upper right of this stereo panorama, with the far side of the crater lying about 800 meters (half a mile) away. Bracketing that part of the view are two promontories on the crater's rim at either side of Duck Bay. They are 'Cape Verde,' about 6 meters (20 feet) tall, on the left, and 'Cabo Frio,' about 15 meters (50 feet) tall, on the right. The rest of the image, other than sky and portions of the rover, is ground within Duck Bay. Opportunity's targets of study during the last quarter of 2007 were rock layers within a band exposed around the interior of the crater, about 6 meters (20 feet) from the rim. Bright rocks within the band are visible in the foreground of the panorama. The rover science team assigned informal names to three subdivisions of the band: 'Steno,' 'Smith,' and 'Lyell.' This view combines many images taken by Opportunity's panoramic camera (Pancam) from the 1,332nd through 1,379th Martian days, or sols, of the mission (Oct. 23 to Dec. 11, 2007). Images taken through Pancam filters centered on wavelengths of 753 nanometers, 535 nanometers and 432 nanometers were mixed to produce an approximately true-color panorama. Some visible patterns in dark and light tones are the result of combining frames that were affected by dust on the front sapphire window of the rover's camera. Opportunity landed on Jan. 25, 2004, Universal Time, (Jan. 24, Pacific Time) inside a much smaller crater about 6 kilometers (4 miles) north of Victoria Crater, to begin a surface mission designed to last 3 months and drive about 600 meters (0.4 mile).

  15. Ultraviolet spectroscopy of meteoric debris of comets

    International Nuclear Information System (INIS)

    It is proposed to carry out slitless spectroscopy at ultraviolet wavelengths from orbit of meteoric debris associated with comets. The Eta Aquarid and Orionid/Halley and the Perseid/1962 862 Swift-Tuttle showers would be principal targets. Low light level, ultraviolet video technique will be used during night side of the orbit in a wide field, earthward viewing mode. Data will be stored in compact video cassette recorders. The experiment may be configured as a GAS package or in the HITCHHIKER mode. The latter would allow flexible pointing capability beyond that offered by shuttle orientation of the GAS package, and doubling of the data record. The 1100 to 3200 A spectral region should show emissions of atomic, ionic, and molecular species of interest on cometary and solar system studies

  16. Stability of nuclear crater slopes in rock

    International Nuclear Information System (INIS)

    The United States Army Engineer Nuclear Cratering Group was established in 1962 to participate with the Atomic Energy Commission in a joint research and development program to develop nuclear engineering and construction technology. A major part of this research effort has been devoted to studies of the engineering properties of craters. The program to date has included field investigations of crater properties in various media over a broad range of chemical and nuclear explosive yields, studies of man-made and natural slopes, and studies directed toward the development of analytical and empirical methods of crater stability analysis. From this background, a general understanding has been developed of the effects of a cratering explosion on the surrounding medium and of physical nature of the various crater zones which are produced. The stability of nuclear crater slopes has been a subject of prime interest in the feasibility study being conducted for an Atlantic-Pacific sea-level canal. Based on experimental evidence assembled to date, nuclear crater slopes in dry dock and dry alluvium have an initially stable configuration. There have been five nuclear craters produced to date with yields of 0.4 kt or more on which observations are based and the initial configurations of these craters have remained stable for over seven years. The medium, yield, crater dimensions, and date of event for these craters are summarized. It is interesting to note that the Sedan Crater has been subjected to strong seismic motions from nearby detonations without adverse effects

  17. METEOR v1.0 - A usage example

    International Nuclear Information System (INIS)

    This script describes a detailed example of the use of the software package METEOR for statistical analysis of meteorological data series. A real spanish meteorological data set is chosen to show the capabilities of METEOR. Output files and resultant plots provided of their interpretations are compiled in three appendixes. The original version of METEOR have been developed by Ph. D.Elena Palomo, CIEMAT-IER, GIASE. It is built by linking programs and routines written in FORTRAN 77 and it adds the graphical capabilities of GNUPLOT. The shape of this toolbox was designed following the criteria of modularity, flexibility and agility criteria. All the input, output and analysis options are structured in three main menus: i) the first is aimed to evaluate the quality of the data set; ii) the second is aimed for pre-processing of the data; and iii) the third is aimed towards the statistical analyses and for creating the graphical outputs. Actually the information about METEOR is constituted by three documents written is spanish: 1) METEOR v1.0: User's guide; 2) METEOR v1.0: A usage example; 3) METEOR v1 .0: Design and structure of the software package. (Author)

  18. eMeteorNews: website and PDF journal

    Science.gov (United States)

    Roggemans, P.; Kacerek, R.; Koukal, J.; Miskotte, K.; Piffl, R.

    2016-01-01

    Amateur meteor workers have always been interested to exchange information and experience. In the past this was only possible via personal contacts by letter or by specialized journals. With internet a much faster medium became available and plenty of websites, mailing lists, Facebook groups, etc., have been created in order to communicate about meteors. Today there is a wealth of meteor data circulating on internet, but the information is very scattered and not directly available to everyone. The authors have been considering how to organize an easy access to the many different meteor related publications. The best solution for the current needs of amateur meteor observers proved to be a dedicated website combined with a PDF journal, both being free available without any subscription fee or registration requirement. The authors decided to start with this project and in March 2016 the website meteornews.org has been created. A first issue of eMeteorNews was prepared in April 2016. The year 2016 will be a test period for this project. The mission statement of this project is: "Minimizing overhead and editorial constraints to assure a swift exchange of information dedicated to all fields of active amateur meteor work."

  19. Meteor stream survey in the southern hemisphere using SAAMER

    Science.gov (United States)

    Janches, D.; da Silva, D.; Pifko, S.; Hormaechea, J.; Hocking, W.; Brunini, C.; Close, S.; Fritts, D.

    2014-07-01

    We present in this manuscript two meteor shower surveys in the Southern Hemisphere utilizing the Southern Argentina Agile Meteor Radar (SAAMER). SAAMER, which operates at the southern most region of South America, is a new generation SKiYMET system designed with significant differences from typical meteor radars including high transmitted power and an 8-antenna transmitting array enabling large detected rates at low zenith angles. For the first survey, we applied the statistical methodology developed by Jones and Jones (2006) to the data collected each day during 4 years and compiled the results into 1 composite representative year at 1-degree resolution in Solar Longitude. We then search for enhancements in the activity, which last for at least 3 days and evolve temporally as is expected for a meteor shower. Using this methodology, we have identified in our data 32 shower radiants, two of which were not part of the IAU commission 22 meteor shower working list (Janches et al., 2014). Recently, SAAMER's capabilities were enhanced by adding two remote stations to receive meteor forward scatter signals from meteor trails and thus enable the determination of meteoroid orbital parameters. SAAMER started recording orbits in January 2012. We also present a 1-year survey using a wavelet-transform approach (Galligan and Baggaley, 2002ab; Brown et al., 2008) of this new orbital dataset to isolate enhancements in radiant density in geocentric coordinates resulting in not only radiant information but shower orbital properties.

  20. Multilayer detection and classification of specular and nonspecular meteor trails

    Science.gov (United States)

    Zhao, Siming; Urbina, Julio; Dyrud, Lars; Seal, Ryan

    2011-12-01

    Meteor radar data are continuously collected by different radar systems that operate throughout the year. Analyzing this fast growing, large data set requires efficient and reliable detection routines. Currently most meteor echo routines search for underdense meteor trails, often discarding overdense and nonspecular meteor trails. This is because their main purpose is the study of mesospheric winds. But the study of meteor flux requires the unique identification of each type of meteor reflections. In this paper, a multilayer radar detection and classification algorithm is proposed to correctly identify multiple types of meteor trail reflections. The process consists of two steps. The first step is based on the time-frequency waveform detector. In this step, we start by selecting low signal-to-noise ratio (SNR) values in order to detect all types of radar echoes; however, a high probability offalse alarm is often produced. In the second step, several features from the detected echoes in step one are extracted and a support vector machine (SVM) classifier is constructed to further classify these echoes. The algorithm was tested using data collected from a 50-MHz radar stationed near Salinas, Puerto Rico, on April 5, 1998. A total of 270 detected echoes were labeled as underdense, overdense, nonspecular, other ionospheric echoes, and noise. We used 50% of the labeled echoes as training samples and divided the rest 50% testing samples as 10 subsets for testing. This technique successfully classified about 85% of the testing samples. Details concerning implementation, feature extraction, and data visualization are presented and discussed.

  1. Venus - Lavinia Region Impact Craters

    Science.gov (United States)

    1990-01-01

    Three large meteorite impact craters, with diameters that range from 37 to 50 kilometers (23 to 31 miles), are seen in this image of the Lavinia region of Venus. The image is centered at 27 degrees south latitude and 339 degrees east longitude (longitude on Venus is measured from 0 degrees to 360 degrees east), and covers an area 550 kilometers (342 miles) wide by about 500 kilometers (311 miles) long. Situated in a region of fractured plains, the craters show many features typical of meteorite impact craters, including rough (bright) material around the rim, terraced inner walls and central peaks. Numerous domes, probably caused by volcanic activity, are seen in the southeastern corner of the mosaic. The domes range in diameter from 1 to 12 kilometers (0.6 to 7 miles). Some of the domes have central pits that are typical of some types of volcanoes. North is at the top of the image.

  2. How old is Autolycus crater?

    Science.gov (United States)

    Hiesinger, Harald; Pasckert, Jan Henrik; van der Bogert, Carolyn H.; Robinson, Mark S.

    2016-04-01

    Accurately determining the lunar cratering chronology is prerequisite for deriving absolute model ages (AMAs) across the lunar surface and throughout the Solar System [e.g., 1]. However, the lunar chronology is only constrained by a few data points over the last 1 Ga and there are no calibration data available between 1 and 3 Ga and beyond 3.9 Ga [2]. Rays from Autolycus and Aristillus cross the Apollo 15 landing site and presumably transported material to this location [3]. [4] proposed that at the Apollo 15 landing site about 32% of any exotic material would come from Autolycus crater and 25% would come from Aristillus crater. [5,6] proposed that the 39Ar-40Ar age of 2.1 Ga derived from three petrologically distinct, shocked Apollo 15 KREEP basalt samples, date Autolycus crater. Grier et al. [7] reported that the optical maturity (OMAT) characteristics of these craters are indistinguishable from the background values despite the fact that both craters exhibit rays that were used to infer relatively young, i.e., Copernican ages [8,9]. Thus, both OMAT characteristics and radiometric ages of 2.1 Ga and 1.29 Ga for Autolycus and Aristillus, respectively, suggest that these two craters are not Copernican in age. [10] interpreted newer U-Pb ages of 1.4 and 1.9 Ga from sample 15405 as the formation ages of Aristillus and Autolycus. If Autolycus is indeed the source of the dated exotic material collected at the Apollo 15 landing site, than performing crater size frequency distribution (CSFD) measurements for Autolycus offers the possibility to add a new calibration point to the lunar chronology, particularly in an age range that was previously unconstrained. We used calibrated and map-projected LRO NAC images to perform CSFD measurements within ArcGIS, using CraterTools [11]. CSFDs were then plotted with CraterStats [12], using the production and chronology functions of [13]. We determined ages of 3.72 and 3.85 Ga for the interior (Ai1) and ejecta area Ae3, which we

  3. STRAWBERRY CRATER ROADLESS AREAS, ARIZONA.

    Science.gov (United States)

    Wolfe, Edward W.; Light, Thomas D.

    1984-01-01

    The results of a mineral survey conducted in the Strawberry Crater Roadless Areas, Arizona, indicate little promise for the occurrence of metallic mineral or fossil fuel resources in the area. The area contains deposits of cinder, useful for the production of aggregate block, and for deposits of decorative stone; however, similar deposits occur in great abundance throughout the San Francisco volcanic field outside the roadless areas. There is a possibility that the Strawberry Crater Roadless Areas may overlie part of a crustal magma chamber or still warm pluton related to the San Francisco Mountain stratovolcano or to basaltic vents of late Pleistocene or Holocene age. Such a magma chamber or pluton beneath the Strawberry Crater Roadless Areas might be an energy source from which a hot-, dry-rock geothermal energy system could be developed, and a probable geothermal resource potential is therefore assigned to these areas. 9 refs.

  4. Degradation of Endeavour Crater, Mars

    Science.gov (United States)

    Grant, J. A.; Crumpler, L. S.; Parker, T. J.; Golombek, M. P.; Wilson, S. A.; Mittlefehldt, D. W.

    2015-01-01

    The Opportunity rover has traversed portions of two western rim segments of Endeavour, a 22 km-diameter crater in Meridiani Planum, for the past three years. The resultant data enables the evaluation of the geologic expression and degradation state of the crater. Endeavour is Noa-chian-aged, complex in morphology, and originally may have appeared broadly similar to the more pristine 20.5 km-diameter Santa Fe complex crater in Lunae Palus (19.5degN, 312.0degE). By contrast, Endeavour is considerably subdued and largely buried by younger sulfate-rich plains. Exposed rim segments dubbed Cape York (CY) and Solander Point/Murray Ridge/Pillinger Point (MR) located approximately1500 m to the south reveal breccias interpreted as remnants of the ejecta deposit, dubbed the Shoemaker Formation. At CY, the Shoemaker Formation overlies the pre-impact rocks, dubbed the Matijevic Formation.

  5. Particle-based ablation model for faint meteors

    Science.gov (United States)

    Stokan, E.; Campbell-Brown, M.

    2014-07-01

    Modeling the ablation of meteoroids as they enter the atmosphere is a way of determining their physical structure and elemental composition. This can provide insight into the structure of parent bodies when combined with an orbit computed from observations. The Canadian Automated Meteor Observatory (CAMO) is a source of new, high-resolution observations of faint meteors [1]. These faint objects tend to have pre-atmospheric masses around 10^{-5} kg, corresponding to a radius of 1 mm. A wide-field camera with a 28° field of view provides guidance to a high-resolution camera that tracks meteors in flight with 1.5° field of view. Meteors are recorded with a scale of 4 m per pixel at a range of 135 km, at 110 frames per second, allowing us to investigate detailed meteor morphology. This serves as an important new constraint for ablation models, in addition to meteor brightness (lightcurves) and meteoroid deceleration. High-resolution observations of faint meteors have revealed that contemporary ablation models are not able to predict meteor morphology, even while matching the observed lightcurve and meteoroid deceleration [2]. This implies that other physical processes, in addition to fragmentation, must be considered for faint meteor ablation. We present a new, particle-based approach to modeling the ablation of small meteoroids. In this model, we simulate the collisions between atmospheric particles and the meteoroid to determine the rate of evaporation and deceleration. Subsequent collisions simulated between evaporated meteoroid particles and ambient atmospheric particles then produce light that would be observed by high-resolution cameras. Preliminary results show simultaneous agreement with meteor morphology, lightcurves, and decelerations recorded with CAMO. A sample comparison of simulated and observed meteor morphology is given in the attached figure. Several meteoroids are well-represented as solid, stony bodies, but some require modeling as a dustball [3

  6. Portable Radio System for Automated Meteor Activity Recording

    Science.gov (United States)

    Martinez Picar, Antonio

    2010-08-01

    Radio waves that collide with trails of ionized particles generated by the meteoroid entering the Earth's atmosphere undergo a process of electromagnetic scattering. The forward scatter mechanism (or oblique scattering) explains how these meteor trails can be used to establish longrange communication links. This paper describes the design and setup of a portable device that, based on this propagation mechanism, allows the automatic registration of meteor activity from the most appropriate observing location. The results show the feasibility of the system for detecting, recording and adequate storage of the necessary parameters in the study of meteor streams.

  7. Floor-fractured impact craters on Venus: Implications for igneous crater modification and local mechanism

    Science.gov (United States)

    Wichman, R. W.; Schultz, P. H.

    1995-02-01

    Regional tectonism and volcanism affect crater modification and crater loss on Venus, but a comparison of Venusian craters to lunar floor-fractured craters suggest that a third style of more localized, crater-controlled magmatism also may occur on Venus. Based on lunar models for such magmatism, Venusian crustal conditions should generally favor crater-filling volcanism over crater-centered floor fracturing. Nevertheless, three craters on Venus strongly resemble extensively modified craters on the Moon where deformation can be attributed to failure over large crater-centered intrusions. Models for crater modification over igneous intrusions indicate typical magmatic pressure beneath these three craters of approximately 200-300 bars and intrusion depths of the order of 1-6 km. All three craters also share common settings and low elevations, whereas craters embayed by regional volcanism preferentially occur at much higher elevations on Venus. We suggest that the style of igneous crater modification on Venus thus may be elevation dependent, with crater-centered intrusions primarily occurring at low elevations on Venus. This interpretation is consistent with theoretically predicted variations in magmatic neutral buoyancy depth as a function of atmospheric pressure suggested by other authors.

  8. METEOR v1.0 - A usage example; METEOR v1.0 - Un ejemplo de uso

    Energy Technology Data Exchange (ETDEWEB)

    Palomo, E.

    1994-07-01

    This script describes a detailed example of the use of the software package METEOR for statistical analysis of meteorological data series. A real spanish meteorological data set is chosen to show the capabilities of METEOR. Output files and resultant plots provided of their interpretations are compiled in three appendixes. The original version of METEOR have been developed by Ph. D.Elena Palomo, CIEMAT-IER, GIASE. It is built by linking programs and routines written in FORTRAN 77 and it adds the graphical capabilities of GNUPLOT. The shape of this toolbox was designed following the criteria of modularity, flexibility and agility criteria. All the input, output and analysis options are structured in three main menus: i) the first is aimed to evaluate the quality of the data set; ii) the second is aimed for pre-processing of the data; and iii) the third is aimed towards the statistical analyses and for creating the graphical outputs. Actually the information about METEOR is constituted by three documents written is spanish: 1) METEOR v1.0: User's guide; 2) METEOR v1.0: A usage example; 3) METEOR v1 .0: Design and structure of the software package. (Author)

  9. Radio and Meteor Science Outcomes From Comparisons of Meteor Radar Observations at AMISR Poker Flat, Sondrestrom, and Arecibo

    Science.gov (United States)

    Mathews, J. D.; Briczinski, S. J.; Meisel, D. D.; Heinselman, C. J.

    2008-06-01

    Radio science and meteor physics issues regarding meteor “head-echo” observations with high power, large aperture (HPLA) radars, include the frequency and latitude dependency of the observed meteor altitude, speed, and deceleration distributions. We address these issues via the first ever use and analysis of meteor observations from the Poker Flat AMISR (PFISR: 449.3 MHz), Sondrestrom (SRF: 1,290 MHz), and Arecibo (AO: 430 MHz) radars. The PFISR and SRF radars are located near the Arctic Circle while AO is in the tropics. The meteors observed at each radar were detected and analyzed using the same automated FFT periodic micrometeor searching algorithm. Meteor parameters (event altitude, velocity, and deceleration distributions) from all three facilities are compared revealing a clearly defined altitude “ceiling effect” in the 1,290 MHz results relative to the 430/449.3 MHz results. This effect is even more striking in that the Arecibo and PFISR distributions are similar even though the two radars are over 2,000 times different in sensitivity and at very different latitudes, thus providing the first statistical evidence that HPLA meteor radar observations are dominated by the incident wavelength, regardless of the other radar parameters. We also offer insights into the meteoroid fragmentation and “terminal” process.

  10. The self-secondary crater population of the Hokusai crater on Mercury

    Science.gov (United States)

    Xiao, Zhiyong; Prieur, Nils C.; Werner, Stephanie C.

    2016-07-01

    Whether or not self-secondaries dominate small crater populations on continuous ejecta deposits and floors of fresh impact craters has long been a controversy. This issue potentially affects the age determination technique using crater statistics. Here the self-secondary crater population on the continuous ejecta deposits of the Hokusai crater on Mercury is unambiguously recognized. Superposition relationships show that this population was emplaced after both the ballistic sedimentation of excavation flows and the subsequent veneering of impact melt, but it predated the settlement and solidification of melt pools on the crater floor. Fragments that formed self-secondaries were launched via impact spallation with large angles. Complex craters on the Moon, Mercury, and Mars probably all have formed self-secondaries populations. Dating young craters using crater statistics on their continuous ejecta deposits can be misleading. Impact melt pools are less affected by self-secondaries. Overprint by subsequent crater populations with time reduces the predominance of self-secondaries.

  11. Characteristics of Polygonal Craters on (1) Ceres

    Science.gov (United States)

    Otto, Katharina A.; Jaumann, Ralf; Krohn, Katrin; Buczkowski, Debra L.; von der Gathen, Isabel; Kersten, Elke; Mest, Scott C.; Naß, Andrea; Neesemann, Adrian; Preusker, Frank; Roatsch, Thomas; Schröder, Stefan E.; Schulzeck, Fanziska; Scully, Jennifer E. C.; Stephan, Katrin; Wagner, Roland; Williams, David A.; Raymond, Carol A.; Russell, Chistopher T.

    2016-04-01

    The Dawn spacecraft arrived at Ceres in March 2015. There, the on-board Framing Camera (FC) collects image data with a resolution of up to 35 m/pixel, which reveal a large variety of impact crater morphologies including polygonal craters. Polygonal craters show straight rim sections aligned to form an angular shape. They are commonly associated with fractures in the target material, which may be preserved as linear structures on Ceres [3, 4]. On Ceres, we find polygonal craters with a size ranging between 5 km and 280 km in diameter. However, the majority of polygonal craters have diameters ranging between 10 km and 50 km diameter. A preferential hexagonal shape is observed and some polygonal craters exhibit central peaks or relaxed crater floors. On average there are eight to ten polygonal craters per 100,000 km², however the northern latitudes have a slightly higher and the southern latitudes a slightly lower polygonal crater density. This may hint at an older and younger age of the northern (> 60° N) and southern regions (> 60° S) compared to the mid latitudes, respectively. Alternatively, the relaxation of craters may be advanced in the mid latitudes which are generally warmer than the poles and thus support the relaxation of depressions. Also, the southern region harbors relatively large craters which may have altered or destroyed preexisting structures in the crust which are necessary for the formation of polygonal craters. Most polygonal craters have six or seven straight rim sections; however, there is a tendency for fewer edges with decreasing crater size. Although this observation may be biased due to the map resolution, it is also possible that the impactor creating a relatively small polygonal crater embeds less energy and thus forms the straight rim sections during the excavation stage. This may result in fewer straight rim sections compared to more energetic impactors which form their polygonal shape during the modification stage. Straight rim

  12. A passive FPAA based RF scatter meteor detector

    CERN Document Server

    Popowicz, Adam; Bernacki, Krzysztof; Fietkiewicz, Karol

    2015-01-01

    In the article we present a hardware meteor detector. The detection principle is based on the electromagnetic wave reflection from the ionized meteor trail in the atmosphere. The detector uses the ANADIGM field programmable analogue array (FPAA), which is an attractive alternative for a typically used detecting equipment - a PC computer with dedicated software. We implement an analog signal path using most of available FPAA resources to obtain precise audio signal detection. Our new detector was verified in collaboration with the Polish Fireball Network - the organization which monitors meteor activity in Poland. When compared with currently used signal processing PC software employing real radio meteor scatter signals, our low-cost detector proved to be more precise and reliable. Due to its cost and efficiency superiority over the current solution, the presented module is going to be implemented in the planned distributed detectors system.

  13. Reconstructing the orbit of the Chelyabinsk meteor using satellite observations

    DEFF Research Database (Denmark)

    Proud, Simon Richard

    2013-01-01

    The large number of objects in a range of orbits around the Sun means that some will inevitably intersect the Earth, becoming a meteor. These objects are commonly comet fragments or asteroids. To determine the type of a particular meteor requires knowledge of its trajectory and orbital path that is...... typically estimated by using ground-based observations such as images or radar measurements. A lack of data can, however, make this difficult and create large uncertainties in the reconstructed orbit. Here I show a new method for estimating a meteor's trajectory, and hence allowing computation of the orbit......, based upon measurements from satellite sensors. The meteor that fell on 15 February 2013 is used as an example and the resulting orbit is in broad agreement with estimates from other observations. This new technique represents an alternative method for trajectory determination that may be particularly...

  14. The 2014 KCG Meteor Outburst: Clues to a Parent Body

    Czech Academy of Sciences Publication Activity Database

    Moorhead, A.V.; Brown, P. G.; Spurný, Pavel; Cooke, W.; Shrbený, Lukáš

    2015-01-01

    Roč. 150, č. 4 (2015), 122/1-122/13. ISSN 0004-6256 Institutional support: RVO:67985815 Keywords : meteorites * meteors * meteoroids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.024, year: 2014

  15. Improving Photometric Calibration of Meteor Video Camera Systems

    Science.gov (United States)

    Ehlert, Steven; Kingery, Aaron; Cooke, William

    2016-01-01

    Current optical observations of meteors are commonly limited by systematic uncertainties in photometric calibration at the level of approximately 0.5 mag or higher. Future improvements to meteor ablation models, luminous efficiency models, or emission spectra will hinge on new camera systems and techniques that significantly reduce calibration uncertainties and can reliably perform absolute photometric measurements of meteors. In this talk we discuss the algorithms and tests that NASA's Meteoroid Environment Office (MEO) has developed to better calibrate photometric measurements for the existing All-Sky and Wide-Field video camera networks as well as for a newly deployed four-camera system for measuring meteor colors in Johnson-Cousins BV RI filters. In particular we will emphasize how the MEO has been able to address two long-standing concerns with the traditional procedure, discussed in more detail below.

  16. Confirmation and characterization of IAU temporary meteor showers in EDMOND database

    OpenAIRE

    Kornoš, L.; Matlovič, P.; Rudawska, R.; Tóth, J.; Hajduková, M.; Koukal, J.; Piffl, R.

    2014-01-01

    The European viDeo MeteOr Network Database (EDMOND) is a database of video meteor orbits resulting from cooperation and data sharing among several European national networks and the International Meteor Organization Video Meteor Network, IMO VMN. At present, the 4th version of the EDMOND database, which contains 83 369 video meteor orbits, has been released. The first results of the database analysis, in which we studied minor streams, are presented. Using the radiant-geocentric velocity meth...

  17. Small crater populations on Vesta

    CERN Document Server

    Marchi, S; O'Brien, D P; Schenk, P; Mottola, S; De Sanctis, M C; Kring, D A; Williams, D A; Raymond, C A; Russell, C T

    2013-01-01

    The NASA Dawn mission has extensively examined the surface of asteroid Vesta, the second most massive body in the main belt. The high quality of the gathered data provides us with an unique opportunity to determine the surface and internal properties of one of the most important and intriguing main belt asteroids (MBAs). In this paper, we focus on the size frequency distributions (SFDs) of sub-kilometer impact craters observed at high spatial resolution on several selected young terrains on Vesta. These small crater populations offer an excellent opportunity to determine the nature of their asteroidal precursors (namely MBAs) at sizes that are not directly observable from ground-based telescopes (i.e., below ~100 m diameter). Moreover, unlike many other MBA surfaces observed by spacecraft thus far, the young terrains examined had crater spatial densities that were far from empirical saturation. Overall, we find that the cumulative power-law index (slope) of small crater SFDs on Vesta is fairly consistent with...

  18. Stratigraphy of the crater Copernicus

    Science.gov (United States)

    Paquette, R.

    1984-01-01

    The stratigraphy of copernicus based on its olivine absorption bands is presented. Earth based spectral data are used to develop models that also employ cratering mechanics to devise theories for Copernican geomorphology. General geologic information, spectral information, upper and lower stratigraphic units and a chart for model comparison are included in the stratigraphic analysis.

  19. A chemical model of meteoric ablation

    Directory of Open Access Journals (Sweden)

    T. Vondrak

    2008-07-01

    Full Text Available Most of the extraterrestrial dust entering the Earth's atmosphere ablates to produce metal vapours, which have significant effects on the aeronomy of the upper mesosphere and lower thermosphere. A new Chemical Ablation Model (CAMOD is described which treats the physics and chemistry of ablation, by including the following processes: sputtering by inelastic collisions with air molecules before the meteoroid melts; evaporation of atoms and oxides from the molten particle; diffusion-controlled migration of the volatile constituents (Na and K through the molten particle; and impact ionization of the ablated fragments by hyperthermal collisions with air molecules. Evaporation is based on thermodynamic equilibrium in the molten meteoroid (treated as a melt of metal oxides, and between the particle and surrounding vapour phase. The loss rate of each element is then determined assuming Langmuir evaporation. CAMOD successfully predicts the meteor head echo appearance heights, observed from incoherent scatter radars, over a wide range of meteoroid velocities. The model also confirms that differential ablation explains common-volume lidar observations of K, Ca and Ca+ in fresh meteor trails. CAMOD is then used to calculate the injection rates into the atmosphere of a variety of elements as a function of altitude, integrated over the meteoroid mass and velocity distributions. The most abundant elements (Fe, Mg and Si have peak injection rates around 85 km, with Na and K about 8 km higher. The more refractory element Ca ablates around 82 km with a Na:Ca ratio of 4:1, which does therefore not explain the depletion of atomic Ca to Na, by more than 2 orders of magnitude, in the upper mesosphere. Diffusion of the most volatile elements (Na and K does not appear to be rate-limiting except in the fastest meteoroids. Non-thermal sputtering causes ~35% mass loss from the fastest (~60–70 km s−1 and smallest (10−17–10

  20. Automatic Video System for Continues Monitoring of the Meteor Activity

    Czech Academy of Sciences Publication Activity Database

    Koten, Pavel; Fliegel, K.; Vítek, S.; Páta, P.

    2011-01-01

    Roč. 108, č. 1 (2011), s. 69-76. ISSN 0167-9295 R&D Projects: GA ČR GA205/09/1302 Grant ostatní: GA ČR(CZ) GAP102/10/1320 Institutional research plan: CEZ:AV0Z10030501 Keywords : meteor * meteor showers * instrumentation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.667, year: 2011

  1. Meteoric precipitations and slope instability in the mediterranean environment

    OpenAIRE

    Polemio, M.; CNR-IRPI, italy

    1993-01-01

    A long and intense international research activity has by now confirmed the basic role of atmospheric precipitations on the dynamics of landslides. This paper is within the framework of such an activity and describes how solid and liquid meteoric precipitations really affect landslides. A detailed study of the empirical hydrological methods aimed at the determination of exceptional meteoric events to be correlated with landslide is performed. Finally, based on the analysis of real cases occur...

  2. Results of the IMO Video Meteor Network - January 2016

    Science.gov (United States)

    Molau, S.; Crivello, S.; Goncalves, R.; Saraiva, C.; Stomeo, E.; Kac, J.

    2016-06-01

    The January 2016 report of IMO Video Meteor Network observations is presented, based on more than 9 000 hours of observations with almost 28 000 meteors recorded. The flux density profile is presented for the 2016 Quadrantids and compared to the profiles from the years 2011-2015. The flux density profile is also presented for the 2016 gamma-Ursae Minorids. Development of a new algorithm for the calculation of the limiting magnitude is presented.

  3. Optical observations of meteors in RI Nikolaev Astronomical Observatory

    Science.gov (United States)

    Shulga, Alexander; Sybiryakova, Yevgeniya; Kulichenko, Nikolay; Vovk, Vasyl

    2015-08-01

    Video observations of meteors at the RI NAO are conducted using meteor patrol, which includes 6 optical telescopes (4 lenses: f = 85 mm, f/1.8; 2 lenses: f = 100 mm, f/2.0) equipped with a TV CCD cameras WAT-902H2 (768×576, 8.6×8.3µ). The field of view of 4 telescopes is 3.2°×4.2° and 2.7°×3.6° for 2 telescopes. System doesn't have any intensifier. Each video system is contained in a hermetic capsule to prevent it from rain and other aggressive meteorological conditions. Cameras work in the interlace mode with rate 50 half-frames per second.During 2011-2014 4135 single station meteors were observed. The mean duration of observed meteor trajectories are in 0.05-0.6 s. Double station observation campaigns has been started in September 2013 and it is still working with baseline 11.8 km. During September 2013 - September 2014 total number of observed meteor trajectories was 1757. Number of double station meteors - 328. The mean accuracy of visible radiant determination is less than 0.5 arc sec, more than 80% of radiates have standard deviation less than 0.2 arc sec.

  4. Automated UHF radar observations of meteors with aeronomic applications

    Science.gov (United States)

    Briczinski, Stanley J., Jr.

    The micrometeor observations performed using the 430 MHz Arecibo Observatory radar have been crucial for the understanding of meteoric effects on the aeronomy of the upper atmosphere. Previous techniques using the Arecibo radar required manual confirmation of each event, followed by direct measurements of the parameters (i.e. altitudes, velocities and decelerations). A new periodic FFT searching algorithm, the meteor return signal detector (MRSD) has been developed and implemented, replacing previous (labor-intensive) visual verification. The MRSD shows an improvement over traditional searching routines by increasing the event detection rate by as much as 30% as well as significantly reducing the required analysis time. The new technique used to detect meteors as well as the measured parameters obtained from this method are presented. The meteor parameters obtained from the MRSD are presented. Mass distributions are obtained from momentum considerations. Previous mass distributions have assumed a constant meteoroid mass density of 3 gm/cm3. Using statistical interpretations of the parameters obtained from the MRSD, the meteoroid mass density has been revised to a constant mass density of 1 gm/cm 3. This new mass result represents the first analysis and revision of the meteoroid mass since large aperture radars began observing meteors in the early 1990s. In some cases meteors are observed that appear to catastrophically destruct within the beam. These meteors appear to undergo minor ablation of their volatile components before annihilation---the terminal event---that occurs in under 1 ms. As with essentially all observed meteoroids, the meteoroids that disappear in a terminal event appear to experience linear decelerations before their abrupt disappearance. This non-ablative mass deposition process may play an important role in the composition of the upper atmosphere as it apparently produces sub-micron-sized particles. The first statistical analyses of the terminal

  5. Blocky craters: implications about the lunar megaregolith

    International Nuclear Information System (INIS)

    Radar, infrared, and photogeologic properties of lunar craters have been studied to determine whether there is a systematic difference in blocky craters between the maria and terrae and whether this difference may be due to a deep megaregolith of pulverized material forming the terra surface, as opposed to a layer of semi-coherent basalt flows forming the mare surface. Some 1310 craters from about 4 to 100 km diameter have been catalogued as radar and/or infrared anomalies. In addition, a study of Apollo Orbital Photography confirmed that the radar and infrared anomalies are correlated with blocky rubble around the crater. Analysis of the radar and infrared data indicated systematic terra-mare differences. Fresh terra craters smaller than 12 km were less likely to be infrared and radar anomalies than comparable mare craters: but terra and mare craters larger than 12 km had similar infrared and radar signatures. Also, there are many terra craters which are radar bright but not infrared anomalies. The authors interpretation of these data is that while the maria are rock layers (basaltic flow units) where craters eject boulder fields, the terrae are covered by relatively pulverized megaregolith at least 2 km deep, where craters eject less rocky rubble. Blocky rubble, either in the form of actual rocks or partly consolidated blocks, contributes to the radar and infrared signatures of the crater. However, aging by impacts rapidly destroys these effects, possibly through burial by secondary debris or by disintegration of the blocks themselves, especially in terra regions. (Auth.)

  6. Low-emissivity impact craters on Venus

    Science.gov (United States)

    Weitz, C. M.; Elachi, C.; Moore, H. J.; Basilevsky, A. T.; Ivanov, B. A.; Schaber, G. G.

    1992-01-01

    An analysis of 144 impact craters on Venus has shown that 11 of these have floors with average emissivities lower than 0.8. The remaining craters have emissivities between 0.8 and 0.9, independent of the specific backscatter cross section of the crater floors. These 144 impact craters were chosen from a possible 164 craters with diameters greater than 30 km as identified by researchers for 89 percent of the surface of Venus. We have only looked at craters below 6053.5 km altitude because a mineralogical change causes high reflectivity/low emissivity above the altitude. We have also excluded all craters with diameters smaller than 30 km because the emissivity footprint at periapsis is 16 x 24 km and becomes larger at the poles.

  7. PyCraters: A Python framework for crater function analysis

    CERN Document Server

    Norris, Scott A

    2014-01-01

    We introduce a Python framework designed to automate the most common tasks associated with the extraction and upscaling of the statistics of single-impact crater functions to inform coefficients of continuum equations describing surface morphology evolution. Designed with ease-of-use in mind, the framework allows users to extract meaningful statistical estimates with very short Python programs. Wrappers to interface with specific simulation packages, routines for statistical extraction of output, and fitting and differentiation libraries are all hidden behind simple, high-level user-facing functions. In addition, the framework is extensible, allowing advanced users to specify the collection of specialized statistics or the creation of customized plots. The framework is hosted on the BitBucket service under an open-source license, with the aim of helping non-specialists easily extract preliminary estimates of relevant crater function results associated with a particular experimental system.

  8. METEOR v1.0 - User's Guide; METEOR v1.0 - Guia de Usuarios

    Energy Technology Data Exchange (ETDEWEB)

    Palomo, E.

    1994-07-01

    This script is a User's Guide for the software package METEOR for statistical analysis of meteorological data series. The original version of METEOR have been developed by Ph.D. Elena Palomo, CIEMAT-IER, GIMASE. It is built by linking programs and routines written in FORTRAN 77 and it adds the graphical capabilities of GNUPLOT. The shape of this toolbox was designed following the criteria of modularity, flexibility and agility criteria. All the input, output and analysis options are structured in three main menus: i) the first is aimed to evaluate the quality of the data set; ii) the second is aimed for pre-processing of the data; and iii) the third is aimed towards the statistical analyses and for creating the graphical outputs. Actually the information about METEOR is constituted by three documents written in spanish: 1) METEOR v1.0: User's guide; 2) METEOR v1.0: A usage example; 3) METEOR v1.0: Design and structure of the software package. (Author)

  9. PyCraters: A Python framework for crater function analysis

    OpenAIRE

    Norris, Scott A.

    2014-01-01

    We introduce a Python framework designed to automate the most common tasks associated with the extraction and upscaling of the statistics of single-impact crater functions to inform coefficients of continuum equations describing surface morphology evolution. Designed with ease-of-use in mind, the framework allows users to extract meaningful statistical estimates with very short Python programs. Wrappers to interface with specific simulation packages, routines for statistical extraction of out...

  10. Wildfires Caused by Formation of Small Impact Craters: A Kaali Crater Case

    Science.gov (United States)

    Losiak, Anna; Belcher, Claire; Hudspith, Victoria; Zhu, Menghua; Bronikowska, Malgorzata; Jõeleht, Argo; Plado, Juri

    2016-04-01

    Formation of ~200-km Chicxulub 65 Ma ago was associated with release of significant amount of thermal energy [1,2,3] which was sufficient to start wildfires that had either regional [4] or global [5] range. The evidence for wildfires caused by impacts smaller than Chicxulub is inconclusive. On one hand, no signs of fires are associated with the formation of 24-km Ries crater [6]. On the other hand, the Tunguska site was burned after the impact and the numerical models of the bolide-produced thermal radiation suggest that the Tunguska-like event would produce a thermal flux to the surface that is sufficient to ignite pine needles [7]. However, in case of Tunguska the only proof for the bolide starting the fire comes from an eyewitness description collected many years after the event. Some authors [8] suggest that this fire might have been caused "normaly" later during the same year, induced on dead trees killed by the Tunguska fall. More recently it was observed that the Chelyabinsk meteor [9] - smaller than Tunguska event - did not produced a fire. In order to explore this apparent relationship in more detail, we have studied the proximal ejecta from a 100-m in diameter, ~3500 years old [10] Kaali crater (Estonia) within which we find pieces of charred organic material. Those pieces appear to have been produced during the impact, according to their stratigraphic location and following 14C analysis [19] as opposed to pre- or post-impact forest fires. In order to determine the most probable formation mechanism of the charred organic material found within Kaali proximal ejecta blanket, we: 1) Analyzed charcoal under SEM to identify the charred plants and determine properties of the charcoal related to the temperature of its formation [11]. Detected homogenization of cell walls suggests that at least some pieces of charcoal were formed at >300 °C [11]. 2) Analyzed the reflectance properties of the charred particles in order to determine the intensity with which

  11. Hydrochemical dynamics of the “lake spring” system in the crater of El Chichón volcano (Chiapas, Mexico)

    Science.gov (United States)

    Rouwet, D.; Taran, Y.; Inguaggiato, S.; Varley, N.; Santiago Santiago, J. A.

    2008-12-01

    El Chichón volcano (Chiapas, Mexico) erupted violently in March-April 1982, breaching through the former volcano-hydrothermal system. Since then, the 1982 crater has hosted a shallow (1-3.3 m, acidic (pH ˜ 2.2) and warm (˜ 30 °C) crater lake with a strongly varying chemistry (Cl/SO 4 = 0-79 molar ratio). The changes in crater lake chemistry and volume are not systematically related to the seasonal variation of rainfall, but rather to the activity of near-neutral geyser-like springs in the crater (Soap Pool). These Soap Pool springs are the only sources of Cl for the lake. Their geyser-like behaviour with a long-term (months to years) periodicity is due to a specific geometry of the shallow boiling aquifer beneath the lake, which is the remnant of the 1983 Cl-rich (24,000 mg/l) crater lake water. The Soap Pool springs decreased in Cl content over time. The zero-time extrapolation (1982, year of the eruption) approaches the Cl content in the initial crater lake, meanwhile the extrapolation towards the future indicates a zero-Cl content by 2009 ± 1. This particular situation offers the opportunity to calculate mass balance and Cl budget to quantify the lake-spring system in the El Chichón crater. These calculations show that the water balance without the input of SP springs is negative, implying that the lake should disappear during the dry season. The isotopic composition of lake waters (δD and δ 18O) coincide with this crater lake-SP dynamics, reflecting evaporation processes and mixing with SP geyser and meteoric water. Future dome growth, not observed yet in the post-1982 El Chichón crater, may be anticipated by changes in lake chemistry and dynamics.

  12. Dynamical model for the toroidal sporadic meteors

    Energy Technology Data Exchange (ETDEWEB)

    Pokorný, Petr; Vokrouhlický, David [Institute of Astronomy, Charles University, V Holešovičkách 2, CZ-18000 Prague 8 (Czech Republic); Nesvorný, David [Department of Space Studies, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Campbell-Brown, Margaret; Brown, Peter, E-mail: petr.pokorny@volny.cz, E-mail: vokrouhl@cesnet.cz, E-mail: davidn@boulder.swri.edu, E-mail: margaret.campbell@uwo.ca, E-mail: pbrown@uwo.ca [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada)

    2014-07-01

    More than a decade of radar operations by the Canadian Meteor Orbit Radar have allowed both young and moderately old streams to be distinguished from the dispersed sporadic background component. The latter has been categorized according to broad radiant regions visible to Earth-based observers into three broad classes: the helion and anti-helion source, the north and south apex sources, and the north and south toroidal sources (and a related arc structure). The first two are populated mainly by dust released from Jupiter-family comets and new comets. Proper modeling of the toroidal sources has not to date been accomplished. Here, we develop a steady-state model for the toroidal source of the sporadic meteoroid complex, compare our model with the available radar measurements, and investigate a contribution of dust particles from our model to the whole population of sporadic meteoroids. We find that the long-term stable part of the toroidal particles is mainly fed by dust released by Halley type (long period) comets (HTCs). Our synthetic model reproduces most of the observed features of the toroidal particles, including the most troublesome low-eccentricity component, which is due to a combination of two effects: particles' ability to decouple from Jupiter and circularize by the Poynting-Robertson effect, and large collision probability for orbits similar to that of the Earth. Our calibrated model also allows us to estimate the total mass of the HTC-released dust in space and check the flux necessary to maintain the cloud in a steady state.

  13. Duke on the Craters Edge

    Science.gov (United States)

    1972-01-01

    Astronaut Charles M. Duke Jr., Lunar Module pilot of the Apollo 16 mission, is photographed collecting lunar samples at Station no. 1 during the first Apollo 16 extravehicular activity at the Descartes landing site. This picture, looking eastward, was taken by Astronaut John W. Young, commander. Duke is standing at the rim of Plum crater, which is 40 meters in diameter and 10 meters deep. The parked Lunar Roving Vehicle can be seen in the left background.

  14. Autumn Afternoon in Hale Crater

    Science.gov (United States)

    2000-01-01

    The seasons on Mars and Earth are anti-correlated at present: days are getting shorter and shadows are getting longer as autumn end sand the beginning of winter draws nearer in the martian southern hemisphere, just as the same is occurring in Earth's northern hemisphere. Long shadows are especially prominent in this high resolution view of mountains forming part of the central peaks of Hale Crater (left), a 136 kilometer-(85 mile)-diameter impact crater at 36oS, 37oW. The two pictures were taken simultaneously by the Mars Global Surveyor Mars Orbiter Camera on November 10, 2000. The sun illuminates the scene from the northwest (upper left)about 22o above the horizon. Knowing the sun angle and the length of the longest shadow (1.6 km; 1.0 mi), the height of the largest peak in the high resolution view (right) is about 630 meters (2,070 ft) above the crater floor. Sand dunes blanket the middle portion of the high resolution view, and small gullies--possibly carved by water--can be seen on the slopes of some of the peaks at the upper left. Winter in the southern hemisphere will begin in mid-December 2000. The high resolution view covers an area 3 km (1.9 mi) wide at a full-resolution scale of 3 meters (9.8 ft) per pixel.

  15. Automated Optical Meteor Fluxes and Preliminary Results of Major Showers

    Science.gov (United States)

    Blaauw, R.; Campbell-Brown, M.; Cooke, W.; Kingery, A.; Weryk, R.; Gill, J.

    2014-01-01

    NASA's Meteoroid Environment Office (MEO) recently established a two-station system to calculate daily automated meteor fluxes in the millimeter-size-range for both single-station and double-station meteors. The cameras each consist of a 17 mm focal length Schneider lens (f/0.95) on a Watec 902H2 Ultimate CCD video camera, producing a 21.7x15.5 degree field of view. This configuration sees meteors down to a magnitude of +6. This paper outlines the concepts of the system, the hardware and software, and results of 3,000+ orbits from the first 18 months of operations. Video from the cameras are run through ASGARD (All Sky and Guided Automatic Real-time Detection), which performs the meteor detection/photometry, and invokes MILIG and MORB (Borovicka 1990) codes to determine the trajectory, speed, and orbit of the meteor. A subroutine in ASGARD allows for approximate shower identification in single-station detections. The ASGARD output is used in routines to calculate the flux. Before a flux can be calculated, a weather algorithm indicates if sky conditions are clear enough to calculate fluxes, at which point a limiting magnitude algorithm is employed. The limiting stellar magnitude is found using astrometry.net (Lang et al. 2012) to identify stars and translated to the corresponding shower and sporadic limiting meteor magnitude. It is found every 10 minutes and is able to react to quickly changing sky conditions. The extensive testing of these results on the Geminids and Eta Aquariids is shown. The flux involves dividing the number of meteors by the collecting area of the system, over the time interval for which that collecting area is valid. The flux algorithm employed here differs from others currently in use in that it does not make the gross oversimplication of choosing a single height to calculate the collection area of the system. In the MEO system, the volume is broken up into a set of height intervals, with the collecting areas determined by the position of the

  16. American Meteor Society Fireball reporting system and mobile application

    Science.gov (United States)

    Hankey, M.

    2014-07-01

    The American Meteor Society (AMS) founded in 1911 pioneered the visual study of meteors and has collected data relating to meteor observations and bright fireballs for over 100 years. In December 2010, the online fireball reporting system was upgraded to an interactive application that utilizes Google Maps and other programmatic methods to pinpoint the observer's location, azimuth and elevation values with a high degree of precision. The AMS has collected 10s of 1000s of witness reports relating to 100s of events each year since the new application was released. Three dimensional triangulation methods that average the data collected from witnesses have been developed that can determine the start and end points of the meteor with an accuracy of mobile application, the AMS is able to collect more precise elevation angles than through the web application. Users can file a new report directly on the phone or update the values submitted through a web report. After web users complete their fireball report online, they are prompted to download the app and update their observation with the more precise data provided by the sensors in the mobile device. The mobile app also provides an accurate means for the witness to report the elapsed time of the fireball. To log this value, the user drags the device across the sky where they saw the fireball. This process is designed to require no button click or user interaction to start and stop the time recording. A count down initiates the process and once the user's phone crosses the plane of azimuth for the end point of the fireball the velocity timer automatically stops. Users are asked to log the recording three times in an effort to minimize error. The three values are then averaged into a final score. Once enough witnesses have filed reports, elapsed time data collected from the mobile phone can be used to determine the velocity of the fireball. With the velocity, trajectory solution and RA/DEC the AMS can plot orbital

  17. Simulating Meteor Shower Observations In The Martian Atmosphere

    Science.gov (United States)

    McAuliffe, J. P.; Christou, A. A.

    2005-08-01

    It is known that fast meteoroids entering the martian atmosphere give rise to bright, detectable meteors (Adolfsson et al, Icarus 119, 144, 1996). Although single meteors have already been detected at Mars (Selsis et al., Nature 435, 581, 2005), the characterisation of the martian meteor year will require a large number of detections. Experience at the Earth suggests that data storage and bandwidth resources to conduct such surveys will be substantial, and may be prohibitive. In an attempt to quantify the problem in detail, we have simulated meteor shower detection in the martian and terrestrial atmospheres. For a given shower, we assume a meteoroid stream flux, size distribution and velocity based on current knowledge of Earth streams as well as the proximity of certain comets' orbits to that of Mars. A numerical code is used to simulate meteoroid ablation in a model martian and terrestrial atmosphere. Finally, using the same baseline detector characteristics (limiting magnitude, sky coverage) we generate detection statistics for the two planets. We will present results for different types of showers, including strong annual activity and episodic outbursts from Halley-type and Jupiter family comets. We will show how detection efficiency at Mars compares to the Earth for these showers and discuss optimum strategies for monitoring the martian atmosphere for meteor activity. Astronomy research at Armagh Observatory is funded by the Northern Ireland Department of Culture, Arts and Leisure (DCAL).

  18. Division F Commission 22: Meteors, Meteorites, and Interplanetary Dust

    Science.gov (United States)

    Jenniskens, Peter; Borovička, Jiří; Watanabe, Jun-Ichi; Jopek, Tadeusz; Abe, Shinsuke; Consolmagno, Guy J.; Ishiguro, Masateru; Janches, Diego; Ryabova, Galina O.; Vaubaillon, Jérémie; Zhu, Jin

    2016-04-01

    Commission 22 (Meteors, Meteorites and Interplanetary Dust) was established at the first IAU General Assembly held in Rome in 1922, with William Frederick Denning as its first President. Denning was an accountant by profession, but as an amateur astronomer he contributed extensively to meteor science. Commission 22 thus established a pattern that has continued to this day that non-professional astronomers were welcomed and valued and could play a significant role in its affairs. The field of meteors, meteorites and interplanetary dust has played a disproportional role in the astronomical perception of the general public through the majestic displays of our annual meteor showers. Those in the field deployed many techniques uncommon in other fields of astronomy, studying the ``vermin of space'', the small solid bodies that pervade interplanetary space and impact Earth's atmosphere, the surface of the Moon, and that of our satellites in orbit. Over time, the field has tackled a wide array of problems, from predicting the encounter with meteoroid streams, to the origin of our meteorites and the nature of the zodiacal cloud. Commission 22 has played an important role in organizing the field through dedicated meetings, a data centre, and working groups that developed professional-amateur relationships and that organized the nomenclature of meteor showers. The contribution of Commission 22 to the field is perhaps most readily seen in the work of the presidents that followed in the footsteps of Denning.

  19. A New Analysis of the IMO Video Meteor Database

    Science.gov (United States)

    Molau, Sirko

    2010-08-01

    Starting in 1999, a database of meteor records was created from automated single station video observations (Molau, 1991) of the IMO network. At the 2006 IMC, a first full analysis of the IMO Video Meteor Database based on roughly 190,000 meteors was presented. In the optical domain it was the first time, that a list of meteor showers was obtained automated, based on fully objective criteria only. For each shower, the activity interval, radiant position and drift, and an activity profile was obtained. A number of hitherto unknown showers were found as well. The corresponding analysis procedure was derived and explained in detail in Molau (2006). However, beside the successful application of the analysis procedure, also a number of weak points were detected. As of 2008, the database had almost doubled, which made it worthwhile to repeat the analysis. However, these weak points were to be addressed first. This paper describes the problems in detail and presents solutions for them. In addition, a new meter shower list derived from the new full analysis of the IMO Video Meteor Database is given.

  20. The Cratering History of Asteroid (21) Lutetia

    CERN Document Server

    Marchi, S; Vincent, J -B; Morbidelli, A; Mottola, S; Marzari, F; Kueppers, M; Besse, S; Thomas, N; Barbieri, C; Naletto, G; Sierks, H

    2011-01-01

    The European Space Agency's Rosetta spacecraft passed by the main belt asteroid (21) Lutetia the 10th July 2010. With its ~100km size, Lutetia is one of the largest asteroids ever imaged by a spacecraft. During the flyby, the on-board OSIRIS imaging system acquired spectacular images of Lutetia's northern hemisphere revealing a complex surface scarred by numerous impact craters, reaching the maximum dimension of about 55km. In this paper, we assess the cratering history of the asteroid. For this purpose, we apply current models describing the formation and evolution of main belt asteroids, that provide the rate and velocity distributions of impactors. These models, coupled with appropriate crater scaling laws, allow us to interpret the observed crater size-frequency distribution (SFD) and constrain the cratering history. Thanks to this approach, we derive the crater retention age of several regions on Lutetia, namely the time lapsed since their formation or global surface reset. We also investigate the influe...

  1. The Explorer's Guide to Impact Craters

    Science.gov (United States)

    Pierazzo, E.; Osinski, G.; Chuang, F.

    2004-12-01

    Impact cratering is a fundamental geologic process of our solar system. It competes with other processes, such as plate tectonics, volcanism, or fluvial, glacial and eolian activity, in shaping the surfaces of planetary bodies. In some cases, like the Moon and Mercury, impact craters are the dominant landform. On other planetary bodies impact craters are being continuously erased by the action of other geological processes, like volcanism on Io, erosion and plate tectonics on the Earth, tectonic and volcanic resurfacing on Venus, or ancient erosion periods on Mars. The study of crater populations is one of the principal tools for understanding the geologic history of a planetary surface. Among the general public, impact cratering has drawn wide attention through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: ``How do scientists learn about impact cratering?'', and ``What information do impact craters provide in understanding the evolution of a planetary surface?'' Fundamental approaches used by scientists to learn about impact cratering include field work at known terrestrial craters, remote sensing studies of craters on various solid surfaces of solar system bodies, and theoretical and laboratory studies using the known physics of impact cratering. We will provide students, science teachers, and the general public an opportunity to experience the scientific endeavor of understanding and exploring impact craters through a multi-level approach including images, videos, and rock samples. This type of interactive learning can also be made available to the general public in the form of a website, which can be addressed worldwide at any time.

  2. Radar meteor decay rate variability and atmospheric consequences

    Directory of Open Access Journals (Sweden)

    W. K. Hocking

    2004-11-01

    Full Text Available The reasons for scatter in plots of log(inverse decay times vs. height for radio meteor echoes are examined, and an explanation for the characteristics is offered. Effects like temperature variability, pressure variation, angular detection accuracy, pulse length, phase errors, plasma processes and variation in meteoroid metallic content are considered. Using computer simulations the observed scatter is reproduced to good accuracy, and then these results are utilized to develop a new procedure that can be used to determine temperatures in the meteor region. These same studies also permit determination of some limited information about the nature of the diffusive expansion process and the variability in the metallic content of meteors. The impact of the quality of phase calibration of interferometric radars on accurate reproduction of atmospheric temperatures is also examined.

  3. The Third Peak of the 1998 Leonid Meteor Shower

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Leonid meteor shower in November 1998 was observed widely by astronomers. The first peak, rich in bright meteors, appeared about 16 hours before the predicted maximum of the main shower. The main shower was also observed by both optical and radio methods during 19:00-21:00UT on Nov. 17, and the ra-dio peak was over 2500h-1. About 18 hours after the main shower, an abnormal phenomenon in the ionosphere was detected by two separate ionosphere observing stations. And the very high abnormal phenomenon maintained over one hour. The phenomenon showed that the ionosphere was injected with a large amount of small dust particles that could not be observed in optical and radio. The observational results show that the Leonid meteor shower in 1998 had three peaks.

  4. Altitudinal dependence of meteor radio afterglows measured via optical counterparts

    CERN Document Server

    Obenberger, K S; Dowell, J D; Schinzel, F K; Stovall, K; Sutton, E K; Taylor, G B

    2016-01-01

    Utilizing the all-sky imaging capabilities of the LWA1 radio telescope along with a host of all-sky optical cameras, we have now observed 44 optical meteor counterparts to radio afterglows. Combining these observations we have determined the geographic positions of all 44 afterglows. Comparing the number of radio detections as a function of altitude above sea level to the number of expected bright meteors we find a strong altitudinal dependence characterized by a cutoff below $\\sim$ 90 km, below which no radio emission occurs, despite the fact that many of the observed optical meteors penetrated well below this altitude. This cutoff suggests that wave damping from electron collisions is an important factor for the evolution of radio afterglows, which agrees with the hypothesis that the emission is the result of electron plasma wave emission.

  5. CAMS newly detected meteor showers and the sporadic background

    Science.gov (United States)

    Jenniskens, P.; Nénon, Q.; Gural, P. S.; Albers, J.; Haberman, B.; Johnson, B.; Morales, R.; Grigsby, B. J.; Samuels, D.; Johannink, C.

    2016-03-01

    The Cameras for Allsky Meteor Surveillance (CAMS) video-based meteoroid orbit survey adds 60 newly identified showers to the IAU Working List of Meteor Showers (numbers 427, 445-446, 506-507, and part of 643-750). 28 of these are also detected in the independent SonotaCo survey. In total, 230 meteor showers and shower components are identified in CAMS data, 177 of which are detected in at least two independent surveys. From the power-law size frequency distribution of detected showers, we extrapolate that 36% of all CAMS-observed meteors originated from ∼700 showers above the N = 1 per 110,000 shower limit. 71% of mass falling to Earth from streams arrives on Jupiter-family type orbits. The transient Geminids account for another 15%. All meteoroids not assigned to streams form a sporadic background with highest detected numbers from the apex source, but with 98% of mass falling in from the antihelion source. Even at large ∼7-mm sizes, a Poynting-Robertson drag evolved population is detected, which implies that the Grün et al. collisional lifetimes at these sizes are underestimated by about a factor of 10. While these large grains survive collisions, many fade on a 104-y timescale, possibly because they disintegrate into smaller particles by processes other than collisions, leaving a more resilient population to evolve. The meteors assigned to the various showers are identified in the CAMS Meteoroid Orbit Database 2.0 submitted to the IAU Meteor Data Center, and can be accessed also at

  6. Long-time observation of meteor induced layers with ionosonde

    Science.gov (United States)

    Yusupov, Kamil; Akchurin, Adel

    2016-07-01

    It is considered that the main theory explaining appearance of sporadic E is the theory of wind shear, which means (includes) the presence and movement of nodes converging tidal wind through the height region of the most frequent occurrence Es (120-140km) [Mathew et. all, 1998]. However, the appearance of intense layers, following its name, are sporadic, and such variability cannot to explain by the influence of tidal waves only. Another indication inconsistency theory of wind shear is the appearance of so-called transient Es layers [Maruiama, 2003]. The distinctive feature of this trace is the high critical frequency (> 5 MHz), a constant height, weak amplitude, all trace semitransparent and short lifetime [Maruiama et. all, 2003 and 2008 and references there]. Because of duration, such layer is opposite to the traditional persistent Es layer, which we do not consider in this paper. Various researchers have used different terms for such spontaneous Es, it is meteor echo, meteor induced Es, spontaneously formed sporadic Es patches resulting of the Fresnel scattering from a region of enhanced plasma density along the meteor trail, transitory Es and transient Es. Since the term transient Es is unstable, to avoid confusion, we will stick to this term. Since meteor echo is not fully satisfy this term by some parameter, we will describe the properties of transient Es based on the ionogram properties and not from physics of its origin. We used data from our ionosonde with one-minute ionogram repetition rate for 2010-2014 years. For processing performed a method are using to select beatings and the ionosphere reflectivity of the layers by means A-, H-and AΣ-map [Akchurin, 2011; Yusupov, 2014]. This maps allow to collect transient Es appearance over a long-time. Such statistics comparison with meteor showers activity showed good agreement. It shows the presence of the transient Es formation mechanism, which coupling with meteors.

  7. About comparative models of meteor orbital data for different radars

    Science.gov (United States)

    Kolomiyets, Svitlana

    2016-07-01

    There is an electronic data base (~ 250, 000 orbits of faint radar meteors till +12^M) in the Kashcheyev LAB of KhNURE (Kharkiv, Ukraine). It is important if this data base will become open. Two scientific teams (from New Zealand and from Canada) are the principal expert on similar radar dataset (~500,000 and more than 3 million, respectively). The Kharkiv team will prepare the data for implementation in the IAU Meteor Data Centre and the virtual Observatory. We will develop a standard model for comparison of data from different radars.

  8. The daytime Taurid complex meteor streams: activity and mass distribution

    International Nuclear Information System (INIS)

    The activity and mass distribution of the summer daytime Taurid meteor complex stream Zeta Perseids and Beta Taurids in 1997-2004 is analysed and discussed. The results are based on radio observations obtained by the BLM forward-scatter system (Italy-Slovakia) and by the Ondrejov backscatter meteor radar (Czech Republic). The observed positions of maxima of the streams are in a general agreement with previous analysis. The observations indicate a filamentary structure of the streams, the existence of which is supported also by the mass exponent values

  9. Physics-Based Modeling of Meteor Entry and Breakup

    Science.gov (United States)

    Prabhu, Dinesh K.; Agrawal, Parul; Allen, Gary A., Jr.; Bauschlicher, Charles W., Jr.; Brandis, Aaron M.; Chen, Yih-Kang; Jaffe, Richard L.; Palmer, Grant E.; Saunders, David A.; Stern, Eric C.; Tauber, Michael E.; Venkatapathy, Ethiraj

    2015-01-01

    A new research effort at NASA Ames Research Center has been initiated in Planetary Defense, which integrates the disciplines of planetary science, atmospheric entry physics, and physics-based risk assessment. This paper describes work within the new program and is focused on meteor entry and breakup.Over the last six decades significant effort was expended in the US and in Europe to understand meteor entry including ablation, fragmentation and airburst (if any) for various types of meteors ranging from stony to iron spectral types. These efforts have produced primarily empirical mathematical models based on observations. Weaknesses of these models, apart from their empiricism, are reliance on idealized shapes (spheres, cylinders, etc.) and simplified models for thermal response of meteoritic materials to aerodynamic and radiative heating. Furthermore, the fragmentation and energy release of meteors (airburst) is poorly understood.On the other hand, flight of human-made atmospheric entry capsules is well understood. The capsules and their requisite heatshields are designed and margined to survive entry. However, the highest speed Earth entry for capsules is 13 kms (Stardust). Furthermore, Earth entry capsules have never exceeded diameters of 5 m, nor have their peak aerothermal environments exceeded 0.3 atm and 1 kW/sq cm. The aims of the current work are: (i) to define the aerothermal environments for objects with entry velocities from 13 to 20 kms; (ii) to explore various hypotheses of fragmentation and airburst of stony meteors in the near term; (iii) to explore the possibility of performing relevant ground-based tests to verify candidate hypotheses; and (iv) to quantify the energy released in airbursts. The results of the new simulations will be used to anchor said risk assessment analyses. With these aims in mind, state-of-the-art entry capsule design tools are being extended for meteor entries. We describe: (i) applications of current simulation tools to

  10. A practical method for the analysis of meteor spectra

    CERN Document Server

    Dubs, Martin

    2015-01-01

    The analysis of meteor spectra (photographic, CCD or video recording) is complicated by the fact that spectra obtained with objective gratings are curved and have a nonlinear dispersion. In this paper it is shown that with a simple image transformation the spectra can be linearized in such a way that individual spectra over the whole image plane are parallel and have a constant, linear dispersion. This simplifies the identification and measurement of meteor spectral lines. A practical method is given to determine the required image transformation.

  11. Software tools for the analysis of video meteors emission spectra

    Science.gov (United States)

    Madiedo, J. M.; Toscano, F. M.; Trigo-Rodriguez, J. M.

    2011-10-01

    One of the goals of the SPanish Meteor Network (SPMN) is related to the study of the chemical composition of meteoroids by analyzing the emission spectra resulting from the ablation of these particles of interplanetary matter in the atmosphere. With this aim, some of the CCD video devices we employ to observe the nigh sky are endowed with holographic diffraction gratings, and a continuous monitoring of meteor activity is performed. We have recently developed a new software to analyze these spectra. A description of this computer program is given, and some of the results obtained so far are presented here.

  12. Confirmation and characterization of IAU temporary meteor showers in EDMOND database

    CERN Document Server

    Kornoš, L; R., R Rudawska; Tóth, J; Hajduková, M; Koukal, J; Piffl, R

    2014-01-01

    The European viDeo MeteOr Network Database (EDMOND) is a database of video meteor orbits resulting from cooperation and data sharing among several European national networks and the International Meteor Organization Video Meteor Network, IMO VMN. At present, the 4th version of the EDMOND database, which contains 83 369 video meteor orbits, has been released. The first results of the database analysis, in which we studied minor streams, are presented. Using the radiant-geocentric velocity method we identified 267 meteor showers, among them 67 established showers and 200 from the working list of the IAU MDC. Making a more detailed examination, we clearly identified 22 showers of 65 pro tempore showers of the working list of the IAU MDC (updated in August 2013). The identification of 18 meteor showers was questionable, while 25 showers were not found. For all the identified temporary meteor showers, we list the weighted mean orbital elements, the radiant position and the geocentric velocity.

  13. An Automatic Video Meteor Observation Using UFO Capture at the Showa Station

    Science.gov (United States)

    Fujiwara, Y.; Nakamura, T.; Ejiri, M.; Suzuki, H.

    2012-05-01

    The goal of our study is to clarify meteor activities in the southern hemi-sphere by continuous optical observations with video cameras with automatic meteor detection and recording at Syowa station, Antarctica.

  14. Paleohydrology of Eberswalde crater, Mars

    Science.gov (United States)

    Irwin, Rossman P.; Lewis, Kevin W.; Howard, Alan D.; Grant, John A.

    2015-07-01

    Eberswalde crater, Mars, contains a well-preserved fluvial distributary network in a likely deltaic setting. The meandering inverted paleochannels and closed drainage basin of this deposit support relatively well constrained estimates of channel-forming discharge (over an individual event flood timescale), runoff production (event and annual timescales), and longevity of deposition (geologic timescale) during the Late Hesperian to Early Amazonian Epochs. The width and meander dimensions of two inverted paleochannels reflect the channel-forming discharge from event floods (~ 200 to 400 m3/s), the deposit surface indicates the level (- 1400 to - 1350 m) and surface area (410 to 810 km2) of the likely paleolake, and the topography and mapped extent of tributaries constrain the watershed area (5000 to 17,000 km2). Based on these results and terrestrial empirical constraints on evaporation and sediment concentration, we evaluated three hypothetical water sources: meltwater liberated by the nearby Holden crater impact (continuous deposition over ~ 101-102 years), intermittent rainfall or snowmelt during finite periods controlled by orbital evolution (deposition over ~ 104-106 years), and highly infrequent runoff or melting of accumulated snowpacks following distant impacts or secular changes in orbital parameters. Local impact-generated runoff and highly infrequent rainfall or snowmelt require unreasonably high and low rates of evaporation, respectively, to maintain the paleolake level. The local impact hypothesis alternatively depends on one flooding episode with very high concentrations of fluvial sediment that are inconsistent with morphologic considerations. Multiple primary impact craters in the area postdate Holden ejecta but were later dissected, indicating fluvial erosion long after the Holden impact. Intermittent rainfall of ~ 1 cm/day and seasonal snowmelt are both consistent with our results over a deposition timescale totaling ~ 104-106 years.

  15. Optical Observations of Meteors Generating Infrasound - I: Acoustic Signal Identification and Phenomenology

    OpenAIRE

    Silber, Elizabeth A.; Brown, Peter G.

    2014-01-01

    We analyze infrasound signals from 71 bright meteors simultaneously detected by video to investigate the phenomenology and characteristics of meteor-generated near-field infrasound and shock production. A taxonomy for meteor generated infrasound signal classification has been developed using the time-pressure signal of the infrasound arrivals. Based on the location along the meteor trail where the infrasound signal originates, we find most signals are associated with cylindrical shocks, with ...

  16. Determination of the velocity of meteors based on sinodial modulation and frequency analysis

    NARCIS (Netherlands)

    Bettonvil, F.C.M.

    2008-01-01

    In meteor photography the velocity of meteors is generally obtained from a chopper which blocks periodically the incident light beam in front of the camera lens. In this paper I examine modulation of the meteor trail instead with a sinodial function and use frequency analysis to compute accurately t

  17. Surface expression of the Chicxulub crater

    Science.gov (United States)

    Pope, Kevin O.; Ocampo, Adriana C.; Kinsland, Gary L.; Smith, Randy

    1996-06-01

    Analyses of geomorphic, soil, and topographic data from the northern Yucatán Peninsula, México, confirm that the buried Chicxulub impact crater has a distinct surface expression and that carbonate sedimentation throughout the Cenozoic has been influenced by the crater. Late Tertiary sedimentation was mostly restricted to the region within the buried crater, and a semicircular moat existed until at least Pliocene time. The topographic expression of the crater is a series of features concentric with the crater. The most prominent is an ˜ 83-km-radius trough or moat containing sinkholes (the Cenote ring). Early Tertiary surfaces rise abruptly outside the moat and form a stepped topography with an outer trough and ridge crest at radii of ˜103 and ˜ 129 km, respectively. Two discontinuous troughs lie within the moat at radii of ˜ 41 and ˜ 62 km. The low ridge between the inner troughs corresponds to the buried peak ring. The moat corresponds to the outer edge of the crater floor demarcated by a major ring fault. The outer trough and the ˜ 62-km-radius inner trough also mark buried ring faults. The ridge crest corresponds to the topographic rim of the crater as modified by postimpact processes. These interpretations support previous findings that the principal impact basin has a diameter of ˜ 180 km, but concentric, low-relief slumping extends well beyond this diameter and the eroded crater rim may extend to a diameter of ˜ 260 km.

  18. Processes Modifying Cratered Terrains on Pluto

    Science.gov (United States)

    Moore, J. M.

    2015-01-01

    The July encounter with Pluto by the New Horizons spacecraft permitted imaging of its cratered terrains with scales as high as approximately 100 m/pixel, and in stereo. In the initial download of images, acquired at 2.2 km/pixel, widely distributed impact craters up to 260 km diameter are seen in the near-encounter hemisphere. Many of the craters appear to be significantly degraded or infilled. Some craters appear partially destroyed, perhaps by erosion such as associated with the retreat of scarps. Bright ice-rich deposits highlight some crater rims and/or floors. While the cratered terrains identified in the initial downloaded images are generally seen on high-to-intermediate albedo surfaces, the dark equatorial terrain informally known as Cthulhu Regio is also densely cratered. We will explore the range of possible processes that might have operated (or still be operating) to modify the landscape from that of an ancient pristinely cratered state to the present terrains revealed in New Horizons images. The sequence, intensity, and type of processes that have modified ancient landscapes are, among other things, the record of climate and volatile evolution throughout much of the Pluto's existence. The deciphering of this record will be discussed. This work was supported by NASA's New Horizons project.

  19. Processes Modifying Cratered Terrains on Pluto

    Science.gov (United States)

    Moore, Jeffrey M.; Howard, Alan D.; White, Oliver L.; Umurhan, Orkan M.; Schenk, Paul M.; Beyer, Ross A.; McKinnon, William B.; Singer, Kelsi N.; Spencer, John; Stern, S. A.; Weaver, H. A.; Young, Leslie A.; Ennico, Kimberly; Olkin, Cathy B.

    2015-11-01

    The July encounter with Pluto by the New Horizons spacecraft permitted imaging of its cratered terrains with scales as high as ~100 m/pixel, and in stereo. In the initial download of images, acquired at 2.2 km/pixel, widely distributed impact craters up to 260 km diameter are seen in the near-encounter hemisphere. Many of the craters appear to be significantly degraded or infilled. Some craters appear partially destroyed, perhaps by erosion such as associated with the retreat of scarps. Bright ice-rich deposits highlight some crater rims and/or floors. While the cratered terrains identified in the initial downloaded images are generally seen on high-to-intermediate albedo surfaces, the dark equatorial terrain informally known as Cthulhu Regio is also densely cratered. We will explore the range of possible processes that might have operated (or still be operating) to modify the landscape from that of an ancient pristinely cratered state to the present terrains revealed in New Horizons images. The sequence, intensity, and type of processes that have modified ancient landscapes are, among other things, the record of climate and volatile evolution throughout much of the Pluto’s existence. The deciphering of this record will be discussed. This work was supported by NASA's New Horizons project.

  20. Projectile Velocity and Crater Formation in Water

    Directory of Open Access Journals (Sweden)

    Pravitra Chaikulngamdee

    2010-01-01

    Full Text Available The relationship between the velocity of impact and maximum crater diameter was found for two steel balls dropped into water using 300 fps video. The maximum diameter of the crater was found to be proportional to the impact velocity and independent of the diameter of the ball.

  1. Hydrothermal Alteration at Lonar Crater, India and Elemental Variations in Impact Crater Clays

    Science.gov (United States)

    Newsom, H. E.; Nelson, M. J.; Shearer, C. K.; Misra, S.; Narasimham, V.

    2005-01-01

    The role of hydrothermal alteration and chemical transport involving impact craters could have occurred on Mars, the poles of Mercury and the Moon, and other small bodies. We are studying terrestrial craters of various sizes in different environments to better understand aqueous alteration and chemical transport processes. The Lonar crater in India (1.8 km diameter) is particularly interesting being the only impact crater in basalt. In January of 2004, during fieldwork in the ejecta blanket around the rim of the Lonar crater we discovered alteration zones not previously described at this crater. The alteration of the ejecta blanket could represent evidence of localized hydrothermal activity. Such activity is consistent with the presence of large amounts of impact melt in the ejecta blanket. Map of one area on the north rim of the crater containing highly altered zones at least 3 m deep is shown.

  2. Anomalous meteors from the observations with super-isocon TV systems

    Science.gov (United States)

    Kozak, P.; Watanabe, J.; Sato, M.

    2014-07-01

    There is a range of both optical and radar observations of meteors the behavior of which essentially differs from the behavior of most meteors. In some cases such meteors cannot be explained in the frame of the classic physical theory of meteors, in other cases the meteors are just of rare type. First of all these are the meteors with true hyperbolic velocities. In spite of the fact that most of hyperbolic orbits are the results of calculation errors, the meteors with extremely high velocities appreciably exceeding the hyperbolic limit of 73 km/s exist and can be of interstellar origin [1--3]. Another very rare phenomenon describes the possible cluster structure of meteor streams, which could be connected with the ejection of the substance from the cometary nucleus shortly before collision of the particles with the Earth [4]. Among anomalies connected with the meteor motion in the atmosphere one can note, first of all, the ultra-high altitudes of meteor beginnings exceeding 130--140 km [5--7]. Some other observations point to the beginning heights of bright meteors from Leonid shower on altitudes near 200 km [8]. The classic physical theory of meteors cannot explain their radiation on such high altitudes because of low air density [9]. Recently the results of TV observations of meteors with diffusive and cloudy structure appeared [9,10]. The results of observations in which, according to author's opinion, the meteors have a few kilometers transverse jets [9--11] were presented as well. There are video frames with bright meteor obtained with high temporal resolution, where authors declared the radiation, which could be an effect of a spread directly of the shock wave [12]. During many years' double-station observations of meteors which have been carrying out at Astronomical Observatory of Kyiv National Taras Shevchenko University the ultra-sensitive TV transmitting tubes of super-isocon type were used [7]. Given type of the tube is one of the most sensitive in the

  3. The 2011 Draconids: The First European Airborne Meteor Observation Campaign

    Czech Academy of Sciences Publication Activity Database

    Vaubaillon, J.; Koten, Pavel; Margonis, A.; Toth, J.; Rudawska, R.; Gritsevich, M.; Zender, J.; McAuliffe, J.; Pautet, D.; Jenniskens, P.; Koschny, D.; Colas, F.; Bouley, S.; Maquet, L.; Leroy, A.; Lecacheux, J.; Borovička, Jiří; Watanabe, J.; Oberst, J.

    2015-01-01

    Roč. 114, 3-4 (2015), s. 137-157. ISSN 0167-9295 R&D Projects: GA ČR GA14-25251S Institutional support: RVO:67985815 Keywords : meteors * Draconids * 21P/Giacobini-Zinner Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.667, year: 2014

  4. Spectroscopic Observations of the 2011 Draconids Meteor Shower

    Czech Academy of Sciences Publication Activity Database

    Rudawska, R.; Zender, J.; Jenniskens, P.; Vaubaillon, J.; Koten, Pavel; Margonis, A.; Toth, J.; McAuliffe, J.; Koschny, D.

    2014-01-01

    Roč. 112, 1-4 (2014), s. 45-57. ISSN 0167-9295 R&D Projects: GA ČR GA205/09/1302 Institutional support: RVO:67985815 Keywords : meteorites * meteors * meteoroids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.667, year: 2014

  5. Leonid meteor ablation, energy exchange and trail morphology

    Energy Technology Data Exchange (ETDEWEB)

    Zinn, John; Judd, O' Dean P.; ReVelle, D. O. (Douglas O.)

    2002-01-01

    This paper describes theoretical model studies of the interaction of Leonid meteoroids with the earth's atmosphere. Subject to some modest-to-strenuous approximations we compute the rates of ablation and deceleration, energy deposition, and terminal altitudes of the meteors as functions of their initial mass and bulk density, velocity, trajectory entry angle, drag coefficient, heat of ablation, and an ablation energy transfer fraction. We find that the dominant energy deposition in the atmosphere is associated with the stopping of the ablated meteor particles and vapor by the surrounding air. Then having computed the energy deposition rates versus altitude we compute the hydrodynamic and radiative expansion of the hot wake material in the radial direction, along with the associated air chemistry. From the computed results we can then plot two-dimensional temperature contours -- as functions of the instantaneous distance behind the meteor and radial distance from the center of the wake, at various altitudes along the meteor's path. We also compute the rates of emission of radiation and the radiative efficiency, and discuss comparisons with observations.

  6. Activity of the Leonid meteor shower on 2009 November 17

    Czech Academy of Sciences Publication Activity Database

    Koten, Pavel; Borovička, Jiří; Kokhirova, G.I.

    2011-01-01

    Roč. 528, April (2011), A94/1-A94/4. ISSN 0004-6361 R&D Projects: GA ČR GA205/09/1302 Institutional research plan: CEZ:AV0Z10030501 Keywords : meteorites * meteors * meteoroids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.587, year: 2011

  7. On the theory of light curves of video-meteors

    Czech Academy of Sciences Publication Activity Database

    Pecina, Petr; Koten, Pavel

    2009-01-01

    Roč. 499, č. 1 (2009), s. 313-320. ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : meteors * meteoroids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.179, year: 2009

  8. Building single-page web apps with meteor

    CERN Document Server

    Vogelsteller, Fabian

    2015-01-01

    If you are a web developer with basic knowledge of JavaScript and want to take on Web 2.0, build real-time applications, or simply want to write a complete application using only JavaScript and HTML/CSS, this is the book for you.This book is based on Meteor 1.0.

  9. Technical problems and future cratering experiments

    International Nuclear Information System (INIS)

    This paper reviews some of the key technical problems that remain to be solved in nuclear cratering technology. These include: (1) developing a broader understanding of the effects that material properties and water content of the earth materials around the shot have on cratering behavior, (2) extending the experimental investigation of retarc formation to include intermediate yields and various materials, and (3) improving our ability to predict the escape of radioactive material to the atmosphere to form the cloud source responsible for fallout. The formation processes of ejecta craters, retarcs, and subsidence craters are described in the light of our present understanding, and the major gaps in our understanding are indicated. Methods of calculating crater and retarc formation are discussed, with particular reference to the input information needed. Methods for calculating fallout are presented, and their shortcomings are discussed. A preliminary analysis of the safety factors associated with the presently proposed nuclear excavation concepts is presented. (author)

  10. The missing large impact craters on Ceres

    Science.gov (United States)

    Marchi, S.; Ermakov, A. I.; Raymond, C. A.; Fu, R. R.; O'Brien, D. P.; Bland, M. T.; Ammannito, E.; de Sanctis, M. C.; Bowling, T.; Schenk, P.; Scully, J. E. C.; Buczkowski, D. L.; Williams, D. A.; Hiesinger, H.; Russell, C. T.

    2016-07-01

    Asteroids provide fundamental clues to the formation and evolution of planetesimals. Collisional models based on the depletion of the primordial main belt of asteroids predict 10-15 craters >400 km should have formed on Ceres, the largest object between Mars and Jupiter, over the last 4.55 Gyr. Likewise, an extrapolation from the asteroid Vesta would require at least 6-7 such basins. However, Ceres' surface appears devoid of impact craters >~280 km. Here, we show a significant depletion of cerean craters down to 100-150 km in diameter. The overall scarcity of recognizable large craters is incompatible with collisional models, even in the case of a late implantation of Ceres in the main belt, a possibility raised by the presence of ammoniated phyllosilicates. Our results indicate that a significant population of large craters has been obliterated, implying that long-wavelength topography viscously relaxed or that Ceres experienced protracted widespread resurfacing.

  11. Compilation of a Global GIS Crater Database for the Moon

    Science.gov (United States)

    Barlow, Nadine G.; Mest, S. C.; Gibbs, V. B.; Kinser, R. M.

    2012-10-01

    We are using primarily Lunar Reconnaissance Orbiter (LRO) information to compile a new global database of lunar impact craters 5 km in diameter and larger. Each crater’s information includes coordinates of the crater center (ULCN 2005), crater diameter (major and minor diameters if crater is elliptical), azimuthal angle of orientation if crater is elliptical, ejecta and interior morphologies if present, crater preservation state, geologic unit, floor depth, average rim height, central peak height and basal diameter if present, and elevation and elemental/mineralogy data of surroundings. LROC WAC images are used in ArcGIS to obtain crater diameters and central coordinates and LROC WAC and NAC images are used to classify interior and ejecta morphologies. Gridded and individual spot data from LOLA are used to obtain crater depths, rim heights, and central peak height and basal diameter. Crater preservational state is based on crater freshness as determined by the presence/absence of specific interior and ejecta morphologies and elevated crater rim together with the ratio of current crater depth to depth expected for fresh crater of identical size. The crater database currently contains data on over 15,000 craters covering 80% of the nearside and 15% of the farside. We also include information allowing cross-correlation of craters in our database with those in existing crater catalogs, including the ground-based “System of Lunar Craters” by Arthur et al. (1963-1966), the Lunar Orbiter/Apollo-based crater catalog compiled by Andersson and Whitaker (1982), and the Apollo-based morphometric crater database by Pike (1980). We find significant differences in crater diameter and classification between these earlier crater catalogs and our new compilation. Utilizing the capability of GIS to overlay different datasets, we will report on how specific crater features such as central peaks, wall terraces, and impact melt deposits correlate with parameters such as elevation

  12. Video and photometric observations of a sprite in coincidence with a meteor-triggered jet event

    Energy Technology Data Exchange (ETDEWEB)

    Suszcynsky, D. M. [Space and Atmospheric Sciences Group, Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Strabley, R. [Space and Atmospheric Sciences Group, Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Roussel-Dupre, R. [Atmospheric and Climate Sciences Group, Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Symbalisty, E. M. D. [Atmospheric and Climate Sciences Group, Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Armstrong, R. A. [Mission Research Corporation, Nashua, New Hampshire (United States); Lyons, W. A. [FMA Research Inc., Fort Collins, Colorado (United States); Taylor, M. [Space Dynamics Laboratory, Utah State University, Logan (United States)

    1999-12-27

    Video and photometric observations of a meteor-triggered ''jet'' event in association with the occurrence of a sprite were collected during the SPRITES '98 campaign. The event raises interest in the question of possible meteoric triggering of upper atmospheric transients as originally suggested by Muller [1995]. The event consisted of three stages: (1) the observation of a moderately bright meteor, (2) the development of a sprite in the immediate vicinity of the meteor as the meteor reached no lower than {approx}70 km altitude, and (3) a slower-forming jet of luminosity that appeared during the late stages of the sprite and propagated back up the ionization trail of the meteor. The event is analyzed in terms of its geometry, its relevance to the meteor, and the implications to existing theories for sprite formation. (c) 1999 American Geophysical Union.

  13. Video and photometric observations of a sprite in coincidence with a meteor-triggered jet event

    International Nuclear Information System (INIS)

    Video and photometric observations of a meteor-triggered ''jet'' event in association with the occurrence of a sprite were collected during the SPRITES '98 campaign. The event raises interest in the question of possible meteoric triggering of upper atmospheric transients as originally suggested by Muller [1995]. The event consisted of three stages: (1) the observation of a moderately bright meteor, (2) the development of a sprite in the immediate vicinity of the meteor as the meteor reached no lower than ∼70 km altitude, and (3) a slower-forming jet of luminosity that appeared during the late stages of the sprite and propagated back up the ionization trail of the meteor. The event is analyzed in terms of its geometry, its relevance to the meteor, and the implications to existing theories for sprite formation. (c) 1999 American Geophysical Union

  14. The Cratering History of Asteroid (2867) Steins

    CERN Document Server

    Marchi, S; Kueppers, M; Marzari, F; Davidsson, B; Keller, H U; Besse, S; Lamy, P; Mottola, S; Massironi, M; Cremonese, G

    2010-01-01

    The cratering history of main belt asteroid (2867) Steins has been investigated using OSIRIS imagery acquired during the Rosetta flyby that took place on the 5th of September 2008. For this purpose, we applied current models describing the formation and evolution of main belt asteroids, that provide the rate and velocity distributions of impactors. These models coupled with appropriate crater scaling laws, allow the cratering history to be estimated. Hence, we derive Steins' cratering retention age, namely the time lapsed since its formation or global surface reset. We also investigate the influence of various factors -like bulk structure and crater erasing- on the estimated age, which spans from a few hundred Myrs to more than 1Gyr, depending on the adopted scaling law and asteroid physical parameters. Moreover, a marked lack of craters smaller than about 0.6km has been found and interpreted as a result of a peculiar evolution of Steins cratering record, possibly related either to the formation of the 2.1km ...

  15. Processing Images of Craters for Spacecraft Navigation

    Science.gov (United States)

    Cheng, Yang; Johnson, Andrew E.; Matthies, Larry H.

    2009-01-01

    A crater-detection algorithm has been conceived to enable automation of what, heretofore, have been manual processes for utilizing images of craters on a celestial body as landmarks for navigating a spacecraft flying near or landing on that body. The images are acquired by an electronic camera aboard the spacecraft, then digitized, then processed by the algorithm, which consists mainly of the following steps: 1. Edges in an image detected and placed in a database. 2. Crater rim edges are selected from the edge database. 3. Edges that belong to the same crater are grouped together. 4. An ellipse is fitted to each group of crater edges. 5. Ellipses are refined directly in the image domain to reduce errors introduced in the detection of edges and fitting of ellipses. 6. The quality of each detected crater is evaluated. It is planned to utilize this algorithm as the basis of a computer program for automated, real-time, onboard processing of crater-image data. Experimental studies have led to the conclusion that this algorithm is capable of a detection rate >93 percent, a false-alarm rate <5 percent, a geometric error <0.5 pixel, and a position error <0.3 pixel.

  16. Sands at Gusev Crater, Mars

    Science.gov (United States)

    Cabrol, Nathalie A.; Herkenhoff, Kenneth E.; Knoll, Andrew H.; Farmer, Jack D.; Arvidson, Raymond E.; Grin, E.A.; Li, Ron; Fenton, Lori; Cohen, B.; Bell, J.F., III; Yingst, R. Aileen

    2014-01-01

    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  17. Sands at Gusev Crater, Mars

    Science.gov (United States)

    Cabrol, Nathalie A.; Herkenhoff, Kenneth; Knoll, Andrew H.; Farmer, Jack; Arvidson, Raymond; Grin, Edmond; Li, Ronxing; Fenton, Lori; Cohen, Barbara; Bell, James F.; Aileen Yingst, R.

    2014-05-01

    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  18. Aboriginal Oral Traditions of Australian Impact Craters

    CERN Document Server

    Hamacher, Duane W

    2013-01-01

    We explore Aboriginal oral traditions that relate to Australian meteorite craters. Using the literature, first-hand ethnographic records, and fieldtrip data, we identify oral traditions and artworks associated with four impact sites: Gosses Bluff, Henbury, Liverpool, and Wolfe Creek. Oral traditions describe impact origins for Gosses Bluff and Wolfe Creek craters and non-impact origins of Liverpool and Henbury craters, with Wolfe Creek stories having both impact and non-impact origins. Three impact sites that are believed to have formed during human habitation of Australia - Dalgaranga, Veevers, and Boxhole - do not have associated oral traditions that are reported in the literature.

  19. Aboriginal oral traditions of Australian impact craters

    Science.gov (United States)

    Hamacher, Duane W.; Goldsmith, John

    2013-11-01

    In this paper we explore Aboriginal oral traditions that relate to Australian meteorite craters. Using the literature, first-hand ethnographic records and field trip data, we identify oral traditions and artworks associated with four impact sites: Gosses Bluff, Henbury, Liverpool and Wolfe Creek. Oral traditions describe impact origins for Gosses Bluff, Henbury and Wolfe Creek Craters, and non-impact origins for Liverpool Crater, with Henbury and Wolfe Creek stories having both impact and non-impact origins. Three impact sites that are believed to have been formed during human habitation of Australia -- Dalgaranga, Veevers, and Boxhole -- do not have associated oral traditions that are reported in the literature.

  20. DYNAMICAL MODEL FOR THE ZODIACAL CLOUD AND SPORADIC METEORS

    International Nuclear Information System (INIS)

    The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by Jupiter, thermally destroyed near the Sun, or physically disrupted by collisions. Also, some are swept by the Earth (and other planets), producing meteors. Here we develop a dynamical model for the solar system meteoroids and use it to explain meteor radar observations. We find that the Jupiter Family Comets (JFCs) are the main source of the prominent concentrations of meteors arriving at the Earth from the helion and antihelion directions. To match the radiant and orbit distributions, as measured by the Canadian Meteor Orbit Radar (CMOR) and Advanced Meteor Orbit Radar (AMOR), our model implies that comets, and JFCs in particular, must frequently disintegrate when reaching orbits with low perihelion distance. Also, the collisional lifetimes of millimeter particles may be longer (∼> 105 yr at 1 AU) than postulated in the standard collisional models (∼104 yr at 1 AU), perhaps because these chondrule-sized meteoroids are stronger than thought before. Using observations of the Infrared Astronomical Satellite to calibrate the model, we find that the total cross section and mass of small meteoroids in the inner solar system are (1.7-3.5) × 1011 km2 and ∼4 × 1019 g, respectively, in a good agreement with previous studies. The mass input required to keep the zodiacal cloud in a steady state is estimated to be ∼104-105 kg s–1. The input is up to ∼10 times larger than found previously, mainly because particles released closer to the Sun have shorter collisional lifetimes and need to be supplied at a faster rate. The total mass accreted by the Earth in particles between diameters D = 5 μm and 1 cm is found to be ∼15,000 tons yr–1 (factor of two uncertainty), which is a large share of the accretion flux measured by the Long Term

  1. Why Landers Should Explore Fresh, Small Craters on Mars

    Science.gov (United States)

    Kirkland, L. E.; Herr, K. C.; Adams, P. M.

    2008-03-01

    Small, fresh craters at the Nevada Test Site are unique, high quality test beds to develop exploration techniques for new craters spotted on Mars by Malin et al. The NTS craters provide data to determine the optimum crater size for exploration.

  2. Method for evaluation of laboratory craters using crater detection algorithm for digital topography data

    Science.gov (United States)

    Salamunićcar, Goran; Vinković, Dejan; Lončarić, Sven; Vučina, Damir; Pehnec, Igor; Vojković, Marin; Gomerčić, Mladen; Hercigonja, Tomislav

    In our previous work the following has been done: (1) the crater detection algorithm (CDA) based on digital elevation model (DEM) has been developed and the GT-115225 catalog has been assembled [GRS, 48 (5), in press, doi:10.1109/TGRS.2009.2037750]; and (2) the results of comparison between explosion-induced laboratory craters in stone powder surfaces and GT-115225 have been presented using depth/diameter measurements [41stLPSC, Abstract #1428]. The next step achievable using the available technology is to create 3D scans of such labo-ratory craters, in order to compare different properties with simple Martian craters. In this work, we propose a formal method for evaluation of laboratory craters, in order to provide objective, measurable and reproducible estimation of the level of achieved similarity between these laboratory and real impact craters. In the first step, the section of MOLA data for Mars (or SELENE LALT for Moon) is replaced with one or several 3D-scans of laboratory craters. Once embedment was done, the CDA can be used to find out whether this laboratory crater is similar enough to real craters, as to be recognized as a crater by the CDA. The CDA evaluation using ROC' curve represents how true detection rate (TDR=TP/(TP+FN)=TP/GT) depends on the false detection rate (FDR=FP/(TP+FP)). Using this curve, it is now possible to define the measure of similarity between laboratory and real impact craters, as TDR or FDR value, or as a distance from the bottom-right origin of the ROC' curve. With such an approach, the reproducible (formally described) method for evaluation of laboratory craters is provided.

  3. Towards a New Catalog of Lobed Martian Craters Compared with a New Global Crater Database, Complete to 1.5 km

    Science.gov (United States)

    Robbins, S. J.; Hynek, B. M.

    2009-03-01

    Presenting preliminary results of a new crater database, focusing on lobed crater characteristics. Database is complete to at least 1.5 km-diameter craters and contains more characteristics of each crater than previous catalogs.

  4. Determining proportions of lunar crater populations by fitting crater size distribution

    CERN Document Server

    Wang, Nan

    2016-01-01

    We determine the proportions of two mixed crater populations distinguishable by size distributions on the Moon. A "multiple power-law" model is built to formulate crater size distribution $N(D) \\propto D^{-\\alpha}$ whose slope $\\alpha$ varies with crater diameter $D$. Fitted size distribution of lunar highland craters characterized by $\\alpha = 1.17 \\pm 0.04$, $1.88 \\pm 0.07$, $3.17 \\pm 0.10$ and $1.40 \\pm 0.15$ for consecutive $D$ intervals divided by 49, 120 and 251 km and that of lunar Class 1 craters with a single slope $\\alpha = 1.96 \\pm 0.14$, are taken as Population 1 and 2 crater size distribution respectively, whose sum is then fitted to the size distribution of global lunar craters with $D$ between 10 and 100 km. Estimated crater densities of Population 1 and 2 are $44 \\times 10^{-5}$ and $5 \\times 10^{-5}$ km$^{-2}$ respectively, leading to the proportion of the latter $10 \\%$. The results underlines the need for considering the Population 1 craters and the relevant impactors, the primordial main-b...

  5. Elimination by drugs of meteorism before abdominal X-rays

    International Nuclear Information System (INIS)

    On 141 patients it could be shown that, in x-raying of the abdomen, disturbing meteorism can be eliminated by premedication with Gillazym. In a controlling investigation four different dosages were tested with the result that a dosage of 3 x 2 film dragees on the day before and a single administration of 2 film dragees on the morning before the x-raying were enough to obtain a rather good elimination of flatulence. The medicament was well-tolerated, no side effects were observed. The premedication described here for the elimination of meteorism before x-raying the abdominal region is, in comparison with a laxative therapy combined with clyster and may be a blind enema, a progress concerning the simplicity, as well as the fact that the general state of the patient is not influenced. (orig.)

  6. The Steen River Crater Seismic Refraction Project

    Science.gov (United States)

    Mazur, M. J.; Hildebrand, A. R.; Hladiuk, D.; Schafer, A.; Pilkington, M.

    2002-03-01

    Rim uplift, slump blocks, CDC edge, central uplift, and inverted flap are indicated by refraction methods. The inverted flap also has a gravity high and may explain the puzzling partly annular gravity high ringing the CDC at the Chicxulub crater.

  7. On the Clustering of Europa's Small Craters

    Science.gov (United States)

    Bierhaus, E. B.; Chapman, C. R.; Merline, W. J.

    2001-01-01

    We analyze the spatial distribution of Europa's small craters and find that many are too tightly clustered to result from random, primary impacts. Additional information is contained in the original extended abstract.

  8. Advanced Meteor radar at Tirupati: System details and first results

    Science.gov (United States)

    Sunkara, Eswaraiah; Gurubaran, Subramanian; Sundararaman, Sathishkumar; Venkat Ratnam, Madineni; Karanam, Kishore Kumar; Eethamakula, Kosalendra; Vijaya Bhaskara Rao, S.

    An advanced meteor radar viz., Enhanced Meteor Detection Radar (EMDR) operating at 35.25 MHz is installed at Sri Venkateswara University (SVU), Tirupati (13.63oN, 79.4oE), India, in the month of August 2013. Present communication describes the need for the meteor radar at present location, system description, its measurement techniques, its variables and comparison of measured mean winds with contemporary radars over the Indian region. The present radar site is selected to fill the blind region of Gadanki (13.5oN, 79.2oE) MST radar, which covers mesosphere and lower thermosphere (MLT) region (70-110 km). By modifying the receiving antenna structure and elements, this radar is capable of providing accurate wind information between 70 and 110 km unlike other similar radars. Height covering region is extended by increasing the meteor counting capacity by modifying the receiving antenna structure and elements and hence its wind estimation limits extended below and above of 80 and 100 km, respectively. In the present study, we also made comparison of horizontal winds in the MLT region with those measured by similar and different (MST and MF radars) techniques over the Indian region including the model (HWM 07) data sets. The comparison showed a very good agreement between the overlapping altitudes (82-98 km) of different radars. Zonal winds compared very well as that of meridional winds. The observed discrepancies and limitations in the wind measurement are discussed. This new radar is expected to play important role in understanding the vertical and lateral coupling by forming a unique local network.

  9. Meteor automatic imager and analyzer: system design and its parameters

    Czech Academy of Sciences Publication Activity Database

    Fliegel, K.; Páta, P.; Vítek, S.; Koten, Pavel

    Bellingham: SPIE, 2010, 77982B/1-77982B/11. (Proceedings of SPIE. 7798). ISBN 978-0-8194-8294-5. ISSN 0277-786X. [Applications of Digital Image Processing /33./. San Diego (US), 02.08.2010-04.08.2010] R&D Projects: GA ČR GA205/09/1302 Institutional support: RVO:67985815 Keywords : imaging systems * image processing * meteors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  10. Automated detection of meteors in observed image sequence

    Czech Academy of Sciences Publication Activity Database

    Šimberová, Stanislava; Suk, Tomáš

    Melville: American Institute of Physics, 2015 - (Simos, T.), 190009/1-190009/4. (AIP Conference proceedings. 1702). ISBN 978-0-7354-1349-8. ISSN 0094-243X. [International conference of computational methods in sciences and engineering 2015. Athens (GR), 20150320] R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985815 ; RVO:67985556 Keywords : meteor detection * statistical moments * Hough transformation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics; IN - Informatics, Computer Science (UTIA-B)

  11. Meteoroid streams identification amongst 231 Southern hemisphere video meteors

    Czech Academy of Sciences Publication Activity Database

    Jopek, J.; Koten, Pavel; Pecina, Petr

    2010-01-01

    Roč. 404, č. 2 (2010), s. 867-875. ISSN 0035-8711 R&D Projects: GA ČR GA205/00/1728; GA ČR GA205/09/1302 Institutional research plan: CEZ:AV0Z10030501 Keywords : meteors * meteoroids * data analysis Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.888, year: 2010

  12. Atmospheric trajectories and light curves of shower meteors

    Czech Academy of Sciences Publication Activity Database

    Koten, Pavel; Borovička, Jiří; Spurný, Pavel; Betlem, H.; Evans, S.

    2004-01-01

    Roč. 428, č. 2 (2004), s. 683-690. ISSN 0004-6361 R&D Projects: GA ČR GP205/02/P038; GA ČR GA205/02/0982; GA ČR GA205/03/1404 Institutional research plan: CEZ:AV0Z1003909 Keywords : meteors * meteoroids * general-comets Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.694, year: 2004

  13. Spectral, Photometric, and Dynamic Analysis of Eight Draconid Meteors

    Czech Academy of Sciences Publication Activity Database

    Borovička, Jiří; Koten, Pavel; Shrbený, Lukáš; Štork, Rostislav; Hornoch, Kamil

    2014-01-01

    Roč. 113, 1-4 (2014), s. 15-31. ISSN 0167-9295 R&D Projects: GA ČR(CZ) GAP209/11/1382; GA ČR GPP209/11/P651; GA ČR GA205/09/1302 Institutional support: RVO:67985815 Keywords : meteors * meteoroids * Draconids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.667, year: 2014

  14. Impact craters: An ice study on Rhea

    Science.gov (United States)

    Dalle Ore, Cristina M.; Cruikshank, Dale P.; Mastrapa, Rachel M. E.; Lewis, Emma; White, Oliver L.

    2015-11-01

    The goal of this project is to study the properties of H2O ice in the environment of the Saturn satellites and in particular to measure the relative amounts of crystalline and amorphous H2O ice in and around two craters on Rhea. The craters are remnants of cataclysmic events that, by raising the local temperature, melted the ice, which subsequently crystallized. Based on laboratory experiments it is expected that, when exposed to ion bombardment at the temperatures typical of the Saturn satellites, the crystalline structure of the ice will be broken, resulting in the disordered, amorphous phase. We therefore expect the ice in and around the craters to be partially crystalline and partially amorphous. We have designed a technique that estimates the relative amounts of crystalline and amorphous H2O ice based on measurements of the distortion of the 2-μm spectral absorption band. The technique is best suited for planetary surfaces that are predominantly icy, but works also for surfaces slightly contaminated with other ices and non-ice components. We apply the tool to two areas around the Inktomi and the Obatala craters. The first is a young impact crater on the leading hemisphere of Rhea, the second is an older one on the trailing hemisphere. For each crater we obtain maps of the fraction of crystalline ice, which were overlain onto Imaging Science Subsystem (ISS) images of the satellite searching for correlations between crystallinity and geography. For both craters the largest fractions of crystalline ice are in the center, as would be intuitively expected since the 'ground zero' areas should be most affected by the effects of the impact. The overall distribution of the crystalline ice fraction maps the shape of the crater and, in the case of Inktomi, of the rays. The Inktomi crater ranges between a maximum fraction of 67% crystalline ice to a minimum of 39%. The Obatala crater varies between a maximum of 51% and a minimum of 33%. Based on simplifying assumptions

  15. A low cost meteor observation system using radio forward scattering and the interferometry technique

    Science.gov (United States)

    Madkour, Waleed; Yamamoto, Masa-yuki; Kakinami, Yoshihiro; Mizumoto, Satoshi

    2016-02-01

    We present a low cost meteor observation system based on the radio forward scattering and interferometry technique at Kochi University of Technology (KUT). The system can be a suitable model for low budget educational institutes that target practical learning of astronomical objects and upper atmospheric characteristics. The system methodology for the automatic counting of meteor echoes, filtering noise and detecting meteor echo directions is described. Detection of the meteor echo directions, which is the basic element for determining the meteor trajectories and the orbital parameters of parent comets, is based on a software system developed for analysis of phase differences detected by interferometry. Randomly selected observation samples measured by the radio interferometer are compared to simultaneous optical observations by video cameras to verify the system accuracy. Preliminary error analysis revealed that the system accuracy is directly related to the duration of observed meteor echoes. Eighty percent of meteor echo samples with durations longer than 3 s showed agreement in azimuth and elevation angles measurements to within a 10° error range, while meteor echo samples with shorter durations showed lower agreement levels probably due to the low system sampling resolution of 0.1 s. The reasonable agreement level of meteor echoes with duration longer than 3 s demonstrated the applicability of the system methodology. Accurate observation of shorter duration meteor echoes could possibly be achieved by improving the system resolution.

  16. Development of the mesospheric Na layer at 69° N during the Geminids meteor shower 2010

    Directory of Open Access Journals (Sweden)

    T. Dunker

    2013-01-01

    Full Text Available The ECOMA sounding rocket campaign in 2010 was performed to investigate the charge state and number density of meteoric smoke particles during the Geminids meteor shower in December 2010. The ALOMAR Na lidar contributed to the campaign with measurements of sodium number density, temperature and line-of-sight wind between 80 and 110 km altitude over Andøya in northern Norway. This paper investigates a possible connection between the Geminids meteor shower and the mesospheric sodium layer. We compare with data from a meteor radar and from a rocket-borne in situ particle instrument on three days. Our main result is that the sodium column density is smaller during the Geminids meteor shower than the winter average at the same latitude. Moreover, during two of the three years considered, the sodium column density decreased steadily during these three weeks of the year. Both the observed decrease of Na column density by 30% and of meteoric smoke particle column density correlate well with a corresponding decrease of sporadic meteor echoes. We found no correlation between Geminids meteor flux rates and sodium column density, nor between sporadic meteors and Na column density (R = 0.25. In general, we found the Na column density to be at very low values for winter, between 1.8 and 2.6 × 1013 m−2. We detected two meteor trails containing sodium, on 13 December 2010 at 87.1 km and on 19 December 2010 at 84 km. From these meteor trails, we estimate a global meteoric Na flux of 121 kg d−1 and a global total meteoric influx of 20.2 t d−1.

  17. The prediction of meteor showers from all potential parent comets

    CERN Document Server

    Neslusan, Lubos; Tomko, Dusan; Kanuchova, Zuzana; Jakubik, Marian

    2014-01-01

    The objectives of this project are to predict new meteor showers associated with as many as possible known periodic comets and to find a generic relationship of some already known showers with these comets. For a potential parent comet, we model a theoretical stream at the moment of its perihelion passage in a far past, and follow its dynamical evolution until the present. Subsequently, we analyze the orbital characteristics of the parts of the stream that approach the Earth's orbit. Modelled orbits of the stream particles are compared with the orbits of actual photographic, video, and radar meteors from several catalogues. The whole procedure is repeated for several past perihelion passages of the parent comet. To keep our description compact but detailed, we usually present only either a single or a few parent comets with their associated showers in one paper. Here, an overview of the results from the modelling of the meteor-shower complexes of more than ten parent bodies will be presented. This enables the...

  18. Rates, Flux Densities, and Spectral Indices of Meteor Radio Afterglows

    CERN Document Server

    Obenberger, K S; Hancock, P J; Holmes, J M; Pedersen, T R; Schinzel, F K; Taylor, G B

    2016-01-01

    Using the narrowband all-sky imager mode of the LWA1 we have now detected 30 transients at 25.6 MHz, 1 at 34 MHz, and 93 at 38.0 MHz. While we have only optically confirmed that 37 of these events are radio afterglows from meteors, evidence suggests that most, if not all, are. Using the beam-forming mode of the LWA1 we have also captured the broadband spectra between 22.0 and 55.0 MHz of four events. We compare the smooth, spectral components of these four events and fit the frequency dependent flux density to a power law, and find that the spectral index is time variable, with the spectrum steepening over time for each meteor afterglow. Using these spectral indices along with the narrow band flux density measurements of the 123 events at 25.6 and 38 MHz, we predict the expected flux densities and rates for meteor afterglows potentially observable by other low frequency radio telescopes.

  19. Attenuation of LF radio signals due to meteor trains

    International Nuclear Information System (INIS)

    LF effects observed during the periods of major meteor showers, during a one-year period from June, 1972, to May, 1973, are analysed with a view to exploring the statistical characteristics of the effects. The effect appears in the form of a gradual growth followed by a sudden recovery, usually showing a decrease of the signal level. The nature of time variation of an overdense meteor train under the combined influence of ambipolar diffusion, eddy diffusion and attachment processes is theoretically computed, and the form of fadeout pattern is compared with the plot of the critical radius, rsub(c) of the train as a function of time. It is found that the nature of time variation of an LF absorption event corresponds to that of rsub(c) at the wavelength involved. An estimate of electron line density in a meteor train causing an absorption event is made from the theoretical plot of rsub(c) and it is found that the trains having line densities in the range 1x1018/m-1x1020/m are responsible for the durations (15-30 min) of the majority of the absorption events

  20. The size-frequency distribution of elliptical impact craters

    Science.gov (United States)

    Collins, G. S.; Elbeshausen, D.; Davison, T. M.; Robbins, S. J.; Hynek, B. M.

    2011-10-01

    Impact craters are elliptical in planform if the impactor's trajectory is below a threshold angle of incidence. Laboratory experiments and 3D numerical simulations demonstrate that this threshold angle decreases as the ratio of crater size to impactor size increases. According to impact cratering scaling laws, this implies that elliptical craters occur at steeper impact angles as crater size or target strength increases. Using a standard size-frequency distribution for asteroids impacting the terrestrial planets we estimate the fraction of elliptical craters as a function of crater size on the Moon, Mars, Earth, Venus and Mercury. In general, the expected fraction of elliptical craters is ~ 2-4% for craters between 5 and 100-km in diameter, consistent with the observed population of elliptical craters on Mars. At larger crater sizes both our model and observations suggest a dramatic increase in the fraction of elliptical craters with increasing crater diameter. The observed fraction of elliptical craters larger than 100-km diameter is significantly greater than our model predictions, which may suggest that there is an additional source of large elliptical craters other than oblique impact.

  1. Crater Formation Due to Lunar Plume Impingement

    Science.gov (United States)

    Marsell, Brandon

    2011-01-01

    Thruster plume impingement on a surface comprised of small, loose particles may cause blast ejecta to be spread over a large area and possibly cause damage to the vehicle. For this reason it is important to study the effects of plume impingement and crater formation on surfaces like those found on the moon. Lunar soil, also known as regolith, is made up of fine granular particles on the order of 100 microns.i Whenever a vehicle lifts-off from such a surface, the exhaust plume from the main engine will cause the formation of a crater. This crater formation may cause laterally ejected mass to be deflected and possibly damage the vehicle. This study is a first attempt at analyzing the dynamics of crater formation due to thruster exhaust plume impingement during liftoff from the moon. Though soil erosion on the lunar surface is not considered, this study aims at examining the evolution of the shear stress along the lunar surface as the engine fires. The location of the regions of high shear stress will determine where the crater begins to form and will lend insight into how big the crater will be. This information will help determine the probability that something will strike the vehicle. The final sections of this report discuss a novel method for studying this problem that uses a volume of fluid (VOF)ii method to track the movement of both the exhaust plume and the eroding surface.

  2. Nuclear cratering on a digital computer

    International Nuclear Information System (INIS)

    Computer programs based on the artificial viscosity method are applied to developing an understanding of the physics of cratering, with emphasis on cratering by nuclear explosives. Two established codes, SOC (spherical symmetry) and TENSOR (cylindrical symmetry), are used to illustrate the effects of variations in the material properties of various media on the cratering processes, namely shock, spall, and gas acceleration. Water content is found to be the most important material property, followed by strength, porosity, and compressibility. Crater profile calculations are presented for Pre-Gondola Charley (20-ton nitromethane detonation in shale) and Sedan (100-kt nuclear detonation in alluvium). Calculations also are presented for three 1-Mt yields in saturated Divide basalt and 1-Mt yield in dry Buckboard basalt, to show crater geometry as a function of the burial depth for large explosive yields. The calculations show, for megaton-level yields, that gas acceleration is the dominate mechanism in determining crater size and depends in turn on the water content in the medium. (author)

  3. Planetary cratering 2: Studies of saturation equilibrium

    Science.gov (United States)

    Hartmann, William K.; Gaskell, Robert W.

    1997-01-01

    A realistic computer model has been developed to display images of imaginary cratered surfaces, taking into account empirically measured input size distributions of primary and secondary craters, ejecta blanket morphology including feathering with distance, obliteration due to ejecta from outside the imaged area, lighting effects, etc. The model allows us to track surface evolution of morphology as new craters are added. Using the model as well as lunar photos, we have studied the approach to saturation equilibrium (defined as a condition when no further proportionate increase in crater density occurs as input cratering increases). We find that an identifiable saturation equilibrium occurs close to a level previously identified for this state (Hartmann 1984), typically fluctuating around a crater density from about 0.4 to 2 times that level. This result is fairly robust vis-a-vis the range of model parameters we have chosen. Flooding, basin ejecta blankets, and other obliterative effects can introduce structure and oscillations within this range, even after saturation equilibrium is achieved. These findings may constrain or revise certain earlier interpretations of satellite and planet surface evolution and impactor populations which were predicated on the assumed absence of saturation equilibrium. In our fourth experimental run, we found that suppression of "sandblasting" by sub-resolution impacts allows the smallest secondaries to rise above the saturation equilibrium line, a result that might be relevant to a similar situation on Gaspra and perhaps some other asteroids.

  4. At Bright Band Inside Victoria Crater

    Science.gov (United States)

    2007-01-01

    A layer of light-toned rock exposed inside Victoria Crater in the Meridiani Planum region of Mars appears to mark where the surface was at the time, many millions of years ago, when an impact excavated the crater. NASA's Mars Exploration Rover Opportunity drove to this bright band as the science team's first destination for the rover during investigations inside the crater. Opportunity's left front hazard-identification camera took this image just after the rover finished a drive of 2.25 meters (7 feet, 5 inches) during the rover's 1,305th Martian day, or sol, (Sept. 25, 2007). The rocks beneath the rover and its extended robotic arm are part of the bright band. Victoria Crater has a scalloped shape of alternating alcoves and promontories around the crater's circumference. Opportunity descended into the crater two weeks earlier, within an alcove called 'Duck Bay.' Counterclockwise around the rim, just to the right of the arm in this image, is a promontory called 'Cabo Frio.'

  5. 10Be Content in Suevite Breccia from the Bosumtwi Impact Crater

    Science.gov (United States)

    Losiak, Anna; Wild, Eva Maria; Michlmayr, Leonard; Koeberl, Christian

    2013-04-01

    Introduction: According to the current understanding of meteorite impact processes, surface target material is transported from a crater in the form of ejecta or is vaporized/melted (e.g., [1]). The formation model of tektites from the surface of the target rocks has been established using the 10Be content of tektites (e.g., [2]), and chemical comparison with the possible target surface material (e.g., [3]); it was also reproduced by computer modeling (e.g., [4]). On the other hand, some observations ([5, 6]) suggest that part of the surface material may be incorporated into the crater-fill. The aim of this study is to check if surface-derived material is present in suevitic breccias to better understand formation mechanisms of fallback breccias. Also, 10Be can be used to trace contamination of rocks in the top layer of the suevitic layer by meteoric (lake) water. This abstract is an update (based on more data now available) of the previous report presented during the Metsoc75 conference. Samples: The Bosumtwi crater was chosen as study site because of its relatively large size (10.5 km in diameter), young age of 1.07 Ma [7], good state of preservation, and availability of core samples. Clasts from suevitic breccia selected for this study come from the LB-07A and LB-08A cores that are located within the crater and represent fallback breccia (e.g., [7]). Of 41 analyzed samples (22 single clasts and 21 matrix samples - 11 of those being monomictic breccia), 36 came from core LB-07A (in the zone outside the central uplift) and represent depths of 333.7 - 407.9 m and 5 are from core LB-08A (on the flank of the central uplift) from depths 239.5 - 264.9 m. Methods: For each sample, 0.8 g of finely grounded material from clasts containing in situ produced and meteoric 10Be was dissolved in a mixture of HF and HNO3 by microwave digestion. A 9Be carrier (1 mg or 0.6 mg, 10Be/9Be ratio: 2.82±0.31*10-15 [2? uncertainty]) was added to the sample, and then Be was chemically

  6. Do young martian ray craters have ages consistent with the crater count system?

    Science.gov (United States)

    Hartmann, William K.; Quantin, Cathy; Werner, Stephanie C.; Popova, Olga

    2010-08-01

    McEwen et al. (McEwen, A.S., Preblich, B.S., Turtle, E.P., Artemieva, N.A., Golombek, M.P., Hurst, M., Kirk, R.L., Burr, D.M., Christensen, P. [2005]. Icarus 176, 351-381) developed a useful test for the internal consistency of crater-count chronometry systems. They argued that certain multi-kilometer, fresh-looking martian craters with prominent rays should be the youngest or near-youngest craters in their size range. The "McEwen et al. test" is that the ages determined from crater densities of the smallest superimposed craters (typically diameter D ˜ 5-20 m) should thus be comparable to the expected formation intervals of the host primary. McEwen et al. concluded from MOC data that crater chronometry failed this test by factors of 700-2000. We apply HiRISE and other imagery to eight different young craters in order to re-evaluate their arguments. We use existing crater chronology systems as well as the reported observed production rate of 16 m craters (Malin, M.C., Edgett, K., Posiolova, L., McColley, S., Noe Dobrea, E. [2006]. Science 314, 1573-1557; Hartmann, W.K., Quantin, C., Mangold, N. [2007]. Icarus 186, 11-23; Kreslavsky [2007]. Seventh International Conference on Mars, 3325). Every case passes the McEwen et al. test. We conclude that the huge inconsistencies suggested by McEwen et al. are spurious. Many of these craters show evidence of impact into ice-rich material, and appear to have ice-flow features and sublimation pits on their floors. As production rate data improve, decameter-scale craters will provide a valuable way of dating these young martian geological formations and the processes that modify them.

  7. The Mechanism for Forming Martian Rampart Craters: Clues from Crater Morphometry

    Science.gov (United States)

    Craddock, R. A.; Chuang, F.

    1996-03-01

    Many large craters on the martian surface have ejecta blankets that terminate with a pronounced lobate ridge. These rampart craters represent features unique to Mars, and their morphology suggests that their ejecta was emplaced as a highly mobile fluid instead of ballistically. High velocity experiments into mud have duplicated many of the common morphologic characteristics of rampart craters supporting this hypothesis. However, additional experiments performed at a variety of atmospheric pressures have also been able to duplicate aspects of rampart crater morphology These results suggest that rampart craters form as the result of a low pressure atmosphere. Obviously the presence of ice or water would have an effect on the target properties (i.e., material strength) of the martian substrate, which should also influence the overall crater morphometry, thus allowing us to test these competing hypotheses. In this study we used the photoclinometric algorithm developed by Davis and Soderblom and written for the Planetary Image Cartography System to determined the shape of over 300 fresh lunar-like or rampart impact craters at a variety of diameters (3 to 80 km). Because it is probable that Ethology would also effect the strength of the target material, we confined our study to craters formed in the dissected unit of the Highland Plateau (Npld) as defined by the 1:15M-scale geologic mappers and interpretable to the scale of our images. In addition we confined our study to +30 degrees to omit variations in crater morphology seen at higher latitudes. The images used were radiometrically-calibrated (red and minus-blue filter), moderate resolution (~200 m/pixel) obtained by the Viking orbiters. Our initial results show that there is a slight difference in morphometric relations between fresh lunar-like and rampart craters, supporting the hypothesis that the unique morphology of rampart crater ejecta results from the incorporation of volatile materials contained in the target

  8. The 2013 Chelyabinsk meteor ionospheric impact studied using GPS measurements

    Science.gov (United States)

    Yang, Yu-Ming; Komjathy, Attila; Langley, Richard B.; Vergados, Panagiotis; Butala, Mark D.; Mannucci, Anthony J.

    2014-05-01

    On 15 February 2013, the Chelyabinsk meteor event (the largest in size since 1908) provided a unique opportunity to observe ionospheric perturbations associated with the ablation and ionospheric impact of the meteor using GPS measurements. The hypersonic bolide generated powerful shock waves while acoustic perturbations in the atmosphere led to the upward propagation of acoustic and gravity waves into the ionosphere. In our research, we applied two different techniques to detect ionospheric disturbances in dual-frequency global positioning system (GPS) measurements during the meteor impact event. The data were collected from near-field GPS networks in Russia, GPS Earth Observation Network (GEONET) in Japan, and Plate Boundary Observatory (PBO) stations in the coterminous U.S. Using a novel wavelet coherence detection technique, we were able to identify three different wave trains in the measurements collected from the nearest GPS station to the meteor impact site, with frequencies of approximately 4.0-7.8 mHz, 1.0 -2.5 mHz, and 2.7-11 mHz at 03:30 UTC. We estimated the speed and direction of arrival of the total electron content (TEC) disturbances by cross-correlating TEC time series for every pair of stations in several areas of the GEONET and PBO networks. The results may be characterized as three different types of traveling ionospheric disturbances (TIDs). First, the higher-frequency (4.0-7.8 mHz) disturbances were observed around the station ARTU in Arti, Russia (56.43°N, 58.56°E), with an estimated mean propagation speed of about 862 ± 65 m/s (with 95% confidence interval). Another type of TID disturbance related to the wave trains was identified in the lower frequency band (1.0-2.5 mHz), propagating with a mean speed of 362 ± 23 m/s. The lower frequency ionospheric perturbations were observed at distances of 300-1500 km away from Chelyabinsk. The third type of TID wave train was identified using the PBO stations in the relative short-period range of 1

  9. Instrument for the detection of meteors in the infrared

    Science.gov (United States)

    Svedhem, H.; Koschny, D.; Ter Haar, J.

    2014-07-01

    The flux of interplanetary particles in the size range 2 mm to 20 m is poorly constrained due to insufficient data --- the larger bodies may be observed remotely by ground-based or space-based telescopes and the smaller particles are measured by in-situ impact detectors in space or by meteor cameras from ground. An infrared video rate imager in Earth orbit would enable a systematic characterization for an extended period, day and night, of the flux in this range by monitoring the bright meteor/fireball generated during atmospheric entry. Due to the low flux of meteoroids in this range a very large detector is required. With this method a large portion of the Earth atmosphere is in fact used as a huge detector. Such an instrument has never flown in Earth orbit. The only sensors of a similar kind fly on US defense satellites for monitoring launches of ballistic missiles. The data from these sensors, however, is largely inaccessible to scientists. The knowledge on emission of light by meteors/bolides at infrared wavelengths is very limited while it can be suspected that the continuum emission from meteors/bolides have stronger emission at infrared wavelengths than in the visible due to the likely low temperatures of these events. At the same time line emission is dominating over the continuum in the visible so it is not clear how this will compare with the continuum in the infrared. We have developed a bread-board version of an IR video rate camera, the SPOSH-IR. The instrument is based on an earlier technology development, SPOSH --- Smart Panoramic Optical Sensor Head, for operation in the visible range, but with the sensor replaced by a cooled IR detector and new infrared optics. The earlier work has proven the concept of the instrument and of automatic detection of meteors/bolides in the visible wavelength range. The new hardware has been built by Jena-Optronik, Jena, Germany and has been tested during several meteor showers in the Netherlands and at ESA's OGS

  10. Isotope hydrology of El Chichón volcano-hydrothermal system; a coupled system of crater lake and hot springs

    Science.gov (United States)

    Peiffer, L.; Taran, Y.; Rouwet, D.

    2010-12-01

    The catastrophic 1982 eruption of El Chichón (>1.5 km3 of erupted material) opened the upper hundred meters of the existing volcano-hydrothermal system. In the new formed 200m-deep crater a large shallow crater lake and numerous hot springs were formed. The lake existence and its salinity depend on the precipitation (~4000 mm/y) as well as a group of geyser-like neutral saline springs (source of Cl and SO4) and hydrothermal steam vents discharging into the lake (source of SO4). The chemistry of these “Soap Pool” (SP) springs evolved from >13,000 ppm of Cl in 1995 to ~2000-3000 ppm of Cl in 2006. Since 2006, this Cl-concentration in SP waters is constant. Similar concentrations of Cl are observed in most flank hot springs located at altitudes of ~ 600 m asl, 2-3 km from the crater. Therefore, it can be suggested that the flank springs, crater lake and crater hot springs are manifestations of the upper, relatively shallow volcano-hydrothermal system developed beneath the crater in the volcano edifice. Water isotopic composition of all types of thermal and fresh waters including fumarolic steam condensates (>100 samples collected in 1995-2010) allow to classify and distinguish different processes of shallow mixing, boiling, evaporation and water-rock isotope exchange. All spring waters from the upper system have meteoric origin, with the isotopic composition plotting close to the meteoric water line. Crater waters are strongly evolved due to shallow boiling and loss of steam. Isotopic composition of water from the lower, deep hydrothermal system is characterized by a significant positive oxygen isotopic shift and a strong Cl-d18O linear correlation. Waters from numerous cold springs that drain pyroclastic deposits demonstrate a clear negative oxygen shift. Some problems related to water isotopic composition are still remain unresolved: (1) we cannot find any traces of the infiltrated isotopically heavy lake waters, i.e., the seepage from the lake at the volcano

  11. Determination of meteor-head echo trajectories using the interferometric capabilities of MAARSY

    Directory of Open Access Journals (Sweden)

    C. Schult

    2013-10-01

    Full Text Available During the flight of a meteoroid through the neutral atmosphere, the high kinetic energy is sufficient to ionize the meteoric constituents. Radar echoes coming from plasma irregularities surrounding the meteoroids are called meteor-head echoes, and can be detected by HPLA radar systems. Measurements of these echoes were conducted with MAARSY (Middle Atmosphere Alomar Radar System in December 2010. The interferometric capabilities of the radar system permit the determination of the meteor trajectories within the radar beam with high accuracy. The received data are used to gain information about entry velocities, source radiants, observation heights and other meteoroid parameters. Our preliminary results indicate that the majority of meteors have masses between 10−10 and 10−3 kg and the mean masses of the sporadic meteors and Gemenids meteors are ∼10−8 kg.

  12. Meteor observations with Mini-MegaTORTORA wide-field monitoring system

    CERN Document Server

    Karpov, S; Beskin, G; Biryukov, A; Bondar, S; Ivanov, E; Katkova, E; Perkov, A; Sasyuk, V

    2016-01-01

    Here we report on the results of meteor observations with 9-channel Mini-MegaTORTORA (MMT-9) wide-field optical monitoring system with high temporal resolution. During first 1.5 years of operation more than 90 thousands of meteors have been detected, at a rate of 300-350 per night, with durations from 0.1 to 2.5 seconds and angular velocities up to 38 degrees per second. The faintest detected meteors has the peak brightness about 10 mag, while the majority - from 4 to 8 mag. Some of the meteors have been observed in BVR filters simultaneously. Color variations along the trail for them are determined. All parameters of detected meteors are published online. The database also includes the information on 10 thousands meteors detected by our previous FAVOR camera in 2006-2009 years.

  13. Gale Crater: An Amazonian Impact Crater Lake at the Plateau/Plain Boundary

    Science.gov (United States)

    Cabrol, N. A.; Grin, E. A.

    1998-01-01

    Gale is a 140-km diameter impact crater located at the plateau/plain boundary in the Aeolis Northeast subquadrangle of Mars (5S/223W). The crater is bordered in the northward direction by the Elysium Basin, and in eastward direction by Hesperian channels and the Aeolis Mensae 2. The crater displays a rim with two distinct erosion stages: (a) though eroded, the south rim of Gale has an apparent crest line visible from the north to the southwest (b) the west and northwest rims are characterized by a strong erosion that, in some places, partially destroyed the rampart, leaving remnant pits embayed in smooth-like deposits. The same type of deposits is observed north, outside Gale, it also borders the Aeolis Mensae, covers the bottom of the plateau scarp, and the crater floor. The central part of Gale shows a 6400 km2 subround and asymmetrical deposit: (a) the south part is composed of smooth material, (b) the north part shows spectacular terraces, streamlines, and channels. The transition between the two parts of the deposit is characterized by a scarp ranging from 200 to 2000 in high. The highest point of the scarp is at the center of the crater, and probably corresponds to a central peak. Gale crater does not show a major channel directly inflowing. However, several large fluvi systems are bordering the crater, and could be at the origin of the flooding of the crater, or have contributed to. One fluvial system is entering the crater by the southwest rim but cannot be accounted alone for the volume of sediment deposited in the crater. This channel erodes the crater floor deposit, and ends in a irregular-shaped and dark albedo feature. Gale crater shows the morphology of a crater filled during sedimentation episodes, and then eroded Part of the lower sediment deposition contained in Gale might be ancient and not only aqueous in origin. According to the regional geologic history, the sedimentary deposit could be a mixture of aeolian and pyroclastic material, and aqueous

  14. Meteor detections at the Metsähovi Fundamental Geodetic Research Station (Finland)

    Science.gov (United States)

    Raja-Halli, A.; Gritsevich, M.; Näränen, J.; Moreno-Ibáñez, M.; Lyytinen, E.; Virtanen, J.; Zubko, N.; Peltoniemi, J.; Poutanen, M.

    2016-01-01

    We provide an overview and present some spectacular examples of the recent meteor observations at the Metsähovi Geodetic Research Station. In conjunction with the Finnish Fireball Network the all-sky images are used to reconstruct atmospheric trajectories and to calculate the pre-impact meteor orbits in the Solar System. In addition, intensive collaborative work is pursued with the meteor research groups worldwide. We foresee great potential of this activity also for educational and outreach purposes.

  15. 'Lyell' Panorama inside Victoria Crater (Stereo)

    Science.gov (United States)

    2008-01-01

    During four months prior to the fourth anniversary of its landing on Mars, NASA's Mars Exploration Rover Opportunity examined rocks inside an alcove called 'Duck Bay' in the western portion of Victoria Crater. The main body of the crater appears in the upper right of this stereo panorama, with the far side of the crater lying about 800 meters (half a mile) away. Bracketing that part of the view are two promontories on the crater's rim at either side of Duck Bay. They are 'Cape Verde,' about 6 meters (20 feet) tall, on the left, and 'Cabo Frio,' about 15 meters (50 feet) tall, on the right. The rest of the image, other than sky and portions of the rover, is ground within Duck Bay. Opportunity's targets of study during the last quarter of 2007 were rock layers within a band exposed around the interior of the crater, about 6 meters (20 feet) from the rim. Bright rocks within the band are visible in the foreground of the panorama. The rover science team assigned informal names to three subdivisions of the band: 'Steno,' 'Smith,' and 'Lyell.' This view incorporates many images taken by Opportunity's panoramic camera (Pancam) from the 1,332nd through 1,379th Martian days, or sols, of the mission (Oct. 23 to Dec. 11, 2007). It combines a stereo pair so that it appears three-dimensional when seen through blue-red glasses. Some visible patterns in dark and light tones are the result of combining frames that were affected by dust on the front sapphire window of the rover's camera. Opportunity landed on Jan. 25, 2004, Universal Time, (Jan. 24, Pacific Time) inside a much smaller crater about 6 kilometers (4 miles) north of Victoria Crater, to begin a surface mission designed to last 3 months and drive about 600 meters (0.4 mile).

  16. Application of a Self-Organizing State Space Model to the Leonid Meteor Storm in 2001

    CERN Document Server

    Takeuchi, Tsutomu T; Miyamoto, Daisuke; Fujiwara, Hideaki; Kitazume, Jun; Utsumi, Yousuke

    2012-01-01

    The Leonids show meteor storms in a period of 33 years, and known as one of the most active meteor showers. It has recently shown a meteor stream consisting of several narrow dust trails made by meteoroids ejected from a parent comet. Hence, an analysis of the temporal behavior of the meteor flux is important to study the structure of the trails. However, statistical inference for the count data is not an easy task, because of its Poisson characteristics. We carried out a wide-field video observation of the Leonid meteor storm in 2001. We formulated a state-of-the-art statistical analysis, which is called a self-organizing state space model, to infer the true behavior of the dust density of the trails properly from the meteor count data. {}From this analysis, we found that the trails have a fairly smooth spatial structure, with small and dense clumps that cause a temporal burst of meteor flux. We also proved that the time behavior (trend) of the fluxes of bright meteors and that of faint meteors are significa...

  17. METEOR v1.0 - Design and structure of the software package; METEOR v1.0 - Estructura y modulos informaticos

    Energy Technology Data Exchange (ETDEWEB)

    Palomo, E.

    1994-07-01

    This script describes the structure and the separated modules of the software package METEOR for the statistical analysis of meteorological data series. It contains a systematic description of the subroutines of METEOR and, also, of the required shape for input and output files. The original version of METEOR have been developed by Ph.D. Elena Palomo, CIEMAT-IER, GIMASE. It is built by linking programs and routines written in FORTRAN 77 and it adds thc graphical capabilities of GNUPLOT. The shape of this toolbox was designed following the criteria of modularity, flexibility and agility criteria. All the input, output and analysis options are structured in three main menus: i) the first is aimed to evaluate the quality of the data set; ii) the second is aimed for pre-processing of the data; and iii) the third is aimed towards the statistical analyses and for creating the graphical outputs. Actually the information about METEOR is constituted by three documents written in spanish: 1) METEOR v1.0: User's guide; 2) METEOR v1.0: A usage example; 3) METEOR v 1.0: Design and structure of the software package. (Author)

  18. Cratering Equations for Zinc Orthotitanate Coated Aluminum

    Science.gov (United States)

    Hyde, James; Christiansen, Eric; Liou, Jer-Chyi; Ryan, Shannon

    2009-01-01

    The final STS-125 servicing mission (SM4) to the Hubble Space Telescope (HST) in May of 2009 saw the return of the 2nd Wide Field Planetary Camera (WFPC2) aboard the shuttle Discovery. This hardware had been in service on HST since it was installed during the SM1 mission in December of 1993 yielding one of the longest low Earth orbit exposure times (15.4 years) of any returned space hardware. The WFPC2 is equipped with a 0.8 x 2.2 m radiator for thermal control of the camera electronics (Figure 1). The space facing surface of the 4.1 mm thick aluminum radiator is coated with Z93 zinc orthotitanate thermal control paint with a nominal thickness of 0.1 0.2 mm. Post flight inspections of the radiator panel revealed hundreds of micrometeoroid/orbital debris (MMOD) impact craters ranging in size from less than 300 to nearly 1000 microns in diameter. The Z93 paint exhibited large spall areas around the larger impact sites (Figure 2) and the craters observed in the 6061-T651 aluminum had a different shape than those observed in uncoated aluminum. Typical hypervelocity impact craters in aluminum have raised lips around the impact site. The craters in the HST radiator panel had suppressed crater lips, and in some cases multiple craters were present instead of a single individual crater. Humes and Kinard observed similar behavior after the WFPC1 post flight inspection and assumed the Z93 coating was acting like a bumper in a Whipple shield. Similar paint behavior (spall) was also observed by Bland2 during post flight inspection of the International Space Station (ISS) S-Band Antenna Structural Assembly (SASA) in 2008. The SASA, with similar Z93 coated aluminum, was inspected after nearly 4 years of exposure on the ISS. The multi-crater phenomena could be a function of the density, composition, or impact obliquity angle of the impacting particle. For instance, a micrometeoroid particle consisting of loosely bound grains of material could be responsible for creating the

  19. Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries

    Science.gov (United States)

    Stewart, Sarah T.; Valiant, Gregory J.

    2006-10-01

    The geometry of simple impact craters reflects the properties of the target materials, and the diverse range of fluidized morphologies observed in Martian ejecta blankets are controlled by the near-surface composition and the climate at the time of impact. Using the Mars Orbiter Laser Altimeter (MOLA) data set, quantitative information about the strength of the upper crust and the dynamics of Martian ejecta blankets may be derived from crater geometry measurements. Here, we present the results from geometrical measurements of fresh craters 3-50 km in rim diameter in selected highland (Lunae and Solis Plana) and lowland (Acidalia, Isidis, and Utopia Planitiae) terrains. We find large, resolved differences between the geometrical properties of the freshest highland and lowland craters. Simple lowland craters are 1.5-2.0 times deeper (≥5σo difference) with >50% larger cavities (≥2σo) compared to highland craters of the same diameter. Rim heights and the volume of material above the preimpact surface are slightly greater in the lowlands over most of the size range studied. The different shapes of simple highland and lowland craters indicate that the upper ˜6.5 km of the lowland study regions are significantly stronger than the upper crust of the highland plateaus. Lowland craters collapse to final volumes of 45-70% of their transient cavity volumes, while highland craters preserve only 25-50%. The effective yield strength of the upper crust in the lowland regions falls in the range of competent rock, approximately 9-12 MPa, and the highland plateaus may be weaker by a factor of 2 or more, consistent with heavily fractured Noachian layered deposits. The measured volumes of continuous ejecta blankets and uplifted surface materials exceed the predictions from standard crater scaling relationships and Maxwell's Z model of crater excavation by a factor of 3. The excess volume of fluidized ejecta blankets on Mars cannot be explained by concentration of ejecta through

  20. DYNAMICAL MODEL FOR THE ZODIACAL CLOUD AND SPORADIC METEORS

    Energy Technology Data Exchange (ETDEWEB)

    Nesvorny, David; Vokrouhlicky, David; Pokorny, Petr; Bottke, William F. [Department of Space Studies, Southwest Research Institute, 1050 Walnut St., Suite 300, Boulder, CO 80302 (United States); Janches, Diego [Space Weather Laboratory, Code 674, GSFC/NASA, Greenbelt, MD 20771 (United States); Jenniskens, Peter [Carl Sagan Center, SETI Institute, 515 N. Whisman Road, Mountain View, CA 94043 (United States)

    2011-12-20

    The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by Jupiter, thermally destroyed near the Sun, or physically disrupted by collisions. Also, some are swept by the Earth (and other planets), producing meteors. Here we develop a dynamical model for the solar system meteoroids and use it to explain meteor radar observations. We find that the Jupiter Family Comets (JFCs) are the main source of the prominent concentrations of meteors arriving at the Earth from the helion and antihelion directions. To match the radiant and orbit distributions, as measured by the Canadian Meteor Orbit Radar (CMOR) and Advanced Meteor Orbit Radar (AMOR), our model implies that comets, and JFCs in particular, must frequently disintegrate when reaching orbits with low perihelion distance. Also, the collisional lifetimes of millimeter particles may be longer ({approx}> 10{sup 5} yr at 1 AU) than postulated in the standard collisional models ({approx}10{sup 4} yr at 1 AU), perhaps because these chondrule-sized meteoroids are stronger than thought before. Using observations of the Infrared Astronomical Satellite to calibrate the model, we find that the total cross section and mass of small meteoroids in the inner solar system are (1.7-3.5) Multiplication-Sign 10{sup 11} km{sup 2} and {approx}4 Multiplication-Sign 10{sup 19} g, respectively, in a good agreement with previous studies. The mass input required to keep the zodiacal cloud in a steady state is estimated to be {approx}10{sup 4}-10{sup 5} kg s{sup -1}. The input is up to {approx}10 times larger than found previously, mainly because particles released closer to the Sun have shorter collisional lifetimes and need to be supplied at a faster rate. The total mass accreted by the Earth in particles between diameters D = 5 {mu}m and 1 cm is found to be {approx}15

  1. Knut Lundmark, meteors and an early Swedish crowdsourcing experiment.

    Science.gov (United States)

    Kärnfelt, Johan

    2014-10-01

    Mid twentieth century meteor astronomy demanded the long-term compilation of observations made by numerous individuals over an extensive geographical area. Such a massive undertaking obviously required the participation of more than just professional astronomers, who often sought to expand their ranks through the use of amateurs that had a basic grasp of astronomy as well as the night sky, and were thus capable of generating first-rate astronomical reports. When, in the 1920s, renowned Swedish astronomer Knut Lundmark turned his attention to meteor astronomy, he was unable to rely even upon this solution. In contrast to many other countries at the time, Sweden lacked an organized amateur astronomy and thus contained only a handful of competent amateurs. Given this situation, Lundmark had to develop ways of engaging the general public in assisting his efforts. To his advantage, he was already a well-established public figure who had published numerous popular science articles and held talks from time to time on the radio. During the 1930s, this prominence greatly facilitated his launching of a crowdsourcing initiative for the gathering of meteor observations. This paper consists of a detailed discussion concerning the means by which Lundmark's initiative disseminated astronomical knowledge to the general public and encouraged a response that might directly contribute to the advancement of science. More precisely, the article explores the manner in which he approached the Swedish public, the degree to which that public responded and the extent to which his efforts were successful. The primary aim of this exercise is to show that the apparently recent Internet phenomenon of 'crowdsourcing', especially as it relates to scientific research, actually has a pre-Internet history that is worth studying. Apart from the fact that this history is interesting in its own right, knowing it can provide us with a fresh vantage point from which to better comprehend and appreciate

  2. Meteor framework, a new approach to webdevelopment: an experimental analysis

    OpenAIRE

    Sadjadee, Sahand

    2014-01-01

    The traditional definition of a dynamic web application is about a collection of programs executed at server-side to provide content for clients. These types of web applications produce content at server-side and deliver it to their clients via multiple pages. In result, the client-side has the responsibility to render the content and perform a limited amount of calculations to increase the performance and user experience.    Meteor is a web framework designed for developing Single Page Appli...

  3. Automated detection of meteors in observed image sequence

    Science.gov (United States)

    Šimberová, Stanislava; Suk, Tomáš

    2015-12-01

    We propose a new detection technique based on statistical characteristics of images in the video sequence. These characteristics displayed in time enable to catch any bright track during the whole sequence. We applied our method to the image datacubes that are created from camera pictures of the night sky. Meteor flying through the Earth's atmosphere leaves a light trail lasting a few seconds on the sky background. We developed a special technique to recognize this event automatically in the complete observed video sequence. For further analysis leading to the precise recognition of object we suggest to apply Fourier and Hough transformations.

  4. The radiant of the Leonids meteor storm in 2001

    CERN Document Server

    Torii, K; Yanagisawa, T; Ohnishi, K; Torii, Ken'ichi; Kohama, Mitsuhiro; Yanagisawa, Toshifumi; Ohnishi, Kouji

    2002-01-01

    We have measured the radiant of the Leonids meteor storm in November 2001 by using new observational and analysis techniques. The radiant was measured as the intersections of lines which were detected and extrapolated from images obtained at a single observing site (Akeno Observatory, Japan). The images were obtained by two sets of telephoto lenses equipped with cooled CCD cameras. The measured radiant, (R.A., Dec.)=(154$^\\circ$.35, 21$^\\circ$.55) (J2000), is found to be in reasonable agreement with the theoretical prediction by McNaught and Asher (2001), which verifies their dust trail theory.

  5. Physics of soft impact and cratering

    CERN Document Server

    Katsuragi, Hiroaki

    2016-01-01

    This book focuses on the impact dynamics and cratering of soft matter to describe its importance, difficulty, and wide applicability to planetary-related problems. A comprehensive introduction to the dimensional analysis and constitutive laws that are necessary to discuss impact mechanics and cratering is first provided. Then, particular coverage is given to the impact of granular matter, which is one of the most crucial constituents for geophysics. While granular matter shows both solid-like and fluid-like behaviors, neither solid nor fluid dynamics is sufficient to fully understand the physics of granular matter. In order to reveal its fundamental properties, extensive impact tests have been carried out recently. The author reveals the findings of these recent studies as well as what remains unsolved in terms of impact dynamics. Impact crater morphology with various soft matter impacts also is discussed intensively. Various experimental and observational results up to the recent Itokawa asteroid’s terrain...

  6. A concept of row crater enhancement

    International Nuclear Information System (INIS)

    Linear craters formed by the simultaneous detonation of a row of buried explosives will probably have a wider application than single charges in the explosive excavation of engineering structures. Most cratering experience to date has been with single charges, and an analytical procedure for the design of a row of charges to excavate a crater with a specified configuration has been lacking. There are no digital computer codes having direct application to a row of charges as there are for single charges. This paper derives a simple relationship which can be used to design row charges with some assurance of achieving the desired result and with considerable flexibility in the choice of explosive yield of the individual charges

  7. Tempest in Vailulu'u Crater

    Science.gov (United States)

    Hart, S. R.; Staudigel, H.; Koppers, A.; Young, C.; Baker, E.

    2005-12-01

    The summit crater of the Samoan submarine volcano, Vailulu'u, has been actively erupting since 2001. Based on water chemistry, CTD and temperature logger data from 2000 and 2001, we formulated a model for the hydrothermal system in the crater involving a tidally-modulated "breathing" (Staudigel et al., 2004). During low stands of internal waves (exterior to the crater), the crater exhales warm buoyant hydrothermal water that forms a "halo" around the crater rich in Mn, 3He, and particulates. During "high tides", cold dense external water is inhaled into the crater through the three breaches, and cascades to the crater floor. In April 2005, we used the HURL PISCES V submersible to deploy various temperature and particulate loggers and current meters in and around the crater; these were retrieved by Pisces V in July 2005. In addition, continuous CTD profiling was carried out over 12 hour tidal cycles at one location inside, and one outside, the crater. The accumulated data set fully reinforces our "breathing" model. An ADCP, deployed for 93 days in the NW breach at 752m, showed dominant easterly inflow currents and westerly outflow currents, with maximum velocities of approximately 25 cm/s. The flows were coherent for distances up to 50-60m above the ADCP; the mean inflow velocity and azimuth (20-40 m interval above the ADCP) was 7 cm/s due east; the mean outflow velocity and azimuth was 5 cm/s at 260 degrees. Mean inflows were consistently colder than outflows (5.00 C vs 5.20 C); the maximum observed range in temperature was 1.1 C, correlated with peak flow velocities. The coldest inflows would require very large regional internal wave amplitudes, up to 50-100 meters. A 2-D acoustic current meter was deployed on top of the west crater rim summit (582m) for 90 days, and in the S breach (697m) for 4 days. The summit flows are presumed to represent the regional scale currents; these were largely from the SW quadrant, with typical velocities of 8-15 cm/s, and peaks to

  8. Impact Crater Size and Evolution: Expectations for Deep Impact

    Science.gov (United States)

    Schultz, P. H.; Anderson, J. L. B.; Heineck, J. T.

    2002-01-01

    Deep Impact will involve a unique cratering experiment designed to probe below the surface of a comet. Laboratory experiments provide critical data for crater scaling and evolution of the ejecta curtain. Additional information is contained in the original extended abstract.

  9. MOLA Topography and Morphometry of Rampart and Pedestal Craters, Mars

    Science.gov (United States)

    Mitchell, D. E.; Sakimoto, S. E. H.; Garvin, J. B.

    2002-01-01

    Martian rampart and pedestal craters have characteristic geometric parameter ranges that are significantly different than fresh craters. Combined MOLA geometric measurements and MOC analyses can be used to constrain their modification. Additional information is contained in the original extended abstract.

  10. Novel approach of crater detection by crater candidate region selection and matrix-pattern-oriented least squares support vector machine

    Institute of Scientific and Technical Information of China (English)

    Ding Meng; Cao Yunfeng; Wu Qingxian

    2013-01-01

    Impacted craters are commonly found on the surface of planets,satellites,asteroids and other solar system bodies.In order to speed up the rate of constructing the database of craters,it is important to develop crater detection algorithms.This paper presents a novel approach to automatically detect craters on planetary surfaces.The approach contains two parts:crater candidate region selection and crater detection.In the first part,crater candidate region selection is achieved by Kanade-Lucas-Tomasi (KLT) detector.Matrix-pattern-oriented least squares support vector machine (MatLSSVM),as the matrixization version of least square support vector machine (SVM),inherits the advantages of least squares support vector machine (LSSVM),reduces storage space greatly and reserves spatial redundancies within each image matrix compared with general LSSVM.The second part of the approach employs MatLSSVM to design classifier for crater detection.Experimental results on the dataset which comprises 160 preprocessed image patches from Google Mars demonstrate that the accuracy rate of crater detection can be up to 88%.In addition,the outstanding feature of the approach introduced in this paper is that it takes resized crater candidate region as input pattern directly to finish crater detection.The results of the last experiment demonstrate that MatLSSVM-based classifier can detect crater regions effectively on the basis of KLT-based crater candidate region selection.

  11. 'Sharks Teeth' -- Sand Dunes in Proctor Crater

    Science.gov (United States)

    2001-01-01

    Sometimes, pictures received from Mars Global Surveyor's Mars Orbiter Camera (MOC) are 'just plain pretty.' This image, taken in early September 2000, shows a group of sand dunes at the edge of a much larger field of dark-toned dunes in Proctor Crater. Located at 47.9oS, 330.4oW, in the 170 km (106 mile) diameter crater named for 19th Century British astronomer Richard A. Proctor (1837-1888), the dunes shown here are created by winds blowing largely from the east/northeast. A plethora of smaller, brighter ripples covers the substrate between the dunes. Sunlight illuminates them from the upper left.

  12. Lunar Crater Interiors with High Circular Polarization Signatures

    Science.gov (United States)

    Weitz, C. M.; Campbell, B. A.; Morgan, G.

    2015-12-01

    We analyzed 12.6-cm Earth-based radar images of the Moon to search for older craters (pre-Copernican) that display high values of the circular polarization ratio (CPR) on their interior walls. These craters have highly eroded rims and ejecta, indicating that there must be a source exposed within the crater interior that is continuously creating a rougher surface. Of particular interest are craters between 10-25 km in diameter that occur in smooth plains in the highlands, where competent layers are not expected as they are for the mare. After identifying these high-CPR interiors in pre-Copernican craters, we studied LROC NAC and Kaguya TC images to search for possible albedo and layering on crater interior walls that might signal the presence of anomalous material. Our results indicate that high-CPR craters generally have boulder fields clustered around their upper interior walls. We divide the high-CPR craters into three types: (1) craters on the layered mare lava flows; (2) craters in the highlands that correlate to mapped locations of smooth plains; and (3) craters on the highlands that are not associated with smooth plains. Most of the high-CPR craters in the highlands are associated with Eratosthenian-period craters, and most of these are also on smooth plains, indicating that impact melt sheets are a likely source for the boulders exposed on their interior walls. Statistical analyses will be performed after incorporating multiple lunar datasets into GIS to quantify these preliminary interpretations. Figure 1. Example of high-CPR crater Zagut A located on smooth plains in the highlands. LROC images showing boulders on (a) northern crater interior wall and (b) southern crater interior wall. (c) Stronlgy enhanced values of CPR are observed for the interior of Zagut A.

  13. Ancient Impact and Aqueous Processes at Endeavour Crater, Mars

    OpenAIRE

    Knoll, Andrew Herbert; Squyres, S. W.; Arvidson, R. E.; Bell, J. F.; Calef, F., III; Clark, B.C.; Cohen, B. A.; Crumpler, L. A.; P.A. Souza; Farrand, W. H.; Gellert, R.; Grant, J; Hurowitz, J. A.; Herkenhoff, K. E.; J. R. Johnson

    2012-01-01

    The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing...

  14. Political astronomy: Comet and meteor observations by Muslim historians

    Science.gov (United States)

    Chander Kapoor, Ramesh

    2015-08-01

    Eclipses and unexpected phenomena like comets, meteors, novae and earthquakes were viewed among various cultures as violating the established order of the heavens. They were considered to be ill omens for kings and emperors and were routinely monitored. The present work looks into the texts of history and literature by Muslim historians and chroniclers in West Asia and India that carry stray references to such phenomena. The accounts often relate the apparitions to specific disastrous events or prognosticate revolts, deaths, epidemics, earthquakes all that that took place in later times. Obviously, the occurrences interested the astrologers more. Comet appearances would last for days and weeks but nearly all the writings lack sequential observations. Meteor showers are annual features but the Islamic calendar being lunar would not easily lead one to notice periodic nature of the incidents, let alone sensing a periodicity in comet appearances. These are non-astronomy texts with little scientific content but being from different ages permit us to see how the astronomical perceptions changed over the times. The recorded details and firm chronology, tested against modern back calculations, can provide valuable information on them, keeping in mind the text and the context in which the original reference was made. We also notice a qualitative change in the Indian writings of the 18th century and later where the authors begin to show up with influence of exposure to the European scientific progress.

  15. Sungrazing dust particles against the sporadic meteor background

    Science.gov (United States)

    Golubaev, A. V.

    2015-07-01

    From the results of the statistical study, the genetic relation between some meteors (from -5 m to +5 m ) of the sporadic background and the comets of the Kreutz, Marsden, and Kracht families has been revealed. The radiants of sporadic meteors are concentrated at the geocentric ecliptic latitudes 7°-10° northward and southward of the ecliptic. The radiants of the sungrazing meteoroids, that were detected on their heliocentric orbits "before" and "after" the perihelion passage, are concentrated in the elongation intervals of approximately 120°-165° and 20°-60° from the Sun, respectively. Each of the specified radiant regions, in its turn, breaks up into two groups. The group of radiants with elongations of about 30° and 155° from the Sun belongs to the Marsden and Kracht cometary families, while the group with 50° and 135°, to the Kreutz cometary family. In the distribution by perihelion distance, a sharp decrease of the number of observed dust particles with q approaching the Sun, terminates. The number of sporadic sungrazing meteoroids detected after their passage in the vicinity of the Sun is approximately 20 times smaller than the number of similar particles in the preperihelion part of the trajectory. This result is of special importance for studying the thermodesorption effect of meteoroids (i.e., the change in the content of chemical elements in meteoroids as a function of the perihelion distance).

  16. Heavy metals determinations in dry and wet meteoric deposition

    International Nuclear Information System (INIS)

    Acid rain is now widely studied by analyzing the parameters that characterize it. As the latest researches demonstrate, it is possible to further understanding of meteoric deposition (i.e. bulk, wet and dry) by the metering of such micropollutants as heavy metals. These are released into the atmosphere as by-products of household heating fuels and industrial wastes. This paper seeks to provide an assessment of certain heavy metals present in meteoric samples and link their presence to the actual state of the environment in which they were detected. Samples of bulk and wet depositions were collected weekly and those of dry deposition monthly so as to achieve a uniform and representative quantity of the latter for subsequent determination. Both the wet and dry samples were collected from the center and outskirts of a large urban community, whereas only wet samples were also collected in the vicinity of a power plant. The wet samples were treated with HNO3 up to pH 1.8 and analyzed by atomic absorption in a Perkin-Elmer 4000 graphite furnace. The elements analyzed were Ni, V, Cd, As, Zn, Cr, Se, Pb. The dry samples were homogenized in an agate mortar and analyzed by high resolution neutron activation gamma spectrometry. Radiation time and flow of the Triga Mark II reactor varied depending on isotope, i.e. whether long, medium or short life. The heavy metals analyzed were Fe, Ni, V, Zn, Cr, Co, As, Sb and some others

  17. Development of artificial meteor for observation of upper atmosphere

    Science.gov (United States)

    Watanabe, Masaki; Sahara, Hironori; Abe, Shinsuke; Watanabe, Takeo; Nojiri, Yuta; Okajima, Lena

    2016-04-01

    This study proposes a method for the observation of the upper atmosphere using an artificial meteor injected by a mass driver installed on a microsatellite. The mass driver injects a pill at a velocity of 200 m/s and deorbits it into the atmosphere. The emission of the pill can then be observed from the ground at the necessary time and location. This approach could contribute to a better understanding of the global environment as well as different aspects of astronomy and planetary science. To realize the proposed method, the required size and emission of the pill have to be determined. Therefore, we conducted flow-field simulations, spectroscopic estimations, and an experiment on an artificial meteor in the arc heater wind tunnel at the Institute of Space and Astronautical Science in the Japan Aerospace Exploration Agency (ISAS/JAXA). From the results, we confirmed that the light emission could be observed as a shooting star by the naked eye and thus verified the feasibility of the method.

  18. Comparing Eyewitness-Derived Trajectories of Bright Meteors to Ground Truth Data

    Science.gov (United States)

    Moser, D. E.

    2016-01-01

    The NASA Meteoroid Environment Office (MEO) is the only US government agency tasked with analyzing meteors of public interest. When queried about a meteor observed over the United States, the MEO must respond with a characterization of the trajectory, orbit, and size within a few hours. Using observations from meteor networks like the NASA All Sky Fireball Network or the Southern Ontario Meteor Network, such a characterization is often easy. If found, casual recordings from the public and stationary web cameras can be used to roughly analyze a meteor if the camera's location can be identified and its imagery calibrated. This technique was used with great success in the analysis of the Chelyabinsk meteorite fall. But if the event is outside meteor network coverage, if an insufficient number of videos are found, or if the imagery cannot be geolocated or calibrated, a timely assessment can be difficult if not impossible. In this situation, visual reports made by eyewitnesses may be the only resource available. This has led to the development of a tool to quickly calculate crude meteor trajectories from eyewitness reports made to the American Meteor Society. The output is illustrated in Figure 1. A description of the tool, example case studies, and a comparison to ground truth data observed by the NASA All Sky Fireball Network will be presented.

  19. The nomogram of density distribution of lunar craters.

    Science.gov (United States)

    Pugacheva, S. G.; Bolkhovitinov, I. S.

    1994-12-01

    Least-square fits to the density of the distribution of lunar craters described by the approximating function are found for craters larger then 10 km in diamater. The nomogram of parameters of the approximating function is given for the estimate of density of primary, secondary and tertiary craters over an area of 104km2.

  20. Comet C/1917 F1 (Mellish) meteor shower complex

    Science.gov (United States)

    Hajdukova, M.; Neslusan, L.

    2014-07-01

    In this study, we mapped the whole meteor complex of the long-period comet C/1917 F1 (Mellish), using a procedure of proven reliability when investigating the 96P/Machholz and 2003 EH1 streams (Neslusan et al., 2013a; 2013b). For five perihelion passages of the comet C/1917 F1 in the past, we modeled associated theoretical streams, each consisting of 10000 test particles, and followed their dynamical evolution until the present. Subsequently, we analyzed the orbital characteristics of the parts of a stream that approach the Earth's orbit. These particles were used to predict the corresponding meteor showers. The predicted showers were searched for in the databases of actually observed meteors. According to our modeling, the meteoroid stream of the comet Mellish can be split into 4 filaments (F1 to F4), with 4 distinct radiant areas. The most numerous shower that originates in the comet nucleus of C/1917 F1 corresponds to theoretical filament F3. The meteoroids of this filament approach to the Earth's orbit relatively soon after their ejection from the nucleus. We identified this filament as the December Monocerotids (No. 19 in the IAU MDC list of the established showers). In the phase space of orbital elements, the shower occurs in the vicinity of another established shower, 250 November Orionids. However, shower No. 250 is obviously not related to C/1917 F1 since no single theoretical particle, in all five models, is in an orbit similar to the mean orbit of this shower. Filament F1 might be identified to 348 April rho-Cygnids, the meteoroid stream that was recently discovered by the Canadian Meteor Orbit Radar (Brown et al., 2010). In our models, this filament is numerous and, hence, the shower is well predicted. The particles of filament F1 and, therefore, the real April rho-Cygnids originating in C/1917 F1 can approach the Earth's orbit and collide with our planet not earlier than about 20 millennia after their release from the parent-comet nucleus. Despite this

  1. The Working Group on Meteor Showers Nomenclature: a History, Current Status and a Call for Contributions

    Science.gov (United States)

    Jopek, T. J.; Jenniskens, P. M.

    2011-01-01

    During the IAU General Assembly in Rio de Janeiro in 2009, the members of Commission 22 established the Working Group on Meteor Shower Nomenclature, from what was formerly the Task Group on Meteor Shower Nomenclature. The Task Group had completed its mission to propose a first list of established meteor showers that could receive officially names. At the business meeting of Commission 22 the list of 64 established showers was approved and consequently officially accepted by the IAU. A two-step process is adopted for showers to receive an official name from the IAU: i) before publication, all new showers discussed in the literature are first added to the Working List of Meteor Showers, thereby receiving a unique name, IAU number and three-letter code; ii) all showers which come up to the verification criterion are selected for inclusion in the List of Established Meteor Showers, before being officially named at the next IAU General Assembly.

  2. Summary of results of cratering experiments

    International Nuclear Information System (INIS)

    The use of nuclear excavation as a construction technique for producing harbors, canals, highway cuts, and other large excavations requires a high assurance that the yield and depth of burst selected for the explosive will produce the desired configuration within an acceptable degree of tolerance. Nuclear excavation technology advanced significantly during 1968 as a result of the successful execution of Projects Cabriolet, Buggy, and Schooner. Until these experiments were conducted, the only nuclear data available for designing large excavations were derived from Sedan (100 kt in alluvium), Danny Boy (0.42 kt in basalt), and Sulky (0.090 kt in basalt). Applicable experience has now been extended to include two additional rock types: tuff and porphyritic trachyte, non-homogeneous formations with severe geologic layering, and a nuclear row in hard rock. The continued development of cratering calculations using in situ geophysical measurements and high-pressure test data have provided a means for predicting the cratering characteristics of untested materials. Chemical explosive cratering experiments conducted in the pre-Gondola series during the past several years have been directed toward determining the behavior of weak, wet clay shales. This material is important to nuclear excavation because of potential long-term stability problems which may affect the cratered slopes. (author)

  3. Signs of Landscape Modifications at Martian Crater

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] Click on the image for larger version The lower portion of this image from the Thermal Emission Imaging System camera (THEMIS) on NASA's Mars Odyssey orbiter shows a crater about 16 kilometers (10 miles) in diameter with features studied as evidence of deposition or erosion. The crater is centered at 40.32 degrees south latitude and 132.5 degrees east longitude, in the eastern portion of the Hellas basin on Mars. It has gullies and arcuate ridges on its north, pole-facing interior wall. This crater is in the center of a larger (60-kilometer or 37-mile diameter) crater with lobate flows on its north, interior wall. The image, number V07798008 in the THEMIS catalog, covers a swath of ground 17.4 kilometers (10.8 miles) wide. NASA's Jet Propulsion Laboratory manages the Mars Odyssey mission for NASA's Office of Space Science. THEMIS was developed by Arizona State University in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Diurnal and annual variations of meteor rates at the arctic circle

    Directory of Open Access Journals (Sweden)

    W. Singer

    2004-01-01

    Full Text Available Meteors are an important source for (a the metal atoms of the upper atmosphere metal layers and (b for condensation nuclei, the existence of which are a prerequisite for the formation of noctilucent cloud particles in the polar mesopause region. For a better understanding of these phenomena, it would be helpful to know accurately the annual and diurnal variations of meteor rates. So far, these rates have been little studied at polar latitudes. Therefore we have used the 33 MHz meteor radar of the ALOMAR observatory at 69° N to measure the meteor rates at this location for two full annual cycles. This site, being within 3° of the Arctic circle, offers in addition an interesting capability: The axis of its antenna field points (almost towards the North ecliptic pole once each day of the year. In this particular viewing direction, the radar monitors the meteoroid influx from (almost the entire ecliptic Northern hemisphere. We report on the observed diurnal variations (averaged over one month of meteor rates and their significant alterations throughout the year. The ratio of maximum over minimum meteor rates throughout one diurnal cycle is in January and February about 5, from April through December 2.3±0.3. If compared with similar measurements at mid-latitudes, our expectation, that the amplitude of the diurnal variation is to decrease towards the North pole, is not really borne out. Observations with the antenna axis pointing towards the North ecliptic pole showed that the rate of deposition of meteoric dust is substantially larger during the Arctic NLC season than the annual mean deposition rate. The daylight meteor showers of the Arietids, Zeta Perseids, and Beta Taurids supposedly contribute considerably to the June maximum of meteor rates. We note, though, that with the radar antenna pointing as described above, all three meteor radiants are close to the local horizon but all three radiants were detected.

  5. Radar observations of meteor trails, and their interpretation using Fresnel holography: a new tool in meteor science

    Directory of Open Access Journals (Sweden)

    W. G. Elford

    2004-02-01

    Full Text Available A Fresnel Transform technique has been developed at Adelaide to analyse radar meteor echoes detected in the transverse mode. The genesis for this technique was the study of the structure of the scattering ionization immediately behind the head of the trail, in order to deduce the degree of fragmentation of the ablating meteoroid. The technique has been remarkably successful in not only giving insight into the fragmentation of meteoroids, but also revealing other significant features of the trails including diffusion, lateral motion of the trail during formation due to wind drift, and phase of the scattered signal in the vicinity of the head of the trail.

    A serendipitous outcome of the analysis is the measurement of the speed and deceleration of the meteoroid producing the trail to a precision far exceeding that available from any other method applied to transverse scatter data.

    Examples of the outcomes of the technique applied to meteor echoes obtained with a 54 MHz narrow beam radar are presented.

  6. Radar observations of meteor trails, and their interpretation using Fresnel holography: a new tool in meteor science

    Directory of Open Access Journals (Sweden)

    W. G. Elford

    2004-01-01

    Full Text Available A Fresnel transform technique has been developed at Adelaide to analyse radar meteor echoes detected in the transverse mode. The genesis for this technique was the study of the structure of the scattering ionization immediately behind the head of the trail, in order to deduce the degree of fragmentation of the ablating meteoroid. The technique has been remarkably successful in not only giving insight into the fragmentation of meteoroids, but also revealing other significant features of the trails including diffusion, lateral motion of the trail during formation due to wind drift, and phase of the scattered signal in the vicinity of the head of the trail. A serendipitous outcome of the analysis is the measurement of the speed and deceleration of the meteoroid producing the trail to a precision far exceeding that available from any other method applied to transverse scatter data. Examples of the outcomes of the technique applied to meteor echoes obtained with a 54MHz narrow beam radar are presented.

  7. 'Lyell' Panorama inside Victoria Crater (False Color)

    Science.gov (United States)

    2008-01-01

    Photojournal note: This very large image (487.9 MB TIFF and 17.71 MB JPEG) may be too large for some web browsers to handle. Users may right-click on the TIFF or JPEG link in the legend above to download the file to their desktop. The image can then be viewed in an image manipulation application such as Adobe Photoshop. During four months prior to the fourth anniversary of its landing on Mars, NASA's Mars Exploration Rover Opportunity examined rocks inside an alcove called 'Duck Bay' in the western portion of Victoria Crater. The main body of the crater appears in the upper right of this stereo panorama, with the far side of the crater lying about 800 meters (half a mile) away. Bracketing that part of the view are two promontories on the crater's rim at either side of Duck Bay. They are 'Cape Verde,' about 6 meters (20 feet) tall, on the left, and 'Cabo Frio,' about 15 meters (50 feet) tall, on the right. The rest of the image, other than sky and portions of the rover, is ground within Duck Bay. Opportunity's targets of study during the last quarter of 2007 were rock layers within a band exposed around the interior of the crater, about 6 meters (20 feet) from the rim. Bright rocks within the band are visible in the foreground of the panorama. The rover science team assigned informal names to three subdivisions of the band: 'Steno,' 'Smith,' and 'Lyell.' This view combines many images taken by Opportunity's panoramic camera (Pancam) from the 1,332nd through 1,379th Martian days, or sols, of the mission (Oct. 23 to Dec. 11, 2007). Images taken through Pancam filters centered on wavelengths of 753 nanometers, 535 nanometers and 432 nanometers were mixed to produce this view, which is presented in a false-color stretch to bring out subtle color differences in the scene. Some visible patterns in dark and light tones are the result of combining frames that were affected by dust on the front sapphire window of the rover's camera. Opportunity landed on Jan. 25, 2004

  8. On the scaling of crater dimensions. II - Impact processes

    Science.gov (United States)

    Holsapple, K. A.; Schmidt, R. M.

    1982-01-01

    Holsapple and Schmidt (1980) previously addressed the problem of the scaling of explosive cratering. Their analysis included results which show under which conditions the scaling can be bounded between quarter-root and cube-root rules. The present investigation is an extension of the earlier analysis and approaches the case of impact cratering. More restrictive bounds are found for impact cratering than for the explosive case. These stronger results come from considering the role of the impactor momentum as an independent variable for impact cratering. Attention is given to impact cratering variables, general scaling rules, the bounds on scaling rules, a generalization to more variables, and previous scaling rules and results.

  9. Diurnal and annual variations of meteor rates at the Arctic circle

    Directory of Open Access Journals (Sweden)

    W. Singer

    2004-01-01

    Full Text Available Meteors are an important source for (a the metal atoms of the upper atmosphere metal layers and (b for condensation nuclei, the existence of which are a prerequisite for the formation of noctilucent cloud particles in the polar mesopause region. For a better understanding of these phenomena, it would be helpful to know accurately the annual and diurnal variations of meteor rates. So far, these rates have been little studied at polar latitudes. Therefore we have used the 33 MHz meteor radar of the ALOMAR observatory at 69° N to measure the meteor rates at this location for two full annual cycles. This site, being within 3° of the Arctic circle, offers in addition an interesting capability: The axis of its antenna field points (almost towards the North ecliptic pole once each day of the year. In this particular viewing direction, the radar monitors the meteoroid influx from (almost the entire ecliptic Northern hemisphere.

    We report on the observed diurnal variations (averaged over one month of meteor rates and their significant alterations throughout the year. The ratio of maximum over minimum meteor rates throughout one diurnal cycle is in January and February about 5, from April through December 2.3±0.3. If compared with similar measurements at mid-latitudes, our expectation, that the amplitude of the diurnal variation is to decrease towards the North pole, is not really borne out.

    Observations with the antenna axis pointing towards the North ecliptic pole showed that the rate of deposition of meteoric dust is substantially larger during the Arctic NLC season than the annual mean deposition rate. The daylight meteor showers of the Arietids, Zeta Perseids, and Beta Taurids supposedly contribute considerably to the June maximum of meteor rates. We note, though, that with the radar antenna pointing as described above, all three meteor radiants are close to the local horizon. This radiant location should cause most of these

  10. Lunar polar craters -- icy, rough or just sloping?

    CERN Document Server

    Eke, Vincent R; Lane, David A; Smith, David; Teodoro, Luis F A

    2013-01-01

    Circular Polarisation Ratio (CPR) mosaics from Mini-SAR on Chandrayaan-1 and Mini-RF on LRO are used to study craters near to the lunar north pole. The look direction of the detectors strongly affects the appearance of the crater CPR maps. Rectifying the mosaics to account for parallax also significantly changes the CPR maps of the crater interiors. It is shown that the CPRs of crater interiors in unrectified maps are biased to larger values than crater exteriors, because of a combination of the effects of parallax and incidence angle. Using the LOLA Digital Elevation Map (DEM), the variation of CPR with angle of incidence has been studied. For fresh craters, CPR~0.7 with only a weak dependence on angle of incidence or position interior or just exterior to the crater, consistent with dihedral scattering from blocky surface roughness. For anomalous craters, the CPR interior to the crater increases with both incidence angle and distance from the crater centre. Central crater CPRs are similar to those in the cra...

  11. Analysis of the Lyrids' meteor stream structure for long timeslots

    Science.gov (United States)

    Sokolova, M.; Nefedyev, Y.; Sergienko, M.; Demina, N.; Andreev, A.

    2016-08-01

    Lyrids' structural parameters (luminosity function parameter r of meteors distribution magnitudes, the S parameter distribution of meteoroids in the mass flow, zenithal hour number (ZHR)) are determined by visual observations made in the 1900-2007 interval. The minimal value of S is equal to 1.54 ± 0.02 and corresponds to the Sun longitude 32.19° ± 0.04°. Lyrids' activity profiles as ZHR depending on the Sun longitude (L) were constructed for studying the flow activity. ZHR averaging for the individual values was held according the observation in 1900-1963, 1900-2000, 2001-2007 and 1900-2007. The peak position for all groups is the same within the error and equal to 32.326° ± 0.107. Two periods of Lyrids activity were revealed: a period which is close to 60 years; and s period of about 10-12 years.

  12. [Abdominal spasms, meteorism, diarrhea: fructose intolerance, lactose intolerance or IBS?].

    Science.gov (United States)

    Litschauer-Poursadrollah, Margaritha; El-Sayad, Sabine; Wantke, Felix; Fellinger, Christina; Jarisch, Reinhart

    2012-12-01

    Meteorism, abdominal spasms, diarrhea, casually obstipation, flatulence and nausea are symptoms of fructose malabsorption (FIT) and/or lactose intolerance (LIT), but are also symptoms of irritable bowel syndrome (IBS). Therefore these diseases should be considered primarily in patients with digestive complaints. For diagnosis an H(2)-breath test is used.In 1,935 patients (526 m, 1,409 f) a fructose intolerance test and in 1,739 patients (518 m,1,221 f) a lactose intolerance test was done.FIT is found more frequently than LIT (57 versus 52 % in adults (p fructose or lactose may lead to improvement or remission of these metabolic disorders. IBS, which is often correlated with FIT (183/221 patients = 83 %), can be improved by relevant but also not relevant diets indicating that irritable bowel disease seems to be caused primarily by psychological disorders. PMID:23224632

  13. Error correction coding for a meteor burst channel

    Science.gov (United States)

    Miller, Scott L.; Milstein, Laurence B.

    1990-09-01

    The time-varying-SNR model for the meteor burst (MB) channel is reviewed. Bounds on the capacity of the channel are derived for both a constant SNR model and a time-varying SNR model. These bounds show that there is a significant throughput improvement to be gained by using forward error correction. Two methods are given for determining the performance of an MB system when packets of information are encoded with an (n,k) linear block code. Numerical results are generated using high-rate BCH codes, and it is found that about 25 percent improvement over uncoded systems can be obtained by choosing the code rate properly. In addition, some suggestions for techniques that provide further improvement are given.

  14. Crater morphology in sandstone targets: The MEMIN impact parameter study

    Science.gov (United States)

    Dufresne, Anja; Poelchau, Michael H.; Kenkmann, Thomas; Deutsch, Alex; Hoerth, Tobias; SchńFer, Frank; Thoma, Klaus

    2013-01-01

    Hypervelocity (2.5-7.8 km s-1) impact experiments into sandstone were carried out to investigate the influence of projectile velocity and mass, target pore space saturation, target-projectile density contrast, and target layer orientation on crater size and shape. Crater size increases with increasing projectile velocity and mass as well as with increasing target pore space saturation. Craters in water-saturated porous targets are generally shallower and larger in volume and in diameter than craters from equivalent impacts into dry porous sandstone. Morphometric analyses of the resultant craters, 5-40 cm in diameter, reveal features that are characteristic of all of our experimental craters regardless of impact conditions (I) a large central depression within a fragile, light-colored central part, and (II) an outer spallation zone with areas of incipient spallation. Two different mechanical processes, grain fragmentation and intergranular tensile fracturing, are recorded within these crater morphologies. Zone (I) approximates the shape of the transient crater formed by material compression, displacement, comminution, and excavation flow, whereas (II) is the result of intergranular tensile fracturing and spallation. The transient crater dimensions are reconstructed by fitting quadric parabolas to crater profiles from digital elevation models. The dimensions of this transient and of the final crater show the same trends: both increase in volume with increasing impact energy, and with increasing water saturation of the target pore space. The relative size of the transient crater (in percent of the final crater volume) decreases with increasing projectile mass and velocity, signifying a greater contribution of spallation on the final crater size when projectile mass and velocity are increased.

  15. Galileo SSI lunar observations: Copernican craters and soils

    Science.gov (United States)

    Mcewen, A. S.; Greeley, R.; Head, James W.; Pieters, C. M.; Fischer, E. M.; Johnson, T. V.; Neukum, G.

    1993-01-01

    The Galileo spacecraft completed its first Earth-Moon flyby (EMI) in December 1990 and its second flyby (EM2) in December 1992. Copernican-age craters are among the most prominent features seen in the SSI (Solid-State Imaging) multispectral images of the Moon. The interiors, rays, and continuous ejecta deposits of these youngest craters stand out as the brightest features in images of albedo and visible/1-micron color ratios (except where impact melts are abundant). Crater colors and albedos (away from impact melts) are correlated with their geologic emplacement ages as determined from counts of superposed craters; these age-color relations can be used to estimate the emplacement age (time since impact event) for many Copernican-age craters on the near and far sides of the Moon. The spectral reflectivities of lunar soils are controlled primarily by (1) soil maturity, resulting from the soil's cumulative age of exposure to the space environment; (2) steady-state horizontal and vertical mixing of fresh crystalline materials ; and (3) the mineralogy of the underlying bedrock or megaregolith. Improved understanding of items (1) and (2) above will improve our ability to interpret item (3), especially for the use of crater compositions as probes of crustal stratigraphy. We have examined the multispectral and superposed crater frequencies of large isolated craters, mostly of Eratosthenian and Copernican ages, to avoid complications due to (1) secondaries (as they affect superposed crater counts) and (2) spatially and temporally nonuniform regolith mixing from younger, large, and nearby impacts. Crater counts are available for 11 mare craters and 9 highlands craters within the region of the Moon imaged during EM1. The EM2 coverage provides multispectral data for 10 additional craters with superposed crater counts. Also, the EM2 data provide improved spatial resolution and signal-to-noise ratios over the western nearside.

  16. METEOR v1.0 - Design and structure of the software package

    International Nuclear Information System (INIS)

    This script describes the structure and the separated modules of the software package METEOR for the statistical analysis of meteorological data series. It contains a systematic description of the subroutines of METEOR and, also, of the required shape for input and output files. The original version of METEOR have been developed by Ph.D. Elena Palomo, CIEMAT-IER, GIMASE. It is built by linking programs and routines written in FORTRAN 77 and it adds thc graphical capabilities of GNUPLOT. The shape of this toolbox was designed following the criteria of modularity, flexibility and agility criteria. All the input, output and analysis options are structured in three main menus: i) the first is aimed to evaluate the quality of the data set; ii) the second is aimed for pre-processing of the data; and iii) the third is aimed towards the statistical analyses and for creating the graphical outputs. Actually the information about METEOR is constituted by three documents written in spanish: 1) METEOR v1.0: User's guide; 2) METEOR v1.0: A usage example; 3) METEOR v 1.0: Design and structure of the software package. (Author)

  17. 4-D imaging and monitoring of the Solfatara crater (Italy) by ambient noise tomography

    Science.gov (United States)

    Pilz, Marco; Parolai, Stefano; Woith, Heiko; Gresse, Marceau; Vandemeulebrouck, Jean

    2016-04-01

    Imaging shallow subsurface structures and monitoring related temporal variations are two of the main tasks for modern geosciences and seismology. Although many observations have reported temporal velocity changes, e.g., in volcanic areas and on landslides, new methods based on passive sources like ambient seismic noise can provide accurate spatially and temporally resolved information on the velocity structure and on velocity changes. The success of these passive applications is explained by the fact that these methods are based on surface waves which are always present in the ambient seismic noise wave field because they are excited preferentially by superficial sources. Such surface waves can easily be extracted because they dominate the Greeńs function between receivers located at the surface. For real-time monitoring of the shallow velocity structure of the Solfatara crater, one of the forty volcanoes in the Campi Flegrei area characterized by an intense hydrothermal activity due to the interaction of deep convection and meteoric water, we have installed a dense network of 50 seismological sensing units covering the whole surface area in the framework of the European project MED-SUV (The MED-SUV project has received funding from the European Union Seventh Framework Programme FP7 under Grant agreement no 308665). Continuous recordings of the ambient seismic noise over several days as well as signals of an active vibroseis source have been used. Based on a weighted inversion procedure for 3D-passive imaging using ambient noise cross-correlations of both Rayleigh and Love waves, we will present a high-resolution shear-wave velocity model of the structure beneath the Solfatara crater and its temporal changes. Results of seismic tomography are compared with a 3-D electrical resistivity model and CO2 flux map.

  18. Simultaneous optical and radar observations of meteor head-echoes utilizing SAAMER

    Science.gov (United States)

    Michell, R. G.; Janches, D.; Samara, M.; Hormaechea, J. L.; Brunini, C.; Bibbo, I.

    2015-12-01

    We present simultaneous optical and radar observations of meteors observed with the Southern Argentine Agile MEteor Radar (SAAMER). Although such observations were performed in the past using High Power and Large Aperture radars, the focus here is on meteors that produced head echoes that can be detected by a significantly less sensitive but more accessible radar system. An observational campaign was conducted in August of 2011, where an optical imager was operated near the radar site in Rio Grande, Tierra del Fuego, Argentina. Six head echo events out of 150 total detections were identified where simultaneous optical meteors could also be clearly seen within the main radar beam. The location of the meteors derived from the radar interferometry agreed very well with the optical location, verifying the accuracy of the radar interferometry technique. The meteor speeds and origin directions calculated from the radar data were accurate-compared with the optics-for the 2 meteors that had radar signal-to-noise ratios above 2.5. The optical meteors that produced the head echoes had horizontal velocities in the range of 29-91 km/s. These comparisons with optical observations improve the accuracy of the radar detection and analysis techniques, such that, when applied over longer periods of time, will improve the statistics of southern hemisphere meteor observations. Mass estimates were derived using both the optical and radar data and the resulting masses agreed well with each other. All were within an order of magnitude and in most cases, the agreement was within a factor of two.

  19. Optical observations of meteors generating infrasound-I: Acoustic signal identification and phenomenology

    Science.gov (United States)

    Silber, Elizabeth A.; Brown, Peter G.

    2014-11-01

    We analyse infrasound signals from 71 bright meteors/fireballs simultaneously detected by video to investigate the phenomenology and characteristics of meteor-generated near-field infrasound (trail where the infrasound signal originates, we find most signals are associated with cylindrical shocks, with about a quarter of events evidencing spherical shocks associated with fragmentation episodes and optical flares. The video data indicate that all events with ray launch angles >117° from the trajectory heading are most likely generated by a spherical shock, while infrasound produced by the meteors with ray launch angles ≤117° can be attributed to both a cylindrical line source and a spherical shock. We find that meteors preferentially produce infrasound toward the end of their trails with a smaller number showing a preference for mid-trail production. Meteors producing multiple infrasound arrivals show a strong infrasound source height skewness to the end of trails and are much more likely to be associated with optical flares. We find that about 1% of all our optically-recorded meteors have associated detected infrasound and estimate that regional meteor infrasound events should occur on the order of once per week and dominate in numbers over infrasound associated with more energetic (but rarer) bolides. While a significant fraction of our meteors generating infrasound (~1/4 of single arrivals) are produced by fragmentation events, we find no instances where acoustic radiation is detectable more than about 60° beyond the ballistic regime at our meteoroid sizes (grams to tens of kilograms) emphasizing the strong anisotropy in acoustic radiation for meteors which are dominated by cylindrical line source geometry, even in the presence of fragmentation.

  20. Hard- and software problems of spaced meteor observations by optical electronics

    Science.gov (United States)

    Shafiev, R. I.; Mukhamednazarov, S.; Ataev, A. SH.

    1987-01-01

    An optical electronic facility is being used for meteor observations along with meteor radars and astronomical TV. The main parts of the facility are cameras using UM-92 optical electronic image tubes. The three cascade optical electronic image tube with magnetic focusing has a 40 mm cathode and resolution in the center of up to 30 pairs of lines/mm. The photocathode is of a multislit S-20 type. For meteor spectra observations, replica gratings of 200 and 300 lines/mm are used as the dispersive element.

  1. Searching for the Source Crater of Nakhlite Meteorites

    Science.gov (United States)

    Kereszturi, A.; Chatzitheodoridis, E.

    2016-03-01

    We surveyed the Martian surface in order to identify possible source craters of the nakhlite Martian meteorites. We investigated rayed craters that are assumed to be younger than 11 Ma, on lava surfaces with a solidification age around 1.2 Ga. An area of 17.3 million km2 Amazonian lava plains was surveyed and 53 rayed craters were identified. Although most of them are smaller than the threshold limit that is estimated as minimum of launching fragments to possible Earth crossing trajectories, their observed size frequency distribution agrees with the expected areal density from cratering models characteristic for craters that are less than few tens of Ma old. We identified 6 craters larger than 3 km diameter constituting the potentially best source craters for nakhlites. These larger candidates are located mostly on a smooth lava surface, and in some cases, on the earlier fluvial-like channels. In three cases they are associated with fluidized ejecta lobes and rays - although the rays are faint in these craters, thus might be older than the other craters with more obvious rays. More work is therefore required to accurately estimate ages based on ray system for this purpose. A more detailed search should further link remote sensing Martian data with the in-situ laboratory analyses of Martian meteorites, especially in case of high altitude, steep terrains, where the crater rays seems to rarely survive several Ma.

  2. A Spanish Tagset for the CRATER Project

    OpenAIRE

    León, Fernando Sánchez

    1994-01-01

    This working paper describes the Spanish tagset to be used in the context of CRATER, a CEC funded project aiming at the creation of a multilingual (English, French, Spanish) aligned corpus using the International Telecommunications Union corpus. In this respect, each version of the corpus will be (or is currently) tagged. Xerox PARC tagger will be adapted to Spanish in order to perform the tagging of the Spanish version. This tagset has been devised as the ideal one for Spanish, and has been ...

  3. Ejecta from single-charge cratering explosions

    International Nuclear Information System (INIS)

    The objective was to obtain experimental data tracing the location of ejecta to its origin within the crater region. The experiment included ten high-explosive spherical charges weighing from 8 to 1000 pounds and detonated in a playa dry lake soil on the Tonopah Test Range. Each event included from 24 to 40 locations of distinctly different tracer material embedded in a plane in the expected crater region. Tracers consisted of glass, ceramic and bugle beads, chopped metal, and plastic wire. Results of this experiment yielded data on tracer dispersion as a function of charge weight, charge burial depth and tracer emplacement position. Tracer pattern parameters such as center-of-tracer mass, range to center-of-tracer mass, and angle to center-of-tracer mass were determined. There is a clear tendency for range (to center-of-tracer mass) and the size of the dispersion pattern to decrease as tracer emplacement depth increases. Increasing tracer emplacement depth and range tends to decrease the area over which tracers are dispersed on the ground surface. Tracers at the same scaled position relative to the charge were deposited closer to the crater (on a scaled basis) as charge weight was increased. (author)

  4. Analytical formulation of lunar cratering asymmetries

    CERN Document Server

    Wang, Nan

    2016-01-01

    We formulate the lunar cratering distribution and verify the cratering asymmetries generated by the main-belt asteroids (MBAs) as well as the near-Earth objects (NEOs). Based on a planar model that excludes the terrestrial and lunar gravitations on the impactors and assuming the impactor encounter speed with Earth $v_{\\rm{enc}}$ is higher than the lunar orbital speed $v_{\\rm{M}}$, we rigorously integrated the lunar cratering distribution, and derived its approximation to the first order of $v_{\\rm{M}}/v_{\\rm{enc}}$. Numerical simulations of lunar bombardment by the MBAs during the late heavy bombardment were performed with an Earth-Moon distance $a_{\\rm{M}}$ = 20--60 Earth radii in five cases. The analytical model directly proves the existence of a leading/trailing asymmetry and the absence of near/far asymmetry. The approximate form of the leading/trailing asymmetry is $(1 + A_1 \\cos\\beta)$, which decreases as the apex distance $\\beta$ increases. The numerical simulations show evidence of a pole/equator asym...

  5. Zumba crater, Daedalia Planum, Mars: Geologic investigation of a young, rayed impact crater and its secondary field

    Science.gov (United States)

    Chuang, Frank C.; Crown, David A.; Tornabene, Livio L.

    2016-05-01

    Zumba is a ∼2.9 km diameter rayed crater on Mars located on extensive lava plains in Daedalia Planum to the southwest of Arsia Mons. It is a well-preserved young crater with large ejecta rays that extend for hundreds of kilometers from the impact site. The rays are thermally distinct from the background lava flows in THEMIS daytime and nighttime thermal infrared data, a unique characteristic among martian rayed craters. Concentrated within the rays are solitary or dense clusters of secondary craters with associated diffuse dark-toned deposits along with fewer secondary craters lacking dark-toned deposits. Using CTX images, we have mapped secondary craters with dark-toned deposits, collectively termed "secondary fields", to investigate their distribution as a function of distance from the impact site. The mapped secondary field was then used to investigate various aspects of the crater-forming event such as the surface angle and direction of the projectile, the effect of secondary craters on surface age estimates, and the number of secondary craters produced by the impact event. From our mapping, a total of 13,064 secondary fields were documented out to a 200 km radial distance beyond a 15 km-wide non-secondary zone around Zumba crater. Results show that the highest areal coverage of secondary fields occurs within 100 km of Zumba and within its rays, decreasing radially with distance to a background scattering of small secondary fields that are population). The strong east-west asymmetry of crater rays and low areal coverage of fields to the south of Zumba correlate well with studies of Zumba impact melt deposits, indicating a moderately oblique impact projectile coming from the south. Using primary craters in a ∼101 km2 sample region and all craters (primaries and secondaries) from 43 select secondary fields in two map sectors in the study area, we obtain ages of ∼580 ± 100 Ma and ∼650 ± 70 Ma, respectively, for the lava flows into which Zumba impacted

  6. Identification of Emission Lines in a Meteor Spectrum Obtained on August 2, 2011

    Czech Academy of Sciences Publication Activity Database

    Mozgova, A.M.; Borovička, Jiří; Spurný, Pavel; Churyumov, K. I.

    2015-01-01

    Roč. 28, č. 2 (2015), s. 289-292. ISSN 1810-4215 Institutional support: RVO:67985815 Keywords : meteors * spectra * line identification Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  7. Prediction of meteor shower of comet 161P/2004 V2

    Science.gov (United States)

    Tomko, D.; Neslušan, L.

    2014-07-01

    We deal with theoretical meteoroid stream of Halley-type comet 161P/2004 V2. For two perihelion passages in the far past, we model the stream and follow its dynamical evolution until the present. We predict the characteristics of potential meteor showers according to the dynamical properties of artificial particles currently approaching the orbit of the Earth. Our dynamical study reveals that the comet 161P/2004 V2 could have an associated Earth-observable meteor shower, although no significant number of artificial particles are identified with real, photographic, video, or radar meteors. However, the mean radiant of the shower is predicted on the southern sky (its declination is about -23 grad) where a relatively low number of real meteors has been detected and, therefore, recorded in the databases used. The shower of 161P has a compact radiant area and a relatively large geocentric velocity of ~ 53 km/s.

  8. First observational evidence for the connection between the meteoric activity and occurrence of equatorial counter electrojet

    Science.gov (United States)

    Vineeth, C.; Mridula, N.; Muralikrishna, P.; Kumar, K. K.; Pant, T. K.

    2016-09-01

    This paper presents the first direct observational evidence for the possible role of meteoric activity in the generation of the equatorial Counter Electrojets (CEJ), an enigmatic daytime electrodynamical process over the geomagnetic equatorial upper atmosphere. The investigation carried out using the data from Proton Precession Magnetometer and Meteor Wind Radar over a geomagnetic dip equatorial station, Trivandrum (8.5°N, 77°E, 0.5°N dip lat.) in India, revealed that the occurrence of the afternoon CEJ events during a month is directly proportional to the average monthly meteor counts over this location. The observation is found to be very consistent during the considered period of study, i.e the years 2006 and 2007. The study vindicates that the meteor showers play a major role in setting up the background condition conducive for the generation of CEJ by reducing the strength of the upward polarization field.

  9. Meteor Shower Forecast Improvements from a Survey of All-Sky Network Observations

    Science.gov (United States)

    Moorhead, Althea V.; Sugar, Glenn; Brown, Peter G.; Cooke, William J.

    2015-01-01

    Meteoroid impacts are capable of damaging spacecraft and potentially ending missions. In order to help spacecraft programs mitigate these risks, NASA's Meteoroid Environment Office (MEO) monitors and predicts meteoroid activity. Temporal variations in near-Earth space are described by the MEO's annual meteor shower forecast, which is based on both past shower activity and model predictions. The MEO and the University of Western Ontario operate sister networks of all-sky meteor cameras. These networks have been in operation for more than 7 years and have computed more than 20,000 meteor orbits. Using these data, we conduct a survey of meteor shower activity in the "fireball" size regime using DBSCAN. For each shower detected in our survey, we compute the date of peak activity and characterize the growth and decay of the shower's activity before and after the peak. These parameters are then incorporated into the annual forecast for an improved treatment of annual activity.

  10. New meteor showers identified in the CAMS and SonotaCo meteoroid orbit surveys

    CERN Document Server

    Rudawska, Regina

    2014-01-01

    A cluster analysis was applied to the combined meteoroid orbit database derived from low-light level video observations by the SonotaCo consortium in Japan (64,650 meteors observed between 2007 and 2009) and by the Cameras for All-sky Meteor Surveillance (CAMS) project in California, during its first year of operation (40,744 meteors from Oct. 21, 2010 to Dec. 31, 2011). The objective was to identify known and potentially new meteoroid streams and identify their parent bodies. The database was examined by a single-linking algorithm using the Southworth and Hawkins D-criterion to identify similar orbits, with a low criterion threshold of D < 0.05. A minimum member threshold of 6 produced a total of 88 meteoroid streams. 43 are established streams and 45 are newly identified streams. The newly identified streams were included as numbers 448-502 in the IAU Meteor Shower Working List. Potential parent bodies are proposed.

  11. Mexican site for K/T impact crater?

    Science.gov (United States)

    Pope, K. O.; Ocampo, A. C.; Duller, C. E.

    1991-05-01

    Research throughout the Caribbean suggests that the geophysical anomalies in the Yucatan first noted by Penfield and Camargo (1981) and called the Chicxulub crater could be the site of the impact purported to have caused the K/T extinctions. A semicircular ring of sink holes, known locally as cenotes, which correlates with the geophysical anomalies has been identified, and it is argued that the origin of the cenote ring is related to postimpact subsidence of the Chicxulub crater rim. If there is indeed a crater, the region within the cenote ring corresponds to its floor and the crater rim diameter is probably larger than 200 km. If confirmed as a site of impact, the Chicxulub crater would be the largest terrestrial impact crater known, which is consistent with the uniqueness of the K/T global catastrophe.

  12. Structural uplift and ejecta thickness of lunar mare craters: New insights into the formation of complex crater rims

    Science.gov (United States)

    Krüger, Tim; Kenkmann, Thomas

    2015-04-01

    Most complex impact craters on solid planetary surfaces throughout the Solar System exhibit elevated crater rims similar to the elevated crater rims of simple craters. In principal the final elevation of the crater rim is due to the deposition of ejecta on the structurally uplifted bedrock of the pre-impact surface. For simple craters the elevated crater rim is due to two well understood factors: (i) Emplacement of the coherent proximal ejecta material at the transient cavity rim (overturned flap) [1]. (ii) Structural uplift of the pre-impact surface in the proximity of the transient cavity [1, 2]. The amount of structural uplift at the rim of simple craters is due to plastic thickening of the target rock, the emplacement of interthrust wedges and/or the injection of dike material in the underlying target [1, 2, 3, 4]. Both factors, (i) and (ii), are believed to equally contribute to the structural uplift of simple craters. Larger craters have complex morphologies and the crater's extent may considerably exceed that of the transient cavity due to gravity-driven adjustment movements. For instance, the Ries crater's final diameter is twice of its transient cavity size. It is expected that both ejecta thickness and structural uplift decrease with increasing distance from the rim of the transient crater. For lunar craters the continuous ejecta extends up to 2 crater radii from the crater center. The ejecta blanket thickness ET at the rim crest of the transient crater (which is inside the final crater) is a function of the distance r from the crater center, with RT as the radius of the transient crater [2, 6, 7] and is expressed by the following function: (1) ET = 0.033 RT (r/RT)^-3.0 for r ≥ RT [5, 6] The structural uplift is largest at the transient cavity rim and gets rapidly smaller with increasing distance to the crater center and disappears after 1.3 - 1.7 crater radii [1]. These circumstances raise the question, how elevated rims of complex craters form? Based

  13. Reaction Kinetics of Meteoric Sodium Reservoirs in the Upper Atmosphere.

    Science.gov (United States)

    Gómez Martín, J C; Garraway, S A; Plane, J M C

    2016-03-10

    The gas-phase reactions of a selection of sodium-containing species with atmospheric constituents, relevant to the chemistry of meteor-ablated Na in the upper atmosphere, were studied in a fast flow tube using multiphoton ionization time-of-flight mass spectrometry. For the first time, unambiguous observations of NaO and NaOH in the gas phase under atmospheric conditions have been achieved. This enabled the direct measurement of the rate constants for the reactions of NaO with H2, H2O, and CO, and of NaOH with CO2, which at 300-310 K were found to be (at 2σ confidence level): k(NaO + H2O) = (2.4 ± 0.6) × 10(-10) cm(3) molecule (-1) s(-1), k(NaO + H2) = (4.9 ± 1.2) × 10(-12) cm(3) molecule (-1) s(-1), k(NaO + CO) = (9 ± 4) × 10(-11) cm(3) molecule (-1) s(-1), and k(NaOH + CO2 + M) = (7.6 ± 1.6) × 10(-29) cm(6) molecule (-2) s(-1) (P = 1-4 Torr). The NaO + H2 reaction was found to make NaOH with a branching ratio ≥ 99%. A combination of quantum chemistry and statistical rate theory calculations are used to interpret the reaction kinetics and extrapolate the atmospherically relevant experimental results to mesospheric temperatures and pressures. The NaO + H2O and NaOH + CO2 reactions act sequentially to provide the major atmospheric sink of meteoric Na and therefore have a significant impact on the underside of the Na layer in the terrestrial mesosphere: the newly determined rate constants shift the modeled peak to about 93 km, i.e., 2 km higher than observed by ground-based lidars. This highlights further uncertainties in the Na chemistry cycle such as the unknown rate constant of the NaOH + H reaction. The fast Na-recycling reaction between NaO and CO and a re-evaluated rate constant of the NaO + CO2 sink should be now considered in chemical models of the Martian Na layer. PMID:25723735

  14. Double station observation of Draconid meteor outburst from two moving aircraft

    Czech Academy of Sciences Publication Activity Database

    Koten, Pavel; Vaubaillon, J.; Margonis, A.; Toth, J.; Ďuriš, F.; McAulliffe, J.; Oberst, J.

    2015-01-01

    Roč. 118, December (2015), s. 112-119. ISSN 0032-0633 R&D Projects: GA ČR GA14-25251S; GA ČR(CZ) GAP209/11/1382; GA MŠk 7AMB13FR006 Institutional support: RVO:67985815 Keywords : meteors * meteor showers * Draconids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.875, year: 2014

  15. MAIA: Technical Development of a Novel System for Video Observations of Meteors

    Directory of Open Access Journals (Sweden)

    S. Vítek

    2011-01-01

    Full Text Available A system for double station observation of meteors now known as MAIA (Meteor Automatic Imager and Analyzer is introduced in this paper. The system is based on two stations with gigabite ethernet cameras, sensitive image intensifiers and automatic processing of the recorded image data. This paper presents the measured electrooptical characteristics of the components and the overall performance of the new digital system in comparison with the current analog solution.

  16. Dependences of Ratio of the Luminosity to Ionization on Velocity and Chemical Composition of Meteors

    Science.gov (United States)

    Narziev, M.

    2011-01-01

    On the bases of results simultaneous photographic and radio echo observations, the results complex radar and television observations of meteors and also results of laboratory modeling of processes of a luminescence and ionization, correlation between of luminous intensity Ip to linear electronic density q from of velocities and chemical structure are investigated. It is received that by increasing value of velocities of meteors and decrease of nuclear weight of substance of particles, lg Ip/q decreased more than one order.

  17. Central European MetEor NeTwork: Current status and future activities

    Science.gov (United States)

    Srba, J.; Koukal, J.; Ferus, M.; Lenža, L.; Gorková, S.; Civiš, S.; Simon, J.; Csorgei, T.; Jedlièka, M.; Korec, M.; Kaniansky, S.; Polák, J.; Spurný, M.; Brázdil, T.; Mäsiar, J.; Zima, M.; Delinèák, P.; Popek, M.; Bahýl, V.; Piffl, R.; Èechmánek, M.

    2016-06-01

    The Central European video Meteor Network (CEMeNt) established in 2010 is a platform for cross-border cooperation in the field of video meteor observations between Czech Republic and Slovakia. During five years of operation the CEMeNt network went through an extensive development. In total, 37 video systems were working on 20 permanent stations located in Czech Republic and Slovakia during 2015. In this paper we summarize CEMeNt current status and introduce some future activities.

  18. On the influence of neutral turbulence on ambipolar diffusivities deduced from meteor trail expansion

    Directory of Open Access Journals (Sweden)

    C. M. Hall

    Full Text Available By measuring fading times of radar echoes from underdense meteor trails, it is possible to deduce the ambipolar diffusivities of the ions responsible for these radar echoes. It could be anticipated that these diffusivities increase monotonically with height akin to neutral viscosity. In practice, this is not always the case. Here, we investigate the capability of neutral turbulence to affect the meteor trail diffusion rate.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; turbulence

  19. Zumba crater, Daedalia Planum, Mars: Geologic investigation of a young, rayed impact crater and its secondary field

    Science.gov (United States)

    Chuang, Frank C.; Crown, David A.; Tornabene, Livio L.

    2016-05-01

    Zumba is a ∼2.9 km diameter rayed crater on Mars located on extensive lava plains in Daedalia Planum to the southwest of Arsia Mons. It is a well-preserved young crater with large ejecta rays that extend for hundreds of kilometers from the impact site. The rays are thermally distinct from the background lava flows in THEMIS daytime and nighttime thermal infrared data, a unique characteristic among martian rayed craters. Concentrated within the rays are solitary or dense clusters of secondary craters with associated diffuse dark-toned deposits along with fewer secondary craters lacking dark-toned deposits. Using CTX images, we have mapped secondary craters with dark-toned deposits, collectively termed "secondary fields", to investigate their distribution as a function of distance from the impact site. The mapped secondary field was then used to investigate various aspects of the crater-forming event such as the surface angle and direction of the projectile, the effect of secondary craters on surface age estimates, and the number of secondary craters produced by the impact event. From our mapping, a total of 13,064 secondary fields were documented out to a 200 km radial distance beyond a 15 km-wide non-secondary zone around Zumba crater. Results show that the highest areal coverage of secondary fields occurs within 100 km of Zumba and within its rays, decreasing radially with distance to a background scattering of small secondary fields that are primary craters in a ∼101 km2 sample region and all craters (primaries and secondaries) from 43 select secondary fields in two map sectors in the study area, we obtain ages of ∼580 ± 100 Ma and ∼650 ± 70 Ma, respectively, for the lava flows into which Zumba impacted. These ages are consistent with and intermediate to 0.1-1 Ga volcanic flow units within and near Daedalia Planum. For craters within the secondary fields, a log differential plot of the data shows a pronounced downward deflection of the binned points for

  20. Observations of Leonid Meteors Using a Mid-Wave Infrared Imaging Spectrograph

    Science.gov (United States)

    Rossano, George S.; Russell, Ray W.; Lynch, David K.; Tessensohn, Ted K.; Warren, David; Jenniskens, Peter

    We report broadband 3-5.5 µm detections of two Leonid meteors observed during the 1998 Leonid Multi-Instrument Aircraft Campaign. Each meteor was detected at only one position along their trajectory just prior to the point of maximum light emission. We describe the particular aspects of the Aerospace Corp. Mid-wave Infra-Red Imaging Spectrograph (MIRIS) developed for the observation of short duration transient events that impact its ability to detect Leonid meteors. This instrument had its first deployment during the 1998 Leonid MAC. We infer from our observations that the mid-wave IR light curves of two Leonid meteors differed from the visible light curve. At the points of detection, the infrared emission in the MIRIS passband was 25 +/- 4 times that at optical wavelengths for both meteors. In addition, we find an upper limit of 800 K for the solid body temperature of the brighter meteor we observed, at the point in the trajectory where we made our mid-wave IR detection.

  1. 3D structure of the Gusev Crater region

    Science.gov (United States)

    Parker, Mirjam van Kan; Zegers, Tanja; Kneissl, Thomas; Ivanov, Boris; Foing, Bernard; Neukum, Gerhard

    2010-06-01

    Gusev Crater lies within the Aeolis Quadrangle of Mars at the boundary between the northern lowlands and southern highlands. The ancient valley Ma'adim Vallis dissects the highlands south of Gusev Crater and is thought to have fed the crater with sediments. High Resolution Stereo Camera data and Digital Elevation Models were used to construct a geologic-geomorphic map (173.5-178.5° E, 10-18° S) and cross-sections, complemented by data from Mars Orbiter Camera, Mars Orbiter Laser Altimeter and Thermal Emission Imaging System. Three geologic domains are recognised: the highlands in the south, Gusev Crater and lowlands in the north. Twelve units are mapped, with thicknesses ranging from hundred meters to several kilometres. Thicknesses of units, and their bedding attitude, are estimated combining the geologic map and topographic information. Relative ages are determined from crater counts, ranging from Early Noachian for highland units to Middle Amazonian for units in Gusev Crater and in lowlands. Episodes of intense geologic activity (deposition, volcanism, deformation) occur at around 4.0 Ga, 3.7 Ga, and 3.5 Ga. Comparing the geometry of the Gusev Crater with similar sized, filled and un-filled, Martian craters, suggests that the Columbia Hills are relics of the original central peak of Gusev Crater.

  2. Low-velocity impact craters in ice and ice-saturated sand with implications for Martian crater count ages

    Science.gov (United States)

    Croft, S. K.; Kieffer, S. W.; Ahrens, T. J.

    1979-01-01

    The paper reports on a series of low-velocity impact experiments performed in ice and ice-saturated sand. It is found that crater diameters in ice-saturated sand were about 2 times larger than in the same energy and velocity range in competent blocks of granite, basalt and cement, while craters in ice were 3 times larger. It is shown that if this dependence of crater size on strength persists to large hypervelocity impact craters, then surface of geologic units composed of ice or ice-saturated soil would have greater crater count ages than rocky surfaces with identical influx histories. Among the conclusions are that Martian impact crater energy versus diameter scaling may also be a function of latitude.

  3. A First-Principle Kinetic Theory of Meteor Plasma Formation

    Science.gov (United States)

    Dimant, Yakov; Oppenheim, Meers

    2015-11-01

    Every second millions of tiny meteoroids hit the Earth from space, vast majority too small to observe visually. However, radars detect the plasma they generate and use the collected data to characterize the incoming meteoroids and the atmosphere in which they disintegrate. This diagnostics requires a detailed quantitative understanding of formation of the meteor plasma. Fast-descending meteoroids become detectable to radars after they heat due to collisions with atmospheric molecules sufficiently and start ablating. The ablated material then collides into atmospheric molecules and forms plasma around the meteoroid. Reflection of radar pulses from this plasma produces a localized signal called a head echo. Using first principles, we have developed a consistent collisional kinetic theory of the near-meteoroid plasma. This theory shows that the meteoroid plasma develops over a length-scale close to the ion mean free path with a non-Maxwellian velocity distribution. The spatial distribution of the plasma density shows significant deviations from a Gaussian law usually employed in head-echo modeling. This analytical model will serve as a basis for more accurate quantitative interpretation of the head echo radar measurements. Work supported by NSF Grant 1244842.

  4. The Variability of Crater Identification Among Expert and Community Crater Analysts

    Science.gov (United States)

    Robbins, S. J.; Antonenko, I.; Kirchoff, M. R.; Chapman, C. R.; Fassett, C. I.; Herrick, R. R.; Singer, K.; Zanetti, M.; Lehan, C.; Huang, D.; Gay, P. L.

    2015-05-01

    We all know it in the back of our minds, but we tend to ignore the fact that crater identification and measurement is not an exact science. This work was to start to quantify the variation in how independent analysts identify and measure impacts.

  5. Hydrothermal Processes and Mobile Element Transport in Martian Impact Craters - Evidence from Terrestrial Analogue Craters

    Science.gov (United States)

    Newsom, H. E.; Nelson, M. J.; Shearer, C. K.; Dressler, B. L.

    2005-01-01

    Hydrothermal alteration and chemical transport involving impact craters probably occurred on Mars throughout its history. Our studies of alteration products and mobile element transport in ejecta blanket and drill core samples from impact craters show that these processes may have contributed to the surface composition of Mars. Recent work on the Chicxulub Yaxcopoil-1 drill core has provided important information on the relative mobility of many elements that may be relevant to Mars. The Chicxulub impact structure in the Yucatan Peninsula of Mexico and offshore in the Gulf of Mexico is one of the largest impact craters identified on the Earth, has a diameter of 180-200 km, and is associated with the mass extinctions at the K/T boundary. The Yax-1 hole was drilled in 2001 and 2002 on the Yaxcopoil hacienda near Merida on the Yucatan Peninsula. Yax-1 is located just outside of the transient cavity, which explains some of the unusual characteristics of the core stratigraphy. No typical impact melt sheet was encountered in the hole and most of the Yax-1 impactites are breccias. In particular, the impact melt and breccias are only 100 m thick which is surprising taking into account the considerably thicker breccia accumulations towards the center of the structure and farther outside the transient crater encountered by other drill holes.

  6. Multiple origins for olivine at Copernicus crater

    Science.gov (United States)

    Dhingra, Deepak; Pieters, Carle M.; Head, James W.

    2015-06-01

    Multiple origins for olivine-bearing lithologies at Copernicus crater are recognized based on integrated analysis of data from Chandrayaan-1 Moon Mineralogy Mapper (M3), Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) and Kaguya Terrain Camera (TC). We report the diverse morphological and spectral character of previously known olivine-bearing exposures as well as the new olivine occurrences identified in this study. Prominent albedo differences exist between olivine-bearing exposures in the central peaks and a northern wall unit (the latter being ∼40% darker). The low-albedo wall unit occurs as a linear mantling deposit and is interpreted to be of impact melt origin, in contrast with the largely unmodified nature of olivine-bearing peaks. Small and localized occurrences of olivine-bearing lithology have also been identified on the impact melt-rich floor, representing a third geologic setting (apart from crater wall and peaks). Recent remote sensing missions have identified olivine-bearing exposures around lunar basins (e.g. Yamamoto et al., 2010; Pieters et al., 2011; Kramer et al., 2013) and at other craters (e.g. Sun and Li, 2014), renewing strong interest in its origin and provenance. A direct mantle exposure has commonly been suggested in this regard. Our detailed observations of the morphological and spectral diversity in the olivine-bearing exposures at Copernicus have provided critical constraints on their origin and source regions, emphasizing multiple formation mechanisms. These findings directly impact the interpretation of olivine exposures elsewhere on the Moon. Olivine can occur in diverse environments including an impact melt origin, and therefore it is unlikely for all olivine exposures to be direct mantle occurrences as has generally been suggested.

  7. Transient Crater Growth and Ejecta Behavior in Experimental Impacts into Geological Materials

    Science.gov (United States)

    Poelchau, M. H.; Hoerth, T.; Pietrek, A.; Schäfer, F.; Kenkmann, T.

    2015-07-01

    High-speed images from cratering experiments were evaluated. Initial results suggests that transient crater growth rates in strength-dominated cratering increase with velocity and projectile size, and ejecta cone angles increase with velocity.

  8. On the Binning and Associated Uncertainty of Crater Diameter Size-Frequency Distributions

    Science.gov (United States)

    Weaver, B. P.; Robbins, S. J.; Plesko, C. S.; Riggs, J. D.

    2015-05-01

    The tabulation and graphical display of crater size-frequency data (crater diameters) is a critical part of analyzing crater populations, but despite a landmark 1979 paper, standardization remains elusive. We will discuss recommendations.

  9. Determining Statistically Significant Deviations from a Model Crater Production Function for Estimating Resurfacing Events

    Science.gov (United States)

    Weaver, B. P.; Hilbe, J. M.; Robbins, S. J.; Plesko, C. S.; Riggs, J. D.

    2015-05-01

    Many crater analysts will search for deviations of observed crater population data from model crater populations and treat those deviations as a modification event - usually resurfacing. We will discuss how to assign confidences for these deviations.

  10. Be2D: A model to understand the distribution of meteoric 10Be in soilscapes

    Science.gov (United States)

    Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Govers, Gerard

    2016-04-01

    Cosmogenic nuclides have revolutionised our understanding of earth surface process rates. They have become one of the standard tools to quantify soil production by weathering, soil redistribution and erosion. Especially Beryllium-10 has gained much attention due to its long half-live and propensity to be relatively conservative in the landscape. The latter makes 10Be an excellent tool to assess denudation rates over the last 1000 to 100 × 103 years, bridging the anthropogenic and geological time scale. Nevertheless, the mobility of meteoric 10Be in soil systems makes translation of meteoric 10Be inventories into erosion and deposition rates difficult. Here we present a coupled soil hillslope model, Be2D, that is applied to synthetic and real topography to address the following three research questions. (i) What is the influence of vertical meteoric Be10 mobility, caused by chemical mobility, clay translocation and bioturbation, on its lateral redistribution over the soilscape, (ii) How does vertical mobility influence erosion rates and soil residence times inferred from meteoric 10Be inventories and (iii) To what extent can a tracer with a half-life of 1.36 Myr be used to distinguish between natural and human-disturbed soil redistribution rates? The model architecture of Be2D is designed to answer these research questions. Be2D is a dynamic model including physical processes such as soil formation, physical weathering, clay migration, bioturbation, creep, overland flow and tillage erosion. Pathways of meteoric 10Be mobility are simulated using a two step approach which is updated each timestep. First, advective and diffusive mobility of meteoric 10Be is simulated within the soil profile and second, lateral redistribution because of lateral soil fluxes is calculated. The performance and functionality of the model is demonstrated through a number of synthetic and real model runs using existing datasets of meteoric 10Be from case-studies in southeastern US. Brute

  11. A Spanish Tagset for the CRATER Project

    CERN Document Server

    Sánchez-León, F

    1994-01-01

    This working paper describes the Spanish tagset to be used in the context of CRATER, a CEC funded project aiming at the creation of a multilingual (English, French, Spanish) aligned corpus using the International Telecommunications Union corpus. In this respect, each version of the corpus will be (or is currently) tagged. Xerox PARC tagger will be adapted to Spanish in order to perform the tagging of the Spanish version. This tagset has been devised as the ideal one for Spanish, and has been posted to several lists in order to get feedback to it.

  12. Crater size distributions on Ganymede and Callisto: fundamental issues

    Science.gov (United States)

    Wagner, Roland; Schmedemann, Nico; Werner, Stefanie; Ivanov, Boris; Stephan, Katrin; Jaumann, Ralf

    2015-04-01

    Crater size distributions on the two largest Jovian satellites Ganymede and Callisto and the origin of impactors are subject of intense and controversial debates. In this paper, we reinvestigate crater size distributions measured in surface units derived from a recently published global geologic map, based on Voyager and Galileo SSI images at a scale of 1 km/pxl (Collins G. C. et al. (2013), U. S. Geol. Surv., Sci. Inv. Map 3237). These units are used as a context to units mapped in more detail at higher resolution in Galileo SSI images. We focus on the following fundamental issues: (1) Similarity between shapes of crater distributions on the Galilean satellites and on inner solar system bodies; (2) production versus equilibrium distributions; (3) apex/antapex variations in crater distributions. First, our results show a strong similarity in shape between the crater distributions on the most densely cratered regions on Ganymede and Callisto with those in the lunar highlands. We conclude that the shape of the crater distributions on these two Jovian satellites implies the craters were preferentially formed from members of a collisionally evolved projectile family, derived either from Main Belt asteroids as candidates of impactors on the Jovian satellites, or from projectiles stemming from the outer solar system which have undergone collisional evolution, resulting in a size distribution similar to those of Main Belt asteroids. Second, the complex shape of the crater distributions on Ganymede and Callisto indicates they are mostly production distributions and can be used to infer the underlying shape of the projectile size distribution. Locally, equilibrium distributions occur, especially at smaller sub-kilometer diameters. Third, the most densely cratered regions on both satellites do not show apex-antapex variations in crater frequency, as inferred for bodies from heliocentric orbits (e.g., Zahnle K. et al. (2003), Icarus 163, 263-289). This indicates that these

  13. Cratering record in the inner solar system: Implications for earth

    International Nuclear Information System (INIS)

    Internal and external processes have reworked the Earth's surface throughout its history. In particular, the effect of meteorite impacts on the early history of the earth is lost due to fluvial, aeolian, volcanic and plate tectonic action. The cratering record on other inner solar system bodies often provides the only clue to the relative cratering rates and intensities that the earth has experienced throughout its history. Of the five major bodies within the inner solar system, Mercury, Mars, and the Moon retain scars of an early episode of high impact rates. The heavily cratered regions on Mercury, Mars, and the Moon show crater size-frequency distribution curves similar in shape and crater density, whereas the lightly cratered plains on the Moon and Mars show distribution curves which, although similar to each other, are statistically different in shape and density from the more heavily cratered units. The similarities among crater size-frequency distribution curves for the Moon, Mercury, and Mars suggest that the entire inner solar system was subjected to the two populations of impacting objects but Earth and Venus have lost their record of heavy bombardment impactors. Thus, based on the cratering record on the Moon, Mercury, and Mars, it can be inferred that the Earth experienced a period of high crater rates and basin formation prior to about 3.8 BY ago. Recent studies have linked mass extinctions to large terrestrial impacts, so life forms were unable to establish themselves until impact rates decreased substantially and terrestrial conditions became more benign. The possible periodicity of mass extinctions has led to the theory of fluctuating impact rates due to comet showers in the post heavy bombardment period. The active erosional environment on the Earth complicates attempts to verify these showers by erasing geological evidence of older impact craters

  14. Origin of the rock abundance anomaly at Tsiolkovskiy crater

    Science.gov (United States)

    Greenhagen, B. T.

    2015-12-01

    Early Diviner measurements have indicated that Tsiolkovskiy crater has unexpectedly high rock abundance relative to its age. New datasets from the Lunar Reconnaissance Orbiter enable further analysis of this crater through measurements of surface and near-subsurface rock populations at a variety of spatial scales and wavelengths. We used Diviner, Mini-RF, and LROC datasets to analyze the block population and distribution around Tsiolkovskiy crater. We found that Tsiolkovskiy has an external deposit where (1) Diviner rock abundance was anomalously high, similar to Copernican aged craters, (2) Diviner estimates of rock-free regolith thickness were anomalously low, consistent with CPR indicated well preserved massive impact melt, which is rough at the decimeter scale, and (4) LROC imagery provided clear examples of surface block population morphology similar to the crater interior. Furthermore, we used LROC imagery to perform a new calculation of modeled crater age consistent with an ancient origin at least 3.2 Ga. Together these data showed that Tsiolkovskiy has a unique massive impact melt and blocky ejecta deposit for a crater of its size and age and may be the youngest crater capable of producing this type and scale of deposit. To reconcile the anomalously blocky appearance of Tsiolkovskiy with its age, we propose mechanisms that support a higher surface rock production rate. The most likely scenario requires (1) Tsiolkovkiy's impactor and target properties and/or impact geometry to produce a massive impact melt deposit with sufficiently large blocks, and (2) the recent disruption of surface fines exposing original blocks from local, regional, and/or antipodal impacts. The source of this disruption is unknown, but Tsiolkovskiy crater is located antipodal to the Copernican-aged Aristarchus crater. Future modeling of the seismic effects of this impact may help to determine whether this was a likely source for the recent surface modification at Tsiolkovskiy crater.

  15. Gravitational signatures of lunar floor-fractured craters

    Science.gov (United States)

    Thorey, Clément; Michaut, Chloé; Wieczorek, Mark

    2015-08-01

    Lunar floor-fractured craters are impact craters characterized by distinctive shallow floors crossed by important networks of fractures. Different scenarios have been proposed to explain their formations but recent studies showed that the intrusion of magma at depth below the crater floor is the most plausible explanation. The intrusion of dense magma within the light upper-most part of the lunar crust should have left a positive signature in the gravity field. This study takes advantage of the unprecedented resolution of the lunar gravity field obtained from the NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, in combination with topographic data obtained from the Lunar Orbiter Laser Altimeter (LOLA) instrument, to investigate the gravitational signatures of both normal and floor-fractured craters. Despite the large variability in their gravitational signatures, the floor-fractured and normal craters in the Highlands show significant differences: the gravitational anomalies are significantly larger at floor-fractured craters. The anomaly amplitudes for floor-fractured craters are in agreement with synthetic gravity anomalies based on the predicted intrusion shapes from a theoretical flow model. Our results are consistent with magmatic intrusions intruding a crust characterized by a 12% porosity and where the intrusion has no porosity. Similar studies have been carried out in the lunar maria and South Pole-Aikten basin. Although the average gravitational signature of floor-fractured craters is larger than at normal craters in these regions, they cannot be distinguished statistically due to the small number of craters and the large variability of the anomalies. In general, a better characterization of the signal due solely to the initial impact crater is needed to isolate the magmatic intrusion signal and characterize the density contrast between the magma and crust.

  16. Ordovician meteoric carbon and oxygen isotopic values: Implications for the latitudinal variations of ancient stable isotopic values

    Science.gov (United States)

    Tobin, K.J.; Steinhauff, D.M.; Walker, K.R.

    1999-01-01

    Columnar and clear blocky calcite cement from a Middle Ordovician carbonate succession in east Tennessee is interpreted as meteoric in origin. Columnar and clear blocky calcite from this succession does not show extremely large 13C depletions reported from meteoric phases of younger rocks. Meteoric fluid ??18O values calculated from clear blocky calcite are ??? 2 to 3??? more negative than approximately coeval sea water; a relationship typical of modern, low-latitude, coastal meteoric water. Comparison with meteoric ??18O values from Ordovician units elsewhere suggests that the geographic distribution of these values may be broadly similar to that observed today. Therefore, we tentatively suggest that geographic distribution of meteoric ??18O values during both icehouse and greenhouse eras are similar.

  17. Simulating the mobility of meteoric 10Be in the landscape through a coupled soil-hillslope model (Be2D)

    Science.gov (United States)

    Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Baken, Stijn; Smolders, Erik; Govers, Gerard

    2016-04-01

    Meteoric 10Be allows for the quantification of vertical and lateral soil fluxes over long time scales (103-105 yr). However, the mobility of meteoric 10Be in the soil system makes a translation of meteoric 10Be inventories into erosion and deposition rates complex. Here, we present a spatially explicit 2D model simulating the behaviour of meteoric 10Be on a hillslope. The model consists of two parts. The first component deals with advective and diffusive mobility of meteoric 10Be within the soil profile, and the second component describes lateral soil and meteoric 10Be fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering as well as downslope fluxes of soil due to creep, water and tillage erosion. Synthetic model simulations show that meteoric 10Be inventories can be related to erosion and deposition across a wide range of geomorphological and pedological settings. Our results also show that meteoric 10Be can be used as a tracer to detect human impact on soil fluxes for soils with a high affinity for meteoric 10Be. However, the quantification of vertical mobility is essential for a correct interpretation of the observed variations in meteoric 10Be profiles and inventories. Application of the Be2D model to natural conditions using data sets from the Southern Piedmont (Bacon et al., 2012) and Appalachian Mountains (Jungers et al., 2009; West et al., 2013) allows to reliably constrain parameter values. Good agreement between simulated and observed meteoric 10Be concentrations and inventories is obtained with realistic parameter values. Furthermore, our results provide detailed insights into the processes redistributing meteoric 10Be at the soil-hillslope scale.

  18. Seismic detections of the 15 February 2013 Chelyabinsk meteor from the dense ChinArray

    Science.gov (United States)

    Li, Lu; Wang, Baoshan; Peng, Zhigang; Wang, Weitao

    2016-07-01

    ChinArray is a dense portable broadband seismic network to cover the entire continental China, and the Phase I is deployed along the north-south seismic belt in southwest China. In this study, we analyze seismic data recorded on the ChinArray following the February 15, 2013 Chelyabinsk (Russia) meteor. This was the largest known object entering the Earth's atmosphere since the 1908 Tunguska meteor. The seismic energy radiated from this event was recorded by seismic stations worldwide including the dense ChinArray that are more than 4000 km away. The weak signal from the meteor event was contaminated by a magnitude 5.8 Tonga earthquake occurred ~20 min earlier. To test the feasibility of detecting the weak seismic signals from the meteor event, we compute vespagram and perform F-K analysis to the surface-wave data. We identify a seismic phase with back azimuth (BAZ) of 329.7° and slowness of 34.73 s/deg, corresponding to the surface wave from the Russian meteor event (BAZ ~325.97°). The surface magnitude (M S) of the meteor event is 3.94 ± 0.18. We also perform similar analysis on the data from the broadband array F-net in Japan, and find the BAZ of the surface waves to be 316.61°. With the different BAZs of ChinArray and F-net, we locate the Russian meteor event at 58.80°N, 58.72°E. The relatively large mislocation (~438 km as compared with 55.15°N, 61.41°E by others) may be a result of the bending propagation path of surface waves, which deviates from the great circle path. Our results suggest that the dense ChinArray and its subarrays could be used to detect weak signals at teleseismic distances.

  19. Fluvial erosion as a mechanism for crater modification on Titan

    Science.gov (United States)

    Neish, C. D.; Molaro, J. L.; Lora, J. M.; Howard, A. D.; Kirk, R. L.; Schenk, P.; Bray, V. J.; Lorenz, R. D.

    2016-05-01

    There are few identifiable impact craters on Titan, especially in the polar regions. One explanation for this observation is that the craters are being destroyed through fluvial processes, such as weathering, mass wasting, fluvial incision and deposition. In this work, we use a landscape evolution model to determine whether or not this is a viable mechanism for crater destruction on Titan. We find that fluvial degradation can modify craters to the point where they would be unrecognizable by an orbiting spacecraft such as Cassini, given enough time and a large enough erosion rate. A difference in the erosion rate between the equator and the poles of a factor of a few could explain the latitudinal variation in Titan's crater population. Fluvial erosion also removes central peaks and fills in central pits, possibly explaining their infrequent occurrence in Titan craters. Although many craters on Titan appear to be modified by aeolian infilling, fluvial modification is necessary to explain the observed impact crater morphologies. Thus, it is an important secondary modification process even in Titan's drier equatorial regions.

  20. Longitudinal asymmetry of craters' density distributions on the icy satellites

    Science.gov (United States)

    Leliwa-Kopystynski, Jacek; Banaszek, Marcin; Wlodarczyk, Ireneusz

    2012-01-01

    Crater's density distribution versus satellitographical longitude was searched for seven icy satellites: two of Jupiter (Ganymede and Callisto) and five of Saturn (Mimas, Tethys, Dione, Rhea and Iapetus). Craters were classified according to their size. Four bins of the craters' diameter were used. Density distributions were found in the longitudinal sectors of the near-equatorial stripes that circumscribe the satellites. The size distributions (R-plots) were done independently for each of the eight longitudinal sectors of the satellites. Searching for the leading/trailing (apex/antapex) and the near-side/far-side asymmetry was done. It was found that the crater density is longitudinally asymmetric for all seven satellites being studied. However, the apex-antapex asymmetry is much less pronounced than predicted by theory of Zahnle et al. (2003), for impacts on the satellites by ecliptic comets. We conclude that the impact craters observed on the considered satellites are mostly originated from planetocentric swarm of debris. In that case longitudinal asymmetry is not expected, as stated by Horedt and Neukum (1984a, b). However, cratering longitudinal asymmetry that we observe for Mimas perfectly agrees with calculations of Alvarellos et al. (2005). It is very likely that important part of craters on Mimas were formed due to impacts of ejecta originated from crater Herschel.

  1. A history of the Lonar crater, India: An overview

    Science.gov (United States)

    Nayak, V. K.

    1992-01-01

    The origin of the circular structure at Lonar, India, described variously as cauldron, pit, hollow, depression, and crater, has been a controversial subject since the early nineteenth century. A history of its origin and other aspects from 1823 to 1990 are overviewed. The structure in the Deccan Trap Basalt is nearly circular with a breach in the northeast, 1830 m in diameter, 150 m deep, with a saline lake in the crater floor. Over the years, the origin of the Lonar structure has risen from volcanism, subsidence, and cryptovolcanism to an authentic meteorite impact crater. Lonar is unique because it is probably the only terrestrial crater in basalt and is the closest analog with the Moon's craters. Some unresolved questions are suggested. The proposal is made that the young Lonar impact crater, which is less than 50,000 years old, should be considered as the best crater laboratory analogous to those of the Moon, be treated as a global monument, and preserved for scientists to comprehend more about the mysteries of nature and impact cratering, which is now emerging as a fundamental ubiquitous geological process in the evolution of the planets.

  2. 36 CFR 7.2 - Crater Lake National Park.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Crater Lake National Park. 7.2 Section 7.2 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.2 Crater Lake National Park. (a)...

  3. Shoemaker Crater-Going Where We Can "See"

    Science.gov (United States)

    Allen, Carl C.

    2006-01-01

    The recommended impact site for LCROSS is Shoemaker crater, centered at 88.1 S, 45 E. This 51-km diameter crater is in permanent shadow. However, more than half of its floor has been imaged by Earth-base radar. This degree of target knowledge will strongly constrain impact models and significantly increase the confidence of data interpretation.

  4. A Giant Crater on 90 Antiope?

    CERN Document Server

    Descamps, P; Michalowski, T; Berthier, J; Pollock, J; Wiggins, P; Birlan, M; Colas, F; Vachier, F; Fauvaud, S; Fauvaud, M; Sareyan, J -P; Pilcher, F; Klinglesmith, D A

    2009-01-01

    Mutual event observations between the two components of 90 Antiope were carried out in 2007-2008. The pole position was refined to lambda0 = 199.5+/-0.5 eg and beta0 = 39.8+/-5 deg in J2000 ecliptic coordinates, leaving intact the physical solution for the components, assimilated to two perfect Roche ellipsoids, and derived after the 2005 mutual event season (Descamps et al., 2007). Furthermore, a large-scale geological depression, located on one of the components, was introduced to better match the observed lightcurves. This vast geological feature of about 68 km in diameter, which could be postulated as a bowl-shaped impact crater, is indeed responsible of the photometric asymmetries seen on the "shoulders" of the lightcurves. The bulk density was then recomputed to 1.28+/-0.04 gcm-3 to take into account this large-scale non-convexity. This giant crater could be the aftermath of a tremendous collision of a 100-km sized proto-Antiope with another Themis family member. This statement is supported by the fact ...

  5. Prebiotic Processing induced by Comet and Meteor Impact

    Science.gov (United States)

    Dateo, Christopher E.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    In their study of organic synthesis from impact shocks using the laser-induced-plasma (LIP) technique, McKay and Borucki(l) found that organic synthesis preferentially occurred in a reducing gas mixture rich in methane, and not in a mixture rich in carbon dioxide. This result means chemical models based on the thermodynamical equilibrium approach do not apply to shock chemistry. In this study, we employ the technique of reacting flow, i.e., chemical kinetics in a fluid flow, to simulate the chemistry occurring in LIP and in the wake region from comet or meteor impact. Three different air compositions have been used: (1) 1/3 CO2 and 2/3 H2, (2) pure CH4, and (3) 1/4 CH4, 1/4 CO2, and 1/2 H2O. The stoichiometric ratio of gas mixtures (1) and (3) are kept the same. For (1) we obtain equal mole fractions of CO and H2O as the major products and for (2) C2H2 is the major product. In both cases our results are in agreement with Ref. (1). For (3) we find an interesting case where the nature of chemicals produced to be critically dependent on the flowfield temperature. At the higher temperature part of the wake region, CO and H2O are the dominant products, whereas in the cooler region C2H2 is the dominant product. Further studies of these reactions, as well as for the gas mixture including N2, are being pursued.

  6. Origin of the anomalously rocky appearance of Tsiolkovskiy crater

    Science.gov (United States)

    Greenhagen, Benjamin T.; Neish, Catherine D.; Williams, Jean-Pierre; Cahill, Joshua T. S.; Ghent, Rebecca R.; Hayne, Paul O.; Lawrence, Samuel J.; Petro, Noah E.; Bandfield, Joshua L.

    2016-07-01

    Rock abundance maps derived from the Diviner Lunar Radiometer instrument on the Lunar Reconnaissance Orbiter (LRO) show Tsiolkovskiy crater to have high surface rock abundance and relatively low regolith thickness. The location of the enhanced rock abundance to the southeast of the crater is consistent with a massive, well-preserved impact melt deposit apparent in LRO Miniature Radio Frequency instrument circular polarization ratio data. A new model crater age using LRO Lunar Reconnaissance Orbiter Camera imagery suggests that while it originated in the Late Imbrian, Tsiolkovskiy may be the youngest lunar crater of its size (∼180 km diameter). Together these data show that Tsiolkovskiy has a unique surface rock population and regolith properties for a crater of its size and age. Explanation of these observations requires mechanisms that produce more large blocks, preserve boulders and large blocks from degradation to regolith, and/or uncover buried rocks. These processes have important implications for formation of regolith on the Moon.

  7. A condensed matter analogy of impact crater formation

    CERN Document Server

    Celebonovic, V

    2014-01-01

    Impact craters exist on various solid objects in the planetary system. A simplified analogy of the process of their formation is here analyzed by standard solid state physics and the so called dynamic quantized fracture mechanics. An expression which links the crater volume to the parameters of the impactor and the target is obtained within the two approaches. For low impactor energy, this expression is of the same mathematical form as the one resulting from recent experiments.It is shown that the formation of an impact crater is possible even without heating of the target, if the critical stress in the target satisfies certain conditions. The critical value of the stress needed for the occurence of a fracture is calculated for three craters: two terrestrial and one lunar crater. The approach presented here uses only measurable material parameters, and is therefore more realistic than the treatement of the same problem using the cohesive energy of materials.

  8. Mass Movement on Vesta at Steep Scarps and Crater Rims

    Science.gov (United States)

    Krohn, K.; Jaumann, R.; Otto, K.; Hoogenboom, T.; Wagner, R.; Buczkowski, D. L.; Garry, B.; Williams, D. A.; Yingst, R. A.; Scully, J.; De Sanctis, M. C.; Kneissl, T.; Schmedemann, N.; Kersten, E.; Stephan, K.; Matz, K.-D.; Pieters, C. M.; Preusker, F.; Roatsch, T.; Schenk, P.; Russell, C. T.; Raymond, C. A.

    2014-01-01

    The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.

  9. The effect of craters on the lunar neutron flux

    Science.gov (United States)

    Eke, V. R.; Bower, K. E.; Diserens, S.; Ryder, M.; Yeomans, P. E. L.; Teodoro, L. F. A.; Elphic, R. C.; Feldman, W. C.; Hermalyn, B.; Lavelle, C. M.; Lawrence, D. J.

    2015-08-01

    The variation of remotely sensed neutron count rates is measured as a function of cratercentric distance using data from the Lunar Prospector Neutron Spectrometer. The count rate, stacked over many craters, peaks over the crater center, has a minimum near the crater rim, and at larger distances, it increases to a mean value that is up to 1% lower than the mean count rate observed over the crater. A simple model is presented, based upon an analytical topographical profile for the stacked craters fitted to data from the Lunar Orbiter Laser Altimeter. The effect of topography coupled with neutron beaming from the surface largely reproduces the observed count rate profiles. However, a model that better fits the observations can be found by including the additional freedom to increase the neutron emissivity of the crater area by ˜0.35% relative to the unperturbed surface. It is unclear what might give rise to this effect, but it may relate to additional surface roughness in the vicinities of craters. The amplitude of the crater-related signal in the neutron count rate is small, but not too small to demand consideration when inferring water-equivalent hydrogen (WEH) weight percentages in polar permanently shaded regions (PSRs). If the small crater-wide count rate excess is concentrated into a much smaller PSR, then it can lead to a large bias in the inferred WEH weight percentage. For instance, it may increase the inferred WEH for Cabeus crater at the Moon's south pole from ˜1% to ˜4%.

  10. Small craters on the meteoroid and space debris impact experiment

    Science.gov (United States)

    Humes, Donald H.

    1995-01-01

    Examination of 9.34 m(exp 2) of thick aluminum plates from the Long Duration Exposure Facility (LDEF) using a 25X microscope revealed 4341 craters that were 0.1 mm in diameter or larger. The largest was 3 mm in diameter. Most were roughly hemispherical with lips that were raised above the original plate surface. The crater diameter measured was the diameter at the top of the raised lips. There was a large variation in the number density of craters around the three-axis gravity-gradient stabilized spacecraft. A model of the near-Earth meteoroid environment is presented which uses a meteoroid size distribution based on the crater size distribution on the space end of the LDEF. An argument is made that nearly all the craters on the space end must have been caused by meteoroids and that very few could have been caused by man-made orbital debris. However, no chemical analysis of impactor residue that will distinguish between meteoroids and man-made debris is yet available. A small area (0.0447 m(exp 2)) of one of the plates on the space end was scanned with a 200X microscope revealing 155 craters between 10 micron and 100 micron in diameter and 3 craters smaller than 10 micron. This data was used to extend the size distribution of meteoroids down to approximately 1 micron. New penetration equations developed by Alan Watts were used to relate crater dimensions to meteoroid size. The equations suggest that meteoroids must have a density near 2.5 g/cm(exp 3) to produce craters of the shape found on the LDEF. The near-Earth meteoroid model suggests that about 80 to 85 percent of the 100 micron to 1 mm diameter craters on the twelve peripheral rows of the LDEF were caused by meteoroids, leaving 15 to 20 percent to be caused by man-made orbital debris.

  11. LU60645GT and MA132843GT Catalogues of Lunar and Martian Impact Craters Developed Using a Crater Shape-based Interpolation Crater Detection Algorithm for Topography Data

    Science.gov (United States)

    Salamuniccar, Goran; Loncaric, Sven; Mazarico, Erwan Matias

    2012-01-01

    For Mars, 57,633 craters from the manually assembled catalogues and 72,668 additional craters identified using several crater detection algorithms (CDAs) have been merged into the MA130301GT catalogue. By contrast, for the Moon the most complete previous catalogue contains only 14,923 craters. Two recent missions provided higher-quality digital elevation maps (DEMs): SELENE (in 1/16° resolution) and Lunar Reconnaissance Orbiter (we used up to 1/512°). This was the main motivation for work on the new Crater Shape-based interpolation module, which improves previous CDA as follows: (1) it decreases the number of false-detections for the required number of true detections; (2) it improves detection capabilities for very small craters; and (3) it provides more accurate automated measurements of craters' properties. The results are: (1) LU60645GT, which is currently the most complete (up to D>=8 km) catalogue of Lunar craters; and (2) MA132843GT catalogue of Martian craters complete up to D>=2 km, which is the extension of the previous MA130301GT catalogue. As previously achieved for Mars, LU60645GT provides all properties that were provided by the previous Lunar catalogues, plus: (1) correlation between morphological descriptors from used catalogues; (2) correlation between manually assigned attributes and automated measurements; (3) average errors and their standard deviations for manually and automatically assigned attributes such as position coordinates, diameter, depth/diameter ratio, etc; and (4) a review of positional accuracy of used datasets. Additionally, surface dating could potentially be improved with the exhaustiveness of this new catalogue. The accompanying results are: (1) the possibility of comparing a large number of Lunar and Martian craters, of e.g. depth/diameter ratio and 2D profiles; (2) utilisation of a method for re-projection of datasets and catalogues, which is very useful for craters that are very close to poles; and (3) the extension of the

  12. Meteoric 10Be in Lake Cores as a Measure of Climatic and Erosional Change

    Science.gov (United States)

    Jensen, R. E.; Dixon, J. L.

    2015-12-01

    Utilization of meteoric 10Be as a paleoenvironmental proxy has the potential to offer new insights into paleoprecipitation records and paleoclimate models, as well as to long-term variations in erosion with climate. The delivery of meteoric 10Be to the surface varies with precipitation and its strong adsorption to sediment has already proven useful in studies of erosion. Thus, it is likely meteoric 10Be concentrations in lake sediments vary under both changing climate and changing sediment influx. Assessment of the relative importance of these changes requires the comparison of 10Be concentrations in well-dated lake cores with independent paleoenvironmental proxies, including oxygen isotope, pollen, and charcoal records, as well as variation in geochemical composition of the sediments. Blacktail Pond details 15,000 years of climatic change in the Yellowstone region. We develop a new model framework for predicting meteoric 10Be concentrations with depth in the core, based on sedimentation rates of both lake-derived and terrigenous sediments and changes in the flux of meteoric 10Be with precipitation. Titanium concentrations and previously determined 10Be concentrations in wind-derived loess provide proxies for changing delivery of 10Be to the lake by terrigenous sources. We use existing paleoenvironmental data obtained from this core and the surrounding region to develop models for changing rainfall across the region and predict meteoric 10Be delivery to the lake by precipitation. Based on a suite of ~10 models, sedimentation rate is the primary control of meteoric 10Be in the Blacktail Pond core unless terrestrial input is very high, as it was post-glacial in the early Holocene when the lake experienced a high influx of loess and terrigenous sediments. We used these models to inform sample selection for 10Be analysis along the Blacktail pond core. Core sediments are processed for meteoric 10Be analysis using sequential digestions and standard extraction procedures

  13. The Micrometeor Input Function: A study using model predictions HPLA radar meteor observations

    Science.gov (United States)

    Janches, D.; Fentzke, J. T.; Sparks, J. J.

    2008-05-01

    In this work we use a semi-empirical model of the Micrometeor Input Function (MIF) together with meteor head- echo observations obtained with two High Power and Large Aperture (HPLA) radars to study the seasonal and geographical dependence of the meteoric flux in the upper atmosphere. The model includes an initial mass flux that is provided by six known meteor sources (i.e. orbital families of dust) as well as detailed modeling of meteoroid atmospheric entry and ablation physics. In addition, we use a simple ionization model to treat radar sensitivity issues by defining minimum electron volume density production thresholds required in the meteor head-echo plasma for detection. This simplified approach works well because we use observations from two radars with similar frequencies, but different sensitivities and locations. This methodology allows us the explore the initial input of particles and how it manifests in different parts of the MLT as observed by these instruments without the need to invoke more sophisticated plasma models, which are under current development. The comparisons between model predictions and radar observations show excellent agreement between diurnal, seasonal, and latitudinal variability of the detected meteor rate and radial velocity distributions, allowing us to understand how individual meteoroid populations contribute to the overall flux at a particular location and season.

  14. Tristatic observations of meteors using the 930 MHz European Incoherent Scatter radar system

    Science.gov (United States)

    Janches, Diego; Pellinen-Wannberg, Asta; Wannberg, Gudmund; Westman, Assar; HäGgströM, Ingemar; Meisel, David D.

    2002-11-01

    We report results from the first tristatic measurements of radar meteors obtained during 17 November 1997 and 1998, using the UHF (930 MHz) European Incoherent Scatter (EISCAT) radar system. The observing technique utilized for these observations was first reported by [1998a]. This system consists of three 32-m parabolic antennae located in northern Scandinavia. Since EISCAT observes mostly meteor head echoes, a general characteristic of high-power/large-aperture radars, direct Doppler velocity (±1 km/s) determinations are possible. In addition, using the technique reported here, absolute geocentric meteor velocity and good radiant information (±5°) are deduced for those meteors that are detected simultaneously by all three receivers. An overview of the methodology and a summary of the results obtained so far are reported in this work. We compare the results obtained using this method with those reported by previous large-aperture meteor radar work at lower frequencies and find general agreement. EISCAT detects mainly sporadic particles extending the fast daily sporadic micrometeor storms first suggested by [2000b] and [2001] to submillimeter particles. To the best of our knowledge, these observations represent the first of their kind and prove EISCAT to be a crucial instrument for the study of extraterrestrial particles entering the Earth's atmosphere, in particular at very high geocentric latitudes and high geocentric speeds.

  15. Mass distribution of meteoroids obtained by a meteor forward-scattered (MFS) radar method

    International Nuclear Information System (INIS)

    The cumulative distributions of the number vs. duration of echoes belonging to main meteor showers (Lyrids, η-Aquarids, δ-Aquarids, Perseids, Orionids, Leonids, Geminids) and sporadic background were investigated using a forward-scattered (FS) continuous-wave (CW) meteor radar link operational during 1992-95 over the long baseline Bologna-Lecce in Italy. The trend of the mass distribution of particles in the quoted meteoroid streams was derived, and the values of the mass index s were compared for each meteor population with the steady-state condition (s<11/6): It was found that the mass index s generally increases towards long duration echoes, but many of the observed meteor streams appear to have unstable populations. The values of the mass index of the sporadic complex are generally higher (2.07<=s<=2.57) than the corresponding ones of meteor showers in the range of echo durations 0.1<=T<=10 s. This is a possible consequence of longer lasting FS signals, indicating a shift of the mass distribution function vs, higher echo durations. Moreover,non-gravitational forces in connection with solar radiation pressure, Poynting-Robertson effect, solar-wind particle streaming, mutual collisions, etc., appear to be responsible for the observed widespread radiants and for unstable populations in the meteoroid stream

  16. Comet 209P/LINEAR and the associated Camelopardalids meteor shower

    Science.gov (United States)

    Ye, Q.; Hui, M.; Wiegert, P.; Campbell-Brown, M.; Brown, P.; Weryk, R.

    2014-07-01

    Previous studies have suggested that comet 209P/LINEAR may produce strong meteor activity on the Earth on 2014 May 24. Here we present our observations and simulations prior to the event. We reanalyze the optical observations of P/LINEAR obtained during its 2009 apparition to model the corresponding meteor stream. We find that the comet is relatively depleted in dust production, with Afρ at 1-cm level within eight months around its perihelion. A syndyne simulation shows that the optical cometary tail is dominated by larger particles with β˜0.003. Numerical simulation of the cometary dust trails confirms the arrival of particles on 2014 May 24 from some of the 1798--1979 trails, with nominal radiant in the constellation of Camelopardalis. Given that the comet is found to be depleted in dust production, we concluded that a meteor storm may be unlikely. However, our simulation also shows that the size distribution of the arrived particles is skewed strongly towards larger particles, which, coupling with the result of the syndyne simulation, suggested that the event (if detectable) may be dominated by bright meteors. Preliminary results from the observations of P/LINEAR during its 2014 apparition as well as the Camelopardalids meteor shower will also be presented.

  17. El Chichón crater lake dynamic based on continuous physical data and mass-heat budget

    Science.gov (United States)

    Peiffer, L.; Taran, Y.

    2011-12-01

    The March-April 1982 Plinian eruption of El Chichón volcano destroyed the summit domes system and created a new 200 m deep crater. Since then, a shallow lake (~3 m) with acidic pH (~2.3), and temperature around 30°C appeared in the crater. This lake has never disappeared until now although its volume has suffered important variations from 40,000 m3 to 160,000 m3. Chemical composition of the lake is also highly variable (Cl/SO4 = 0-79 molar ratio), alternating between acid-sulfate and acid-chloride-sulfate composition. These variations can occur very fast within few weeks and are not directly correlated with precipitation. Due to its shallow depth and small volume, El Chichón crater lake is probably one of the most dynamic crater lake on earth. These rapid changes in chemistry and volume reflect the dynamic of one group of geyser-type springs ('Soap Pools springs, SP') located offshore and the input of hydrothermal steam underneath the crater. The SP springs discharge sporadically to the lake neutral waters with Cl content currently around 3000 mg/l, while the condensed steam feeds the lake with Cl-free and SO4-rich acid water. In this study, we present for the first time continuous physical data of the crater lake (temperature, depth, meteoric precipitation, wind velocity, solar radiation, air humidity). These data were registered by a meteorological station and two dataloggers installed inside and outside the lake. Using a mass and heat budget model constrained with these data, we were able to estimate the flux of 'hydrothermal' fluid entering the lake through the sub-lacustrian fumaroles and SP springs. Tracing the variations of the input flux in time can be help to understand the dynamic of the 'crater lake-SP springs-fumaroles' system but also can provide an efficient way of monitoring the volcanic activity. During the observation period, the mean mass flux entering the lake (Min) was respectively of 12 ± 2 kg/s, corresponding to a total heat flux (Ein) of

  18. Theory and experiments on centrifuge cratering

    Science.gov (United States)

    Schmidt, R. M.; Holsapple, K. A.

    1980-01-01

    Centrifuge experimental techniques provide possibilities for laboratory simulation of ground motion and cratering effects due to explosive loadings. The results of a similarity analysis for the thermomechanical response of a continuum show that increased gravity is a necessary condition for subscale testing when identical materials for both model and prototype are being used. The general similarity requirements for this type of subscale testing are examined both theoretically and experimentally. The similarity analysis is used to derive the necessary and sufficient requirements due to the general balance and jump equations and gives relations among all the scale factors for size, density, stress, body forces, internal energy, heat supply, heat conduction, heat of detonation, and time. Additional constraints due to specific choices of material constitutive equations are evaluated separately. The class of constitutive equations that add no further requirements is identified. For this class of materials, direct simulation of large-scale cratering events at small scale on the centrifuge is possible and independent of the actual constitutive equations. For a rate-independent soil it is shown that a small experiment at gravity g and energy E is similar to a large event at 1 G but with energy equal to g3E. Consequently, experiments at 500 G with 8 grams of explosives can be used to simulate a kiloton in the field. A series of centrifuge experiments was performed to validate the derived similarity requirements and to determine the practicality of applying the technique to dry granular soils having little or no cohesion. Ten shots using Ottawa sand at various gravities confirmed reproducibility of results in the centrifuge environment, provided information on particle size effects, and demonstrated the applicability of the derived similitude requirements. These experiments used 0.5-4 grams of pentaerythritol-tetranitrate (PETN) and 1.7 grams of lead-azide explosives. They

  19. Geomorphology of Lowell crater region on the Moon

    Science.gov (United States)

    Srivastava, N.; Varatharajan, I.

    2016-03-01

    Surface topography, surface morphology and crater chronology studies have been carried out for the Lowell crater region (occupying ∼198 × 198 km2 in the northwestern quadrant of the Orientale basin) using Kaguya TC-DTM, LRO-WAC data, and Chandrayaan-1 M3-750 nm image, to characterize and date Lowell impact event and to identify and assess the geological importance of the Lowell crater and effect of pre-existing geological conditions on the present day appearance of Lowell crater. The Lowell crater has been found to be polygonal in shape with an average diameter of 69.03 km. Its average rim height and depth from pre-existing surface are 1.02 km and 2.82 km respectively. A prominent central peak with average height of 1.77 km above the crater floor is present, which could have exposed undifferentiated mantle rocks. The peak exhibits a pronounced "V" shaped slumped zone on the eastern side and a distinct "V" shaped depression in the adjacent region on the crater floor. Several other peculiarities noticed and mapped here include W-E asymmetry in the degree of slumping of the walls and height of the topographic rim, N-S asymmetry in the proximal ejecta distribution with most of the material lying in the northern direction, concentration of exterior melt pools in the northeastern direction only, presence of several cross cutting pre-existing lineaments on the crater walls, presence of a superposed rayed crater on the eastern wall, and a geologically interesting resurfaced unit, which could be an outcome of recent volcanic activity in the region. It has been inferred that the Lowell crater formed due to impact of a ∼5.7 km diameter bolide in the Montes Rook region. The impact occurred at an angle of ∼30-45° from the S-SW direction. The age of the Lowell crater has been estimated as 374 ± 28 Ma, therefore it is a Younger Copernican crater consistent with the possibility expressed by McEwen et al. (McEwen, A.S., et al. [1993]. J. Geophys. Res. 98(E9), 17207

  20. The extra-atmospheric masses of small meteoric fireballs from the Prairie and the Canadian camera networks.

    Science.gov (United States)

    Popelenskaya, N.

    2007-08-01

    Existing methods of definition of extra-atmospheric masses of small meteoric bodies according to supervision of their movement in an atmosphere contain the certain arbitrariness. Vigorous attempts to overcome a divergence of results of calculations on the basis of various approaches often lead to physically incorrect conclusions. The output consists in patient accumulation of estimations and calculations for gradual elimination uncertainties. The equations of meteoric physics include two dimensionless parameters - factor ablation ? and factor of braking ?. In work are cited the data processing supervision of small meteors Prairie and Canadian networks, by a finding of values of parameters ? and ? with use of a method of the least squares. Also values of heights blackout a meteor which turn out from conditions of full destruction or final braking with use of the received values of ? and ? are considered. In prevailing number of supervision for considered meteors braking is insignificant. Results of calculations of height of blackout meteors confirm suitability of the approximations used in work for the description of movement of small meteors. In work results of calculation of extra-atmospheric masses with use of factor of braking for meteoric bodies of the spherical form with density of an ice and a stone are presented. On the basis of the received results discrepancy of photometric masses to values of masses of the input, received on observable braking proves to be true. In most cases received magnitude of masses essentially less photometric masses. Processing of supervision of small meteors Prairie and Canadian camera networks has shown, that the so-called photometric mass mismatches values of mass of the input, defined on observable braking. Acceptance of photometric value as the mass defining braking of a body, leads to obviously underestimated values of density of substance meteoric body. The further researches on specification of interpretation of supervision

  1. Measurement of the Earth's Radiation Budget components from Russian satellites "Meteor-M" № 1 and "Meteor-M" № 2

    Science.gov (United States)

    Cherviakov, M.

    2015-12-01

    One of the foremost challenges to monitoring the climate system is the ability to make a precise measurement of Earth's radiation budget components from space. Thereupon a new "Meteor-M" satellite program has been started in Russia. The first satellite of new generation "Meteor-M" № 1 was put into orbit in September, 2009 and second satellite "Meteor-M" № 2 - in July, 2014. Some measurements results obtained by the nadir looking medium field of view radiometers IKOR-M which was installed on "Meteor-M" satellites are presented. These equipments were created in Saratov State University under the direction of Yu. A. Sklyarov for monitoring of outgoing shortwave radiation (OSR), albedo and absorbed solar radiation (ASR) at TOA. The basic products of data processing are given in the form of global maps of distribution OSR, albedo and ASR. Such maps were made for each month during observation period. Fig. 1 presents the map of global distribution of monthly averaged values of albedo in April, 2014. Two series of measurements from two different IKOR-M are available. The first radiometer had worked from October, 2009 to August, 2014 and second - from August, 2014 to the present. Therefore, there is a period when both radiometers work at the same time. TOA fluxes deduced from the "Meteor-M" № 1 measurements in August, 2014 show very good agreement with the fluxes determined from "Meteor-M" № 2. The seasonal and interannual variations of OSR, albedo and ASR were discussed. The variations between SW radiation budget components seem to be within observational uncertainty and natural variability governed by cloudiness, water vapor and aerosol variations. It was assessed spatial and temporal variations of albedo and ASR over different regions. Latitudinal distributions of albedo and ASR were estimated in more detail. Meridional cross sections over oceans and land were used separately for this estimation. It was shown that the albedo and ASR data received from the

  2. The Microstructure of Lunar Micrometeorite Impact Craters

    Science.gov (United States)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2016-01-01

    The peak of the mass flux of impactors striking the lunar surface is made up of objects approximately 200 micrometers in diameter that erode rocks, comminute regolith grains, and produce agglutinates. The effects of these micro-scale impacts are still not fully understood. Much effort has focused on evaluating the physical and optical effects of micrometeorite impacts on lunar and meteoritic material using pulsed lasers to simulate the energy deposited into a substrate in a typical hypervelocity impact. Here we characterize the physical and chemical changes that accompany natural micrometeorite impacts into lunar rocks with long surface exposure to the space environment (12075 and 76015). Transmission electron microscope (TEM) observations were obtained from cross-sections of approximately 10-20 micrometers diameter craters that revealed important micro-structural details of micrometeorite impact processes, including the creation of npFe (sup 0) in the melt, and extensive deformation around the impact site.

  3. Flyover Animation of Becquerel Crater on Mars

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] View the Movie Click on image to view the movie This simulated flyover shows rhythmic layers of sedimentary rock inside Becquerel crater on Mars. The animation uses three-dimensional modeling based on a stereo pair of images from the High Resolution Imaging Science Experiment (HiRISE) on NASA's Mars Reconnaissance Orbiter. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace & Technologies Corp., Boulder, Colo.

  4. Observations of the Quadrantid meteor shower from 2008 to 2012: orbits and emission spectra

    CERN Document Server

    Madiedo, José M; Trigo-Rodríguez, Josep M; Castro-Tirado, Alberto J; Pujols, Pep; Pastor, Sensi; Reyes, José A de los; Rodríguez, Diego

    2016-01-01

    The activity of the Quadrantids in January during several years (2008, 2010, 2011 and 2012) has been investigated in the framework of the SPanish Meteor Network (SPMN). For this purpose, an array of high-sensitivity CCD video devices and CCD all-sky cameras have been used to obtain multi-station observations of these meteors. These allowed us to obtain precise radiant and orbital information about this meteoroid stream. This paper presents a large set of orbital data (namely, 85 orbits) of Quadrantid meteoroids. Most meteors produced by these particles were recorded during the activity peak of this shower. Besides, we discuss four Quadrantid emission spectra. The tensile strength of Quadrantid meteoroids has been also obtained.

  5. Meteor localization via statistical analysis of spatially temporal fluctuations in image sequences

    Science.gov (United States)

    Kukal, Jaromír.; Klimt, Martin; Šihlík, Jan; Fliegel, Karel

    2015-09-01

    Meteor detection is one of the most important procedures in astronomical imaging. Meteor path in Earth's atmosphere is traditionally reconstructed from double station video observation system generating 2D image sequences. However, the atmospheric turbulence and other factors cause spatially-temporal fluctuations of image background, which makes the localization of meteor path more difficult. Our approach is based on nonlinear preprocessing of image intensity using Box-Cox and logarithmic transform as its particular case. The transformed image sequences are then differentiated along discrete coordinates to obtain statistical description of sky background fluctuations, which can be modeled by multivariate normal distribution. After verification and hypothesis testing, we use the statistical model for outlier detection. Meanwhile the isolated outlier points are ignored, the compact cluster of outliers indicates the presence of meteoroids after ignition.

  6. Dormant Comets Among the Near-Earth Object Population: A Meteor-Based Survey

    CERN Document Server

    Ye, Quan-Zhi; Pokorný, Petr

    2016-01-01

    Dormant comets in the near-Earth object (NEO) population are thought to be involved in the terrestrial accretion of water and organic materials. Identification of dormant comets is difficult as they are observationally indistinguishable from their asteroidal counterparts, however they may have produced dust during their final active stages which potentially are detectable today as weak meteor showers at the Earth. Here we present the result of a reconnaissance survey looking for dormant comets using 13~567~542 meteor orbits measured by the Canadian Meteor Orbit Radar (CMOR). We simulate the dynamical evolution of the hypothetical meteoroid streams originated from 407 near-Earth asteroids in cometary orbits (NEACOs) that resemble orbital characteristics of Jupiter-family comets (JFCs). Out of the 44 hypothetical showers that are predicted to be detectable by CMOR, we identify 5 positive detections that are statistically unlikely to be chance associations, including 3 previously known associations. This transla...

  7. Are the stratospheric dust particles meteor ablation debris or interplanetary dust?

    Science.gov (United States)

    Blanchard, M. B.; Kyte, F. T.

    1978-01-01

    Natural and laboratory created fusion crusts and debris from artificial meteor samples were used to develop criteria for recognizing meteor ablation debris in a collection of 5 to 50 micron particles from the stratosphere. These laboratory studies indicate that meteor ablation debris from nickel-iron meteoroids produce spherules containing taenite, wuestite, magnetite, and hematite. These same studies also indicate that ablation debris from chondritic meteoroids produce spheres and fragmentary debris. The spheres may be either silicate rich, containing zoned olivine, magnetite, and glass, or sulfide rich, containing iron oxides (e.g., magnetite, wuestite) and iron sulfides (e.g., pyrrhotite, pentlandite). The fragmentary debris may be either fine-grained aggregates of olivine, magnetite, pyroxene, and occasionally pyrrhotite (derived from the meteorite matrix) or individual olivine and pyroxene grains (derived from meteorite inclusions).

  8. Secondary Craters and the Size-Velocity Distribution of Ejected Fragments around Lunar Craters Measured Using LROC Images

    Science.gov (United States)

    Singer, K. N.; Jolliff, B. L.; McKinnon, W. B.

    2013-12-01

    Title: Secondary Craters and the Size-Velocity Distribution of Ejected Fragments around Lunar Craters Measured Using LROC Images Authors: Kelsi N. Singer1, Bradley L. Jolliff1, and William B. McKinnon1 Affiliations: 1. Earth and Planetary Sciences, Washington University in St Louis, St. Louis, MO, United States. We report results from analyzing the size-velocity distribution (SVD) of secondary crater forming fragments from the 93 km diameter Copernicus impact. We measured the diameters of secondary craters and their distances from Copernicus using LROC Wide Angle Camera (WAC) and Narrow Angle Camera (NAC) image data. We then estimated the velocity and size of the ejecta fragment that formed each secondary crater from the range equation for a ballistic trajectory on a sphere and Schmidt-Holsapple scaling relations. Size scaling was carried out in the gravity regime for both non-porous and porous target material properties. We focus on the largest ejecta fragments (dfmax) at a given ejection velocity (υej) and fit the upper envelope of the SVD using quantile regression to an equation of the form dfmax = A*υej ^- β. The velocity exponent, β, describes how quickly fragment sizes fall off with increasing ejection velocity during crater excavation. For Copernicus, we measured 5800 secondary craters, at distances of up to 700 km (15 crater radii), corresponding to an ejecta fragment velocity of approximately 950 m/s. This mapping only includes secondary craters that are part of a radial chain or cluster. The two largest craters in chains near Copernicus that are likely to be secondaries are 6.4 and 5.2 km in diameter. We obtained a velocity exponent, β, of 2.2 × 0.1 for a non-porous surface. This result is similar to Vickery's [1987, GRL 14] determination of β = 1.9 × 0.2 for Copernicus using Lunar Orbiter IV data. The availability of WAC 100 m/pix global mosaics with illumination geometry optimized for morphology allows us to update and extend the work of Vickery

  9. The Morphology of Craters on Mercury: Results from MESSENGER Flybys

    Science.gov (United States)

    Barnouin, Oliver S.; Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Herrick, Robert R.; Chappelow, John E.; Murchie, Scott L.; Prockter, Louise M.

    2012-01-01

    Topographic data measured from the Mercury Laser Altimeter (MLA) and the Mercury Dual Imaging System (MDIS) aboard the MESSENGER spacecraft were used for investigations of the relationship between depth and diameter for impact craters on Mercury. Results using data from the MESSENGER flybys of the innermost planet indicate that most of the craters measured with MLA are shallower than those previously measured by using Mariner 10 images. MDIS images of these same MLA-measured craters show that they have been modified. The use of shadow measurement techniques, which were found to be accurate relative to the MLA results, indicate that both small bowl-shaped and large complex craters that are fresh possess depth-to-diameter ratios that are in good agreement with those measured from Mariner 10 images. The preliminary data also show that the depths of modified craters are shallower relative to fresh ones, and might provide quantitative estimates of crater in-filling by subsequent volcanic or impact processes. The diameter that defines the transition from simple to complex craters on Mercury based on MESSENGER data is consistent with that reported from Mariner 10 data.

  10. Mars: New Determination of Impact Crater Production Function Size Distribution

    Science.gov (United States)

    Hartmann, William K.

    2006-12-01

    Several authors have questioned our knowledge of Martian impact crater production function size-frequency distribution (PFSFD), especially at small diameters D. Plescia (2005) questioned whether any area of Mars shows size distributions used for estimating crater retention ages on Mars. McEwen et al. (2005) and McEwen and Bierhaus (2006) suggested existing PFSFD’s are hopelessly confused by the presence of secondaries, and that my isochrons give primary crater densities off by factors of several thousand at small D. In 2005, I addressed some of these concerns, noting my curves do not estimate primary crater densities per se, but show total numbers of primaries + semi-randomly “distant secondaries” (negating many McEwen et al. critiques). In 2006 I have conducted new crater counts on a PFSFD test area suggested by Ken Tanaka. This area shows young lava flows of similar crater density, west of Olympus Mons (around 30 deg N, 100 deg W). Multiple crater counts were made on several adjacent Odyssey THEMIS images and MGS MOC images, giving the SFD over a range of 11mMcEwen, A.S., Bierhaus, E.B., 2006, Ann. Rev. Earth. Planet. Sci. 34, 535-567. McEwen, A.S., 2005, Icarus 176, 351-381. Plescia, J.B. 2005, LPSC 36, 2171.

  11. The effect of craters on the lunar neutron flux

    CERN Document Server

    Eke, V R; Diserens, S; Ryder, M; Yeomans, P E L; Teodoro, L F A; Elphic, R C; Feldman, W C; Hermalyn, B; Lavelle, C M; Lawrence, D J

    2015-01-01

    The variation of remotely sensed neutron count rates is measured as a function of cratercentric distance using data from the Lunar Prospector Neutron Spectrometer. The count rate, stacked over many craters, peaks over the crater centre, has a minimum near the crater rim and at larger distances it increases to a mean value that is up to 1% lower than the mean count rate observed over the crater. A simple model is presented, based upon an analytical topographical profile for the stacked craters fitted to data from the Lunar Orbiter Laser Altimeter (LOLA). The effect of topography coupled with neutron beaming from the surface largely reproduces the observed count rate profiles. However, a model that better fits the observations can be found by including the additional freedom to increase the neutron emissivity of the crater area by ~0.35% relative to the unperturbed surface. It is unclear what might give rise to this effect, but it may relate to additional surface roughness in the vicinities of craters. The ampl...

  12. Crater Topography on Titan: Implications for Landscape Evolution

    Science.gov (United States)

    Neish, Catherine D.; Kirk, R.L.; Lorenz, R. D.; Bray, V. J.; Schenk, P.; Stiles, B. W.; Turtle, E.; Mitchell, K.; Hayes, A.

    2013-01-01

    We present a comprehensive review of available crater topography measurements for Saturn's moon Titan. In general, the depths of Titan's craters are within the range of depths observed for similarly sized fresh craters on Ganymede, but several hundreds of meters shallower than Ganymede's average depth vs. diameter trend. Depth-to-diameter ratios are between 0.0012 +/- 0.0003 (for the largest crater studied, Menrva, D approximately 425 km) and 0.017 +/- 0.004 (for the smallest crater studied, Ksa, D approximately 39 km). When we evaluate the Anderson-Darling goodness-of-fit parameter, we find that there is less than a 10% probability that Titan's craters have a current depth distribution that is consistent with the depth distribution of fresh craters on Ganymede. There is, however, a much higher probability that the relative depths are uniformly distributed between 0 (fresh) and 1 (completely infilled). This distribution is consistent with an infilling process that is relatively constant with time, such as aeolian deposition. Assuming that Ganymede represents a close 'airless' analogue to Titan, the difference in depths represents the first quantitative measure of the amount of modification that has shaped Titan's surface, the only body in the outer Solar System with extensive surface-atmosphere exchange.

  13. Mineralogy of Eolian Sands at Gale Crater

    Science.gov (United States)

    Achilles, C. N.; Vaniman, D. T.; Blake, D. F.; Bristow, T. F.; Rampe, E. B.; Ming, D. W.; Chipera, S. J.; Morris, R. V.; Morrison, S. M.; Downs, R. T.; Fendrich, K. V.; Ehlmann, B. L.; Yen, A. S.; Sarrazin, P. C.; Treiman, A. H.; Craig, P. I.; Lapotre, M. G. A.; Edgett, K. S.; Gellert, R.; Crisp, J. A.; Morookian, J. M.; Grotzinger, J. P.; Des Marais, D. J.; Farmer, J. D.

    2016-01-01

    The Mars Science Laboratory rover Curiosity has been exploring outcrop and regolith in Gale crater since August 6, 2012. During this exploration, the mission has collected 10 samples for mineralogical analysis by X-ray diffraction (XRD), using the CheMin instrument. The CheMin (Chemistry and Mineralogy) instrument on the Mars Science Laboratory rover Curiosity uses a CCD detector and a Co-anode tube source to acquire both mineralogy (from the pat-tern of Co diffraction) and chemical information (from energies of fluoresced X-rays). A detailed description of CheMin is provided in [1]. As part of the rover checkout after landing, the first sample selected for analysis was an eolian sand deposit (the Rocknest "sand shadow"). This sample was selected in part to characterize unconsolidated eolian regolith, but primarily to prove performance of the scoop collection system on the rover. The focus of the mission after Rocknest was on the consolidated sediments of Gale crater, so all of the nine subsequent samples were collected by drilling into bedrock com-posed of lithified sedimentary materials, including mudstone and sandstone. No scoop samples have been collected since Rocknest, but at the time this abstract was written the mission stands poised to use the scoop again, to collect active dune sands from the Bagnold dune field. Several abstracts at this conference outline the Bagnold dune campaign and summarize preliminary results from analyses on approach to the Namib dune sampling site. In this abstract we review the mineralogy of Rocknest, contrast that with the mineralogy of local sediments, and anticipate what will be learned by XRD analysis of Bagnold dune sands.

  14. Hydrogen emission in meteors as a potential marker for the exogenous delivery of organics and water

    Science.gov (United States)

    Jenniskens, Peter; Mandell, Avram M.

    2004-01-01

    We detected hydrogen Balmer-alpha (H(alpha)) emission in the spectra of bright meteors and investigated its potential use as a tracer for exogenous delivery of organic matter. We found that it is critical to observe the meteors with high enough spatial resolution to distinguish the 656.46 nm H(alpha) emission from the 657.46 nm intercombination line of neutral calcium, which was bright in the meteor afterglow. The H(alpha) line peak stayed in constant ratio to the atmospheric emissions of nitrogen during descent of the meteoroid. If all of the hydrogen originates in the Earth's atmosphere, the hydrogen atoms are expected to have been excited at T = 4400 K. In that case, we measured an H(2)O abundance in excess of 150 +/- 20 ppm at 80-90 km altitude (assuming local thermodynamic equilibrium in the air plasma). This compares with an expected <20 ppm from H(2)O in the gas phase. Alternatively, meteoric refractory organic matter (and water bound in meteoroid minerals) could have caused the observed H(alpha) emission, but only if the line is excited in a hot T approximately 10000 K plasma component that is unique to meteoric ablation vapor emissions such as Si(+). Assuming that the Si(+) lines of the Leonid spectrum would need the same hot excitation conditions, and a typical [H]/[C] = 1 in cometary refractory organics, we calculated an abundance ratio [C]/[Si] = 3.9 +/- 1.4 for the dust of comet 55P/Tempel-Tuttle. This range agreed with the value of [C]/[Si] = 4.4 measured for comet 1P/Halley dust. Unless there is 10 times more water vapor in the upper atmosphere than expected, we conclude that a significant fraction of the hydrogen atoms in the observed meteor plasma originated in the meteoroid.

  15. Remote Sensing and Electrodynamic Model of Chicxulub Crater

    Science.gov (United States)

    Velasco, V.; Silva, M.; Salguero, E.; Fucugauchi, J.

    2004-05-01

    Advances on space observational systems have opened new exiting possibilities to investigate our planet in an unprecedented detail and in a global scale. Information retrieved from surveys of other solar system bodies like our moon, planets and satellites, from missions like Apollo, have documented the origin of planetary surfaces and the role of impacts as a major process. Voyagers 1 and 2 and Galileo have showed impact craterism is a process rather generalized in all bodies of the solar system. Thus establishing it as part of the major processes to be considered for the evolution of our planet, together with tectonics, mantle process, volcanism, weathering, etc. Investigations on impact craters from solar systems provide valuable information on different surfaces, crustal thickness, existence of crust layers, type of material under the most superficial layer, type of bolide which formed crater, impact angle, etc. The studies constitute an important tool to rebuild the planets' geological history and develop theories on their internal structure. The Chicxulub crater in the carbonate platform of the Yucatan peninsula is one of the largest multiring structures found on Earth. The crater is some 180-200 km in diameter, is well preserved and has been studied in the past few years (geophysical surveys and drilling programs). The crater is buried under a thick sequence of tertiary carbonate rocks, and on the surface there are relatively few indications of the crater (e.g., topographic depression, ring of cenotes). In this study, it is analyzed and presented an electrodynamic model for an impact crater and its electrophysical properties, these data are derived from Fisher inverse matrix elements. We also present a surface model for the buried Chicxulub crater derived from remote sensing data.

  16. Prediction of meteor shower associated with Comet 122P/de Vico

    Science.gov (United States)

    Tomko, Dusan; Neslusan, Lubos

    2013-01-01

    We model, for a far past, a theoretical stream associated with Comet 122P/de Vico and follow its dynamical evolution until present. Selecting the modeled particles approaching the Earth's orbit at the present, we predict the characteristics of a potential meteor shower and try to identify these particles with the meteors in three databases (photo, radar, and video). Our overall prediction is, however, negative because only the particles released from the comet nucleus before approximately 37 000 years ago are found to evolve into a collision course with the Earth and, therefore, form a possible shower. Meteoroids are known to survive a much shorter time in interplanetary space, unfortunately.

  17. Ionosonde observations of ionospheric disturbances due to the 15 February 2013 Chelyabinsk meteor explosion

    Science.gov (United States)

    Pradipta, Rezy; Valladares, Cesar E.; Doherty, Patricia H.

    2015-11-01

    We report the results of our investigations on the potential ionospheric effects caused by the 15 February 2013 Chelyabinsk meteor explosion. We used the data from a number of digisonde stations located in Europe and Russia to detect the traveling ionospheric disturbances (TIDs) likely to have been caused by the meteor explosion. We found that certain characteristic signatures of the TIDs can be identified in individual ionogram records, mostly in the form of Y-forking/splitting of the ionogram traces. Based on the arrival times of the disturbances, we have inferred the overall propagation speed of the TIDs from Chelyabinsk to be 171 ± 14 m/s.

  18. Faint-meteor survey with a large-format CMOS sensor

    Science.gov (United States)

    Watanabe, J.; Enomoto, T.; Terai, T.; Kasuga, T.; Miyazaki, S.; Oota, K.; Muraoka, F.; Onishi, T.; Yamasaki, T.; Mito, H.; Aoki, T.; Soyano, T.; Tarusawa, K.; Matsunaga, N.; Sako, S.; Kobayashi, N.; Doi, M.

    2014-07-01

    For observing faint meteors, we need a large telescope or similar optics, which always give a restriction of the field of view. It is a kind of trade-off between the high sensitivity by using larger telescope and narrower field of view. Reconciling this contradiction, we need a large-format imaging detector together with fast readout for meteor observations. A high-sensitivity CMOS sensor of the large format was developed by Canon Inc. in 2010[1]. Its size is 202 mm×205 mm which makes it the largest one-chip CMOS sensor in the world, and approximately 40 times the size of Canon's largest commercial CMOS sensor as shown in the figure. The number of pixel is 1280×1248. Because the increased size of the new CMOS sensor allows more light to be gathered, it enables shooting in low-light environments. The sensor makes image capture possible in one-hundredth the amount of light required by a 35 mm full-frame CMOS sensor, facilitating the shooting of 60 frame-per-second video with a mere 0.3 lux of illumination. We tried to use this large-format CMOS sensor attached to the prime focus of the 1.05-m (F3.1) Schmidt telescope at the Kiso Observatory, University of Tokyo, for surveying faint meteors. The field of view is 3.3 by 3.3 degrees. Test observations including operation check of the system were carried out in January 2011, September 2011,and December 2012. Images were obtained at a time resolution of 60 frames per second. In this system, the limiting magnitude is estimated to be about 11-12. Because of the limitation of the data storage, full-power observations (14-bit data per 1/60 second) were performed for about one or two hours each night. During the first period, we can count a sporadic meteor every 5 seconds. This is about one order higher detection rate of the faint meteors compared with the previous work[2]. Assuming the height of faint meteors at 100 km, the derived flux of the sporadic meteors is about 5 × 10^{-4} km^{-2} sec^{-1}. The last run was

  19. Comparing Characteristics of Polygonal Impact Craters on Mercury and Venus

    International Nuclear Information System (INIS)

    Full text: Polygonal impact craters (PICs) are defined as craters, which rims are composed of at least two straight segments. These PICs are often found on terrestrial planets like Mercury, Venus, and Mars and on the Moon. In our current study we compare characteristics of PICs: the numbers, the mean diameters, and the PICs' ages on Mercury and Venus. The surfaces of both planets show significant differences in age - Mercury’s surface is about 4.5 Gyr, but Venus' not more than 1 Gyr old. The age of polygonal impact craters correspond to this difference. (author)

  20. Prediction of gamma exposure rates in large nuclear craters

    International Nuclear Information System (INIS)

    In many civil engineering applications of nuclear explosives there is the need to reenter the crater and lip area as soon as possible after the detonation to carry out conventional construction activities. These construction activities, however, must be delayed until the gamma dose rate, or exposure rate, in and around the crater decays to acceptable levels. To estimate the time of reentry for post-detonation construction activities, the exposure rate in the crater and lip areas must be predicted as a function of time after detonation. An accurate prediction permits a project planner to effectively schedule post-detonation activities

  1. Absolute ages from crater statistics: Using radiometric ages of Martian samples for determining the Martian cratering chronology

    Science.gov (United States)

    Neukum, G.

    1988-01-01

    In the absence of dates derived from rock samples, impact crater frequencies are commonly used to date Martian surface units. All models for absolute dating rely on the lunar cratering chronology and on the validity of its extrapolation to Martian conditions. Starting from somewhat different lunar chronologies, rather different Martian cratering chronologies are found in the literature. Currently favored models are compared. The differences at old ages are significant, the differences at younger ages are considerable and give absolute ages for the same crater frequencies as different as a factor of 3. The total uncertainty could be much higher, though, since the ratio of lunar to Martian cratering rate which is of basic importance in the models is believed to be known no better than within a factor of 2. Thus, it is of crucial importance for understanding the the evolution of Mars and determining the sequence of events to establish an unambiguous Martian cratering chronology from crater statistics in combination with clean radiometric ages of returned Martian samples. For the dating goal, rocks should be as pristine as possible from a geologically simple area with a one-stage emplacement history of the local formation. A minimum of at least one highland site for old ages, two intermediate-aged sites, and one very young site is needed.

  2. Formation of complex impact craters - Evidence from Mars and other planets

    Science.gov (United States)

    Pike, R. J.

    1980-01-01

    An analysis of the depth vs diameter data of Arthur (1980), is given along with geomorphic data for 73 Martian craters. The implications for the formation of complex impact craters on solid planets is discussed. The analysis integrates detailed morphological observations on planetary craters with geologic data from terrestrial meteorite and explosion craters. The simple to complex transition for impact craters on Mars appears at diameters in the range of 3 to 8 km. Five features appear sequentially with increasing crater size, flat floors, central peaks and shallower depths, scalloped rims, and terraced walls. This order suggests that a shallow depth of excavation and a rebound mechanism have produced the central peaks, not centripetal collapse and deep sliding. Simple craters are relatively uniform in shape from planet to planet, but complex craters vary considerably. Both the average onset diameter for complex impact craters on Mars and the average depth of complex craters vary inversely with gravitational acceleration on four planets.

  3. The sporadic radiant and distribution of meteors in the atmosphere as observed by VHF radar at Arctic, Antarctic and equatorial latitudes

    Directory of Open Access Journals (Sweden)

    P. T. Younger

    2009-07-01

    Full Text Available Results are presented of a study of the temporal and spatial variability in meteor count rate observations from three VHF meteor radars. These radar are located in the Arctic (at Esrange, 68° N, in the Antarctic (at Rothera, 68° S and near the Equator (on Ascension Island, 8° S. It is found that for all three locations there is a strong diurnal cycle in observed hourly meteor counts and the time of maxima and minima in these counts depends on the month of the year. In addition, at high latitude there is a strong annual cycle in observed monthly-mean meteor counts, whereas for the radar at low latitude there is a semi-annual cycle. At high latitude there is also an annual cycle in the mean height at which meteors are observed. However, no such annual cycle is found in observed meteor count rates from the low latitude radar. The meteor count data from all the radars are combined to investigate the sporadic radiant distribution (i.e. the distribution of direction of arrival on the celestial sphere of sporadic meteors. This combined radiant distribution shows that there are six main source regions for meteors. The latitudinal and temporal dependence in observed meteor count rates appears to result from a combination of the sporadic radiant distribution, annual fluctuations in atmospheric density, the sensitivity of the radar to meteors from different source directions and the temporal and spatial variability in meteor fluxes.

  4. A Hubble Space Telescope Study of the Enigmatic Milky Way Halo Globular Cluster Crater

    OpenAIRE

    Weisz, Daniel R.; Koposov, Sergey E.; Dolphin, Andrew E.; Belokurov, Vasily; Gieles, Mark; Mateo, Mario L.; Olszewski, Edward W.; Sills, Alison; Walker, Matthew G.

    2015-01-01

    We analyze the resolved stellar populations of the faint stellar system, Crater, based on deep optical imaging taken with the Hubble Space Telescope. The HST/ACS-based color-magnitude diagram (CMD) of Crater extends $\\sim$4 magnitudes below the oldest main sequence turnoff, providing excellent leverage on Crater's physical properties. Structurally, Crater has a half-light radius of $\\sim$20 pc and shows no evidence for tidal distortions. Crater is well-described by a simple stellar population...

  5. Modelling the surface deposition of meteoric smoke particles

    Science.gov (United States)

    Brooke, James S. A.; Feng, Wuhu; Mann, Graham W.; Dhomse, Sandip S.; Bardeen, Charles G.; Plane, John M. C.

    2016-04-01

    The flux of meteoric smoke particles (MSPs) in Greenland and Antarctica has been measured using Ir and Pt observations in ice cores, by Gabrielli et al. [1,2]. They obtained MSP deposition fluxes of 1.5 ± 0.45 × 10‑4 g m‑2 yr‑1 (209 ± 63 t d‑1) in Greenland and 3.9 ± 1.4 × 10‑5 g m‑2 yr‑1 (55 ± 19 t d‑1) in Antarctica, where the values in parentheses are total atmospheric inputs, assuming a uniform global deposition rate. These results show reasonable agreement with those of Lanci et al. [3], who used ice core magnetisation measurements, resulting in MSP fluxes of 1.7 ± 0.23 × 10‑4 g m‑2 yr‑1 (236 ± 50 t d‑1) (Greenland) and 2.0 ± 0.52 × 10‑5 g m‑2 yr‑1 (29 ± 5.0 t d‑1) (Antarctica). Atmospheric modelling studies have been performed to assess the transport and deposition of MSPs, using WACCM (Whole Atmosphere Community Climate Model), and the CARMA (Community Aerosol and Radiation Model) aerosol microphysics package. An MSP input function totalling 44 t d‑1 was added between about 80 and 105 km. Several model runs have been performed in which the aerosol scavenging by precipitation was varied. Wet deposition is expected (and calculated here) to be the main deposition process; however, rain and snow aerosol scavenging coefficients have uncertainties spanning up to two and three orders of magnitude, respectively [4]. The model experiments that we have carried out include simple adjustments of the scavenging coefficients, full inclusion of a parametrisation reported by Wang et al. [4], and a scheme based on aerosol removal where relative humidity > 100 %. The MSP fluxes obtained vary between 1.4 × 10‑5 and 2.6 × 10‑5 g m‑2 yr‑1 for Greenland, and 5.1 × 10‑6 and 1.7 × 10‑5 g m‑2 yr‑1 for Antarctica. These values are about an order of magnitude lower than the Greenland observations, but show reasonable agreement for Antarctica. The UM (Unified Model), UKCA (United Kingdom Chemistry and Aerosols Model

  6. Meteor bodies entering the Martian atmosphere: possible impact consequences

    Science.gov (United States)

    Kuznetsova, Daria; Gritsevich, Maria

    The investigation of meteorite production on Mars has attracted considerable attention during the recent years. The possible meteorite showers are identified e.g. [1], and the estimates of meteorite fluxes on Mars are found e.g. [2,3]. In this study, we develop the theory describing a meteoroid entry into an atmosphere of a planet and apply our results to the Martian atmosphere. We introduce two key dimensionless parameters, which are based on physical parameterization and have unique values for every single meteoroid case. This allows us to derive the condition for the meteorite fall identification in a simple analytical form, which can be directly implemented for analysis and classification of the possible impact consequences. To describe the motion we use the classical equations of the model of meteor body deceleration [4,5]. The analytical dimensionless solution for the mass-velocity dependence and the height-velocity dependence can be expressed using two main parameters: (i) the ballistic coefficient alpha, which shows the ratio between the mass of the atmospheric column along the trajectory and the body's pre-entry mass, and (ii) the mass loss parameter beta, which is proportional to the ratio between the initial kinetic energy of the body and energy which is required to insure total mass loss of the body due to ablation and fragmentation [6-8]. To determine the possible consequences of impact for any given meteoroid, we use the meteorite-fall condition: the terminal mass of the meteoroid should exceed or be equal to a certain chosen value. This condition can be written using the parameters alpha and beta, so the impact consequences are described by the position of the case-under-investigation point relatively to the boundary curve in the (alpha,beta) space. Following a number of studies [9-11] we analyze the hypothesis that describes the possible evolution of Martian atmospheric density until present. Based on the properties of the meteorites recently found

  7. Measured and Modeled Morphometry of Simple Impact Craters

    Science.gov (United States)

    Watters, W. A.; Collins, G. S.

    2015-09-01

    We discuss the measured diameter dependence of well-preserved simple crater morphometry on Mars and compare with iSALE simulations. We also describe future work to fully characterize the dependence on impactor velocity and mass, and target properties.

  8. Large craters on the meteoroid and space debris impact experiment

    Science.gov (United States)

    Humes, Donald H.

    1992-01-01

    Examination of 29.37 sq m of thick aluminum plates from the LDEF, which were exposed to the meteoroid and man-made orbital debris environments for 5.8 years, revealed 606 craters that were 0.5 mm in diameter or larger. Most were nearly hemispherical. There was a large variation in the number density of craters around the three axis gravity gradient stabilized spacecraft. A new model of the near-Earth meteoroid environment gives good agreement with the crater fluxes measured on the fourteen faces of the LDEF. The man-made orbital debris model of Kessler, which predicts that 16 pct. of the craters would be caused by man-made debris, is plausible. No chemical analyses of impactor residue that will distinguish between meteoroids and man-made debris is yet available.

  9. Experimental Impact Cratering into Sandstone: A MEMIN-Progress Report

    Science.gov (United States)

    Poelchau, M. H.; Deutsch, A.; Kenkmann, T.; Hoerth, T.; Schäfer, F.; Thoma, K.; Memin Team

    2011-03-01

    The MEMIN Project is currently focused on impact experiments into sandstone. First results are presented here, including the evaluation of high-speed cameras, ejecta catchment devices, crater morphology, and chemical projectile-target interaction.

  10. Hale Crater — Ancient Water Science, Contemporary Water Resource

    Science.gov (United States)

    Stillman, D. E.; Grimm, R. E.; Robbins, S. J.; Michaels, T. I.; Enke, B. L.

    2015-10-01

    Hale has easy access to liquid water via RSL. Scientifically the site has a rich history of water via outflow channel, fluidized ejecta, hydrothermal activity, gullies, and RSL. Lastly, the site would allow age dating of Aryge and Hale crater.

  11. A Cold Day in Richardson Crater

    Science.gov (United States)

    2007-01-01

    This image of frost-covered sand dunes in Richardson Crater in the south polar region of Mars was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 0504 UTC (12:04 a.m. EST) on Jan. 30, 2007, near 72.0 degrees south latitude, 179.4 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 34 meters (111 feet) across. The region covered by the image is 10.2 kilometers (6.3 miles) wide. North is to the top, and the illumination is from the left. Richardson Crater is well outside the south polar permanent cap, but is still covered by seasonal frost now at the beginning of southern spring. The frost is a mixture of water and carbon dioxide ices, and the processes by which the frosts sublimate are being investigated by MRO's instruments. The image shows a field of sand dunes inside the crater, with the sun just six degrees above the horizon. The four renderings of CRISM 544-color image highlight different aspects of the frosted dunes that can be brought out using different wavelength combinations. The upper left image is constructed from visible wavelengths to approximate the dune's appearance to the human eye. The surface brightness is surprisingly uniform, because a large fraction of the sunlight illuminating the surface is scattered downward diffusely by the sky, washing out shadows. In the upper right image, the same view has been contrast-enhanced to accentuate both shading and small patches of sand that are visible on the dunes. Those patches are both darker and grayer than the frosted surface. The lower left image is a false color composite constructed from 2.54, 1.43, and 1.16 micron wavelengths. Using this color combination, areas with the most carbon dioxide frost appear white to bluish, those with less appear yellowish, and those with the least appear as small, reddish spots. However even the reddish spots still have carbon dioxide frost on them, just less. The lower

  12. Direct evidence for the origin of low-18O silicic magmas: quenched samples of a magma chamber's partially-fused granitoid walls, Crater Lake, Oregon

    Science.gov (United States)

    Bacon, C.R.; Adami, L.H.; Lanphere, M.A.

    1989-01-01

    Partially fused granitoid blocks were ejected in the climactic eruption of Mount Mazama, which was accompanied by collapse of Crater Lake caldera. Quartz, plagioclase, and glass in the granitoids have much lower ??18O values (-3.4 to +4.9???) than any fresh lavas of Mount Mazama and the surrounding region (+5.8 to +7.0???). Oxygen isotope fractionation between phases in granitoids is consistent with equilibrium at T ??? 900??C following subsolidus exchange with hydrothermal fluids of meteoric origin. Assimilation of ??? 10-20% of material similar to these granitoids can account for the O and Sr isotopic compositions of lavas and juvenile pyroclasts derived from the climactic magma chamber, many of which have ??18O values ??? 0.5??? or more lower than comparable lavas of Mount Mazama. The O isotope data provide the only clear evidence for such assimilation because the mineralogy and chemical and radiogenic isotopic compositions of the granitoids (dominantly granodiorite) are similar to those of erupted juvenile magmas. The granitoid blocks from Crater Lake serve as direct evidence for the origin of 18O depletion in large, shallow silicic magma bodies. ?? 1989.

  13. Direct evidence for the origin of low-18O silicic magmas: Quenched samples of a magma chamber's partially-fused granitoid walls, Crater Lake, Oregon

    International Nuclear Information System (INIS)

    Partially fused granitoid blocks were ejected in the climactic eruption of Mount Mazama, which was accompanied by collapse of Crater Lake caldera. Quartz, plagioclase, and glass in the granitoids have much lower δ18O values (-3.4 to +4.9per mille) than any fresh lavas of Mount Mazama and the surrounding region (+5.8 to +7.0per mille). Oxygen isotope fractionation between phases in granitoids is consistent with equilibrium at T≥900deg C following subsolidus exchange with hydrothermal fluids of meteoric origin. Assimilation of ≅ 10-20% of material similar to these granitoids can account for the O and Sr isotopic compositions of lavas and juvenile pyroclasts derived from the climactic magma chamber, many of which have δ18O values ≅ 0.5per mille or more lower than comparable lavas of Mount Mazama. The O isotope data provide the only clear evidence for such assimilation because the mineralogy and chemical and radiogenic isotopic compositions of the granitoids (dominantly granodiorite) are similar to those of erupted juvenile magmas. The granitoid blocks from Crater Lake serve as direct evidence for the origin of 18O depletion in large, shallow silicic magma bodies. (orig.)

  14. Young populations of small craters on Mars: A case study.

    Science.gov (United States)

    Kreslavsky, M.

    2008-09-01

    Introduction The HiRISE camera imaged the Mars surface at scales that had never been studied before. Beside a host of other fascinating features, these images revealed small (diameter D down to 1 m) impact craters. In planetary geology, impact craters and properties of their populations have been used as valuable sources of information about surface history and geological processes. Small craters on Mars can potentially give essential information about young terrains on this planet, resurfacing rates at small scales and the most recent events in the geological history, first of all, the most recent climate changes. Very young crater populations are thought to be unaffected by distal secondary craters, because they are formed after the most recent secondary-forming event. However, extracting this information is not simple or straightforward. Here I illustrate these difficulties and ways of overcoming them using a population of small craters on ejecta of crater Zunil as an example. Population of small craters on Zunil ejecta Terrain I used HiRISE images PSP_001764_1880 and PSP_002397_1880. In these images I outlined an area (totally 52.8 km2) to NE, NW and SW of the crater limited by the toes of the outer walls of Zunil and the image boundaries. Terrain texture within the area is diverse; however, the area is entirely within the proximal ejecta lobes. The ejecta material was obviously emplaced as a result of the Zunil-forming impact and has a uniform age. The morphology of the surface indicates later resurfacing of steep slopes (over a small total area) and minor eolian modification of the terrain; some sub-areas might be modified by the post-impact hydrothermal activity. Crater population I registered diameters and positions of all impact craters in the area, a total of 1025 craters with D > 1.5 m. The largest of them has D = 20 m. Craters usually have no visible ejecta, which indicates some minor (perhaps, eolian) modification of the surface. Almost all craters

  15. Changes in abundance and nature of microimpact craters on the surfaces of Australasian microtektites with distance from the proposed source crater location

    Digital Repository Service at National Institute of Oceanography (India)

    ShyamPrasad, M.; Roy, S.K.; Gupta, A.

    in collisional activity between microtektites with distance from the proposed source crater location. Closer to the proposed source crater location, the microcraters are predominantly small (few lm), pit bearing with radial and concentric cracks, suggestive...

  16. Determination of atmospheric velocity of bright meteors on the basis of high-resolution light curves

    Czech Academy of Sciences Publication Activity Database

    Shrbený, Lukáš; Spurný, Pavel

    2013-01-01

    Roč. 550, February (2013), A31/1-A31/6. ISSN 0004-6361 R&D Projects: GA ČR GA205/08/0411; GA ČR GPP209/11/P651 Institutional support: RVO:67985815 Keywords : meteorites * meteors * meteoroids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.479, year: 2013

  17. Meteor automatic imager and analyzer: Analysis of noise characteristics and possible noise suppression

    Czech Academy of Sciences Publication Activity Database

    Švihlík, J.; Fliegel, K.; Páta, P.; Vítek, S.; Koten, Pavel

    Bellingham: SPIE, 2010, 779821/1-779821/9. (Proceedings of SPIE. 7798). ISBN 978-0-8194-8294-5. ISSN 0277-786X. [Applications of Digital Image Processing /33./. San Diego (US), 02.08.2010-04.08.2010] Institutional support: RVO:67985815 Keywords : MAIA * meteor * noise analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  18. Meteor shower forecast improvements from a survey of all-sky network observations

    Science.gov (United States)

    Moorhead, Althea V.; Sugar, Glenn; Brown, Peter G.; Cooke, William J.

    2015-11-01

    Meteoroid impacts are capable of damaging spacecraft and potentially ending missions. In order to help spacecraft programs mitigate these risks, NASA’s Meteoroid Environment Office (MEO) monitors and predicts meteoroid activity. Temporal variations in near-Earth space are described by the MEO’s annual meteor shower forecast, which is based on both past shower activity and model predictions.The MEO and the University of Western Ontario operate sister networks of all-sky meteor cameras. These networks have been in operation for more than 7 years and have computed more than 20,000 meteor orbits. Using these data, we conduct a survey of meteor shower activity in the “fireball” size regime using DBSCAN. For each shower detected in our survey, we compute the date of peak activity and characterize the growth and decay of the shower’s activity before and after the peak. These parameters are then incorporated into the annual forecast for an improved treatment of annual activity.

  19. The Status of NASA's Wide-Field Meteor Camera Network and Preliminary Results

    Science.gov (United States)

    Blaauw, R.; Cooke, W.; Kingery, A.; Suggs, R.

    2014-01-01

    NASA's Meteoroid Environment Office (MEO) recently established two wide-field cameras to detect meteors in the millimeter-size-range. This paper outlines the concepts of the system, the hardware and software, and results of 3,440 orbits seen from December 13, 2012 until May 14, 2014.

  20. The beginning heights and light curves of high-altitude meteors

    Czech Academy of Sciences Publication Activity Database

    Koten, Pavel; Spurný, Pavel; Borovička, Jiří; Evans, S.; Elliott, A.; Betlem, H.; Štork, Rostislav; Jobse, K.

    2006-01-01

    Roč. 41, č. 9 (2006), s. 1305-1320. ISSN 1086-9379 R&D Projects: GA ČR GP205/02/P038 Institutional research plan: CEZ:AV0Z10030501 Keywords : bright Leonid meteors * atmospheric trajectories Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.524, year: 2006

  1. New additional material of meteor showers during 9th -19th centuries in the Islamic history

    CERN Document Server

    Basurah, Hassan M

    2012-01-01

    This article presents twelve records of meteor showers in Arabic chronicles covering period from the 9th to the 19th century. The observations were in Egypt, Morocco, Syria and Yemen. These new addition historical records are considered to be important events which indicate a serious current interest in astronomy.

  2. Fragmentation of specular overdense meteor trail echoes observed with Gadanki MST radar

    Science.gov (United States)

    Chenna Reddy, K.; Yellaiah, G.

    2016-02-01

    The pulse-integrated signal to noise ratio as a function of time known as radar meteor light curve (analogous to optical light curve), is an indicative of ablation processes during meteoroid flight in the atmosphere. In this study, we present and discuss few examples of light curves of long duration specular overdense meteor echoes detected with 53 MHz Gadanki (13.5°N, 79.2°E) MST radar. These echoes are of several seconds duration, where pulsation in amplitude is about ten cycles within few seconds. This means the fluctuations in amplitude are much slower than typical Fresnel oscillations of underdense as well as the head echo fluctuations. These light curves reveal several features unreported previously in the radar meteor returns that are consistent with meteoroid fragmentation. Some of them provide the strong observational evidence of a sub-millimeter-sized meteoroid, breaking apart into two distinct fragments. The pulsations in light curves are interpreted as being due to interference from two distinct scattering centers. Some other meteor events such as meteoroids undergoing quasi-continuous disintegration are also discussed.

  3. Meteor Burst Remote Monitoring System Deployment at US DOE Hanford Site

    International Nuclear Information System (INIS)

    This paper details the efforts associated with the design and installation of a Meteor Burst system at the 200-BP-1 Prototype Barrier located at the U.S. Department of Energy (DOE) Hanford site. The existing monitoring data collection and transmission system at the 200-BP-1 location is cellular phone-based. This system required manual data retrieval and was faced with costly upgrades due to ongoing changes in cellular phone technology. The Meteor Burst system on the other hand offers automated transmission of large amounts of monitoring data with minimal infrastructure and easy real-time access to data by facility personnel via user-friendly web pages. Under this project, a meteor burst data collection and transmission system was successfully designed and installed. This system collects and transmits data from 4 water balance monitoring stations and 13 time-domain reflectometry probes located atop the 200-BP-1 Prototype Barrier. The field system employs several data-loggers plus meteor burst components and 900-megahertz radios. In addition to the field design and installation, system programming was performed to successfully interface the components of the field system and to facilitate communication with the Internet server. Lastly, user-friendly web pages were developed to facilitate real-time access to data. (authors)

  4. Surficial geology of the Chicxulub impact crater, Yucatan, Mexico

    Science.gov (United States)

    Pope, Kevin O.; Ocampo, Adriana C.; Duller, Charles E.

    1993-11-01

    The Chicxulub impact crater in northwestern Yucatan, Mexico is the primary candidate for the proposed impact that caused mass extinctions at the end of the Cretaceous Period. The crater is buried by up to a kilometer of Tertiary sediment and the most prominent surface expression is a ring of sink holes, known locally as cenotes, mapped with Landsat imagery. This 165 +/- 5 km diameter Cenote Ring demarcates a boundary between unfractured limestones inside the ring, and fractured limestones outside. The boundary forms a barrier to lateral ground water migration, resulting in increased flows, dissolution, and collapse thus forming the cenotes. The subsurface geology indicates that the fracturing that created the Cenote Ring is related to slumping in the rim of the buried crater, differential thicknesses in the rocks overlying the crater, or solution collapse within porous impact deposits. The Cenote Ring provides the most accurate position of the Chicxulub crater's center, and the associated faults, fractures, and stratigraphy indicate that the crater may be approximately 240 km in diameter.

  5. Basin Formation and Cratering on Mercury Revealed by MESSENGER

    Science.gov (United States)

    Chapman, C. R.; Fassett, C.; Marchi, S.; Merline, W. J.; Ostrach, L. R.; Prockter, L. M.

    2015-12-01

    Mercury has been bombarded by asteroids and comets throughout its history. The resulting craters and basins are the dominant topographic features on the planet. Although visible basins contain some of the most interesting tectonic features, plains, and evidence of vertical stratigraphy, they fall far short of saturating the surface. Nevertheless, Mercury has a greater spatial density of peak-ring basins and protobasins than any other Solar System body, partly because these morphologies begin at smaller sizes than on most bodies. Cratering at approximately three times the cratering rate on the Moon, combined with likely plains-forming volcanism, prevents recognition of surface features older than 4.0 to 4.1 Ga. Severe losses of craters Mercury suggest that most plains formation ended about 3.6 to 3.7 Ga, though activity has continued in a few small regions until much more recently (e.g., inside the Rachmaninoff basin). Mercury, compared with other terrestrial bodies, is struck by projectiles impacting at much higher velocities, which is probably responsible for the formation of abundant secondary craters that dominate the numbers of craters Mercury-specific impactors ("vulcanoids") cannot be excluded, imaging searches by MESSENGER have revealed no remaining vulcanoids and no other evidence suggests that Mercury has been bombarded by anything other than the same populations of asteroids and comets that have impacted the Moon and other terrestrial planets from the end of the period of heavy bombardment 3.8 to 3.9 Ga to the present.

  6. Observations of meteor-head echoes using the Jicamarca 50MHz radar in interferometer mode

    Directory of Open Access Journals (Sweden)

    J. L. Chau

    2004-01-01

    Full Text Available We present results of recent observations of meteor-head echoes obtained with the high-power large-aperture Jicamarca 50MHz radar (11.95°S, 76.87°W in an interferometric mode. The large power-aperture of the system allows us to record more than 3000 meteors per hour in the small volume subtended by the 1° antenna beam, albeit when the cluttering equatorial electrojet (EEJ echoes are not present or are very weak. The interferometry arrangement allows the determination of the radiant (trajectory and speed of each meteor. It is found that the radiant distribution of all detected meteors is concentrated in relative small angles centered around the Earth's Apex as it transits over the Jicamarca sky, i.e. around the corresponding Earth heading for the particular observational day and time, for all seasons observed so far. The dispersion around the Apex is ~18° in a direction transverse to the Ecliptic plane and only 8.5° in heliocentric longitude in the Ecliptic plane both in the Earth inertial frame of reference. No appreciable interannual variability has been observed. Moreover, no population related to the optical (larger meteors Leonid showers of 1998-2002 is found, in agreement with other large power-aperture radar observations. A novel cross-correlation detection technique (adaptive match-filtering is used in combination with a 13 baud Barker phase-code. The technique allows us to get good range resolution (0.75km without any sensitivity deterioration for the same average power, compared to the non-coded long pulse scheme used at other radars. The matching Doppler shift provides an estimation of the velocity within a pulse with the same accuracy as if a non-coded pulse of the same length had been used. The velocity distribution of the meteors is relatively narrow and centered around 60kms-1. Therefore most of the meteors have an almost circular retrograde orbit around the Sun. Less than 8% of the velocities correspond to interstellar orbits

  7. DYNAMICS OF DUST PARTICLES RELEASED FROM OORT CLOUD COMETS AND THEIR CONTRIBUTION TO RADAR METEORS

    Energy Technology Data Exchange (ETDEWEB)

    Nesvorny, David; Vokrouhlicky, David; Pokorny, Petr [Department of Space Studies, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Janches, Diego [Space Weather Laboratory, Code 674, GSFC/NASA, Greenbelt, MD 20771 (United States)

    2011-12-10

    The Oort Cloud Comets (OCCs), exemplified by the Great Comet of 1997 (Hale-Bopp), are occasional visitors from the heatless periphery of the solar system. Previous works hypothesized that a great majority of OCCs must physically disrupt after one or two passages through the inner solar system, where strong thermal gradients can cause phase transitions or volatile pressure buildup. Here we study the fate of small debris particles produced by OCC disruptions to determine whether the imprints of a hypothetical population of OCC meteoroids can be found in the existing meteor radar data. We find that OCC particles with diameters D {approx}< 10 {mu}m are blown out from the solar system by radiation pressure, while those with D {approx}> 1 mm have a very low Earth-impact probability. The intermediate particle sizes, D {approx} 100 {mu}m, represent a sweet spot. About 1% of these particles orbitally evolve by Poynting-Robertson drag to reach orbits with semimajor axis a {approx} 1 AU. They are expected to produce meteors with radiants near the apex of Earth's orbital motion. We find that the model distributions of their impact speeds and orbits provide a good match to radar observations of apex meteors, except for the eccentricity distribution, which is more skewed toward e {approx} 1 in our model. Finally, we propose an explanation for the long-standing problem in meteor science related to the relative strength of apex and helion/antihelion sources. As we show in detail, the observed trend, with the apex meteors being more prominent in observations of highly sensitive radars, can be related to orbital dynamics of particles released on the long-period orbits.

  8. DYNAMICS OF DUST PARTICLES RELEASED FROM OORT CLOUD COMETS AND THEIR CONTRIBUTION TO RADAR METEORS

    International Nuclear Information System (INIS)

    The Oort Cloud Comets (OCCs), exemplified by the Great Comet of 1997 (Hale-Bopp), are occasional visitors from the heatless periphery of the solar system. Previous works hypothesized that a great majority of OCCs must physically disrupt after one or two passages through the inner solar system, where strong thermal gradients can cause phase transitions or volatile pressure buildup. Here we study the fate of small debris particles produced by OCC disruptions to determine whether the imprints of a hypothetical population of OCC meteoroids can be found in the existing meteor radar data. We find that OCC particles with diameters D ∼ 1 mm have a very low Earth-impact probability. The intermediate particle sizes, D ∼ 100 μm, represent a sweet spot. About 1% of these particles orbitally evolve by Poynting-Robertson drag to reach orbits with semimajor axis a ∼ 1 AU. They are expected to produce meteors with radiants near the apex of Earth's orbital motion. We find that the model distributions of their impact speeds and orbits provide a good match to radar observations of apex meteors, except for the eccentricity distribution, which is more skewed toward e ∼ 1 in our model. Finally, we propose an explanation for the long-standing problem in meteor science related to the relative strength of apex and helion/antihelion sources. As we show in detail, the observed trend, with the apex meteors being more prominent in observations of highly sensitive radars, can be related to orbital dynamics of particles released on the long-period orbits.

  9. Modeling the Meteoroid Input Function at Mid-Latitude Using Meteor Observations by the MU Radar

    Science.gov (United States)

    Pifko, Steven; Janches, Diego; Close, Sigrid; Sparks, Jonathan; Nakamura, Takuji; Nesvorny, David

    2012-01-01

    The Meteoroid Input Function (MIF) model has been developed with the purpose of understanding the temporal and spatial variability of the meteoroid impact in the atmosphere. This model includes the assessment of potential observational biases, namely through the use of empirical measurements to characterize the minimum detectable radar cross-section (RCS) for the particular High Power Large Aperture (HPLA) radar utilized. This RCS sensitivity threshold allows for the characterization of the radar system s ability to detect particles at a given mass and velocity. The MIF has been shown to accurately predict the meteor detection rate of several HPLA radar systems, including the Arecibo Observatory (AO) and the Poker Flat Incoherent Scatter Radar (PFISR), as well as the seasonal and diurnal variations of the meteor flux at various geographic locations. In this paper, the MIF model is used to predict several properties of the meteors observed by the Middle and Upper atmosphere (MU) radar, including the distributions of meteor areal density, speed, and radiant location. This study offers new insight into the accuracy of the MIF, as it addresses the ability of the model to predict meteor observations at middle geographic latitudes and for a radar operating frequency in the low VHF band. Furthermore, the interferometry capability of the MU radar allows for the assessment of the model s ability to capture information about the fundamental input parameters of meteoroid source and speed. This paper demonstrates that the MIF is applicable to a wide range of HPLA radar instruments and increases the confidence of using the MIF as a global model, and it shows that the model accurately considers the speed and sporadic source distributions for the portion of the meteoroid population observable by MU.

  10. Shallow submarine hydrothermal activity with significant contribution of magmatic water producing talc chimneys in the Wakamiko Crater of Kagoshima Bay, southern Kyushu, Japan

    Science.gov (United States)

    Yamanaka, Toshiro; Maeto, Kotaro; Akashi, Hironori; Ishibashi, Jun-Ichiro; Miyoshi, Youko; Okamura, Kei; Noguchi, Takuroh; Kuwahara, Yoshihiro; Toki, Tomohiro; Tsunogai, Urumu; Ura, Tamaki; Nakatani, Takeshi; Maki, Toshihiro; Kubokawa, Kaoru; Chiba, Hitoshi

    2013-05-01

    Active hydrothermal venting from shallow seafloor (200-m depth) with talc chimneys has been discovered at the Wakamiko Crater floor in the Aira Caldera, southern Kyushu, Japan. The major chemical composition of the fluids suggests that the fluids are supplied from a single reservoir. The fluid is characterized by a low chloride concentration, low δD value, and a high δ18O value, suggesting that the endmember hydrothermal fluid is a mixture of seawater and andesitic water and possibly contribution of meteoric water and/or phase separation. Such noticeable magmatic input may be supported by high helium isotopic ratio (6.77 RA) of fumarolic gas discharging from the crater. Silica and alkaline geothermometers indicate that the fluid-rock interaction in the reservoir occurs in the temperature range of 230 to 250 °C. The high alkalinity and high ammonium and dissolved organic matter concentrations in the fluid indicate interaction of the fluid with organic matter in sedimentary layers. At least three hydrothermal vents have been observed in the crater. Two of these have similar cone-shaped chimneys. The chimneys have a unique mineralogy and consist dominantly of talc (kerolite and hydrated talc) with lesser amounts of carbonate (dolomite and magnesite), anhydrite, amorphous silica, and stibnite. The precipitation temperature estimated from δ18O values of talc was almost consistent with the observed fluid temperature. Geochemical modeling calculations also support the formation of talc and carbonate upon mixing of the endmember hydrothermal fluid with seawater and suggest that the talc chimneys are currently growing from venting fluid.

  11. Craters on Earth, Moon, and Mars - Multivariate classification and mode of origin

    Science.gov (United States)

    Pike, R. J.

    1974-01-01

    Testing extraterrestrial craters and candidate terrestrial analogs for morphologic similitude is treated as a problem in numerical taxonomy. According to a principal-components solution and a cluster analysis, 402 representative craters on the Earth, the Moon, and Mars divide into two major classes of contrasting shapes and modes of origin. Craters of net accumulation of material (cratered lunar domes, Martian calderas, and all terrestrial volcanoes except maars and tuff rings) group apart from craters of excavation (terrestrial meteorite impact and experimental explosion craters, typical Martian craters, and all other lunar craters). Maars and tuff rings belong to neither group but are transitional. The classification criteria are four independent attributes of topographic geometry derived from seven descriptive variables by the principal-components transformation. Morphometric differences between crater bowl and raised rim constitute the strongest of the four components.

  12. Comparison of the Cratering Records of Ceres and Rhea

    Science.gov (United States)

    Schmedemann, N.; Wagner, R. J.; Michael, G.; Kneissl, T.; Hiesinger, H.; Ivanov, B.; Denk, T.; Jaumann, R.; Neesemann, A.; Raymond, C. A.; Russell, C.

    2015-12-01

    Comparing the cratering records of dwarf planet Ceres and the Saturnian satellite Rhea, offers a great opportunity in comparative planetology to fill the gaps of understanding of the cratering history of the two bodies. Both bodies show strong indications for a water-ice rich crust. For Ceres, the amount of ice in the crust is indeterminate. Early Dawn imaging data shows complex craters on Ceres which are smaller than those on the basaltic asteroid Vesta. The smallest complex craters on Ceres are similar in size (~10-15 km) to those on Rhea, which might indicate a rather high water-ice content in Ceres' crust. The surface gravity on both bodies is almost equal, differing by only ~4%. Thus, regardless of their absolute values many variables required to relate projectile and crater size should be very similar on both bodies (surface gravity, strength to gravity transition, simple to complex transition, target density). The remaining variables such as projectile density and impact velocity are comparatively well known for Ceres but still in discussion for the Saturnian satellites. If the crater size-frequency distributions for craters >5 km from Rhea and Ceres are plotted together and are corrected for different projectile flux and exposure time, both records plot nearly on top of each other. This could indicate a common projectile population that impacted both bodies at nearly the same velocity. However, if the impacting projectile populations are very different, the impact velocity would have to compensate for such differences. Different ice temperatures may also play some role. Reducing the degrees of freedom increases the chance of understanding the projectile source and dynamics in the Saturnian system. We acknowledge the support of the Dawn and Cassini Instrument, Operations, and Science Teams. This work is supported by the German Space Agency (DLR), grants 50OW1101, 50OH1102 and 50OH0305.

  13. Emplacement of Fahrenheit crater ejecta at the Luna-24 site

    International Nuclear Information System (INIS)

    The Luna-24 site is situated in Mare Crisium at a range of 18.4 km from Fahrenheit, an Eratosthenian-aged crater 6.4 km in diameter. Fahrenheit's ejecta deposits have been degraded to such an extent that secondary craters and rays cannot be unambiguously identified in the vicinity of the Luna-24 site. On the basis of an analogy between Fahrenheit and Lichtenberg B (a much younger crater of comparable size located in northern Oceanus Procellarum) Fahrenheit ejecta deposits near the sample site are inferred to have consisted of secondary crater clusters, subradially aligned secondary crater chains, and lineated terrain furrowed by fine-scale radial grooves. At the range of the Luna-24 site more than 80% of the mare surface should have been morphologically disturbed by the ballistic deposition of Fahrenheit ejecta. Blocks and fragment clusters of primary Fehrenheit ejecta ranging up to 5-20 m in diameter are inferred to have impacted the local surface at velocities of 165-230 m s-1 forming secondary craters ranging up to 100m in diameter. The maximum depth of excavation of primary Fahrenheit ejecta deposited near the sample site is estimated to be at least 100m. Primary Fahremheit ejecta is expected to constitute a substantial fraction of the exterior deposits emplaced at the range of the Luna-24 site. Microgabbro and monomineralic fragments discovered in the Luna-24 drill core may have been derived from gabbroic rocks transported to the sample site by the Fahrenheit cratering event. This hypothesis is consistent with the widespread occurrence and characteristics of Fahrenheit ejecta anticipated in the vicinity of the Luna-24 site. (Auth.)

  14. Possible interaction of meteor explosion with stratospheric aerosols on cloud nucleation based on 2011 observations.

    Science.gov (United States)

    Courty, M.-A.; Vaillant, M.; Benoit, R.

    2012-04-01

    The lack of knowledge on the nature and the variability through time of stratospheric aerosols strongly constrains the understanding of precipitation events at local to regional scales. Along other causes, meteoroid ablation is assumed to creating significant disturbances on the upper stratosphere layers, particularly by debris production and flash heating. Due to the lack of observations, the impact on cloud and precipitation processes of cosmic debris that are annually delivered to Earth is not taken into account in climate modeling. Here we report on the data collected from 2011 cosmic events that occurred on the Angles village in Pyrenees Orientales (France). The trajectory of a meteor was traced by the CNES from Toulouse (France) to the Pyrenees boarder with Spain where it exploded at high altitude on August 2. 30 hours later, a detonation with debris pulverization at the ground was recorded at the same location across a restricted area. In the following days, unusual heavy rainstorms and violent fall of hailstones were locally recorded from the Pyrenees to the coastal plain. Meticulous sampling of the 2011 August 3rd debris fall and of the soils affected by the subsequent precipitation events has been performed. A similar assemblage of organic and mineral components of stratospheric origin was revealed. It is formed of aliphatic carbonaceous polymorphs of terrestrial origin, volcanic dust, charred and fresh organic grains, fine grained sandstones with native metals and micrometeorite spherules. Microscopic assemblage, isotopes and geochemical data show composite materials formed of imbricated terrestrial and extra-terrestrial components. Based on their C14 and C13 values the terrestrial carbonaceous polymorphs appear to derive from fossil combustible. The fine imbrication of all the other terrestrial components with the carbonaceous polymorphs indicates a common origin from the upper stratosphere. The mixing of the extraterrestrial debris with the

  15. Persistent Aeolian Activity at Endeavour Crater, Mars

    Science.gov (United States)

    Chojnacki, M.; Michaels, T. I.; Fenton, L. K.

    2013-12-01

    Long-term monitoring of sites that are known to have active dunes and ripples is generally limited to 3 Mars-Years (MY). Here, we discuss new results of dune activity and albedo change in Endeavour crater (EC), Meridiani Planum (MP) that record eight MY of aeolian activity. MP dune fields often show large yearly variations in albedo; EC darkened by ~12% in TES albedo between MY 24 and 26 (from 0.14 to 0.12). THEMIS VIS albedo of dunes did not change significantly from MY 26 to 29, but did decrease notably (~15 %) in MY 30. These darkening events are most likely related to aeolian-driven dust cleaning (e.g., removal by saltating sand, dust devils). For example, the Opportunity rover (poised on the western rim of EC) observed evidence for a MY 31 dune field dust-clearing event. HiRISE monitoring of MP has shown it be one of the most active regions outside of north polar latitudes. Paired images of western EC taken 3 MY apart show clear evidence for dune modification that include: ripple migration, change in dune perimeters, exposure of previously buried light-toned rock, and/or burial of rock by sand (Fig. 1a-1b). Dune slip face movement is evident for most dunes, where crests and aprons advanced (2-7 m) in the downwind direction (to the SSE) at rates of 0.7-2.3 m per MY. Small dome dunes in the eastern EC were found to have a large degree of aeolian activity (e.g., deflation and/or translation) by an earlier study that used MGS-MRO images (MY 24-30). New MY 31 images validate earlier observations, showing clear evidence for bedform deflation where dunes often occupy less area (~50%) than in earlier MY 29 images (Fig. 1c-1d). Areal removal rates are on par with earlier estimates. Bedform modification and sand streamer orientation appear to be caused by a NNW wind regime, consistent with earlier observations, mesoscale modeling, and the transport direction of barchans to the west. Dunes in EC are now known to be periodically (consistently?) active from over a decade

  16. Acid Sulfate Alteration in Gusev Crater, Mars

    Science.gov (United States)

    Morris, R. V.; Ming, D. W.; Catalano, J. G.

    2016-01-01

    The Mars Exploration Rover (MER) Spirit landed on the Gusev Crater plains west of the Columbia Hills in January, 2004, during the Martian summer (sol 0; sol = 1 Martian day = 24 hr 40 min). Spirit explored the Columbia Hills of Gusev Crater in the vicinity of Home Plate at the onset on its second winter (sol approximately 900) until the onset of its fourth winter (sol approximately 2170). At that time, Spirit became mired in a deposit of fined-grained and sulfate-rich soil with dust-covered solar panels and unfavorable pointing of the solar arrays toward the sun. Spirit has not communicated with the Earth since sol 2210 (January, 2011). Like its twin rover Opportunity, which landed on the opposite side of Mars at Meridiani Planum, Spirit has an Alpha Particle X-Ray Spectrometer (APXS) instrument for chemical analyses and a Moessbauer spectrometer (MB) for measurement of iron redox state, mineralogical speciation, and quantitative distribution among oxidation (Fe(3+)/sigma Fe) and coordination (octahedral versus tetrahedral) states and mineralogical speciation (e.g., olivine, pyroxene, ilmenite, carbonate, and sulfate). The concentration of SO3 in Gusev rocks and soils varies from approximately 1 to approximately 34 wt%. Because the APXS instrument does not detect low atomic number elements (e.g., H and C), major-element oxide concentrations are normalized to sum to 100 wt%, i.e., contributions of H2O, CO2, NO2, etc. to the bulk composition care not considered. The majority of Gusev samples have approximately 6 plus or minus 5 wt% SO3, but there is a group of samples with high SO3 concentrations (approximately 30 wt%) and high total iron concentrations (approximately 20 wt%). There is also a group with low total Fe and SO3 concentrations that is also characterized by high SiO2 concentrations (greater than 70 wt%). The trend labeled "Basaltic Soil" is interpreted as mixtures in variable proportions between unaltered igneous material and oxidized and SO3-rich basaltic

  17. Atmospheric tides in Gale Crater, Mars

    Science.gov (United States)

    Guzewich, Scott D.; Newman, C. E.; de la Torre Juárez, M.; Wilson, R. J.; Lemmon, M.; Smith, M. D.; Kahanpää, H.; Harri, A.-M.

    2016-04-01

    Atmospheric tides are the primary source of daily air pressure variation at the surface of Mars. These tides are forced by solar heating of the atmosphere and modulated by the presence of atmospheric dust, topography, and surface albedo and thermal inertia. This results in a complex mix of sun-synchronous and non-sun-synchronous tides propagating both eastward and westward around the planet in periods that are integer fractions of a solar day. The Rover Environmental Monitoring Station on board the Mars Science Laboratory has observed air pressure at a regular cadence for over 1 Mars year and here we analyze and diagnose atmospheric tides in this pressure record. The diurnal tide amplitude varies from 26 to 63 Pa with an average phase of 0424 local true solar time, while the semidiurnal tide amplitude varies from 5 to 20 Pa with an average phase of 0929. We find that both the diurnal and semidiurnal tides in Gale Crater are highly correlated to atmospheric opacity variations at a value of 0.9 and to each other at a value of 0.77, with some key exceptions occurring during regional and local dust storms. We supplement our analysis with MarsWRF general circulation modeling to examine how a local dust storm impacts the diurnal tide in its vicinity. We find that both the diurnal tide amplitude enhancement and regional coverage of notable amplitude enhancement linearly scales with the size of the local dust storm. Our results provide the first long-term record of surface pressure tides near the martian equator.

  18. A comparison of detection sensitivity between ALTAIR and Arecibo meteor observations: Can high power and large aperture radars detect low velocity meteor head-echoes

    Science.gov (United States)

    Janches, Diego; Close, Sigrid; Fentzke, Jonathan T.

    2008-01-01

    Meteor head-echo observations using High Power and Large Aperture (HPLA) radars have been routinely used for micrometeor studies for over a decade. The head-echo is a signal from the radar-reflective plasma region traveling with the meteoroid and its detection allows for very precise determination of instantaneous meteor altitude, velocity and deceleration. Unlike specular meteor radars (SMR), HPLA radars are diverse instruments when compared one to another. The operating frequencies range from 46 MHz to 1.29 GHz while the antenna configurations changes from 18,000 dipoles in a 300 m×300 m square array, phase arrays of dipoles to single spherical or parabolic dishes of various dimensions. Hunt et al. [Hunt, S.M., Oppenheim, M., Close, S., Brown, P.G., McKeen, F., Minardi, M., 2004. Icarus 168, 34-42] and Close et al. [Close, S., Brown, P., Campbell-Brown, M., Oppenheim, M., Colestock, P., 2007. Icarus, doi: 10.1016/j.icarus.2006.09.07] recently showed, by utilizing a head-echo plasma-based model, the presence of instrumental biases in the ALTAIR VHF radar system against detecting meteors produced by very small particles (<1 μg) moving at slow (˜20 km/s) velocities due to the low head echo radar cross-section (RCS) associated with these particles. In this paper we apply the same methodology to the Arecibo 430 MHz radar and compare the results with those presented by Close et al. [Close, S., Brown, P., Campbell-Brown, M., Oppenheim, M., Colestock, P., 2007. Icarus, doi: 10.1016/j.icarus.2006.09.07]. We show that, if the methodology applied by Hunt et al. [Hunt, S.M., Oppenheim, M., Close, S., Brown, P.G., McKeen, F., Minardi, M., 2004. Icarus 168, 34-42] and Close et al. [Close, S., Brown, P., Campbell-Brown, M., Oppenheim, M., Colestock, P., 2007. Icarus, doi: 10.1016/j.icarus.2006.09.07] is accurate, for particles at least 1 μg or heavier, while the bias may exist for the ALTAIR measurements, it does not exist in the Arecibo data due to its greater sensitivity.

  19. Karakul: a young complex impact crater in the Pamir, Tajikistan

    Science.gov (United States)

    Bouley, S.; Baratoux, D.; Baratoux, L.; Colas, F.; Dauvergne, J.; Losiak, A.; Vaubaillon, J.; Bourdeille, C.; Jullien, A.; Ibadinov, K.

    2011-12-01

    A fascinating controversy has been recently renewed about the origin of the Karakul depression in the Pamir (Tajikistan, 39°1'N, 73°27'E), about 4000 m above sea level. Based on the work of E. Gurov reporting breccia and shock features in minerals, the circular depression was mentioned in the Earth Impact Database as one of the largest complex craters, about 50 km in diameter. However, recent studies have suggested that the basin is actually a NW-SE extensional rift. We report the preliminary results of a new expedition in the Karakul area that successfully took place in June 2011. Different types of rocks have been observed, including metamorphosed sediments, granite, limestone, and rare occurrence. The granite appears to be the youngest rock predating the crater, with an age of 230-190 My2. The most exciting preliminary result is the finding of shatter cones in metamorphosed sediments in the northern part of the peninsula. Breccias (not necessary impact-breccia) occur as floats on the central island, and were also found in the northern part of the rim. Thin sections are in preparation at the time of writing, and the report on the search for shock features in granite and breccias will be presented at the conference. The age of the crater is unknown, but is necessarily younger than the India-Asia collision, 55 - 60 My ago. On the basis of the oldest sediments filling the depression, the crater has been tentatively attributed to Neogene, or Pliocene, and would be then younger than 23 My. Consequences of the formation of a large complex crater in the recent geological history of the Pamir have yet to be explored. In a context of elevated convergence rate and rapid exhumation, the site offers the possibility to investigate the possible interactions between impact cratering and tectonic activity. The formation of a 50 km crater has considerable effects on the environment, at least at the regional scale, suggesting the search for such effects in the sediment record

  20. The Application of New Optical Meteor Flux Routines to the 2014 May Camelopardalid Outburst

    Science.gov (United States)

    Blaauw, Rhiannon; Campbell-Brown, Margaret; Kingery, Aaron

    2015-01-01

    NASA's Meteoroid Environment Office (MEO) is charged with monitoring the meteoroid environment in near-Earth space for the protection of satellites and spacecraft. The MEO has recently established eight wide-field meteor cameras, four cameras each at two separate stations to calculate automated meteor fluxes in the millimeter size range. Each camera consists of a 17 mm focal length Schneider lens on a Watec 902H2 Ultimate CCD video camera, producing a 21.7 x 15.5 degree field of view. This configuration has a limiting meteor magnitude of about +5. One station is located at Marshall Space Flight Center in Huntsville, Alabama and the other is 31.8 kilometers away at a school in Decatur, Alabama. Both single-station and double-station fluxes are calculated every morning using data from the previous night. The flux algorithms employed here differ from others currently in use in that they do not assume a single height for all meteors observed in the common camera volume. In the MEO system, the volume is broken up into a set of height intervals, with the collecting areas determined by the position of the active shower or sporadic source radiant. The flux per height interval is calculated and summed to obtain the total meteor flux. As the mass is also computed from the photometry, a mass flux can also be calculated. First, a weather algorithm indicates if sky conditions are clear enough to calculate fluxes, at which point a limiting magnitude algorithm is employed. The limiting magnitude algorithm performs a fit of stellar magnitudes versus camera intensities. The stellar limiting magnitude is derived from this and converted to a limiting meteor magnitude for the active shower or sporadic source. The fluxes are scaled to an average limiting magnitude throughout the night and zenithal hourly rate (ZHR's) are output daily along with flux values. In addition to this process, results will be presented as applied to the 2014 May Camelopardalid outburst, using data from several

  1. Chemical abundances of giant stars in the Crater stellar system

    CERN Document Server

    Bonifacio, P; Zaggia, S; François, P; Sbordone, L; Andrievsky, S M; Korotin, S A

    2015-01-01

    We obtained spectra for two giants of Crater (Crater J113613-105227 and Crater J113615-105244) using X-Shooter at the VLT. The spectra have been analysed with the MyGIsFoS code using a grid of synthetic spectra computed from one dimensional, Local Thermodynamic Equilibrium (LTE) model atmospheres. Effective temperature and surface gravity have been derived from photometry measured from images obtained by the Dark Energy Survey. The radial velocities are 144.3+-4.0 km/s for Crater J113613-105227 and and 134.1+-4.0 km/s for Crater J113615-105244. The metallicities are [Fe/H]=-1.73 and [Fe/H]=-1.67, respectively. Beside the iron abundance we could determine abundances for nine elements: Na, Mg, Ca, Ti, V, Cr, Mn, Ni and Ba. For Na and Ba we took into account deviations from LTE, since the corrections are significant. The abundance ratios are similar in the two stars and resemble those of Galactic stars of the same metallicity. On the deep photometric images we could detect several stars that lie to the blue of t...

  2. Problems determining relative and absolute ages using the small crater population

    Science.gov (United States)

    Xiao, Zhiyong; Strom, Robert G.

    2012-07-01

    The small crater populations (diameter smaller than 1 km) are widely used to date planetary surfaces. The reliability of small crater counts is tested by counting small craters at several young and old lunar surfaces, including Mare Nubium and craters Alphonsus, Tycho and Giordano Bruno. Based on high-resolution images from both the Lunar Reconnaissance Orbiter Camera and Kaguya Terrain Camera, small craters in two different diameter ranges are counted for each counting area. Large discrepancies exist in both the cumulative (absolute model ages) and relative plots for the two different size ranges of the same counting areas. The results indicate that dating planetary surfaces using small crater populations is highly unreliable because the contamination of secondaries may invalidate the results of small crater counts. A comparison of the size-frequency distributions of the small crater populations and impact ejected boulders around fresh lunar craters shows the same upturn as typical martian secondaries, which supports the argument that secondaries dominate the small crater populations on the Moon and Mars. Also, the size-frequency distributions of small rayed lunar and martian craters of probable primary origin are similar to that of the Population 2 craters on the inner Solar System bodies post-dating Late Heavy Bombardment. Dating planetary surfaces using the small crater populations requires the separation of primaries from secondaries which is extremely difficult. The results also show that other factors, such as different target properties and the subjective identification of impact craters by different crater counters, may also affect crater counting results. We suggest that dating planetary surfaces using small crater populations should be with highly cautious.

  3. Volatile-rich Crater Interior Deposits on Mars: An Energy Balance Model of Modification

    Science.gov (United States)

    Russell, Patrick S.; Head, James W.; Hecht, Michael H.

    2003-01-01

    Several craters on Mars are partially filled by material emplaced by post-impact processes. Populations of such craters include those in the circumsouth polar cap region, in Arabia Terra, associated with the Medusae Fossae Formation, and in the northern lowlands proximal to the north polar cap. In this study, crater fill material refers to an interior mound, generally separated from the interior walls of the crater by a trough that may be continuous along the crater s circumference (i.e. a ring-shaped trough), or may only partially contact the crater walls (i.e. a crescent-shaped trough). The fill deposit is frequently off-center from the crater center and may be asymmetric, (i.e. not circular) in plan view shape. Here we test the hypothesis that asymmetries in volatile fill shape, profile, and center-location within a crater result from asymmetries in local energy balance within the crater due mainly to variation of solar insolation and radiative effects of the crater walls over the crater interior. We first focus on Korolev crater in the northern lowlands. We can then apply this model to other craters in different regions. If asymmetry in morphology and location of crater fill are consistent with radiative-dominated asymmetries in energy budget within the crater, then 1) the volatile-rich composition of the fill is supported (this process should not be effective at shaping volcanic or sedimentary deposits), and 2) the dominant factor determining the observed shape of volatile-rich crater fill is the local radiative energy budget within the crater (and erosive processes such as eolian deflation are not necessary).

  4. Faint meteor observation by large-format CMOS sensor with 1.05-m Kiso schmidt telescope

    Science.gov (United States)

    Watanabe, J.; Kasuga, T.; Terai, T.; Miyazaki, S.; Ohta, K.; Murooka, F.; Ohnishi, T.; Yamasaki, T.; Mito, H.; Aoki, T.; Soyano, T.; Tarusawa, K.; Matsunaga, N.; Sako, S.; Kobayashi, N.; Doi, M.; Enomoto, T.

    2014-07-01

    We tried to use a new high-sensitivity CMOS sensor of the world's largest size as a one-chip 20cmx 20cm square attached to the prime focus of the 1.05 m (F3.1) Schmidt telescope at the Kiso Observatory, University of Tokyo, for faint meteor observation. The resulting field of view was 3.3 by 3.3 degrees, with a limiting magnitude of about 12 in our preliminary analysis. Assuming the height of faint meteors at 100 km, the derived flux of sporadic meteors is about 5x10^{-4} km^{-2}s^{-1}. Although the analysis is still on going, it is clear that this CMOS sensor is useful and effective for observing faint meteors.

  5. Imaging the Buried Chicxulub Crater with Gravity Gradients and Cenotes

    Science.gov (United States)

    Hildebrand, A. R.; Pilkington, M.; Halpenny, J. F.; Ortiz-Aleman, C.; Chavez, R. E.; Urrutia-Fucugauchi, J.; Connors, M.; Graniel-Castro, E.; Camara-Zi, A.; Vasquez, J.

    1995-09-01

    Differing interpretations of the Bouguer gravity anomaly over the Chicxulub crater, Yucatan Peninsula, Mexico, have yielded diameter estimates of 170 to 320 km. Knowing the crater's size is necessary to quantify the lethal perturbations to the Cretaceous environment associated with its formation. The crater's size (and internal structure) is revealed by the horizontal gradient of the Bouguer gravity anomaly over the structure, and by mapping the karst features of the Yucatan region. To improve our resolution of the crater's gravity signature we collected additional gravity measurements primarily along radial profiles, but also to fill in previously unsurveyed areas. Horizontal gradient analysis of Bouguer gravity data objectively highlights the lateral density contrasts of the impact lithologies and suppresses regional anomalies which may obscure the gravity signature of the Chicxulub crater lithologies. This gradient technique yields a striking circular structure with at least 6 concentric gradient features between 25 and 85 km radius. These features are most distinct in the southwest probably because of denser sampling of the gravity field. Our detailed profiles detected an additional feature and steeper gradients (up to 5 mGal/km) than the original survey. We interpret the outer four gradient maxima to represent concentric faults in the crater's zone of slumping as is also revealed by seismic reflection data. The inner two probably represent the margin of the central uplift and the peak ring and or collapsed transient cavity. Radial gradients in the SW quadrant over the inferred ~40 km-diameter central uplift (4) may represent structural "puckering" as revealed at eroded terrestrial craters. Gradient features related to regional gravity highs and lows are visible outside the crater, but no concentric gradient features are apparent at distances > 90 km radius. The marginal gradient features may be modelled by slump faults as observed in large complex craters on

  6. Shock-induced effects in calcite from Cactus Crater

    Science.gov (United States)

    Vizgirda, J.; Ahrens, T. J.; Tsay, F.-D.

    1980-01-01

    The paper discusses shock metamorphism of calcite from coralline limestone samples retrieved from a borehole drilled into rocks beneath Cactus Crater, a nuclear explosion crater at Eniwetok Atoll. The metamorphism was detected and quantified using electron spin resonance (ESR); the ESR spectra of Mn(+) present as a trace constituent in the coral samples, show a consistent decrease in hyperfine peak splitting with decreasing depth of sample. It is suggested that the decrease in hyperfine peak splitting reflects a decrease in crystal field splitting, and therefore, small increases on cation-anion distances produced by mechanical energy input during the shock process. Two alternative crater models suggested by the ESR results are a depiction of a steady decay of the shock wave, and a delineation of a breccia lens with a breccia-bedrock interface at 20 plus or minus 5 m.

  7. Craters on Mars: Global Geometric Properties from Gridded MOLA Topography

    Science.gov (United States)

    Garvin, J. B.; Sakimoto, S. E. H.; Frawley, J. J.

    2003-01-01

    Impact craters serve as natural probes of the target properties of planetary crusts and the tremendous diversity of morphological expressions of such features on Mars attests to their importance for deciphering the history of crustal assembly, modification, and erosion. This paper summarizes the key findings associated with a five year long survey of the three-dimensional properties of approx. 6000 martian impact craters using finely gridded MOLA topography. Previous efforts have treated representative subpopulations, but this effort treats global properties from the largest survey of impact features from the perspective of their topography ever assimilated. With the Viking missions of the mid-1970 s, the most intensive and comprehensive robotic expeditions to any Deep Space location in the history of humanity were achieved, with scientifically stunning results associated with the morphology of impact craters. The relationships illustrated and suggest that martian impact features are remarkably sensitive to target properties and to the local depositional processes.

  8. Hazards due to Meteor and Asteroids and Infux of Cosmic Matter on the Earth

    Science.gov (United States)

    Kruchynenko, V. G.; Voloshchuk, Yu. I.; Kashcheev, B. L.; Kazantsev, A. M.; Lupishko, D. F.; Yatskiv, Ya. S.

    The problem of meteor and asteroid hazards is considered on the basis of modern studies of small bodies in the solar system. Using one of the largest meteor data banks and the results of calculations of asteroid orbits, new approaches to the search for space bodies which may be dangerous to our planet are formulated. The problem of destruction of meteoroids of various masses in the atmosphere and on the surface of the Earth is considered, and a criterion for distinguishing between impact and explosion meteorites is presented. Analysis of the data on influx of cosmic bodies on the Earth in a wide range of masses is made. The probability of collision of space vehicles with meteoroid particles is given.

  9. Prediction of evolution of meteor shower associated with comet 122P/de Vico

    Science.gov (United States)

    Tomko, D.

    2014-04-01

    We deal with a theoretical meteoroid stream of the comet 122P/de Vico. For five perihelion passages in the distant past, we model a theoretical stream and follow its dynamical evolution until the present. We predict the characteristics of potential a meteor shower approaching the Earth's orbit and we make also the identification of the particles of the predicted shower with the real meteors in three databases (photo, radar, and video). Our overall prediction is, however, negative because only the particles released from the comet nucleus before approximately 37 000 years are found to evolve into a collision course with the Earth and, therefore, form a possible shower. Many meteoroids do not survive such a long time in interplanetary space.

  10. Modeling an enhancement of the lunar sodium tail during the Leonid Meteor Shower of 1998

    Science.gov (United States)

    Wilson, Jody K.; Smith, Steven M.; Baumgardner, Jeffrey; Mendillo, Michael

    A region of non-terrestrial sodium emission seen in the sky on the nights of November 18-20, 1998, has been interpreted as the Moon's distant sodium tail, possibly enhanced by micrometeor impact vaporization of the lunar regolith by the Leonid meteor shower. We show that the location and morphology of the spot can be explained by standard steady-state models of the Moon's sodium atmosphere. Moreover, using a new time-dependent simulation of the lunar atmosphere, we find that the Na escape rate from the Moon increased to 2 or 3 times its normal level during the most intense period of the 1998 Leonid meteor shower on November 16th and 17th.

  11. Local and long-distance effects of meteor showers in the low ionosphere

    Science.gov (United States)

    Vilas Boas, J. W. S.; Paes Leme, N. M.; Rizzo Piazza, L.; da Costa, A. M.; Macedo Moura, M. S. S.

    1986-07-01

    The effect of the Geminids and alpha Scorpiids meteor showers in the lower ionosphere have been observed using two different methods. Low ionosphere group heights, measured by a VLF ionosonde located in southern Brazil, indicated significant anomalous lowering of the effective reflection height which was in good correlation with the transit of the alpha Scorpiids stream. The diurnal VLF phase variations over two long-distance propagation paths showed significant phase deviations from the average during the transits of the showers' radiants. Geomagnetic activity during the periods concerned was low and the results obtained using the two different techniques confirm the occurrence of changes in the physical conditions of the low ionosphere produced by meteor showers on local, as well as on long-distance, scales.

  12. Diagenetic Mineralogy at Gale Crater, Mars

    Science.gov (United States)

    Vaniman, David; Blake, David; Bristow, Thomas F.; Chipera, Steve; Gellert, Ralf; Ming, Douglas; Morris, Richard; Rampe, E. B.; Rapin, William

    2015-01-01

    Three years into exploration of sediments in Gale crater on Mars, the Mars Science Laboratory rover Curiosity has provided data on several modes and episodes of diagenetic mineral formation. Curiosity determines mineralogy principally by X-ray diffraction (XRD), but with supporting data from thermal-release profiles of volatiles, bulk chemistry, passive spectroscopy, and laser-induced breakdown spectra of targeted spots. Mudstones at Yellowknife Bay, within the landing ellipse, contain approximately 20% phyllosilicate that we interpret as authigenic smectite formed by basalt weathering in relatively dilute water, with associated formation of authigenic magnetite as in experiments by Tosca and Hurowitz [Goldschmidt 2014]. Varied interlayer spacing of the smectite, collapsed at approximately 10 A or expanded at approximately 13.2 A, is evidence of localized diagenesis that may include partial intercalation of metal-hydroxyl groups in the approximately 13.2 A material. Subsequent sampling of stratigraphically higher Windjana sandstone revealed sediment with multiple sources, possible concentration of detrital magnetite, and minimal abundance of diagenetic minerals. Most recent sampling has been of lower strata at Mount Sharp, where diagenesis is widespread and varied. Here XRD shows that hematite first becomes abundant and products of diagenesis include jarosite and cristobalite. In addition, bulk chemistry identifies Mg-sulfate concretions that may be amorphous or crystalline. Throughout Curiosity's traverse, later diagenetic fractures (and rarer nodules) of mm to dm scale are common and surprisingly constant and simple in Ca-sulfate composition. Other sulfates (Mg,Fe) appear to be absent in this later diagenetic cycle, and circumneutral solutions are indicated. Equally surprising is the rarity of gypsum and common occurrence of bassanite and anhydrite. Bassanite, rare on Earth, plays a major role at this location on Mars. Dehydration of gypsum to bassanite in the

  13. Impact craters at falling of large asteroids in Ukraine

    Science.gov (United States)

    Vidmachenko, A. P.

    2016-05-01

    Catastrophes of different scale that are associated with the fall of celestial bodies to the Earth - occurred repeatedly in its history. But direct evidence of such catastrophes has been discovered recently. Thus, in the late 1970s studies of terrestrial rocks showed that in layers of the earth's crust that corresponded to the period of 65 million years before the present, marked by the mass extinction of some species of living creatures, and the beginning of the rapid development of others. It was then - a large body crashed to Earth in the Gulf of Mexico in Central America. The consequence of this is the Chicxulub crater with a diameter of ~170 km on Yucatan Peninsula. Modern Earth's surface retains many traces of collisions with large cosmic bodies. To indicate the craters with a diameter of more than 2 km using the name "astrobleme". Today, it found more than 230. The largest astroblems sizes exceeding 200 km. Ukraine also has some own astroblems. In Ukraine, been found nine large impact craters. Ukrainian crystalline shield, because of its stability for a long time (more than 1.5 billion years), has the highest density of large astroblems on the Earth's surface. The largest of the Ukrainian astroblems is Manevytska. It has a diameter of 45 km. There are also Ilyinetskyi (7 km), Boltysh (25 km), Obolon' (20 km), Ternivka (12-15 km), Bilylivskyi (6 km), Rotmystrivka (3 km) craters. Zelenohayska astrobleme founded near the village Zelenyi Gay in Kirovograd region and consists of two craters: larger with diameter 2.5-3.5 km and smaller - with diameter of 800 m. The presence of graphite, which was the basis for the research of the impact diamond in astroblems of this region. As a result, the diamonds have been found in rocks of Ilyinetskyi crater; later it have been found in rocks in the Bilylivska, Obolon' and other impact structures. The most detailed was studied the geological structure and the presence of diamonds in Bilylivska astrobleme

  14. Cratering on a Comet: Expectations for Deep Impact

    Science.gov (United States)

    Schultz, P. H.

    2001-11-01

    In 2005, the Deep Impact Mission will witness the collision of a 350kg impactor into Comet P-Temple 1. Laboratory impact experiments provide scaling laws that relate impactor mass to crater diameter and depth for various target and impactor properties. A series of experiments have been performed at the NASA Ames Vertical Gun Range in order to assess the effects of the density and impedance ratio between target and impactor, target compressibility, target porosity, and impact angle. Although the maximum velocity achievable in the laboratory is below that for Deep Impact (7km/sec versus 10.3 km/sec), varying impactor diameter and velocity allows extrapolating beyond this range, for certain assumptions. This approach has been used for various particulate targets including pumice (1.1 to 1.5 g/cc, sand (1.7g/cc), vermiculite (0.09 g/cc), and micro-spheres (0.05g/cc), which provide the maximum possible diameter produced on Temple 1. Smaller sizes are expected if strength, rather than gravity, controls limits of crater growth or if internal energy losses (e.g., pore-space collapse) reduce the coupling efficiency. Crater size also can be augmented through back pressures created by vapor expansion within the crater cavity. The maximum predicted crater diameters (without back pressure) for the DI impact into a 0.3 g/cc porous target are: 89 m (pumice), 124 m (fine sand), 98m (fine sand with compaction losses). Formation times approach 200 seconds. Crater size, plume evolution (size and photometry), formation time, ejection (curtain) angle, and the ejecta deposit will all contribute to meaningful interpretations of the near-surface properties.

  15. Radar observations of Taurid complex meteor showers in 2003: activity and mass distribution

    Czech Academy of Sciences Publication Activity Database

    Pecina, Petr; Pecinová, Drahomíra; Porubčan, V.; Toth, J.

    2005-01-01

    Roč. 95, 1-4 (2005), s. 681-688. ISSN 0167-9295. [Meteoroids 2004. London, Ontario, 16.08.2004-20.08.2004] R&D Projects: GA ČR GA205/03/1405 Institutional research plan: CEZ:AV0Z1003909 Keywords : Taurid complex * meteor showers * activity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.975, year: 2005

  16. Meteor automatic imager and analyzer: current status and preprocessing of image data

    Czech Academy of Sciences Publication Activity Database

    Fliegel, K.; Páta, P.; Vítek, S.; Koten, Pavel

    Bellingham: SPIE, 2011, 81351S/1-81351S/7. (Proceedings of SPIE. 8135). ISBN 9780819487452. ISSN 0277-786X. [Applications of Digital Image Processing /34./. San Diego (US), 22.08.2011-24.08.2011] R&D Projects: GA ČR GA205/09/1302 Institutional support: RVO:67985815 Keywords : imaging systems * image processing * meteors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  17. Effects of probiotics on the faecal production of hydrogen and methane in patients with meteorism

    DEFF Research Database (Denmark)

    Schrøder, Julie Bernstorf; Jespersen, Lene; Westermann, Peter;

    Meteorism is a dominating problem in the western world, especially in women. The condition is very difficult to quantify, and effective and documented therapies are not avaiable. We wanted to develop a method for measuring anaerobic production of hydrogen and methane in faeces, and to correlate the...... results with patients symptoms. We wanted to investigate, if a change in the flora in the colon would have an effect on gas production and symptoms....

  18. The 2011 Giacobinid outburst: geocentric radiant data derived from Spanish Meteor Network video imagery

    Science.gov (United States)

    Trigo-Rodríguez, J. M.; Cortés, J.; Madiedo, J. M.; Dergham, P.; Pastor Erades, J.

    2012-09-01

    On 2011 October 8 the Earth encountered the dust trails left by comet 21P/Giacobini-Zinner during its XIX and XX century perihelion approaches. The trails were older than in previous 1933 and 1946 historical encounters, and significantly perturbed by Earth's encounters so they finally produced an outburst, but not a storm. We discuss here the geocentric radiants derived from accurately reduced video data recorded from SPanish Meteor Network (SPMN) multistation work.

  19. Preliminary chemical data from basaltic rocks dredged at Great Meteor, Hyeres and Plato seamounts

    OpenAIRE

    Madureira, Pedro; Pinto Ribeiro, Luísa; Lourenço, Nuno; Martins, Sofia; Pinto de Abreu, Manuel

    2008-01-01

    The seafloor near the Azores archipelago and the southern seamounts are still greatly unexplored. Cruise EMEPC/Açores/G3/2007 was planned to collect geological and geophysical data for the Portuguese Proposal for the Extension of the Continental Shelf under the United Nations Convention on the Law of the Sea (UNCLOS) along a track from the Azores to the Great Meteor seamount. Over 40 dredge operations were performed and a significant volume of cemented carbonate rocks, sediment...

  20. The effect of rotation on the initial radius of meteor trains

    International Nuclear Information System (INIS)

    It is proposed that the observed variation of the initial radius of meteor trains with height is largely the result of the rapid rotation (approximately 5 x 103 rad/s) of the meteoroids which causes considerable spreading of the meteoroid grains in the interval between grain release and the onset of intensive vaporization. This is shown to be consistent with the empirical data relating to the collision of the meteoroids in interplanetary space. (author)

  1. All-sky interferometric meteor radar meteoroid speed estimation using the Fresnel transform

    OpenAIRE

    Holdsworth, D. A.; Elford, W. G.; Vincent, R. A.; I. M. Reid; Murphy, D. J.; Singer, W.

    2007-01-01

    Fresnel transform meteor speed estimation is investigated. A spectral based technique is developed allowing the transform to be applied at low temporal sampling rates. Simulations are used to compare meteoroid speeds determined using the Fresnel transform and alternative techniques, confirming that the Fresnel transform produces the most accurate meteoroid speed estimates for high effective pulse repetition frequencies (PRFs). The Fresnel transform is applied to high effecti...

  2. All-sky interferometric meteor radar meteoroid speed estimation using the Fresnel transform

    OpenAIRE

    Holdsworth, D. A.; Elford, W. G.; Vincent, R. A.; I. M. Reid; Murphy, D. J.; Singer, W.

    2007-01-01

    Fresnel transform meteor speed estimation is investigated. A spectral based technique is developed allowing the transform to be applied at low temporal sampling rates. Simulations are used to compare meteoroid speeds determined using the Fresnel transform and alternative techniques, confirming that the Fresnel transform produces the most accurate meteoroid speed estimates for high effective pulse repetition frequencies (PRFs). The Fresnel transform is applied to high effective PRF data collec...

  3. The Nippon/Norway Svalbard Meteor Radar: First results of small-scale structure observations

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The Nippon/Norway Svalbard Meteor Radar(NSMR), has been in operation since March 2001. While primarily thought of as an instrument for examining mean wind, tidal and gravity wave neutral atmosphere dynamics in the upper mesosphere region, it is also possible to investigate spatial and temporal structure of temperature and windshear. Here, the radar itself is described followed by a presentation of these derived parameters.

  4. Orbit determination based on meteor observations using numerical integration of equations of motion

    Science.gov (United States)

    Dmitriev, Vasily; Lupovka, Valery; Gritsevich, Maria

    2015-11-01

    Recently, there has been a worldwide proliferation of instruments and networks dedicated to observing meteors, including airborne and future space-based monitoring systems . There has been a corresponding rapid rise in high quality data accumulating annually. In this paper, we present a method embodied in the open-source software program "Meteor Toolkit", which can effectively and accurately process these data in an automated mode and discover the pre-impact orbit and possibly the origin or parent body of a meteoroid or asteroid. The required input parameters are the topocentric pre-atmospheric velocity vector and the coordinates of the atmospheric entry point of the meteoroid, i.e. the beginning point of visual path of a meteor, in an Earth centered-Earth fixed coordinate system, the International Terrestrial Reference Frame (ITRF). Our method is based on strict coordinate transformation from the ITRF to an inertial reference frame and on numerical integration of the equations of motion for a perturbed two-body problem. Basic accelerations perturbing a meteoroid's orbit and their influence on the orbital elements are also studied and demonstrated. Our method is then compared with several published studies that utilized variations of a traditional analytical technique, the zenith attraction method, which corrects for the direction of the meteor's trajectory and its apparent velocity due to Earth's gravity. We then demonstrate the proposed technique on new observational data obtained from the Finnish Fireball Network (FFN) as well as on simulated data. In addition, we propose a method of analysis of error propagation, based on general rule of covariance transformation.

  5. Search for faint meteors on the orbits of Pribram and Neuschwanstein meteorites

    Czech Academy of Sciences Publication Activity Database

    Koten, Pavel; Vaubaillon, J.; Čapek, David; Vojáček, Vlastimil; Spurný, Pavel; Štork, Rostislav; Colas, F.

    2014-01-01

    Roč. 239, September (2014), s. 244-252. ISSN 0019-1035 R&D Projects: GA ČR GA205/09/1302; GA MŠk 7AMB13FR006 Grant ostatní: UK(CZ) SVV-26089 Institutional support: RVO:67985815 Keywords : meteors * meteorites * interplanetary dust Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.038, year: 2014

  6. Subsurface Deformation in Hypervelocity Cratering Experiments into High-Porosity Tuffs

    Science.gov (United States)

    Winkler, R.; Poelchau, M. H.; Moser, S.; Hoerth, T.; Schäfer, F.; Kenkmann, T.

    2015-07-01

    Three hypervelocity impact experiments into 43% porosity tuff were performed to analyze the effects of porosity during impact cratering. We investigated the crater shapes and processes in the subsurface of hypervelocity impacts.

  7. The Links Between Target Properties and Layered Ejecta Craters in Acidalia and Utopia Planitiae Mars

    Science.gov (United States)

    Jones, E.; Osinski, G. R.

    2013-08-01

    Layered ejecta craters on Mars may form from excavation into subsurface volatiles. We examine a new catalogue of martian craters to decipher differences between the single- and double-layered ejecta populations in Acidalia and Utopia.

  8. Impact Cratering Experiments into Quartzite and Tuff: First Results from the MEMIN Research Unit

    Science.gov (United States)

    Poelchau, M. H.; Hoerth, T.; Schäfer, F.; Deutsch, A.; Thoma, K.; Kenkmann, T.

    2012-09-01

    The effects of porosity on the cratering process will be examined in experiments planned for June 2012. Porosity in combination with target strength is expected to have an effect on crater morphology and ejection behavior.

  9. On the Fitting of Non-Linear, Empirical Functions for the Fitting of Model Crater Ages

    Science.gov (United States)

    Weaver, B. P.; Hilbe, J. M.; Robbins, S. J.; Plesko, C. S.; Riggs, J. D.

    2015-05-01

    Fitting model crater production functions to observed crater data is considered an "art" by many, and there is no standard in the field for how best to do it. We will discuss mathematical techniques' pros and cons and make recommendations.

  10. Testing Formation Theories of NW Arabia Terra, Mars: New Clues from Old Craters

    Science.gov (United States)

    Robbins, S. J.; Hynek, B. M.

    2008-03-01

    Northwest Arabia Terra has topography and crater populations indicating a unique history. We directly tested two proposed formation mechanisms. Crater size-frequency and d/D ratios suggest neither scenario is easily reconcilable with the new datasets.

  11. Survey of TES high albedo events in Mars' northern polar craters

    Science.gov (United States)

    Armstrong, J.C.; Nielson, S.K.; Titus, T.N.

    2007-01-01

    Following the work exploring Korolev Crater (Armstrong et al., 2005) for evidence of crater interior ice deposits, we have conducted a survey of Thermal Emission Spectroscopy (TES) temperature and albedo measurements for Mars' northern polar craters larger than 10 km. Specifically, we identify a class of craters that exhibits brightening in their interiors during a solar longitude, Ls, of 60 to 120 degrees, roughly depending on latitude. These craters vary in size, latitude, and morphology, but appear to have a specific regional association on the surface that correlates with the distribution of subsurface hydrogen (interpreted as water ice) previously observed on Mars. We suggest that these craters, like Korolev, exhibit seasonal high albedo frost events that indicate subsurface water ice within the craters. A detailed study of these craters may provide insight in the geographical distribution of the ice and context for future polar missions. Copyright 2007 by the American Geophysical Union.

  12. Search for Impact Craters in Iran: Citizen Science as a Useful Method

    OpenAIRE

    Pourkhorsandi, Hamed

    2013-01-01

    To recognition probable impact craters in Iran, we use Google Earth data in the first step. Some probable structures identified and studies suggest non-impact origin for them. Studies on other craters in Iran are in progress.

  13. Impactor Flux and Cratering on the Pluto-Charon System

    OpenAIRE

    de Elía, G. C.; Di Sisto, R. P.; A. Brunini

    2010-01-01

    We study the impactor flux and cratering on Pluto and Charon due to the collisional evolution of Plutinos. Plutinos are those trans-Neptunian objects located at 39.5 AU, in the 3:2 mean motion resonance with Neptune. To do this, we develop a statistical code that includes catastrophic collisions and cratering events, and takes into account the stability and instability zones of the 3:2 mean motion resonance with Neptune. We proposes different initial populations that account for the uncertain...

  14. SOLID STATE PHYSICS OF IMPACT CRATER FORMATION: FURTHER CONSIDERATIONS

    Directory of Open Access Journals (Sweden)

    V. Celebonovic

    2013-01-01

    Full Text Available Impact craters exist on solid surface planets, their satellites and many asteroids. The aim of this paper is to propose a theoretical expression for the product ρr3 v2 1 , where the three symbols denote the mass density, radius and speed of the impactor. The expression is derived using well known results of solid state physics, and it can be used in estimating parameters of impactors which have led to formation of craters on various solid bodies in the Solar System.

  15. Geomorphometric analysis of selected Martian craters using polar coordinate transformation

    Science.gov (United States)

    Magyar, Zoltán; Koma, Zsófia; Székely, Balázs

    2016-04-01

    Centrally symmetric landform elements are very common features on the surface of the planet Mars. The most conspicuous ones of them are the impact craters of various size. However, a closer look on these features reveals that they show often asymmetric patterns as well. These are partially related to the geometry of the trajectory of the impacting body, but sometimes it is a result of surface processes (e.g., freeze/thaw cycles, mass movements). Geomorphometric studies have already been carried out to reveal these pecularities. Our approach, the application of polar coordinate transformation (PCT) very sensitively enhances the non-radial and non-circular shapes. We used digital terrain models (DTMs) derived from the ESA Mars Express HRSC imagery. The original DTM or its derivatives (e.g. slope angle or aspect) are PCT transformed. We analyzed the craters inter alia with scattergrams in polar coordinates. The resulting point cloud can be used directly for the analysis, but in some cases an interpolation should be applied to enhance certain non-circular features (especially in case of smaller craters). Visual inspection of the crater slopes, coloured by the aspect, reveals smaller features. Some of them are processing artefacts, but many of them are related to local undulations in the topography or indications of mass movements. In many cases the undulations of the crater rim are due to erosional processes. The drawbacks of the technology are related to the uneven resolution of the projected image: features in the crater centre should be left out from the analysis because PCT has a low resolution around the projection center. Furthermore, the success of the PCT depends on the correct definition of the projection centre: erroneously centered images are not suitable for analysis. The PCT transformed images are also suitable for radial averaging and calculation of standard deviations, resulting in typical, comparable craters shapes. These studies may lead to a deeper

  16. Improved Measurement of Ejection Velocities From Craters Formed in Sand

    Science.gov (United States)

    Cintala, Mark J.; Byers, Terry; Cardenas, Francisco; Montes, Roland; Potter, Elliot E.

    2014-01-01

    A typical impact crater is formed by two major processes: compression of the target (essentially equivalent to a footprint in soil) and ejection of material. The Ejection-Velocity Measurement System (EVMS) in the Experimental Impact Laboratory has been used to study ejection velocities from impact craters formed in sand since the late 1990s. The original system used an early-generation Charge-Coupled Device (CCD) camera; custom-written software; and a complex, multicomponent optical system to direct laser light for illumination. Unfortunately, the electronic equipment was overtaken by age, and the software became obsolete in light of improved computer hardware.

  17. Using Wide-Field Meteor Cameras to Actively Engage Students in Science

    Science.gov (United States)

    Kuehn, D. M.; Scales, J. N.

    2012-08-01

    Astronomy has always afforded teachers an excellent topic to develop students' interest in science. New technology allows the opportunity to inexpensively outfit local school districts with sensitive, wide-field video cameras that can detect and track brighter meteors and other objects. While the data-collection and analysis process can be mostly automated by software, there is substantial human involvement that is necessary in the rejection of spurious detections, in performing dynamics and orbital calculations, and the rare recovery and analysis of fallen meteorites. The continuous monitoring allowed by dedicated wide-field surveillance cameras can provide students with a better understanding of the behavior of the night sky including meteors and meteor showers, stellar motion, the motion of the Sun, Moon, and planets, phases of the Moon, meteorological phenomena, etc. Additionally, some students intrigued by the possibility of UFOs and "alien visitors" may find that actual monitoring data can help them develop methods for identifying "unknown" objects. We currently have two ultra-low light-level surveillance cameras coupled to fish-eye lenses that are actively obtaining data. We have developed curricula suitable for middle or high school students in astronomy and earth science courses and are in the process of testing and revising our materials.

  18. Aspect sensitivity of VHF echoes from field aligned irregularities in meteor trails and thin ionization layers

    Directory of Open Access Journals (Sweden)

    Q. H. Zhou

    2004-02-01

    Full Text Available The aspect sensitivity of VHF echoes from field aligned irregularities (FAI within meteor trails and thin ionization layers is studied using numerical models. Although the maximum power is obtained when a radar is pointed perpendicular to the field line (perpendicular to B, substantial power can be obtained off the perpendicular to B direction if the ionization trail/layer is thin. When the FAI length is 20 m, the power observed 6° off perpendicular to B is about 10 db below that perpendicular to the B direction. Meteoric FAI echoes can potentially be used to determine the diffusion rate in the mesopause region. Based on the aspect sensitivity analysis, we conclude that the range spread trail echoes far off perpendicular to B observed by powerful VHF radars are likely due to overdense meteors. Our simulation also shows that ionospheric FAI echoes can have an altitude smearing effect of about 4 km if the vertical extension of a FAI layer is around 100 m, which has often been observed at Arecibo. The altitude smearing effect can account for the fact that the Es layers observed by the Arecibo incoherent scatter radar are typically much narrower than FAI layers and the occurrence of double spectral peaks around the Es layer altitude in FAI echoes.

  19. Aspect sensitivity of VHF echoes from field aligned irregularities in meteor trails and thin ionization layers

    Directory of Open Access Journals (Sweden)

    Q. H. Zhou

    2004-01-01

    Full Text Available The aspect sensitivity of VHF echoes from field aligned irregularities (FAI within meteor trails and thin ionization layers is studied using numerical models. Although the maximum power is obtained when a radar is pointed perpendicular to the field line (B, substantial power can be obtained off the B direction if the ionization trail/layer is thin. When the FAI length along B is 20 m, the power observed 6° off B is about 10 db below that perpendicular to the B direction. Meteoric FAI echoes can potentially be used to determine the diffusion rate in the mesopause region. Based on the aspect sensitivity analysis, we conclude that the range spread trail echoes far off B observed by powerful VHF radars are likely due to overdense meteors. Our simulation also shows that ionospheric FAI echoes can have an altitude smearing effect of about 4 km if the vertical extension of a FAI-layer is around 100 m, which has often been observed at Arecibo. The altitude smearing effect can account for the fact that the Es-layers observed by the Arecibo incoherent scatter radar are typically much narrower than FAI-layers and the occurrence of double spectral peaks around the Es-layer altitude in FAI echoes.

  20. Stable isotope ratios in meteoric recharge and groundwater at Mt. Vulture volcano, southern Italy

    Science.gov (United States)

    Paternoster, M.; Liotta, M.; Favara, R.

    2008-01-01

    SummaryA rain gauge network consisting of five sites located at different altitudes, ranging from 320 to 1285 m.a.s.l., was installed at Mt. Vulture volcano (southern Italy). Rain water samples were collected monthly over a two-year period and their isotopic composition (δ 18O and δD) was analyzed. During the same period, circulating groundwater was sampled from 24 springs and wells distributed throughout the study area. Monthly isotopic composition values were used to determine the local meteoric water line (LMWL). Its slope is slightly lower than the relationship defined by Longinelli and Selmo (Longinelli, A., Selmo, E., 2003. Isotopic composition of precipitation in Italy: a first overall map. J. Hydrol. 270, 75-88) for southern Italy. The groundwater samples analyzed were distributed essentially along the LMWL. The weighted local meteoric water line (WLMWL), defined through the mean values weighted by the rainfall amount, however, may define in a short range the meteoric end-member in the local hydrological cycle more precisely. Since most of the groundwater sampling locations do not show seasonal variations in their stable isotope values, the flow system appears to be relatively homogeneous. The mean altitude of the recharge by rainfall infiltration was estimated on the basis of the local vertical isotopic gradient δ 18O. A few springs, which show anomalous isotopic values, reveal more regional circulation systems, associated with tectonic structures responsible for the ascent of deeper water.

  1. Possible detection of meteor stream effects on the lunar sodium atmosphere

    Science.gov (United States)

    Verani, S.; Barbieri, C.; Benn, C.; Cremonese, G.

    1998-08-01

    We report two sets of observations of sodium emission from the lunar atmosphere. The spectra were taken on two nights having very similar lunar phases, at various distances from the limb. Using Chamberlains model of the exosphere, we obtained values of the temperature, scale height and number density at the surface. These values differ significantly between the two nights. The spectra of the first night were taken when the Earth-Moon system was entering the Leonid meteor stream and show a marked increase in intensity, temperature and scale height relative to those of the second night, and relative to data for similar lunar phases published in the literature. We believe that this increase is related to an enhanced flux of micrometeoroids associated with the Leonid and possible with the Taurid meteor streams. The micrometeoroid component is generally considered the least important contribution to the sodium flux, and its distribution is assumed to be isotropic. We have previously suggested that an anisotropic and enhanced micrometeor component could be associated with meteor streams. The results reported below support this suggestion.

  2. Radiative heat exchange of a meteor body in the approximation of radiant heat conduction

    International Nuclear Information System (INIS)

    The problem of the thermal and dynamic destruction of large meteor bodies moving in planetary atmospheres is fundamental for the clarification of optical observations and anomalous phenomena in the atmosphere, the determination of the physicochemical properties of meteoroids, and the explanation of the fall of remnants of large meteorites. Therefore, it is important to calculate the coefficient of radiant heat exchange (which is the determining factor under these conditions) for large meteor bodies as they move with hypersonic velocities in an atmosphere. The solution of this problem enables one to find the ablation of a meteorite during its aerodynamic heating and to determine the initial conditions for the solution of problems of the breakup of large bodies and their subsequent motion and ablation. Hypersonic flow of an inviscid gas stream over an axisymmetric blunt body is analyzed with allowance for radiative transfer in a thick-thin approximation. The gas-dynamic problem of the flow of an optically thick gas over a large body is solved by the method of asymptotic joined expansions, using a hypersonic approximation and local self-similarity. An equation is obtained for the coefficient of radiant heat exchange and the peculiarities of such heat exchange for meteor bodies of large size are noted

  3. The MEMIN research unit: First results from impact cratering experiments into quartzite and tuff

    Science.gov (United States)

    Poelchau, M. H.; Hoerth, T.; Schäfer, F.; Deutsch, A.; Thoma, K.; Kenkmann, T.

    2012-09-01

    The MEMIN research unit is focused on performing and evaluating impact cratering experiments into geological materials. As a research unit, MEMIN uses a multidisciplinary approach, with different subprojects analyzing various aspects of the same cratering experiments, including crater morphology, ejecta dynamics, subsurface deformation, etc., along with numerical simulations of the impact process. A series of impact cratering experiments into quartzite and tuff targets is planned for June 2012. We intend to have completed a preliminary evaluation of these experiments for the EPSC conference.

  4. Morphometry of impact craters on Mercury from MESSENGER altimetry and imaging

    Science.gov (United States)

    Susorney, Hannah C. M.; Barnouin, Olivier S.; Ernst, Carolyn M.; Johnson, Catherine L.

    2016-06-01

    Data acquired by the Mercury Laser Altimeter and the Mercury Dual Imaging System on the MESSENGER spacecraft in orbit about Mercury provide a means to measure the geometry of many of the impact craters in Mercury's northern hemisphere in detail for the first time. The combination of topographic and imaging data permit a systematic evaluation of impact crater morphometry on Mercury, a new calculation of the diameter Dt at which craters transition with increasing diameter from simple to complex forms, and an exploration of the role of target properties and impact velocity on final crater size and shape. Measurements of impact crater depth on Mercury confirm results from previous studies, with the exception that the depths of large complex craters are typically shallower at a given diameter than reported from Mariner 10 data. Secondary craters on Mercury are generally shallower than primary craters of the same diameter. No significant differences are observed between the depths of craters within heavily cratered terrain and those of craters within smooth plains. The morphological attributes of craters that reflect the transition from simple to complex craters do not appear at the same diameter; instead flat floors first appear with increasing diameter in craters at the smallest diameters, followed with increasing diameter by reduced crater depth and rim height, and then collapse and terracing of crater walls. Differences reported by others in Dt between Mercury and Mars (despite the similar surface gravitational acceleration on the two bodies) are confirmed in this study. The variations in Dt between Mercury and Mars cannot be adequately attributed to differences in either surface properties or mean projectile velocity.

  5. "Pit Craters", lava tubes, and open vertical volcanic conduits in Hawaii: a problem in terminology

    OpenAIRE

    William R. Halliday

    1998-01-01

    Almost from the 1849 publication of the term pit crater, volcanologists have disagreed about the parameters differentiating these features from other vertical volcanic structures. Kaluaiki is a jameo giving entry to Thurston Lava Tube in Hawaii Volcanoes National Park. Long-standing misidentification of it as a pit crater is an example of misunderstandings arising from the lack of a clear definition of pit crater. In general, pit craters are unrelated to lava tube caves genetically, but two s...

  6. Role of the granular nature of meteoritic projectiles in impact crater morphogenesis

    OpenAIRE

    Bartali, Roberto; Rodríguez-Liñán, Gustavo M.; Nahmad-Molinari, Yuri; Sarocchi, Damiano; Ruiz-Suárez, J.C.

    2013-01-01

    By means of novel volume-diameter aspect ratio diagrams, we ponder on the current conception of crater morphogenesis analyzing crater data from beam explosions, hypervelocity collisions and drop experiments and comparing them with crater data from three moons (the Moon, Callisto, and Ganymede) and from our own experimental results. The distinctive volume-diameter scaling laws we discovered make us to conclude that simple and complex craters in satellites and planets could have been formed by ...

  7. Geomorphic constraints on the geologic history of Gale Crater (Invited)

    Science.gov (United States)

    Palucis, M. C.; Dietrich, W. E.; Hayes, A. G.; Williams, R. M.; Calef, F. J.; Sumner, D. Y.; Parker, T. J.; Bridges, N. T.; Team, M.

    2013-12-01

    On August 5, 2012, the Curiosity rover landed in Gale Crater near the Peace Vallis (PV) alluvial fan system. Gale is located on the crustal dichotomy of Mars between the heavily cratered southern highlands and the smoother northern lowlands. Recent crater counts on Gale's ejecta give an age estimate of ~3.6 Ga, corresponding to the Early Hesperian or possibly the Late Noachian (Le Deit et al., 2012). In the region to the south of Gale are similarly-sized craters (e.g. Hershel and Wien) that appear substantially more degraded, are partially to nearly buried, and have subtle rims, indicating that they likely pre-date Gale. Farah Vallis (FV), a large v-shaped channel incised into the southwestern rim of Gale, may have been part of a large regional drainage system (~270,000 km2) originating near Hershel Crater. Ejecta from Gale appear to have partly buried this valley network, implying it was active before the formation of Gale itself (Irwin et al., 2005). Gale also contains an ~5 km high central mound composed of layered material, whose age based on crater counts and superposition relationships, is ~3.6 to 3.8 Ga (Thomson et al., 2011). Here, we use crater counting and geomorphological relationships from mapped features within Gale to extend the work of others in providing a chronology of Gale's multi-stage geologic history. Using CTX imagery we have identified several large fan/delta features within Gale, in addition to those previously identified. These features, combined with topographic benches and morphologic changes from canyons to local fan deposition, suggest a series of large lakes. The largest (-2100 m) would have filled Gale entirely, and the smallest would have been a shallow lake at the distal end of the PV fan. The simplest interpretation, and the one supported by the geomorphology, is that Gale was sourced in part with water from FV and then progressively fell, creating weak shoreline features at several elevations. In addition, we performed a crater

  8. The MEMIN research unit: Scaling impact cratering experiments in porous sandstones

    Science.gov (United States)

    Poelchau, Michael H.; Kenkmann, Thomas; Thoma, Klaus; Hoerth, Tobias; Dufresne, Anja; SchńFer, Frank

    2013-01-01

    The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and experimental cratering processes in geological materials. MEMIN is interested in understanding how porosity and pore space saturation influence the cratering process. Here, we present results of a series of impact experiments into porous wet and dry sandstone targets. Steel, iron meteorite, and aluminum projectiles ranging in size from 2.5 to 12 mm were accelerated to velocities of 2.5-7.8 km s-1, yielding craters with diameters between 3.9 and 40 cm. Results show that the target's porosity reduces crater volumes and cratering efficiency relative to nonporous rocks. Saturation of pore space with water to 50% and 90% increasingly counteracts the effects of porosity, leading to larger but flatter craters. Spallation becomes more dominant in larger-scale experiments and leads to an increase in cratering efficiency with increasing projectile size for constant impact velocities. The volume of spalled material is estimated using parabolic fits to the crater morphology, yielding approximations of the transient crater volume. For impacts at the same velocity these transient craters show a constant cratering efficiency that is not affected by projectile size.

  9. Determination of meteor parameters based on the trajectory length and duration

    Science.gov (United States)

    Pupyrev, Yury; Gritsevich, Maria; Esko, Lyytinen

    We describe a new method to determine parameters of meteoroids based on the observed deceleration rate in the atmosphere. The input parameters in the problem are time and length of a visible path of a meteor detected in different points along its atmospheric trajectory. By introducing physically based parameterization and integrating equations of motion the following dependency may be obtained between the meteor height above planetary surface and its velocity (see, e.g. Gritsevich, 2009): $ y=ln 2alpha+beta-ln(operatorname{/line Ei}(beta)-operatorname{/line Ei}(beta v(2)).) Here alpha =frac12 c_{mathrm d}frac{rho_0h_0S_{mathrm e}}{M_{mathrm e}singamma},qquad beta =frac12(1-mu)frac{c_{mathrm h}V(2__{mathrm) e}}{c_{mathrm d}H(*}) $ are ballistic coefficient and mass loss parameter. These are the key parameters which have to be identified and can be further resolved to determine other important quantities, such as meteoroid mass and ablation coefficient. While in ``direct'' method for solving the equations of motion the number of input parameters reaches 8 (and thus significantly exceeds the number of physical equations), in this case all variables are grouped together in definition of these two parameters. The above mentioned equation was previously successfully used to fit the observational data. In this study we develop a novel algorithm where the length along trajectory may be used as input parameter. To demonstrate the method, we analyze data recorded with two or more monitoring stations of fireball network operating in Finland (Lyytinen and Gritsevich, 2013). Acknowledgements: This work is conducted under the partial support from the Russian Foundation for Basic Research projects Nos. 14-08-00204 and 13-07-00276 and the Academy of Finland. We thank Pekka Kokko, Jarmo Moilanen and the whole Finnish Fireball Working Group for their thorough help with data collection. textit{References}: Gritsevich (2009): Determination of parameters of meteor bodies based on

  10. Raindrop impact on sand: dynamic and crater formation

    Science.gov (United States)

    Zhao, Song-Chuan; de Jong, Rianne; van der Meer, Devaraj

    2015-03-01

    Droplet impact on a granular bed is very common in nature, industry, and agriculture and extends from raindrops falling on earth to wet granulation in the production process of many pharmaceuticals. In contrast to more traditionally studied impact phenomena, such as a droplet impact on solid substrate and solid object impact on fluid-like substrate, raindrop impact on sand induces more complicated interactions. First, both the intruder and the target deform during impact; second, the liquid composing the droplet may penetrate into the substrate during the impact and may, in the end, completely merge with the grains. These complex interactions between the droplet intruder and the granular target create the very diverse crater morphologies that has been described in the literature. An appealing and natural question is how the craters are formed. To gain insight in the mechanism of crater formation, we resolve the dynamics with high-speed laser profilometry and study the dependence of the dynamics on impact speed and packing fraction of the granular substrate. Finally, we establish a dynamical model to explain the various crater morphologies.

  11. Education Opportunities Using the CRaTER Instrument

    Science.gov (United States)

    Case, A. W.; Gross, N. A.; Spence, H. E.; Instrument Team, C.

    2009-12-01

    The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument on the Lunar Reconnaissance Orbiter (LRO) will quantify the effects of both solar energetic particles (SEP’s) and galactic cosmic rays (GCR’s) on living tissue. A number of education and public outreach opportunities for this project have presented themselves, including work with librarians in Massachusetts and presentations at the Museum of Science, Boston. These opportunities have allowed the CRaTER team to explain, in both formal and informal settings, what radiation is, what its effects are on living tissue, and what can be done to protect astronauts and instruments on the Moon. In addition, the CRaTER instrument is simple enough that the working engineering model can be shown to the public and the CRaTER team can describe the design process for development of an instrument that will fly on a spacecraft. This provides the public with important insight into the process of science.

  12. Impact Crater Experiments for Introductory Physics and Astronomy Laboratories

    Science.gov (United States)

    Claycomb, J. R.

    2009-01-01

    Activity-based collisional analysis is developed for introductory physics and astronomy laboratory experiments. Crushable floral foam is used to investigate the physics of projectiles undergoing completely inelastic collisions with a low-density solid forming impact craters. Simple drop experiments enable determination of the average acceleration,…

  13. A new study of crater concentric ridges on the Moon

    Science.gov (United States)

    Atwood-Stone, Corwin; Bray, Veronica J.; McEwen, Alfred S.

    2016-07-01

    Crater concentric ridges (CCRs) are topographic ridges found in the ejecta blankets of fresh few-kilometer-scale lunar craters. These ridges, which were last studied in detail in the late 1970 s (referred to as 'lunar concentric dunes'), were hypothesized to form due to ballistic impact sedimentation and erosion. We have surveyed the Moon to find 59 craters with CCRs and have constructed mosaics of these craters where possible using high-resolution LROC NAC (Lunar Reconnaissance Orbiter Camera-Narrow Angle Camera) images. We then map from some of these mosaics in order to measure the CCRs and examine their morphologies. Ejecta scaling models and some of our observations of the CCRs contradict the current hypothesis for the formation of these features. We therefore propose new hypotheses to consider for the formation of CCRs, specifically interaction of ejecta with initial topography or formation via interactions of shocks in the ejecta. Additionally, for the first time we have found CCRs on Mercury, but they are rare or absent on Mars.

  14. Evidence for gravity scaling and implications for explosion craters

    International Nuclear Information System (INIS)

    Crater data have been examined from recent hypervelocity impact and chemical explosion experiments conducted in accelerating frames. Data have been identified from experiments for which the conditions of similitude have been very nearly achieved. Examination of these data from similar experiments indicates that fourth-root or gravity scaling is the rule which best relates crater dimensions to the energy release of impacting projectiles or explosives. Implications for chemical and nuclear explosion cratering are that in model experiments where the gravitational field is constant the specific energy and dimensions of the explosive must be scaled as the fourth-root of explosion energy release. Additionally, medium properties must be appropriately scaled in similar experiments. Because of the impracticability of realizing the constraints imposed on model experiments by similitude requirements attention in future experiments should be focused on the sources of similarity violation and their influence on empirical relationships derived from experiments. Experiments in accelerating frames with both explosive sources and hypervelocity impact projectiles offer one means for investigating effects of similitude violation. To further elucidate the question of crater scaling, experiments in accelerating frames may be conducted which most nearly achieve the conditions of similitude required

  15. Evidence for gravity scaling and implications for explosion craters

    Energy Technology Data Exchange (ETDEWEB)

    Chabai, A.J.

    1979-01-01

    Crater data have been examined from recent hypervelocity impact and chemical explosion experiments conducted in accelerating frames. Data have been identified from experiments for which the conditions of similitude have been very nearly achieved. Examination of these data from similar experiments indicates that fourth-root or gravity scaling is the rule which best relates crater dimensions to the energy release of impacting projectiles or explosives. Implications for chemical and nuclear explosion cratering are that in model experiments where the gravitational field is constant the specific energy and dimensions of the explosive must be scaled as the fourth-root of explosion energy release. Additionally, medium properties must be appropriately scaled in similar experiments. Because of the impracticability of realizing the constraints imposed on model experiments by similitude requirements attention in future experiments should be focused on the sources of similarity violation and their influence on empirical relationships derived from experiments. Experiments in accelerating frames with both explosive sources and hypervelocity impact projectiles offer one means for investigating effects of similitude violation. To further elucidate the question of crater scaling, experiments in accelerating frames may be conducted which most nearly achieve the conditions of similitude required.

  16. Hydrogeology associated to faulting of the Chicxulub Impact Crater rim

    Science.gov (United States)

    Rebolledo-Vieyra, M.; Hernandez-Terrones, L.; Almazan-Becerril, A.; Valadez-Cruz, F.

    2011-12-01

    The only surface expression of the Chicxulub Impact Crater is a Ring of Cenotes (sinkholes) whose density varies from several cenotes per kilometer, to several kilometers between each cenote. This ring has a radius of approximately 90 km and it is centered at Chicxulub Puerto. It is not known today whether the Ring of Cenotes is the surface expression of the transient cavity as some authors have suggested, or whether it is the outer rim of the impact structure. The center of the ring is approximately coincident with the center of the Chicxulub Impact Crater. Reactivation of K/T rim faults had been associated to the formation of the ring of cenotes. However, none of these models project such faults to the Tertiary sedimentary sequence; therefore we can only infer that the cenotes are associated to these faults. Other hypotheses include "post impact subsidence induced by slumping and viscous relaxation in the rim" and "slumping in the rim of the buried crater, differential thickness in the rocks overlying the crater, or solution collapse within porous impact deposits", others suggest duration of subaerial exposure and weathering as a principal reason both for difference in permeability and cenote density inside and outside the Ring. This is consistent with the evolution of surface features reported. While sedimentation occurred in the basin outlined by the Ring, erosion and karst weathering were taking place outside the Ring. The karst features are associated with gravity gradients, which have been interpreted as corresponding to peripheral faults of the buried crater. We conducted geoelectric tomography perpendicular to the ring of cenotes, where we mapped the karstic features in the area and we interpret the high permeability in this area, to be associated to the faults generated by the differential compaction of the sedimentary sequence within the crater. This fault system generates a secondary porosity with high permeability that allows the circulation of water

  17. Earth's Largest Meteorite Impact Craters discovered in South America?

    Science.gov (United States)

    Kellndorfer, J. M.; Schmidt-Falkenberg, H.

    2014-12-01

    Novel analysis of high resolution InSAR-based digital elevation data from the year 2001 Shuttle Radar Topography Mission combined with a recently produced dataset of pan-tropical vegetation height from ALOS-1 SAR and IceSAT/GLAS Lidar estimates led to the quasi-bald-Earth discovery of four sizable near-perfect circle arcs in South America under dense tropical forests ranging in length from 216 km to 441 km. Terrain elevation profiles of cross-sections across the arcs show a distinct vertical rising and falling in elevations of hundreds of meters over a horizontal distance of tens of kilometers. It is hypothesized that these sizable arcs and associated rim-like topographic terrain features are remnants of huge meteorite impact craters with diameters ranging from 770 km to 1,310 km, thus forming potentially the largest known impact carter structures discovered on Earth today. The potential impact crater rim structures are located north of the eastern Amazon River, in the coastal region of Recife and Natal, and in the Brazilian, Bolivian and Paraguayan border region encompassing the Pantanal. Elevation profiles, hillshades and gray-shaded elevation maps were produced to support the geomorphologic analysis. It is also speculated whether in three of the four potential impact craters, central uplift domes or peaks, which are typical for complex impact crater structures can be identified. The worlds largest iron ore mining area of Carajás in Para, Brazil, falls exactly in the center of the largest hypothesized circular impact crater showing topographic elevations similar to the rim structure discovered 655 km to the north-north-west. Based on the topographic/geomorphologic driven hypothesis, geologic exploration of these topographic features is needed to test whether indeed meteorite impact craters could be verified, what the more exact ellipsoidal shapes of the potential impact craters might be, and to determine when during geologic times the impacts would have taken

  18. Assessment of Gravity Wave Momentum Flux Measurement Capabilities by Meteor Radars Having Different Transmitter Power and Antenna Configurations

    Science.gov (United States)

    Fritts, D. C.; Janches, D.; Hocking, W. K.; Mitchell, N. J.; Taylor, M. J.

    2011-01-01

    Measurement capabilities of five meteor radars are assessed and compared to determine how well radars having different transmitted power and antenna configurations perform in defining mean winds, tidal amplitudes, and gravity wave (GW) momentum fluxes. The five radars include two new-generation meteor radars on Tierra del Fuego, Argentina (53.8 deg S) and on King George Island in the Antarctic (62.1 deg S) and conventional meteor radars at Socorro, New Mexico (34.1 deg N, 106.9 deg W), Bear Lake Observatory, Utah (approx 41.9 deg N, 111.4 deg W), and Yellowknife, Canada (62.5 deg N, 114.3 deg W). Our assessment employs observed meteor distributions for June of 2009, 2010, or 2011 for each radar and a set of seven test motion fields including various superpositions of mean winds, constant diurnal tides, constant and variable semidiurnal tides, and superposed GWs having various amplitudes, scales, periods, directions of propagation, momentum fluxes, and intermittencies. Radars having higher power and/or antenna patterns yielding higher meteor counts at small zenith angles perform well in defining monthly and daily mean winds, tidal amplitudes, and GW momentum fluxes, though with expected larger uncertainties in the daily estimates. Conventional radars having lower power and a single transmitting antenna are able to describe monthly mean winds and tidal amplitudes reasonably well, especially at altitudes having the highest meteor counts. They also provide qualitative estimates of GW momentum fluxes at the altitudes having the highest meteor counts; however, these estimates are subject to uncertainties of approx 20 to 50% and uncertainties rapidly become excessive at higher and lower altitudes. Estimates of all quantities degrade somewhat for more complex motion fields.

  19. Anticipated Electrical Environment Within Permanently Shadowed Lunar Craters

    Science.gov (United States)

    Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.; Killen, R. M.; Delory, G. T.; Collier, M. R.; Vondrak, R. R.

    2010-01-01

    Shadowed locations ncar the lunar poles arc almost certainly electrically complex regions. At these locations near the terminator, the local solar wind flows nearly tangential to the surface and interacts with large-scale topographic features such as mountains and deep large craters, In this work, we study the solar wind orographic effects from topographic obstructions along a rough lunar surface, On the leeward side of large obstructions, plasma voids are formed in the solar wind because of the absorption of plasma on the upstream surface of these obstacles, Solar wind plasma expands into such voids) producing an ambipolar potential that diverts ion flow into the void region. A surface potential is established on these leeward surfaces in order to balance the currents from the expansion-limited electron and ion populations, Wc find that there arc regions ncar the leeward wall of the craters and leeward mountain faces where solar wind ions cannot access the surface, leaving an electron-rich plasma previously identified as an "electron cloud." In this case, some new current is required to complete the closure for current balance at the surface, and we propose herein that lofted negatively charged dust is one possible (nonunique) compensating current source. Given models for both ambipolar and surface plasma processes, we consider the electrical environment around the large topographic features of the south pole (including Shoemaker crater and the highly varied terrain near Nobile crater), as derived from Goldstone radar data, We also apply our model to moving and stationary objects of differing compositions located on the surface and consider the impact of the deflected ion flow on possible hydrogen resources within the craters

  20. Characterization of the Morphometry of Impact Craters Hosting Polar Deposits in Mercury's North Polar Region

    Science.gov (United States)

    Talpe Matthieu; Zuber, Maria T.; Yang, Di; Neumann, Gregory A.; Solomon, Sean C.; Mazarico, Erwan; Vilas, Faith

    2012-01-01

    Earth-based radar images of Mercury show radar-bright material inside impact craters near the planet s poles. A previous study indicated that the polar-deposit-hosting craters (PDCs) at Mercury s north pole are shallower than craters that lack such deposits. We use data acquired by the Mercury Laser Altimeter on the MESSENGER spacecraft during 11 months of orbital observations to revisit the depths of craters at high northern latitudes on Mercury. We measured the depth and diameter of 537 craters located poleward of 45 N, evaluated the slopes of the northern and southern walls of 30 PDCs, and assessed the floor roughness of 94 craters, including nine PDCs. We find that the PDCs appear to have a fresher crater morphology than the non-PDCs and that the radar-bright material has no detectable influence on crater depths, wall slopes, or floor roughness. The statistical similarity of crater depth-diameter relations for the PDC and non-PDC populations places an upper limit on the thickness of the radar-bright material (< 170 m for a crater 11 km in diameter) that can be refined by future detailed analysis. Results of the current study are consistent with the view that the radar-bright material constitutes a relatively thin layer emplaced preferentially in comparatively young craters.

  1. Craters on Earth, Moon, and Mars: Multivariate classification and mode of origin

    Science.gov (United States)

    Pike, R.J.

    1974-01-01

    Testing extraterrestrial craters and candidate terrestrial analogs for morphologic similitude is treated as a problem in numerical taxonomy. According to a principal-components solution and a cluster analysis, 402 representative craters on the Earth, the Moon, and Mars divide into two major classes of contrasting shapes and modes of origin. Craters of net accumulation of material (cratered lunar domes, Martian "calderas," and all terrestrial volcanoes except maars and tuff rings) group apart from craters of excavation (terrestrial meteorite impact and experimental explosion craters, typical Martian craters, and all other lunar craters). Maars and tuff rings belong to neither group but are transitional. The classification criteria are four independent attributes of topographic geometry derived from seven descriptive variables by the principal-components transformation. Morphometric differences between crater bowl and raised rim constitute the strongest of the four components. Although single topographic variables cannot confidently predict the genesis of individual extraterrestrial craters, multivariate statistical models constructed from several variables can distinguish consistently between large impact craters and volcanoes. ?? 1974.

  2. Role of the granular nature of meteoritic projectiles in impact crater morphogenesis

    CERN Document Server

    Bartali, Roberto; Nahmad-Molinari, Yuri; Sarochi, Damiano; Ruiz-Suárez, J C

    2013-01-01

    By means of novel volume-diameter aspect ratio diagrams, we ponder on the current conception of crater morphogenesis analyzing crater data from beam explosions, hypervelocity collisions and drop experiments and comparing them with crater data from three moons (the Moon, Callisto, and Ganymede) and from our own experimental results. The distinctive volume-diameter scaling laws we discovered make us to conclude that simple and complex craters in satellites and planets could have been formed by granular vs. granular collisions and that central peaks and domes in complex craters were formed by a dynamic confinement of part of the impacting projectile, rather than by the uplift of the target terrain. A granulometric analysis of asteroids and central peaks and domes inside complex craters, shows boulder size distributions consistent with our hypothesis that crater internal features are the remnants of granular impactors.

  3. An Igneous Origin for Features of a Candidate Crater-Lake System in Western Memnonia, Mars

    Science.gov (United States)

    Leverington, D. W.; Maxwell, T. A.

    2004-01-01

    The association of channels, inner terraces, and delta-like features with Martian impact craters has previously been interpreted as evidence in favor of the past existence of crater lakes on Mars. However, examination of a candidate crater-lake system in western Memnonia suggests instead that its features may have formed through igneous processes involving the flow and ponding of lava. Accumulations of material in craters and other topographic lows throughout much of the study region have characteristics consistent with those of volcanic deposits, and terraces found along the inner flanks of some of these craters are interpreted as having formed through drainage or subsidence of volcanic materials. Channels previously identified as inlets and outlets of the crater-lake system are interpreted instead as volcanic rilles. These results challenge previous interpretations of terrace and channel features in the study region and suggest that candidate crater lakes located elsewhere should be reexamined.

  4. 78 FR 39009 - Notice of Intent To Amend the Management Plan for the Craters of the Moon National Monument and...

    Science.gov (United States)

    2013-06-28

    ... Bureau of Land Management Notice of Intent To Amend the Management Plan for the Craters of the Moon...) for the Craters of the Moon National Monument and Preserve (Craters of the Moon). This notice... conservation measures for sage-grouse in the Craters of the Moon may be submitted in writing until July...

  5. Automated detection of lunar craters based on object-oriented approach

    Institute of Scientific and Technical Information of China (English)

    YUE ZongYu; LIU JianZhong; WU GanGuo

    2008-01-01

    The object-oriented approach is a powerful method in making classification. With the segmentation of images to objects, many features can be calculated based on the objects so that the targets can be distinguished. However, this method has not been applied to lunar study. In this paper we attempt to apply this method to detecting lunar craters with promising results. Craters are the most obvious features on the moon and they are important for lunar geologic study. One of the important questions in lunar research is to estimate lunar surface ages by examination of crater density per unit area. Hence,proper detection of lunar craters is necessary. Manual crater identification is inefficient, and a more efficient and effective method is needed. This paper describes an object-oriented method to detect lunar craters using lunar reflectance images. In the method, many objects were first segmented from the image based on size, shape, color, and the weights to every layer. Then the feature of "contrast to neighbor objects" was selected to identify craters from the lunar image. In the next step, by merging the adjacent objects belonging to the same class, almost every crater can be taken as an independent object except several very big craters in the study area. To remove the crater rays diagnosed as craters,the feature of "length/width" was further used with suitable parameters to finish recognizing craters.Finally, the result was exported to ArcGIS for manual modification to those big craters and the number of craters was acquired.

  6. US Air Force Space Weather Products Rapid Prototyping Efforts - Solar Radio Background/Burst Effects and Meteor Effects Products

    Science.gov (United States)

    Quigley, S.; Scro, K.

    2001-12-01

    The Space Vehicles Directorate of the Air Force Research Laboratory (AFRL/VSB) has joined efforts with the Technology Applications Division of the Space and Missile Systems Center (SMC Det 11/CIT) to rapidly transition space weather research into prototype, operational, system-impact products. These Rapid Prototyping Center (RPC) products are used to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense systems and communications. A summary of RPC activity is provided. Emphasis will be placed on current products under development, to include Solar Radio Background/Burst Effects (SoRBE) and Meteor Effects (ME) products. These will be added to real-time operations in the near future. SoRBE specifies the detrimental interference effects of background and event-level solar radio output on radar observations and satellite communications. ME will provide general meteor shower "nowcast" and forecast information, along with more specific meteor and meteor shower impact, radar clutter, and bolide (exploding meteor) effects. A brief overview of recently delivered products: Radar Auroral Clutter, Satellite Scintillation, HF Illumination, and GPS Single-Frequency Error Maps will also be provided.

  7. Performance of D-criteria in isolating meteor showers from the sporadic background in an optical data set

    CERN Document Server

    Moorhead, Althea V

    2015-01-01

    Separating meteor showers from the sporadic meteor background is critical for the study of both showers and the sporadic complex. The linkage of meteors to meteor showers, to parent bodies, and to other meteors is done using measures of orbital similarity. These measures often take the form of so-called D-parameters and are generally paired with some cutoff value within which two orbits are considered related. The appropriate cutoff value can depend on the size of the data-set (Southworth & Hawkins 1963), the sporadic contribution within the observed size range (Jopek 1995), or the inclination of the shower (Galligan 2001). If the goal is to minimize sporadic contamination of the extracted shower, the cutoff value should also reflect the strength of the shower compared to the local sporadic background. In this paper, we present a method for determining, on a per-shower basis, the orbital similarity cutoff value that corresponds to a chosen acceptable false-positive rate. This method also assists us in dis...

  8. Isotopic characteristic of meteoric water and groundwater in Ahaggar massif (central Sahara)

    International Nuclear Information System (INIS)

    The mean contents of both oxygen-18 and deuterium in precipitation from the Ahaggar massif (central Sahara) are: δ18O = -3 per mille and 2H = -15 per mille. The heterogeneity in meteoric events and the great scattering of these isotopic contents can be ascribed to the origins and the histories of air masses. The main contribution comes from the inflow of the Guinean monsoon during summer months. During winter, the N/W winds, arriving in the area from the Moroccan coast, provide some rains. The deuterium excess of these precipitation are up to +10 per mille, indicating that the air masses generating these rains are supplied by the recycling of the continental air moisture. Groundwater resources are produced in some little phreatic aquifers, which are recharged by sporadic wadi floods. Aquifer zones that are the most favourable are located in the valleys and occur as three overlying levels of unequal importance: the alluvial aquifer, the weathered zone of the underlying substratum and the deep aquifer of fissured basement. The alluvial aquifer contain weakly mineralised water (0.3 g/l). Their stable isotopes contents (δ18O∼ -2.7 per mille) and 14C activity of them (> 100 pmc) are comparable to present meteoric water, allowing modern meteoric waters to be identified. The weathered zone groundwater's are more mineralised (0.8 g/l) and its isotopic contents (δ18O∼ -4.2 per mille) and intermediate radiocarbon activity, prove their old water component. The basement's groundwater are more mineralised (> 1 g/l) and their very depleted isotopic contents (δ18O∼ -9 per mille) diverge clearly from the present precipitation. Furthermore, the absence of 3H and 14C activity of them, prove an old heritage, resulting from recharge during the last humid episode of the Holocene. (author)

  9. The Zodiacal Cloud Model applied to the Martian atmosphere. Diurnal variations in Meteoric ion layers

    Science.gov (United States)

    Diego Carrillo-Sánchez, Juan; Plane, John M. C.; Withers, Paul; Fallows, Kathryn; Nesvorný, David; Pokorný, Petr; Feng, Wuhu

    2016-04-01

    Sporadic metal layers have been detected in the Martian atmosphere by radio occultation measurements using the Mars Express Orbiter and Mars Global Surveyor spacecraft. More recently, metallic ion layers produced by the meteor storm event following the close encounter between Comet Siding Spring (C/2013 A1) and Mars were identified by the Imaging UltraViolet Spectrograph (IUVS) aboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. However, the background metal layers produced by the influx of sporadic meteors have not yet been detected at Mars (contrary to the permanent metal layers identified in the Earth's atmosphere). The Zodiacal Dust Cloud (ZDC) model for particle populations released by asteroids (AST), and dust grains from Jupiter Family Comets (JFC) and Halley-Type Comets (HTC) has been combined with a Monte Carlo sampling method and the Chemical ABlation MODel (CABMOD) to predict the ablation rates of Na, K, Fe, Si, Mg, Ca and Al above 40 km altitude in the Martian atmosphere. CABMOD considers the standard treatment of meteor physics, including the balance of frictional heating by radiative losses and the absorption of heat energy through temperature increases, melting phase transitions and vaporization, as well as sputtering by inelastic collisions with the air molecules. These vertical profiles are input into the Leeds 1-D Mars atmospheric model which includes photo-ionization, and gas-phase ion-molecule and neutral chemistry, in order to explore the evolution of the resulting metallic ions and atoms. We conclude that the formation of the sporadic ion layers observed below 100 km with a plasma density exceeding 104 cm-3 requires the combination of the three different influx sources considered by the ZDC model, with a significant asteroidal contribution. Finally, we explore the changes of the neutral and ionized Mg and Fe layers over a diurnal cycle.

  10. Initial operation and checkout of stratospheric aerosol gas experiment and Meteor-3M satellite

    Science.gov (United States)

    Habib, Shahid; Makridenko, Leonid; Chu, William P.; Salikhov, Rashid; Moore, Alvah S., Jr.; Trepte, Charles R.; Cisewski, Michael S.

    2003-04-01

    Under a joint agreement between the National Aeronautics and Space Agency (NASA) and the Russian Aviation and Space Agency (RASA), the Stratospheric Aerosol Gas Experiment III (SAGE III) instrument was launched in low earth orbit on December 10, 2001 aboard the Russian Meteor-3M(1) satellite from the Baikonur Cosmodrome. SAGE III is a spectrometer that measures attenuated radiation in the 282 nm to 1550 nm wavelength range to obtain the vertical profiles of ozone, aerosols, and other chemical species that are critical in studying the trends for the global climate change phenomena. This instrument version is more advanced than any of the previous versions and has more spectral bands, elaborate data gathering and storage, and intelligent terrestrial software. There are a number of Russian scientific instruments aboard the Meteor satellite in addition to the SAGE III instrument. These instruments deal with land imaging and biomass changes, hydro-meteorological monitoring, and helio-geophysical research. This mission was under development for over a period of six years and offered a number of unique technical and program management challenges for both Agencies. SAGE III has a long space heritage, and four earlier versions of this instrument have flown in space for nearly two decades now. In fact, SAGE II, the fourth instrument, is still flying in space on NASA's Earth Radiation Budget Satellite (ERBS), and has been providing important atmospheric data over the last 18 years. It has provided vital ozone and aerosol data in the mid latitudes and has contributed vastly in ozone depletion research. Ball Aerospace built the instrument under Langley Research Center's (LaRC) management. This paper presents the process and approach deployed by the SAGE III and the Meteor teams in performing the initial on-orbit checkout. It further documents a number of early science results obtained by deploying low risk, carefully coordinated procedures in resolving the serious operational

  11. On Meteoric Dust Particles in the Near-Earth Space Environment

    Science.gov (United States)

    Mahmoudian, Alireza; Farahani, Majid Mazraeh Ei; Mohebalhojeh, Ali R.; Scales, Wayne

    2016-07-01

    Over 40 metric tons of meteoric dust enters the earth's atmosphere every day. This dust settles and creates natural dust layers in the altitude ranges between 80 and 100 kilometers which spans the earth's upper mesosphere to lower thermosphere. The dust layers in the lower atmosphere have a great impact on climate, human health as well as communication and navigation signals. The main goal of this study is the role of meteoric smoke particles on the formation of Polar Mesospheric Clouds (PMC). Recent rocket experiments have detected the presence of these particles. Since these dust layers are immersed in the earth's upper atmosphere, they become charged due to collection of electrons and ions from the earth's ionospheric plasma. Noctilucent Clouds NLCs are a fascinating visual manifestation of these dust layers. So-called Polar Mesospheric Summer Echoes PMSEs are radar echoes that are a direct consequence of the sub-visible charged dust that exists at altitudes above NLC regions. Polar Mesospheric Summer Echoes (PMSE) are strong echoes that have been typically observed in the frequency range from 50MHz to 1.3GHz and in the altitude about 85km. Unlike PMSE, Polar mesospheric winter echoes (PMWE) are less known. PMWE appear at a lower altitude and is weaker in comparison with PMSE. The focus of this study is on meteoric smoke particles and how they affect PMWE source region. Parameters associated with smoke dust particles such as size distribution, charging characteristics, density and positive or negative charge will be considered. The second part of this presentation will be on the effect of gravity waves on PMC. Full coupling to a turbulent neutral field with a statistical analysis will be discussed. Impact of a neutral turbulence driving field on small amplitude plasma fluctuations in such a configuration and some of the important consequences will be also presented. This has important consequences for electric field and potential measurements on rocket probes as

  12. A time-resolved model of the mesospheric Na layer: constraints on the meteor input function

    Directory of Open Access Journals (Sweden)

    J. M. C. Plane

    2004-01-01

    Full Text Available A time-resolved model of the Na layer in the mesosphere/lower thermosphere region is described, where the continuity equations for the major sodium species Na, Na+ and NaHCO3 are solved explicity, and the other short-lived species are treated in steady-state. It is shown that the diurnal variation of the Na layer can only be modelled satisfactorily if sodium species are permanently removed below about 85 km, both through the dimerization of NaHCO3 and the uptake of sodium species on meteoric smoke particles that are assumed to have formed from the recondensation of vaporized meteoroids. When the sensitivity of the Na layer to the meteoroid input function is considered, an inconsistent picture emerges. The ratio of the column abundance of Na+ to Na is shown to increase strongly with the average meteoroid velocity, because the Na is injected at higher altitudes. Comparison with a limited set of Na+ measurements indicates that the average meteoroid velocity is probably less than about 25 km s-1, in agreement with velocity estimates from conventional meteor radars, and considerably slower than recent observations made by wide aperture incoherent scatter radars. The Na column abundance is shown to be very sensitive to the meteoroid mass input rate, and to the rate of vertical transport by eddy diffusion. Although the magnitude of the eddy diffusion coefficient in the 80–90 km region is uncertain, there is a consensus between recent models using parameterisations of gravity wave momentum deposition that the average value is less than 3×105 cm2 s-1. This requires that the global meteoric mass input rate is less than about 20 td-1, which is closest to estimates from incoherent scatter radar observations. Finally, the diurnal variation in the meteoroid input rate only slight perturbs the Na layer, because the residence time of Na in the layer is several days, and diurnal effects are effectively averaged out.

  13. Variability of sea ice melt and meteoric water input in the surface Labrador Current off Newfoundland

    Science.gov (United States)

    Benetti, M.; Reverdin, G.; Pierre, C.; Khatiwala, S.; Tournadre, B.; Olafsdottir, S.; Naamar, A.

    2016-04-01

    The respective contributions of saline (Atlantic and Pacific water) and freshwater (sea ice melt, meteoric water) components in the surface Labrador Current are quantified using salinity, δ18O, and nutrient data collected between 2012 and 2015 east of Newfoundland to investigate the seasonal variability of salinity in relation with the different freshwater contributions. Nutrient data indicate that the surface saline water is composed on average over 2012-2015 of roughly 62% Atlantic Water and 38% Pacific Water. A large salinity seasonal cycle of ≈ 1.5 peak-to-peak amplitude is found over the middle continental shelf, which is explained by the freshwater input seasonal variability: 2/3 of the amplitude of the salinity seasonal cycle can be explained by meteoric water input and 1/3 by the sea ice melt. A smaller seasonal salinity cycle (≈1.3) is observed over the inner shelf compared to the middle shelf, because of smaller variability in the large meteoric water inputs. Furthermore, the data reveal that sea ice melt (SIM) input was particularly important during July 2014, following a larger extension of sea ice over the Labrador shelf during the 2013/2014 winter season, compared to both previous winter seasons. Some patches of large SIM contribution observed during July 2014 and April 2015 were located on the continental slope or further offshore. The comparison of 2012-2015 data with data collected in 1994-1995 shows that the surface water over the Newfoundland shelf and slope is strongly affected by sea ice processes in both periods and suggests a larger contribution of brines over the slope during 1994-1995.

  14. An analytical theory of radio-wave scattering from meteoric ionization - I. Basic equation

    Science.gov (United States)

    Pecina, P.

    2016-01-01

    We have developed an analytical theory of radio-wave scattering from ionization of meteoric origin. It is based on an integro-differential equation for the polarization vector, P, inside the meteor trail, representing an analytical solution of the set of Maxwell equations, in combination with a generalized radar equation involving an integral of the trail volume electron density, Ne, and P represented by an auxiliary vector, Q, taken over the whole trail volume. During the derivation of the final formulae, the following assumptions were applied: transversal as well as longitudinal dimensions of the meteor trail are small compared with the distances of the relevant trail point to both the transmitter and receiver and the ratio of these distances to the wavelength of the wave emitted by the radar is very large, so that the stationary-phase method can be employed for evaluation of the relevant integrals. Further, it is shown that in the case of sufficiently low electron density, Ne, corresponding to the case of underdense trails, the classical McKinley's radar equation results as a special case of the general theory. The same also applies regarding the Fresnel characteristics. Our approach is also capable of yielding solutions to the problems of the formation of Fresnel characteristics on trails having any electron density, forward scattering and scattering on trails immersed in the magnetic field. However, we have also shown that the geomagnetic field can be removed from consideration, due to its low strength. The full solution of the above integro-differential equation, valid for any electron volume densities, has been left to subsequent works dealing with this particular problem, due to its complexity.

  15. DUSTER: collection of meteoric CaO and carbon smoke particles in the upper stratosphere .

    Science.gov (United States)

    Della Corte, V.; Rietmeijer, F. J. M.; Rotundi, A.; Ferrari, M.; Palumbo, P.

    Nanometer- to micrometer-size particles present in the upper stratosphere are a mixture of terrestrial and extra-terrestrial origins. They can be extraterrestrial particles condensed after meteor ablation. Meteoric dust in bolides is occasionally deposited into the lower stratosphere around 20 km altitude. Nanometer CaO and pure carbon smoke particles were collected at 38 km altitude in the upper stratosphere in the Arctic during June 2008 using DUSTER (Dust in the Upper Stratosphere Tracking Experiment and Retrieval), a balloon-borne instrument for the non-destructive collection of solid particles between 200 nm to 40 microns. We report the collection of micron sized CaCO_3 (calcite) grains. Their morphologies show evidence of melting and condensation after vaporization suggest at temperatures of approximately 3500 K. The formation environment of the collected grains was probably a dense dust cloud formed by the disintegration of a carbonaceous meteoroid during deceleration in the Earth� atmosphere. For the first time, DUSTER collected meteor ablation products that were presumably associated with the disintegration of a bolide crossing the Earth's atmosphere. The collected mostly CaO and pure carbon nanoparticles from the debris cloud of a fireball, included: 1) intact fragments; 2) quenched melted grains; and 3) vapor phase condensation products. The DUSTER project was funded by the Italian Space Agency (ASI), PRIN2008/MIUR (Ministero dell'Istruzione dell'Universitá e della Ricerca), PNRA 2013(Piano Nazionale Ricerca Antartide). CNES graciously provided this flight opportunity. We thank E. Zona and S. Inarta at the Laboratorio di Fisica Cosmica INAF, Osservatorio Astronomico di Capodimonte-Universitá di Napoli Parthenope. F.J.M.R. was supported by grant NNX07AI39G from the NASA Cosmochemistry Program. We thank three anonymous reviewers who assisted us in introducing our new instrument.

  16. Multi-Instrument Observations of Bright Meteors in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Spurný, Pavel; Borovička, Jiří; Koten, Pavel

    2005-01-01

    Roč. 95, 1-4 (2005), s. 569-278. ISSN 0167-9295. [Meteoroids 2004. London, Ontario, 16.08.2004-20.08.2004] R&D Projects: GA ČR GA205/03/1404; GA ČR GA205/02/0982; GA ČR GP205/02/P038 Institutional research plan: CEZ:AV0Z1003909 Keywords : bright meteors * observational techniques Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.975, year: 2005

  17. Evidence for age and evolution of Corner seamounts and Great Meteor seamount chain from multibeam bathymetry

    Science.gov (United States)

    Tucholke, Brian E.; Smoot, N. Christian

    1990-01-01

    The morphology of the Corner and Cruiser seamounts is discussed and the apparent age of seamount geomorphic features that are thought to have formed at sea level is derived. High-resolution, multibeam bathymetry of the seamounts shows geomorphic features such as guyots and terraces. The pattern of volcanism is consistent with the sequential formation of the New England, Corner, and Great Meteor chain seamounts above the New England hotspot. However, Late Cretaceous and Cenozoic absolute motion of the African plate over the hotspot differs significantly from predictions of the existing models. The derived age pattern of volcanism indicates formation of the Corner seamounts at ca. 80 Ma to 76 Ma.

  18. Meteoric isotopic gradient on the windward side of theSierra Madre Oriental area, Veracruz Mexico

    OpenAIRE

    Juan Pérez Quezadas; Alejandra Cortés Silva; Salvatore Inguaggiato; María del Rocío Salas Ortega; Juan Cervantes Pérez; Victor Michael Heilweil

    2015-01-01

    The isotopic composition ( d 18 O , d D ) of precipitation in the windward side of the Sierra Madre Oriental on the eastern flank of the Mexican Volcanic Belt was characterized along a 90 km transect from sea level up to an altitude of 4220 meters. Rain samples were collected during the rainy season (May through October) from 2007 through 2012. The Local Meteoric Water Line (LMWL), determined with linear regression of isotope results, is d D = 7.44 d 18 O + 7.3, R 2 = 0.99. Thi...

  19. Disruption of meteor streams due to dynamic effects of solar radiation with allowance for planetary perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Galibina, I.V.; Poliakhova, E.N.

    1978-01-01

    Formulas are derived for secular perturbations of the Keplerian heliocentric orbital elements of dust or micrometeor particles due to the relativistic dynamic Poynting-Robertson effect of solar radiation. This transverse dynamic effect consists of the dynamic effects of solar photon radiation (the light flux) and corpuscular radiation (the solar wind). Results are presented for a determination of the secular perturbations of small particles in a meteor swarm due to the four giant planets, with allowance for the dynamic effects of solar radiation. It is shown that the nongravitational perturbing forces are important only for small particles but affect swarm disruption and the dispersion of the swarm particles' heliocentric orbits.

  20. Seasonal and diurnal variability of the meteor flux at high latitudes observed using PFISR

    Science.gov (United States)

    Sparks, J. J.; Janches, D.; Nicolls, M. J.; Heinselman, C. J.

    2009-05-01

    We report in this and a companion paper [Fentzke, J.T., Janches, D., Sparks, J.J., 2008. Latitudinal and seasonal variability of the micrometeor input function: A study using model predictions and observations from Arecibo and PFISR. Journal of Atmospheric and Solar-Terrestrial Physics, this issue, doi:10.1016/j.jastp.2008.07.015] a complete seasonal study of the micrometeor input function (MIF) at high latitudes using meteor head-echo radar observations performed with the Poker Flat Incoherent Scatter Radar (PFISR). This flux is responsible for a number of atmospheric phenomena; for example, it could be the source of meteoric smoke that is thought to act as condensation nuclei in the formation of ice particles in the polar mesosphere. The observations presented here were performed for full 24-h periods near the summer and winter solstices and spring and autumn equinoxes, times at which the seasonal variability of the MIF is predicted to be large at high latitudes [Janches, D., Heinselman, C.J., Chau, J.L., Chandran, A., Woodman, R., 2006. Modeling of the micrometeor input function in the upper atmosphere observed by High Power and Large Aperture Radars, JGR, 11, A07317, doi:10.1029/2006JA011628]. Precise altitude and radar instantaneous line-of-sight (radial) Doppler velocity information are obtained for each of the hundreds of events detected every day. We show that meteor rates, altitude, and radial velocity distributions have a large seasonal dependence. This seasonal variability can be explained by a change in the relative location of the meteoroid sources with respect to the observer. Our results show that the meteor flux into the upper atmosphere is strongly anisotropic and its characteristics must be accounted for when including this flux into models attempting to explain related aeronomical phenomena. In addition, the measured acceleration and received signal strength distribution do not seem to depend on season; which may suggest that these observed

  1. Direct evidence for the origin of low- sup 18 O silicic magmas: Quenched samples of a magma chamber's partially-fused granitoid walls, Crater Lake, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, C.R.; Adami, L.H.; Lanphere, M.A. (Geological Survey, Menlo Park, CA (USA))

    1989-12-01

    Partially fused granitoid blocks were ejected in the climactic eruption of Mount Mazama, which was accompanied by collapse of Crater Lake caldera. Quartz, plagioclase, and glass in the granitoids have much lower {delta}{sup 18}O values (-3.4 to +4.9per mille) than any fresh lavas of Mount Mazama and the surrounding region (+5.8 to +7.0per mille). Oxygen isotope fractionation between phases in granitoids is consistent with equilibrium at T{ge}900deg C following subsolidus exchange with hydrothermal fluids of meteoric origin. Assimilation of {approx equal} 10-20% of material similar to these granitoids can account for the O and Sr isotopic compositions of lavas and juvenile pyroclasts derived from the climactic magma chamber, many of which have {delta}{sup 18}O values {approx equal} 0.5per mille or more lower than comparable lavas of Mount Mazama. The O isotope data provide the only clear evidence for such assimilation because the mineralogy and chemical and radiogenic isotopic compositions of the granitoids (dominantly granodiorite) are similar to those of erupted juvenile magmas. The granitoid blocks from Crater Lake serve as direct evidence for the origin of {sup 18}O depletion in large, shallow silicic magma bodies. (orig.).

  2. Louth Crater: Evolution of a layered water ice mound

    CERN Document Server

    Brown, Adrian J; Tornabene, Livio L; Roush, Ted L

    2014-01-01

    We report on observations made of the ~36km diameter crater, Louth, in the north polar region of Mars (at 70{\\deg}N, 103.2{\\deg}E). High-resolution imagery from the instruments on the Mars Reconnaissance Orbiter (MRO) spacecraft has been used to map a 15km diameter water ice deposit in the center of the crater. The water ice mound has surface features that include roughened ice textures and layering similar to that found in the North Polar Layered Deposits. Features we interpret as sastrugi and sand dunes show consistent wind patterns within Louth over recent time. CRISM spectra of the ice mound were modeled to derive quantitative estimates of water ice and contaminant abundance, and associated ice grain size information. These morphologic and spectral results are used to propose a stratigraphy for this deposit and adjoining sand dunes. Our results suggest the edge of the water ice mound is currently in retreat.

  3. Space Radar Image of the Yucatan Impact Crater Site

    Science.gov (United States)

    1999-01-01

    This is a radar image of the southwest portion of the buried Chicxulub impact crater in the Yucatan Peninsula, Mexico. The radar image was acquired on orbit 81 of space shuttle Endeavour on April 14, 1994 by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The image is centered at 20 degrees north latitude and 90 degrees west longitude. Scientists believe the crater was formed by an asteroid or comet which slammed into the Earth more than 65 million years ago. It is this impact crater that has been linked to a major biological catastrophe where more than 50 percent of the Earth's species, including the dinosaurs, became extinct. The 180-to 300-kilometer-diameter (110- to 180-mile)crater is buried by 300 to 1,000 meters (1,000 to 3,000 feet) of limestone. The exact size of the crater is currently being debated by scientists. This is a total power radar image with L-band in red, C-band in green, and the difference between C-band L-band in blue. The 10-kilometer-wide (6-mile) band of yellow and pink with blue patches along the top left (northwestern side) of the image is a mangrove swamp. The blue patches are islands of tropical forests created by freshwater springs that emerge through fractures in the limestone bedrock and are most abundant in the vicinity of the buried crater rim. The fracture patterns and wetland hydrology in this region are controlled by the structure of the buried crater. Scientists are using the SIR-C/X-SAR imagery to study wetland ecology and help determine the exact size of the impact crater. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community

  4. An Impact Crater in Palm Valley, Central Australia?

    CERN Document Server

    Hamacher, Duane W; O'Neill, Craig; Britton, Tui R

    2012-01-01

    We explore the origin of a ~280 m wide, heavily eroded circular depression in Palm Valley, Northern Territory, Australia using gravity, morphological, and mineralogical data collected from a field survey in September 2009. From the analysis of the survey, we debate probable formation processes, namely erosion and impact, as no evidence of volcanism is found in the region or reported in the literature. We argue that the depression was not formed by erosion and consider an impact origin, although we acknowledge that diagnostics required to identify it as such (e.g. meteorite fragments, shatter cones, shocked quartz) are lacking, leaving the formation process uncertain. We encourage further discussion of the depression's origin and stress a need to develop recognition criteria that can help identify small, ancient impact craters. We also encourage systematic searches for impact craters in Central Australia as it is probable that many more remain to be discovered.

  5. Details of Layers in Victoria Crater's Cape St. Vincent

    Science.gov (United States)

    2007-01-01

    NASA's Mars Exploration Rover Opportunity rover spent about 300 sols (Martian days) during 2006 and 2007 traversing the rim of Victoria Crater. Besides looking for a good place to enter the crater, the rover obtained images of rock outcrops exposed at several cliffs along the way. The cliff in this image from Opportunity's panoramic camera (Pancam) is informally named Cape St. Vincent. It is a promontory approximately 12 meters (39 feet) tall on the northern rim of Victoria crater, near the farthest point along the rover's traverse around the rim. Layers seen in Cape St. Vincent have proven to be among the best examples of meter scale cross-bedding observed on Mars to date. Cross-bedding is a geologic term for rock layers which are inclined relative to the horizontal and which are indicative of ancient sand dune deposits. In order to get a better look at these outcrops, Pancam 'super-resolution' imaging techniques were utilized. Super-resolution is a type of imaging mode which acquires many pictures of the same target to reconstruct a digital image at a higher resolution than is native to the camera. These super-resolution images have allowed scientists to discern that the rocks at Victoria Crater once represented a large dune field, not unlike the Sahara desert on Earth, and that this dune field migrated with an ancient wind flowing from the north to the south across the region. Other rover chemical and mineral measurements have shown that many of the ancient sand dunes studied in Meridiani Planum were modified by surface and subsurface liquid water long ago. This is a Mars Exploration Rover Opportunity Panoramic Camera image acquired on sol 1167 (May 7, 2007), and was constructed from a mathematical combination of 16 different blue filter (480 nm) images.

  6. Geological Structures in the WaIls of Vestan Craters

    Science.gov (United States)

    Mittlefehldt, David; Nathues, A.; Beck, A. W.; Hoffmann, M.; Schaefer, M.; Williams, D. A.

    2014-01-01

    A compelling case can be made that Vesta is the parent asteroid for the howardite, eucrite and diogenite (HED) meteorites [1], although this interpretation has been questioned [2]. Generalized models for the structure of the crust of Vesta have been developed based on petrologic studies of basaltic eucrites, cumulate eucrites and diogenites. These models use inferred cooling rates for different types of HEDs and compositional variations within the clan to posit that the lower crust is dominantly diogenitic in character, cumulate eucrites occur deep in the upper crust, and basaltic eucrites dominate the higher levels of the upper crust [3-5]. These models lack fine-scale resolution and thus do not allow for detailed predictions of crustal structure. Geophysical models predict dike and sill intrusions ought to be present, but their widths may be quite small [6]. The northern hemisphere of Vesta is heavily cratered, and the southern hemisphere is dominated by two 400-500 km diameter basins that excavated deep into the crust [7-8]. Physical modeling of regolith formation on 300 km diameter asteroids predicts that debris layers would reach a few km in thickness, while on asteroids of Vesta's diameter regolith thicknesses would be less [9]. This agrees well with the estimated =1 km thickness of local debris excavated by a 45 km diameter vestan crater [10]. Large craters and basins may have punched through the regolith/megaregolith and exposed primary vestan crustal structures. We will use Dawn Framing Camera (FC) [11] images and color ratio maps from the High Altitude and Low Altitude Mapping Orbits (HAMO, 65 m/pixel; LAMO, 20 m/pixel) to evaluate structures exposed on the walls of craters: two examples are discussed here.

  7. Quaternary Eruptions of the Mono-Inyo Craters, California

    Science.gov (United States)

    Bursik, M. I.; Pouget, S.; Mangan, M.; Marcaida, M.; Vazquez, J. A.

    2013-12-01

    The eruptive products of the Mono-Inyo Craters volcanic chain include the tephra and associated volcanic rocks of Black Point, islands of Mono Lake, Mono Craters, Inyo Craters, late eruptions of Mammoth Mountain and Red Cones. Most of the eruptions were explosive, and generated numerous pyroclastic flows, surges and falls as well as the prominent domes and lava flows that now cover vents. The eruptions range in age from several hundred years to at least 60,000 yr BP. The Mono-Inyo tephras are dispersed throughout the Sierra Nevada and Basin and Range, providing key time-stratigraphic marker layers. Recent work has not only resulted in high-precision radiometric dating of many of the tephras, but also detailed geochemical data that for the first time provides fingerprinting sufficiently precise to discriminate among the tephras. Lithostratigraphy of many of the layers is herein described for the first time, based on careful sampling and description in the field, and laboratory grain size, grain shape and componentry analyses of the late Pleistocene tephras of the Wilson Creek Formation. Most of the Wilson Creek volcanic layers are fall deposits accumulated within paleolake Russell, which were generated by eruptions of variable intensity and influenced by paleowinds of different orientation. Prevailing winds were generally to the North and East, but often the Pleistocene layers less than 25 ka were dispersed to the West. Many of the fall layers show evidence of wave reworking, generally near the top, although in some cases it is pervasive. Only near the vent do some layers of apparent debris flow origin occur. Maximum pumice sizes range up to nearly 3 cm, and lithics range up to 1 cm in the rhyolitic fall beds, while thicknesses range up to c. 30 cm. These data are consistent with relatively low volume, subplinian style eruptive behavior for most of the life of the Mono-Inyo Craters.

  8. Martian fresh crater depths: More evidence for subsurface volatiles

    International Nuclear Information System (INIS)

    Shadow measurements on Viking Orbiter photography have yielded depths for 172 fresh martian craters spanning a diameter range of 0.7 to 80 km. Most craters studied are shallower than their lunar and mercurian counterparts. While the martian data exhibit a break in the depth/diameter distribution similar to those found for the Moon and Mercury, the ''inflection'' occurs at a smaller diameter on Mars, and the slopes below and above the break are respectively less than and greater than those of the other two planets. In addition to possible substrate-related transient cavity modification mechanisms, flash vaporization of proposed subsurface H2O would alter the original impact-induced velocity field by enhancing horizontal to subhorizontal target flow an excavation, thus yielding shallower craters. On the basis of the observed distribution, it is suggested that this process is more active at diameters near the break in slope (approx.4 km), declining in efficiency with increasing diameter, and can account for many dissimilarities between the martian distribution and those of the Moon and Mercury, which cannot be reconciled with gravity , impact velocity, or projectile differences alone

  9. Impact-generated Hydrothermal Activity at the Chicxulub Crater

    Science.gov (United States)

    Kring, D. A.; Zurcher, L.; Abramov, O.

    2007-05-01

    Borehole samples recovered from PEMEX exploration boreholes and an ICDP scientific borehole indicate the Chicxulub impact event generated hydrothermal alteration throughout a large volume of the Maya Block beneath the crater floor and extending across the bulk of the ~180 km diameter crater. The first indications of hydrothermal alteration were observed in the crater discovery samples from the Yucatan-6 borehole and manifest itself in the form of anhydrite and quartz veins. Continuous core from the Yaxcopoil-1 borehole reveal a more complex and temporally extensive alteration sequence: following a brief period at high temperatures, impact- melt-bearing polymict breccias and a thin, underlying unit of impact melt were subjected to metasomatism, producing alkali feldspar, sphene, apatite, and magnetite. As the system continued to cool, smectite-series phyllosilicates appeared. A saline solution was involved. Stable isotopes suggest the fluid was dominated by a basinal brine created mostly from existing groundwater of the Yucatan Peninsula, although contributions from down-welling water also occurred in some parts of the system. Numerical modeling of the hydrothermal system suggests circulation occurred for 1.5 to 2.3 Myr, depending on the permeability of the system. Our understanding of the hydrothermal system, however, is still crude. Additional core recovery projects, particularly into the central melt sheet, are needed to better evaluate the extent and duration of hydrothermal alteration.

  10. Moessbauer studies on impactites from Lonar impact crater

    Energy Technology Data Exchange (ETDEWEB)

    Verma, H. C., E-mail: hcverma@iitk.ac.in [I I T Kanpur, Department of Physics (India); Misra, S., E-mail: misrasaumitra@gmail.com [Indian Institute of Geomagnetism (India); Shyam Prasad, M., E-mail: shyam@nio.org [National Institute of Oceanography, Geological Oceanography Division (India); Bijlani, N.; Tripathi, A., E-mail: rpt2002@sify.com [J.N.V. University, Department of Physics (India); Newsom, Horton, E-mail: newsom@unm.edu [University of New Mexico, Institute of Meteoritics and Department of Earth and Planetary Sciences (United States)

    2008-09-15

    Iron mineralogy has been studied using Moessbauer spectroscopy on eight glassy impactite samples from different parts of the Lonar Crater Rim Region. Distinct changes are observed when compared to the host basaltic samples. Significant amount of Fe{sup 3+} phase is observed in the impactite samples whereas this phase is known to be almost absent in the basalt. Besides this we have a strong Fe{sup 2+} doublet showing up corresponding to the main iron-containing mineral. The Moessbauer results are very similar to those with glasses from Ries crater which is also believed to have formed by meteoritic impact but on nonbasaltic rock bed. Besides the glassy samples, we also study some spherules found in the crater region and some fine glassy particles on the surfaces of melt impact bombs. These contain a good amount of magnetically ordered phase, most likely nanosize hematite. Interestingly, part of it is strongly attracted by a magnet and part of it is not. But both parts show a significantly strong six-line component corresponding to hematite.

  11. Thermoluminescence dating of the Kamil impact crater (Egypt)

    Science.gov (United States)

    Sighinolfi, Gian Paolo; Sibilia, Emanuela; Contini, Gabriele; Martini, Marco

    2015-02-01

    Thermoluminescence (TL) dating has been used to determine the age of the meteorite impact crater at Gebel Kamil (Egyptian Sahara). Previous studies suggested that the 45 m diameter structure was produced by a fall in recent times (less than 5000 years ago) of an iron meteorite impactor into quartz-arenites and siltstones belonging to the Lower Cretaceous Gilf Kebir Formation. The impact caused the complete fragmentation of the impactor, and the formation of a variety of impactites (e.g., partially vitrified dark and light materials) present as ejecta within the crater and in the surrounding area. After a series of tests to evaluate the TL properties of different materials including shocked intra-crater target rocks and different types of ejecta, we selected a suite of light-colored ejecta that showed evidence of strong thermal shock effects (e.g., partial vitrification and the presence of high-temperature and -pressure silica phases). The abundance of quartz in the target rocks, including the vitrified impactites, allowed TL dating to be undertaken. The variability of radioactivity of the intracrateric target rocks and the lack of direct in situ dosimetric evaluations prevented precise dating; it was, however, possible to constrain the impact in the 2000 BC-500 AD range. If, as we believe, the radioactivity measured in the fallback deposits is a reliable estimate of the mean radioactivity of the site, the narrower range 1600-400 BC (at the 2σ confidence level) can be realistically proposed.

  12. Cones and craters on Mount Pavagadh, Deccan Traps: Rootless cones?

    Indian Academy of Sciences (India)

    Hetu C Sheth; George Mathew; Kanchan Pande; Soumen Mallick; Balaram Jena

    2004-12-01

    Rootless cones, also (erroneously) called pseudocraters, form due to explosions that ensue when a lava flow enters a surface water body, ice, or wet ground. They do not represent primary vents connected by vertical conduits to a subsurface magma source. Rootless cones in Iceland are well studied. Cones on Mars, morphologically very similar to Icelandic rootless cones, have also been suggested to be rootless cones formed by explosive interaction between surface lava flows and ground ice. We report here a group of gentle cones containing nearly circular craters from Mount Pavagadh, Deccan volcanic province, and suggest that they are rootless cones. They are very similar morphologically to the rootless cones of the type locality of Mý vatn in northeastern Iceland. A group of three phreatomagmatic craters was reported in 1998 from near Jabalpur in the northeastern Deccan, and these were suggested to be eroded cinder cones. A recent geophysical study of the Jabalpur craters does not support the possibility that they are located over volcanic vents. They could also be rootless cones. Many more probably exist in the Deccan, and volcanological studies of the Deccan are clearly of value in understanding planetary basaltic volcanism.

  13. Meteor cookbook

    CERN Document Server

    Strack, Isaac

    2015-01-01

    This book is meant for developers of all experience levels looking to create mobile and full-stack web applications in JavaScript. Many of the simple recipes can easily be followed by less-experienced developers, while some of the advanced recipes will require extensive knowledge of existing web, mobile, and server technologies. Any application or enterprise web developer looking to create full-stack JavaScript-based apps will benefit from the recipes and concepts covered in this book.

  14. Enhancement of the Moon's Sodium Tail Following the Leonid Meteor Shower of 1998.

    Science.gov (United States)

    Wilson, J. K.; Smith, S. M.; Baumgardner, J.; Mendillo, M.

    1999-09-01

    We have made the first detections of the distant lunar sodium tail with an all-sky camera on the nights of August 21-22 and November 18-20, 1998. The lunar sodium tail represents the escaping component of the lunar sodium atmosphere, which is generated from the Moon's regolith by a combination of surface processes. On nights near new Moon, the sodium tail appears in the sky as a spot near the anti-solar point; the location and morphology of this spot are consistent with standard models of the Moon's atmosphere. We interpret the changing brightness of the spot from night to night using a new time-dependent model of the lunar atmosphere, and we find that the atomic sodium escape rate from the Moon temporarily increased by a factor of 2 to 3 during the most intense period of the 1998 Leonid meteor shower on November 16 and 17. This is the most significant meteor-related atmospheric enhancement yet observed, and it may help to quantify the contribution of micrometeor bombardment to the lunar atmosphere.

  15. A new approach to momentum flux determinations using SKiYMET meteor radars

    International Nuclear Information System (INIS)

    The current primary radar method for determination of atmospheric momentum fluxes relies on multiple beam studies, usually using oppositely directed coplanar beams. Generally VHF and MF radars are used, and meteor radars have never been successfully employed. In this paper we introduce a new procedure that can be used for determination of gravity wave fluxes down to time scales of 2-3 h, using the SKiYMET meteor radars. The method avoids the need for beam forming, and allows simultaneous determination of the three components of the wind averaged over the radar volume, as well as the variance and flux components u'2, v'2, w'2, u'v', u'w' and v'w', where u' refers to the fluctuating eastward wind, v' refers to the fluctuating northward wind, and w' refers to the fluctuating vertical wind. Data from radars in New Mexico and Resolute Bay are used to illustrate the data quality, and demonstrate theoretically expected seasonal forcing. (orig.)

  16. Heterogeneous nucleation and growth of water vapor on meteoric smoke particle analogues at mesospheric conditions

    Science.gov (United States)

    Nachbar, Mario; Duft, Denis; Leisner, Thomas

    2016-04-01

    Sub 2 nm meteoric smoke particles (MSP) produced from the ablation and recondensation of meteoric material are believed to be the major kind of nuclei causing the formation of water ice particles in the mesopause of Earth at heights of 80-90 km. These so called noctiLucent clouds (NLC) are frequently detected during polar summer, whereas the microphysical nucleation process and subsequent growth on such small particles are understood only poorly. Parameterizing these processes results in large uncertainties especially due to a lack of experimental data on desorption energies and critical saturation for the activation of nucleation under realistic mesospheric conditions, which states the need of laboratory measurements. We produce charged nanometer sized (2-3 nm) MSP analogues in a microwave plasma particle source and transfer them to a novel linear ion trap which allows us to trap the particles under typical mesospheric temperatures and H2O concentrations. The adsorption of H2O molecules on the particles surface followed by nucleation and growth can be examined by analyzing the mass distribution of the particles with a time-of-flight mass spectrometer as function of the residence time under supersaturated conditions. In this contribution we present such measurements for single positively as well as negatively charged particles which allow us to determine the desorption energy of water vapor on the investigated nanoparticles as well as the critical saturation needed to activate nucleation and subsequent growth.

  17. Estimation of surface UV levels based on Meteor-3/TOMS ozone data

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Y.A. [Central Aerological Observatory, Moscow (Russian Federation); Geogdzhaev, I.V. [Moscow Inst. of Physics and Technology, Moscow (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Moscow (Russian Federation)

    1995-12-31

    The major consequence of ozone layer depletion for the environment is an increase of harmful ultraviolet (UV) radiation on the Earth surface and in the upper ocean. This implies the importance of environmental UV monitoring. Since the direct global monitoring is not currently possible, indirect estimations of surface UV levels may be used based on satellite ozone data (Madronich, S. 1992). Total Ozone Mapping Spectrometer (TOMS) on board the METEOR-3 satellite provided regular set of data for such estimates. During the time of its operation (August, 1991 - December, 1994) the instrument registered several ozone hole events over Antarctica, when ozone levels dropped by as much as 60 % from their unperturbed values. Probably even more alarming ozone depletions were observed over highly populated regions of middle latitudes of northern hemisphere. Radiative transfer modeling was used to convert METEOR-3/TOMS daily ozone values into regional and global maps of biologically active UV. Calculations demonstrate the effect on surface UV levels produced by ozone hole over Antarctica and ozone depletions over the territory of Russia (March, 1994). UV contour lines deviate from the normal appearance which is determined by growing southward solar elevation. UV contour lines are almost perpendicular to the ozone ones in the ozone depletions areas. The 30 % ozone depletion, over Siberia caused more than 30 % increase in noontime erythemal UV levels, which is equivalent to 10-15 degrees southward latitude displacement. Higher UV radiation increases were found in ozone hole over South America (October 1992) equivalent to about 20 degrees southward displacement

  18. An ET Origin for Stratospheric Particles Collected during the 1998 Leonids Meteor Shower

    CERN Document Server

    Noever, D A; Horack, J M; Jerman, G; Myszka, E

    1999-01-01

    On 17 November 1998, a helium-filled weather balloon was launched into the stratosphere, equipped with a xerogel microparticle collector. The three-hour flight was designed to sample the dust environment in the stratosphere during the Leonid meteor shower, and possibly to capture Leonid meteoroids. Environmental Scanning Electron Microscope analyses of the returned collectors revealed the capture of a $\\sim$30-$\\mu$m particle, with a smooth, multigranular shape, and partially melted, translucent rims; similar to known Antarctic micrometeorites. Energy-dispersive X-ray Mass Spectroscopy shows enriched concentrations of the non-volatile elements, Mg, Al, and Fe. The particle possesses a high magnesium to iron ratio of 2.96, similar to that observed in 1998 Leonids meteors (Borovicka, {\\it et al.} 1999) and sharply higher than the ratio expected for typical material from the earth's crust. A statistical nearest-neighbor analysis of the abundance ratios Mg/Si, Al/Si, and Fe/Si demonstrates that the particle is mo...

  19. Species composition and distribution patterns of early life stages of cephalopods at Great Meteor Seamount (subtropical NE Atlantic)

    OpenAIRE

    Diekmann, Rabea; Piatkowski, Uwe

    2004-01-01

    The distribution of early life stages of cephalopods was studied during a cruise of RV Meteor in September 1998 at Great Meteor Seamount, an isolated flat-topped seamount in the subtropical eastern North Atlantic. Zooplankton sampling was conducted with a multi-opening-closing net (modified MOCNESS, 1 m² net opening, 335 µm mesh size) in seven depth strata between 290 m depth and the surface. 1180 early life stages of cephalopods were collected, representing at least 18 families and 31 mainly...

  20. Probing of meteor showers at Mars during the encounter of comet C/2013 A1: predictions for the arrival of MAVEN/Mangalyaan

    Science.gov (United States)

    Haider, Syed A.; Pandya, Bhavin M.

    2015-12-01

    We have estimated (1) production rates, (2) ion and electron densities of meteor ablation and (3) ionization for different masses and velocities of meteoroids when comet C/2013 A1 crossed the orbit of Mars on 19 October, 2014 at 18:27 UT. Meteor ablations of small masses Mars Express (MEX), Mars Atmosphere and Volatile Evolution (MAVEN) and Mangalyaan.